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Abstract 

Enterotoxigenic Escherichia coli are the major causes of porcine post-weaning diarrhea 

(PWD). Currently, no licensed vaccines for ETEC exist. However, studying ETEC helps to 

better understand the role of these organelles in biology and pathogenesis, opens a new door to 

disease diagnosis, prevention and treatment, and enables development of effective vaccines. 

In Chapter 2, the study was focused on mapping the immuno-dominant or neutralizing 

epitopes from the adhesive subunit FedF of F18 fimbriae. Our data showed that seven immune-

dominant epitopes were identified from FedF subunit. Epitope fusions induced anti-F18 

antibodies in subcutaneously immunized mice.  Moreover, antibodies derived from each fusion 

significantly blocked adherence of a F18-fimbrial E. coli bacteria to pig intestinal cell line IPEC-

J2.  While all seven epitopes exhibited neutralizing activity, results from this study identified 

FedF epitopes #3 (IPSSSGTLTCQAGT) and #7 (QPDATGSWYD) as the most effective for 

antibodies against F18 fimbrial adherence and suggested their future application in PWD vaccine 

development. 

In Chapter 3, we further identified B-cell immunodominant epitopes from K88 fimbrial 

major subunit (also adhesin) FaeG. We found that while all nine FaeG epitope fusions induced 

antibodies to K88 fimbria, anti-K88 IgG antibodies derived from epitopes #1 (MTGDFNGSVD), 

#2 (LNDLTNGGTK), #3 (GRTKEAFATP), #4 (ELRKPDGGTN), #5 

(PMKNAGGTKVGAVKVN) and #8 (RENMEYTDGT) significantly inhibited adherence of 

K88-fimbrial bacteria to porcine intestinal cell line IPEC-J2, indicating the ability of these 

peptides to neutralize EPITOPES of K88 fimbrial major subunit FaeG and suggesting the future 

application of FaeG epitopes in ETEC vaccine development. 



 

In Chapter 4, a PWD multiepitope fusion antigen (PWD-MEFA) was constructed. Our 

data showed the expressed fimbriae-toxoid PWD MEFA protein, which was approximately 40 

kDa, was verified in Western blot analysis using anti-FaeG, anti-K88epitope-fusion, anti-

F18epitope-fusion, anti-CT, anti-STa, and anti-Stx2e antiserum, respectively. Mice SC 

immunized with PWD MEFA protein developed strong anti-K88, anti-F18, anti-LT and anti-STb 

IgG antibody responses, and moderate anti-Stx2e and anti-STa IgG responses. Moreover, mouse 

serum antibodies inhibited adherence of K88- and F18-fimbrial ETEC bacteria and neutralized 

LT, STa, STb and Stx2e enterotoxicity. Additionally, double mutant LT (dmLT, LTR192G/L211A) 

adjuvant up-immunoregulated PWD MEFA anti-fimbriae and antitoxin antibody responses. 

These results indicated that this fimbriae-toxoid PWD MEFA induced broadly anti-fimbriae and 

anti-toxin antibodies, and suggested antigen candidacy for developing an effective vaccine 

against PWD. 

In Chapter 5, we optimized this MEFA to be expressed as a holotoxin-structured and 

GM1-binding protein in a live host strain to induce mucosal antibodies against ETEC adhesins 

and toxins. Our data showed that optimized PWD adhesin-toxoid MEFA formed a holotoxin 

structure and bound to GM1 receptor, and Salmonella Ty21a strain, as well as porcine field E. 

coli isolate G58 to produce the new adhesin-toxoid MEFA and secreted the protein outer-

membrane. These results suggest that Ty21a or G58 host producing the GM1-binding adhesin-

toxoid MEFA can potentially be an effective mucosal vaccine against PWD. 

In summary, this study investigated the immunodominate and neutralizing epitopes of 

F18 fimbrial adhesin subunit FedF and K88 fimbrial adhesin subunit FaeG, and also constructed 

and optimized a PWD fimbriae-toxoid MEFA inducing broadly effective protection against 

PWD-associated ETEC infection.  
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Abstract 

Enterotoxigenic Escherichia coli are the major causes of porcine post-weaning diarrhea 

(PWD). Currently, no licensed vaccines for ETEC exist. However, studying ETEC helps to 

better understand the role of these organelles in biology and pathogenesis, opens a new door to 

disease diagnosis, prevention and treatment, and enables development of effective vaccines. 

In Chapter 2, the study was focused on mapping the immuno-dominant or neutralizing 

epitopes from the adhesive subunit FedF of F18 fimbriae. Our data showed that seven immune-

dominant epitopes were identified from FedF subunit. Epitope fusions induced anti-F18 

antibodies in subcutaneously immunized mice.  Moreover, antibodies derived from each fusion 

significantly blocked adherence of a F18-fimbrial E. coli bacteria to pig intestinal cell line IPEC-

J2.  While all seven epitopes exhibited neutralizing activity, results from this study identified 

FedF epitopes #3 (IPSSSGTLTCQAGT) and #7 (QPDATGSWYD) as the most effective for 

antibodies against F18 fimbrial adherence and suggested their future application in PWD vaccine 

development. 

In Chapter 3, we further identified B-cell immunodominant epitopes from K88 fimbrial 

major subunit (also adhesin) FaeG. We found that while all nine FaeG epitope fusions induced 

antibodies to K88 fimbria, anti-K88 IgG antibodies derived from epitopes #1 (MTGDFNGSVD), 

#2 (LNDLTNGGTK), #3 (GRTKEAFATP), #4 (ELRKPDGGTN), #5 

(PMKNAGGTKVGAVKVN) and #8 (RENMEYTDGT) significantly inhibited adherence of 

K88-fimbrial bacteria to porcine intestinal cell line IPEC-J2, indicating the ability of these 

peptides to neutralize EPITOPES of K88 fimbrial major subunit FaeG and suggesting the future 

application of FaeG epitopes in ETEC vaccine development. 



 

In Chapter 4, a PWD multiepitope fusion antigen (PWD-MEFA) was constructed. Our 

data showed the expressed fimbriae-toxoid PWD MEFA protein, which was approximately 40 

kDa, was verified in Western blot analysis using anti-FaeG, anti-K88epitope-fusion, anti-

F18epitope-fusion, anti-CT, anti-STa, and anti-Stx2e antiserum, respectively. Mice SC 

immunized with PWD MEFA protein developed strong anti-K88, anti-F18, anti-LT and anti-STb 

IgG antibody responses, and moderate anti-Stx2e and anti-STa IgG responses. Moreover, mouse 

serum antibodies inhibited adherence of K88- and F18-fimbrial ETEC bacteria and neutralized 

LT, STa, STb and Stx2e enterotoxicity. Additionally, double mutant LT (dmLT, LTR192G/L211A) 

adjuvant up-immunoregulated PWD MEFA anti-fimbriae and antitoxin antibody responses. 

These results indicated that this fimbriae-toxoid PWD MEFA induced broadly anti-fimbriae and 

anti-toxin antibodies, and suggested antigen candidacy for developing an effective vaccine 

against PWD. 

In Chapter 5, we optimized this MEFA to be expressed as a holotoxin-structured and 

GM1-binding protein in a live host strain to induce mucosal antibodies against ETEC adhesins 

and toxins. Our data showed that optimized PWD adhesin-toxoid MEFA formed a holotoxin 

structure and bound to GM1 receptor, and Salmonella Ty21a strain, as well as porcine field E. 

coli isolate G58 to produce the new adhesin-toxoid MEFA and secreted the protein outer-

membrane. These results suggest that Ty21a or G58 host producing the GM1-binding adhesin-

toxoid MEFA can potentially be an effective mucosal vaccine against PWD. 

In summary, this study investigated the immunodominate and neutralizing epitopes of 

F18 fimbrial adhesin subunit FedF and K88 fimbrial adhesin subunit FaeG, and also constructed 

and optimized a PWD fimbriae-toxoid MEFA inducing broadly effective protection against 

PWD-associated ETEC infection
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Chapter 1 - Literature review  

 

 1.1 Overview of porcine post-weaning diarrhea 

Post-weaning diarrhea (PWD) is common during the first 2 weeks after weaning. PWD-

associated symptoms include watery diarrhea and dehydration, which result in acute reduced 

weight gain and death (Rhouma, Fairbrother, Beaudry, & Letellier, 2017). PWD is a 

multifactorial disease, which makes prevention difficult (Fig 1.1). Weaned piglets are susceptible 

to cold or heat stress due to poor regulation of body temperature. Housing temperature plays a 

critical role in the health of weaned pigs. A difference of over 10 °C in between daytime and 

nighttime housing temperatures can lead to an approximately 30% increase in the diarrhea rate. 

The most suitable environment for weaned piglets is 26–28 °C with approximately 70% 

humidity. Higher humidity increases the incidence of diarrhea. Additionally, good sanitation, 

especially regular cleaning of bedding and other equipment, can also reduce the risk of PWD 

effectively (Rhouma et al., 2017). 

The structure and function of the digestion system are not fully developed in piglets 

during the first two weeks after weaning (Heo et al., 2013). The small intestinal villi become 

shorter than the crypts due to the diet change, which disturbs the absorption of nutrients and can 

lead to damage by enteric pathogens. Furthermore, weaned piglets have lower digestive enzyme 

contents and activities, which reduces the absorption of nutrients during the first two weeks after 

weaning (Parra-Suescun, Agudelo-Trujillo, & Lopez-Herrera, 2015). Simultaneously, a 

reduction of lactic acid due to the interruption of sow milk intake after weaning increases the pH 

value in the gastrointestinal (GI) tract, leading to an imbalance of the microbial flora. Intestinal 

histological changes lead to reduced intestinal function, which not only provides a nutritional 
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basis for the attachment and proliferation of pathogenic microbes but also increases the GI 

osmotic pressure, resulting in osmotic diarrhea (Pluske, Turpin, & Kim, 2018). Under such 

conditions, any improper feeding methods, e.g., a higher proportion of plant proteins, fat or 

cellulose in the feed, an excess of iron, or a deficiency of zinc, selenium or vitamins, etc., can 

easily lead to intestinal dysfunction and diarrhea (Heo, Kim, Yoo, & Pluske, 2015; Metzler-

Zebeli et al., 2010; Schwab et al., 2015; Sun & Kim, 2017).  

The population density of the piglets is another potential factor that contributes to PWD, 

likely due to the ease of disease transmission (Sun & Kim, 2017). Additionally, the situation of 

sow farrowing, pregnancy and parturition may also be vital for controlling PWD. However, 

studies of these factors have been limited to local farm reports and have failed to resolve 

contradictory observations (Hayakawa, Masuda, Kurosawa, & Tsukahara, 2016). Genetic factors 

related to the gut receptors of neonatal piglets are also important for infection caused by enteric 

pathogens, particularly enterotoxigenic Escherichia coli (ETEC) (Ogundare, Fasanmi, & Fasina, 

2018). For example, the receptors for F4 fimbriae can be isolated from the pig intestine at all life 

stages, while the receptors for F18 fimbriae can be isolated in pigs commonly after 2-3 weeks of 

age. Since the success of colonization determines ETEC infection, pigs that do not have fimbria 

receptors are not susceptible to PWD (Heo, 2013).   

The enteric pathogens that cause PWD include rotavirus, ETEC, coccidia, sapovirus and 

Cryptosporidium parvum (Rhouma et al., 2017; Zlotowski et al., 2008). These pathogens either 

damage intestinal epithelial cells or impair the neonatal immune system, resulting in PWD or 

enhancing the colonization and infection of ETEC if a mixed infection occurs. For example, 

ETEC has the ability to produce enterotoxins, such as heat-labile toxin (LT), heat-stable toxin 

(ST) and Shiga toxin type 2e (Stx2e), to stimulate the secretion of excessive fluid from intestinal 
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cells and cause diarrhea. During infection, ETEC must first adhere to the intestinal mucosa to 

release these enterotoxins. Therefore, adhesins, such as fimbriae, are among the main virulence 

factors in ETEC infection (Dubreuil, Isaacson, & Schifferli, 2016). 

 

 1.2 The major pathogen: ETEC 

Proliferation of β-hemolytic ETEC in the swine intestine has been considered the major 

cause of PWD, which is associated with damage to the pig neonatal intestinal epithelium and 

weakness of the gut barrier function (Rhouma et al., 2017). During weaning, the change in diet, 

the loss of milk, which supports passive immunity, and the incomplete development of active 

immunity increase the risk of pathogenic attachment, commonly mediated by binding of fimbrial 

adhesins to the neonatal mucosal surface (Heo et al., 2013). Contaminated food and water are the 

most common causes of ETEC infection.  

Adhesion of the fimbriae of ETEC bacteria to glycoprotein receptors on the pig small 

intestinal surface is essential for the release of enterotoxins from ETEC to pig intestinal 

epithelium cells. Enterotoxins directly result in the secretion of water and electrolytes from 

intestinal epithelial cells into the intestinal lumen, causing diarrhea and dehydration (Dubreuil et 

al., 2016). This chapter provides a summary of the fimbriae of porcine ETEC bacteria, such as 

K88ac fimbriae and F18ac fimbriae, and their roles in ETEC infection in piglets. A review of 

ETEC toxins associated with PWD, including LT, STa, STb and Stx2e, is also included in this 

chapter (Fig 1.2). 
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 1.2.1 ETEC fimbriae 

Fimbriae or pili on the surface of bacteria are virulence factors with a hair-like structure. 

Fimbriae are very common in gram-negative bacteria as well as some gram-positive bacteria 

(Knight & Bouckaert, 2009). Unlike flagella, fimbriae usually do not modulate bacterial 

movement (except type IV pili, which utilize force generated by adherence during retraction to 

promote bacterial movement) (Hedlund et al., 2001; Mortezaei et al., 2015). As the major 

adhesin on the bacterial surface, fimbriae are able to mediate bacterial adherence to host cells or 

tissues and to avoid clearance by mucus secretion and peristalsis (Ramboarina et al., 2010). 

Many fimbriae have been characterized, such as chaperone-usher fimbriae (including type 1 

fimbriae and P-pili), type IV pili, curli pili and sortase assembled pili (in gram-positive bacteria) 

(Ramboarina et al., 2010). Fimbriae are considered potential drug targets and vaccine candidates 

via inhibition of bacterial adhesion (Hallander et al., 2009; Ramboarina et al., 2010). 

Porcine ETEC fimbriae adhere to specific receptors on piglet intestinal epithelial cells 

and module the colonization of bacteria (Luo, Van Nguyen, de la Fe Rodriguez, Devriendt, & 

Cox, 2015). There are six different fimbrial subtypes, K88 (F4), K99 (F5), 987P (F6), F41 (F7), 

F17 and F18, in porcine-specific ETEC strains (Dubreuil et al., 2016; Luppi et al., 2016). Other 

factors, like adhesin involved in diffuse adhesion (AIDA-I), are also related to pig diarrhea 

disease (Ravi et al., 2007; Zhao, Chen, Xu, Song, & Liu, 2009). K88 (F4) and K99 (F5) are the 

most common fimbriae among porcine ETEC infections (Luppi et al., 2016; Pereira et al., 2016). 

 

1.2.1.1 K88 fimbriae  

K88 (F4) fimbriae are the most frequently detected in neonatal diarrhea and post-weaning 

diarrhea (Melkebeek, Goddeeris, & Cox, 2013). K88 (F4) fimbriae have three variants, F4ad 
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(K88ad), F4ac (K88ac), which by far is the most common variant worldwide, and F4ab (K88ab) 

(Melkebeek et al., 2013; W Zhang, 2014). Conserved determinants such as K88a can be found in 

all three variants, while variable determinants such as K88b, K88c, and K88d are not shared 

among the three variants (Dubreuil et al., 2016). The specificity of binding among three variants 

relates to FaeG, the major structural subunit of K88 (F4) fimbriae, which contains the adhesive 

domain, whereas the minor tip subunit FaeC is not associated with fimbria-binding activity 

(Dubreuil et al., 2016). The conformation of the FaeG binding site is heterogeneous among K88 

variants (Moonens et al. (2015). 

K88 (F4) fimbriae have been studied extensively. Four putative receptors on pig 

intestinal epithelial cells that are specific to K88 fimbriae have been identified: intestinal mucin-

type glycoproteins (IMTGPs), enterocyte membrane-associated transferrin (GP74), intestinal 

neutral glycosphingolipids (IGLads) and porcine aminopeptidase N (APN) (Table 1.1) 

(Rampoldi et al., 2011; Xia et al., 2018; Xia, Zou, et al., 2015). The major difference among 

these four receptors is their carbohydrate composition. Based on their receptors and adherence to 

three K88 variants, piglets have been grouped into eight phenotypes, which are types A-H 

(Dubreuil et al., 2016; Nguyen et al., 2017). The relevant young pig phenotypes, host receptors 

on porcine epithelial cells, K88 fimbriae variants and ETEC infections are listed in Table 1.2. 

K88ac is considered by some to be the only variant of significance in swine disease (Dubreuil et 

al., 2016). Thus, recent studies focus on the relationship between K88ac fimbriae and their host 

receptors on the piglet small intestinal mucosa, as well as the binding domain and binding ability 

of K88ac fimbriae.  

The receptor for E. coli K88ac+ fimbriae was extracted from mucus from the piglet small 

intestine by affinity chromatography and was initially reported to be an 80-kDa glycoprotein 
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(Jin, Marquardt, and Zhao (2000). Other receptors, 26 and 41 kDa proteins, were also 

characterized as K88ac fimbrial adhesin-specific receptors in the piglet small intestinal mucosa 

and concluded to be responsible for nearly all K88ac fimbrial binding to the piglet small 

intestinal mucosa (Zhou et al. (2013). K88ac+ ETEC could bind efficiently to the intestinal 

porcine epithelial cell lines IPEC-1 and IPEC-J2 (Verdonck et al., 2008). Amino acids 125-163 

of the FaeG subunit have been reported as the variant-specific binding area of K88 (W. Zhang, 

Fang, & Francis, 2009). Moreover, amino acids 64-107 of the FaeG were shown that associated 

with the receptor-binding domain (Cao et al., 2013). Live E. coli cells have been found that could 

be efficiently captured and immobilized by antibodies induced by K88ac fimbriae (Das et al., 

2013). The tissue-specific mRNA expression of PR-39 in China Jinhua pigs and Landrace pigs 

was compared during K88ac fimbriae challenge (Gao et al., 2014). The mRNA expression data 

showed that Jinhua pigs had a stronger response to ETEC K88ac challenge than did Landrace 

pigs, suggesting that the two breeds have genetic differences in resistance to K88ac+ ETEC 

infection. Porcine F4ac-binding milk fat globule membranes were demonstrated that consisted of 

lactadherin, butyrophilin, adipophilin, acyl-CoA synthetase 3, and fatty acid-binding protein 3 

and suggested that the interaction of these proteins with F4ac fimbria may obstruct ETEC 

attachment and colonization (Xia, Zou, et al., 2015). K88 fimbriae were also reported to 

upregulate IL-1beta, IL-8 and TNF-alpha (Li et al. (2016).  

 

1.2.1.2 F18 fimbriae 

F18 is a typical fimbria with one copy of the adhesive subunit FedF at the fimbrial tip, 

and FedF residues 60-109 are important for attachment (Dubreuil et al., 2016). F18 fimbriae are 

soft filaments with a length of 1-2 μm under the electron microscope, and they cover the 
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bacterial surface like hair. The diameter of the fimbriae is approximately 6.7 nm, which can 

mediate the adhesion of bacteria to the intestinal mucosa. Unlike K88 fimbriae, which cause only 

porcine diarrhea disease, F18 fimbriae are also associated with porcine edema disease. Based on 

antigen specificity, two variants have been classified, F18ab and F18ac. The F18ab serotype can 

be found in ETEC and Shiga-toxin producing E. coli (STEC), while F18ac is associated with 

only ETEC. F18+ ETEC is closely related to diarrhea in weaned pigs, whereas F18+ STEC is 

associated with swine edema disease.   

Two F18 fimbria variants are highly homologous within the FedF subunit, resulting in 

binding to the same receptors on the surface of the pig gut (Luppi et al., 2016). The C-terminus 

of FedF is conserved, with no amino acid residue mutations between the two variants. The N-

terminus of FedF includes a crystal structure, which supports binding to blood cell molecules, 

and a polybasic loop, which stabilizes the interaction of F18 with glycosphingolipids on the host 

intestinal cell surface. However, other evidence suggests that the F18 adhesin does not 

agglutinate erythrocytes and that its adhesion is not inhibited by mannose (Dubreuil et al., 2016). 

FedA, with a size of approximately 15.1 kDa, is the major structural subunit of fimbriae. Data 

from electron microscopy studies suggest that FedA subunits form a symmetrical single-helix 

structure in a zigzag manner (Hahn et al., 2000).  

