
PREDICTING AMOUNTS OF ROCK PHOSPHATE NEEDED FOR CROP 
PRODUCTION IN WEST AFRICAN SOILS

A DISSERTATION SUBMITTED TO THE GRADUATE DIVISION OF 
THE UNIVERSITY OF HAWAIT IN PARTIAL FULFILLMENT OF 

THE REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY 

IN

TROPICAL PLANT AND SOIL SCIENCES

DECEMBER 2007

By
Aminata Sidibe Diarra

Dissertation Committee:

Russell S. Yost, Chairperson 
Goro Uehara 

Nguyen V. Hue 
Jonathan Deenik 
Tomoaki Miura





Copyright © by Aminata Sidibe Diarra 

December 2007 

All Rights Reserved

111



Dedications

To my mom,

Who was always there for me. I remember from my childhood how committed 

she was so that we I could get good education. She thought me the love of 

studying. Recently she devoted herself in taking excellent care of my son Cheick 

so that I could finish my Ph. D program. Without her, I could have never 

accomplished this achievement. This dissertation is the fruit of the tremendous 

work she has done.

I cannot find the right words to express my gratefulness. Anyway, I will never be 

able to thank her enough in my entire live.

I just love her from the bottom of my heart.

IV



Acknowledgments

I wish to express my gratitude to Dr. Russell S. Yost, who not only served 

as my supervisor but also encouraged and challenged me throughout my 

academic program. He patiently guided me through the dissertation process, 

never accepting less than my best efforts. Being his student was an honor and a 

good experience for me. I thank him a lot.

Sincere gratitude goes to my committee members. Dr. Goro Uehara, Dr. 

Nguyen V. Hue, Dr. Jonathan Deenik and Dr. Tomoaki Miura for their valuable 

time, attention, critical observations and technical support throughout my 

graduate program.

Special mention goes to SM-CRSP project which provided me the 

assistantship and to the University of Hawaii at Manoa for their contribution 

towards completion of this dissertation.

Many thanks to my home institution lER, through which I received the 

opportunity for pursuing my Ph. D program. My sincere appreciation goes to Dr. 

Mamadou D. Doumbia for his contribution and encouragements towards the 

completion of this dissertation. Also many thanks to him for creating a good 

working environment for productive and satisfactory laboratory and field work. My 

sincere appreciation goes to Adama Bagayoko and Oumar Samake for their time 

and help in implementing and monitoring Konobougou field experiments during 

three long years. Without their commitment, these experiments would not have 

been a success. I thank them all.



Gratitude goes to Modou Sene, Mrs. Fatou Gueye and their collaborators 

from the research institution ISRA in Senegal for their time, all the effort and 

technical support. Their provided laboratory facilities at the research center of 

Bambey, Senegal and monitored the field experiment at Keur Madieng during my 

absence. I truly appreciated their help.

My special gratefulness to the Borlaug LEAP for providing me the 

invaluable opportunity to coordinate and carry out collaborative research in Niger, 

West Africa and for networking with different CGIARs including TSBF-CIAT and 

ICRISAT. My sincere gratitude goes to Dr. Andre Bationo for his suggestions and 

guidance, especially in planning the experiments. Fie also provided the laboratory 

facility for satisfactory laboratory work at Sadore, Niger experimental station. 

Special mention to Dr. Ramadjita Tabo and Abdou Adamou for their time and 

technical support. The collaboration with them was a unique experience for me.

Many thanks and gratitude to my laboratory colleagues and friends 

including Flamidou Konare, Antonio Querido, Richard Kablan, Kyle Barber and 

Guy Porter. I thank you all for all things you did to make this accomplishment 

happen. Hamidou and Antonio, I remember the hard time we spent preparing for 

the comprehensive exam. Nonetheless, we had also good time together when 

we were laughing to tears. Special thanks for their support and help during 

review sessions and for so many other things we went through together during 

our student lives.

VI



Thanks to SM-CRSP and departmental administrative staff including 

Gordon Tsuji, Agnes Shimamura, Shirley Ishihara and Susan Takahashi for their 

support.

Many from my family have encouraged me all the way long. My sincere 

gratitude goes to my husband Gaoussou Diarra who always believed in my 

capacity to overcoming the obstacles related to a Ph. D program. Thanks a lot for 

his moral support. Thanks to my son Cheick Omar Diarra for being such easy 

baby and giving me the strength to persist. To my husband and son, special 

thanks for their sacrifice and patience. Thanks to Mom and Dad, Fatoumata Koite 

and Salif Sidibe, who inspired me, to my sisters and bother, Assetou Sidibe 

Algiman, Lala Sidibe Coulibaly, Siga Sidibe Guisse, Djery Sidibe and Mamadou 

Ibrahima Sidibe for their encouragements and moral support. I extend my 

gratitude to Uncle Bonfing Koite and his family, especially to my cousin Aminata 

Koite. May you find inspiration in this work through your educational pathway.

Finally, thanks to Allah Who made all things possible.

V l l



Abstract

The direct application of rock phosphate (RP) can be a good alternative to 

water-soluble P fertilizers. However, despite the extensive work done on RPs, 

there are no models to predict amounts of RP required. A study including both 

laboratory and field experiments was conducted to develop an algorithm for 

estimating amounts of rock phosphate (RP) needed for crop production in West 

African soils on a site-specific basis. Soil properties affecting RP dissolution and 

sorption processes were studied in laboratory incubation and incorporated into 

an algorithm. The accuracy of the method used for estimating RP dissolution 

(ANaOH-P) was assessed. Field experiments were conducted at Konobougou, 

Mali and Keur Madieng, Senegal to test the predictions made by the algorithm. 

Another incubation study was conducted to evaluate the limitation of RP 

dissolution in the Keur Madieng soil.

Results showed that amounts of RP for maximum yield could be predicted 

using plant critical P level, KCI-extractable acidity, Ca saturation, effective cation 

exchange capacity and clay content. The presence of water-soluble P in the RP 

might affect the accuracy of ANaOH-P method as a measure of the amount of P 

dissolved from RP. The ANaOH-P extraction can, however, be used as an 

estimate of the amount of P released from the RP material. The accuracy of the 

RP algorithm could not be conclusively tested because of the large variability in 

the field. However, there are indications that the RP algorithm could be 

overestimating RP amounts for maximum millet yield. A unique Bray 1-P critical
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level varying between 7 and 11 mg kg'^ was estimated for both soluble P 

fertilizers and RPs. The limitation of the RP dissolution in the Keur Madieng soil 

was due to the lack of soil acidity.

The results showed that the algorithm has a good potential to estimating 

quantitatively the amounts of RP needed for crop production. However more 

studies are needed for refining and generalizing the algorithm. The results 

indicate that RP dissolution needs to be improved in the sandy soils of West 

Africa.
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Chapter 1. Introduction

1.1. Problem

Soils of many regions of West Africa are generally weathered, commonly 

acid, low in organic matter and poorly buffered (Juo and Fox, 1977; Wilding and 

Hossner, 1989; Manu et al., 1991). Many research studies have provided 

evidence that soil fertility is the number one factor limiting crop production in the 

Sudano-Sahelian zone of West Africa (Onken and Wendt, 1989; Payne et al., 

1991; Doumbia et al., 1993). Among soil fertility problems, phosphorus (P) is 

usually the most deficient and plant growth limiting nutrient in these soils (Jones 

and Wild, 1975; Pieri, 1986; Manu et al., 1991; Doumbia et al., 1993). 

Approximately 80% of these soils have been estimated to be affected by the P 

deficiency problem (Bationo, personal communication).

The addition of fertilizer P is one method used to raise soil available P to 

crop critical levels (Breman, 1990; Mclntire and Powell, 1995). However, very 

little quantities of water-soluble P fertilizers are used due to high fertilizer cost. 

According to Bationo (personal communication) the use of P fertilizers in Sub- 

Saharan Africa is low (1.6 kg P ha'^ of cultivated land) compared to Latin America 

(7.9 kg P ha'"') and Asia (14.9 kg P ha 'Y  The use of rock phosphate (RP) in 

agriculture can be an attractive alternative for West African countries (Diouf et al., 

1998) because of the following.

• Rock phosphate deposits are scattered throughout West Africa,
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• The West African rock phosphate deposits are predominantly of 

sedimentary origin therefore being more soluble than igneous RP and

• The expected cost of RP is greatly less than the soluble P fertilizers. 

Regardless of the excellent potential of RP in agriculture and the wide

distribution of RP deposits throughout West Africa, however, RP use is very 

limited (Kamara et al., 1994; Diouf et al., 1998). Many factors have led to limited 

adoption of RP on a wide scale. These factors include the low solubility of RP, 

and in some cases, the lack of diagnostic tools for evaluating favorable 

conditions for their application.

1.2. Justification

It is desirable to find methods for predicting the amounts of RP needed to 

meet crop production needs. Not all of the RP resources are readily plant- 

available and agronomically effective when applied directly to soils. Rock 

phosphate dissolution varies and is influenced by many factors (Khasawneh and 

Doll, 1978). In addition, the P that is released from the RP dissolution can be 

fixed again. Therefore, RP effectiveness depends not only on RP dissolution, but 

also on the amount of P that remains available to plants after dissolution. The 

identification of mechanisms and factors that regulate the effectiveness of RP 

resources may allow us to predict the amount of RP required to meet plant 

needs. It is necessary to study the factors affecting both RP dissolution in a given 

soil and the P availability from RP dissolution in order to predict the amounts of
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RP needed to satisfy the plant P requirements. Unfortunately, RP 

recommendation rates to meet crop needs in several countries in West Africa do 

not take these factors into account. This omission could explain, in part, the 

failure to use RP on a wide scale. The ability to predict RP fertilizer requirements 

and to develop accurate RP recommendations is, therefore, critical to sustainable 

agriculture in West African countries. The complexity of the factors affecting RP 

dissolution and their interaction justified the need for a modeling approach.

The ability to predict RP fertilizer requirements and to develop accurate 

RP recommendations on a site specific basis will represent an important 

contribution to improve P fertility status and to increase crop yields in West 

African soils.

1.3. Overall goal

The overall goal of this study is to increase agricultural productivity 

through the development of decision-aids for the management of soil fertility in 

West Africa.

1.4. General Objective

My dissertation topic proposes to develop a rock phosphate (RP) 

algorithm to predict the amounts needed to meet crop P requirements. In the 

future, this RP module will be linked to the ‘Phosphorus Decision Support
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System’ (PDSS). PDSS is a decision support tool that operates on a site-specific 

basis. It enables users to diagnose P deficiencies, prescribe alternative 

correction actions and enable growers to achieve food security or remain 

competitive in the market place. While PDSS makes recommendations only for 

water-soluble P fertilizers, the inclusion of the RP algorithm will offer the option of 

using RP for correcting P deficiency.

Diagnosis

\

^ Prediction
No P deficiency - EXIT

Choose P materiel 

^  Soluble P f e r t i l i z e r s ^

Yes P deficiency Econdmic

/Rock P R o ck P

Recommendation

Figure 1.1. Phosphorus Decision Support System and linkage of RP module. 

Source: Diarra et al., 2004.

1.5. Specific objectives

The specific objectives of this study were to;



(i) Develop an algorithm that will predict the amounts of RP needed to meet 

crop P requirements on a site-specific basis by considering factors 

affecting RP dissolution and subsequent P sorption.

(ii) Assess the accuracy of the ANaOH-P method used to estimate the 

amounts of RP dissolved.

(iii) Field-test the RP algorithm in different climatic and management 

conditions to assess the accuracy of the algorithm

(iv) If needed, define refinement or modification of the algorithm and

(v) Evaluate limitation to RP dissolution in millet growing sandy soils of West 

Africa.

1.6. Dissertation organization

The present dissertation is organized in 7 chapters. The current chapter 

(Chapter 1) is the introduction to the study. This chapter introduces the problem 

and the justification of this study. In Chapter 2 we discuss soil P status in West 

Africa and review factors affecting RP suitability for direct application of RP in 

agriculture. Some of the other algorithms and decision-aids for RP are presented. 

Chapter 3 presents the study done in developing an algorithm for predicting the 

amounts of RP to meet crop P requirement in 5 Malian soils using Tilemsi RP. In 

Chapter 4, we assess the 0.5 M NaOFI extractant in estimating the dissolved RP 

by a means of comparison with the changes in exchangeable Ca during the 

incubation period. Chapter 5 reports the multi-location field testing conducted in



Mali and Senegal. The information obtained from the multi-location field testing of 

the RP algorithm is used in order to identify needed refinements in the algorithm 

and to generalize the algorithm for prediction to a larger range of RPs. In 

Chapter 6  we examine the results of an incubation study comparing the 

dissolution of Tilemsi RP in closed and open systems. The last Chapter (Chapter 

7) concludes and summarizes the major findings of the study. Some future axes 

of research are also presented in Chapter 7.



Chapter 2. Literature review

2.1. Phosphorus status and its significance in the Sudano- Sahelian zone of 

West Africa

The semi-arid region of West Africa located in the transition zone between 

the Sahara desert to the North and the sub-humid savannas and woodlands to 

the South is subdivided into 3 bioclimatic zones. These three bioclimatic zones 

are: i) the Sahelian zone where the rainy season lasts 75 to 90 days; ii) the 

Sudanian zone where the rainy season is 90 -165 days. The cropping systems 

are predominantly based on millet {Pennisetum spp.) and sorghum {Sorghum 

bicolor, L) cultivation; and iii) the Guinean zone where the rainy season lasts 165 

to 210 days (Virmani et al., 1980).

The low soil P availability in many regions of the Sudano-Sahelian zone 

(transition zone between the Sahelian and Sudanian zones) of West Africa (Pieri, 

1986) may be associated with the nature of the parent material (aeolian sand) 

and the soils’ low organic matter. Many of the soils of West Africa are extremely 

sandy, low in organic carbon, and often acid as well as low in P. In a soil fertility 

study in West Africa, Manu et al. (1991), found that 77% of West African soils 

have Bray 1 extractable P levels less than 8  mg P kg '\ the critical P level 

proposed by Bationo et al. (1989) to obtain 90% of the maximum millet yield in 

the sandy soils of Niger. Furthermore, the increased pressure on the land 

coupled with the unsustainable farming practices such as continuous removal of
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nutrients (nutrient mining) under traditional cropping systems (van der Pol, 1992), 

lack of return of crop residues, and the reduction of the length of fallow periods 

have resulted in high rates of loss of vegetation and severe land degradation. 

Smaling et al. (1997) and Doumbia et al. (1998) reported that annual nutrient 

depletion in Mali, excluding “Office du Niger” zone, ranges from 25 - 106 kg N ha‘ 

\  17 - 22 kg P ha’  ̂ and 20 - 54 kg K ha'^ depending on the cropping system. 

“Office du Niger” the Niger delta in Mali where the cropping system is mostly 

based on paddy rice cultivation. Every year P is applied to rice, resulting in a 

buildup of P (Doumbia, personal communication).

The phosphorus deficiency problem is so severe that the use of other 

inputs is not effective unless P is also applied. Crop response to N fertilizers in 

most of these soils could be minimal or sometimes completely nonexistent until P 

requirements have been satisfied (Traore, 1974; Doumbia et al., 1993). Bationo 

(in press) illustrated the ineffectiveness of nitrogen (N) and potassium (K) inputs 

without P deficiency correction in an experiment on pearl millet on Sadore soil 

conducted from 1980 through 1986. In this experiment Bationo reported that 

millet grain yield did not change with the application of N60P0K30 (270 kg ha'^) 

compared to NOPOKO (190 kg ha'^); whereas the application of N60P45K30 

statistically increased millet grain yield up to 1070 kg h a \  Jones and Wild (1975) 

also documented that P deficiency was so acute that plant growth stopped once 

the seed reserve of P had been depleted.



2.2. Some rock phosphates sources in Africa

Despite the acute P deficiency in West African soils, P inputs to most 

farmers’ fields in Mali currently consist of organic sources such as manures, 

composts, and household wastes. None of these materials supplies adequate 

quantities of nutrients for optimum crop production (Palm et al., 1997). 

Applications of soluble P fertilizers are commonly recommended to satisfy crop P 

requirements (Mclntire and Powell, 1995). None or very few farmers have access 

to or apply inorganic fertilizers (Doumbia, 2002), partly because soluble fertilizers 

are expensive and beyond the means of resource-poor farmers in West Africa. 

Thus, RP sources, from around the world have been evaluated for direct use in 

agriculture and soil fertility restoration as a low-cost alternative to soluble P 

fertilizers.

The principal phosphate minerals in RP are mainly apatites. The apatite 

found in RP can be of igneous, sedimentary or metamorphic origin. West Africa 

has vast RP deposits (van Kauwenbergh et al., 1991). Most of RP deposits of 

this region are predominantly of sedimentary origin and with medium to low 

solubility (van Kauwenbergh et al., 1991; Buresh et al., 1997). These major 

deposits have been identified in Senegal, Mali, Togo, Burkina Faso and Niger 

(Johnson, 1994). Igneous RP deposits found in East Africa are seldom suitable 

for direct application (Bationo and Mokwunye, 1991; Buresh et al., 1997). Figure 

2.1 and Table 2.1 shows some major RP deposits in West Africa and their 

estimated reserves.



Benin

1.Mekrou

2. Pobe 

Burkina Faso

3. Arly

4. Diapega-Kodjari 

G uinea Bisau

5. Saliquinhe Ghana

6. Sekondi 

Liberia

7. Bambuta-Bomi Hill

Maii

8. Assakerei

9. Tilemsi 

M auritania

10. Bofal-Loubboira 

Niger

11. Aschia Tinamou

12. Tahoua

13. Tapoa 

Nigeria

14. Abeokuta

Senegai

15. Gambia Namel

16. Matam

17. Taiba-Thies

18. Ziguinchor 

Togo

19. Akoumape-Hahotoe

Figure 2.1. Rock phosphate deposits in West Africa 

Source; adapted from Buresh et al., 1997.
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Table 2.1. Estimated resources of some rock phosphates (RP) in West Africa.

Country Name of deposit Reactivity Estimated 
reserves of RP
(1 0 ® tonnes)

Burkina Faso Kodjari Low to medium 63
Mali Tilemsi Medium 20-25
Niger Tahoua & Parc W Low to medium 1 0 0

Senegal Taiba Low 155
Togo Hahotoe Low to medium 1 0 0

Source: Buresh et al., 1997; Truong et al., 1978.

Different types of RP have widely differing mineralogical, chemical and 

textural characteristics. Some characteristics of African RPs are shown in Table

2 .2 .

Table 2.2. Some characteristics of rock phosphates (RPs) from West Africa

RP properties Tilemsi
(Mali)

Tahoua
(Niger)

Taiba
(Senegal)

Kodjari
(Burkina

Faso)

Hahotoe
(Togo)

Total P2O5 (g kg'^ rock) 286 278 361 254 1365
Solubility in* 

1®‘ NAC** 54 40 39 2 1 41
2 nd nac*** 58 42 43 26 41
2 % citric acid 119 77 81 60 76

CO3/PO4 0 . 2 1 0 0 . 1 1 2 0.098 0.093 0.088

* P2O5, g kg'  ̂ rock

** Neutral ammonium citrate, 1®* extraction (ratio soil :solution = 1 :100) 
*** Neutral ammonium citrate, 2"'* extraction (ratio soil isolution = 1 :100) 
Source: Chien et al., 2003; Truong et al., 1978.
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Mokwunye (1995) pointed out that the most reactive RPs are those having a 

molar PO4 /CO3  ratio less than 5. Chien (1977) found the citrate solubility of RP

increases as the molar ratio of CO3/PO4 increases. Diamond (1978) 

subsequently proposed a classification of RP for direct application based on 

citrate solubility as follow; > 54 g kg'^ high; 32 - 45 g kg'^ medium and < 27 g kg'^ 

low. Among West African RPs, only Tilemsi RP from Mali (Truong et al., 1978; 

Henao and Baanante, 1997; Bationo et al., 1986) and Tahoua from Niger 

(Bationo and Mokwunye, 1991) have been found to be suitable for direct 

application.

2.3. Factors affecting RP effectiveness as P fertilizer

Rock phosphates are primarily added to soils as sources of P. Factors 

affecting RP effectiveness for direct application can be classified in five 

categories: soil properties, chemical and physical properties of the RP source, 

plant factors, and management factors.

2.3.1. Soil factors

Two important mechanisms for the use of RP as a P source for direct 

application to crop are dissolution of the RP and the sorption of the P resulting 

from the dissolved RP. These mechanisms are affected by soil properties. 

Several authors (Syers and Mackay, 1986; Wright et al., 1992) pointed out that
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soil properties that increase RP dissolution may not necessarily result in an 

increase in the amount of plant available P in soil. This was illustrated in 

simulation studies which showed that increases clay content increased not only 

dissolution but also P retention, resulting in a net decrease in P availability to 

crops (Yost, personal communication).

2.3.1.1. Soil properties affecting RP dissolution

The reaction of RP dissolution. Equation 2.1, and the reaction products 

listed are factors that affect RP dissolution: soil acidity, soil calcium (Ca) and P 

status define the direction of the dissolution reaction.

Caio(X)2 (P0 4 )e + 12H^ ^  lOCa^^ + 2X' + 6 H2 P0 4 ’̂ [Eq. 2.1]

Where X can be P, OH', or Cl'.

From this equation, it is generally believed that acid soils favor the potential use 

of RP for direct application. The more acid the soil is, the more rapid the 

dissolution rate of RP. The ions are the driving force for the dissolution of the 

carbonate apatite (Chien, 1977). Benefits from RP use as fertilizer can be 

obtained only generally if soil pFI is lower than 5.5 (Diarra, 2004). Sanchez et al. 

(1997) reported that highly reactive RP can be used in acid soils with similar 

agronomic efficiencies as superphosphates, but seldom in soils with pH values 

above 6.2. Dissolution of North Carolina RP (Chien et al., 1980) and Araxa RP

from Brazil (Yost et al., 1982) decreased with increasing soil pH.
13



However, several studies (Juo and Kang, 1978; Wright and al., 1991; 

Gilkes and Bolland, 1994; Diarra et al, 2004) found that soil pH was not such a 

successful measure of RP dissolution. For example, Mackay et al. (1986) and 

Gilkes and Bolland, (1994) pointed out that values of soil pH might be poorly 

predictive of RP dissolution. Juo and Kang (1978) also fount that under similar 

pH conditions (pH 6 ), the rock phosphates were a more effective P source in 

Alfisols than in a limed Ultisols. These results suggest that the dissolution of RP 

in soil may not depend solely on soil pH but also on other soil properties. Eq. 2.1, 

implies that the removal of the reaction product ions might enhance the solubility 

of the RP. Several studies have supported this implication. For example, 

Hammond et al. (1986a) reported that the effective dissolution of RP in soil 

requires not only low soil pH, but also low soil exchangeable Ca and low soil 

solution P concentrations. Wright et al. (1992) also reported a significant 

correlation between extent of RP dissolution and soil factors controlling the 

concentration of P and Ca in soil solution such as exchangeable Ca, soil Ca 

saturation, P in soil solution and P retention capacity. Diarra et al. (2004) 

suggested that soil Ca saturation higher than 30% reduced RP dissolution in 

Malian soils with contrasting pH and clay contents. The initial rate of dissolution 

of RP in soil is influenced by the concentration of Ca and P in the soil solution 

(Mackay et al., 1986). In this paper, using 30 contrasting soils, Mackay et al. 

