
FOUNDATION INVESTIGATION
PROPOSED APARTMENT BUILDINGS
KANEOHE, OAHU, HAWAII
TMK: 4-5-50-26
for
WALTER ZANE REALTY CORP.

ERNEST K. HIRATA \& ASSOCIATES, INC.

Soils and Foundation Engineering

1157 South King Street - Honoluly, Hawall 96814 - Phone 531.5733
May 23, 1973
W.O. 191

Walter Zane Realty Corp.
c/o Kim, Kimura, Lee, Associates, Inc. 1806 South King Street
Honolulu, Hawaii 96814
Gentlemen:
Our report, "Foundation Investigation, Proposed Apartment Buildings, Kaneohe, Oahu, Hawaii, TMK: 4-5-50-26," dated May 23, 1973, our Work Order 191 is enclosed.

This is the report requested by you and planned in cooperation with Kim, Kimura, Lee, Associates, Inc., Structural Engineers.

The exploratory borings indicate that the onsite soils consist of a dark brown, stiff, silty clay. The silty clay grades to a grayish brown to mottled orange color with depth. Boring 5 indicated that the subsurface soil becomes medium stiff with higher moisture contents at depths of 10 feet and greater.

The site was found to be feasible for the proposed development. Conventional shallow foundations may be used to support the proposed structures. Precaution should be taken for Bldg. "D" since portions of the building will be both cut and fill. Our report provides recommendations for the proposed development.

We appreciate this opportunity to be of service. Should you have any questions concerning this report, please feel free to call on us.

Very truly yours,
Ernest K. Hirata \& Associates, Inc.

Ernest K. Hirata

FOUNDATION INVESTIGATION

PROPOSED APARTMENT BUILDINGS
KANEOHE, OAHU, HAWAII
TMK: 4-5-50-26

INTRODUCTION

This report presents the results of our foundation investigation performed on the subject property. The purpose of this investigation was to determine the nature of the soils underlying the site; to ascertain their engineering properties, and to provide recommendations for foundation design, floor slabs, and paving.

This investigation included drilling exploratory test borings, obtaining representative soil samples, laboratory testing and analysis, and the preparation of this report. The exploratory boring locations are shown on the enclosed Site Plan. Also attached is an Appendix which describes the laboratory testing procedures.

STRUCTURAL CONSIDERATIONS

Information concerning the proposed development was furnished by Kim, Kimura, Lee, Associates, Inc., Structural Engineers.

The proposed development will consist of four apartment buildings, three stories in height. The proposed structures
will be constructed of reinforced concrete with masonry block walls. Structural loads will be primarily supported by bearing walls with some pier type columns. The maximum load on the bearing walls will be approximately 5000 pounds per Iinear foot, while the maximum pier column load will be on the order of 23 kips.

SITE CONDITIONS

The property is located on the makai side of Kamehameha Highway near the intersection with Likelike Highway. Approximately a 16 foot difference in elevation exists between the Highway and the subject property. The site drains from the front to the rear of the property with a slope gradient of approximately five percent.

At the time of our investigation, several wood frame buildings were found on the site along with numerous trees. A thick growth of vegetation was found along the rear of the property.

FIELD EXPLORATION

The site was explored on April 23 and 24,1973 by drilling five exploratory test borings with a truck mounted rotary drill rig. The borings varied in depth from 15 to 20 feet. The boring locations are shown on the Site Plan, and the soils encountered are logged on Plates A1 through A5.

The soils were continuously logged by our field engineer and classified by visual examination in accordance with the Unified Soil Classification System.

Undisturbed and bag samples were recovered from the borings for laboratory testing. Undisturbed samples were obtained by driving a thin walled steel sampler with a 140 pound hammer from a height of 30 inches. The required blow count for each six inches of penetration is shown on the enclosed "Boring Logs".

SOIL CONDITIONS

Topographically, the onsite soils were developed from colluvium and alluvium deposits placed on fans and terraces from the weathering of the Koolau Mountains.

The exploratory borings indicate that the onsite soils consist of a dark brown, stiff, silty clay. The silty clay graded to a grayish brown to mottled orange color with depth. Boring 5 indicated that the subsurface soil becomes medium stiff with higher moisture contents at depths of 10 feet and greater.

Groundwater was not encountered in any of the exploratory borings down to the depths drilled.

RECOMMENDATIONS

General

The site was found to be feasible for the proposed development. Conventional shallow foundations may be used to support the proposed structures.

Foundations

Conventional spread footings may be used to support the structures. The proposed elevations indicate that Bldgs. "A" and "C" will primarily be in cut, and we therefore recommend that footings be founded on the undisturbed ground. An allowable bearing value of 3500 PSF may be used for both wall and pier footings.