The FedF subunit of F18ab and F18ac binds to the same receptor molecule on piglet 

intestinal epithelial cells. The genetic factors related to F18 susceptibility in pigs include the 

FUT1 alpha (1, 2)-fucosyltransferase gene located on porcine chromosome 6. FUT1 gene 

encodes a glycosyltransferase which adds fucose residues to F18 glycoprotein receptors for an 

entire function of fimbrial adherence (Dubreuil et al., 2016). This adhesion can be blocked by 

antibodies in the milk glycans. Receptors for F18 fimbriae can only be observed in the pigs after 
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2-3 weeks of age (Luppi et al., 2016), which may suggest the possibility of breeding F18-

resistant pigs.  

Efforts have been made to prevent F18 ETEC infection. Researchers tried to construct 

four nanobodies specific for the lectin domain of the F18 adhesive subunit FedF and found that 

these nanobodies inhibited the attachment of fimbriated pathogens, which could be used as a 

strategy against F18+ ETEC infection (Moonens et al., 2014). Cranberry extract also was used to 

inhibit the attachment of F18+ E. coli to the pig intestinal surface (Coddens, Loos, Vanrompay, 

Remon, & Cox, 2017). Researchers from South Korea prepared an inactivated Salmonella ghost 

delivery system to expresses FedF and FedA, as well as the recombinant Stx2eB, as a vaccine 

candidate against porcine edema disease (Won & John Hwa, 2017; Won, Kim, & Lee, 2017; 

Won & Lee, 2016, 2018). Preventing swine ED and PWD caused by F18+ E. coli has been 

investigated extensively, especially by using fimbrial antigens. However, no vaccine has been 

licensed. Unlike K88 fimbriae, which can be used as a protective immunogen for vaccine 

development, F18 fimbriae, due to their structural characteristics, show lower immunogenicity 

(Verdonck et al., 2007). Thus, a large number of F18 fimbriae are required to induce protective 

antibodies against ED and PWD (Verdonck et al., 2002). Recently, studies identified the 

neutralizing peptide and epitopes, which could be used for subunit vaccine construction (Ti Lu, 

Seo, Moxley, & Zhang, 2019). 

 

 1.2.2 ETEC toxins  

Enterotoxins produced by ETEC include heat-labile enterotoxins (LT) and heat-stable 

enterotoxins (ST). The ETEC LT, STa and STb toxins, alone or more frequently, together, are 

the virulence determinants that cause watery diarrhea and dehydration in humans and animals. 
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 1.2.2.1 Heat-labile enterotoxins (LT) 

LT has two subtypes differentiated by their B subunits: LTI and LTII. LTI includes LTIh 

(human) and LTIp (porcine) based on their host specificity.  

LT is a 1A5B toxin and is homologous to cholera toxin (CT) produced by Vibrio 

cholerae. LT B subunits form a pentamer and bind to GM1 receptors on the host cell surface, 

which is important for their toxic effect (Dubreuil et al., 2016; W. Zhang et al., 2019). The B 

subunit may also bond to blood group determinants, as type A blood and A and B glycolipids can 

enhance its binding to the pig brush border and human erythrocytes (W. Zhang et al., 2019). 

After binding to GM receptors, the enzymatic A subunit enters the cytoplasm to elevate 

intracellular cyclic AMP (cAMP) levels, stimulating Protein Kinase A (PKA) activity and 

causing the secretion of sodium and chloride into the lumen. The LT A subunit can also bind to 

LPS on the surface of gram-negative bacteria, but this attachment does not inhibit the binding of 

B subunits to GM receptors (Mudrak & Kuehn, 2010). 

The holotoxin of LT enters pig intestinal epithelial cells to initiate fluid secretion and 

watery diarrhea. After binding to GM1, LT is internalized by receptor-mediated endocytosis, 

followed by the separation of the A and B subunits in the Golgi and the subsequent release of the 

A1 subunit into the cell cytosol at the endoplasmic reticulum by proteolytic cleavage (Mudrak & 

Kuehn, 2010). The A1 subunit will stimulate adenylate cyclase (AC) via the accumulation of 

cyclic adenosine monophosphate (cAMP) through ADP-ribosylation of the alpha-subunit of a Gs 

protein, resulting in the activation of the membrane chloride channel cystic fibrosis 

transmembrane conductance regulator (CFTR) (Moss, 1978). Activation of CFTR enhances 
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water and electrolyte secretion to the intestinal lumen and inhibits salt reabsorption, resulting in 

watery diarrhea (W. Zhang et al., 2019) (Fig 1.3).   

 

 1.2.2.2 Heat-stable enterotoxins (ST) 

Heat stable ST is a small molecule with a unique structure. ST has two variants: STa 

(type I) and STb (type II). STa is a peptide of 18 or 19 amino acids that is produced by ETEC 

and associated with diarrhea in humans (hSTa, STaH; STh) and animals (pSTa, STaP, STp) 

(Dubreuil et al., 2016). The C- terminus of STa has a 13-amino-acid peptide with three disulfide 

bonds and is highly conserved and essential for enterotoxicity. The disulfide bonds of Sta are 

needed for its toxic activity, and STaH and STaP have cysteine residues in the same positions to 

promote their formation (Dubreuil et al., 2016; Loos et al., 2012). 

STa binds to guanylate cyclase C (GC-C) receptors on intestinal epithelial cells and 

activates their intracellular catalytic domain, resulting in increased intracellular cGMP levels to 

stimulate cGMP-dependent protein kinase II (cGMPKII) for the phosphorylation of CFTR. This 

process leads to water and electrolyte secretion to the lumen (Dubreuil et al., 2016). The 

elevation of cGMP levels blocks phosphodiesterase 3 (PDE3) from increasing the cAMP level, 

likely enhancing water and electrolyte secretion to the lumen and inhibiting salt reabsorption 

(Fig 1.3). 

STb is related to porcine diarrhea, with 48 amino acid residues, including four cysteine 

residues that form two disulfide bonds, which are important for toxicity (Beausoleil, Labrie, & 

Dubreuil, 1999; Taillon, Nadeau, Mourez, & Dubreuil, 2008). Two helical areas in residues 10-

22 have been found to be amphipathic to promote solubility and also important for the toxicity of 
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STb (Sukumar et al., 1995). Residues 38-44 are hydrophobic and may be related to STb 

polymerization (Dubreuil et al., 2016). 

STb binds to sulfatides on the pig intestinal epithelium but does not increase cAMP or 

cGMP levels in the cells (Rousset & Dubreuil, 1999). However, STb can stimulate a toxin-

sensitive GTP-binding regulatory protein to increase the secretion of nonchloride anions from 

gut epithelial cells. STb can also form a pore on the cell membrane and change secretion without 

inducing cell death (Rousset, Harel, & Dubreuil, 1998) (Fig 1.3). 

 

 1.2.2.3 Stx2e 

Stx2e is a member of the Shiga toxin family. Shiga toxin is a cytotoxic protein and is the 

major virulence factor of STEC and EHEC (Melton-Celsa, 2014). The Stx1 (Stx1a) and Stx2 

(Stx2a) subtypes are most commonly associated with STEC infections. Stx1a is highly conserved 

with two variants: Stx1c and Stx1d. This subtype is related to STEC in sheep and shows lower 

pathogenicity in humans (Pacheco & Sperandio, 2012). Stx2a is more important for human 

infection. Stx2 has several variants including stx2c, stx2b and stx2d-activatable. Among these 

variants, the stx2d-activatable toxin is associated with hemolytic-uremic syndrome in STEC 

infection (Pacheco & Sperandio, 2012). Additionally, stx2e, stx2f and stx2g are related to STEC 

infection in animals. Among these toxins, Stx2e causes fatal edema disease in swine (Melton-

Celsa, 2014). Shiga toxin commonly causes the accumulation of water in animal intestines, as 

well as kidney damage (Krause, Barth, & Schmidt, 2018). 

Shiga toxin 2e (Stx2e) produced by Shiga-toxin producing Escherichia coli (STEC) or 

ETEC (commonly related to F18-expressing ETEC) is the major virulence factor of porcine 

edema disease (ED) within 1-2 weeks after weaning (Beutin et al., 2008). This disease is also 
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known as enterotoxemia and leads to a high mortality rate and significant economic losses to the 

pig industry (Sarrazin, Fritzsche, & Bertschinger, 2000). Stx2e is the 1A5B holotoxin that 

consists of an enzymatic A subunit (approximately 32 kDa) and five B subunits (approximately 

7.7 kDa per subunit) and causes neurological ataxia and local edema. The Stx2e A subunit is 

cleaved into an A1 domain and an A2 peptide; the A1 peptide is enzymatic, and A2 binds to the 

B pentamer. A disulfide bridge supports the connection between A1 and A2 (Gyles, 2007). The 

Stx B pentamer binds to globotriosylceramide (Gb3) or globotetraosylceramide (Gb4), the 

glycolipid receptor on host cells, and enters the cytoplasm via endocytosis (Melton-Celsa, 2014) 

(Fig 1.3).  

 

 1.3 ETEC vaccine  

 1.3.1 Vaccines 

A vaccine is a biological preparation that prevents disease by enhancing the host immune 

system (S. A. Plotkin, 2011). Vaccines stimulate active immunity if they comprise weakened, 

killed, or fragmented disease-causing microorganisms or toxins and passive immunity if they 

comprise antibodies or lymphocytes that are related to the disease. The routes of vaccination 

include injection, oral immunization and intranasal administration (S. A. Plotkin, 2011). Edward 

Jenner, who used the vaccinia virus from cowpox to inoculate a boy and protect against smallpox 

in 1796, with the first smallpox vaccine made in 1798, is considered the founder of vaccinology 

(Stewart & Devlin, 2006). Subsequently, a cholera vaccine (1897) and an anthrax vaccine (1904) 

were designed by Louis Pasteur (S. Plotkin, 2014). This technology was also improved from 

using live vaccines to live-attenuated or inactivated vaccines from the late 19th century to the 

middle of the 20th century. Two successful polio vaccines that successfully eradicated polio 
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disease were created during the late 20th century, with the development of viral tissue culture 

technology (S. Plotkin, 2014). However, vaccine safety, especially for live-attenuated or 

inactivated vaccines, has become a major issue for global immunization programs. New 

techniques were required for vaccinology to develop a safe and cost-effective. In the 21st 

century, advances in molecular genetics built a new platform for vaccinology (Stern & Markel, 

2005). DNA vaccines, recombinant vaccines, plant vaccines, subunit vaccines and novel 

adjuvants have been developed and applied successfully (Stern & Markel, 2005). 

Several new technologies for developing safe vaccines have been widely used in the 

field. These technologies can shorten the time required for vaccine development by facilitating 

simple and safe antigen/antibody presentation on subunit vaccines.  

Reverse vaccinology is a new technology for screening the genome of a pathogen and 

identifying immunogenic proteins for vaccine development (Amol M Kanampalliwar, Rajkumar 

Soni, Amandeep Girdhar, & A Tiwari, 2013). Based on genomic sequencing technology and 

bioinformatics, reverse vaccinology allows the rapid identification of vaccine candidates without 

the use of traditional reinfection and reculturing technologies in the laboratory (Amol M 

Kanampalliwar, Rajkumar Soni, Amandeep Girdhar, & Archana Tiwari, 2013). However, this 

technology cannot predict the antigenic targets on polysaccharides or lipids, which are essential 

parts of a successful vaccine (Loomis & Johnson, 2015). 

Unlike reverse vaccinology, which isolates the antigenic epitopes from sequencing, 

structural vaccinology can engineer the protein for epitope maintenance and surface exposure 

(Loomis & Johnson, 2015). Based on the use of structural biology and bioinformatics, this 

technology can modify the vaccine candidate for conformational stabilization and better 



14 

exposure of epitope scaffolds (Charleston & Graham, 2018). Like reverse vaccinology, structural 

vaccinology can also be used for only antigenic proteins. 

 

 1.3.2 ETEC vaccine development  

ETEC vaccine development has been undertaken for several decades, and progress has 

been made in various areas. However, there are still no effective vaccines for ETEC. Since the 

process of ETEC-induced diarrhea is the result of the joint action of adhesins and enterotoxins, 

neither anti-adhesin vaccine candidates nor anti-enterotoxin vaccine candidates can contribute to 

a comprehensive vaccination. Therefore, a protein adhesion-based toxoid multiepitope fusion 

antigen (MEFA) strategy represents a new direction for ETEC vaccine research (Table 1.3). 

MEFA strategy is a focus of research in our laboratory. We constructed a STb-LT fusion 

which embedded the mature STb peptide to the LT toxoid backbone to increase the 

immunogenicity of STb (W. P. Zhang & Francis, 2010). Based on this platform, we continually 

fused an epitope from B subunit of LT and an STa toxoid epitope into the FaeG major subunit of 

E. coli K88ac fimbriae to induce neutralizing antibodies of anti-LT, anti-STa and anti-K88 (C. 

Zhang & Zhang, 2010). Considering the GM1-binding function of LT B pentamer, we fused 

peptides from the K88ac major subunit FaeG, the F18 minor subunit FedF, and the LT toxoid 

(LT192) A2 and B subunits and constructed a FaeG-FedF-LT192A2:B fusion which elicited 

protective antibodies specific for K88, F18 and LT in immunized mice and pigs (X. S. Ruan, 

Liu, Casey, & Zhang, 2011). This monomeric fusion was optimized to a LT-like holotoxin 

structure expressed by a live attenuated E. coli strain and was found that could induce a 

protective immune response against that adhesin and toxin in pigs (X. Ruan & Zhang, 2013). 

Moreover, a toxoid MEFA inducing antibodies specific for STa, STb, LT and Stx2e has been 
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constructed, which could induce protective immunity against ETEC (Rausch et al., 2017). In this 

study, the low immunogenicity of STa had been an issue for ETEC vaccine development. To 

solve this problem, we continually constructed a toxoid fusion 3xSTaN12S-dmLT with three 

STa epitope copies which could induce protective anti-STa antibodies against ETEC diarrhea 

(Nandre, Duan, Wang, & Zhang, 2017). Those data from early our studies suggested potential 

application of MEFA strategy in porcine ETEC vaccine development.  

Other strategies, like multivalent antigen and nanometer-sized inclusion body (IB) 

technology, also have been used to develop a broadly protective vaccine against ETEC infection 

(Jiang et al., 2019; H. H. Zhang et al., 2018). Some groups coated F4 and F18 fimbriae with 

thiolated Eudragit microspheres (TEMS) as an oral vaccine candidate and found this vaccine 

candidate could effectively induce an immune response against ETEC adhesion (Lee et al., 

2011). Others used spray dried plasma powder (SDPP) containing ETEC fimbrial subunit F4 and 

LT as a vaccine which improved average daily growth (ADG) and decreased ETEC excretion 

(Niewold et al., 2007). Vaccine candidates using those strategies have been demonstrated that 

could broadly and effectively protect piglets against ETEC diarrhea.  

F4 fimbriae, as mucosal carrier, has been used as a powerful oral immunogen (Verdonck, 

De Hauwere, Bouckaert, Goddeeris, & Cox, 2005). Oral immunization with F4 fimbriae could 

induce a Th17 dominated response with the participation of IL-17B and IL-17F in the immune 

response (Luo et al., 2015). Purified F4 fimbriae induced IL-6 and IL-8 secretion, which was 

considered as a potential mucosal adjuvant (Devriendt, Stuyven, Verdonck, Goddeeris, & Cox, 

2010). However, industrial application required large quantities of F4 fimbriae. Moreover, the 

pH of the stomach and digestive enzymes could degrade F4 fimbriae which reduce the 

protection. To solve those problem, transgenic plants were used to produce large-scale 
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recombinant proteins against ETEC infection with lower cost. Alfalfa, crop, and tobacco have 

been used to express FaeG proteins (Joensuu, Kotiaho, et al., 2006; Joensuu, Verdonck, et al., 

2006; Kolotilin et al., 2012; Shen et al., 2010). Recombinant plant-produced FaeG proteins could 

store at room temperature and remained stable longer by using dried plant materials. Recently, 

some researchers used rice to develop MucoRice-CTB as a vaccine candidate and found that this 

candidate could protect both suckling and weaned piglets from ETEC diarrhea by inducing both 

passive and active immunity (Takeyama et al., 2015). 

Live attenuated or live wild type avirulent vaccine has also been extensively studied. For 

example, a K88+ avirulent strain expressing adhesive fimbriae and a nontoxic form of LT was 

found that could protect piglets from the same fimbrial adhesin- and enterotoxin-expressing 

ETEC strain (Santiago-Mateo, Zhao, Lin, Zhang, & Francis, 2012). Attenuated Salmonella 

strains have been widely used to secrete multiple fimbriae, like K88ab, K88ac, F41 or K99, from 

recombinant plasmids and found that those candidates could protect piglets through milk by 

immunizing sows (Hur & Lee, 2012a, 2012b). Furthermore, ETEC bacterial ghosts (BGs), empty 

bacterial envelopes containing antigenic comformation, were evaluated in a mouse model 

recently with high safety and immunogenicity (Ran et al., 2019). Two live oral vaccines, 

Coliprotec® F4 (Fairbrother et al., 2017) and Coliprotec F4/F18 (Nadeau et al., 2017), have been 

evaluated in pig challenge models in 2017. Data showed that those vaccines administered once in 

drinking water to pigs of at least 18 days of age could induce long-term protection against swine 

ETEC infection. Those vaccine candidates have been marketed in Canada and Europe, but still 

limited in Unite States. 

Current efforts in ETEC vaccine research are focused on induction of protective antitoxin 

and anticolonization immunity. The adhesin-based protein subunit approach is the most 
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advanced. Traditional immunization routes, for example, subcutaneous vaccination, induce 

systemic immunity effectively (L. Zhang, Wang, & Wang, 2015). However, protection is 

difficult to achieve in the intestinal mucosa, which is the site of origin of bacterial infection (L. 

Zhang et al., 2015). Based on current vaccinology and vaccine knowledge, it may be a good idea 

to use a safe probiotic organism to express antigens to stimulate intestinal mucosa immune 

responses or to produce neutralizing antibodies directly if this probiotic can maintain long-term 

colonization (Vitetta, Vitetta, & Hall, 2018). 

Several vaccine candidates expressing by probiotics show promise for protection against 

ETEC infection in pigs. For example, Lactococcus lactis was used to express FaeG 

extracellularly and found that this candidate induced immunity against live ETEC challenge (Hu 

et al., 2009). A recombinant Lactobacillus casei strain secreting K99 or K88 or K99-K88-LTB 

was developed which could induce antibodies and cellular immune responses against K99 and 

K88 ETEC (L. J. Wen et al., 2012). Other probiotic strain, like E. coli Nissle 1917 (EcN) which 

expressed the K88 fimbrial adhesin on the surface, was found that this recombinant strain 

induced a humoral immune response (Remer et al., 2009). 

 

 1.4 The oral typhoid vaccine strain Salmonella typhi Ty21α 

The Salmonella Ty21α strain is a mutant of Salmonella Ty2 strains lacking uridine-

diphosphate-galactose (UDP-Gal)-4-epimerase due to chemical inactivation of the galE gene. 

This strain has been used as the only oral live attenuated vaccine (or Vivotif®) against typhoid 

fever by the WHO (Organization, 2019). The mutation of galE causes disordered galactose 

metabolism, leading to the accumulation of galactose in the bacteria. These changes result in 

bacteriolysis and the loss of bacterial virulence (McKenna, Bygraves, Maiden, & Feavers, 1995; 
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Robbe-Saule, Coynault, & Norel, 1995). After oral administration, the Ty21α strain proliferates 

in the jejunum and cecum temporarily, which induces humoral immunity and cellular immunity, 

including the activation of CD4+ and CD8+ T cells, the response of NK cells and the secretion of 

IFN-γ (Wahid, Fresnay, Levine, & Sztein, 2015, 2016; Wahid, Simon, Zafar, Levine, & Sztein, 

2012) (Fig 1.4). Data from several volunteer studies suggest that Ty21α does not achieve long-

term colonization in hosts and has a very low excretion rate in feces (Aebischer et al., 2008). The 

intestinal tract prevents the adhesion of pathogenic microbes after Ty21a oral immunization via 

rapid clearance of the challenge strain.     

The Salmonella Ty21α strain is also effective against non-muscle-invasive bladder cancer 

(NMIBC) by successfully delivering anticancer molecules deep inside tumors (Domingos-

Pereira et al., 2017; Domingos-Pereira et al., 2019). Furthermore, the Salmonella Ty21α strain 

has been used as a vaccine delivery platform to express vaccine antigens against some diseases, 

such as HIV, anthrax, shigellosis, plague, and human papilloma virus (Amicizia, Arata, 

Zangrillo, Panatto, & Gasparini, 2017; Baillie et al., 2008; Dharmasena, Osorio, et al., 2016; 

Fraillery et al., 2007; J. Wen et al., 2012). Since Ty21α is not stable in acidic environments, most 

research on the Ty21α strain has emphasized effective oral immunization in the context of 

stomach acidity by using enteric-coated capsules or increasing acid resistance (Dharmasena, 

Feuille, et al., 2016). 