(1986) found that Ca-saturation, P-sorption capacity, and cation exchange 

capacity of the soil were the three most important parameters influencing

Sechura RP (from Peru) dissolution in soils. They found that the dissolution of
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Sechura RP increased as exchangeable Ca decreased and as P-sorption 

capacity increased. Wilson and Ellis (1984) also found that an increase in the 

Ca "̂" activity in solution at a constant pH resulted in a decrease in the rate of 

dissolution of RP. Many workers have reported that increased soil P-sorption 

capacity increased RP dissolution (Chu et al., 1962; Chien et al., 1980; Smyth 

and Sanchez, 1982; Bolland and Barrow, 1988). A high soil P sorption capacity 

might enhance RP dissolution by reducing the concentration of P in solution 

around the RP particle (Smyth and Sanchez, 1982; Kirk and Nye, 1986). Loss 

mechanisms for P and Ca, such as plant uptake and leaching, should encourage 

further dissolution of RP. Khasawneh and Doll (1978) also reported that soil 

organic matter content and soil texture may affect the extent of RP dissolution. 

Soil organic matter is related to bonding of Ca and provides an effective sink for 

Ca by increasing the CEC. Organic matter can also increase the soil water 

holding capacity and produce organic acids favorable for RP dissolution, both of 

which enhance dissolution of RP. Coarse-textured and sandy soils are not good 

sinks for P and Ca.

2.3.1.2. Soil factors affecting availability of dissolved P from RP

Phosphorus dynamics in soils, including P from RP, are complex, 

because, in addition to the dissolution reactions discussed above, they also 

involve effects of desorption (release) and sorption (fixation) processes.
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The effectiveness of a RP source as a P fertilizer will depend not only on 

the dissolution of RP, but also on the availability of P to plant after the dissolution 

process. Thus, information concerning the soil properties controlling RP 

dissolution and plant availability of P in soil is required to predict situations where 

RP application would be successful.

Several authors (Syers and Mackay, 1986; Wright et al., 1992) pointed out 

that soil properties that increase RP dissolution in soil may not necessarily result 

in increasing the amount of plant available P in soil. For instance, in a study on 

acid sulfate soils of Thailand, Yampracha et al. (2005) indicated that increasing 

KCI extractable Al (AI_KCI) and oxalate extractable Fe (Fe_Ox) caused an 

increase in Kanchanaburi RP dissolution, but also increased the P sorption. 

Similarly, in a simulation study (Yost, personal communication), similar effects of 

increasing soil clay on the RP dissolution and P sorption were reported, causing 

a reduction in the availability of dissolved P. This is probably because sorption is 

considered the most important process controlling P availability in soils (Lajtha 

and Harrison, 1995). Phosphorus sorption is, in turn, controlled by mineral clay 

surfaces such as Al and Fe oxides and amorphous materials are particularly 

important in highly weathered soils (Sanchez and Uehara, 1980; Sanchez et al., 

1982). Syers and Mackay (1986) found that the amounts of extractable P 

declined as the P sorption capacity of soils increased, in contrast to the increase 

in the extent of RP dissolution as the P sorption capacity increased (Smyth and 

Sanchez, 1982; Mackay et al., 1986). Although a high P sorption capacity can
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promote more rapid dissolution of RP, the short term agronomic effectiveness of 

RP decreases with increasing P sorption capacity due to the decrease in soil 

solution P (Mokwunye and Chien, 1980; Mokwunye and Hammond, 1992). Many 

other studies (Juo and Ellis, 1968; Lindsay and Moreno, 1960) also suggest that 

the availability of P from RP depends not only upon the rate of RP dissolution but 

upon the transformation into more unavailable forms of phosphates, i.e. 

aluminum and iron phosphates that control the P concentration in soil solution in 

acid soils. Consequently, it is important to distinguish between soil properties that 

control RP dissolution and those that control the subsequent plant availability of 

P.

2.3.2. Rock phosphate properties

Rock phosphate dissolution also depends on chemical and physical 

properties of the RP source which vary widely among apatites in RP materials. 

The chemical properties reported in characterization studies of some West 

African RP carried out by Truong et al. (1978) include the solubility in neutral 

ammonium citrate, the CO3/PO4 ratio: the extent of carbonate substitution in the 

apatite structure, and the surface area indicating potential reactivity.

The most important property related to RP materials is their reactivity. 

Rock phosphate (RP) reactivity is dependent on isomorphic substitution within 

the apatite mineral crystal lattice (Easterwood et al., 1989). Smith and Lehr

(1966) and Chien and Black (1976) observed that a carbonate molecule could
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not only replace a tetrahedral phosphate molecule in an apatite crystal but it 

would also weaken the crystal structure of the mineral. Therefore, increasing 

isomorphic substitution results in greater mineral solubility under acid conditions 

(Chien, 1977; Khasawneh and Doll, 1978; Hughes and Gilkes, 1986). The citrate 

solubility of RP thus increases as the molar ratio of CO 3/P O 4  in the apatites 

increases. This agrees with the results reported by Lehr and McClellan (1972).

The extent of RP dissolution was positively related to the citrate soluble P. 

In general, the RP with the highest specific surface area also has the highest 

citrate solubility. Because the RP dissolution process is a reaction that occurs at 

the surface of the RP particle (Barrow, 1990) the size of the RP particle (Joos 

and Black, 1950) and its porosity (Caro and Hill, 1956; Yost, personal 

communication) affects its effectiveness. Many experiments have shown that the 

effectiveness of RP increases with decreasing particle size (Khasawneh and 

Doll, 1978; Joos and Black, 1950; Escobar and Reyes, 1994). Escobar and 

Reyes (1994) found that maize grain yield was almost doubled when the particle 

size of Baja California RP was reduced to a value lower than 100 mesh. Grinding 

increases the surface area, which increases RP solubility.

The presence of impurities such as calcite, dolomite and gypsum in the 

RP also inhibit RP dissolution. Howeler and Woodruff (1968) reported that the 

associated free carbonates in Arkansas rock reduced the effectiveness of the 

material as a P fertilizer. The presence of CaCOs is likely to cause an initial 

decrease the dissolution of the apatite by increasing the pH and Ca
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concentration in the solution film immediately surrounding the apatite particle 

(Mackay et al., 1984; Bolan and Hedley, 1990; Robinson and Syers, 1990; 

Robinson et al., 1994).

2.3.3. Plant

Plant factors include: (i) crop duration; (ii) the ability of the plant roots to 

take up the Ca or P in soil solution; (iii) the ability of plant root to acidify the 

rhizosphere (legumes); and (iii) high root density.

Potential positive effects of RP materials on yields occur with their use on 

longer term crops, acid tolerant perennial crops and trees intercropped with 

annual crops (Sales and Mokwunye, 1993). Pushparajah et al. (1990) reported 

that the agronomic effectiveness of RP can be equal or more than that of soluble 

P fertilizers when applied under acid tolerant perennial crops such as rubber and 

oil palm. Plant P requirements tend to decrease in the following order: vegetable 

(annual)>long term>perennial crops. Thus, while RP may be a cost-effective way 

to supply P and sustain the often deficient nutrient P, it is also clear that soluble 

P is needed in many cropping systems and soils of West Africa. Examples 

include intensive vegetable production.

For most crops, direct application of RP is recommended for acid soils but 

not for neutral and alkaline soils. Flowever, Mnkeni et al. (2000) has successfully 

used rock phosphates in alkaline soils with canola {Brassica napus). Flabid et al.
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(1999) showed that the relative agronomic effectiveness values of Syrian RP for 

rape {Brassica napus) grown on an alkaline soil (pH 7.72) were 55%. This plant 

acidifies its rhizosphere by exuding malic and citric acids (Hoffland, 1992). 

Effectiveness of plant use of P from RP is then greater for plants that are able to 

acidify their rhizosphere (Mokwunye and Bationo et al., 1978). The acidification 

of rhizosphere will usually result in increased dissolution of RP particles (Kirk and 

Nye, 1986). For example, pigeon pea {Cajanus cajan) was shown to be more 

efficient at utilizing iron-bound phosphorus than several other crop species. The 

roots of this legume release piscidic acid that can complex iron to enhance the 

availability of iron-bound phosphorus (Ae et al., 1990). Thus, the subsequent or 

intercropping of crops and trees with annual crops (Sales and Mokwunye, 1993) 

may benefit from the enhanced dissolution of the RP. Deist et al. (1971) and 

Flach et al. (1987) suggested that high Ca uptake patterns of plants, like 

buckwheat {Fagopyrum esculentum), are responsible for improved responses of 

certain crops to applied RP. Growing plant roots can stimulate RP dissolution. 

Bohan and al. (1997) found that greater dissolution was obtained in the presence 

than in absence of plants. Removal of the dissolved Ca and P from the zone of 

RP dissolution is considered to be the main reason for the increased dissolution.

20



2.3.4.1. Methods and rates of RP application

The degree of mixing of rock phosphate in soil and the amount of RP that 

is applied have a major effect on RP dissolution. Broadcasting, as opposed to 

band application, exposes the RP particles to larger volumes of soil. Rock 

phosphates are then more effective when mixed with soil (Khasawneh and Doll, 

1978). Measurements of the dissolution of North Carolina RP in soil have shown 

a reduction in RP dissolution due to banding (Kanabo and Gilkes, 1988a).

Several workers have demonstrated that the proportion of RP that 

dissolves within the soil decreases with increasing level of RP application 

(Hughes and Gilkes, 1984; Kanabo and Gilkes, 1988a; Rajan et al., 1991). 

Yampracha et al. (2005) showed that the Kanchanaburi rock phosphate applied 

at 500 mg P kg'^ depressed RP dissolution. This decrease in RP dissolution was 

due to the high CaCOs content of the material, which increased soil pH and 

solution Ca.

2.3.4. Management factors

2.3.4.2. Rock phosphate application period (timing)

Timing the application of RP is important for their effective use. The 

effectiveness of low solubility RP is enhanced when applied directly on acid soils 

well in advance of crop planting. The slow release of P from RP favors an 

enhancement of residual effects of RP over time when compared to soluble P
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fertilizers (Sale and Mokwunye, 1993). It was expected that early application of 

RP would allow some time for dissolution to begin. However, Chien (2001) 

reported no significant difference in the effectiveness of North Carolina RP when 

either applied at planting or 6  weeks before planting in soils with low P sorption 

capacity. Some studies done in Niger by Roesch and Pichot (1985) in soil with 

low P retention capacity have shown that the residual effects of Tahoua RP on 

millet yield were greater than their effects in the first year of RP application and 

the duration of the effects depended on the rate of RP application. In sandy soils 

of the Sahel, where P sorption and P availability are extremely low, medium 

reactive RP applied at 15 to 35 kg P h a '\ increased in relative agronomic 

efficiencies to 6 8  and 104% within a 3-yr period (Bationo and Mokwunye, 1991). 

Similar results were obtained with Tilemsi RP (SAFGRAD, 1983). The crop in the 

second or third year of RP application could benefit from the residual effect of 

RP. These results suggest that the dissolution of the rock phosphate may have 

been the limiting factor rather than the sorption reactions. On the other hand, in 

soils with high P sorption capacity the effectiveness of RP was reduced when the 

RP was applied very early (Hammond et al., 1986a), suggesting that sorption 

reactions may have been the dominant reaction. In soils with high P sorption 

capacity, RP application at planting is recommended (Chien et al., 1990).
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Liming increases pH and exchangeable Ca (Hanafi et al., 1992) and 

reduces exchangeable Ap"" concentration. High pH, low acidity and high 

exchangeable Ca negatively affect RP dissolution (Habib et al., 1999; Robinson 

and Syers, 1991). Therefore, liming decreases RP dissolution.

2.3A3. Liming

2.3.4.4. Other management factors

Several authors have also shown that RP can be successfully used in 

alkaline soils with concurrent inoculation of P solubilizing microorganisms (PSM). 

Such microorganisms release P from RP rapidly increasing plant growth and P 

uptake (Kucey, 1989; Whitelaw, 2000). Bar-Yosef et al. (1999) found that PSM 

produced acids, which react with the RP and released P into the solution.

Several studies have also demonstrated that arbuscular mycorrhizal fungi 

(AMF) improve plant growth and nutrient uptake by plants, particularly under low 

soil fertility conditions (Tinker, 1980). One of the most dramatic effects of 

mycorrhizal infection on the host plant is the increase in P (Koide, 1991; Orta§ et 

al., 1996; Lambert et al., 1979; Kothari et al., 1991; Ortas et al., 2001). AMF take 

up the same forms of P from the soil solution as roots do. There is no evidence of 

its ability to solubilize insoluble P (Pi) compounds (Bolan, 1991). The capacity of 

the mycorrhizal fungi to absorb phosphate from soil and transfer it to the host 

roots (Asimi et al., 1980) is mainly explained by the ability of mycorrhizal hyphae

to extend several cm from the root surface; whereas, roots of the host plant only
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can absorb P a few mm away from their surface. Thus, AMF enable roots to 

access a greater volume of soil (Hattingh et al., 1973; Mosse, 1981) for immobile 

nutrients such as phosphorus. The improvement of P uptake by AMF results in 

the more effective removal P dissolved from RP, theoretically enhancing RP 

dissolution.

Besides all these management factors, the use of ammoniacal fertilizers 

could also acidify the rhizosphere and buildup the concentration in soil. 

Reaction involving FI"" is a driving force for RP dissolution to occur (Chien, 1977). 

Consequently, the use of ammoniacal fertilizers can enhance RP dissolution by 

acidifying the rhizosphere (Logan et al., 2000).

2.3.5. Moisture content

In addition to all the factors mentioned above, moisture is required for the 

dissolution reaction to occur. In addition, soil moisture permits both diffusive and 

convective removal of reaction products from the site of dissolution of the rock 

phosphate, usually the surface. In this way soil moisture helps to reduce the 

levels of Ca '̂" and FI2 P0 4 ’ in soil solution near the site of dissolution, which would 

strongly influence the dissolution of RP (Wright et al., 1992). Rock phosphate 

dissolution is inhibited when soil moisture decreases below field capacity 

(Kanabo and Gilkes, 1988b). Data from field studies in Senegal (Flammond et al., 

1986a) indicate that crop yield response to applied RP is linearly related to the

mean annual rainfall between 500 and 1300 mm. High rates of leaching in sandy
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West African soils created favorable environments for RP dissolution (Hanafi et 

al., 1992). Direct application of RP is normally not recommended for low rainfall 

areas, due to erratic agronomic effectiveness under conditions of low soil water 

content (Hammond et al., 1986a).

2.4. Some efforts to develop decision aids for P and particularly for RP

Numerous decision aids have been developed or proposed to assist P 

nutrient management. These decision aids include the Phosphorus Decision 

Support System (PDSS) (Yost et al., 1992), the algorithm for predicting amounts 

of RP in acid sulfate soils of Thailand (Yampracha et al., 2005 and 2006), and 

the Phosphate Rock Decision Support System (PRDSS) (Smallberger et al., 

2006).

2.4.1. Phosphorus Decision Support System (PDSS)

Phosphorus Decision Support System (PDSS) is a decision aid developed 

by a project ‘Soil Management Collaborative Research Support Program’ (SM- 

CRSP) supported by the US Agency for International Development (USAID). 

PDSS is a decision support tool that operates on a site-specific basis. It enables 

users to diagnose nutrient deficiencies, prescribe alternative correction actions 

and enable growers to achieve food security or remain competitive in the market 

place. In the standard PDSS format, the user selects the crop, indicates the soil
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P test and the soil P test value (the soil extractable-P level) of the field or land to 

be managed. PDSS then uses buffer coefficients, critical levels of the extractable 

P and the present soil extractable P to make P fertilizer recommendations (Yost 

et al., 1992). The buffer coefficient is estimated based on the soil clay content 

(Cox, 1994). If the soil test value is below the critical level then P is 

recommended. The amount of P is then determined. The difference between the 

critical level and the measured P in a given soil is the amount of P that must be 

added. PDSS then converts this value, called Delta P (Pc -  Po), into the amounts 

of soluble phosphate fertilizers. The formula used in PDSS is the following:

P = (Pc-Po) /a2  * D/ 1 0  * BD [Eq. 2 .2 ]

Where P = P recommendation, kg ha’^

Pc = critical levels of the extractable P, mg kg'^

Po = measured soil extractable P, mg kg'^ 

a2 = P buffer coefficient 

D = incorporation depth, cm 

BD = bulk density

10 = coefficient for normalizing the incorporation depth (D) to 10 cm. 

Unfortunately, PDSS does not offer the possibility to convert Delta P into the 

amounts of rock phosphate fertilizer.
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2.4.2. An algorithm for predicting amounts of RP in acid sulfate soils of 

Thailand

An algorithm for predicting amounts of RP needed to meet crop P 

requirement has been proposed by Yampracha et al. (2005; 2006) for lowland 

rice in acid sulfate soils in Thailand. In this study, a range of acid sulfate soils and 

a wide range of RP were used. A model A-Be"'^^ was used to describe RP 

dissolution. The parameters A, B and c were than regressed against soil and RP 

properties to identify which properties mostly affect RP dissolution. Soil pH, RP 

solubility in 2% citric acid, P content in the RP and RP particle size (fraction) 

were the parameters incorporated into the algorithm in predicting RP 

recommendation rates. The formula for estimating amounts of RP that should be 

added to supply crop P requirements is the following:

nn J (P c -  P Bray 2 )  AP NaOH 500 depth
RP added =-------------------- ------------------------------------x --------------------------- x -------x BD

PBC Bray 2 AP Bray 2 A -  Be ~ [Eq. 2.3]

Where RP added = The amount of RP that should be added (kg ha'^),

Pc = critical Bray2 P level for the soil (mg kg'^),

PBray2 = P in soil extracted by Bray 2 (mg kg'^),

PBCBray2 = P buffering coefficient as measured by Bray 2 ,

A -B e '" = amount of AP NaOH in soil at time x for a specific soil (mg kg'^).

Depth = soil depth (cm)
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BD = bulk density (g cm'^)

A = 729 -169 * soil pH + 51 * citric acid soluble P in RP

B = 484 -  142 * soil pH + 67 * citric acid soluble P in RP

C = -0.3059 + 0.0819 * soil pH + 0.0046 * total P in RP + 0.0023 * RP 

particle size

2.4.3. Phosphate Rock Decision Support System (PRDSS)

A Decision Support System for Phosphate Rock (PRDSS) has been 

developed by the International Fertilizer Development Center (IFDC) in 

collaboration with FAO and the International Atomic Energy Agency (IAEA). 

PRDSS is an expert system for estimating the relative agronomic effectiveness 

(RAE) of freshly applied RP respect to water-soluble P fertilizers. It is 

conceptualized for use in tropical and subtropical countries for a range of food 

crops. PRDSS is conceptualized for predicting the agronomic effectiveness of RP 

with respect to water-soluble P fertilizers (Smallberger et al., 2006). The model 

uses the following parameters: RP solubility, soil pH, crop species, exchangeable 

Ca, organic matter, soil texture and rainfall. One of the major limitations of IFDC 

PRDSS is its inability to diagnose P deficiency and to predict amounts of RP for 

specific field conditions.
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Despite the extensive studies done on the factors affecting RP 

performance, scientists have not quantified the amounts of RP needed to meet 

plant P requirements on a site-specific basis. The few studies performed dealt 

only with the development of model that predicts the extent of RP dissolution 

(Mackay et al., 1986). PDSS and PRDSS were developed for making 

recommendation only for soluble P fertilizers (Yost et al., 1992) and for 

predicting RP agronomic effectiveness, respectively. Unfortunately, these 

studies either did not include work to evaluate the plant P availability after RP 

dissolution or did not address the option to quantify how much RP would be 

need as a possible source of P for crop. Moreover, research has not considered 

RP dissolution in West African. Nor has it addressed the development of an RP 

algorithm adapted to millet production systems on upland West African soils.

2.5. Missing information
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Chapter 3. An algorithm for estimating amounts of rock phosphate 

needed to meet crop phosphorus requirements in West African soils

3.1. Abstract

The direct application of rock phosphate (RP) can be a good alternative to 

water-soluble P fertilizers. However, despite the extensive work done on RPs, 

there are no models to predict amounts of RP required. An incubation study was 

conducted; (i) to investigate the influence of soil properties on the dissolution of 

Tilemsi rock phosphate (Tilemsi RP) and extractability of P after dissolution and

(ii) to develop an algorithm for estimating amounts of rock P needed to meet crop 

P requirements in West African soils. Exchangeable acidity, Ca saturation, and 

effective cation exchange capacity appeared to be the factors controlling the 

Tilemsi RP dissolution. The amount of rock phosphate dissolved in contrasting 

Malian soils was predicted by a modified MacKay’s equation of the form; Y = A - 

g*g-c*timê  where Y = amount of RP dissolved, measured by NaOH extraction;

A = 78.1627 + 30.62149 * acidity -  0.63335 * CaSat (RMS=0.16132)

B = - 16.58786 -  21.74709 * acidity + 4.07675 * ECEC (RMS = 0.01463)

c = curvature coefficient. The amount of RP to reach the optimal yield for a given 

crop can be estimated using the relationship ANaOH-P/ABray 1-P and the above 

modified MacKay’s equation.
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For food production, P is one of the most deficient and plant growth 

limiting nutrients in West African soils (Enwezor and Moore, 1966; Jones and 

Wild, 1975; Poulain, 1976; Pieri, 1986; Manu et al., 1991). Rock phosphate (RP) 

materials around the world have been evaluated for their suitability as low-cost, 

direct application P fertilizers. Flowever, many RP’s have not proven to be 

sufficiently soluble for direct application in intensive agriculture production 

(Khasawneh and Doll, 1978). For RP to be a viable alternative fertilizer, it should 

first dissolve in soil. The second requirement is that the P released remains 

available to plants. As well documented in the literature, estimates of the 

amounts of RP dissolved is not usually sufficient to estimate plant availability.

Dissolution processes are affected by soil factors. Regarding soil 

properties that might be expected to affect the extent of RP dissolution in soils, 

Khasawneh and Doll (1978) listed the following;

(i) Concentration of FI'*’ in the soil and the FI'*' buffer capacity in soil: the 

dissolution of RP in soils is driven by the supply of FI"", which is controlled by the 

initial soil pFI and the pFI buffer capacity of the soil. The presence of Fl"̂  ions in 

the soil results in the rapid conversion of the PO4 3 - to FI2 P0 4 " and FIP0 4 2 --

(ii) Concentration of P in soil solution and P buffering capacity of the soil: 

RP dissolution increases as the P retention capacity of soil increases; 

(Khasawneh and Doll, 1978)

(iii) Concentration of Ca2+ in soil solution; RP dissolution increases with
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(iv) Organic matter content: organic matter is related to the bonding of Ca 

and provides additional exchange sites for Ca resulting in reduced Ca 

concentration in soil solution; thus allowing more RP dissolution to occur.

