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ABSTRACT

Dendrobium is the most important cut flower orchid in the world. 

Understanding the chemical, histological and molecular aspects of flower color is 

crucial for the development of breeding strategies for novel colors. The objectives of 

this research were to examine the histology o f flower color, cloning and 

characterization of flavonoid biosynthetic genes, and metabolic engineering of 

Dendrobium flavonoid pathway to obtain new colors.

In Dendrobium, anthocyanins can be confined to a single layer o f cells 

(epidermal or suepidermal) in pale flowers. More intensely colored flowers had 

anthocyanin in several cell layers. Striped patterns on the perianth were due to the 

restriction of pigment to cells surrounding the vascular bundles. Color perception is 

markedly influenced by the presence or absence of carotenoids.

Four types of epidermal cells were found in Dendrobium'. flat, dome, 

elongated dome, and papillate. Epidermal cell shape and cell packing in the 

mesophyll affected the visual texture. Perianth parts with flat cells and a tightly 

packed mesophyll had a glossy texture, whereas dome cells and loosely packed 

mesophyll contributed a velvety texture. The labella in the majority of flowers 

examined had a complex epidermis with more than one epidermal cell shape, 

predominantly papillate epidermal cells.

We were able to isolate a full clone of Dendrobium dihydroflavonol

4-reductase (dfr), and partial clones of chalcone synthase {chs), flavonoid 3'- 

hydroxylase {J3'h) and flavonoid 3', 5'-hydroxylase {f3'5'h), from Dendrobium

vii



Jaquelyn Thomas ‘Uniwai Prince’ (UH503). Expression data indicated that dfr and 

chs were expressed to the greatest degree in unopened buds. Amount offS'h and 

f S ’5'h mRNA was too small to detect. Southern analysis has shown that f3'h  and 

f3 '5 ’h is represented by 2 copies each in UH503. These clones will be extremely 

useful in future for flower color manipulation.

Two different color genes, dfr and fi '5 'h  from two non-orchid plants, under 

the constitutive promoter ubiquitin3, were inserted into Dendrobium Icy Pink 

‘Sakura’ with the intention of creating orange-red and blue shades, which are absent 

in commercial Dendrobium. Presence of the transgene in two sets of transformants 

was confirmed by PCR. Expression of the transgene from a few plants was indicated 

by RT-PCR and northern analyses.
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CHAPTER 1 

ORCHH) BIOTECHNOLOGY IN PRODUCTION AND 

IMPROVEMENT

1.1 INTRODUCTION

The Orchidaceae is one of the largest families of flowering plants, with 

several genera being used in cut flower and potted plant production. Dendrobium, a 

member of the Orchidaceae, is one of the largest genera with approximately 1400 

species (Dressier, 1990) and many man-made hybrids. Classical breeding techniques 

have given rise to many commercially successful hybrids with attractive flower 

colors and forms, long vase life, fragrance, seasonality and desirable spray length. 

However, some colors such as orange-red and blue are missing from Dendrobium 

flower color spectrum (Kuehnle et al., 1997). Genetic modification of pigment 

biosynthesis through biotechnology is becoming an integral part of breeding new 

colors in ornamental plants (Davies et al., in Press). A few transgenic ornamentals 

(carnations) are already available in the market and are well received by consumers. 

A detailed understanding of the flower color is important in developing strategies to 

modify flower color.

The overall objectives of this research were to obtain a detailed knowledge 

on Dendrobium flower color by examining the histology of pigment distribution, 

cloning and characterization of flavonoid biosynthesis and to modify flower color 

through genetic manipulation of flavonoid synthesis through biotechnology.



The molecular biology of orchids, last reviewed in Kuehnle (1997), covered 

research in phylogeny and systematics, floral physiology, and plant breeding. Only 

ten orchid genes were cloned at that time. Since then, the total number of genes 

cloned from orchids has expanded considerably. The objective of this chapter is 1) 

to provide an overview of the function of some recently cloned genes, and 2) to 

review advances made in other applications of biotechnology in orchid production 

and improvement.

1.2 FUNCTIONS OF SOME CLONED ORCHID GENES

Approximately 70 genes have been cloned from seven orchid genera, namely 

Dendrobium, Phalaenopsis, Doritaenopsis, Aranda, Bromheadia, Vanilla and 

Cymbidium. These genes can be divided into seven categories based on their 

presumptive functions (Table 1.1). Here we review genes affecting flower induction, 

flower color, flower senescence, and disease resistance. Other genes have been 

cloned that affect primary metabolism, ovule development, cell division and cell 

structure (Table 1.1). At this time, the latter categories have had less direct impact 

on commercial orchid production and improvement.

1.2.1 Flower Induction

The ability to time flowering for holidays and to hasten flowering in 

otherwise slow-maturing orchids is of keen interest to growers of commercially 

cropped orchids. Several research groups are examining the genetic aspects of flower 

induction and the transition of the apical meristem from a vegetative shoot apical 

meristem (VSAM) through a transitional shoot apical meristem (TSAM) to a 

reproductive meristem.



Table 1.1. Isolated orchid genes or cDNA clones and their presumptive
functions.

Gene or cDNA Orchid genus Presumptive function Reference and GenBank
Designation accession no.*

Flower Induction
ovg2/D0Hl Dendrobium Homeobox gene, class 1 Yu and Goh, 2000a; Yu et al..

knox genes 2000. AF100326, AJ276389
om l \  Aranda Flower specific MADS L u e ta l , 1993. X69107

box gene
otg? Dendrobium MADS box gene Yu and Goh, 2000a. AF107588
DOMADSl, Dendrobium MADS-box genes in Yu and Goh, 2000b. AF198174
2 and 3 AP1/AGL9 subfamily
ovg27 Dendrobium Transcriptional repressor Yu and Goh, 2000a. AF100331
otg 16 Dendrobium Casein Idnasel, a homolog Yu and Goh, 2000a. AF107592

of serine/threonine protein
kinase.

Cell Division and Cell Structure
ovgI4 Dendrobium Transcriptional regulator Yu and Goh, 2000a. AF100328

of cell cycle regulators.
otg4 Dendrobium Cell division control Yu and Goh, 2000a. AFl07586

protein, a homolog of yeast
NDA4

ovgSO Dendrobium DNA binding protein. Yu and Goh, 2000a. AF100333
regulate cell cycle
progression

ovg29 Detidrobium Putative 21D7 protein. Yu and Goh, 2000a. AF100332
Degradation of cell cycle
regulatory proteins

otg2 Dendrobium Myosin heavy chain Yu and Goh, 2000a. AFl07585
P-ACTI Phalaenopsis Actin partial clone Nadeau etal., 1996. U18102
ACT2 Phalaenopsis Actin-like protein Huang et al., 2000. AF246715

Phalaenopsis Profilin, an actin binding Lee et al., 2000. AF126263
protein

Flower Senescence
Ds-ACSl, X  Doritaenopsis ACC synthase O’Neill et al., 1993. L07882,
Ds~ACS2 L07883
ACS2, ACS3 Phalaenopsis ACC synthase Bui and O’Neill, 1998.

AF007213, AF00721
pOACSlO/77 Phalaenopsis ACC synthase Do and Huang, 1998. Z77854
DCACS Dendrobium ACC synthase Yang etal., 1996. U64031
OAOl X  Doritaenopsis ACC oxidase Nadeau etal., 1993. L07912
D-AC02 X Doritaenopsis ACC oxidase Nadeau and O’Neill, 1995.

L37103
pPEFEA Phalaenopsis ACC oxidase Lee and Huang, 1995.
Petri Phalaenopsis Homolog of ethylene Do etal., 1999. AF055894

receptor
Perl Phalaenopsis Ethylene response sensor Chaietal., 1999. AFl 13541
POAC031/ Phalaenopsis Homolog of human Acyl- Do and Huang, 1996. U66299
PACOl CoA oxidase



Table 1.1. (Continued) Isolated orchid genes or cDNA clones and their
presumptive functions.

Gene or cDNA 
Designation

Orchid genus Presumptive fonction Reference and GenBank 
accession no.“

Ovuie Development
o39 Phalaenopsis Homeobox protein Nadeau etal., 1996. U34743
040/ Phalaenopsis Putative cytochrome p-450 Nadeau etal., 1996. U34744
CYP78A2 monooxygenase
0 IO8 Phalaenopsis Homolog of SKPl, a cell Nadeau etal., 1996. U34745

cycle regulator gene.
ol26 Phalaenopsis Glycine rich cell wall Nadeau et al., 1996. U34746

structural protein
oI41 Phalaenopsis Cysteine proteinase Nadeau etal., 1996. U34747
0138 Phalaenopsis A new gene involved in Wang et al., 1999

embryo formation
o38 Phalaenopsis Specific function unknown O’Neill et al., 1996. U78100

Flower Color
OCHS3,4, Bromheadia Chalcone synthase Liewetal, 1998a. AF007097
and 8 finlaysoniana
pOCHSOl Phalaenopsis Chalcone synthase Hsu et al., 1997. U88077
Fht/pCFI Bromheadia Flavanone 3 hydroxylase Liew et a l ,  1995 X89199

finlaysoniana
ODFR Bromheadia Dihydroflavonol 4- Liew et a l ,  1998b. AF007096

finlaysoniana reductase
Dfr gene Cymbidium Dihydroflavonol 4- Johnson et al., 1999. AF017451

hybrid reductase
AM  1-3 Phalaenopsis Gerenyl-Geranyl Liu and Chen 1999.

equestris pyrophosphate synthase

Disease Defense/ Stress Response
Pal/OPALl Bromheadia Putative phenyl alanine Liew et al., 1996.

finlaysoniana ammonia lyase (PAL). X99997
ovg43 Dendrobium PAL enzyme Yu and Goh, 2000a. AF100336
pBibSy811, Phalaenopsis Bibenzyl synthase Preisig-Miiller et al., 1995.
pBibSy211 X79904, X79903
pBBSl Bromheadia Bibenzyl synthase Limeta l ,  1999a. AJ131830

finlaysoniana
pA H H Sll Phalaenopsis S-adenosyl homocysteine Preisig-Miiller et al., 1995.

hydrolase X79905
ovg23 Dendrobium Putative copper chaperone Yu and Goh, 2000a AF100330

of copper/zinc superoxide
dismutase.

Primary Metabolism
o tg ll Dendrobium Putative finctose-bis- Yu and Goh, 2000a. AF107590

phosphate aldolase.
otg9 Dendrobium Ahemative oxidase Yu and Goh, 2000a. AF 107589
otg6 Dendrobium NADH dehydrogenase Yu and Goh, 2000a. AF107587

intron region
ovg41 Dendrobium formate dehydrogenase Yu and Goh, 2000a. AF100335



Table 1.1. (Continued) Isolated orchid genes or cDNA clones and their
presumptive functions.

Gene or cDNA 
Designation

Orchid genus Presumptive function Reference and GenBank 
accession no.”

Primary Metabolism (continued)
Pepc gem, Vanilla Phoshoenol pyruvate Gehrig et al., 2002a. AJ312624,
isoform 1-4 planifolia (PEP) carboxylase AJ312625, AJ312626, AJ312627
Ppc3 Vanilla PEP carboxylase Gehrig et al., 1999. AJ249988,

planifolia AJ249989
MdhI/pVM7 Vanilla NADP malate Gehrig et al., 2002b. AJ306489

planifolia dehydrogenase
-------- Phalaenopsis Putative chlorophyll a/b Lee et al., 1999. AF133340

binding protein
Dcrlcl Dendrobium Isocitrate lyase Vellupillai et al., 1999.,

crumenalum AF193815

ovg37 Dendrobium Putative acyl carrier Yu and Goh 2000a. AF100334
protein.

------- Dendrobium Vacuolar ATPase Liewetal., 1999. AF193814
crumenatum proteolipid subunit

O ther Genes
ovgl I, Dendrobium Function unknown. Yu and Goh, 2000a. AF100327,
ovglS, involved in floral transition AF100329, AF100337,
ovgSO, otgI4 AF100337, AF107591
ckol Dendrobium Cytokinin oxidase Yang etal , 2001. AJ294542

* Some genes are directly submitted to the GenBank and the research is published later in journals.
For these records, the year of publication does not reflect the date of submission to the GenBank. For 
the sequences that are only in GenBank, the date of publication reflects the published date on 
GenBank database



Specifically, several orchid genes have been identified to be so-called homeobox and 

MADS box genes, which encode transcription factors and are preferentially 

expressed in vegetative or transitional stages (Table 1.1).

Homeobox genes. Five clones were identified by mRNA differential display 

as transcription factors involved in floral induction (Yu and Goh, 2000a). Of these, 

the partial cDNA clone ovg2 showed significant similarity to homeobox genes, 

which are a universal group of transcription factors important in development. The 

full-length single copy clone, DOHl, which was subsequently isolated from a 

Dendrobium cDNA library of VS AM, shared considerable similarity to a class of 

homeobox genes known as class 1 knox (knotted-like) genes (Yu et al., 2000). 

Northern analysis and in situ hybridization revealed that DOHl/ovg2 mRNA 

accumulated in all meristem-rich tissues and its expression was down regulated at 

the beginning of floral transition (Yu and Goh, 2000a; Yu et al., 2000). A 

Dendrobium hybrid transformed with sense constructs o f DOHl gene driven by the 

Cauliflower Mosaic Virus (CaMV) 35S promoter revealed that the overexpression of 

DOHl completely suppresses shoot organization and development (Yu et al., 2000). 

Anti-sense plants formed multiple shoot meristems and precociously flowered. With 

these results, the authors concluded that DOHl is involved in controlling the 

formation and identity of the shoot apical meristem, and is thereby involved in 

maintaining the basic plant architecture.

Another floral homeotic gene was isolated from red and white Phalaenopsis 

using Amplified Fragment Length Polymorphism (Liu and Chen, 1999). A fragment



that was differentially amplified, AM 1-3, has shown 87% similarity to the floral 

homeotic gene AGL5 from Arabidopsis thaliana and 90% similarity to the AG gene 

of Brassica napus at the deduced amino acid sequence. AGL5 is known to act 

downstream o f AG in programming normal carpel and ovule development.

MADS box genes. MADS-box genes comprise another important family of 

transcription factors that regulate the transition o f meristem identity. They are 

characterized by the presence of a highly conserved DNA binding domain (MADS- 

box) and a second conserved domain (K-box) involved in protein-protein 

interactions. The first flower-specific MADS-box gene from an orchid was isolated 

from the mature flower cDNA library of Aranda Deborah hybrid using an agamous 

cDNA from Arabidopsis as the probe (Lu et al., 1993). A single clone, oml was 

isolated, with an open reading frame (ORF) of 750 base pairs (bp) encoding a 

polypeptide of 250 amino acids. Expression of oml was limited to the petals and 

sepals o f mature flowers but was not found in the column, early inflorescence, or 

floral buds, suggesting that oml might be playing an important role in petal 

development.

Another orchid MADS-box gene, otg7, expressed only in the TSAM was 

identified from Dendrobium (Yu and Goh, 2000a). Clone otg7 was used later to 

isolate three new MADS box genes, DOMADSl, D0MADS2, and D0MADS3, all of 

which were expressed exclusively in floral tissues (Yu and Goh, 2000b). The 

DOMADSl gene was expressed early in the developing inflorescence and in all floral 

organ primordia. Its high expression in pollinaria suggested it could be an early



regulator of development of pollen mother cells. DOMADS 2 was expressed early in 

the VSAM and increased in expression during the transition of the shoot apical 

meristem from the vegetative to reproductive phase, which might indicate a role in 

vegetative to reproductive phase change. The expression pattern of D0MADS3, as 

revealed by in situ hybridization, suggested that it might function as a regulatory 

factor in the formation of the TSAM and in the development of pedicel tissue.

Another transcription factor, ovg27, a homologue of a Drosophila shuttle- 

craft gene, was isolated from the VSAM of Dendrobium and appears to be important 

in maintaining the vegetative state of shoot apical meristem in plants (Yu and Goh, 

2000a). Also, a cDNA clone, otgl6, expressed only in the TSAM has shown 

significant similarity to an Arabidopsis casein kinase gene involved in protein 

phosphorylation and signal transduction (Yu and Goh, 2000a). The complete signal 

transduction pathway in floral induction of orchids is yet to be discovered.

1.2.2 Flower Color (Flavonoid Biosynthesis)

The magnificent spectrum of colors found in orchids is mainly due to the 

accumulation of anthocyanins in their flowers (Arditti and Fisch, 1977). Although 

carotenoids and chlorophylls contribute to flower color in many orchids, there are no 

detailed reports of cloned orchid genes associated with the biosynthesis o f these 

compounds except for a brief mention of an amplified restriction fragment of 

Phalaenopsis, AM4-1, which showed similarity to the geranyl-geranyl 

pyrophosphate synthase gene (Liu and Chen, 1999). The biosynthesis of 

anthocyanins is well characterized in many ornamental plants. The synthesis of
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flavonoids, including anthocyanins, occurs through the phenylpropanoid pathway, 

which starts with the stepwise condensation of three acetate units from malonyl-coA 

with 4-coumaroyl CoA to yield tetrahydroxychalcone (Heller and Forkmann, 1988). 

This reaction is catalyzed by the enzyme chalcone synthase (CHS), which is 

attractive to researchers for flower color manipulation since this is the first step in 

anthocyanin biosynthesis. Genes for other important enzymes cloned in orchids are 

flavanone 3-hydroxylase (F3H) and dihydroflavonol 4-reductase (DFR).

Chalcone synthase genes. The earliest report of the isolation of flower color 

genes in orchids appeared as an abstract only by Yong and Chua (1990), in which 

four cDNA clones encoding CHS were isolated from a cDNA library of a 

Dendrobium hybrid. These cDNA sequences are absent in all the searchable 

databases. Later, three chs cDNA clones, 0CHS3, OCHS4, and 0CHS8, isolated 

and characterized from the cDNA library of Bromheadia fmlaysoniana flowers 

(Liew et a l, 1998a), all were shown to contain a single ORF (Open Reading Frame) 

of 1185 bp (base pairs) encoding a protein of 42.9 kD. CHS is encoded by a small 

multigene family and is expressed in high levels in flower buds and other tissues 

containing anthocyanin such as leaves with pigmented edges and roots (Yong and 

Chua, 1990). Another cDNA clone encoding CYiS>, pOCHSOl, was isolated from a 

Phalaenopsis hybrid (Hsu et al., 1997). However, a recent BLAST search revealed 

that this cDNA clone is in fact 98% similar to bibenzyl synthase clones of 

Phalaenopsis and Bromheadia. The authors noted that there are at least 10 other 

sequences that hybridized withpOCHSOl in Southern analysis. It is difficult to



distinguish genes encoding CHS, bibenzyl synthase and stilbene synthase due to 

their close similarity at the nucleotide and amino acid sequence level since all three 

enzymes catalyze very similar chemical reactions.

Flavanone 3-hydroxylase genes. Another key enzyme in flavonoid 

biosynthesis, flavanone 3-hydroxylase (F3H), catalyzes the formation of 

dihydroflavonols from (2S)-flavanones in plants. A cDNA clone encoding F3H was 

isolated from Bromheadia fmlaysoniana, with the intent of producing transgenic 

plants to study the role of this enzyme in orchid flower color (Liew et al., 1995). A 

full-length clone of 1393 bp encoding a protein o f 41.5 kD with 464 residues was 

isolated. It shared 52-59% and 70-76% homology with other plants at the nucleotide 

and amino acid levels, respectively.

Dihydroflavonol 4-reductase genes. The conversion of dihydroflavonols such 

as dihydrokaempferol (DHK), dihydroquercetin (DHQ), and dihydromyricetin 

(DHM) to the corresponding leucoanthocyanidin is the first committed step in 

anthocyanin biosynthesis and is catalyzed by the enzyme, Dihydroflavonol 4- 

reductase (DFR). The color of the anthocyanin produced depends on the 

dihydroflavonol substrate that is reduced by DFR enzyme. The substrate specificity 

o f DFR explains the absence of certain colors from some ornamental plants, e.g. 

Petunia hybrida which does not catalyze the conversion of DHK to orange-colored 

pelargonidin (Meyer et al., 1987). In orchids, Cymbidiums are noticeably devoid of 

orange colored flowers (Johnson et al., 1999) and only a few pelargonidin 

accumulating flowers are found in Dendrobium (Kuehnle et al., 1997). This
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important feature of DFR makes this enzyme an important target for flower color 

manipulation through genetic engineering (Johan et al., 1995; Meyer et al., 1987).

In order to characterize DFR in orchids, full-length clones encoding DFR were 

isolated from petal cDNA libraries of Bromheadia fmlaysoniana (Liew et al., 1998b) 

and a Cymbidium hybrid (Johnson et al., 1999). Southern analysis revealed that DFR 

is represented by a single copy gene in both orchid genera. A full-length DFR 

cDNA clone isolated fi-om Dendrobium Jaquelyn Thomas ‘Uniwai Prince’ using a 

PCR-based technique showed 87% homology to Bromheadia and 84% homology to 

Cymbidium (Kuehnle and Mudalige, 2002). The substrate specificity of Cymbidium 

DFR was investigated by transforming a mutant Petunia line accumulating DHK as 

the major flavonol (Johnson et al., 1999). Chemical analysis of transformed lines 

revealed that Cymbidium DFR did not efficiently catalyze the reduction of DHK and 

preferred DHQ as a substrate, resulting in the production o f pink cyanidin instead of 

orange pelargonidin. Introduction of a DFR from a plant that efficiently reduces 

DHK to pelargonidin {Antirrhinum majus and Zea mays) might be an attractive 

alternative to introduce orange color into orchids such as Cymbidium and 

Dendrobium.

1.2.3 Flower Senescence

In the absence of pollination, many orchid flowers are known to have a very 

long life, some lasting up to six months (Goh and Arditti, 1985). This long life span 

may increase the chance of pollination by a highly specific insect pollinator. 

Pollination triggers a series of physiological and developmental changes, known
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collectively as “post-pollination syndrome ” which mobilize nutrients out o f non- 

essential parts (perianth) into essential parts, the developing ovule and ovary. The 

hormone ethylene plays a key role in the transduction of the pollination signal and 

the coordination of post-pollination development in many flowers including orchids 

(Porat et al., 1994a & 1994b). The production of ethylene starts with the synthesis of

S-adenosyl methionine (SAM) catalyzed by SAM synthetase. Conversion of SAM to 

1-aminocycIopropane-l-carboxylate (ACC) is catalyzed by ACC synthase, followed 

by the oxidation of ACC to ethylene by ACC oxidase. The rate- limiting step is 

believed to be the conversion of SAM to ACC. The physiology of post-pollination 

syndrome in terms of ethylene production and sensitivity in Phalaenopsis flowers 

(Nadeau et al., 1993; Porat et al., 1994b) and Dendrobium flowers (Porat el al., 

1994a) has been well characterized. The exact nature of the primary pollination 

signal is still uncertain and speculated to be pollen-borne ACC or auxin (Bui and 

O’Neill, 1998; Wang et al., 2001).

ACC synthase genes. A total of six cDNA clones have been obtained from 

the pollinated flowers of different species of orchids (Table 1.1). Two ACC synthase 

clones, Ds-ACSl and Ds-ACS2, were isolated from Doritaenopsis (O’Neill et al.,

1993). Northern analysis revealed that Ds-ACSl and Ds-ACS2 mRNA accumulated 

in the stigma, ovary, and labellum (modified petal or lip) but not in the perianth 

(petals and sepals). Both ACC synthase genes were shown to respond to ethylene 

produced in the stigma in response to the primary pollination signal. Three cDNA 

clones involved in regulation of the initiation and propagation of ethylene
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biosynthesis, Phal-ACSl, Phal-ACS2, and Phal-ACS3 were isolated from stigma and 

ovary tissue of pollmated Phalaenopsis flowers (Bui and O’Neill, 1998). Phal-ACS2 

mRNA was apparent in stigma while Phal-ACS3 mRNA accumulated in the ovary as 

a response to pollination. Phal-ACSl was believed to be involved in amplification 

and transmission of the pollination signal among different floral organs.

Yang et al. (1996) isolated a clone, DCACS, from the senescing flowers of 

Dendrobium crumenatum with the intent of extending flower longevity by producing 

transgenic plants over-expressing an antisense form of this gene. Two additional 

clones (pOACSlO and pOACSJT) were isolated from wilting petals of Phalaenopsis 

for the same purpose (Huang et al., 1996).

ACC oxidase genes. Three ACC oxidase genes have been reported as cloned 

(Table 1.1). Two genes, OAOl and D-AC02, were isolated from cDNA libraries of 

gynoecia and the senescing petals o f pollinated Doritaenopsis flowers, respectively 

(Nadeau et al., 1993; Nadeau and O’Neill, 1995). Another ACC oxidase cDNA 

clone was isolated from senescing petals of Phalaenopsis (Lee and Huang, 1995). 

ACC oxidase activity increased significantly in the stigma of Phalaenopsis after 

pollination due to de novo synthesis of ACC oxidase mRNA and presumably the 

protein (Nadeau et al., 1993). Unlike ACC synthase, ACC oxidase mRNA 

accumulated in the perianth in response to pollination. Emasculation, or treatment 

with auxin and/or ethylene was found to simulate the pollination signal, increasing 

the expression of the ACC oxidase gene. Application of ACC to petals o f pollinated
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flowers also increased the ACC oxidase expression in petals, suggesting that ACC 

itself also acts as a secondary signal in Phalaenopsis.

Other senescence-related genes. The binding of ethylene to its receptor is the 

first step in hormonal signal perception and transduction. Ethylene receptors are 

members of a multigene family, with highly conserved domains in the N-terminus of 

their deduced amino acid sequence and their putative histidine kinase domains (Do et 

al., 1999). A putative ethylene receptor cDNA clone was isolated from the 

pollination induced senescent petals of Phalaenopsis (Table 1.1). It encodes a 71 kD 

polypeptide reported to be most similar to banana and rice (monocotyledonous) 

ethylene receptors (75-79%) in deduced amino acid sequences. Another important 

gene associated with pollination-induced flower senescence, PACOl, was isolated 

from senescing Phalaenopsis petals (Do and Huang, 1996). It appeared to be a 

single copy gene whose expression is induced by exogenous application o f ethylene. 

A genomic clone of PACOl was isolated from a genomic DNA library of 

Phalaenopsis with the intention to analyze the promoter sequence and activity of this 

gene in orchids (Do and Huang, 1997).

1.2.4 Disease Defense

The production of polyphenols is a defense response of plants towards 

wounding, microbial infection and stress. The first step in biosynthesis of 

polyphenols is the production of cinnamate from phenylalanine, catalyzed by the 

enzyme phenylalanine ammonia-lyase (PAL). A full length cDNA clone, OPALl, 

was isolated from the orchid Bromheadia finlaysoniana in order to understand the
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regulatory response of PAL towards wounding and fungal elicitors and to produce 

transgenic plants with variations in the level of PAL activity (Liew et al., 1996). The 

deduced amino acid sequence was 78-83% similar to PAL of other plant species. 

Another cDNA clone encoding PAL, ovg 43, was isolated from the vegetative shoot 

apical meristem (Yu and Goh, 2000a). Northern analysis indicated that expression 

of ovg43 is down-regulated in the transition of the shoot apical meristem from a 

vegetative to a reproductive phase. However the exact reason for this dovm 

regulation and its function in floral transition is unknown.

