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ABSTRACT

The source sink relationship during papaya fruit development and ripening was 

investigated. The source size and sink strength were modified by single or continual defoliation, 

and fruit thinning, respectively. The relationship between fruit growth, respiration, sugar 

accumulation and the activity of sucrose phosphate synthase (SPS), sucrose synthase (SS), and 

acid invertase were determined in fruit from 14 days after anthesis (DAA) to 140 DAA (harvest 

maturity) and in response to defoliation and fruit removal. A putative complete invertase gene 

and a SS gene fragment were isolated and characterized from nearly mature green papaya fruit. 

Single defoliation significantly reduced new flower and fruit set, and ripe fruit total soluble solids 

(TSS) but did not reduce fruit production, average fruit mass, percentage fruit flesh and seed, 

seed mass ratio and seed dry mass during a six weeks period. Continual defoliation in addition 

reduced fruit size, sugar and invertase enzyme activity and fruit production. The responses of 

defoliation and fruit thinning varied between different cultivars, weather conditions, defoliation 

time, degree and method. The pattern of gene expression during fruit development was 

compared with invertase extracted enzyme activity in the presence and absence of sodium 

chloride (NaCI) and by western blot analysis. The papaya invertase sequence had an open 

reading frame that encoded a polypeptide chain of 582 residues and calculated molecular weight 

of 65, 684 Da. The protein was highly homologous to known plant cell wall invertase and 67% 

identical at the amino acid level to carrot cell wall invertase. The cloned 720 bp SS fragment was 

highly homologous to A. glutinosa (X92378) and SS genes from other species. Invertase gene 

was expressed at a higher level during late fruit development stage than in young fruit and other 

tissues of papaya plant. SS gene expression was higher in young fruit and petiole tissues than in 

other tissues. The data demonstrated that SS enzyme was a major enzyme in fruit sink 

establishment and maintenance. Apoplastic invertase had an important function in phloem 

unloading during papaya fruit sugar accumulation and the activity was regulated at both 

transcriptional and translational levels.
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CHAPTER 1 

INTRODUCTION

Papaya {Carica papaya L.) is cultivated throughout the tropics for its fruit (Purseglove, 

1968). The world papaya production in 1990 was 4.4 million tons, 42% of which was from the 

South American countries, 34% from Asia and the rest from Africa and North America (Yon, 

1994). In 1994, fresh papaya fruit production in Hawaii totaled about 62,000,000 lb., and more 

than 60% was shipped to the US mainland and Japan. The value of papaya production was 

$13,831,000 (Hawaii Agricultural Statistic Service, 1995). It has great potential in the markets of 

Europe, Japan, the Middle East and USA (Radi et al., 1994).

Sugars play an important role in the flavor characteristics of the papaya and are also a 

commercial measure of fresh fruit quality. The refractometric sugar value or “total soluble solids” 

(TSS) in the juice extracted from four equal cores taken at right angles to the longitudinal axis at 

the four quarters is used as a grade standard. The State of Hawaii Wholesale and Consumer 

Standard for papaya requires that in a given lot of fruit, the TSS of the edible pulp Juice average 

not less than 11.5, and not more than 5% by count of the fruit in the lot may have TSS less than 

10.5% (Hawaii Administrative Rules, 1986).

Papaya sometimes has low TSS (<10%) and poor flesh color when ripe (Pauli et al.,

1997). Affected fruit cannot be visually culled, as there are no obvious external signs. Four 

causes have been suggested for the low sugars; I) harvesting green fruit without a trace of skin 

yellowing; ii) diseases such as a virus or a pathogenic mycoplasma-like organism (MLO), iii) 

reduced photosynthesis and loss of active photosynthetic area due to strong winds, drought, 

disease, insect feeding or other environmental stress; or, iv) high self-shading and low 

temperatures. Papaya fruit has no stored starch reserves in the flesh tissue, and sugars move 

into the fruit during late fruit growth. Harvested green fruit has inherently lower sugars. No MLO 

pathogenic organisms have been detected nor demonstrated as a causal agent.

This project considers the third possibility by studying the processes affecting the source- 

sink relationship during papaya fruit development. The factors affecting fruit sugar level are
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complex, and include genotype, crop deterioration, foliage damage by hurricane, insects, 

disease, soil nutrition deficiency and environmental factors. Generally, once a genotype is 

selected, the environmental conditions and foliage damage influence the photosynthetic capacity 

of the plant and, as a result, influence fruit carbohydrate accumulation. Papaya is a perennial 

herbaceous dicotyledonous plant w/ith a single stem and a cro\wn of large palmately lobed leaves 

(Nakasone and Pauli, 1998). Once initial flowering occurs, the papaya tree flowers and fruits 

continuously. Papaya fruit needs 5-6 months from pollination to ripening in Hawaii. Fruit of all 

stages of development are present on a single plant. This creates a significant demand for an 

adequate supply of photosynthate. However, no information is available on the fruit growth 

requirements, effect of defoliation on sugar metabolism and source-sink relationships of papaya. 

Many cultivated plants compensate for partial defoliation by increasing the photosynthetic 

capacity of the remaining leaf area (Boucher et al., 1987; Flore and Irwin, 1983; Layne et al.,

1992). However, once the damage or defoliation is significant, leaf capacity is unable to 

compensate for the loss, and carbohydrate accumulation will be reduced. It is reported that 

papaya foliage injury can occur by insects (e.g. Broad mite), diseases such as powdery mildew, 

papaya mosaic virus and papaya ring spot virus (Decker and Tio, 1958; Marler et al., 1993; 

Nakasone, 1986). The papaya plant, with its large lobed leaves and long petioles, is easily 

damaged by high trade winds in Hawaii. It is necessary to investigate how this type of damage 

influences fruit growth, fruit sugar accumulation and the rate of recovery from this loss to 

photosynthetic area.

This project focused on source (leaf)-sink (fruit) manipulation on fruit growth and 

development, carbohydrate assimilation and relative activity of key enzymes of carbohydrate 

metabolism during fruit development. In this project, photosynthetic area (source) in papaya was 

altered by defoliation and sink strength altered by fruit thinning. Key enzyme activities were 

measured during these treatments. The critical enzymes necessary for sugar accumulation were 

identified and their genes cloned. The next step would be to genetically modify sink strength 

using biotechnology so as to improve fruit development and fruit quality.



CHAPTER 2 

LITERATURE REVIEW

2.1 Papaya fruit development and ripening

2.1.1 Introduction

2.1.1.1 Botany and fruit morphology

The papaya {Carica papaya L.) is a member of the family of Caricaceae and has 2n=18 

chromosomes (Nakasone and Pauli, 1998). The genomic size was reported as 0.39 pg per copy 

(Arumuganathan and Earle, 1991). All Carica species are native to tropical America (Morishidi,

1996), but only C. papaya L., C. candamarcensis Hook and C. monoica have horticultural 

importance (Muthukrishnan and Irulappan, 1985). Papaya (C. papaya L.) is the most important 

economic species in Carica. Common names include papaya, papaw or pawpaw, papayer 

(French), melonbaum (German), lechosa (Spanish), mamao, mamoeiro (Portuguese) and mugua 

(Chinese) (Nakasone and Pauli, 1998).

Papaya is a herbaceous, dicotyledonous plant with a single main stem that can attain 

heights up to 9 m, terminating with a crown of large palmately lobed leaves (Nakasone, 1986). 

Most cultivars have flowers borne in modified cymose inflorescence that appear at the leaf axis 

just below the growing point (Nakasone, 1986). The plant can be dioecious, monoecious or 

gynodioecious. The cultivated C. papaya is dioecious or gynodioecious (Yon, 1994). There are 

three major sexual flower types in C. papaya: pistillate, hemnaphrodite and staminate (Nakasone,

1986).

Papaya fruit resembles a melon, being spherical, pyriform, oval or elongated in shape 

and varies with flower types and cultivars (Nakasone and Pauli, 1998). The fruit is normally 

composed of five longitudinal carpels united laterally to fomn large central cavity where numerous 

seeds are attached to the placenta in the parietal position (Nakasone 1986). The skin of the fruit 

is thin, usually smooth, green when immature, and yellow to orange-yellow when ripe. Upon 

ripening the flesh color turns from white to yellow or orange-yellow, to salmon-pink or red, 

depending upon cultivar (Nakasone 1986; Yon 1994). Fruit size range from iess than 250 g to 10
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kg (Chan and Tang, 1979) depending upon cultivar. In Hawaii, a small (454 g) fruit is desired 

(Nakasone 1986) and referred to as ‘Solo’ type, major varieties belonging to ‘Solo’ type are 

‘Kapoho’, ‘Sunrise’, ‘Sunset’ and ‘Waimanalo’ (Nakasone and Pauli, 1998). The new transgenic 

ringspot virus resistant cultivars are ‘Rainbow’ and ‘Sunup’ (Nakasone and Pauli, 1998).

2.1.1.2 Importance

Papaya is one of Hawaii’s major agricultural export crops. In 1994, fresh papaya fruit 

production in Hawaii totaled about 62,000,000 lb., and more than 60% was shipped to the US 

mainland and Japan. The world papaya production in 1990 was 4.4 million tons, 42% from the 

South American countries, 34% from Asia and the rest from Africa and North America (Yon,

1994).

Papaya fruit is delicious and an excellent source of provitamin A and ascorbic acid 

(Wenkam, 1990). Papaya fruit is consumed as breakfast, desserts and juice. Immature fruit is 

consumed as salad and vegetables. Papaya is also processed into various forms such as dry fruit 

slices, chunks and slices for tropical fruit salads and cocktails, or processed to puree for juices 

and nectar base, usually frozen and canned nectar, mixed drinks and jams (Nakasone and Pauli,

1998). The value of papaya as a medical plant has been reviewed (Quisumbing, 1951; Chopra, 

1958). Papain is a proteolytic enzyme that digests proteins and is used as meat tenderizer, as 

digestive medicine in the pharmaceutical industry, textile and brewing, and tanning industries 

(Singh, 1980; Muthukrishnan et al., 1985; Nakasone and Pauil, 1998).

2.1.2 Fruit development and ripening

2.1.2.1 Fruit set and growth pattern

Fruit set is about 76%, with flower abortion occurring soon after anthesis and most fruit 

are dropped when small (<6 cm) (Ong, 1983). A positive correlation exists between seed number 

and fruit weight (Allan, 1969; Chittiraichelvan and Shanmugavelu, 1978).

Fruit development from pollination to maturation varies widely due to factors such as cultivar, age 

of bearing trees (maturity delayed as trees age), time of year, and the stage selected as an index 

of maturity (Nakasone, 1986). Fruit growth and development and the timing of different tissue



development in the papaya has been determined for several Asian cultivars (Ong, 1983; Selvaraj 

et al., 1982a; Muda et al„ 1994) and Hawaii (Qui et al., 1995). Fruit length and fruit mass show a 

double sigmoid growth (Ong, 1983; Selvaraj et al., 1982a). In ‘Sunset’ papaya, there are two 

major peaks in mass and volume growth. The first period of rapid growth occurs 75 days after 

anthesis, the second 90 to 105 days post antheses (Qiu, et al., 1995). Fruit change in volume, 

parallels the increase in fruit length and mass (Ong, 1983).

Rate of fruit development is significantly affected by field temperature. Low temperatures 

(<15 °C) during the early phase of growth significantly delay growth and reduce fruit size (Allan et 

al., 1987). In areas without low winter temperatures, fruit development from pollination to ripeness 

takes approximately 5 to 6 months. Fruit maturity is delayed during the winter months in Hawaii 

by approximately 2 to 3 weeks (Nakasone, 1986). The variation in days from fruit set to ripeness 

ranges from 173 days when grown under 30 °C day/20 °C night to 282 days at 24 °C day/12 °C 

night (Allan et al., 1987; Kuhne and Allan, 1970).

2.1.2.2 Respiration and ethylene

Papaya is a climacteric fruit (Akamine, 1966; Selvaraj et al., 1982a). Fruit harvested at 

the color-turning stage have already passed the preclimacteric minimum. Fruit respiration 

climacteric peak occurrs between 4 to 5 months after anthesis in four cultivars in India (Selvaraj 

et al.,1982a). The increase in ethylene production parallels the respiration rise and reaches a 

maximum at the same time as the respiratory climacteric (Pauli and Chen, 1983).

2.1.2.3 Color and texture

During papaya fruit development, the most obvious changes are in the skin, flesh and 

seed colors and start about fifteen weeks after anthesis in 'Eksotika' and ‘Batu Arang’ (Muda et 

al., 1994). The flesh and the seeds are both initially white. As the fruit matures, the skin color 

changes to yellow and the flesh becomes yellow orange or red and the seed change to black 

(Muda et al., 1994). Chlorophyll degradation in ‘Kapoho’ papaya follows a linear pattern, 

decreases to about 0.01 mg g'  ̂ flesh mass when ripened at 25°C (Ali et al., 1994). In ‘Eksotika’ 

papaya, the L, a and b values of the peel increase during ripening (Muda et al., 1994).



The total flesh carotenoids level also increases 14 fold during ripening (All et al., 1994; 

Selvaraj et al., 1982a). Yellow and red fleshed papaya differ in the level and type of pigments 

(Yamamoto, 1964). Yellow fruit contains more than 4 times the 6-carotene content of the red- 

fleshed fruit, while red fleshed fruit has about 65.3% lycopene that is absent in yellow-fleshed 

fruit. These carotenoids are good source of vitamin A (Wenkam, 1990).

As the fruit matures and ripens the firmness decreases (Muda et al., 1994; Qui et al.,

1995). In young fruit (30-110 days after anthesis), the firmness is about 95 N and decreases to

84.9 N and 77.5 N when fruit attained the mature green and 25% yellow stage, respectively 

(Muda et al., 1994). Papaya soft to an edible stage In 6 to 12 days when harvested at the color 

break stage (Pauli 1993). Cell wall degrading enzyme, xylanase (EC 3.2.1.32) and 

polygalacturonase (EC 3.2.1.15) activity peak occur when the fruit has 40-60% skin yellowing 

(Pauli and Chen, 1983). Pectin methyl esterase (EC 3.1.1.15) and CMC-cellulase both continue 

to increase as the fruit ripen, only declining as the fruit becomes over ripe (Pauli, 1993). p- 

galactosidase (E C 3.2.1.23) activity doubles during ripening (Lazan et al., 1991).

2.1.2.4 Sugars and volatiles

The concentration of sugar, organic acids, and levels of volatile compound as well as 

phenolic compounds contribute to fruit taste and flavor. The edible portion of papaya is composed 

mostly of water (86 .8%), and carbohydrate (12.2%) (Wenkam, 1990). Sucrose, glucose and 

fructose are the three major soluble sugars in papaya fruit (Chan et al., 1979; Selvaraj et al., 

1982a). A very low starch content (about 0.1%) is detected in the late fruit developmental stage 

and is mainly associated with the skin (Chan et al., 1979; Selvaraj et al., 1982a). Eariy in fruit 

development, glucose Is the major fruit sugar and glucose and fructose slowly increase from 110 

day to 135 days after anthesis but as a percentages of the total sugar they decrease (Chan et al., 

1979; Selvaraj et al., 1982). Sucrose remains low until 110 days after anthesis and then rapidly 

increases to 80% of the sugars (Chan et al., 1979).

TSS usually is used as a simple index of sugar content especially in fruit such as papaya 

with low acidity. The Hawaii grade standard requires fruit to have 11.5% TSS (Hawaii



Administrative Rules, 1986), the color break stage normally meets this standard (Akamine and 

Goo, 1971). Papaya is notably low in organic acids but a good source of ascorbic acid (Selvaraj 

et al., 1982 a; Lazan et al., 1990). A 106 volatile compounds have been identified in papaya fruit 

(Katayue and Kirch, 1965; Chan et al., 1979a). The major volatile compounds are linalool, linalool 

oxides, ethylacetate, phenyl acetonitrile and benzyl isothiocyanate (Pauli, 1993).

Sucrose phosphate synthase (SPS), sucrose synthase (SS) and D-fructosidase 

(invertase) are the three major enzymes involved in sucrose metabolism. SPS synthesizes 

sucrose from UDPG and fructose-6-phosphate, and invertase catalyzes the cleavage of sucrose 

into glucose and fructose (McCollum et al., 1988). SS can function in both directions of sucrose 

synthesis and cleavage. There is a very high invertase enzyme activity in ripe papaya fruit (Chan 

et al., 1976; Hubbard et al., 1991; Selvaraj et al., 1982). This high invertase activity explains that 

earlier reported values for the sugar composition of papaya (Chan et al., 1979). Low SPS and SS 

activities were reported in ripe fruit (Hubbard et al., 1991). Nevertheless, the relationship between 

fruit development, sugar accumulation and the relative carbohydrate metabolic enzyme activity 

has not been determined.

2.2 Preharvest factors affecting quality on papaya and other fruit

Variety and ripening stage of fruit at harvest are two factors that influence final sugar 

composition of papaya (Akamine et al., 1971; Chan et al., 1979; Imunyi et al., 1990; Selvaraj et 

al., 1982b; Yon 1994). Akamine and Goo (1971) suggested that to meet the minimum TSS of

11.5% required by Hawaiian Grade Standards for marketable papayas, the fruit should have at 

least 6 % skin yellowing.

Once initial flowering occurs, the papaya tree flowers and sets fruit continuously. 

Therefore, a continuous supply of carbohydrates for fruit growth and development is required. 

Experience has shown that fruit TSS is higher during the warmer long day period than during the 

cooler, shorter day length periods of the year, or when rainfall is higher and longer periods of 

cloudy weather occur (Nakasone et al., 1974). Lower TSS content has been observed in



tomatoes grown at higher summer temperatures (Alban et al., 1948). Differences in carbohydrate 

synthesis rate between seasons appears to be affected by moisture and sunlight conditions, 

assuming that nutrients and temperatures are not limiting (Nakasone, 1986).

Cultural practices such as plant spacing (density), im'gation, mulching, pruning, thinning 

and fertilizers can influence fruit quality (Pantastico, 1975). Closer tree planting having less sweet 

fruit (cf. Pantastico, 1975). High irradiation can increase numbers of cucumber fruit per plant, and 

individual fruit growth rate (Marcelis, 1993). However, Ong and Kwok (1983) did not find any 

effect of hours of sunshine on papaya yield in Malaysia. Wet conditions can decrease papaya fruit 

sugar content, increase disease problems, larger fruit size, and a greater tendency for carpellody 

(Awada and Ikeda, 1957). Excessive irrigation decreases TSS content of tomato fruit (Pantastico,

1975). While irrigation increases both the number and size of marketable papaya fruit (Yon 1994), 

flooding of muskmelon (Cucumis melo L) reduces fruit sugar content but not leaf carbon 

exchange rate (Kroen et al., 1991). Low irrigation rate increases papaya petiole and fruit sugar 

(Awada et al., 1957) as found in tomato (Pantastico, 1975). However, lack of moisture generally 

retards papaya plant growth and causes flower and fruitlets abortion leading to sterile phases or 

'skips’ period with no fruit production (Yon, 1994). Light duration, intensity and quality can affect 

citrus, mango and other fruit trees quality at harvest (Pantastico, 1975). Fruit thinning is 

considered an important practice to regulate papaya production and improve the percentage of 

uniform size marketable fruit (Yon, 1994).

Potassium fertilizer significantly increases the TSS in carrot (Abrahamson et al., 1998) 

and is associated with increased fruit size and TSS in papaya (Nakasone, 1986; Purohit, 1977). 

Nitrogen, iron and zinc fertilization have been reported to influence fruit quality (Bahadur et 

al.,1998; Costa et al., 1997; Fallahi et al., 1997; Sanz et al., 1997). High nitrogen fertilizer rates 

increase apple fruit weight but decrease fruit quality and have no influence on fruit total 

production (Raese and Drake 1997). Peach fruit size and abnormal ripeness is found to be 

associated with iron deficiency (Sanz et al., 1997). Soil application of zinc sulphate (0.5kg tree ’) 

significantly increases fruit TSS in mango (Costa et al., 1997).
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Gibberellic acid (GA), influences the steady-state level of SPS and its activity in soybean 

and spinach plants (Cheikh et al., 1992) and GA at 200 ppm increases the TSS and acidity of 

'Coorg Honey Dew’ papaya, 1.8% and 0.19%, respectively (Shanmugavelu, et al., 1973). 

Ethephon, Alar and Phosfon D at 250 ppm, increase the total and reducing sugar content of 

papaya (Shanmugavelu et al., 1973). However, Modlibowska and Wickenden (1982) found that 

TSS of cherries decreased following GA or GA plus auxin treatments.

Welles and Buitelaar (1988) suggested that muskmelon fruit, having a low growth rate, 

e.g. a long maturation period, and grown under a low night temperatures had highest TSS. Hence 

plants with high leaf area, harvesting ripe fruit and selecting slow-maturation cultivars may 

contribute to fruit with high TSS (Welles et al., 1988). In tomato, fruit size and sugar concentration 

is influenced by potential capacity to import assimilates and competition for assimilates within the 

plant (Bangerth and Ho, 1984). These factors may also be important in determining papaya TSS 

content, though no reports are available.

2. 3 Source-Sink relationship during fruit development

Leaves that provide photosynthetic assimilates are referred to as the source. Young 

leaves, flowers, fruit, stems and roots, which import photosynthetic assimilates, are defined as 

sinks. Source limitation, naturally or artificially induced, has been shown to affect the reproductive 

biology (Awada 1967; Spears et al., 1988), fruit size and quality, and vegetative senescence in 

many plants (Berlin 1995; Chen et al., 1979; Hubbard et al., 1990; Hunter 1991; Koblet et al., 

1994; Pavel et al., 1993). Source limitation reduces flower production and increases flower and 

fruit abortion rates in several species of plants (Berlin, 1995; Chamont, 1992; Stephenson, 

1981;). Organ initiation often decreases and organ abortion increases as source strength 

decrease (Wardlaw, 1990). Sexual expression is also altered by source limitation in many 

hermaphroditic species (Wilson, 1983; Spears et al., 1988). Source-sink competition results in 

postharvest leaf blackening in inflorescence of protea (Dai and Pauli, 1995), reduces grain yield



and the chemical content of com kernels (Chen et al., 1978), and causes poor muskmelon fruit 

quality (Hubbard et al., 1990b).

2.3.1 Carbohydrate metabolism in ripening fruit as affected by leaf area

Developing fruit are very strong sinks that depend on translocatable carbohydrates from the leaf 

canopy (Hubbard et al., 1990b). During fruit development, carbohydrates are accumulated 

generally in the form of starch, sucrose or hexose sugars. Fruits that store starch, such as 

banana and apple, sweeten during ripening as a result of starch degradation and subsequent 

conversion to soluble sugars (Beaudry et al., 1989; Hubbard et al., 1990b; Tucker and Grierson,

1987). Fruit that lack stored carbohydrate reserve, such as muskmelon and papaya, must remain 

attached to the plant to allow accumulation of soluble sugars (Chan et al., 1979; Hubbard et al., 

1990a; Tucker and Grierson, 1987; Hubbard etal., 1991).

Plants with a large leaf area have, in general, an increased photosynthetic capacity and 

at a given fruit load can lead to higher fruit TSS level (Welles and Buitelaar, 1988; Hubbard et al., 

1990a). The optimum leaf number and area required for the development of individual fruit has 

been determined for several fruit trees (Antognozzi et al., 1992; Chacko and Reddyaud et al., 

1982; Famiani 1997; Fishier et al., 1983; Palmer et al., 1991; Roper et al., 1987; Snelgar et al.,

1997). In mango, more than 30 leaves are required if a mango fruit is dependent on current 

photo-assimilates for growth (Chacko et al., 1982). Kiwi fruit formed “early" (in a flowering cycle) 

and “late” (30 days later) after heavy pruning, had reduced total yield and poorer fruit quality 

(Galliano et al., 1990). The fruit/leaf-ratio also has an important influence on growth and 

composition of apples (Hansen, 1982), plums (Toldam-Anderson et al., 1993), grape (Koblet et 

al., 1994) and muskmelon (Bartolo and Schweissing, 1998).

Hubbard et al. (1990b) tested the response of a sweet and a non-sweet muskmelon 

genotype to leaf area reduction. When the leaf area is reduced in the sweet genotype, fruit 

sucrose accumulation declined. A 50% reduction the leaf area of the sweet genotype, 8 days 

before fruit initiation, had fruit with a similar sucrose accumulation to that of the non-sweet type. 

The normal increase in fruit sucrose phosphate synthase (SPS) activity during fruit maturation is
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reduced by leaf removal. The greater the reduction in canopy photosynthetic capacity, the lower 

the fruit SPS activity. Acid invertase activity is lower during muskmelon fruit maturation and did 

not change between the control and 50% leaf removal treatment (Hubbard et al., 1990b).

Foliage injury can result from various biotic and abiotic factors including: mites, leaf 

hoppers, pathogenic fungi, bacteria, or viruses; pesticide phytotoxicity; wind or hail and storm 

damage; and air pollution. As result of injury, parts of individual leaves may become 

photosynthetically nonfunctional. The extent and timing of injury may reduce the carbon 

assimilation potential of a tree (Layme and Flore 1992). Papaya plants are easily damaged or 

suffer lodging when exposed to strong winds (Raveendranathan, 1989). Typhoons can lead to 

uprooting, trees being blown down, trunk breaking, leaf shedding and flower abscission (Yon, 

1994). Papaya ringspot virus reduces papaya leaf photosynthesis and increases leaf respiration 

rate (Decker and Tio, 1958; Marler et al ., 1993). In muskmelon, the decreased soluble solids 

content was found correlated to Increased severity of Altemaria leaf blight epidemics (Latin, R. et 

al., 1994)

2.3.2 Defoliation and source-sink manipulation

Fruits represent strong sinks within a tree and can compete successfully for assimilates 

with vegetative organs. High crop loads reduces citrus shoots, leaves, roots growth and the crop 

can account for 50% of the total dry matter production of a tree at harvest (Pavel et al., 1993). In 

cucumber, the pattern of assimilate distribution shows a sink hierarchy switched from fruit > 

flowers > axis to fruit > axis > flowers (Chamont, 1992). A high level of photosynthate competition 

can induce flower and fruit abortion (Chamont, 1992; Stephenson 1981; Wardlaw 1990). 

Cucumber fruit growth rate is greatly increased by increasing assimilate supply, but the fruit 

growth period is not noticeably affected. Low assimilate supply reduces both cell number and cell 

size (Marcelis 1993b). The assimilates import rate into individual tomato fruit during the early fruit 

development is crucial for setting the fruit’s growth potential (Ho 1984). Fruit yield Is determined 

by the balance between source and sink strengths of the plant, sugar content is determined by 

the transport and metabolism of sugars within the fruit (Ho 1996).
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Many cultivated plants can compensate for partial defoliation by increasing the 

photosynthetic capacity of the remaining leaf area (Boucher et al., 1987; Flore and Irwin, 1983; 

Hodgkinson, 1974; Layne et al., 1992; Layne et al., 1995; Shaw and Samborski, 1956; von 

Caemmerer and Farquhar, 1984; Wareing et al., 1968). Removal of 25% of the leaf area of 

tomato (Stacey, 1983) and cucumber plants (Ramirez et al., 1988) did not significantly affect fruit 

yield or whole plant dry matter accumulation. Removing 50% of the leaf area of potted apple trees 

reduced dry weight accumulation 40% (Maggs, 1964). Flore and Irwin (1983) did not observe a 

significant reduction in total plant fresh mass until 20% or more of the leaf area of the whole plant 

is removed, demonstrated compensation may occur simultaneously. Layne et al. (1992) found 

that photosynthetic compensation occurs when 20% of the sour cherry leaf area is removed. 