(v) Soil texture: coarse-textured soils and sands are, in general, do not 

sharply reduce soil solution levels of P and Ca.

Rock phosphate dissolution depends on chemical and physical properties of the 

RP and the soil properties (Khasawneh and Doll, 1978; Hammond et al., 1986a). 

Several scientists (Khasawneh and Doll, 1978; Hughes and Gilkes, 1986; 

Mokwunye, 1994) pointed out that RP dissolution is highly related to RP 

reactivity. The types of crop (Pushparajah et al., 1990; Mnkeni et al., 2000), 

management factors, and soil moisture (Wright et al., 1992) also affect RP 

dissolution.

Syers and Mackay (1986) pointed out that the soil properties that increase 

the extent of RP dissolution in soil may not necessarily result in an increase in 

the amount of plant available P. Factors such as clay content that increase RP 

dissolution sometimes also increase P sorption (Novais and Smyth, 1999), 

resulting in reduced P availability (Yost, personal communication). In developing 

the algorithm, it is therefore important to separate the two processes of 

dissolution and sorption in order to quantify processes affecting the reactions in a 

specific situation.

Numerous decision aids have been developed or proposed to assist

nutrient P management. The Phosphorus Decision Support System (PDSS) is a
32
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decision support tool that enables users to diagnose nutrient deficiencies and 

prescribe alternative correction actions. PDSS uses buffer coefficients, critical 

levels of the extractable P and a specific field’s extractable P to make P fertilizer 

recommendations (Yost et al., 1992). However, PDSS makes recommendation 

only for soluble P fertilizers. A rock phosphate algorithm for predicting RP 

amount is needed to meet P requirements of rice for acid sulfate soil was 

developed by Yampracha et al. (2006). That algorithm, however, is not suited for 

millet production systems on upland West African soils.

3.3. Hypothesis and Objectives

3.3.1. Hypothesis

The use of RP for direct application in agriculture depends on its ability to 

supply P to crops. The phosphorus availability of the P released from RP 

depends on the RP dissolution and the subsequent sorption processes that take 

place. We, thus hypothesize that predicting amounts of RP needed for any crop 

production should consider both dissolution and sorption processes. Identifying 

and incorporating soil properties affecting dissolution and sorption processes into 

an equation can be the basis for our modeling approach.

3.3.2. Objectives

The objectives of the study were to
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(i) Determine which properties of West African soils most affect RP 

dissolution,

(ii) Establish a relationship between the dissolution of RP and the 

sorption processes, and

(iii) Develop an algorithm (method) that would produce quantitative 

estimates of the amount of rock phosphate necessary to provide nutrient P for 

crops in West Africa.

3.4. Materials and Methods

3.4.1. Soils

Incubation studies were carried out with five contrasting soils from Mali. 

Cinzana plateau, Cinzana slope and Cinzana valley soils were collected from a 

toposequence at the Cinzana research station. The sandy soil on the plateau and 

the slope of the toposequence are representative of millet {Pennisetum spp) 

growing soils. On the clayey soil of the valley, sorghum {Sorghum bicolor, L) is 

cultivated. Niessumana and Longorola soils were collected in Southern Mali. 

These 2 soils can be flooded in rainy season and are appropriate for paddy rice 

cultivation. The soils were collected at depth of 0 - 15 cm, air-dried and passed 

through a 2-mm sieve. Selected properties of the soils used in the investigation 

are shown in Table 3.1. The following chemical parameters were determined; pH 

in water at a soil:solution ratio 1:1, exchangeable cations by extraction with 1 M

NH4OAC (pH 7) (Thomas, 1982), extractable acidity (Thomas, 1982), ECEC
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(effective cation exchange capacity) was estimated by summing the 

exchangeable cations and exchangeable acidity, clay content was determined by 

the pipette method (Gee and Bauder, 1986), and index of plant available P was 

determined with Bray 1-solution (0.025 M HCI + 0.03 M NH4F) (Bray and Kurtz, 

1945). Iron (Fe) and aluminium (Al) were extracted using ammonium oxalate 

solution at pH 3 in the dark (Jackson et al., 1986).

3.4.2. Rock phosphate

The Tilemsi RP material used in this study was the same as used in the 

study done by Yampracha et al. (2006). Tilemsi RP (Tilemsi RP) was ground to 

pass a 250 pm sieve. Total P and Ca, and water-soluble P were measured by the 

‘Official methods of analysis of Association of Official Analytical Chemists’ 

(AOAC, 1984). The second neutral ammonium citrate extraction has been 

recommended to assess RP solubility by the International Fertilizer Development 

Center (IFDC) (Chien, personal communication, 2005). The calcium carbonate 

equivalent (CCE) or the liming potential of the rock phosphate was determined by 

boiling 1 g of RP material in 50 ml of 0.5 M HCI for 5 min and then titrating it with 

0.25 M NaOH to pH 5 as proposed by Sikora (2002). The characteristics of the 

RP material are given in Table 3.2.
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Table 3.1 .Soil properties of samples selected for rock phosphate dissolution study.

Soil PH(H2 0 )

1 : 1

Clay

(%)

ECEC* 

(cmolc kg'^)

Exch. Ca^ Acidity** CaSat^

(%)

Feox^ Alox^ 5^ 1 0 ^

(cmolc kg'^) (mg kg-^) g PNT ha'^

Cinzana plateau 5.00 5.0 1.14 0.54 0.33 47 268.67 313.67 50 1 0 0

Cinzana valley 6.47 36.0 11.53 9.11 0 . 0 0 79 1369 1483 3568 7136

Cinzana slope 5.60 4.0 1.31 1 . 0 2 0 . 0 0 78 196.67 209.00 134 267

Niessumana 4.30 36.5 6.35 1.37 4.20 2 2 4892 1979 39 78

Longorola 4.90 36.5 7.34 2.08 3.83 28 7038 2943 72 143

Effective cation exchange capacity 
 ̂Exchangeable ca 

“  KCI-extractable acidity 
Calcium saturation 

 ̂Ammonium oxalate extractable iron and aluminum.
^Estimates of amounts of RP (Tilemsi) to increase Bray 1 by 5 and 10 mg P/kg, respectively.
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Table 3.2. Selected chemical characteristics of Tilemsi RP.

Location NAC2*
(g P kg'^ of rock)

Total

(g kg'^)
Calcium carbonate 

equivalent
(%)P Ca

Tilemsi, Mali 18.7 121 305 41.7

‘ Neutral ammonium citrate, second extraction (1 g soil: 100 ml solution) 
Source: Yampracha et al., 2006.

3.4.3. Incubation

The Tilemsi RP was added to the soils at a rate of 500 mg P kg’  ̂ soil, 

thoroughly mixed, moistened to field capacity (Uehara, personal communication) 

with deionized water and incubated at 22-24 °C. A control without RP was 

included for each soil and was similarly treated. Each treatment was replicated 3 

times. Soils were aerated and the moisture content adjusted to field capacity 

every two days during the incubation. Treated and untreated (control) soils were 

sampled after 0, 3, 7, 15, 30 and 60 days of incubation to estimate the rate of 

dissolution of Tilemsi RP. The rock phosphate dissolution and Bray 1 extractable 

P were determined at each sampling time. Tilemsi RP dissolution in the various 

soil samples was estimated by the 0.5 M NaOH method (Mackay et al., 1986). 

Soil samples were extracted for 16 hours with 0.5 M NaOH at a soil to solution 

ratio of 1:100 following a prewash with 10 ml 1 M NaCI for 1 hour. Phosphorus in 

the extracts was determined colorimetrically by the method proposed by Murphy 

and Riley (1962) and absorbance was measured at 880 nm. The increase in

NaOH-extractable P (ANaOH-P) between RP-treated and untreated samples was
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taken to represent the amount of P dissolved from the RP. The difference in Bray 

1-extractable P (ABray 1-P) between treated and untreated samples was used as 

an index of P availability for plants after RP dissolution and subsequent reaction 

of the released P with soil.

3.4.4. Statistical analysis

3.4.4.1. Dissolution process

A model (Eq. 3.1) was fitted to the Tilemsi RP dissolution curves in the 

selected soils using nonlinear regression (proc NLIN) (SAS, 1985). The 

dissolution curves obtained for the 5 soils under study could be described by an 

equation of the form:

Y = A - (B*e"*'') [Eq. 3.1]

Where Y = amount of Tilemsi RP dissolved, measured by NaOH extraction at 

time X;

A = asymptote:

B = difference between the asymptote and the intercept and

c = curvature coefficient.

The parameters of the equation were then regressed on soil properties listed in 

Table 3.1 to determine which soil properties were the best predictors using 

stepwise regression analysis. The residual mean squared (RMS) was used to
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evaluate how well the equation predicted the dissolution parameters. Soil 

properties were then substituted into the equation to predict the dissolution. The 

predicted dissolution in each soil was then plotted over time and compared to the 

observed values.

3.4.4.2. Sorption process

We proposed measuring Bray 1 to establish the relationship between 

extractable P pools of these methods with the pools of NaOH. This relationship 

may not be as highly affected by management factors, as is the rock phosphate 

dissolution. It was also hypothesized that, after an initial period, the ratios would 

assume some nearly constant value. Perhaps this relationship will be sufficiently 

constant that it need be estimated only once for a particular soil or perhaps it can 

be predicted from other soil properties such as those used to predict buffer 

coefficient such as percent clay.

3.4.5. Developing an algorithm for predicting RP amounts needed to meet 

crop P requirements

The equation implemented in PDSS was used as the basis for predicting 

the amount of RP to be applied to meet crop requirements. The formula used in 

PDSS is the following:

P = (Pc-Po) /32 * D/10 * BD [Eq. 3.2]
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Where P = P recommendation, kg ha’"'

Pc = P critical level of the selected P testing method, mg kg'^

Po = measured soil P (by the P testing method specified for Pc), mg kg'^ 

a2 = P buffer coefficient

D/10 = incorporation depth D (cm) normalized to 10 cm 

BD = bulk density

3.5. Results and Discussion

3.5.1. Rock phosphate dissolution -  the dissolution process

The influence of soil properties on the rate and extent of dissolution of 

Tilemsi RP can be seen clearly in Figure 3.1. The Tilemsi RP dissolved to a 

differing extent in different soils. The rate of dissolution of Tilemsi RP ranged 

from 33 to 382 g kg'^ the total P added to the soils. The shapes of the dissolution 

curves were similar. The rate of dissolution rapidly slowed after about 7 - 1 5  

days incubation. In each case, the reaction reached equilibrium or slowed down 

after 30 days. Other authors (Novais and Smyth, 1999; Kanabo and Gilkes, 

1987; Robinson and Syers, 1990; Smyth and Sanchez, 1982) obtained similar 

shaped dissolution curves. The maximum RP dissolution increased with the 

decrease in soil Ca saturation as shown in other studies (Mackay et al., 1986; 

Robinson and Syers, 1990).
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Incunation time, days

Figure 3.1. Dissolution of Tilemsi RP as measured by the difference in NaOH-P 
between RP-treated and untreated soils over time.

The parameters of the fitted curves describing the dissolution of Tilemsi 

RP in 5 Malian soils are listed in Table 3.3. The larger A is, the larger the amount 

of dissolved P from the RP, whereas the larger B is the greater the difference 

between the amounts of RP dissolved at days 0 and 60 (beginning and end of 

the incubation, respectively), c is a constant representing the curvature 

coefficient.
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Table 3.3. Values for asymptote (A), difference between asymptote and intercept 
(B) and curvature coefficient (c) and an estimate (R^) of the fit of the exponential 
curve.

Soil B R'

Cinzana plateau 
Cinzana valley 
Cinzana slope 
Niessumana 
Longorola

57.2004
16.406

30.5865
191.1
180.7

19.3821
7.3948
12.1643
82.5316
70.3218

0.2099
0.1468
0.0696
0.1707
0.1058

0.97
0.96
0.94
0.95
0.95

The stepwise multiple linear regression gave the following equations to 

predict A and B.

A = 78.1627 + 30.62149 acidity -  0.63335 CaSat (RMS=0.16132) [Eq.3.3]

B = - 16.58786 -  21.74709 acidity + 4.07675 ECEC (RMS = 0.01463) [Eq.3.4] 

c = constant

Where CaSat = Ca saturation, %. CaSat can be calculated from the data in Table

1. Acidity and ECEC are in cmolc kg ’’ as in Table 3.1.

These equations relate the RP dissolution to the percent Ca saturation, effective 

cation exchangeable capacity and soil acidity. Khasawneh (1978), MacKay et al. 

(1986), and Robinson and Syers (1990) showed that Ca saturation had a large 

influence on RP dissolution.

It was found that by setting the c value constant at the average for the 5 

soils (0.14056), the shape and fit of the modified Mackay curves describing the
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dissolution of Tilemsi RP in soil, and calculated A and B values were only 

affected to a minor degree (Table 3.4 and Figure 3.2).

Table 3.4. Values for asymptote (A), difference between asymptote and intercept 
(B) of the fit of the exponential curve (c = 0.1406).

Soil A B

Cinzana plateau 58.2455 19.0365
Cinzana valley 16.4561 7.3902
Cinzana slope 28.7551 11.3242
Niessumana 193.4 82.0735
Longorola 180.7 69.9241

By using equations [3.1], [3.3] and [3.4] for acid soils (pH 5.6 or below), the 

extent of dissolution of Tilemsi RP can be determined.

3.5.2. Effects of Tilemsi RP on soil Bray 1-P levels.

Levels of Brayl-P varied with soils and time of incubation (Figure. 3.3). 

The A Bray-P in soil where Tilemsi RP was added increased with incubation time 

up to the 7 -  15 days and leveled off sometime between 14 and 30 days of 

incubation except for the Cinzana valley soil. The change in Bray 1-P (A Bray-P) 

ranged from 0.5 to 65.6 mg kg'^ at the end of the incubation period. The A Bray-P 

did not change for Cinzana valley soil because all dissolved P has been sorbed 

by that soil. Based on the Bray 1-P critical level of millet {Pennisetum spp.) of 

11 mg P kg'^ (Yost et al., 1992), the ABray 1-P observed in all soils except 

Cinzana valley could be adequate for producing maximum yield.
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Figure 3.2. Comparing the predicted (lines) and measured (symbols) dissolution 
of Tilemsi RP in soils of varying acidity, Ca saturation, and effective cation 
exchange capacity.
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Incubation time, days

Figure 3.3. Changes in Bray 1-extractable P in soil during 60 days following 
Tilemsi RP addition at 500 mg P kg
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3,5.3. Relationship between ANaOH-P and Bray 1-P -  the sorption process

The evolution of the ANaOH-P/ABray-P ratio over time is presented in 

Figure 3.4. This relationship after an initial period became nearly constant in the 

incubation study after about 7 -15  days. We noted that for these soils, the ratios 

of ANaOFI to ABray 1 were quite different among soils, suggesting that the 

buffering of these extractable P measures may differ substantially. The ANaOFI- 

P/Bray 1-P ratios were consistently lower for sandy soils than clayey soils over 

time. This is probably due to the higher P sorption capacity of clay soils, reflected 

in their higher ammonium oxalate extractable-Fe and Al.

Incubation time, days

Figure 3.4. The ANaOFI-P/ABray 1-P ratios of soil treated with Tilemsi RP during 
60 days of incubation period.
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Perhaps this relationship will be sufficiently constant that it need be 

estimated only once for a particular soil or perhaps it can be predicted from other 

soil properties such as those used to predict buffer coefficient such as percent 

clay. The relationship between ANaOH-P/ ABray 1-P ratio and clay content in 

soils could be described by the following equation: ANaOH-P /ABray 1-P =0.960 

+ 0.084*Clay (R2 = 0.77). This relationship needs to be improved by including 

soils with the clay content ranging between 5 and 36.5%.

3.5.4. An algorithm to predict the amounts of rock phosphate necessary to 

meet plant requirements.

The method we propose begins with an analysis by the PDSS 

(Phosphorus Decision Support System), in which the user selects the crop and 

indicates the soil test and soil test values of the field or land to be managed 

(Figure 1.1). If the soil test value is below the critical level then P is 

recommended. The amounts of P must now be determined. As in the standard 

PDSS format the difference between the critical level and the measured P is the 

amount of P that must be added in the form of either soluble or rock phosphate 

fertilizers. This value will be called the DeltaP (Pc -  Po)- We now need to 

determine the amounts of rock phosphate that will provide this amount of soluble 

P. Our approach now continues by converting the estimate of the extractable P

needed to reach the P critical level into the amount of 0.5 /W NaOH-P that needs
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to be increased. The ANaOH-P / ABray 1-P ratio can be used to convert the 

DeltaP into the amount of 0.5 M NaOH-P that needs to be increased. This value 

is now a multiple variable function that can be predicted from soil and site 

properties using equations (Eq. 3.1, 3.3, 3.4 and Table 3.1). As the factors in the 

equation indicated, this equation will require the input of Ca saturation, effective 

cation exchange capacity (ECEC), and soil acidity. Calcium saturation can be 

approximated by measures of exchangeable Ca and ECEC. Thus the proposed 

algorithm for predicting amounts of RP needed for crop requirements is as 

follows:

RPadded J f< ^ -  B.a Eq. 3.5
a 2 ABray 1 _ P  P >0

Where RP added = Amount of RP to be added (kg ha'^)

Pc = Critical Bray 1-P level (mg P kg'^)

Psrayi = P in soils extracted by Bray 1 (mg P kg'^)

a2 = Buffer coefficient

ANaOH-P = A-Be''^’̂ , amount of RP dissolved in soil at time X (mg P kg"''), 

with X in days

depth = Soil depth (cm)

B.D. = Bulk density (g cm'^)
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500 = Coefficient for converting NaOH-P into RP. This coefficient is

specific to the incubation conditions.

Thus we hypothesize that the amounts of rock phosphate can be predicted by 

relating soil test P levels to changes in NaOH extractable P. The first predictions 

of this are given in Table 3.1 on the far right columns of 5 and 10, indicating the 

predicted amounts of Tilemsi rock phosphate required to increase Bray 1 by 5 

and 10 mg P kg \  respectively, after 30 days of incubation. Equation 3.5 can 

predict the amount of dissolved PR. This equation needs testing in field 

conditions.

The differences between Eq. 3.5 and 2.3 consist of:

1. The type of soil for which the equation was developed

2. The cropping system and

3. The parameters needed for estimating ANaOH-P (the amount of RP 

dissolved in soil at a given time).

3.6. Conclusions

In summary, results from this study demonstrated that RP dissolution 

varied from soil to soil but was fairly rapid over first the 7 -14  days of incubation 

and that a steady state was reached after approximately 30 days.

The extent of Tilemsi RP dissolution in 5 Malian soils at the end of the 

incubation period (after 60 days) ranged from 3.3 to 38% of the total P added.
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Exchangeable acidity, calcium saturation and the effective cation exchange 

capacity were the most important factors influencing the Tilemsi RP dissolution. 

No single soil property was responsible for promoting RP dissolution for all soils 

investigated. Limited solubility of Tilemsi phosphate rock occurred in soil with 

combinations of low exchangeable acidity, high soil pH and high Ca saturation.

Soil acidity, ECEC and soil Ca saturation were the key factors in the RP 

dissolution algorithm. The sorption process was characterized by the ratio 

NaOH/Bray 1-P, which could be predicted from soil clay content.

An algorithm including soil properties affecting dissolution and sorption 

processes can be used to predict the amount of RP needed to supply nutrient P 

to crop. The proposed algorithm was not suitable for soils with pH greater than 6. 

More research is required, especially under field conditions to modify and 

validate the algorithm predicting RP dissolution in the presence of the plant and 

under leaching conditions.
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Chapter 4. Assessing the accuracy of delta-NaOH-P as a measure of 

dissolved rock phosphate using the changes in exchangeable calcium

4.1. Abstract

Changes in NaOH-P have been often used as an estimate of RP 

dissolution. An incubation study was conducted to assess the accuracy of the 0.5 

M NaOH method as a measure of the amount of P dissolved from RP using the 

changes in exchangeable Ca in comparison. Similar trends of the RP dissolution 

were observed for both methods. The calculated molar ratio of Ca/P for the 

hydroxyapatite was close to that of Tilemsi and Taiba RPs but was about 1.7 

times lower than that of Gafsa RP probably due to the presence of CaCOs in the 

Gafsa RP. The percentage of RP that has been dissolved as measured by 

ANaOH-P was overestimated for Tilemsi RP (mean error (predicted -  measured) 

= 2.8711 and mean square error = 3.1136) and underestimated for Gafsa RP 

(mean error = -2.1324 and mean square error = 2.7434) with respect to the ACa. 

The results of this incubation study indicated that both changes in ANaOH-P and 

ACa were due to the dissolution of rock phosphates. However, the presence of 

water-soluble P in the RP might affect the accuracy of 0.5 M NaOH method as a 

measure of the amount of P dissolved from RP. ANaOH-P appears to be useful 

as an estimate of the amount of P released from the RP material when RP is 

considered as a means to provide P to crop (P fertilizer).
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When RP is added to an acid soil, the apatite, the primary mineral of the 

RP decomposes and releases P, calcium (Ca) and other soluble compounds 

such as OH', F', Cl', C0 3 ^'(Eq. 4.1) To simplify the dissolution reaction of RP in 

acid soil, let’s represent RP by hydroxyapatite. When soil moisture is not limiting 

and soil conditions are favorable, the dissolution reaction is then

Caio(OH)2  (P0 4 )e + 12H^ ^  10Ca^^ + 6 H2 P0 4 ' + 20H ' [Eq. 4.1 ]

The P released from RP dissolution, like the P from soluble P fertilizers, reacts 

with the soil constituents. In acid soils, the dissolved P reacts mainly with Al and 

Fe oxides and hydroxides.

The 0.5 M NaOH extractant has been used to estimate the amounts of 

rock phosphate (RP) dissolved in soils (MacKay et al., 1986; Syers et Mackay, 

1986; Diarra et al., 2004; Yampracha et al., 2006; Yampracha et al., 2005). The 

0.5 M NaOH solution is believed to extract P adsorbed to soil constituents after 

RP dissolution. The NaOH extractant is assumed to not dissolve the unreacted 

RP during the extraction period. Since NaOH extractant can extract soil organic 

P and the existing adsorbed P in soils not treated with RP, the differences in the 

NaOH-extractable P between the RP-treated and the RP-untreated soils were 

used as the estimate of dissolved P from the RP in the RP dissolution studies 

mentioned above.

4.2. Introduction
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According to equation [4.1], Ca is one of the products of RP dissolution 

which is released to the soil solution in amounts proportionate to the amount of P 

released (i.e. for each 5 moles of Ca^"” released 3 moles of P are released). 