Phytoalexin production genes. In many orchid plants, the invasion of fungal 

parasites induces the synthesis of specific chemical defense compounds, 9,10- 

dihydrophenantherenes, through the dihydrophenantherene pathway. A cDNA 

library prepared from mRNA of Phalaenopsis leaves inoculated with the conidia of 

Botrytis cinerea was used to isolate clones encoding for the enzyme bibenzyl 

synthase (Preisig-MUller et al., 1995). Two full-length cDNA clones encoding 

bibenzyl syn\ha.^Q, pBIbSySl 1 and pBibSy212, were isolated, as well as a clone 

encoding s-adenosylhomocysteine hydrolase (pAHHSll). The bibenzyl synthases, 

pBibSySll and pBibSy212, were verified by expression and production of 

enzymatically active recombinant proteins in Escherichia coli with the same 

substrate specificity in vitro as that of the plant enzyme. In young Phalaenopsis 

plants, fungal infection induced a transient increase in expression of both bibenzyl 

synthases and s-adenosylhomocysteine hydrolase by 100 fold with a peak at 20 hours 

after infection. A concomitant increase of PAL expression and the production of the
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phytoalexin hircinol were also observed with thngal infection (Reinecke and Kindi,

1994). Another full-length cDNA clone encoding bibenzyl synthase was isolated 

from a petal cDNA library of Bromheadia fmlaysoniana (Lim et al., 1999a,

GenBank no. AJ131830).

1.3 ORCHID GENETIC ENGINEERING AND COMMERCIALLY

APPLICABLE TRAITS

1.3.1 Methods of Transgenesis

Production of new varieties with improved characters such as new flower 

colors, flower morphology, plant stature, fragrance and increased vase-life is crucial 

for the growth of the floriculture industry. Plant breeding by sexual hybridization, 

selection of variants and polyploids has been an essential part of developing many 

improved traits and a large number of commercial orchid varieties. Interest in 

molecular breeding of orchids has increased considerably during the recent years to 

hasten selection and expand the gene pool available for improvement. Methods used 

in transformation of Phalaenopsis, Dendrobium, Cymbidium and Calanthe have been 

extensively reviewed by Kuehnle (1997) and Chen et al. (in Press). Here we discuss 

additional papers appearing since these reviews on gene transfer methods (Table 1.2) 

and commercially applicable traits (Table 1.3).

The most widely used method of gene transfer in orchids is particle 

bombardment, with protocorms and protocorm-like-bodies (PLBs) being the most 

popular choices as target tissues (Table 1.2).
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Table 1.2. Examples of genetically engineered orchids: Means of transgenesis.

Method of Transformation
Orchid genus

Gene(s) used“ Reference

Particle Bombardment
Dendrobium protocorms NPT n, GUS, Papaya 

ringspot virus coat protein
Kuehnle and Sugii, 1992

Dendrobium GUS, NPT U Nan and Kuehnle, 1995a
Dendrobium PLEA’S LUC C hiaetal., 1994
Dendrobium PLBs LUC Chiaet al., 2001
Dendrobium protocorms GUS, HPT Yu etal., 1999
Cymbidium PLBs GUS, NPT II Yang et al., 1999

Cymbidium petals GUS Boase et al., 2001; Peters 
et al., 2001

Phalaenopsis x Bar, NPT n, GUS, Soybean Anzai and Tanaka, 2001
Doritaenopsis, P-1,3-endogluconase
Phalaenopsis

Agrobacterium-vaeAiai^
Doritaenopsis x GUS, NPT n, HPT Belarmino and Mii, 2000
Phalaenopsis callus
Dendrobium GUS, HPT Nan etal., 1998

Pollen Tube Pathway
Dendrobium GUS, NPT II Nan and Kuehnle, 1995b
Phalaenopsis GUS, NPT II Hsieh and Huang, 1995

Seed Imbibition; 
Electroporation

Dendrobium GUS, NPT II Nan and Kuehnle, 1995b
Calanthe GUS NPT II Griesbach, 1994

“ NPT II=neomycin phosphotransferase; GUS=P-glucuronidase; LUC=firefly 
luciferase; HPT=hygromycin phosphotransferase; Bar=Bialophos resistance gene.

PLB=protocorm-like-bodies
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Table 1.3. Examples of genetically engineered orchids; Potential commercial
traits.

Purpose of 
Transformation

Genus Gene(s) used Reference

Disease Resistance
Virus
Virus

Fimgus

Bacteria, fungus

Dendrobium
Dendrobium

Phalaenopsis

Dendrobium

CymMV coat protein 
CymMV movement 
protein
(3-1,3 -endoglucanase 

Lytic peptides

Chia, 1999 
Kuehnle, Hu, et al., 
(unpublished) 
Anzai and Tanaka, 
2001
Kuehnle et al., 
(unpublished)

Color Change
Not specified

Red/Orange

Dendrobium
Oncidium
Dendrobium

Sense and antisense 
CHS
Antirrhinum DFR

Chia, 1999

Kuehnle and Mudalige, 
2002

Flower Wilting
Long vase-life Dendrobium Sense and antisense 

ACC oxidase
Chia et al., 2001

Other Interests
Function of DOHl

Glow in the dark

Dendrobium

Dendrobium

Sense and antisense 
DOHl gene 
Firefly luciferase

Yuet al.,2001 

Chia et al., 2001
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Evaluation of antibiotic selective agents for Dendrobium transformation 

indicated hygromycin to be excellent and geneticin also effective (Ong et al., 2000). 

The herbicide bialophos was proven to be a viable selection agent in transformation 

of Brassia, Cattleya and Doritaenopsis (Knapp et al., 2000).

Aff-obacterium-xntdiaXQd transformation is also proving applicable to some 

orchid genera (Table 1.2). Wounded PLBs o f Dendrobium were inoculated with 

Agrobacterium strain LBA4301 harboring a binary vector system (Nan et al., 1998), 

containing the HPT (hygromycin phosphotransferase) gene under the control of a 

nopaline synthase {nos) promoter and the uidA gene encoding p-glucuronidase 

(GUS) enzyme under the CaMV 35S promoter. Southern analysis and PCR 

confirmed the successful transformation and recovery of transgenic plants. Parallel 

work has shown the presence of coniferyl alcohol as the virulence gene inducer in 

Dendrobium (Nan et al., 1997). Agrobacterium-rnQdiaXtd gene transfer was also 

used to elucidate the function of class 1 knox gene, DOHl, in Dendrobium (Table 

1.3; Yu et al., 2001). Selectable marker NPTll under the control of a nos promoter, 

and sense as well as antisense DOHl genes under the CaMV 35S promoters were 

used to transform thin sections of Dendrobium PLBs. Molecular analysis by PCR 

and Southern hybridization revealed the successful integration of both sense and 

antisense constructs of the DOHl gene. Analysis of results and discussion of the 

role of DOHl gene in shoot apical meristem is discussed previously under floral 

induction.
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1.3.2 Engineering Disease Resistance

Two common, readily transmitted viruses impacting cultivated orchids are 

Cymbidium mosaic virus (CymMV) and Odontoglosum ring spot virus (ORSV). 

Viral genomic RNA was isolated from a field strain of CymMV, and a cDNA clone 

encoding the viral coat protein (CP) was synthesized from it (Chia et al., 1992a). 

This cDNA clone driven by CaMV 35S promoter was used to transform the model 

plant Nicotiana benthamiana to test the effectiveness of the CP gene in conferring 

viral resistance. At a low level of inoculum, transformed Nicotiana plants showed 

resistance to CymMV by preventing systemic infection completely and reducing the 

viral titer in the inoculated leaf A coat protein gene was also used in antisense 

orientation under the CaMV 35S promoter to transform Nicotiana occidental is (Lim 

et al., 1999b). Transformed Nicotiana plants were found to be highly resistant to 

CymMV virus. However, Dendrobium plants transformed with the CymMV CP 

gene showed only partial resistance; plants were susceptible when challenged with 

high viral titer (Chia, 1999). In Hawaii, Dendrobium plants transformed with a 

CymMV cDNA clone encoding a mutated movement protein (mut 11) under the 

control of an Arabidopsis ubiquitin promoter were identified by PCR analysis and 

are being grown in the greenhouse for virus challenge (Kuehnle, Hu and Obsuwan, 

unpublished data).

Plants show various defense mechanisms to prevent infection from fungal 

pathogens. Release of elicitors from fungal cell walls by the p-l,3-endogluconase 

enzyme of the host plant is considered to be one of the earliest processes in disease
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defense mechanisms such as phytoalexin production. Anzai and Tanaka (2001) 

produced transgenic Phalaenopsis plants transformed with soybean P-1,3- 

endogluconase (EG) gene under the control of a maize ubiquitin promoter. Two 

transformants showed incorporation of EG by Southern hybridization. However, 

western analysis failed to detect the EG enzyme in either of the transformants.

Another strategy in plant disease defense is to transform the plants with 

magainin genes to produce antibiotic polypeptides isolated from the skin of African 

clawed frog {Xenopus laevis). These peptides have the ability to insert into lipid 

bilayers of microbes, thereby disrupting the membrane integrity. Dendrobium plants 

have been transformed with lytic peptide genes (Kuehnle et al., in collaboration with 

Sanford Scientific; unpublished results) and await challenge with the most common 

orchid microbial pathogens.

1.3.3 Engineering Novel Flower Colors

Chia (1999) reported the use of sense and antisense orientations of chalcone 

synthase genes from Dendrobium and Oncidium to modify flower color of these 

orchids. The transformants are still at the vegetative stage and flower color changes 

are not determined yet (Chia, 2001; personal communication). PCR analysis 

indicates that we have introduced the Antirrhinum dihydroflavonol 4-reductase gene 

(courtesy of Dr. Cathie Martin, John Innes Centre, obtained via Crop and Food 

Research Institute, New Zealand), under the control of a ubiquitin promoter, into a 

Dendrobium hybrid believed to be deficient in flavonoid 3' hydroxylase activity 

(Kuehnle and Mudalige, 2002). We intend to increase and intensify the production
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of pelargonidin to produce a new orange/red phenotype. Presence o f the transgene is 

indicated by PCR analysis while RT-PCR confirmed the transcription of the foreign 

gene in vegetative tissue (Chapter 4). Currently, transformed plants are being grown 

in the greenhouse for color change and growth observations.

Chia et al. (2001) reported successful production of transgenic plants carrying 

the firefly luciferase gene. When these plants are sprayed with the substrate 

luciferin, the plants emit a soft light (glow-in-the-dark). This could be used as a 

commercially attractive novelty in orchids.

1.3.4 Engineering Increased Vase Life

As discussed under flower senescence, flower wilting of orchids is mediated 

by the phytohormone ethylene. An endogenous ACC oxidase gene cloned in sense 

and antisense orientation was used to transform Dendrobium plants to increase the 

vase-life of flowers (Chia, 1999). Transgenic plants showed normal morphology and 

growth without any aberrations due to the ACC oxidase insert. Authors reported a 

significant extension in vase-life in 1 out of 4 transformed lines. These 

transformants are currently being tested in commercial farms (Chia et al., 2001).

1.4 OTHER BIOTECHNOLOGY APPLICATIONS IN PRODUCTION 

AND IMPROVEMENT

1.4.1 Virus Detection

Cultivated orchid plants that are infected by CymMV and ORSV can remain 

symptomless, making it difficult to diagnose and control the spread of the virus. A 

simple and sensitive technique known as nucleic acid spot hybridization (NASH)
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was used by Chia et al. (1990 & 1992b) for the detection of these two viruses in 

picogram amounts. Two cDNA probes specific to CymMV and ORSV were used 

for hybridization and detection of viral nucleic acid in crude extracts from infected 

plants spotted onto a membrane. Barry et al. (1996) used two other methods, 

immunocapture-PCR (IC-PCR) and direct binding PCR (DB-PCR), for the detection 

of these two viruses. In IC-PCR, microcentrifiige tubes coated with polyclonal 

antibodies developed against the virus were used to capture viral particles from a 

crude plant extract. PCR was carried out directly in these tubes to detect the 

captured viral particles. In DB-PCR, crude plant extracts were incubated in tubes 

without the antibody trapping and subsequent PCR was performed to identify viral 

particles directly bound to the tubes. Both methods were shown to be easy, rapid, 

and reliable, and to eliminate the necessity of time-consuming nucleic acid 

extractions.

1.4.2 Antiviral Strategies

A new molecular biology based technique known as population cloning was 

used to synthesize biologically active cDNA clones from a CymMV genomic RNA 

isolate (Yu and Wong, 1998). Three populations of overlapping RT-PCR products 

were ligated to form full-length cDNA clones. Infectious clones were identified by 

inoculating each clone onto Nicotiana benthamiana leaves. The infectivity of these 

clones was verified by western blotting, electron microscopy, and PCR techniques. 

The authors have successfully demonstrated the appropriateness of this technique in 

synthesizing biologically active viral clones from positive-strand RNA viruses.
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1.4.3 Flower Color Gene Activity Test

There are several regulatory genes that can affect flower pigmentation. Three 

regulatory genes. C l, B, and R, from Zea mays are suggested to encode 

transcriptional activators of pigment biosynthetic genes. Effects o f B and Cl genes 

on the biosynthesis of anthocyanin in Doritis pulcherrima were investigated using 

particle bombardment (Griesbach and Klein, 1993). Petals from three different floral 

phenotypes, piuple, white (alba), and white with a light purple lip (albescent), were 

used in the study. The authors concluded that the alba phenotype was due to a 

mutation in an anthocyanin biosynthetic gene (structural gene) while the albescent 

form is due to a mutation in the anthocyanin regulatory genes. Testing of 

anthocyanin biosynthetic and regulatory genes using transient expression is an 

attractive rapid procedure for assessment of color gene complementation via sexual 

hybridization.

Transient expression was also used to assess the effectiveness of petal- 

specific promoters to drive the expression of reporter genes in Cymbidium petals 

compared to the most commonly used constitutive promoter, CaMV 35S (Peters et 

al., 2001). Promoter regions from the chs gene and ketolase (AKET) gene isolated 

from Antirrhinum and Adonis aestivalis respectively, were used to drive the beta- 

glucuronidase (GUS) reporter gene. Results indicated that the 35S-GUS construct 

produced the highest level of expression followed by CHS-GUS and AKET-GUS 

constructs.
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Another short-term alternative to test color genes is to transform model crops 

with defined color mutations, such as transforming Petunia with orchid genes 

(Johnson et al., 1999; see section 1.2.2 on cloned color genes).

1.4.4 DNA Markers to Improve Breeding Strategy

Orchid breeding is a lengthy, time consuming process due to the long life 

cycle of many commercially important genera. In order to understand the genetic 

basis underlying the quantitative traits (QTL) and to select for these traits at an early 

seedling stage, it is important to develop a DNA-based marker system. Chia (1999) 

communicated the identification of RAPD markers (Random Amplified Polymorphic 

DNA) for inflorescence length, flower shape and size in Dendrobium orchids. With 

such marker systems, breeders will be able to identify the superior offspring and 

predict the productivity and flower qualities when the plants are still at the seedling 

stage.

Another DNA marker system known as DNA Amplification Fingerprinting 

(DAF) was developed by Chen et al. (1994) to identify different varieties developed 

at the Taiwan Sugar Corporation to protect the patent rights of their Phalaenopsis 

hybrids. Genomic DNA was amplified by PCR using different sets of primers to 

distinguish the clonal variation. In addition, authors discussed the importance of 

establishing a molecular marker system to identify important horticultural traits such 

as flower color, fragrance and disease resistance. DAF analysis was used to identify 

DNA markers associated with red flower color in Doritis pulcherrima and
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Phalaenopsis equestris. In addition to plant breeding, DNA markers can also be 

used in plant systematics, evolution and determining phylogenetic relationships.

A PCR-based DNA fingerprinting technique. Amplified Restriction Fragment 

length Polymorphism (AFLP), has been successfully used in the identification of 

different cultivars of Aranda and Mokara hybrids (Lim et al., 1999c). In AFLP, the 

genomic DNA is digested with restriction enzymes and the fragments are ligated to 

adapters. These fragments are amplified with different sets o f standard primers, 

resulting in a distinct banding pattern. Reproducibility of AFLP was tested with 

DNA from different tissues, and same tissues collected at different times, and the 

results were shown to be consistent. The authors also showed that the range of 

polymorphic bands/total number o f bands is 10-11% among siblings while it is less 

than 1% among the somatic mutants of the same clone (somaclonal variation). 

Moreover, subtle phenotypic differences of flower color can be directly linked to 

some of the polymorphic bands in the AFLP pattern. Therefore, AFLP can be used 

to identify flower color in segregating progenies in the seedling stage.
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CHAPTER 2 

PIGMENT DISTRIBUTION AND EPIDERMAL CELL SHAPE 

OF SOME DENDROBIUM SVECmS AND HYBRIDS

2.1 INTRODUCTION

Key components of color in flowers and fruits of vast majority of higher 

plants are flavonoids (including anthocyanins), located in vacuoles, and carotenoids 

and chlorophylls, located in plastids (Mol et a l, 1998; Strack and Wray, 1993). 

Flowers acquire their characteristic hue due to these pigments in combination with 

other chemical and physical factors. The physical factors encompass spatial 

localization of pigments and the optical properties of petal epidermal cells (Kay et 

a l, 1981; Mol et a l ,  1998). The most extensive study to date on pigment 

distribution and epidermal cell shape in petals was done by Kay et al. (1981) wherein 

201 species in 61 families were surveyed. The majority (85 out of 97 species) of 

flowers surveyed have anthocyanins confined to the epidermis, and the majority of 

epidermal cells have their otherwise flat outer walls raised into a dome or a conical 

shape (Christensen and Hansen, 1988; Kay et a l, 1981). These physical factors 

influence the role of the plant epidermis in pollinator attraction and in our perception 

of flower color and visual texture (Glover, 2000; Glover and Martin, 2000; Gorton 

and Vogelmarm 1996; Noda et a l, 1994). An understanding of the latter is valuable 

to flower breeding programs.

In Orchidaceae, data on pigment distribution and epidermal cell shape are 

limited to a few species. Matsui (1990 & 1992) showed in Cattleya Lindl. and allied
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genera that the spatial localization of anthocyanins and carotenoids affected 

perception of color intensity and quality, while the height/width ratio of epidermal 

cells determined the visual texture. In Dendrobium, little is known regarding the 

histology of flower pigmentation. Flower epidermal cell shapes are reported only for 

the labella of D. phalaenopsis Fitzg., D. superbiens Fitzg., and D. discolor Lindl. 

(Vajrabhaya and Vajrabhaya, 1984). The objectives of this study were to describe 

distribution patterns of pigments in the Dendrobium perianth tissues, to identify 

epidermal cell shapes in Dendrobium flowers, and to relate these factors to the color 

and texture perceived.

2.2 MATERIALS AND METHODS

2.2.1 Plant Material

Inflorescences of 34 Dendrobium species and hybrids were selected to 

represent a range of flower colors and two visual textures. Six different color groups 

were examined: whites, pale/pastel colors, lavender/purple, striped, blue, and 

purple/yellow combinations. Two visual texture groups were selected: glossy and 

velvety. Detailed Royal Horticulture Society (RHS) color descriptions of most 

flowers can be foimd in Kamemoto et al. (1987) and Kuehnle et al. (1997). 

Inflorescences were harvested from plants maintained at the orchid greenhouse 

facility of the University of Hawaii at Manoa and submerged in tap water for 10-15 

minutes. Stems were recut under water, bases were left immersed in water, and 

flowers were analyzed on the same day whenever possible or within two days.
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2.2.2 Preparation of Tissue Sections and Analysis

A simple new method was used to make transverse sections. Perianth parts 

were separated and immersed in a series of polyethylene glycol (PEG) solutions 

(M.W. 8000, Sigma Chemical Co., St Louis, Mo.) ranging from 0.1% to 0.5% (w/v) 

prior to sectioning. The solution with an osmotic potential closest to that of the 

perianth cells was determined by observing the amount of plasmolysis in the intact 

cells of the sections. Our observations indicated that 0.25% PEG solution has an 

osmotic potential close to that of perianth cells. For flowers with large and abundant 

intercellular air spaces in the mesophyll, perianth parts were first infiltrated with 

0.25% PEG under house vacuum (-600 Hg mm). Perianth parts sank to the bottom 

of the solution after successful infiltration. Vacuum infiltration was required for all 

flowers with loosely packed mesophyll, i.e., with large and numerous air spaces. It 

improved the sectioning substantially since replacement of air with PEG solution 

resulted in firmer tissues (hydrostatic pressure) and eliminated air bubbles trapped 

inside sections that otherwise hindered analysis. In contrast, Dendrobium petals with 

glossy texture were easier to section and did not need vacuum infiltration.

Transverse sections (0.1-0.2 mm, 2-3 cell layers thick) from the middle of the petal, 

sepal, and the labellum of each flower were then taken using a sharp razor blade, 

mounted in 0.25% PEG solution, and examined using a Nikon Microphot SA 

microscope with Nikon SX 35A camera attachment. Pigment location (vacuole or 

plastid), color, distribution within the different cell layers, and adaxial epidermal cell 

shapes were noted for each sample. Sections found to have both anthocyanins and
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carotenoids were sealed by applying a layer of nail varnish around the coverslip, and 

kept overnight until the purple color disappeared, to visualize the distribution of 

carotenoids without interference from anthocyanins.

2.3 RESULTS

2.3.1 Spatial Localization of Anthocyanins

As expected, white flowers lacked any colored cells in their tissues (Fig. 2.1A 

and B). Anthocyanins were confined to a single layer of cells, either to the 

epidermal or to the subepidermal layer, in petals and sepals of all light colored 

flowers grouped under the pale/pastel and white/purple mixed categories (Table 2.1; 

Fig. 2. IC-F). In contrast, anthocyanins were present either in two cell layers 

(epidermal and subepidermal layer), or in many cell layers of epidermis and 

mesophyll, in all more intensely colored flowers as grouped in the lavender/purple 

(Table 2.1; Fig. 2. IG-J) and the blue categories. Multiple layering of the colored 

cells likely increased the pathlength of light and thereby increased light absorption 

thus darkening the flower color. Intensely colored spherical pigment bodies similar 

to anthocyanoplasts described by Pecket and Small (1980), were seen within the 

pigmented cells of some examples in the blue category (D. Betty Goto). These 

authors also found anthocyanoplasts in the petals of the orchid Laelia anceps Lindl

Color intensity also was determined by distribution of pigment within a 

single tissue. For example, very light colored D. Jaquelyn Thomas cultivars ‘Uniwai 

Blush’, Y166-1 (Fig. 2.1C and D), and D. Neo-Hawaii had only a few colored cells 

in the cell layer beneath the adaxial epidermis (subepidermal layer).
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Table 2.1. Pigment distribution in the epidermal, subepidermal, and mesophyll cells
of the perianth of Dendrobium.

Color grouping Pigment in perianth*
Species or Hybrid Petal Sepal Labellum

(Univ. of Hawaii identification) epi sub m^5 sm sub mes epi sub mes
White

D. Jaquelyn Thomas ‘Uniwai
Mist’ (UH800)
D. Nanae [white form. . . . .

(UH1041)]
Pale/Pastel

Blush
D. Jaquelyn Thomas (Y166-1) a a a a
D. Jaquelyn Thomas ‘Uniwai - a — — a — a a —

Blush’ (UH44)
D. Neo-Hawaii (D452) a a a a

Light pink 
D. Icy Pink ‘Sakura’ ~ a ~ - a - a a ~

Lavender/purple
Light lavender / two tone 

D. Jaquelyn Thomas (0580- a a a a a a a a a
4N)

Purple
D. bigibbum Lindl. (K388) a a a a a a a a a
D. Evie Nakasato a a a a a a a a a
D. Jaquelyn Thomas ‘Uniwai a a a a a a a a a
Prince’ (UH 503)
D. Manoa Beauty (K404-2) a a a a a a a a a
D. phalaenopsis var. — a a - a a a a -

compactum Fitzg. (D356-1) 
Purple, dark 

D. Et-Roi X  D. Takami a a a g a a a g a a a
Kodama (D499)

Reddish purple
D. Ekapol ‘Red’ (D439 clone) a a a a a a a a a
D. Jaquelyn Thomas (D168- a c a c a c a c a c a c a c a c ac
12)
D. Manoa Sunrise (KI 520-26) a c a c a c ac a c a c a c a c a c
D. Sabin (D430) a a a a a a a a a
D. Sonia ‘Red’ (D438 clone) a a a a a a a a a

Reddish purple, dark 
D. Jaquelyn Concert (D239) a c a c a c a c a c a c a c a c ac

White/purple mbced 
D. Hiang Beauty [purple form] „ a a a a
D. Nanae (UH1041-42) - a - ~ a - a a —
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Table 2.1. (Continued) Pigment distribution in the epidermal, subepidermal, and
mesophyll cells of the perianth of Dendrobitm.

Color grouping Pigment in perianth®
Species or Hybrid Petal Sepal Labellum

(Univ. o f Hawaii identification) §Ei sub mes §Ei sub mes eoi sub mes
Purple/yellow combinations

Bronze
D. Imelda Romualdez
(D216) a c ac c a c a c c a c a c c

Bronze with purple labellum
D. Autumn Lace (K432) eg a c g a c g e g a c g a c g a c g a c g e g
D. canaliculatum x D.
taurimm  (D428-13) eg a c g e g e g a c g e g a c a c c

Brown
D. lasicmthera J. J. Sm.
(K1007) c a c a c c a c a c a c a c c

D. gouldii Rchb. F. (K I250- 
10) c a c a c c a c a c a c a c c

Yellow with brown/red
marking

D. moschatum Sw. c c c c c c a c c c
D. spectabile (Blume) Miq. ac a c c a c a c c a c a c c

Yellow with purple labellum
D. Sri Siam (D326-1) c c c c c c a c a c c
(P. Jaquelyn Thomas x D.
Field King) x D. May Neal 
‘Srisopon’ (K527-24) c c c c c c a c a c c

Blue
D. Betty Goto (D500) a a a a a — a a —
D. Pompadour ‘Blue’ x D.
gouldirBlue’ (KI 164-7 o o Q o a aseedling selection) a a a d.

(KI 164 -  18 seedling 
selection) a a - a a - a a -

(KI 164 -  22 seedling a a a a aselection) a ■■ ■■
White with blue

D. gouldii Kchh. f  (K280-6) - a a a a a a —
Striped

Purple, striped
D. Hirota x D. Candy a a aStripes (D465-2) a a ■■ a

Orange with red stripes
D. buUenianum Rchb. f c c a c c c a c a c a c a c

epi = epidermal layer, sub = subepidermal layer, mes = mesophyll; a = anthocyanin, c = carotenoids, g  ̂
chlorophyll, — = lack of pigment.
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Figure 2.1. Front view and transverse sections (t.s.) of the perianths of Dendrobium 

flowers showing the location of pigmented cells. (A) and (B) D. Nanae 

(white form) with t.s. of petal xlOO. (C) and (D) D. Jaquelyn Thomas 

Y166-1 with t.s. of petal xlOO. (E) and (F) D. Icy Pink ‘Sakura’ with t. 

s. of labellum xlOO. (G) and (H) D. phalaenopsis var. compactum with 

t.s. of petal xlOO. (I) and (J) D. Et-Roi x D. Takami Kodama with t.s. 

of petal xlOO. ue = epidermis, se = subepidermal layer, m = mesophyll.
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Whereas, the ‘darker’ pastel D. Icy Pink ‘Sakura’ had most of the subepidermal layer 

consisting of colored cells.

