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ABSTRACT

Roadside re-vegetation utilizing native groundcovers is a new initiative in 

Hawai‘i. To develop establishment and maintenance protocols, large-scale propagation 

and selective weed control techniques for potential species need to be tested. This study 

evaluated hydroplanting techniques and screened pre- and post-emergence herbicides for 

establishing Fimbristylis cymosa and Sporobolus virginicus. Hydroplanting trials indicate 

that F. cymosa can be efficiently established through hydroseeding while S. virginicus 

can he hydromulched using auxin treated apical cuttings. Oxadiazon and oryzalin can he 

safely used in transplanted F. cymosa plugs but not seedlings. Fluazifop-p-butyl and 

aminopyralid can be safely applied in plants > 28 days old while sulfosulfuron should 

only be spot sprayed. For S. virginicus, oxadiazon, oxyfluorfen, sulfosulfuron and 

aminopyralid can be used for transplanted plugs while carfentrazone -t- M CPA + 

mecoprop + dicamba and triclopyr should only he spot sprayed. Information gathered 

from the study has been incorporated into establishment protocols for the two species.
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CHAPTER 1 

INTRODUCTION

It is well established that roads severely impact the landscape by contributing to 

runoff and erosion, altering wildlife patterns, fragmenting habitats and facilitating the 

spread o f alien vegetation (Tyser et ah, 1998). The removal o f native topsoil and 

vegetation during road construction and development drastically alters the local ecology 

and makes the area more prone to erosion. As a result, the bare surface creates a hazard 

for both the environment and motorists. One o f the earliest and most practical strategies 

that have been developed to mitigate the negative impacts o f roads is through roadside re­

vegetation.

Re-vegetation o f road corridors was done primarily to increase m otorist’s safety, 

mitigate soil erosion along roadways and prevent siltation in adjacent waterways. 

Conventional roadside re-vegetation utilizes non-native plant species because these are 

cost effective, readily available and quick to establish on disturbed sites (Landis et ah, 

2005). Although these plants possess desirable characteristics for re-vegetation, their 

introduction and establishment can lead to potential problems. Non-native plants, whether 

domesticated or weedy, can cause disruptions to local ecosystem functions (Burton and 

Burton, 2001) by competing with and/or displacing indigenous flora (Tyser et ah, 1998). 

The invasive multiflora rose {Rosa multiflora), originally planted along roadsides in 

Virginia and elsewhere, is one example o f an introduced species to that has escaped and 

invaded natural habitats (Forman et ah, 2003). Because o f these negative impacts as well 

as the increasing cost o f roadside maintenance, re-vegetation research has recently 

focused on utilizing native plants.



Native species re-vegetation along roadsides is increasing in popularity (Landis et 

al., 2005). The need and demand for commercially available native species is growing 

(Jenkins et al., 2004) and they are increasingly requested for use on re-vegetation and 

restoration projects following land disturbance (Brindle, 2003). Studies have shown that 

re-vegetating road corridors with native plant species not only enhances roadside 

aesthetics, but it also conserves local biodiversity, mitigates the spread o f invasive weeds 

and reduces roadside maintenance costs. In recent years, the Federal Highway 

Administration (FHWA) has taken the lead in proactive environmental stewardship by 

promoting the use o f native species in roadside re-vegetation and roadside landscaping 

projects (Harper-Lore, 1996; Steinfield et al., 2007a). Increased adoption over the past 20 

years has led to the development o f native plant lists and establishment protocols for 

several states such as Texas (Markwaldt, 2005), M innesota (Harper-Lore, 1996) and Utah 

(Hansen and M cKell, 1991)

In Hawai‘i, the concept o f roadside re-vegetation using native plants is relatively 

new. Due to the dearth o f research conducted on the roadside suitability o f  native 

Hawaiian plants, the state has yet to develop lists o f appropriate species and 

establishment protocols as o f February 2009. Large scale planting techniques such as 

hydroseeding or hydromulching as well as selective weed control during roadside 

establishment are important aspects that need to be explored or refined for successful re­

vegetation with native Hawaiian plants.

The H awai‘1 Department o f Transportation (HDOT) has provided funding to 

develop protocols for native groundcover establishment. This masters thesis, funded in 

part by the HDOT, has evaluated propagation and selective weed control options for



large-scale establishment o f two native Hawaiian groundcovers, namely Sporobolus 

virginicus ( ‘aki‘aki) and Fimbristylis cymosa (m au‘u ‘aki‘aki). This study examined the 

following: 1 ) the success o f different hydroplanting techniques in establishing 

Fimbristylis cymosa; 2) the potential o f utilizing Sporobolus virginicus stem cuttings as a 

propagation material for hydromulch planting and 3) the tolerance o f the two species to 

different roadside right-of-way pre and post-emergent herbicides.



Review of Related Literature 

An Overview of Roadside Vegetation Management in the United States

M anagement o f rights-of-way vegetation is done for a variety o f  reasons 

including safety, aesthetics and fire control (Scanlon, 1991). The earliest efforts at 

managing roadside vegetation integrated manual methods o f cutting and pulling with 

biological methods o f allowing grazing animals such as goats and sheep to maintain 

grasses, forbs, and palatable brush species (Berger, 2005). Today, a number o f tools are 

available to efficiently manage vegetation on the roadsides. These include mechanical, 

cultural and biological methods (e.g. mowing, herbicides, planting o f  native species, etc.).

Over the years, U.S. roadsides have used various approaches to roadside 

vegetation management. In the 1930s, the front yard approach to managing vegetation 

was adopted. This management method, which declared that ‘roadsides should be 

maintained as if  they were our na tion ’s fron tyards', became the unofficial policy for 

many years (DOT-FHW A, 2004; Forman et al., 2003; Harper-Lore and W ilson, 2000).

Innovations in agriculture during the 1950s provided new tools (e.g., mowers, 

farm equipment and herbicides) that made roadside maintenance easier. This ‘agricultural 

approach’ o f maintaining the roadsides resulted in the well-manicured, “front yard” look 

o f roadsides. By the mid 1960s, management o f roadside vegetation became especially 

active with the addition o f roadside beautification in the Transportation Appropriation 

Act (DOT-FHWA, 2004; Forman et al., 2003).

The energy crunch o f the 1970s forced highway maintenance crews to cut back on 

costly fuel use and look for alternative ways to manage roadside vegetation (Harper-Lore,

1996). Reduced mowing frequencies and spot spraying led to positive environmental and



economic impacts. This included increased habitat for wildlife, enhanced natural beauty, 

minimized use o f herbicides and reduced maintenance dollars (DOT-FHW A, 2004). By 

the 1990s, the search for a cost-effective and ecologically sound approach led to the 

formulation and adoption o f integrated roadside vegetation management (IRVM). Basing 

its principles on integrated pest management, IRVM employs multiple strategies to 

maintain vegetation. Toward the end o f the 20"’ century, roadside vegetation management 

focused on conservation by preserving native plant diversity and controlling invasive 

plants on roadsides.

The Use of Native Species on the Roadside

The concept o f using native plants on roadsides has been advocated since the 

early days o f roadside development. One o f the earliest efforts to promote native plants 

on roadsides was in 1932, when the Texas Department o f Transportation (TXDOT) hired 

its first landscape architect to maintain, preserve and encourage wildflowers and other 

native plants along rights-of-way (Landis et ah, 2005; Markwaldt, 2005). At that time, 

information on native plants was lacking so activities were limited to protection and 

management o f native plants that had colonized the roadsides.

Because o f limited agronomic/horticultural information and problems 

encountered during establishment, native plants have not been used in highway 

landscaping up until the 1960s. Landis et al. (2005) adds that the lack o f published 

research, case studies or guidelines for using native plants was due to the prevalent use o f 

non-native grasses, because they were cheap, readily available and easy to establish on 

disturbed sites. It is only in recent years that research on native plants has gained



momentum because o f increased interest and concern for environmental protection and 

preservation.

Using native plants is the most environmentally sound and aesthetically pleasing 

way o f re-establishing vegetation (Rorison and Hunt, 1980). Compared to introduced 

plant species, natives are better adapted to local conditions; have greater resistance to 

insects and pathogens; provide better habitat and forage for roadside compatible wildlife 

compared to introduced plant species; help in conservation o f gene-pool resources and 

provide aesthetics that blend in with adjacent natural environments (Daar and King,

1997). Using natives on disturbed areas such as roadsides minimizes the opportunities for 

establishment and spread o f noxious or invasive species, thus preventing highways from 

becoming corridors for the transport o f problematic species (Landis et ah, 2005).

Huxtable and W halley (1999) noted that re-vegetation with native grasses can result in 

swards with lower maintenance costs o f re-seeding, fertilizer application, and spraying o f 

weeds.

Factors Affecting Native Plant Establishment

Success in establishing native plants on any roadside re-vegetation project is 

influenced hy several factors. Current literature highlights a number o f establishment 

aspects including the choice o f plant species, planting methods (Hallock et ah, 2003; 

Montalvo et ah, 2002), site conditions (Huxtable and Whalley, 1999; Landis et ah, 2005; 

Petersen et ah, 2004; Potvin, 1993; Sindel et ah, 1993) and cultural techniques (Hagon 

and Groves, 1977; Muzzi et ah, 1997; Paschke et ah, 2000; Petersen et ah, 2004; Tyser et 

ah, 1998).



Proper selection o f native plants for re-vegetation is an important step towards 

successful establishment. Several factors need to be considered before actual planting 

begins. Oftentimes, the choice o f  species to use in re-vegetation is dictated by site 

characteristics. Conducting a site analysis is therefore essential for providing basic 

information needed in evaluating potential species. A site inventory analysis includes 

examination o f climate, native vegetation, and microsite parameters such as soils, 

topography, aspect and possible toxic conditions (Gray and Sotir, 1996).

In addition to site factors, several plant characteristics should also be considered 

during the selection process. These inelude tolerance to a range o f moisture, temperature 

and soil conditions; compatibility with existing maintenance and land management 

practices; tolerance to herbicides; low potential to beeome a weed problem; good 

germination and re-seeding ability as well as low plant height (Hilditch et al., 1988; 

Huxtable and Whalley, 1999; Petersen et al., 2004).

Planting techniques can greatly affect the success o f native plant establishment 

and also the amount o f sediment in runoff (Hallock et al., 2003). Not all seeding methods 

are appropriate for all environments and combinations o f species (Montalvo et al., 2002); 

thus, choosing the right planting teehniques for vegetative establishment requires careful 

consideration.

Two reeent studies by Montalvo et al. (2002) and Hallock et al. (2003) examined 

the effect o f seed size and vegetative materials (sods, plugs) on the success o f different 

planting methods. M ontalvo et al. (2002) observed the effects o f three different seeding 

methods in combination with other soil factors such as ripping and soil fertility on the 

establishment o f a native seed mix. Six native species, which represented different seed



sizes and life histories, were sown using three planting methods (hydroseeding, 

imprinting and drilling). These methods were observed for differences in plant density. 

Based on the results o f the study, optimum seeding methods were found to vary with seed 

size. Small seeded species tend to establish better when hydroseeded while in the case o f 

large-seeded species, imprinting or drilling worked better than hydroseeding.

Establishment studies conducted by Hallock et al. (2003) evaluated the 

effectiveness o f several vegetative planting techniques to minimize soil erosion. The 

study, which tested the different planting techniques on slanted planter boxes, utilized 

flats or sod strips, plugs, hydroseed and compost applications to control erosion. 

Treatment combinations employing plantings o f either flats or plugs (on the top slope, the 

toe or both) were tested. Parameters such as vegetative cover, erosion and water quality 

were measured while the boxes were subjected to both natural and simulated rainfall 

(Hallock et al., 2003). The results o f the study suggest the importance o f planting dense 

vegetation on the top and base o f the slope in order to reduce sediment load during the 

establishment phase. Hallock et al. (2003) further recommended that planting flats on the 

top and base o f the slope and applying jute netting and hydroseeding on the mid-slope 

were the best methods for encouraging native plant establishment while minimizing 

erosion.

Site conditions such as rainfall, temperature, soil and microsite (small pockets 

within the environment) availability are important factors that should be considered not 

only during plant selection but also during establishment. Taking note o f  these in situ 

conditions will aid in determining measures/practices to apply when establishing or 

maintaining a particular plant species.



A number o f studies have been conducted to examine the effects o f different site 

conditions on native species establishment. Huxtable and W halley (1999) conducted field 

trials to assess emergence and survival o f  three native grass species {Danthonia 

richardsonii cv. ‘Tarana’, Microlaena stipoides and Chloris truncatd) under natural 

rainfall conditions and roadside environments (top o f bank, old dirt road, flat unripped 

and flat ripped). Based on the results o f the study, emergence o f the three species was 

highest in roadside environments with topsoil in contrast with areas containing only 

subsoil. Given adequate rainfall, the three native grass species had the best chance o f 

successful establishment if  sown in spring on a cultivated bed o f topsoil (Huxtable and 

Whalley, 1999).

Different cultural techniques or practices such as fertilization, tillage, irrigation 

and weed control affect native plant establishment. Fertilizer studies have shown rather 

mixed results. In examining re-vegetation methods for high-elevation roadsides, Petersen 

et al. (2004) observed that the addition o f fertilizers facilitated more rapid establishment 

o f seeded grasses following disturbance, increasing soil cover and soil stability on steep 

and unstable slopes. Addition o f organic fertilizer, in combination with mulch, also 

proved to enhance vegetation cover in planted roadcut slopes (Paschke et al., 2000). In 

contrast, Hagon and Groves (1977) found no significant effect o f fertilizer addition on 

emergence and survival o f four native grasses (Themeda australis, Bothriochloa macra, 

Danthonia spp. and Stipa bigeniculata) in the field. Jenkins et al (2004) also did not see 

any significant impacts o f  fertilization in increasing cover o f four native Florida grasses.

Establishment studies conducted by Potvin (1993), indicated that tillage alone or 

in combination with irrigation increased the survival o f native grass seedlings. Muzzi et



al (1997) observed a positive effect o f  tilling when associated with sowing. Deep soil 

ripping can also increase the growth and reproductive potential o f seeded species and 

may improve the long-term success o f  re-vegetation projects (Montalvo et al., 2002).

Increased establishment o f native plants occurred with the application o f some 

form o f weed control. Tillage and clipping o f vegetation around seedlings reduced weed 

competition and subsequently increased seedling establishment (Potvin, 1993). Tyser et 

al. (1998) examined the effects o f broadleaf herbicide application and several seeding 

treatments on re-vegetation o f a roadside segment in Glacier National Park, Montana.

The results indicated that broadleaf herbicide treatments had both desirable and 

undesirable effects. Although broadleaf herbicide application promoted native graminoid 

coverage, its selectivity decreased native forb coverage and increased alien graminoid 

coverage.

Hydroseeding

Hydroseeding or hydraulic planting is an efficient method o f large-scale plant 

establishment, which involves the use o f a water carrier for the application o f seed under 

pressure (Beard, 1973). The basic hydroseeding technique simply sprays the seed-water 

mixture onto a prepared planting surface. When other materials such as mulch, tackifiers 

and fertilizers are applied together without the seed or when the mulch mixture is applied 

to cover a planted surface, the process is called hydromulching.

Specialized equipment, called a hydroseeder is used to accomplish hydroseeding 

operations. A hydroseeder consists essentially o f a large capacity sprayer attached to a 

large, single-nozzle delivery system (Turgeon, 1991). Basic parts include a pump, hose.
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nozzle and a 500 to 1500 gallon (1893 to 5678 liters) tank fitted with paddle or liquid 

type agitators (Beard, 1973) to provide continuous mixing o f the slurry.

Unlike other methods o f plant establishment, hydroseeding applies seeds, 

fertilizers, mulches and other materials in a single operation (Turgeon, 1991). It is 

particularly well adapted for re-vegetating huge tracks o f land, as well as for poor or 

barren land o f sand or rock and generally for steep, denuded slopes, which are often 

difficult to re-vegetate (M erlin et al., 1999). Several benefits o f hydromulching include 

protecting the soil from erosion; increasing rainfall infiltration; reducing the rate o f 

drying o f the soil surface after rain thereby improving germination o f seeds and 

establishment o f plants; and addition o f organic matter to the soil as the hydromulch 

breaks down (Landloch, 2004).

Seeds o f  commercially available fast-growing grasses and legumes were 

traditionally used as planting materials for hydroseeding (M atesanz et al., 2006). With the 

growing interest in the use o f native plants for re-vegetation, research and development o f 

native seed mixes for hydroseeding operations have increased. Various studies have 

examined the different components o f hydroseeding in order to develop protocols suited 

for a given species and situation.

Seed characteristics such as viability and dormancy are important factors to 

consider when hydroplanting native seeds. Conducting a standard seed germination test is 

essential for determining the percentage o f viable seeds in a sample that have potential to 

germinate under favorable conditions (Elias et al., 2006). Results from the seed 

germination test provide information for developing optimum seeding rates.
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Understanding seed dormancy mechanisms o f a specific species gives background 

information for developing preconditioning treatments to promote uniform germination. 

Seed treatments are used to overcome seed dormancy or provide optimum conditions for 

seed germination (Ralph, 2003). Seed preconditioning treatments include a variety o f 

physical (wet stratification, scarification, prechilling and heat treatment) and chemical 

methods (gibberellic acid, KNO 3 and smoke application).

Conservation and use of native Hawaiian plants

H a w a ii’s native plant species are a unique and special resource that should not be 

lost (Tamimi, 1999). Protection and conservation o f  native Hawaiian plants is fast 

becoming a very important concern with the increasing threats o f urbanization and 

invasive species proliferation. Three important tasks are involved in protecting native 

Hawaiian plants. These include (1) reducing and/or eliminating the threats to native 

ecosystems, (2) generating and maintaining genetic backup, and (3) putting endangered 

plants back into the wild (outplanting) (Tamimi, 1999).

While in situ  conservation and restoration efforts are being done in H a w a ii’s 

remaining natural reserves, one simple way o f protecting H a w a ii’s native flora is 

through its cultivation in urban areas. Using native Hawaiian plants in designed projects 

is a form o f protection because it generates a genetic back-up (Tamimi, 1999). In 

addition, encouraging people to grow native species instead o f introduced plants reduces 

the threats o f invasive species.

In recent years, native Hawaiian plants have been used in several applications 

including landscaping, phytoremediation and erosion control. In terms o f landscape use, a 

number o f plant species have heen recommended for cultivation in private as well as
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public spaces (e.g. Bom horst and Rauch, 2003). The passage o f Hawaii Administrative 

Rules Pertaining to Act 73 and 236 encouraged the widespread cultivation o f native plant 

species. These state laws, which require the use o f native Hawaiian plants in state funded 

projects, were created to protect rare and common native plants, increase their 

populations and promote public awareness o f these plants (Tamimi, 1999). In addition to 

state laws encouraging the planting o f  natives, interest in the use o f native Hawaiian 

plants as ornamentals has also been largely influenced by the cultural value these plants 

possess.

Besides ornamental uses, native Hawaiian plants have also been employed in 

phytoremediation and erosion control. Paquin et al. (2004) evaluated a number o f native 

Hawaiian plant species for remediation capability. In the study, several native species 

showed promising results in remediating soils contaminated with explosives, 

hydrocarbons, ethylene dibromide and 1-2-dichloropropane (DCP). Native Hawaiian 

plants have also been successfully utilized for erosion control and soil stabilization on the 

island o f  Kaho‘olawe and on several riparian zones around 0 ‘ahu, Maui and H aw ai‘i 

(Crago et al., 2004)

Roadside use of native Hawaiian plants

Despite the widespread popularity o f native species roadside re-vegetation on the 

U.S. mainland, this concept is still relatively new to Hawai‘i. Incorporating native plant 

species in landscaping o f  road shoulders has only been done recently by the H awai‘1 

Department o f Transportation (HDOT). In their roadside projects, a handful o f native 

shrubs such as beach naupaka {Scaevola taccada) and groundcovers such as pohinahina 

( Vitex rotundifolia) and a prostrate growing naio {Myoporum sandwicense) have been
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successfully established in select sections o f the HI freeway (Dacus, 2006). Similar 

highway landscaping projects utilizing native plants have also been done on Mokulele 

Highway in Maui. In this particular project, Sporobolus virginicus has been used as a 

utility tu rf on the highway shoulder.

Constraints in roadside use o f  native Hawaiian plants

Although roadside projects previously discussed have been done with some 

degree o f success, the lack o f research on large-scale field propagation, establishment and 

weed control has led to some problems. This lack o f information has kept labor, 

installation and maintenance costs high. In the Mokulele project for example (Figure 1.1), 

outplanted Sporobolus virginicus plugs took an unusual 3 years to establish because o f 

the lack o f information on roadside establishment and difficulties in weed control and 

irrigation (Palomino, 2006). The cost o f establishing Sporobolus virginicus was estimated 

at $142,600 per hectare compared to traditional Bermudagrass {Cynodon dactylon) which 

costs only $87,700 (Tanji, 2008). W ith current practices being too expensive, intensive 

and laborious, large-scale establishment o f native Hawaiian plants would not be cost- 

effective. Unless native species are screened and new propagation, establishment and 

weed control protocols are developed, the re-vegetation o f native plants in Hawai‘i 

roadsides will not be quickly realized.

With HDO T’s plans o f further reducing roadside maintenance costs by 

incorporating native plants in its plant palette, a research study to develop establishment 

protocols specific for native Hawaiian plants was funded. This masters thesis explored 

large-scale propagation techniques and selective weed control options for Sporobolus
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virginicus and Fimbristylis cymosa. Listed below are species descriptions, current 

literature and constraints to roadside use on each o f  the two native groundcovers:

Sporobolus virsinicus ( ‘aki‘aki)

Taxonomy and distribution. Sporobolus virginicus (L.) Kunth (Figure 1.2) is an 

indigenous perennial, rhizomatous, C4  chloridoid grass with a broad distribution along 

tropical and subtropical shorelines (Bell and O'Leary, 2003). In Hawai‘i, it is commonly 

found on sand dunes and coastal sites o f all main islands (W agner et al., 1999).

Propagation. S. virginicus is propagated mostly through vegetative means (e.g. 

division o f clumps). It is commercially available in Florida, the Carribean and Australia 

in the form o f sprigs, sods or plugs. Stem cuttings can be successfully rooted by using 

Dip ‘N Grow ® (Dip 'N Grow, Inc., Clackamas OR) at a dilution o f 1:20 (equivalent to 

500 ppm IBA and 250 ppm NAA) (Koob, 2000). However, there has been no study that 

dealt with quantifying rooting success in stem cuttings.

Uses. Because o f its ability to thrive in saline soils, Sporobolus virginicus has 

been used as a non-conventional forage crop for both saline and arid sites in Australia 

and in the Middle East (Ashour et al., 1997). It has also been used in reclaiming and 

stabilizing salt affected lands (Semple et al., 2004).

In recent years, S. virginicus has been utilized as a lawn grass, particularly in 

areas where soil salinity or quality o f irrigation water is a problem. A turf development 

program in the Caribbean has screened ecotypes and released a cultivar called 

“Saltfme®” (Depew and Tillman, 2006). In Australia, two bred cultivars called “Ozlawn” 

and “Nathus Green” have also been registered by another private company. For these two 

cultivars, uptake by the general lawn market was very limited because o f a long
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establishment period (taking up to 2  years), weed management problems and intolerance 

to close mowing (Martin, 2004). Although some ecotypes may not perform satisfactorily 

as a lawn grass, the species in general can be potentially used as a low maintenance turf 

on roadsides, particularly on saline areas. This has been demonstrated locally in Maui 

where this species was used to re-vegetate the roadside right-of-way o f the Mokulele 

Highway (Palomino, 2006).

Constraints to roadside use. Aside from outplanting/establishment by plugs, there 

is a lack o f published studies on other large-scale propagation and establishment methods 

(e.g. hydromulching o f cut stems, selective weed control). Formal evaluation in the form 

o f field/roadside studies has not been conducted yet. Though the use o f rooting agents, 

such as auxin to enhance rooting has been recommended, a quantified study on rooting 

enhancement has not been done. Determining the soaking time for optimal rooting and 

the application o f this in hydromulch establishment has yet to be evaluated.

Fimbristvlis cvmosa  (m au‘u ‘aki‘aki)

Taxonomy and distribution. Fimbristylis cymosa R. Br. is a tuft growing perennial 

sedge with short rhizomes and stiff leathery leaves (Figure 1.3). It is an indigenous 

coastal sedge commonly growing on sandy beaches and rocky outcrops along the coast.

In Hawai‘1 it is documented in all the main islands except Kaho‘olawe; elsewhere, it is 

widely distributed across the Pacific basin including Australia, western Malesia (Malay 

Peninsula, Sumatra, Java, Borneo), Pacific Islands and the Neotropics (W agner et al., 

1999). Two indigenous subspecies are recognized, and both occur nearly throughout the 

full range o f the species (W agner et al., 1999).
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Uses. Although this species is recommended in landscaping (Tamimi, 1999) and 

riparian restoration (Crago et al., 2004), actual field establishment trial/studies have not 

been conducted. Current literature is limited and only two studies have been found on 

propagation and germination. Studies conducted by Koob (2000) indicate that the species 

can be propagated through seeds and division o f clumps. On the other hand, germination 

studies by Vazquez et al. (1998) revealed that germination was enhanced on algae 

substrate as opposed to germination on sand or cotton substrate.