While the dissolved P from RP reacts with soil Al and Fe compounds, the 

dissolved Ca remains in the soil as exchangeable Ca (Khasawneh and Doll, 

1978). The differences in the exchangeable Ca between the RP-treated and the 

RP-untreated soils was proposed as an estimate of dissolved P from the RP

4.3. Hypothesis and Objectives

The hypothesis of this study is that because both Ca and P are released 

during RP dissolution, the changes in exchangeable Ca (the difference between 

soils treated with RP and the check) will be proportionate to the changes in 

NaOH-extractable P. The measure of the changes in exchangeable soil Ca may 

then serve as an estimate of RP dissolution as well as the changes in NaOH-P. 

The hypothesis then was therefore the percent of RP dissolved estimated by 

both methods must then be proportional.

The objective of this study was to assess the accuracy of the ANaOH-P 

method to estimate the amount of P dissolved from the RP using the changes in 

exchangeable Ca as described above.
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4.4. Materials and Methods

4.4.1. Soil

The topsoil (0 - 15 cm depth) of an acid soil from Konobougou, Mali was 

selected as being representative of a large proportion of the soil in the food- 

producing region of Mali and West Africa. The soil was air-dried and passed 

through a 2-mm sieve. Selected properties of the soil are presented in Table 4.1. 

Soil pH was determined in water at the ratio 1:1. The P was extracted using the 

Bray 1 method (Bray and Kurtz, 1945) and subsequently determined by the 

Murphy and Riley method (1962). Acidity extractable by 1 M KCI was determined 

using the procedure proposed by Thomas (1982). Exchangeable cations (Ca^"", 

Mg "̂", K"", Na*) were determined using a 1 M ammonium acetate (pH 7.0) 

extraction (Thomas, 1982; Knudsen et al., 1982; Lanyon et al., 1982). The 

effective CEC was calculated as the sum of exchangeable cations and 

extractable acidity.

Table 4.1. Soil properties of the selected soil.

pH
H2O
(1:1)

Bray 1-P 
(mg kg-')

KCI-extractable 
Acidity 

(cmoU kg-')

Exchangeable 
(crnoU kg-')

ECEC* 
(cmoU kg-')

Ca^^ Mg'" K" Na"

4.87 2.68 0.50 0.46 0.21 0.14 0.02 1.33
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Taiba (Senegal), Tilemsi (Mali) and Gafsa (Tunisia) rock phosphates with 

low, medium and high solubility, respectively (Yost et al., 2003) were selected. 

The rock phosphates were passed through a 100-mesh sieve. The total P and 

water-soluble P analyses were performed using the procedures proposed by 

Houba et al. (1995). Total and water-soluble P were then determined by 

colorimetry (Murphy and Riley, 1962). The calcium carbonate equivalent (CCE) 

was determined by digesting 1 g of RP material in 50 ml of 0.5 M HCI for 5 min 

and then by titrating it with 0.25 M NaOH to pH 5 as proposed by Sikora, (2002). 

The iron (Fe) content was determined by x-ray fluorescence. The particle size 

distribution was done using 2-mm and 0.150-mm sieves. The RP characteristics 

are presented in Table 4.2.

4.4.2. Rock phosphates

Table 4.2. Rock phosphates and their characteristics

Properties Rock phosphate (origin)

Gafsa
(Tunisia)

Tilemsi
(Mali)

Taiba
(Senegal)

P (g kg-') 135.2 112.6 170.3
Ca* (g kg ') 334 305 350
Water-soluble P (mg kg'^) 1.50 4.11 2.10
CCE** (%) 51.67 35.50 45.08
Fe (g kg-^) 2 20 5

Yampracha et al., 2006 
Calcium carbonate equivalent
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The three ground RP materials were added to the soil at the rates of 0 and 

500 mg P kg"'' in 3 replications. The mixtures were moistened to field capacity 

and thoroughly mixed. The moisture content was maintained during the 

incubation. Soil samples were removed from the incubation containers at 0, 1, 3, 

7, 15, 30 and 60 days of incubation. The RP dissolution was estimated by NaOH 

extraction as described by MacKay et al. (1986). This procedure consisted of 

extracting the P from the soil using 0.5 M NaOH at a soil:solution ratio of 1:100 

during 16 hours. The extraction was preceded by prewashing with 10 ml of 1 M 

NaCI. The difference in NaOH-extractable P between the RP-treated and the 

untreated soil was considered as an estimate of the P dissolved from the RP. 

The exchangeable calcium (Ca) extracted with an unbuffered 1 M KCI was also 

determined at each sampling time. The change in exchangeable Ca (difference 

between the RP-treated and the untreated soil) was used as a second estimate 

of the RP dissolution.

4.4.3. incubation

4.4.4. Statistical analysis

Analysis of variance of ANaOH-P and Aexchangeable Ca was performed

using SAS (SAS, 1985). A molar relationship was established between ANaOH-P

and Aexchangeable Ca. The percent of RP dissolved was then calculated based

on the total P and Ca contents of RPs and the amounts extracted from the soils

after incubation. The Mean error (ME) and the Mean squared error (MSE) for
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each RP were used for a quantitative comparison (accuracy and precision, 

respectively) of ANaOH-P and ACa. The equations for calculating the ME and 

MSE were the following;

[Eq.4.2]

n

[Eq. 4.3]
n

Where Xpred = %RP dissolved estimated by NaOH-P 

Xobs = %RP dissolved estimated by Ca 

n = number of observations

4.5. Results and Discussion

The amount of dissolve rock P as estimated by the ANaOH-P and 

Aexchangeable Ca initially increased and slowed down or reached an equilibrium 

at about 15 to 30 days of incubation (Figure 4.1). The three selected RP 

materials dissolved differently in the Konobougou soil. For both methods, the 

sequence of the dissolution was the following: Gafsa>Taiba>Tilemsi. This 

sequence is contrary of the expectation (Gafsa>Tilemsi>Taiba) based on the 

solubility of the RPs in neutral ammonium citrate which are respectively high, 

medium and low (van Kauwenbergh, 1997). The solubility of the RP materials 

used in this study could have probably helped in explaining the low performance
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of Tilemsi RP compared to the others; however, due to technical reasons we 

were not able to determine those solubility data.

When the molar relationships between ANaOH-P and Aexchangeable Ca 

from the three RPs are plotted (Figures 4.2,4.3 and 4.4), it can be deduced that 

for each mole of P released by dissolution about 2.85, 1.74 and 1.49 moles of Ca 

were released for Gafsa, Tilemsi and Taiba RPs, respectively. Assuming that RP 

can be represented by Equation 4.1, for every 10 moles of Ca 6 moles of P are 

released; the expected molar ratio is about 1.7.

The molar ratio of Tilemsi and Taiba RPs are close to the estimated one. 

The difference, however, between the molar ratio of Gafsa RP and the one that 

was estimated might be due the presence of some carbonate calcium in the 

materials. The presence of the calcium carbonate in Gafsa RP was supported by 

effervescence observed when the RP material was treated with a solution of HCI.
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Figure 4.1. RP Dissolution as measured with a) 0.5 M NaOH and b) the KCI-extractable Ca.
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Figure 4.5 shows the comparison of the percent RP dissolved as 

estimated by ANaOH-P and ACa. The percent of RP dissolved from Taiba RP as 

estimated by ANaOH-P are similar to those estimated by ACa (ME = 0.0126 and 

MSE = 0.4595). However, the percents of RP dissolved from Tilemsi and Gasfa 

RPs lie, respectively, above and below the 1:1 line. These results indicate that 

the percent of RP dissolved from Tilemsi RP are overestimated by the ANaOH-P 

method (ME = 2.8711 and MSE = 3.1136) and those from the Gafsa RP are
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underestimated by the ANaOH-P method (ME = -2.1324 and MSE = 2.7434). 

These overestimations are probably due to the presence of some water-soluble 

P in Tilemsi RP (Table 4.2) and the extraction of Ca from the CaCOs in the Gafsa 

RP.
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Figure 4.5. Comparison of the percentage of RP dissolved as estimated by 
ANaOH-P and ACa.

4.6. Conclusions

Because of the similar trends of ANaOH-P and ACa over time, the 

changes were caused mainly by the solubility of RP as amendments. The

percent RP dissolved as estimated by both differences in NaOH-P and
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exchangeable Ca between RP-treated and untreated soil are affected by the 

presence of water-soluble P and CaCOs: therefore affecting the accuracy of 

ANaOH-P and A exchangeable Ca as methods for estimating the RP dissolution. 

Changes in NaOH-extractable P appear to be useful as estimates of the amount 

of RP dissolution especially for RP materials containing CaCOz or under 

conditions where Ca losses cannot be accurately estimated. Where the RP 

contains water-soluble P, ANaOH-P did not measure dissolution from RP. 

However, if we consider the RP as a fertilizer, ANaOH-P may be used as an 

estimate of the total amount of P released from RP.
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predictions

Chapter 5. Multi-location field-testing of the rock phosphate algorithm

5.1. Abstract

The direct application of rock phosphate (RP) can be a good alternative to 

water-soluble P fertilizers. The complexity of the factors and their interactions led 

to the development of an algorithm to predict the amounts of RP needed to meet 

crop P requirements on a site specific basis. Two experiments were conducted at 

Konobougou (Konbougou 1 and 2), Mali and one experiment was conducted at 

Keur Madieng, Senegal to field test the predictions made by the algorithm. Treble 

super phosphate (TSP), Gafsa (GRP), Tilemsi (TRP) and/or Taiba (TaRP) RP 

were applied at 0, %X, >2X, 1X and/or 2X, where 1X, the predicted rates, were 

equivalent to

• 127 and 1403.8 kg ha'^ for TSP and TRP, respectively at Konobougou 1

• 113, 1794 and 733 kg ha’  ̂ for TSP, TRP and GRP, respectively, at

Konobougou 2

113, 2734, 5361.3 and 1301.3 kg ha'^ for TSP, TRP, TaRP and GRP, 

respectively at Keur Madieng.

These differences in the rate of application reflect both the different RP qualities 

and soil properties. Similar yields were produced by both TSP and the RPs. The 

accuracy of the RP algorithm could not be conclusively tested because of the

large variability in the field. However, data from Tilemsi and Gafsa RP suggested
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that the RP algorithm could be overestimating RP amounts for maximum millet 

yield. The maximum yields were achieved with the application of 826 rather than 

1403.81 kg TRP ha ' at Konobougou 1 and 652.08 rather than 1301 kg GRP ha ' 

at Keur Madieng. A Bray 1-P critical level of 11 mg kg"' could be used for 

identifying P deficient conditions and for predicting the amounts of both water- 

soluble P and RP needed for maximum yield. More experiments in controlled 

conditions are needed to test the proposed RP algorithm. It is also important to 

match soil and RP properties when opting for the use of RP to correct soil P 

deficiency. The generalization of the RP algorithm to a broader range of RPs is 

then needed for more accurate predictions.

5.2. Introduction

Food security is one of the major concerns in developing countries. With a 

rapid population growth rate (around 2.9% per year), food security becomes an 

urgent concern in Africa. This situation is aggravated in the Sudanian and 

Sahelian zones of West Africa because of the unusual nature of soils in that 

region. In fact, soils of this region of West Africa are generally weathered, sandy, 

commonly acid, low in organic matter, poorly buffered, and characterized by a 

dominance of kaolinite and sesquioxides (Juo and Fox, 1977; Wilding and 

Hossner, 1989; Takow et al., 1991; Manu et al., 1991). This inherent low soil 

fertility, particularly the phosphorus (P) deficiency, has long been known as one 

of the limiting factors for plant growth (Pieri, 1986). However, high variability in
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soil properties can be noticed throughout farmers’ fields in the Sudano sahelian 

zone of West Africa due to the presence of shrubs. Guiera senegalesis is one of 

the major native shrubs in farmers’ fields in this region. Under drought conditions, 

G. senegalesis was found to increase crop yield by improving soil quality and 

water conditions around the canopy and in the rhizosphere. Dossa (2007) found 

a high C content under the canopy of G. senegalesis compared to the open 

areas, creating soil fertility spots and heterogeneity in farmers’ fields. The factors 

explaining this variability in soil properties and crop yields include the fact that 

shrubs contribute to retain or trap soil in areas affected by eolian erosion and the 

nutrient recycling under the canopy (Dossa, 2007).

Rock phosphate can be used to correct the P deficiency in soil. However, 

how well RP can perform in supplying P to crops depends on many factors such 

as soil and RP properties, plant, climate and management factors, as well as 

factors controlling available P from dissolved RP (Khasawneh and Doll, 1978). 

At present, however, there are only general (blanket) recommendations that 

attempt to relate how much rock P is needed. These methods have no diagnosis 

of crop, soil or management conditions. For example, the recommendation for 

Tilemsi RP to supply P for major crops in Malian soils ranges from 44 to 53 kg P 

ha''' (Polain, 1976). According to Thibout (1980) 35 kg P ha'”' as Tilemsi RP was 

recommended to meet crop P requirements. Despite the extensive studies done 

on the factors affecting RP performance, scientists have not quantified the 

amounts of RP needed to meet plant P requirements on a site-specific basis. The
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large number of factors affecting RP suitability for direct use justifies the need for 

a modeling approach that could identify, quantify and combine the factors into a 

prediction algorithm. The International Fertilizer Development Center (IFDC) in 

collaboration with FAO and the International Atomic Energy Agency (IAEA) has 

developed a decision support system for RP (PRDSS) to predict the relative 

agronomic effectiveness of a particular RP in different environments as 

compared to soluble P fertilizer (Smallberger et al., 2006). However, there are no 

models to predict amounts of RP required. The algorithm proposed by Diarra et 

al. (2004) is, so far, the only approach to quantitatively predict the amount of RP 

needed that considers the soil and plant factors. The ability to predict RP fertilizer 

requirements and to develop accurate and site-specific RP recommendations will 

represent a substantial contribution to improve P fertility status and to increase 

crop yields in West African soils. The proposed algorithm needs to be tested in 

field conditions in representative locations of the region under study (West 

Africa). A multi-location field evaluation is essential in order to provide a realistic 

assessment of the performance of the RP algorithm, because RP suitability will 

be affected by soil and RP properties, as well as climate conditions, cropping 

systems and farming practices.

5.3. Hypothesis and Objectives

The hypothesis of this study was that RP dissolution in field conditions 

would be affected by soil properties, plant uptake, leaching conditions and the
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site characteristics such as climate and management practices and thus may 

require adjusting the rates predicted by the proposed algorithm for producing 

maximum millet yields.

The objectives of these field experiments were to;

(i) Test the predictions made by the proposed RP model under 

different climate and management conditions and to identify 

refinements needed in the model.

(ii) Develop a millet response curve and identify the P critical level

5.4. Materials and Methods

The field experiment (Konobougou 1) was initially conducted at 

Konobougou, Mali in 2004. Because Konobougou 1 included only Tilemsi RP 

from Mali, additional field trials were carried out at Konobougou, Mali 

(Konobougou 2) and Keur Madieng, Senegal during the 2005 and 2006 rainy 

season, and at Sadore, Niger in 2007 with the intention to include a range of RPs 

with low, medium and high reactivity. An additional rate of P material application 

was also included to better establish the RP rate for maximum yield. The rational 

for choosing Mali and Niger was that the rock phosphates from both these 

countries are the only ones recommended for direct application in agriculture in 

West Africa (Truong et al., 1978; Bationo et al., 1990). Senegal was chosen

because the country has the Taiba RP deposit with low solubility. The rainfall

69



gradient represented by the location of these selected sites also provides an 

opportunity to test the algorithm under a range of climate and management 

conditions. Because the Sadore, Niger experiment is on-going; data from that 

experiment are not yet available and will not be presented in this section. The 

experimental conditions at Sadore will be presented in Appendix.

5.4.1. Site selection

The Sites (Figure 5.1) were selected on the basis of the on-going activities 

of the research institutes of Mali (lER) and Senegal (ISRA). Selected 

characteristics of these sites are as follows (Sivakumar et al., 1984; Virmani et 

al., 1980; Spencer et al., 1995; PIRT, 1986):

5.4.1.1. Konobougou

Located about 80 km Southwest of Segou, this site is located in the 

Sudanian Zone of Mali (6 ° 51’ 15.23” W, 13° 7’ 44.72”N). It receives about 800 

mm of rainfall annually. The rainy season lasts about 4 months (from June to 

October). The annual potential evapotranspiration (ETp) reaches about 1770 

mm. In general, the maximum average temperature is 35° C (from May to June), 

while the average minimum temperature is 22° C (from December to January). 

Soil at Konobougou experimental site is sandy (Plinthic Paleustalfs (Soil 

Taxonomy)). The annual rainfall from 2004 to 2006 is shown in Figure 5.2.
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Figure 5.1. Map of the experimental sites.
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Figure 5.2. Annual rainfall at Konobougou, Mali (2004 to 2006).

5.4.1.2. Keur Madieng

Located in the Sudanian zone of Senegal at about 78 km out of Bambey, 

Keur Madieng (15° 58’ 24.13” W, 14° 21’ 18.69" N) is characterized by a mean 

annual rainfall of 650 mm year’’’ distributed between beginning of July and middle 

of October. The annual ETp is about 1770 mm (Virmani et al., 1980). The soil of 

the experimental site is a Typic Flaplustalf. The annual rainfall received in 2005 

and 2006 is shown in Figure 5.3.
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Figure 5.3. Annual rainfall at Keur Madieng, Senegal (2005 and 2006).

5.4.2. Features common to all experiments

All experiments were conducted under on-farm conditions. The predictions 

made by the RP algorithm were tested for millet -  the staple food in the Sahel of 

West Africa. The experiments were conducted on P-deficient (i.e. Bray1 less than 

7 mg kg-') and acid (pH< 5.5) soils. However, high variability in soil properties 

was noticed throughout the plots, especially at Keur Madieng and probably due 

to the presence of Guiera senegalesis.
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Factorial experiments (sources of P x application rates) were implemented 

at all sites in randomized complete blocks replicated 4 times in Mali and 5 times 

in Keur Madieng. Phosphorus sources initially included one soluble P fertilizer 

(treble super phosphate -  TSP) and three RPs with high, medium and/or low 

solubility. However, the experiment at Konobougou (Konobougou 2) did not 

include Taiba RP from Senegal (low solubility) because of the difficulties 

encountered during the shipment of the material from Senegal to Mali. Gafsa RP 

with high solubility has been provided by the World Phosphate Institute 

(IMPHOS-Morocco). The RP with medium solubility was Tilemsi RP from Mali 

(Table 5.3). Tilemsi RP had been imported to Senegal for the purpose of the 

experiment. The rates of RP application were 0, %, 72, 1 and 2 times the amount 

of RP predicted by the algorithm.

The rationale for developing a crop response curve to the application of 

RP material was to evaluate the agronomic value of the RPs. This type of 

response provides an integration of factors associated with the soil, the rock 

phosphate, and the crop responsiveness. For example:

- Some soils have so little acidity that they can only dissolve relatively 

small amounts of applied rock phosphate, thus a response to the application of 

1 0 0 kg may be entirely different from that to 2 0 0  kg and thus it is important to 

determine the response to a range of applications.

- At differing rates of application constituents other than the apatite of the

rock phosphate may significantly affect the use of the material. For example, rock
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phosphates with substantial free carbonates and liming potential, when applied in 

small quantities are unlikely to change soil pH, however, at high levels of 

application soil pH may change substantially and retard or arrest the dissolution 

of the material (Yampracha et al., 2005). Conversely, some soils have such 

high acidity that the neutralization of the acidity is a direct benefit as are the 

additions of Ca.

- Other crops acidify the rhizosphere in response to nitrogen supply or do 

so due to physiological reasons related to their genetic makeup. It may be that 

the response to differing amounts of applied rock phosphate will vary due to this 

factor.

Because of all the reasons mentioned above, a response curve would 

enable detecting whether the algorithm under predicts, accurately predicts, or 

over predicts RP needs and by how much.

Soil analysis Soil samples (depths of 0 - 15 and 1 5 - 3 0  cm) were 

collected in each experimental unit prior to the application of fertilizer at the 

beginning of the experiments and after harvest. The soil samples were air-dried, 

sieved through a 2 -mm sieve, and analyzed for

• pH in a 1:1 soil/water mixture,

• Bray 1 extractable P (Bray and Kurtz, 1945),

• 0.5 M NaOH-extractable P (MacKay et al., 1986)

• KCI-extractable acidity (Thomas, 1982)
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The Phosphorus Decision Support System (PDSS) was used to predict TSP 

application rates. Properties of topsoil samples from each experimental unit and 

the developed algorithm were used to predict application rates for Tilemsi RP. 

The predictions for Gafsa and Taiba RPs were calculated by multiplying the 

Tilemsi RP rates by % and 2, respectively, based on the solubility of the RP 

materials. The solubility of the RP materials in the neutral ammonium citrate and 

2% citric acid are presented in Table 5.1.

• 1 M NH40AC, pH 7 exchangeable cations (Thomas, 1982)

Table 5.1. Solubility of selected RP materials.

RP Solubility (g P2O5 kg‘  ̂ rock)

2 "̂  ̂ NAC^ 2 % citric acid

Gafsa 65 107
Tilemsi 58 119
Taiba 43 81

Neutral ammonium citrate; second extraction (1 g of RP; 100 ml of solution) 
Source: Chien et al., 2003.

Chien et al. (2003) have reported a classification of the agronomic 

potential of rock phosphate for direct application, based on a second neutral 

ammonium citrate solubility as follows: high -  55-67 g P2O5 k g '\ medium -18-35 

g P2O5 kg'^ low -  5-18 g P2O5 kg'''; and very low -  2-7 g P2O5 kg’"'.

Rock phosphate analysis The Tilemsi RP applied at Konobougou 1 was 

the same as the Tilemsi RP material used in the study done by Yampracha et al..
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(2006). The total P and Ca were determined using AOAC (1984) procedures. 

The citrate- and 2% acid citric-soluble P second extraction was performed by 

IFDC (Institutional Fertilizer Development Center). The method described by 

Sikora (2002) was used the determined the calcium carbonate equivalent.

For the RPs used at Konobougou 2 and Keur Madieng, the RP analyses 

were determined as follows. The total P and water-soluble P analyses were 

performed at ICRISAT-Niamey using the procedures described by Houba et al. 

(1995). The RP materials were characterized for total P by digestion in a mixture 

of concentrated H2SO4 , salicylic acid and H2O2 in the presence of selenium as a 

catalyst. Total and water-soluble P were then determined by colorimetry (Murphy 

and Riley, 1962). The calcium carbonate equivalent (CCE) of the rock phosphate 

was determined by boiling 1 g of RP material in 0.5 M HCI during 5 min and then 

by titrating it with 0.25 M NaOH to pH 5 as proposed by Sikora (2002) (Tables 

5.2 and 5.3).

Table 5.2. Selected characteristics of Tilemsi RP used in the Konobougou 1 
experiment.

Solubility Total P

(g kg‘ )̂

Total
Ca

(g kg'^)

NAC2**
(g P kg'^ rock)

2%Citric
acid

(g P kg-')

CCE*
(%)

Particle size 
(<100 mesh) 

(%)
Medium 121 305 18.7 48.9 41.7 96.7

* Calcium carbonate equivalent 
Neutral ammonium citrate, second extraction 

Source: Yampracha et al., 2005.
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Table 5.3. Selected characteristics of the RP materials used in the Keur Madieng and Konobougou 2 experiments.