Labella of pale/pastel and white/purple flowers had darker coloration than the 

corresponding petals and sepals and contained anthocyanin in both the epidermal and 

subepidermal cells (Fig. 2. IE and F). A majority of the flowers (19/34) across all 

phenotypic classes shared a similar pigment distribution pattern in petals and sepals 

that differed from the labella (Table 2.1).

2.3.2 Flowers with Striped Patterns

Flowers with striped patterns generally had pigmentation confined to the 

epidermal or mesophyll cells close to the vascular bundles (Fig. 2.2). Anthocyanin- 

containing cells were restricted to the mesophyll surrormding the vascular bundles in 

D. Hirota x D. Candy Stripes (Fig. 2.2A and B) whereas they were confined to parts 

of the adaxial epidermis directly above vascular bundles in the labellum of D. 

canaliculatum x D. taurinum (Fig. 2.2C and D). In addition, carotenoids in the 

striped D. bullenianum (Fig. 2.2E and F) were found in the cytoplasm in unique 

reticulate structures, which are presently being investigated for detailed 

ultrastructure. One exception to stripes mimicking the venation pattern of the 

perianth is D. spectabile, where the striped pattern of the labellum was independent 

of venation.

2.3.3 Distribution of Pigments in PurpleA’ellow Combinations

Flowers in this category were bronze, bronze with purple labellum, brown, 

yellow with brown markings, and yellow with purple labellum.
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Figure 2.2. Localization of pigmented cells above and around the vascular bundle 

in Dendrobium flowers with striped patterns. (A) and (B) D. Hirota x 

D. Candy Stripe, with petal t.s. xlOO. (C) and (D) D. canaliculatum x 

D. taurinum, with labellar t.s. xlOO. (E) and (F) D. bullenianum, with 

petal t.s. xlOO. ue == upper epidermis, vb = vascular bundle, m = 

mesophyll.
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Carotenoids were present throughout the epidermal, subepidermal, and mesophyll 

layers in all color groups. In contrast, anthocyanin localization varied considerably 

within the purple/yellow category; only in the epidermis, as in labellum of D. Sri 

Siam and {D. Jaquelyn Thomas x D. Field King) x D. May Neal ‘Srisopon’ (Table 

2.1; Fig. 2.3A and B) or to the mesophyll as in petals and sepals of D. gouldii (Table 

2.1; Fig. 2.3C and D). Anthocyanins were also located in the epidermis and 

subepidermal layer in bronze colored D. Imelda Romualdez, (Fig. 2.3E and F) or 

across all cell layers (Fig. 2.3G and H) in reddish purple D. Jaquelyn Concert.

2.3.4. Cell Shapes of the Upper Epidermis

Four types of epidermal cell shapes were found in Dendrobium flowers: flat, 

dome (height/width <1.2), elongated dome (height/width > 1.2) and papillate (Table 

2.2; Fig. 2.4). Of all the flowers we examined, those belonging to section Spatulata 

and their hybrids {D. gouldii, D. lasianthera, D. canaliculatum x D. taurinum, D. 

Autumn Lace and D. Betty Goto) had flat epidermal cells (Table 2.2; Fig. 2.4A) in 

the petals and sepals. Cuticles of glossy textured flowers were twice as thick as 

those of velvety textured flowers (Fig. 2.4A). All D. Jaquelyn Thomas-type hybrids 

(section Spatulata x section Phalaenanthe) such as ‘Uniwai Blush’, ‘Uniwai Prince’, 

O580-4N, D168-12,‘Uniwai Mist’, D. Neo-Hawaii, D. Manoa Sunrise, and D. 

Jaquelyn Concert had dome-shaped epidermal cells (Table 2.2; Fig. 2.4B) in their 

petals and sepals. In addition, D. Hiang Beauty, D. Icy Pink ‘Sakura’, D. Nanae 

(white and purple-white forms), and D. Evie Nakasato also had dome-shaped cells in 

the petals and sepals (Table 2.2).
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Table 2.2. Shapes of the adaxial epidermal cells of the perianth of Dendrobium.

Species or Hybrid Adaxial epidermal cell shape“
(Univ. o f Hawaii identification) Petal Sepal Labellum

Glossy texture
D. Autumn Lace (K432) f f f
D. Betty Goto (D500) f f P
D. canaliculatum X D. taurinum (K42S-13) f f f
D. gouldii blue phenotype (K280-6) f f f
D. gouldii brown phenotype (K1250-10) f f f
D. Imelda Romualdez (D216) f f P
(D. Jaquelyn Thomas x D. Field King) x D. May f f f  P
Neal ‘Srisopon’ (K527-24) 
D. lasianthera  (KI007) f f f
D. moschatum f f f,P,h>’
D. Sri Siam (D326-1) f f i p

V elvety texture
D. bigibbum  (K388) e e e,P
D. bullenianum f, d f,d f,d
D. Ekapol ‘Red’ (D439) e e p,h
D. Evie Nakasato d d P
D. Et-Roi X D. Takami Kodama (D499) e d e, p, h
D. Hiang Beauty d d d,p
D. Hirota x D. Candy Stripes (D465-2) e e, d e,P
D. Icy Pink ‘Sakura’ (K 1224) d d d,P
D. Jaquelyn Concert (D239) d d d,P
D. Jaquelyn Thomas (O580-4N) d d f,d ,p
D. Jaquelyn Thomas (Y166-1) d d f, d, p
D. Jaquelyn Thomas (D168-12) d d f, d,p
D. Jaquelyn Thomas ‘Uniwai Blush’ (UH44) d d f,P
D. Jaquelyn Thomas ‘Uniwai Mist’ (UH800) d d d,P
D. Jaquelyn Thomas ‘Uniwai Prince’ (UH503) d d f, d, p
D. Manoa Beauty (K404-2) e e e,p, h
D. Manoa Sunrise (KI520-26) d d f,d ,p
D. Nanae purple & white phenotypes (UH1041) d d d,P
D. Neo-Hawaii (D452) d d i p
D. phalaenopsis  var. compactum  (D356-1) e e,d e,P
D. Pompadour ‘Blue’ x D. gouldii ‘Blue’ f,d f,d f,d
(K 1164-7 seedling selection)
(K 1164 -  18 seedling selection) d d i d
(K 1164 -  22.seedling selection) d f,d i d
D. Sabin (D430) e e e, p, h
D. Sonia ‘Red’ (D438) e, d d e,p, h
D. spectabile d,e f,d d,e

“ f  = flat, d = dome, e = elongated dome, p = papillate, h = epidermal hair 
’’ multicellular hair
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Figure 2.3. Effect of relative location of anthocyanin in combination with yellow 

carotenoids on perception of flower color in Dendrobium. Front view 

of flowers and t.s. of the perianth showing the perceived color and the 

relative location of yellow carotenoids (in plastids) and purple 

anthocyanins (in vacuoles) in perianth tissues. (A) and (B) yellow 

flower of {D. Jaquelyn Thomas x D. Field King) x D. May Neal 

‘Srisopon’ showing purple labellum and its section xl60. (C) and (D) 

brown flower of D. gouldii, with petal section xlOO. (E) and (F) bronze 

colored D. Imelda Romualdez, with petal section xl60. (G) and (H) 

reddish purple D. Jaquelyn Concert, with sepal section xlOO. ue = 

upper epidermis, m = mesophyll, le = lower epidermis.
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Figure 2.4. Various shapes of adaxial epidermal cells found in the perianth of

Dendrobium. (A) flat epidermal cells of glossy textured D. lasianthera 

(Section Spatulata) x400. (B) domed cells of velvety textured D. 

Jaquelyn Thomas O580-4N (Section Spatulata x Section Phalaenanthe 

x200. (C) elongated dome shape of velvety textured D. bigibbum 

(Section Phalaenanthe) x200. (D) papillate cells of D. Betty Goto 

(labellum section) x200. (E) epidermal hair on the labellum of D. Sabin 

x400.
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Dendrobium phalaenopsis var. compactum and D. bigibbum (section Phalaenanthe) 

had elongated dome-shaped epidermal cells (Table 2.2; Fig. 2.4C)

Height of epidermal cells appears to be more uniform in petals compared to 

sepals. Height/width ratios of the sepal epidermal cells varied considerably (0.8 

tol.2 ); that made it difficult to differentiate between dome and the elongated dome 

shapes in some flowers. An epidermal hair comprised of two cells, a cylindrical base 

and a conical head, was seen in the labellar sections of the following: D. Sonia 

‘Red’, D. Ekapol ‘Red’, D. Sabin (Fig 2.4D), D. Et-Roi x D. Takami Kodama and D. 

Manoa Beauty (Table 2.2), while D. moschatum was the only exception with 

multicellular hairs on its labellum.

Labella in Dendrobium appear more complex than petals and sepals in terms 

of epidermal cell shape. Various shapes of epidermal cells can be observed in a 

single labellum. Epidermal cells towards the distal end of the labellum were often 

similar to those found on the petals (Table 2.2). When sectioned across the ridges or 

keels, papillate cells were the most common cell type found in most flowers 

examined (Table 2.2; Fig. 2.4E). Papillate cells of labella also had visible surface 

striations on their cuticles similar to those observed by Vajrabhaya and Vajrabhaya 

(1984).

2.4 DISCUSSION

Distribution of anthocyanins appeared to be much more variable in 

Dendrobium compared to other plant genera. Kay et al. (1981) found that the 

anthocyanins were confined to the epidermis in the petals of a majority of species 

surveyed (85 out of 97) while they were confined to the mesophyll only in a few
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species of Boraginaceae. A few species (7/97) had anthocyanins in epidermis as 

well as mesophyll. In Dendrobium, anthocyanin distribution varied considerably 

within the genus. It can be confined to the epidermis or mesophyll in some 

species/hybrids while it is distributed throughout all cell layers in others. However, 

pigment distribution pattern in Dendrobium is consistent with some of the genera 

previously examined in the Orchidaceae. In most Cattleya species, anthocyanin was 

confined to the mesopyhyll, while Cattleya with splashed petals, and some species of 

Laelia with intensely colored flowers, had anthocyanin in the epidermis as well as 

mesophyll (Matsui, 1990). Anthocyanin is confined to the epidermis in Sophronitis 

and Sophronitella species (Matsui, 1990). This unusual variation o f pigment 

distribution patterns in orchids might be a result of an extremely large number of 

man-made interspecific and intergeneric hybrids.

Combinations of yellow carotenoids and purple anthocyanins result in 

perceived flower colors of brown, bronze, red, or wine (Griesbach, 1984; Vogelpoel, 

1990). Griesbach (1984) attributed the differences in color perception to the 

differences in relative concentrations of yellow and purple pigments. According to 

this explanation, high ratios of yellow carotenoid/ purple anthocyanin give a brown 

color and the opposite gives red colors, while equal concentration of the two give a 

bronze color to the flowers. Our observations indicate that this explanation might be 

too simplistic for Dendrobium, for which the accumulated purple pigment is 

predominantly cyanidin glycosides (Kuehnle et al., 1997). The relative location of 

yellow and purple pigments may be as important as relative concentration in 

determining flower color. A good example o f this is found in D. bullenianum where 

red striping resulted from the combination of orange carotenoids with mesophyll- 

restricted purple anthocyanins. This phenomenon has been observed in other orchids
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such as Laelia milleri Blumensch. ex Pabst, Sophronitis coccinea (Lindl.) Rchb. f ,  

and Broughtonia sanguinea (Sw.) R. Br., in which red color was also ascribed to the 

coexistence of carotenoids and anthocyanins (Matsui, 1990). This emphasizes the 

fact that the relative location of the two pigments is critically important in 

determining the shade of color.

A survey of epidermal patterns in the Angiosperms revealed two main types: 

tabular (flat) and papillose (Christensen and Hansen, 1998). In papillose type, the 

outer epidermal cell wall is raised above the epidermis into a conical, dome or 

papillate shape. Papillose petal surfaces are predominant among insect pollinated 

flowers (Christensen and Hansen, 1998). Shape and size of the epidermal cells, 

especially the ratio of height/width, is known to affect flower texture (Matsui, 1990). 

In Cattleya, glossy flowers have square-shaped epidermal cells, whereas velvety 

textured petals have ‘deltate’ epidermal cells with greater heighLwidth ratios. 

Apparently in Dendrobium, both the epidermal cell shape and the nature of the 

aerenchymatous layer (mesophyll layer) influence the visual texture of flowers. 

Square cells with a thicker smooth cuticle and tightly packed mesophyll with few air 

spaces gave a glossy texture to the perianth, while domed cells with a thin cuticle 

and loosely packed mesophyll with large and numerous air spaces produced a 

velvety texture. Papillate cells seem to be common in a number of orchids and occur 

in Anacamptispyramidalis (L.), Dactylorhiza fuchsii (Druce) Soo, (Kay et al., 1981), 

and many species of Cattleya and Laelia (Matsui, 1990). The preponderance of 

Dendrobium hybrids containing velvety textured flowers suggests that their dome

shaped cells are perhaps more attractive to the human eye due to the enhanced 

absorption of light by dome shaped cells.
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Both papillate and dome-shaped cells absorb light over a greater part of their 

surfaces when compared to flat outer surfaces of square epidermal cells. In addition, 

surface striations perhaps function as an additional light-trapping device by reducing 

the surface reflection while smooth un-striated cuticles contributed towards strong 

surface reflections as suggested by Kay et al. (1981). Endress (1994) stated that 

intercellular spaces in the mesophyll influence the light reflection in addition to 

organ surface structures. Our observation on the influence of epidermal cell shape 

and mesophyll packing upon visual texture is confirmed by these explanations. 

Christensen and Hansen (1998) also revealed that the shape of papillae in a single 

petal can vary, with more distinct papillae towards the distal end and less 

pronounced papillose cells towards the proximal end. The authors speculate such 

zonation can act as guides to the insect. Our data on labella showed such differences 

in epidermal cell shape and reinforced the presumed function of the labellum as a 

specialized petal for insect landing and guidance. Quantitative data on floral 

flavonoids in Dendrobium showed that the labella contained two to four times more 

anthocyanins than the sepals on a fresh weight basis (Kuehnle et al., 1997). Presence 

of papillate cells, surface striations, the different pigment distribution patterns and 

higher pigment quantities, contribute to the darker color of labella seen in many 

flowers when compared to the color of other perianth parts.

Many chemical factors such as type of pigment, their combinations, vacuolar 

pH, and co-pigments affect flower color. The types of flavonoids and carotenoids 

found in Dendrobium species and hybrids are already documented (Kuehnle et al., 

1997; Thammasiri et al., 1986). This study complements the earlier work by 

revealing the physical factors (spatial localization of pigments, epidermal cell shape) 

and their effects on color perception. Since methodology for successful genetic
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transformation of Dendrobium is available (Nan and Kuehnle, 1995), understanding 

of the detailed spatial distribution of pigments will facilitate directed engineering of 

flower colors by permitting more sophisticated approaches in selection of 

appropriate target phenotypes and tissues for the expression of pigment-modifying 

genes. For example, a petal specific epidermal promoter will be appropriate in color 

manipulation of pastel/pale flowers while a constitutive promoter is more appropriate 

for the dark purple phenotypes. Isolation of color-modifying genes from 

Dendrobium flowers and the study of spatial and temporal regulation of these genes 

will bring important breakthroughs for development of novel phenotypes, while 

further research on inheritance of distribution pattern and epidermal cell shapes will 

benefit classical breeding programs.
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Cambridge, UK.

Glover, B.J. 2000. Differentiation in plant epidermal cells. J. Expt. Bot. 51:497- 
505.

Glover, B.J. and C. Martin. 1998. The role of petal cell shape and pigmentation in 
pollination success in Antirrinum majus. Hered. 80:778-784.

Gorton, H.J. and T. C. Vogelmann. 1996. Effects of epidermal cell shape and
pigmentation on optical properties of Antirrhinum petals at visible and ultraviolet 
wavelengths. Plant Physiol. 112:879-888.

Griesbach, R.J. 1984. Effects of carotenoid and anthocyanin combinations on 
flower colour. J. of Hered. 75:145-147.

Kamemoto, H., K. Thammasiri, M. Marutani, and S. Kobayashi. 1987. Polyploidy 
in cultivars of yQWovt Dendrobium^. J. Orchid Soc. India 1 (1,2):7-18.

Kay, Q.O.N., H.S. Daoud, and C.H. Stirton. 1981. Pigment distribution, light 
reflection and cell structure in petals. Bot. J. Linn. Soc. 83:57-84.

Kuehnle, A.R., D.H. Lewis, K.R. Markham, K.A. Mitchell, K.M. Davies, and B.R. 
Jordan. 1997. Floral flavonoids and pH in Dendrobium orchid species and 
hybrids. Euphytica 95:187-194.

Matsui, S. 1990. Flower pigment distribution in perianth of Cattleya and allied 
genera, p. 169-172. In: T. Kimura, S. Ichihashi, and H. Nagata (eds.). Proc. of 
the Nagoya Intl. Orchid Show ’90. The organizing committee of NIOS ’90, 
Nagoya, Japan.

Matsui, S. 1992. Inheritance of distribution patterns of flower pigment and shape of 
its epidermal cells in Cattleya and allied genera, p 117-122. In: S. Ichihashi, and
H. Nagata (eds.). Proc. of the Nagoya Intl. Orchid Show ’92. The organizing 
committee of NIOS ’92, Nagoya, Japan.

Mol, J., E. Grotewold, and R. Koes. 1998. How genes paint flowers and seeds. 
Trends in Plant Sci. 3:212-217.

53



Nan, G.L. and A.R. Kuehnle. 1995. Genetic transformation in Dendrobium
(orchid), p. 149-160. In: Y. P. S. Bajaj (ed.). Biotechnology in Agriculture, and 
Forestry Vol. 34. Plant protoplasts and genetic engineering VI. Springer Verlag, 
NY.

Noda, K., B.J. Glover, P. Linstead, and C. Martin. 1994. Flower colour intensity 
depends on specialized cell shape controlled by a Myb-related transcription 
factor. Nature 369:661-664.

Pecket, R.C. and C.J. Small. 1980. Occurrence, location and development of 
andiocyanoplasts. Phytochemistry 19:2571-2576.

Strack, D. and V. Wray. 1993. The Anthocyanins, p 1-22. In. J.B. Harboume (ed.). 
The Flavonoids: Advances in Research since 1986. Chapman & Hall, London, 
UK.

Thammasiri, K., C.S. Tang, H.Y. Yamamoto, and H. Kamemoto. 1986. Carotenoids 
and chlorophylls in yellow-flowered Dendrobium species. Lindleyana 1:215- 
218.

Vajrabhaya, M. and T. Vajrabhaya. 1984. A study of the orchid epidermis using the 
electron microscope, p. 335-342. In: Proc. of the 11* World Orchid Conf. Intl. 
Press Co (Pte) Ltd, Singapore.

Vogelpoel, L. 1990. Flower colour - an appreciation. Orchid Digest 55:82-87.

Wagner, G. J. 1982. Cellular and Subcellular Localization in Plant Metabolism, p. 1- 
45. In: L.L. Greasy and G. Hrazdina (eds.). Recent Advances in 
Phytochemistry, vol. 16. Plenum Press, NY.

54



CHAPTER 3 

CLONING AND CHARACTERIZATON OF ANTHOCYANIN 

BIOSYNTHETIC GENES FROM DENDROBIUM

3.1 INTRODUCTION

Flavonoids, a diverse group of phenolic compounds, play a wide variety of 

roles in plants such as pollinator attraction, protection from stress and pathogens, and 

cell signaling in plant-microbe interactions (reviewed in Koes et al., 1994), 

Anthocyanins are colored flavonoid glycosides, which accumulate in vacuoles giving 

characteristic colors to flowers and fruits. Molecular, genetic, and enzymatic aspects 

of the anthocyanin biosynthesis are well characterized in crops such as petunia, 

maize and snapdragon (reviewed by Davies and Schwinn, 1997; Dooner et al., 1991; 

Forkmann, 1993; Martin and Gerats, 1993; Mol et al., 1998).

3.1.1 Flavonoid Pathway

Flavonoids are synthesized via a complex biochemical pathway known as the 

phenylpropanoid pathway (Fig. 3.1). The first committed step of flavonoid 

biosjmthesis the condensation of 3 molecules of malonyl-CoA with a single molecule 

of 4-coumaroyl-CoA to form chalcone, catalyzed by the enzyme chalcone synthase 

(CHS). Chalcone is readily isomerized to naringenin, a colorless flavonone, by 

chalcone isomerase (CHI). Naringenin is subsequently hydroxylated by flavanone 3- 

hydroxylase (F3H) to form the key intermediate dihydrokaempferol (DHK). DHK 

can be hydroxylated at the 3' position of the B ring to form dihydroquercetin (DHQ) 

or at both the 3’ and 5' positions to form dihydromyricetin (DHM).
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CcAS ►  Chalcones and Aurones

4-coumaroyl-CoA

J
3 X malonyl-CoA

Dihydroflavonols 

and Flavonols

OH OH \  OH OH ^  OH OH
Leucopelargonidin^^  Leucocyanidin Leucodelphinidin

ANs  Ia n s .

Pelargonidin 

UFGT
Cyanidin

UFGT
J ^ O H

H O , ^

OH

Delphinidin 

UFGT

Pelargonidin 3-glycoside Cyanidin 3-glycoside Delphinidin 3-glycoside

Figure 3.1. A diagrammatic representation of the flavonoid biosynthetic pathway.

Enzyme catalyzing each reaction is shown in uppercase letter codes. 

Colored anthocyanins are depicted in corresponding colored boxes. 

Enzyme abbreviations are as follows: CHS=chalcone synthase, 

CHI=ChIacone isomerase, F3H=flavanone 3-hydroxylase, 

DFR=dihydroflavonol 4-reductase, F3H=flavonoid 3'-hydroxylase, 

F3'5'H=flavonoid 3', 5'-hydroxylase, ANS=anthocyanidin synthase, 

UFGT= UDPG:flavonoid-3-o-glucosyl transferase.
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The first reaction is catalyzed by flavonoid 3'-hydroxylase (F3'H) while the latter is 

catalyzed by flavonoid 3', 5'-hydroxylase (F3'5'H). These 3 dihydroflavonols are the 

precursors of anthocyanins. The first committed step of anthocyanin synthesis is the 

reduction of dihydroflavonols to their corresponding leucoanthocyanidin, catalyzed 

by the enzyme dihydroflavonol 4-reductase (DFR), which is subsequently converted 

to anthocyanidins by the enzyme/enzymes anthocyanidin synthase (ANS). Finally, 

these unstable anthocyanidins are glycosylated to form the anthocyanins by the 

enzyme UDPG:flavonoid-3-o-glucosyl transferase (UFGT).

3.1.2 Anthocyanin Skeleton

The basic skeleton of an anthocyanin molecule consists of two aromatic rings 

(A&B) vvith a heterocycle (C) in the middle (Fig. 3.2). The number of OH groups 

attached to the B ring and their methylation status influence the color directly 

(Stafford, 1990). The hydroxyl group on position 3 is glycosylated by rhamnose or 

glucose in the stable anthocyanin molecule. Acylation and methylation of the basic 

skeleton provide an enormous array of colors found in nature (Xoes et al., 1994)

3.1.3 Chalcone Synthase

The enzyme CHS, a member of the polyketide synthase family, has been the 

focal point of much research since it catalyzes the production of chalcone, the C 15 

intermediate of all flavonoids (Heller and Forkmaim, 1988). It is also used to study 

the regulation of gene expression in plants since chs genes and their regulatory 

factors make an attractive system due to easy to track anthocyanin production. No 

cofactors are required for the catalysis of this enzyme.
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Figure 3.2. Basic carbon skeleton of the flavonoid molecule. Two aromatic rings 

are named as A and B ring. A hetero-cycle with an oxygen atom is 

found in the middle. In anthocyanins OH group at position 3 is 

glycosyated. Color of the anthocyanin molecule directly depends on 

the chemical nature of the Ri and Rj groups attached at the 3' and 5' 

positions of the B ring.
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In addition to 4-coxunaroyl-CoA, CHS from some plants such as Dianthus 

caryophyllus. Verbena hybrida and Callistephus chinensis can accept caffeoyl-CoA 

as a substrate (Spribille and Forkmann 1982b; Stotz et al., 1984). In Verbena 

hybrida, cyanidin derivatives are found despite the lack of measurable F3'H activity 

due to the use of caffeoyl-CoA as a substrate by its CHS (Stotz et al., 1984).

There are regulatory genes that directly control the CHS activity in many 

plants (reviewed by Heller and Forkmann, 1988). The c2 gene of Zea mays (Dooner, 

1983)/gene from Matthiola, and niv gene from Antirrhinum, (Spribille and 

Forkmann, 1981 & 1982a) genetically control the CHS activity of these plants. 

Recessive conditions o f each allele completely block the CHS activity in the 

respective plant. In many plants, several chs genes constitute a small multi-gene 

family. In Ipomoea as many as 13 chs genes were found in the genome (Durbin et 

al., 1995), while 3 and 10 were found in Gerbera and Petunia, respectively 

(Helariutta et al., 1995; Koes et al., 1989). Promoter regions of these genes 

recognize, and are activated by, different environmental stimuli (Martin, 1993).

3.1.4 Dihydroflavonol 4-Reductase

Genes encoding DFR, namely the a l locus of Zea mays (O’Reilly et al., 

1985) and the pallida locus of Antirrhinum majus (Coen et al., 1986), were cloned 

using transposable elements as tags. The enzyme requires NADPH as a cofactor for 

the reduction. However, the DFR enzyme from some plant species such as 

Matthiola incana and Hordeum vulgare can accept NADH as well as NADPH 

(Heller et at., 1985; Kristiansen, 1986). One interesting aspect of the DFR enzyme is
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its substrate specificity. DFR from Petunia and Cymbidium (an orchid), cannot 

reduce DHK efficiently, explaining the lack of pelargonidin-accumulating orange 

flowers, even in the absence of competing enzymes FSH and FS'SH (Forkmann and 

Ruhnau, 1987; Gerats et al., 1982; Johnson et al., 1999). A hypothesis regarding the 

region that determines the substrate specificity of DFR based on sequence alignment 

of petunia, maize and snapdragon, was proposed by Beld et al. (1989). Johnson et al. 

(2001) identified 4 amino acid residues that determine the substrate specificity of 

Petunia DFR. However, these 4 amino acids are not conserved between Cymbidium 

and Petunia, mling out the possibility of these amino acid residues as the region of 

substrate specificity in Cymbidium.

In Dendrobium, analysis of floral flavonoids found in species and hybrids 

identified 3' hydroxylated cyanidin as the major pigment while pelargonidin was 

found to be rare (Kuehnle et al., 1997). We intend to isolate the gene(s) encoding 

DFR from a pelargonidin-accumulating clone Dendrobium Icy Pink ‘Sakura’

(KI224) and from the cyanidin-accumulating hybrid Dendrobium Jaquelyn Thomas 

‘Uniwai Prince’ (UH503) to determine nucleotide sequences, expression pattern and 

copy number.

3.1.5 Flavonoid Hydroxylases

Hydroxylase enzymes play a very important role in determining flower color. 