Constraints to roadside use. Knowledge o f  large-scale propagation, particularly 

establishment through hydroseeding and selective weed control options for this species is 

limited because o f the lack o f published literature.
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Figures

Figure 1.1. A lack o f post-establishment management protocols has led to weed invasions 
in Sporobolus virginicus plantings at the Mokulele Highway, Maui.

Figure 1.2. Sporobolus virginicus growing in situ. This species has formed a thick mat on 
sand dunes o f the Kihei Coast, Maui.
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Figure 1.3. Fimbristylis cymosa stockplants cultivated at the HI-University off-ramp. 
This species has sometimes been used as a groundcover for landscaped areas.
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CHAPTER 2

ASSESSMENT OF THREE HYDROPLANTING TECHNIQUES FOR 

ROADSDIE ESTABLISHMENT OF F i m b r i s t y l i s  CYMOSA R. BR. (MAU‘U ‘AKI 

‘AKI), A NATIVE HAWAIIAN SEDGE

Introduction

Roadside re-vegetation using native species is often a large-scale operation that 

requires effective and efficient propagation and establishment techniques. Prior to 

roadside use, large-scale planting protocols for native species need to be tested and 

developed. A well established method o f large-scale plant establishment is through 

hydroplanting. First developed as hydroseeding in 1938 by the Connecticut State 

Highway Department, it was used as a means to plant difficult sites such as steep slopes 

and other areas on the roadside (Button, 1966; Pill and Nesnow, 1999). Today, 

hydroplanting goes beyond re-vegetation o f steep slopes. It has been widely accepted and 

used for establishing turf in residential and other high value landscapes (Pill and Nesnow, 

1999) and has also found applications in green roofs (vegetation grown on roofs) (Spall,

1998).

Hydroplanting makes use o f a water carrier to apply seeds or vegetative plant 

parts through a pump and delivered using a nozzle (Beard, 1973). The system is generally 

composed o f a large tank (100 to 200 gallons = 378 to 757 liters) connected to a pump 

which provides hydraulic agitation and applies the seed-water mixture via a hose with a 

nozzle attachment. Aside from applying the basic seed and water mixture (hydroseeding), 

hydroplanting mixes may also contain mulch made o f wood fiber, recycled paper or 

straw; fertilizer and/or biostimulants. If the hydroplanting operation involves the
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application o f vegetative plant parts such as grass sprigs or rhizomes, the process is called 

hydrosprigging.

Hydroplanting operations in Hawai‘i are done mainly for erosion control purposes 

and for establishing turf in high value areas such as golf courses, resorts and residential 

lots. In H awai‘i, species hydroplanted for erosion control/roadside re-vegetation have 

primarily been non-native fast growing grasses. Currently, there is limited knowledge on 

hydroplanting-compatible native Hawaiian species. Developing hydroplanting techniques 

for these species offers an opportunity to utilize them for large-scale re­

vegetation/erosion control and restoration projects.

A native Hawaiian species with potential for use with hydroplanting is 

Fimbristylis cymosa R. Br. Referred to as m au‘u ‘aki ‘aki in Hawaiian (W agner et al.,

1999), this coastal sedge is a potential groundcover because it is easy to propagate via 

seed, is low growing and drought/salt tolerant. Although this is a recommended native 

species for landscapes (Tamimi, 1999) and riparian restoration (Crago et al., 2004), actual 

field establishment trials/studies have not been conducted. In this study three 

hydroplanting methods (handsowing-hydromulching, hydroseeding and hydroplanting o f 

seedlings) were evaluated in terms o f percent coverage over a 6  month establishment 

period.

Materials and Methods 

Planting materials

Stock plants o f Fimbristylis cymosa (HA#5866, 9079806) were sourced from the 

Natural Resource and Conservation Service’s (NRCS) H o‘olehua Plant Materials Center 

in Molokafi. In June 2006, a soilless nursery was setup at the M agoon Research Facility
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to increase plant material for the propagation study. Bare rooted clumps o f the sedge 

were planted in commercially available growing media composed o f a mix o f compost 

and volcanic cinder (Menehune Magic Black Cinder Blends, Hawaiian Earth Products). 

Stock plants were allowed to establish for 6  months before seed harvesting was done.

Seed counts and seed germination tests

Prior to field evaluation o f hydroplanting techniques, seed counts and a seed 

germination test were condueted to estimate the number o f seeds per unit weight and the 

average percent germination o f seeds. Inflorescences o f Fimbristylis cymosa were 

harvested and then oven dried. Seeds were extracted from crushed seed heads through a 

combination o f sieving and air-blowing until most o f the plant residue was removed. 

Seeds were stored dry at approximately 10°C until ready for use.

To estimate the number o f seeds contained per unit weight, five 0.02 g samples o f 

seed were manually counted. The mean seed count per sample was used for estimating 

the amount o f  seed needed for the hydroplanting experiment.

In addition to seed counts, a seed germination test was also conducted to 

determine the percent germinable seed for a given sample. One hundred seeds were sown 

in each o f four Petri dishes (100 mm diameter, unsealed) lined with moistened filter 

paper (W hatman #3, Whatman International). The sown seeds were allowed to germinate 

inside an incubator (Percival Scientific, Inc., Perry, lA) with alternating dark and light 

periods (12 hours each) as well as fluctuating day (26°C) and night (20°C) temperatures. 

Seed germination was evaluated on a weekly basis. Seeds that had >2 mm radicle or 

shoot protrusion were counted as germinated. Cumulative percent germination was 

reeorded after 1 month.
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Field assessment of hydroplanting techniques

Three hydroplanting techniques, which consisted o f handsown (evenly laid down 

on the surface) 2  month old seedlings capped with hydromulch, hydroplanted 2  month 

old seedlings and hydroseeding (Figure 2.1) were evaluated in terms o f  plant count and 

percent visual cover from September 2007 to March 2008. F. cymosa seeds and plantlets 

were prepared two months prior to the application o f the hydroplanting treatments. For 

treatments involving plantlets, seeds were sown in galvanized iron trays filled with a 

mixture containing 40% (by volume) black volcanic cinder and 60% (by volume) 

commercially available potting mix (Promix®, Premier Horticulture). Seeding rate was 

approximately 0.85 grams/m^ or an average o f  0.15 grams o f seed per tray (-2250  seeds). 

Seeds were allowed to germinate and grow for 2 months under overhead sprinkler 

irrigation and full sun conditions.

To prepare the planting surface for the hydromulch treatments, 4 raised plots 

(3.05 m X 3.05 m x  5.08 cm) framed with polyvinylchloride (PVC) pipes were installed at 

the H I-University Avenue off ramp cloverleaf The PVC frames were laid out on weed 

cloth-covered ground. To keep the growing medium in place, the bottom o f each plot was 

lined with a layer o f plastic sheeting. Drainage was provided by slashing the plastic 

sheeting on the low spots o f the plot. To ensure a weed free environment, commercially 

available compost was used as the growing media for this experiment. After the addition 

o f compost, the plots were limed (Dolomite 65 AG, Chemical Lime Company) at a rate 

o f 2.241 tons per hectare (54.7% CaC 0 3 , 42.6% MgCOs) and fertilized with treble 

superphosphate (0-46-0) at a rate o f  224 kilograms P per hectare. Growing medium was 

kept moist prior to planting.
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A day prior to hydromulching, the seedling clumps were separated into individual 

plantlets by teasing it apart underwater. Individual plants were cleaned and kept moist 

until ready for use. Approximately 70 grams o f plantlets (equivalent to 616 plants) were 

used in both handsown seedlings capped with hydromulch and hydroplanted seedling 

treatments. This is equivalent to a sowing rate/planting density o f 199 plants/m^. For the 

hydroseeded treatment, 0.1 grams o f sedge seed (containing approximately 1,490 seeds) 

was used to provide a seeding density equivalent to 481 seeds/m^ (Figure 2.2).

Except for handsown seedlings capped with hydromulch, all materials in each of 

the two other treatments were mixed together and applied using a hydroseeder. Table 2.1 

lists the amount o f  tackifier (C:tac, Flamilton Manufacturing Inc.), paper mulch 

(NaturesOwn, Hamilton M anufacturing Inc.) and water used for each treatment. The 

hydromulch system (Turbo Turf M odular Hydroseeding System Model No. HS-50-M, 

Turbo Technologies, Inc.) used for applying the treatments consisted o f a 190 liter tank 

and a 5 X 5 cm centrifugal pump applying approximately 114 liters per minute. To reduce 

contamination o f treatments within each plot during the planting operation, areas other 

than the treatment were covered with weed cloth. Also, the hydroseeding machine was 

completely flushed with water before the next treatment was prepared. Treatments were 

randomly allocated within 4 blocks with 1 replicate o f each treatment in each block. Each 

treatment covered 3.1 square meters o f experimental area per block.

During the first 4 months o f establishment, irrigation was applied 3 times a day 

(early morning, noon and late afternoon) for 5 minutes to prevent the hydromulch from 

drying out. After 4 months, irrigation was reduced and applied once a day (early 

mornings) for 10 minutes. Due to the presence o f a moisture gradient (induced by
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prevailing tradewinds) within each block, 3 permanent sample areas were established in 

each experimental unit. The size o f the sample areas were 30.5 cm x 30.5 cm. 

Supplemental hand weeding was also done during the 6  month observation period to 

remove competition and to improve the accuracy o f  visual cover ratings.

Plant counts per sample area were collected during the first 2 months after 

planting. M onthly percent visual cover was measured by superimposing 100 square grids 

on digital photographs o f a sample area (Figure 2.3). Sample areas were photographed at 

a constant height to make sure that the cropped sample square dimensions were 1570 x 

1570 pixels. Collection o f percent visual cover was facilitated by viewing the photos in 

digital imaging software (Adobe Photoshop CS2, Adobe Systems Inc.). Estimations were 

done by counting the number o f squares fully covered with leaves/vegetation.

Statistical analysis was carried out using Statistix® 9.0 (Analytical Software, 

Tallahassee, FL). Plant count and percent cover data collected during the study period 

were analyzed monthly using analysis o f variance. Data analysis that revealed significant 

treatment effects were subjected to Tukey HSD all pairwise comparisons test to separate 

treatment means.

Results 

Seed counts and seed germination test

Based on five samples, the average number o f  seeds per 0.02 grams was 298 or 

approximately 15,000 seeds per gram. The average percent germination for Fimbristylis 

cymosa after 1 month o f incubation was 91± 2.5%. Seeding density o f the hydroseeding 

treatment therefore contained approximately 437 live/viable seed per square meter.
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Plant counts

Plant count data revealed significant differences between planting methods during 

the first {F=  162.35, P < 0.01) and the second (F  = 57.06, P < 0.01) months. For the first 

2  months after planting, the hydroseeding treatment exhibited the highest seedling density 

based on plant counts (Figure 2.4). Hydroseeded treatments had an average density o f

264.3 p la n tsW  during the first month that increased slightly to 268.8 plants/m^ during 

the second month. Percent survival based on initial (live/viable) seeding density revealed 

that approximately 62% o f the seedlings survived after 2  months.

Handsown treatments had an average density o f 70.7 plants/m^ during the first 

month, increasing to 80.6 plants/m^ for the second month. Mean plant counts for 

handsown treatments at the first and second months were significantly lower than that 

obtained in the hydroseeded treatments. Percent survival o f handsown seedlings based on 

initial plant density (199 plants/m^) was 41% during the second month o f observation.

The lowest mean plant counts and percent survival throughout the whole 

experiment was observed in the hydroplanted treatment. Mean plant density was 

calculated at 1.8 plants/m for the first month and increased to 2.7 plants/m on the 

second month. An estimated 1% o f the initial plants survived the hydroplanting operation 

after the second month o f observation.

Percent visual cover

Estimated percent visual cover o f the three planting methods were significantly 

different within each month analyzed. Tukey HSD all pairwise comparison tests per 

month revealed that hydroseeded and handsown treatments did not significantly differ for 

each month analyzed (Figure 2.5). At the final observation date ( 6  months after planting),
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hydroseeded plots exhibited an average percent visual cover o f 69%, while handsown 

plots had an average percent cover o f  53%. Hydroplanted seedlings had the lowest value 

with only 7% cover six months after planting. Figure 2.6 shows the progression o f the 

hydroplanting treatments over the six month observation period.

Discussion

Both the hydroseeding and handsowing-hydromulching treatments were 

successful in establishing a percent visual cover greater than 50% within 6  months. 

Although these two methods were statistically comparable, hydroseeding seems to be the 

best method for establishing plants as it was more efficient and practical. In contrast to 

the handsowing-hydromulching method, hydroseeding requires less time and resources to 

establish the same percent visual cover. The hydroseeding operation does the job  in just 

one step by mixing all the materials in one tank and applying it directly to the prepared 

planting surface. In contrast, the handsowing-hydromulehing method requires a 3 step 

process that includes producing the seedlings, then distributing them evenly over the 

planting area followed by application o f the hydromulch cap.

Another advantage o f hydroseeding F. cymosa is that it makes use o f seeds 

instead o f seedlings. Using seeds is favored because seeds o f this species are small in 

size, readily germinable and more convenient to store. F. cymosa  seeds are very small 

(~1 mm in diameter) and a gram can contain as much as 15,000 seeds. This makes 

hydroseeding more efficient since it employed a larger number o f plant propagules that 

resulted in greater plant density, higher percent survival and percent cover. The amount 

o f viable seeds contained in the hydroseeding rate was almost double that o f treatments
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utilizing seedlings. In contrast to seeds, F. cymosa seedlings are bulky, perishable and 

require extensive preparation and resources prior to planting.

Despite having a larger sized propagule and more mature development, handsown 

seedlings did not surpass hydroseeding in terms o f  percent visual cover. The contributing 

factors for this may be lower initial planting density compared to hydroseeding, higher 

seedling mortality and slow recovery due to transplanting shock.

Failure o f the hydroplanted seedlings to produce vegetative cover may have been 

due to severe mechanical damage incurred by seedlings as they passed through the pump. 

During the hydroplanting process, seedling pieces were often seen being extruded by the 

hydromulcher (Figure 2.7). The hydromulching equipment used for the experiment is not 

recommended to deliver larger vegetative pieces such as the seedlings o f F. cymosa.

In summary, both hydroseeding and the handsowing-hydromulching operations 

can be used for establishing F. cymosa plantings. Though the two methods both resulted 

in same percent cover after 6  months, the hydroseeding procedure appears to be a better 

method o f planting since it would take less time and resources for establishment. The 

small seed size o f F. cymosa eased planting operations by reducing the bulk o f planting 

materials and by streamlining it into a one-step operation. The hydroseeding mortality 

rate (38%) is also much lower than handsowing/hydromulching (59%) and hydroplanting 

o f seedlings (99%). Hydroseeding requires less time, labor and resources for establishing 

F. cymosa.
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T ables

Table 2.1. Amount o f planting material, tackifier (C:tac, Hamilton M anufacturing), paper 
mulch (NaturesOwn, Hamilton M anufacturing Inc.) and water used for each o f  the 
hydroplanting treatments. The hydroplanting materials were applied using the Turbo Turf 
M odular Hydroseeding System (M odel No. HS-50-M). Each batch o f hydromulch 
covered 3.1 square meters o f experimental area per block.

Hydroplanting
treatments

Planting
material

Tackifier Mulch W ater

Handsown seedlings + 
hydromulch cap

70 g seedlings 
(199 p la n tsW ) 3.3 g

1.36 kg 
(4400 kg/ha)

51 liters

Hydroplanting
(plantlets)

70 g seedlings 
(199 p la n tsW )

3.3 g
1.36 kg 

(4400 kg/ha)
51 liters

Hydroseed 0 . 1  g seeds 
(481 p la n tsW )

1.65 g
0.682 kg 

( 2 2 0 0  kg/ha)
25 liters
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Figures

Figure 2.1. The three hydroplanting techniques evaluated in this study: a) handsown 
seedlings covered with mulch; b) hydroseeding and c) hydroplanted seedlings.
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Figure 2.2. The amount o f seed used in the hydroseeding treatment. The vial contains 0.1 
grams or approximately 1500 seeds.

Figure 2.3. Estimating percent visual cover in Adobe Photoshop. Digital photographs o f 
the sample were superimposed with 100 square grids. Percent visual cover was estimated 
by counting the number o f squares occupied by foliage.
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Figure 2.4. M ean plant number in the hydroplanting treatments two months after 
planting. Hydroseeded treatments had the highest number o f plants for the first and 
second months after planting. Columns with the same letter within each month are not 
significantly different (P < 0.01). Standard errors o f the means added to each bar (n = 12).
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Figure 2.5. Average visual percent cover o f each hydroplanting treatment over a period of 
six months. Hydroseeded plots consistently attained the highest percent cover after the 
first month o f observation. Columns with the same letter within each month are not 
significantly different (P < 0.05 for months 1, 4, 5 and 6 ; P < 0.01 for months 2 and 3). 
Standard errors o f the means added to each bar (n = 12).
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Photos were taken at 1, 2, 4 and 6  months after planting.
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Figure 2.7. M echanical damage incurred by hydroplanted seedlings during the planting 
process.
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CHAPTER 3

EVALUATION OF SPOROBOLUS VIRGINICUS (L.) KUNTH (‘AKI ‘AKI) STEM 

CUTTINGS AS A PROPAGATION MATERIAL FOR HYDROMULCH

PLANTING 

Introduction

Developing a reliable and efficient means o f propagation is essential before a 

native groundcover species can be utilized for roadside re-vegetation purposes. In the 

case o f Sporobolus virginicus, the focus o f improvement is on vegetative propagation. 

Since this species produces a very sparse amount o f viable seed (USDA-NCRS, 2007), 

vegetative propagation is the only practical way to increase planting materials. While sod, 

whole plants, rhizomatous slips and stolons can be used to propagate this species, 

terminal stem cuttings are the propagation material o f choice for large scale re-vegetation 

efforts. Using terminal cuttings is advantageous since it makes harvesting o f materials 

easier without the need o f removing the stock plants and disturbing the root zone. 

Keeping the stock plants intact allows vigorous re-growth to ensure regular production o f 

planting materials.

Though the use o f Sporobolus stem cuttings has been mentioned in literature, no 

one has quantitatively described the rooting success o f various plant parts. To enhance 

the rooting o f cuttings, a quick basal application o f commercially available auxinic 

rooting solutions is recommended (Burchett et al., 1999; Koob, 2000).

Despite being widely used as a restoration and erosion control species, the 

majority o f re-vegetation projects described in the literature make use o f nursery 

propagated S. virginicus plugs. Due to limited availability and lack o f alternative
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propagation methods, outplanting o f S. virginicus plugs has been the common practice in 

Hawaii (personal observation on Maui, 2008). Although outplanting o f  glasshouse- or 

nursery-prepared native plant species is a well established and reliable method (Douglas 

et al., 2007), it can be time consuming and laborious. Large-scale projects such as 

roadside re-vegetation can be a daunting challenge because o f the amount o f labor and 

resources required for both nursery operations (i.e. propagation and establishment in 

plugs) and roadside establishment. Since labor costs can comprise up to 80 percent o f 

propagation expenditures, considerable savings can be made if  propagation techniques 

are streamlined and rooting success is improved (Hartmann et al., 2002). An alternative 

way o f improving large scale planting and establishment o f  S. virginicus is through 

hydromulch capping o f stem cuttings. This method has been practiced loeally in Maui to 

re-vegetate the remaining portions o f the newly widened Mokulele Highway (personal 

on-site inspection, 2008) (Figure 3.1). Developing a direct planting method which 

incorporates both pre-treatment o f cuttings with auxin and hydromulch capping will not 

only improve the efficiency o f roadside planting and establishment operations but it 

would also protect the newly planted surface from erosion. Before evaluating an in-field 

sprigging operation under a hydromulch planting condition, a good understanding o f the 

rooting capability o f Sporobolus virginicus sprigs is necessary. The first component o f 

this study evaluated the rooting capability o f differently sourced stem cuttings (apical or 

basal) as influenced by soaking duration in a commercially available auxin solution. The 

study then proceeded to the evaluation o f the rooting success o f auxin pre-soaked 

Sporobolus virginicus sprigs under a simulated hydromulch planting operation.
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Materials and methods 

Planting material

Sporobolus virginicus (HA# 5802, 9079745) stock plants were sourced from the 

NRCS H o‘olehua Plant Materials Center in MolokaM. In June 2006, a nursery was set up 

at the Magoon Research Facility to increase planting material before propagation studies 

were conducted. Plots for increasing stock plants were constructed from PVC pipes 

joined together to form rectangular frames. The PVC frames were laid out on weed cloth- 

covered ground and then lined with a layer o f  weed cloth and plastic sheeting. After 

providing drainage holes on the lowest portions, the plots were filled with growing media 

composed o f a mix o f compost and volcanic cinder (Menehune Magic Black Cinder 

Blends, Hawaiian Earth Products). Bare rooted clumps o f the grass were planted, 

irrigated regularly and allowed to establish for 6  months before stem sections were 

harvested.

Rooting of apical and basal cuttings as affected by soaking

The rooting response o f  apical and basal stem cuttings to durations o f soaking (5 

second dip and 3 hour soak) in rooting solution were assessed from M ay to July 2007 at 

the M agoon Research Facility. Stem sections, approximately 50 cm long, were harvested 

from nursery grown stock plants. Apical cuttings with ten leaves and basal cuttings with 

3 nodes were collected from the harvested stem sections (Figure 3.2). The lower 4-5 

leaves o f the apical cuttings and all o f the leaves o f the basal cuttings were stripped off to 

expose the nodes. Cuttings were soaked for two periods o f time (5 seconds and 3 hours) 

in a 1:20 dilution (500 ppm indole butyric acid and 250 ppm naphthalene acetic acid) o f
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commercially available rooting solution (Dip ‘N Grow®, Dip ‘N  Grow Inc.). A set o f 

untreated cuttings (no soak) that served as the control were also prepared. Both treated 

(soaked) and untreated cuttings were planted vertically in pots containing a mixture o f 

black cinder (40% by volume) and potting medium (Pro-mix®, Premier Horticulture).

Each treatment, containing 10 cuttings per pot, was replicated 4 times. Treatments were 

laid out in a randomized complete block design inside a shade house with periodic 

misting (Figure 3.3). After 21 days in the shade/mist house, the treatments were 

transferred to full sun conditions (with regular overhead irrigation) to allow further root 

development. Two weeks after exposure to full sun, rooting data which included percent 

rooting, mean root length (longest root) and mean root density scores ( 1  -  dead, 2  -  alive 

but no root, 3 -  few roots, 4 -  moderate rooting, 5 -  dense rooting) were collected.

Rooting response of apical cuttings under hydromulch planting conditions

From June to July 2008, the rooting response o f apical stem cuttings to three 

soaking durations (5 seconds, 4 hours and 24 hours in rooting solution) were evaluated 

under a simulated hydromulch planting operation. Apical stem cuttings, approximately 20 

cm long and containing 1 0  leaves with 1 0  to 1 1  nodes were collected from stock plants 

grown at the M agoon Research Facility.

Soaking solutions which contained a mix o f 500 ppm indole butyric acid and 250 

ppm naphthalene acetic acid were prepared in a similar fashion as the initial soaking 

study. A day prior to planting, cuttings for the 24 hour soaking period were prepared and 

immersed in the rooting solution. Stem cuttings used for the short soak treatments (5 

second dip and 4 hour soak) and the controls (untreated) were prepared on the day o f
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planting. To prevent desiccation, all treated and untreated cuttings used in the study were 

wrapped in moist paper towels and stored in an air conditioned room prior to planting.

For each treatment (replicated 5 times), ten cuttings were laid down horizontally 

on plastic trays (25.5 x 51.5 cm) filled with moistened potting mix (Pro-mix®, Premier 

Horticulture). The trays with stem cuttings were then transferred to a weed cloth covered 

area (3.7 m x 4.1 m) and hydromulched at a rate o f  3300 kg/ha using a 

hydromulcher/hydroseeder (Turbo T urf M odular Hydroseeding System Model No. HS- 

50-M, Turbo Technologies, Inc.) (Figure 3.4). Table 3.1 lists the amount o f paper mulch 

(NaturesOwn, Hamilton M anufacturing Inc.), straw mulch (HydroStraw, HydroStraw 

LLC) and tackifier (Citac, Hamilton M anufacturing Inc.) used to make the 95 liter 

hydromulch mixture.

After hydromulching, the trays were transferred to an area protected from winds 

and then laid out in a randomized complete block design. To keep the trays constantly 

moist, overhead irrigation was turned on four times a day for six minutes. Forty five days 

(1.5 months) after planting, data on percent rooting, mean rooting index, number o f new 

green shoots per cutting and root dry mass were recorded.