Photosynthetic compensation for leaf area reduction is most likely due to enhancement both of 

carboxylating efficiency and RuBP regeneration capacity (Layne et al., 1995). Within 24 hours of 

partial defoliation, net assimilation rate of most recently expanded source leaves of defoliated 

plants is significantly higher than the control plant throughout the diurnal photoperiod. Between 

two and seven days after defoliation, assimilate is 30 to 50% higher and stomatal conductance 

rate 50-100% higher than the controls. In contrast, continuous lighting reduces the assimilate by 

two to three fold and the carboxylating efficiencies four-fold (Layne et al., 1995). Under shaded 

conditions, papaya plants have reduced plant height, leaf area, stomatal density, palisade 

mesophyll cell length, specific leaf weight, and leaf thickness and higher chlorophyll concentration 

(Buisson and Lee, 1993). In response to drought, papaya shed their oldest leaves (Marler et al., 

1994). Leaf pruning of papaya, leaving 15 functional leaves, however, does not affect fruit TSS 

(Ito, 1976). Thinning papaya to one fruit per node increases fruit size and has no effect on fruit 

sugars (Martinez, 1988). These results may indicate that source-sink balance (fruit/leaO adjust in 

response to long term leaf pruning and fruit thinning. Papaya varieties differ in photosynthetic 

efficiency, and their photosynthetic rates correlates with fruit TSS, but not fruit yield (Salazar, 

1978).
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Three days following defoliating of white clover plants, in which only one mature leaf is 

left on the main stolon and no leaves on the branches, resulted in; increased net photosynthetic 

rate in all the remaining leaves, increased percent export of fixed carbon from one of the four 

leaves; and an increase in the export to the main stolon apex from all except the eldest leaf and 

export to branches from three of the four leaves; and a decrease in the export to the stolon and 

roots from all leaves (Chapman et al., 1991). These responses seem to ensure the fastest 

possible replacement of lost leaf area and thus restoration of homoeostatic growth. The observed 

pattern of carbon -assimilation and distribution in both non-defoiiated and defoliated white clover 

plants is consistent with the general rules of source-sink theory; the distance between sources 

and competing sinks and their relative sink strength, emerge as the most important inter-plant 

factors governing carbon movement. These results emphasize the need to consider plant 

morphology and the modular nature of plant growth when interpreting patterns of resource 

allocation as plants respond to stresses such as partial defoliation.

The effect of defoliation and fruit thinning on plant growth and development depends on 

the time of the defoliation and number of leaf, flower, or fruit removal (Mulas, 1997). In corn and 

sorghum, defoliation during silking or anthesis reduces grain yield primarily due to a decrease in 

kernel number. Later defoliation close to the mature stage has less effect on yield, though kernel 

weight declined. Leaf removal decreases yield and results in a slight increase in sorghum seed 

sugar and crude protein but a decrease in starch content. In contrast, partial ear (sink) removal 

from sorghum results in an increase in seed weight and starch content of the sorghum grain 

(Chen et al., 1978). The effect of ear removal on the grain yield of com differs with ear position. 

First ear removal induces a doubling in kernel number and grain weight of the second ear, but 

there is no significant effect on first ear grain weight when the second ear is removed (Chen et 

al., 1979). Prioul and Schwebel-Dugue (1992) found that corn ear removal led to dry matter 

accumulation in stalks, leaves sheaths, and blades, and accelerated vegetative senescence. This 

response is referred to as feedback inhibition (Foyer, 1987). In contrast, the leaf excision has little 

impact on the remaining leaf and stalk, but drastically reduces the number of developing grains.
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The rate of dry matter accumulation in those developed grains is nearly identical to that in control 

plants.

In peach, individual fruit size increases with declining tree crop load. The difference in 

growth between fruit on thinned and un-thinned trees remains nearly constant during the mid 

growth stage. Later in the season, at the beginning of fruit grovrth stage III, fruit on thinned trees 

grew more rapidly than fruit on un-thinned trees of the three cultivars tested (Pavel et al., 1993). 

Reducing fruit load in small fruited sour cherry increases fruit growth slightly when the 

concentration of total and soluble dry matter is not affected (Hansen, 1993). On rabbit eye 

blueberry (Lyrene, 1992), premature defoliation reduced flower formation and the effect depends 

on defoliation time. Defoliation had a greater impact on total marketable yield and yield of 

individual marketable class when it occurred near its onset of bulbing in onion (Bartolo et al.,

1994).

Several methods of artificial defoliation have been used to simulate pest damage and 

establish crop damage-yield relationships for various crops. Leaf area reduction using a cork 

borer or paper hole-punch (Boucher et al., 1987; Flore and Irwin, 1983), leaf injury by cutting the 

midrib or pricking the lamina (Li and Proctor, 1984), and leaf removal (Stacey, 1983) have all 

been used to simulate pest damage. Poston et al. (1976) noted that reducing leaf area with a cork 

borer adequately simulated painted lady caterpillar and green clover-worm defoliation of soybean.

2.3.3 Sink strength and relative enzyme activities during fruit development

Many studies have been conducted to explain the control of assimilate partitioning 

between sinks competing for a limited supply of assimilates (Bangerth and Ho, 1984; Chamont, 

1992; Ho, 1984; Marcelis, 1996; Pavel et al., 1993;). Sinks such as fruit, change their competitive 

ability as they grow, leading to diversion towards the “stronger sinks” (Ho, 1980; Wright, 1989). 

The term sink strength can be defined as the competitive ability of an organ to attract assimilates. 

However, there is much debate and confusion about the term sink strength because this term is 

not clearly defined (Marcelis, 1996). Generally, sink strength can be described as the product of 

sink size and sink activity. Sink size is a physical restraint that includes cell number and size e.g.
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the total weight of the sink tissue. However, in cucumber cell number is not a suitable measure of 

sink size (Marcelis, 1996). Sink activity is a physiological restraint that includes multiple factors 

and key enzymes involved in carbohydrate utilization and storage (Ho, 1984). Distal fruit are 

known to have a lower sink strength than proximal tomato fruit (Bangerth and Ho, 1984). A model 

for dry matter partitioning into generative plant parts, based on organs sink strength is described 

by Marcelis (1996). The potential growth rate has been shown to be an important parameter that 

quantitatively reflects the sink strength of an organ. The potential growth rate of plant’s organs is 

not static but changes dynamically with its age and temperature.

It has been postulated that an accumulation of assimilates in altering either the size or 

activity of the sink results in changes in either, or both, transport patterns or rate of carbohydrate 

flow into a sink. Flow rate is dependent upon supply, presence of other sinks, and the resistance 

to flow in the transport pathway, hence it is not a property of the sink alone, but the entire system 

(Minchin et al., 1996). Reducing the photosynthate supply by shading barley seedling shoots, 

reduces the partitioning of recently fixed photosynthate to the root within about 20 min (Minchin et 

al., 1996). Clearly, source supply influences partitioning between the root and shoot. Minchin et 

al. (1993) proposed a simple mechanistic model of phloem transport between a single source and 

multiple sinks. This model describes bulk flow through resistive conduits (sieve tubes), driven by 

an osmotically generated pressure gradient, and saturable unloading, described by Michaelis- 

Menten kinetics. This model defines a sink in terms of its Michaelis-Menten parameters, Vmax, 

and Km. The maximum possible flow into a sink is given by Vmax, and corresponds to Wareing 

and Patrick’s (1975) potential capacity with un-limited supply. When the remaining other sinks are 

eliminated, competition for available supply is suggested as a means of measuring potential 

capacity or equivalently Vmax If sink demand for sucrose is high, sucrose synthesis is increased 

at the expense of starch synthesis and vice versa (Ho, 1986). Black (1993) proposed an 

additional term, sink capacity duration, such as sucrose synthase activity through part or all of the 

sink development period.
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Three enzymes are thought to be principally involved in sugar metabolism during fruit 

development and ripening. Sucrose phosphate synthase (UDPG: D-fructose 6-2-glucosyl-tran- 

sferase E.C. 2.4.1.14) (SPS) is involved in sucrose synthesis (Brunean et al. 1991). Sucrose 

synthase (SS), can function in sucrose synthesis or cleavage (UDPG: D-fructose 2-glucosyl- 

transferase, E.C.2.4.1.13) (Sung et al., 1988; Wang et al., 1994). Acid and neutral invertases (p- 

fructofuranosidase, E.C.3.2.1.26) catalyzes the hydrolysis of sucrose to glucose and fructose 

(McCollum et al., 1988).

2.3.3.1 Sucrose Phosphate Synthase

Sucrose phosphate synthase (SPS), a key enzyme for sucrose biosynthesis in plants, is 

regulated at two levels: (1) a metabolic fine control and, (2) a coarse control (Bruneau et al., 

1991; Chan and Kwok, 1976; Cheikh and Brenner, 1992; Galtieret al. 1993; Hubbard et al., 1989; 

1991; Lingle and Dunlap 1987: Klein, 1993; McCollum, et al., 1988; Moriguchi and Yamaki,

1988). Fine control of enzyme activity is exerted by metabolic effects that instantaneously activate 

or inhibit catalysis. Coarse control refers to slower changes in extractable activity of an enzyme 

caused by covalent modification or changes in the rate of either or both enzyme synthesis and 

degradation (Klein et al., 1993). The mechanism underlying covalent modification of SPS is 

protein phosphorylation by SPS-kinase. Phospho-SPS is dephosphorylated/activated by a type 

2A protein phosphatasee (SPS-PP). SPS-kinase is inhibited by glucose-6-P and SPS-PP is 

inhibited by Pi (Huber, 1992). Coarse control involves changes in the activity of SPS in response 

to light / dark transitions (Bruneau et al., 1991; Huber et al., 1987; 1989; Kromer et al., 1988; 

Rufty et al., 1983), source-sink manipulations (Rufly and Huber, 1983), stage of tissue 

development (Bruneau et al., 1991; Giaquinta, 1978; Huber and Israel, 1982; Huber et al., 1987;), 

and adaptation to low temperature (Guy et al., 1992). Extractable activity also responds to certain 

environmental and physiological changes, e.g. water stress (Castrillo, 1992), and plant growth 

regulators (Cheikh and Brenmer 1992).
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Prioul et al. (1992) reported that at the grain-filling stage of maize, SPS activity more 

accurately reflected assimilate demand than did metabolite level or enzyme activity for carbon 

fixation. The importance of SPS in the regulation of carbon partitioning in leaves has been 

recently confirmed using recombinant DNA technology. Transgenic tomato plants expressing high 

level of maize SPS have lower levels of leaf starch and increased concentration of sucrose in the 

leaf (Worrell et al., 1991). In general, the results indicate that plant growth and yield are 

sometimes enhanced even though the effect on photosynthesis is small. Fruit dry mass and 

soluble solids are increased when leaf SPS activity is enhanced (Laporte et al., 1997).

During periods of rapid growth, the high sucrose storing sugarcane exhibits slower rates 

of sucrose accumulation than during periods of slow growth. This response suggests that SPS 

activity may sometimes impact assimilate partitioning (Moore, 1993). In most cases, higher leaf 

SPS activity reflects higher assimilation of sucrose in the sink tissue. Tomato plants expressing 

maize SPS have increased leaf SPS activity and also increased fruit soluble solids and yield 

under certain conditions (Laporte et al., 1997). Reimholz et al. (1994) found that SPS from non- 

photosynthetic tissues (potato tubers) is regulated by metabolites and protein phosphorylation in 

an analogous manner to the leaf enzyme. However, differences in sink activity are not paralleled 

by differences in source supply. Some wild relatives of sugarcane store less than 2% of the fresh 

weight as sucrose while some commercial sugarcane cultivars store sucrose in excess of 62% of 

the dry weight or 25% of the fresh weight. The photosynthetic rates of the former (S. 

spontaneum) is nearly twice that of the latter (S. officinarum) (cf. Moore, 1993). On this basis, 

Moore (1993) hypothesized that the differences in sucrose storage appear to be regulated at the 

level of sink or within the translocation system between the source and sink, however, the 

mechanism is unclear.

Recent reports have suggested that SPS is not only a key enzyme in sucrose 

biosynthesis in photosynthetic “source” tissue, but may also be important in some sucrose 

accumulating “sink” tissues (Dali et al., 1992; Hubbard et al., 1991; Hesse et al., 1995;). 

Genotypes that accumulate different amounts of sucrose have similar acid invertase activity and
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different SPS activity (Hubbard et al., 1991). Sucrose accumulation in situ in peach, strawberry, 

kiwi, mango (Hubbard et al., 1991; MacRae et al., 1992), and banana (Hubbard et al., 1991; 

Cordenunsi and Lajolo 1995) is related to an increase in SPS activity in the fruit. In banana, the 

accumulation of sucrose is correlated to starch degradation and happens 4 day after SPS mRNA 

and activity reached their maxima (Nascimento et al., 1997).

2.3.3.2 Sucrose synthase

Sucrose synthase (SS) appears to play a major role in tomato fruit sink establishment 

and maintenance by cleaving imported sucrose and providing UDP-glucose for biosynthetic 

reactions (Wang et al. 1993a; Wang et al 1994). Its activity is also involved in sugar accumulation 

in Asian pear fruit (Moriguchi et al. 1992), cucumber (Gross and Pharr, 1982; Schaffer et al., 

1987) peach (Moriguchi et al., 1988), sugar beet (Hesse and willmitzer,1996), and Vicia faba 

seed coat (Heim et al., 1993). The increase in sucrose concentration in strawberry is associated 

with an increase in SS activity and neutral invertase (Hubbard et al., 1991). Dejardin et al., (1996) 

found that SS could cleave and produce sucrose in the pea seed coat. A labeling experiment on 

seed coats has shown that SS activity is reversible in vivo and can produce 37% of newly 

synthesized sucrose in the seed coat cells (Dejardin et al., 1997). In addition, the SS gene in 

maize is sugar modulated (Koch et al., 1996). The responsiveness of SS genes to carbohydrate 

availability can exert transcriptional influence at the first step of imported sucrose (Koch et al., 

1996). Several authors have therefore suggested that SS activity could be used as a biochemical 

marker for sink strength (Claussen et al. 1986; Sung et al., 1989).

2.3.3.3 Invertase

Plant invertases (P-fructosidases, E.G. 3.2.1.26) cleave sucrose and related sugars into 

hexoses and have been extensively studied (c.f. Sturm et al., 1990). Most tissues analyzed 

contain multiple forms of invertase that are characterized by different pH optima and isoelectric 

points. Soluble invertase ranging in their pH optima from slightly alkaline (pH 7.5) to acidic (pH 

4.5) have been described. Soluble invertases are intracellular, located in either the vacuole (acid 

optima) (Giaquinta et al., 1983; Leigh et al., 1979) or cytosol (neutral or alkaline) (Fahrendorf et
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al., 1990; Karappiah et al., 1989). Insoluble invertase, with a pH optimum between pH 4.0 and pH 

5.3, is ionically bound to the cell walls and can be solublized by extracting cell walls with high salt 

(Fahrendorf and Beck 1990).

Soluble invertase activity is often found in young seedlings, tuberous roots, and mature 

fruit (cf. Stumri 1990). It has been proposed that the soluble invertase participates in the 

regulation of the hexose level in mature tissues and in the utilization of sucrose stored in 

vacuoles. High extraceiluar invertase activity is usually found in rapidly growing tissues having a 

high demand for hexoses, such as expansion zone of root tips and elongating internodes, at sites 

of emerging secondary roots, in developing tap roots and leaves. When cell growth declines and 

finally stops, extracellular invertase plays a role in phloem unloading by maintaining a steep 

sucrose concentration gradient between source and sink regions of a plant (cf. Sturm 1990). 

Recent studies have also suggested participation of vacuolar invertase in sink-strength regulation 

(Arai et al., 1991; Klann et al., 1996; Morris and Arthur, 1985). The relationship between soluble 

invertase activity and import is particularly clear during the earliest phase of bean pod 

enlargement and maize kernel development (Geiger et al., 1996). Timing of the maize kernel 

development is also closely related to expression of the sugar responsive maize invertase genes 

(Geiger et al., 1996).

Sucrose accumulation is controlled in developing tomato fruit by a single recessive gene 

and is associated with low levels of acid invertase protein (Klann et al., 1993). Variable invertase 

activities in different species of tomato are due to invertase gene transcriptional silencing or 

different mRNA levels at different development stages (Elliott et al., 1993; Klann et al., 1993). The 

lack of acid invertase activity in sucrose accumulating fruit was correlated with inheritance of the 

L. chemielewskii acid invertase gene and the absence of acid invertase mRNA in developing fruit 

(Klann et al., 1993).

Acid invertase activity has been associated with fruit ripening in tomato (Wang et al.,

1993) and papaya (Chan et al. 1976; Chan and tang, 1979; Hubbard et al., 1991). Yelle et al. 

(1991) have demonstrated that sucrose accumulation is associated with greatly reduced levels of
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acid invertase, though normal levels of SS. However, higher invertase activity is associated with 

higher hexose sugar and rapid tomato growth ( Bucheli et al., 1994; Johnson et al., 1988). Higher 

hexose content in ripe tomato fruit of L  Pimpinellifolium is correlated with earlier vacuolar 

invertase mRNA than in the species of L  esculentum during fruit development. Invertase activity 

in L  pimpinellifolium  green fruit may create a stronger sink earlier in fruit development than in L  

esculentum  (Elliott et al., 1993).

A highly significant positive correlation is found between sucrose accumulation and SS 

but a negative correlation with acid invertase activity (Isla et al., 1995). During the initial growth 

phase soluble acid invertase activity is relatively high, declining concomitantly with sucrose 

accumulation in sugarcane (Hatch and Glasziou, 1963), sugar beet (Giaquinta, 1979), sweet 

melon (Hubbard et al., 1989; Lingle and Dunlap, 1987; McCollum et al. 1988; Schaffer et al.

1987), carrot (Ricardo and Rees, 1970), citrus (Kato and Kubota, 1978), mango (Castriilo et al., 

1992), tomato (Miron and Schaffer, 1991) and grapefruit (Lowell et al., 1989). In two peppers’ 

genotype, the increasing hexose sugar concentration is associated with an increase in acid and 

neutral invertase activity (Hubbard et al., 1992). In strawberry, soluble acid invertase activity 

increases in parallel with the accumulation of hexose sugars (Ranwala et al., 1992). In cold 

treated potato tubers, extractable invertases are involved in the regulation of the ratio of hexose 

to sucrose (Zrenner et al., 1996). Nevertheless, acid invertase is not always an indication of sink 

strength (Miron et al., 1988). Tomato fruit sink strength measured as the rate of assimilate import 

may be more related to the routes of sugar transport into the sink cells during fruit development 

(Ho, 1996). The different effects of invertase in different fruit tissue may indicate that there are 

multiple factors in controlling of sugar accumulation in fruit sinks.

Vacuolar invertase activity may determine the sugar composition of mature fruit, but may 

not affect the overall dry matter accumulation of tomato fruit (Ho 1996). Immuno-localization 

experiment indicated that the invertase protein, associated with the cell wall, remains in the 

mature sucrose accumulating genotypes while the vacuolar invertase protein is lost (Miron et al.,

1996). However, further experiments illustrated that sucrose is taken up intact by sucrose-
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accumulating-tomato fruit. In addition, sucrose is not particularly compartmentalized in the 

vacuole in sucrose-accumulating-fruit but rather sucrose concentrations increase simultaneously 

in the apoplast, cytoplasm and vacuole, through development (Miron et al., 1996). In Asian pear, 

the relationships between soluble invertase activity and sucrose content are not significant 

(Moriguchi et al., 1992). Expression of a cytosolic yeast invertase in potato tuber leads to a 

decrease in yield and starch content and an accumulation of glucose but not fructose, whereas 

expression of a apoplastic yeast improves tuber growth (Sonnewald et al., 1994; 1997). 

Preharvest application of elevated CO2 throughout the tomato fruit growing period significantly 

increases reducing sugar and acid invertase activity at harvest (Isla et al.,1995).These results 

suggest that sucrose hydrolysis might determine sink strength.

Invertase activity can be modulated by an invertase inhibitor, substrate (sucrose) and 

product (fructose) coreesth several divalent metal ions (Weil et al., 1994), protein (Isla et al.,

1995) and DTT (Weil and Rausch, 1990). The inhibitor peptides described so far have molecular 

weights ranging from 17 to 23 kDa (Weil., et al., 1994). A heat stable invertase inhibitor was 

reported in tomato fruit with a MW 18 kD, and inhibition dependent on pH (Pressey, 1994). The 

inhibitor separates with invertase at pH 6.5. and maximum inhibition was found at pH 5.0. Tomato 

inhibitor also inhibits potato tuber invertase activity but not yeast invertase. The presence of the 

inhibitor may explain why invertase activity in vitro is well in excess of the requirement of sucrose 

hydrolysis to regulate the unloading process (Johnson et al., 1988). Total invertase activity (i.e. 

assayed after destroying the endogenous invertase inhibitor present in the extract generally 

reflects sugar changes more closely than did basal activity (i.e. assayed with the inhibitor present) 

(Richardson et al., 1990). While low levels of invertase in sucrose accumulating fruit due to low 

levels of invertase rather than the presence of an invertase inhibitor (Yelle et al., 1991). A tobacco 

apoplasmic invertase inhibitor protein has been isolated (Weil and Rausch, 1994) and the gene 

cloned and characterized (Greiner et al., 1998). The inhibition of ceil wall invertase by invertase 

inhibitor can be protected by sucrose concentration, Ca^*, Mg^*, and Zn^*.(Weil et al., 1994). 

Inhibition of invertase by fructose can occur in a simple or a complex competitive fashion (Isla et
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al., 1995). BSA and DTT were reported to increase invertase activity in vitro (Lopez et al., 

1988;Weil and Rausch 1994), the mechanism of latter probably due to its reducing agent nature 

in destroying invertase inhibitor disulfide bridge (Weil and Rausch 1994).

2.3.3.4 Enzymes and sink strength

Sink strength is determined in other cases by more than one enzyme during sink 

development. Snap bean pod elongation is associated with acid invertase while SS is associated 

with fruit dry matter accumulation (Sung et al., 1994). All neutral invertase activities during pod 

and seed development are too low to have a role in sucrose cleavage. In potato, during stages of 

tuber development, soluble invertase is the predominant sucrose metabolizing activity. Later in 

development, when the accumulation of storage compounds like starch and proteins occurs, 

invertase activity declines and SS is most likely responsible for the entire sucrose cleavage 

(Hajirezaei et al., 1996). Sucrose accumulation in Cucumis is characterized by a metabolic 

complex that includes low acid invertase activity together with relatively high activity of SPS, SS 

and alkaline invertase. Final sucrose content, however, is primarily a function of the length of the 

sucrose accumulation period that is genetically determined (Burger et al.,1996). Sucrose 

accumulation in sugarcane is controlled by the difference between SPS and invertase enzyme 

activity (Zhu et al., 1997).

In carrot, sink strength was thought by the common action of SS and vacuolar invertase 

and, especially in the case of apoplastic unloading, by the directed and active transport of 

sucrose across membrane (Sturm, 1996). Because the activity of the vacuolar invertase is 

inhibited by millimolar concentrations of fructose (Isla et al., 1991; Lopez et al., 1988; Sampietro 

et al., 1980). Sucrose cleavage does not go to completion and the sugar stored in mature tap 

roots are a mixture of fructose, glucose and sucrose (Sturm 1996). However, the factor that 

transgenic plant expressed with antisense of carrot cell wall invertase abolished development of 

carrot tap root and antisense of vacuolar invertase reduced growth of tap root demonstrate the 

importance of cell call invertase in carrot root development (Sturm, 1998). Zamski and Bamea 

(1996) found that the genotype associated with higher sucrose content also exhibited a higher
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SPS, SS and invertase activity. However, blueberry fruit development does not appear to be 

limited by either or both sucrose metabolism enzyme activity or the ability to accumulate sugars in 

either GAa-treated or pollinated fruit (Cano-Medrano et al., 1997).

Hubbard et al. (1991) hypothesis that sucrose and invertase may be present in either or 

both different intracellular locations or different cells within the papaya mesocarp tissues sampled 

in the study. These results also imply that the sucrose is unloaded from the phloem into the 

apoplast and suggests the existence of a hexose transporter. Since papaya ripen from the inside 

outward, it could be anticipated that a spacial difference in different enzymatic activities could 

exist at an early ripening stage. Nevertheless, no SPS, SS invertase enzyme activity in green fruit 

has been reported. The relationship between papaya fruit development, sugar accumulation and 

the relative carbohydrate metabolic enzyme activity has not been determined.

The above results suggest that in different species, different tissues and at different 

times, particular enzymes have greater or lesser importance in determining sink strength and 

size. Papaya have fruit at various ages on the fruit column, it is possible that different sink related 

enzymes may be expressed at different stages of development with the early stage enzymes 

being associated with fruit growth and later associated with sugar accumulation.

2.3.4 Sugar unloading pathway at sinks

Sink unloading, such as in fruit, is much less studied than loading, as it varies between 

different species (Formmer and Sonnewald, 1995). There is also a close spatial relationship in 

fruit between phloem unloading and storage (Ruan and Patrick, 1995). Two models exist 

(Sonnewald et al., 1995): the first involves unloading along a concentration gradient and the 

second has sucrose unloading into the apoplast. In the first, the gradient is maintained via sugars 

being stored in an insoluble form such as starch, making “direct” symplastic unloading feasible. 

The second model would be expected to have either a sucrose transporter or invertase and 

hexose transporter (Eschrich, 1980; Godt and Roitsch, 1997). Extracellular invertase and hexose 

transporters are not only functionally linked but also are coordinately regulated (Godt and 

Roitsch, 1997). Hexose transporter has been isolated from Arabidopsis and tobacco, some of
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which are specifically expressed in sink tissues (Sauer et al., 1990; Sauer and Stadler, 1993). 

The glucose carriers are homologous to sugar transporters from bacteria, fungi, blue/green algae, 

and mammalian organisms. Multiple genes are found in a species and the genes are differentially 

expressed (Sauer and Stadler, 1993). Using symplastic and apoplastic tracers, Ruan and Patrick

(1995) showed that the post-phloem cellular pathway in tomato fruit shifts from the symplast 

during starch accumulation (13 to 14 days after anthesis (DAA)), to apoplast during the rapid 

hexose accumulation (23 to 25 DAA) stage. An energy-coupled plasma membrane carrier is 

expressed in the latter stage of fruit development (Ruan and Patrick, 1995). Hexose levels in the 

fruit pericarp are controlled by intrinsic factors within the storage parenchyma cells. Estimates of 

in vitro and in vivo sugar flux into the metabolic and storage pools within the fruit pericarp 

demonstrated that membrane transport rather than metabolism plays a major role in the control of 

the hexose levels within storage parenchyma (Ruan et al., 1996). The invertase / hexose 

transporter model with cycling is also reported for sugarcane intemodes (Moore, 1995).