F3TI catalyzes the addition of a OH group at the 3' position of the B ring, while 

F3'5'H adds two OH groups at 3’ and 5' positions (Fig. 3.2). The actions o f the two 

enzymes produce DHQ and DHM, which lead to the production of purple cyanidin
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and blue delphinidin, respectively. Both enzymes are cytochrome P450 dependent 

monooxygenases that require NADPH as a cofactor and oxygen as a substrate 

(Forkmarm, 1991). The Cytochrome P450 enzymes constitute a superfamily of 

enzymes belonging to heme-thiolate proteins, involved in oxidation and metabolism 

of many substrates. Activity of F3H has been first demonstrated in microsomal 

fractions of Haplopappus cell cultures (Fritsch and Griesbach, 1975). In some plants 

DFR can efficiently reduce all 3 substrates DHK, DHQ and DHM, giving the 

possibility of a full array of flower colors (Helariutta et al., 1993; Heller et al., 1985; 

Meyer et al., 1987; Stich et al., 1992; Tanaka et al., 1995). In such cases, the flower 

color is primarily determined by the activity of the two hydroxylases. In some 

ornamentals, such as chrysanthemum, carnation, and roses, blue color is absent due 

to the lack of F3'5'H activity. In Dendrobium blue delphinidin is absent although 3'5' 

hydroxylated flavonols were foimd in some flowers as a minor constituent (Kuehnle 

et al., 1997). We intend to isolate cDNA clones off3'h  andfi3'5'h using Reverse 

Transcription-Polymerase Chain Reaction (RT-PCR) from flower bud mRNA. 

Expression and the characterization of these two genes in Dendrobium will give 

insight into the predominance of purple and lack of blue colors in Dendrobium.

3.2 OBJECTIVE

In Dendrobium, there has been no nucleotide sequences of any flower color 

genes published in any of the accessible databases {chs was reported as cloned in 

abstract only by Yong and Chua, 1990). Genes encoding three enzymes of the 

flavonoid pathway, CHS, DFR and F3H, were isolated from other orchids (see
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chapter 1, Table 1.1). Our objective was to isolate and characterize the genes 

encoding key anthocyanin biosynthetic enzymes, namely CHS, DFR, FSTI and 

FS'STl from Dendrobium and to understand the basis of flower color at the molecular 

level. This information will enable the identification of the most appropriate genetic 

background for flower color manipulation, and find insight into the most probable 

cause for the absence of blue color in Dendrobium and scarcity of pelargonidin 

accumulation.

3.3 MATERIALS AND METHODS

3.3.1 RNA Extraction and cDNA Synthesis

Inflorescences of Dendrobium Jaquelyn Thomas ‘Uniwai Prince’ (UH 503) 

were harvested from the University of Hawaii greenhouse grown plants. Total RNA 

was extracted from unopened buds according to the method of Champagne and 

Kuehnle (2000).

cDNA was synthesized from 5pg of total RNA using 200 units of

Til _ _
Superscript II RNase IF reverse transcriptase (Invitrogen, Carlsbad, CA) in IX first 

strand synthesis buffer (50 mM Tris-HCl, 75 mM KCl, 3mM MgCL, pH 8.3), 

supplemented with 0.0 IM DTT and 0.5mM dNTPs, by incubating the reaction 

mixture at 42°C for 50 minutes. Oligo dT (dTie or dT2o-T7) primers were used for 

first strand cDNA synthesis. The reaction was stopped by incubation of the mixture 

at 70°C for 15 min. The RNA template was removed by incubating the reaction 

mixture with 2 units of RNase H (Promega, Madison, WI) at 37°C for 20 minutes.
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RNAse H was inactivated by incubation at 60°C for 10 min. The samples were 

stored at -20°C for PCR amplifications.

3.3.2 PCR with Degenerate Primers to Amplify Flavonoid Genes

Degenerate oligonucleotide primers were designed by Dr. M.M. Champagne 

(Table 3.1) and synthesized (IDT, Coralville, LA), using the conserved regions of the 

GenBank DNA sequences of orthologous genes. For dfr and chs, PCR reactions 

were carried out in a total volume of 50 pis using RedTaq (Sigma, St. Louis, Mo) in 

a IX amplification buffer [O.OIM Tris (pH 8.3), 0.05M KCl, 0.01% gelatin, 0.2mM 

dNTPs, l.OmM MgCb] in iCycler thermal cycler (Bio-Rad, Hercules, CA). Flower 

bud cDNA made from 250 ng of total RNA was used with 200 nM primer 

concentrations for each reaction. Sequences of each primer and PCR conditions used 

are listed in Table 3.1.

Yoxf3'h/f3’5 ’h genes, PCR was carried out in IX HotStar Taq buffer (Qiagen, 

Valencia, CA) supplemented with 0.2mM dNTP, 0.5 pM degenerate primers (Table 

3.1) and 2.5 Units of Hotstar Taq DNA polymerase. A touchdown PCR was 

performed with an annealing temperature of 62°C-42°C (Table 3.1), with a reduction 

of 2°C per 3 cycles. Final amplification was carried out with the annealing 

temperature of 45°C in iCycler thermal cycler (Bio-Rad, Hercules, CA).

PCR products were separated on agarose gels in IX TAE buffer (40mM Tris- 

acetate, ImM Na2EDTA). Amplified DNA fragments with expected molecular 

weight were excised and purified using GENECLEANII kit (BIO 101, Carlsbad,

CA) and ligated to pCR II-TOPO (Invitrogen, Carlsbad, CA) TA vector.
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Table 3.1. Degenerate and oligo dT primers, reverse transcription conditions, 
and PCR conditions used for amplification of flavonoid genes from 
Dendrobium.

Designation Primer combinations^ PCR/transcription reaction conditions
dT 16 tttttttttttttttt-3' Reverse transcription at 42°C for 50 min.
T20-T7 taatacgactcactatagggttttttt

CHS-L cggaattca(c/t)ca(a/g)ca(a/
g)ggitg(c/t)tt(c/t)g-3'

CHS-R cgggatccc(a/g)aaia(a/g)n
acicccca(c/t)t-3'

DFR-L Cggaattcgggnccigtngtigt
n-3'

DFR-R cgggatcctacatccanccngtc
at(c/t)tt-3’

Helix 1L.2 gc(a/g/t)ggiac(a/g/t)ga(c/t
)acitc-3'

Helix KR a(a/g)iggigtig(a/gXa/t)gg
(a/g)tg-3'

95°C-3 min
(95°C-1 min, 40°C-1 min, 72°C-1 min) x 30 
72°C-5 min.
1.0 mM MgCb concentration. Red Taq (Sigma) 

95°C-3 min
(95°C-1 min, 40°C-1 min, 72°C-1 min) x 30 
72°C-5 min.
1.0 mM MgCb concentration. Red Taq (Sigma) 

95°C-3 min
(95°C-1 min, 62-42°C -1 min, 72°C-1 min) x 30 
72°C-lmin
(94°C-30 sec, 45°C-30sec, 72°C-30sec) x 30
1.5 mM MgCla concentration. Red Taq (Sigma)

’ i=inosine, a substitute for (a/c/g/t) to reduce degeneracy in primers, n=a/c/g/t
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Ligation and transformation was carried out according to the manufacturer’s 

instructions using chemically competent Escherichia coli TOP lOF cells provided 

with the kit. PCR product inserts were fully sequenced (plus and minus strands) at 

the University of Hawaii Biotechnology Core Facility.

3.3.3 3'RACE and 5’RACE to Obtain the Full/Partial Sequences

UH503 flower bud cDNA was synthesized according to the reverse 

transcription protocol of Superscript™ II as described above, using dTao-T? primer 

(Table 3.1). A Gene specific primer and the T7 adapter primer were used in 

subsequent 3' RACE (Rapid Amplification of cDNA Ends) reactions. Primers and 

the PCR conditions used in each reaction are listed in Table 3.2. A skewed ratio of 

10; 1 gene-specific primer to general primer (T7) was used in all 3'RACE reactions 

(Bespalova et al., 1998), which was crucial for the successful amplification of the 

gene. PCR products were isolated on an agarose gel and purified using a 

GENECLEANII kit. Products were ligated into a TA cloning vector [pCRJI-TOPO 

cloning kit (Invitrogen, Carlsbad, CA)] or pGEM-Teasy (Promega, Madison, WI)] 

according to the manufacturers’ protocols. Plasmid inserts were fully sequenced at 

the UH Biotechnology Core Facility.

For 3'RACE reaction, synthesized cDNA was cleaned in order to remove the 

extra dNTPs and other impurities using GENECLEAN II kit. Cleaned cDNA was 

boiled for 5 minutes and quickly chilled on ice. A poly-C tail was added to the 

single-stranded cDNA using Terminal deoxyribonucleotide Transferase (TdT) 

(Promega, Madison, WI).
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Table 3.2. Primers and PCR conditions used in 3' RACE and 5' RACE reactions 
to amplify flavonoid genes.

Designation Primer combinations PCR conditions
Den-CHS-6-L
T7

gtcccctgttccaactcgta-3'
taatacgactcactata-3'

95°C-5 min
(95°C-1 min, 55°C-1 min, 68°C-1 min) x 35 
68°C-7 min.
2.0 mM MgCb concentration, Pfx Taq polymerase 
(Invitrogen)

Den-DRF-L

T7

gggttatgtggtcagggcta-3'
taatacgactcactata-3'

94°C-5 min
(94°C-5 min, 55°C-2 min, 72°C-30 min) x 1 (94°C-1 
min, 55°C-1 min, 72°C-2 min) x 30 
72‘>C-7 min.
1.5 mM MgCb concentration. Red Taq (Sigma)

PolyG

Den-DFR-R

ggccacgcgtcgactagtacgg
ggggggggggggggg-3’
agtcaaggtcactccagcag-3'

95°C-5 min
(94°C-5 min, 55°C-2 min, 72°C-30 min) x 1 
(94°C-1 min, 55°C -1 min, 72°C-2 min) x 30 
72°C-7min. 
re-amplification;
95°C-5 min
(94°C-1 min, 55°C -1 min, 72°C-2 min) x 30 
72°C-7min.
1.5 mM MgCb concentration, RedTaq (Sigma)

Den-F3’H-L

T7

gcggggactgacacgtcctcag
c-3'
taatacgactcactata-3’

95°C-15 min
(95°C-1 min, 65-53°C -1 min, 72°C-2 min) x 30 
72°C-7min.
touch down with 0.4°C decrease in temperature every 
cycle
final amplification:
(95°C-1 min, 55°C -1 min, 72°C-1 min) x 30 
72°C-7min.
1.7 mM MgCb concentration. Hot Star Taq (Qiagen)

Den-F3'5’H-L

T7

gcggggacagacacgtccgcc-
3’
taatacgactcactata-3 ’

95°C-5 min
(95°C-1 min, 55-59°C-l min, 72°-l min) x 30 
72°C-7 min
Temperature gradient was used
1.5 mM MgCb concentration. Red Taq (Sigma)
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TdT enzyme reaction was carried out in IX tailing buffer (lOmM Tris-HCL, pH 8.4, 

25mM KCl, 1.5mM MgCl2) supplemented with 0.8 mM dCTP at 37°C for 40 min. 

Enzyme was inactivated by incubation at 65°C for 10 minutes. A polyG primer with 

an adaptor, and a gene specific primer (Table 3.2) were used in amplification of the 

5' end of the gene. Primer sequences and PCR conditions are listed in Table 3.2. A 

single microliter (pi) of the primary amplification was re-amplified in a second PCR 

with the same primer combination to generate a sufficient amount of products for 

cloning and sequencing.

3.3.4 Radioactive Probe Synthesis for Northern and Southern Hybridization

The cDNA inserts of the flavonoid genes were isolated by restriction 

digestion of the clones with EcoPl enzyme and separation on 1% agarose gel. DNA 

fragments were purified (GENECLEANII kit) and 20ng was labeled with a^^P-ATP 

using random primer labeling (Prime a Gene Kit, Promega, Madison, WI). Labeled 

product was cleaned using Elutip®-D column (Schleicher and Shuell, Keene, NH). 

Cleaned probe was added to the hybridization buffer at a concentration of 1 million 

cpm/lml of buffer.

3.3.5 Northern Blot Hybridization

Floral buds and flowers from harvested inflorescences of UH503 and K I224 

were divided into 10 different developmental stages, 1 being the most immature 

(Table 3.3). RNA was extracted from bud/flower stages and mature leaves 

according to Champagne and Kuehnle (2000) extraction protocol. Ten pg of total 

RNA from different bud/flower stages were size fractionated on a standard 2%
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formaldehyde agarose (0.9%) gel electrophoresis (IX  MOPS buffer). RNA was 

transferred overnight onto Nytran Supercharge™ nylon membrane (Schleicher & 

Schuell, Keene, NH) by downward capillary transfer using alkaline transfer buffer 

(3MNaCl,0.01NNaOH).

Table 3.3. Description of the bud and flower stages of Dendrobium Jaquelyn
Thomas ‘Uniwai Prince’ used in temporal expression of flower color 
genes.

Bud/Flower
Stage

Length (cm) Description and position on the raceme

1 1.3-1.5 Most immature buds, hght green adaxial sxuTace 
with a little purple color on perianth.

2 1.5-1.7 Small buds, most o f the adaxial surface turned 
purple, abaxial surface still green.

3 1.7-1.9 Mediiun-small buds, adaxial surface of perianth 
turning dark purple, abaxial surface turning purple.

4 1.9-2.1 Medium size buds, dark purple perianth.

5 2.1-2.3 Medium-large unopened buds, dark purple.

6 2.4-2.S Most mature buds, unopened, dark purple on adaxial 
and abaxial sides o f perianth.

7 Not measured Flowers just opened (half open).

8 Not measured Flowers fiilly opened, dark purple perianth, 1 
position below stage 7 flower.

9 Not measured Open flower, 2 flowers below stage 7 on the 
raceme, dark purple.

10 Not measured Older flower, 3 flowers below stage 7, dark purple
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Hybridization and washing was done according to Church and Gilbert (1984) 

protocol with modifications o f molality and pH of Na2HP0 4 ‘7H2 0  in hybridization 

buffer fi"om 0.5M to 0.25M and pH from 7.2 to 7.4. Membranes were hybridized 

with labeled DNA probes at 60°C overnight in hybridization buffer [7%SDS, 1% 

fatty acid free bovine serum albumin (BSA) (Sigma, St. Louis, MO), ImM 

Na2EDTA-2H20, 0.25M Na2HP0 4 -7H20  (pH 7.4)]. Blots were washed twice at 

60°C for 10 min, using phosphate wash buffer with BSA [0.5% BSA, ImM 

Na2EDTA-2H20, 5% SDS, 40mM Na2HP04.7H2O (pH 7.4)]. Final two washes 

were done at 60°C for 20 min. using phosphate buffer without BSA [ImM 

Na2EDTA-2H20, 1% SDS, 40mM Na2HP0 4 -7H20  (pH 7.4)]. Signals were detected 

by autoradiography or Bio-Rad Personal Molecular Imager® FX (Bio-Rad, Hercules, 

CA). The density tool in Quantity one, vesion 4.2.1 (Bio Rad, Hercules, CA) 

software program was used to detect the relative strengths of the signal.

3.3.4 Genomic DNA Extraction and Southern Hybridization

Young leaves from greenhouse-grown plants or tissue-cultured plants were 

pulverized into a fine powder using liquid nitrogen in chilled mortar and pestles. 

Powdered tissue was incubated in 20 mLs of CTAB [cetyltriammonium bromide 

(Sigma, St. Louis, MO)] extraction buffer [lOOmM Tris-HCL (pH 9.5), 2% CTAB 

(w/v), 1.4 M NaCl, 1% (w/v) PEG-8000 (polyethylene glycol, MW8000, Sigma)] at 

65°C for 1 hr with occasional mixing. DNA was cleaned with an equal volume of 

chloroform:isoamylalcohol (24:1) and precipitated according to the protocol of 

Carlson et al. (1991) protocol. RNA was removed by treatment with RNAse A for 1
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hr at 37°C. Each digestion mixture was extracted twice with an equal volume of 

phenol (pH 6.7):chloroform:isoamyl alcohol (25:24:1) followed by a single 

extraction of chloroform:isoamyl alcohol (24:1). DNA was precipitated by addition 

of an equal volume of 2-propanol. Pelleted DNA was washed twice with 70% 

ethanol and dissolved in sterile water. Isolated DNA (15 pg) was digested with 

restriction enzymes in 0.2-0.3 mL volume. Digested DNA was salt precipitated and 

redissolved in 50 pLs of water and size fractionated on a 0.8% agarose gel 

electrophoresis in IX TAE buffer. Separated DNA was transferred onto Nytran 

Supercharge™ (Schleicher & Schuell, Keene, NH) nylon membrane by downward 

capillary transfer using a 20X SSC buffer according to manufacturer’s instructions 

(neutral transfer method). Membranes were hybridized wdth ^̂ P labeled denatured 

DNA probes at 60°C overnight and washed as in northern blot analysis. Signals 

were visualized by autoradiography or Bio-Rad Personal Molecular Imager® FX 

(Bio-Rad, Hercules, CA).

3.4 RESULTS

3.4.1 Cloning and Sequence Analysis of Flavonoid Biosynthetic Genes

Dihydroflavonol 4-reductase. Two partial cDNA clones were isolated from 

UH503 flower bud cDNA and amplified using 5'RACE and 3'RACE techniques. 

Overlapping regions (400 bp) of the two partial clones were identical to each other. 

A full-length clone of 1320 bp (Fig. 3.3), Den-dfr, was obtained by ligation of 5' and 

3' ends of the gene using a unique restriction site, Pstl, in the overlapping region of 

two partial clones.
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M E N E K K G P V V  
aactggcgttgaggagagagaaaaaaagaaatggagaatgagaagaagggaccagtagtg 60 

V T G A S G Y V G S W L V M K L L K K G  
gtgactggagccagtggctacgtgggttcatggttggtgatgaagcttcttaaaaagggt 120 

y V V R A T V R D P T N L T K V K P L L  
tatgtggtaagggctacagtgagagatccaacaaatcttacgaaagtgaagccattgttg 180 

D L P R S N E L L S I W K A D L D D V E  
gatctgccgcgctccaatgaactgctcagcatttggaaagcagacctagatgacgtcgaa 240 

G S F D E V I R G S I G V F H V A T P M  
ggtagcttcgatgaggtgatacgtggcagcattggagtgttccacgtcgctactcccatg 300 

N F Q S K D P E N E V I K P A I N G L L  
aattttcaatccaaagaccctgagaatgaagtgataaaaccggcaatcaacggtctgctg 360 

G I L R S C K K A G S V O R V I F T S S  
ggcatcttgaggtcttgcaaaaaggccggcagcgttcagcgagtgatattcacgtcttct 420 

A G T V N V E E H Q A A V Y D E S C W S  
gcaggaacagtaaatgtggaggaacaccaagcagcagtgtatgacgagagctgctggagt 480 

D L D F V N R V K M T G W M Y  F L S K T  
gaccttgacttcgtcaaccgagtcaagatgaccggttggatgtacttcctgtcaaaaaca 540 

L A E K A A W E F V K D N D I H L I T I  
cttgctgagaaggctgcttgggagtttgtgaaggacaatgacattcatttaataaccatt 600 

I P T L V V G S F I T S E M P P S M I T  
attccgactttggtggtggggtccttcataacatctgaaatgccaccaagcatgatcact 660 

A L S L I T G N D A H Y S I L K Q V Q F  
gcactatcattaattacaggaaatgatgcccattactcaattttaaagcaagttcaattt 720 

V H L D D V C D A H I  F L F E H P K A N  
gttcatttggatgacgtatgtgatgctcacattttccttttcgagcatcccaaagcaaat 780 

G R Y I C S S Y D S T I Y G L A E M L K  
ggtagatacatttgctcttcctatgactccacaatttatggcttagcagaaatgctgaag 840 

N R Y P T Y V I P Q K F K E I D P D I K  
aacagatatcccacatatgtcattcctcagaagtttaaggaaattgatccagatattaag 900 

C V S F S Y K K L L E L G F K Y K Y S M  
tgtgtaagcttctcttataagaaattgctggagcttggctttaagtataagtatagtatg 960 

E E M F D D A I N T C R D K K L I  P L N  
gaggagatgtttgatgatgctatcaatacctgtagggataagaagcttatcccactcaac 1020 

T D Q E I V L A A E K F E E V K E Q I A  
actgatcaggaaatagtcttagctgctgagaaatttgaggaagttaaagagcagattgct 1080 

V K *
gttaagtgaaaaatgaatgagaaaggagaagctaatgttgttgttttaattttctgtgca 1140 

ctgtcctattgattttctaagtgctttacactatcattggatgtatctttacttattata 1200 

gtgggcttttgattatggcttttgcaatggacatgtaatagcatctgtaataaattttaa 1260 

ttctatgtggtaaatttgaatcataatcatatatgctttaaaaaaaaaaaaaaaaaaaaa 1320

Figure 3.3. Nucleotide sequence and the deduced amino acid sequence of Den-dfr 

cDNA clone isolated from the flower bud cDNA of Dendrobium 

Jaquelyn Thomas ‘Uniwai Prince’ (UH503). Amino acid sequence is 

shown above the nucleotide sequence in single-letter codes. Stop codon 

is represented as an asterisk. Polyadenylation signal is represented in 

bold letters.
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The first ATG found 30 nucletide downstream from the 5' end of the clone 

was the most probable start codon since it was immediately preceded by 

AAAGAAATGG which resembles the plant consensus sequence TAAACAATGG 

(Joshi, 1987). A polyadenylation signal, AATAAA, was found 159 nucleotides 

downstream from the TGA stop codon. A polypeptide of 352 amino acid residues 

with a molecular mass of 39.7 kD was deduced from the longest open reading frame 

(ORF). The nucleotide sequence of the dfr clone isolated from Dendrobium Icy Pink 

‘Sakura’ (K1224) was identical to the clone isolated from UH503.

The nucleotide sequence of Den-dfr revealed a similarity ranging from 65- 

87% compared to 19 other dfr sequences from plants available in GenBank.

Multiple alignment of Den-dfr with other dfr sequences revealed a high similarity to 

other orchids (87% to Bromheadia', 84% to Cymbidium) and to Liliaceae (74% to 

Lilium hybrida). Phylogenetic tree based on CLUSTAL W alignment program show 

all monocotyledonous sequences to cluster into a single branch showing their 

common ancestry, while dicotyledonous sequences clustered into two distinct groups 

(Fig. 3.4).

Chalcone synthase. PCR with degenerate primers resulted in the isolation of 

two chs clones, chs-6 and chs-9, with significant similarity to a Phalaenopsis sp. 

‘True Lady’ chs homolog (Champagne and Kuehnle, unpublished data). We were 

able to obtain the 3' end of a chalcone synthase gene {Den-chs-11) consisting of 704 

bp with the longest ORF encoding 159 amino acids (Fig. 3.5) using gene-specific 

primers (Table 3.2) designed with the chs-6 clone.
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Arabidopsis thaliana 

Dianthus caryophyllus

Vitis yinifera

—  Juglan nigra

Rosa hybrida

—  Glycine max

Callistephus chinensis 

Gerbera hybrida

Antirrhinum majus 

Torenia

Lycopersicon esculentum 

Petunia x hybrida

Camellia sinensis

  Bromheadia finlaysoniana

-------- Cymbidium hybrid
Dendrobium Jaquelyn Thomas 
Ulium hybrid cv. 'Acapulco' 
  Oryza sativa

Zea mays 

Hordeum vulgare

Figure 3.4. Phylogenetic tree drawn from Phylogenetic Inference Package

(PHYLIP version 3.5c; Felsenstein, 1993.) showing relationship among 

the nucleotide sequences of dfr genes from different plant species. 

Sequence alignment was performed vrith CLUSTAL W version 3.2 

with a gap penalty of 3. GenBank accession numbers for each species 

are listed below: A. thaliana-M^6359; D. caryophyllus-Z619%3; V. 

vinifera X75964; J. n/gra-AJ278459; Rosa hybrida-mSlQl', C. 

Chinensis-Z619%\', G. h yb rid a -Z lllll, A. maJus- X15536; T. hybrida- 

ABO12924; L. esculentum-Z\%lll\ P. x  hybrida-NP23262>9\ C. 

sinensis-AB0\S6S6-, G. max-AFl67556; B. filaysoniana-AF007096; 

Cymbidium hybrida-NPQ\7A5\\Lilium hybrid-AF169801; O. sativa- 

AB003496; Z mays-X05068; H. vw/gare-S69616.
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P L F Q L V S A S Q T I L P E S E G A I  
cccctgttccaactcgtatcggcttcccagaccatccttccggagtccgagggcgccatt 62 

D G H L R E M G L T F H L L K D V P G L  
gatggccatctacgcgagatgggactaaccttccacctactgaaagacgtcccaggcttg 122 

I S K N I Q K S L V E A F K P L G I H D  
atctctaaaaacattcaaaagagtctcgtagaggcattcaagccacttggtattcacgac 182 

W N S  I  F W I A H P G G P A I  L D Q V E  
tggaattcgatcttctggattgcgcatccgggcggtccggcaatactcgaccaagtagaa 242 

V K L G L K A E K L A A S R N V L A E Y  
gttaagcttggacttaaagctgagaagctcgcggccagtagaaacgtgcttgcggagtat 302 

G N M S S A C V L F I L D E M R R R S A  
gggaatatgtccagcgcttgtgtgcttttcatacttgatgaaatgaggcggaggtcggcg 362 

E A G Q A T T G E G L E W G A L F G F G  
gaggctgggcaagctaccaccggagaggggttggagtggggagcattgttcggattcggt 422 

P G L T V E T V V L R S V P I A G A V *  
ccggggcttacagttgaaaccgttgtgttacgcagcgttccgattgctggtgcggtgtga 482

tggatcgaccagcttgtttagattattggtatttgatctgttgtactgttctttttatta 542

taattggcttgtttctgcttgctctaaatggctagtgctgggttgggtggagctataaag 602

gctggtggggaaaggaatgcaccatactgttattttatgttatctgtggccatggttcta 662

tttttaataaagaagtcttatgaaaaaaaaaaaaaaaaaaaa 704

Figure 3.5. Nucleotide sequence and the deduced amino acid sequence of Den-chs- 

11 cDNA clone isolated from the flower bud cDNA of Dendrobium 

Jaquelyn Thomas ‘Uniwai Prince’ (UH503). Amino acid sequence is 

shown above the nucleotide sequence in single-letter codes. Stop codon 

is represented as an asterisk. Polyadenylation signal is represented in 

bold letters.
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Surprisingly, Den-chs-11 is only 70% similar to the chs-6 clone. The 

STIACE performed with primers designed against the chs-9 clone resulted in a 500 

bp fragment (Appendix A), which showed high similarity to bibenzyl synthase, a 

close relative of CHS enzyme since both enzymes catalyze similar chemical 

reactions. Bibenzyl synthase is an important enzyme in synthesizing a repertoire of 

chemical defense compounds known as phytoalexins and hence may be a valuable 

tool in disease resistance. A closer inspection of the chs homolgue from 

Phalaenopsis sp. ‘True Lady’ (Hsu et al., 1997, GenBank No. U88077, protein ID 

AAB650941) with BLAST search revealed this Phalaenopsis cDNA clone is indeed 

more similar to bibenzyl synthase clones of Bromheadia and oXhtx Phalaenopsis 

hybrids than to chs. This explains the apparent discrepancy in our results.