Analysis o f variance was performed for each data set using Statistix 9 (Analytical 

Software, Tallahassee, FL) statistical analysis software. Data sets from the first study 

were analyzed as a 2 (apical vs. basal) x 3 (soaking times) factorial while data sets in the 

second study were analyzed as a randomized complete block design. Tukey HSD all 

pairwise comparison tests were performed on data sets showing significant treatment 

interactions or effects.
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Results 

Rooting of apical and basal cuttings as affected by soaking

There was a significant interaction o f soaking time and plant part for all rooting 

characteristics. Apical portions soaked for 3 hours exhibited the highest percent rooting 

followed by apical cuttings dipped for 5 seconds and basal cuttings soaked for 3 hours 

(Table 3.3). Soaking o f apical cuttings for 3 hours significantly increased rooting 

percentage from 60 (control) to 92.5%. For basal cuttings, no significant improvements in 

rooting percentage were observed in both the 5 second dip and the 3 hour soak.

The longest roots were observed in apical cuttings soaked for 3 hours in auxin 

(Table 3.4). Roots in this treatment were 82% longer compared to roots o f  untreated 

apical cuttings. There were no significant differences in root length o f treated 

(soaked/dipped in auxin) and untreated basal cuttings. M ean root density scores were 

higher in auxin treated apical portions than in the control or other treatments (Table 3.5 

and Figure 3.5). No improvement in root density scores were obtained with soaking or 

dipping o f basal cuttings in rooting solution.

Rooting of apical cuttings under hydromulch planting conditions

A significant increase in mean percent rooting o f hydrocapped Sporobolus 

cuttings was observed with longer soaking times in rooting solution (F  = 5.33, P  = 0.01). 

Cuttings soaked for 24 hours exhibited the highest rooting percentage at 8 8 % (Figure 

3.6). Untreated cuttings exhibited the lowest mean percent rooting with only 50% o f the 

cuttings rooted. Those soaked for 4 hours or less showed rooting percentages that were 

not significantly different from untreated cuttings.
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Overall rooting scores significantly increased with longer soaking times in auxin 

(F =  7.10, P < 0.01). The highest overall rooting score was observed in cuttings soaked 

for 24 hours. This was significantly higher compared to scores obtained from untreated 

cuttings (no auxin and no soak) (Figure 3.7). Rooting scores o f  the 4-hour soaking time 

and the 5 second quick dip was not significantly different than untreated cuttings.

A significant difference between root dry mass o f the soaking treatments was 

recorded {F = 4.00, P  = 0.03). The highest root dry mass was obtained from cuttings 

soaked for 4 hours while the lowest root dry mass was observed from cuttings dipped for 

5 seconds (Figure 3.8). Although a significant difference between root dry mass o f 

dipped cuttings and those soaked for 4 hours were detected, no significant differences 

were observed when treated cuttings were compared to untreated cuttings.

In addition to rooting characteristics, the total number o f shoots per cutting (apical 

and axillary) significantly increased with longer soaking times (F  = 5.30, P  = 0.01). 

Cuttings soaked for 24 hours obtained the highest number o f shoots per cutting (2.78 

shoots) (Figures 3.9 and 3.10). This was significantly higher than untreated cuttings (1.86 

shoots) and cuttings dipped for 5 seconds (1.68 shoots). Numbers o f green shoots per 

cutting recorded in the 4-hour soak and those dipped for 5 seconds were not significantly 

different from values observed in untreated cuttings. Figure 3.10 visually summarizes the 

differences in rooting and shoot number o f the different soaking periods.

Discussion

Results from the two experiments support the feasibility o f using hydromulch 

covered apical cuttings as a method for field establishment o f  Sporobolus virginicus. In 

the first experiment, apical cuttings demonstrated higher rooting potential than basal
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cuttings. Improved rooting characteristics o f apical cuttings may be attributed in part to 

the presence o f  leaves. It has heen long known that leaves have a strong stimulatory 

effect on rooting through carbohydrate supplementation and auxin production (Hartmann 

et al., 2002). Other substances or factors which are non-carbohydrate or non-auxin, such 

as phenolic compounds synthesized in the leaves, may also be involved in rooting (Davis 

et al., 1988). Improved rooting capability o f cuttings with leaves have been reported in 

tree species such as Irvingia gabonensis (Shiembo et al., 1996), Pausinystalia johim be  

(Tchoundjeu et al., 2004), Milicia excelsa (Ofori et al., 1996) and Prunus africana  

(Tchoundjeu et al., 2002). In these studies, significantly higher rooting percentages were 

obtained in leafy cuttings in contrast to leafless euttings, which had little to no rooting.

Another factor that influenced rooting o f Sporobolus cuttings was pre-soaking in 

auxin solution. Exogenous application o f auxin in cuttings has been known to inerease 

percentage rooting, hasten root initiation and increase uniformity in rooting (Hartmann et 

al., 2002). In the second experiment, soaking the cuttings in rooting solution for 24 hours 

greatly improved propagation efficiency since rooting percentage significantly increased 

from 50 to 8 8 %. Pre-soaking for 24 hours provided ample time for the auxin to be 

absorbed into the stem tissue thereby boosting endogenous auxin levels.

Although rooting in this species has been achieved by Koob (2000) and Burchett 

et al. (1999) with auxin quick-dips, the rooting percentage o f  quick-dip treatments for the 

first and second experiments did not significantly differ from that o f untreated cuttings. 

There are probably three reasons why the quick dip treatments did not show a marked 

improvement in rooting percentage: 1 ) the concentration o f rooting solution for the quick- 

dip was too diluted to have an effect; 2 ) the applied auxin did not get absorbed in time
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and was washed off during planting or hydromulching process and 3) there might be 

some variability in cuttings used in the study. Ways to improve rooting success o f the 

quick-dip method may be through the addition o f wetting agents or modification o f the 

formula into a gel form. Another method o f auxin application that might be as effective 

but less cumbersome would be foliar spraying o f a more dilute auxin solution or adding 

auxin to the hydromulch cap. Foliar applied auxin has been used in the propagation o f 

ornamental species such as chrysanthemum, begonia, dieffenbachia, heath and hibiscus 

(Hartmann et al., 2002).

The second experiment showed that successful rooting o f direct planted S. 

virginicus apical cuttings can be achieved under irrigated field conditions. The 

hydromulch planting process, which is similar to tu rf establishment from stolons or 

sprigs, is a more efficient way to establish the native groundcover than using rooted 

transplants since it bypasses nursery operations thereby reducing time and resources 

spent for propagation and establishment. Another benefit o f the hydromulch planting 

method is that horizontally planted cuttings seem to produce more shoots than vertically 

planted cuttings (personal observation). As many as three axillary shoots were produced 

by each cutting in the second experiment. Producing more shoots per cutting increases 

the number o f potential plants and increases stand vigor leading to improved survival and 

rapid fill in.

In summary, these two experiments demonstrated that apical stem cuttings are 

better than basal cuttings for directly establishing Sporobolus virginicus. Rooting success 

can be further improved with pre-soaking in an auxin solution (500 ppm indole butyric 

acid and 250 ppm naphthalene acetic acid) for 24 hours. Utilizing this planting method
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for re-vegetation makes it easier and more efficient to establish plantings on a large scale. 

It saves time and resources by eliminating nursery establishment o f planting materials 

prior to planting. This method is also advantageous since stockplants are allowed to re- 

grow from undisturbed root systems with basal stem portions available for new shoot 

growth.
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Tables

Table 3.1. Amount o f tackifier, paper and straw mulch added to a volume o f 95 liters to

Hydromulch component Amounts used
Tackifier 16.9 grams
Paper mulch 3.4 kg
Straw mulch 1 . 6  kg

Table 3.2. Effects o f soaking period and plant part on mean rooting percentage o f

Soaking period
Mean Rooting Percentage*

Apical Basal
Untreated 60 (9.1) be 56 (3.5) be
5 second dip 85 (2.9) a 50 (8.2) c
3 hour soak 93 (2.5) a 78 (7.6) ab
F value 4.78
P value 0 . 0 2

* Means presented are original means with standard errors in parentheses (n = 4). Tukey 
HSD grouping is based on arc sine transformed means. M eans within columns and rows 
followed by the same letters are not significant (P = 0.05).

Table 3.3. Effects o f soaking period and plant part on mean length o f longest root o f

Soaking period
Mean Length o f Longest Root (cm)*

Apical Basal
Untreated 12(1.9) be 9 ( 1 . l ) c
5 second dip 20 (2.4) ab 5 (0.8) c
3 hour soak 2 2  (2 . 1 ) a 11 (2.4) c
F value 5.39
P value 0 . 0 2

* Means presented are original means with standard errors in parentheses (n = 4). Means 
within columns and rows followed by the same letters are not significant (P = 0.05).

Table 3.4. Effects o f soaking period and plant part on mean root density scores o f

Soaking period
Mean Root Density Score*

Apical Basal
Untreated 3 (0 .1 )b 3 (0 .1 )b
5 second dip 4 (0.1) a 3 (0.1) b
3 hour soak 4 (0.1) a 3 (0.2) b
F value 9.20
P value < 0 . 0 1

* Means presented are original means with standard errors in parentheses (n = 4). Means 
within columns and rows followed by the same letters are not significant (P = 0.01).

46



Figures

Figure 3.1. Hydromulch capping o f untreated S. virginicus stem cuttings along the Mokulele Highway near Kihei, Maui (February 
2008). Although this method o f planting has already been employed in the field, studies on rooting success need to be conducted in 
order to efficiently utilize planting materials.



Figure 3.2. Planting material used for the plant part by soaking time experiment. A) Fifty 
centimeter stem sections from which B) 10 node apical and 3 node basal cuttings were 
collected.
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Figure 3.3. Treatment setup in the mist house. Cuttings were left in the mist/shade house 
for two weeks before transferring to full sun conditions.

49



Figure 3.4. The hydromulch capping process for Sporobolus apical cuttings. A) Treated 
and untreated cuttings were laid out horizontally on plastic trays filled with moistened 
potting mix and then B) covered hydromulch (3300 kg/ha).
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Figure 3.5. Extent o f rooting in apical (A) and basal (B) ‘aki‘aki stem cuttings as affected 
by the following soaking durations: untreated (1); 5 second dip (2) and 3 hours (3). 
Higher rooting percentages and more profuse rooting was observed in apical cuttings in 
contrast to basal cuttings.
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Figure 3.10. Extent o f rooting and shoot growth o f  apical cuttings 45 days after planting and application o f  hydromulch cap: A) 
untreated, B) 5 second dip, C) 4 hour soak and D) 24 hour soak. Cuttings soaked for 24 hours achieved the highest rooting 
percentages.



CHAPTER 4 

TOLERANCE OF F i m b r i s t y l i s  CYMOSA R. BR. (MAU‘U ‘AKI ‘AKI) TO PRE- 

AND POST- EMERGENCE HERBICIDES 

Introduction

Weed control is an essential aspect o f native groundcover establishment and 

maintenance on roadsides. Providing a weed-free environment from the time o f planting 

up to canopy closing is important for strengthening a desired native groundcover’s 

competitive ability against weeds and weed invasions. Herbicides are weed control tools 

commonly used in the establishment and management o f roadside vegetation. They have 

been recommended as tools, not only for reducing exotic vegetation in heavily invaded 

systems but also for reducing the weed seed bank prior to native plant establishment 

(Corbin et al., 2004). Before roadside re-vegetation o f a specific native species 

commences, building basic information on herbicide tolerance is vital in order to identify 

pre- and post-emergence herbicides that are safe to selectively manage unwanted species.

Very few studies have been conducted on the herbicide tolerance o f native 

Hawaiian plants. Much o f the published research has focused mainly on invasive weed 

control in natural areas and weed control for seed production purposes. To achieve 

successful roadside re-vegetation with Fimbristylis cymosa  (m au‘u ‘aki‘aki), a weed 

management protocol during and after groundcover establishment must be developed. 

This study focused on two areas namely: 1) evaluating tolerance o f  Fimbristylis cymosa 

to several pre- and post-emergence herbicides labeled for roadside right-of-way use and 

2 ) determining the optimal timing o f herbicide application under a simulated 

hydroseeding establishment condition.
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Materials and Methods

The herbicide tolerance study for F. cymosa was divided into three main sections 

namely: 1 ) tolerance o f transplanted plugs to pre-emergence herbicides; 2 ) tolerance of 

seedlings and field established plants to post-emergence herbicides; and 3) tolerance o f 

hydroseeded F. cymosa to pre- and post-emergence herbicides applied at different times 

after sowing.

Planting material

All F. cymosa plants (HA#5866, 9079806) used in the study were obtained from 

the NRCS Plant Materials Center in MolokaT. Before experiments on 0 ‘ahu were 

conducted, a soilless nursery was setup in June 2006 at the Magoon Research Facility. 

Bare rooted clumps o f the sedge were planted in commercially available growing media 

composed o f a mix o f compost and volcanic cinder (Menehune Magic Black Cinder 

Blends, Hawaiian Earth Products). Stock plants were allowed to establish for 6  months 

before seed harvesting and seedling/plug production commenced.

In M ay 2007, additional field plantings were established at the H I-University 

Avenue off-ramp cloverleaf to increase seed for hydroseeding. One year after 

establishing the stock plants, mature inflorescences o f the sedge were harvested, crushed, 

dried and stored dry at approximately 10°C as minimally processed raw seed (pieces of 

stem and leaves removed).

Pre-emergence herbicide screening for transplanted plugs

Screening for tolerance to pre-emergence herbicides was carried out at the NRCS 

Plant Materials Center in M oloka‘i from November 2005 to June 2006. The study was
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conducted on experimental field plots containing Holomua silt loam (clayey, kaolinitic, 

isothermic Typic Torrox). Two hundred ninety one days after sowing in 72 cell trays, 

mature F. cymosa plants (~ 6  cm in diameter) were transplanted in field plots (4.6 meters 

long X 1.8 meters wide) as a single row with in-row spacing o f 0.61 meters. After 

planting, overhead irrigation was supplied consistently to ensure m aximum growth and 

establishment.

A day after transplanting, pre-emergence herbicide spray treatments (Table 4.1) 

were applied using a 3 nozzle boom (nozzles spaced 50.8 cm apart) fitted with three 8004 

LP Teejet Spray Systems nozzle tips (Spraying Systems Co., W heaton, IL). The 3 liter 

sprayer, powered by an electric diaphragm pump was calibrated to apply 374.2 liters per 

hectare at 103.4 KPa. To ensure that no cross contamination o f  herbicides occured, the 

spray system was thoroughly rinsed with water between treatment changes. The 

experimental design was laid out as a randomized complete block with 4 replications.

Fourteen days after planting, the entire experimental area was fertilized at a rate 

o f 56.04 kg N/ha, 24.49 kg P/ha and 46.52 kg K/ha as 16-16-16 with minors (1% Mg, 1% 

S, 1.5% B and 1% Fe) (Hikiola Cooperative, Hoolehua, Hawaii). Forty three days after 

the first spray application (43 DAS), plots were hand weeded and sprayed for the second 

time with the pre-emergence treatments.

Visual plant vigor ratings (0 = dead to 100 = maximum attainable vigor) were 

recorded at 43, 71, 120 and 211 DAS. At the last round o f data collection (211 DAS), 

seedheads from two representative plants were collected, combined and counted as a 

measure o f vigor.
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Analysis o f variance using Statistix® 9 statistical analysis software (Analytical 

Software, Tallahasee, FL) was performed on visual plant vigor ratings and seedhead 

counts. Since vigor data collected at 120 and 211 DAS showed significance for non­

additivity, arc sine transformation o f the two data sets were done before they were 

reanalyzed (Gomez and Gomez, 1984). Tukey HSD pairwise comparison tests were 

performed on each data set showing significance in the analysis o f variance.

Post-emergence herbicide screening for seedlings and field established plants

E valua tim  the safety o f  fluazifov-p-butyl and triclopvr on plants o f  different a se  classes 

The tolerance o f F. cymosa plants and seedlings to spray applications o f 

fluazifop-p-butyl (Fusilade® II Turf and Ornamental, Zeneca Ag Products) and triclopyr 

(Garlon® 4, Dow AgroSciences) was conducted from September to October 2007 at the 

Magoon Research Facility in Manoa. Fluazifop-p-butyl is used to control grasses while 

triclopyr is used primarily for broadleaf weed control. Both are used to control living 

plants via foliar spray applications.

Nursery established seedlings (43 and 98 days after sowing) and mature flowering 

plants (224 days after sowing) were grown in 72-cell styrofoam trays (34.5 x 67 cm) 

filled with a potting mix composed o f a 60:40 ratio (by volume) o f Promix® (Premier 

Horticulture) and black cinder (Menehune Magic, Hawaiian Earth Products). Each tray 

contained a row o f six plants per age class. M inimum and maximum label rates o f 

fluazifop-p-butyl (0.28 and 0.42 kg a.i./ha) and triclopyr (4.48 and 8.97 kg a.i./ha) were 

prepared in 3 liter plastic bottles (Table 4.2). To promote uniform coverage and increase 

the herbicide’s foliar penetration, a wetting agent (0.25% by vol. crop oil) was added to 

each herbicide treatment. Two non-herbicide treatments were also included in this
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experiment: an untreated control (water) and a wetting agent only treatment (0.25% vol. 

crop oil). All treatments were applied as 20 ml per tray using a Meter Jet spray gun 

(Spraying Systems Co., Wheaton, IL) attached to a backpack sprayer (Birchmeier, 

Birchmeier Spriihtechnik AG). The M eter Jet gun delivered the same spray volume with 

each trigger pull, regardless o f pressure. To ensure that there was no contamination 

between treatments, the M eter Jet spray gun was thoroughly rinsed after each treatment. 

The different treatments were also physically separated to prevent cross contamination 

from spray drift. Once the treatments were applied, treated foliage was allowed to dry for 

3 to 4 hours and then laid out in a 2 way factorial (3 age classes x 6  herbicide treatments) 

with 4 replications.

Twenty eight days after spraying (28 DAS), percent foliar injury ratings (0 = no 

visual injury to 1 0 0  = complete plant death) were recorded and a combined aboveground 

dry biomass o f six plants was also collected.

Analysis o f variance appropriate for the 3 (plant age) x 6  (herbicide) factorial 

treatment arrangement was performed using Statistix® 9 statistical analysis software 

(Analytical Software, Tallahasee, FL). Errors in the assumptions o f variance analysis 

(e.g. unequal variance) were visually confirmed in the residual plots. In order to 

accomodate these errors, foliar injury ratings were arc sine transformed while dry weight 

data were log transformed before it was reanalyzed (Gomez and Gomez, 1984). Tukey 

HSD pairwise comparison tests were performed on significant interactions or factors.

Screenins o f  vost-em ersence herbicides in field erown plants

Post-emergence herbicide tolerance o f field grown F. cymosa was conducted at 

the Waimanalo Research Station from July to September 2008. The experiment was
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conducted on field plots containing two soil types. The eastern half o f the experimental 

plot consists o f Haleiwa silty clay (fine, mixed, isohyperthermic Typic Haplustoll) while 

the western half consists o f W aialua clay (very fine, kaolinitic, isohyperthermic Typic 

Haplustoll).

Land preparation began one year before the study was conducted. The area was 

limed (Dolomite 10 AG, Chemical Lime Company) at a rate o f 2,185 kg/ha (54.7% 

CaCOs, 42.6% MgCOs) and fertilized with 112.09 kg N/ha, 48.98 kg P/ha and 93.03 kg 

K/ha as 08-08-08 (United Horticultural Supply) and 225.14 kg P/ha as treble 

superphosphate (0-46-0). After incorporating the soil amendments, the land was allowed 

to fallow for 6  to 7 months. In the following rainy season, growing weeds were 

subsequently killed with repeated spray applications o f glyphosate (Roundup Pro®, 

M onsanto Company; applied as a 2% solution o f the formulated product) and triclopyr 

(Garlon® 4, Dow AgroSciences; applied as a 1% solution o f formulated product) in an 

attempt to exhaust the weed seed bank. Two months before planting, the land was divided 

into 5 rectangular plots; one o f which was allocated for the study. Each plot measures 4.9 

m wide by 42.7 m long and was laid out along the soil and shade gradient. Plots were 

separated by a 1 . 2  m wide weed cloth to accommodate the overhead irrigation system. 

The irrigation heads designed to throw water 6.1 m away were alternately spaced on each 

side o f the plot.

After any remaining weeds were hoed, one year old plugs o f  the sedge were 

planted at an in-row spacing o f 0.61 m along five rows spaced 0.91 m apart. Immediately 

after planting, the plots were fertilized with 112.09 kg N/ha and 93.03 kg K/ha as 18-0-18 

with minors (United Horticultural Supply, Loveland Products Inc.). In addition to
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fertilizer applications, the plot was also treated with a granular formulation o f oxadiazon 

(Ronstar® G, Bayer Environmental Science) at a rate o f 224.17 kg a.i./ha to control 

germinating weed seeds.

Seventy days after planting, the 4.9 m x 42.7 m plot was divided into smaller 1.8 

m X 4.9 m experimental units containing 15 plants (3 rows with 5 plants each). Spray 

treatments were allocated into each unit, in a randomized complete block design with 4 

replications. The post-emergence herbicide spray treatments which consisted o f 1.23 kg 

a.i./ha aminopyralid (Milestone® VM, Dow AgroSciences); 1.63 kg a.i./ha Powerzone® 

(0.02 kg a.i./ha carfentrazone-ethyl + 1.24 kg a.i./ha MCPA + 0.25 kg a.i./ha mecoprop + 

0.12 kg a.i./ha dicamba, PBEGordon Corporation); 1.22 kg a.i./ha Speedzone® (0.02 kg 

a.i./ha carfentrazone-ethyl + 0.86 kg a.i./ha 2,4-D + 0.27 kg a.i./ha mecoprop + 0.07 kg 

a.i./ha dicamba, PBEGordon Corporation) and 0.07 kg a.i./ha sulfosulfuron (Certainty®, 

Monsanto) were applied using the same spray parameters and equipment described in the 

pre-emergence study (See Table 4.3 for a detailed description o f herbicide treatments). 

After treatment application, irrigation was put on hold for 13 hours to allow herbicide 

absorption.

Due to a mistake in reading label rates (the label rate for M ilestone® VM was 

confused for M ilestone® VM Plus), the aminopyralid treatment in this experiment was 

overapplied (25x the recommended label rate). Right after this post-emergence 

experiment was conducted, a follow-up study using the right rates o f aminopyralid was 

performed on the control plots (see next section for details).

Visual ratings o f  vigor (0 = dead to 100 = maximum attainable vigor), foliar 

injury ( 0  = no injury to 1 0 0  = whole plant necrosis/chlorosis) and green color ( 0  =

61



brown/chlorotic to 1 0 0  = maximum attainable green color) as well as percent mortality 

were recorded 5 weeks after treatment application.

Analysis o f variance using Statistix® 9 statistical analysis software (Analytical 

Software, Tallahasee, FL) was performed on vigor, injury and green color ratings as well 

as plant mortality data. Tukey HSD pairwise comparison tests were performed on each 

data set showing significance in the analysis o f variance.

Tolerance o f  field srown plants to two rates o f  aminopvralid

Due to an overapplication o f  aminopyralid in the previous experiment, a follow- 

up study on the tolerance o f F. cymosa to high and low rates o f aminopyralid was 

performed. The experiment was setup on untreated control plots o f the previous post­

emergence screening study. The 15 plants contained within each control plot were 

divided into 5 rows containing 3 mature plants. Three treatments were evaluated and 

these consisted o f 0.07 and 0.12 kg a.i./ha aminopyralid plus an untreated control. 

Treatments were randomly allocated in three o f the five rows o f plants available in each 

plot. The experiment was laid out as a randomized complete block with the control plots 

from the previous experiment serving as blocks (n = 4). The two aminopyralid rates, 

prepared in 3 liter plastic bottles, were applied using a single nozzle boom fitted with one 

8004 LP Teejet Spray Systems nozzle tip (Spraying Systems Co., W heaton, IL). The 

backpack sprayer (Birchmeier, Birchmeier Spriihtechnik AG) was calibrated to apply 

374.2 liters per hectare at 89.7 KPa. After treatment application, irrigation was put on 

hold for 13 hours to allow herbicide absorption.

Visual ratings o f  vigor (0 = dead to 100 = maximum attainable vigor), foliar 

injury ( 0  = no injury to 1 0 0  = complete plant death) and green color ( 0  = yellow/brown to
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100 = maximum attainable green color) were recorded 5 weeks after treatment 

application.

Analysis o f variance using Statistix® 9 statistical analysis software (Analytical 

Software, Tallahasee, FL) was performed on vigor, foliar injury and green color ratings. 

Square root transformation was performed on percent foliar injury data prior to reanalysis 

in order to remove significant non-additivity o f the data set. Tukey HSD pairwise 

comparison tests were performed on data sets showing significance in the analysis o f 

variance.

Timing of pre- and post-emergence herbicide application on hydroseeded F. cymosa

After the separate herbicide tolerance studies were carried out, a final experiment 

was conducted to determine application timing o f both pre- and post-emergence 

herbicides on newly hydroseeded F. cymosa. The study was conducted at the W aimanalo 

Research Station from August to November 2008 on a 4.9 m wide by 42.7 m long field 

plot prepared as in the post-emergence study.