Hexose transporters have been described for plant plasma membranes and tonoplasts 

(Rausch, 1991; Shiratake et al., 1997). The tobacco cell plasma membrane hexose transporter is 

insensitive to p-chloromecuribenzene sulfonic acid (PCMBS) and N-ethylmaleimide (NEM), while 

the tonoplast hexose transporter is inhibited (Verstappen et al., 1991). A genomic sequence for a 

hexose transporter has been isolated from Arabidopsis using a previously isolated Chlorella 

cDNA (Sauer et al., 1990). Hexose transporter activity has been measured in tomato fruit pericarp 

tissue using the uptake rate of C ‘̂*-glucose and C ‘̂‘-fructose (Ruan and Patrick, 1995). Lee et al.

(1996) suggested that lAA stimulates both the activation of acid invertase and the uptake of 

sugars, and an increase concentration of sucrose stimulates activity of SS. The sink activity 

increased in these ways thus trigger fruit grovrth. Further experiments indicated that changes in 

activity of ceil wall bound acid invertase and sucrose synthase were not clearly associated with 

fruit growth, while the increase in activity in soluble acid invertase is accompanied by an increase 

in endogenous lAA content (Lee et al., 1997).
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2.3.5 Structure and function of invertase enzymes and genes among plant species

The higher enzyme activity of cell wall bound extracellular invertase in the presence of 

100 mM glucose and sucrose is paralleled by an increased expression of the corresponding 

gene. The activity of both neutral and acidic intracellular invertases is not affected by pre

incubation of autotrophic cultures with sugars, nor do they show a tissue specific distribution in 

Chenopodium rubrum plant, while in maize, two soluble invertase genes have been shown to be 

sugar enhanced and starvation tolerant, respectively, and have different distribution in tissues 

(Koch et al., 1996; Xu et al., 1996). Additional data from Arabidopsis, Chenopodium, bean and 

other species indicates that these species may have corresponding differential sugar-responsive 

classes of the invertase genes. Analysis of invertase expression in carrot plants indicate that 

changes in invertase gene expression can result from modification of source-sink relations, and in 

turn, have the potential to affect specific aspects of sink import (cf. Koch et al., 1996; Ehness et 

al., 1997).

The invertase protein has been purified and characterized from a number of dicot and 

monocot plants (cf. Unger et al., 1992; Weil and Rausch 1994). The molecular masses 

determined by gel-fiitration chromatography vary considerably (50-9000 kDa), as do the 

molecular masses determined by SDS/PAGE (11-73 kDa) (Unger et al., 1992). The existence of 

multiple bands during invertase purification have been reported in tomato (52, 30, 22 kDa) (Yelle 

et al., 1991), mung bean (70, 30, 38 kDa) (Aral et al., 1992), potato (60, 2 bands at 30kDa) 

(Bracho and Whitaker, 1990), melon (70, 50, 24 kDa), (Iwatsubo et al., 1992), carrot (68 , 43, 25 

kDa) (Unger et al., 1992), castor bean (78,000, 7subunits of 11 kDa) (Bracho and Whitaker, 

1990), date (130, 70 kDa, cf. Bracho and Whitaker, 1990). Most have been proofed as small 

molecular band as a subunit or degradation of product of the mature protein.

Most plant vacuole and cell wall invertase are glycoproteins (Berges et al.,1993; Koch et 

al., 1996; Isla et al., 1995; Lauriere et al., 1988; Rojo et al., 1994; Weil and Rausch, 1990; 1994). 

The glycosylation is the principal chemical modification to most plasma membrane and secretory
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proteins (Lodish et al., 1996). It is believed that glycosylation functions in protein folding and 

increasing protein solubility, the carbohydrates generally play no role in the catalytic function of 

these membrane associated enzymes (Lodish et al., 1996). Deglycosylation of the native tobacco 

cell wall invertase led to partial removal of glucan without severely affecting enzyme activity. 

However, glycosylation did increase resistance towards further protease degradation in situ (Weil 

and Rausch, 1994). The effect of glycosylation inhibitor reflects a decreased stability of the 

nonglycosylated enzyme after secretion (Weil and Rausch, 1990). Glycosylation could occurred 

in O-linked or N-linked amino acid. O-linked sugars, N-acetylgalactosamine are invariably linked 

to serine or threonine and, in collagens, galactose is linked to hydroxylysine. In all N-linked 

oligosaccharides, N-acetylglucosamine is linked to asparagine (Lodish et al., 1996). The 

proposed N-link site of protein sequence is N X S/T (Arai et al., 1992). Among six potential N- 

glycosylation site in the carrot ceil wall invertase cDNA sequence, three of them are N- 

giycolysated, including one high-mannose glycans and two complex glycans (Sturm and 

Chrispeels, 1990). Two high-mannose and two complex glycans were found in tobacco crown- 

gall cell wall invertase protein (Weil and Rausch, 1994). Tobacco cell wall invertase strongly 

cross-react with an antiserum directed against deglycosylated carrot cell wall invertase only after 

denaturing the enzyme (Krausgrill et al., 1996).

Invertase genes have been cloned from many plant species; carrot (Sturm et al., 1990; 

Unger et al., 1994), chenopodium (Roitsch et al., 1995), potato (Hedley et al., 1994; Zhou 1994), 

tomato (Elliott et al., 1993; Klann et al.. 1992; Ohyama et al., 1992; Okio et al., 1994), maize 

(Koch et al., 1996), mung bean (Aria et al., 1992; Weber et al., 1995), tobacco (Greiner 1995), 

Asparagus (Dwyer et al., 1997), grape (Davis et al., 1996), and arabidopsis (Mercier and 

Gogarten, 1995). Two vacuolar and two cell wall invertase genomic gene have been identified in 

Arabidopsis thaliana plant (Haouazine-Takvorian et al., 1997). Seven exons and six introns exist 

with an identical organization in the two vacuolar genes. A short exon skipping is induced by cold 

stress in potato invertase gene transcript (Bournay et al., 1996). Multiple invertase genes also 

have been found in tomato (Elliott et al., 1993; Godt and Roitsch, 1997; Klann et al., 1992;
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Ohyama et al., 1992; Okie et al., 1994;), potato (Hedley et al., 1994; Zhou 1994), maize (Koch et 

al., 1996), Chenopodium (Roitsch et al., 1995), and carrot (Sturm 1996).

The four extracellular invertase genes from tomato do not cross-react, although they are 

75% to 79% identical in the nucleic acid levels. The specific regulation of the four tomato 

invertase gene suggests an important function of apoplastic cleavage of sucrose by cell wall- 

bound invertase in establishing and maintaining sink metabolism (Godt and Roitsch, 1997). 

Extracellular invertase gene expression is increased by wounding (Sturm et al., 1990; Zhang et 

al., 1996), bacteria infection (Sturm et al., 1996) and gravistimulation (Wu et al., 1993).

The acid invertase appears as a pro-protein with signal peptides and N-terminal pro-peptides. A 

comparison of the amino acid sequences of leader peptides of different carrot isoenzymes shows 

no homology with vacuolar invertase that is acidic, while cell wall protein is basic. The vacuolar 

proteins share some regions of homology with the cell wall enzymes but other parts are quite 

different. This difference explains the marked differences in their isoelectric points (Sturm 1996). 

The cDNA derived amino acid sequences of the vacuolar invertase also contains short C- 

terminal extensions, most likely containing the information for vacuolar targeting (Unger et al.,

1994). A greater distance is evident between soluble and insoluble invertase of the same species 

than there is between soluble invertases of different species (Koch 1996). In carrots, the soluble 

and insoluble (cell wall) invertase show weak immunogenic cross-reactivity (Lauriere et al., 1988). 

The localization of the invertase, and the site of increased hexose production can have profound 

effects on tuber and fruit physiology of potato and tomato, respectively. Transgenic potato plants 

that expressed a yeast invertase gene in the cytosol of tubers gave rise to a reduction in tuber 

size and an increase in tuber number per plant. In contrast. Whereas apoplastic targeting led to 

an increase in tuber size and decrease in tuber number per plant (Sonnewald et al., 1997). A link 

between soluble sugar levels and fruit size in transgenic plants has been demonstrated in tomato. 

Antisense inhibition of an intracellular acid invertase activity, probably localized in the vacuole, led 

to significantly altered soluble sugar composition and a reduction in fruit size of up to 30% (Klann 

et al., 1996).
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In transgenetic Arabidopsis expressing apoplastic antisense invertase I stimulate apo

plastic iso-invertase II at both the transcriptional and translational level. This phenomena further 

confirms that invertase gene control sugar partitioning and gene expression (Chaivisuthangkura 

et al., 1998). In somatic embryos expressing antisense mRNA for cell wall invertase and soluble 

invertase, carrot plant development was interacted differentially. If the plantlets were provided 

with glucose and fructose instead of sucrose, the transgenic plantlets looked more or less normal. 

When plantlets from hexose-containing media are transferred to soil, mature plant expressing cell 

wall invertase antisense mRNA have a bushy appearance and the tap root development is 

markedly delayed and reduced. On average, plants expressing antisense mRNA for soluble 

invertase change the leaf to root ratio, develop tap roots normally but remained smaller (Tang 

and Sturm, 1998). These data indicate that invertase have multiple roles and functions.

Acid invertase activity in ripe papaya fruits is high (Chan and Kwok 1976, Chan and Tang 

1979; Hubbard et al., 1991), while SPS and SS activity is low (Hubbard et al., 1991). Buffer 

soluble invertase from mature green and ripe papaya fruit has been partial purified (Lopez et al., 

1988; Chan and Kwok 1976). It has a pH optimum of 4.5, and an optimum temperature of 40°C 

(Chan and Kwok, 1976; Lopez et al., 1988). The Km is ca. 4.2 mM (Lopez et al., 1988). The 

apparent molecular weight as determined by gel filtration is 275kDa (Chan and Kwok, 1976) but 

only 52 kDa by gel electrophoresis (Lopez et al., 1988). The much higher value obtained by gel 

filtration is possibly due to aggregation at iow salt concentration. Papaya invertase is inhibited by 

fructose (Lopez et ai., 1988) and idoacetamide (Chan and Kwok, 1976); 90% of the invertase 

activity is lost after exposure of the enzyme preparation to 60°C for two minutes (Chan and Kwok,

1976). The fact that more than 50% sugar was sucrose in mature papaya fruit when invertase 

was inactivated by heating before extraction suggested that either invertase was inhibited by 

fructose, an invertase inhibitor is present in vivo or a physical separation occurs between 

substrate and invertase enzyme. No information is available in invertase protein localization, 

activity and gene regulation, invertase protein sequence and gene sequence in papaya fruit.
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2.4 Conclusion

Fruit quality and production is influenced by varieties, maturation, environmental factors 

and source-sink balance. SPS, SS, and acid invertase activity in fruit could represent sink 

activities in different fruit type and at different stages of development. There is little information on 

the relationship between fruit development and carbohydrate accumulation and SPS, SS and 

invertase enzyme activities in papaya. Source-sink manipulation of carbohydrate assimilation and 

the relative enzymes in indeterminate fruiting types such as developing papaya have not been 

investigated. The function of these enzymes in the accumulation of sugars in papaya fruit is 

poorly understood. Elucidation the functions may come from biochemical studies of each enzyme 

and substrates during fruit development. Also, the effects of different cultivars, seasonal changes 

and defoliation on papaya fruit development and sugar accumulation are unclear and a significant 

genetic component may influence final sugar content in fruit. Hence, a biochemical understanding 

of partitioning and accumulation of carbohydrates could lead to an improvement in papaya fruit 

sugar content.
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CHAPTER 3 

HYPOTHESIS AND OBJECTIVES

3.1 Hypothesis

(1) Foliage injury, caused by insects, disease or hurricane, are major factors influencing 

the leaf photosynthesis capacity and plant carbohydrates availability and could subsequently, 

reduced sugar and dry matter accumulation in both the plant and the fruit.

(2) Papaya have fruit at various ages on the fruit column, and that different sink related 

enzymes are expressed at different stages of development with early stage enzymes being 

associated with fruit growth and later stage enzymes associated with sugar accumulation.

(3) High invertase activity and low SS and SPS activity in ripe papaya fruit indicate that 

invertase enzyme is a key enzyme in regulating sugar accumulation during the late stage of 

papaya fruit development and is the major enzyme determining fruit sink strength.

3.2 Objectives

The broad goal of this project was to understand the mechanism of carbohydrate 

partitioning and accumulation during papaya fruit development and determine the factors and 

their relative importance in influencing fruit growth and sugar accumulation. The four specific 

objectives relative to the above hypothesis were:

I. Determine the time course between the increase in fruit flesh weight, seed 

development, flesh color development, sugar accumulation and related enzyme activities.

II. Quantify the effects of defoliation on sugar accumulation in fruit, final fruit quality and 

the key enzymes of sugar synthesis and metabolism.

III. Identify the critical enzymes (sucrose phosphate synthase (SPS), sucrose synthase 

(SS), and acid invertase) that regulate papaya carbohydrate metabolism during fruit development 

and in response to defoliation.

IV. Isolate the genes for the key enzymes identified in step III controlling sugar 

accumulation in papaya fruit.
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CHAPTER 4 

THE RELATIONSHIP OF PAPAYA FRUIT GROWTH, RESPIRATION, SUGAR 

ACCUMULATION AND THE ACTIVITY OF SPS, SS, INVERTASE ENZYME 

DURING PAPAYA FRUIT DEVELOPMENT AND RIPENING

Abstract

Developing papaya {Carica papaya L.) fruit were strong sinks that continually import 

carbohydrates from leaf until harvest. This study used ‘Sunset’ papaya to determine the 

relationship between fruit flesh and seed growth, color development, fruit respiration, sugar 

accumulation and the activity of sucrose phosphate synthase (SPS), sucrose synthase (SS), and 

acid invertase with fruit development from 14 days after anthesis (DAA) to 140 DAA (harvest 

maturity). Fruit sugar levels and SPS, SS and acid invertase activities were also compared to 

‘Kapoho’, the major Hawaii’s cultivar, and UH801, a low sugar line during fruit late development 

(one month before harvest) and in five available cultivars during postharvest ripening, 

respectively. The relationship between fruit fresh mass and fruit length and diameter was 

expressed as a linear regression after log transformation (Log fruit mass = 3.1253 X (log fruit 

length) - 0.9525, P = 0.97; Log fruit mass = 2.583 X (log fruit diameter) + 0.2513, r̂  = 0.99, 

respectively, p < 0.0001). Fruit flesh dry mass percentage decreased from 14 to 56 DAA, then 

remained constant from 56 to 112 DAA, then rapidly increased one month before harvest. Fruit 

flesh sugar accumulation and dry matter grovrth rate increased after seed maturation. Fruit 

respiration rate decreased from 48 ml CO2 h'  ̂ Kg'  ̂ in fruit 14 DAA to 12 ml CO2 h'  ̂ Kg'^ at 70 

DAA, then remained constant until fruit skin showed color break. Fruit sugar began to increase 

about one month before harvest, with 40 to 50% of the total sugars as sucrose. SPS activity 

remained very low throughout fruit development and increased slightly before harvest. SS 

activity was very high in 14 DAA fruit and decreased to less than one third within 42 to 56 days, 

and remained constant in the late stage of fruit development. Acid invertase activity was very 

low in the young fruit and increased more than 10 fold 42 to 14 days before maturation. The
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increase in fruit flesh dry mass percentage coincided with fruit flesh color (CIE ‘L *a ‘ b") while 

fruit skin color ‘a’ value was only partially correlated with dry mass accumulation during fruit 

development. A regression model (CIE a = -0.2767 x (TS S f + 7.49144 x (TSS) -32.708, p= 

0.0001, r̂  = 0.67, n=213) between fruit flesh ‘a’ color and total soluble solids in full ripe fruit was 

also obtained. Correlation analysis indicated that SS was highly correlated with respiration (r  ̂= 

0.9511, p=0.00003) and invertase was associated with sugar accumulation (r^= 0.738, p< 0.05) 

during the last phase of fruit development. The relationship between enzyme activity and 

calculated fruit flesh carbon import rate suggested that SS and acid invertase were the two major 

enzymes that determined papaya fruit sink strength in the early and late development phase, 

respectively. Comparison of low sugar accumulation fruit type (UH801) with the commercial Solo 

types in sugar levels and enzyme activities demonstrated that the differences in invertase 

activities could account for the difference in final fruit sugar levels. SPS, SS enzyme activities 

decreased and acid invertase activity dramatically increased during postharvest ripening of 

papaya. The relationship between SPS, SS and acid invertase enzyme activities and sugar 

partitioning within the fruit during postharvest ripening was not clear.

4.1 Introduction

Papaya (Carica papaya L.) is an important tropical fruit crop. In 1994, fresh papaya fruit 

production in Hawaii totaled about 62,000,000 lb., and more than 60% was shipped to the US 

mainland and Japan. The fruit has potential markets in Europe, Japan, the Middle East and USA 

(Radi et al., 1994).

Papaya fruit increases in fruit size, volume and fresh mass has been previously reported 

(Muda et al., 1994; Qui et al., 1995). The changes in physical properties during maturation occur 

simultaneously with the changes in the chemical component of the fruit. The most obvious 

changes occur in the skin, flesh and seed color (Muda et al., 1994). While the most important 

biochemical changes during maturation and ripening of papaya is the substantial increase in 

soluble sugar (Chan et al., 1979; Selvaraj et al., b 1982). The total soluble solids (TSS) is used in
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the commercial assessment of papaya fruit quality (Hawaii Administrative Rules, 1986) and 

correlates to fruit maturation and skin color (Akamine and Goo, 1971). However, there is no 

quantitative data or model available to illustrate the relationship between fruit fresh mass, 

volume (length, diameter and flesh thickness), as well as skin and flesh, seed color 

development, dry mass accumulation and fruit final sugar content.

Sugars play an important role in the flavor characteristics of papaya and is also a 

commercial measure of fresh fruit quality (Hawaii Administrative Rules, 1986). An understanding 

of sugar metabolism during fruit development is a pre-requisite to being able to improve this 

aspect of fruit quality. Developmental studies have shown that total sugar, especially sucrose 

increased rapidly in papaya fruit approximately 20 to 30 days before harvest (Chan et al., 1979; 

Selvaraj et al., 1982).

Sucrose phosphate synthase (SPS), sucrose synthase (SS), and acid invertase are the 

three major enzymes influencing sugar accumulation in developing fruit (Hubbard et al., 1989; 

1990a; 1991; Klann et al., 1993; Lingle et al., 1987; Miron et al., 1991; Moriguchi et al., 1988; 

1992; Yamaki, 1995; Yelle et al., 1991). SPS (UDPG: D-fructose 6-2-glucosyltransferase 

E.E.2.4.1.14) is involved in sucrose synthesis (Brunean et al., 1991). SS has a function either in 

sucrose synthesis or cleavage (UDPG; D-fructose 2-glucosyltransferase, E.C.2.4.1.13) (Dejardin 

et al., 1997; Huber et al., 1986; Sung et al., 1988; Wang et al., 1994;). Acid and neutral 

invertases (p-fructofuranosidase, E.C.3.2.1.26) catalyze the hydrolysis of sucrose to fructose and 

glucose (McCollum et al., 1988). Different pathways for sucrose accumulation among species 

have been summarized as acid invertase type, SPS type, SS type and SS/SPS type (Yamaki

1995). Different enzymes are more or less important during fruit development and sugar 

accumulation in different species, different tissues and at different times (Hubbard et al., 1989; 

Klann et al., 1993; Lingle et al., 1987; Lowell et al., 1989; McCollum et al., 1988; Miron et al., 

1991; Moriguchi et al., 1988; 1992; Schaffer et al., 1987; Sun et al., 1994; Wang et al., 1993; 

Yamaki 1995; Yelle et al., 1991; Zhu et al., 1997). High soluble acid invertase activity (Pal et al., 

1987; Chan et al, 1976; Chan and tang, 1979; Hubbard et al., 1991) and low SPS and SS
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activities have been found in ripe papaya fruit (Hubbard et al., 1991), and these activities need to 

be reconsidered with the high sucrose composition of ripe papaya. How these enzymes change 

during papaya fruit development and the enzyme most involved in fruit development and

sugar accumulation have not been determined.

The objective of current study was to determine the time course and the relationship 

between fruit fresh weight, size (length and diameter), skin and flesh color development and dry 

sugar, mass accumulation, and the activities of sucrose phosphate synthase, sucrose synthase 

and acid invertase during papaya fruit development and ripening. The patterns of enzyme 

activities during development were compared between a low sugar line and the normal 

commercial cultivars.

4. 2 Material and Methods

4.2.1 Plant material

Plants of Carica papaya L. (cv. Sunset) were grown at the Poamoho Experimental 

Station on the island of Oahu, Honolulu. Flowers of papaya on selected plants were tagged 

weekly at anthesis. When the first tagged fruit reach harvest maturity (color break to 20% 

yellow), fruit aged 14 to 140 days, at 14 day intervals were harvested in the subsequent two 

weeks. Therefore, ten developmental stages (treatments) within 8 plants (replicates) at two 

harvest dates (subsamples), two to four fruit per stages per harvest date (samples) were used in 

the experiment. All data presented was the mean of two harvest subsamples within each plant 

unless otherwise indicated.

Plants of Carica papaya L. ‘X-77’ (Waimanalo), and ‘UH801’ were grown at the Poamoho 

Experimental Station, on the island of Oahu. The fruit of ‘Line 8 ' and ‘Kapoho’ were obtained 

from Dole Fresh Fruit Company fields, in central Oahu. Fruit developmental stages of ‘Kapoho’ 

were determined by tagging flowers at anthesis. The fruit from several developmental stages 

before maturity were used as experimental material. The fruit developmental stages for UH 801 

and other cultivars were estimated by fruit skin and flesh color (Akamine and Goo, 1971). For
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comparison of fruit sugar and SPS, SS, and acid invertase activities at above five cultivars 

during postharvest ripening period, fruit were harvested from color break to 30% skin yellow 

stage and, sampled 1 day, 3 day and 7 days after storage at 23°C.

4.2.2 Chemicals

All chemicals were reagent grade or better, and purchased from Sigma and Fisher 

Scientific unless otherwise noted.

4.2.3 Observations

Fruit mass (g fruit‘d), total soluble solids (TSS), fruit length (cm), width (cm) and flesh 

thickness (cm), fruit skin and flesh color, fruit respiration were measured from ail fruit harvested 

14 to 140 days after anthesis (DAA) from eight plants. Fruit sugar (g kg'  ̂fresh mass), flesh, seed 

fresh mass (g fru it '^  dry mass and SPS SS invertase enzyme activity were determined on fruit 

from the ten developmental stages on the same plant. Skin and flesh color were determined with 

a Minolta Chromameter (CR:110, Minolta, Ramsey, N. J.) and expressed as CIE “L* a* b”. TSS 

was determined by using refractive index, two measurement were made in the middle of each 

fruit.

4.2.4 Sugar assay

Flesh sugar was determined as previously described (Pauli et al., 1984). Two grams of 

tissue was heated 10 min in a boiling water bath (unless otherwise stated) before extraction with 

90% ethanol, 5 ml of the supernatant solution was dried and dissolved in 2.5 to 5 ml deionized 

water (for young fruit and mature fruit, respectively). Sucrose, fructose and glucose were 

separated and quantified by HPLC from retention times and peak area under known standard. 

The amount of the three sugars was summed and regarded as the total.

4.2.5 Dry mass assay

Dry mass percentage for each DAA was determined by drying ten gram of fresh tissue or 

seed sample (n=3) at 60°C for 6 days (Qiu et al.,1995). Fruit flesh and seed dry mass 

accumulation were calculated from dry mass percentage times average fruit fresh mass at the
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same ages. Flesh and seed dry mass growth rate (g day fruit‘d dry mass) were calculated as 

GR=(dw d f ^

4.2.6 Fruit respiration rate

Fruit of 10 different ages were harvested from eight ‘Sunset ‘ plants and used for 

determination of fruit respiration rate during fruit development. Fruit were sealed individually for 

one hour in a 970 ml jar and 1 ml headspace gas samples taken for CO2 measurement. An 

infrared C0 2 gas analyzer was used to determine CO2 concentration (Clegg et al., 1978).

4.2.7 Carbon import rate by fruit flesh

Carbon import rate was calculated from the sum of carbon consumed by respiration per 

fruit per day and carbon accumulated per fruit per day as dry mass growth rate multiplied by 0.47 

(Huang et al., 1992).

4.2.8 Enzyme extraction

SPS, SS, and acid invertase enzymes were extracted according to the method of 

Hubbard et al. (1989), with slight modification. Fruit mesocarp tissue was sampled, frozen in 

liquid N2, and stored at -80°C until use. Frozen fruit tissue was ground in liquid N2 in a chilled 

mortar and pestle. Three grams of powder was transferred into a centrifuge tube that contained 

12 ml of extraction buffer (100 mM MOPS-NaOH (pH 7.5), 5 mM MgCb, 1 mM EDTA, 2.5 mM 

DTT, 0.5 mg ml'’ BSA, 2% v/v glycerol, 1 mM PMSF, 0.05% Triton X-100) and homogenized for 

30 sec. to 1 min at high speed in a ULTRA TURRAX homogenizer. After centrifugation at 

10,000xg, 5 ml of supernatant was desalted and concentrated by Centriflo membrane cones 

(Amicon CF-25) by three additions of desalting buffer (50 mM MOPs-NaOH pH7.5, 5 mM MgCb,

2.5 mM DTT, 0.5 mg ml"’ BSA, 1 mM PMSF). The final volume of solution was measured and 

the concentration factor calculated.

4.2.9 SS and SPS assay

The reaction mixture (70pl) used to determine SPS activity contained 50 mM MOPS- 

NaOH (pH 8.0), 15 mM MgC^, 10 mM fructose 6-P, 30 mM glucose 6-P, 20 mM UDPG, and 45 

p.1 desalted enzyme extract. Reaction mixtures were incubated at 37°C with shaking and the
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reaction terminated at 0 and 30 min with 70 pi 30% KOH and placing the tube in boiling water 

bath for 10 min. After cooling, 1 ml of 0.14% (w/v) enthrone in 14 M (v/v) H2SO4 was added 

(Hubbard et al., 1989) and incubated at 40 °C for 20 min. After cooling, color development was 

measured at 620 nm. SS activity assay (in the sucrose direction) was identical to that of SPS 

except that the reaction mixtures contained 40 mM fructose and did not contain fructose 6-P and 

glucose 6-P (Hubbard et al., 1989).

4.2.10 Invertase assay

Invertase activity was assayed in 60 pi of 0.1 M K2HPO4 - 0.1 M citrate buffer (pH 5.0), 

20 pi 0.1 M sucrose, and 20 pi of concentrated or diluted enzyme extract at 23°C. The reaction 

was stopped by adding 1 ml borate buffer (pH 9.0) and reducing sugar determined by adding 0.2 

ml 1% (WA/) cyanoacetamide and boiling the mixture for 10 min, reading the absorbency at 276 

nm, and using glucose and fructose as standard (Gross, 1982).

4.2.11 Data analysis

Statistical analysis was performed using Excel spreadsheet and SAS general linear 

models and correlation program. Log transformations of the fruit mass and length, diameter, 

flesh thickness were performed. These transformations gave a linear relationship between fruit 

mass and the other parameters.