The closest sequence, from the orchid Bromheadia finlaysoniana, is 84% 

identical to the Den-chs-11 at the nucleotide level and 94% identical (97% similar) to 

the deduced amino acid sequence (Table 3.4). The closest non-orchid sequence is 

Sorghum bicolor with 83% identity (94% similarity) at the amino acid level. Amino 

acid sequences of chs from 25 plant species have shown 76%-94% identity to the 

deduced amino acid sequence of Den-chs-11 (Table 3.4).

Flavonoid hydroxylase. Degenerate primers to obtain both flavonoid 

hydroxylases were designed based on the conserved regions o f cytochrome p450 

sequences available in the GenBank (Champagne and Kuehnle, unpublished). A 200 

bp band amplified by PCR contained sequences similar to both f3'h  andJ3'5'h.
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Table 3.4. Comparison of partial clone Den-chs-11 with chalcone synthase from 
other plants at the amino acid level.

Plant species Common
name

GenBank 
accession no.

Length of 
the
sequence

% identity®

Dendrobium (UH503) 
Bromheadia 
fmlaysoniana 
Matthiola incana 
Sorghum bicolor 
Petunia x hybrida 
Brassica napus 
Zea mays 
Oryza sativa 
Lilium hybrida 
Gerbera hybrida 
Arabidopsis thaliana 
Vitis vinifera 
Nicotiana tobaccum 
Camellia sinensis 
Malus X domestica 
Catheranthus roseus 
Callistephus chinensis 
Petroselinum crispum 
Daucus carota 
Solanum tuberosum 
Antirrhinum majus 
Lycopersicon 
esculentum 
Hydrangea 
macrophylla 
Glycine max 
Hordeum vulgare 
Allium cepa_________

Dendrobium
Seraman

Sorghum
Petunia

Com
Rice
Lily
Gerbera

Grape vine
Tobacco
Tea
Apple
Periwinkle
China Aster
Parsley
Carrot
Potato
Snapdragon
Tomato

Hydrangea

Soybean
Barley
Onion

AF007099

AJ427537
AF152551
X14599
AF07633
X60205
X89859
AF169800
Z38096
AY090376
AB066275
API1783
D26593
AB074485
AJ131813
Z67988
V01538
AJ006780
U47738
X03710
X55195

ABO 11467

L07647
X58339
AF268382

159
394

394 
401 
319 
374 
400 
398 
393 
398
395 
393 
389 
389 
391 
389 
398 
398 
397
389
390 
389

389

388
389 
253

100
94

82
83
83
82
81
81
81
81
81
81
81
80
80
80
79
79
79
79
79
79

79

79
78
76

“ Sequences are aligned with CLUSTAL W (Thompson et al. 1994) program in SDSC Biology 
Workbench.
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Gene specific primers designed from these sequences were used to perform 3'RACEs 

to obtain the 3' end of the two genes. Two partial cDNA clones, Den-f3'h-6 and 

Den-f3'5'h-8 (Fig. 3.6 and Fig. 3.7), with the signature heme-binding domains were 

obtained. Deduced amino acid sequences of the two clones were aligned with the 

available flavonoid hydroxylases (Fig. 3.8 and Fig. 3.9). Sequence alignments of 

f S ’h sequences with Den-J3'h-6 revealed 57 of 219 residues are conserved across all 

10 species (Fig. 3.8). Den-f3'h-6 clone has shown 43% identity (62% similarity) to 

Petunia and 47% identity to Glycine max fS 'h  amino acid sequences, respectively. A 

search with BLAST program revealed many other cytochrome P450 genes with even 

higher similarity to Den-f3'h-6 from monocots such as Asparagus and Musa. 

However, the frmctions o f these cytochrome p450 enzymes are not known yet. Lack 

of known fS'h  sequences from monocotyledonous plants makes it difficult to confirm 

the identity of the gene by sequence similarity alone. The Den-f3'5'h-8 sequence has 

shown 63% identity (76% similarity) to the corresponding Petunia sequence. A high 

proportion of amino acid residues (73 of 219) are fully conserved among all 9 

sequences compared (Fig. 3.9). Thirty eight of the others are conservative 

substitutions.

3.4.2 Gene Expression by Northern Analyses

Temporal expression of dfr in the developing inflorescences of UH503 and 

K I224 showed that dfr transcripts are most abundant in the flower buds and are 

reduced to nearly undetectable levels in the open flowers (Fig. 3.10). However, RT- 

PCR analysis has shown that (frr transcripts were present in low levels in flowers.
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A G T D T S S A T V I W T M T E L M K N  
gcggggactgacacgtcctcagcaacagttatatggacgatgacagagctgatgaagaat 60 

P R V M T K L Q Q E L Q E A I  F N K T K  
ccaagggtaatgaccaaattgcaacaagagctacaagaggccattttcaacaaaaccaag 120 

V E E G E L Q Q L K Y L K L V I K E S L  
gttgaagaaggcgagctccaacaactaaaatacctcaagctcgtcatcaaagagtcgctt 180 

R L H P P A P L L V P R E T L E S C N I  
agattacaccctccagcaccgcttctagttcctcgcgaaaccctagaatcatgcaatatt 240 

E G Y D I  P A K T R V F I N A V A I A T  
gaaggttatgacattccagccaagacacgagttttcattaacgccgtcgccattgccaca 300 

D P K T W K N P N E F W P E R F T S T S  
gatccaaaaacttggaagaaccctaatgagttttggcctgagagattcacttcgaccagt 360 

I D L K G Q D F N F V P F G I G R R S C  
atagatctgaaagggcaggacttcaattttgtgccttttggtattggtcgcaggagttgc 420 

P G V D F A T V L V E L V L A N L L H C  
ccaggtgttgattttgctacagttcttgtggagcttgttttagctaatcttttgcattgt 480 

F E W S L P D G M K P E D I D M G E A C  
tttgaatggagtttacctgatggaatgaaacctgaggatattgatatgggagaggcgtgt 540 

G L T T H K K V P L C M V A K P K M H *  
ggccttacaacgcataaaaaagtgcctctttgcatggttgctaagccaaagatgcattga 600

attgttgtcactggaagtgattgtgggggatgataatgttctttgtgcttgtaagtgaga 660

ttgattgctatttgggacatttataatgtggctgaaatttttataaaattgaaaacttat 720

gttaatctgtttttttttttctttataattgggggttaaataaccaaaaaaaaaaaaaaa 780

aaaaaaccctataggggggggcggta 806

Figure 3.6. Nucleotide sequence and the deduced amino acid sequence of Den-fi'h- 

6 partial cDNA clone isolated from the flower bud cDNA of 

Dendrobium Jaquelyn Thomas ‘Uniwai Prince’ (UH503). Amino acid 

sequence is shown above the nucleotide sequence in single-letter codes. 

Stop codon is represented as an asterisk.
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A G T D T S A I V I E W A M A E M L K N  
gcggggacagacacgtccgccatagtcatcgagtgggcgatggccgaaatgcttaaaaac 60 

P S  I L Q R A Q Q E T D R V V G R H R L  
ccatcaatcctccaacgagcacaacaggaaaccgatcgcgtcgtcggccgccaccgtctt 120  

L D E S D I P K L P Y L Q A I C K E A L  
ctcgacgaatccgacataccaaagctcccctacctccaagccatctgcaaggaagctctc 180 

R K H P P T P L S I P H Y A S E P C E V  
cgaaaacaccctccaacacctctcagcatacctcactacgcctccgaaccctgcgaggta 240 

E G Y H I P G K T W L L V N I W A I G R  
gaaggctaccacattcccgggaagacttggctgctcgtcaacatatgggccatcgggcgg 300 

D P D V W E N P L L F D P E R F L Q G K  
gacccggacgtgtgggagaacccgttgctgttcgacccggagaggtttctgcaagggaag 360 

M A R I D P M G N D F E L I P F G A G R  
atggcgagaatcgatccgatgggaaacgacttcgagctcataccgtttggagccgggagg 420 

R I C A G K L A G M L M V Q Y Y L G T L  
aggatttgcgccgggaagttagcggggatgctgatggtgcagtattatttgggaacgctg 480 

V H A F D W S L P E G R W G A G H G G R  
gtgcatgcctttgactggagtttgccggaaggacgttggggagctggacatggaggaagg 540 

A G V G V A E A V P L S V M A R P R L A  
gccggggttggtgttgccgaagctgtgccgctctcggtgatggcgaggccgaggctggcg 600 

P A L Y G L L *  
ccggcgctttatggccttctttaagggagaaagattgcctaacgaatttatgacataaat 660

tacgtttgaatatttttatatgatttttttttttgnttgttgttaagattaaaagagatt 720

ttttctcttatgttcgaattaagttataaaatatnaataaatgaataatctctttcnaaa 780

Figure 3.7. Nucleotide sequence and the deduced amino acid sequence of Den- 

f3'5'h-8 partial cDNA clone isolated from the flower bud cDNA of 

Dendrobium Jaquelyn Thomas ‘Uniwai Prince’ (UH503). Amino acid 

sequence is shown above the nucleotide sequence in single-letter codes. 

Stop codon is represented as an asterisk.
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C a llis te p h u s  c h in e n s is  
P etun ia  x  h ybr ida  
T orenia  hyb rid a  
P e r i l la  f r u te s c e n s  
Pelargonium  x hortorum  
A ra b id o p s is  th a lia n a  
M a tth io la  Incana  
G lyc in e  max 
Oryza s a t iv a  
D en-F3h-6

C a l l is te p h u s  c h in e n s is  
P etun ia  x  hybrida  
T orenia h ybrida  
P e r i l la  f r u te s c e n s  
Pelargonium  x hortorum  
A ra b id o p s is  th a lia n a  
M a tth io la  incana  
G lyc in e  max 
Oryza s a t iv a  
Den-F3h-6

C a l lis te p h u s  c h in e n s is  
P etu n ia  x  hybrida  
T orenia  hyb rid a  
P e r i l la  f r u te s c e n s  
Pelargonium  x hortorum  
A ra b id o p s is  th a lia n a  
M a tth io la  incana  
G lyc in e  max 
Oryza s a t iv a  
Den-F3h-6

C a ll is te p h u s  c h in e n s is  
P etun ia  x  h ybrida  
Torenia hybrida  
P e r i l la  fr u te s c e n s  
Pelargonium  x hortorum  
A ra b id o p s is  th a lia n a  
M a tth io la  incana  
G lyc in e  max 
Oryza s a t iv a  
Den-F3h-6

A A D D D E E G K L S D IE IK A L L L N L F A A G T D T S S S T V E W A V A E L IR H P E L L K Q A R E E M D IW G  
ADNDG— G K L T D T E IK A L L L N L F V A G T D T S S S T V E W A IA E L IR N P K IL A Q A Q Q E ID K W G  
ID G G D E G T K L T D T E IK A L L L N L F IA G T D T S S S T V E W A M A E L IR N P K L L V Q A Q E E L D R W G  
NNGEG— G K L T D T E IK A L L L N L F T A G T D T T S S T V E W A IT E L IR N P N IL A R V R K E L D L IV G  
E D S E G — G K L T D T E IK A L L L N M F T A G T D T T S S T V E W A IA E L IR Q P E IL IR A Q K E ID S W G  
LDGDG— G S L T D T E IK A L L L N M F T A G T D T S A S T V D W A IA E L IR H P D IM V K A Q E E L D IW G  
FDGDG— A S IT D T E IK A L L L N M F T A G T D T S A S T V D W A IA E L IR H P H IM K R T Q E E L D A W G
DDHGN H L T D T E IK A L L L N M F T A G T D T S S S T T E W A IA E L IK N P Q IL A K L Q Q E L D T W G
Q K L D G D G E K IT E T D IK A L L L N L F T A G T D T T S S T V E W A IA E L IR H P D V L K E A Q H E L D T W G  
----------------------------------------------------A G TD TSSA TV rW T M TE LM K N PR V M T K LQ Q E L Q E A IF

R D R L V T E L D L S R L T F L Q A IV K E T F R L H P S T P L S L P R M A S E S C E V D G Y Y IP K G S T L L V N V W
R D R L V G E L D L A Q L T Y L E A IV K E T F R L H P S T P L S L P R IA S E S C E IN G Y F IP K G S T L L L N V W
P N R F V T E S D L P Q L T F L Q A V IK E T F R L H P S T P L S L P R M A A E D C E IN G Y Y V S E G S T L L V N V W
K D K L V K E S D L G Q L T Y L Q A V IK E N F R L H P S T P L S L P R V A Q E S C E IN G Y Y IP K D S T L L V N V W
R D R L V T E L D L S K L P Y L Q A IV K E T F R L H S S T P L S L P R IA T Q S C E IN G Y H IP K G A T L L V N V W
R D R P V N E S D IA Q L P Y L Q A V IK E N F R L H P P T P L S L P H IA S E S C E IN G Y H IP K G S T L L T N IW
R N R P IN E S D L S R L P Y L Q A V IK E N F R L H P P T P L S L P H IA A E S C E IN G Y H IP K G S T I.I.T N IW
R D R S V K E E D L A H L P Y L Q A V IK E T F R L H P S T P L S V P R A A A E S C E IF G Y H IP K G A T L L V N IW
R G R L V S E S D L P R L P Y L T A V IK E T F R L H P S T P L S L P R E A A E E C E V D G Y R IP K G A T L L V N V W
N K T K V E E G E L Q Q L K Y L K L V IK E S L R L H P P A P L L V P R E T L E S C N IE G Y D IP A K T R V F IN A V

:* ::**.:***,.:** :*? ? ** f ?• *
A IA R D P K JW T N P L E F R P S R F L P G G E K P D A D IK G N D F E V l 
A IA R D PN A W A D PL E FR PE R FLPG G E K PK V D V R G N D FE V : 
A IA R D PN A W AN PLD FN PTR FLAG G E K PN V D V K G N D FEV ]
a i g r d p n v w p d p l e f r p e r f l m g g e k p n v d v r g n d f e l :
A IA R D PD V W A D P LSFR P E R FLP G SE K E N V D V K G N D FE L3 
A IA R D P D Q W S D P L A F K P E R F L P G G E K SG V D V K G S D FE L 3
a i a r d p e q w s d p l a f r p e r f l p g g e k f g v d v k g s d f e l :
A IA R D PK E W N D PLE FR PE R FLLG G E K A D VD V R G N D FE V ]
a i a r d p t q w p d p l q y q p s r f l p g r m h a d v d v k g a d f g l :
A IA T D P K T W K N P N E FW P E R FT S T S ID L K G Q D F N F \

P F G A G R R IC A G  

PFG A G R R IC A G  
PFG A G R R IC A G  
P F G S G R R IC A G  
PFG A G R R IC A G  
P F G A G R R IC A G  : 
P F G A G R R IC A G  
PFG A G R R IC. 
P FG A G R R ICA ( 
P F G IG R R S C

CAGu;
Lii

PG /D

'ISLGMRMVQL
viNLGIRMVQL
'4SLGIRMVQL
'OJLGIRMVQI,
'4SLGLRMVQL
L S L G L R T IQ F
iSLGLRTIQL
iSLGLQMVQL
iSWGLRMVTL

F A T V L V E L
*** *** * *

LIA T L V Q TFD W E L A N G L D P E K L N M E E A YG L TLQ R A E PLM V H P R PR L SPH V YE SR —
M IA T L IH A FN W D L V SG Q L PE M L N M E E A YG L TLQ R A D P LW H PR PR LE A C 2A YIG —
V T A SIV H SF D W A L L D G L K P E K L D M E E G Y G L T L Q R A SP L IV H P K P R L SA Q V Y C M -----
LIA TM V H A F D F E L A N G Q L A K D L N M E E A Y G IT L Q R A D P L W H P R P R L A R H V Y Q A Q V -
LT A T L LH A FN W D L PQ G Q IP Q E L N M D E A Y G LT L Q R A SPL H V R PR PR L PSH L Y ----------

LT A T L V Q G F D W E L A G G V T P E K L N M E E SY G L T L Q R A V P L W H P K P R L A P N V Y G L G SG
LT A TL V H G F E W E L A G G V T P E K L N M E E T Y G IT V Q R A V P L IV H P K P R L A L N V Y G V G S G
LT AA LA H SFD W E LE D CM N PE K LN M D E A YG L TLQ R A V P LSV H PR P R LA PH V YSM SS-
M T ATL V H G FD W T LAN G ATPD K LN M E EA YG LTLQ R A VPLM VQ PVPR LLPSAYG V-----
VLANLLH CFEW SLPDGM KPEDIDM GEACGLTTH KKVPLCM VAKPKM H -------------------

Figure 3.8. Alignment of amino acid sequences of F3'H enzymes showing the

conserved regions and sequence similarities. Heme binding domain is 

included in the box. *=amino acid residues conserved among all 9 

sequences. :=amino acids with similar functional groups (highly 

conserved substitutions). .=weakly conserved substitutions.
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L y c ia n th e s  ra n to n n e l  
P etun ia  x hybrida  
Eustoma g ra n d iflo ru m  
G entiana t r i f l o r a  
C atheran thus ro seu s  
T orenia  h ybrida  
Campanula medium 
C a llis te p h u s  c h in e n s is  
D e n -f3 ’5 'b -8

A G T D T SS SA IE W A L A E M M K N P Q ILK K V Q Q E M D Q IIG K  
A G TD TSSSA IE W A L R E M M K N PA IL K K A Q A E M D Q V IG R  
A G T D T S S  S V IE W A L A E L L K N P IIL K R A Q E E M D G V IG R  
A G T D T S S S IIE W A L A E L L K N R T L L T R A Q D E M D R V IG R  
A G T D T SS SV T E W A ISE M L K N P T IL K R A Q E E M D Q V IG R  

A G T D T S S S T IE W A L S E M L K K G K IL K R A Q E E M D R W G R  
A G T D T S S  SVIEW ALA EM U JH R Q ILN R AH EEM D Q VIG R  
A G T D T SS N T V E W A IA E L IR Q P H L L K R A Q E E M D S W G Q  
A G T D T SA IV IE W R M A E M L K N P S IL Q R A Q Q E A D R V IG R

L y c ia n th e s  ra n to n n e i 
P etun ia  x hybrida  
Eustoma g ra n d iflo ru m  
G entiana t r i f l o r a  
C atheran thus ro seu s  
Torenia h ybrida  0 
Campanula medium 
C a llis te p h u s  c h in e n s is  
D en -F 3 '5 'h -8

L y c ia n th e s  ra n to n n e i 
P etu n ia  x hybrida  
Eustoma g ra n d iflo ru m  
G entiana t r i  f lo r a  
C atheran thus ro seu s  
Torenia  hybrida  
Campanula medium 
C a llis te p h u s  c h in e n s is  
D en -F 3 '5 'h -8

L y c ia n th e s  ra n to n n e i  
P etun ia  x hybrida  
Eustoma g ra n d iflo ru m  
Gentiana t r i f l o r a  
C atheran thus roseus  
Torenia hybrida  
Campanula medium 
C a llis te p h u s  c h in e n s is  
D en-F 3'5 'h~8

* ****

N R R L IE S D IP N L P Y L R A V C K E T F R K H P S T P L N L P R -IS N E P C M V D G Y Y IP K N IR L S V N rW  
N R R L L E S D IP N L P Y L R A IC K E T F R K H P S T P L N L P R -IS N E P C IV D G Y Y IP K N T R L S V N IW  
D R R F L E A D IS K L P Y L Q A IC K E A F R K H P S T P L N L P R -IA S Q A C E V N G H Y IP K G T R L S V N IW  
D R R L L E S D IP N L P Y L Q A IC K E T F R K H P S T P L N L P R N C IR G H V D V N G Y Y IP K G T R L N V N IW  
N R R L M E S D IP K L P Y L Q A IC K E T F R K H P S T P L N L P R -IA Q K D C Q V N G Y Y IP K G T R L S V N IW  
E R R L V E S D IE K L G Y L K A IC K E T F R K H P S T P L N L P R -IS S E A C W N G H Y IP K G T R L S V N IW  
N R R L E Q S D IP N L P Y F Q A IC K E T F R K H P S T P L N L P R -IS T E A C E V D G F H IP K N T R L IV N IW  
N R L V T E M D L S Q L T F L Q A IV K E A F R L H P S T P L S L P R -IA S E S C E V D G Y Y IP K G S T L L V N IW  
H R L L D E S D IP K lP Y L Q A IC K E A L R K H P P T P L S IP H -Y A S E P C E V E G Y H IP G K T V fL L V N IW  

:*
A IG R D P D V W E -N P L E F N P E R F L S G -K N V K ID P R G N D F E L 3  
A IG R D P Q V W E -N P L E F N P E R F L S G -R N S K ID P R G N D F E L ] 
A IG R D P S L W E -N P N E F N P D R F L E R -K N A K ID P R G N D F E L l
a i g r d p s v w g d n p n e f d p e r f l y g - r n a k i d p r g n h f e l :
A IG R D P N V W E -N P L E F N P D R F L S G -K M A K IE P R G N D F E L ]
A IG R D P E V W E -D P L E F N P D R F L H S  KMDPRGNDFEU>
A IG R D P K V W E -N P L D F T P E R F L S E -K H A K ID P R G N H F E L ] 
A IG R H P E V W T -D P L E F R P T R F L P G G E K P G IW K V N D F E V ] 
A IG R D P D V W E -N P L L F D P E R F L Q G -K M A R ID P M G N D F E L  
* * * *  *  . *  . *  *  * * * *  . *  * * .

icA G  r:

P FG A G R R IC A G tr 
P FG A G R R IC A G  C 
P FG A G R R IC A G tr 
P F G A G R R I 
PFG A G R R ICA I 
P F G A G R R IC A i 
P F G A G R R IC  
PFG A G R R I 
P FG A G R R ICA G

'RMGIVMVE 
'RMGIVMVE 
'R L G IL L V E  

R M G IL L V E  
I V L V E  

R M G IV LV E 
IVE

LA LR T V Q  
GtCLAGMLMVQ

lG TRMGI
AG r;

A G  ^RMGAAS\ 
IC A G  ‘IS

Y IL G T L V H S F D W K F SN D V K — E IN M E E S FG L A L Q K A V P L E R M V T P R L P F D V Y Y T N - 
Y IL G T L V H S F D W K L P S E V I — E L N M E E A FG L A L Q K A V PLE A M V TPR L Q LD V YV P—  
Y IL G T L V H S F D W E L P S S V I — E L N M D E P F G L A L Q K A V P L A A M V T P R L P L H IY C P - 
Y IL G T L V H S F D W K L G F S E D — E L N M D E T F G IA L Q K A V P IA A M V IP R L P L H V Y A P —  
Y IL G T L V H S F D W K L P F D D IN -E L N M D E S F G L A L Q K A V P L V S M V S P R L P IN A Y S P -- 
Y IL A T L V H SF D W K A A D Q D N N -IM N M E E A F G IA L Q K A T P L K A L V T P R L P L H C Y L P —  
Y IL G T L V H S F D W K L P D G W — E V N M E E S F G IA L Q K K V P L S A IV T P R L P P S S Y T V —  
LL M G T L V Q A FD W E LA N G IK P E K LN M D E A FG L SV Q R A E P LW H P R P R LP P H V Y K S G - 

YYLG TL V H AFD W SL PE G -R W -G A G H G G R A G V G V A E A V PLSV M R R PR LA PAL YG LH -

Figure 3.9. Alignment of amino acid sequences of F3'5'H enzymes showing the

conserved regions and sequence similarities. Heme binding domain is 

included in the box. *=amino acid residues conserved completely 

among all 9 sequences. :=amino acids with similar functional groups 

(highly conserved substitutions). .=weakly conserved substitutions.
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1 2 3 4 5 6 7 8 9  10 l e m

-1.3 kb dfr

-1.1 kb chs

rRNA

Figure 3.10. Northern blots showing temporal expression of dfr and chs mRNA in 

the developing inflorescence, and young leaf of Dendrobium Jaquelyn 

Thomas ‘Uniwai Prince’ (UH503). Upper panel shows the unopened 

buds divided according to size, and flowers sorted according to the 

position on raceme (stage 9 not shown) used in RNA extraction. Total 

RNA was extracted from these tissues and size fractionated (10 

pg/lane) on a 2% formaldehyde agarose gel electrophoresis. RNA was 

blotted onto a charged nylon membrane and was hybridized with ^̂ P- 

labeled denatured cDNA probes of Den-dfr or Den-chs-11. 

Autoradiographs were exposed to the signal for 3 days for dfr and 2 

weeks for chs. Lower panel indicate the loading level of RNA in 

ethidium bromide stained gel. dfr transcript is 1.3 kb in size, chs 

transcript is 1.1 kb in size. le=leaf; m=molecular weight marker.
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The dfr transcripts can be amplified from the total RNA of open flowers in both 

genotypes (Notebook No. 4, page 91). No transcripts were detected in the leaves 

through northern or RT-PCR analysis in either genotype. Similar expression data 

was observed with the dfr of Bromheadia fmlaysoniana (Liew et al., 1998b).

Chalcone synthase transcripts follow a similar temporal expression pattern to 

dfr in the developing inflorescences of K1224 (Fig. 3.11). Expression of chs in 

UH503 is highest in stage 4 floral buds and decline as the buds become mature and 

fully open. However, unlike dfr expression, chs expression is still detectable in stage 

7 open flowers and in young leaves of UH 503 (Fig. 3.11)

We were unable to detect expression offS'h in buds, flowers or leaves of 

UH503, and K1224, using lOpg of total RNA. When the total RNA load was 

increased to 20pg, a faint signal was visible in flowers, buds and leaves of UH503 

(Fig. 3.12A). It was still non-detectable in the buds of K1224 and a very faint signal 

is present in flowers of K1224. Densitometry reading revealed a higher signal offS'h 

in UH503 compared to K1224 in all 3 tissues (Density tool of Quantity One 4.2.1 

software program, Bio-Rad molecular imager system).

Presence of the f3'5'h  mRNA in floral buds of UH503 was evident by RT- 

PCR and 3'RACE experiments (Notebook No. 5, page 34 & 58). However, the 

expression level is very minimal and almost undetectable in Northern even when 

loaded with 20 pg of total RNA (3.12B). The broad band appearing in KI 224 for 

leaf tissue suggests that ft '5 'h  is present more in leaves than in buds or the probe 

cross hybridizes with other closely related cytochrome 450 transcripts.
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1 2 3 4 5 6 7 8 9  1 0  m

-1 3kb dfr

-l.lkb  chs

rRNA

Figure 3.11. Northern blots showing temporal expression of dfr and chs in the

developing inflorescence o f Dendrobium Icy Pink ‘Sakura’ (K1224). 

RNA extracted from 10 bud and flower stages were size fractionated on 

a 2% formaldehyde agarose gel electrophoresis and blotted on to a 

charged nylon membrane. Total RNA (10 pg/lane) was hybridized with 

^^P-labeled denatured cDNA probes of Den-dfr or Den-chs-11. Imager 

screen K-HD (Bio-Rad) was exposed to the signal for approximately 3 

days. Lower panel indicate the loading levels of RNA in ethidium 

bromide stained 28S rRNA band. l-6=flower buds from youngest to 

most mature; 7-10=open flowers; m=molecular weight marker.
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UH503 K1224

B F L B F L M

A. f3'h

B. f3 ’5'h 9

Figure 3.12. RNA blot analyses of buds, open flowers, and mature leaves of 

Dendrobium Jaquelyn Thomas ‘Uniwai Prince’ (UH 503) and 

Dendrobium Icy Pink ‘Sakura’ (K1224) showing expression of flvonoid 

hydroxylase genes. (A) RNA blot hybridized with Den-J3'h-6 clone.