RP
material 
and Origin

Solubility Total

(g kg-^)

Fe

(g kg'^)

CCE**

(%)

Solubility 

Water 

(mg kg-'')

Particle size distribution 

(%)

P Ca* >9 mesh 9-100 mesh <100 mesh

Tilemsi,
Mali

Medium 112.6 305 20 35.50 4.11 0.54 14.56 84.91

Taiba,
Senegal

Low 170.3 350 5 45.08 2.10 0.00 41.64 58.36

Gafsa,
Tunisia

High 135.2 334 2 51.67 1.50 5.36 66.39 28.25

* Yampracha et al., 2005.
** Calcium carbonate equivalent
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5.4.3. Experimental conditions specific for each site

5.4.3.1. Konobougou 1.

A 2 X 4 factorial experiment was conducted at Konoboudou during 3 years 

(2004 -  2005). The experimental design was a randomized complete block with 

each experimental treatment replicated 3 times. Individual plots were 67.5 m^ 

(6.75 m X 10 m). The P material type and application rates are given in Table 5.4.

Table 5.4. Application rates of the selected P materials for the Konobougou 1, 
Mali field experiment.

P material P material application rates 
(kg ha'^)

OX* 72 X* 1 X* 2X*

TSP 0 63.5 127 254

Tilemsi RP 0 736.3 1403.8 2811.6

‘Where 1 X was equivalent to the predicted rate

Soil properties Soil properties analyzed from the topsoil samples are 

presented in Table 5.5.

Crop Millet {Pennisetum spp) variety Sanioba 03 was planted on July 13 

in 2004. Seeds were pretreated with an insecticide Apron® and planted at 0.5 m 

apart in the row and the distance between rows was 0.75 m. The seedlings were 

thinned to three plants per planting hill 27 days after planting on August 9, 2004, 

giving a population of 79,800 plants ha '\
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Table 5.5. Selected soil properties at Konobougou 1, Mali (depth 0 - 1 5  cm).

pH water Acidity* Bray 1-P Exchageable cations ECEC** Ca saturation Clay

(1:1) (cmolc k g ') (mg kg ') (cmolc kg-') (cmolc k g ') (%) (%)

Ca'" Mg'" K" Na"

4.81 0.45 3.20 0.50 0.26 0 .14 0.01 1 .3 5 3 6 .8 7 7

(0.031) (0.022) (0.084) (0 .0 16) (0.009) (0.006) (0.0008) (0.03) (0.998)

Numbers in parentheses are standard error
*KCI-extractable acidity
“ Effective cation exchange capacity
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Crop management Techniques for tillage were those usually applied in 

this area: broadcast application of P and/or K and incorporation by plowing prior 

to planting. The application rates of the P materials are shown in Table 3. 

Nitrogen was applied once, 45 days after planting on August 27, 2004 (31 kg N 

ha ' as urea) followed by weeding. The second weeding was carried out 66 days 

after planting (on September 17, 2004). Harvest was performed from a 5.95 m^ 

area 131 days after planting (on November 21, 2004). Four plants were sampled 

from the harvested area and were air-dried for further laboratory analyses. The 

plants were dried and the grain and biomass yields were recorded. Soil samples 

were collected from each experimental plot after harvesting.

Evaluating the residual effects o f the P materials The experiment was 

repeated in 2005 and 2006 without re-application of P to evaluate the residual 

effects of the P applied in 2004. The experiment has been conducted as 

explained above. The field was tilled using animal traction on July 16, 2005 and 

July 15, 2006. The Sanioba 03 variety was pretreated with the insecticide 

Apron®, planted on the ridges (July 16, 2005 and July 15, 2006), thinned to 3 

plants per planting hill 20 and 18 days after planting in 2005 and 2006, 

respectively (August 8, 2005 and August 2, 2006). Three weedings were 

performed 16, 30 and 47 days after planting (on July 31, August 14 and 

September 01, 2005), while in 2006 only 2 weedings were carried out 18 and 50 

days after planting (August 02 and September 03, 2006). Harvest was performed
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129 and 140 days after planting in 2005 and 2006, respectively (November 22, 

2005 and December 2, 2006). The size of harvest area was 5.95 m^.

Fertilizer application Nitrogen was applied once 30 days after planting in 

2005 (on August 14, 2005) (31 kg N ha’”' as urea). In 2006, N was split applied 

18 and 50 days after planting on August 02 and September 03, 2006 (86.5 kg N 

ha'^ each time) and K was applied at 87 kg K ha'^ as K2SO4 before planting (July 

15, 2006).

5.4.3.2. Konobougou 2

A 3 X 5 factorial experiment was conducted at Konobougou in 2005 and 

2006. The experimental design was a randomized complete block with each 

experimental treatment replicated four times. Individual plots were square with 3 

m on each side. The P material type and application rates are given in Table 5.6.

Table 5.6. Application rates of the selected P materials for the Konobougou 2, 
Mali field experiment.

P material P material application rates 
(kg ha ')

OX* 74 X* 72 X* IX * 2 X*

TSP 0 34 6 8 113 272

Gafsa RP 0 178.9 339.8 733 1589

Tilemsi RP 0 326.5 789.5 1794 2656

*Where 1 X was equivalent to the predicted rate
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Soil properties Soil properties analyzed from the topsoil samples are 

presented in Table 5.7.

Crop Millet {Pennisetum spp) variety Sanioba 03 was planted on July 21, 

2005. Seeds were pretreated with an insecticide Apron® and planted at 0.5 m 

apart in the row and the distance between rows was 0.75 m. The seedlings were 

thinned to three plants per planting hill on August 8, 2005, giving a population of 

79,800 plants ha‘\  The first replication was eliminated from the analysis because 

of the damage caused by runoff from the intense rainfall.

Crop management Techniques for tillage were those usually applied in 

this area: broadcast application of P and or K and incorporation by plowing prior 

to planting. The application rates of the P materials are shown in Table 3. 

Nitrogen was applied once on August 20, 2005 (31 kg N ha'^ as urea). Hand 

weeding was carried out 27 and 47 days after planting (on August 17 and 

September 6, 2005), respectively. Harvest was performed from 5.25 m^ area 125 

days after planting (on November 23, 2005). Four plants were sampled from the 

harvested area and were air-dried for further laboratory analyses. The plants 

were air-dried and the grain and biomass yields were recorded. Soil samples 

were collected from each experimental plot after harvesting.
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Table 5.7. Selected soil properties at Konobougou 2, Mali (depth 0 - 1 5  cm).

pH water 

(1 :1 )

Acidity* 

(cmolc kg'^)

Bray 1-P  

(mg kg^)

Exchangeable cations 

(cmolc kg'^)

ECEC** 

(cmolc kg"'')

Ca
saturation

(%)

Clay

(%)

Ca^^ Mg'" K" Na"

4.68

(0.019)

0.61

(0.026)

2.03

(0.055)

0.33

(0 .0 11)

0 .25

(0.007)

0 .14

(0.005)

0.01

(0.003)

1 .3 4

(0.028)

24.92

(0.864)

8

Numbers in parentheses are standard error
*KCI-extractable acidity
**Effective cation exchange capacity
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Evaluating the residual effects o f the P materials The experiment was 

repeated in 2006 without re-application of P on the same plots as 2005 to 

evaluate the residual effects of the P applied the previous year. The experiment 

was conducted as explained above for 2005. The Sanioba 03 variety was 

pretreated with the insecticide Apron®, planted (July 16, 2006), thinned 17 days 

after planting (August 2, 2006) and harvested 140 days after planting (December 

3, 2006). The total amounts of N and K supplied (173 kg N ha"' as urea and 87 

kg K ha ' as K2S O 4), were determined so as to be not limiting. Nitrogen was split 

applied 17 and 49 days after planting on August 2, 2006 and September 3, 2006 

(86.5 kg N ha’' each time). Nitrogen and K were mistakenly not applied to the 

controls (plots which did not receive P).

5.4.3.3. Keur Madieng, Senegal

An experiment similar to that at Konobougou was implemented at Keur 

Madieng during two years (2005 and 2006) in a rotation of millet-peanut as 

practiced in the area. The field was selected based on preliminary pH and Bray 1 

soil test results (< 5.5 and < 7 mg kg ', respectively). However, upon our arrival at 

Keur Madieng, the soil variability in the field was visually obvious. This variability 

was probably due to the presence of G. senegalensis shrub. The choice of 

changing the field was limited because all fields in the proximity were already 

cultivated and planted. The factorial 4 x 5 (P materials x application rates) 

experiment was designed as a randomized complete block with 5 replications.
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The P material type and application rates are presented in Table 5.8. The size of 

the experimental plots was 9 m'.

Table 5.8. Application rates of the selected P materials for Keur Madieng, 
Senegal field experiment.

P material P material application rates 
(kg ha' )

OX* %X* 72 X* IX * 2X*

TSP 0 28.25 56.6 113 226.5

Gafsa RP 0 303.2 652.4 1301.33 2437.8

Tilemsi RP 0 627.6 1217.3 2734.3 4514

Taiba RP 0 1159.7 2397 5361.3 8916

‘Where 1 X was equivalent to the predicted rate

Soil properties Soil properties analyzed from the topsoil samples are 

presented in Table 5.9.

Crop The variety of millet {Pennisetum spp.) selected was Souna 3. 

Planting was performed in hills spaced 0.5 m x 0.5 m on July 14, 2005 after 

treating the seeds with Granox®. Plants were thinned to 2 plants per hill at the 

10‘  ̂day after planting, giving a final population of 80,000 plants ha''.
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Table 5.9. Selected soil properties at Keur Madieng, Senegal (depth 0 - 1 5  cm).

pH water 

(1:1)

Acidity* 

(cmolc kg'^)

Bray 1 -P 

(mg kg-^)

Exchangeable cations 

(cmolc kg'^)

ECEC** 

(cmolc kg'^)

Ca saturation 

(%)

Clay

(%)

Ca^^ Mg"" K" Na"

5.2 7

(+/-0.032)

0 .18

(+/-0.026)

2 .7 9

(+/-0.112)

0 .55

(+/-0.014)

0.33

(+/-0.008)

0.06

(+/-0.003)

0.003

(+/-0.001)

1.12

(+/-0.030)

49 .8 6

(+/-1.020)

3

Numbers in parentheses are standard error
*KCI-extractable acidity
**Effective cation exchange capacity
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Crop management Stumps of Guiera senegalensis were removed prior to 

fertilization and planting. Nitrogen was applied as urea and potassium as K2SO4 

at the recommended rates. Nitrogen was split applied to millet (15, 23 and 23 kg 

N ha'^ at planting, at thinning 10 days after planting and at 45 days after planting, 

respectively). Phosphorus materials (Table 5.8) and potassium (40 kg K2O ha'^ 

as K2SO4) were applied just prior to planting. The fertilizers were applied by 

broadcast and then incorporated using a hoe. Weeding was carried out at 

thinning 10 days after planting and at 27 days after planting. Plants were 

harvested at the 90**̂  day after planting. The harvested area was 4.5 m'. Plants 

were dried and grain and biomass yields were recorded. Plant tissue from 4 

plants, selected randomly in the harvested area and grain, leaves and stalks 

were collected, dried, and ground.

Evaluating the residual effects o f the P materials. In 2006 the experiment 

was repeated without re-application of P on the same plots as in 2005 to 

evaluate the residual effects of the P materials on peanut grain yield. Because of 

the rotation millet-peanut practiced in Keur Madieng and because of the locust 

attack in 2005, it was decided to plant peanut {Arachis hypogea,) variety 55-435 

in 2006 to avoid locust attacks. The field was cleaned from the remaining 

stumps of Guiera senegalensis and weeds. Nitrogen was applied at the rate of 

77 kg N ha'^ as urea (by mistake rather than the intended 30 kg) on July 6  ( 6  

days before planting). Potassium was split applied (75 kg K ha'^ as K2S O 4) on 

July 6  and 28 (16 days after planting). After the broadcast application, N and K
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were incorporated to a depth of 7 -1 0  cm (shallow) using animal traction. Before 

planting, peanut seeds were pretreated with an insecticide/ fungicide mixture: 

Saxal® containing 25% Thirame® + 20% Lindane®. Planting was performed 

using a peanut planter at 0.5 m apart on July 12, 2006. Two weeks after planting, 

it was noticed that two rows in 10 experimental units of replication 4 had not 

germinated. Those rows were then replanted to give a population of 80,000 

plants ha''. The first weeding was done before end of July using animal traction 

between rows and with the hoe “daba” between plants within the row. The 

second weeding was performed on August 11, 2006, 30 days after planting. 

Nodules were collected from plants in the borders of the experimental plots on 

August 10 and 25. The efficiency of the nodules was evaluated by the color 

inside the nodules. During the first observation, no efficient nodules were 

observed. However redness was observed in some nodules during the second 

observation of the nodules on August 25. The beginning of flowering and 50% 

flowering were observed on August 4 and 11, respectively or 23 days and 30 

days after planting. Plant mortality was noticed and recorded on August 26. On 

August 30, peanut aphids were detected. The presence of aphids was a 

frequently occurring phenomenon on peanut and cowpea at Keur Madieng. The 

attack coincided with flowering. However, aphids disappeared after an intense 

rain. Several plants were missing in plots 101, 102, 110, 116, 117 and 120 of the 

first replicate at the date of September 13. Plants were harvested from October 

06 to 08 (from 86 to 88 days after planting). Plants were air-dried and dry grain

and haulm yields were recorded. Grain and haulm samples were collected and
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ground for total P determination. After harvest, soil samples were also collected 

from each experimental plot from 0 - 1 5  and 15 - 60 cm depths for lab analyses.

5.4.4. Statistical analysis

The analyses of variance and the mean breakdown were performed. The 

linear regression plateau (LRP) analysis was done to estimate the RP rates that 

produced maximum yields for each RP (Shuai et al., 2003). A similar analysis was 

also used to determine the Bray 1-P critical level.

5.5. Results and Discussion

5.5.1. Konobougou 1

5.5.1.1. Effects of P material rate and type on millet grain yield

Millet grain yield linearly increased with TSP application rates. The yield 

increased by 675.47 kg ha"' with the increase of TSP application rate by IX  (p < 

0.0001) (Figure 5.4a). This response of millet to P application confirmed that the 

soil was deficient in P. At the maximum rate of TSP application (2X), millet yield 

increased by 1381 kg ha ' over the control (OX). The maximum yield was 

supposed to be reached at IX  of TSP application. PDSS underestimated the 

amount of TSP needed for maximum yield. However, millet yield linearly 

increased with Tilemsi RP application rate up to 0.5X (slope = 1111.5 kg ha'', p =
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P material application, kg ha-1

Figure 5.4. Millet response to the P materials application, 2004 (Konobougou 1, Mali).
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0.0100) and then remained constant with further additions of Tilemsi RP (slope = 

-131.0 kg ha"', p = 0.6143) (Figure 5.4b). A linear regression model was applied 

to the crop response to TSP because of the linearity in the response. The linear 

response plateau estimated that 826 rather than 1404 kg Tilemsi ha"' is needed 

to produce the maximum yield. This suggests that the RP algorithm 

overestimated the amount of Tilemsi RP needed to meet crop P requirement. 

High variability reflected in the root mean square of error (coefficient of variation 

CV = 24% for TSP and 30% for Tilemsi RP) characterized millet grain yield the 

Konobougou 1 experiment.

5.5.1.2, Effects of soil Bray 1-extractable P on millet grain yield

Millet grain yield increased with the increase in Brayl-P level up to the 

critical level of 10.94, 8.11 and 7.19 mg kg"' in 2004, 2005 and 2006, respectively 

(Figures 5.5, 5.6 and 5.7). Millet grain yield response to the increase in soil Bray 

1-P levels followed the same path for both TSP and Tilemsi RP treated soils, 

suggesting that the same critical P level can be used for both P materials. This 

critical P level is close to the 11 mg P kg"' used in the Phosphorus decision 

Support System (PDSS) (Yost, 1992). However, a critical Bray 1-P level of 7.9 

mg kg"' was established by Bationo and his coworkers (personal 

communication).
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Figure 5.5. Millet response to soil Bray 1-extractable P levels (Konobougou 1, 
Mali), 2004.
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Bray 1-extractable P, mg k g '\ after harvest

Figure 5.6. Millet response to soil Bray 1-extractable P levels (Konobougou 1, 
Mali), 2005.
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•4
Bray 1-extractable P, mg ha" , after harvest

Figure 5.7. Millet response to soil Bray 1-extractable P levels (Konobougou 1, 
Mali), 2006.

5.5.1.3. Effects of P materials and rates on RP dissolution

ANaOH-P increased with the increase in the P material rate of application 

after harvest in 2004 and in 2006 (Figures 5.8 and 5.9). The slope of the 

regression line between ANaOFI-P and TSP rates of application decreased from 

13.07 mg kg'' (p = 0.0005) in 2004 to 4.71 mg kg'' in 2006 (p = 0.009) (Figure 

5.8), while the slope for Tilemsi RP was 10.88 mg kg'' in 2004 (p = 0.008), 14.29 

mg kg'' in 2005 (p = 0.0028) and 13.40 mg kg'' in 2006 (p = 0.0027) (Figure 5.9). 

The decrease in the slope for TSP is probably because part of the soluble P from
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Figure 5.8. Changes in NaOH-P in P-treated soils at Konobougou 1 (TSP).
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Figure 5.9. Changes in NaOH-P in RP-treated soils at Konobougou 1 (Tilemsi 
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the TSP had strongly reacted with soil constituents. The increase in the slope for 

Tilemsi RP indicates that dissolution was incomplete the first season.

5.5.1.4. Relationship between ANaOH-P and ACa

When rock phosphate dissolves both P and Ca are released. 

Consequently, the changes in Ca may also be useful to quantify dissolution 

between RP-treated and untreated soil. A linear positive relationship (r = 0.73, 

0.91 and 0.85 in 2004, 2005 and 2006, respectively) was detected between 

ANaOH-P and ACa at Konobougou 1 (Figures 5.10, 5.11 and 5.12). These high 

correlation coefficients suggest that the losses of Ca were not substantial and 

that ACa could be used as an estimate of RP dissolved this experiment.
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Figure 5.12. Relationship between ANaOH-P and ACa after harvest at 
Konobougou 1 (2006).

5.5.1.5. Effects of P material rate and type on soil properties

Both TSP and Tilemsi RP affected soil Bray 1-P over time (Tables 5.10 

and 5.12). An increment in the TSP rate of application by 127 kg ha"' (IX ) 

resulted in an increase in Bray-1 P by 5.89 mg kg'' (p < 0.0001), 2.52 mg kg'' (p 

= 0.0148) and 2.05 mg kg"' (p = 0.0002) in 2004, 2005 and 2006, respectively 

(Tables 10 and 11). The highly significant slopes for Tilemsi were 8.89, 9.50 and 

6.14 mg kg'' in 2004, 2005 and 2006, respectively (p < 0.0001) (Tables 5.12 and
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5.13). The slope decreased in the third year of cropping probably because of 

some sorption of the earlier dissolved P.

The rates of application of TSP did not affect soil pH (p = 0.1481), soil 

KCI-extractable acidity, effective cation exchange capacity (ECEC) and Ca 

saturation (Tables 5.10 and 5.11). The absence of the effect of TSP application 

rates on the Ca saturation is surprising because of the increase in soil Ca levels. 

Soil exchangeable Ca level increased by 0.07 (p = 0.0151) and by 0.076 cmolc 

kg ' (p = 0.047) in 2004 and 2005 with each unit (IX ) increase of TSP. (Table 

5.10). This increase in Ca is probably due to the Ca contained in TSP. Soil Ca 

level was not affected in 2006, probably because of the losses of Ca during the 

previous three years of cropping.

The effects of Tilemsi RP application rates on soil properties are 

presented in Tables 5.12 and 5.13. The changes in soil pH and in KCI- 

extractable acidity due to the different Tilemsi RP application rates was described 

by a quatratic equation in 2004 with the coefficients and their p-values shown in 

Table 5.12. When analyzed segment by segment, with the increased of Tilemsi 

RP application rates up to 0.5X, the soil pH increased by 0.4 units (p = 0.0009) 

while soil KCI-extractable acidity dropped by -0.32 cmolc kg"' (p = 0.0076). 

However, with further increase of the rate of application, soil pH and KCI- 

extractable acidity did not changed statistically (p = 0.1781 and 0.3605, 

respectively). Soil exchangeable Ca levels linearly increased by O.llcmolc kg'' 

with each increase of Tilemsi RP application rate by IX  in 2004 (p = 0.0305),
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while the relationship between Ca saturation and Tilemsi RP application rates 

was described by a quadratic regression. The Ca saturation increased by 

21.41% (p = 0.0045) with the application of 0.5X Tilemsi RP. However the Ca 

saturation did not change significantly with further increases in Tilemsi RP rate 

(slope = -1.12 with p = 0.5909).

In 2005 soil pH increased (slope = 0.15, p = 0.0269) and acidity 

decreased (slope = -0.20 cmolc k g '\ p = 0.0136) linearly with the increase of 

Tilemsi RP application rates (Table 5.12). Soil Ca saturation also increased 

(slope = 12.59, p = 0.0045) probably due to the increase in the Ca levels (slope 

0.13 cmolc kg‘\  p = 0.016) with a unit (IX ) increase of Tilemsi RP rate.

Besides on Bray 1-P, the effect of Tilemsi RP was observed only the 

exchangeable Ca levels in 2006. The exchangeable Ca increased (slope = 0.15 

cmolc k g '\ p = 0.0085) with each IX  increase of Tilemsi RP application rate 

(Table 5.13).
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Table 5.10. Effects of TSP rates on soil properties after harvest at Konobougou, 2004 and 2005.

TSP rates Soil properties after harvest

pH water Acidity Bray 1-P Exchangeable Ca ECEC Ca saturation

(1:1) (cmolc kg'') (mg kg ') (cmolc kg ') (cmolc kg'') (%)

2004 2005 2004 2005 2004 2005 2004 2005 2004 2005 2004 2005

OX 4.59 4.69 0.62 0.70 3.38 3.50 0.32 0.31 1.17 1.25 28.42 25.00

0.5X 4.66 4.68 0.54 0.78 6.26 3.97 0.44 0.35 1.28 1.39 32.87 25.13

IX 4.64 4.75 0.68 0.65 8.89 7.72 0.37 0.38 1.31 1.29 28.64 29.56

2X 4.71 4.69 0.50 0.75 15.18 8.08 0.50 0.46 1.28 1.53 39.55 29.70

Lin.* 0.05 0.008 -0.05 0.009 5.89 2.52 0.07 0.08 0.04 0.12 4.63 2.66

p-value 0.1481 0.8889 0.4967 0.8957 0.0001 0.0148 0.0151 0.047 0.5767 0.1372 0.0752 0.2129

RMSE 0.0856 0.1362 0.1757 0.1633 2.3446 2.1939 0.0641 0.086 0.1971 0.1908 5.9725 5.1147

‘ parameter estimates of the linear regression
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Table 5.11. Effects of TSP rates on soil properties after harvest at Konobougou 1, 2006.