 

 1.5 Purpose of this research  

The overall goal of this research is to construct a PWD multiepitope fusion antigen (PWD 

MEFA) to induce protective immunity against ETEC-associated PWD. This dissertation includes 

three aims: (1) to map the immunodominant or neutralizing epitopes from the adhesive subunits 
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of ETEC fimbriae causing swine post-weaning diarrhea via a reverse epitope vaccinology 

strategy; (2) to construct a PWD monomeric MEFA that induces multiple antifimbria and 

antitoxin antibodies; and (3) to optimize the PWD MEFA into a holotoxin structure and use the 

Ty21a strain as the carrier for PWD-MEFA vaccine protein delivery. 
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Fig 1.1 Risk factors for post-weaning diarrhea in pigs. As a multifactorial disease, post-

weaning diarrhea is one of the most severe diseases and an important cause of death in weaned 

piglets, leading to losses in the pig industry. This disease results in a lower survival rate for 

piglets, lower feed returns, slower growth, etc. Furthermore, post-weaning diarrhea makes 

infection with other pathogens more likely and seriously threatens the growth of the pig industry. 

This article reviews the causes and prevention of diarrhea in weaned piglets.  
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Figure 1.2 The pathogenesis of post-weaning diarrhea in pigs. ETEC bacteria can survive in 

the environment for at least 6 months if they are protected by feces. Once infection occurs, 

ETEC colonizes the porcine intestinal surface by fimbrial adhesins, which is essential for the 

release of enterotoxins from ETEC to intestinal epithelial cells, resulting in the secretion of water 

and electrolytes into the intestinal lumen, which causes diarrhea and dehydration.  
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Figure 1.3 Mechanism of ETEC toxins on intestinal epithelial cells. LT binds to GM1 

receptor on the intestinal cell and increases the intracellular cAMP level, leading to fluid 

secretion. STa binds to GC-C receptor on the intestinal cell and increases the intracellular cGMP 

level. STb binds to sulfatide on the intestinal cell and stimulates GTP-binding regulatory protein. 

Stx2e binds to Gb4 on the intestinal cell and damages vascular endothelium. CFTR: cystic 

fibrosis transmembrane regulator; PKA: protein kinase A; PKC: protein kinase C; GM1: 

Monosialotetrahexosylganglioside; GC-C: guanylate cycles C; SFT: sulfatide; Ca++: calcium 

ion; Gb4: Globotetraosylceramide. 
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Figure 1.4 Mechanisms of live-attenuated Salmonella Ty21a vaccine inducing immunity. 

After oral immunization, Ty21a strains enter the host by M-cell adhesion, epithelial invasion, 

and dendritic cells luminal capture. The vaccine antigens are presented to immune cells by 

antigen-presenting cells, like macrophages or dendritic cells. Moreover, the live oral typhoid 

vaccine Ty21a induces the ‘non-specific’ immune response against other common infections, not 

just Salmonella. 
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Table 1.1 Receptors for F4 (K88) fimbriae.  

Fimbriae Phenotype Adhesins Receptor model Intestinal receptor molecules 

F4ab A B C F H FaeG(ab) b Transferrin N-glycan (74 

kDa) (GP74) 

   
bc IMPTGPs (210–240 kDa)  

   
bcd Glycoproteins (45–70 kDa)  

   
Porcine aminopeptidase N (APN) 

F4ac A B G H FaeG(ac) bc IMPTGPs  

   
bcd Glycoproteins  

   
Porcine aminopeptidase N (APN) 

F4ad A C D FaeG(ad) d Neutral glycosphingolipids 

(IGlads) 

   
bcd Glycoproteins 

  
Porcine aminopeptidase N (APN) 
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Table 1.2 Phenotypes of young pigs based on their F4 (K88) receptors. 

Phenotype Host receptor Recognized 

fimbrial variant 

Related disease 

Type A Intestinal mucin-type 

glycoproteins (IMTGPs) and 

intestinal neutral 

glycosphingolipids (IGLads) 

All three K88 

fimbrial variants 

Typical diarrhea 

after K88ab+ and 

K88ac+ infection and 

no clinical disease 

after K88ad+ 

infection 

Type B Intestinal mucin-type 

glycoproteins (IMTGPs) 

K88ab and K88ac Typical diarrhea 

after K88ab+ and 

K88ac+ infection 

Type C Enterocyte membrane-

associated transferrin (GP74) 

and intestinal neutral 

glycosphingolipids (IGLads) 

K88ab and K88ad Typical diarrhea 

after K88ab+ 

infection and no 

clinical disease after 

K88ad+ infection 

Type D Intestinal neutral 

glycosphingolipids (IGLads) 

K88ad only No clinical disease 

Type E  No K88 fimbrial E. 

coli variants 

 

Type F Enterocyte membrane-

associated transferrin (GP74) 

K88ab only Typical diarrhea  
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Type G  K88ac  

Type H  K88ac and K88ad  
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Table 1.3 Virulence factors of PWD and ED 

Type of diarrhea Virulotypes 

 Porcine post-

weaning diarrhea  

LT:STb:EAST1:F4 

LT:STb:STa:EAST1:F4 

STa:STb 

STa:STb:F18 

STa:F18 

Porcine edema 

disease  

F18:Stx2e 

  



45 

Chapter 2 - Mapping the neutralizing epitopes of F18 fimbrial adhesin subunit FedF of 

enterotoxigenic Escherichia coli (ETEC) 

Ti Lu, Hyesuk, Seo, Qiangde Duan, Guoqiang Zhu, Rodney A Moxley, Weiping Zhang 

(Veterinary Microbiology. Volume 230, Pages 171-177.) 

Abstract: K88 and F18 fimbrial enterotoxigenic Escherichia coli (ETEC) are the major causes 

of post-weaning diarrhea (PWD) in pigs.  A vaccine that induces broad immunity to prevent K88 

and F18 fimbrial ETEC bacterial attachment and colonization in pig small intestines and to 

neutralize enterotoxin enterotoxicity would be effective for PWD.  Structure-based multiepitope-

fusion-antigen (MEFA) technology using a backbone immunogen to present neutralizing 

epitopes of representing virulence factors capacitates development of broadly protective ETEC 

vaccines.  Neutralizing epitopes have been identified from K88 fimbrial adhesin (FaeG) and 

enterotoxins but not F18 fimbrial adhesin.  In this study, we in silico identified immunodominant 

epitopes from F18ac fimbrial subunit FedF which plays a critical role in F18 fimbrial adherence, 

genetically fused each epitope to a carrier, examined immunogenicity of each epitope fusion, and 

determined epitope-derived antibodies neutralizing activities against F18 fimbrial adherence.  

Data showed that seven immune-dominant epitopes were identified from FedF subunit.  Fused to 

heterologous human ETEC adhesin subunit CfaB, epitope fusions induced anti-F18 antibodies in 

subcutaneously immunized mice.  Moreover, antibodies derived from each fusion significantly 

blocked adherence of a F18-fimbrial E. coli bacteria to pig intestinal cell line IPEC-J2.  While all 

seven epitopes exhibited neutralizing activity, results from this study identified FedF epitopes #3 

(IPSSSGTLTCQAGT) and #7 (QPDATGSWYD) the most effective for antibodies against F18 

fimbrial adherence, and suggested their future application in PWD vaccine development. 
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 2.1 Introduction 

Post-weaning diarrhea (PWD) is one of the most important swine diseases (Fairbrother et 

al., 2005; USDA, 2002).  Piglets commonly develop diarrhea 3 to10 days after they are weaned, 

a clinical condition called PWD. PWD is mainly caused by pathogenic bacteria and viruses 

including diarrheagenic Escherichia coli, coronaviruses [transmissible gastroenteritis (TGE) and 

porcine epidemic diarrhea virus (PEDV)] and rotaviruses; however, diarrheagenic E. coli have a 

central role in the etiology of PWD (Hampson, 1994).  PWD causes weight loss, slow growth 

and acute death in recently weaned pigs, resulting in economic losses to swine producers in the 

US and other countries (Haesebrouck et al., 2004; Nagy and Fekete, 1999; Verdonck et al., 2002; 

Vu-Khac et al., 2007).  Diarrhea is also a main reason for using antibiotics on swine farms. 

Antibiotic exposure is linked to antimicrobial resistance (AMR), casting a major concern for 

animal and human health (Docic and Bilkei, 2003; Mishra et al., 2012; Torjesen, 2016).  

However, a ban on the use of food animal growth promoting antibiotics in Scandinavia and 

Europe spiked PWD outbreaks (Casewell et al., 2003), urgently calling for alternative effective 

prevention strategies against PWD.  Vaccination would be the most economical and likely 

effective approach to control PWD and an effective means to reduce the use of antibiotics. 

Though there are products on the market, truly effective PWD vaccines are urgently needed 

(Fairbrother et al., 2005; Melkebeek et al., 2013; Zhang, 2014). 

Of the diarrheagenic E. coli, enterotoxigenic E. coli (ETEC) is the most common cause of 

PWD, though the stress of weaning, absence of maternally-derived enteric antibodies, and 

dietary change are important but indirect factors of clinical PWD (Fairbrother et al., 2005).  

ETEC strains causing PWD produce fimbriae and enterotoxins.  Fimbriae promote initial 

attachment to host cell receptors, enabling colonization (Smith and Linggood, 1971); colonized 
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ETEC bacteria deliver enterotoxins to host enterocytes, causing water and electrolyte 

hypersecretion and diarrhea (Nataro and Kaper, 1998).   Thus, fimbriae and enterotoxins are the 

major virulence determinants of ETEC, and have been targeted in intervention strategies. 

ETEC fimbriae and enterotoxins are immunologically heterogeneous (Gaastra and de 

Graaf, 1982).  Fimbriae of ETEC causing PWD include K88 (F4) and F18, and occasionally K99 

(F5), 987P (F6) and F41 (F7) (Awad-Masalmeh et al., 1982; Casey and Moon, 1990; 

Frydendahl, 2002; Moseley et al., 1986; Nagy et al., 1977; Zhang et al., 2007).  Enterotoxins 

produced by ETEC are heat-labile toxin (LT), heat-stable toxin type I (STa), heat-stable toxin 

type II (STb), Shiga toxin 2e (Stx2e) and enteroaggregative heat-stable toxin type 1 (EAST1) 

(Frydendahl, 2002; Lee et al., 1983; Moon et al., 1980; Nakazawa et al., 1987; Osek, 1999b; 

Zhang et al., 2007).  Clinical observations and epidemiological studies indicate that a typical 

ETEC strain expresses one and occasionally two types of fimbriae and one, two or more 

enterotoxins (Francis, 2002; Frydendahl, 2002; Zhang et al., 2007).  Laboratory experimental 

studies demonstrated that an ETEC strain expressing one type of fimbriae and LT, STb, or STa 

enterotoxin causes diarrhea in young pigs (Berberov et al., 2004; Erume et al., 2008; Zhang et 

al., 2006; Zhang et al., 2008).  The optimal prevention approach would be to block attachment of 

different ETEC fimbriae to host receptors and eliminate enterotoxicity of major enterotoxins 

(LT, STs) to host cells (Walker, 2005; Zhang, 2014; Zhang, 2012). 

Blocking attachment of all ETEC fimbriae and neutralizing against enterotoxicity of LT 

and STs have proven very challenging.  However, a recent breakthrough in antigen preparation 

by using neutralizing epitopes and multiepitope-fusion-antigen (MEFA) technology makes 

completion of such a task feasible (Duan et al., 2017; Nandre, 2016; Ruan et al., 2014a).  

Additionally, molecular epidemiological studies showed that the vast majority of ETEC strains 
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causing PWD express K88 or F18 fimbriae in conjunction with 2 to 3 toxins (Frydendahl, 2002; 

Zhang et al., 2007).  In the US, over 95% of PWD cases are caused by K88 or F18 fimbrial 

ETEC strains (Francis, 2002; Zhang et al., 2007).  Thus, blocking attachment of K88 and F18 

fimbriae to enterocyte receptors would be an effective means to prevent ETEC colonization. 

Neutralizing epitopes from K88 fimbrial adhesin FaeG (Lu, 2017) and toxins including 

LT (Huang et al., 2018), STa (Rausch et al., 2017; Ruan et al., 2014b; Zhang et al., 2010), and 

STb (Rausch et al., 2017) were identified.  However, epitopes from F18 adhesive subunit FedF 

are not mapped and neutralizing epitopes have not been identified.  With neutralizing epitopes 

identified from all ETEC virulence determinants, we should be able to apply the MEFA 

technology to develop a broadly protective vaccine against PWD.  In this study, we in silico 

identified immunodominant epitopes from F18 FedF subunit, fused individual epitopes to protein 

carrier CfaB (a structural subunit of heterologous human ETEC fimbria CFA/I), immunized mice 

with each epitope fusion protein, measured mouse anti-F18 antibody response, and examined 

epitope-derived antibodies for neutralizing activities against F18 fimbria adherence to determine 

FedF neutralizing epitopes. 

 

 2.2 Methods and Materials 

Bacterial strains and plasmids. Bacterial strains and plasmids used in this study are 

listed in Table 2.1. Recombinant CfaB strain 9477 (Ruan, 2015) were used as DNA templates for 

CfaB gene PCR amplification.  CfaB-epitope fusion genes were cloned in vector pET28α 

(Novagen, Madison, WI) and expressed in E. coli BL21-CodonPlus (DE3). F18 fimbrial E. coli 

field isolate 8516 was used in antibody neutralization assays against F18 fimbriae attachment.  
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F18 FedF epitope in silico prediction and epitope fusion construction. 

Immunodominant epitopes from F18 FedF subunit protein was in silico identified with B-cell 

epitope prediction programs (Larsen, 2006; Saha, 2007).  Predicted epitopes were mapped on a 

FedF protein model generated from Phyre3 (Bennett-Lovsey et al., 2008; Kelley and Sternberg, 

2009). The PyMOL Molecular Graphics System (version 2.2; Schrödinger, LLC, New York 

City, NY, USA) was used to display the location of each epitope on the FedF protein.  

Nucleotides coding each FedF epitope were embedded into CfaB gene by replacing nucleotides 

coding 80-86 amino acids of CfaB (a CfaB epitope) using SOE PCR with specifically designed 

primers (Table 2), as we previously described  (Duan and Zhang, 2017; Huang et al., 2018; Lu, 

2017).  PCR generated CfaB-epitope fusion genes were digested with NheI and EagI restriction 

enzymes (New England BioLabs, Ipswich, MA), and were cloned into pET28a vector. 

CfaB-epitope fusion protein expression and characterization. Recombinant CfaB-

epitope (CfaB-FedF-ep) fusion proteins expressed by E. coli BL21 (DE3) were extracted with 

bacterial protein extraction reagent (B-PER; Thermo Fisher Scientific, Rochester, NY) and 

refolded as we previously described (Huang et al., 2018; Nandre, 2016; Rausch et al., 2017).  

Refolded fusion proteins were examined in SDS-PAGE with Coomassie blue staining, and were 

characterized in Western blot or direct ELISAs with anti-F18 mouse antiserum.   

Additionally, each CfaB-epitope fusion protein was investigated for blocking F18 

fimbriae from reacting with anti-F18 antiserum in competitive ELISAs.  Four µg CfaB-epitope 

fusion protein was incubated with mouse anti-F18 serum dilutions (1:4,000 to 1:32,000) for 30 

min at room temperature. Each mixture was added to ELISA plate wells coated with F18 

fimbriae (50 ng per well).  Incubated at 37⁰C for 1h, wells were washed with PBS-0.05% tween-

20 (PBST), and incubated with horseradish peroxidase (HRP)-conjugated goat-anti-mouse IgG 
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(1:3000, Sigma, St. Louis, MO).  OD600 was measured after exposure to 3,3’,5,5’-

tetramethylbenidine (TMB; KPL, Gaithersburg, MD) for 30 min at room temperature.   

Furthermore, CfaB-epitope fusions were examined as competitive agents to prevent anti-

F18 antibodies from inhibiting adherence of F18-fimbrial bacteria to pig intestine cell line IPEC-

J2.  Since protective anti-F18 antibodies inhibit adherence of F18-fimbiral E. coli to host 

receptors, conformational F18 epitopes react with anti-F18 antibodies (derived from F18 

fimbriae) thus abolish antibodies from adherence inhibition.  Nearly identical to antibody 

adherence inhibition assay previously described (Rausch et al., 2017; Ruan, 2013; Ruan et al., 

2014a; Ruan et al., 2011), except the addition of  CfaB-epitope fusions as the competitive agent, 

this assay measured interference of CfaB-epitope fusion protein to anti-F18 antibodies in 

inhibiting F18 fimbriae adherence to target host cells.  Ten µg CfaB-epitope fusion protein 

together with 1.5x106 CFU F18-fimbrial E. coli bacteria 8516 were mixed with 25 µl mouse 

anti-F18 antiserum and incubated at room temperature for 30 min; the mixture was then added 

pig intestinal epithelial cells of the jejunum (IPEC-J2; 1.5x105 per well) cultured in Dulbecco’s 

modified Eagle medium-F12 (DMEM-F12) medium (ATCC).  Incubated in a CO2 incubator for 

1 h, IPEC-J2 cells were washed to remove non-adherent E. coli bacteria, dislodged with TritonX-

100 (0.5%; Sigma), and collected by centrifugation.  Collected E. coli bacteria were suspended, 

serially diluted, plated on agar plates, and counted for CFUs after overnight growth at 37⁰C.  

Mouse immunization with CfaB-epitope fusion protein. Each CfaB-epitope fusion 

protein was used to subcutaneously immunize mice.  A group of five 8-week old female BALB/c 

mice was each administered with 40 µg CfaB-epitope fusion protein (in 40 µl), adjuvanted with 

1 µg dmLT (double mutant LT, LTR192G/L211A; provided by PATH).  Immunized mice received 

two boosters of the primary dose at the interval of two weeks.  A group of mice without injection 
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was used as the negative control.  Mouse serum samples collected before the primary and two 

weeks after the final booster were used to prepare serum samples.  Mouse serum samples were 

stored at -80⁰C until use.  Mouse immunization complied with Animal Welfare Act under 1996 

National Research Council Guidance and was approved by Kansas State University Institutional 

Animal Care and Use committee (protocol #3879). 

Mouse serum anti-F18 IgG antibody titration. Serum samples from each immunized 

or control mouse were titrated for anti-F18 IgG antibodies as we previously described (Rausch et 

al., 2017; Ruan, 2013; Ruan et al., 2011).  Briefly, wells of 2HB plates (Fisher Scientific) coated 

with heat-extracted F18 fimbriae (100 ng per well) were incubated with mouse serum binary 

dilutions (1:400 to 1:128,000) as primary antibodies and then HRP-conjugated goat-anti-mouse 

IgG as secondary antibodies (1:3000).  OD650 measured after exposure to TMB were converted 

to antibody titers, in a log10 scale. 

Mouse serum anti-F18 antibody adherence inhibition and neutralizing epitope 

identification. Mouse serum samples from the groups immunized with each CfaB-epitope fusion 

were examined for antibody adherence inhibition using F18-fimbrial E. coli bacteria 8516 and 

IPEC-J2 cells.  Briefly, 3x106 (CFUs) bacteria 8516 exposed to 30 µl serum pooled from each 

immunization group or the control group were added to IPEC-J2 cell (1.5x105 per well) and 

cultured for 1 h in a CO2 incubator.  After washes with PBS to remove non-adherent bacteria, 

cells were dislodged, lysed, then diluted, and plated on agar plates for 8516 bacteria counting 

(CFUs) after overnight growth at 37⁰C. Neutralizing epitopes were identified if mouse serum 

samples derived from the fusion protein showed significant inhibition against adherence from 

F18-fimbrial E. coli bacteria, compared to the control mouse serum samples. 
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Data analyses.  GraphPad prism software version 7.0 was used for statistical analysis. 

The ELISA of screening each CfaB-epitope fusion protein by anti-F18 antiserum and 

competitive ELISA with F18 fimbriae were analyzed by two-way ANOVA. One-way ANOVA 

was performed to analyze competitive bacteria adherence inhibition assay, mouse serum anti-F18 

antibody titration and antibody adherence inhibition assay data. The mean ± standard deviation 

(SD) was used to express the results. Statistical significance was p <0.05.  

 

 2.3 Results 

Seven immunodominant epitopes identified from F18 FedF adhesin subunit.  A total 

of seven immunodominant epitopes were in silico identified, at the length ranged from 10 to 14 

amino acids (Table 2.3).  All seven epitopes are discontinuous, surface-exposed, and located on 

ẞ sheets or α-helix extension (Fig. 2.1). 