4.3 Results

4.3 1 Color development

Sunset papaya matured 140 DAA during the warm season. The most obvious changes 

during papaya fruit development occurred in the skin, flesh and seed colors. Papaya fruit skin 

color changes from light green to dark green, then turns to light green and yellow during 

maturation and ripening, respectively. Skin CIE ‘L’ (lightness) and ‘b’ (blue to yellow) values were 

initially high, and gradually decreased from 15 to 112 DAA, then increased during maturation and 

ripening, especially the ‘b’ value (Figure 4.1A). The large variation between replicates in harvest 

maturity indicated that color changes were rapid. The ‘a’ value remained low and increased
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slightly during development (Figure 4.1A). The ‘a’ and ‘b’ value rapidly increased during ripening 

when the fruit turned yellow (e.g. ‘a’ from below 0 increased to 6 , ‘b’ from 25 increased to 50). 

Lightness remained high (ca. 80) while the flesh was still white until about one month before 

harvest (Figure 4.1 B), then significantly decreased (ca. 50) at harvest. In contrast, flesh value 

‘a’ and ‘b’ increased in parallel to the development of the red-orange flesh. Papaya seed color 

changed from white to brown approximately one month before harvest, then turned black about 

14 days before harvest.

4.3.2 Fruit growth curve and respiration rate

The growth of ‘Sunset' papaya showed a double sigmoid growth curve in terms of the 

increase in fruit mass, length and diameter (Figure 4.2). There was a large variation of fruit mass 

among fruit aged 100 to 126 DAA (Figure 4.2A). This variation also occurred in fruit diameter 

(Figure 4.2C). Fruit length changed rapidly during early development, then slowly during the late 

stages of fruit development (Figure 4.2B). Fruit flesh thickness, from two separate subsamples, 

had greater variation between different fruit at the same stage (Figure 4.2D).

There was an almost linear increase in both flesh and seed fresh mass 70 to 112 DAA 

(Figure 4.3A). However, dry mass percentage pattern differed between the flesh and the seed 

(Figure 4.3B). Fruit flesh dry mass percentage slightly decreased from 14 to 56 DAA, then 

remained constant from 70 to 112 DAA, and increased approximately one month before harvest. 

While the seed dry mass percentage rapid increase from 70 to 126 DAA, then decreased before 

harvest. As seed dry mass growth rate increased, (Figure 4.3C), flesh dry mass grovrth 

decreased or slightly increased. Fruit dry matter accumulation exhibited a double-sigmoid pattern 

with the first fast growrth phase from 14 to 42 DAA, followed by a second period of slow increase 

in dry mass and a final phase characterized by rapid fruit dry mass increase (Figure 4.4). In 

contrast, seed dry mass increased slowly from 14 to 70 DAA followed by a gradual increase from 

84 to 126 DAA, then the mass remained constant (Figure 4.4A). Fruit respiration rate (Figure 

4.4B) decreased from 48 ml CO2 h'  ̂ kg'  ̂ in fruit 14 DAA to 12 ml CO2 h'  ̂ kg'  ̂ at 70 DAA, then 

remained constant until fruit color break stage.
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Figure 4.1. Sunset papaya fruit skin (A) and flesh color (B) changes expressed as CIE L *a *b 
color space during fruit development as days after anthesis. Papaya skin lightness L, Y = 
0.002X^- 0.375X + 60.55, = 0.8029, p = 0.0001 (n = 60). PapaPapaya skin value a, Y =- 0.0006X
0.154X- 21.35, r^= 0.8314, p = 0.0001. Papaya skin value b. Y = 0.0034X^ - 0.598X + 40.48, r  ̂= 
0.7903, p = 0.0001. Papaya flesh lightness L, Y = -0.0023X^ + 0.214X + 75.09, ^  = 0.7997, p = 
0.0001. Papaya flesh value a, Y = 7E-05X^- 0.014X^ + 0.724X - 15.37, ^  = 0.8673, p = 0.0001. 
Papaya flesh value b, Y = 0.0033X^ - 0.46X + 27.63, r^= 0.8977, p = 0.0001.
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Figure 4.2. Papaya fruit growth (fresh mass (A), length (B), width (C) and flesh thickness (flesh) 
(D)) curves in summer grown 'Sunset' as days after anthesis. Fruit mass: Y = -O.OOOIX  ̂ + 
0.00224X^ + 1.5492X - 15.434, = 0.9462, p = 0.0001. Fruit length: Y = 3E-06X^ - 0.0015X^ +
0.2208X + 1.4827, = 0.9789 p = 0.0001. Fruit diameter: Y = 2E-06X^ - 0.0008X^ + 0.1212X +
0.5106, = 0.9478, p = 0.0001 Fruit flesh thickness: Y = 9E-07X^ - 0.0003X^ + 0.031 IX  +
0.2123, ^  = 0.8784, p = 0.0001. The means of two subsamples were used for fruit length and 
diameter, individual subsample data were used in fruit flesh thickness.
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Figure. 4.4. Papaya fruit dry mass growth (A) and respiration rate (B) during fruit development 
expressed by day after anthesis. For dry mass growth, each data point = dry mass percentage 
(n=3) X fresh mass (n = 8 (plant) X 2(sample date) x fruits, 1 to 3 approximately). Dry mass 
growth for whole fruit: Y=2E-05X-0.0023X^ + 0.2556X - 2.6805, = 0.999, p = 0.001; flesh;
Y=7E-05X^ - 0.0181X^ + 1.6362X - 41. 551, = 0.9997, p = 0.001. Seed: Y= -3E-05X^ +
0.0074X^ - 0.5906 X+ 15.401, = 0.9989, p = 0.001. For respiration rate, each data point
represents at least 16 fruit. Y= 0.0522X'*- 1.3806X^ + 13.138X^ - 52.687X + 88.18, = 0.9863, p=
0.001.
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4.3.3 Fruit sugars

4.3.3 fruit sugars

Fructose, glucose and sucrose were detected via HPLC after invertase was heat 

inactivated prior to extraction. Fruit sugars (glucose, fructose and sucrose) in the flesh did not 

significantly increase until about 112 DAA (Figure 4.5A). Sucrose rapidly increased one month 

before maturation and accounted for 40 to 50 % of total sugar in mature fruit.

4.3.4 SPS, SS, and acid invertase enzyme activities

SPS remained low throughout fruit development and increased only slightly in mature 

fruit (Figure 4.5C). The difference in SPS activity between each developmental stage was not 

significant. SS activity was assayed in the synthesis direction at pH 8.0, which gave a much 

higher activity than at pH 7.5. SS activity was very high (>40 pmoles g ’ FW) in young fruit (14 

DAA) and declined to 12 pmoles g"’ FW 56 DAA and then remained relatively low during the rest 

of fruit development (Figure 4.5B). There was about a 30 % increase of SS activity 14 days 

before maturation in a later experiment (Table 4.1). Acid invertase activity was very low in the 

young fruit and increased more than 10 fold, 42 to 14 days before maturation (Figure 4.5B), and 

invertase activity paralleled sugar accumulation. Invertase activity varied greatly 7 to 14 days 

before maturation with invertase being higher in the outer white flesh tissue (14 days before 

maturation) than in the riper inner flesh tissue (Table 4.1). No neutral or alkaline invertase was 

detected in both young and ripe papaya fruit.

4.3.5 The relationship between fruit mass, and length, diameter, and flesh thickness

The relationships between fruit mass, diameter (Figure 4.6A), length (Figure 4.6B), and 

flesh thickness (Figure 4.6C) after log transformation, were linear (Figure 4.6D, E, F). Fruit 

diameter was more closely related to fruit mass (r  ̂ = 0.99, p<0.0001) than fruit length. Flesh 

thickness and fruit weight were highly correlated. However, the practical application of the 

relationship was limited, as it required fruit detachment and there was large variability in flesh 

thickness at different cutting sites. The regression equations between fruit diameter, length and 

flesh fruit mass were consistent between fruit diameter and length estimated and observed fruit
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Table 4.1 Activity of acid invertase and sucrose synthase (SS), sucrose phosphate synthase 
(SPS), and invertase enzymes in winter grown ‘Sunset’ papaya. Each data represents the means 
of three replications and + SD.

Enzyme activity (pmoles sucrose.g"^ h ’ FW)

Fruit tissue Acid invertase SS SPS

4 weeks before maturity 31.1+2.5 4.2 +0.2 1.1+0.08

2 weeks before maturity 
(outer mesocarp)

74.7 + 3.5 6.2+ 0.3 1.6 + 1.55

2 weeks before maturity 
(inner mesocarp)

46.9 + 3.3 4.3+ 0.3 1.6 + 0.14

mature fruit 46.3 + 5.1 4.6+ 0.3 1.6 + 0.13

mass and gave a p < 0.0001, ^  = 0.99 and 0.97. Fruit growth and development, especially fruit 

size, varied between different plants and different fruit on the same plant.

4.3.6 The relationship between fruit skin, flesh color and dry mass accumulation

Skin, flesh and seed colors changes indicate fruit maturity. However, only flesh color was 

a more accurate predictor of fruit dry mass percentage during fruit development (Figure 4.7A). 

Fruit skin color ’a’, was only partially correlated (r^= 0.91) to flesh dry mass accumulation (Figure 

4.7B).

4.3.7 The relationship between flesh color and TSS in full ripe fruit

Papaya fruit skin color changed rapidly during postharvest ripening while flesh color and 

fruit sugar remaining constant. A quantitative relationship was obtained for flesh ‘a’ value against 

fruit TSS Y = -0.2767X^ + 7.9144X - 32.708 (Figure 4.8). Fruit flesh color (red) rapidly increased 

as fruit TSS increased, however, once fruit TSS was 10% or greater, the flesh color showed little 

change.

4.3.8.Correlation between respiration, sugar content and enzyme activity

Correlation analysis data indicated that SS was positively correlated (r  ̂ = 0.9511, p= 

0.00004) with fruit respiration (Figure 4.9A) and acid invertase activity was correlated (r^=0.738.
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Figure 4.7. The relationship between fruit flesh color development and fruit flesh dry mass 
percentage (A) and fruit skin color a value and fruit dry mass accumulation (B). Each data point 
represents the mean of each developmental stage. Color L = Lightness; Y = 0.2397X^-6.8982X^ 
+ 60.33X - 88.542, ^  = 0.9488, p = 0.0001. Color A = green to red: Y = 0.0496X^ - 0.6878 X  ̂ + 
2.5838X - 7.4876, ^  = 0.9952, p = 0.0001. Color B = blue(-) to yellow(+), Y = -0.0651X^ + 
1.5126X^- 8.031 X + 20.447, ?  = 0.906, p = 0.0001.
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each fruit. Y = -0.2767X^ + 7.9144X -32.708, = 0.6742, p = 0.0001. n = 213.
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p = 0.05) with fruit sugar accumulation. If invertase activity in fruit 14 days earlier than the fruit 

sugar sampling date for correlation analysis during the sugar accumulate period, a higher linear 

correlation coefficient (r  ̂= 0.9326, p = 0.0076) was obtained (Figure 4.9B).

4.3.9 Carbon import and enzyme activity in fruit flesh tissue

The carbohydrate imported from leaf to fruit ware used either for respiration, or 

carbohydrate storage. When sucrose metabolizing enzyme activity were plotted against the 

carbon import per fruit per day (sugar plus structural carbon in flesh tissue dry mass and total 

carbon consumed by whole fruit respiration) the relationships between fruit carbon import and SS 

or invertase enzyme activity were complex (Figure 4.10). It suggests that neither SS nor 

invertase alone can be regarded as major factors regulating fruit growth and sugar accumulation. 

On a whole fruit basis, SS activity increased rapidly during early fruit development and remained 

constant while carbon import rapidly increased during fruit maturation (Figure 4.1 OB). Invertase 

was initially low and did not increase until carbon import rate significantly increased during the 

late fruit development stage (Figure 4.1 OA). Though a linear correlation existed between SPS 

and fruit carbon import (Figure 4.1 OC), the role of SPS in carbon import in papaya flesh was 

questioned, as SPS activity was less than one tenth that of SS and invertase activities during 

papaya fruit development.

4.3.10 Sugar accumulation and enzyme activity in ‘Kapoho’ and ’UH 801’ cultivars during fruit 

late developmental stage

To further verify the relationship between fruit sugar accumulation and enzyme activity, 

a low sugar line cultivar ’UH 801' was compared the major commercial cultivar ’Kapoho' at the 

late fruit developmental stage. ‘Kapoho’ and 'Sunset' showed a similar sugar accumulation 

pattern and enzyme activity as UH801 (Figure 4.11). Invertase activity significantly increased 14 

days before maturation then slightly decreased in mature fruit. SS remained constant and SPS 

was low and increased in mature fruit. Lower sugar level in ’UH801’ was apparently associated 

with lower invertase, and lower SPS activities but had similar levels of SS (Figure 4.11 A, C, D, 

E).
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Carbon Import Rate

Figure 4.10. The relationship between fruit flesh carbon import rate (carbon consumed by 
respiration and dry mass accumulate per fruit per day) and SS (A), invertase (B), SPS (C) 
enzyme activities during papaya fruit development in day after anthesis. Regression equation for 
carbon import and SS: Y (Ln carbon import rate) = 0.067X (SS) - 4.09, ^  = 0.858, p = 0.0009; for 
carbon import and invertase: Y (carbon import rate) = -6.2 E-08 +2.34E-05 X  ̂ - 0.00049X
+0.1018, 1̂  = 0.918, p = 0.039.
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Figure 4.11. Comparison of sugar accumulation and SPS, SS, invertase enzyme activities in 
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SS activtiy, E: SPS activity. Vertical bar indicate LSD (p=0.05).
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4.3 11 Sugar levels and enzyme activities during papaya postharvest ripening of five cultivars

Papaya ripening was characterized by a large increase in invertase activity, a decrease 

in SS activity and a low SPS activity (Table 4.2). 'Sunset', 'Kapoho', 'Line-8' and 'X-77' had 

similar sugar levels in ripe fruit. The variability in sugar levels within these four cultivars at the 

three sampling times was probably due to fruit samples being taken from different location on 

different vigorous plants when fruit were available. The purpose of this experiment was to 

compare these cultivars with 'UH80T, a line reported to have lower sugar level. Total sugar 

levels and sucrose percentage in the five cultivars from one day after harvest to seven days 

after harvest varied widely (Table 4.2). Average sucrose percentage, was significantly higher in 

'Kapoho' than in other cultivars (Table 4.2). SPS activities remained low in all five cultivars at the 

three sampling times and there was no significant difference between cultivars and between 

sample times. SPS activity in 'X-77' and 'UH801' cultivars was significantly higher than in other 

cultivars three days and seven days after harvest, respectively. SS activity was significantly 

lower in 'X-77' and higher in ‘UH801' than in the other cultivars three days and seven days after 

harvest, respectively. UH801 had significant higher SS activity than the other four cuitivars. All 

cultivars showed the same postharvest trend in invertase activity, though 'UH80T had a lower 

invertase activity than the other four cultivars. The much higher invertase and lower SS activity 

in 'Line-8' cultivar than in other cultivars one day after harvest paralleled earlier fruit flesh 

ripening before color break. The average SS activity was higher and invertase lower in the low 

sugar line ‘UH801’ than in other four cultivars. These results indicated that neither SS, invertase 

nor SPS activity was correlated with total sugar or sucrose in ripe papaya fruit. The difference in 

the trends of SPS, and the higher level of SS and lower invertase in 'UH801' (big fruit, lower 

sugar) suggested that the difference between these three enzymatic activities contributed to the 

different cultivar sugar level.
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Table 4.2 Papaya fruit sugar content and sucrose percentage changes during postharvest 
ripening of five cultivars. Means in the same column with same letter were not significant 
different at 5% level. n=3

Cultivars day 1

Total sugar (g 100 g-1 FW)

day 3 day 7 average

Sunset 

Kapoho 

Line-8 

X-77 

UH 801

10.6

11.7

8.6

11.3

5.9

13.7 

12.2 

9.9

11.8 

5.8

12.3 

11.5

12.3

12.4 

5.3

12.2 a

11.8 b

10.3 c

11.9 ab 

5.7 d

Cultivars day 1 day 3

Sucrose (%) 

day 7 average

Sunset 

Kapoho 

Line-8 

X-77 

UH 801

46

59

53

54 

44

51

56

54

34

38

33

62

50

45

38

44 c 

59 a 

52 b 

44 c 

40 c
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Table 4.3. Sucrose phosphate synthase (SPS), sucrose synthase (SS), invertase enzyme 
activities during postharvest ripening of five cultivars. Means in the same column with same 
letter were not significant different at 5% level. n=2.

Cultivar

SPS (nmoles sucrose g'^h"’ FW) 

day 3day 1 day 7 average

Sunset 

Kapoho 

Line-8 

X-77 

UH 801

1.1 a 

1.3 a

1.1 a

1.1 a 

0.5 a

0.8 b 

0.7 b

1.0 b 

1.6 a

1.1 b

0.5 b 

0.5 b 

0.8 b 

0.6 b 

1.7 a

0.8

0.9

1.0

1.1

1.1

Cultivars

SS (nmoles sucrose g‘^h'̂  FW)

day 1 day 3 day7 average
Sunset 

Kapoho 

Line-8 

X-77 

UH 801

3.6 b 

5.0 a 

1.5 c 

3.4 b 

5.3 a

2.2 b 

1.6 c

1.3 c 

0.6 d 

2.8 a

0.8 b 

0.2 c 

0.3 c 

0.4 be 

1.3 a

2.2 b

2.3 b 

I.Od

1.4 c 

3.1 a

Cultivars

Invertase (nmoles sucrose g'  ̂ h'̂  FW)

day 1 day 3 day 7 average

Sunset 

Kapoho 

Line-8 

X-77 

UH 801

47 be 

54 b 

147 a 

52 b 

19 c

285 ab 

203 b 

238 b 

301 a 

97 c

328 ab 

421 a 

358 a 

240 b 

208 be

220 ab 

226 ab 

248 a 

198 b 

109 c
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4. 4 Discussion

Papaya fruit growth and development from pollination to maturation varies widely due to 

factors such as cultivar, age of bearing trees (maturity delayed as trees age), time of the year, 

and the stage selected as an index of maturity and environment factors (Nakasone, 1986). 

‘Sunset’ papaya fruit growth varied from 140 days to 180 days in the same plant for the first 

years’ fruit and the second years’ fruit (flowered at June or December), respectively. The 

variation was probably due to fruit growth and development being slower in the combined 

condition of temperature, tree ages and fruit competition. Unlike other fruit species, papaya plant 

flower and fruit continually, and only about 3 to 6 flowers opened a week in each plant. Different 

aged fruit in the same plant probably have different growth rate due to their positions in the plant 

column. Fruit size varied from 100 to 130 DAA fruit between different plant in this experiment 

(Figure 4.2A). The regression models between papaya fruit mass and diameter or length from 

our research could provide a useful tool to non-destructively investigate fruit growth rate under 

field conditions and reduce the variance between different fruit. Similar models have been 

developed for tomato (Wang, 19930, peach (Pavel and DeJong, 1993), and have shown great 

practical convenience (Berlin, 1993).

The pattern of sugar accumulation during fruit development in ‘Sunset’ was similar to 

that observed by others in different varieties (Chan et al., 1979; Selvaraj et al., 1982). Papaya 

dry mass percentage (Figure 4.3B) increased mainly due to soluble sugar increase (Figure 4.5A) 

in the late fruit development stage. Fruit flesh dry mass growth rate increased as seed dry mass 

growth rate decreased (Figure 4.3C), suggesting that papaya seed development was favored 

over flesh dry mass accumulation.

Many studies have been conducted to explain the control of assimilate partitioning 

between sinks competing for a limited supply of assimilates (Bangerth et al., 1984; Bertin 1995; 

DeJong et al., 1989; Demnitz-King et al., 1997; Ho, 1980; Pavel et al., 1993; Wright, 1989). Sink 

strength has been described as the product of sink size and sink activity (Ho, 1984). SS and acid 

invertase are both involved in the breakdown of translocated sucrose to and in the sink tissue.
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The activities of SS and acid invertase are proposed as indicators of active sink strength for 

different crops (Wang et al., 1993; Sung et al., 1994). SS is positively correlated with tomato 

relative gro\wth rate and the starch content of the mesocarp tissue (Wang et al., 1993). Acid 

invertase is associated with snap bean pod elongation while SS is associated with fruit dry matter 

accumulation (Sung et al., 1994). There is no information available in papaya fruit sink strength.

SS and acid invertase activities were indicators of sink activity in papaya fruit during the 

early and late development stages, respectively (Figure 4.5). SS apparently played a major role 

in papaya fruit sink establishment and maintenance by cleaving imported sucrose and providing 

UDP-glucose for biosynthetic reactions (Figure 4.5B). SS was very high in 14 DAA fruit, and as 

fruit growth occurs, SS declined to about 15% 70 DAA fruit, then remained relatively constant 

during the rest of fruit development. When SS activity was calculated on the fruit basis, SS 

increased from 14 DAA to 98 DAA then remained constant throughout the remaining period. This 

period corresponded to the carbon import into the mesocarp tissue during early fruit 

development stage (r^= 0.858, P= 0.0009, Ln (Y) = 0.067X - 4.09).

Acid invertase activity increased significantly during the last phase of fruit growth (Figure 

4.5B and 4.11C) and was associated with an increased carbon import rate (r  ̂ =0.918, P= 0.039, 

Y (carbon import rate) =-6.2E-08 X  ̂+ 2.34E-05 X  ̂- 0.00049 X + 0.1018). A relationship between 

carbon import rate and fruit sucrose levels in tomato fruit has also been observed (Walker et al., 

1978). In papaya, final fruit sugar relied on continuing sucrose import, rather than starch 

degradation as occurred in other fruit (Chan et al., 1979). The constant level of SS activity and 

the rapidly increased acid invertase activity in late fruit development stage of papaya led to a 

strong sink to compete for sugar unloading at the fruit mesocarp tissue. SPS activity was low 

throughout development, and may only play a minor role in papaya fruit sink strength.

The increase in mesocarp sugar paralleled the increase in acid invertase activity during 

the last phase of fruit development suggested a central role for this enzyme in sugar 

accumulation. Acid invertase enzyme activity increased before the sugar increased, and was 

correlated with sugar level (r  ̂ = 0.738, p = 0.05), then declined before harvest (Figure 4.5A). If
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enzyme activity 14 days earlier was compared with the sugar level, the linear correlation 

coefficient was higher (r^= 0.9326, p=0.0076). No correlation was found between sugar and SPS 

or SS activity during fruit development. The loss of soluble invertase activity and the high SPS 

are regarded as preventing sucrose hydrolysis and allowing the accumulation of sucrose in 

muskmelon and tomato (Hubbard et al., 1989; McCollum et al., 1988; Miron et al., 1991; Yelle et 

al., 1991). Acid invertase has negatively correlation with sucrose content in apple (Beurter, 1985; 

Yamaki et al., 1986; grape (Hawler, 1969), tomato (Klann et al., 1993; Manning et al., 1975; 

Miron 1991; Yelle et al., 1991), citrus (Kato et al., 1978), muskmelon (Lingle et al., 1987), and 

cucumber (Schafter et al., 1987). In some tissues, reducing sugar content has shown a positive 

relationship with invertase activity (Manning et al., 1975; Ranwala et al., 1992; Walker et al., 

1976). However, low acid invertase does not necessarily lead to the accumulation of sucrose in 

some tomato genotypes (Miron et al., 1991) and no correlation is found between sucrose content 

and acid invertase activities in 23 pear varieties (Moriguchi et al., 1992). In papaya, invertase 

activity increased before sugar accumulation and reached a peak two weeks before maturity 

then declined 20 to 40% in mature fruit (Figure 4.10 and 4.11). The reduced invertase activity 

together with an increased SPS activity could contribute to sucrose accumulation in the vacuole. 

An increase in SPS activity was observed during late fruit development, but was not coincident 

with maximum rates of sucrose accumulation.

Ripening of papaya fruit paraileled the loss of SS activity and dramatically increased 

acid invertase enzyme activity in all five tested cultivars (Table 4.3). Nevertheless, the sucrose 

content in postharvest ripening papaya (Table 4.2) was relatively stable. The relationship 

between SPS, SS and invertase activity and sugar composition was not clear in ripe papaya. The 

observed relationship can be explained by the high invertase activities detected in  vitro may not 

occurred in vivo, or the enzyme activity and sucrose may not be in the same compartment of the 

fruit cell (Hubbard et al., 1991). The optimal acid invertase assay pH and the high solubility in 

extraction buffer suggested it is a vacuolar invertase (Chan and Kwok 1976; Lopez et al., 1988). 

Loss of sucrose during homogenization and extraction without heat inhibition of invertase (Chan
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et al., 1976) demonstrate that sucrose and invertase could be either physically separated or the 

invertase is inhibited in vivo. The solubility of invertase has been shown to be different in 

different buffers, pH and extraction method (chapter 6). The possibility of invertase being located 

in the papaya ripe fruit flesh cell wall could not be excluded though only buffer soluble activity 

was measured in the present study. Sugars located apoplastically in the free space increased 

with fruit maturation and ripening in pears (Yamaki et al., 1993). The sugar content in free space 

of pear accounted for about 40% of the total sugars. Ripe papaya contains about 40 to 60% 

sucrose (Chen et al., 1964; Chan et al., 1979), and was similar to pears (Yamaki et al., 1993). 

Lower invertase activity in ‘UH801’ during postharvest ripening was consistent with lower sugar 

accumulation before harvest. However, it was not clear if the same invertase isoforms existed 

before and after harvest or during ripening and if different cultivars had different isoforms or how 

invertase enzyme activity was regulated in papaya fruit in vivo.
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CHAPTER 5

SOURCE (LEAF)-SINK (FRUIT) MANIPULATIONS 

Effect o f Defoliation and Fruit Removal on Papaya Fruit Production, Sugar 

Accumulation and SPS, SS, Acid invertase Enzyme Activities

Abstract

The source-sink relationship during papaya fruit development and ripening was 

investigated. The source size and sink strength was modified by single defoliation or continual 

defoliation, and fruit thinning, respectively. Three defoliation levels (0, 50%, 75%) and two 

defoliation methods (75% leaf removal from the oldest to the youngest leaf vs 75% leaves 

removed in a spiral from the oldest leaf) were compared to fruit thinning on ‘Sunset’ papaya 

during Hawaii’s warm season. There was no significant difference between 0% and 50% 

defoliation in new fruit set or ripe fruit TSS. Removal of 75% of the leaves significantly reduced 

new flower and fruit set, and decreased ripe fruit TSS. Removal of leaves in a spiral reduced the 

number of new flower and fruit set more than the defoliation from the bottom to top. Defoliation 

of the 'Kamiya' cultivar significantly reduced ripe fruit TSS and sugar level, and dry mass 

percentage two weeks after defoliation. There was no significant difference between defoliated 

and non-defoliated treatment in fruit production, average fruit mass, and percentage of fruit flesh 

and seed, seed dry mass and seed mass ratio during the test period. Fruit thinning increased 

new fruit set and ripe fruit TSS level in ‘Line-8’, and ‘Sunset’ but not ‘Kapoho’. Fruit thinning of 

‘Line-8’ also increased young fruit TSS and sugar levels on the remaining fruit on plants 

compared to same aged fruit on the control and defoliated plants. There was no effect on 

‘Kapoho’ young fruit TSS and sugar levels after defoliation. However, fruit thinning increased 

average ripe fruit mass in ‘Kapoho’ but not ‘Sunset’ and ‘Line-8’ varieties. Ripe fruit TSS varied 

with weather conditions, plant growth conditions and cultivars.