TSP rates Soil properties after harvest

pHwater Acidity Bray 1-P Exchangeable Ca ECEC Ca saturation
(1:1) (cmolc kg''') (mg kg "') (cmolc kg'^) (cmolc kg '') (%)

OX 4.84 1.15 2.40 0.25 1.58 15.94
0.5X 4.52 1.02 3.38 0.26 1.47 19.35
IX 4.51 1.18 3.60 0.18 1.50 12.05
2X 4.57 1.12 6.58 0.46 1.82 23.74

Lin.* -0.10 0.008 2.05 0.10 0.14 3.20
P-value 0.0968 0.9326 0.0002 0.1326 0.2227 0.3126
RMSE 0.1409 0.2250 0.9188 0.1592 0.2725 7.7214

‘ parameter estimates of the linear regression
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Table 5.12. Effects of Tilemsi RP rates on soil properties after harvest at Konoubougou 1, 2004 and 2005.

Tilemsi Soil properties after harvest
R P  rates

pH water Acidity Bray 1 -P Exchangeable ECEC Ca saturation
(1 :1) (cmolc kg‘ ') (mg k g ') Cs (cmolc kg-') (%)

(cmolc kg'')

2004 2005 2004 2005 2004 2005 2004 2005 2004 2005 2004 2005

OX 4 .5 7 4 .7 2 0.61 0 .7 7 3.63 3.38 0.43 0.41 1.3 2 1 .4 7 32.28 2 7 .4 9

0.5X 4 .9 7 4.84 0.29 0.52 1 2 .1 2 8.94 0.65 0.58 1.22 1 .3 9 5 3 .1 9 4 1 .2 8

IX 4.86 4.89 0.32 0.52 1 5 .2 9 1 4 .7 7 0.63 0.60 1.22 1 .3 9 5 1 .8 4 43 .2 6

2X 4.85 5.03 0.38 0.32 22.4 5 22.4 4 0.68 0.69 1.3 3 1 .2 7 5 1 .3 6 54.82

Lin.* 0.57 0 .1 5 -0.53 -0.20 8.89 9.50 0 .11 0 .13 0.02 -0.093 34.60 1 2 .5 9

P-value 0.0052 0.0269 0.0106 0 .0 13 6 <0.0001 <0.0001 0.0305 0 .016 0 .7 9 1 3 0.0241 0 .0 0 15 0.0045

Quad** -0.23 0.22 - 1 3 .1 6

P-value 0.0106 0.0196 0.0051

R M S E 0.10 98 0 .14 9 7 0 .1 1 8 5 0 .1 7 3 9 3 .2 5 7 4 2 .6 1 3 5 0 .10 7 6 0 .1 1 2 9 0 .16 5 2 0.0898 5 .4 9 4 7 8 .8 3 79

‘ parameter estimates of the linear regression 
“ parameter estimates of the quadratic regression
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Table 5.13. Effects of Tilemsi RPs rate on soil properties after harvest at Konobougou 1, 2006.

Tilemsi RP Soil properties after harvest

Rates
pH water Acidity Bray 1-P Exchangeable Ca ECEC Ca saturation

(1:1) (cmolc kg'^) (mg kg-^) (cmolc kg'^) (cmolc k g ’’) (%)

OX 4.88 1.08 2.66 0.30 1.59 18.65

0.5X 4.83 0.85 6.40 0.48 1.50 31.84

IX 4.87 0.98 10.27 0.54 1.71 32.20

2X 4.87 0.98 15.00 0.61 1.83 33.96

Lin.* 0.003 -0.02 6.14 0.15 0.15 6.39

P-value 0.945 0.8697 <0.0001 0.0085 0.0891 0.0646

RMSE 0.1242 0.2609 2.1346 0.1143 0.1982 7.8778

‘ parameter estimates of the linear regression
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5.5.2.1. Effects of P material rate and type on millet grain yield

Figures 5.13, 5.14 and 5.15 present millet response curves to TSP, 

Tilemsi and Gafsa RPs, respectively. Fligh variability was observed in millet yield 

(CV = 36% for TSP; 48% for Tilemsi RP and 31 for Gafsa RP). The grain yields 

obtained for millet varied from 574.6 to 2110.5 kg ha’ '. The linear increase in 

grain yield caused by TSP (slope = 507 kg ha-1) was not significant (p = 0.0582) 

(Figure 5.13). The quadratic model 699.56 + 1158.87x -  316.07x' with (p = 

0.2451 for 1158.87) and (p = 0.4897 for -316.07) was also not significant. 

Flowever, the effect of increasing TSP rate had significantly increased the dry 

biomass yield (slope 1898 kg ha'' for each increase of TSP by IX , p = 0.0098) 

(Table 5.14). This crop response to TSP indicated that the soil was deficient in P 

as in the Konogougou 1 experiment. The yield linearly increased with the rate of 

the 2 RP materials (Figures 5.14 and 5.15). The increase per unit (IX ) RP 

material was 614.8 kg ha ' (p = 0.041) and 572.4 kg ha'' (p = 0.0079) for Tilemsi 

and Gafsa RPs. The linear response plateau was not applied to the response 

curves because the sufficiency level was not attained for any of the P materials. 

The rock phosphate algorithm underestimated the amount of P needed for 

maximum yield in the Konobougou 2 experiment.

5.5.2. Konobougou 2
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TSP application rates, kg ha'

Figure 5.13. Millet grain response to the application of TSP, 2005 (Konobougou 
2, Mali).

Table 5.14. Millet biomass response to the application of TSP, 2005 
(Konobougou 2, Mali).

TSP rate Millet biomass yield 
(kg ha'')

Ox 1778
0.25X 2984
0.5X 3429
IX 5460
2X 5651

Linear 1898
P-value 0.0098
RMSE 1719.9137
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Tilemsi RP application rates, kg ha-1

Figure 5.14. Millet response to the application of Tilemsi RP, 2005 (Konobougou 
2, Mali).
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Gafsa rock phosphate application rates, kg ha-1

Figure 5.15. Millet response to the application of Gafsa RP, 2005 (Konobougou 
2, Mali).
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5.5.2.2. Effects of soil Bray 1-extractable P on millet grain yield

Millet grain yield increased with the increased soil Bray 1-P level both in 2005 

and 2006 (Figures 5.16 and 5.17). The plateau (sufficiency level) was not 

reached in either year. The linear aspect of the response did not allow using LRP 

for estimating the critical P level. At about the highest levels of Bray 1-P obtained 

in 2005 and 2006 (13 and 8  mg P kg \  respectively) millet yield was still 

increasing. These Bray 1-P levels are close to the P critical levels obtained in 

Konobougou 1 experiment during the first and second years of cropping, 

suggesting that not enough RP dissolution took place to sufficiently increase 

Bray 1-P level above the critical level probably explaining why yields failed to 

attain plateau at 2X rate of P material application. Contrary to the finding of Chien 

(1978), millet response to Bray 1-P in soils treated with TSP and various RP 

suggests that this method of measuring extractable P appears to be useful 

regardless the source of P.

The higher grain yields observed in 2006 compared to 2005 even with 

lower Bray 1-P levels were probably due to the higher amounts of urea and 

K2SO4 applied (173 kg N ha"’' and 87 kg K ha'^ in 2006 and 31 kg N ha'^ and 0 kg 

K ha^ in 2005).
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Figure 5.16. Millet response to soil Bray 1-extractable P levels (Konobougou 2, 
Mali), 2005.
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5.5.2.3. Effects of P materials and rates on RP dissolution as measured by 

ANaOH-P

The ANaOH-P in Konobougou 2 experiment was generally less than in 

Konobougou 1. For rates 2X of Tilemsi RP, the respective levels were 25.34 mg 

kg"' in Konobougou 1 and 15.84 mg kg ' in Konobougou 2, even with 

approximately same rainfall in 2004 (592 mm) and in 2005 (602 mm). Flowever, 

Tilemsi RP materials used in Konobougou 1 and 2 experiments were purchased 

at separate times, and with the natural variability of the RP deposit (Truong et al., 

1978), the materials may have differed in solubility.

The increase in the application rates of all P materials resulted in linear 

increases in ANaOH-P in 2005. ANaOFI-P increased by 6.76 mg kg'' with each 

unit increment (by IX ) of TSP (p < 0.0001) (Figure 5.18). Figures 5.19 and 5.20 

indicate that the slopes of ANaOH-P were 7.50 and 6.39 mg kg ' with each unit 

increment (by IX ) of Tilemsi and Gafsa RP. (p = 0.0005 and p < 0.0001 for 

Tilemsi and Gafsa, respectively).

In 2006, no significant increase in ANaOH-P was detected from the 

residual TSP (Figure 5.18). This is probably because P from the fertilizer had 

strongly reacted with soil constituents possibly through the absorption of P into 

the soil aggregates by the second year of cropping. Flowever, where Tilemsi and 

Gafsa RP were applied, increased ANaOH-P resulted ANaOFI-P increases with 

slopes of 4.40 mg kg'' (p = 0.0137) and 6.94 mg kg'' (p = 0.0001), respectively 

(Figures 5.19 and 5.20). These results suggest that RPs did not completely
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Figure 5.18. Changes in NaOH-P in P-treated soils at Konobougou 2 (TSP).
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Figure 5.19. Changes in NaOFI-P in RP-treated soils at Konobougou 2 (Tilemsi 
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dissolve in 2005; consequently the RPs had higher residual effects that TSP. The 

low ANaOH-P levels might explain why millet responded to the increased 

application rates of Tilemsi and Gafsa RPs. The dissolution was so low that the 

high rate actually led to benefit.

5.S.2.4. Relationship between ANaOH-P and ACa

The relationship between ACa and ANaOH-P was not very strong (r = 

0.54) in 2005 (Figure 5.21). The TSP rate of application affected ANaOH-P 

(linear = 6.76 mg P kg ', p < 0.0001) (Figure 5.18) whereas it did not affect the 

ACa (slope = -2 mg Ca kg ', p = 0.7343) (Table 15). This is probably due to some 

Ca losses that took place due to the intense rain that also destroyed the first 

replication of Konobougou 2 experiment about 2 weeks after planting. These Ca 

losses are more accentuated for TSP than for the RPs, probably because of the 

greater water solubility.

In 2006 a strong relationship was detected between ACa and ANaOH-P (r 

= 0.90) (Figure 5.22). This strong correlation is probably due to the fact that TSP 

rate of application did not significantly affect either ANaOH (p = 0.132) or ACa (p 

= 0.5556). The high susceptibility of Ca to leaching appears to cause the ACa 

measurement to be inaccurate in assessing the extent of RP dissolution.
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The variability in soil properties prior to the application of P materials 

makes the interpretation difficult. TSP application rates affected only soil Bray 1- 

P levels in 2005 (Table 5.15). The increase in Bray 1-P was highly significant (p < 

0.0001) with a slope of 3.61 mg k g '\ The ECEC surprisingly decreased in 2006 

(slope =-0.15, p = 0.0467).

The increase in Tilemsi RP increased soil Bray 1-P (slope = 5.21 mg kg '\ 

p < 0.0001) in 2005 (Table 5.16). There was a quadratic relationship between soil 

pH, exchangeable Ca and Tilemsi RP application rates (Table 5.16). Soil pH and 

exchangeable Ca increased by 0.18 and 0.22 cmolc kg‘  ̂ with the first increment 

(IX ) of Tilemsi RP and did not change with further increase in Tilemsi RP rate 

(slope = -0.04, p = 0.6230 for pH and slope = -0.03 cmolc k g '\ p = 0.5824 for 

exchangeable Ca). Tilemsi RP, however, linearly increased soil Ca saturation 

(slope = 4.30%, p = 0.0147).

The effect of Tilemsi RP rate of application on soil pH, KCI-extractable 

acidity and ECEC was not significant in 2006 (Table 5.16). Exchangeable Ca 

increased quadratically with the increase of Tilemsi RP rate, while Ca saturation 

surprisingly did not change (slope = 4.72%, p = 0.0781). Soil exchangeable Ca 

increased by 0.29 cmolc kg'^ (p = 0.0006) with the first increment (IX ) of Tilemsi 

RP and did not change with further increase in Tilemsi RP rate (slope = -0.08, p 

= 0.3575).

5.5.2.5. Effects of P material rate and type on soil properties
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Gafsa RP also increased soil Bray 1-P levels in both 2005 (slope = 1.57 

mg kg ', p = 0.0002) and 2006 (slope = 3.46 mg kg’ ', p < 0.0001) (Table 5.17). 

Gafsa RP rate quadratically increased soil exchangeable Ca in 2005. 

Exchangeable Ca increased by 0.25 cmolc kg’' (p < 0.0001) with the first 

increase of Gafsa RP by IX  and then remained constant (slope = -0.09 cmolc kg’ 

', p = 0.2355) in 2005. However, Exchangeable Ca linearly increased in 2006 

(slope = 0.22 cmolc kg’', p < 0.0001). Soil Ca saturation also increased linearly 

with the increase in Gafsa RP rate (slope = 4.80%, p = 0.0069) in 2005 and in 

2006 (slope = 12.56%, p < 0.0001). This increase of exchangeable Ca, and Ca 

saturation are consistent with the increased Gafsa RP dissolution as measured 

by ANaOH-P in 2006 (slope = 6.94 mg kg’', p = 0.0001). Soil pH also increased 

in 2005 (slope = 0.12, p = 0.0026) while it did not change in 2006 (slope = 0.07, p 

= 0.2272). Soil acidity did not change in 2005 (slope = -0.07 cmolc kg’', p = 

0.194) while pH was increasing. However, soil acidity dropped in 2006 (slope = - 

0.20, p = 0.007) and when soil pH did not change. These inconsistencies are 

difficult to explain. The changes in pH and KCI-extractable acidity over time for 

OX plots and the plots receiving TSP are inconsistent.
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Table 5.15. Effects of TSP rates on soil properties after harvest at Konobougou 2, 2005 and 2006.

TSP Soil properties after harvest
rates

pH water Acidity Bray 1-P Exchangeable Ca ECEC Ca saturation
(1:1) (cmolc kg'') (mg kg ') (cmol,c kg'^) (cmolc k g ') (%)

2005 2006 2005 2006 2005 2006 2005 2006 2005 2006 2005 2006

OX 4.62 5.07 0.77 0.90 2.51 2.91 0.42 0.40 1.47 1.57 28.43 25.96
0.25X 4.73 4.52 0.83 0.92 2.52 2.75 0.54 0.50 1.74 1.71 31.28 29.13
0.5X 4.82 4.79 0.67 0.80 3.81 3.47 0.54 0.42 1.53 1.53 35.16 27.59
IX 4.79 4.67 0.70 0.93 5.05 2.88 0.46 0.36 1.45 1.55 31.28 22.97
2X 4.78 4.77 0.70 0.62 9.50 4.60 0.47 0.42 1.45 1.32 32.11 33.22

Lin.* 0.055 -0.051 -0.04 -0.13 3.61 0.82 -0.01 -0.02 -0.07 -0.15 0.66 -0.02
P-value 0.1498 0.6415 0.324 0.0727 <0.0001 0.1569 0.7164 0.5556 0.2383 0.0467 0.4834 0.2256
RMSE 0.0984 0.2930 0.1158 0.1847 0.8298 1.4864 0.0738 0.080 0.1294 0.1906 3.5023 2.2975

‘ parameter estimates of the linear regression
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Table 5.16. Effects of Tilemsi RP rates on soil properties after harvest at Konobougou2, 2005 and 2006.

Tilemsi Soil properties after harvest
R P

pH water Acidity Bray 1-P Exchangeable Ca ECEC Ca saturation
rates

(1 :1) (cmolc kg"') (mg kg ') (cmolc kg'') (cmolc kg-') (%)

2005 2006 2005 2006 2005 2006 2005 2006 2005 2006 2005 2006

OX 4 .56 5.05 0.63 0.87 2.00 2.05 0.21 0.37 1.00 0.64 2 1 .2 6 5 8 .1 4

0.25X 4 .7 7 4 .7 4 0.70 1 .2 5 4.61 3.98 0.24 0.42 1 .1 0 0.68 2 1 .5 5 62.58

0.5X 4.78 4 .7 9 0.60 0.93 4 .79 4 .1 3 0.28 0.52 1.04 0 .7 7 2 7 .2 7 6 7 .7 4

IX 4.88 5.02 0.60 0 .7 7 7.88 7 .6 3 0.32 0.66 1 .1 2 1 .02 28.47 6 5 .7 9

2X 4.84 4.91 0.63 0.87 12 .8 5 8 .1 2 0.31 0.58 1.09 0.88 28.25 66.04

Lin.* 0.0.47 0.002 -0.013 -0.009 5.21 3.00 0.35 0.45 0.09 0.05 4.30 4 .7 2

P-value 0.0014 0 .8182 0 .7593 0 .50 2 7 <0.0001 0.001 0.0037 0.021 0 .1 9 7 2 0 .6 7 6 4 0 .0 14 7 0.0781

Quad.** -0 .18 -0.12 -0 .17

P-value 0.006 0.0181 0.0092

R M S E 0.0826 0 .19 4 6 0 .1 1 6 7 0.370 8 2 .5 1 9 5 1 .9 3 5 2 0.0699 0.08456 0 .1 7 3 3 0 .3 4 6 6 4 .1 8 1 8 6 .7 5 9 6

“parameter estimates of the linear regression 
““parameter estimates of the quadratic regression
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Table 5.17. Effects of Gafsa RP rates on soil properties after harvest at Konobougou 2, 2005 and 2006.

Gafsa
RP

rates

Soil properties after harvest

pHwater

(1:1)
Acidity 

(cmolc kg ')
Bray 1-P 
(mg kg ')

Exchangeable Ca 
(cmolc kg'^)

ECEC 
(cmolc kg ')

Ca saturation

2005 2006 2005 2006 2005 2006 2005 2006 2005 2006 2005 2006

OX
0.25X
0.5X
IX
2X

4.64
4.70
4.73
4.85
4.87

4.99
4.75
4.90
4.96
5.03

0.63
0.80
0.80
0.63
0.60

0.83
0.97
0.98
0.70
0.55

2.49
2.35
3.01
4.59
5.26

2.08
2.50
2.69
6.32
8.44

0.39
0.43
0.51
0.63
0.54

0.37
0.41
0.49
0.71
0.78

1.31
1.56
1.65
1.62
1.47

1.47
1.69
1.82
1.71
1.66

29.52
27.53 
30.88 
39.31 
36.63

24.95
24.89
27.30
41.42
47.23

Lin.*
P-value
Quad.**
P-value
RMSE

0.12
0.0026

0.0862

0.07
0.2272

0.1548

-0.07
0.194

0.1333

- 0.20
0.007

0.1685

1.57
0.0002

0.8215

3.46
<0.0001

1.1395

0.40
0.001
-0.16

0.0038
0.0667

0.22
<0.0001

0.0737

0.03
0.7582

0.2323

0.48
0.0772

- 0.21
0.0906
0.1786

4.80
0.0069

4.0932

12.56
<0.0001

4.8266

‘parameter estimates of the linear regression 
**parameter estimates of the quadratic regression
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Millet grain yields were extremely low or even nonexistent in certain plots. 

They were, thus, not considered an accurate representation of plant response to 

the rock phosphate. Millet dry biomass yields were used as the response variable 

for the LRP and other analyses involving millet yield. Millet biomass yield linearly 

increased with TSP application rates from 1072.7 kg ha'^ at OX to 2643.3 kg ha'^ 

at 2X (Figure 5.23) with a slope of 705.58 kg ha ’' (for each IX ) (p = 0.0017) 

indicating that the site was, indeed, deficient in phosphate. The parameter 

estimates of quadratic regression analysis were not significant (Lin. = 1442.72, p 

= 0.0702; Quad. = -357.40, p = 0.3245). The application of Tilemsi and Taiba 

rock phosphates (RP), however, did not significantly increase the dry biomass 

yield according to both linear and quadratic coefficients (p = 0.1887 and 0.1047, 

respectively) and quadratic (Phn. = 0.104 and Pquad = 0.1808 for Tilemsi RP; and 

Piin = 0.1642 and Pquad = 0.3136 for Taiba RP) regression analyses (Figures 5.24 

and 5.25). This absence of millet response to Tilemsi and Taiba RP was probably 

due the large variability in the field (CV = 45 and 42%, respectively). Millet 

response to different rates of Gafsa RP was described by a quadratic equation 

(Figure 5.26). Millet dry biomass yield increased with the application of Gafsa RP 

up to rate 0.5X (slope = 1982.9 kg h a '\ p = 0.0143). A further increase in Gafsa 

RP rate over 0.5X did not significantly decrease millet dry biomass yield (slope = 

-427.4 kg ha‘\  p = 0.1196) (Figures 5.26). The failure of millet dry biomass to
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5.5.3. Keur Madieng

5.5.3.1. Effects of P material type and rate on millet yield



TSP application rates, kg ha-1

Figure 5.23. Millet response to the application of TSP, 2005 (Keur Madieng, 
Senegal).
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Figure 5.24. Millet response to the application of Tilemsi RP, 2005 (Keur 
Madieng, Senegal).
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Taiba RP application rates, kg ha-1

Figure 5.25. Millet response to the application of Taiba RP, 2005 (Keur Madieng, 
Senegal).
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Figure 5.26. Millet response to the application of Gafsa RP, 2005 (Keur Madieng, 
Senegal).
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increase to applications greater than 0.5X of Gafsa RP may be due to the 

presence of free carbonates and, consequently, the liming potential of the 

material (Table 5.3) coupled with the low acidity level and ECEC of Keur 

Madieng soil (Table 5.9).

The linear response plateau (LRP) was not used for TSP because the plateau 

was not well defined (yield was still increasing at 2X TSP application rate). The 

amount of Gafsa RP needed for producing maximum yield as estimated by LRP 

was 652 kg Gafsa RP h a '\ rather than 1301 kg ha'^ predicted by the algorithm 

(Figure 5.26 and Table 5.18). The rock P algorithm thus appears to overestimate 

the amounts of RP needed for producing maximum yield for Gafsa RP. Due to 

the large variability which resulted in the nonsignificance in the yields produced 

by Tilemsi and Taiba application rates, no strong inference could be made 

regarding the LRP analysis and consequently the accuracy of the RP algorithm 

predictions for Taiba RP could not be decisively tested.

Table 5.18. Rock P algorithm predicted rates and observed rates using a linear 
response plateau model (LRP) for maximum yield (Keur Madieng).