CfaB-epitope proteins were expressed and recognized by anti-F18 antiserum.  Seven 

CfaB-epitope fusions were constructed, designed as CfaB-FedF-ep1, CfaB-FedF-ep2, CfaB-

FedF-ep3, CfaB-FedF-ep4, CfaB-FedF-ep5, CfaB-FedF-ep6, and CfaB-FedF-ep7 (Fig. 2.2).  

Epitope fusion protein were extracted and refolded (Fig. 2.3A), and recognized by anti-F18 

mouse antiserum (Fig. 2.3B).  Additionally, when coated on ELISA plates, each of these seven 

fusion proteins reacted with anti-F18 antiserum (Fig. 2.3C). 

Additionally, competitive ELISAs using F18 fimbriae as the coating antigen showed that 

CfaB-epitope fusion proteins competed with coated F18 fimbriae for binding to anti-F18 

antiserum (Fig. 2.4A).  OD readings were significantly lower in wells with the addition of 

individual CfaB-epitope fusion proteins or F18 fimbria (p<0.01; as the positive control), 
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confirming FedF epitopes presented in the fusion proteins retained native antigenic 

conformation.  

More importantly, CfaB-epitope fusion proteins bound to anti-F18 antiserum and reduced 

anti-F18 antibodies from inhibiting the adherence F18-fimbrial E. coli bacteria to pig cell line 

IPEC-J2 (Fig. 2.4B).  The addition of CfaB-FedF-ep1 or CfaB-FedF-ep3 fusion significantly 

reduced anti-F18 antiserum neutralizing activity for blocking the adherence of 8516 bacteria to 

IPEC-J2 cells (p<0.05) when compared to other epitope fusions, shown more bacteria adhered to 

IPEC-J2 cells (Fig. 2.4B). 

Mice subcutaneously immunized with CfaB-epitope fusions developed antibodies to 

F18 fimbriae. Mice immunized with CfaB-epitope fusion proteins had anti-F18 IgG antibody 

titers detected in serum samples at 3.65±0.39 (CfaB-FedF-ep1), 2.42±0.536 (CfaB-FedF-ep2), 

3.65±0.148 (CfaB-FedF-ep3), 3.21±0.484 (CfaB-FedF-ep4), 3.68±0.373 (CfaB-FedF-ep5), 

3.61±0.308 (CfaB-FedF-ep6), 3.45±0.471 (CfaB-FedF-ep7) (Fig. 2.5A).  No anti-F18 antibodies 

detected in the serum of the control mice or from the serum collected prior to the primary 

immunization.  Anti-F18 IgG titers in the group immunized with CfaB-FedF-ep2 were 

significantly lower than the titers of the groups immunized with the other CfaB-epitope fusions 

(p<0.01). 

Mouse serum antibodies derived from CfaB-epitope fusions inhibited in vitro 

adherence of F18-fimbrial E. coli bacteria. Serum samples of the mice immunized with CfaB-

epitope fusion proteins exhibited adherence inhibition activities against F18-fimbrial E. coli 8516 

(Fig. 2.5B).  Treated with the serum of mice immunized with CfaB-FedF-ep3 or CfaB-FedF-ep7, 

8516 had the fewest bacteria adherent to IPEC-J2 cells (15±3.46 %; 16.7±5 %).  One-way 
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ANOVA test indicated that serum antibodies of the mice immunized with CfaB-FedF-ep3 or 

CfaB-FedF-ep7 were most effective in inhibiting 8516 adherence. 

 

 2.4 Discussion 

Vaccination with live and subunit vaccines has been explored in the past decades, and 

remains the most promising for PWD prevention (Fairbrother et al., 2005; Melkebeek et al., 

2013).  Since ETEC strains expressing K88 or F18 fimbriae cause nearly all PWD cases, F18 and 

K88 fimbriae have been the main targets in vaccine development.  While oral administration of 

purified K88 fimbriae induced K88-specific antibodies and protected pigs against a homologous 

challenge (Van den Broeck et al., 1999a, b), administration of purified F18 fimbriae did not 

induce protective immunity against F18 ETEC challenge in pigs (Verdonck et al., 2007).  In 

similar, live vaccine candidates derived from avirulent E. coli field isolates expressing K88 

fimbriae induce K88-specific antibodies and protect against colonization by a K88 ETEC 

challenge strain (Bianchi et al., 1996; Francis and Willgohs, 1991; Fuentes M., 2004; Santiago-

Mateo, 2012), but live strains expressing F18 were not effective in the induction of an F18-

specific immune response, nor did they protect against challenge with a F18 ETEC strain 

(Bertschinger et al., 2000; Coddens et al., 2007). 

F18 fimbriae, previously known as F107, 2134P and 8813, consist of two antigenic 

variants: F18ac and F18ab (Imberechts et al., 1997; Nagy et al., 1997), and are associated with 

PWD and edema disease in young pigs respectively (Amezcua et al., 2002; Frydendahl, 2002; 

Osek, 1999a; Post KW, 2000). The major structural subunit of F18 is FedA, but the adhesive 

minor subunit FedF plays a central role in binding to host receptors (Imberechts et al., 1996; 

Smeds et al., 2001; Smeds et al., 2003), and is highly conserved among F18 strains.  A LT-K88-
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F18 tripartite antigen that includes FedF peptide (60th-109th aa), as a recombinant protein 

administered intramuscularly (Ruan et al., 2011) or a holotoxin-structured protein expressed by a 

live E. coli strain when given orally (Ruan, 2013), induced antibodies blocking adherence of 

K88- and F18-fimbrial ETEC bacteria and protecting pigs against K88-fimbrial ETEC challenge.  

This tripartite PWD vaccine candidate was not examined for efficacy against F18-fimbrial ETEC 

challenge due to difficulty in identifying F18 susceptible pigs, and also needs to carry toxin 

antigens to induce protective antitoxin antibodies for effective protection against PWD. 

Incorporating antigenic elements of all virulence determinants into a PWD vaccine 

product for effective protection against heterogeneous ETEC strains is challenging.  Structural 

based MEFA platform allows a backbone immunogen to present multiple neutralizing epitopes 

for broad immunity.  With neutralizing epitopes from K88 fimbrial adhesin subunit FaeG, toxins 

including LT, STa and STb are already identified, we need to identify neutralizing epitopes from 

F18 fimbrial adhesin subunit FedF in order to have a PWD vaccine candidate for immunity 

against all ETEC virulence determinants.  Results from the current study indicated that epitope 

#3 (IPSSGTLTCQAGT) and epitope #7 (QPDATGSWYD) are the top candidates of F18 

adhesin subunit FedF neutralizing epitopes.  Imbedding these two FedF epitopes into a MEFA 

that uses a LT toxoid as backbone and presents neutralizing epitopes of F18, LT, STa and STb, 

we are a step closer for a broadly protective PWD vaccine, though future challenge studies are 

needed to confirm whether antibodies derived from these FedF epitopes are protective against 

F18 fimbrial attachment and colonization. 

  In conclusion, seven epitopes identified from F18 fimbrial adhesin subunit FedF 

retained native antigenicity after being fused to heterologous carrier CfaB protein, indicated by 

each epitope fusion protein recognized by anti-F18 antiserum but also ability to compete with 
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F18 fimbria for binding to anti-F18 antibodies or to reduce anti-18 antibodies from inhibiting 

adherence of E. coli bacteria expressing F18 fimbriae.  Moreover, each CfaB-epitope fusion 

protein induced antibodies specific to F18 fimbriae in subcutaneously immunized mice.  More 

importantly, derived antibodies showed neutralizing activities against F18 fimbria adherence to 

pig intestine cell line IPEC-J2.  Among seven FedF epitopes that induce neutralizing anti-F18 

antibodies, epitope 3 and epitope 7 displayed better in inducing neutralizing anti-F18 antibodies, 

suggesting their potential application in vaccine development against PWD. 
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Table 2.1 Escherichia coli strains and plasmids used in the study. 

Strains and 

plasmids 

Relevant properties Reference  

Strains   

  BL21 huA2, Δ(argF-lacZ), U169, phoA, glnV44, φ80, 

Δ(lacZ)M15, gyrA96, recA1, relA1, endA1, thi-1, 

hsdR17 

GE Healthcare 

  8516 porcine E. coli field isolate, F18  

  9477 ‘CfaB(with signal peptide) + pET28α’ in DH5α (Ruan et al. 2015) 

  9503 ‘CfaB (without signal peptide) + pET28α’ in BL21 (Ruan et al., 2015) 

  9668 ‘CfaB-FedF-ep1 + pET28α’ in BL21 This study 

  9669 ‘CfaB-FedF-ep2 + pET28α’ in BL21 This study 

  9670 ‘CfaB-FedF-ep3 + pET28α’ in BL21 This study 

  9671 ‘CfaB-FedF-ep4 + pET28α’ in BL21 This study 

  9672 ‘CfaB-FedF-ep5 + pET28α’ in BL21 This study 

  9673 ‘CfaB-FedF-ep6 + pET28α’ in BL21 This study 

  9674 ‘CfaB-FedF-ep7 + pET28α’ in BL21 This study 

Plasmids    

  pET28α  Novagen 
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Table 2.2 Primers used in SOE PCRs to construct CfaB-epitope fusion genes in the study. 

Primer  Sequence (5’-3’) Amplified region 

CfaB-F CGGGCTAGCGTAGAGAAAAATATT upstream of CfaB gene, NheI site 

underlined 

CfaB-R TTACGGCCGGGATCCCAAAGTCAT downstream of CfaB gene, EagI site 

underlined 

FedF-ep1-F AGCACTACTCGCACTAGAATTGAT

TTTTTTAGTTGCATCGTTTGT forward and reverse primers to insert FedF 

epitope 1 into CfaB gene FedF-ep1-R TCTAGTGCGAGTAGTGCTCAAGTC

GATACACCACAGCTTACAGAT 

FedF-ep2-F AGTGTTTGTCTTCCCTGTGCCAAGT

TTTTTAGTTGCATCGTTTGT forward and reverse primers to insert FedF 

epitope 2 into CfaB gene FedF-ep2-R ACAGGGAAGACAAACACTACCCA

AATGGATACACCACAGCTTACA 

FedF-ep3-F GCATGTCAAAGTTCCTGATGAACT

AGGAATTTTTTTAGTTGCATC forward and reverse primers to insert FedF 

epitope 3 into CfaB gene FedF-ep3-R TCAGGAACTTTGACATGCCAGGCT

GGAACTGATACACCACAGCTT 

FedF-ep4-F CTGTTGCCCCCACTGAGATTCATTT

TTTTTAGTTGCATCGTTTGT forward and reverse primers to insert FedF 

epitope 4 into CfaB gene FedF-ep4-R TCTCAGTGGGGGCAACAGTCACAA

GATACACCACAGCTTACAGAT 



68 

FedF-ep5-F GGAAGAAAGGGGATATGTCTGAG

CTTTTTTAGTTGCATC forward and reverse primers to insert FedF 

epitope 5 into CfaB gene FedF-ep5-R ACATATCCCCTTTCTTCCGGTGATG

ATACACCACAGCTT 

FedF-ep6-F TGAAGGCATATCATTTTGGTTGGG

TTTTTTAGTTGCATCGTTTGT forward and reverse primers to insert FedF 

epitope 6 into CfaB gene FedF-ep6-R CAAAATGATATGCCTTCATCTAAT

GATACACCACAGCTTACAGAT 

FedF-ep7-F CCACGAGCCTGTTGCATCGGGCTG

TTTTTTAGTTGCATCGTTTGT forward and reverse primers to insert FedF 

epitope 7 into CfaB gene FedF-ep7-R GATGCAACAGGCTCGTGGTATGAT

GATACACCACAGCTTACAGAT 
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Table 2.3 Immunodominant B-cell epitopes in silico identified from F18 fimbrial adhesin 

subunit FedF subunit. 

epitopes amino acid sequence position length (aa) 

FedF-ep1 INSSASSAQV 34-43 10 

FedF-ep2 LGTGKTNTTQM 48-58 11 

FedF-ep3 IPSSSGTLTCQAGT 74-87 14 

FedF-ep4 NESQWGQQSQ 115-124 10 

FedF-ep5 AQTYPLSSGD 151-160 10 

FedF-ep6 PNQNDMPSSN 226-235 10 

FedF-ep7 QPDATGSWYD 253-262 10 
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Figure 2.1 F18 fimbrial adhesin subunit FedF protein model. (A, B) and secondary structure 

(C, D) to show positions of in silico identified epitopes (A & C, front; B & D, back).  FedF-ep1 

(red), FedF-ep2 (orange), FedF-ep3 (pink), FedF-ep4 (green), FedF-ep5 (cyan), FedF-ep6 (blue), 

FedF-ep7 (yellow). 
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Figure 2.2 CfaB-FedF-epitope fusion genetic structure illustration and fusion protein 

modeling.  Top: fusion gene genetic structure, the carrier protein CfaB peptide epitope (80-86 

aa) was replaced with each FedF epitope.  Middle: CfaB-epitope fusion protein models (CfaB-

FedF-ep1 to CfaB-FedF-ep7).  Bottom: CfaB-epitope fusion protein secondary structure.  FedF 

epitopes are shown in different colors.  
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Figure 2.3 CfaB-epitope fusion protein extraction and characterization.  (A) SDS-PAGE 

with Coomassie blue staining to show extracted and refolded CfaB-epitope fusion proteins. (B) 

Western blot with anti-F18 antiserum to showed recognition of each CfaB-epitope fusion by 

anti-F18 antiserm, with carrier protein CfaB protein as the negative control and F18 fimbriae as 

the positive control. (C) ELISAs to show conformational recognition of each CfaB-epitope 

fusion protein (ELISA coating antigen) by anti-F18 antiserum (at different dilutions).  
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Figure 2.4 Competitive ELISA and bacteria adherence inhibition assay. (A) Competitive 

ELISAs with F18 fimbriae as the coating antigen, and each CfaB-epitope fusion protein as the 

competing agent.  Anti-F18 antiserum dilutions from 1:4,000 to 1:32,000 were used.  (B) 

antibody adherence inhibition assay using anti-F18 antiserum as the antibodies to inhibit F18-

fimbiral E. coli strain 8516 binding to F-18 receptor positive pig intestine cell line IPEC-J2, and 

each CfaB-epitope fusion protein as the agent to compete for anti-F18 antiserum thus to prevent 

anti-F18 antiserum from blocking the binding between 8516 bacteria to OPEC-J2 cells.  PBS, no 

competing agent and no anti-F18 antiserum; control, control mouse serum only; anti-F18, no 

competing agent but with anti-F18 antiserum. 
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Figure 2.5 Mouse serum anti-F18 antibody titration and antibody adherence inhibition 

assay. (A) adAnti-F18 IgG titers (in log10) from serum samples of the mice immunized with 

each CfaB-epitope fusion protein; no anti-F18 IgG titer detected from the negative control mice.  

(B) mouse serum antibody inhibition assays to show epitope derived antibodies against 

adherence (in %) of F-18 fimbrial E. coli bacteria 8561 to IPEC-J2 cells.  PBS, no mouse serum; 

control, negative control mouse serum; anti-F18, serum samples of mice immunized with F18 

fimbriae.  
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Chapter 3 - Mapping the neutralizing epitopes of enterotoxigenic Escherichia coli (ETEC) 

K88 (F4) fimbrial adhesin and major subunit FaeG 

Ti Lu, Rodney A Moxley, Weiping Zhang 

(Copyright © 2019 American Society for Microbiology, DOI: 10.1128/AEM.00329-19) 

(Kansas State University Swine Day 2017, http://doi.org/10.4148/2378-5977.7507) 

Abstract: Enterotoxigenic Escherichia coli (ETEC) strains that produce immunologically 

heterogeneous fimbriae and enterotoxins are the primary cause of porcine neonatal diarrhea and 

post-weaning diarrhea.  A multivalent vaccine inducing protective immunity against ideally all 

ETEC fimbriae and enterotoxins would be effective against diarrhea in young pigs.  However, 

developing a vaccine to broadly protect against various ETEC virulence determinants has been 

proven challenging.  Structure-based multiepitope-fusion-antigen (MEFA) technology to present 

neutralizing epitopes of various virulence determinants in a backbone immunogen and to mimic 

epitope native immunogenicity suggests feasibility of developing multivalent vaccines.  While 

neutralizing epitopes of ETEC fimbria F18 and enterotoxins were identified, protective epitopes 

of K88 (F4) fimbria are to be determined. In this study, we in silico predicted B-cell 

immunodominant epitopes from K88 fimbrial major subunit (also adhesin) FaeG and embedded 

each epitope in a heterogeneous carrier.  We then immunized mice with each epitope fusion protein 

and examined epitope antigenicity but also neutralizing activities of epitope-induced antibodies.  

Data showed that while all nine FaeG epitope fusions induced antibodies to K88 fimbria, anti-K88 

IgG antibodies derived from epitopes MTGDFNGSVD (ep1), LNDLTNGGTK (ep2), 

GRTKEAFATP (ep3), ELRKPDGGTN (ep4), PMKNAGGTKVGAVKVN (ep5) and 

RENMEYTDGT (ep8) significantly inhibited adherence of K88-fimbrial bacteria to porcine 

intestinal cell line IPEC-J2, indicating these peptides the neutralizing epitopes of K88 fimbrial 
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major subunit FaeG and suggesting the future application of FaeG epitopes in ETEC vaccine 

development. 

 

3.1 Introduction 

Enterotoxigenic Escherichia coli (ETEC) bacteria that express K88 (F4) or F18 fimbria 

and enterotoxins including heat-labile toxin (LT), heat-stable toxin type I (STa), heat-stable toxin 

type II (STb) and Shiga toxin type 2e (Stx2e) are a primary cause of diarrhea in pigs (Dubreuil et 

al., 2016).  Porcine neonatal diarrhea is largely prevented by passive protection of maternal 

antibodies through the immunization of pregnant sows.  Post-weaning diarrhea, however, is yet 

to be effectively controlled.  Various preventive approaches including feeding ETEC specific 

antibody-containing materials, treatment of prebiotics, probiotics or dietary supplementary were 

attempted but found results inconsistent or unpractical commercially.  Vaccination has been 

considered effective and practical.  However, developing effective vaccines for post-weaning 

diarrhea has encountered challenges.  Difficulties include a narrow window for immunization, 

vaccine and vaccination at a low cost, and more importantly the need of cross protection against 

heterogeneous ETEC strains.  Ideally, piglets are vaccinated when their maternal antibodies drop 

to levels which sufficiently protect against neonatal diarrhea but do not significantly interfere 

vaccine antigens to stimulate active immunity, thus piglets develop active immunity against 

ETEC infection by the time of weaning.  Vaccines need to be low-cost and easy for administer.  

Additionally, since ETEC strains produce immunologically different fimbrial adhesins to attach 

to specific receptors at pig small intestinal epithelia and deliver various toxins to stimulate water 

and fluid hyper-secretion in epithelial cells, an effective post-weaning diarrhea vaccine needs to 

carry antigens from all virulence determinants and to induce broad immunity, thus inhibits 
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adherence of different ETEC fimbriae and neutralizes enterotoxicity of immunologically 

distinctive ETEC toxins. 

New strategies need to be explored since conventional vaccine technologies encountered 

difficulties in developing a broadly protective multivalent vaccine against post-weaning diarrhea 

(Dubreuil et al., 2016).  Multiepitope fusion antigen (MEFA), a structure- and epitope-based 

vaccine technology presents an alternative approach for multivalent vaccine development (Q. 

Duan et al., 2017).  By mimicking epitope native antigenicity and presenting multiple 

heterologous epitopes in one backbone immunogen, MEFA vaccinology allows a single 

immunogen (protein) to carry multiple antigenic elements (epitopes or peptides) of various 

virulence determinants for broad immunogenicity thus development of a broadly immunogenic 

multivalent vaccine.  With this MEFA technology, we have successfully generated ETEC 

fimbria MEFAs for broadly protective immunity against seven or nine human-ETEC virulence 

determinants (Q. Duan et al., 2018) and adhesin-toxoid MEFAs for antibodies not only inhibiting 

adherence of seven human-ETEC adhesins and neutralizing LT and STa enterotoxicity but also 

protecting against ETEC diarrhea in a pig challenge model .  These MEFAs become leading 

antigens of human ETEC subunit vaccines against children’s diarrhea and travelers’ diarrhea. 

MEFA technology has also assisted the construction of a multivalent toxin antigen and the 

development of a broadly protective anti-toxin vaccine candidate for pig post-weaning diarrhea 

(Rausch et al., 2017).   