A seed count-germination study was started at the same time as the hydroseeding 

study to determine the amount o f live, germinable seed contained in a given weight o f 

raw seed (crushed dried seedheads with just the stem and leaf pieces removed). Five 0.2 

gram samples o f raw seed were collected and sown separately on Petri dishes (100 mm in 

diameter, unsealed) lined with moistened filter paper (W hatman #3, W hatman 

International). The sown seeds were allowed to germinate inside an incubator (Percival 

Scientific, Inc., Perry, lA) with alternating dark and light periods (12 hours each) as well 

as fluctuating day and night temperatures (20 to 26°C). The number o f  germinable seeds 

per sample was recorded by counting and removing germinated seeds on a weekly basis.
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Accumulated data collected within 4 weeks o f monitoring was averaged to get the mean 

number o f germinable seed per given weight o f the raw seed. Based on this study a 0.2 

gram sample o f raw seed contained an average o f 55 germinable seeds.

Before the hydroseeding operation was conducted, any remaining weeds were 

removed from the field. The plot was divided into two 4.3 m wide by 18.3 m long 

sections to ensure even and accurate distribution o f the hydroseeding slurry. The 

hydroseeding operation was accomplished using a 190 liter capacity hydroseeder (Turbo 

Turf M odular Hydroseeding System Model No. HS-50-M). To facilitate mixing o f a 

batch o f hydroseeding slurry, hoth 3.9 kg straw mulch (HydroStraw, HydroStraw LLC) 

and 7.8 kg paper mulch (NaturesOwn, Hamilton M anufacturing Inc.) were pre-wetted in 

buckets. The mulching materials including 200 grams o f raw seed (contains 

approximately 55,000 germinable seeds) and 16.9 grams o f tackifier (C:tac, Hamilton 

M anufacturing Inc.) were slowly added while the hydroseeder was turned on and 

partially filled with water. After all eomponents were mixed in, the hydroseeder was 

filled to capacity with water in order to make one batch o f slurry. One batch o f 

hydroseeding slurry evenly covered an area o f 78 m^ and sowed 705 viable seeds/m^. To 

keep the plots constantly moist and to facilitate F. cymosa seed germination, overhead 

irrigation was turned on several times during the day (1.5 hours at 3:00 am and 15 

minutes at 11:00 am, 2:00 pm and 5:00 pm).

The application o f pre- and post-emergence herbicide treatments (Table 4.4) 

commenced 1 week after the hydroseeding operation was conducted. Prior to herbicide 

application, the plot was divided into four 18.3 m long x 2.1 m wide blocks. Each block 

was subsequently divided into ten 1.8 m x 2.1 m experimental units. Herbicide treatments
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were randomly allocated to each unit within the block. The pre-emergence herbicides, 

oxadiazon (Chipco Ronstar® WP, Bayer CropScience; applied at 2.24 kg a.i./ha) and 

oryzalin (Surflan® AS, United Phosphorus Inc.; applied at 2.24 kg a.i./ha) were applied 

at 7 and 14 days after hydroseeding (DAH) to control any germinating weed seeds. At 28 

and 42 DAH, another batch o f treatments which consisted o f a post-emergence herbicide 

mix containing aminopyralid (Milestone® VM, Dow AgroSciences; applied at 0.1 kg 

a.i./ha) and fluazifop-p-butyl (Fusilade® DX, Syngenta; applied at 0.28 kg a.i./ha), with 

or without a pre-emergence herbicide (oxadiazon applied at 2.24 kg a.i./ha) were sprayed 

to control both emerged and germinating weeds. A soluble preparation o f oxadiazon 

(Ronstar® WP, Bayer CropScience; applied at 2.24 kg a.i./ha) was sprayed together with 

aminopyralid fluazifop-p-butyl at 28 DAH. At 42 DAH, a granular preparation o f 

oxadiazon (Ronstar® G, Bayer CropScience; applied at 2.24 kg a.i./ha) was manually 

broadcast before the aminopyralid + fluazifop-p-butyl mix was sprayed. At 56 DAH, the 

post-emergence herbicide mix (aminopyralid + fluazifop-p-butyl) was applied to control 

most weeds that had emerged. Fluazifop-p-butyl was used to control grassy weeds while 

aminopyralid was used to control most broadleaf weeds. Also at this time (56 DAH), 

weeds in the untreated (control) plots were cut to about 2 0  cm from the ground to prevent 

extreme shading and ease plant count measurements at 92 DAH. Using a 1 x 1 m square 

frame, plant counts per square meter were collected at 92 DAH as a measure o f tolerance 

to pre- and post-emergence herbicide application.

Analysis o f variance was performed on plant count data using Statistix® 9 

statistical analysis software (Analytical Software, Tallahasee, FL). Since plant count data 

showed significance for non-additivity, a logarithmic transformation was performed
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before it was reanalyzed. Because most o f the data entries were small values (e.g. less 

than 1 0 ) all data entries were transformed using the formula, log(x+ l), where x = original 

data (Gomez and Gomez, 1984). Tukey HSD pairwise comparison tests were performed 

on plant count data to separate treatment means.

Results 

Pre-emergence herbicide screening for transplanted plugs

Ratings taken during the observation period revealed that separate applications of 

oxadiazon and oryzalin did not significantly reduce the vigor o f transplanted plugs (Table 

4.5). Vigor ratings o f both high and low rates o f oxadiazon and the high rate oryzalin 

were not significantly different from untreated plants at 43 (F  = 4.56, P  < 0.01), 71 (F  = 

8.67, P  <0.01) and 120 (F  = 6.17, P  < 0.01) DAS. In contrast, the high rate oxadiazon + 

oryzalin had the lowest vigor rating at the same observation periods. Vigor ratings 

collected during the last evaluation date (211 DAS) showed a drastic decline in values o f 

untreated plots due to weed pressure (Figure 4.1). At 211 DAS, the high rate o f oryzalin 

exhibited the highest vigor rating (F  = 2.84, P  = 0.03). The rest o f  the pre-emergence 

herbicide treatments had vigor ratings that were not significantly different from untreated 

(control) plants. Although no significant differences were observed in seedhead counts o f 

the pre-emergence herbicide treatments, the lowest mean values were observed in both 

high and low rates o f the oxadiazon + oryzalin treatments (Table 4.5).
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Post-emergence herbicide screening for nursery and field established plants

E valua tim  the safety o f  fluazifop-p-butyl and triclopyr on plants o f  different a se  classes.

Four weeks after treatment application (28 DAS), significant differences in foliar 

injuries were observed between herbicide treatments (F  = 1382.63, P  < 0.01) but not 

between age (F  = 0.27, P  = 0.77) or the age by treatment interactions (F  = 0.29, P  =

0.99). Visual injury ratings recorded in both high and low rates o f triclopyr were greater 

than 98% (Table 4.6). Regardless o f  age, all triclopyr treated plants were killed while 

fluazifop-p-butyl and crop oil treatments did not exhibit any visual injury (0%) (Figure 

4.2).

Significant age by treatment interactions were observed in aboveground biomass 

o f F. cymosa plants (F  = 3.49, P < 0.01). W ithin each age level, aboveground dry 

biomass o f plants treated with triclopyr were significantly lower than those observed in 

the non treated control, crop oil and fluazifop-p-hutyl treatments (Table 4.7). W ithin each 

age group, no significant differences were observed between aboveground biomass of 

fluazifop-p-butyl, crop oil and untreated plants.

Screenins o f  post-em ersence herbicides in field srown transplants.

Percent vigor data collected 5 weeks after treatment application indicate that the 

plants treated with the 4 post-emergence herbicides had significantly lower values 

compared to untreated plants (Table 4.8). The sulfosulfuron treatment exhibited the 

lowest percent vigor rating (36%) with plants showing severe stunting. Plants treated 

with the two carfentrazone based herbicides had a higher average vigor rating o f  54%. 

However, these were not significantly different from vigor ratings observed in the 

sulfosulfuron treated plants. Among the herbicide treatments evaluated, aminopyralid
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(25x) treated plants attained the highest vigor rating (61%) 5 weeks after spray 

applications.

High injury ratings were observed in the carfentrazone + 2,4-D + mecoprop + 

dicamba treated plants 5 weeks after treatment application (Table 4.8). It was also the 

only post-emergence treatment that had significantly high injury ratings when compared 

to untreated plants. The least injurious o f all the post-emergence herbicides tested was 

sulfosulfuron. Plants treated with sulfosulfuron consistently attained low weekly visual 

injury ratings as opposed to the other post-emergence herbicides tested.

The development o f leaf injury in each o f the post-emergence herbicide 

treatments had different characteristics (Figure 4.3). Plants sprayed with carfentrazone- 

based treatments exhibited whole-plant yellowing which progressed rapidly into severe 

leaf necrosis or plant death. Aminopyralid (25x) treated plants had a similar progression 

o f injury but the rate o f leaf necrosis was much slower. At five weeks after application, 

aminopyralid (25x) treated plants continued to exhibit severe yellowing and foliar 

malformations with limited development o f leaf necrosis. In contrast to the three 

broadleaf herbicides, foliar injury development in sulfosulfuron was different. While 

most o f the leaf tissue remained green, localized dark brown to black spots gradually 

coalesce and dry up. The result is a localized leaf necrosis.

In terms o f green color ratings, the sulfosulfuron treatment exhibited the highest 

values o f any post-emergence herbicide tested. M ean green color ratings observed in 

sulfosulfuron treated plants were not significantly different from those in untreated plants 

(Table 4.8). In contrast, carfentrazone + 2,4-D + mecoprop + dicamba treated plants 

attained the lowest percent green color (21%). Aminopyralid (25x) and carfentrazone +
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MCPA + mecoprop + dicamba treated plants had higher mean percent green color 

compared the carfentrazone + 2,4-D + mecoprop + dicamba treatments. However, their 

values were significantly lower compared to untreated plants.

Although no significant differences were observed in percent mortality between 

treated and untreated plants, mean values revealed that both aminopyralid (25x) and the 

two carfentrazone based herbicide treatments exhibited greater than 15% mortality (Table 

4.8). Carfentrazone + 2,4-D -I- mecoprop + dicamba treated plants obtained the highest 

mean percent mortality followed by both the aminopyralid (25x) and carfentrazone + 

MCPA -f- mecoprop + dicamba treatments. In contrast, sulfosulfuron was the only post­

emergence treatment that did not exhibit plant mortality.

Based on visual ratings and percent mortality recorded, overall ranking o f 

herbicides from most to least injurious are as follows: carfentrazone + 2,4-D + mecoprop 

+ dicamba > carfentrazone + MCPA + mecoprop + dicamba > aminopyralid (25x) > 

sulfosulfuron > untreated.

Tolerance o f  field srown plants to two rates o f  aminopyralid

Visual ratings recorded 5 weeks after herbicide application indicate non­

significant treatment differences in plant vigor {F = 0.94, P  = 0.44) and significant 

treatment differences in both foliar injury {F = 18.85, P  < 0.01) and green color {F  =

5.62, P < 0.05) (Table 4.9).

In terms o f mean plant vigor, values observed in both untreated and aminopyralid- 

treated plants were all greater than 90%. Although significantly higher foliar injuries 

were recorded in both rates o f  aminopyralid than in untreated plants, the injury was slight 

and not likely to result in significant loss in plant health. Foliar injuries observed in
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aminopyralid treatments ranged from 1 to 2  % while untreated plants did not exhibit 

foliar injuries.

Significantly lower green color ratings were observed in the high rate o f 

aminopyralid than in untreated plants. In contrast, green color ratings recorded in the low 

rate o f aminopyralid were not significantly different from those obtained in control 

plants. Although green color ratings showed significant treatment differences, the range 

o f values observed were above the acceptable green color range (> 90%).

Timing of pre- and post-emergence herbicide application on hydroseeded F. cymosa

Significant differences between mean plant counts o f each herbicide treatment 

combinations (F  = 25.57, P  < 0.01) were observed at 92 DAH (Table 4.10). Oryzalin, 

applied during the first two weeks after hydroseeding had significantly higher number o f 

plants compared to those treated with oxadiazon at the same dates. Plant counts observed 

in the oryzalin treatments did not significantly differ from that o f untreated plots. 

Oxadiazon applications from 7 to 28 DAH (with or without post-emergence herbicides) 

had the lowest plant counts among the treatments tested.

The addition o f a wettable formulation o f oxadiazon in the post-emergence spray 

at 28 DAH resulted in complete death o f plants. In contrast, plant counts observed in the 

post-emergence only treatments (applied at 28 DAH) did not significantly differ with 

untreated control plots. The wettable formulation o f oxadiazon, when applied together 

with aminopyralid -t- fluazifop-p-butyl, caused severe damage to foliar tissue (Figure 4.4). 

This eventually led to the complete mortality o f seedlings in the treatment plots at 92 

DAH. Applying granular oxadiazon right before post-emergence spray applications (at 42 

DAH) also caused severe foliar damage (Figure 4.5). However, plant survival in this
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treatment was significantly higher than those observed in the wettable formulation as 

some live plants were still recorded at 92 DAH. Plant counts observed in post-emergence 

only treatments were not significantly different from those recorded in untreated plots. 

W hen post-emergenee only applications (28, 42 and 56 DAH) were compared to each 

other, no significant differences between plant counts were observed.

In terms o f weed control, visual observations o f treatments with oxadiazon 

generally showed better weed controlling capability than oryzalin or post-emergence only 

(aminopyralid + fluazifop-p-butyl) applications. Aminopyralid fluazifop-p-butyl had 

good control o f grassy weeds and also some broadleaf species such as Leucaena  

leucocephala, Portulaca oleracea, Macroptilium atropurpureum and Amaranthus spp. 

However, the post-emergence mix did not control spurge species (Chamaesyce spp.). 

Figures 4.6 and 4.7 visually summarize weed control and plant density as affected by the 

different herbicide treatments.

Discussion 

Pre-emergence herbicide screening for Fimbristylis cymosa

The results from the pre-emergence study indicate the potential use o f oxadiazon 

and oryzalin in establishing transplanted F. cymosa plugs. Both high and low rates o f the 

two herbicides provided excellent weed control which lasted until the final evaluation 

date (211 DAS). Although the herbicide treatments may show some degree o f growth 

inhibition, seedhead production o f the plants was not significantly affected. In addition, 

growth inhibition seems to dissipate after 71 DAS, probably due to herbicide breakdown 

in the soil. Vencill (2002) notes that the typical field half life o f oryzalin and oxadiazon
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are 20 and 60 days, respectively. If  the least reduction o f plant vigor is desired, applying 

either herbicide alone and at the low rates is recommended.

Based on the results gathered from this study, both oryzalin and oxadiazon can be 

safely used for pre-emergence weed control in transplanted F. cymosa plugs.

Post-emergence herbicide screening for Fimbristylis cymosa

Evaluating the safety o f  fluazifop-p-butvl and triclopyr on plants o f  different a se  classes 

Final visual injury ratings and aboveground dry biomass show that triclopyr 

application was not safe for broadleaf weed control in F. cymosa. Both high and low rates 

o f triclopyr caused severe injury that led to the death o f plants. Although triclopyr is 

labeled for post-emergence broadleaf weed control, certain sedge species have shown 

sensitivity to or have been controlled by triclopyr sprays. A handful o f published papers 

have reported the effects o f triclopyr on sedge species, mostly the weedy species. Gabor 

et al. (1995) reported a decline in the number o f native sedge species (Carex spp.) with 

the application o f triclopyr (12 kg/ha) to control purple loosestrife in a wetland setting. In 

transplanted rice, triclopyr applied at 325g/ha and 625g/ha provided very good control o f 

Cyperus iria and Fimbristylis miliacea (Rohitashav et al., 2004).

In contrast to triclopyr, the fluazifop-p-butyl sprays were not detrimental to F. 

cymosa. No visual injuries were recorded in plants treated with either high or low rates o f 

fluazifop-p-butyl. There was also no significant difference between aboveground dry 

biomass o f untreated plants and those observed in fluazifop-p-butyl treated plants. This 

indicates that growth o f the sedge was not inhibited by its application.

Results obtained from crop oil only treatments have also shown that the wetting 

agent did not affect F. cymosa  growth. Plants treated with crop oil had no detectable
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visual injury and it also had a final dry mass that did not significantly differ from that o f 

the control.

Overall, this study shows that while triclopyr cannot be used for broadleaf weed 

control in F. cymosa plantings, fluazifop-p-butyl can be safely used to selectively control 

grassy weeds. It can be applied as an over the top spray in as early as 43 days after 

sowing without causing injury to the plant.

Screenins o f  vost-em ersence herbicides in Held srow n plants

Final visual ratings indicate that field established F. cymosa was sensitive to the 4 

post-emergence herbicides. Herbicide treated plants exhibited phytotoxicity symptoms 

ranging from a reduction in plant vigor and percent green color to increased foliar 

injury/necrosis and mortality. Carfentrazone + 2,4-D + mecoprop + dicamba was the 

most injurious herbicide since it exhibited high percent foliar injury and low percent 

green color. In addition, it also had the highest mean plant mortality after the 5-week 

observation period. The rapid development o f injury symptoms was primarily due to 

carfentrazone-ethyl, one o f the four active ingredients in the herbicide formulation. 

Functioning as a protoporphyrinogen inhibitor, carfentrazone-ethyl primarily controls 

broadleaf weeds through contact action (Boydston, 2004). The herbicide is fast absorbed 

by the leaves and the plants become necrotic and die shortly after treatment (Vencill, 

2002). This probably caused the quick development o f a ‘bronzed’ appearance in the two 

carfentrazone-based treatments. On the other hand, auxinic herbicides in the formulation, 

primarily dichloroacetic acid (2,4-D) probably contributed to whole plant yellowing 

which eventually led to severe necrosis and plant death.
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Slightly less injurious than carfentrazone + 2,4-D + mecoprop + dicamba was 

carfentrazone + MCPA + mecoprop + dicamba. Since the amount o f carfentrazone in this 

formulation is less than that o f carfentrazone + 2,4-D + mecoprop + dicamba, the extent 

o f foliar damage was slightly reduced. The primary auxinic herbicide, (4-chloro-2- 

methylphenoxyjacetic acid (MCPA) might have also affected the extent o f foliar injury 

incurred by the plants.

Although aminopjTalid (25x) was rated as the third most injurious herbicide 

based on visual ratings and plant mortality, its results may be different if  the correct 

maximum label rate is used. Due to errors committed during herbicide spray preparation, 

the actual amount o f aminopyralid applied to the treatment plots was 25 times higher than 

the recommended maximum label rate. In spite o f  the over application, the development 

o f leaf necrosis in aminopyralid treated plants were much slower compared to 

carfentrazone + 2,4-D + mecoprop + dicamba. M ost plants remained alive and exhibited 

severe chlorosis during the five week observation period.

Despite causing a severe reduction in vigor o f Fimbristylis transplants, 

sulfosulfuron was ranked as the least injurious o f all the herbicides tested. Plots treated 

with sulfosulfuron had zero mortality, low foliar injury ratings and high percent green 

color ratings. It is quite surprising that F. cymosa was able to tolerate sulfosulfuron, an 

acetolactate synthase inhibitor used mainly for controlling sedge species such as 

Kyllingia  spp. (Anonymous, 2008a) and Cyperus rotundas (Anonymous, 2008a; 

Eizenberg et al., 2003). Herbicide damage caused by sulfosulfuron is often characterized 

by apical growth inhibition, progressing to leaf necrosis and total plant collapse
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(Eizenberg et al., 2003; Vencill, 2002). A reduction in shoot biomass and overall growth 

characterize species that are sensitive to sulfosulfuron (Monaco and Creech, 2004).

Since most o f the herbicides evaluated caused moderate to severe plant injury, use 

o f  these herbicides in Fimbristylis plantings should only be limited to spot spray 

treatments. O f the three broadleaf post-emergence herbicides evaluated in the study, 

aminopyralid appears to be the most promising since mortality rates were low (15%) 

despite an over application o f the chemical. On the other hand, sulfosulfuron can also be 

used in Fimbristylis plantings as a spot spray treatment to control problematic sedge 

species such as purple nutsedge {Cyperus rotundus).

Tolerance o f  field srown plants to Pvo rates o f  aminopyralid

Visual ratings recorded 5 weeks after treatment application generally indicate that 

mature F. cymosa plants were indeed tolerant to both high and low recommended rates o f 

aminopyralid. Vigor ratings did not indicate any inhibitory effects o f aminopyralid to F. 

cymosa plants. Although significant differences were detected in foliar injury levels and 

in green color ratings o f aminopyralid-treated plants, the values were not substantial 

enough to cause detrimental impacts to mature plants.

Based on this study, high and low recommended rates o f aminopyralid can be 

safely used as an over the top spray for broadleaf weed control in mature Fimbristylis 

cymosa plantings.

Timing of pre- and post-emergence herbicide application on hydroseeded F. cymosa

Final plant counts reveal that pre-emergence herbicide application is not advisable 

during the establishment period (7 to 42 DAH). Applying pre-emergence herbicides
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during the first two weeks after hydroseeding or combining them with post-emergence 

herbicides at 28 and 42 DAH resulted in low plant counts per square meter. Oxadiazon 

was particularly injurious as it killed a majority o f germinating seeds during the first two 

weeks after hydroseeding. Spray and granular formulations o f oxadiazon, applied at the 

seedling stage, also caused severe leaf dessication and necrosis which led to an increase 

in mortality o f F. cymosa plants. Applications o f oryzalin during the first 2 weeks also 

reduced seedling density, but at a lower extent compared to oxadiazon. Although oryzalin 

could have been used for pre-emergence control at 28, 42 and 56 DAH, it was not 

compatible with the post-emergence herbicide mix o f aminopyralid and fluazifop-p-butyl. 

Mixing oryzalin with these two post-emergence herbicides led to the coagulation o f the 

spray solution.

W hile the pre-emergence herbicides, oryzalin and oxadiazon cannot be used for 

weed control in newly hydroseeded F. cymosa, the post-emergence herbicides, 

aminopyralid and fluazifop-p-butyl can be safely used as early as 28 DAH. Plant count 

data and visual observations indicate that the two post-emergence herbicides seem to 

have little to no detrimental impact on F. cymosa seedlings. Although slight yellowing 

and contortion o f plants can be observed two weeks after spraying the post-emergence 

mix, the plants were able to fully recover afterwards. As observed in the previous post­

emergence tolerance studies, aminopyralid and fluazifop-p-butyl can selectively control 

most broadleaf and grassy weeds. Certain species o f spurges (Chamaesyce spp.) however, 

were not controlled by aminopyralid (data not presented).
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Tables

Table 4.1. Label recommended application rates o f  the two pre-emergence herbicides 
evaluated on transplanted Fimbristylis cymosa plugs. The herbicide treatments were 
applied using a 3 nozzle boom attached to an electric sprayer calibrated to apply 374.2

Herbicide treatments
Application 

rate 
kg a.i./hectare

Amount o f 
product per 

hectare

Amount ml/3 
liters or grams

1 Oxadiazon (Ronstar® 50WP) 2.24 4.48 kg 36 grams
2 Oxadiazon (Ronstar® 50WP) 4.48 8.97 kg 72 grams
3 Oryzalin (Surflan® 4 AS) 2.24 2.34 liters 37.5 ml
4 Oryzalin (Surflan® 4 AS) 4.48 4.68 liters 75.0 ml
5 Oxadiazon -f- Oryzalin 2.24 + 2.24 4.48 kg + 

2.34 liters
36 grams 

37.5 ml
6 Oxadiazon -t- Oryzalin 4.48 + 4.48 8.97 kg + 

4.68 liters
72 grams + 

75.0 ml
7 Untreated control - - -

Table 4.2. Label recommended application rates o f the two post-emergence herbicides 
evaluated in three different age classes (43, 98 and 224 days after planting) o f 
Fimbristylis cymosa. The herbicide treatments were applied at a rate o f 20 ml per tray

Herbicide treatments
Application rate 
kg a.i./hectare

Amount ml/3 
liters

1 Fluazifop-p-butyl (Fusilade® II T&O) 0.28 4.05
2 Fluazifop-p-butyl (Fusilade® II T&O) 0.42 6.15
3 Triclopyr (Garlon® 4) 4.48 30
4 Triclopyr (Garlon® 4) 8.97 60
5 0.25% vol. crop oil - 7.5
6 Control (water) - -
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Table 4.3. Label recommended application rates o f the four post-emergence herbicides evaluated on field established Fimbristylis 
cymosa transplants. The herbicide treatments were applied using a 3 nozzle boom attached to an electric sprayer calibrated to apply

Herbicides Treatments
Application rate 

kg ai/ha
Amount o f 
product per 

hectare

Amount ml/3 
liter

1% MSO 
crop oil

1 Aminopyralid (Milestone® VM) 1.23 (overapplied) 9.36 liters 75.0 30 ml
2 Carfemtrazone-ethyl + MCPA, 2-ethylhexyl ester + 
Mecoprop-acid + Dicamba acid (Powerzone®)

0 .0 2 +  1.24 + 
0.25 + 0.12

4.68 liters 37.50 30 ml

3 Carfentrazone-ethyl -I- 2,4-D, 2-ethylhexyl ester + 
Mecoprop-p acid + Dicamba acid (Speedzone®)

0.02 + 0.86 + 
0.27 + 0.07

4.68 liters 37.50 30 ml

4 Sulfosulfuron (Certainty®) 0.07 87.5 grams 0.7 grams 30 ml
5 Untreated control - - - -



Table 4.4. Application rates and timing o f the different pre- and post-emergence herbicides evaluated on hydroseeded Fimbristylis 
cymosa. The herbicide treatments, except the granular formulation o f oxadiazon, were applied using a 3 nozzle boom attached to an

Herbicide Treatment
Herbicide rate Application timing (days Grams/ml for 3 liters

(kg a.i./ha) after hydroseeding)
Oxadiazon (wettable powder, Ronstar® 50 WSP) 2.24 7 36 g
Oryzalin (Surflan® 4 AS) 2.24 7 37.5 ml
Oxadiazon (wettable powder, Ronstar 50 WSP) 2.24 14 36 g
Oryzalin (Surflan® 4 AS) 2.24 14 37.5 ml
Oxadiazon (wettable powder, Ronstar® 50 WSP) 2.24 36 g
Aminopyralid (Milestone® VM) 0.1 28 3.2 ml
Fluazifop-p-butyl (Fusilade® DX) 0.28 9.4 ml
Aminopyralid (Milestone® VM) 0.1 28

3.2 ml
Fluazifop-p-butyl (Fusilade® DX) 0.28 9.4 ml
Oxadiazon (granular broadcast, Ronstar® G) 2.24 43.74 g (applied per plot)
Aminopyralid (Milestone® VM) 0.1 42 3.2 ml
Fluazifop-p-butyl (Fusilade® DX) 0.28 9.4 ml
Aminopyralid (Milestone® VM) 0.1 42

3.2 ml
Fluazifop-p-butyl (Fusilade® DX) 0.28 9.4 ml
Aminopyralid (Milestone® VM) 0.1 56

3.2 ml
Fluazifop-p-butyl (Fusilade® DX) 0.28 9.4 ml
Untreated n/a n/a n/a



Table 4.5. Visual vigor ratings and seedhead count o f  Fimbristylis cymosa transplants as affected by herbicide treatments. Vigor 
ratings were recorded at 43, 71, 120 and 211 days after spray application (DAS) while combined seedhead counts from two

Herbicide
Treatment

Rate
Vigor Rating (%)* Seedhead count 

(sum o f  2 plants)""
43 DAS 71 DAS 120 DAS 211 DAS 211 DAS

Oxadiazon 2.24 kg/ha 
4.48 kg/ha

58 (7.5) ab
59 (9.6) ab

64 (4.7) ab 
54 (10.7) ab

75 (4.6) ab 
67 (10.2) ab

80 (3.5) ab 
66 (10.7) ab

114(8.1) 
108 (22.7)

Oryzalin 2.24 kg/ha 
4.48 kg/ha

71 (9.4) ab 
69 (5 .1)ab

43 ( l l . l ) b  
58 (4.7) ab

76 (3.8) ab 
89 (3.1) a

63 (18.3) ab 
90 (0.0) a

99 (8.7) 
124(11.6)

Oxadiazon + 
Oryzalin

2.24 kg/ha + 
2.24 kg/ha

66 (7.2) ab 50 (7.4) b 60 (5.4) ab 66 (5.2) ab 80 (6.7)

Oxadiazon + 
Oryzalin

4.48 kg/ha + 
4.48 kg/ha 44 (3.1) b 23 (9.6) b 44 (13.8) b 55(11.7) ab 72 (22.0)

Untreated n/a 89 (1.3) a 93 (2.5) a 90 (5.5) a 54 (9.4) b 74(15 .7 )
F value 4.56 8.67 6.17 2.84 2.39
P value <0.01 <0.01 <0.01 0.03 0.07

* Means within a column followed by the same letter are not significantly different. Tukey HSD mean separation for vigor ratings at 
43 and 71 DAS are based on original means while mean separation for 120 and 211 DAS are based on arc sine transformed data. All 
means presented are original means with standard errors in parentheses (n = 4).