Continual defoliation resulted in lower new fruit set (25% of control), smaller fruit size 

(77% of control), and lower TSS (85% of control) in the 168 days experimental period. In
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contrast, there were 52% and 100% more new fruit on the fruit removal treatment plant than on 

the control plant within the first 56 days and 168 days, respectively. Larger fruit size, faster fruit 

development, lower respiration and higher sugar contents were observed in the immature fruit 

(140, 154, and 175 DAA) picked from the fruit removal treatment. No significant difference was 

found in TSS level of color break fruit between fruit removal and control plant. Fruit removal plus 

defoliation gave the same number and mass of new fruit as the control and slightly lower TSS in 

mature fruit than in control. Source-sink balance was critical for fruit set, development and sugar 

accumulation in papaya. Correlation analysis between fruit sugar and the sugar enzyme activities 

further demonstrated that invertase enzyme is possibly involved in fruit sugar unloading and 

accumulation during late fruit development stage.

5.1 Introduction

Source limitation, naturally or artificially induced, has been shown to affect reproductive 

biology in papaya and other fruit (Awada 1967; Spears et al., 1988), fruit size and quality, 

vegetative senescence in many plants (Berlin 1995; Chen et al., 1979; Hubbard et al., 1990; 

Hunter 1991; Koblet et al., 1994; Pavel et al., 1993). Source limitation reduces flower production, 

organ initiation, increases flower or fruit abortion rates in several species of plants (Berlin, 1995; 

Chamont, 1992; Lyrene 1992; Stephenson, 1981; Wardlaw, 1990). Sexual expression is also 

altered by source limitation in many hermaphroditic species (Spears et al., 1988; Wilson, 1983). 

Source-sink competition results in postharvest leaf blackening of Protea flower (Dai and Pauli, 

1995), reduced grain yield and chemical content of corn kernel (Chen et al., 1978), and poor fruit 

quality in muskmelon (Hubbard et al., 1990b).

Plants with a large leaf area have, in general, an increased photosynthetic capacity and 

at a given fruit load can lead to higher fruit TSS level (Hubbard et al., 1990b; Welles and 

Buitelaar, 1988;). The optimum leaf number and area required for the development of individual 

fruit has been determined for several fruit trees (Antognozzi et al., 1992; Chacko et al., 1982; 

Famiani 1997; Fishier et al., 1983; Palmer et al., 1991; Reddy 1996; Roper et al., 1987;
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Samanci, 1997; Snelgar et al., 1997). Kiwi fruit formed "early" (in a flowering cycle) and "late" 

(30 days later) after heavy pruning, had reduced total yield and poorer fruit quality (Galliano et 

al., 1990). The fruit/leaf-ratio also has an important influence on growth and composition of 

apples (Hansen, 1982), and plums (Toldam-Anderson et al., 1993).

Papaya {Carica papaya L.) plants flower and fruit continuously after initial flower 

initiation. Knowledge of the impact of altered source size on fruit development and quality is of 

practical significance. Papaya foliage injury can occur by insects, (e.g. Broad mite), disease such 

as powdery mildew, papaya mosaic virus and papaya ring spot virus (Decker and Ito, 1958; 

Marler et al., 1993; Nakasone 1986) and strong winds (Raveendranathan, 1989). Uneven fruit 

production, abnormal fruit size and poor fruit quality (low sugar) can occur in papaya commercial 

production (Camp, 1994). Our hypothesis was that source-sink relationship and the regulation of 

carbohydrate partitioning among sink was essential in predicting papaya fruit production and 

quality. Previous reports indicated that papaya leaf pruning to 15 functional leaves does not 

affect fruit production or total soluble solids (TSS) of the fruit (Ito, 1976). Thinning papaya to one 

fruit per node leads to a increase in fruit size and has no effect on fruit sugar (Martinez, 1988). 

Defoliation and deflowering altered papaya flower form, trunk growth, leaf dry weight, height 

elongation (Awada, 1967). However, it is not clear how papaya fruit growth and quality varied in 

response to different fruit/leaf ratio and in different cultivars. The time from loss of source leaves 

on its impact of fruit size and quality and the time required for recovery are essential to enable 

prediction of future production, fruit size distribution and quality.

The objectives of current research were; (1) to investigate papaya fruit set, growth and 

ripe fruit quality in response to different fruit/leaf ratio (defoliation and fruit thinning) and 

defoliation method. (2) To elucidate the response of fruit development and sugar accumulation 

of papaya to defoliation and fruit thinning of different cultivars and in different seasons. And (3) 

to evaluate the fruit physiology (fruit set, fruit development), sugar accumulation and relative 

levels of enzymes (SPS, SS, invertase) activities in response to fruit removal and continual 

defoliation in ‘Sunset’ papaya.
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5. 2. Materials and Methods

5.2.1 Plant material

'Sunset', and 'UH80T papaya were grown at the Poamoho Experimental Station on the 

island of Oahu. The plants of 'Line8' and 'Kapoho' were grown at Dole Fresh Fruit Company 

fields, in central Oahu. The plants of 'Kamiya' were grown at a private farm, on the north shore 

of Oahu.

5.2.2 Single defoliation and fruit thinning experiment in 'Sunset' cultivator

Three defoliation levels (0%= control, 50% and 75%) and two defoliation methods (75% 

of the leaves cut off from the oldest to the youngest vs 75% removed in a spiral from the oldest) 

were compared with fruit thinning during Hawaii's warm season. The leaves and fruit in different 

treatments were removed at the beginning of experiment. Mature fruit were harvested weekly. 

The fruit mass and TSS were determined after fruit were held at 23°C for 7 days. New flower and 

fruit set were counted from the first week of the experiment to six weeks (42 days) after 

treatment. Fruit abortion was counted where there is no fruit at a leaf axil. Five plants (replicates) 

were used for each treatment.

5.2.3 Defoliation on 'Kaminya' cultivar

Defoliation experiment (about 75% defoliation, from bottom to top) compared with 

control was conducted in the spring of 1995. Fruit were harvested at color break to 30% yellow. 

Fruit fresh mass was determined on the day of harvest. Fruit TSS and sugar were sampled at the 

day of harvest and 6 days after harvest. Fruit flesh and seed fresh mass, dry mass was 

determined during a six weeks period. Sugar enzyme activities (SPS, SS, acid invertase) were 

determined on the day of harvest and after 6 days at 23°C.

5.2.4 Defoliation and fruit thinning experiment in 'Kapoho' and 'Line-8' cultivars

Flowers were tagged at anthesis from June to November, 1996. Defoliation was 

conducted in December, 1996 when the first tagged fruit reached color break. Four treatments 

were initially installed 1. Defoliation (about 65% leaves removed, in a spiral), 2. Fruit Thinning 

(one third of the fruit removed), 3. Fruit thinning plus defoliation, and 4. Control. Ripe fruit TSS
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and mass were determined weekly. Young fruit at different ages were harvested three weeks 

after defoliation. Fruit flesh and seed fresh mass, dry mass, flesh TSS, sugar level and SPS, SS, 

invertase enzyme activity were determined.

5.2.5 Fruit removal and continual defoliation of 'Sunset' papaya

Sixteen papaya {Carica Papaya L. cv: Sunset) trees were divided into four treatments 

installed randomly when the first fruit on the plant reached maturity, i .  Continual defoliation (DL): 

12 to 14 of the green leaves (from the bottom of plant) were cut off on Dec. 6, 1995, leaving 

about 9 leaves (petiole longer than the axil of the young leaf) on the plant. Two or three 

additional leaves were removed weekly, maintaining the same leaf number during the 

experimental period. l i .  Fruit removal (DF); Fruit set before November was removed 

at the beginning of experiment with no additional fruit being removed until the end of 

experiment, i i i .  Fruit removal plus continual defoliation (DF +DL). v i . Control; No leaves or 

immature fruit removed during the experimental period.

5.2.6 Observations for fruit removal and continual defoliation

Flowers were tagged weekly at anthesis, with new flower and fruit set being counted for 

the first 8 weeks. Total new fruit set was counted from the first tagged fruit to the youngest fruit 

at the end of experiment. Mature fruit were harvested weekly. Fruit mass and TSS was taken on 

the harvested fruit. Fruit mass, respiration, skin, flesh and seed color and seed dry mass, flesh 

sugars (sucrose, glucose and fructose), SPS, SS and invertase enzyme activities were 

measured on fruit of different ages harvested on May 29, 1996.

5.2.7 Fruit respiration rate

Fruit at four different ages from the four different treatments were harvested on May 29, 

1996 and used for determination of fruit respiration rate. Fruit respiration rate was expressed as 

CO2 ml Kg'^ FW h'  ̂ as described previously (Chapter 4).
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5.2.8 Samples for SPS, SS, invertase assay in ripe fruit of ‘Sunset’ in single defoliation 

experiment

For the control and defoliation treatment, fruit were harvested at the 10 to 20% yellow 

stages and stored at 23°C for seven days prior to enzyme activity assay. In the fruit thinning 

treatment, fruit of the same age were picked at 10 to 20% yellow stage and ripened at 23°C or 

picked 7 days later after ripening on the plant.

5.2.9 Enzyme extraction and assay

SPS, SS and invertase enzymes were extracted and assayed as previously described 

(Chapter 4).

5.2 10 Sugar and dry mass measurement

Flesh sugar assay was performed as previously described (Pauli et al., 1984).Two grams 

of tissue was heated in the microwave for 1.5 min (unless otherwise stated) before extraction 

with 90% ethanol, 5 ml of the supernatant solution was dried and dissolved in 2.5 to 5 ml (for 

young fruit and mature fruit, respectively) deionized water. Sucrose, fructose and glucose were 

separated and quantified by HPLC from retention times and peak area under known standard. 

The sum of the three sugars was regarded as the total.

Dry mass percentage for each DAA was determined by drying three replication of 10 

gram each of fresh tissue or seed at 60°C for 6 days. Fruit flesh and seed dry mass accumulation 

was calculated from dry mass percentage multiplied by the average fruit fresh mass in the same 

sample.

5.2.11 Data analysis

Statistical analysis was performed using SAS general linear models. The correlation 

coefficients between fruit sugar and SS and acid invertase enzyme activity at four 

developmental stages and four treatments were obtained by using the enzyme and sugar data of 

the same aged fruit or at one stage earlier enzymatic activity with the next stage sugar level.
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5.3 Results

5.3.1 New flower and fruit set

Papaya flower and fruit set was reduced or increased by a single defoliation and fruit 

thinning, respectively. Node abortion and new fruit set reduction were observed in the 75% 

defoliation of ‘Sunset’ plant compared to the control plant (Table 5.1). There was also a 

significant difference between two defoliation methods. Plants in which the leaves were removed 

in a spiral manner had lower fruit set (47%) and higher fruitlet abortion (2.4 fold) than plants 

defoliated from the bottom to the top (Table 5.1). Fruit thinning increased fruit set by 

increasing fruit number per node (Table 5.1). There was no significant difference between 0% 

and 50% defoliation in the node abortion and new fruit set.

Continual defoliation and fruit removal significantly altered new flower and fruit set. Six 

weeks (42 days) after treatment, plants with fruit removed had the highest flower set, fruit 

removal plus defoliated plant ranked second in flower set, control plants were third and the 

defoliated plant gave the lowest flower set (Table 5.2). Two weeks later, the difference in new 

fruit set between fruit removal and fruit removal plus defoliation treatment was not significant. 

Defoliated plants produced less than 1/3 of fruit of the control, and 1/4 of the fruit than the fruit 

removal treatments, respectively. However, at the end of experiment, fruit removal plants had 

double the fruit set of the control plants. Continual defoliation only had 1/4 of fruit set of the 

control plants (Table 5.2). Continual defoliation on the fruit removed plant had a similar source 

sink balance as control plant. No significant difference was found between fruit removal plus 

continual defoliation and control plant in the total fruit set during the entile experimental period.

5.3.2 Ripe fruit TSS and fruit mass

Ripe papaya fruit TSS varied with weather conditions, plant growrth and fruit loading 

conditions and cultivars. Removal of 70-75% of the leaves significantly decreased TSS levels 

within 14 to 21 days after defoliation in ripe fruit of ‘Sunset’ and ‘Kamiya’ in Hawaii warm season 

respectively (Figure 5.1A and 5.2A). Fruit TSS recovered about 42 days after defoliation. 

However, defoliation effects were not consistent in ‘Kapoho’ and ‘Line-8’ cultivars during rainy
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season (Table 5.3). Defoliation significant lowered fruit TSS in ‘Kapoho’ but not in ‘Line-8’ during 

the 42 days period after treatment.

Defoliation significantly lowered ripe fruit mass on ‘Line-8’, but not in ‘Kamiya’, ‘Sunset’ 

and ‘Kapoho’ (Figure 5.1 B 5.2B and Table 5.3). Fruit thinning increased ripe fruit mass in 

‘Kapoho’ and reduced fruit mass in ‘Line-8’ (Table 5.3) and had no significant effect on ‘Sunset’ 

(Figure 5.2B). Defoliation plus fruit thinning gave a fruit mass and TSS value between the control 

and defoliation treatment on ‘Kapoho’ (Table 5.3).

Continual defoliation significantly reduced ripe fruit TSS and fruit mass during the 168 

day experimental period by 85%, and 77% of control, respectively, (Table 5.2). Monthly data 

showed that final fruit TSS on the control plant increased from February to May, while fruit TSS 

on the continual defoliation plant reduced from January to May (Figure 5.3). Defoliation did not 

immediately lower mature fruit TSS indicating that the aged fruit was stronger sinks than new 

fruit for a limited assimilate. Unlike the fruit thinning experiment, fruit removal increased mature 

fruit mass but not TSS compared to the control (Table 5.4). Fruit removal occurred at the early 

fruit development stage while fruit thinning was performed at the late fruit development stage. 

Five months later, when young fruit on the fruit removed plant enter the sugar accumulation 

period, plants had similar or more fruit number as the control plant, mature fruit TSS was not 

increased. Fruit removal plus defoliation had the similar fruit mass but lower TSS level than the 

control (Table 5.4). Continual defoliation on the fruit removed plant had similar fruit/leaf balance 

at the early period of experiment. When more new fruit developed and defoliation was continued, 

final fruit TSS was reduced. These results suggested that fruit mass was readily affected during 

the early development stage, while final fruit TSS was determined by the source sink balance 

before harvest.

5.3.3 Fruit development

Papaya fruit growth was faster on the plant in which the older fruit was removed than in 

the control plant (Table 5.5). Higher CIE ’a’ value or visible color and higher fruit TSS level on 

the fruit removed plant suggested that those fruit matured earlier than the ones on the control
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Table 5.1. Effect of defoliation and fruit thinning on new fruit set and the number aborted nodes 
in ‘Sunset’ papaya.

Treatment Control 50% defoliated 75% defoliated 75% defoliated Fruit thinned
Bottom upward Spiral at beginning

Fruit set 18.4B

Nodes aborted 0.4 C

19.2 B 

0.4 C

13.6C 

3.6 B

7.4 D 

8.8 A

22.5 A 

0 C

Means in the same row with same letter were not significantly different at 1% level, n = 5.

Table 5.2. Effect of continual defoliation on flower set, fruit set and ripe fruit number TSS and 
mass (12/6/95-5/22/96)

Number plant'1

Parameter Flower set Fruit set Ripe fruit

Treatment first 6 wk first 8 wk 24 wk Number TSS(%) Mass (g)

Control 11 b 15 b 28 b 54 a 12.2 a 303 a

Defoliated 4 c 4 c 7 c 47 a 10.4 b 234 b

Fruit removed 20 a 23 a 61 a 5 b

Fruit removed 
+defoliated

16 a 21 a 29 b 4 b

Means in the same column with same letter were not significantly different at 5% level.
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Figure 5.1 Fruit total soluble solids (A) and fruit mass (g fru it' ’) (B) in response to defoliation and 
fruit thinning treatment in ‘Sunset’ cultivar. C; control, FT. fruit thinned, about 40 fruit were 
removed, 50%; 50% defoliation, 75% S; 75% defoliation in a spiral, 75% B; 75% defoliation from 
bottom to top. Fruit were harvested at color break stage and allowed to ripen at 23°C before 
evaluation.
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Days After Defoliation

Figure 5.2 Fruit total soluble solids (A), fruit mass (g fruit‘d) (B) in response to defoliation in 
‘Kamiya’ cultivar. Fruit were harvested at color break stage and allowed to ripen at 23°C before 
evaluation. Vertical bars in graph A indicated standard deviation in each week within treatment.
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Table 5.3. Effect of defoliation and fmit thinning on fruit mass and TSS of ‘Kapoho’, and ‘Line-8’ 
cultivar.

Treatment’ Control Defoliated Fruit thinned Defoliated + fruit thinned

Fruit mass (g)

Kapoho 353 b 344 b 380 a 356 a b

Line-8 460 a 410 b 404 b

TSS (%)

Kapoho 11.2 a b 10.9 c 11.4a 11.1 b

Line-8 11.4 b 11.0 b 11.8 a

Means in the same row with same letter were not significantly different at 5% level. (Data pool 
from 0, 7, 21,28, 42 days after treatment, each treatment had at least five plants, n = 406 and 
394, for fruit mass and TSS, respectively).

Table 5.4. Comparison of ripe papaya fruit mass, TSS among four treatment (5/8/96-5/29/96)

Treatment ‘ Fruit number Fruit mass (g) TSS (%)

Control 38 270 b 13.2 a

Defoliated 29 173 c 10.4 c

Fruit removal 38 347 a 13.1 a

Defoliate + Fruit removal 31 261..b 11.9 b

* Total tested fruit per treatment. Means in the same column with same letter were not
significantly different at 5% level.

71



15

12
o
■U
E 9-J
z
4-̂
'3 6
lii

3

4o9

320

3
w(/) 240
CO

■3 160
LL

80

1§

12
w
w
1- 9

LL 6

3

0

® , 1. 1 control

- A .
d e fo lia te d " '-^

" 'A
LSD_

1 1 1 1 11 1

^  control

defoliated 

LSD I

- - A

DEC JAN FEB MAR APR MAY

Harvest month
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plant. Defoliation delayed fruit growth but no significant difference was obtained between 

continual defoliation and the control in 175 DAA fruit (Table 5.5).

There was no significant difference in percentage of fruit flesh and seed, seed mass ratio 

and seed dry mass in ripe fruit (Figure 5.4) between defoliated and non-defoliated treatment 

during the experimental period. However, fruit flesh dry mass was affected and the result was 

consistent with TSS data (Figure 5.4). Young fruit growth was delayed as indicated as lower seed 

dry mass percentage (Figure 5.5), 21 days after defoliation compared to the control. Fruit 

thinning also increased young fruit sugar levels compared to the control in ‘Line-S’ cultivar (Table 

5.6).

5.3.4 SPS SS and acid invertase activity in single defoliation

SPS, SS and acid invertase enzyme activity of fruit flesh were assayed in ripe fruit from 

the defoliation treatments. There was a decreased SPS and SS activities and an increased 

invertase enzyme activity from the day of harvest to 6 days after harvest. Defoliation 

significantly increased acid invertase enzyme activity in the fruit of one day after harvest but not 

in the 6 days after harvest about 28 days after defoliation of the ‘Kamiya’ cultivar. There was 

also no significant difference in ‘Kapoho’ and ’Line-8’ cultivar between treatment. However, fruit 

thinning significantly increased SS activity of ripe fruit than in control and defoliated treatment 

(Table 5.7). The trends of higher invertase in defoliated and lower invertase in the fruit thinned 

treatment were observed but was not significantly different due to high variation (Table 5.7).

5.3.5 Respiration, sugar and enzyme activities in continual defoliation

The time course of fruit respiration, sugar accumulation, sucrose synthase, and acid 

invertase enzyme activities during late fruit development stage were similar as reported earlier 

(Chapter 4). The trends in respiration in this experiment agreed with previous observations, 140 

and 154 DAA fruit had higher respiration rate than 175 DAA fruit that entered the lowest 

respiration stage before the climacteric peak. The reason of lower respiration in the fruit removal 

treatment was not clear. One possibility was that fruit size was bigger in the fruit removed plant 

than fruit from the other treatments.
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Table 5.5. Comparison of papaya fruit maturity among treatment with same age fruit (175 DAA)

Treatment Skin color Flesh color Flesh CIE ‘a'Seed color Mass (g) TSS (%)

Control green 3/10 red -4.08 black 281 b 6.6 b

Fruit removal light green 7/10 red 5.6 black 369 a 10 a

DF+DL light green 5/10 red 2.18 black 290 b 9.7 a

DL green 3/10 red -2.09 black 128 c 5.9 b

‘ Means in the same column with same letter were not significantly different at 5% level.

Table 5.6. Effect of defoliation and fruit thinning on fruit sugar (g. lOOg'^ FW) of ‘Line8’ cultivar.

Fruit sugar g lOOg

Treatment 1 week before harvest 3 weeks before harvest

Control 6.2 a 2.6 b

Fruit thinned 6.8 a 3.0 a

Defoliated 5.4 b 2.6 b

Means in the same column with same letter were not significantly different at 5% level, n = 3.
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Fruit removal resulted in higher sugar level in the 140, 154 and 175 DAA fruit compared 

to the control (Figure 5.6B). However, there was no significant difference in the color break fruit 

between fruit removal and the control treatments that had similar TSS (Table 5.4). Mature and 

154 DAA fruit from continual defoliation had a less sugar content than the control plant, but no 

difference was detected between 140 and 175 DAA fruit. Fruit sugar from plants receiving 

continual defoliation plus initial fruit removed was similar as continual defoliation alone except 

for the 175 DAA fruit. As mentioned earlier, higher sugar content in the immature fruit indicated a 

more rapid maturation processing in the same aged fruit. Therefore, fruit picked at harvest 

maturity may have variable fruit ages among the different treatment plant.

Enzymatic activities (SPS, SS, acid invertase) in the fruit picked from control plants 

were similar to previous results (Chapter 4). SPS was low and increased from 140 DAA to 175 

DAA but no significant difference was obtained among treatments (Figure 5.6C). SS activity was 

relatively stable during the late fruit development stage (Figure 5.6D) when sugars were 

accumulating (Figure 5.6B). 154, 175 DAA and mature fruit from continual defoliation and fruit 

removal plus continual defoliated plants had lower SS activities than those fruit from the control 

plant. No difference of SS activity was found in all four stages of fruit between the fruit removal 

and the control. Invertase enzyme activity increased earlier in 140 DAA fruit from fruit removed 

plant than those in other treatments (Figure 5.6 E). No significant difference was detected in 

fruits at the other three stages between fruit removal and control. Invertase activity was 

decreased 154 DAA fruit but increased in mature fruit in the continual defoliated plant 

compared to control. There was a positive correlation between SS with sugar content among the 

treatments within the same aged fruit but no correlation was found in the four treatments of four 

development stages. Acid invertase was correlated to glucose content in the four treatment 

of the four development stages (r=0.511, p=0.05. Table 5.8). When the enzymatic activity 

one stage earlier was compared to sugar content, invertase activities were highly significantly 

correlated to sugar levels in four treatment three stages: 140, 154, 175 DAA enzyme vs 154,175
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flesh fresh mass percentage in whole fruit fresh mass (B) (cv: kamiya).
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defoliation in ‘Kapoho’ cultivar
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Table 5.7. Effect of defoliation and fruit thinning on sucrose synthase (SS), acid invertase 
enzyme activity (pmoles sucrose g’’ h’’ FW) in ripe papaya fruit.

Treatment Control Defoliated Fruit thinned

SS* 1.1 b 1.0 b 2.1 a

*Acid invertase 619 (22) 739 (186) 407 (228)

* Means in the same row\with same letter were not significantly different at 5% level, n = 3. Data 
in the parentheses indicates the standard deviation of three samples.

Table 5.8. Correlation coefficients between fruit sugar and SPS, SS, invertase enzyme activities 
at four developmental stages and four treatments.

Enzyme Sugar stage Sucrose Glucose fructose Total

Inverrtase same 0.44"" 0.51* 0.38"" 0 .44""

one stage earlier 0.80** 0.80** 0.80** 0.83***

SS same -0.36 0.21 "" -0.25"" 0 .29""

one stage earlier -0.04"" 0.31 "" 0.11"" 0.10""

NS: not significantly different at 0.05, *, 
respectively.

*, significantly at p= 0.05, 0.01, 0.001 levels.
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DAA and mature fruit sugar, respectively, invertase vs sucrose: (r =0.7996, p = 0.01); invertase 

vs glucose: (r = 0.8017, p = 0.01); invertase vs fructose: (r = 0.8025, p = 0.01); invertase vs total 

sugar: (r = 0.833, p = 0.001).

5.4 Discussion

The source-sink ratio was a critical factor in controlling papaya fruit set, fruit growth, 

development, and final quality of ripe fruit. New flower and fruit set was an index of plant 

assimilate supply. When leaf (source) assimilate capacity was larger than sink demand, new 

flower and fruit were set continuously. When assimilate was limited, plant flower development 

was arrested. Fruit set increased 22% than in the control plant after 1/3 of fruit were removed 

from each node during 42 days period. 82% more new flower than on control plant in 80% of the 

old fruit removed plant in the first 42 days and 52% more fruit than control in the first 56 days of 

the experiment, respectively (Table 5.2). In the contrast, 75 % defoliation reduced new fruit set 

60% than control plant during first 42 days period. Continual defoliation produced new fruit less 

than 1/3 of control in the first 56 days and less than % of control in the 168 days period, 

respectively (Table 5.2). Continual defoliation on the fruit removed plant had similar new fruit set 

as on the fruit removal alone during the first 56 days, as defoliation continued, new fruit set was 

reduced. By the end of experiment, fruit removal plus continual defoliation had less than half the 

new fruit set compared to fruit removal alone, but was similar to the control plant and 3 fold more 

than continual defoliation alone. Since wound injury effect was mimicked between defoliation 

and defoliation plus fruit removal. Hormone effect may have been minimized between these 

treatments. The results demonstrated that tassimilate availability was a major factor in 

controlling papaya new fruit set. Any environmental stress that reduced plant leaf photosynthetic 

capacity probably could influence papaya plant potential production. Papaya ringspot virus 

reduces papaya leaf photosynthesis and increases leaf respiration rate (Decker and Tio, 1958; 

Marler et al., 1993). If source assimilate still do not meet the demand of reduced sink size (fewer 

and smaller fruit), final fruit TSS (sugar) would be affected. From current research, we suggest
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that the phenomena of ‘summer sterility in papaya thought to be due to high temperature or dry 

weather may be imbalance of the source-sink ratio, caused by high temperature and water deficit 

on flower reproductive capacity. This is supported by the failure to arrest all new flower and fruit 

set in the same field.

Many cultivated plants compensate for partial defoliation by increasing the 

photosynthetic capacity of the remaining leaf area (Boucher et al., 1987; Flore and Irwin, 1983; 

Hodgkinson, 1977; Shaw and Samborski, 1956; von Caemmerer and Farquhar, 1984; 

Wareing et al., 1968; Layne et al., 1992; Layne et al., 1995). Removal of 25% of the leaf area of 

tomato (Stacey, 1983) and cucumber plants (Ramirez et al., 1988) did not significantly affect fruit 

yield or whole plant dry matter accumulation. Removing 50% of the leaf area of potted apple 

trees reduced dry weight accumulation by 40% (Maggs, 1964). Papaya is an indeterminate plant, 

that develops new leaves and fruits continuously simultaneously, and fruit at all stages of 

development are present on a single plant. Therefore competition exists between vegetative and 

reproductive sinks, between new fruit and aged fruit sinks. In papaya, 50% defoliation did not 

significantly affect fruit TSS or new fruit set rate (Figure 5.1A, Table 5.1) indicating that the 

photosynthetic compensation may occur in the papaya plant. 60-75% defoliation did not 

immediately influence mature fruit TSS or sugar level, TSS was reduced 14 to 21 days after 

defoliation (Figure 5.1A and 5.2A).