Protective epitopes of four toxins (LT, STa, STb and Stx) produced by ETEC strains 

associated with pig diarrhea were identified (Rausch et al., 2017).  However, multivalent toxoid 

MEFAs do not induce anti-adhesin antibodies to prevent ETEC bacteria adherence to host 

receptors.  Since ETEC causing pig post-weaning diarrhea produce one, two, three or four toxins 
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and either K88 or F18 fimbria, an effective vaccine ideally needs to induce antitoxin and anti-

adhesin antibodies against four ETEC toxins and both K88 and F18 fimbriae.  With neutralizing 

epitopes for F18 fimbrial adhesin subunit FedF are also identified (Lu, Seo, Moxley, & Zhang, 

2019), it leaves K88 (F4) fimbria the only virulence determinant without neutralizing epitopes 

being determined.  

In this study, we in silico identified immune dominant B-cell epitopes from FaeG, the 

major structural subunit and also the adhesin of K88ac fimbria, genetically embedded each 

epitope to a heterologous carry protein, and assessed epitope native topology by examining 

epitope fusion protein reactivity with anti-K88ac antiserum. We then immunized mice with each 

epitope fusion protein and measured mouse serum IgG antibodies specific to K88ac fimbria. 

Furthermore, we examined mouse serum antibodies for inhibition activity against K88ac fimbrial 

adherence and identified K88ac fimbria neutralizing epitopes. 

 

3.2 Methods and Materials 

Bacterial strains and plasmids.  Bacterial strains and plasmids for this study are 

included in Table 3.4.  CfaB recombinant strain 9477 was used as the DNA template to PCR 

amplify CfaB gene and the backbone to carry K88 FaeG epitopes for CfaB-epitope fusions.  

Vector pET28α (Novagen, Madison, WI) was used to clone each CfaB-epitope fusion gene, and 

E. coli BL21-CodonPlus (DE3) was used to express fusion proteins.  K88 fimbrial ETEC field 

isolate 3030-2 (K88/LT/STb/STa) was used in antibody adherence inhibition assays to measure 

mouse serum antibody neutralization activities. 

In silico identification of K88ac FaeG epitopes and construction of CfaB-epitope 

fusions. K88ac fimbrial subunit FaeG immunodominant epitopes were identified using B-cell 
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epitope prediction programs.  Phyre3 (R. M. Bennett-Lovsey, A. D. Herbert, M. J. E. Sternberg, 

& L. A. Kelley, 2008; L. A. Kelley & Sternberg, 2009) was used to generate 3-D protein 

structure of FaeG subunit, and PyMOL Molecular Graphics System (version 2.2; Schrödinger, 

LLC, New York City, NY, USA) was to map each epitope from the FaeG protein model. 

Nucleotides coding each FaeG epitope were embedded into carrier gene CfaB by replacing 

the nucleotides coding a CfaB backbone epitope in a splicing overlap extension (SOE) PCR with 

primers (Table 3.5), as described previously (Q. D. Duan & Zhang, 2017).  After digestion with 

restriction enzymes NheI and EagI (New England BioLabs, Ipswich, MA), 6xHis-tagged CfaB-

epitope fusion genes were individually cloned into pET28a vector. 

CfaB-epitope fusion protein expression and characterization. As described previously 

(Rausch et al., 2017), bacterial protein extraction reagent (B-PER; Thermo Fisher Scientific, 

Rochester, NY) was used to extract epitope fusion proteins (CfaB-FaeG-ep), and protein refolding 

buffer (Novogen) was used to refold the extracted fusion proteins.  Epitope fusion proteins were 

then assessed for protein purity and integrity in SDS-PAGE with Coomassie blue staining and with 

anti-K88 mouse antiserum in Western blot respectively.   

Epitope fusion proteins were further characterized in direct and competitive ELISAs to 

assess FaeG epitope conformation by measuring reactivity between fusion protein and anti-K88 

antiserum and.  In direct ELISA, each epitope fusion protein (100 ng per well) was used to coat 

2HB microtiter plates (Thermo Fisher Scientific), anti-K88 antiserum and horseradish peroxidase-

conjugated goat-anti-mouse IgG (1:3000; Sigma, St. Louis, MO) were used as the primary 

antibodies and the secondary antibodies.  In competitive ELISA, K88 fimbriae (100 ng per well) 

were used to coat 2HB plates, each epitope fusion protein (100 ng per well) to compete the coated 

K88 fimbriae for reactivity with anti-K88 antiserum (diluted from1:4000 to 1:32000), with HRP-
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conjugated goat-anti-mouse IgG was used as the secondary antibodies.  OD600 values were 

measured from a plate reader after exposure to 3,3’,5,5’-tetramethylbenidine (TMB; KPL, 

Gaithersburg, MD) for 30 min at room temperature. 

Epitope fusion protein mouse immunization. Eight-week old female BALB/c mice 

(Charles River Laboratories, Wilmington, MA), five mice per group, were subcutaneously 

immunized with each epitope fusion protein (40 µg) adjuvanted with double mutant heat-labile 

toxin (dmLT; 1µg).  Two boosters at the same dose of the primary were followed at the interval of 

two weeks.  The control group received no injection.  Mouse immunization protocol was approved 

by Kansas State University Institutional Animal Care and Use committee. 

Mouse serum anti-K88 antibody titration.  Mouse serum samples collected before the 

primary and two weeks after the final booster were titrated for anti-K88 IgG antibodies.  As 

described previously (Rausch et al., 2017), 2HB plates coated with K88 fimbriae or FaeG protein 

(100 ng per well) were incubated with mouse serum binary dilutions (1:400 to 1:128000), and then 

secondary antibody HRP-conjugated goat-anti-mouse IgG (1:3000).  Anti-K88 or anti-FaeG IgG 

antibody titers (log10) were calculated based on OD650 values measured after exposure to TMB.  

Mouse serum IgA antibody response to K88 was not examined.  

Mouse serum antibody adherence inhibition against K88 fimbrial ETEC strain.  

Serum samples pooled from each group immunized with an epitope fusion protein and the control 

group were examined for antibodies inhibiting adherence of K88ac fimbrial ETEC isolate 3030-2 

to IPEC-J2 cells.  Briefly, 3030-2 bacteria (3x106) premixed with mouse serum sample (30 µl) 

from each group were incubated with 90-95% confluent IPEC-J2 cell (1.5x105 per well) in a CO2 

incubator.  After 1 h incubation, IPEC-J2 cells were washed with PBS to remove non-adherent 

bacteria, then dislodged with Triton X-100 (0.5%; Sigma).   Dislodged cells were collected, 
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diluted, and plated on agar plates.  Bacteria were cultured overnight at 37⁰C and were counted for 

colony forming units (CFUs).  

Data analyses. Differences among epitope fusion proteins in reactivities with anti-K88ac 

antiserum in direct were compared in two-way ANOVA. Differences between each immunization 

group and the control group for IgG antibody titers, antibody adherence inhibition activities, as 

well as reactivities with anti-K88ac antiserum in competitive ELISAs were compared in one-way 

ANOVA. A p value less than 0.05 indicated a significant difference.       

 

3.3 Results 

Immunodominant epitopes were identified from K88ac fimbrial major subunit FaeG. 

Nine immunodominant and discontinued epitopes, ranged from 10 to 16 amino acid residues, were 

identified from FaeG subunit of K88ac fimbria (Fig. 3.1).  Protein modeling based on K88ac FaeG 

sequence showed all epitopes were surface-exposed from the subunit and were located at β sheets 

or α-helix extensions (Fig. 3.1). 

Nine epitope fusion proteins were expressed and extracted. With the insertion of each 

K88 fimbrial FaeG epitope (K88ep1 – K88ep9) into protein carrier CfaB, a 17-kDa major 

structural subunit of human ETEC fimbria CFA/I, nine epitope fusions (CfaB-epitope) were 

constructed (Fig. 3.2). All 6xHis-tagged epitope fusions of about 22 kDa were expressed and 

extracted, with a purity of assessed over 95% (Fig. 3.3).  When linearized at SDS-PAGE and 

examined by anti-K88ac antiserum in Western blot, however, only fusions of epitope 1, 2, 3, 5, 6, 

and 9 were recognized (Fig. 3.3). 

Anti-K88ac antiserum confirmed FaeG epitope conformation. Antigenic conformation 

of the identified FaeG epitope carried by epitope fusions was verified in direct and competitive 
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ELISAs using anti-K88ac antiserum.  Direct ELISAs showed that fusions of FaeG epitope 1, 2, 3, 

4, 5, or epitope 9 showed significantly greater reactivity with anti-K88ac antiserum 1:1600 and 

1:3200 antiserum dilutions (p<0.05), fusion of epitope 7 showed a moderate reactivity, and fusions 

of epitope 6 or epitope 8 showed no reactivity (Table 3.1).  

Competitive ELISAs with heat-extracted K88ac fimbriae (from ETEC strain 3030-2) as 

the coating antigen showed significantly lower reactivity with anti-K88 antiserum when fusion 

proteins of epitope 1, 2, 4, or epitope 5 was used as the competing antigen (p<0.001).  No reactivity 

with anti-K88 antiserum was detected when protein carrier CfaB was coated in direct or 

competitive ELISAs. 

Anti-K88ac IgG antibodies were detected in the mice subcutaneously immunized with 

each epitope fusion protein. All mice in the group immunized with each epitope fusion protein 

developed anti-K88ac IgG antibodies (Table 3.2).  Mice immunized with the fusion protein of 

epitope 5 developed significantly greater anti-K88ac IgG titers compared to the groups immunized 

with the fusion of epitope 4, 6, 7, 8 or epitope 9, but not to the groups immunized with fusions of 

epitope 1, 2 or epitope 3.  No anti-K88 IgG was detected from the control group. 

Mouse antiserum samples from each immunized group were also confirmed to react with 

K88 fimbriae or recombinant FaeG protein in ELISA and Western blot assays (Fig. 3.4). Data 

showed that FaeG protein as well as the boiled K88 fimbriae was recognized by antibodies in the 

serum samples of all immunization groups (Fig. 3.4B). That indicated that epitopes 6, 7, and 8 

may locate at the region connecting adjacent FaeG subunits for K88ac fimbriae. 

Mouse serum samples from the immunized groups showed inhibition of in vitro 

adherence of K88 fimbrial ETEC 3030-2. K88ac fimbrial ETEC bacteria 3030-2, after being 

treated with the serum samples from the groups immunized with fusions of epitope 1, 2, 3, 4, 5, or 



83 

epitope 8 showed a significant reduction of adherence to porcine cell line IPEC-J2 (p<0.01).  No 

significant adherence reduction was observed from 3030-2 bacteria when treated with the serum 

from the groups immunized with fusions of epitope 6, 7 or epitope 9 (Table 3.3). 

 

3.4 Discussion 

Data from the current study showed that while all in silico identified K88ac FaeG epitopes 

carried by CfaB backbone protein induced anti-K88 IgG antibodies in the subcutaneously 

immunized mice, only antibodies derived from the fusions of epitope 1, 2, 3, 4, 5 or epitope 8 

significantly inhibited the adherence from K88ac fimbrial ETEC bacteria to porcine cell line IPEC-

J2.  That suggested that while all epitopes are immunodominant, epitopes 1, 2, 3, 4, 5 and 8 

represent the neutralizing epitopes of K88ac fimbrial major subunit and adhesin FaeG.  It was 

noted that fusions of epitope 1, 2, 3 or epitope 5 also induced significantly higher anti-K88 IgG 

antibody titers than the fusions carrying epitope 4, 6, 7, 8 or epitope 9 in the immunized mice.  

Interestingly, fusion of epitope 4 induced lower anti-K88 IgG titers, but derived antibodies had the 

second best in inhibiting 3030-2 adherence to IPEC-J2 cells (28.5%; blocking over 70% bacterial 

adherence).  Differed from epitope 4 fusion, fusion of epitope 5 stimulated the highest anti-K88ac 

IgG titer, and antibodies derived from this fusion protein exhibited the best activity in inhibiting 

adherence of K88-fimbrial 3030-2 bacteria (blocking over 75% of bacterial adherence).  That 

suggests that epitope 5 and epitope 4 could be the top candidate antigens to be included in a MEFA 

for developing a multivalent vaccine against ETEC associated diarrhea in young pigs.  Indeed, 

peptides surrounding epitopes 5 and 4 were demonstrated to play a crucial role in K88 fimbria 

binding to host receptors (Jacobs, Roosendaal, van Breemen, & de Graaf, 1987; Thiry, Clippe, 

Scarcez, & Petre, 1989).  A truncation of epitope 5 or epitope 4 resulted in a total loss of K88 
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fimbria binding ability to pig small intestinal brush borders (unpublished data).  Therefore, 

antibodies against these two epitopes should prevent K88 fimbriae from attaching to host receptors 

and colonizing pig small intestines. 

We noted that fusions of epitope 1, 2, 3, or 5 which induced greater anti-K88ac IgG titers 

strongly reacted with anti-K88ac antiserum, demonstrated by Western blot (Fig. 2) and ELISA 

(Table 3).  That likely indicates these epitopes are well exposed on K88ac fimbria.  In contrast, 

fusion of epitope 8 did not react with anti-K88 antiserum, although this fusion induced neutralizing 

anti-K88 antibodies.  That may suggest epitope 8 was poorly exposed on K88 fimbria.  The FaeG 

protein model predicted that epitope 8 is located at one end of the FaeG subunit.  It is likely this 

may be the location FaeG subunits joined together to assemble K88 fimbria.  Thus, subunit 

assembling negatively affects the exposure of epitope 8 on K88ac fimbria, directly resulting in 

antibodies derived from K88ac fimbria had poor reactivity with epitope 8 carried by the CfaB 

backbone.   Future protein structural studies can further map the location and posture of epitope 8 

and provide more details of the structure of FaeG subunit and K88ac fimbria. 

With the identification of neutralizing epitopes from K88 fimbria FaeG major subunit and 

adhesin by this study, we now have all essential antigen elements to construct a MEFA immunogen 

for the development of a broadly protective vaccine against porcine post-weaning diarrhea in the 

U.S.  This MEFA can use the A subunit of LT toxoid as the backbone.  By retaining one or two 

neutralizing epitopes from the A subunit to induce protective antibodies against LT enterotoxicity, 

we can replace other LT A subunit epitopes with the neutralizing epitopes of K88 FaeG subunit, 

F18 FedF subunit, and Stx2e A subunit (Rausch et al., 2017), as well as a STb shorten peptide and 

STa toxoid (Rausch et al., 2017) for a fimbria-toxin MEFA.  We have demonstrated that a 

replacement of an epitope of the LT A subunit with a foreign epitope abolishes LT enterotoxicity 
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but does not alter its formation of LT structure.  Substitutions of A subunit epitopes of LT toxoid 

(LTR192G or LTR192G/L211A) with the neutralizing fimbria epitopes and toxins Stx2e, STb and STa 

peptides should eliminate LT enterotoxicity entirely, resulting in a safe but broadly immunogenic 

MEFA immunogen for vaccines against porcine post-weaning diarrhea. 

We need to point out that only K88ac was targeted since K88ac is the predominant variant 

causing ETEC associated neonatal and post-weaning diarrhea in the U.S. Additional studies will 

be needed to identify neutralizing epitopes from K88ab variant which primarily cause pig diarrhea 

in Europe. However, epitopes identified from this study showed homology between K88ac and 

K88ab variants. Indeed, epitopes 1, 2, 3, 5, 8 and 9 are identical, and epitope 6 differs in one amino 

acid. Whether antibodies induced by these homologous epitopes also inhibit adherence of K88ab 

ETEC will need to be verified in future studies. Additionally, perhaps pig anti-K88ac and anti-

K88ab antiserum (instead of anti-mouse antiserum) should be used to initially characterize 

antigenicity of these epitopes. It also needs to point out that the current study identified K88ac 

FaeG neutralizing epitopes based on cell-based in vitro antibody adherence inhibition assays. Pig 

immunization and ETEC challenge studies will be needed to further characterize epitopes for 

antigenicity and to confirm their candidacy as antigens for vaccine development. Nevertheless, 

data from this study identified potential neutralizing epitopes for antibodies against K88 fimbria; 

that can move one step closer toward the development of a broadly protective vaccine against 

porcine post-weaning diarrhea. Additionally, research in identifying neutralizing epitopes and 

constructing future MEFA from this study may provide helpful information for multivalent 

vaccine development against other diseases. 
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Table 3.1 OD650 readings from direct ELISA to measure reactivity between each epitope fusion 

protein and anti-K88 antiserum. 

epitope fusions Anti-K88 serum dilutions 

1:1600 1:3200 

K88ep1 1.37 ± 0.00 0.96 ± 0.05 

K88ep2 1.20 ± 0.11 0.81 ± 0.12 

K88ep3 1.07 ± 0.03 0.73 ± 0.10 

K88ep4 0.87 ± 0.04 0.52 ± 0.02 

K88ep5 1.78 ± 0.23 1.45 ± 0.11 

K88ep6 0.15 ± 0.03 0.10 ± 0.04 

K88ep7 0.48 ± 0.04 0.39 ± 0.12 

K88ep8 0.25 ± 0.03 0.18 ± 0.01 

K88ep9 1.31 ± 0.04 1.12 ± 0.08 
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Table 3.2 Mouse serum anti-K88 IgG antibody titers (log10). 

Mouse groups IgG titers P values 

ep1 fusion 3.61 ± 0.11 <.001 

ep2 fusion 3.53 ± 0.25 <.001 

ep3 fusion 3.45 ± 0.26 <.001 

ep4 fusion 2.42 ± 0.40 <.001 

ep5 fusion 3.89 ± 0.18 <.001 

ep6 fusion 2.29 ± 0.30 <.001 

ep7 fusion 2.08 ± 0.24 <.001 

ep8 fusion 2.86 ± 0.08 <.001 

ep9 fusion 2.85 ± 0.21 <.001 

control 0 ± 0  
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Table 3.3 Mouse serum antibody inhibition against adherence of K88 fimbrial ETEC strain 3030-

2 to porcine cell line IPEC-J2.   

Mouse group Mean of attachment (%) ± SD P Value 

 Immunized Control  

K88 fimbriae 9.8 ± 1.7 100 ± 24.2 <0.001 

ep1 fusion 41.5 ± 12 100 ± 24.2 <0.001 

ep2 fusion 44.3 ± 8.3 100 ± 24.2 <0.001 

ep3 fusion 37.2 ± 12 100 ± 24.2 <0.001 

ep4 fusion 28.5 ± 12.3 100 ± 24.2 <0.001 

ep5 fusion 22.5 ± 5.0 100 ± 24.2 <0.001 

ep6 fusion 87.5 ± 11.7 100 ± 24.2 0.88 

ep7 fusion 87.2 ± 15.2 100 ± 24.2 0.86 

ep8 fusion 66.7 ± 5.4 100 ± 24.2 0.004 

ep9 fusion 88.3 ± 23.5 100 ± 24.2 0.92 
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Table 3.4 E. coli strains and plasmids used in this study. 

Strains and 

plasmids 

Relevant properties Reference  

Strain   

   BL21 huA2, Δ(argF-lacZ), U169, phoA, glnV44, φ80, 

Δ(lacZ)M15, gyrA96, recA1, relA1, endA1, thi-1, 

hsdR17 

GE Healthcare 

   3030–2 porcine field isolate, K88ac/LT/STb/STa Zhang et al. 2006 

   9702 pET28α-FaeG strain in BL21 This study 

   9477 pET28α-CfaB without signal peptide in DH5α (4) 

   9503 pET28α-CfaB without signal peptide in BL21 (4) 

   9675 pET28α-CfaB-K88-ep1 in BL21 This study 

   9677 pET28α-CfaB-K88-ep2 in BL21 This study 

   9678 pET28α-CfaB-K88-ep3 in BL21 This study 

   9679 pET28α-CfaB-K88-ep4 in BL21 This study 

   9680 pET28α-CfaB-K88-ep5 in BL21 This study 

   9681 pET28α-CfaB-K88-ep6 in BL21 This study 

   9682 pET28α-CfaB-K88-ep7 in BL21 This study 

   9683 pET28α-CfaB-K88-ep8 in BL21 This study 

   9676 pET28α-CfaB-K88-ep9 in BL21 This study 

Plasmid    

   pET28α  Novagen 
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Table 3.5 PCR primers used to insert K88 FaeG epitope nucleotides into CfaB gene or to 

amplify FaeG gene. 