Treatment means are not significantly different.



Table 4.6. M ean percent foliar injury o f  Fimbristylis cymosa 28 days after spraying the

Herbicide Treatments Application Rate Injury (%)*
1 Fluazifop-p-butyl (Fusilade® 11 T&O)
2 Fluazifop-p-butyl (Fusilade® 11 T&O)
3 Triclopyr (Garlon® 4)
4 Triclopyr (Garlon® 4)
5 0.25% vol. crop oil
6 Control (water)

0.28 kg a.i./ha 
0.42 kg a.i./ha 
4.48 kg a.i./ha 
8.97 kg a.i./ha 
0.25% vol 
n/a

0 (0.0) b 
0 (0.0) b

99.5 (0.26) a
99.5 (0.42) a 

0 (0.0) b
0 (0.0) b

* Means followed by the same letters are not significantly different as determined by 
Tukey HSD at P <0.01. Mean separation for visual injury was based on arcsine 
transformed data. Means presented are original means with standard errors in parentheses 
(n=12) .

Table 4.7. Aboveground dry biomass o f the different Fimbristylis age classes 28 days

Herbicide
Treatments Rate

Combined aboveground dry biomass o f  6 plants 
(grams)* 28 days after treatment application

224 DAS 98 DAS 43 DAS
Fluazifop-p-butyl

Triclopyr

Crop oil 
Non treated

0.28 kg a.i./ha 
0.42 kg a.i./ha 
4.48 kg a.i./ha 
8.97 kg a.i./ha 
0.25% vol 
n/a

7.3 (0.44) a
6.2 (0.18) a

3.2 (0.16) be
4.0 (0.66) b
6.1 (0.20) a
7.2 (0.56) a

2.3 (0.27) cd
2.0 (0.21) d 

0.4 (0.10) efg 
0.3 (0.03) fg
2.0 (0.12) d 
1.8 (0 .1 1 )d

0 .7(0 .12) ef 
0.8 (0.08) e f 
0.04 (0.01) g 
0.05 (0.01) g 
0.86 (0.08) e 
0.67 (0.09) ef

* Means within columns and rows fo lowed by the same letters are not significantly
different as determined by Tukey HSD at P < 0.01. Mean separation for aboveground 
biomass was based on log transformed data. Means presented are original means with 
standard errors in parentheses (n = 4).
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Table 4.8. Percent vigor, foliar injury, green color and mortality o f  Fimbristylis plants 5
weeks after the 4 post-emergence herbicide treatments were a pplied.

Treatment Rate 
(kg a.i./ha)

Vigor*
(%)

Foliar
injury*

(%)

Green
color*

(%)

Mortality*
(%)

Aminopyralid
(overapplied) 1.23 61 (4 .3 )b 53 (14.0) ab 39 (8.3) c 17(5 .8 )ab

Carfentrazone 
+ MCPA + 
mecoprop -i- 
dicamba

1.63 54 (8.5) be 46 (13.6) ab 44 (9.4) be 17(6 .9 )ab

Carfentrazone 
+ 2,4-D + 
mecoprop + 
dicamba

1.22 54 (6.9) be 74 (3.8) a 21(4.3) c 23 (5.8) a

Sulfosulfuron 0.07 36 (5.5) c 16 (2.4) b 79 (6.3) ab 0 (0.0) b
Untreated - 89 (3.1) a 5 ( 0 . 5 ) b 95 (0.0) a 0 (0.0) b
* Means followed by the same etters are not significantly d ifFerent as determined by
Tukey HSD at P < 0.01. Means presented are original means with standard errors in 
parentheses (n = 4).

Table 4.9. Vigor, foliar injury and green color ratings o f mature Fimbristylis cymosa 5 
weeks after application o f aminopyralid. All means presented are original means with

Herbicide Application rate Vigor Injury Green color
Treatments kg a.i./ha (%)"^ (%)** (%)*

Aminopyralid Ix 0.07 92 (0.7) 1 (0.0) a 95 (0.0) ab
Aminopyralid 2x 0.12 91 (0.8) 2 (0.5) a 93 (1 .2 )b
Untreated n/a 94 (3.2) 0 (0.0) b 97 (0.9) a

mean weekly vigor ratings between treatments were not significant.
** Means followed by the same letters are not significantly different as determined by 
Tukey HSD at P < 0.01. Mean separation is based on arc sine transformed data.
* Means followed by the same letters are not significantly different as determined by 
Tukey HSD at P < 0.05.
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Table 4.10. Mean plant count per square meter o f the different pre- and post-emergence treatments at 92 DAH.

Herbicide Treatment Herbicide rate 
(kg a.i./ha)

Application 
timing (days 

after 
hydroseeding)

Grams/ml for 3 
liters

Mean plant 
count per m^*

Oxadiazon (wettable powder, Ronstar® 50 
WSP) 2.24 7 36 g 1.2 (0.25) c

Oryzalin (Surflan® 4 AS) 2.24 7 37.5 ml 11.1 (3.35) ab
Oxadiazon (wettable powder, Ronstar 50 WSP) 2.24 14 36 g 1.0 (0.00) c
Oryzalin (Surflan® 4 AS) 2.24 14 37.5 ml 19.2 (3.45) ab
Oxadiazon (wettable powder, Ronstar® 50 
WSP)
Aminopyralid (Milestone® VM) 
Fluazifop-p-butyl (Fusilade® DX)

2.24
0.1

0.28
28

36 g 
3.2 ml 
9.4 ml

1.0 (0.00) c

Aminopyralid (Milestone® VM) 
Fluazifop-p-butyl (Fusilade® DX)

0.1
0.28

28 3.2 ml 
9.4 ml

73.9 (29.89) ab

Oxadiazon (granular broadcast, Ronstar® G) 
Aminopyralid (M ilestone® VM) 
Fluazifop-p-butyl (Fusilade® DX)

2.24
0.1

0.28
42

43.74 g (per 
plot)

3.2 ml 
9.4 ml

9.6(11.30) b

Aminopyralid (Milestone® VM) 
Fluazifop-p-butyl (Fusilade® DX)

0.1
0.28

42 3.2 ml 
9.4 ml

36.2 (29.32) ab

Aminopyralid (M ilestone® VM) 
Fluazifop-p-butyl (Fusilade® DX)

0.1
0.28

56
3.2 ml 
9.4 ml 86.2 (23.77) a

Untreated n/a n/a n/a 70.6 (39.69) ab
* Means followed by the same letters are not significantly different as determined by Tu cey HSD at P < 0.01. Mean separation

based on log transformed means. Means presented are based on the antilog o f the transformed mean with standard errors in 
parentheses (n = 4).



Figures

Oxadiazon 
(4.48 kg a.i./ha)

Figure 4 .F  Visual comparison o f weed control in plots (top) and vigor o f representative plants (bottom) after two subsequent 
applications o f pre-emergence herbicides. At 211 DAS, untreated plots (left) were weedy while plots treated with pre-emergence
herbicides remained almost weed free. Both the high rate o f oxadiazon (3 
noticeably stunted plants in comparison to the other treatments.

rd from the left) and oxadiazon + oryzalin (next page) have
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Oxadiazon {2.24 kd: ■ 
a.i./ha + oryzalin (£24''' 
kg a.i./ha) r

Oxadiazon (4.48 kg 
a.i./ha) + oryzalin (4.48 
kg a.i./ha)

■ < . A .  . "  «

Figure 4.1 continued. Visual comparison o f weed control in plots (top) and vigor o f representative plants (bottom) after two 
subsequent applications o f pre-emergence herbicides.
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Figure 4.2. Visual comparison o f  the post-emergence herbicide treatments (top) 28 days 
after spraying the three age classes (DS = days after sowing, left) o f Fimbristylis cymosa. 
Spray applications o f both high and low rates o f triclopyr resulted in plant death while 
fluazifop-p-butyl and crop oil sprays did not cause any injury to plants.
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Figure 4.3. Representative plants and corresponding visual ratings (v = vigor; i = injury 
and gc = green color) 5 weeks after spraying the post-emergence herbicide treatments: A) 
untreated; B) aminopyralid applied at 1.23 kg a.i./ha; C) carfentrazone + MCPA + 
mecoprop + dicamba applied at 1.63 kg a.i./ha; D) carfentrazone + 2,4-D -t mecoprop + 
dicamba applied at 1.22 kg a.i./ha; and E) sulfosulfuron applied at 0.07 kg a.i./ha. The 
two carfentrazone-based treatments exhibited whole plant yellowing which progressed 
rapidly into severe leaf necrosis or plant death. Aminopyralid treatments exhibited severe 
yellowing and foliar malformations with limited necrosis. Sulfosulfuron treatments 
exhibited severe stunting and localized leaf necrosis.
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Figure 4.4. A comparison o f seedling damage 4 days after post-emergence spray 
application (0.1 kg a.i./ha aminopyralid + 0.28 kg a.i./ha fluazifop-p-butyl) with (left) or 
without (right) a wettable powder formulation o f oxadiazon. Adding oxadiazon (2.24 kg 
a.i./ha) in the post-emergence herbicide spray (at 28 DAH) caused severe foliar damage 
that lead to significantly low plant counts. In contrast, seedlings sprayed with only the 
post-emergence herbicides (aminopyralid fluazifop-p-butyl) exhibited slight yellowing 
and contortion o f the leaves (right photo).

Figure 4.5. A comparison o f seedling damage 1 week after post-emergence spray 
application (0.1 kg a.i./ha aminopyralid + 0.28 kg a.i./ha fluazifop-p-butyl) with (left) or 
without (right) a broadcast application o f granular oxadiazon (2.24 kg a.i./ha). Foliar 
damage caused by the application o f granular oxadiazon (at 42 DAH) was similar to 
those observed in treatments sprayed with the wettahle formulation.
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Figure 4.6. Visual comparison o f weed control and plant density (0.3 x 0.3 m square) of 
plots treated with pre-emergence herbicides (photo taken at 92 DAH). Application of 
2.24 kg a.i./ha oxadiazon and 2.24 kg a.i./ha oryzalin during the first two weeks after 
hydroseeding (7 and 14 DAFl) severely reduced plant density o f F. cymosa. Oxadiazon 
treatments had little to no plants present in the plots on the evaluation date.
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Pre/(wettable)+ pod

3  7 f c '

Figure 4.7. Visual comparison o f weed control and plant density (0.3 x 0.3 m square) in 
plots treated at different dates with pre- (2.24 kg a.i./ha oxadiazon, as wettable or 
granular formulation) and post-emergence herbicides (0 . 1  kg a.i./ha aminopyralid + 0.28 
kg a.i./ha fluazifop-p-butyl). At 92 DAH, treatments applied with wettable and granular 
formulations o f oxadiazon (2.24 kg a.i./ha) have noticeably reduced Fimbristylis plant 
density. Invasion o f weedy spurge species can also be seen in the post-emergence only 
treatments.
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CHAPTER 5

TOLERANCE OF SPOROBOLUS VIRGINICUS (L.) KUNTH (‘AKI ‘AKI) TO PRE- 

AND POST- EMERGENCE HERBICIDES

Introduction

Generating basic information on herbicide tolerance o f a native re-vegetation 

species lays the groundwork for developing weed management protocols and strategies 

during establishment and maintenance. In order to achieve successful roadside re­

vegetation using native Hawaiian plants, screening o f pre- and post-emergence herbicides 

is necessary. Currently, little is known about the tolerance o f Sporobolus virginicus to 

various roadside right o f way herbicides. This salt and moderately drought tolerant grass 

has potential use as a low maintenance turf for roadside slope and streambank 

stabilization (USDA-NCRS, 2007). Although this species has already been used for 

roadside re-vegetation on the Mokulele Highway in Maui, pre- and post-establishment 

weed control for this project was particularly problematic. Because o f a lack o f 

information on suitable herbicides, weed control options were limited and established 

plantings eventually succumbed to heavy weed invasions. The objective o f this study was 

to build basic information on Sporobolus virginicus pre- and post-emergence herbicide 

tolerance so that a weed management protocol for its establishment can be developed.

Materials and Methods

The herbicide tolerance study for S. virginicus was divided into two sections, 

namely: 1 ) tolerance o f transplanted plugs to pre-emergence herbicides and 2 ) tolerance 

o f established plants to post-emergence herbicides. Both studies were conducted at the
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Waimanalo Research Station from M ay to September 2008 (pre-emergence study) and 

from July to October 2008 (post-emergence study).

Planting material

S. virginicus plants (HA# 5802, 9079745) established at the Magoon Research 

Facility in M anoa were used as stock plants for the study (see Chapter 3 for details on 

stock plant establishment). Propagation o f grass plugs commenced one year before the 

study was conducted. Plants were vegetatively propagated through division o f clumps (3- 

stemmed, 35 to 40 cm tall) or from apical stem cuttings. To enhance rooting, clumps or 

cuttings were soaked in a 1:20 dilution (500 ppm indole butyric acid and 250 ppm 

naphthalene acetic acid) o f commercially available rooting solution (Dip ‘N Grow®, 

Clacklamas, OR). The treated materials were planted in dibble tubes filled with 60:40 by 

volume ratio o f potting mix (Pro-mix®, Premier Horticulture) and black cinder 

(Menehune Magic, Hawaiian Earth Products). Planted cuttings or clumps were allowed to 

root for one month under constant mist and then transferred to a sprinkler irrigated 

holding area under full sun conditions.

Pre-emergence herbicide screening for transplanted Sporobolus virginicus plugs

The pre-emergence study was conducted on two adjacent field plots measuring 

4.9 m wide by 42.7 m long. Methods o f land preparation and irrigation installation were 

the same as those described in the field grown Fimbristylis cymosa post-emergence study 

(see Chapter 4). In addition to an overhead irrigation system, three sub-irrigation lines 

(buried approximately 0.4 m deep) were also installed in the plots prior to planting. The
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two outermost lines were spaced 0.91 m away from the edge o f the plot. The central drip 

line was spaced at 2.4 m from the edge o f  the plot.

S. virginicus grass plugs were planted along the 3 drip lines at an in-row spacing 

o f 0.61 m. The plots were fertilized immediately with 112.1 kg N /ha and 93.04 kg K/ha 

as 18-0-18 with minors (United Horticultural Supply, Loveland Products Inc.).

The experiment was laid out in a randomized complete block design with 4 

replicates. Each treatment plot measured 1.8 meters wide by 4.9 meters long and 

contained 12 grass plugs arranged in rows o f 3. All pre-emergence herbicide treatments 

(Table 5.1) except the salt treatment were applied 2 days after planting. The granular 

herbicides, oxadiazon (2.24 and 4.48 kg a.i./ha) and isoxaben -i- trifluralin (2.24 + 0.56 kg 

a.i./ha and 4.48 + 1.12 kg a.i./ha) were applied by hand, making sure that the herbicides 

were broadcast uniformly. The spray herbicides, dithiopyr (0.28 and 0.56 kg a.i./ha) and 

oxyfluorfen (0.28 and 0.56 kg a.i./ha) were applied using a 3 nozzle boom (nozzles 

spaced 50.8 cm apart) fitted with three 8004 LP Teejet Spray Systems nozzle tips 

(Spraying Systems Co., Wheaton, IL). The 3 liter sprayer, powered by an electric 

diaphragm pump was calibrated to apply 374.2 liters per hectare at 103.4 KPa. To ensure 

that no cross contamination o f herbicides occur, the spray system was thoroughly rinsed 

with water between treatment changes.

Due to an unforeseen problem in irrigation scheduling, the entire field experiment 

was not irrigated for about 1 week after planting. Irrigation was restored during the 

subsequent weeks and was set to open 5 days per week with watering occuring every 

morning and afternoon. Subirrigation lines ran for 20 minutes while overhead irrigation 

lines opened for 1 hour.
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Broadcast application o f the granular salt treatment (Morton® Table Salt applied 

at 448 kg a.i./ha) was conducted 28 days after planting when majority o f the weed 

seedlings were present.

At 37 days after herbicide application (37 D A H l), percent maximum vigor (0 = 

dead to 1 0 0  = maximum attainable vigor), percent o f treated foliage showing injury ( 0  = 

no injury to 1 0 0  = complete foliar injury) and percent control ratings o f specific weed 

species ( 0  = no control to 1 0 0  = complete control) were recorded in each treatment plot. 

At 70 D A H l, timed weeding per treatment plot was conducted to return the plots back to 

weed-free condition. Also, a combined aboveground dry biomass from 3 representative 

plants was taken 5 em from the ground level. Immediately after representative samples o f 

aboveground biomass were taken, all remaining non-sampled plants were trimmed in a 

similar fashion with the top growth removed from the experimental area. A reapplication 

o f pre-emergence herbicide treatments (including the table salt treatment) occurred at 82 

D A H l (0 DAH2). Five weeks after the 2"̂ * application o f treatments (38 DAH2) 

maximum vigor, foliar injury and percent weed control ratings were recorded. Timed- 

weeding o f each treatment plot and a combined aboveground dry biomass o f sampling 

unit were also recorded at this final evaluation date.

Analysis o f variance using Statistix® 9 statistical analysis software (Analytical 

Software, Tallahasee, FL) was performed for all data sets collected. Data sets showing 

significance for non-additivity were transformed prior to re-analysis. Using techniques 

prescribed by Gomez and Gomez (1984), all data sets collected at 37 D A H l as well as 

weed control ratings for PhyUanthus debilis and Portulaca oleracea (collected at 38 

DAH2) were arc sine transformed. Timed weeding data collected at 70DAH1 and 38

94



DAH2 were log transformed. Tukey HSD pairwise comparison tests were performed on 

vigor and injury ratings, timed weeding and aboveground biomass. For percent control o f 

specific weed species, means were separated using the Least Significant Difference test.

Post-emergence broadleaf herbicide screening for established Sporobolus virginicus 

plants

Post-emergence herbicide screening for S. virginicus was conducted on a 4.9 m 

wide by 42.7 m long plot adjacent to the pre-emergence study. Field preparation and 

planting o f the grass plugs was done following the procedures and dimensions specified 

in the pre-emergence study (see previous section). After planting, the plots were fertilized 

with 98.1 kg N/ha and 81.4 kg K/ha as 18-0-18 with minors (United Horticultural Supply, 

Loveland Products Inc.). Oxadiazon (Chipco Ronstar® G, Bayer CropScience) was also 

applied at a rate o f 4.48 kg a.i./hectare to control emerging weeds during establishment. 

Post-emergence herbicide spray treatments (Table 5.2) were applied 70 days after 

planting (70 DAP) and consisted o f 1.23 kg a.i./ha aminopyralid (overapplied at 25x the 

label recommended rate due to confusion between 2 product labels; M ilestone® VM, 

Dow AgroSciences), 3.36 kg a.i./ha triclopyr (Garlon® 4, Dow AgroSciences), 1.63 kg 

a.i./ha Powerzone® (0.02 kg a.i./ha carfentrazone-ethyl + 1.24 kg a.i./ha M CPA -h 0.25 

kg a.i./ha mecoprop + 0.12 kg a.i./ha dicamba, PBl/Gordon Corporation) and 0.07 kg 

a.i./ha sulfosulfuron (Certainty®, Monsanto) were laid out and applied in a randomized 

complete block design with 4 replicates. Each treatment plot measured 1.8 m wide x 4.9 

m long and contained twelve grass plugs arranged in rows o f 3. The treatments were 

applied using a 3 nozzle boom (nozzles spaced 50.8 cm apart) fitted with three 8004 LP 

Teejet Spray Systems nozzle tips (Spraying Systems Co., W heaton, IL). The three liter
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sprayer, powered by an electric diaphragm pump was calibrated to apply 374.2 liters per 

hectare at 103.4 KPa. To ensure that no cross contamination o f herbicides occur, the 

spray system was thoroughly rinsed with water between treatment changes. After 

spraying, irrigation was put on hold for 13 hours to allow herbicide absorption.

Percent maximum plant vigor (0 = dead to 100 = maximum attainable vigor), 

percent o f treated foliage showing injury or abnormal growth (0 = no foliar injury to 100 

= whole plant necrosis/chlorosis) and percent maximum green color ( 0  = brown/chlorotic 

to 100 = maximum attainable green color) were collected 28 days after herbicide 

application (28 D A H l). Post-emergence herbicide treatments were applied a second time 

35 days after the initial treatment application (0 DAH2). Vigor, injury and green color 

ratings were recorded 4 weeks after the second application was conducted (28 DAH2). 

Also, a combined aboveground dry biomass (top growth approximately 5 cm above the 

soil surface) from 3 representative plants were collected, dried and weighed.

Analysis o f variance using Statistix® 9 statistical analysis software (Analytical 

Software, Tallahasee, FL) was performed for all herbicide tolerance ratings and 

aboveground dry biomass data collected at 28 D A H l and 28 DAH2. Data sets showing 

significance for non-additivity were transformed using appropriate techniques prescribed 

by Gomez and Gomez (1984). Foliar injury data collected at 28 D A H l were square-root 

transformed while aboveground biomass data were log transformed before reanalysis. 

Tukey HSD pairwise comparison tests were performed on each data set showing 

significance in the analysis o f variance.
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Results

Pre-emergence herbicide screening for transplanted Sporobolus virginicus

Crop tolerance and weed control efficacy at 37 D A H l

Overall plant vigor and maximum foliage injury ratings did not indicate any 

significant inhibition in growth {F = 0.98, P = 0.48) nor damage to leaf tissue {F = 0.97, 

P = 0.48) due to pre-emergence herbicide application (Table 5.3). Mean plant vigor 

ratings ranged from 82 to 69%, with the low rate o f  oxyfluorfen having the highest mean 

plant vigor while dithiopyr at the high rate having the lowest mean plant vigor. Mean 

foliage injury ratings ranged below 5% with only the high rate o f dithiopyr having the 

highest value o f 15%.