(B) RNA blot hybridized with Den-f3'5'h-8 clone. (C) Ethidium 

bromide stained rRNA bands as an indication of RNA loading levels. 

Both genotypes have very low level of expression in all 3 tissue types. 

Imager screen K-HD (Bio-Rad) was exposed to the signal for 3 days. 

Open flowers and buds of UH503 have higher expression levels 

compared to K I224. B=buds; F=flower; L=leaf; M=molecular weight 

marker.
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3.4.3 Genomic Southern Analysis of Dendrobium (UH503 & K1224) DNA

Dendrobium genomic DNA was difficult to digest and 24-36 hours of 

digestion was needed for complete digestion, even at a concentration of 10 units of 

enzyme/pg of DNA. For detection of the dfr gene, DNA was digested with EcdRl, 

Pstl, BamVQ., or Kpnl sites. The dfr probe used for hybridization contains a single 

Pstl site. The BamPfi digest indicates 2 bands while EcoBl digest contain 6 bands 

(Fig. 3.13A). The Pstl digestion also results in 3 bands contrary to the expected 

number of bands (2) from a single copy o f & dfr gene. The number of dfr gene 

copies cannot be accurately inferred from the available data. In other orchids, 

Cymbidium (Johnson et al., 1999) and Bromheadia (Liew et al., 1998b), dfr was 

represented by a single copy. Since UH503 is a hybrid of two amphidiploid (4N) 

parents (Kamemoto et al., 1999) presence of more than one copy of the dfr gene is 

possible. Six bands appearing in the EcdBl digest might be due to the presence of 

restriction sites in the introns.

A similar result was found for KI 224 dfr gene also. A single band was 

detected in BamYff and Pstl digests (Fig. 3.13B). Digestions with Hindifi, Xbal and 

Xhol resulted in 4, 5 and 2 bands, respectively. However, the hybridization signals 

of all bands are not equal in intensity in K1224. Surprisingly, there is only a single 

band resulting from Pstl digestion (Fig. 3.13B). This might be due to a disruption of 

the restriction site by an intron or partial digestion. There is also a possibility of 

cross-hybridization with closely related gene sequences. It is difficult to infer the 

gene copy number with the available data.
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UH503 K1224
ERI BHI Kpnl PstI BHI Hill PstI Xbal Xhol

A B

Figure 3.13. Genomic southern blots of Dendrobium DNA hybridized with

labeled Den-dfr cDNA probe. Each lane represents different restriction 

digests of 15 pg of DNA. Number of bands hybridized with the probe 

varied in each digestion. Imager screen K-HD (Bio-Rad) was exposed 

to the signal for 4 days. (A) UH503 genomic DNA digested with 

EcoBJ (ERI), BamYH. (BHI), Kpnl and Pstl. (B) K I224 genomic DNA 

digested with BamlPf, HindlR (HIU), Xbal and A7?oI.
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Southern analyses o f UH503 and K I224 for chalcone synthase clearly 

indicate multiple bands in Xbal digests with strong hybridization signal (Fig. 3.14A 

& B). Both Hmdm  and E'coRJ digests of KI 224 give multiple bands with Den-chs- 

11 probe (Fig. 3.14B). BamW. digest of UH503 also resulted in 2 bands (Fig.

3.14A), while a single band is found in Xhol and KpTil digests. This might be due to 

the large fragment sizes {= 20-30 kb) that result from Xhol and Kpnl restriction 

enzymes. High molecular weight bands cannot be resolved on a 0.8% agarose gel 

thus giving a single hybridizing band from multiple fragments containing the gene. 

These results indicate that chs might be represented by several copies in UH503 and 

KI 224 genomes. However, a southern blot of the parental genome along with 

UH503 and KI 224 might give a better indication of gene copy number.

Restriction enzymes with no cutting sites in the cDNA clone was used for 

southern analyses off3'h and f3'5'h. Southern blots of UH503 (Fig. 3.15A) 

hybridized with f3'h  clearly indicate the presence of 2 bands in the HindHi, Pstl and 

Xbal digests. Three bands found in EcoRl digest might be due to a restriction sites in 

the intron region off3'h. Therefore, UH503 genome most likely contain 2 copies of 

J3'h gene according to the available data of Southern analysis. There are 2 bands of 

f3 '5 ’h also in UH503 shown in Hindlll and BamHl. digests (Fig. 3.15B). The single 

band in Xbal can be due to the high molecular weight o f the fragments containing the 

two copies of the f3'5'h gene. Therefore, the best deduction for the munber of copies 

off S ’S'h is also 2 for UH503 genome.
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A B

UH503 K1224
Xhoi BHI Xbal Kpnl BHI Hill ERI Xbal

Figure 3.14. Genomic southern blots of Dendrobium DNA hybridized with

labeled Den-chs-11 cDNA probe. Each lane represents different 

restriction digests of 15 pgofDNA. Imager screen K-HD (Bio Rad) 

was exposed to the signal for 4 days. (A) UH503 genomic DNA 

digested with Xhol, BamYH (BHI), Xbal and Kpnl. (B) K I224 genomic 

DNA digested with Barnm (BHI), HincUll (HIII), £coRI (ERI) and 

Xbal.
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f3'h f3'5'h
Hill ERI PstI Xbal Hill BHI Xbal

A B

Figure 3.15. Genomic southern blots of Dendrobium Jaquelyn Thomas ‘Uniwai

Prince’ (UH503) DNA to determine the copy number off3'h  andJ3'5'h 

genes. Each lane represents different restriction digests of 15 p g o f 

DNA. Imager screen K-HD was exposed to the signal for 4 days. (A) 

Dendrobium UH 503 DNA hybridized with ^̂ P labeled Den-f3'h-6 

cDNA. (B) Dendrobium UH503 genomic DNA hybridized with ^̂ P 

labeled Den-f3'5'h-8 cDNA. ERI=£'coRI; BHI=5a/nHI; Ym=Hindm.
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3.5 DISCUSSION

We have successfully isolated a full-length cDNA clone encoding DFR from 

Dendrobiim. Sequence analysis revealed it is 87% identical to the Cymbidhm  DFR 

which does not efficiently reduce DHK to form orange pelargonidin (Johnson et al., 

1999). The region of substrate specificity of Petunia DFR was determined to be 

between 131-167 amino acids in the polypeptide. A comparison of this region of 

Petunia DFR with known DHK accepting enzymes revealed that 4 amino acid 

residues (underlined in Fig. 3.16) were conserved among all species, except in 

Petunia. However, these 4 residues are not shared by Petunia and Cymbidium DFR 

ruling out the possibility of common substrate specificity region in the two species. 

Our comparison of Dendrobium and Cymbidium DFR has shown that the 4 amino 

acids unique to Petunia DFR are not shared by Dendrobium also (Fig. 3.16). In fact 

these 4 amino acids are conserved among all DHK accepting enzymes as well as 

Cymbidium and Dendrobium. Therefore, the substrate specificity of orchids must be 

determined by another region of the enzyme.

Most Dendrobium hybrids contain cyanindin and peonidin as their major 

pigment aglycone (Kuehnle et al., 1997). Two unique lines, D. Icy Pink ‘Sakura’ 

and D. Waianae Blush, have pelargonidin as their major anthocyanidin with the 

amount of cyanidin limited to only 2%. The pedigree of KI 224 shows that this rare 

unique colored phenotype occurred in the progeny of a cross of white x two-tone 

lavender parents (Kamemoto et al., 1999). Such a color change can occur due to two 

reasons as follows: a mutation of DFR enzyme changing its substrate specificity
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from DHQ to DHM, or a mutation of FSH enzyme reducing the amount of DHQ 

making DHK the most abundant substrate available for DFR. Sequence comparison 

of DFR from a typical purple phenotype, UH503, with that of KI 224 (pelargonidin 

accumulating line) has shown that the 2 sequences are identical in the coding region 

of the gene. This is not surprising since the pedigree analysis of UH503 and K1224 

clearly indicates the presence of Dendrobium Jaquelyn Thomas (O580-4N) as a 

common genome in the background of the two hybrids (Kamemoto et al., 1999). 

Therefore, the most probable reason for the pelargonidin accumulation in K I224 is a 

mutation leading to a reduction of F3'H enzyme activity.

R osa  h y b r i d a  SVNVEETQKPVYNESNWSDVEFCRRVKMTGWMYFAS
D i a n t h u s  c a r y o p h y l l u s TVNVEATQKPVYDETCWSDLDFIRSVKMTGWMYFVS 
G e x h e r a  h y b r i d a  TVNGQEKQLHVYDESHWSDLDFIYSKKMTAWMYFVS
A n t i r r h i n u m  m a ju s TVNVEEHQKPVYDETDSSDMDFINSKKMTGWMYFVS
Z ea  m a y s TVNLEERQRPVYDEESWTDVDFCRRVKMTGWMYFVS
P e t u n i a  x  h y b r i d a  TLDVQEQQKLFYD^TSWSDLDFIYAKKMTGWMYFAS
Cymbidiurn TVNVEEHQATVYDESSWSDLDFVTRVKMTGWMYFVS
Den-DFR TVNVEEHQAAVYDESCWSDLDFVNRVKMTGWMYFLS

Figure 3.16. Alignment of part of amino acid sequences of 5 DFR enzymes

accepting DHK as a substrate, along with Petunia, Cymbidium, and 

Dendrobium DFR. Fully conserved residues are in bold letters. Amino 

acids that are unique to Petunia and are important in determining 

substrate specificity of DFR are underlined. Cymbidium and 

Dendrobium DFR contain the same amino acid residues in these 

positions as other DHK accepting enzymes and differ from the DFR of 

Petunia.
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Our northern analysis indicates that theP 'h  expression is non-detectable in K I224 

flower buds, while UH503 has detectable amounts off3'h  mRNA. Expression of 

fS '5 'h is  barely detectable even in 20 pg of total RNA in both phenotypes. These 

evidence points towards a reduction oif3'h  activity in K I224 as the reason for its 

pelargonidin production.

Niesbach-Klosgen et al. (1987) used chalcone synthase as a tool to study the 

evolutionary relationships among plants. Our data for the amino acid sequence of 

chalcone synthase gene shows that amino acid sequence is highly conserved across 

25 plant species. The Bromheadia CHS, the closest relative of Dendrobium has 97% 

similarity (94% identity) at the amino acid level. Amino acid sequence aligimient 

showed 76-94% identity between the Dendrobium CHS and other plant sequences. 

However, the presence of other enzymes such as bibenzyl synthase, stilbene synthase 

and acridone synthase makes it difficult to identify the genes encoding CHS by 

sequence similarity alone (Helariutta et al; 1995; Liew et al., 1998a). Northern 

analysis with the Den-chs-1 J revealed expression in buds flowers and leaves with the 

highest expression in stage 2 to 5 (small-medium) buds. This is consistent with the 

results of Bromheadia (Liew et al., 1998a). Southern analysis indicates that multiple 

genes of chalcone synthase are found in Dendrobium. However, there is a possibility 

of cross-reaction of the probe with related genes such as bibenzyl synthase and 

stilbene synthase as explaned in Liew et al., (1998a). In many plants chs is 

represented by a multi-gene family with different members of the gene family 

responding to different environmental stimuli such as UV light (Himer et al., 2001;
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reviewed in Jenkins et al., 2001; Loyall et al., 2000), low temperature (Hasegawa et 

al., 2001), pathogen attack (Seki et al., 1999), wounding and phytohormones (Tamari 

et al., 1995). The clone we have isolated seemed to be strongly expressed in floral 

buds. This gene will be a useful tool in the future for shutting down the anthocyanin 

biosynthesis in Dendrobium for breeding white phenotypes.

Isolation of cytochrome P450 genes involved in flower color is fairly recent 

compared to dfr and chs genes. The first report was off3'5%  isolated from Petunia 

hybrida (Holton et al., 1993), and fS 'h  clone was isolated only in 1999 (Brugliera et 

al., 1999). Although highly conserved heme-binding domains are present in both 

genes, these sequences have high degeneracy making it difficult to design effective 

primers (Shimada et al., 1999). We were able to isolate a partial clone (40% of the 

ORF) offS'S'h with very high similarity to other proven f3'5'h sequences.

Expression of this gene is extremely low in Dendrobium flower buds possibly 

explaining the lack 3', 5' hydroxylated anthocyanidins (delphinidin) in Dendrobium. 

Introduction of dif2'5'h gene from another plant species is a possible path of color 

manipulation towards blue in Dendrobium.

3.6 CONCLUSION

Isolation of flavonoid genes from Dendrobium is an extremely important step 

towards the understanding flower color of Dendrobium. Information on 

anthocyanins present in flowers (Kuehnle et al., 1997) along with data on expression 

of flavonoid genes will enhance the classical breeding program. This will allow the 

plant breeder to understand the molecular basis of flower color in parent plants
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enabling better prediction of flower color in the progeny. In addition, pinpointing 

the genetic block of the pathway and substrate specificity of the enzymes will enable 

the scientists to identify the best phenotypes for genetic engineering to modify 

flower color.
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CHAPTER 4 

METABOLIC ENGINEERING OF DENDROBIUM ORCHIDS TO 

MODIFY FLOWER COLOR 

4.1 INTRODUCTION

Flavonoids not only provide an attractive array of colors for flowers and 

fruits but also play an important role in human health and nutrition due to their 

antioxidant, estrogenic, and anticancer properties (Adlercreutz and Mazur, 1997; 

Dixon, 1999, Rice-Evans et al., 1997). Therefore, considerable interest in metabolic 

engineering of the phenylpropanoid pathway to produce new flavonoids and 

isoflavonoids is found in recent research (reviewed by Dixon and Steele, 1999). For 

flower color manipulations, the flavonoid synthetic pathway is the main focus in 

metabolic engineering since it is the most studied and the easiest to manipulate 

without much adverse effect on the whole plant (Davies et al., in Press).

There are three main approaches in flower color manipulation as follows:

1) Introduction of biosynthetic genes from other species to produce novel colors; 2) 

Sense or antisense suppression of the biosynthetic enzymes; 3) Introduction of 

regulatory genes in order to activate the native biosynthetic gene(s).

4.1.1 New Colors through Introduction of Biosynthetic Genes

The first report on flower color modification using biotechnology was found 

in Petunia where a dfr gene (al)  from Zea mays was introduced into a Petunia 

mutant that accumulates dihydrokaempferol (DHK) to produce brick-red colored
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flowers (Meyer et al., 1987). It was used to overcome the substrate specificity of 

Petunia Dihydroflavonol 4-reductase enzyme (DFR), allowing the flowers to 

accumulate orange pelargonidin-based anthocyanins in a mutant that lack flavonoid 

hydroxylase activity. Later, traditional breeding of these transgenic plants provided 

attractive orange-colored flowers (Griesbach, 1993; Johan et al., 1995).

Introduction o f Rosa and Gerbera dfr into Petunia also resulted in similar colors 

(Helariutta et al., 1993; Tanaka et al., 1995). Comparison of all three transgenics 

revealed that Gerbera DFR gave a more consistent and stronger expression in 

Petunia, emphasizing the importance of the source of the transgene in the success of 

color manipulation (Elomaa et al., 1995). Substrate specificity of DFR was also 

shown to be the reason of lack of orange colors in Cymbidium (Johnson et al., 1999).

Some major ornamental plant species such as rose, chrysanthemum, and 

carnation have little or no delphinidin in their flowers and lack blue flowers. 

Successful introduction of the flavonoid 3', 5'-hydroxylase (F3'5'H) enzyme that 

produces delphinidin has already been accomplished in carnation (by International 

Flower Developments, a joint venture between Florigene Ltd., Australia and Suntory 

Ltd., Japan). Introduction of Petunia f3'5'h and dfr genes into a DFR-deficient white 

carnation has enabled the production of mauve colored carnation flowers (reviewed 

in Tanaka et al., 1998; described in International Patent Application 

PCT/AU96/00296). Commercial varieties named Moondust™ and Moonshadow™ 

are marketed in Australia, Japan and USA (Davies et al., in Press; Tanaka et al.,

1998). However, introduction of the F3'5'H enzyme alone might be insufficient to
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produce a true blue flower in ornamentals. Full activity of FS'SH also requires a 

cytochrome bs protein in Petunia (de Vetten et al., 1999). Introduction o f a Petunia 

cytochrome bs together with a Petunia F3’5H increased the activity of the introduced 

F3'5H in transgenic carnation (Brugliera et al., 2000). Other factors such as 

vacuolar pH, copigmentation, and intramolecular interactions are also important in 

getting a true blue color (Brouillard and Dangles, 1993). An important step towards 

controlling the vacuolar pH of the petals is already made with the isolation of genes 

controlling this trait in morning glory flowers (Fukuda-Tanaka et al., 2000 ; 

Yamaguchi et al., 2001).

Another approach to generate novel colors is through production and 

accumulation of colored flavonoids such as chalcones and aurones, which are yellow 

in color (Davies et al., in Press). Chalcones are unstable intermediates involved in 

flavonoid biosynthesis and appear colorless or light yellow. Several important 

ornamentals such as pelargonium, cyclamen, lisianthus and impatiens do not have 

yellow colored flowers. Transgenic plants that accumulate yellow colored 

flavonoids were produced by introducing a chalcone reductase (CHR) cDNA from 

Medicago sativa into a white-flowered Petunia mutant (Davies et al., 1998). 

Transgenic plants accumulated a new flavonoid, 6 '-deoxychalcones, instead of more 

common 6 '-hydroxychalcone. Deoxychalcone is not accepted as a substrate by 

chalcone isomerase, thereby reducing the flow of intermediates towards 

anthocyanins and allowing light yellow chalcones to be accumulated in flowers.
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Another type of anthocyanidins known as 3-deoxyanthocyanidins confers 

bright red, orange and scarlet in some species of Gesneriaceae (Harbome, 1966). 

These anthocyanidins differ from the more common type since they do not have a 

hydroxyl group at the C-3 position, which is usually glycosylated. A cDNA 

encoding a key enzyme in this pathway, flavonone reductase (FNR) isolated from 

Sinningia cardinalis, was introduced into Arabidopsis and Petunia mutants under the 

control of CaMV 35S promoter (Davies et al., in Press). However, the authors did 

not detect any production of 3-deoxyanthocyanins.

4.1.2 Sense or Antisense Suppression of the Flavonoid Biosynthetic Genes

Expression of a gene can be inhibited by introducing a gene of interest or a 

close homologue of it, in sense (cosuppression) or antisense direction (Mol et al.,

1990). Although it seems to be a simple task, suppression of a gene is more difficult 

to achieve than expression (Tanaka et al., 1998). Efficiency o f the suppression was 

shown to be dependent on the transgene promoter strength and homology between 

the transgene and the native gene (Que et al., 1997). Several distinct theories are put 

forward that involve DNA-DNA, DNA-RNA, and RNA-RNA interactions in order 

to explain the cosuppression phenomena (reviewed in Depicker and van Montagu, 

1997; Fagard and Vaucheret, 2000; Gallie, 1998; Joseph et al., 1997; Jorgensen, 

1995). One theory that is increasingly gaining more evidence suggests it to be 

mediated by double stranded RNA (dsRNA) (Montgomery and Fire, 1998).

Despite the difficulty, inhibition of pigment synthesis by introduction of 

sense and antisense chs or dfr was achieved in Petunia (Napoli et al., 1990; van
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Blokland et al., 1994; van der Krol et al., 1988 & 1990), Chrysanthemum, Dianthus 

caryophyllus, Eustoma grandiflorum, Gerbera hybrida, Torenia hybrida, and Rosa 

hybrida (reviewed in Ben-Meir et al., 2002; Davies and Schwinn, 1997; Elomaa and 

Holton, 1994; Tanaka et al., 1998). Uniform white flowers were obtained in 

Chrysanthemum and Dianthus, while white-patterned phenotypes resulted in 

Petunia, Eustoma and Torenia. Some transformants of Gerbera hybrida, Rosa 

hybrida, Dianthus caryophyllus and Torenia hybrida gave pale colored phenotypes 

due to reduction of anthocyanin synthesis throughout the flower (reviewed in Tanaka 

et a l, 1998).

Another interesting approach through suppression is to redirect intermediate 

substrates into a different branch of the flavonoid pathway for production of new 

colors. Intermediates such as dihydroflavonols are the precursors of colored 

anthocyanins as well as colorless flavonols. Introduction of flavonol synthase ifls) 

gene in antisense direction has resulted in higher anthocyanin content in petunia 

(Davies et a l, 2003), tobacco (Holton et a l, 1993a) and lisianthus (Nielsen et a l, 

2003). A similar result was reported by sense suppression offls  in a petunia cv. 

Surfmia Pink where flower color changed from pink to red purple (reviewed in 

Tanaka et a l, 1998).

4.1.3 Introduction of Regulatory Genes to Activate the Native Biosynthetic

Gene(s)

There are various regulatory genes belonging to Myb, and bHLH (basic 

helix-loop-helix) families of transcription factors, which activate distinct branches of
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the anthocyanin biosynthesis isolated from maize (e.g. cl-  Myb type, r-bHLH type), 

snapdragon {delila-hffLE. type) and petunia (a«2-Myb) (reviewed in Holton and 

Cornish, 1995; Mol et al., 1998). These regulatory genes were used to modify plant 

and flower color in Arabidopsis, Nicotiana, and Petunia (reviewed in Martin et al., 

2001). Petunia transformants containing a maize regulatory gene, leaf color {Lc, 

belonging to the Myb family), under the control of the CaMV 35S promoter 

contained very high levels of anthocyanin in the foliage and floral tube (Bradley et 

al., 1998). However, the same construct did not give any difference in phenotype in 

lisianthus, pelargonium, or chrysanthemum (Bradley et al., 1999) but has shown a 

color change from pink to intense red in tobacco (Lloyd et al., 1992). Introduction of 

Delila (a bHLH type homologue of r gene from snapdragon) into tobacco and tomato 

also resulted in increased anthocyanin content in the flowers and foliage (Mooney et 

al., 1995). A Myc type transcription factor, c l  from maize, driven by the CaMV 35S 

promoter had no effect on flower color of tobacco (Lloyd et al., 1992). Another 

important regulatory gene belonging to Myb family was isolated from Antirrhinum, 

which is responsible for the venation pattern in flowers (Schwinn et a l, 2001). This 

might be a useful gene to create genetically stable colored venation patterns as we 

have seen in some Dendrobium flowers.

4.2 OBJECTIVE

Our objective is to produce new colors of orange-red and blue shades in 

Dendrobium through metabolic engineering. We have chosen a pelargonidin- 

accumulating hybrid Dendrobium Icy Pink ‘Sakura’ (KI224) as the prime candidate
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for genetic manipulation. Chemical analysis (Kuehnle et al., 1997) and molecular 

analysis (Chapter 3) together with classical breeding data suggest that substrate 

preference of DFR and predominance of the F3'H activity as the most probable 

reason for the rarity of orange pelargonidin in Dendrobium. In order to produce 

orange shades in Dendrobium, we have introduced an Antirrhinum dfr gene 

(courtesy of Dr. Kathie Martin via Food and Crop Research Ltd. New Zealand), 

which encodes a DFR that readily accepts DHK as a substrate. It is also important to 

use a genotype that does not have F3'H and F3'5'H activity since these two enzymes 

compete with DFR for the same substrate. Chemical analysis of KI 224 revealed the 

absence of detectable levels of 3'-hydroxylated, and 3', 5'-hydroxylated 

intermediates (Kuehnle et al., 1997) and molecular analysis revealed undetectable 

levels of transcription of these 2 genes in K1224 (Chapter 3). Production of 

anthocyanin in K I224 suggests that, the downstream enzymes, ANS and UFGT are 

active in K1224, making it a suitable candidate to produce orange shades.

Dendrobium Jaquelyn Thomas ‘Uniwai Prince’ (UH503), a purple cyanidin 

accumulating flower, has shovm the presence of both f3 'h  and f 3 ’5'h cDNA in their 

flower buds despite the lack of 3', 5'-hydroxylated anthocyanins in Dendrobium.

This can be due to low activity of the enzyme, low transcription of the enzyme as 

shown by no detectable amounts even in 20 pg of total RNA (Chapter 3), 

competition of the two enzymes for the same substrate (F3'H and F3'5'H), or a 

combination of both. In order to avoid substrate competition, it is important to 

choose a genotype, which is deficient in F3'H activity. Therefore, K I224, which
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contain only 2% 3'-hydroxylated anthocyanins, is a suitable candidate for insertion 

oifS'5'h  gene. We have chosen a/3'5'/i gene from a non-orchid plant (proprietary 

information, obtained from Florigene Ltd., Melbourne, Australia under a limited 

license agreement with University o f Flawaii) to engineer blue flower color into 

Dendrobium.

4.3 MATERIALS AND METHODS

4.3.1 Plant Material

Apical and axillary buds of Dendrobium Icy Pink ‘Sakura’ (K1224) was 

surface sterilized in 10% Clorox solution and placed in modified VW (Vacin and 

Went, 1949; Sagawa and Kunisaki, 1984) liquid growth medium supplemented with 

2% sucrose (w/v) and 15% (v/v) coconut water, for generation of protocorm-like- 

bodies (PLB). PLBs were multiplied and maintained in VW medium at 100 rpm, 16- 

hour photoperiod of 19.0 ± 5 pmol m"̂  sec * photon flux density provided by cool 

white and Gro-lux Sylvania fluorescent lamps (GTE Corp., Danvers, MA). Thirty 

five to forty PLBs were placed on Vi strength solidified MS (Murashige and Skoog, 

1962) media, supplemented with 2% sucrose (w/v), and 0.7% granulated agar (w/v) 

(Fisher Scientific, Fair Lawn, NJ) in 6.0 x 1.5 cm disposable Petri plates for 

bombardment.

4.3.2 Color Genes, Plasmid DNA and Particle Bombardment

We have used the dfr gene ixom Antirrhinum majus (Snp-dfr), the fS'5'h and 

/3'h  genes from Petunia x hybrida {Pet-f3'5'h, Pet-f3'h) (Holton et al., 1993b; 

Brugliera et al., 1999) obtained from Florigene Ltd., Melbourne, Australia, and
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anothery3'57z gene from a non-orchid plant {NP-f3'5'h) for color modification 

experiments. The dfr gene and the two genes from Petunia were sub-cloned into the 

plasmid vectors of pBI525 and pSANlSO (courtesy of Sanford Scientific Inc.) in 

both sense and anti-sense directions (Table 4.1). The NP-f3'5'h gene was subcloned 

into pSANlSO in sense direction only. The two plasmids, pBI525 and pSAN150, 

have double Cauliflower Mosaic Virus (CaMV) 35S promoter (35S-35S) and 

Arabidopsis ubiquitin3 (UBQ3) promoter (courtesy of Sanford Scientific with 

permission from Dr. J. Callis), respectively. Two selectable marker genes were used 

for co-bombardment: The uidA (neomycin phosphotransferase) under the control of 

35S-35S promoter in plasmid pBI426 (gift of W. Crosby, Plant Biotechnology 

Institute, Saskatoon, Canada), and hpt (hygromycin phosphotransferase) under the 

control of UBQ3 promoter in plasmid pSANI 54 (Table 4.1). All constructed 

plasmids were transformed into Escherichia coli DH5a strain and plasmid DNA was 

extracted using plasmid DNA isolation miniprep or midiprep kits (Qiagen, Valencia, 

CA).