Primer  Sequence (5’-3’) Amplified region 

CfaB-F CGGGCTAGCGTAGAGAAAAATATT upstream of CfaB gene, with NheI site 

CfaB-R TTACGGCCGGGATCCCAAAGTCAT downstream of CfaB gene, with EagI 

site 

K88ep1-L CGAACCATTGAAATCACCAGTCATTTTT

TTAGTTGCATCGTTTGT 

Insertion of K88 ep 1 (MTGDFNGSVD) 

K88ep1-R GGTGATTTCAATGGTTCGGTCGATGATA

CACCACAGCTTACAGAT 

K88ep2-L TCCACCATTGGTCAGGTCATTCAATTTT

TTAGTTGCATCGTTTGT 

Insertion of K88 ep2 (LNDLTNGGTK) 

K88ep2-R GACCTGACCAATGGTGGAACCAAAGAT

ACACCACAGCTTACAGAT 

K88ep3-L AGCAAATGCTTCTTTGGTTCGGCCTTTT

TTAGTTGCATCGTTTGT 

Insertion of K88 ep3 (GRTKEAFATP) 

K88ep3-R ACCAAAGAAGCATTTGCTACGCCAGAT

ACACCACAGCTTACAGAT 

K88ep4-L TCCACCATCAGGTTTTCTGAGTTCTTTT

TTAGTTGCATCGTTTGT Insertion of K88 ep4 (ELRKPDGGTN) 

 K88ep4-R AGAAAACCTGATGGTGGAACTAATGAT

ACACCACAGCTTACAGAT 
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K88ep5-L AACTTTAGTGCCCCCTGCATTTTTCATC

GGTTTTTTAGTTGCATC Insertion of K88 ep5 

(PMKNAGGTKVGAVKVN) K88ep5-R GCAGGGGGCACTAAAGTTGGTTCAGTG

AAAGTGAATGATACACCA 

K88ep6-L CGCAGAAGTAACCCCACCTCTCCCTAA

TTTTTTAGTTGCATCGTT 

Insertion of K88 ep6 (LGRGGVTSADGEL) 

K88ep6-R GGTGGGGTTACTTCTGCGGACGGGGAG

CTGGATACACCACAGCTT 

K88ep7-L CCCAGCCGAGAGTTCAGAACCCCTCGG

TTTTTTAGTTGCATCGTT 

Insertion of K88 ep7 (PRGSELSAGSA) 

K88ep7-R TCTGAACTCTCGGCTGGGAGTGCCGAT

ACACCACAGCTTACAGAT 

K88ep8-L ATCAGTGTACTCCATGTTTTCCCTTTTTT

TAGTTGCATCGTTTGT 

Insertion of K88 ep8 (RENMEYTDGT) 

K88ep8-R AACATGGAGTACACTGATGGAACTGAT

ACACCACAGCTTACAGAT 

K88ep9-L GCTGGTAGTTACAGCCTGATTAAATTTT

TTAGTTGCATCGTTTGT 

Insertion of K88 ep9 (FNQAVTTSTQ) 

K88ep9-R CAGGCTGTAACTACCAGCACTCAGGAT

ACACCACAGCTTACAGAT 

FaeG-F CGGGCTAGCTGGATGACTGGTGATTTC upstream of FaeG gene, with NheI site 

FaeG-R TTACGGCCGTTAGTAATAAGTAATTGC downstream of FaeG gene, with EagI 

site 
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Figure 3.1 K88 fimbrial major structure subunit and adhesin FaeG protein model with in 

silico identified epitopes and epitope amino acid sequences.  FaeG-ep1 (brown), FaeG-ep2 

(orange), FaeG-ep3 (green), FaeG-ep4 (cyan), FaeG-ep5 (blue), FaeG-ep6 (pink), FaeG-ep7 

(ourple), FaeG-ep8 (yellow), FaeG-ep9 (red).  Phyre3 and PyMOL Molecular Graphics System 

(version 2.2) were used to generate 3-D protein structure of FaeG subunit and to map each epitope 

from the FaeG protein model respectively. 
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Figure 3.2 CfaB-FaeG-epitope fusion genetic structure illustration and fusion protein 

modeling. Top: CfaB-epitope fusion protein models (CfaB-FaeG-ep1 to CfaB-FaeG-ep9).  

Bottom: CfaB-epitope fusion protein secondary structure.  FedF epitopes are shown in different 

colors. 
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Figure 3.3 CfaB-epitope fusion protein extraction and characterization. Top: extracted and 

refolded CfaB-epitope fusion proteins from SDS-PAGE Coomassie blue staining.  Bottom: 

reactivity of each epitope fusion protein with anti-K88 antiserum from Western blot. 

  



100 

 

Figure 3.4 Mouse anti- CfaB-K88-epitope antiserum detection of FaeG proteins. (A) ELISA 

with serially diluted mouse anti-CfaB-K88-epitope antiserum using FaeG recombinant proteins 

as the ELISA coating antigen. (B) Western blot using mouse anti-CfaB-K88-epitope antiserum 

to detect denatured K88 fimbriae. (C) Western blot using mouse anti-CfaB-K88-epitope 

antiserum to detect K88 fimbrial subunit FaeG proteins. 
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Chapter 4 - Development of a broadly protective multivalent vaccine against porcine post-

weaning diarrhea cause by ETEC  

Ti Lu, Rodney A Moxley, Weiping Zhang 

 

Abstract: Enterotoxigenic Escherichia coli strains are the major cause of porcine post-weaning 

diarrhea (PWD). Currently, there is no effective vaccine for ETEC-associated PWD. Recently, we 

identified neutralizing epitopes from ETEC virulence factors associated with PWD. In this study, 

we constructed a multivalent antigen called PWD multiepitope fusion antigen (PWD MEFA) to 

induce protective immunity against multiple ETEC virulence factors. Neutralizing epitopes of 

fimbriae K88 and F18, and toxins STa, STb and Stx2e were fused into the A subunit of LT mutant 

LTR192G using structure-based MEFA technology, a novel structural vaccinology approach. This 

PWD MEFA protein was characterized in Western blot and ELISAs with anti-K88, -F18, -LT, -

STa, and anti-Stx2e antisera. Subsequently, immunogenicity of this MEFA protein was examined 

in mouse immunization studies. Serum samples of the subcutaneous (SC) immunized mice were 

titrated for anti-fimbriae and anti-toxin IgG antibody responses. Mouse serum antibody 

neutralization activities against ETEC fimbrial adherence and enterotoxicity were also measured. 

Data showed the expressed fimbriae-toxoid PWD MEFA protein, which was approximately 44 

kDa, was verified in Western blot using anti-FaeG, anti-K88epitope-fusion, anti-F18epitope-

fusion, anti-CT, anti-STa, and anti-Stx2e antiserum, respectively. Mice SC immunized with PWD 

MEFA protein developed strong anti-K88, anti-F18, anti-LT and anti-STb IgG antibody responses, 

and moderate anti-Stx2e and anti-STa IgG responses. Moreover, mouse serum antibodies inhibited 

adherence of K88- and F18-fimbrial ETEC bacteria and neutralized LT, STa, STb and Stx2e 

enterotoxicity. Additionally, double mutant LT (dmLT, LTR192G/L211A) adjuvant up-
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immunoregulated PWD MEFA anti-fimbriae and antitoxin antibody responses. These results 

indicated that this fimbriae-toxoid PWD MEFA induced broadly anti-fimbriae and anti-toxin 

antibodies, and suggested antigen candidacy for developing an effective vaccine against PWD. 

 

 4.1 Introduction 

Post-weaning diarrhea (PWD), a disease found in pigs globally, commonly happens 

during the first two weeks after weaning and results in watery diarrhea, dehydration and acute 

death, also decreased weight gain in surviving piglets (Fairbrother, Nadeau, & Gyles, 2005; Heo 

et al., 2013; Rhouma et al., 2017). Epidemiological and clinical studies indicated that 

enterotoxigenic E. coli (ETEC) bacteria are among the most important causes of porcine post-

weaning diarrhea (Fairbrother et al., 2005; Rhouma et al., 2017).  

ETEC bacteria colonizes pig intestinal surface by fimbrial adhesins. F4 (K88) and F18are 

the most common fimbriae associated with PWD in piglets (de la Fe Rodriguez et al., 2011; 

Rhouma et al., 2017; W Zhang, 2014; W. P. Zhang, Zhao, Ruesch, Omot, & Francis, 2007). Both 

fimbriae consist of a major structural subunit and multiple minor subunits, encoded by multiple 

genes in a fimbrial gene cassette.  F18 fimbriae is a typical fimbria study model with only one 

adhesive minor subunit, FedF, at the tip of the fimbriae (Do, Byun, & Lee, 2019; Dubreuil et al., 

2016; Hahn et al., 2000; Imberechts et al., 1996). FedA is the major structure subunit which has 

multiple copies surrounding the axis of fimbriae (Barth, Schwanitz, & Bauerfeind, 2011; Hahn et 

al., 2000). F18 has two variants, which are F18ac and F18ab (Imberechts, Bertschinger, Nagy, 

Deprez, & Pohl, 1997). F18ac is more commonly associated with PWD while F18ab is related to 

pig edema disease (Amorim et al., 2000; da Silva, Valadares, Penatti, Brito, & da Silva Leite, 

2001; DebRoy, Roberts, Scheuchenzuber, Kariyawasam, & Jayarao, 2009). F18 fimbriae only 
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pertain to PWD, whereas F4 (K88) fimbriae also relate to neonatal diarrhea in pigs (Dubreuil et 

al., 2016; Hur, Lee, & Lee, 2011). The major structural subunit of F4 is FaeG which is also the 

adhesive subunit (Bakker et al., 1991; Bakker, Willemsen, Simons, van Zijderveld, & de Graaf, 

1992; Xia, Song, Zou, Yang, & Zhu, 2015). K88 has three variants with K88ac as the most 

common associated with pig neonatal diarrhea and post-weaning diarrhea. Three K88 variants 

have highly homologous FaeG but bind to different receptors on pig’s intestinal surface (Xia, 

Zou, et al., 2015; W Zhang, 2014). The adhesion between fimbriae and glycoprotein receptors on 

the small intestinal surface allows the efficient release of enterotoxins from ETEC to intestinal 

epithelium cells (Dubreuil et al., 2016).  Enterotoxin produced by ETEC includes Heat-labile 

toxin (LT) and Heat-stable toxin (ST), which can disturb the fluid secretion in neonatal gut 

epithelial cells (Dubreuil et al., 2016; W Zhang, 2014). LT is a 1A5B toxin which the B 

pentamar bound to GM1 receptors on pig epithelial cell surfaces (Mudrak & Kuehn, 2010; W 

Zhang, 2014). After binding, the enzymatic A subunit enters host epithelial cells and toxically 

elevates cell intracellular cyclic AMP levels, stimulating the protein kinase and causing the 

secretion of sodium and chloride in the lumen (Beddoe, Paton, Le Nours, Rossjohn, & Paton, 

2010; Huang, Duan, & Zhang, 2018; Mudrak & Kuehn, 2010). ST consists of two variants: STa 

and STb (Dubreuil et al., 2016; Weiglmeier, Rösch, & Berkner, 2010; W Zhang, 2014). STa 

increases the intracellular cGMP levels, which blocking the absorption of liquid and salt, 

resulting in diarrhea (Dubreuil et al., 2016; Loos et al., 2012; Weiglmeier et al., 2010). Whereas 

STb does not increase cAMP or cGMP levels, rather it increases the secretion of non-chloride 

anions from gut epithelial cells (Dubreuil et al., 2016; Loos et al., 2012).  

PWD is a multifactorial disease which remains a challenge for disease control and 

prevention (Rhouma et al., 2017; W Zhang, 2014). Vaccination is considered the most effective 
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and practical method against ETEC-associated PWD (Fairbrother et al., 2005; W Zhang, 2014). 

There are commercial vaccines available to immunize pregnant sows and to protect newborn 

piglets against ETEC infection through maternal vaccination (Matias, Berzosa, Pastor, Irache, & 

Gamazo, 2017). However, these vaccines are not effective against PWD due to the shortening of 

protective antibodies from colostrum and milk, as well as the immature active antibody 

production of piglets (Matias et al., 2017; Melkebeek et al., 2013). The lack of antibodies in 

neonatal guts after weaning increases the risk of ETEC infection (Dubreuil et al., 2016; 

Melkebeek et al., 2013). Furthermore, since ETEC induced diarrhea requires both adhesins and 

enterotoxins, neither anti-adhesin vaccine candidates nor the anti-enterotoxin vaccine candidates 

can protect against both virulence factors (Dubreuil et al., 2016; W Zhang, 2014). In many 

studies on ETEC vaccine development, subunit vaccinology has been a common strategy. A 

toxoid MEFA based subunit vaccine candidate was demonstrated to protect against most of the 

toxins related to ETEC infection (Q. Duan et al., 2017; Q. Duan et al., 2018; Rausch et al., 

2017). Additionally, a K88-F18-LT genetic fusion protein MEFA was shown as an effective 

immunogen for a vaccine against porcine F4 and F18 ETEC (X. Ruan & Zhang, 2013; X. S. 

Ruan et al., 2011). However, neither vaccine candidate included all ETEC fimbriae and toxins 

for broad protection against PWD.  

Therefore, this study aimed to construct a novel fimbriae-toxoid MEFA which carried 

K88, F18, LT, STa, STb epitopes, as well as one epitope from Shiga toxin 2e (Stx2e), the major 

virulence factor causing porcine edema disease (ED) (da Silva et al., 2001). The immunogenicity 

of this vaccine candidate was evaluated in a mouse model for future investigation in piglets. 
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 4.2 Materials and methods 

Bacteria and plasmids. Table 4.1 lists all strains and plasmids utilized in this study. All 

neutralizing epitopes from each virulence factor were embedded into heat-labile toxin (LT) A1 

subunit by gene synthases (Genscript, Piscataway, NJ) (Fig 4.1). Monomeric LT-STa 

recombinant fusion expressed by 8752 strain (Liu et al., 2011) was used for monomeric MEFA 

construction via SOE PCR. Both A1 part of PWD MEFA and PWD monomeric MEFA were 

expressed by E. coli strain BL21.  Porcine ETEC 3030-2 (K88ac+) (W. P. Zhang & Francis, 

2010) and porcine E. coli field isolate 8516 (F18+) (W. P. Zhang et al., 2007) was used for 

adherence inhibition assays and also for PCR amplification of FaeG and FedF subunit genes. 

Vector pET28a (Novagen, Madison, WI) and E. coli strain BL21 were used for subunit protein 

expression. The 9301 and 9302 strains (Rausch et al., 2017) were used to express MBP-STb and 

MBP-Stx2e, respectively, as the coating antigens for ELISA. The 8020 strain (STb+) (W. P. 

Zhang et al., 2007) and 9168 Stx2e-producing E. coli strain (W. P. Zhang et al., 2007) were used 

for cytotoxicity neutralization assays. 

Construction of PWD monomeric MEFA. B-cell antigenic epitopes of LT A1 subunit 

were identified in a previous study (Huang et al., 2018). Neutralizing epitopes were also 

characterized from FaeG (major subunit of K88) (T Lu & Zhang, 2017), FedF (minor subunit of 

F18) (Ti Lu, Seo, et al., 2019), STa, STb and Stx2e (Rausch et al., 2017). The 3-D protein 

modeling was displayed by PyMOL Molecular Graphics System (access: 106826; version 2.2; 

Schrödinger, LLC, New York City, NY, USA) with PDB transferred from amino acid sequences 

via Phyre2 online server (R. M. Bennett-Lovsey, A. D. Herbert, M. J. Sternberg, & L. A. Kelley, 

2008; L. A. Kelley & Sternberg, 2009; Rigsby & Parker, 2016). Primers PWD-MEFA-A1 nheI-F 

and PWD-MEFA-B eagI-R (Table 4.2) were designed to amplify the chimera DNA fragment and 
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cloned it into vector pET-28α (Novagen, Madison, WI), as we previously described (Q. D. Duan 

& Zhang, 2017; Huang et al., 2018; Ti Lu, Seo, et al., 2019). Plasmid pET28α-STa13-LT192 

from 8752 strain was used to amplify monomeric LT A2B DNA fragment and combined with 

chimera PWD MEFA A1 part by SOE-PCR. Monomeric PWD MEFA fragment was cloned into 

pET-28α by digesting with NheI and EagI restriction enzymes (New England BioLabs, Ipswich, 

MA). 

Expression and purification of PWD monomeric MEFA. The recombinant plasmids 

were transferred to into E. coli BL21 (DE3) strains, as we previously described (Huang et al., 

2018; Ti Lu, Seo, et al., 2019; Rausch et al., 2017). Briefly, a single positive clone was selected 

and expressed with 30 μM IPTG (Sigma, St. Louis, MO) for 4 hours after culture OD600 reached 

0.6-0.8. Bacterial pellets were harvested (5000 × g, 10 min, 4 °C), resuspended and lysed in 

Bacterial protein extraction reagent (B-PER 4 mL/g; Thermo Fisher Scientific, Rochester, NY). 

1× IB solubilization buffer (CAPS 50 mM, DTT 1 mM, N-lauroylsarcosine 0.3 %) was added to 

refold the inclusion bodies after washing. Purified MEFA proteins were assessed by SDS-PAGE 

(sodium dodecyl sulfate-polyacrylamide gel electrophoresis, 15 %) stained with Coomassie blue.  

Characterization of PWD monomeric MEFA. Antigenicity of purified PWD 

monomeric MEFA protein was verified by western blot using anti-CT (rabbit, 1:3000; Sigma, St. 

Louis) or anti-STa (rabbit, 1:2000) or anti-Stx2e (mouse, 1:1500) or anti-FedF (mouse, 1:1500) 

or anti-FaeG (mouse, 1:1500) sera and IRDye-labeled goat anti-mouse or anti-rabbit IgG 

antibodies (1:5,000; LI-COR, Lincoln, NE) (Ti Lu, Seo, et al., 2019; Nandre, Ruan, Duan, Sack, 

& Zhang, 2016). Briefly, A1 part of PWD MEFA and PWD monomeric MEFA protein were 

loaded onto SDS-PAGE (15 %) separately and transferred to nitrocellulose membranes, blocked 

with 5% fat-free milk at 4°C overnight. One hour antibody incubations was used at room 
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temperature, with three times washing with PBST (PBS with 0.05 % Tween-20) between each 

step. Total proteins of E. coli BL21 host strain as the background control were used. LI-COR 

Odyssey Infrared Gel Imaging System Premium (LI-COR) was used for image analysis. 

Mouse immunization. Animal study was approved by the Institutional Animal Care and 

Use Committee at Kansas State University (IACUC #4056). Eight-week-old BALB/c mouse (10 

mice per group) was injected subcutaneously with 40 μg PWD monomeric MEFA protein with 1 

μg dmLT (double mutant LT; LTR192G/L211A; provided by PATH) adjuvant. Other group with ten 

mice was immunized with PWD monomeric MEFA protein without dmLT adjuvant. Ten mice 

injected with PBS were used as negative control. Two boosters at the same dose of the primer 

will be administered every two weeks. Antiserum samples were harvested from each mouse at 

day 42 via cardiac puncture after euthanasia. Procedure was shown in Fig 4.3A. 

Serum antibody measurement. The titrations of antigen-specific IgG antibodies were 

measured by ELISA (Rausch et al., 2017). Briefly, 96-well Immune 2HB ELISA plates (Fisher 

Scientific) were coated with 100 ng/well of antigens (including K88, F18, CT, STa, MBP-STx2e 

and MBP-STb) overnight at 4 °C, blocked with 10 % fat-free milk in PBST. Mouse antisera 

were added at a 1:400 dilution with 1:1 gradient dilution to each row, and incubated at 37°C for 

1 hour. After three washes, the plates were incubated with horseradish peroxidase (HRP)-

conjugated goat anti-mouse IgG (1:5000; Sigma) for 1 hour. After color development, enzyme-

based colorimeter (650 nm) OD value was determined and a scale of log10 was used for IgG 

antibody titers (T Lu & Zhang, 2017). Western blot was used to verify the specificity of each 

antigen-specific IgG antibodies.  

Adherence inhibition assay. IPEC-J2 cells (pig jejunum epithelial cell from un-suckled 

1-day-old piglets), as well as porcine ETEC 3030-2 (K88ac+) and porcine E. coli field isolate 
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8516 (F18+) were used to verify the antibody neutralizing ability against K88-mediated and F18-

mediated bacterial attachment. IPEC-J2 cells were grown as previously described in detail (Ti 

Lu, Seo, et al., 2019; T Lu & Zhang, 2017). Briefly, IPEC-J2 cells were grown in the 75 cm2 

flasks in Dulbecco's modified Eagle's medium (DMEM) and Ham’s F12 medium (1:1; 

Invitrogen, CA) with 5 % Fetal Bovine Serum (FBS) at 37 ºC with 5 % CO2 until reaching 

confluence. Moreover, the cells were re-suspended after 0.25 % Trypsin-EDTA with the added 

fresh medium and seeded into 48-well cell-plates evenly. Plates were incubated at 37ºC with 5 % 

CO2 until reaching 90-95 % confluence per well. The bacterial suspensions were diluted in PBS 

to a final concentration of 1.5×106 CFU/mL. The mixtures with 100 μL of bacterial suspensions  

(1:10 of cell to bacteria radio) and 30 μL mouse antisera or PBS were incubated at room 

temperature for 30 minutes at 60 rpm, added to each cell well with 470 μL cell medium without 

FBS, followed by 1 hour incubation at 37 °C in 5 % CO2. After three washes, cells were lysed by 

500 μL sterile 0.5 % TritonX-100. Dislodged cells and adherent bacteria were removed to sign 

tubes and re-suspended with 500 μL sterile PBS. The mixtures were diluted to 10-1, 10-2, 10-3, 10-

4 and 100 μL from 10-3 or 10-4 was speeded on LB agar plates for CFU calculation. 