Although a total o f 14 weed species were observed at 37 DAHl (Table 5.4), only 

7 species were abundant enough throughout the experimental area to provide reliable 

weed species control ratings in response to herbicide treatments (Table 5.5). For the 

control o f Indigofera hendecaphylla, all herbicides including table salt proved to be 

effective with both high and low rates o f  oxadiazon and oxyfluorfen providing complete 

control (100%). Except for table salt, all pre-emergence treatments provided acceptable 

control o f Eleusine indica and Portulaca oleracea. Complete control o f Eleusine indica 

was observed in the high rate o f dithiopyr and both high and low rates o f oxadiazon and 

trifluralin -t- isoxaben. For Portulaca oleracea, complete control was observed in the high 

rate o f trifluralin isoxaben and both high and low rates o f oxyfluorfen and oxadiazon. 

Treatments with either high or low application rates o f oxyfluorfen or oxadiazon were 

also effective in controlling Phyllanthus debilis. Complete control o f Phyllanthus debilis 

was observed in both rates o f oxyfluorfen and the high rate o f oxadiazon. Both high and
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low rates o f oxadiazon and the high rates o f oxyfluorfen and trifluralin + isoxaben were 

effective for controlling Crotalaria species. Complete control o f Crotalaria sp. was 

observed in the low rate o f oxadiazon and in both high and low rates o f trifluralin + 

isoxaben. Significant control o f Mimosa pudica  was observed in both high and low rates 

o f oxadiazon and the high rates o f dithiopyr, oxfluorfen and trifluralin + isoxaben. 

Complete control o f Mimosa pudica  was only observed in the high rate o f oxadiazon. 

Both rates o f oxadiazon controlled Leucaena leucocephala.

In contrast to the pre-emergence herbicides used in the study, table salt did not 

exhibit acceptable control ratings for most weed species. Except for Indigofer a 

hendecaphylla, percent control values o f the table salt treatment did not significantly 

differ with that o f the untreated control. The only noticeable change in salt treated plots 

was that o f its surface soil characteristics. The application o f salt caused the surface soil 

to become puddled when wet and created a thin impervious layer that cracked when it 

was dried (Figure 5.1).

Based on weed control values recorded at 37 D A H l, the overall performance o f 

the pre-emergence treatments from best to worst are as follows: high rate o f oxadiazon = 

low rate o f oxadiazon > high rate o f oxyfluorfen > high rate o f trifluralin + isoxahen > 

low rate o f oxyfluorfen > low rate o f trifluralin + isoxaben > high rate o f dithiopyr > low 

rate o f dithiopyr > table salt > untreated.

Timed weedins and aboveeround biomass at 70 D AH l

Results obtained from the timed weeding activity indicate significant differences 

between treatments {F = 12.43, P  < 0.01). Both high and low rates o f oxadiazon and 

oxyfluorfen and the high rate o f trifluralin + isoxaben exhibited significantly shorter
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weeding times than untreated plots. Oxadiazon, applied at the high rate, took the least 

time to return plots to weed-free condition (Table 5.6). The low rate o f oxadiazon, the 

high rate o f trifluralin + isoxaben and both rates o f oxyfluorfen took less than six minutes 

per person to return the plots to weed free condition. W eeding times recorded in both 

rates o f dithiopyr, salt and the low rate o f trifluralin + isoxaben did not significantly differ 

from those recorded in untreated plots. The salt treatment took the longest time to weed 

among all pre-emergence treatments tested.

Aboveground dry biomass collected 70 DAH l did not indicate significant 

differences between the pre-emergence treatments (F  = 1.20, P = 0.34). The low rate o f 

oxyfluorfen exhibited the highest biomass while untreated plots exhibited the lowest 

biomass (Table 5.7).

Crov tolerance, weed control efficacy, timed weedins and biomass at 38 DAH2

Vigor ratings recorded at 38 DAH2 revealed significant treatment effects (F  = 

5.61, F  < 0.01). Plant vigor was the highest in the high rate o f oxadiazon (8 6 %) followed 

by the low rate o f oxadiazon (82%) and the high rate o f oxyfluorfen (75%). The lowest 

vigor ratings were observed in the table salt treatments (38%). Ratings for foliar injury 

were not significantly different (F  = 1.2, F  = 0.35). Injury ratings were slight and ranged 

between 0 to 1% (Table 5.8).

Significant differences in control values were detected in four weed species 

namely Indigofera hendecaphylla (F  = 7.9, F  < 0.01), Mimosa pudica  (F  = 4.4, F  < 0.01), 

Phyllanthus debilis (F  = 7.9, F  < 0.01) and Portulaca oleracea  (F  = 25.7, F  < 0.01) 

(Table 5.9). Both high and low rates o f oxadiazon and oxyfluorfen and the high rate o f 

dithiopyr and trifluralin + isoxaben were effective in controlling Indigofera
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hendecaphylla. Complete control o f this species was observed in the high rate o f 

oxyfluorfen and both rates o f oxadiazon. Both rates o f oxadiazon provided 100% control 

o f Mimosa pudica. Effective control o f  Phyllanthus debilis was observed in both high and 

low rates o f oxyfluorfen and oxadiazon. All pre-emergence herbicides including table salt 

exhibited significant control o f Portulaca oleracea. However, all herbicides provided 

significantly higher percent control values (> 90%) than the table salt treatment.

Complete control o f Portulaca oleracea was observed in the high and low rates o f 

oxyfluorfen and oxadiazon and in the low rate o f  dithiopyr and trifluralin + isoxaben.

Aboveground biomass collected at 38 DAH2 yielded significant differences 

between the pre-emergence treatments (F  = 8.98, P  < 0.01). The high rate o f oxadiazon 

obtained the highest aboveground dry biomass followed by the low rates o f oxadiazon 

and oxyfluorfen. Both high and low rates o f oxadiazon were the only pre-emergence 

treatments to exhibit significantly higher crop biomass than untreated plants (Table 5.10). 

Aboveground biomass collected from the rest o f the treatments were not significantly 

different from those o f untreated plants. Dithiopyr, applied at the low rate had the lowest 

crop biomass among the pre-emergence herbicides tested. Table salt had the least amount 

o f  biomass; exhibiting a lower mean value compared to untreated plants.

Both high and low rates o f oxadiazon and the high rate o f oxyfluorfen took the 

least time to return plots to a weed-free condition (F =  58.57, F  < 0.01) (Table 5.11). The 

high rate o f oxadiazon took an average time o f 0.33 minutes per person, while the low 

rate o f oxadiazon and the high rate o f oxyfluorfen took 0.75 and 0.95 minutes per person, 

respectively. Untreated and salt-treated plots took the most time to weed with 25.97 and 

16.30 minutes/person, respectively.
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Based on data collected at 38 DAH2, the overall performance o f  the pre­

emergence treatments from best to worst are as follows: high rate o f  oxadiazon > low rate 

o f oxadiazon > high rate o f oxyfluorfen > low rate o f oxyfluorfen > high rate o f dithiopyr 

>low rate o f trifluralin + isoxaben > high rate o f trifluralin + isoxaben = low rate o f 

dithiopyr > table salt = untreated. Figure 5.2 visually illustrates the degree o f  weediness 

in each treatment plot at 38 DAH2.

Post-emergence broadleaf herbicide screening for established Sporobolus virginicus 

plants

Foliar injury ratings recorded 4 weeks after the first post-emergence application 

(28 D A H l) revealed significant differences between treatments {F = 24.53, P  < 0.01 ). 

Triclopyr, carfentrazone + MCPA + mecoprop + dicamba and aminopyralid (25x) had 

significantly higher injury ratings compared to untreated plants (Table 5.12). In contrast, 

injury ratings recorded in sulfosulfuron were not significantly different from those 

observed in untreated plants. Foliar injury ratings at this evaluation date were relatively 

low and ranged from 5.50 to 0.25%.

Foliar injury ratings o f all treatments generally increased at the second evaluation 

date (28 DAH2). Triclopyr and aminopyralid (25x) caused significant foliar injury {F = 

172.18, P < 0.01) after the second application (Table 5.12). The triclopyr treatment 

exhibited severe leaf necrosis while aminopyralid (25x) treated plants showed severe 

chlorosis (Figure 5.3). Although aminopyralid (25x) treated plants had a slightly lower 

mean injury rating, it did not significantly differ from the triclopyr treated plants. Injury 

levels recorded in plants sprayed with carfentrazone + MCPA + mecoprop + dicamba and 

sulfosulfuron were significantly lower than those observed in the triclopyr and

101



aminopyralid (25x) treatments. Injury ratings recorded in sulfusulfuron treated plants 

were low and did not significantly differ from untreated plants.

Significant differences for green color ratings were recorded on the first (28 

D A H l) and second (28 DAH2) evaluation dates (Table 5.13). During the first evaluation 

date, triclopyr, aminopyralid (25x) and carfentrazone + MCPA + mecoprop + dicamba 

had significantly lower green color ratings compared to sulfosulfuron and untreated 

plants. Triclopyr exhibited the lowest green color rating at 53%, followed by 

aminopyralid (25x) (59%) and carfentrazone + MCPA + mecoprop + dicamba (64%). 

Green color ratings o f sulfosulfuron did not significantly differ with that o f untreated 

plants. During the second evaluation date, green color ratings o f triclopyr and 

aminopyralid (25x) decreased even further. Triclopyr treated plants dropped from 53 to 

23% while aminopyralid (25x) treatments declined from 59 to 30%. The carfentrazone + 

MCPA + mecoprop + dicamba treatment did not exhibit a drastic change in green color 

ratings as opposed to triclopyr and aminopyralid (25x) treated plants. The final green 

color rating o f  the carfentrazone + MCPA + mecoprop + dicamba treatment was 

significantly higher compared to those recorded in triclopyr and aminopyralid (25x). The 

highest green color ratings among the post-emergence herbicides tested was again 

recorded in the sulfosulfuron treatment. Mean green color ratings obtained from 

sulfosulfuron were not significantly different from those observed in untreated plants.

Vigor ratings on the first evaluation date revealed that triclopyr was the only post­

emergence herbicide to exhibit significantly reduced vigor (Table 5.14). During the 

second evaluation date, further reductions in plant vigor o f triclopyr and aminopyralid 

(25x) treated plants were recorded. Triclopyr exhibited the lowest plant vigor at 29%
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followed by aminopyralid (25x) at 44%. Vigor ratings recorded in carfentrazone +

MCPA + mecoprop + dicamba and sulfosulfuron treated plants were significantly higher 

than triclopyr and aminopyralid and did not significantly differ with those observed in 

untreated plants.

After two sequential applications o f the post-emergence herbicides, significant 

differences in aboveground dry biomass were recorded (F  = 25.48, P  < 0.01). Triclopyr, 

carfentrazone + MCPA + mecoprop + dicamba and aminopyralid (25x) caused 

significantly lower aboveground dry biomass than sulfosulfuron and untreated plants 

(Table 5.15). The lowest aboveground dry biomass was observed in the triclopyr 

treatment followed by the carfentrazone + MCPA + mecoprop + dicamba and 

aminopyralid (25x) treatments. Although a 47% decrease in aboveground dry biomass 

was recorded in sulfosulfuron treated plants, this was not significantly different from 

those obtained in untreated plants.

Based on visual ratings and aboveground dry biomass collected after two 

sequential post-emergence treatment applications, overall ranking o f the post-emergence 

herbicides from most to least injurious are as follows: triclopyr > aminopyralid (25x) > 

carfentrazone + MCPA + mecoprop + dicamba > sulfosulfuron > untreated.

Discussion

Pre-emergence herbicide screening for transplanted Sporobolus virginicus

Visual ratings, aboveground biomass and weeding times indicate that the two 

most effective and safest pre-emergence herbicides were oxadiazon and oxyfluorfen.

Oxadiazon, applied at the high rate controlled the most weed species; consistently 

attained the highest weed control values; and provided the shortest weeding times. Plants
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treated with the high rate o f oxadiazon also provided the highest aboveground biomass.

At the lower rate, oxadiazon completely controlled fewer weed species but nonetheless 

exhibited excellent weed control as evidenced by a short weeding time (< 1 minute) and 

high aboveground biomass o f treated Sporobolus plants.

Oxyfluorfen, applied at the high or low rates were also effective and safe for use 

in transplanted Sporobolus virginicus plugs. Although some weed species like Leucaena 

leucocephala and Mimosa pudica  may not be effectively controlled by oxyfluorfen, high 

control ratings for most weed species were still attained. This is evidenced by short 

weeding times (< 2  minutes) recorded in the oxyfluorfen treatments. In terms o f safety, 

oxyfluorfen application did little to inhibit the growth o f  Sporobolus transplants. Even 

after two applications, high aboveground biomass was observed in the oxyfluorfen 

treatments.

Weed control and aboveground crop biomass results obtained from oxyfluorfen 

and oxadiazon treated plants were comparable to those reported in garlic (Qasem, 1996) 

and marjoram (Qasem and Foy, 2006). Post plant application o f oxyfluorfen and 

oxadiazon at the 3-4 leaf stage in garlic resulted in high shoot dry weights and bulb yields 

(Qasem, 1996). In marjoram, post plant application o f both pre-emergence herbicides 

effectively controlled weeds as well as significantly increased shoot fresh and dry weight 

yields.

The least effective pre-emergence herbicide treatments evaluated in this study 

were trifluralin + isoxaben and dithiopyr. These two herbicides controlled fewer weed 

species and generally had lower weed control values and longer weeding times than 

oxadiazon and oxyfluorfen. The lowest aboveground biomasses among the pre-
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emergence herbicides tested were also observed in trifluralin + isoxaben and dithiopyr 

treatments. Although weed pressure may be a contributing factor to this, visual 

observations indicate that weed infestation was minimal and may not have caused this 

significant decrease in aboveground biomass. One probable cause o f this decrease might 

be from herbicide application. Besides aboveground biomass, low mean vigor ratings 

(<65%) at 38 DAH2 also suggests the inhibitory effects o f the two pre-emergence 

herbicides. Growth inhibition, caused by these two herbicides, has also been observed in 

weed control/plant establishment studies done in other crops. For Tifway bermudagrass 

and zoysiagrass a 25 and 20% suppression in establishment was observed in a post plant 

application o f the full rate o f dithiopyr (0.6 kg/ha) (Fagemess et al., 2002). On the other 

hand, trifluralin isoxaben, applied at the high rate (4.5 1.12 kg/ha), decreased frond

length and frond number o f Cyrtomium falcatrum  ‘Rochfordianum’ (rochford’s Japanese 

holly fern) by 6 6 % and 72%, respectively (Fain et al., 2006).

O f all the treatments tested, salt application was the least effective for weed 

control. Although a slight decrease in the incidence o f certain weed species were 

observed, the degree o f control by salt application did not match those o f pre-emergence 

herbicides.

Slight stunting due to salt-mediated water stress was observed in weeds but also 

in the Sporobolus transplants. Distinct soil stmcture changes resulted in 

puddling/cracking o f the soil surface in table salt treated plots, due to the sodium ions 

dipersing the soil particles. Soil dispersion rather than flocculation happens when the 

large, hydrated sodium ions cannot bind closely to clay particles to effectively neutralize 

clay’s inherent negative charge (Bright and Addison, 2002). This is especially apparent in
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soils having a high clay content (i.e., swelling clays like montmorillonite) (Bright and 

Addison, 2002). Due to these effects, it is not advisable to use salt for controlling weedy 

species, particularly in clayey soils.

Overall, the study revealed differences between pre-emergence herbicide 

treatments in terms o f weed control efficacy and impact on Sporobolus growth.

Oxadiazon and oxyfluorfen provided an optimum growing environment for establishing 

Sporobolus transplants through excellent pre-emergence control o f weeds. Both 

oxadiazon and oxyfluorfen significantly controlled most broadleaf and grassy weed 

species and allowed for the highest level o f aboveground biomass. In contrast, trifluralin 

+ isoxaben and dithiopyr applications had lower weed control efficacy and were 

detrimental to plant growth. The application o f table salt did little to control weeds in 

transplanted Sporobolus plantings. Salt treatment is not advisable as it can alter soil 

structure and drainage, particularly on clayey soils.

Post-emergence herbicide screening for established Sporobolus virginicus plants

Varying degrees o f tolerance to the different post-emergence herbicide treatments 

were observed in established Sporobolus transplants. Triclopyr was the most injurious 

and caused severe reductions in plant vigor, green color and aboveground biomass. The 

injuries caused by triclopyr in this study has also been reported in warm season turfgrass 

(Hurto et al., 1984) and some forage grass species (Bovey et al., 1984; Butler and Muir, 

2006). For the bermudagrass cultivars, OKS 91-11 and Midlawn, the application o f a 

similar rate o f triclopyr (3.8 kg a.i./ha) caused turfgrass injury exceeding 25% (Bell et al., 

2000). On the other hand, reductions in biomass were observed in ‘Coastal’ 

bermudagrass {Cynodon dactylon) (Butler and Muir, 2006) and mature buffel grass
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(Cenchrus ciliaris) (Bovey et a l ,  1984) with the application o f 1.68 kg a.i./ha and 2.2 kg 

a.i./ha, respectively.

Despite exhibiting phytotoxic symptoms from two herbicide applications, 

triclopyr treated Sporobolus plants remained alive. This tolerance to high rates may 

indicate the possibility o f  using lower recommended rates as spot spray treatments. Since 

application rates in weed control studies done in turfgrass range from 0.56 to 1.12 kg 

a.i./ha, it is recommended that future experiments use this range o f rates to determine the 

optimum amount which provide an acceptable level o f injury.

Aminopyralid, applied 25 times the recommended rate, was the second most 

injurious herbicide evaluated in this study. This treatment caused a severe reduction in 

green color and vigor ratings as well as in aboveground biomass o f the test plants.

Despite the over application o f aminopyralid, severe herbicide injury did not lead to 

complete plant death at 5 weeks after the second application. This may be an indication 

that aminopyralid could be a useful weed control tool if  applied at the recommended 

rates. Prior to the completion o f this study, adjacent plots o f the pre-emergence study 

were sprayed with the recommended rate o f aminopyralid (0.12 kg a.i./ha). W eekly 

observations in these non-replicated plots reveal that overall herbicide injury was only 

slight and the plants exhibited normal growth (personal observation). To verify this, it is 

suggested that a replicated tolerance study should be conducted using the recommended 

rate o f aminopyralid.

In contrast to triclopyr and aminopyralid, applications o f carfentrazone + MCPA 

+ mecoprop + dicamba were less injurious to established Sporobolus transplants. Despite 

causing some foliar injury to plants, damage did not exceed 17% even after two
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applications. Vigor, green color and aboveground biomass also indicate that it is less 

injurious than triclopyr and aminopyralid treatments. Due to foliar injuries, this herbicide 

should only be used for spot spray applications.

The least injurious o f all the post-emergence herbicides evaluated was 

sulfosulfuron. Visual ratings and aboveground biomass exhibited by sulfosulfuron treated 

plants did not significantly differ with those in untreated plants, even after two 

applications. Sulfosulfuron appears to be safest for use in Sporobolus virginicus and is an 

excellent post-emergence herbicide for eontrolling sedge species, particularly Cyperus 

rotundus.

In summary, established Sporobolus plantings exhibited different degrees o f 

tolerance to the four post-emergence herbicides. Sulfosulfuron can be safely used as an 

over-the-top spray for sedge control while carfentrazone + MCPA + mecoprop + dicamba 

should be considered only as a directed spot spray treatment to control broadleaf weeds 

and minimize crop injury. Although the high rate o f trielopyr and the overapplication of 

aminopyralid (25x) caused significant injury and growth reduction in Sporobolus 

virginicus, it did not kill the entire plant. Further studies on lower recommended rates 

should be done to determine efficacy and safety o f these two herbicides.
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Tables

Table 5.1. Recommended application rates o f the five pre-emergence herbicides evaluated on transplanted Sporobolus virginicus 
plugs. Granular herbicides were broadcasted uniformly by hand while spray treatments were applied using a 3 nozzle boom attached

3 an electric sprayer calibrated to apply 374.2 liters per hectare at 103.4 KPa.

Pre-emergence herbicide treatments and tradenames
Amount ml/3 

liters

Granular for 1.8 x 
4.9 m plots 

(grams)

Amount per 
hectare

Application rate 
kg a.i./hectare

1 Oxadiazon (Ix ) (Ronstar® G) n/a 1 0 0 1 1 2  kg/ha 2.24
2 Oxadiazon (2x) (Ronstar® G) n/a 2 0 0 224 kg/ha 4.48
3 Trifluralin + isoxaben (Ix ) (Snapshot® 2.5 TG) n/a 1 0 0 1 1 2  kg/ha 2.80
4 Trifluralin + isoxaben (2x) (Snapshot® 2.5 TG) n/a 2 0 0 224 kg/ha 5.60
5 Dithiopyr (Ix ) (Dimension® 2EW) 9.4 ml n/a 1.17 liters/ha 0.28
6  Dithiopyr (2x) (Dimension® 2EW) 18.8 ml n/a 2.34 liters/ha 0.56
7 Oxyfluorfen (Ix ) (GoalTender®) 4.1ml n/a 0.58 liters/ha 0.28
8  Oxyfluorfen (2x) (GoalTender®) 9.4 ml n/a 1.17 liters/ha 0.56
9 Sodium chloride (Table salt) n/a 400 448 kg/ha 448
10 Untreated control - - - -

Table 5.2. Recommended application rates o f four post-emergence herbicides evaluated on field established Sporobolus virginicus 
transplants. The treatments were applied using a 3 nozzle boom attached to an electric sprayer calibrated to apply 374.2 liters per 
hectare at 103.4 KPa.

Post-emergence herbicide treatments and tradenames
Application rate 

kg a.i./ha
Amount 

per 3 liters
1 % M S 0  
crop oil

Amount 
per hectare

1 Aminopyralid (Milestone® VM) 1.23 (overapplied) 75.0 ml 30 ml 9.36 liters
2 Triclopyr (Garlon® 4) 3.36 56.2 ml 30 ml 7.02 liters
3 Carfemtrazone + MCPA + mecoprop + dicamba (Powerzone®) 1.63 37.50 ml 30 ml 4.68 liters
4 Sulfosulfuron (Certainty®) 0.07 0.7 grams 30 ml 87.5 grams
5 Untreated control - - - -



Table 5.3. Overall vigor and foliage injury ratings o f pre-emergence treatments at 37 
D A H l. Both ratings were recorded on a visual scale o f 0 to 100. For percent vigor, 0 = 
dead and 100 = maximum attainable vigor. For percent foliar injury, 0 = no injury and 
1 0 0  = whole plant chlorosis/necrosis.

Treatments Vigor (%)"^ Foliar Injury (%)"^
Dithiopyr (0.28 kg a.i./ha) 72(4.7) 5 (0.4)
Dithiopyr (0.56 kg a.i./ha) 69(10.0) 15(11.8)
Oxyfluorfen (0.28 kg a.i./ha) 83 (2.5) 3 (0.9)
Oxyfluorfen (0.56 kg a.i./ha) 82 (2 .6 ) 2 (0.7)
Oxadiazon (2.24 kg a.i./ha) 78(1.2) 2 (0.4)
Oxadiazon (4.48 kg a.i./ha) 69(13.0) 2 (0.4)
Salt (448 kg a.i./ha) 75 (4.9) 4 (2.0)
Trifluralin + isoxaben (2.80 kg a.i./ha) 75 (2.3) 6 (1 .7 )
Trifluralin + isoxaben (5.60 kg a.i./ha) 75 (2.9) 3 (0.8)
Untreated 77 (2.2) 4 (2 .1 )

Treatment effects were not significant. Means presentee 
standard errors in parentheses (n = 4)

are original means with

Table 5.4. W eed species observed in the experimental area at 37 D A H l. Due to sporadic 
and uneven distribution o f weeds, only half o f the species observed provided reliable 
control ratings (species in bold letters).