Plasmids containing color gene and the selectable marker were coated onto

1.6 pm gold particles (Bio-Rad, Hercules, CA) in a 1:1 ratio, using the procedure 

used by Nan (1994). Microprojectile bombardments were carried out using Bio-Rad 

model PDS-1000/He Biolistic® particle delivery system (Bio-Rad, Hercules, CA) at a 

vacuum pressure of 26-28 Hg mm, rupture disc pressure of 1100 psi, and target 

tissue placed on the 4* stage from the top using the standard laboratory protocol 

(Nan, 1994). Plates with shot PLBs were kept in dark for 2 days. All plant tissues
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were placed on growth media (Vz strength MS solid or VW liquid) for approximately 

two weeks without selection and subsequently transferred into selection media.

Table 4.1. Different plasmid constructs of color genes, selectable markers, and
promoters used for particle bombardment into orchid tissue.

Plasmid ID Gene® Plant source Promoter Piupose

pSAN150-SNP-DFR

pSAN150-ANTT-DFR

pBI525-SNP-DFR

pBI525-ANTI-DFR

pSAN150-NP-F3’5'H

pBI525-PET-F3'5'H

PB1525-ANT1-F3'5’H

pSAN150-ANTI-F3'5'H

pSAN150-PET-F3'H

pBI525-PET-F3'H

pSAN150-ANTI-F3'H

pBI525-ANTI-F3'H

pSAN154

pBI426

dfr Antirrhinum UBQ3 Increase the orange-red
majus shades

Antisense A. majus UBQ3 Reduce the activity of
dfr Dendrobium DFR
dfr A. majus 35S-35S Increase the orange- red

shades
Antisense A. majus 35S-35S Reduce the activity of
dfr Dendrobium DFR
f S ’S ’h (Proprietary UBQ3 Induce the production of

information) blue colored
anthocyanins

p '5 'h  Petunia X 35S-35S Induce the production of
hybrida blue colored

anthocyanins
Antisense P. x hybrida 35S-35S Shut down the
P '5 'h  production of cyanidin
Antisense P. x hybrida UBQ3 Shut down the
P '5 'h  production of cyanidin
FS'h P. X  hybrida UBQ3 Suppress or increase the

production of cyanidin 
FS'h P. X  hybrida 35S-35S Suppress or increase the

production of cyanidin 
FS'h P. X  hybrida UBQ3 Suppress the production

of cyanidin
FS'h P. X hybrida 35S-35S Suppress the production

of cyanidin
hpt UBQ3 Selectable marker for

screening transformed 
plants

uidA 35S-35S Selectable marker for
screening transformed 

_________________________________________ plants________________

® GenBank accession numbers for genes are as follows: Snp-dfr=X\55S6, Petp'h=Z22544, Pet- 
p'5'h=AFl55322.
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All bombardments done with Dendrobium Icy Pink ‘Sakura’ (K1224) are listed in 

Table 4.2. All other bombardments we have done with different Dendrobium 

hybrids are listed in Appendices B-D.

4.3.3 Selection and Regeneration of Transformants

Different levels of geneticin (Sigma, St. Louis, MO) ranging from 25-50 

mg-L'’ were used for selection of PLBs co-bombarded with pBI525 while 

hygromycin B (Sigma, St. Louis, MO) levels of 10-30 mg-L*’ were used for those co

bombarded with pSAN154. Selection regime used for each bombardment is listed 

with details in Table 4.2 and appendices B-D. Plantlets were regenerated from PLBs 

on Vi strength MS or banana medium (VW medium supplemented with 75 g of 

blended unripe banana flesh and solidified with 15 g-L'  ̂agar) in 10 cm x 2.5 cm 

disposable Petri plates. Growing plantlets were transferred into Magenta boxes 

(G12) for further growth while keeping track of the plate number and the PLB 

number of each plantlet.

4.3.4 PCR and RT-PCR Analyses

Two methods of sampling were used in DNA extraction of 

regenerated plantlets. For those with a few surviving plants, each individual plant 

within a magenta box was numbered and sampled separately for DNA extraction. 

When the numbers were too large for individual sampling, one leaf from each plant 

in a single magenta box was cut and all leaves were extracted together (pooled 

samples). Genomic DNA was extracted from collected leaves using DNeasy® Plant 

minikit (Qiagen, Valencia, CA) following manufacturer’s instruction
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Table 4.2. Co-bombardment of Dendrobium Icy Pink ‘Sakura’ (KI 224) PLBs.

Constructs and 
Date of 

Bombardment

#of*
Plates

Selection Regime Transfer to Regeneration 
Medium

% Survival 
of PLBs”

Status of the experiment

pB1426
pBI525-PET-
F3'5'H
12/22/97

3 17 days in liquid, no selection
14 days in liquid with Geneticin 50 mg-L"'

1/21/98 4.7%
(5/105)
7/30/98

Two compots were potted 
on 4/28/99, 1 plant PCR+, 
flowered in July, 2000, no 
color change relative to 
controls. Flowers normal.

None
12/22/97

2 17 days in liquid, no selection
14 days in liquid with Geneticin 50 mg-L"'

1/21/98 1%
(1/70)

7/30/98

transformation and 
regeneration protocol non- 
mutagenic.

^ pSAN154 6 11 days in liquid, no selection 10/14/98 24% 85 pooled samples tested
pSAN150-SNP- 1)15 days liquid with Hygromycin 12.5 mg-L''

2) 15 weeks on solid with Hyg, 12.5 mg-L '
2"“ selection on 2/10/98 (50/210) for PCR, 50% positive for

DFR
9/17/98

re: 3/25/99 5/24/99 color gene, potted out all 
positive plants in growth

pSAN154 2 11 days liquid, no selection 10/14/98 37% chamber or green house.
pSAN150-SNP- 1)15 days liquid with Hygromycin 12.5 mg-L"' 2'’‘* selection*’ on (26/70) first flowering in Nov.
DFR
9/17/98

2) 15 weeks on solid with Hyg. 12.5 mg-L'' 12/10/98 
re: 3/25/99

5/24/99 2002. No visual color 
change compared to non
bombarded plants.

None
9/17/98

1 11 days liquid, no selection
1)15 days liquid with Hygromycin 12.5 mg-L''
2) 15 weeks on solid with Hyg. 12.5 mg-L"'

10/14/98 
2™' selection'' on 
12/10/98 
re: 3/25/99

15%
(6/40)

5/24/99

“ 3.‘>-40 PLBs per plate
Number of PLBs producing plantlets after antibiotic selection out of total number bombarded
PLBs were transferred onto regeneration medium and transferred back to selection medium on 12/10/98 for a 2"‘‘ round of selection Final regeneration 

on 3/25/99



Table 4.2. (Continued) Co-bombardment of Dendrobium Icy Pink ‘Sakura’ (K1224) PLBs.

Constructs and 
Date of Bombardment

# o f
Plates

Selection
Regime

Transfer to
Regeneration
Medium

% Survival 
of PLBs*’

Status of the experiment

pSAN154
pSAN150-NP-F3'5'H
4/5/99

7 17 days on solid, no selection 
3 months on solid Hygromycin 10 mg-L *

7/26/99 35%
(82/233)
11/2/99

11/54 pooled samples and 
26/53 individuals positive 
for color gene. Most potted

None
4/5/99

1 17 days on solid, no selection 
3 months on solid Hygromycin 10 mg-L *

7/26/99 10%
(4/40)
11/2/99

out.

pSAN154
pSAN150-ANTI-DFR
pSAN150-NP-F3'5'H
6/7/99

5 14 days on solid, no selection
4.5 months on solid with Hygromycin 12.5
mg-L*

11/2/99 19% 
(37/191) 
11/2/99

In G12 Magenta boxes, PCR 
testing is not completed yet.

None
6/7/99

1 14 days on solid, no selection
4.5 months on solid with Hygromycin 12.5
mg-L’

11/2/99 32%
(12/37)
11/2/99

pSAN154
pSAN150-NP-F3'5'H 
1:3 ratio 
12/17/99

10 14 days in liquid, no selection 
4 weeks in liquid, Hygromycin 30 mg-L *

1/31/00 10%
(35/350)

In 40 G12 Magenta boxes, 
PCR sampling is not 
completed yet. Low survival 
rate due to high selection

None
12/17/99

4 14 days in liquid, no selection 
4 weeks in liquid, Hygromycin 30 mg-L *

1/31/00 8.5%
(3/35)

pressure.

“ 35-40 PLBs per plate
Number of PLBs producing plantlets after antibiotic selection out of total number bombarded



Primer sequences and PCR conditions used for detection of different genes are 

summarized in Table 4.3. All PCR reactions were carried out with 200-250 ng of 

genomic DNA, RedTaq DNA polymerase (Sigma, St. Louis, MO), 0.4 pM primer 

concentration and 0.2mM dNTP concentration in an iCycler thermal cycler (Bio- 

Rad, Hercules, CA).

For RT-PCR analyses, RNA from leaf tissues of transformed plants that 

tested positive for the inserted color gene by PCR, were extracted using extraction 

method of Champagne and Kuehnle (2000). An aliquot containing 1 pg of total 

RNA was treated with 1 unit of DNase I (Ambion Inc., Austin, TX) in IX DNase I 

buffer in a 10 pL volume at 37°C for 20 minutes, according to the manufacturer’s 

protocol. The activity of DNase was stopped by adding 1.1 pL of DNase 

inactivation reagent provided with the enzyme. cDNA was synthesized from Ipg of 

total RNA using 100 units of Superscript® TT RNase H' reverse transcriptase 

(Invitrogen, Carlsbad, CA) in IX first strand synthesis buffer (50 mM Tris-HCl, 75 

mM KCl, 3mM MgCl2, pH 8.3), supplemented with O.OIM DTT and 0.5mM dNTPs, 

by incubating the reaction mixture at 42°C for 50 minutes. Oligo dT (T20-T7) primer 

was used to prime the first strand synthesis. Reaction was stopped by incubation of 

the mixture at 70°C for 15 min. RNA template was removed by incubating the 

reaction mixture with 2 units of RNase H (Promega, Madison, WI) at 37°C for 20 

minutes. The RNase H enzyme was inactivated by incubation at 60°C for 10 min. 

Sample was stored at -20°C for PCR amplifications. PCR conditions are same as 

listed in Table 4.3.
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Table 4.3. Primer sequences and PCR conditions used in amplification of the 
inserted gene from transgenic plants.

Primer ID sequence Gene
amplified

PCR conditions

antDFR-L

antDFR-R

ggctacaccgttcgtg-
3'
atttcttgacggtttttgctt
gc-3'

Snp-dfr gene 94°C-4 min
(94°C-45 sec, 54°C-30 sec, 72°C-1 min) x 
30
72°C-8 min.
2.9 mM MgCb concentration, RedTaq 
(Sigma)

FL-NP-2L

FL-NP-2R

cgaagatgatgaaggag
cacag-3'
caatcgtggactgaccgt
ag-3-

NP-f3'5'h
gene

95°C-4 min
(95°C-45 sec, 55°C-45 sec, 72°C-45 sec) 
x35
72°C-7 min.
1.0 mM MgCb concentration, RedTaq 
(Sigma)

HYG-5'

HYG-3'

aagttcgacagcgtctcc
gac-3’
ttctacacagccatcggt
cca-3'

hpt 95°C-4 min
(95°C-1 min, 61°C-1 min, 72°C-2 min) x 
40
72°C-8 min.
2.3 mM MgCb concentration, RedTaq 
(Sigma)

F3'5'H-5'

F3'5'H-3’

gtggcggagatgttgac
-3'
attcttcgtccagcacc-
3’

Pet-f3'5'h 94°C-4 min
(94°C-1 min, 58°C-1 min, 72°C-2 min) x 
40
72°C-8 min.
1.7 mM MgCb concentration, RedTaq 
(Sigma)

NEO-5'

NEO-3'

aggctattcggctatgac
tgg-3'
agaaggcgatagaagg
cgatg-3’

uidA [nptll) 95°C-5 min
(95°C-1 min, 58°C-1 min, 72°C-2 min) x 
30
72°C-7 min.
1.7 mM MgCb concentration, RedTaq 
(Sigma)
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RT-PCR products were separated on a 1.0% agarose gel in IX TAE buffer 

for Southern blotting. The DNA was transferred overnight onto Biodyne B 

membrane (Pierce, Rockford, EL) by downward capillary transfer using alkaline 

transfer buffer (0.4M NaOH). Membrane was neutralized by immersing in 

neutralization buffer [0.5M Tris-HCl (pH 7.2), IM NaCl] for 15 minutes.

43.5 Northern Blot Analysis

Leaf samples were harvested from plants that were positive for RT-PCR 

testing. Total RNA was extracted as described previously. Different amovmts of 

total RNA (8,5 , or 3 pg) from different plants was size fractionated on a 2% 

formaldehyde agarose (0.9%, w/v) gel electrophoresis. The RNA was transferred 

overnight onto Nytran Supercharge™ nylon membrane (Schleicher & Schuell,

Keene, NH) by downward capillary transfer using alkaline transfer buffer (3MNaCl, 

0.0 IN NaOH). Hybridization and washing was done according to modified Church 

and Gilbert (1984) procedure as described previously in Chapter 3.

4.3.6 Probe synthesis for Northern and Southern Hybridization

Gene constructs used in bombardment was cut with appropriate restriction 

enzymes to release the color gene inserts. The cDNA inserts of the color genes were 

separated from the plasmid backbone by size fractionation on a 1% agarose gel in IX 

TAE buffer. DNA fragments were cut out from the gel and purified (GENECLEAN 

II kit, BiolOl, Carlsbad, CA). A 20 ng of the purified cDNA was labeled with a^^P- 

ATP using random primer labeling (Prime a Gene kit, Promega, Madison, WI). 

Labeled product was cleaned using purification column (Schleicher and Shuell,
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Keene, NH). Cleaned probe was added to the hybridization buffer at a concentration 

of 1 million cpm/lml of buffer. Blots were hybridized and washed using modified 

Church and Gilbert (1984) procedure as described in Chapter 3.

4.3.7 Southern Hybridization and Development

Southern hybridization was done with a non-radioactive North2South® direct 

HRP labehng and detection kit (Pierce, Rockford, IL). The labeling was done using 

lOOng of purified NP-f3'5'h insert in a 30pL volume using direct HRP (Horse Radish 

Peroxidase) label in reaction buffer provided with the kit at 45°C for 15 minutes. 

Reaction was stopped by adding 30 pLs of enzyme stabilization solution.

The membrane was pre hybridized with 10 mLs of prehybridization buffer 

provided with the kit at 55°C. The labeled probe (100 ng) was added to the 

prehybridization buffer and incubated for 2 hoius at 55°C. The membrane was 

moved to a new tube and washed three times with 40 mLs of wash buffer (2X SSC,

0.1% SDS) at 55°C for 15 minutes each. Three more washes were done with 2X 

SSC at room temperature for 15 minutes each. Excess fluid was drained off the 

membrane and was placed on a plastic tray. Chemiluminiscent substrate was 

prepared by mixing 5mLs of luminol/enhancer solution with 5 mLs of stable 

peroxide solution. The hybridized membrane was covered with the substrate 

solution and incubated for 5 minutes at room temperature. Substrate was drained 

and the developed blot was placed in between two plastic sheets. An X ray film was 

exposed to the signal for 1 minute and developed according to the manufacturer’s 

instruction.
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4.3.8 Potting, Acclimatization and Maintenance of PCR Positive Plants

All PCR positive plants were planted in shredded hapuu (tree fern) media or 

Sphagnum moss (Gold Moss brand, Puerto Varas, Chile) in 3" pots. When there are 

several plants per magenta box, they were planted together in 6 " community pots.

All plants were kept on the lab bench for 1-2 weeks to acclimatize to the low 

humidity and low light. Plants were later moved into the growth chamber and placed 

on humidi-trays at 130±5 pmol m'^s ’ light intensity. Once the plant got firmly 

established with new roots and shoots, they were moved to screened insect-proof 

boxes with a light intensity of 57±5 pmol m’̂ s'\ After 4 months of growth, plants 

were moved into a white colored larger box, which allowed more light (102±5 pmol 

m'^s ’) to penetrate for better growth.

4.4 RESULTS

4.4.1 Selection and Regeneration

We have used different selection regimes (Table 4.2) in both liquid and solid growth 

media for selecting the transformed plants from non-transformed plants. There was a 

high variation in tolerance of antibiotics among different Dendrobium hybrids (Table 

4.2; Appendices B-D). High levels of antibiotic (geneticin 50 mg-L"') for two weeks 

gave only a 5% recovery rate in PLBs of K1224 (Fig. 4.1 A). This is an insufficient 

number of plants to obtain 20-40 individual transformants. Second selection regime 

(hygromycin 12.5 mg-U’ ) for 15 days was not sufficient enough to kill all the non

transformed plants. However, selection in liquid media could not be continued due 

to bacterial contamination. We observed a more than 50% recovery in PLBs on
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regeneration medium. A second round of selection with hygromycin (10 mg-L'*) 

was done on solid media up to 15 weeks. A percentage survival rate of 24% and 

37% was obtained after the second selection (Table 4.2; Fig. 4. IB). The number of 

plantlets that is regenerated from a single surviving PLB ranged from 1 to 26. We 

have used a selection on solid media supplemented with 10 mg-L'^ for 3 months for 

the next experiment. A 35% survival rate was obtained from this selection protocol.

Figure 4.1 • Dendrobium Icy Pink ‘Sakura’ (KI224) protocorm-like-bodies

regenerating on banana media after antibiotic selection. (A) geneticin 

50 mg-L-1 in liquid VW media for 2 weeks. (B) hygromycin 12.5 

mg-L-1 for 2 weeks in liquid VW followed by hygromycin 10 mg-L-1 

for 15 weeks in solid banana media.

1 2 0



One of the major problems we faced in liquid selection was contamination with 

bacteria. Bacterial contamination is easy to spread in liquid selection media and 

results in loss of all PLBs from a single plate. In solid selection, contamination was 

easier to control. Discarding the contaminated PLBs when transferring onto fresh 

media can minimize the loss. However, the solid selection requires a considerably 

longer time than liquid selection.

4.4.2 PCR Analyses

We have analyzed two sets of transgenic plants for the inserted color gene. 

Plants that are 1-2" tall (Fig. 4.2) were used for DNA extraction. The first set 

bombarded with pSAN154 and pSAN150-SNP-DFR (9/17/98) was analyzed for the 

color gene {Snp-dfr) as well as the selectable marker {hpt). An example o f an 

ethidium bromide stained gel photograph of PCR product of the Snp-dfr gene is 

depicted in Fig. 4.3. Genomic DNA isolated from a non-transformed plant and 

sterile water without DNA was used as negative controls. The plasmid DNA 

(pSAN150-SNP-DFR) and/or genomic DNA from a known PCR positive plant were 

used as positive controls. From 83 samples tested, 18 samples were positive for both 

genes while 24 samples did not contain either of the genes (Table 4.4). There were 

29 samples positive for the color gene only, while 12 were positive only for the 

selectable marker gene (Table 4.4). In summary, 48/85 samples were indicated to 

contain the color gene. Plants that are positive only for the color gene are very 

valuable since the antibiotic resistant gene is considered as an environmental concern 

in producing transgenic plants.
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Table 4.4. Results o f PCR experiments to detect the presence o f Antirrhinum dfr
gene and hpt gene from bombarded and selected plants of
Dendrobium Icy Pink ‘Sakura’.

DNA sample pis* DFR*’ Hyg‘= Pot date and status

1-1 Al 5.1 Strong^ weak+ Potted 2/20/01, died
1-1 A2 6.1 strong^- weak+ Potted 2/20/01, moved to greenhouse 5/02/02
1-2 Al 3.6 weak+ strong+ Potted 2/20/01, moved to greenhouse 5/02/02
1-2 A2 3.9 strong+ weak+ Potted 2/20/01, moved to greenhouse 5/02/02
1-3 Al 6.4 - weak+ Discarded
1-3 A2 7.1 - - Discarded
1-4 Al 6.7 - - Discarded
1-4 A2 6.7 - - Discarded
1-5 Al 6.9 - - Discarded
1-5 A2 5.1 - - Discarded
1-6 Al 6 medium+ weak+ Potted 2/20/01, moved to greenhouse 5/02/02
1-6 A2 5.7 strong+ weak+ Potted 2/20/01, moved to greenhouse 5/02/02
1-7 Al 5.6 strong+ - Potted 01/22/02, died
1-7 A2 4.2 strong+ - Potted 11/20/02
2-1 Al 7.3 - - Discarded
2-1 A2 7.8 - - Discarded
2-2 Al 8 - - Discarded
2-2 A2 
2-4 Al

8.9
7.8 weak+

Discarded 
Died before potting

2-4 A2 7.1 strong+ weak+ Potted 1/22/2, in growth chamber
2-5 Al 8.1 strong+ - Potted 11/09/02, in growth Chamber
2-5 A2 10.9 strong+ - Potted 11/09/02, in growth chamber
4-1 Al 8.9 - - Discarded
4-1 A2 10 - weak+ Discarded
4-3 Al 8 - - Discarded
4-3 A2 12.5 - - Discarded
5-1 Al 6 - weak+ Discarded
5-1 A2 9.2 - - Discarded
5-2 Al 11.7 weak+ strong^ Potted 10/24/01, died
5-2 A2 13 strong+ - Potted 01/22/02, in growth chamber
5-3 Al 7 weak+ strong+ Potted 01/22/02, in growth chamber
5-3 A2 7 strong+ - Potted 01/22/02, died
5-4 Al 6 - - Discarded
5-4 A2 6 - - Discarded
5-5 Al 5.7 Weak+ strong+ Discarded
5-5 A2 6.3 strong-t- - Discarded
5-6 A1 3 8 - - Discarded
5-6 A2 5.1 Medium+ - Potted 06/24/02, in growth chamber.

122



Table 4.4. (Continued) Results of PCR experiments to detect the presence of
Antirrhinum dfr gene and hpt gene from bombarded and selected
plants of Dendrobium Icy Pink ‘Sakura’.

DNA sample |ils* d f r ” Hyg' Pot date and status

5-7 Al 6.2 weak+ - Discarded
5-7 A2 6.7 Medium+ - Potted 06/24/02, in growth chamber.
6-1 Al 8.6 - - Discarded
6-1 A2 5.5 - n.d. Discarded
6-2/3 Al 5.1 - weak+ Discarded
6-2/3 A2 4.6 - - Discarded
6-5 Al 5 - strong+ Discarded
6-5 A2 5 Medium+ weak+ Potted 01/22/02, died
6-7 Al 5.6 - . Discarded
6-7 A2 4.4 - - Discarded
6-8 Al 5 strong+ strong+ Potted 2/20/01, moved to greenhouse 5/02 /02
6-8 A2 4.7 strong+ strong+ Potted 2/20/01, moved to greenhouse 5/02/02
6-9 Al 4 - strong+ Discarded
6-9 A2 4.4 strong+ - Potted 01/22/02, died
6-10 Al 6.6 - weak+ Potted 6/24/02, in growth chamber
6-10 A2 5.1 - - Discarded
7-1+2 Al 4.4 weak+ - Potted 01/22/02, in growth chamber
7-1+2 A2 4.2 weak+ - Potted 01/22/02, in growth chamber
7-3 Al 6.1 medium+ - Discarded
7-4 Al 5.7 strong+ n.d. Discarded
7-4 A2 7.1 strong+ - Potted 01/22/02, died
7-5 Al 4.4 weak+ - Potted 01/22/02, in growth chamber
7-5 A2 4.7 - - Discarded
7-7 Al 6.6 - weak+ Discarded
7-8 Al 5.4 medium+ - Potted 8/17/01, moved to greenhouse 5/2/02
7-8 A2 8.9 strong+ weak+ Potted 1/22/02, died
7-9 Al 7,9 strong+ - Discarded
7-9 A2 7,1 strong+ - Potted 1/22/02 &11/9/02, in growth chamber
7-10 Al 7.6 strong+ strong+ Potted 8/17/01, moved to greenhouse 5/2/02
7-10 A2 8,1 strong+ - Potted 10/20/01, moved to greenhouse 5/2/02
7-11 Al 5.3 weak+ - Potted 10/24/01, moved to greenhouse 5/2/02
7-11 A2 5.3 - strong+ Discarded
7-12 Al 6.9 weak+ - Discarded
7-12 A2 6,9 medium+ weak+ Potted 11/09/02, in growth chamber
7-13 Al 4.3 medium+ weak+ Ehscarded
7-13 A2 5.9 medium+ weak+ Potted 01/22/02, in growth chamber
8-1 Al 7.1 medium+ - Discarded
8-1 A2 6.6 - n.d. Discarded
8-6 Al 5.5 - - Discarded
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Table 4.4. (Continued) Results o f PCR experiments to detect the presence of
Antirrhinum dfr gene and hpt gene from bombarded and selected
plants of Dendrobium Icy Pink ‘Sakura’.

DNA sample (ils“ DFR*" Hyg'= Pot date and status

8-7 Al 6.3 strong+ strong+ Potted 3/16/01, moved to greenhouse 5/2/02
8-7 A2 5.8 - medium+ Discarded
8-8 Al 5.1 medium+ - Potted 8/17/01, moved to greenhouse
8-8 A2 6.4 weak+ - Potted 10/24/01,died
8-9 Al 6 strong-i- strong+ Potted 1/22/02, in growth chamber
8-9 A2 4.8 strong+ - Potted 10/24/01, in growth chamber
8-11 Al 6.1 strong+ - Potted 01/22/02, in growth chamber
8-11 A2 7.6 - - Discarded

“ Number of gLs containing 200 ng of DNA used for a PCR reaction.
** PCR result for the Antirrhinum dfr gene, strong, medium and weak represent the brightness o f the 
DNA band. +=positive PCR result; —negative PCR result; n.d.=not done.
® PCR result for the hpt gene, strong, medium and weak represent the brightness of the DNA band. 
+=positive PCR result; -=negative PCR result; n.d.=not done.
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Figure 4.2. Regenerated plantlets of Dendrobium Icy Pink ‘Sakura’ (K1224)

growing on 14 strength Murashige and Skoog medium after hygromycin 

selection and regeneration on banana medium. Leaves of regenerated 

plantlets were sampled to test for the presence of the inserted genes 

using PCR. All the plants in a magenta box (pooled sample) or 

individual plants were used for DNA extraction.
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Figure 4.3. Agarose gel electrophoresis of PCR amplified products of

Antirrhinum dfr {Snp-dfij gene from bombarded Dendrobium K1224 

plants. Primers specific for Snp-dfr gene were used to amplify a 282 

bp fragment from genomic DNA of Dendrobium KI 224 plants 

regenerated from PLBs co-bombarded with pSAN150-SNP-DFR and 

pSAN154. Lanes m=molecular weight markers; lanes l-14=genomic 

DNA from pooled samples 1-1 A l, 1-2 A l, 1-6 A l, 1-7 A l, 2-4 A2, 

2-5 A l, 5-2 A l, 5-3 A l, 5-5 Al, 5-6 A2, 5-7 A l, 6-5 A2, 6-8 Al and 

6-9 A2, respectively; lane -=genomic DNA from a control plant that 

was not bombarded with Antirrhinum dfr\ lane +=genomic DNA from 

a known PCR positive plant.
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A second set of K1224 plants bombarded with pSAN154 and pSAN150-NP- 

FS'SH (4/5/99) were also analyzed through PCR for the presence of the color gene. 