RP Predicted Amount (IX ) 
(kg ha-'')

Observed Maximum (LRP node) 
(kg ha'^)

Gafsa 1301 652

Tilemsi 2734 674

Taiba 5361 3416
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5.5.3.2. Effects of soil Bray 1-extractable P on crop yields

Millet biomass yields reached a maximum at generally similar levels of 

extractable P as measured by the Bray 1 method for all RP, even TSP (Figures

5.27 and 5.28). The biomass yield increased with the increases in Bray 1- 

extractable P level and then reached a plateau above 5.37 mg kg'' in 2005 

(Figure 5.27). This linear response plateau (LRP) estimated critical P level was 

less than the critical P level (11 mg kg'') used in the Phosphorus Decision 

Support System (PDSS) (Yost, 1992) and the critical P level (7.9 mg kg ') 

established by Bationo (personal communication) to obtain 90% of the maximum 

millet yield in the sandy soils of Niger. This low critical P level might be due to the 

presence of some other factors that are limiting. Factors most affecting yields 

were planting date, cultivation depth, insect control and crop nutrition (Jones and 

Wild, 1975). In fact, the conditions under which the experiment was implemented 

were not optimum, for instance the delayed planting date at the experiment at 

Keur Madieng and the locust attack.

Generally, peanut grain yields were extremely low. This might be due to 

the peanut aphid attack that coincided with flowering and the low plant 

population. In Mali, the average peanut yield in farmers’ fields was about 800 kg 

ha'' in 1995 (lER, 1995). The Bray 1-P critical level for peanut for producing 

maximum yield was about 8 mg kg'' (Figure 5.28). Figure 5.27 indicates that a 

small increment in Brayl-P below 8 mg kg'' can produce large increases in
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Bray 1-P, mg kg’ \  after harvest

Figure 5.27. Millet response to soil Bray 1-extractable P levels (Keur Madieng, 
Senegal), 2005.
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Bray 1-P, mg kg , after harvest 

Figure 5.28. Peanut response to soil extractable P levels (Keur Madieng), 2006.
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peanut yield. This response curve is a useful diagnostic tool for identifying P 

deficiency conditions.

As for Konobougou 1 and 2, millet response to Bray 1-P levels (Figures

5.27 and 5.28) seemed to follow the same path for TSP and all RPs. Conversely 

to the findings of Barnes and Kamprath (1975), Chien (1978) and Hammond et 

al. (1986b), these results suggest that Bray 1 method of measuring extractable P 

appears to be useful where both RPs and soluble P have been applied.

5.5.3.3. Effects of P materials and rates on RP dissolution as measured by 

ANaOH-P

ANaOH-P was generally low at Keur Madieng in 2005 (Figure 5.29). There

was a highly significant linear increase in ANaOH-P level with the TSP

application rates (slope = 6.39 mg kg‘\  p < 0.0001) (Figure 5.29.a)). Gafsa RP

dissolution as measured by ANaOH-P was not significantly affected by the rate of

application (linear = 4.80 mg kg '\ p = 0.0594; quadratic = -1.79 mg k g '\ p =

0.1278) (Figure 5.29.b). The quasi absent dissolution obtained from Gafsa RP

might be due to the calcium carbonate equivalent (CCE) (Table 5.3) and the

presence of CaCOs in the material coupled with the properties of Keur Madieng

soil (low acidity and relatively high Ca saturation). For Tilemsi RP, the increase in

rate of application resulted into a linear increase in ANaOH-P (slope = 3.20 mg

kg"', p = 0.0283) (Figure 5.29c). Taiba RP dissolution, as affected by the rates of

application, was described by a quadratic equation (linear =13.65 mg k g '\ p =
136



0.007; quadratic = -5.29 mg kg '\ p = 0.0222). Taiba RP dissolution increased up 

to rate 1X with a slope = 8.62 mg kg’' (p = 0.0017) and then remained constant 

over rate IX  (slope = -3.43 mg kg'', p = 0.3997) (Figure 5.29d). The lack of 

increase in ANaOH-P at Taiba RP application rate 2X is probably due to the fact 

that a very large amount of Taiba RP (8900 kg ha'') was applied. At such a high 

rate, RP probably affected soil properties, resulting in a negative feedback on the 

RP dissolution (Table 7). If rock phosphates are compared among themselves.
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Figure 5.29. Changes in NaOH-P in P-treated soils at Keur Madieng (2005).
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the initial slopes of dissolution were in the following order Gafsa < Tilemsi < 

Taiba. The order of dissolution expected was Gafsa> Tilemsi >Taiba according to 

their solubility in neutral ammonium citrate (van Kauwenbergh, 1997). Solubility 

data may have explained these differences in dissolution; however that analysis 

could not be done because of technical constraints.

The ANaOH-P levels after harvest of the experiment at Keur Madieng in 

2006 are presented in Figure 5.30. ANaOFI-P linearly increased with application 

rates of TSP (slope = 7.07 mg kg '\ p < 0.0001) (Figure 5.30a) and Gafsa RP 

(slope = 3.63 mg kg‘\  p = 0.0031) (Figure 5.30b). The quadratic regression was 

not significant for Gafsa RP (linear = 10.89 mg k g '\ p = 0.0119; quadratic = - 

3.52mg k g '\ p = 0.0714). The trends of Tilemsi and Taiba RPs dissolution were 

quadratic (linear = 24.41 mg kg'^ with p = 0.0025; quadratic = -7.98 mg kg'’’ with 

p = 0.0260 for Tilemsi RP and linear = 18.89 mg kg'"' with p = 0.0133, quadratic = 

-6.45 mg kg'^ with p = 0.05 for Taiba RP). Tilemsi and Taiba RPs dissolution 

increased by 16.78 mg k g ’’ (p < 0.0001) for Tilemsi RP and by 18.89 mg kg ”' (p = 

0.0133) for Taiba RP with each increase by IX  of RP. Over IX , the dissolution 

essentially stopped and remained constant both for Tilemsi RP (slope = -1.23 mg 

kg '\ p = 0.8554) and Taiba RP (slope = -6.45 mg k g '\ p = 0.9924) (Figures 

5.30c and 5.30d). The decrease in Ca (from 0.55 cmolc kg'^ to about 0.39 cmolc 

kg’\  on the average for the plots receiving OX RP) and Ca saturation (from about 

50% to about 30% in average for plots receiving OX RP) between the beginning 

and the end of the experiment in 2005 could explain why all the RPs performed
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(2006).
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better in 2006 compared to 2005. We suggest that the lack of increase in 

ANaOH-P at higher application rates of Tilemsi and Taiba RPs is due to the 

effect of the RPs on soil properties: the increase in exchangeable Ca and Ca 

saturation with Tilemsi and Taiba RPs rates negatively affected their dissolution. 

The soil at Keur Madieng has so little capacity to absorb the Ca resulting from 

rock phosphate dissolution that high levels of application may lead to high Ca 

and could cause a reduction in dissolution. The better performance of Tilemsi RP 

compared to that of Taiba RP in 2006 than in 2005 might be due to the increase 

in Ca and Ca saturation, and the decrease in the KCI-extractable acidity at the 

end of 2005 caused by Taiba RP application, which may have slowed the 

dissolution in 2006. Tilemsi RP did not affect soil Ca level, Ca saturation nor KCI- 

extractable acidity in 2005, which favored the dissolution in 2006.

5.S.3.4. Relationship between ANaOH-P and ACa

When rock phosphate dissolves both P and Ca are released.

Consequently, the changes in Ca may also be useful to quantify dissolution

between RP-treated and untreated soil. However, a very weak linear positive

relationship (r = 0.32) was detected between ANaOH-P and ACa at Keur

Madieng in 2005 (Figure 5.31). This lack of a high correlation may be due to the

loss of Ca that could occur in field conditions by leaching and plant uptake. Jones

and Wild (1975) reported that leaching losses of Ca plus Mg at Bambey ranged

from 20 to 79 kg/ha/year from natural soil levels, which are already very low.
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This number would be much higher with freshly applied materials (Yost, personal 

communication). In 2006 the correlation between ACa and ANaOH-P was 

stronger than in 2005 probably because of the decrease (120 mm) in the amount 

of rainfall in 2006 compared to that of 2005, which could have resulted in a less 

leaching of the Ca released during the dissolution of the RPs. These results 

suggest that ACa is not a good estimate of dissolved RP in field conditions on 

sandy soils with moderately high rainfall.

5.5.3.5. Effects of P material rate and type on soil properties

The effects of P material type and rate on soil properties in 2005 and 2006 

are presented in Tables 5.19 through 5.22. The large variability in the soil 

properties makes the interpretation of the effects of P material rate and type on 

soil properties difficult.

Both in 2005 and 2006, there was no apparent effect of high rates of

application on soil pH, even Gafsa RP which has a CaCOa equivalent (CCE) of

51.7% and contained some CaCOa (the presence of CaCOs was concluded

based on the effervescence when treated with a solution of HCI). The effects of

the P material rate and type were statistically evident, however, on the soil Bray

1-P level. Bray 1-P linearly increased with the increase of rate of application of

TSP (slope = 4.92 mg kg ', p < 0.0001), Tilemsi RP (slope = 7.09 mg kg ', p <

0.0001) and Gafsa RP (slope = 0.92 mg kg'', p = 0.0136). However, the increase

in Taiba RP up to initially increased soil Bray 1-P level by 3.84 mg kg'' (p =
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0.0015) and a further increase of Taiba RP up to 2X did not significantly change 

soil Bray 1-P (slope = -1.80 mg k g '\ p = 0.2759), thus following the same pattern 

asANaOH-P.

In 2006, the residual effect of increasing TSP application rate on Bray 1-P 

level was described by a quadratic equation (Table 5.19). The residual effect of 

TSP rates up to IX  did not cause the Bray 1-P level to increase (slope = 1.87 mg 

k g '\ p < 0.0574). This lack of increase in Bray 1-P level might be due to the fact 

that TSP is soluble and that all the P from the fertilizer would have strongly 

reacted with the soil constituents. Further increases in TSP rate significantly 

increased the Bray 1-P level (slope = 8.91 mg kg ', p = 0.0146). For all RP 

materials also, the application rate quadratically affected soil Bray 1-P (Tables 

5.20, 5.21 and 5.22). The increment in Bray 1-P per unit (IX ) increment of RP 

rates was as follows: 9.26, 3.84 and 4.00 mg kg’' for Tilemsi RP (p = 0002), 

Taiba RP (p = 0.0013) and Gafsa RP (p = 0.0005), respectively. However, 

further increase in the application rate did not significantly affect Bray 1-P level. 

The trends of the Bray 1-P levels are consistent with that of ANaOH-P, which 

initially increased for Tilemsi and Taiba RPs and then remained constant. 

However, the changes in Bray 1-P due to the increase in Gafsa RP rates did not 

follow the linear increase in ANaOH-P.

Soil exchangeable Ca levels did not change with the application rates of 

TSP and Tilemsi RP, but they did linearly increase with Taiba RP application 

rates (slope = 0.12 cmolc kg ', p = 0.0107) in 2005. However, even before the
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application of the P material, the exchangeable Ca levels were higher for Taiba 

RP at rates 1X and 2X compared to the control (Table 5.23). The effects of the P 

material type and rate on the soil exchangeable Ca levels were probably masked 

by the leaching of this element. The relationship between exchangeable Ca and 

Gafsa application rates was described by a quadratic equation in 2005 (Table 

5.22) The increase in Gafsa RP application rate up to 1X increased soil 

exchangeable Ca level (slope = 0.14 cmolc kg‘\  p = 0.0268) and flattened out 

with further increases in the application (slope = -0.09 cmolc k g '\ p = 0.1754). 

This pattern did not agree with the linear increase in ANaOH-P caused by the 

increase in Gafsa RP application rate probably because of the leaching that 

could take place in Keur Madieng soil.

The increased application of all RPs probably caused the soil 

exchangeable Ca levels to rise in 2006. The application of Taiba and Gafsa RPs 

linearly increased the exchangeable Ca (slope = 0.13 cmolc k g '\ p = 0.0052 for 

Taiba RP and 0.08 cmolc kg '\ p = 0.0083 for Gafsa RP). For Tilemsi RP, the 

relationship was quadratic (Table 5.20). Soil exchangeable Ca increased by 0.21 

cmolc kg"' with the first IX  increment of Tilemsi RP and then flattened out with 

further applications of Tilemsi RP (slope = -0.04 cmolc kg \  p = 0.4342). This 

pattern of the effect of Tilemsi RP rates on soil exchangeable Ca agreed with 

ANaOH-P pattern for Tilemsi in 2006. Only TSP did not affect the soil Ca levels. 

This is not surprising because probably all the Ca from TSP -  a soluble material, 

leached out from the soil during the first year of cropping. The increase in the soil
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Ca levels receiving RP was due to the fact that RPs slowly dissolved and 

releases Ca more gradually and also because of the smaller amount of rainfall 

received in 2006 (676 mm) compared to 2005 (788 mm) which probably reduced 

the amount of Ca leaching that took place. This increase in Ca content was also 

depicted in increased Ca saturation for Tilemsi and Taiba RPs.

Calcium saturation after harvest statistically increased only for Taiba RP in

2005 (Table 5.21). This could be explained by the higher initial Ca saturation 

(prior to the application of the material) of the plots receiving IX  and 2X Taiba 

RP. However, Taiba RP dissolution as measured by ANaOH-P also increased 

which could also increase Ca saturation. Both Tilemsi and Taiba RPs increased 

the Ca saturation in 2006, probably because of the increase in slopes of ANaOH- 

P with the increased rates of application (from 3.20 mg kg'^ in 2005 to 16.78 mg 

kg"'' in 2006 for Tilemsi RP and from 8.62 mg kg'^ in 2005 to 18.89 mg kg'^ in

2006 for Taiba RP). Gafsa RP did not increase soil Ca saturation even though 

there was an increase in soil exchangeable Ca, which is contradictory with our 

expectation.

Soil KCI-extractable acidity was affected only by the rates of application of 

Taiba TP in 2005 (slope = -0.144 cmolc kg '\ p = 0.0229). This is probably due to 

the higher rate of Taiba dissolution (13.65 mg kg'^) compared to Tilemsi and 

Gafsa RPs (3.20 and 5.08 mg kg'^). However, we expected Gafsa RP to affect 

soil pH because of its higher CCE. Soil KCI-extractable acidity was not affected 

by any of the RP materials in 2006.
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Table 5.19. Effects of TSP rates on soil properties after harvest, 2005 and 2006 (Keur Madieng).

TSP
rates

Soil properties after harvest

pH water 

(1:1)
Acidity 

(cmolc kg'')
Bray 1-P 
(mg kg ')

Exchangeable
Ca

(cmolc kg'')

ECEC 
(cmolc kg ')

Ca saturation 
(%)

2005 2006 2005 2006 2005 2006 2005 2006 2005 2006 2005 2006

OX
0.25X
0.5X
IX
2X

4.94
4.95 
5.05
4.95 
4.91

5.32
5.25
5.44
5.41
5.51

0.74
0.70
0.50
0.64
0.64

0.67
0.93
0.60
0.67
0.58

2.62
3.22
3.81
5.14
12.43

3.32
3.55
3.90
5.15
11.76

0.41
0.40
0.43
0.43
0.39

0.32
0.31
0.35
0.35
0.35

1.45
1.42
1.23
1.37
1.30

1.20
1.49
1.22
1.27
1.16

27.76
28.83
35.32
32.03
30.37

26.79
23.19 
30.23
29.19 
30.52

Lin.*
P-value
Quad.**
P-value
RMSE

-0.003
0.4088

0.1109

0.11
0.1862

0.2771

-0.03
0.6508

0.2159

-0.09
0.4259

0.3925

4.92
<0.0001

2.5934

-1.46
<0.6347

3.35
0.0275
2.8120

-0.005
0.8463

0.0938

0.02
0.4668

0.0745

-0.06
0.4607

0.2629

-0.07
0.4803

0.3637

10.57
0.1852
-4.76

0.2019
7.1721

2.48
0.3363

8.9384

“parameter estimates of the linear regression 
““parameter estimates of the quadratic regression
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Table 5.20. Effects of Tilemsi RP rates on soil properties after harvest, 2005 and 2006 (Keur Madieng).

Tilemsi 
RP rate

Soil properties after harvest

pHwater

(1:1)
Acidity 

(cmolc kg ')
Bray 1-P 
(mg kg-')

Exchangeable Ca 
(cmolc kg"')

ECEC 
(cmolc kg'')

Ca saturation 

(%)

2005 2006 2005 2006 2005 2006 2005 2006 2005 2006 2005 2006

OX
0.25X
0.5X
IX
2X

4.99 
5.04
4.99 
5.07 
5.02

5.46
5.34
5.51
5.65
5.49

0.60
0.64
0.58
0.54
0.54

0.49
0.47
0.48
0.25
0.36

2.62
7.38
8.40
12.35
17.89

3.49
6.05
7.19
12.94
11.32

0.42
0.44
0.44
0.49
0.44

0.34
0.37
0.43
0.54
0.49

1.29
1.36
1.31
1.32 
1.22

1.05
1.05 
1.16 
1.04 
1.08

33.20 
35.77 
35.35 
38.33
37.21

32.72
36.12
41.11
52.97
47.62

Lin.*
P-value
Quad.**
P-value
RMSE

0.01
0.8067

0.1771

0.054
0.4708

0.2603

-0.042
0.6120

0.2888

-0.084
0.2639

0.2593

7.09
<0.0001

4.8027

13.58
0.0034
-4.66

0.0249
3.8378

0.01
0.7367

0.0894

0.31
0.0002

- 0.11
0.0022
0.0633

-0.05
0.5030

0.2473

0.004
0.9564

0.2561

1.79
0.5884

11.5277

30.85
0.008

- 11.10
0.0352
9.8086

*parameter estimates of the linear regression 
**parameter estimates of the quadratic regression
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Table 5.21. Effects of Taiba RP rates on soil properties after harvest at Keur Madieng, 2005 and 2006.

Taiba
RP

rates

Soil properties after harvest

pH water 

(1:1)
Acidity 

(cmolc kg'')
Bray 1-P 
(mg kg ')

Exchangeable Ca 
(cmolc kg ')

ECEC 
(cmolc kg'')

Ca saturation 

(%)

2005 2006 2005 2006 2005 2006 2005 2006 2005 2006 2005 2006

OX
0.25X
0.5X
IX
2X

5.00 
4.85 
4.97
5.00
5.01

5.37
5.42
5.50
5.45
5.41

0.68
0.82
0.60
0.54
0.46

0.62
0.56
0.49
0.56
0.40

2.63
3.34
4.33
6.82
5.17

3.42
5.72
7.05
7.74
7.70

0.38
0.35
0.44
0.57
0.57

0.33
0.35
0.43
0.55
0.58

1.30
1.41
1.32 
1.45
1.33

1.17
1.12
1.16
1.41
1.25

29.36
24.38
33.25
40.97
42.55

28.25
31.48 
38.79 
41.52
45.49

Lin.*
P-value
Quad.**
P-value
RMSE

0.04
0.3679

0.1455

0.002
0.8114

0.2204

-0.144
0.0228

0.2086

-0.09
0.2386

0.2582

6.67
0.003
-2.60
0.011
1.8591

6.59
0.0017
-2.37

0.0106
1.6229

0.12
0.0107

0.1466

0.13
0.0052

0.1426

0.002
0.9799

0.2771

0.07
0.5298

0.3723

8.36
0.0036

9.1059

7.95
0.0056

8.9453

*parameter estimates of the linear regression
**parameter estimates of the quadratic regression
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Table 5.22. Effects of Gafsa RP rates on soil properties after harvest at Keur Madieng, 2005 and 2006.

Gafsa RP 
rates

Soil properties after harvest

pH water 

(1:1)

2005 2006

Acidity 
(cmolc kg' )

2005 2006

Bray 1-P 
(mg kg ')

2005 2006

Exchangeable
Ca

(cmolc kg ')

2005 2006

ECEC 
(cmolc kg‘')

2005 2006

Ca saturation 

(%)

2005 2006

OX
0.25X
0.5X
IX
2X

4.99
5.12
5.06
5.07 
5.01

5.56
5.57
5.58 
5.57
5.59

0.68
0.60
0.48
0.56
0.62

0.52
0.50
0.49
0.34
0.43

2.23
2.94
4.07
4.06
4.48

3.94
4.57
5.66
7.85
7.16

0.37
0.36
0.45
0.50
0.41

0.39
0.36
0.39
0.51
0.51

1.32
1.27 
1.21 
1.36
1.27

1.16
1.09
1.08
1.08
1.16

29.85
28.68
37.33
37.16
33.08

36.06
34.17
37.81
47.64
44.41

Lin.*
P-value
Quad.**
P-value
RMSE

- 0.02
0.6598

0.1363

0.01
0.7745

0.1586

-0.06
0.9293

0.2365

-0.055
0.3835

0.2189

0.98
0.0136

1.2997

5.88
0.002
-2.03
0.017
1.5561

0.25
0.0278

- 0.11
0.0397
0.1066

0.08
0.0083

0.0953

-0.0004
0.9940

0.1870

0.01
0.8353

0.2186

11.83
0.4905

9.2388

5.54
0.0624

9.9968

‘ parameter estimates of the linear regression 
‘ ‘ parameter estimates of the quadratic regression
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Table 5.23. Exchangeable Ca of the soil at the Keur Madieng experiment prior to 
Taiba RP application

Taiba RP rate Exchangeable Ca 
(cmolc kg'')

OX 0.53
0.25X 0.44
0.5X 0.52
1X 0.70
2X 0.71

LSDo.05 0.14

5.6. Conclusions

The millet growing soils are extremely infertile and sandy. Since soils were 

P deficient in all the sites, the application of P as TSP or RP generally increased 

crop yield except Tilemsi and Taiba RPs at Keur Madieng where variability was 

too high to statistically detect yield increases.

Because of the large variability in the field, the capability of the RP 

algorithm to accurately predict RP to meet crop P requirement was not well 

tested. However, from the results of Tilemsi RP at Konobougou 1 and those of 

Gafsa RP at Keur Madieng, the algorithm seems to overestimate amounts of RP 

needed. More experiments in more controlled conditions are needed to draw 

strong inferences about the accuracy of the RP algorithm. However, we can 

conclude that the extremely high RP application rates (greater than 1X) are not 

needed.
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Nonetheless, the experiments showed that it is important to match soil and 

RP properties when opting for the use of RP to correct P soil P deficiency. The 

choice of RP to be applied should include consideration of the plant, soil 

properties, rock phosphate properties, as well as the site characteristics and 

management options. For example, highly reactive RPs with a CCE of about 

50% are not the most suitable for sandy soils with pH close to 5.5 and with low 

buffering capacity because the low acidity could be neutralized by the RP 

material and soil Ca could be increased, thus depressing RP dissolution.

The rock phosphate algorithm tested in these field experiments considers 

only soil properties. The different results obtained from Konobougou 1 and 2 

experiments using Tilemsi RP (same origin but most probably different sampling 

time) support the need for generalizing the algorithm to the broader range of RP 

by the inclusion of the RP properties which would affect the most RP dissolution 

into the algorithm.