Bldg. "B" will be entirely on fill, and we recommend that an allowable bearing value of 2000 PSF be used for foundation design.

Bldg. " D " will be in both cut and fill as approximately 9.5 feet of fill will be placed along the eastern edge of the pad. We recommend that the cut portion of the pad be overexcavated a total of three feet then recompacted to 90 percent of the maximum relative density. In addition, the compacted fill for Bldg. "D" should be completed first, and construction
of the building started last. This will help to allow any possible settlement to occur under the filled area prior to construction.

Footings under all buildings should be embedded a minimum of 18 inches below finished adjacent grade.

Lateral Design

The bearing values indicated above are for the total of dead and frequently applied live loads, and may be increased by one-third for short duration loading which includes the effect of wind or seismic forces. Resistance to lateral loading may be provided by friction acting at the base of foundations. An allowable coefficient of friction of 0.4 may be used with the dead load forces.

Floor Slabs and Paving

Prior to placing slabs-on-grade or paving, the existing grade should be scarified to a depth of 6 inches, moistened as required to obtain optimum moisture content, and recompacted to 90 percent of the maximum dry density as determined by ASTM D-1557-70T.

We recommend that the flexible pavement design be based on 2 inches of asphaltic concrete with 6 inches of base course material having a CBR value of 85% or greater compacted to 100%.

The surface soils are considered slight to moderately expansive. Prior to placement of concrete, the subgrade should be thoroughly wetted. A six inch layer of crushed rock should be placed under all slabs on grade.

Inspection

It is recommended that all footings be inspected by a qualified soils engineer prior to placing concrete or steel. Any fill which is placed should be inspected and tested. Any import of fill material should be inspected by us to ascertain that the engineering properties meet our recommendations for foundation design.

Limitations

The boring logs indicate the approximate subsurface soil conditions encountered only at those locations where the borings were made and may not represent conditions at other locations.

During construction, should subsurface conditions differ from those encountered in the borings, we should be advised immediately in order to review and to revise our recommedations.

Our professional services were performed, findings obtained, and recommendations prepared in accordance with generally accepted engineering practices. This warranty is in lieu of all other warranties expressed or implied.

Respectfully submitted, Ernest K. Hirata \& Associates, Inc.

[^0]EKH:gk

APPENDIX OF LABORATORY TESTING

Classification

The field classification is verified in the laboratory, also in accordance with the Unified Soil Classification System. Laboratory classification is determined by both visual examination and Atterburg Limit Tests according to ASTM D423 and D424. The final classification is shown on the Boring Logs.

Moisture-Density

The field moisture content and dry unit weight are determined for each of the undisturbed soil samples. The information is useful in providing a gross picture of the soil consistency between borings and any local variations. The dry unit weight is determined in pounds per cubic foot while the moisture content is determined as a percentage of the dry unit weight. These samples are obtained from a $3^{\prime \prime}$ O.D. split tube sampler.

Consolidation

Settlement predictions of the soil's behavior under load are made on the basis of the consolidation tests. Loads are applied in several increments in a geometric progression, and the resulting deformations are recorded at selected time intervals. Porous stones are placed in contact with the top and bottom of each specimen having an inside diameter of 2.40 inches and a height of 1 inch to permit addition and
release of pore fluid. Results of undisturbed and remolded samples are plotted on the Consolidation Test Report:

Compaction Tests
Compaction tests were performed on bag samples to determine the optimum moisture content at which each type of proposed fill material compacts to 100% density. The tests were performed according to the Modified AASHO T-180.

Swell Tests

Swell tests were performed to determine the expansiveness of the onsite surface soils. The tests were performed on undisturbed ring and remolded samples taking a one inch high specimen under different surcharge loads.

Shear Tests

Shear tests are performed in the Direct Shear Machine which is of the strain control type. The rate of deformation is approximately 0.03 inches per minute. Each sample is sheared under varying confining loads in order to determine the Coulomb shear strength parameters, cohesion and angle of internal friction. Eighty percent of the ultimate value is taken to determine the shear strength parameters.

ERNEST K. HIRATA \& ASSOC.
bORING LOG
BORING NO.
B1

ERNEST K. HRATA \& ASSOC.
BORING NO. \quad B2
bORING LOG DRIVING WT. 140 lb ,

DATE OF ORILLING 4-23-7
0

ERNEST K. HIRATA \& ASSOC.
BORING NO. B3

S

EHNEST K. HRRATA \&: ASSOC.
boring log
 DRIVING WT. 140 1b.

DATE OF DRILLING 4-24-73 SURFACE ELEV. $71 \pm$ DROP 30 in. W.O. 191

[^0]: Enc: Appendix of Laboratory Testing Log of Borings Plates A1 through A5 Consolidation Test Report Plates B1 through B5 Site Plan