Anti-LT antibody neutralization. Direct cyclic AMP EIA kit (Enzo Life Sciences, Inc., 

Farmingdale, NY) and human colon carcinoma cell line T84 (ATCC; CCL-248) were used to 

examine the antibody neutralizing ability against LT toxin. T84 cells were grown as previously 

described in detail (Huang et al., 2018; Rausch et al., 2017; X. S. Ruan et al., 2011). Briefly, T84 

cells were grown in the 75 cm2 flasks in DMEM and Ham’s F12 medium (1:1; Invitrogen, CA) 

with 5 % FBS at 37 ºC with 5 % CO2 until reaching confluence. A 24-well cell-plate was used to 

seed the cells evenly. Plates were incubated at 37 ºC with 5 % CO2 until reaching 90-95 % 

confluence per well. The mixtures with 10 ng commercial CT (in PBS, homolog to LT) and 30 
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μL mouse antisera or PBS were incubated at room temperature for 30 minutes with gentle 

shaking, added to each cell well with 1000 μL (as the final volume) DMEM/F12 medium 

(without FBS) with 1 mM IBMX, followed by 3 hours incubation at 37 °C in 5 % CO2. Cells 

were lysed by 300 μL HCl (0.1 M) with 0.5 % TritonX-100 and collected (1000 × g, 10 mins). 

The supernatants were added to cyclic AMP EIA kit for intracellular cAMP levels. 

Anti-STa antibody neutralization. Direct cyclic GMP EIA kit (Enzo Life Sciences, 

Inc., Farmingdale, NY) and T-84 cells were used to examine the antibody neutralizing ability 

against STa toxin (Rausch et al., 2017; X. Ruan et al., 2014). The mixtures with 2 ng commercial 

STa toxin and 30 μL mouse antisera or PBS were incubated at room temperature for 30 minutes 

with gentle shaking, added to each cell well with 1000 μL (as the final volume) DMEM/F12 

medium (without FBS) with 1 mM IBMX, followed by 1 hours incubation at 37°C in 5 % CO2. 

Cells were lysed by 300 μL HCl (0.1 M) with 0.5 % TritonX-100 and collected (1000 × g, 10 

mins). The supernatants were added to cyclic GMP EIA kit for intracellular cGMP levels. 

Anti-STb antibody neutralization. The 8020 (STb+) strain and Vero cells (ATCC; 

CCL-81) were used to examine the antibody neutralizing ability against STb toxin. Vero cells 

were grown as previously described in detail (Rausch et al., 2017). Briefly, Vero cells were 

grown in the 75 cm2 flasks Eagle's minimum essential medium (EMEM) with 5 % FBS at 37 ºC 

with 5 % CO2 until reaching confluence. The cells evenly seeded into 24-well cell-plates. The 

mixtures with 300 μL bacterial culture filtrates of 8020 strain (50 % cell detachment or CD50 to 

Vero cells) and 150 μL, or 25 μL, or 10 μL of pooled mouse antisera or PBS were added into 

each well with 700 μL (as the final volume) EMEM medium (without FBS), followed by 1 hours 

incubation at 37°C in 5 % CO2. Antibody neutralization titer - the highest dilution for CD50 of 

Vero cells - was examined by microscopy.      
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Anti-Stx2e antibody neutralization. The 9168 Stx2e-producing E. coli and Vero cells 

were used to examine the antibody neutralizing ability against Stx2e toxin (Rausch et al., 2017). 

The mixtures with 100 μL bacterial culture filtrates of 9168 Stx2e-producing E. coli strain (CD50 

to Vero cells) and 18.8 μL, 6.3 μL, or 3 μL of pooled mouse antisera or PBS were added into 

each well with 1 mL (as the final volume) EMEM medium (without FBS), followed by 3 days 

incubation at 37°C in 5% CO2. Antibody neutralization titer - the highest dilution for CD50 of 

Vero cells - was examined by microscopy daily.      

Statistics. Data management and analysis were performed using GraphPad Prism version 

7.0.0 (GraphPad Software, San Diego, California USA). One-way ANOVA was done for 

antibody titration and neutralization assay data. A p value of <0.05 was considered as statistically 

significant. The results were expressed by the mean ± standard deviation (SD). All experiments 

were repeated two times using duplicate samples. 

 

 4.3 Results 

Expression and detection of PWD monomeric MEFA carried four epitopes of 

fimbriae and six epitopes of toxins. F18 minor subunit FedF epitopes QPDATGSWYD and 

IPSSSGTLTCQAGT, and K88 major subunit FaeG epitopes GRTKEAFATP and 

PMKNAGGTKVGSVKVN were selected as K88 and F18 antigens for this study. These four 

epitopes, along with STb epitope KKDLCENY, Stx2e epitope QSYVSSLN, two copies of STa 

toxin epitope CCELCCSPACAGCY were fused into the antigenic sites of LTA subunit by gene 

synthesis (Genscript, Piscataway, NJ) (Fig. 4. 1A). Two LT A subunit neutralizing epitopes 

DSRPPDEIKRSGG and SPHPYEQEVSA, which were identified in the previous study were 
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included. Protein 3-D modeling software PyMOL was used to map the locations of epitopes and 

confirmed that all epitopes were surface exposure (Fig. 4. 1B-E). PWD monomeric MEFA (A1 

part, A1 domain, and LT B subunit, in a single peptide) of 43 kDa were expressed and purified 

(Fig. 4. 2A). The monomeric structure of PWD-fimbriae-toxoid MEFA reacted with anti-

fimbriae and anti-toxin serum from Western blot and direct ELISAs (Fig. 4. 2A-B).  

Immunogenicity of PWD monomeric MEFA in the mouse model. Eight-weeks-old 

female BALB/C mice (10 mice per group) SC immunized with PWD monomeric MEFA with or 

without dmLT developed antigen-specific IgG antibody responses (Fig. 4. 3). Anti-fimbriae and 

anti-toxin IgG responses induced by PWD monomeric MEFA were assessed by measuring 

Western blot and ELISA. As shown in Fig. 4. 3B, PWD monomeric MEFA adjuvanted with 

dmLT induced antibodies in vivo which detected to each virulence factor protein by Western blot 

assays. IgG titers (in log10) in the mice immunized with PWD monomeric MEFA were 

2.855±0.276 to K88, 2.465±0.301 to F18, 3.137±0.621 to CT, 2.971±0.344 to STb, 2.015±0.171 

to Stx2e and 1.350±0.144 to STa (Fig. 4. 3C). The difference of each virulence factor IgG 

response between immunized group and the control group injected with PBS was significant 

(p<0.001). One immunized mouse did not developed anti-F18 or anti-STa IgG response, and an 

additional mouse showed no anti-F18 or anti-STa IgG response.   

Moreover, dmLT adjuvant could significantly enhance the IgG responses induced by 

PWD monomeric MEFA. IgG titers (in log10) in the mice immunized with PWD monomeric 

MEFA and adjuvanted with dmLT were 3.510±0.366 to K88, 2.882±0.381to F18, 3.562±0.370 

to CT, 3.269±0.320 to STb, 2.438±0.125 to Stx2e and 1.531±0.263 to STa (Fig. 4. 3C). A 

significant difference was shown between immunized group and the control group injected with 

PBS with p<0.001. Additionally, the difference of each virulence factor IgG titer between 
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immunized group with dmLT and immunized group without dmLT was highlighted in Fig. 4. 

3C.  

Anti-PWD monomeric MEFA inhibited adherence of F18+ E. coli or K88+ ETEC to 

porcine cell line IPEC-J2. F18 fimbriae inhibition or K88 fimbriae adherence inhibition was 

measured in the presence and absence of anti-PWD monomeric MEFA antibodies. Results 

showed that the antibodies induced by PWD monomeric MEFA significantly inhibited the 

attachment of F18+ E. coli (Fig. 4. 4A) or K88+ ETEC (Fig. 4. 4B) to porcine cell line IPEC-J2, 

with p<0.001. Anti-PWD monomeric MEFA has a similar ability to inhibit 8516 strain (F18+) 

adherence to IPEC-J2 compared with anti-F18 sera (p>0.12). In contrast, anti-PWD monomeric 

MEFA induced significant lower ability to inhibit 3030-2 strain (K88+) adherence to IPEC-J2 

than that activated by anti-K88 sera (p<0.005). No additional adherence inhibition of F18+ E. 

coli or K88+ ETEC to IPEC-J2 was observed in the samples from mice immunized with PWD 

monomeric MEFA and adjuvanted with dmLT (p>0.12). 

Anti-PWD monomeric MEFA neutralized STa toxicity in vitro. Antibodies from mice 

immunized with PWD monomeric MEFA and adjuvanted with dmLT neutralized STa toxicity, 

with the significant reduction of intracellular cGMP in T-84 cells from 9.07±0.396 pmole/ml 

(cells treated with 2 ng STa and negative mouse sera) to 5.64±0.987 pmole/mL (p< 0.01) (Fig. 4. 

4C). Antibodies from mice immunized with PWD monomeric MEFA without dmLT decreased 

intracellular cGMP in T-84 cells to 6.48±0.771 pmole/mL (p=0.06).  

Anti-PWD monomeric MEFA neutralized CT toxicity in vitro. Antibodies from mice 

immunized with PWD monomeric MEFA neutralized LT toxicity, with the significant 

diminished the intracellular cAMP levels in the T-84 cells from 4.33±0.318 pmole/mL (cells 

treated with 10 ng CT and negative mouse sera) to 0.825±0.262 pmole/mL (p=0.02) (Fig. 4. 4D). 
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No significant increase of LT neutralizing ability was observed in the T-84 cells treated with CT 

and anti-PWD monomeric MEFA adjuvanted with dmLT (1.07±0.396 pmole/mL) compared 

with no adjuvant group (p>0.99). 

Anti-PWD monomeric MEFA neutralized STb cytotoxicity in vitro. Cytotoxicity of 

STb in 300 μL 8020 strain (STb+) filtrate was completely neutralized with the anti-PWD 

monomeric MEFA diluted 1: 7.7 (Fig. 4. 5D & G). Diluted 1:100 anti-PWD monomeric MEFA 

neutralized cytotoxicity of STb in 8020 strain filtrate to 50% Vero cell detachment (CD50) (Fig. 

4. 5F). Less cell detachment was observed in the Vero cells treated with 8020 strain filtrate and 

anti-PWD monomeric MEFA adjuvanted with dmLT diluted 1:100 (Fig. 4. 5I). 

Anti-PWD monomeric MEFA neutralized Stx2e cytotoxicity in vitro. Cytotoxicity of 

Stx2e in 100 μL 9168 Stx2e-producing E. coli strain filtrate was completely neutralized with the 

anti-PWD monomeric MEFA diluted 1:53.2 (Fig. 4. 6D & G). Diluted 1:333.3 anti-PWD 

monomeric MEFA neutralized cytotoxicity of Stx2e in 9168 strain filtrate to 50% Vero cell 

detachment (CD50) (Fig. 4. 6F). Less cell detachment was observed in the Vero cells treated with 

9168 strain filtrate and anti-PWD monomeric MEFA adjuvanted with dmLT diluted 1:333.3 

(Fig. 4. 6I). 

 

4.4 Discussion 

Several approaches have been used to develop a better ETEC vaccine. However, lack of 

effective treatment strategies against ETEC-associated PWD requires a broadly effective ETEC 

vaccine.  In recent years, epitope-based subunit vaccines have turned out to be more promising 

because they are more immunogenic and more flexible to form fusion with such small size. 

Previous studies have demonstrated two epitopes as the most immunodominant epitopes of F18 
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minor subunit FedF as they have the potential to produce to produce F18 neutralizing antibodies 

(Ti Lu, Seo, et al., 2019). Two epitopes of K88 major subunit FaeG are the most 

immunodominant epitopes due to their abilities to generate K88 neutralizing antibodies (T Lu & 

Zhang, 2017). Furthermore, immunogenic epitopes of STb, Stx2e and STa toxin had been 

embedded into A1 peptide of a monomeric LT mutant LTR192G toxoid to construct a toxoid 

MEFA which induced neutralizing antibodies against LT, STb, STa and Stx2e in our previous 

study (Rausch et al., 2017). Neutralizing epitopes of LT A subunit have also been identified 

(Huang et al., 2018). On this basis, we have developed a monomeric fimbriae-toxiod MEFA 

comprising immune-dominant epitopes of K88, F18, LT, STa, STb and Stx2e in this study. This 

fimbriae-toxoid PWD MEFA was evaluated in mice model and could induce broadly anti-

fimbriae and anti-toxin antibodies. The results of this study suggested this antigen candidacy 

could be used for developing an effective vaccine against PWD in the future. 

According to our hypothesis, antisera produced by PWD monomeric MEFA were able to 

recognize K88, F18, STb, Stx2e, STa and LT by western blot and ELISA. The results 

highlighted anti-PWD monomeric MEFA sera contain a pool of antibodies against specific 

epitopes of ETEC virulence factors. Likewise, anti-K88, anti-F18, anti-STa, anti-CT and anti-

Stx2e were found to recognize PWD monomeric MEFA by ELISA and Western blot, illustrating 

the existence of antigenic determinants specific to K88, F18, as well as STb, Stx2e, STa and LT. 

Those results demonstrated that our PWD monomeric MEFA is immunogenic and can induce 

IgG response, suggesting a significant humoral response. Prior studies that have noted the 

importance of humoral immune-response in ETEC vaccination (Andersen, Lundgre, Osterud, 

Volden, & Giercksky, 1985; Evans et al., 1977). Although the titer of STa was found to be lower 

than those of other virulence factors, which could be explained by its small molecular weight (<2 
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KDa) (N. E. Aref & Saeed, 2011; N. M. Aref, Nasr, & Osman, 2018; Dubreuil et al., 2016). The 

poor immunogenic problem of STa was also reported in our previous study (Qiangde Duan & 

Zhang, 2016; Rausch et al., 2017). Antigenicity of STa may relate to the location and its copy 

numbers in the MEFA (Rausch et al., 2017). Here we embedded two copies of STa epitope 

“CCELCCNFACAGCY” including the disulfide bonds into the optimal positions in A1 part of 

LT toxoid based on the structural vaccinology. Anti-STa titer induced by PWD monomeric 

MEFA was higher than that induced by our previous toxoid MEFA.  

Fimbriae attachment inhibition is one of the major facets to be considered during the 

vaccine development against ETEC infection (Q. D. Duan, Yao, & Zhu, 2012; W Zhang, 2014). 

We found anti-PWD monomeric MEFA indicate significant inhibition ability against both K88 

and F18 fimbriae attachment, but lower than anti-K88 sera which could be attributed to the 

polyadhesin structure of K88 fimbriae. Furthermore, enterotoxins which disrupt secretion of 

water and electrolytes in pig small intestinal epithelial cells is the prime cause of diarrhea in 

ETEC infection. Thus, toxin neutralization is also an important indicator of ETEC vaccine 

evaluation (Melkebeek et al., 2013; W Zhang, 2014). Our results established anti-PWD 

monomeric MEFA sera exhibit significant toxin neutralization ability. Since Stx2e associates 

with Edema disease, this fimbriae-toxoid MEFA is potential for the protective efficacy of PWD 

and ED in weaned piglets. We also found that dmLT adjuvant could enhance immunogenicity of 

PWD monomeric MEFA which is consistent with a lot of previous studies. As a detoxified 

version, dmLT can enhance mucosal immunity via inducing a cAMP-dependent signal and a B-

subunit GM1-binding signal without any gastrointestinal toxicity in host (Leach, Clements, 

Kaim, & Lundgren, 2012; X. Ruan et al., 2014). Our results suggested that dmLT can be used as 

the adjuvant for PWD MEFA vaccine in the future.  
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Several researches are trying to develop recombinant subunit vaccine based on 

immunogenic capacity of epitopes from each virulence factor to combat ETEC infections, 

(Holmgren et al., 2013; Luiz et al., 2008; Nazarian et al., 2012). However, the major challenge in 

the path is that it is difficult to ensure the surface exposure of every epitope. Moreover, there is a 

potential for the conformational changes of the backbone proteins when embedding multitude 

foreign epitopes. In this study, we combined the reverse vaccinology with structural vaccinology 

to design and construct the PWD monomeric MEFA effectively (Cozzi, Scarselli, & Ferlenghi, 

2013; Delany, Rappuoli, & Seib, 2013; Dormitzer, Grandi, & Rappuoli, 2012; Q. Duan et al., 

2017; Rappuoli, 2001). Here we optimized the platform which improves the traditional 

proceeding of bacterial vaccine development via bioinformatics and structural proteomics. This 

platform, while preliminary, offers a possibility to reduce the use of experimental animals during 

the vaccine development with cost-effectiveness and higher success rate. 

In summary, our results suggest that immunization with this PWD monomeric MEFA 

provides broadly protection against ETEC infection via inducing both anti-adhesin and anti-toxin 

antibodies. This is the first study to construct a subunit vaccine which includes all the major 

virulence factors of ETEC related to PWD. Compared to our previous subunit vaccines designed 

for PWD (Rausch et al., 2017), we propose PWD monomeric MEFA as a better prospective 

vaccine candidate against ETEC-associated PWD, where PWD monomeric MEFA was found to 

exhibit broadly protective efficacy in mouse model with the capability of neutralizing LT, STa, 

STb and Stx2e as well as inhibiting K88 and F18 attachment at the same time. However, being 

limited to the mouse model, this study lacks direct results which confirm that this fimbria-toxoid 

MEFA can protect weaned piglets against ETEC-associated PWD. Further work needs to be 

done in pig challenge model to evaluate the efficacy and safety of this vaccine candidate.  
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Table 4.1 Escherichia coli strains and plasmid used in the study. 

  

Strains and 

plasmids 

Relevant properties Reference  

Strains   

BL21 huA2, Δ(argF-lacZ), U169, phoA, glnV44, φ80, 

Δ(lacZ)M15, gyrA96, recA1, relA1, endA1, thi-1, hsdR17 

GE Healthcare 

9703 A1 subunit of PWD monomeric MEFA synthesized in 

pUC57 in DH5α 

This study 

9715 pET28α-A1 subunit of PWD  monomeric MEFA in DH5α This study 

9716 pET28α- PWD monomeric  MEFA in DH5α This study 

9718 pET28α-A1 subunit of PWD  monomeric MEFA in BL21 This study 

9719 pET28α-PWD  monomeric MEFA in BL21 This study 

8752 pET28α-STa13-LT192 fusion in BL21 (Liu et al., 2011) 

3030-2 porcine ETEC challenge strain, K88ac/LT/STb (W. P. Zhang & Francis, 

2010) 

8516 porcine E. coli field isolate, F18 (W. P. Zhang et al., 2007) 

8020 K88/STb (pRAS1 in 1836–2) (W. P. Zhang et al., 2007) 

9168 04-13812 field isolate, F18/Stx2e (W. P. Zhang et al., 2007) 

9301 MBP-STb fusion in pMAL-p5X in DH5α  (Rausch et al., 2017) 

9302 MBP-Stx2eA fusion in pMAL-p5X in  DH5α (Rausch et al., 2017) 

Plasmids    

pET28α  Novagen 
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Table 4.2 Primers used in the study. 

Primer  Sequence (5’-3’) Amplified region 

PWD-

MEFA-A1 

nheI-F 

CGGGCTAGCATGAAAAATATAAC

TTTC 

Upstream of PWD-MEFA A1 subunit 

gene, with NheI site 

PWD-

MEFA-B 

eagI-R 

TTACGGCCGCTAGTTTTCCATACT

GAT 

Downstream of LTB gene, with EagI site 

PWD-

MEFA-A1-

L 

TCATTACAAGTATCACCTGTAAT

TGTTCTTGAATAATTTTCACAC 

Overlapping A1 subunit with A2 subunit 

PWD-

MEFA-A2-

R 

AAATTATTCAAGAACAATTACAG

GTGATACTTGTAATGAGGAGAC 

PWD-

A1only-

nheI-F 

CGGGCTAGCCCGATGAAAAACAT

CACCTTTATC 

Upstream of PWD-MEFA A1 subunit 

gene, with NheI site 

PWD-

A1only-

eagI-R 

TTACGGCCGGAAGATGGTACGGC

TGTAGTTCTC 

Downstream of PWD-MEFA A1 subunit 

gene, with EagI site 
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Figure 4.1 Construction of PWD monomeric MEFA. (A) Schematic illustration of the PWD-

fimbriae-toxoid MEFA gene. Nucleotides coding two K88 epitopes, two F18 epitopes, Stx2e A 

subunit epitope, and two copies of part-length STa toxoid STaP12F, STb epitope were 

synthesized into the A1 subunit of the monomeric LT toxoid LTR192G by GenScript 

(Piscataway, NJ). (B) (C) (D) (E) Protein computational modeling to show epitopes of A1 

subunit of PWD monomeric MEFA and PWD monomeric MEFA by PyMOL.  (B) 3D modeling 

of A1 subunit of PWD monomeric MEFA.  (C) Second structure of A1 subunit of 

PWDmonomeric MEFA. (D) 3D modeling of the monomeric structure of PWD monomeric 

MEFA.  (E) Second structure of PWD monomeric MEFA. 