Scientific name Common name
Amaranthus viridis Slender amaranth
Bidens pilosa Beggar tick
Commelina benghalensis Benghal dayflower
Crotalaria spp. Crotalaria
Echinochloa colona Jungle rice
Eleusine indica Goosegrass
Emilia fosbergii Flora’s paintbrush
Indigofera hendecaphylla Creeping indigo
Ipomoea triloba Little bell
Leucaena leucocephala Koa haole
Mimosa pudica Sensitive plant
Panicum maximum Guineagrass
Phyllanthus debilis Niuri
Portulaca oleracea Common purslane

110



Table 5.5. The effect o f the different pre-emergence herbicide treatments on the percent control values o f  Crotalaria spp., Eleusim

Treatments
Mean percent control*

Crotalaria
spp

Eleusine
indica

Indigofera
hendecaphylla

Leucaena
leucocephala

Mimosa
pudica

Portulaca
oleracea

Phyllanthus
dehilis

Dithiopyr 
(0.28 kg a.i./ha) 69 (15.5) be 94 (6.0) a 87 (8 .6 ) a 74 (1.9) c 52(13.7) cd 89 (6 .6 ) ab 65(15.4) be
Dithiopyr 
(0.56 kg a.i./ha) 85 (5.1) abc 1 0 0  (0 .0 ) a 94 (5.7) a 80 (6 .8 ) abc 96 (3.9) ab 94 (5.7) ab 78(15.0) abc
Oxyfluorfen 
(0.28 kg a.i./ha) 82(10.8) abc 89 (10.8) a 1 0 0  (0 .0 ) a 77 (7.6) be 68(14.6) bed 1 0 0  (0 .0 ) a 1 0 0  (0 .0 ) a
Oxyfluorfen 
(0.56 kg a.i./ha) 96 (3.9) ab 93 (7.1) a 1 0 0  (0 .0 ) a 62 (8.9) c 81 (8.9) abc 1 0 0  (0 .0 ) a 1 0 0  (0 .0 ) a
Oxadiazon 
(2.24 kg a.i./ha) 1 0 0  (0 .0 ) a 1 0 0  (0 .0 ) a 1 0 0  (0 .0 ) a 1 0 0  (0 .0 ) a 96 (3.9) ab 1 0 0  (0 .0 ) a 93 (7.1) ab
Oxadiazon 
(4.48 kg a.i./ha) 92 (4.9) ab 1 0 0  (0 .0 ) a 1 0 0  (0 .0 ) a 96 (3.9) ab 1 0 0  (0 .0 ) a 1 0 0  (0 .0 ) a 1 0 0  (0 .0 ) a
Salt
(448 kg a.i./ha) 6 8  (8.3) be 61 (15.2) b 8 6  (8.3) a 76 (9.0) be 53 (8.7) cd 71 (15.7) be 67 (9.6) be
Trifluralin + 
isoxaben (2.80 
kg a.i./ha) 1 0 0  (0 .0 ) a 1 0 0  (0 .0 ) a 81 (11 .7)a 71 (4 .8 )c 79 (7.8) abed 93 (7.1) ab 74 (3.7) abc
Trifluralin + 
isoxaben (5.60 
kg a.i./ha) 1 0 0  (0 .0 ) a 1 0 0  (0 .0 ) a 8 8  (12.3) a 81 (6.3) abc 96 (3.9) ab 1 0 0  (0 .0 ) a 79 (13.2) abc
Untreated 60(11.4) c 54 (9.8) b 59 (15.2) b 78 (7.2) be 49 (12.3) d 6 0 (1 1 .l ) c 61 (1 4 .2 )c
* Means within columns followed by the same letters are not significantly different as 
P < 0.01 for Crotalaria, Eleusine, Leucaena, Mimosa, Portulaca and Phyllanthus and 
arc sine transformed means with standard errors in parentheses (n = 4).

determined by least significant difference test at 
at P < 0.05 for Indigofera. Means presented are



Table 5.6. Timed weeding (for 8 . 8  m^) values in Sporobolus virginicus 70 days after the 
first application o f treatments (70 D A H l).

Treatment Time to W eed Free (8 . 8  m^)
(minutes/person)***

Dithiopyr (0.28 kg a.i./ha) 14.6 (3.95) abc
Dithiopyr (0.56 kg a.i./ha) 6.7 (2.60) bed
Oxyfluorfen (0.28 kg a.i./ha) 5.3 (0.88) cd
Oxyfluorfen (0.56 kg a.i./ha) 4.1 (0.99) cd
Oxadiazon (2.24 kg a.i./ha) 4.1 (1.50) cd
Oxadiazon (4.48 kg a.i./ha) 1.9 (1.05) d
Salt (448 kg a.i./ha) 22.4 (2.90) a
Trifluralin + isoxaben (2.80 kg a.i./ha) 7.6 (0.61) abc
Trifluralin + isoxaben (5.60 kg a.i./ha) 4.7 (0.65) cd
Untreated 20.5 (3.80) ab
*** Means followed by the same letters are not significantly different as determined by 
Tukey HSD at P < 0.01. M ean separation was based on log transformed data. Means 
presented are original means with standard errors in parentheses (n = 4).

Table 5.7. Total aboveground dry biomass (standard errors in parentheses; n = 4) o f three 
representative Sporobolus virginicus plants 70 days after the first application o f 
treatments (70 D A H l).

Treatment
Total aboveground dry biomass o f 3 

representative plants (grams) 
harvested at 70 DAH1“

Dithiopyr (0.28 kg a.i./ha) 33.3 (10.02)
Dithiopyr (0.56 kg a.i./ha) 36.0 (6 .6 8 )
Oxyfluorfen (0.28 kg a.i./ha) 57.5 (20.02)
Oxyfluorfen (0.56 kg a.i./ha) 43.3 (2.75)
Oxadiazon (2.24 kg a.i./ha) 52.5 (10.18)
Oxadiazon (4.48 kg a.i./ha) 50.5 (5.68)
Salt (448 kg a.i./ha) 31.0(10.16)
Trifluralin + isoxaben (2.80 kg a.i./ha) 41.0 (3.74)
Trifluralin + isoxaben (5.60 kg a.i./ha) 34.8 (5.07)
Untreated 27.3 (3.25)

Treatment effects were not significant.
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Table 5.8. Vigor and foliar injury ratings o f Sporobolus virginicus 38 days after the 2"‘* 
herbicide application (38 DAH2). Both ratings were recorded on a visual scale o f 0 to 
100. For percent vigor, 0 = dead and 100 = maximum attainable vigor. For percent foliar 
injury, 0 = no injury and 100 = whole plant chlorosis/neerosis. All means presented are 
original means with standard errors in parentheses (n = 4).

Treatment Vigor (%)* Foliar Injury (%)"*

Dithiopyr (0.28 kg a.i./ha) 4 9 (12 .1 )abc 0.5 (0.29)
Dithiopyr (0.56 kg a.i./ha) 65 (7.9) abc 0.3 (0.25)
Oxyfluorfen (0.28 kg a.i./ha) 74(10.5) abc 0 . 0  (0 .0 0 )
Oxyfluorfen (0.56 kg a.i./ha) 75 (7.4) abc 1.0 (0.58)
Oxadiazon (2.24 kg a.i./ha) 85 (2.9) ab 0.3 (0.33)
Oxadiazon (4.48 kg a.i./ha) 8 6  (2.4) a 0.5 (0.29)
Salt (448 kg a.i./ha) 38 (3.2) c 0.3 (0.25)
Trifluralin + isoxaben (2.80 kg a.i./ha) 65 (7.4) abc 0.3 (0.25)
Trifluralin + isoxaben (5.60 kg a.i./ha) 58 (8.5) abc 0.8 (0.25)
Untreated 43 (2.5) be 0 . 0  (0 .0 0 )
* Means followed by the same letters are not significantly different as determined by 
Tukey HSD at P <  0.01. 

no significant differences were observed between treatment means.
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Table 5.9. Control values o i Indigofera hendecaphylla. Mimosa pudica, Phyllanthus 
debilis and Portulaca oleracea in response to pre-emergence herbicides at 38 DAH2.

Treatment
Mean Percent Control*

hendecaphylla
7. M.

pudica
P.

debilis
P.

oleracea
Dithiopyr 
(0.28 kg a.i./ha) 60 (20.9) ab 2 0  (16.8) b 14 (14.2) c 95 (4.5) a
Dithiopyr 
(0.56 kg a.i./ha) 80(10.8) ab 65 (20.9) ab 46 (21.5) be 93 (7 .1 )a
Oxyfluorfen 
(0.28 kg a.i./ha) 97 (1.2) a 24 (23.8) b 89 (6.2) ab 1 0 0  (0 .0 ) a
Oxyfluorfen 
(0.56 kg a.i./ha) 1 0 0  (0 .0 ) a 50 (28.6) ab 1 0 0  (0 .0 ) a 1 0 0  (0 .0 ) a
Oxadiazon 
(2.24 kg a.i./ha) 1 0 0  (0 .0 ) a 1 0 0  (0 .0 ) a 94 (6.0) ab 1 0 0  (0 .0 ) a
Oxadiazon 
(4.48 kg a.i./ha) 1 0 0  (0 .0 ) a 1 0 0  (0 .0 ) a 1 0 0  (0 .0 ) a 1 0 0  (0 .0 ) a
Salt
(448 kg a.i./ha) 35 (23.5) be 18(17 .5 )b 37 (22.2) c 29 (17.7) b
Trifluralin + isoxaben 
(2.80 kg a.i./ha)______ 72(18.6) ab 31 (17 .1)b 41 (24.7) c 95 (4.5) a
Trifluralin + isoxaben 
(5.60 kg a.i./ha)______ 94 (6.3) a 65 (19.4) ab 43 (22.9) be 93 (7 .1 )a
Untreated 5 (5.0) c 5 (5.0) b 14 (5.6) c 0 (0.0) c
* Means within column followed by the same letters are not significantly different 
as determined by least significant difference test at P < 0.01. Means (standard errors in 
parentheses) and mean separation presented for Indigofera hendecaphylla and Mimosa 
pudica  are based on original means. Means (standard errors in parentheses) and mean 
separation presented for Phyllanthus debilis and Portulaca oleracea are based on arc sine 
transformed means (n = 4).
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Table 5.10. Total aboveground dry biomass o f three representative Sporobolus virginicus 
plants 38 days after the reapplication o f the different pre-emergence treatments (38 
DAH2).

Treatment Aboveground dry biomass o f three 
representative plants* (grams)

Dithiopyr (0.28 kg a.i./ha) 70.3 (18.47) be
Dithiopyr (0.56 kg a.i./ha) 97.8 (17.70) be
Oxyfluorfen (0.28 kg a.i./ha) 152.3 (36.17) abc
Oxyfluorfen (0.56 kg a.i./ha) 125.8 (4.37) abc
Oxadiazon (2.24 kg a.i./ha) 183.3 (25.1 l ) a b
Oxadiazon (4.48 kg a.i./ha) 238.5 (10.84) a
Salt (448 kg a.i./ha) 35.0 (4.34) c
Trifluralin -i- isoxaben (2.80 kg a.i./ha) 123.0 (28.12) abc
Trifluralin + isoxaben (5.60 kg a.i./ha) 97.3 (15.70) be
Untreated 46.5 (15.31) c
* Means followed by the same letters are not 
Tukey HSD at P < 0.01. Means presented are 
parentheses (n = 4).

significantly different as determined by 
original means with standard errors in

Table 5.11. Timed weeding (for 8 . 8  m^) values in Sporobolus virginicus 38 days after the
2"̂  ̂application o f herbicides (38 DAH2).

Treatment Time to weed free condition (minutes/person)**
Dithiopyr (0.28 kg a.i./ha) 6.5 (1 .8 8 )b
Dithiopyr (0.56 kg a.i./ha) 2.9 (0.84) bed
Oxyfluorfen (0.28 kg a.i./ha) 2.1 (0.46) cde
Oxyfluorfen (0.56 kg a.i./ha) 1.0(0.39) def
Oxadiazon (2.24 kg a.i./ha) 0.3 (0.14) f
Oxadiazon (4.48 kg a.i./ha) 0.8 (0.47) ef
Salt (448 kg a.i./ha) 16.3 (2.97) a
Trifluralin isoxaben (2.80 
kg a.i./ha)

5.0 (0.83) be

Trifluralin + isoxaben (5.60 
kg a.i./ha)

3 .7(1 .04) be

Untreated 26.0 (3.88) a
** Means followed by the same letters are not significantly different as determined by 
Tukey HSD at P < 0.01. Mean separation was based on log transformed data. Data 
presented are based on original means with standard errors in parentheses (n = 4).
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Table 5.12. Foliar injury ratings o f Sporobolus virginicus plants 28 days after the 1"‘ and 
the 2"‘̂ application o f post-emergence herbicide treatments (28 D A H l and 28 DAH2). 
Ratings were recorded on a visual scale o f 0 to 100, where 0 = no injury and 100 = whole

Treatment Rate Injury (%)*
(kg a.i./ha) 28 D A H l 28 DAH2

Sulfosulfuron 0.07 0.8 (0.48) be 2.8 (0.85) be
Triclopyr 3.36 6.5 (0.87) a 63.8 (2.40) a
Aminopyralid (25x) 1.23 3.3 (1.03) ab 58.8 (3.15) a
Carfentrazone + M CPA + 
mecoprop -i- dicamba acid

1.64 5.5 (1.66) a 16.3 (2.39) b

Untreated - 0.3 (0.25) c 1.3 (0.25) c
F value 24.5 172.2
P value < 0 . 0 1 < 0 . 0 1

* Means followed by the same letters are not significantly different as etermined by
Tukey HSD at P < 0.01. M ean separation was based on the following; square root 
transformed data for 28 D A H l and original data for 28 DAH2. All means presented are 
original means with standard errors in parentheses (n = 4).

Table 5.13. Green color ratings o f  Sporobolus virginicus plants 28 days after the 1"* and 
2"'* application o f post-emergence herbicide treatments (28 D AH l and 28 DAH2). 
Ratings were recorded on a visual scale o f 0 to 100, where 0 = brown or yellow and 100

Treatment Rate Green color (%)*
(kg a.i./ha) 28 D A H l 28 DAH2

Sulfosulfuron 0.07 8 8 . 8  (2.39) a 93.3 (1 .1 8 )a
Triclopyr 3.36 52.5 (2.50) b 22.5 (3.23) c
Aminopyralid (25x) 1.23 58.8 (2.39) b 30.0 (0.00) c
Carfentrazone + MCPA + 
mecoprop + dicamba acid

1.64 63.8 (2.39) b 62.5 (3.23) b

Untreated - 91.3 (2.39) a 95.3 (1.60) a
F value 56.44 215.24
P value < 0 . 0 1 < 0 . 0 1

* Means followed by the same letters are not significantly different as c etermined by

parentheses (n = 4).
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Table 5.14. Vigor ratings o f Sporobolus virginicus plants 28 days after the and 2"‘* 
applications o f post-emergence herbicide treatments (28 D A H l and 28 DAH2). Ratings 
were recorded on a visual scale o f 0  to 1 0 0 , where 0  = dead and 1 0 0  = maximum

Treatment Rate 
(kg a.i./ha)

Vigor (%)*
28 D A H l 28 DAH2

Sulfosulfuron 0.07 77.5 (6.61) ab 81.3 (4.27) a
Triclopyr 3.36 50.0 (6.12) b 28.8 (8.98) c
Aminopyralid (25x) 1.23 62.5 (6.61) ab 43.8 (3.75) be
Carfentrazone + M CPA + 
mecoprop + dicamba acid

1.64 57.5 (8.29) ab 65.0 (2.04) ab

Untreated - 8 8 . 8  (4.27) a 90.8 (3.94) a
F value 5.84 22.25
P value < 0 . 0 1 < 0 . 0 1

* Means within eolumns followed by the same letters are not significantly different as 
determined by Tukey HSD at P < 0.01. All means presented are original means with 
standard errors in parentheses (n = 4).

Table 5.15. Total aboveground dry biomass o f three representative Sporobolus virginicus
plants after two sequential applications o f post-emergence herbicides (28 DAH2).

Treatment
Rate 

(kg a.i./ha)
Total aboveground 

biomass o f  3 representative 
plants (grams)*

Sulfosulfuron (Certainty) 0.07 361.3 (72.81) ab
Triclopyr (Garlon 4) 3.36 108.0 (18.13) c
Aminopyralid (Milestone VM) 1.23 217.3 (10.32) be
Carfentrazone + MCPA + mecoprop 
+ dicamba acid

1.64 212.8(15.72) be

Untreated - 680.8 (89.97) a
* Means followed by the same letters are not significant y different as determined by
Tukey HSD at P < 0.01. M ean separation was based on log transformed data. Presented 
means are original means. All means presented are original means with standard errors in 
parentheses (n = 4).
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Figure 5.1. Altered surface soil structure o f table salt treated plots. Salt application (448 
kg a.i./ha) caused the soil to disperse and lose its structure, creating a puddled surface 
when wet and a cracked surface when dry.
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Figure 5.2. Visual comparison o f the different pre-emergence treatments at 38 days after the 2"̂ * application o f  pre-emergence 
herbicides (38 DAH2). Both high and low rates o f oxadiazon and oxyfluorfen provided excellent weed control in contrast to table salt 
and other pre-emergence herbicides.



Figure 5.3. Characteristic leaf injury and numerical injury ratings incurred by Sporobolus 
virginicus after two subsequent applications o f different post-emergence herbicides 
treatments: A) untreated B) 0.07 kg a.i./ha sulfosulfuron C) 1.63 kg a.i./ha carfentrazone 
+ MCPA + mecoprop + dicamba D) 3.36 kg a.i./ha triclopyr E) 1.23 kg a.i./ha
aminopyralid. Photographs were taken 28 days after the 2"‘* application o f treatments (28 
DAH2).
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CHAPTER 6 

CONCLUSIONS AND SUGGESTED PROTOCOLS FOR ESTABLISHMENT

In conclusion, this study revealed the potential use o f hydroplanting techniques 

and selective herbicide applications for roadside establishment o f Fimbristylis cymosa 

and Sporobolus virginicus.

Propagation studies conducted in both species show general compatibility to 

hydroplanting. For F. cymosa, using seeds over seedlings in the hydroplanting process 

was more efficient and convenient since seeds are storable, non-bulky and do not require 

preparation time in the nursery. M ortality rates o f hydroseeded F. cymosa were lower 

compared to hydroplanting or hydromulch capping o f seedlings. For S. virginicus, stem 

cuttings were the planting material o f choice since viable seed production is very limited. 

Rooting studies indicate that using apical cuttings over leafless basal cuttings was more 

advantageous since rooting characteristics (percent rooting, root density scores and 

longest root length) were significantly improved compared to the latter. Soaking o f apical 

cuttings for 24 hours in a rooting solution (500 ppm indole butyric acid and 250 ppm 

naphthalene acetic acid) prior to hydromulch capping significantly improved rooting 

characteristics and increased axillary shoot number. This increases stand vigor leading to 

greater cutting survival and rapid rate o f  fill in.

Herbicide tolerance studies conducted on each o f the two native species show 

safety in some pre- and post-emergence herbicides. For pre-emergence weed control in F. 

cymosa, the herbicides oxadiazon and oryzalin exhibited safety for weed control in 

transplanted plugs but not for seedlings less than 56 days old. For post-emergence grassy 

weed control, fluazifop-p-butyl can be safely applied to both F. cymosa seedlings and
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mature plants. Post-emergence broadleaf herbicides evaluated in this study also indicate 

that the recommended rates o f  aminopyralid were safe to use as an over the top spray in 

F. cymosa. Broadleaf weed control using aminopyralid can be done as early as 28 days 

after hydroseeding. Sulfosulfuron can also be used for sedge control, but due to moderate 

injury incurred by plants, application o f  this herbicide should be limited only to spot 

spraying.

Although all pre-emergence herbicides (except table salt) exhibited acceptable 

weed control ratings for S. virginicus, only oxadiazon and oxyfluorfen showed 

exceptional weed control and herbicide safety. For post-emergence weed control in S. 

virginicus, sulfosulfuron was tested to be safe for controlling sedge species. 

Carfentrazone + MCPA + mecoprop + dicamba and triclopyr were injurious to S. 

virginicus and should only be used as a spot spray treatment. Although the 

overapplication o f aminopyralid was injurious for S. virginicus, test applications at the 

prescribed rates seem to have little to no negative impact on plants.

Overall, this study demonstrated new and alternative methods o f propagation and 

weed control for the two native Hawaiian groundcover species. Although this study 

generated at lot o f essential information for these two groundcovers, further studies 

should be done in order to refine establishment methods (e.g. optimum seeding/planting 

rates, planting methods for steep/flat slopes, timing o f herbicide application, and further 

screening o f weed control tools) and develop maintenance protocols. Detailed studies on 

other species (e.g. perennial herbs, shrubs and trees) should also be done to expand the 

choice o f planting materials and to fully integrate native Hawaiian species in re­

vegetation strategies.
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Suggested establishment protocol for Fimbristylis cymosa and Sporobolus virsinicus 

Site inventory and preparation

Site inventory and preparation prior to planting is important as this can greatly 

affect plant selection, planting and establishment as well as weed/pest incidence. As 

every site is unique, conducting a thorough inventory o f  the site’s characteristics will 

provide the necessary information on how re-vegetation will be carried out on a particular 

area. Knowing about a site’s available and limiting resources will help identify factors 

that can be utilized or improved during the re-vegetation process. An understanding of 

the site’s climate, topography, soil characteristics as well as proximity to irrigation 

sources will aid in selecting appropriate native species; methods o f planting (e.g. 

hydroseed or plugging); soil amendments and preparation (e.g. fertilization, mulching, 

tillage, weed control) as well as timing o f planting/establishment (Steinfeld et al., 2007b). 

An inventory o f existing vegetation will also help identify non-native and native plants 

that need to be removed, conserved or used for propagation. Knowledge about existing 

non-native plants on site will also dictate the type o f weed control tools (e.g. herbicides, 

mowing, burning) that should he used to effectively remove them.

Basic site preparation prior to planting requires clearing out o f  debris (e.g. trash 

and dead plant material) that would interfere in the planting process. Providing a bare 

surface for planting is important for species that are sown or hydromulched because it 

promotes good soil-plant material contact.

Conducting sequential flushing and killing o f weeds months prior to planting will 

also help reduce the weed seed bank. This should be done least 3 times prior to planting 

in order to reduce weed incidence during the establishment process (Joseph DeFrank,
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personal communication). To facilitate the removal o f weeds on site, supplemental 

overhead irrigation should be installed to encourage active weed growth prior to 

herbicide application. A spray mix o f glyphosate (Roundup Pro®, M onsanto Company, 

applied as a 2% solution o f formulated product) and triclopyr (Garlon® 4, Dow 

AgroSciences, applied as a 2% solution o f formulated product) is recommended for 

controlling grass, broadleaf weeds and other woody species that might interfere with 

native plant establishment.

Planting materials/seeds

Sourcing, collection and propagation o f planting materials is critical for a native 

re-vegetation project. Collections o f planting materials should be located near the site and 

should possess some degree o f genetic variability (Steinfeld et al., 2007b). Native 

planting materials should be collected at least 1 to 3 years prior to project implementation 

(Steinfeld et al., 2007b). This provides ample time for establishing stock plants and 

increasing seed/planting materials prior to actual planting.

Preparation o f  Fimbristylis cymosa seed nursery and plantins materials

The seed nursery for F. cymosa can be established either in the field or on planters 

filled with compost using plants grown from collected seeds (see Chapter 2 for details on 

planter preparation). To produce weed-free seeds o f F. cymosa on a field setting, stock 

plants should be grown on irrigated fields covered with weedcloth or plastic mulch 

(Figure 1.3). Seed harvesting can begin in approximately one year for direct seeded 

plants or six months from plug established plants. Inflorescences that are easily crushed 

by hand are ideal for harvesting. Seed head harvesting can be done manually or by cut- 

and-vacuum operations using a motorized hedge trimmer and a leaf blower/vacuum. The
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harvested seed heads should be dried, crushed (by hand or by a leaf vacuum/blower) and 

stored at approximately 10°C either as raw seed (leaves and stalks removed) or as sieved 

seed (containing minimal amount o f  trash). Seed germination tests should be conducted 

to determine percent viability o f each batch o f harvested inflorescences. For raw seed 

used for hydroseeding, an average germination count o f 4 samples (0.2 grams) needs to 

be conducted to determine the average amount o f germinable seeds for a given weight. 

This provides the information necessary for developing a seeding rate for a particular 

hydroseeding project. Generally, extracted F. cymosa seeds can be stored for one year 

without losing viability (Baldos, unpublished data).

For preparing F. cymosa plugs, seeds are germinated in trays filled with 

moistened potting mix. Seedlings are allowed to grow for 1 to 2 months before they are 

transplanted individually in multi-cell trays filled with potting mix and fertilizer. Plants 

are allowed to grow for 2  months before they are hardened and transplanted in the field. 

Preparation o f  Sporobolus virsinicus stockplant and plantins material

S. virgincus stockplants can be grown from bare-rooted plants or plugs and 

established either in field rows or in constructed planter boxes filled with compost (see 

planting material section on Chapter 5). For field-established stockplants, proper land 

preparation prior to planting is essential to produce weed free cuttings. Stem cuttings can 

be gathered from stock plants after one year o f establishment. Harvesting o f cuttings can 

be done using a hand-held shear or a motorized hedge trimmer. The top 30 cm growth o f 

the stock plants are cut, collected and kept moist and cool until they are used in 

hydromulch planting or plug production.
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s. virginicus plugs can be prepared either by using the top 30 cm growth o f 

stockplants or a 3 stemmed plant obtained by dividing a grass clump. Prior to treatment 

with rooting hormone, the leaves o f the lower half o f the cuttings are removed. Cuttings/3 

stemmed plant are soaked for 24 hours in a solution o f 500 ppm indolebutyric acid and 

250 ppm naphthalene acetic acid before sticking them in pots or dibble tubes filled with a 

40:60 ratio (by volume) o f black cinder and potting mix. The newly planted cuttings are 

placed inside a mist chamber and allowed to root for one month before moving them out 

in irrigated full sun conditions. Plugs are kept under nursery conditions for another month 

before they are hardened prior to planting.

Planting and establishment

Planting and establishment techniques implemented in a re-vegetation project 

vary with type o f planting materials and site conditions. Depending on the project site’s 

terrain, several methods may be used or modified to suit specific needs or limitations.