The effect of defoliation and fruit thinning on plant growth and development depends on 

the time of the defoliation and the number of leaf, flower, or fruit removal (Lyrene, 1992; Mulas 

1997; Pavel et al., 1993). When defoliation occurred was important to affect on fruit mass and 

TSS in papaya. When plant had a full fruit load, two weeks after defoliation, the fruit TSS 

declined significantly then recovered in about four weeks as new leaves developed and less new 

fruit were produced (Figure 5.1 and 5.2). When plants were defoliated before the plant column 

was fully loaded, defoliation did not lower TSS in first two months' of ripe fruit (Figure. 5.5). Fruit 

number and size were smaller in the first two month on the defoliated plant than the control plant 

(Figure 5.3A, B). Continual defoliation reduced ‘source’ supply and produced smaller fruit with
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lower TSS (Table 5.2). Fruit removal plus defoliation balanced source and sink size at the 

beginning of experiment, resulting in similar fruit set and fruit size to the control (Table 5.2). 

When more fruit were set and defoliation continued, source supply was lower than sink demand 

and mature fruit TSS was affected (Figure. 5.3C). Mature fruit TSS was not higher on the fruit 

removal treatment as the plant had adjusted to the fruit load and fruit had reach the maximum 

sugar accumulation for that stage of develop (Table 5.4). A desirable ratio of fruit number to 

photosynthetic leaf area was essential for final fruit sugar content as the fruit entered the 

maturation stage. This experiment supports and expands on the previous observations with 

papaya (Awarda, 1967; Martinez, 1988).

The different responses to defoliation method demonstrated that leaf position was more 

important than leaf area. Loss of photosynthetic capacity from the old leaves or the leaf position 

effect with young leaves providing assimilate to new flower and fruit, and old leaves supporting 

other sink growth such as the trunk and root. Another possibility was that young leaves produce 

more plant growth regulators that stimulated new fruit set.

Reduced papaya fruit set and delayed young fruit growth after leaf loss subsequently 

reduced papaya production in the next harvest season, though defoliation and fruit thinning did 

not significantly influenced papaya fruit production during 6 weeks experimental period. Failure 

to set fruit in every papaya leaf axil was due to a combination of flower and fruit abortion and 

change in flower type from hermaphrodite to male. Similar observation have been previously 

reported for papaya (Awada, 1967) and other hermaphroditic species (Spears et al., 1988; 

Wilson, 1983).

The different cultivar responses to defoliation and fruit thinning in different seasons 

indicated that cultivar characteristic and weather were important factors influencing papaya fruit 

growth and sugar accumulation (Figure 5.1, 5.2 and Table 5.3). These differences can be 

explained as related to source-sink balance. Defoliation of ‘Sunset’ and ‘Kaminya’ were 

performed in the sunny season (from May to July) and the plants were full loaded with fruit of 

different ages. Ripe fruit TSS was affected two to three weeks after defoliation. While in ‘Kapoho’
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and ‘Line-8’ defoliation experiment, fruit set was reduced prior to artificial defoliation and fruit 

thinning due to rainy weather. In addition, the photosynthesis was probably reduced under rainy 

and cloudy weather, that reduced assimilate supply between non-defoliated and defoliated 

plants. The differential response to fruit thinning between ‘Line-8 and ‘Kapoho’ can relative to 

their growth features and source sink relationship. ‘Line-8‘ cultivar usually produced about 3 to 4 

fruit per node, and fruit softening occurred before fruit skin turns full yellow. While ‘Kapoho’ 

grown at Oahu island produced usually only one fruit per node, and fruit maturation was slower 

than ‘Line-8‘ cultivar. These differences may lead the different impacts to fruit size and TSS 

level in fruit thinned plant (Table 5.3).

Fruit growth and the time to maturity of papaya was affected by source-sink balance as 

well as temperature. Nakasone (1986) mentioned that papaya growth period was prolonged 

about two weeks in the Hawaii cold season. We found that ‘Sunset’ papaya fruit set in June 

reach color break stage within 140 days. While fruit set in October on the same plant needs 

about 180 days to the color break while average temperature declined from 84 F to 76 F (from 

June to December 1996). This slowing of fruit development due to lower temperatures and plant 

age (Nakasone, 1986). Our data suggested that assimilate availability could altered fruit 

maturation time in addition to temperature and plant ages. Comparison of fruit size, fruit flesh 

color and sugar level, seed color, seed dry mass percentage, in different treatment and ages fruit 

indicated that fruit grow rapidly and mature earlier on plants in which older fruit were previously 

removed than in control and defoliated plants (Table 5.5 for 175 DAA fruit). However, the 

suddenly loss of photosynthetic capacity usually led to old fruit shading and delayed young fruit 

grovrth. Under long term source limitation papaya fruit size was reduced and sugar content tend 

to be lower but the fruit growth period was not significantly increased compared to the control 

(Table 5.5).

Acid invertase enzyme activity was associated with sugar accumulation during the late 

fruit development stage, through enzymatic activity developmental pattern and the comparison 

of a lower sugar line cultivar and the commercial cultivar of Hawaii (Chapter 4). Fruit removal

83



and continual defoliation reduced invertase activity and sugar level in young fruit, providing 

additional evidence to support the role of invertase. This finding was consistent with the finding 

from tomato plants that have lower vacuolar invertase activity, that had smaller fruit (Klann et 

al., 1996) and lower sugar content (Bucheli et al., 1994). Expression of a cytosolic yeast 

invertase in potato tuber leads to a decrease in yield and starch content and an accumulation of 

glucose but not fructose, whereas expression of a apoplastic yeast improves tuber growth 

(Sonnewald et al, 1994; 1997).

Source-sink balance can be used to predict and adjust fruit production and quality. Fruit 

mass was smaller than the commercial requirement in ‘Sunset’ plant continual defoliated due to 

poor water and fertilizer management. In this case, fruit thinning was necessary to ensure good 

fruit size. Fruit abortion occurred in the first few weeks after anthesis, fruit longer than 6 cm in 

length usually do not drop until ripen (Ong, 1983). Fruit shape, and potential fruit size in papaya 

is usually determined in early in development. Once fruit growth is abnormal in the early stage, 

that never developed to normal commercial product. In addition, a plant fully loaded with fruit 

early in plant development resulted in poor fruit quality and less fruit production in the next 

season, especially when the plant was exposed to a subsequent stress. Adjustment of fruit 

number to leaf number could result in desirable fruit size and even fruit production.
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CHAPTER 6

GENETIC AND BIOCHEMICAL MECHANISM OF SUGAR ACCUMULATION

IN PAPAYA FRUIT 

Cloning and expression of the genes 

encoding cell wall Invertase and sucrose synthase in papaya fru it 

Abstract

We have previously sho\wn that the enzyme invertase is a major enzyme contributing to 

sugar accumulation in papaya fruit during the last stage of development. To understand the 

biochemical regulation of sugar accumulation during fruit development, a cDNA library from 

immature green papaya fruit \was constructed and a putative complete invertase gene and a SS 

gene fragment was isolated and characterized. The relationship between sugar accumulation in 

papaya fruit and the expression of papaya invertase and SS gene was investigated. The pattern 

of gene expression during fruit development was compared with invertase enzyme activity 

extracted in the presence and absence of sodium chloride (NaCI). The complete deduced amino 

acid sequence of papaya invertase had an open reading frame that encoded a polypeptide chain 

of 582 residues and calculated molecular weight of 65,684 Da. The protein was 67% identical at 

the amino acid level with carrot cell wall invertase and similarly homologous to invertase from 

other plants. The cloned 720 bp SS fragment was highly homologous to SS gene of A. glutinosa 

(X92378, 81% identical) and SS gene of many other species. The invertase gene was expressed 

at a higher level in the late stage of fruit development than in other papaya plant tissues. The 

pattern of increased mRNA expression during late fruit development paralleled the increase in 

invertase protein level and in vitro enzyme activity. However, the fold-increase in enzyme 

activity wad much higher than the increase in mRNA level and protein. SS gene expression was 

higher in young fruit and petiole tissues, and lower in the stem, flower and root tissue, but 

significantly higher than in the developing fruit flesh tissue and seed. The results indicate that 

invertase and SS genes are differentially expressed during plant and fruit development and, had
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different roles in papaya plant development. Southern blot analysis indicated that both invertase 

and SS genes were encoded by a low copy number gene. The data confirmed that apoplastic 

invertase has an important function in phloem unloading during the period of sugar accumulation 

in papaya fruit. Invertase activity may be regulated at transcriptional, translational and post- 

translational levels.

6.1 Introduction

The timing of expression and the location of sucrose-cleaving enzyme activities are

important for sink development and the control of carbon entry into metabolism. Sucrose

synthase (SS) and invertase are the two enzymes that convert sucrose into hexose in plant sink

tissue. SS (UDPG: D-fructose 2-glucosyl-transferase, E.C.2.4.1.13) is a glycosyl transferase, that

catalyzes a reversible reaction that degrades sucrose into UDP-glucose and fructose (Huber et

al., 1986; Sung et al., 1988; Chourey et al., 1991; Dejardin et al., 1997; Wang et al., 1994). In

several fruit tissue, SS has been found associated with fruit establishment and maintenance

(Wang et al., 1993a; 1994) and sugar accumulation (Moriguchi et al., 1988; 1992; Schaffer et al.,
«

1987; Gross and Pharr, 1982; Hesse et al., 1996; Heim et al., 1993; Hubbard et al., 1991). 

Several investigators have suggested that SS activity could be used as a biochemical marker for 

sink strength (Clanssen et al., 1986; Sung et al., 1989). In monocot plants, two isoforms of SS 

are known (Chourey and Nelson, 1976; Chourey, 1981), with similar protein sequences (Huang 

et al., 1994), but their genes are regulated differentially (Chourey et al., 1986). In most dicot 

plants, only one gene and one SS polypeptide have been found (Sturm, 1996).

Invertase (|3-fructosidase; EC 3.2.1.26) catalyzes the hydrolysis of sucrose into glucose 

and fructose. Numerous forms of plant invertases are characterized by solubility, different pH 

optima, iso-electric points and subcellular localization (Sturm et al., 1990). Soluble invertases 

range in their pH optima from slightly alkaline (pH 7.5) to acidic (pH4.5). Soluble invertases are 

intracellular, located in either the vacuole (acid optima) (Leigh et al., 1979; Giaquinta et al., 

1983) or cytosol (Karappiah et al., 1989; Fahrendorf et al., 1990). Insoluble invertase, with a pH
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optimum between pH 4.0 and pH 5.3, is ionically bound to the cell walls and can be solublized by 

extracting cell walls with high salt (Fahrendorf et al., 1990).

Developing papaya fruit accumulates soluble sugars during the last stage of fruit growth 

(Chan et al., 1979; Zhou et al., 1997). Sucrose synthase contributes to papaya fruit sink 

establishment and maintenance, and a buffer soluble acid invertase activity is correlated with 

sugar accumulation during the last phase of fruit development (Chapter 4). Fruit removal and 

defoliation alters sugar levies and invertase enzyme activity in papaya fruit (chapter 5) and 

suggests that invertase enzyme is involved in sugar unloading during sugar accumulation. 

Papaya invertase has been partially purified (Chan and Kwok, 1976; Lopez et al., 1988), but not 

separated from other proteins. There is no information as to which invertase forms are present in 

papaya fruit and if they are the same isoforms present in immature fruit or during postharvest 

ripening.

The molecular mechanism of controlling SS and invertase enzyme activities during fruit 

development is not clear. We have used a molecular approach to investigate the relationship 

between sugar accumulation and enzyme activities in papaya fruit and the expression of 

invertase and SS genes. A cDNA library from immature green papaya fruit was constructed and 

a putative complete invertase cDNA and a SS cDNA fragment were isolated and characterized. 

Invertase and SS in the papaya plant and fruit were differentially expressed. Analysis of the DNA 

sequence of the invertase cDNA indicated that the encoded for protein was likely to be localized 

to the cell wall. The levels of mRNAs encoding invertase during fruit development were 

compared with invertase activity extracted in the presence and absence of sodium chloride 

(NaCI).

6.2 Materials and methods

6.2.1 Plant tissue

Papaya (Carica papaya L. cv ‘Sunsef) fruit grown at the University of Hawaii Poamoho 

Experimental Station, Hawaii were used as experimental material. Fruit at different invertase
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Y1 Y2 Y3 2WB mature full ripe

Figure 6.1. Fruit at different developmental stages (cv.Sunset) used as experimental material. 
Label: Y1, young fruit stagel, seeds white and small; Y2, stage2, seeds still white, almost full 
size; Y3, stage3, seed starting to turn brown, sugar level starting to increase in fruit mesocarp 
about 4 weeks before harvest; 2WB, immature green fruit, ca. 2 weeks before harvest, a cDNA 
library was construct from this stage. Mature, harvest stage, color break to 30% yellow; Full ripe, 
one week after harvest, fruit at eating stage.
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developmental stages (Figure 6.1) were used for the extraction of total protein, the assays of 

invertase activity and the extraction of total RNA for Northern blot analysis. Fruit development 

stages and maturity were estimated by skin, flesh and seed color based on previous research 

(Chapter 4). After harvest from the plant, fruit tissue was sampled and frozen in liquid Nj and 

store at -70°C until used for extraction.

6.2.2 Invertase enzyme extraction and assay

Invertase enzyme extraction and assays were performed during several independent 

experiments. The solubility of invertase protein in immature green fruit was examined using 

different buffer components, and modifying the pH of extraction buffer and the salt 

concentration. For the time course, buffer soluble invertase and total invertase were extracted in 

the absence or presence of 1M NaCl during different stages of papaya fruit development. The 1 

M NaCl extraction is able to extract cell wall bound invertase (Fahrendorf et al., 1990). The 

extraction buffers contained the following compounts:

Desalt buffer (pH 7.5) (buffer 2) 

50 mM MOPS-NaOH 

5 mM MgCIa

Extraction buffer (pH7.5) (buffer 1)

100 mM Mops-NaOH,

5 mM MgCb 

1 mM EDTA

2.5 mM DTT 

0.5 mg mr'' BSA 

2% v/v glycerol 

1 mM PMSF 

0.05% triton x-100

The extraction procedure and desalt method were the same as described in chapter 4 unless

otherwise stated.

2.5 mM DTT 

0.5 mg mr'' BSA

1 mM PMSF
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Extraction buffer (pH 5.0) Invertase assay mixture (total 100 p.1)

0.1 M Citrate Acid 60 mM Citrate Acid

O.IM K2HPO 4 60mMK2HPO4

2.5 mM DTT 20 mM sucrose

0.5 mg ml"'' BSA 20 [il extracts

1 mM PMSF

6.2.3 Protein gel electrophoresis and Immunoblotting

Proteins from different fruit developmental stages were extracted as the enzyme activity 

assay, except BSA was absent in the extraction buffer to enable quantification of protein content 

(Lowry et al., 1951), and 1 mM dethiodipyridine and 10 |i,m E-64 was added to inactivate papain 

activity during extraction. Total proteins were separated on 10% SDS -PAGE gel and either 

stained with Coomaasie blue or electrophoretically transferred onto 0.45 p.m nitrocellulose 

membrane for immuno-analysis. Rabbit polyclonal antibodies to carrot invertase (Lauriere et al., 

1988; Unger et al., 1992) kindly provided by Dr. Strum, was used and cross reactive 

polypeptides were visualized use goat anti-rabbit IgG conjugated to alkaline phosphatase. 

Western blot and immuno-detection were performed following the ECL Western Blotting 

Protocols (Amersham International Pic. 1991).

6.2.4 RNA isolation

Total RNA was isolated according to the method of Lopez-Gomez and Gomez-Lim 

(1992) and Ikoma et al.(1995) with modifications. Twenty grams tissue was ground to a powder 

with a cold mortar and peste in liquid nitrogen, then vortexed in 2 volumes of lysis buffer (2% 

SDS, 1% p-mercaptoethanol, 50 mM EDTA,150 mM Tris base adjusted to pH 7.5 with boric acid) 

plus 3 volumes of water-saturated phenol (pH 6.5). Before centrifugation, 60 ml chloroform was 

added and mixed well. After centrifugation, the aqueous phase was transferred into a new bottle 

that contained the same volume of acid phenol and the phases were mixed thoroughly. An equal 

amount of chloroform was added, mixed and the mixture was centrifuged at 4000xg for 10 min at 

room temperature. The aqueous phase was quickly vortexed with 0.25 volume of ethanol and
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0.11 volume of 5 M potassium acetate plus 30ml of phenol and 30 ml chloroform, then allowed 

to stand for 1 hour on ice, the aqueous phase was recovered by centrifugation at 15,000xg for 10 

min. The aqueous phase was re-extracted with chloroform:isoamyl alcohol (49:1) and the 

aqueous phase was recovered by centrifugation. Total RNA was precipitated by adding LiCI to a 

final concentration of 3 M and stored at -20°C overnight. After centrifugation at 20,000xg for 30 

min, the RNA pellet was dissolved in sterile water and precipitated again with 3M LiCI. The pellet 

was then suspended in sterile water, and precipitated with 2.5 volume of ethanol and 0.3 M 

sodium acetate. RNA was dissolved in sterile H2O and quantified by measuring the absorbance 

at 260 nm (1 optical density = 40 pg/ml). RNA quality was analyzed by electrophoresis on 5% 

formaldehyde/1.0% agarose gels (16 mM Mops, 4 mM sodium acetate, and 1 mM EDTA, pH 

7.0) (Hoffer and Christopher, 1997). Total RNA isolated using this method was directly used for 

RT-PCR and Northern blotting or poly A* mRNA isolation for cDNA library construction.

6.2.5 Reverse Transcriptase PCR (RT-PCR)

RT PCR was performed to isolate an invertase cDNA fragment from immature green 

fruit tissue (about 2 weeks before harvest) and to study gene expression. The first strand cDNA 

was synthesized from 5 pg of total RNA using Oligo dT or Random Hexamer primer following the 

instruction of Superscript™ Pre-amplification System for the first strand cDNA synthesis kit 

(Gibco BRL, Life Technologies, Cat. no. 18089-011). Primer I 5’-AAG(A)AAT(C)TGGATG 

AAT(C)GAT(C)CC (upstream), and primer II 5’-AAG(A)TCIG(A)C(G)G(A)CATTCCCACATICC 

(downstream), were from highly conserved region of known cell wall and vacuolar invertase 

genes. Primer III 5’-GGA(GT)ATIA(C)DT(C)TGAT(C)ICT(C)IGCC (downstream), was from a cell 

wall invertase gene. These primenrs were used to isolate invertase cDNA fragments from RT 

PCR. Ten percent of first strand cDNA (2 p.1) was subjected to the following PCR reaction by 

using Taq DNA polymerase (Promega):
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Component Volume (p.1)

Total 50 100

10X PCR buffer 5 10

25 mM MgCb 3 6

lOmM dNTPm ix 1 2

primer I (-0.1 )ig/pl) 1 2

primer II (-0.1 pg/pl) 1 2

Tag DNA polymerase 0.5 1.0

cDNA 2 2

sterile, distilled water 36.5 75

The thermocycling regime used (Coy Library, Ml) was as follows: 94 °C for 6 min, 

followed by 94 °C for 1 min, 42 °C for 1 min , 72 °C for 1.5 min (for 40 cycles), followed by a final 

extension period of 72 °C, for 7 min. Two PCR products of 558 and 889 base pairs in size were 

purified from a 1% agarose (IX  TAE) gel using the freeze-thaw method.

6.2.6 Cloning of invertase gene fragment

DNA sequencing was used to confirm that the PCR product was from a cell wall 

invertase gene. Then the 558 bp and 889 bp fragments were cloned into pGEM 7Z and 

pBluescript-SK (-) vector, respectively (Figure 6.2A). For cloning purposes, the restriction 

enzyme cutting sites EcoR I and Xba I were added upstream and downstream, respectively at 

the end of the primers. The PCR products were gel purified and restriction digested with EcoR I 

and Xba I restriction enzymes followed by Phenol: chloroform extraction and ethanol 

precipitation. After ligated to the vector at the same cutting sites, the recombinant DNAs were 

transferred into E coli. (XL-1) Blue strain.

6.2.7 Cloning of SS gene fragment

The SS gene fragment was obtained by PCR using a cDNA library made from immature 

green fruit. Four primers were designed to conserved regions found within various plant SS 

protein sequences. Forward primer, 5’-CCTGAC/TACC(T)GGTGGA(C/T)CAGGT-3’ and reverse
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Figure 6.2. The diagrams of recombinant invertase (A) and SS (B) gene fragments in the 
pBIuescript Phagemid SK (-) vector with the map of some restriction enzyme sites.
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primer, 5’-TCA(G)GA(T)GTAA(T)GGA(G)AAA(G)TAA(G/T)A-3' gave two bands on a 1% 

agarose TAE gel. One was about 1kb, the another was about 720 bp. The PCR product 720 bp 

was close to anticipated size. Direct sequencing of the two purified bands confirmed that the 

second band was homologous to known SS gene sequences. Fresh PCR product was cloned 

into the SK (-) phagemid EcoR V site using the T tail cloning technique (Figure 6.2B). The T tail 

vector was prepared according to (Marchuk et al., 1991) as follows; one pg of pBluescript SK 

vector was digested using EcoRV, the T tail was added using PCR reaction buffer, 2mm dTTP 

and Taq polymerase enzyme incubating at 72°C for 6 hours. Additional 0.5 pi Taq enzyme was 

added after three hours incubation. The PCR product was ligated at 14°C overnight to the T tail 

vector, followed by transformation of E coli. (DH 5a strain). The PCR product was ligated at 14 

°C overnight to the T-tailed vector, followed by transformation of E coli. (DH5a strain) White 

colonies were selected for further analysis. The positive plasmid conformed by PCR were 

purified and restriction digested. One pg of plasmid was used for sequence analysis from both 

ends using T3 and T7 primers.

6.2.8 Northern blot analysis

Total RNA from different papaya tissue: young and mature leaves, flowers, young stem, 

mature leaf petiole, 6 month seedling root, immature seed, and young fruit (14DAA) and five 

developmental stages of fruit flesh tissue were used for Northern blot analysis. Total RNA (10 

|ig) was denatured and fractionated on 1% agarose-5% formaldehyde gel in 16mM mops, 4mM 

NaOAc and Im M  EDTA (pH 7.0) (Fourney et al., 1988, Hoffer and Christopher, 1997). After 

electrophoresis, the RNA gel was soaked in 10X SSC (1.5 M NaCl, 0.15 M sodium citrate) for 

twenty minutes. The RNA was transferred from the gel to nitrocellulose membrane overnight by 

capillary action in 10X SSC (Sambrook et al., 1989). The RNA blot was labeled and RNA was 

cross-linked to the blot using UV. The blot was wrapped with plastic film and stored at room 

temperature.
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6.2.8.1 Radioactive probe preparation

Gene specific antisense RNA probes were synthesized and radiolabeled with [a-^^P] 

UTP (>3000 Ci/mM, ICN Pharmaceuticals, Inc., Costa Mesa, CA) using T3 RNA polymerase 

according to the manual of ‘Riboprobe in vitro transcription systems’ (Promega, CA). For the 

invertase probe, one pg of phagemid DNA containing the 889 bp papaya cell wall invertase 

fragment linearized using 5 units of EcoR I enzyme. For the SS probe, one pg of phagemid 

containing the SS fragment was linearized using 5 units of Hindlll enzyme (New England 

Biolabs). The following components were added to each reaction mixture in order at room 

temperature: 4pl 5X transcription buffer, 2 pi 100 mM DTT, 1.0 pi RNase inhibitor, 1.5 pi each of 

10 mM ATP, GTP CTP, 0.5pl lOmM cold UTP, 1 pg linearized DNA template, 6 pi a-^^P UTP 

(3000 Cli/mM) and 2 units T3 RNA polymerase with a total volume of 20 pi. Mixed reaction tube 

was incubated at 37 °C for 90 min, followed by adding 20 pi deionized water plus 1 pi RQ-DNase 

(RNAase free) and incubating for 15 min at 37°C. The reaction mixture was purified using 

phoenol:chloroform (1:1, v/v) once and followed by chloroform once. The sense RNA using the 

same method but T7 RNA polymerase and linearizing at the opposite end of the insert using X 

bal for invertase or E coR I for SS was synthesized as a positive control.

6.2.8.2 Hybridization and detection

The blots were prehybridized with 10 ml of hybridization buffer (0.75 M NaCl, 0.075 M 

sodium acetate, 50% v/v Formamide, 2X Denhardt’s solution, 0.25 mM monobasic sodium 

phosphate, 0.25 mM dibasic sodium phosphate, 1.5% SDS w/v, 5 mg samen DNA) at 55°C for 4 

hours (Hoffer and Christopher, 1997). 20 pi of radioactive probe (2.5 x 10® mcp/pl) was 

denatured in 500 pi prehybridization buffer for 10 min at 80°C and the blot hybridized overnight 

at 55°C. The blots were washed three times (first 10 min, then for 30 min each at 65°C) in 50 ml 

of 2X SSPE buffer, 1% SDS then with 0.2X SSPE, 1% SDS for another 30 to 60 minutes. The 

blot was autoradiographed with X-ray film.
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6.2 9 Genomic DNA isolation and southern blot analysis

Genomic DNA isolation from ‘Sunset’ leaf was performed according to Doyle and Doyel 

(1987). One gram of leaf tissue was ground in liquid N2 with the mortar and pestle. The frozen 

powder was transferred into 8 ml 2X CTAB isolation buffer (lOOmM Tris-HCI, pH 8.0, 1.4 M 

NaCI, 20 mM EDTA, 2% Hexadecyltrimethylammonium bromide (CTAB), 0.2% 2- 

mercaptoethanol) and incubated at 60°C for 30 min with gentle swirling. Before centrifugation, 10 

ml of chloroform-isoamyl alcohol (24:1) was added and mixed gently but thoroughly. After 

centrifugation at 4,500xg for 10 min, the top aqueous phase was transferred into a new tube, and 

7 ml cold isopropanol was added and mixed gently. The DNA precipitant was pelleted by 

centrifugation and then resuspended in 10 ml of wash buffer (70% EtOH, lOmM ammonium 

acetate). After 5 min centrifugation, the buffer was removed and the pellet was dried briefly and 

resuspended in 500 nl TE.

The DNA ca.lO^g was digested with EcoR V, Hind III, and Xba I (Promega Co., Wl) and 

fractionated on a 0.8% (w/v) agarose gel in IX  TAE buffer (40mM Tris-HCI, pH 7.4, 20 mM 

sodium acetate, 1 mM EDTA). The DNA was transferred to nitrocellulose by capillary transfer in 

20X SSC solution. Prehybridization and hybridization was performed same as Northern blot 

except hybridization temperature was at 45 °C and washed at 60 °C.