For a given crop, one single Bray 1-P critical level could be used to 

identify P deficiency conditions and predict amounts of P both from water-soluble 

P and RP needed to meet crop P requirements. Considering that millet grain 

yield was disastrously low at Keur Madieng, the Bray 1-P critical level for 

producing maximum millet yield for millet producing soils of West Africa varied 

between 7 and 11 mg k g '\ Additional study can be conducted to validate the 

critical P value for millet.
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Because of the high susceptibility of Ca to be lost either by leaching or by 

plant uptake, ACa cannot be recommended as a measure of RP dissolution in 

field conditions.
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Chapter 6. The effect of leaching on Tilemsi RP dissolution

6.1. Abstract

In order to supply the nutrient phosphorus (P) to plants rock phosphate 

(RP) must first dissolve. Closed incubation systems were often used to study RP 

dissolution. Such laboratory incubation studies are a convenient way to study 

dissolution; however, they have some disadvantages. One problem is that the 

exchange sites for the dissolution products namely Ca'" and H2P0 4 ' can be 

rapidly saturated in such conditions, resulting in the cessation of the dissolution 

process. We hypothesize that more RP dissolution could take place in an open- 

incubation system where the dissolution products such as Ca are removed from 

the soil solution by leaching. A study was conducted to evaluate the limitation of 

Tilemsi RP dissolution in a soil from Keur Madieng, Senegal. Closed- and open- 

incubation systems were compared. Rock phosphate dissolution was estimated 

using both the changes (A) in NaOH-P and exchangeable Ca in the RP-treated 

soil compared to the untreated soil. The losses of Ca were also monitored in the 

percolating water. Generally, not much dissolution (about 4 to 5%) occurred in 

either system. However, both ANaOH-P and ACa methods showed that more 

dissolution occurred in the open system. A maximum of 24 mg P kg ’’ and 33.5 

mg Ca kg''' was released in the open system compared with 20 mg P kg''' and 27 

mg Ca kg'^ in the closed system. The greater dissolution appeared to be due to 

the leaching of the Ca with the percolating water (19 to 25% of the dissolved Ca).
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The dissolution decreased and eventually stopped by the end of the incubation 

period probably because of the lack of soil acidity and insufficient P exchange 

sites. Although the open-incubation systems better approximated field conditions 

than the closed system, the additional dissolution of Tilemsi RP in the open 

system could not fully explain the overestimation of the RP requirement that 

occurred in the Keur Madieng, Senegal experiment.

6.2. Introduction

The rock phosphate dissolution studies in soil that were considered in the 

development the proposed algorithm (Diarra et al., 2004) were developed in a 

closed incubation, that is there was no leaching of reaction products from the 

soil. Most incubation studies have been conducted in such closed-incubation 

systems where dissolution products accumulated (Smyth and Sanchez, 1982; 

Mackay et al., 1986; Syers and Mackay, 1986; Yampracha et al., 2005 et 2006). 

In these conditions, RP dissolution increases and then reaches an equilibrium 

within less than 60 days of incubation. Assuming moisture and acidity are not 

limiting for RP dissolution to continue, the dissolution products (especially Ca "̂", 

H2 P0 4 ') must be removed from the system and low Ca and H2 P0 4 " levels must 

be maintained in the vicinity of the RP particles in order to simulate field 

conditions. The H2 P0 4 ' ions usually react with soil Fe and Al compounds 

maintaining a low soil solution P level. On the other hand, the Ca "̂" is expected to 

be held by soil’s exchange complex. Soils with high cation exchange capacity
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(Mackay et al., 1986) and high organic matter, which provide exchange sites to 

hold Ca, enhance RP dissolution (Khasawneh and Doll, 1978). Mackay et al. 

(1986) and Yampracha et al. (2005) have also shown that soil with high P- 

soption capacity promotes RP dissolution. In soils where RP dissolution has 

reached an equilibrium, Robinson et al. (1992) and Robinson and Syers (1991) 

were able to create conditions for dissolution to continue by using Ca-exchange 

resin or Fe2 0 3 , respectively, as artificial “sinks” for Ca and P. The fact that RP 

dissolution reaches an equilibrium in a closed-incubation system was attributed 

to the size of the “sink” for additional Ca (Hanafi et al., 1992; Robinson and 

Syers, 1990). The removal of Ca^^ and H2 P0 4 " by plant uptake or leaching under 

field conditions could provide a supplementary “sink” for the dissolution products. 

Those field conditions are probably better mimicked by an open-incubation 

system in which leaching is allowed to occur than a closed-incubation system.

6.3. Hypothesis and Objective

Rock P dissolution would be greater in an open-incubation system than in 

a closed-system due to the removal of Ca from the system. The additional 

exchange sites for Ca would promote further dissolution.

The objective was to compare the dissolution of Tilemsi RP in a closed- 

incubation and an open-incubation system.
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Because of the overestimation of the predictions made by the RP 

algorithm for maximum yield in the field experiments conducted at Konobougou, 

Mali, 2004 (Mali) and at Keur Madieng (2005), an incubation study was set up to 

compare Tilemsi RP dissolution using Keur Madieng soil in open and closed 

systems. In the closed-incubation system, the soil was incubated in pots where 

the dissolution products accumulated in the system. In the open system, leaching 

occurred daily to remove the dissolution products.

6.4. Materials and Methods

6.4.1. Soil

Surface ( 0 - 1 5  cm) soil samples from the Keur Madieng, Senegal field 

site were selected for the laboratory experiment. The soil was air-dried and 

ground to pass through a 2-mm sieve. Particle size distribution was determined 

by the pipette method. Soil pH was measured in water (1:1). Bray 1-P was 

determined by shaking 2 g soil with 14 ml 0.03 M NH4F and 0.025 M HCI for 1 

minute (Bray and Kurtz, 1945). The P concentration was determined by the 

colorimetric method of Murphy and Riley (1962). The acidity extractable by 1 M 

KCI was determined by the method described by Thomas (1982). Exchangeable 

cations were determined using the 1 M NH4OAC, pH 7 extraction (Thomas, 1982) 

and measured by inductively coupled plasma spectroscopy (ICP). Selected soil 

properties of the soil are presented in Table 6.1.
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Table 6.1. Selected properties of the soil used in the open and closed system
study.

pH
H2O
(1:1)

Bray 1-P 
(mg kg-')

Clay KCI-
extractable

Acidity
(cmoU kg-')

Exchangeable 
(cmol+ kg-')

Ca2+ Mg2+ K" Na"

ECEC*
(crnoU kg-')

4.98 3.73 0.15 0.45 0.23 0.08 0.05 0.96
*sum of Ca'", Mg'", K", Na and KCI-extractable acidity

6.4.2. Rock phosphate

Tilemsi rock phosphate from Mali with a medium solubility based on the 

solubility in neutral ammonium citrate (Chien et al., 2003) was used in this 

incubation study (Table 6.2). The rock phosphate was sieved to pass through a 

100-mesh sieve. The total P and water-soluble P were measured using the 

Houba et al. (1995) procedure. Total P and water-soluble P were both 

determined by colorimetric method (Murphy and Riley, 1962). The calcium 

carbonate equivalent (CCE) was determined by boiling 1 g of RP with 50 ml 0.5 

M HCI for 5 minutes and measured by titration with 0.25 M NaOH to pH 5 

(Sikora, 2002).
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Table 6.2. Some characteristics of Tilemsi rock phosphate.

Origin

Mali

(g kg-')

112.6

Ca*
(g kg'^)

305

Water-soluble P 
(mg kg-')

4.11

CCE**
(%)

35.5

‘Yampracha et al., 2006.
“ CCE = calcium carbonate equivalent

6.4.3. Incubation

A factorial RP x incubation system x time of incubation (2x2x8) study was 

conducted with 3 replicates. The ground Tilemsi RP levels were 0 and 500 mg P 

kg-'. The incubation method study included an open- and a closed-incubation 

system. The incubation times were 0, 1,3,  7, 14, 28, 42 and 56 days. The RP 

material was added to 50 g of soil to achieve the rates given above (0 and 500 

mg P kg-').The mixtures were placed in a pot without a drain for the closed 

system and in ceramic funnels with a vacuum for the open system. For both 

systems, the moisture was maintained at field capacity and the mixtures were 

incubated during a 56-day period. The soils in the open system were percolated 

daily with an amount of water corresponding to the one received in the field 

experiment site with a rainfall of 650 mm per year distributed over 3-month period 

(56 ml per day). The percolates were collected daily and the amount of calcium 

leached was measured at 1, 3, 7, 14, 28, 42 and 56 days. Soil samples were also 

collected at times 0, 1, 3, 7, 14, 28, 42 and 56 days to determine the 0.5 M 

NaOH-P and exchangeable Ca. The differences in 0.5 M NaOH-P and
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exchangeable Ca between RP-treated and untreated soils were used as the 

estimates of dissolved RP.

6.4.4. Statistical analysis

The data were statistically analyzed using SAS procedures (1985). 

Analyses of variance were performed. The time effect on RP dissolution 

(ANaOH-P and ACa) was evaluated using the regression analysis. The 

correlation between ANaOH-P and ACa was also analyzed by SAS.

6.5. Results and Discussion

Tilemsi RP dissolution, as measured by ANaOH-P and ACa in the closed 

incubation system in Keur Madieng soil (Figure 6.1), was about 20 mg P kg'^ and 

28 mg Ca kg'^ were released at day zero (1 hour) of the incubation. Further 

dissolution did not occur during the incubation period based on the results 

obtained from both ANaOFI-P method (slope = 0.02 mg k g '\ p = 0.2008) and 

ACa method (slope = -0.05 mg kg '\ p = 0.3141). In other studies done in closed 

incubation system, RP dissolution also reaches equilibrium during a certain 

period of the incubation (generally before the OÔ '’ day of incubation) (Mackay et 

al., 1986; Diarra et al., 2004; Yampracha et al., 2005, 2006).
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Figure 6.1. Changes in NaOH-P (ANaOH-P) and in exchangeable Ca (ACa) in 
Keur Madieng soil incubated with Tilemsi RP at 500 mg P kg'^ soil in a closed 
system.

Assuming, however, that Tilemsi RP can be represented by a 

hydroxapatite, the dissolution reaction will be as follows:

Caio(OH)2(P0 4 ) 6  + 14H" = lOCa'" + 2P  + 6 H2 P0 4 '. [Eq.6.1]

Then for each mole of P released 2.33 moles of H" are consumed. For the extent 

of dissolution that occurred in the closed system (about 20.33 mg P k g '\ which is 

equivalent to 0.66 mmol P kg ’’ was released) 1.53 mmol H" has been consumed. 

Thus it seems that all the initial acidity of the soil was consumed. This is probably 

why the equilibrium seems to have been reached within 1 hour in the closed-
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incubation system. This could explain why RP dissolution has stopped soon after 

the initialization of the incubation. Conversely, Hanafi et al. (1992) suggested that 

the size of the Ca “sink” was responsible for the RP dissolution to stop in a 

closed incubation study using Gafsa RP and Christmas Island RP in several soils 

with contrasting P-retention capacity. Tilemsi RP dissolution as measured by 

ANaOH-P and ACa in closed and open-incubation system is presented in Figure

6 .2 .

Tilemsi RP dissolution over time as measured both by ANaOH-P and ACa 

in the open system was described by a quadratic relationship (linear = 0.38 mg P 

kg'' with p = 0.0003, quadratic = -0.006 mg P kg'' with p = 0.0015 for ANaOH-P 

method; and linear = 0.51 mg Ca kg'' with p = 0.0077, quadratic = -0.09 mg Ca 

kg'^ with p = 0.0103 for ACa method). ANaOH-P method indicated that RP 

dissolution increased in the open system by 0.29 mg P kg'' per day (p = 0.0144) 

up to day 14 and then reached a plateau (slope = -0.03 mg P kg"' with p =

0.5518) whereas ACa increased by 0.61 mg Ca kg'' per day (p = 0.0110) up to 

14 days and flattened out (slope = -0.14 mg Ca kg'' with p = 0.1163). The initial 

increase in ANaOH-P and ACa in the open system might be due to the 

substantial amount of exchangeable Ca (19 to 24% of the total dissolved Ca from 

the RP) that was removed by the percolating water (Figure 6.3). The loss of Ca
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Figure 6.2. Tilemsi rock phosphate dissolution in Keur Madieng soil as measured by a) ANaOH-P and b) ACa methods 
in closed- and open-leaching incubation systems.
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Figure 6.3. Changes in Ca losses from Keur Madieng soil amended with Tilemsi 
RP at the rate of 500 mg P kg'V

remained constant by the end of the incubation period suggesting that no further 

dissolution took place even with the continuous leaching. This again might be 

due to the negative feedback of the soil properties on the RP dissolution. 

Contrary to the cessation of the dissolution process observed in the current 

study, Hanafi et al. (1992) observed a continued RP dissolution in an open- 

leaching system, probably due to the renewal of the Ca exchange sites during 

leaching. In the same experiment, the workers obtained up to 94% of RP
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dissolution in the open system compared to 22-71% dissolution for Gafsa RP and 

26-42% for Christmas Island RP in the closed system. In Hanafi et al. (1992) 

study, more dissolution took place compared to the current study because the 

limitation to the dissolution in the later study was the exchange sites for Ca not 

soil acidity.

The additional dissolution that occurred in the open system compared to 

that of the closed system could be explained by the leaching of the Ca enabling 

more dissolution to happen. This supports the hypothesis that RP dissolution 

could be reduced due to the accumulation of Ca in the soil solution in a closed- 

incubation system. Considering the field experiment at Keur Madieng, Senegal 

with a predicted and estimated (linear response plateau) Tilemsi RP rates of 

2734 and 673.55 kg ha'' , respectively, for producing millet maximum yield, the 

additional dissolution obtained in the open-incubation system cannot fully explain 

the overestimation of the prediction. In conditions where losses through leaching 

are not measured, the ACa method would not be a good estimate of the 

dissolved RP in field conditions where Ca can be leached.

6.6. Conclusions

In summary, the results from this incubation study suggested that 

dissolution not sorption affected the suitability of the RP as source of P. The 

dissolution in Keur Madieng soil was indeed limited by the soil acidity rather than
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the Ca exchange sites. However, we can conclude that open-incubation systems 

better simulate field conditions than closed systems.

Because there was not a sufficient amount of acidity to dissolve the RP, 

the suitability of the direct use of RP in the Keur Madieng soil seems 

questionable. Perhaps alternatives such as acidifying the rhizosphere such as 

plants, ammonium fertilizers, elemental sulfur, etc are needed to enhance RP 

dissolution in this type of soil. Perhaps RP needs to be preprocessed locally to 

improve their solubility before application rather than use it for direct application.
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Chapter 7. General conclusions and summary

7.1. General conclusions and summary

According to the World Bank (1989), food production must increase by 4% 

in the Sub-Saharan Africa in order to achieve self-sufficiency and alleviate 

poverty. This challenge can be attained only through agricultural intensification 

by replenishing and improving soil fertility, which requires use of external inputs. 

The direct use of RP in agriculture can be a good alternative to correct soil P 

deficiency in this region; however, further economic evaluation is needed. The 

ability to predict RP fertilizer requirements and to develop accurate and specific 

RP recommendations will represent an enormous contribution to improve P 

fertility status and to increase crop yields in that region. The need for accurate 

and site-specific RP recommendation and the large number of factors affecting 

RP suitability for direct use justifies the need for a modeling approach that could 

identify, quantify and combine the factors into a prediction algorithm.

A simple algorithm considering dissolution and sorption processes is 

proposed to predict amounts of RP needed to meet crop P requirements. Soil 

KCI-extractable acidity, Ca saturation and the effective cation exchangeable 

capacity and the ratio between ANaOH-P and ABray 1-P are the required 

parameters for predicting amounts of RP needed for crop production in West 

African soils. It is also worthwhile to mention that this proposed algorithm is so far
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the only approach that attempts to quantitatively predict the amount of RP 

needed considering plant and soil P status.

In this study, the amounts of RP dissolved were estimated using the 

changes in 0.5 M NaOH-P between RP-treated and untreated soils (ANaOH-P). 

Based on the comparison with the changes in exchangeable Ca (ACa) between 

RP treated and untreated soils, ANaOH-P can be used as an estimate of the RP 

dissolution especially for RP containing CaCOa and in conditions where Ca 

losses occur and are not estimated. Because of the high susceptibility of Ca to 

be lost either by leaching or by plant uptake, ACa cannot be recommended as a 

measure of RP dissolution in field conditions.

The millet growing soils in West Africa are sandy, deficient in P, and 

characterized by a natural variability resulting in extremely difficult situations for 

field experiments. Because of this large variability in the field, the capability of the 

RP algorithm to accurately predict RP to meet crop P requirement was not well 

tested. However, there are indications that the algorithm seems to overestimate 

the amounts of RP needed. Additional experiments in more controlled conditions 

are needed to assess the accuracy of the RP algorithm and to define 

modifications needed to the algorithm. However, it can be already pointed out 

that the extremely high RP application rates (greater than 1X) are not needed.

When opting for the use of RP to correct soil P deficiency, the choice of

RP to apply should include consideration of the RP properties itself and the soil

properties to which the RP will be applied. For example, highly reactive RPs with
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CCE greater than 50% are not the most suitable for sandy soils with pH close to 

5.5 and with low buffering capacity because the low acidity could be neutralized 

by the RP material and soil Ca could be increased, also depressing RP 

dissolution.

It is important to integrate RP properties into the RP algorithm. The rock 

phosphate algorithm tested in these field experiments considers only soil 

properties. The different results obtained from Konobougou 1 and 2 experiments 

using Tilemsi RP (same origin but most probably different sampling time) support 

the need to also consider RP properties such as the solubility in neutral 

ammonium citrate, 2% citric and formic acids, particle size, CCE etc. in the 

algorithm. Similarly, an economic evaluation of rock phosphate and soluble P 

materials based on the quantified amounts provide by this algorithm is needed.

For identifying P deficiency conditions and predicting amounts of P 

needed to meet crop P requirements, one single Bray 1-P critical level of a given 

crop could be used for both water-soluble P and RP materials. Because the 

Bray-1 P critical level varied, an additional study can be carry out to validate the 

P critical level for producing maximum millet yield for millet producing soils of 

West Africa.

Rock phosphate dissolution in Keur Madieng soil seems limited because 

of the low soil acidity. Because there was not sufficient acidity to dissolve the RP, 

the suitability of the direct use of RP in soil with pH close to 5.5 and low buffering

capacity like Keur Madieng soil seems questionable. Alternatives such as
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acidifying the rhizosphere such as plants, ammonium fertilizers, elemental sulfur, 

etc. help to enhance RP dissolution in this type of appear necessary. Perhaps 

RP needs to be preprocessed locally to improve their solubility before application 

rather than use it for direct application.

While RP may be a cost-effective way to supply P and sustain the often 

deficient nutrient P, it is also clear that soluble P is needed in many cropping 

systems and soils of West Africa.

7.2. Further research studies needed

1. Diagnosis of conditions suitable for direct application of rock phosphates; 

after diagnosing the existence of P deficiency, the diagnosis section must assist 

the user in evaluating the options and deciding whether or not to use RP on a 

case-by case basis. We propose outlining a procedure that takes in account the 

major factors affecting RP dissolution and P availability from dissolved P to 

evaluate suitability of RP for direct application. The categories of factors we 

propose to consider in the diagnosis phase are:

a. crop type, duration, and special conditions, such as legumes, plants 

acidifying their rhizosphere, acid tolerant perennial crops etc.

b. soil factors such as soil pH, Ca and P status, and soil water content

c. rock phosphate properties, such as their solubility and

d. soil management factors.
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This step will conclude with a recommendation as to whether the use of 

RP is appropriate for the given soil, crop and management practices.

2. Considering the complexity around the use of RP for direct application, the 

RP algorithm must be tested in more controlled conditions before field testing it in 

farmers’ fields which are characterized by high natural soil variability. Such study 

would allow generalizing the RP algorithm to a large range of RP materials and 

define refinement or modification needed to the algorithm.

3. Because major crops in West Africa grow on soils where substantial Ca 

leaching can take place, additional incubation study should be conducted with a 

range of West African soils having contrasting acidity and P sorption capacity.

4. Determine the uncertainties of RP algorithm by identifying the error 

propagation of each variable included in the algorithm on the prediction.

5. Conduct an economic analysis of the RP prediction over several years as 

compared to the soluble P fertilizer. This step should be associated with the 

diagnosis, and prediction steps that will be used to make recommendation on the 

option of using or not RP to supply P to crops. After a P deficiency diagnosis, the 

RP module could evaluate the suitability of RP to supply P needs for crop in a 

case by case basis similar to site-specific nutrient management and provide a 

recommendation for the amount and type of RP needed and give an economic 

analysis based on soil, crop, RP and management factors. It will allow users to 

determine the consequences of their decisions and allow them to make a better 

choice between soluble P fertilizer and RP.
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Niger field experiment

8. Appendix. Site description and materials and methods used in Sadore,

8.1. Site description

Sadore (2° 20’ 29.55” E, 13° 16’ 56.47” N) is located at about 45 km from 

Niamey in the Sahelian zone of Niger with an annual rainfall of 450 mm. The rainy 

season last about 108 days (June -  September). The ETp reaches the highest levels 

of the three sites under study (2000 mm year').

8.2. Materials and Methods

A 4 X 5 factorial experiment was conducted at ICRISAT center at Sadore, 

Niger in 2007. The experimental design was a randomized complete block with 

each experimental treatment replicated 4 times. Individual plots were 56 m^ (7 m 

X 8 m). The crop considered in this experiment is considered as staple food in the 

semi-arid region of West A frica- millet {Pennisetum spp). Acid soils (pH < 5.5) 

with a low extractable P level (Bray 1-P < 7 mg kg'') was selected. Phosphorus 

sources included one soluble P fertilizer (treble super phosphate -  TSP) and 

three RPs: Gafsa, Tahoua (Niger) and Taiba RPs. The rate of RP application 

included OX, %X, %X, IX  and 1.5X; where IX  was the predicted rate from the 

algorithm. Such a response curve permitted detecting whether the algorithm 

under predicts, accurately predicts, or over predicts RP needs. Soil samples

(depths of 0 - 15 and 1 5 - 3 0  cm) were collected in each experimental unit prior
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to the application of RP rates. These samples were initially analyzed at ICRISAT- 

Niger for texture, pH (water), Bray 1-extractable, 1 M KCI acidity and 

exchangeable cations (1 M ammonium acetate pH 7.0). The different methods 

used are described in Chapter 5. Properties of the topsoil samples from each 

experimental unit were used to predict application rates of different RP. Rock 

phosphate samples will be analyzed for their solubility in different solution 

(Neutral ammonium citrate, 2% formic acid and 2% citric acid) with the courtesy 

of IFDC-Alabama. Statistical analysis will be performed (regression analysis) 

using SAS (SAS, 1985). The 4*  ̂ replication of the experiment will be eliminated 

from the analysis because the quantities of RP were insufficient to totally cover 

this replication. Linear response plateau analysis (Shuai et al., 2003) will be used 

to estimate the RP rates that produced maximum yields for each RP. A similar 

analysis was also used to determine the Bray 1-P critical level.

This study was funded by the Borlaug Leadership Enhancement in 

Agriculture Program (LEAP).
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