Genomic DNA extracted from pooled samples or from individual plants was used for 

PCR analysis. A very low rate o f positive transformants (11/54) was found among 

the pooled samples. But, half of the individual plants (26/53) were positive for the 

NP-f3'5'h gene (Table 4.5; Fig. 4.4). All the samples that were indicated to be 

positive were potted up for growth and flower color observations.

It is noteworthy that all the different plantlets growing from a single PLB did 

not show the same PCR result. Therefore, insertion and integration of the transgene 

might be different for each individual plant arising from a single PLB.

4.4.3 RT-PCR and Northern Analyses

We have used three individual plants and three pooled samples to test the 

expression of the transgene (Snp-dfr) from the first set of PCR positive plants. RT- 

PCR analysis indicated that all three individual plants of the pooled sample (6-8 A2 ) 

were positive for the expression of the inserted Snp-dfr gene (Fig. 4.5). In addition, 

two pooled samples (1-6 A 1 and 1-1 A l) were also proven to be positive. Southern 

hybridization with HRP labeled cDNA probe of Snp-dfr show strong hybridization 

with the RT-PCR product confirming that the amplified fragment is Antirrhinum dfr.

Ten RNA samples from the second set of transformants were tested for the 

expression of the inserted color gene. Three individual plants 8-2-1, 8-2-4 and 8-2-6 

were positive for the expression of NP-f3'5'h gene (Fig. 4.6).
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Table 4.5. Results o f PCR experiments to detect the presence of NP /3'5'h gene
from bombarded and selected plants of Dendrobium Icy Pink
‘Sakura’.

Pooled
sample

PCR“
NP-J3’5'h

Pot date & 
Status

Individual
plant

PCR"
NP-

f3 '5 ’h

Pot date & status

3-4 A-1 - Discarded 2A+2B-12 - Discarded
3-4A-2 Strong+ 11/20/02 2A+2B-13 - Discarded
3-lOA-l Weak+ 11/20/02 2A+2B-15 - Discarded
3-10A-2 - Discarded 2A+2B-16 - Discarded
4-1 A-1 - Discarded 2A+2B-24 - Discarded
4-1 A-2 - Discarded 2A+2B-25 - Discarded
4-2 A-1 - Discarded 2A+2B-29 - Discarded
4-2 A-2 - Discarded 3A-1-1 Strong+ 7/23/01, greenhouse
4-3 A-1 - Discarded 3A-1-2 Strong+ 7/23/01, greenhouse
4-3 A-2 - Discarded 3A-1-3 Weak+ 7/23/01, greenhouse
4-4 A-1 - Discarded 3A-1-4 - Discarded
4-4 A-2 - Discarded 3A-1-5 - Discarded
4-5 A-1 - Discarded 3A-2-1 - Discarded
4-5 A-2 - Discarded 3A-2-2 Weak+ 10/30/2, growth

4-6 A- Discarded 3A-2-3
chamber
Discarded

l/A-2 
4-7 A-1 Discarded 3B-1-1 Discarded
4-8 A-1 Strong+ 8/7/01, 3B-1-2 - Discarded

4-8 A-2
greenhouse
Discarded 3B-1-3 Discarded

4-9 A-1 - Discarded 3B-1-4 - Discarded
4-9 A-2 - Discarded 3B-1-5 - Discarded
4-11 A-1 Weak-f lnG12 3B-2-1 - Discarded

4-11 A-2 .

Magenta
Discarded 3B-2-2 Discarded

4-12 A-1 - Discarded 3B-2-3 - Discarded
4-12 A-2 - Discarded 3B-2-4 - Discarded
4-13 A-1 - Discarded 3B-2-5 - Discarded
4-13 A-2 - Discarded 3B-2-6 - Discarded
4-14 A-1 - Discarded 3B-2-7 - Discarded
4-14 A-2 - Discarded 3B-2-8 - Discarded
4-16 A-1 - Discarded 3B-3-2 - Discarded
4-16 A-2 - Discarded 8-1-2 W eak+ 7/20/01, died**
4-18 A-1 - Discarded 8-1-3 Strong+ 7/20/01, died'’
4-18 A-2 - Discarded 8-1-4 Strong+ 7/20/01, died'’
4-19 A-1 - Discarded 8-1-5 Strong+ 7/20/01, died'’
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Table 4.5. (Continued) Results of PCR experiments to detect the presence of NP
f3'5'h gene from bombarded and selected plants of Dendrobium Icy
Pink ‘Sakura’.

Pooled PCR'AP- Pot date & Individual PCR“ Pot date & status
sample j3'5'h Status plant NP-

f3'5'h
4-19 A-2 - Discarded 8-1-6 Strong+ 7/20/01, died'’
5-4 A-1 Weak+ In Magenta 

boxe
8-2-1 Strong+ 11/20/02"

5-4 A-2 Strong-i- In Magenta 
box

8-2-2 Strong+ 11/20/02

5-5 A-2 - Discarded 8-2-3 Strong+ 11/20/02
5-6 A-1 - Discarded 8-2-4 Weak+ 10/30/02
5-7 A-1 - Discarded 8-2-5 - Discarded
5-7 A-2 - Discarded 8-2-6 Strong + 11/20/02"
5-9 A-1 10/30/2,

growth
chamber

8-3-1 Weak+ 7/20/01, greenhouse.

5-9 A-2 - Discarded 8-3-2 Weak+ 7/20/01, greenhouse
5-10 A-1 - Discarded 8-3-3 Weak+ 7/20/01, greenhouse
5-10 A-2 - Discarded 8-3-4 Weak+ 7/20/01, greenhouse
5-11 A-1 Weak+ In Magenta 

box
8-3-5 Strong+ 7/20/01, greenhouse

5-11 A-2 Weak+ In Magenta 
box

8-3-6 Strong+ 7/20/01, greenhouse

9-2 A-1 Weak+ 10/30/02,
died

8-3-7 Strong+ 7/20/01, greenhouse

9-2 A-2 Strong+ 10/30/02,
died

8-3-8Z9 Strong+ 7/20/01, greenhouse

9-5 A-1 - Discarded 8-4-1 Strong+ 10/30/02
9-5 A-2 - Discarded 8-4-2 - Discarded
9-10 A-1 - Discarded 8-4-3Z4 Strong+ 10/30/02
9-10 A-2 - Discarded 8-4-5Z6 Strong+ 10/30/02
9-12 A-1 - 10/30/02 8-4-7Z8 Weak+ 10/30/02
9-12 A-2 Weak+ 10/30/02

® PCR result for the NP-f3'5'h gene, strong medium and weak represents the brightness of the 
amplified DNA band on ethidium bromide stained agarose gel. +=positive PCR result; —negative 
PCR result.

’’ died due to bacterial contamination.
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Figure 4.4. Agarose gel electrophoresis of PCR amplified products of NP-fS '5'h 

gene from bombarded and selected Dendrobium Icy Pink ‘Sakura’

(KI224) plants. Primers specific foxNP-f3'5'h gene was used to 

amplify a 746 bp fragment from genomic DNA of KI 224 plants 

regenerated from PLBs co-bombarded with pSANlSO-NP-FS'SH and 

pSAN154. Lanes l-19=genomic DNA from individual samples 3A-1- 

1, 8-3-8Z9, 8-3-7, 3B-1-1, 8-4-778, 8-4-576, 8-4-374, 8-1-2, 8-4-1, 8-2-5, 

8-2-4, 8-2-3, 8-2-2, 8-2-1, 3A-2-3, 3B-2-8, 3B-2-7, 3B-2-6, and 3B-2-5, 

respectively; lane m=molecular weight marker; lane +=genomic DNA 

from a known PCR + plant (8-3-5); lane -=negative control without 

DNA (sterile water).
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Figure 4.5. Southern blot of RT-PCR products of amplified cDNA of Dendrobium 

K I224 leaves from plants that were positive for the presence of 

Antirrhinum dfr gene by PCR, hybridized with Antirrhinum dfr cDNA 

probe directly labeled with Horse Radish Peroxidase (HRP) enzyme 

using North2South detection kit (Pierce). After hybridization 

membrane was washed 3 times with 2X SSC, 0.1% SDS buffer at 55“C 

for 15 minutes each, followed by 3 washes with 0.2X SSC, 0.1% SDS 

buffer at room temperature. Membrane was incubated with fluorescent 

substrate, luminol, and hydrogen peroxide for 5 minutes. An X ray film 

was exposed to the fluorescent signal for 1 minute. Lanes 1-2 = cDNA 

from pooled samples of 1-1 A 2 ,1-6 A l; lane 3 = Snp-dfr cDNA as a 

positive control; lanes 4-6 = cDNA from 1-3 individual plants of 6-8 

A2 pooled sample; lane m=molecular weight marker; lane -= negative 

control without DNA (sterile water).
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1 2 3 4 5 6 7 8

-746 bp

Figure 4.6. Agarose gel electrophoresis of RT-PCR products of amplified cDNA 

from transgenic Dendrobium Icy Pink ‘Sakura’ (K1224) plants 

indicated to contain the color gene {NP-f3'5'h ) by PCR. Primers used 

for amplification were specific to a 746 bp fragment of NP-f3'5'h gene. 

Lanes l-5=cDNA from individual plants of 8-2-1, 8-2-2, 8-2-4, 8-2-5 

and 8-2-6, respectively; lane 6=negative control without cDNA; lanes 7 

& 8=molecular weight markers.
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All other pooled samples and individual plants tested were negative for the 

expression of NP-f3'5’h (Table 4.6). RNA samples were digested with DNase I in 

order to remove all residual DNA, which might give a false positive on PCR. 

Although we were unable to confirm the integration of the gene through Southern 

anaysis, RT-PCR results reveal that the gene is being expressed.

Two samples, 8-2-1 and 8-2-6 show faint bands of 1.8 kb on northern blot 

(Fig. 4.7) that corresponds to the molecular weight of NP-f3’5'h. This indicates the 

expression of the transgene in these two samples. However, other samples cannot be 

concluded to be negative since we have loaded only 3-5 micrograms of RNA from 

some samples due to inadequate amounts available for equal loading. These plants 

are potted out and tagged for further analysis when more leaf tissues are available for 

sampling (Fig. 4.8). Northern analysis might be an easier way to prove the 

integration and expression of the transgene since repeated efforts on Southern 

analysis did not yield any positive results despite the indication of the presence or the 

transgene via PCR and RT-PCR. However, transcription does not necessarily 

indicate the activity of the enzyme since post-transcriptional gene silencing can still 

shut down the activity of the transgene. It is important to do enzyme activity studies 

and flavonoid profiles on flower buds, once potential transgenic plants begin 

flowering.
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Table 4.6. Results of RT-PCR experiments indicating the expression of NP-
fS'S'h  gene from bombarded PCR positive plants o f Dendrobium Icy 
Pink ‘Sakura’ (KI224)

Sample ID RT-PCR“ result
control -

3-4A-2 -

3-lOA-l -

4-8A-1 -

8-2-1 strong+
8-2-2 -

8-2-4 strong+
8-2-5 -

8-2-6 strong+
8-4-1 -

8-4-2 -

“RT-PCR result for NP-p'5'h  gene, strong represents the brightness of the amplified 
DNA band on ethidium bromide stained agarose gel; +=positive PCR result; -=negative 
PCR result.
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3 4 5 6

-1.8 kb

Figure 4.7. RNA blot showing expression of NP-/3 '5'h in transgenic Dendrobium 

K I224 plants indicated to contain the color gene {NP-f3'5'h) by PCR. 

Total RNA from leaves were hybridized with ^^P-labeled denatured 

cDNA probes of NP-f3'5'h according to the modified Church and 

Gilbert (1984) procedure. Autoradiograph was exposed to the signal 

for two weeks. Lanes 1-3=8 pg of total RNA from 8-2-2, 8-2-6 and 8- 

4-1 plants respectively; lanes 4-5= 5 pg of total RNA from 8-2-1 and 8- 

2-5 plants; lane 6=3 pg of total RNA from 8-2-4 plant; lane 7=flower 

bud RNA from Dendrobium Icy Pink as a negative control; lane 

m=molecular weight marker.
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Figure 4.8. Transformed Dendrobium Icy Pink ‘Sakura (K1224) plants indicated to 

contain the inserted color gene by PCR. Plants are potted out in 

shredded hapuu and acclimatized to the outside environment in the 

growth chamber.
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4.5 DISCUSSION

Two different color genes, Snp-dfr and NP-f3'5'h, under the constitutive 

promoter UBQ3 were inserted into Dendrobium Tcy Pink ‘Sakura’ with the intention 

of creating new colors of orange-red and blue shades which are absent in commercial 

Dendrobium. Presence of the transgene in two sets of transformants was confirmed 

by PCR. Expression of the transgene from a few plants was indicated by RT-PCR 

and northern analysis. We were not able to determine the copy number and the DNA 

integration events since Southern analysis did not give a good signal despite repeated 

efforts. Most of the tested plants are potted out for flower color observations and 

follow up experiments will be done to identify plants with high activity o f the 

transgene.

Selection is the most crucial step in plant transformation since this is the key 

to separate the transformants from the non-transformed plants. Our experience 

suggests that a 15-20% survival rate on non-bombarded control plates will allow a 

good selection pressure to kill most of the non-transformed plants and not toxic 

enough to kill the transformants. But, this selection does not eliminate all non- 

transformed plants. High levels of antibiotic for short period of time might be too 

toxic to the plants killing the transformed plants along with the non-transformed 

ones. It is difficult to directly compare two different selection protocols since there 

is high variation in particle delivery from one experiment to the other. Our selection

4.5.1 PCR Results and Selection of Transformed Plants
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protocols have to be changed to eliminate the problem of bacterial contamination 

encountered during the experiment.

Although it is difficult to recommend a single selection procedure for K1224, 

our percentage survival data and PCR results can be used as a guideline to avoid 

antibiotic concentrations that are too low or too high. For K I224, 3-4 weeks in a 

liquid media containing Hygromycin B concentration of 12.5-15 mg-L’’ might be a 

good selection regime for PLBs bombarded with pSAN154. A regeneration 

efficiency of 19%-37% was obtained with hygromycin concentration of 10-12.5 

mg-L’’ in liquid and solid selection for the shot PLBs (Table 4.2). Although liquid 

selection is faster, it increases the losses due to bacterial contamination, as we have 

encountered for the shooting experiment on 9/17/98.

4.5.2 Transgene Expression and Silencing

There are many examples of successful introduction and expression of 

different dfr genes into Petunia. The dfr genes from Gerbera (Helariutta et al., 

1993), Rosa (Tanaka et al., 1995), Zea mays (Meyer et al., 1987) and Cymbidium 

(Johnson et al., 1999) have been successfully introduced and expressed in Petunia. 

Antirrinum dfr gene has been introduced into Forsythia x  intermedia (Rosati et al.,

1999) with the intention of producing anthocyanins in acyanic petals and was also 

used in antisense orientation in order to reduce condensed tannin accumulation in 

Lotus corniculatus, a forage plant for livestock (Robbins et al., 1998). These 

examples indicate that expression of active DFR is possible among even distantly
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related plant species. Our RT-PCR and northern analysis data confirm the 

expression of Antirrhinum dfr in a. few transgenic plants (Table 4.6; Fig. 4.5).

A few PCR positive plants, 1-1 A 2 ,1-2 A l, 8-7 Al and 8-8 A l, have 

flowered in late November, 2002 (Fig. 4.9). No obvious enhancement of color was 

observed in these flowers. However, RT-PCR analysis has proven these plants to be 

negatve for the expression of Antirrhinum-dfr gene. A detailed analysis on flavonoid 

profile and gene expression is needed before any conclusion can be drawn on the 

success of genetic manipulation with Antirrhinum dfr.in Dendrobium. One 

important observation is that the flower color of the PCR positive plants did not 

reduce suggesting that the native dfr is not silenced by cosuppression.

Many examples of research on transgenetic plants revealed that the inserted 

gene is detected and silenced by various mechanisms unless the transgene is 

integrated into the “correct place” (Kumpatla et a l, 1998; Matzke and Matzke, 1998; 

Gallie, 1998). Since there are no techniques available to target the integration into 

the “correct position” of the genome, it is necessary to create many transgenic plants 

in order to select a desirable, stable phenotype (Tanaka et a l ,  1998). For the first set 

of KI 224 transformants with pSAN150-SNP-DFR, we have got more than 50% 

(48/85 pooled samples) samples indicated to contain the inserted color gene. 

Although the survival rate is high enough to give a fairly high number of 

transformed plants, there is still a considerable room for improvement of the 

selection procedure to obtain a higher probability for the presence of the inserted 

gene.
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Figure 4.9. Acclimatized and transformed Dendrobium Icy Pink ‘Sakura’ (K1224) 

plants growing in screened insect proof boxes in University of Hawaii 

greenhouse facility. No adverse effects were noted on the vegetative 

growth or flowering after bombardment and selection. (A) plants at 

vegetative stage and (B) a few flowering plants that were PCR positive 

but RT-PCR negative for Antirrhinum dfr gene.
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The biggest obstacle in producing a transgenic plant that expresses the 

transgene is gene silencing. Gene silencing is a phenomenon that is fortuitously 

discovered by analyzing transgenic plants (Stam et al., 1997). Fagard and Vaucheret 

(2000) have made a comprehensive review on all the theories regarding (trans)gene 

silencing in plants. A transgene can be silenced at the transcriptional level, 

preventing the transcription before the production of mRNA (transcriptional gene 

silencing or TGS) or after the transcription by degradation of mRNA (post 

transcriptional gene silencing PTGS). TGS is usually not dependent on sequence 

homology and is triggered by the immediate environment of the transgene locus and 

the organization of the transgene. PTGS and cosuppression requires high homology 

between the silenced genes. Our recent results show that Antirrhinum dfr is only 

65% similar to Dendrobium dfr gene and cosuppression is highly unlikely in 

transformed plants. Flowever, integration of multiple copies and tandem repeats can 

silence the transgene itself without affecting the native gene. This carmot be ruled 

out for the Dendrobium transgenics since we were not able to get any information 

about transgene copy number or arrangement by Southern analysis. However, active 

transcription of Antirrhinum dfr and NP-f3'5'h gene even in a few transgenic plants 

show that the promoter and the termination cassette we have used is working as 

expected. Only the flower color changes and/or changes in flavonoid profile and 

enzyme studies will reveal the activity of the transgene in orchids.
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First set of experiments conducted with K I224 plants bombarded with Pet- 

f3'5'h gene did not give any color changes (Table 4.2) and was not expected since all 

plants except one was PCR negative. Lack of any aberrations in plant and flower 

morphology proved that bombardment, selection, and regeneration protocols are not 

detrimental to the plant. Plants were eventually discarded. The number of PLBs 

recovered after selection was not high enough to give a stable transformant with a 

color change.

We have done several bombardment experiments with Dendrobium Samarai 

PLBs with the intention of shutting down the anthocyanin production in the lip 

(Appendices B-D). All the plants were planted in the greenhouse during August- 

October 1999 without PCR analysis, since the numbers were too large to do 

individual analysis. No color changes of the lips were observed with 35S-35S:: 

antisense/sense Snp-dfr or 35S-35S:; antisense Pet-j3'h treatments. Plants were 

eventually discarded. We have done most of these bombardments before isolation of 

any Dendrobium color genes. We did not observe any morphological aberrations 

due to the bombardment and antibiotic selection.

Our recent results on sequence similarity of Dendrobium f3'h  and Petunia 

f3'h  indicated that they are only 45% similar at the amino acid level. The 

Dendrobium dfr gene is only 62% similar to that of Antirrhinum at the amino acid 

level and 45% at the nucleotide level. These observations indicate that suppression 

of orchid genes by inserting these two dicotyledonous sequences into Dendrobium

4.5.3 Other Bombardment Experiments and Their Status
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might not be possible since cosuppression as well as antisense suppresson needs high 

sequence similarity. Therefore, we did not pursue most of the experiments done with 

the intention of shutting down the enzyme activity. The dfr gene isolated from 

Dendrobium itself (chapter 3) is a better candidate for shutting down the anthocyanin 

synthesis in Dendrobium.
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APPENDIX A 

Nucleotide and putative amino acid sequences of a Den-chs-9 clone

P S V E H Q D D L V T Q A L F A D G A S  
ccttctgtggagcaccaggatgatcttgttactcaagctttatttgctgatggtgcatcc -61 

A V I V G A D P D E A A D E H A S  F V I  
gcggttatagtaggtgccgatccagatgaggcggccgatgagcacgccagcttcgtcata -121 

V S T S Q V L L P E S A G A I G G H V S  
gtctctacatctcaagtcttactaccagagtcagcaggtgccatcggaggccatgtaagt -181 

E G G L L A T L H R D V P Q I V S K N V  
gaggggggcctcttagccacgcttcatagagatgtcccgcaaattgtttccaaaaatgtt -241 

G K C L E D A F T P L G I S D W N S I  F 
ggaaagtgtttggaagatgcattcaccccacttggtatttcggactggaactctatcttc -301 

W V P H P G G R A I X D Q V E E R V G L  
tgggtgccgcatccaggcggtcgagccattntagaccaggtggaggagagggtggggctg -361 

K P E K L L I S R H V L A E Y G N M S S  
aagccagagaagctgcttatttcaaggcatgtgcttgcagagtatggtaatatgtcgagt -421 

V C V H F A L D E M R K R S A K E G K A  
gtctgcgtgcactttgctcttgatgaaatgcgcaaaaggtctgcaaaagaaggtaaggct -481 

T T G E G L 
acaaccggcgaaggccttg -500

Nucleotide sequence and putative amino acid sequence of Den-chs-6 clone. Amino 

acid sequence is represented by single letter codes above the nucleotide seqeuence. 

This clone has shown significant similarity to bibenzyl synthase clones from 

Phalaenopsis and Bromheadia
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APPENDIX B

Co-bombardment of Dendrobium Samarai (UH988) seed-derived tissues (splb)
Constructs 

and 
Date of 

Bombardment

# o f
Plates*

Selection
Regime

Antibiotic
M g U ’

Transfer
to
Regen.
Medium

%
Survival 

of PLBs

# o f  
magentas or 

compots

Potted date

pBI426
pBI525-SNP-DFR
3/19/98

5 22 days liquid, 
then
10 days liquid

no selection 
Geneticin up 
to 50 mg/L

4/20/98 11%
(20/177)
6/30/98

26 compots 7/19/99 potted and move to greenhouse, 
plants were too numerous to be analyzed 
by PCR. Plants flowered in September 
2000, No visual change in lip color.

None
3/19/98

2” 22 days liquid, 
then
10 days liquid

no selection 
Geneticin up 
to 50 mg/L

4/20/98 7%
(6/80)
6/30/98

0 discarded

- pBI426
I; pBI525-ANTI-F3'H 

4/13/98

7 20 days liquid, 
then
19 days liquid

no selection 
Geneticin up 

to 35 mg/L

5/22/98 19%
(47/245)
7/30/98

32 compots 8/16 through 10/7/99 potted and move to 
greenhouse, plants were too numerous to 
be analyzed by PCR. Plants flowered in 
September 2000, No visual change in lip

None
4/13/98

1 20 days liquid, 
then
19 days liquid

no selection 
Geneticin up 

to 35 mg/L

5/22/98 0%
(0/35)
7/30/98

0 color, discarded

pBI426
pBI525-ANTI-DFR
7/15/98

5 18 days liquid, 
then
14 days liquid

no selection 
Geneticin up 
to 35 mg/L

8/16/98 1%
(2/175)
12/23/98

5 magenta 8/16 through 10/7/99 potted and move to 
greenhouse, plants were too numerous to 
be analyzed by PCR. Plants flowered in 
September 2000, No visual change in lip

None
7/15/98

1 18 days liquid, 
then
14 days liquid

no selection 
Geneticin up 
to 35 mg/L

8/16/98 0%
(0/35)
12/23/98

color, discarded

‘ 35-37 PLBs/plate, 5-8 mm in diameter 
’ 40 PLBs/plate, 4-6 mm in diameter



Co-bombardment of Dendrobium Jacqueline Thomas ‘Uniwai Princess (UH507) protocorms

APPENDIX C

Constructs* 
and 

Date of 
Bombardment

# of Selection 
Plates'’ Regime

Antibiotic
mgU'

Transfer 
to Regen. 
Medium

% Survival 
ofPLBs

# of magentas 
or compots

Status

pSAN154 5 24 days solid no selection 10/8/99 5% In 10 G12 To be analyzed
pSAN150-SNP-DFR (39/779) Magenta boxes by PCR
pSAN150-PET-F3'H 3 months solid on 7/9 Hygromycin 12.5
6/14/99 antibiotics 7/30 Hygromycin 15

8/31 Hygromycin 15‘" 11/2/99

None 1 24 days solid no selection 10/8/99 11% l n4G12
6/14/99 (19/170) Magenta boxes

3 months solid on 7/9 Hygromycin 12.5
antibiotics 7/30 Hygromycin 15

8/31 Hygromycin 15 11/2/99

ô

“ Hypothesis 1: To increase pigment production using sense DFR, Hypothesis 2: Shut down cyanidin production with antisense f3  'h to shift the pathway 
towards pelargonidin.
’’ 35-37 PLBs/plate, 5-8 mm in diameter.
“ Notes: Used Hyg 15mg/L even though the kill curve for this line suggests it can go up to 20mg/L, because of delayed, residual killing by Hygromycin.



APPENDIX D 
Co-bombardment of Dendrobium Susan Takahashi (UH999) plbs.

Constructs* 
and 

Date of 
Bombardment

# o f
Plates”

Selection
Regime

Antibiotic
mgL*

Transfer 
to Regen. 
Medium

% Survival 
ofPLBs

# o f
magentas
or
compots

Status of experiment

pSAN154 5 19 days liquid no selection 1/14/99 28% 33 All plants are discarded
pSAN150-SNP-DFR (40/140) magentas since sense suppression
10/22/98 64 days solid Hygromycin 10 1/27/99 will not work with
None 1 contamin. Antirrhinum dfr.
10/22/98 Discarded

pSAN154 4 9 days solid no selection 9/3/99 58% All plants are discarded
pSAN150-PET-F3’H (62/106) since sense suppression
4/13/99 4.5 months solid Hygromycin 12.5 11/2/99 will not work with

Petunia fS'h.
None 1 9 days solid no selection 9/3/99 58%
4/13/99 (21/36)

4.5 months solid Hygromycin 12.5 11/2/99

pSAN154 5 9 days solid no selection 9/3/99 60% All plants are discarded
pSAN150-PET-F3'H (111/184) since sense suppression
4/24/99 4.25 months Hygromycin 12.5 11/2/99 will not work with

solid Petunia f3 'h

“ Hypothesis 1: To decrease color production using antisense Snp-dfr, Hypothesis 2: Shut down cyanidin production via f3  ’h antisense to shift the pathway 
towards pelargonidin.

*’35 plbs/plate 5-15 mm in diameter
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