6.2.10 Construction of a cDNA library from immature green papaya fruit

Total cell RNA was isolated from 250 gram of ‘Sunset’ papaya fruit flesh approximately 

two weeks before harvest as described earlier. Messenger RNA (poly * RNA) was isolated using 

the poly* Tract mRNA isolation systems (Promega), 10 ng of Poly* RNA was used for 

synthesizing the cDNA library according to the manufacture’s instructions (ZAP-cDNA synthesis 

kit, #200400, Stratagene, CA, 1997), except no radioactive dATP was added for synthesizing the 

second strand of cDNA. PCR reaction using invertase primer FI and primer Rl were performed at 

the each stage of cDNA library construction to monitor the quality of cDNA. The primary library 

was amplified and then stored at 4 °C or in 7 % (v/v) DMSF at -70 °C.
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6.2.11 cDNA library screening

Twenty petri plates (150 cm^) with approximately 1.2 X 10® phages were screened by 

plaque-hybridization onto Magna nylon membranes. After growing the phage for 8 hours, the 

nylon filters (Micron Separation Inc. MA) were placed on the petri dishes for 2 min. The filters 

were removed, denatured for 2 min (0.5 M NaOH containing 1.5 M NaCI), and neutralized for 5 

min (0.5 M Tris-HCI pH 8.0, 1.5 M NaCI), and wash in 2X SSC containing 0.2 Tris-HCI for 30 

seconds. After briefly drying on the Whatman 3 MM papers, the membranes were baked at 80 °C 

for 2 hour in vacuum oven. Probe preparation and hybridization were performed as described for 

Northern blotting (specific activity. 1X10® cpm/^g).

Positive plaques from the first screen were removed from the top agar and dissolved in 

500 p.1 SM buffer, 1 (il of the aqueous phage from the screened plaques was used as the PCR 

template. PCR conditions were performed as described earlier, except a total volume of 15 \i\ 

was used. Four positive plaques with the correct PCR product size were used for the second 

screen. More phages were subjected to an additional first screen. A total of five positive clones 

were converted to P Bluescript SK (-) phagemid using the ExAssist/Solor system according to 

the manufacturer's instruction (Stratagene, CA).

6.2.12 Analysis of invertase clones

Five putative invertase clones were partially sequenced from both ends using T3 and T7 

primers. Three clones were confirmed to encode cell wall invertase by comparison with other 

published invertase sequences. Two clones that contained identical coding sequences from the 

5’ end and 3' end were fully sequenced. One clone had a short deletion in the middle of 5' 

untranslated region.

All sequencing was performed using an automated DNA sequencer, 373A (Perkin Ellmer 

Applied Biosystems, CA) at the University of Hawaii. A series of primers were synthesized based 

on the previous sequence data and used for subsequent sequencing.

The cDNA sequence data from each DNA fragment was configured into a whole length 

sequence and mapped using the Genetic Computer Group (GCG) program (University of
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Wisconsin, Madison). The nucleotide sequences available in the National Center for 

Biotechnology Information (Bethesda, MD) v/ere accessed via the internet using Blast and Entrez 

search engines provided by the National Center for Biotechnology Information.

6.3 Results

6.3.1 Reverse transcriptase PCR (RT-PCR)

Two RT-PCR products based on anticipated size (558 bp and 889 bp, respectively) were 

obtained by using the same forward primer and different reverse primers (Figure 6.3). The DNA 

fragments were purified from the agarose gel and were sequenced directly. The products have 

identical nucleotide sequence in the overlapping region. The nucleotide sequence and deduced 

amino acid sequence were highly homologous to the sequences from other cell wall invertase 

gene. The nucleotide sequences of RT-PCR products obtained from two different fruit 

developmental stages (two weeks before harvest and full ripe fruit, respectively) were also 

identical. The purified DNA bands were cloned into EcoR I and Xba I sites of pGEM 7z and 

pBluescript SK (-) vector (558 and 889 bp, respectively). The recombinant clones were 

confirmed by restriction digestion, PCR and DNA sequence analysis.

6.3.2 Cloning of a cell wall invertase cDNA from immature green papaya fruit

A riboprobe homologous to the 889 bp invertase fragment was used for screening the 

cDNA library made from immature green papaya fruit. Five positive invertase clones were 

isolated from the screening procedure and they were sequenced from both ends using T3 and T7 

primers. Three clones were confirmed to encode invertase and had the same amino acid 

sequence, but had varied length in the 5’ UTR and 3’ poly A (Figure 6.4). Two clones containing 

different lengths at the 5'UTR were completely sequenced. The sequences of the two clones 

were identical except at the 5’ UTR. The exist of heterogeneous 5’ UTR'S from individual genes 

agreed with the results obtained by directly sequencing of PCR products previously amplified 

from the cDNA library.
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2.0 kb - 
1.6 kb ,
1.0 kb

506bp

Figure 6.3. Electrophoresis (1% agarose-TAE gel) of the invertase gene fragments. A: amplified 
cDNA fragments using conserved gene-specific FI and Rl primers. Molecular markep= 1 kb DNA 
ladder; OdT primer = DNA template synthesized using oligo-dT primer; H primer=DNA template 
synthesized using random hexamers primer; Genomic DNA= 50 ng papaya genomic DNA as 
positive control. B: Two PCR products of 558 (FI+RI) and 889 (FI+RII) bp in size were 
sequenced and cloned in to pGEM 7z and Bluescript-SK (-) vectors, respectively.
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1.GCACGAGATTTCTTATAAATGCTTATCTTTTAAGT6CTTTTCCTTTTAAGTGCTTTGTTTGGTAAGGAAA
2. GAGATTTCTTATAAATGCTTATCTTTTAAGTGCTTTTCCTTTTAAGTGCTTTGTTTGGTAAGGAAA
3.GCACGAG CTTTTAAGTGC TTTGGTAAGGAAA

1.AAGATG
2.AAGATG
3.AAGATG

Figure 6.4. Comparison of partial cDNA sequence from the 5'UTR of three invertase clones from 
papaya immature green fruit cDNA library. #1 and #3 clones were sequenced for their full length, 
the rest of region was identical for the two clones.
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The complete deduced amino acid sequence of papaya invertase gene (Figure 6.5) had 

an open reading frame that encode a polypeptide chain of 582 residues and had a calculated 

molecular weight of 65,684 Da. In addition to the open reading frame, the cDNA also contained 

38 bp or 73 bp 5’ untranslated regions (5' UTR) and a 135 bp 3' untranslated regions (3' UTR) 

with a poly (A) tail. The calculated iso-electric point was 6.94. The sequence of the deduced 

amino acid was compared with other cell wall invertases and with the conserved region for 

soluble invertase (Figure 6.6).

6.3.3 Cloning of SS cDNA fragment from Papaya fruit cDNA library

Several primers complementary to the conserved SS sequences were used for PCR to 

amplify a SS cDNA fragment from the papaya cDNA library. The forward primer, SS 880F and 

the reverse primer SS 1580R, gave two bands on a 1% agarose (1x TAE) gel (Figure 6.7). Direct 

sequence analysis of the purified DNA fragment indicated the 720 bp PCR product was 

homologous to the SS gene. The fresh PCR product was purified and cloned onto the EcoR V 

site of the pBleuscript SK (-) vector where a “T tail’ was added at the cutting site. The 

recombinant clone containing the SS gene insert was confirmed by restriction digestion, PCR 

and DNA sequencing. The nucleic acid sequence (Figure 6.8) was highly homologous to A. 

glutinosa mRNA (X92378, 82% identical), V. Faba mRNA (X69773, 81% identical) and SS genes 

of many other species. The deduced amino acid sequence was about 85% to 90% identical and 

positive (Figure 6.9), respectively. Some regions were homologous to the SPS gene.

6.3.4 Cell wall invertase enzyme activity during papaya fruit development

Invertase activities from papaya fruit varied in different extraction buffers, depending 

upon pH, buffer components and extraction method (Table 6.1 &2 &3). No satisfactory method 

was available to separate vacuole or cell wall invertase by simple extraction. Much higher 

invertase activity was obtained when 1 M NaCI was included in the extraction buffer (Table 6.3) 

in immature green fruit tissue. Therefore, total and buffer-soluble invertase activities were 

determined on extracts made in the presence and absence of 1 M NaCI from mesocarp tissue at 

different fruit stages of development (Figure 6.10). Both buffer-soluble (absence of NaCI) and
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gcacgagcttttaagtgctttgtttggtaaggaaaaaga^agtactgcgtcgaagtttt

M S T A S K F Y -
attcagttttgacgtcgacgttgttttgttatcttgctgtgataacattcatcggaaccg

S V L T S T L F C Y L A V I  T F I  G T A -  
ccattaatggcgtcgaagcttctcacaggatttatccgcagtttcagtctctgtctgtcg

I N G V E A S H R I Y P Q F Q S L S V D -  
acatcgtcgaccaaatccacagaactgcttaccattttcagcctcctaaacactggatta 

1 8 1 ---------- +------------+---------- +----------- +-----------+  + 240
I V D Q I H R T A Y H F Q P P K H  W I N  - 

acgacccaaatgctccaatgtactacaatggcgtgtaccatctcttctaccaatacaacc 
241 -----------+------------+---------- +----------- +-----------+ + 300

D P N A P M Y Y N G V Y H L F Y Q Y N P -
caaagggtgccgtgtggggcaacatcgtgtgggcccactcagtttcaacggacttgatca

K G A V W G N I V W A H S V S T D L I N -
actggatacctctcaagccagcgatcgttccatctgagccgttcgatatcaaaggctgct

W I  P L K P A I V P S E P F D I K G C W -  
ggtccggatcggctacagtcctacccaacaacatccccatcatcctctacactggtctcg 

421 ---------- +------------+-----------+-----------+-----------+----------- + 480
S G S A T V L P N N I P I I L Y T G L D -

actccaacgaaacccaactacaaaactacgccgttccggctaacatttccgatccgcatc

S N E T Q L Q N Y A V P A N I  S D P H L -  
tcgaaaattggataaaacccgccaacaatcccttggtcgcacccgaccataccgtcaacc 

541 -----------+----------- +-----------+-----------+-----------+----------- + 600
E N W I K P A N N P L V A P D H T V N R -

gaaccgcattccgtgacccgacaaccgcctggttaggctcagacgggtggtggaaaatgc

T A F R D P T T A W L G S D G W W K M L -
tggtgggtaataaaaataaacgtaggggcattgcgcatttatacaagagcaaggatttca

V G N K N K R R G I A H L Y K S K D F M -
tgaactgggtcaaggctaaacacccgatccattccagacccgatacgggtatgtgggaat

N W V K A K H P I H S R P D T G  M  W  E C - 
gcccagattttttcccggttccgaaatcgggtgaaaacggattggatgtgggaattaccg

P D F F P V P K S G E N G L D V G I T G -
gtcgagatgttcgacatgtgttgaaagtgagcttggatttaacaagatatgagtactaca

R D V R H V L K V S L D L T R Y E Y Y T -
ccatcggtagatattatccggagattgataggtacattccttatgatacattagttgatg

I G R Y Y P E I D R Y I P Y D T L V D G -

Figure 6.5. Nucleic acid and deduced amino acid sequences of the papaya invertase cDNA from 
immature green papaya (about two weeks before harvest) fruit tissue. The conserved amino 
acids that were used to make degenerate PCR primers are in underlined in bold.

102



ggtgggcggggctccgacccgattatggaaatttttatgcttccaagtcgttttttgatc
961 ---------- +----------- +-----------+-----------+-----------+----------- + 1020

W A G L R P D Y G N F Y A S K S F F D P
ccaagacgaataggaggatactctggggttgggccaatgagtcggattcaagacaagatg

1021  +----------- +-----------+-----------+-----------+----------- + 1080
K T N R R I L W G W A N E S D S R Q D D

atgtcgacaagggttgggctggaattcagacaattccaaggaaagtgtggcttgacccaa
1 0 8 1 ---------- +----------- +-----------+-----------+-----------+----------- + 1140

V D K G W A G I Q T I P R K V W L D P S
gtgggaagcagctcaggctgtggcctgttgaagaagtagagaagctgagaaaggatcctg

1 1 4 1 ---------- +----------- +-----------+-----------+-----------+----------- + 1200
G K Q L R L W P V E E V E K L R K D P V

ttttgatggagaacacggctgttgaactgggtcagcatgttgaggtcaccggagtaactg
1201  +----------- +----------- +-----------+-----------+----------- + 1260

L M E N T A V E L G Q H V E V T G V T A
ctgcccagtgtgatgtggaggtagtttcacaattccaagcttggagaaagcagagtccgt

1261 ---------- +----------- +-----------+-----------+-----------+----------- + 1320
A Q C D V E V V S Q F Q A W R K Q S  P F  

ttgatccagagtgggtcaatgcacaagacctatgtgctccaatgggtgcaaagaaacagg
1321 ---------- +----------- +-----------+-----------+-----------+----------- + 1380

D P E W V N A Q D L C A P M G A K K Q G
gtggggttggaccatttgggctcttgacattagcctctgaagacttggaggaagcaactc

1381 ---------- +----------- +-----------+-----------+-----------+----------- + 1440
G V G P F G L L T L A S E D L E E A T P

ctgtcttcttcagagtcttcaaagctgataccaaatacgtagtcctcatgtgctctgatg
1441 ---------- +----------- +-----------+-----------+-----------+----------- + 1500

V F F R V F K A D T K Y V V L M C S D A
cttcaagttcctctttgaaggaaggtctttacaagccatcatttgctgggtttgtaaatg

1501 ---------- +----------- +-----------+-----------+-----------+----------- + 1560
S S S S L K E G L Y K P S F A G F V N V

tagatatagaagcagagaaaaggatctctcttaggagtttgattgatcattcagtcgttg
1561 ----------- 1-------------1------------1------------ 1------------1----------- 1- 1520

D I  E A E K R I S L R S L I D H S V V E  
aaagctttggagctggagggaaaacttgcataacttctagggtttaccctacaaaagcag

1621  +----------- +-----------+-----------+-----------+----------- + 1680
S F G A G G K T C I T S R V Y P T K A V

tggatggggaagctcacttgttcgtgttcaacaatgggactgaggctgtccacgtggaga
1681 ---------- +----------- +----------- +-----------+-----------+----------- + 1740

D G E A H L F V F N N G T E A V H V E K
agctcagtgcctggagcatgaacagaccactgaggatgaacaactgaagataattaagag

1741 ---------- +----------- +----------- +-----------+-----------+----------- + 1800
L S A W S M N R P L R M N N *

aaatatcaagaggaggaaattaagatttttagtacttcgtacgtcagtagtttgatcatc
1 8 0 1 ---------- +----------- +----------- +-----------+-----------+----------- + I860

ttgtttgtcgttgtagtttctgtagtttttaatgaattaaatgctcctttagatttcact
1861 ---------- +----------- +-----------+-----------+-----------+----------- + 1920

aaaaaaaaaaaaaaaaaaaaa 
1921 --------  +- 1941

Figure 6.5. (continued) Nucleic acid and deduced amino acid sequences of the papaya invertase 
cDNA from immature green papaya (about two weeks before harvest) fruit tissue. The putative 
poly (A) signal sequence is shown in Italics (aattaaa).
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carrotl 
carrot2 
potato .... 
Arabidopsis 
PAPAYA

MART.KILVF SSDSSLFLLS IFSFIF.......LNINGVDST HRVFPELQS.
MGVTIRNRNY DHGSLPFLQS LLAILLVTTT TLHINGVEAF H E I H Y N L Q S . 

..MEIL RRSSSLWVLP ILLLCFF..I NNGVFVDAS. H K V Y M H L Q S .
............... MSAPKFGY VLLLIV..LI NISNNGVDAF HKVFKKLQSK

MSTAS KFYSVLTSTL FCYLAVITFI GTAINGVEAS HRIYPQFQ..

carrotl
carrot2
potato
arabidopsis
PAPAYA
vacuolar

ISAVDVKLV HRTGYHFQPQ 
.VGAENVKQV HRTGYHFQPK 
TTSHVDVSKV HRTGYHFQPP 
STSLESVSPL HRTAYHFQPP 
SLSVDIVDQI HRTAYHFQPP

KHWINDPNGP
QNWINDPNGP
KNWINDPNGP
RHWINDPNAP
KHWINDPNAP
KNWMNDPNG

MFYKGYYHLF
MYYKGVYHLF
MYYNGVYHLF
MLYKGVYHLF
MYYNGVYHLF

YQYNPKGSVW
YQYNPKGAVW
YQYNPKGAIW
YQYNPKGAVW
YQYNPKGAVW

carrotl
carrot2
potato
arabidopsis
PAPAYA

GNIVWAHSVS
GNIVWAHSVS
GNIVWAHSVS
GNIVWAHSVS
GNIVWAHSVS

KDLINWIALE
TDLINWTPLE
KDLINWIPLE
KDLINWEALE
TDLINWIPLK

PAIFPSKPFD
PAIFPSKPFD
PAIYPSKVFD
PAIYPSKWFD
PAIVPSEPFD

QYGCWSGSAT
KYGCWSGSAT
KYGTWSGSAT
INGTWSGSAT
IKGCWSGSAT

ILPGNKPVIL
ILPGNKPVIL
ILPGNKPVIL
HVPGKGPVIL
VLPNNIPIIL

carrotl
carrot2
potato
arabidopsis
PAPAYA

YTGIVSPDPE NAQVQNYAVP ANYSDPFLRE WVKPDNNPL. VGVHTENPSA 
YTGIVEGPPK NVQVQNYAIP ANLSDPYLRK WIKPDNNPLV VANNGENATA 
YTGIV..DAN KTQVQNYAIP ANMSDPYLRK WIKPDNNPLI VADKTINKSQ 
YTGITE...N QTQIQNYAIP QDLSDPYLKT WIKPDDNPIV KPDNGENGSA 
YTGLDS...N ETQLQNYAVP ANISDPHLEN WIKPANNPLV APDHTVNRTA

carrotl
carrot2
potato
arabidopsis
PAPAYA

FRDPTTAWFD ..GGHWKMLV GSSRKHRGIA Y L Y R S .KDFK KWKRSPHPIH 
FRDPTTAWLD .KSGHWKMLV GSKRNRRGIA Y L Y R S .KDFI KWTKAKHPIH 
FRDPTTAWMG .RDGNWRILV GSVRNHRGKV IMYKSNKNFM KWTKAKHPLH 
FRDPTTAWFN KKDGYWRMLV GSKRKNRGIA Y M Y K S .RDFK KWVKSKRPIH 
FRDPTTAWLG .SDGWWKMLV GNKNKRRGIA H L Y K S .KDFM NWVKAKHPIH

carrotl
carrot2
potato
arabidopsis
PAPAYA
vacuolar

TKAETGMWEC
SQANTGMWEC
SAPGTGNWEC
SRKKTGMWEC
SRPDTGMWEC
VPGTGMWEC

PDFYPVSPRS
PDFFPVSLKG
PDFFPVSLKN
PDFFPVSVTD
PDFFPVPKSG
VD

EDG.LDNSKM 
L N G .LDTSVT 
KDG.LDTSYN 
KKNRLDFSYD 
ENGLDVGIT

GRGIKHVLKV
GESVKHVLKV
GKDIKHVLKV
GPNAKHVLKV
GRDVRHVLKV

SLNSTRYEYY
SLDLTRYEYY
SFDVTRFDHY
SLDLTRYEYY
SLDLTRYEYY

carrotl
carrot2
potato
arabidopsis
PAPAYA

TIGRYNRVRD FYVPDNTSVD GWAGLRYDYG NFYASKTFYD PIKKRRILWG 
TVGTYLTDKD RYIPDNTSVD GWAGLRYDYG NFYASKTFFD PSKNRRILWG 
TIGTYDTKKD KYFPDNTSID GWKGLRLDYG NYYASKTFFD SGKNRRILLG 
TLGTYDTKKD RYRPDGYTPD GWDGLRFDYG NYYASKTFFD DKTNRRILWG 
TIGRYYPEID RYIPYDTLVD GWAGLRPDYG NFYASKSFFD PKTNRRILWG

Figure 6.6. Multiple alignment of translated invertase protein N terminal region and conserved 
motif in different plant species. The amino acids (M, V) from vacuolar invertase were substituted 
by (I, P) in cell wall invertase, respectively. The vacuolar invertase conserved region was 
underlined (Davies et al., 1996). Cell wall invertase sequence alignment was done by the author. 
The data base accession numbers for cell wall invertase sequence are: Arabidopsis, U11033 
(Mercier and Gogarten, 1995); carrot, Gl 18324 (Sturm et al., 1990); potato, Z22645 (Hedley et 
al., 1994). The papaya cell wall invertase sequence is from the current work.
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carrotl
carrot2
potato
arabidopsis
PAPAYA

WANESDSQID
WANESDSTAH
WANESDTVDN
WANESDTVQD
WANESDSRQD

DVQKGWAGIQ
DVAKGWAGIQ
DVRKGWAGVH
DTVKGWAGIQ
DVDKGWAGIQ

LIPRRIWLDP
LIPRTLWLDP
PIPRKIWLDP
LIPRTILLDS
TIPRKVWLDP

SGRQLVQWPI
SGKQLMQWPI
SGKQLVQWPV
SGKQLVFWPI
SGKQLRLWPV

EEVEGLRGSE
EELETLRGSK
QELETLRKKK
EEIESLRGKN
EEVEKLRKDP

carrotl
carrot2
potato
arabidopsis
PAPAYA

carrotl
carrot2
potato
arabidopsis
PAPAYA

LHN.RNQKLD 
VKFSRKQDLS 
V Q L N .NKKLN 
V Q M T .NQKME 
V L M E .NTAVE

AQDVCDSMGS 
AEKICSLKGS 
AQDVCAIKGS 
PLELCNLKGS 
..DLCAPMGA

MGVHVEVTGI
KGILVEVKGI
KGEKVEIKGI
MGQRFEVQGI
LGQHVEVTGV

TIQGGLGPFG
TVQGGVGPFG
TVQGGLGPFG
NVNGGVGPFG
KKQGGVGPFG

TAAQADVDAT
TAAQADVEVT
TVAQADVEVI
TPAQVDVDVT
T A A Q C D V E W

LLTIASKDLE
LLTLASEKLE
LLTLASKNLE
LITLATSDLE
LLTLASEDLE

FSFKSLDKAE
FSFKSLAKRE
FSFTSLDKAE
FNVGNLEKAE
SQFQAWRKQS

EYTPVFFRIF
EYTPVFFRVF
EYTPVFFRIF
EYTPVFFRVF
EATPVFFRVF

SFDPEWINLD
PFDPKWLEYD
PFDPSWADLY
KFDESFAT.K
PFDPEWVNAQ

K.AEDQKLKV 
K.VQN.THKV 
K.AHD.KYKV 
KDAASNKPKV 
K A D T . . K Y W

carrotl
carrot2
potato
arabidopsis
PAPAYA

LMCSDAKRSS L A E G .......... LYKPSFRG FVDVDLS . DK KISLRSLIDN
LMCSDATRSS L K E G .......... LYRPSFAG FVDVDLATDK KISLRSLIDN
LMCSDASRSS LKNETT....... MYKPSFAG YVDVDLA.DK KLSLRSLIDH
LMCSDAKPSS LKKDTGTDAK ERMYKPSFAG FVDVGL.LDG KISLRSLIDH
LMCSDASSSS L K E G .......... LYKPSFAG FVNVDIEAE KISLRSLIDH

carrotl
carrot2
potato
arabidopsis
PAPAYA

S W E S F G A Q R
S W E S F G A K G
S W E S F G A G G
S W E S F G A K G
S W E S F G A G G

KNLISSRVYP
KTCISSRVYP
KTCITSRVYP
KTVITSRVYP
KTCITSRVYP

TLAIYNNAHL
TLAVYENAHL
TLAIFDKAHL
TKAVGEKAHL
TKAVDGEAHL

FVFNNGTEPI
YVFNNGSETI
FAFNNGAERI
FVFNNGSQPV
FVFNNGTEAV

TVDNLDAWSM
TVENLDAWSM
TIETLNAWSM
TVESLNAWNM
HVEKLSAWSM

carrotl
carrot2
potato
arabidopsis
PAPAYA

N S PSEMN.... 
K KPLRMN....

ANAKLH 
QKPLKMNQGA K 
NRPLRMNN

Figure 6.6. (Continued) Multiple alignment of translated invertase protein N terminal region and 
conserved motif in different plant species. The amino acids (M, V) from vacuolar invertase were 
substituted by (I, P) in cell wall invertase, respectively. The vacuolar invertase conserved region 
was underlined ^a v ie s  et al., 1996). Cell wall invertase sequence alignment was done by the 
author. The data base accession numbers for cell wall invertase sequence are: Arabidopsis, 
U11033 (Mercier and Gogarten, 1995); carrot, Gl 18324 (Sturm et al., 1990); potato, Z22645 
(Hedley et al., 1994). The papaya cell wall invertase sequence is from the current work.
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DNA template

MW

2.0 kb
1.6 kb

1.0 kb

0.5 kb

Figure 6.7. PCR-generated SS DNA fragments using purified PCR products or a cDNA library 

from immature green papaya fruit as templates.
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tcctgatactggtggacaggttgtetacatcttggatcaagtccgtgcattggaaactga

P D T G G Q V V Y I L D Q V R A L E T E -
gatgcttcaacgtataaagcagcaaggccttaatatcactccacgaatcctcattattac

M L Q R I K Q Q G L N I T P R I L I I T -
ccggttgctccctgatgcggtggggactacttgtggccagcgtatggagaaagtatatgg

R L L P D A V G T T C G Q R M E K V Y G -
caccgagtattcagatattcttcgtgttccctttagaaccgagaagggaattgttcgaca

T E Y S D I L R V P F R T E K G I V R Q -  
atggatctcacgatttgaagtctggccttacctagagacctccactgaggatgttgcaac 

241 -----------+-----------+---------- + -----------+-----------+----------- + 300
W I  S R F E V W P Y L E T S T E D V A T -  

cgaaatttctaaagagttacagggcaagcctgaccttatcattgggaactacagtgatgg

E I S K E L Q G K P D L I I G N Y S D G -
aaacattgttgcctctttattggctcataaactgggggtcactcagtgtaccatcgctca

N I V A S L L A H K L G V T Q C T I A H -
cgcccttgagaagaccaagtatcctgattcagatatttactggaaaaagcttgaggacaa

A L E K T K Y P D S D I Y W K K L E D K -
ataccatttctcttgccagttcacagcggatcttatagccatgaaccacacagattttat

Y H F S C Q F T A D L I A M N H T D F I  - 
tattacaagtacttaccaagaaattgccggaagcaaggacactgttggtcagtatgagag

I T S T Y Q E I A G S K D T V G Q Y E S -
tcactcggctttcactcttcctggactctaccgtgtcgttcatgggattgacgtgtttga

H S A F T L P G L Y R V V H G I D V F D -
ccccaagttcaacattgtgtcccccggtgctgatatgagcatctacttcccatacaccga

P K F N I V S P G A D M S I Y F P Y T

Figure 6.8. Nucleotide sequence of cloned SS cDNA fragment from immaturure green papaya 
fruit.
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total (presence of NaCI) Invertase activities were very low two months before harvest and 

increased in parallel 6 weeks before harvest fruit. However, buffer soluble-invertase activity 

increased one month to two weeks before color break, decreased then rapidly increased again 

during ripening. The total invertase activity increased steadily from the pre-maturation to full 

ripen stage. The total invertase activity was 4.7-fold higher than buffer soluble invertase activity 

in the fruit at one month before harvest and 18-fold higher at color break. Total invertase activity 

was only 6% higher than soluble activity in fully ripe fruit because soluble invertase activity 

increased 26-fold when total invertase activity increased 1.5-fold during 7 to 10 days postharvest 

period. Increased soluble invertase activity during postharvest ripening did not correlate with the 

sugar content (Chapter 4).