Another important factor that needs to be considered during the planting and 

establishment phase is the timing o f outplanting. Planting operations should be conducted 

at a time when environmental conditions are favorable for plant growth. In HawaiM, the 

availability o f w ater is a major limitation for plant establishment on roadsides. In order to 

maximize soil moisture availability and plant survival while saving on watering costs, it 

is important to perform planting and establishment operations during the onset o f the 

wetter, winter months (November to February).

Plantins and establishment o f  Fimbristylis cymosa

F. cymosa  plantings can be accomplished using either outplanted plug plants or 

by hydroseeding. The use o f plug plants is ideal for establishing weed-free field seed
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nurseries on plastic mulch or for establishing plantings in small pockets and areas (e.g. 

ditches and roadside swales). The recommended spacing for planting plugs is 30 

centimeters.

Seeding is generally favored for establishing large-scale roadside plantings o f F. 

cymosa. Raw or sieved seed can be sown by hand or mechanically by using a fertilizer 

spreader or a hydroseeder. The amount o f raw or sieved seed applied may vary depending 

on the results o f germination tests conducted on the batches o f  seed produced. Generally, 

the rate o f seeding should be at least double the actual amount o f viable seed in order to 

account for seed predation and seedling mortality during establishment. Based on the 

experiments condueted in Chapters 2 and 4, F. cymosa recommended seeding rates can 

range from 500 to 800 viable seeds per square meter (0.05 grams pure seed per square 

meter) while mulching and tackifier rates should be at least 2 2 0 0  and 2  kg/ha, 

respectively. Depending on site conditions, the amount o f mulching material and tackifier 

may vary. Steeper slopes and erosive soils generally require more mulch and tackifier 

than flat areas. The type and ratio o f mulching material used in hydroseeding can also 

vary with site conditions. Pure paper mulch can be used if  wetter conditions for the seeds 

are preferred. For less saturated conditions, a mix o f straw (33% by weight) and paper 

mulch (67% by weight) can be used. In order to facilitate mixing o f hydroseeding slurry, 

it is suggested that mulching materials should first be pre-wetted in buckets. The 

hydroseeder should be partially filled with water and turned on while tackifier, mulch and 

seed are added.
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To ensure even distribution o f  seeds and mulch on a set area, the batch o f 

hydroseeding slurry must be divided into several light applications. The first light 

application should have covered the set area before another pass is initiated.

After sowing, the hydroseeded area should be kept constantly moist for the first two 

months in order to provide optimum conditions for the seeds to germinate and grow. In 

the succeeding months, supplemental irrigation is slowly withheld until plants are fully 

established ( ~ 1  year after planting).

Plantins and establishment o f  Sporobolus virsinicus

Establishment o f S. virginicus plantings can be accomplished using plugs or 

hydromulched stem cuttings. Like F. cymosa, S. virginicus plugs are ideal for stockplant 

production and small scale re-vegetation (e.g. ditches and roadside swales).

Recommended minimum spacing for S. virginicus plugs is 30 cm.

Hydromulching o f  pre-treated stem cuttings is suggested for large-scale re­

vegetation. Prior to field planting and hydromulching, apical stem cuttings, at least 20 cm 

in length, are harvested and soaked for 24 hours in a commercially available rooting 

solution (1:20 dilution o f Dip ‘N Grow®). After soaking, the cuttings are evenly spread 

flat on to a prepared planting surface and then covered with hydromulch slurry at a rate o f 

3300 kg mulch/ha (33% straw mulch and 67% paper mulch) and 11 kg tackifier/ha.

Stems need to have good contact with the soil to ensure maximum root initiation and 

establishment.

The hydroseeded area should be kept constantly wet for the first 1 -2 months after 

planting to prevent dessication o f cuttings and promote rooting. In the succeeding
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months, supplemental irrigation should be slowly withheld until plants are fully 

established (~ 1 year after planting)

Weed control and management

Weed control is a very important component o f successful native groundcover 

establishment and maintenance. Early prevention, control and management o f weeds are 

critical and should start several months before actual planting is initiated. Depending on 

the severity o f infestation, weeds can be managed with two or more combinations o f 

methods/strategies. Methods o f weed control relevant to successful native groundcover 

establishment can be divided into three categories namely: a) prevention b) mechanical 

and c) chemical weed control.

Prevention is a weed control strategy that aims to limit the build up o f weeds in 

the field or keep new weeds from invading an area (Monaco et al., 2002). This strategy 

can be helpful for managing weeds in newly constructed areas and in areas where a 

specific weed has not established or proliferated. Prevention can be done by: 1) planting 

weed free materials; 2) using clean tools and equipment and 3) preventing existing weeds 

from vegetatively proliferating or recharging the seedbank (Anderson, 1996).

Using mechanical methods is another strategy that makes use o f physical means 

to control weeds in the re-vegetation site. They may involve physical removal (e.g. hand 

weeding, hoeing, cutting, or burning) or environmental modification (e.g. mulching) to 

kill the weeds. Success rates o f mechanical methods may vary and may or may not be 

applicable for a certain situation.

Chemical methods are the most common and most widely used strategy for 

controlling weeds. They solely involve the application o f selective or broad spectrum
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herbicides. In the establishment o f native groundcovers, herbicides play an essential role 

in land preparation and post-plant maintenance activities. During pre-plant land 

preparation, initial application o f post-emergence herbicides such as glyphosate (2 % 

solution o f Roundup®) and triclopyr (2% solution o f Garlon® 4) aids in clearing the site 

o f unwanted vegetation. Subsequent spray applications o f these herbicides in conjunction 

with weed flushes stimulated by supplemental irrigation will also help reduce the weed 

seed bank. Having good control o f weeds prior to planting will help reduce the incidence 

o f weed infestations during plant establishment.

Post plant applications o f pre- and post-emergence herbicides are important for 

keeping weeds in check while the native groundcovers are establishing. For F. cymosa 

and S. virginicus, several o f these herbicides have been tested and can be safely used for 

selective weed control.

Pre- and vost-em ersence herbicides for weed control in Fimbristylis cymosa

For establishing mature F. cymosa plugs, spray applications o f either oxadiazon 

(Ronstar® 50 WP at 2 to 4 kg a.i./ha) or oryzalin (Surflan® AP at 2 to 4 kg a.i./ha) 

immediately after planting can provide excellent pre-emergence control o f weeds. 

Fluazifop-p-butyl (Fusilade® II T&O) applied 0.28 to 0.42 kg a.i./ha can provide good 

control o f growing grassy weeds in both plug established or hydroseeded F. cymosa 

plantings. Aminopyralid (Milestone® VM) at 0.07 to 0.12 kg a.i./ha can also provide 

good broadleaf weed control in both types o f plantings. Both post-emergence herbicides 

can be mixed and applied as early as 28 days after hydroseeding to control both grassy 

and broadleaf weeds. For post-emergence sedge control, sulfosulfuron (Certainty®
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applied up to 0.07 kg a.i./ha) can be applied as a spot spray treatment in establishing 

plugs.

Pre- and post-emersence herbicides for weed control in Sporobolus vivQinicus

Pre-emergence herbicides that can be safely used in newly planted S. virginicus 

plugs are oxadiazon (Ronstar® G, applied at 2.24 to 4.48 kg a.i./ha) and oxyfluorfen 

(Goal®, applied at 0.28 to 0.56 kg a.i./ha). Applications o f either herbicides after planting 

can provide good weed control for up to 70 days without compromising the growth o f the 

plant. Aminopyralid (Milestone® VM, applied at 0.07 to 0.12 kg a.i./ha) and 

sulfosulfuron (Certainty®, applied at up to 0.07 kg a.i./ha) can be safely applied as an 

over the top spray for post-emergence control o f broadleaves and sedges, respectively. 

Triclopyr (Garlon® 4, applied up to 3.36 kg a.i./ha) and carfentrazone + M CPA + 

mecoprop + dicamba (Powerzone®, applied up to 1.64 kg a.i./ha) can also be applied for 

broadleaf weed control in S. virginicus plantings, but should only be limited to spot spray 

applications to minimize injury to the entire planting.

131



LITERATURE CITED

Anderson, W. 1996. W eed Science: Principles and Applications. 3rd ed. W est Publishing 
Company, St. Paul, MN.

Anonymous. 2008a. Certainty® herbicide product label. M osanto Company, St. Louis, 
MO.

Ashour, N.I., M.S. Serag, A.K. Abd El-Haleem, and B.B. Mekki. 1997. Forage
production from three grass species under saline irrigation in Egypt. Journal of 
Arid Environments 37:299-307.

Beard, J.B. 1973. Turfgrass: Science and Culture Prentiee Hall Inc., Englewood Cliffs,
NJ.

Bell, G.E., D.L. Martin, R.M. Kuzmic, M.L. Stone, and J.B. Solie. 2000. Herbicide 
Tolerance o f  Two Cold-Resistant Bermudagrass {Cynodon spp.) Cultivars 
Determined by Visual Assessment and Vehicle-M ounted Optical Sensing. Weed 
Technology 14:635-641.

Bell, H.L., and J.W. O'Leary. 2003. Effects o f salinity on growth and cation accumulation 
o f Sporobolus virginicus (Poaceae). American Journal o f Botany 90:1416-1424.

Berger, R.L. 2005. Integrated Roadside Vegetation M anagement NHCRP Synthesis 341. 
Transportation Research Board, National Research Council W ashington D.C.

Bomhorst, H.L., and F.D. Rauch. 2003. Native Hawaiian Plants for Landscaping
Conservation and Reforestation. Cooperative Extension Service, College o f 
Tropical Agriculture and Human Resources, University o f H aw ai‘i at Manoa.

Bovey, R.W., H. Hein, Jr., and R.E. Meyer. 1984. Effect o f  Herbicides on the Production 
o f Common Buffelgrass (Cenchrus ciliaris). Weed Science 32:8-12.

Boydston, R.A. 2004. Managing Volunteer Potato {Solanum tuberosum) in Field Com 
{Zea mays) with Carfentrazone-Ethyl and Dicamba. Weed Technology 18:83-87.

Bright, D.A., and J. Addison. 2002. Derivation o f matrix soil standards for salt under the 
British Columbia Contaminated Sites Regulation, pp. 123 Report to the British 
Columbia M inistry o f Water, Land and Air Protection, M inistry o f Transportation 
and Highways, British Columbia Buildings Corporation, and the Canadian 
Association o f Petroleum Producers. Applied Research Division, Royal Roads 
University, Victoria, BC.

Brindle, F.A. 2003. Use o f Native Vegetation and Biostimulants for Controlling Soil 
Erosion on Steep Terrain. Transportation Research Record 1819:203-209.

132



Burchett, M.D., C. Allen, A. Pulkownik, and G. Macfarlane. 1999. Rehabilitation o f 
Saline Wetland, Olympics 2000 Site, Sydney (A ustralia)-II: Saltmarsh 
Transplantation Trials and Application. Marine Pollution Bulletin 37:526-534.

Burton, P.J., and C.M. Burton. 2001. Final Report: Development and Testing o f Native 
Grasses and Legumes for Seeding in the Northern B.C. Interior FRBC Project 
SB96031-RE.

Butler, T.J., and J.P. Muir. 2006. Coastal bermudagrass {Cynodon dactylon) yield 
response to various herbicides. W eed Technology 20:95-100.

Button, E.F. 1966. Hydroplanting highway turf, pp. 84, In  J. H. Madison, (ed.) Practical 
Turfgrass Management. Van Norstrand Reinhold, New York.

Corbin, J.D., C.M. D'Antonio, and S.J. Bainbridge. 2004. Tipping the balance in the 
restoration o f native plants: Experimental approaches to changing the 
exotic:native ratio in California grassland, p. 154-179 In M. Gordon and S. Bartol, 
eds. Experimental approaches to conservation biology. University o f California 
Press, Berkeley, CA, US.

Crago, L., C.F. Puttock, and S.A. James. 2004. Riparian Plant Restoration: A 
management tool for habitat restoration in H aw ai‘i [Online] 
http://hbs.bishopmuseum.org/botanv/riparian (verified March 2007).

Daar, S., and S. King. 1997. Integrated Vegetation Management for Roadsides
W ashington State Department o f Transportation Field Operations Support 
Services Center.

Dacus, C.A. 2006. Hawaii Department o f Transportation, Highways Division, Design 
Branch, Interview. August 7, 2006.

Davis, T.D., B.E. Haissig, and N. Sankhla. 1988. Adventitious root formation in cuttings 
Dioscorides Press, Portland, OR.

Depew, M.W., and P.H. Tillman. 2006. Commercial Application o f Halophytic Turfs for 
G olf and Landscape Developments Utilizing Hyper-Saline Irrigation, p. 255-278, 
In M. A. K. a. D. J. Weber, ed. Ecophysiology o f High Salinity Tolerant Plants. 
Springer, The Netherlands.

DOT-FHWA, U. 2004. The nature o f roadsides and the tools that work with it. 
Publication No.: FHWA-EP-03-005 HEPN-30 [Online] 
http://www.invasivespeciesinfo.gov/docs/plants/roadsides/index.htm (verified 
March 3, 2006).

133

http://hbs.bishopmuseum.org/botanv/riparian
http://www.invasivespeciesinfo.gov/docs/plants/roadsides/index.htm


Douglas, G.B., M.B. Dodd, and I.L. Power. 2007. Potential o f  direct seeding for
establishing native plants into pastoral land in New Zealand. New Zealand Journal 
o f  Ecology 31:143-153.

Eizenberg, H., Y. Goldwasser, G.A.l. Achdary, and J. Hershenhom. 2003. The Potential 
o f Sulfosulfuron to Control Troublesome W eeds in Tomato. W eed Technology 
17:133-137.

Elias, S., A. Garay, L. Schweitzer, and S. Hanning. 2006. Seed Quality Testing for Native 
Species. Native Plants Journal 7:15-19.

Fagemess, M.J., F.H. Yelverton, and R.J. Cooper. 2002. Bermudagrass [Cynodon 
dactylon (L.) Pers.] and zoysiagrass {Zoysia japonica) establishment after 
preemergence herbicide applications. W eed Technology 16:597-602.

Fain, G.B., C.H. Gilliam, and G.J. Keever. 2006. Tolerance o f hardy fem s to selected 
preemergence herbicides. HortTechnology 16:605-609.

Forman, R.T.T., D. Sperling, J.A. Bissonette, A.P. Clevenger, C.D. Cutshall, V.H. Dale, 
L. Fahrig, R. France, C.R. Goldman, K. Heanue, J.A. Jones, F.J. Swanson, T. 
Turrentine, and T.C. Winter. 2003. Road Ecology: Science and solutions Island 
Press, W ashington DC.

Gabor, T.S., T. Haagsma, and H.R. Murkin. 1995. Effects o f Triclopyr Amine on Purple 
Loosestrife and Non-target W etland Plants in South-eastern Ontario, Canada. 
Journal o f Aquatic Plant M anagement 33:48-51.

Gomez, K.A., and A.A. Gomez. 1984. Statistical Procedures for Agricultural Research 
John W iley & Sons, New York.

Gray, D.H., and R.B. Sotir. 1996. Biotechnical and Soil Bioengineering Slope
Stabilization: A Practical Guide for Erosion Control John W iley and Sons, Inc., 
New York.

Hagon, M.W., and R.H. Groves. 1977. Some factors affecting the establishment o f four 
native grasses. Australian Journal o f Experimental Agriculture 17:90-96.

Hallock, B.G., K. Dettman, S. Rein, M. Curto, and M. Scharff. 2003. Effectiveness of 
Native Vegetation Planting Techniques to M inimize Erosion 2003 Annual W ater 
Resources Conference, San Diego, California.

Hansen, D.J., and C.M. McKell. 1991. Native Plant Establishment Techniques for
Successful Roadside Re-vegetation Utah Department o f Transportation, Salt Lake 
City, Utah.

134



Harper-Lore, B. 1996. Using Native Plants as Problem Solvers. Environmental 
Management 20:827-830.

Harper-Lore, B., and M. Wilson, (eds.) 2000. Roadside Use o f Native Plants, pp. 1-665. 
Island Press, W ashington DC.

Hartmann, H.T., D.E. Kester, F.T. Davies, and R.L. Geneve. 2002. Plant Propagation: 
Principles and Practices. 7th ed. Prentice Hall, Upper Saddle River, NJ.

Hilditch, T.W., J.E. Gruspier, and D.F. McQuay. 1988. Right-of-way rehabilitation of 
sandy roadside slopes in Ontario, Canada. Transportation Research Record 
1189:72-77.

Hurto, K.A., M.J. Thielen, and M.M. Mahady. 1984. Postemergence activity o f triclopyr 
for broadleaf weed control in tu rf  Agronomy Abstracts 151 [Abstract].

Huxtable, C.H.A., and R.D.B. Whalley. 1999. Emergence and Survival o f Three Native 
Grass Species Sown on Roadsides on the Northern Tablelands, New South Wales, 
Australia. Australian Journal o f Botany 47:221-235.

Jenkins, A.M., D.R. Gordon, and M.T. Renda. 2004. Native Alternatives for Non-Native 
Turfgrasses in Central Florida: Germination and Responses to Cultural 
Treatments. Restoration Ecology 12:190-199.

Koob, G.A. 2000. Propagation o f Native Hawaiian W etland Plant Species: Ten species 
with potential for use in wetland restoration and re-vegetation projects. U.S. Fish 
and W ildlife Service, Honolulu, Hawaii.

Landis, T.D., K.M. W ilkinson, D.E. Steinfield, S.A. Riley, and G.N. Fekaris. 2005. 
Roadside revegetation o f forest highways: New applications for native plants. 
Native Plants Journal 6:297-305.

Landloch. 2004. Standards for the Supply and Application o f  Hydromulch Products,
Stage 1 -  Critical Shear Testing. Queensland Department o f  Main Roads.

Markwaldt, D. 2005. Texas Roadside Wildflowers. Native Plants Journal 6:69-71.

Martin, P.M. 2004. The potential o f native grasses for use as managed turf. In  T. Fischer, 
et al., (eds.) Proceedings o f the 4th International Crop Science Congress The 
Regional Institute Ltd, Brisbane, Australia.

Matesanz, S., F. Valladares, D. Tena, M. Costa-Tenorio, and D. Bote. 2006. Early
Dynamics o f Plant Communities on Revegetated M otorway Slopes from Southern 
Spain: Is Hydroseeding Always Needed? Restoration Ecology 14:297-307.

135



Merlin, G., L. Di-Gioia, and C. Goddon. 1999. Comparative study o f the capacity o f
germination and o f adhesion o f various hydrocolloids used for revegetalization by 
hydroseeding. Land Degradation & Development 10:21-34.

M onaco, T.A., and J.E. Creech. 2004. Sulfosulfuron effects on growth and
photosynthesis o f 15 range grasses. Rangeland Ecology & M anagement 57:490- 
496.

Monaco, T.J., S.C. Weller, and P.M. Ashton. 2002. W eed Science: Principles and 
Practices. 4th ed. John W iley & Sons, Inc., New York.

M ontalvo, A.M., P.A. McMillan, and E.B. Allen. 2002. The Relative Importance o f 
Seeding Method, Soil Ripping, and Soil Variables on Seeding Success. 
Restoration Ecology 10:52-67.

Muzzi, E., F. Roffi, M. Sirotti, and U. Bagnaresi. 1997. Revegetation techniques on clay 
soil slopes in northern Italy. Land Degradation & Development 8:127-137.

Ofori, D.A., A.C. Newton, R.R.B. Leakey, and J. Grace. 1996. Vegetative propagation o f 
Milicia excelsa by leafy stem cuttings: effects o f auxin concentration, leaf area 
and rooting medium. Forest Ecology and M anagement 84:39-48.

Palomino, A. 2006. Ho'olawa Farms. Email inquiry/interview, 9 October 2006.

Paquin, D.G., S. Campbell, and Q.X. Li. 2004. Phytoremediation in subtropical Hawaii - 
A review o f over 100 plant species. Remediation Journal 14:127-139.

Paschke, M.W., C. DeLeo, and E.F. Redente. 2000. Revegetation o f Roadcut Slopes in 
M esa Verde National Park, U.S.A. Restoration Ecology 8:276-282.

Petersen, S.L., B.A. Roundy, and R.M. Bryant. 2004. Revegetation Methods for High- 
Elevation Roadsides at Bryce Canyon National Park, Utah. Restoration Ecology 
12:248-257.

Pill, W .G., and D.S. Nesnow. 1999. Germination o f Hydroseeded Kentucky Bluegrass 
{Poa pratensis L.) and Perennial Ryegrass {Lolium perenne  L.) in Response to 
Seed Agitation in the Tank. Journal o f Turfgrass M anagement 3:59-67.

Potvin, M.A. 1993. Establishment o f native grass seedlings along a topographic/moisture 
gradient in the Nebraska. American Midland Naturalist 130:248.

Qasem, J.R. 1996. Chemical weed control in garlic {Allium sativum  L) in Jordan. Crop 
Protection 15:21-26.

136



Qasem, J.R., and C.L. Foy. 2006. Selective weed control in Syrian marjoram {Origanum  
syriacum) with oxadiazon and oxyfluorfen herbicides. Weed Technology 20:670- 
676.

Ralph, M. 2003. Growing Australian native plants from seed: for re-vegetation, tree
planting and direct seeding. 2nd ed. Bushland Horticulture, Melbourne, Australia.

Rohitashav, S., S. Govindra, S. Dhiman, S.S. Tripathi, R.G. Singh, and S. Mahendra. 
2004. Effect o f herbicides on weeds in transplanted rice, pp. 184, In S.
Rohitashav, (ed.) Indian Journal o f W eed Science, Vol. 36.

Rorison, I.H., and R. Hunt, (eds.) 1980. Amenity Grassland: An Ecological Perspective. 
John W iley and Sons Ltd., UK.

Scanlon, P.F. 1991. Effects o f highway pollutants upon terrestrial ecosystems, p. 281-
338, In  R. S. Hamilton and R. M. Harrison, eds. Studies in Environmental Seienee 
44: Highway Pollution. Elsevier, Amsterdam.

Semple, W.S., LA. Cole, and T.B. Koen. 2004. Native couch grasses for revegetating 
severely salinised sites on the inland slopes o f NSW. The Rangeland Journal 
26:88-101.

Shiemho, P.N., A.C. Newton, and R.R.B. Leakey. 1996. Vegetative propagation o f
Irvingia gabonensis, a W est African fruit tree. Forest Ecology and M anagement 
87:185-192.

Sindel, B.M., S.J. Davidson, M.J. Kilby, and R.H. Groves. 1993. Germination and
Establishment o f Themeda triandra (Kangaroo Grass) as Affected by Soil and 
Seed Characteristics. Australian Journal o f Botany 41:105-117.

Spall, G. 1998. Hydroplanting: the way forward for extensive green roofs. Facilities 16:4.

Steinfeld, D., S. Riley, K. W ilkinson, T. Landis, and L. Riley. 2007b. Roadside
revegetation: an integrated approach to establishing native plants. Western 
Federal Lands Highway Division, Vancouver, Washington.

Steinfield, D.E., S.A. Riley, K.M. W ilkinson, T.D. Landis, and L.E. Riley. 2007a. A 
Manager's Guide to Roadside Revegetation Using Native Plants, pp. 1-28. 
Western Federal Lands Highway Division, Vancouver, WA.

Tamimi, L.N. 1999. The use o f native Hawaiian plants by landscape architeets in Hawaii, 
M.S. Thesis Virginia Polytechnic Institute and State University.

Tanji, M. 2008. The Green Behind the Greenery: Native plants prove costly, difficult for 
highway landscape The Maui News, Wailuku, Maui.

137



Tchoundjeu, Z., M.L. Ngo Mpeck, E. Asaah, and A. Amougou. 2004. The role o f
vegetative propagation in the domestication o f Pausinystalia johim be  (K. Schum), 
a highly threatened medicinal species o f W est and Central Africa. Forest Ecology 
and M anagement 188:175-183.

Tchoundjeu, Z., M. Avana, R. Leakey, A. Simons, E. Assah, B. Duguma, and J. Bell. 
2002. Vegetative propagation o f Prunus africana: effects o f rooting medium, 
auxin concentrations and leaf area. Agroforestry Systems 54:183-192.

Turgeon, A.J. 1991. Turfgrass Management. 3rd ed. Prentice Hall Inc., Englewood Cliffs, 
New Jersey.

Tyser, R.W., J.M. Asebrook, R.W. Potter, and L.L. Kurth. 1998. Roadside Revegetation 
in Glacier National Park, U.S.A.: Effects o f Herbicide and Seeding Treatments. 
Restoration Ecology 6:197-206.

USDA-NCRS. 2007. Seashore Dropseed Sporobolus virginicus Plant Fact Sheet.

Vazquez, G., P. Moreno-Casasola, and O. Barrera. 1998. Interaction between algae and 
seed germination in tropical dune slack species: a facilitation process. Aquatic 
Botany 60:409-416.

Vencill, W .K., (ed.) 2002. Herbicide Handbook o f the W eed Science Society o f  America, 
pp. 1-493. Weed Science Society o f America, Lawrence, KS.

Wagner, W.L., D.R. Herbst, and S.H. Somer. 1999. Manual o f Flowering Plants o f 
Hawaii, revised ed. University o f Hawaii Press, Honolulu, Hawaii.

138