6.3.5 Western blot analysis of invertase protein levels during papaya fruit development

Invertase protein levels in papaya fruit at different development stages were determined 

by Western blots analysis using antisera raised against carrot cell wall invertase and soluble

Table 6.1. The effect of 1M NaCI and EDTA on the extraction of invertase enzyme*.

Resuspension buffer Relative pellet activity

Desalt buffer + 1 M NaCI 60

Desalt buffer +10 mM EDTA 0

Desalt buffer + 1 M NaCI + 10 mM EDTA 100

* Desalt buffer components (refers to Material and Methods). The pellet was washed and 
centrifuged twice (8ml + 12 ml, for 3 g tissue) using desalt buffer after decanting the first 
supernatant (15 ml), then it was resuspended in 9 ml desalt buffer and steriled at 1 °C over night. 
The extracted pellet was desalted the next day in a similar manner as for the supernatant. Fruit 
maturity; about two weeks before color break. Each data point represents the means of three 
replications.
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Table 6.2. The effect of extraction buffer components* on invertase enzyme activity.

Experiment 1 Relative invertase activity

Supernatant Pellet Supernatant plus Pellet 
(+2X washes)

Buffer 1 100 9.6 109.6

Buffer 2 78.2 24.6 102.8

Experiment 2 Invertase activity (pmol. h"’ g"’ FW)

Supernatant Pellet 
(No additional wash)

Total

Buffer 1 92.645 21.779 114.424

Buffer 2 49.629 21.83 71.459

Supernatant plus Two Washes Pellet
(+2X washes)

Total

Buffer 1 117.395 1.218 118.61

Buffer 2 79.199 7.163 86.362

•Buffer 1= regular extraction buffer, (refer to Material and Methods), Buffer 2 = desalting buffer. 
The pellets from each treatment were resuspended in buffer 1 plus 1 M NaCI, stirred at 1°C over 
night and desalted before activity has assayed. Cultivar; ‘Sunset”, maturity; immature green, 
about one week before harvest. Each data point represents the means of three replications.
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Table 6.3 Comparison of acid invertase enzyme activity using different extraction buffers (pH 5.0 
vs pH 7.5, -NaCI vs +NaCI)*.

Invertase activity (pmol. sucrose g"' h'  ̂ FW)

pH -NaCI +NaCI

5.0 46.15 + 10.0 119.495 + 14.496

7.5 12.009 + 6.976 327.915 + 21.423

* All extractions sit at 1°C for 0.5 hour before filteration and centrifugation. Fruit maturity: 
immature green, about two weeks before color break. The data represents means of three 
replications + standard deviation.

110



PAPAYA P D T G G Q W Y I  LDQVRALETE MLQRIKQQGL NITPRILIIT RLLPDAVGTT 
SOYBN 90% P D T G G Q W Y I  LDQVRALENE MLHRIKQQGL DIVPRILIIT RLLPDAVGTT
A R A  90% P D T G G Q W Y I  LDQVRALEIE MLQRIKQQGL NIKPRILILT RLLPDAVGTT
PHAAU 90% P D T G G Q W Y I  LDQVRALENE MLHRIKQQGL DIVPRILIIT RLLPDAVGTT
VICFA 90% P D T G G Q W Y I  LDQVRALESE MLNRIKKQGL DIVPRILIIT RLLPDAVGTT
MAIZE 85% P D T G G Q W Y I  LDQVRALENE MLLRIKQQGL DITPKILIVT RLLPDAAGTT

PAPAYA
SOY BEAN
AR A
PHAAU
VICFA
MAIZE

CGQRMEKVYG
CGQRLEKVFG
CGERLERVYD
CGERLEKVFG
CGQRLEKVYG
CGQRLEKVIG

TEYSDILRVP
TEHSHILRVP
SEYCDILRVP
TEHSHILRVP
TEHCHILRVP
TEHTDIIRVP

FRTEKGIVRQ
FRTEKGIVRK
FRTEKGIVRK
FRTENGIVRK
FRDQKGIVRK
FRNENGILRK

WISRFEVWPY
WISRFEVWPY
WISRFEVWPY
WISRFEVWPY
WISRFEVWPY
WISRFDVWPY

LETSTEDVAT
LETYTEDVAT
LETYTEDAAV
LETYTEDAAH
LETYTEDVAT
LETYTEDVSS

PAPAYA
SOY BEAN
AR A
PHAAU
VICFA
MAIZE

EISKELQGKP
ELAKELQGKP
ELSKELDGKP
ELAKELQGKP
ELAKELQGKP
EIMKEMQAKP

DLIIGNYSDG
DLIVGNYSDG
DLIIGNYSDG
DLIVGNYSDG
DLIVGNYSDG
DLIIGNYSDG

NIVASLLAHK
NIVASLLAHK
NLVASLLAHK
NIVASLLAHK
NIVASLLAHK
NLVATLLAHK

LGVTQ CTIAH 
LGVTQ CTIAH 
LGVTQQCTIAH 
LGVTQ CTIAH 
LGVTQ CTIAH 
LGVTQ CTIAH

ALEKTKYPDS
ALEKTKYPES
ALEKTKYPDS
ALEKTKYPES
ALEKTKYPES
ALEKTKYPNS

PAPAYA
SOY BEAN
AR A
PHAAU
VICFA
MAIZE

DIYWKKLEDK
DIYWKKLEER
DIYWKKLDDK
DIYWKKLEER
DIYWKKFEDK
DIYLDKFDSQ

YHFSCQFTAD
YHFSCQFTAD
YHFSCQFTAD
YHFSCQFTAD
YHFSCQFTAD
YHFSCQFTAD

LIAMNHTDFI
LFAMNHTDFI
IFAMNHTDFI
LFAMNHTDFI
LFAMNHTDFI
LIAMNHTDFI

ITSTYQEIAG
ITSTFQEIAG
ITSTFQEIAG
ITSTFQEIAG
ITSTFQEIAG
ITSTFQEIAG

SKDTVGQYES
SKDTVGQYES
SKETVGQYES
SKDTVGQYES
SKDTVGQYES
SKDTVGQYES

PAPAYA
SOY BEAN
AR A
PHAAU
VICFA
MAIZE

HSAFTLPGLY
HTAFTLPGLY
HTAFTLPGLY
HSAFTLPGLY
HTAFTLPGLY
HIAFTLPGLY

R W H G I D V F D
R W H G I D V F D
R W H G I D V F D
R W H G I D V F D
R W H G I D V F D
R W H G I D V F D

PKFNIVSPGA
PKFNIVSPGA
PKFNIVSPGA
PKFNIVSPGA
PKFNIVSPGA
PKFNIVSPGA

DMSIYFPYT
DQTIYFPHT
DMSIYFPYT
DQTIYFPYT
DQTIYFPYT
DMSVYYPYT

Figure 6.9. Amino acid sequence of putative SS fragment aligned with SS from other plant 
species. The database accession numbers for the sequnces used were; soy bean (SOYBN), sp 
p13708 (Zhang, and Chollet, 1997); thale cress (ARA), sp p49040 (Martin et al., 1993); mung 
bean (PHAAU), q01390 (Arai, et al., 1992); fava bean (VICFA), p31926 (Kuster, et a., 1993); 
maize, p04712 (Werr, et al., 1995).
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Figure 6.10. Invertase activities (reducing sugars /imol g'Vresh weight h '\  pH 5.0, 23°C) during 
fruit development (refer to Figure 6.1). Total protein was extracted from different fruit 
developmental stages in the presence (+NaCI, total invertase) and the absence (-NaCI, buffer 
soluble invertase) of 1M NaCI. Each data point represents at least two individual extractions. 
Vertical bars indicate standard deviations.
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invertases (Figure 6.11). The results indicate that increased invertase enzyme activity in vitro 

paralleled invertase protein level in vivo and the major invertase in papaya fruit was the cell wall 

isoform. The low invertase activity in young fruit was associated with low invertase protein. 

Antiserium against the carrot soluble invertase 43 kDa and 25 kDa subunits cross-reacted with 

papaya invertase protein only when hybridization was carried out at 30 °C. A much stronger 

signal was detected using carrot cell wall invertase antibody in the same hybridization conditions 

or at room temperature. The strongest band recognized by the carrot cell wall invertase antibody 

was at about 73 kDa (Figure 6.11). Two weak bands observed at about 53 kDa and 30 KDa could 

be minor invertase isoforms or invertase degradation products.

6.3.6 Northern blot and RT-PCR analysis of invertase mRNA levels during fruit development

The abundance of invertase mRNA (Figure 6.12 & 6.13) increase as the invertase 

activity increased, however, the activity increase to a greater extend than mRNA abundance 

(Figure 6.10). The increased invertase protein levels and enzyme activity paralleled the 

increased mRNA levels from young fruit to the immature green stage (two weeks before harvest 

fruit) and in mature fruit (0-30% skin yellowing) (Figure 6.12A). The finding was consistent with 

RT-PCR results (Figure 6.13). After 9 separate experiment of RT-PCR amplification, there was a 

greater possibility of amplifying a invertase fragment from the fruit two weeks before harvest 

than from green fruit (about 100 DAA) and full ripe fruit.

6.3.7 Northern blot analysis of SS mRNA levels during fruit development

In contrast to the results of invertase mRNAs, SS mRNA levels declined from the young 

fruit to mature fruit (Figure 12B) and correlated with thchanges in the enzyme activity. However, 

SS mRNA declined to a very low level in fruit about 100 DAA, but the enzyme activity remained 

fairly constant suggested that a post-translational mechanism must exist in controlling SS 

activity.
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6.3.8 Northern blot analysis of invertase and SS mRNA levels in different tissues in ‘Sunset’ 

papaya plant

Invertase gene mRNA abundance was higher in young leaves, and flowers than in 

thepetiole, root and seed tissue (Figure 6.12A). However, SS mRNA abundance was highest 

occurred in young fruit and petioles, but was lower in the stem, flower and root and other tissues, 

especially fruit (Figure 6.12B). The smaller mRNA observed in the leaf sample, was probably 

either a degradation or a non specific mRNA, since some RNA molecular marker bands were 

also detected by the probe. The differential expression of the invertase and SS genes in papaya 

sink tissue indicated that they play different roles in papaya plant growth, fruit development and 

sugar accumulation.

6.3.9 Southern blot analysis

Southern blot analysis using restriction digested DNA from ‘Sunset’ papaya leaves and 

antisense riboprobes for invertase and SS gene fragments, was undertaken (Figure 6.14). The 

weak signal and single bands indicated that both SS and invertase was coded by a low copy 

number or single copy gene.

6.4 Discussion

PCR was used to obtain gene-specific cDNA fragments that were used to screen a cDNA 

library from immature green papaya fruit. Only one invertase cDNA was isolated using this 

method. This suggested that one cell wall invertase gene was expressed in the developing 

papaya fruit. Several lines of evidence demonstrated that the putative invertase gene was 

localized to the cell wall. The protein sequence derived from the cDNA had higher homology to 

cloned extracellular invertase than to intracellular invertases. and is 67% identical at the amino 

acid level (from 19 to 581) with carrot cell wall invertase (Sturm et al., 1990. Gl 18324). A leader 

sequence, specific sequence elements, and a high PI have been proposed as characteristic 

properties of extracellular invertase (Roitsch, et al., 1995). The papaya invertase cDNA 

sequence isolated in this study contained all the necessary elements for extracellular invertase
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A. B.

Sup. Pellet
•NaCI -NaCI +NaCI +NaCi

Y3 2WB PR Y3 2WB FR

Fruit stages

Y3 M  FR CR Mk

Figure 6.11. Western blot analysis of invertase protein levels during papaya fruit development. 
A: Carrot cell wall invertase antibody. Protein loaded was 50 pg/lane. Y3, about four weeks 
before harvest. 2WB, two weeks before harvest. FR, full ripe fruit. + NaCI FR, 1M NaCI was 
added into extraction buffer. B: Carrot soluble invertase antibody. 40 ng/lane for papaya protein 
loaded. M, color break, harvest maturity. CR, protein extracted from carrot root, 20 pg/lane.
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Figure 6.12. Northern analysis of cell wall invertase and SS gene expression in different plant 
tissues and fruit developmental stages. Gene specific probes for invertase (A) and SS (B) were 
hybridized to 10 pg total cell RNA separated by electrophoresis on denaturing formaldehyde 1% 
agarose gels. 1, 4: mRNA band was detect from different tissue samples. 2, 5: longer exposure. 
3. 6: the ethidium bromide-stained rRNA included as mRNA references. • = non specific 
hybridization or degradation product.
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Figure 6.13. Analysis of invertase mRNA abundance using TR-PCR. Electrophoresis on 1% 
agarose gel of RT-PCR invertase gene expression results. A: lane 1, molecular weight markers. 
Lanes 2 to 4, first strand cDNA synthesized using Oligo dT primer from total RNA extracted from 
stages immature (Y2), 2 weeks before harvest (2WB) and full ripe papaya fruit. Lane 5 and 6, 
first strand cDNA synthesized using random hexamer primer from total cell RNA prepared from 
fruit mesocarp 2 weeks before harvest and full ripe papaya. B: Repeat of PCR results using the 
same first stand cDNA in panel A lanes 2 to 4, indicating that Y2 and full ripe stage fruit contain 
less invertase mRNA than the 2 weeks before harvest stage.
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Figure6.14. Genomic Southern blot analysis of papaya cell wall invertase and SS gene. 
Genomic DNA (10|xg) from ‘Sunset’ leaves was digested with either X ba\ (1), Hind III 
(lane 2), or E coR V (lane 3). The DNA were fractionated by electrophoresises in 0.8% 
agarose (TAE) gel, transferred to nitrocellular memebrane and probed with a a  32p 
-labelled invertase (A) or SS (B) DNA fragment, respectively.
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(Figure 6.5 & 6.6). The calculated isoelectric point of papaya invertase was 6.94, and was lower 

(0.49-3.22) than known extracellular invertase but higher (0.8-1.49) than known putative 

vacuolar invertase (Davies et al., 1996). Ehness and Roitsch (1997) also found a putative 

extracellular invertase gene that has a calculated isoelectric point of 6.2.

Multiple invertase genes have been found in tomato (Klann et al., 1992; Ohyama et al., 

1992; Elliott et al., 1993; Okio et al., 1994; Godt and Roitsch, 1997), potato (Hedley et al., 1994; 

Zhou 1994), maize (Koch et al., 1996), Chenopodium (Roitsch et al., 1995, Ehness and Roitsch, 

1997) and carrot (Sturm 1996), grape (Davies et al., 1996), and Arabidopsis (Mercier and 

Gogarten, 1995; Haouszine-Takvorian et al., 1997). A single band in Northern and Southern 

analysis suggested that the invertase gene was present as a low or single copy number gene in 

the papaya genome (Figure 6.13). Tomato has the same coding sequence, a slightly different 

promoter sequence, and is missing some repetitive sequences and 3' untranslated sequence 

from other species (Elliott et al., 1993). The deletion of the mRNA 5’ UTR region in one papaya 

invertase clone may also indicate the existence of different control mechanisms or different 

mature proteins, which also occurs for yeast invertase (Carlson and Botstein 1982). It was not 

clear whether the deleted sequences in one clone was the result of RNA splicing or to multiple 

promoters.

Antisera (generously provided by Dr. Sturm) immuno-specific for the cell wall and 

soluble invertase isoforms from carrot were used to distinguish between their papaya 

homologous. No difference in protein size was detected between immature and full ripe fruit 

stage, which suggested that they probably were the same invertase protein forms and the 

increased solubility during fruit ripening was probably associated with the cell wall degradation 

rather than changes of isoform or subcellular location. A 6-fold increase in water- pectin soluble 

(cell wall material) have been found during papaya fruit ripening (Qiu, 1992). The result was 

consistent with the fact that soluble invertase activity increased about 26-fold during ripening, but 

soluble sugar composition was not affected. However, the presence of vacuolar invertase or 

neutral invertase in the ripe papaya tissue cannot be excluded, since the enzyme could be

119



inhibited in vivo either by fructose or by an another inhibitor. There was no direct evidence 

regarding the presence of a papaya invertase inhibitor, though invertase inhibitors have been 

previously reported from other plants (Pressey, 1994; Weil et al., 1994; Weil and Rausch, 1994; 

Greiner et al., 1998).

The fast migrating proteins detected by the carrot invertase antibody suggested that 

papaya invertase was composed of two subunits, one about 30 kDa and the other about 53 kDa. 

The major band at 73 kDa was the mature protein. Multiple invertase subunits have been 

reported in tomato (Bucheli et al., 1994; Yelle et al., 1991), carrot (Unger, et al., 1992), potato 

(Bracho and Whitaker, 1989) and mung bean (Arai et al., 1992), and melon fruit (Iwatsubo et al., 

1992) when (3-methocapethanol was presented in the SDS loading buffer. In papaya, additonal p- 

methocapethanol did not increase the presence of lower molecular bands (Figure 6.14). The 

lower molecular band detected in the buffer-insoluble portion could be a different isoform or a 

newly synthesized protein. Another possibility was that the very high protease (papain) in papaya 

fruit flesh resulted in protein degradation. The mature protein molecular mass of papaya fruit 

invertase has been reported 275 kDa by gel filtration (Chan et al., 1976) and 52 kDa in non

denatured gel electrophoresis (Lopez et al., 1988). However, in our experiment, when the protein 

was loaded for electrophoresis without denaturing by boiling, only the low molecular weight 

protein was recognized by the carrot cell wall invertase antiserum (Figure 6.14). The non

denatured glycosylated peptide could have effectively shielded the protein from antibody binding 

(Weil and Rausch 1994).

When the extracellular invertase is active, sucrose is hydrolyzed into hexose monomers 

(McCollum et al., 1988). Thus, the transmembrane sucrose gradient between the phloem and 

cell wall is maintained or increased to drive pholem unloading of sucrose into the apoplast (cf. 

Sturm 1990). A high extracellular invertase activity increases sucrose transport to the sink 

organs and thus may increased or maintained sink strength (Morris, 1982; Ho, 1984). Invertase 

mRNA levels were higher in the late stage of fruit development than in younger fruit and stems, 

roots and petioles (Figure 6.12) suggesting that cell wall invertase may contribute to
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carbohydrate partitioning between source and sink tissue during sink maturation and ripening. 

Western blots (Figure 6.11) and invertase activity assays in the presence of 1 M NaCI in the 

extraction buffer (Figure 6.10) further confirmed that cell wall invertase was a major form during 

the late stage of papaya fruit development. The increased invertase mRNA levels and protein 

levels coincident with increased invertase activities suggested that invertase in papaya fruit was 

probably regulated at the transcriptional posttranscriptional, as well as translational posttran- 

slational levels. That is agreed with the model proposed by Eschrich (1980) for phloem 

unloading.

Sugar regulate the expression of invertase and SS genes in maize and other species. 

(Koch et al. 1996). Cell wall invertase activity in papaya seemed to also be regulated by the 

availability of assimilate supply. Previous experiments indicated that removal of fruit trigged an 

earlier increase in invertase activity. Defoliation, which reduced assimilate supply, delayed 

invertase enzyme activity relative to control during the late stage of fruit development. SS gene 

expression, in contrast, was highest in young fruit and decreased as the fruit developed. This 

decline in activity paralleled the decline in mRNA level. A post-translational mechanism may 

also exist to control SS activity at the late stage of fruit development. When SS mRNA declined 

to a very low level, enzyme activity remained fairly constant. This could be explained by slow 

turn over of the enzyme. The different expression patterns of invertase and SS in the sink 

tissues indicated that SS is a predominant enzyme in young fruit and petioles, while invertase is 

a more important enzyme in the young leaves, flowers and fruit with regard to sugar 

accumulation. The result implied that unloading pathway in the papaya fruit changed from 

symplastic in young fruit to apoplastic during sugar accumulation.
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CHAPTER 7 

SUMMARY

Developing papaya fruit were strong sinks that imported carbohydrates from leaf 

(source) to fruit continually until harvest. The relationship between papaya fruit growth, 

respiration, sugar accumulation and the activities of SPS, SS, invertase enzyme were 

investigated. The growth of ‘Sunset’ papaya showed a double sigmoid growth curve in terms of 

the increase in fruit mass, length and diameter (Figure 4.2). The relationship between fruit fresh 

mass and fruit length and diameter was expressed as a linear regression after log transformation 

(Log fruit mass = 3.1253 X(log fruit length) - 0.9525, r^=0.97; Log fruit mass = 2.583 X (log fruit 

diameter) + 0.2513, ^  =0.99, respectively, p = 0.0001). Fruit flesh dry mass percentage 

decreased from 14 to 56 DAA, then remained constant from 56 to 112 DAA, and then rapidly 

increased one month before harvest. Sugar accumulation in fruit flesh and dry matter growth rate 

increased after seed maturation. Fruit respiration rate decreased from 48 ml CO2 h'  ̂ Kg''' in fruit 

14 DAA to 12 ml CO2 h'' Kg'^ at 70 DAA, then remained constant until the fruit skin showed color 

break. Fruit sugar began to increase about one month before harvest, with a 40 to 50% of the 

total sugars as sucrose. SPS activity remained very low throughout fruit development and 

increased only slightly before harvest. SS activity was very high in 14 DAA fruit and decreased 

to less than 1/3 within 42 to 56 days, and remained constant during rest of fruit development. 

Acid invertase activity was very low in the young fruit and increased more than 10-fold 42 to 14 

days before maturation. The development of flesh color in papaya fruit (Sunset) was correlated 

with sugar levels in the same tissue. The regression model between fruit flesh ‘a’ color and total 

soluble solids in full ripe fruit was CIE a = -0.2767 (TSS)^ + 7.49144 (TSS) -32.708, (p=0.0001, ^  

=0.67, n=213).

SS activity was highly correlated with respiration (r  ̂=0.9511, p=0.00003) and invertase 

was associated with sugar accumulation (r^=0.738, P=0.05) during the last phase of fruit 

development. The relationship between enzyme activity and calculated fruit flesh carbon import
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rate suggested that SS and acid invertase \were the two major enzymes that determined papaya 

fruit sink strength in the early and late development phase, respectively.

Comparison of low sugar accumulation fruit type (UH801) with the commercial Solo 

types in sugar levels and enzyme activities demonstrated that the differences in invertase 

activities could account for the difference in final fruit sugar levels.

SPS, SS enzyme activities decreased and acid invertase activity significantly increased 

during postharvest ripening of papaya. The activity of these enzymes in ripe papaya tissue were 

not correlated with sugar composition and levels.

Source-sink balance was critical for fruit set, development and sugar accumulation The 

effect of defoliation and fruit thinning on fruit growth and sugar accumulation depended upon the 

time of defoliation and the number of leaves, or fruit removal, weather and cultivars. In papaya. 

50% defoliation did not significantly alter new fruit set and ripe fruit TSS, 75% defoliation 

significantly reduced new flowers and fruit set, and decreased ripe fruit TSS. Removal of leaves 

in a spiral reduced the number of new flower and fruit set more than the defoliation from the 

bottom to top. Fruit thinning increased new fruit set and ripe fruit TSS level in ‘Line-8’, and 

‘Sunset’ but not ‘Kapoho’. Fruit thinning of ‘Line-8’ also increased young fruit TSS and sugar 

levels on the remaining fruit on plants compared to same aged fruit on the control and defoliated 

plants. There was no significant difference between defoliated and non-defoliated treatment in 

fruit production, average fruit mass, and percentage of fruit flesh and seed, seed mass ratio and 

seed dry mass during the test period.

Continual defoliation resulted in lower new fruit set, smaller fruit size, and lower TSS 

during the 168 days experimental period. In contrast, there were 52% and 100% more new fruit 

on the fruit removal treatment plants than on control plants within the first 56 days and 168 days, 

respectively. Larger fruit size, faster fruit development, lower respiration and higher sugar 

contents were observed in the immature fruit (140, 154, and 175 DAA) picked from the fruit 

removal treatment. Fruit removal plus defoliation gave the same number and mass of new fruit 

as the control and slightly lower TSS in mature fruit than in control.
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Correlation analysis between fruit sugar and the enzyme activities during fruit removal 

and continual defoliation treatments further demonstrated that invertase was possibly responsible 

for sugar accumulation during the final stage of fruit development (r=0.833, p=0.001, invertase 

enzyme activity one stage earlier than sugar). Invertase activity varied with different extraction 

buffers, and it depended upon pH and extraction method. Total invertase activity increased 

continually from pre-maturation to the full ripe fruit stage. The total invertase activity was 4.7 fold 

higher than the buffer soluble invertase activity in the fruit one month before harvest and 18 fold 

higher in color break fruit, respectively. While total invertase activity was only 6% higher than 

soluble activity in full ripe fruit. The solubility of invertase dramatically changed after fruit was 

harvested during ripening. The soluble invertase increased 26-fold while total invertase activity 

increased only 1.5-fold during the 7 to 10 days postharvest. Carrot cell wall invertase antibody 

recognized three proteins of papaya invertase with one major of 73 kDa and two minor proteins 

at 53 and 30 kDa. Western blot analysis confirmed the increased invertase activity in vitro was 

partially the result of increase in invertase protein. No molecular mass difference was observed 

in the fractions of buffer soluble and pellet and suggested that the change of solubility was 

probably due to cell wall degradation during fruit ripening rather than change the location of 

invertase.

A cDNA library from immature green papaya fruit was constructed and a putative 

complete invertase cDNA was isolated and characterized. The complete deduced amino acid 

sequence of papaya invertase had an open reading frame that encoded a polypeptide chain of 

582 residues and calculated molecular weight of 65, 684 Da. The protein was highly homologous 

to known plant cell wall invertase and 67% identical at the amino acid level with carrot cell wall 

invertase. The calculated iso-electric point was 6.94.

A SS gene fragment was isolated from papaya fruit two weeks before maturation and 

was highly homologous to a SS gene in A. glutinosa p(92378, 81% identical) and of many other 

species. The cloned fragment was used as a radioactive probe for Northen analysis.
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Invertase mRNA levels were very low in 14 DAA fruit and higher in fruit two weeks 

before harvest than six to four weeks before harvest and in full ripe fruit. The highest invertase 

mRNA levels were observed in 30% yellow fruit. The mRNA levels in the late stage of fruit 

development were coincident with invertase protein levels and in vitro enzyme activity. SS gene 

expression, was highest in young fruit and decreased during fruit development and also 

paralleled SS activity in vitro. The different expression patterns of invertase and SS in all tested 

sink tissues confirmed that SS is a predominant enzyme in young fruit, and petioles while 

invertase is a more important enzyme in fruit sugar accumulation and the young leaf and, flower. 

Southern blot analysis indicated that both invertase and SS genes were coded by a low or single 

copy number genes.

The results of above suggested that cell wall invertase be a key enzyme involved in 

sugar unloading during late fruit development stage. A model for the accumulation of sugars in 

papaya fruit is given in figure 7.1.
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Invertase Gene Expressior

Transcription/RNA stability 
Translation 
Post-translation

Increased -> Enhanced
Invertase Levels Invertase Activity

Figure 7.1. Model for the accumulation of sugars in papaya f r u i t . i n c r e a s e , d e c r e a s e .
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