  



129 

 

Figure 4.2 Detection of PWD monomeric MEFA. (A) Coomassie blue staining of A1 subunit 

of PWD monomeric MEFA and PWD monomeric MEFA. (B) (C) (D) (E) (F) Western blot 

assays to detect A1 subunit of PWD monomeric MEFA (lane 1) and PWD monomeric MEFA 

(lane 2) with (B) anti-CT (1:3000; Sigma), (C) anti-Stx2e (1:1500) (D) anti-FedF (1:1500) (E) 

anti-FaeG (1:1500) and (F) rabbit anti-STa (1:2000) antiserum, with IRDye-labeled goat anti-

mouse and anti-rabbit IgG (1:5,000; LI-COR) as the secondary antibodies. Protein marker (in 

kilodaltons; Precision Plus Protein prestained standards; Bio-Rad) and total proteins of E. coli 

BL21 host strain as the background control were used. 
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Figure 4.3 Immunogencity of mouse anti- PWD monomeric MEFA antiserum. (A) Timeline 

of mouse vaccination. (B) Western blot assays to detect STa, FaeG, F18, STx2e and STb with 

anti-PWD monomeric MEFA with dmLT adjuvant. CT and dmLT were tested with anti-PWD 

monomeric MEFA without dmLT adjuvant. Total proteins of E. coli BL21 host strain was used 

as the background control. (C) Mouse IgG titers (log10) against each virulence factor of PWD 

from the group subcutaneously immunized with PWD monomeric MEFA w/o dmLT or the 

control group immunized with PBS. The mean titer in each group was indicated by bar. Each 

mouse IgG titer was showed by empty cycle (immunized with PWD monomeric MEFA with 

dmLT), solid block (immunized with PWD monomeric MEFA without dmLT) and solid triangle 

(the control mice, *** p<0.001 compared to all other immunized groups). No significant 

difference (ns p> 0.12) was found in mouse antiserum detection of STa-overbum protein 

between mouse groups immunized with PWD monomeric MEFA w/o dmLT. 
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Figure 4.4 Mouse serum antibody in vitro neutralization activity against each virulence 

factor. (A) Mouse anti-PWD monomeric MEFA w/o dmLT antibody inhibition against 

adherence of F18 fimbrial ETEC to IPEC-J2 cells (%). The number of adherent bacteria in the 

control group was considered as 100% (***p<0.001 compared to all other immunized groups). 

Mouse anti-F18 fimbriae antiserum was used as the positive control (ns p>0.12 compared to 

mouse groups immunized with PWD monomeric MEFA w/o dmLT). (B) Mouse anti-PWD 

monomeric MEFA w/o dmLT antibody inhibition against adherence of K88 fimbrial ETEC to 

IPEC-J2 cells (%). The number of adherent bacteria in the control group was considered as 100% 

(*p<0.001 compared to all other immunized groups). Mouse anti-K88 fimbriae antiserum was 

used as the positive control (*p<0.033 compared to mouse groups immunized with PWD 

monomeric MEFA w/o dmLT). (C) Mouse anti-PWD monomeric MEFA w/o dmLT antibody 

neutralization activity against STa toxicity. STa (2 ng) were incubated with mouse anti- PWD 

monomeric MEFA w/o dmLT antiserum and the control serum in T-84 cells. The EIA cGMP kit 

(Enzo Life Science) was used to measure the T-84 cell intracellular cGMP levels. T-84 cell 

stimulated cGMP levels by directly added STa and baseline cGMP levels in T-84 cells culture 

medium (without STa or serum) were also showed. * p<0.033 was found in the cGMP levels in 

T-84 cells incubated with STa exposed to the mouse control serum compared to that with mouse 



132 

anti- PWD monomeric MEFA with dmLT antiserum. No significant difference (ns p>0.12) was 

found in the cGMP levels in T-84 cells incubated with STa exposed to the mouse control serum 

compared to that without mouse anti-PWD monomeric MEFA with dmLT antiserum. (D) Mouse 

anti-PWD monomeric MEFA w/o dmLT antibody neutralization activity against LT 

enterotoxicity. CT (20 ng) were incubated with mouse anti-PWD monomeric MEFA w/o dmLT 

antiserum and the control serum in T-84 cells. The EIA cAMP kit (Enzo Life Science) was used 

to measure the T-84 cell intracellular cAMP levels. T-84 cell stimulated cAMP levels by directly 

added CT and baseline cAMP levels in T-84 cells culture medium (without CT or serum) were 

also showed. * p<0.033 was found in the cAMP levels in T-84 cells incubated with CT exposed 

to the mouse control serum compared to those with mouse anti- PWD monomeric MEFA w/o 

dmLT antiserum.  
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Figure 4.5 Mouse serum antibody in vitro neutralization activity against STb toxin. (A) 

Normal Vero cells. (B) 50% cell death was showed in vero cells incubated with 300 μL 

overnight grown culture filtrates from STb+ E. coli strain 8020. (C) Vero cells incubated with 

300 μL overnight grown culture filtrates from STb+ E. coli strain 8020 pre-mixed with 150 μL 

pooled control serum. (D) Vero cells incubated with 300 μL overnight grown culture filtrates 

from STb+ E. coli strain 8020 pre-mixed with 150 μL pooled anti-PWD monomeric MEFA 

without dmLT antiserum. (E) Vero cells incubated with 300 μL overnight grown culture filtrates 

from STb+ E. coli strain 8020 pre-mixed with 25 μL pooled anti-PWD monomeric MEFA 

without dmLT antiserum. (F) Vero cells incubated with 300 μL overnight grown culture filtrates 

from STb+ E. coli strain 8020 pre-mixed with 10 μL pooled anti-PWD monomeric MEFA 

without dmLT antiserum. (G) Vero cells incubated with 300 μL overnight grown culture filtrates 

from STb+ E. coli strain 8020 pre-mixed with 150 μL pooled anti-PWD monomeric MEFA with 

dmLT antiserum. (H) Vero cells incubated with 300 μL overnight grown culture filtrates from 

STb+ E. coli strain 8020 pre-mixed with 25 μL pooled anti-PWD monomeric MEFA with dmLT 
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antiserum. (I) Vero cells incubated with 300 μL overnight grown culture filtrates from STb+ E. 

coli strain 8020 pre-mixed with 10 μL pooled anti-PWD monomeric MEFA with dmLT 

antiserum. 
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Figure 4.6 Mouse serum antibody in vitro neutralization activity against STx2e toxin. (A) 

Normal Vero cells. B: 50% cell death was showed in vero cells incubated with 100 μL overnight 

grown culture filtrates from STx2e+ E. coli strain 9168. (C) Vero cells incubated with 100 μL 

overnight grown culture filtrates from STx2e+ E. coli strain 9168 pre-mixed with 18.8 μL pooled 

control serum. (D) Vero cells incubated with 100 μL overnight grown culture filtrates from 

STx2e+ E. coli strain 9168 pre-mixed with 18.8 μL pooled anti-PWD monomeric MEFA without 

dmLT antiserum. (E) Vero cells incubated with 100 μL overnight grown culture filtrates from 

STx2e+ E. coli strain 9168 pre-mixed with 6.3 μL pooled anti-PWD monomeric MEFA without 

dmLT antiserum. (F) Vero cells incubated with 100 μL overnight grown culture filtrates from 

STx2e+ E. coli strain 9168 pre-mixed with 3 μL pooled anti-PWD monomeric MEFA without 

dmLT antiserum. (G) Vero cells incubated with 100 μL overnight grown culture filtrates from 

STx2e+ E. coli strain 9168 pre-mixed with 18.8 μL pooled anti-PWD monomeric MEFA with 

dmLT antiserum. (H) Vero cells incubated with 100 μL overnight grown culture filtrates from 

STx2e+ E. coli strain 9168 pre-mixed with 6.3 μL pooled anti-PWD monomeric MEFA with 



136 

dmLT antiserum. (I) Vero cells incubated with 100 μL overnight grown culture filtrates from 

STx2e+ E. coli strain 9168 pre-mixed with 3 μL pooled anti-PWD monomeric MEFA with dmLT 

antiserum. 
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Chapter 5 - Optimizing the immunizing route by using a carrier to deliver the MEFA 

antigen to local mucosal areas 

Ti Lu, Rodney A Moxley, Weiping Zhang 

 

Abstract: Enterotoxigenic Escherichia coli (ETEC) is the primary cause of porcine post-

weaning diarrhea (PWD). Currently there is no effective vaccine for PWD. A structure- and 

epitope-based multiepitope fusion antigen (MEFA) to induce broadly neutralizing anti-adhesin 

(K88 and F18) and antitoxin (LT, STa, STb, Stx2e) antibodies has been constructed. However, 

this adhesin-toxoid MEFA needs to be extracted as a protein for parenteral immunization. In this 

study, this MEFA gene was optimized to be expressed as a holotoxin-structured and GM1-

binding protein in a live host strain to induce mucosal antibodies against ETEC adhesins and 

toxins. Salmonella Ty21a strain, a mutant of Salmonella Ty2 strain lacking Uridine-diphosphate-

galactose (UDP-Gal) -4-epimerase by chemically inactivating the galE gene was selected as the 

host strain to express the optimized holotoxin-structure adhesin-toxoid MEFA. Data showed that 

optimized PWD adhesin-toxoid MEFA formed a holotoxin structure and bound to GM1 receptor, 

and Ty21a strain as well as porcine field E. coli isolate G58 produce the new adhesin-toxoid 

MEFA and secreted the protein outer-membrane. These results suggest that Ty21a or G58 host 

producing the GM1-binding adhesin-toxoid MEFA can potentially be an effective mucosal 

vaccine against PWD. 

 

 5.1 Introduction 

Enterotoxigenic Escherichia coli (ETEC) is considered the major cause of postweaning 

diarrhea (PWD), which commonly occurs during the first 2 weeks after weaning and exhibits the 
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clinical symptoms of acute death, diarrhea, and dehydration as well as reduced weight gain in 

surviving piglets (Rhouma et al., 2017). PWD is a multifactorial disease associated with a 

reduction in milk immunity and the incomplete development of active immunity in piglets during 

weaning (W. P. Zhang et al., 2007). When infection occurs, ETEC can adhere to glycoprotein 

receptors on the pig small intestinal epithelium by fimbrial adhesins on the bacterial surface. Six 

fimbrial subtypes related to animal diarrhea diseases including K88 (F4), K99 (F5), 987P (F6), 

F41 (F7) F17 and F18 have been identified. Among them, K88 and F18 are commonly isolated 

from PWD piglets (Dubreuil et al., 2016). Since K88 receptors can be isolated at all life stages 

from the pig intestines, while F18 receptors can only be found in pigs after 2-3 weeks of age, 

K88 fimbriae relate to both neonatal diarrhea (ND) and PWD, but F18 fimbriae only associate 

with PWD (Heo et al., 2013). After fimbrial attachment, ETEC releases enterotoxins to stimulate 

the secretion of water and electrolytes into the intestinal lumen, leading to diarrhea and 

dehydration. Heat-labile enterotoxin (LT) and heat-stable enterotoxin (ST) are the main 

enterotoxins of ETEC. LT is a 1A5B toxin with a B pentamer binding to GM1 receptors on pig 

intestinal epithelial cells (Huang et al., 2018). The enzymatic A subunit is cleaved into two parts 

after endocytosis, and the A1 part continually stimulates Protein Kinase A (PKA) by increasing 

the cAMP level, leading to watery diarrhea. ST comprises STa and STb. STa increases the 

intracellular cGMP level to activate abnormal secretion of water and electrolytes, leading to 

diarrheal disease (Qiangde Duan & Zhang, 2016; Q. D. Duan et al., 2012). Unlike LT or STa, 

STb cannot increase the cAMP or cGMP level, but it does increase the calcium ion concentration 

to trigger chloride ion channels on gut epithelial cells, resulting in diarrhea (Dubreuil et al., 2016; 

W. P. Zhang et al., 2007). 
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PWD is still a global challenge in the pig industry, and there is no effective licensed 

vaccine. Maternal vaccination against swine ETEC infections has been widely used. A 

commercial inactivated vaccine or subunit vaccines are commonly given to sows intramuscularly 

before farrowing (Hur & Lee, 2012b; Matias et al., 2017). Newborn pigs are protected by 

antibodies in the colostrum and milk during the nursing period. However, this protection will 

decrease when weaning starts. An oral commercial vaccine against PWD that includes the 

avirulent live E. coli strains O141:K94 (F18ac) and O8:K87 (F4ac) was approved for use in 

Canada and the European Union recently (Fairbrother et al., 2017). However, since ETEC 

requires both adhesins and enterotoxins to induce PWD, neither an anti-adhesin nor an anti-

enterotoxin vaccine candidate alone can produce broad efficiency. In previous studies, we 

constructed live E. coli vaccine strains expressing fimbriae-toxoid fusions (Rausch et al., 2017; 

X. S. Ruan et al., 2011; C. Zhang & Zhang, 2010). Moreover, a holotoxin-structured backbone of 

LT with a complete B pentamer has been shown to enhance local mucosal immunity by 

successfully binding to GM1 on the pig intestinal surface (X. Ruan & Zhang, 2013). 

The Salmonella typhi Ty21α strain is a mutant of the Salmonella typhi Ty2 strain lacking 

Uridine-diphosphate-galactose (UDP-Gal)-4-epimerase through chemical inactivation of the 

galE gene. This strain is part of the only oral live attenuated vaccine (Vivotif®) against typhoid 

fever used by the World Health Organization (WHO) (Organization, 2019). The mutation in galE 

disrupts galactose metabolism, leading to the accumulation of galactose in the bacteria, resulting 

in the loss of bacterial virulence (McKenna et al., 1995). After oral administration, the 

Salmonella typhi Ty21α strain proliferates in the jejunum and cecum to induce humoral 

immunity and cellular immunity (Wahid et al., 2016). The immunized intestinal tract quickly 

clears pathogens to prevent salmonellosis. Furthermore, the Salmonella typhi Ty21α strain has 
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been used as a vaccine delivery platform to express vaccine antigens against some diseases, such 

as HIV infection, anthrax, shigellosis, plague, and human papilloma virus infection (Amicizia et 

al., 2017; Baillie et al., 2008; Dharmasena, Osorio, et al., 2016; J. Wen et al., 2012). 

In our previous study, we constructed a monomeric PWD multiepitope fusion antigen 

(PWD MEFA) that induced broadly neutralizing anti-adhesin (K88 and F18) and anti-toxin (LT, 

STa, STb, and Stx2e) antibodies in a mouse model. In this study, we optimized this MEFA to 

produce a holotoxin-structured protein that could bind to GM1 receptors to induce the mucosal 

immune response. Furthermore, the Salmonella typhi Ty21α strain and porcine field E. coli 

isolate strain G58 were used to deliver the optimized holotoxin-structured adhesin-toxoid MEFA. 

We compared the secretion of the new adhesin-toxoid MEFA between the Salmonella typhi 

Ty21α strain and porcine field E. coli isolate strain G58 and found that both strains could express 

the GM1-binding adhesin-toxoid MEFA, which has the potential to protect piglets against PWD. 

 

 5.2 Materials and methods 

Bacteria and plasmids. All strains and plasmids utilized in this study are listed in Table 

5.1. The LT recombinant strain 8460 (Liu et al., 2011) was used to construct the holotoxin-

structured MEFA by SOE PCR. The vector pBR322 (Promega, Madison, WI) as well as the E. 

coli DH5a strain, porcine E. coli isolate strain G58 (X. Ruan & Zhang, 2013) and Salmonella 

typhi Ty21α strain (Vivotif®, PaxVax, Redwood, CA) were used for holotoxin-structured PWD 

MEFA expression. The porcine ETEC 3030-2 strain (K88ac+) (W. P. Zhang & Francis, 2010) 

was used for bacterial attachment. 

Construction of the holotoxin-structured PWD MEFA. A synthesized heat-labile 

toxin (LT) A1 subunit including all neutralizing epitopes from each virulence factor was 
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constructed in a previous study. The primers PWD-MEFA-A1 nheI-F and PWD-MEFA-A1-L 

were designed to amplify the synthesized DNA fragment. The primers PWD-MEFA-A2 R and 

PWD-MEFA-B eagI-R were designed to amplify the holotoxin-structured LT A2B DNA 

fragment from the LT recombinant strain 8460. Two DNA fragments were overlapped and 

cloned into the pBR322 vector by digestion with NheI and EagI restriction enzymes (X. Ruan & 

Zhang, 2013). The primers pBR322-check-F and pBR322-check-R were used for DNA 

sequencing. 3-D protein modeling was displayed by PyMOL Molecular Graphics System 

(access: 106826; version 2.2; Schrödinger, LLC, New York City, NY, USA) with amino acid 

sequences transferred from PDB via Phyre2 online server (Lawrence A Kelley, Mezulis, Yates, 

Wass, & Sternberg, 2015). 

Secretion of the PWD holotoxin-structured MEFA. Recombinant plasmids were 

transferred to the E. coli DH5a strain, porcine E. coli strain G58 and Salmonella typhi Ty21α 

strain as we previously described (Rausch et al., 2017). Briefly, a single positive clone was 

selected and cultured overnight in 10 mL Luria broth (LB) medium supplemented with 

ampicillin (100 μg/mL) at 37°C. The overnight bacterial culture was centrifuged (3000 × g, 30 

mins), and the supernatant was concentrated at 4°C for 2 hours. Secretion of the PWD holotoxin-

structured MEFA was assessed by SDS-PAGE (sodium dodecyl sulfate-polyacrylamide gel 

electrophoresis, 15%) by using a gel stained with Coomassie blue or further detected by Western 

blotting using anti-CT (rabbit; 1:3000; Sigma-Aldrich, St. Louis, MO) or anti-PWD monomeric 

MEFA (mouse; 1:2000) and IRDye-labeled goat anti-rabbit IgG or anti-mouse IgG (1:5,000; LI-

COR, Lincoln, NE) antibodies. 

GM1 ELISA assays. Nunc-Immuno 96-MicroWell ELISA plates (Sigma-Aldrich, St. 

Louis, MO) were coated with 0.4 μg/well monosialoganglioside GM1 overnight at 4°C and 
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blocked with 5% BSA in PBST (PBS with 0.05% Tween-20) at 37°C for 1 hour. A single 

positive clone of the 9740 strain (E. coli DH5a + PWD holotoxin-structured MEFA), 9741 strain 

(Salmonella typhi Ty21α + PWD holotoxin-structured MEFA) or 9742 strain (porcine E. coli 

G58 + PWD holotoxin-structured MEFA) was selected and cultured overnight in 10 mL TSB 

(Tryptic Soy Broth) (Sigma-Aldrich, St. Louis, MO) medium supplemented with ampicillin (100 

μg/mL) at 37°C. The overnight bacterial culture was transferred to 10 ml TSB at a 1:10 ratio. 

When the OD600 reached 1.0, the culture was centrifuged (3000 × g, 30 mins), 200 μL 

supernatant, heat-labile toxin (1 μg/μL) or 1% BSA in PBST was added to the first row, and a 

1:1 gradient dilution was used to dilute the molecules into each row below, followed by a 1 hour 

incubation. After three washes, the plates were incubated with 100 μL/well anti-CT (rabbit, 

1:3000; Sigma-Aldrich, St. Louis, MO), anti-STa (rabbit, 1:400), anti-Stx2e (mouse, 1:200), 

anti-F18 (mouse, 1:1000) and anti-K88 (mouse, 1:1000) antibodies for 1 hour. Afterwards, a 

horseradish peroxidase (HRP)-conjugated goat-anti-mouse IgG (1:3000; Bethyl, Montgomery, 

TX) or HRP-conjugated goat-anti-rabbit IgG (1:3000; Bethyl, Montgomery, TX) antibody was 

added to each well as a secondary antibody. The results were analyzed by enzyme-based 

colorimetry using the OD value at 650 nm, and a log10 scale was used for the IgG antibody titers. 

Adherence assays. IPEC-J2 cells (pig jejunum epithelial cells from unsuckled 1-day-old 

piglets) were cultured in Dulbecco's modified Eagle's medium (DMEM) and Ham’s F12 medium 

(1:1; ATCC, Invitrogen, CA) with 5% fetal bovine serum (FBS). The strains 3030-2 (K88ac+), 

porcine E. coli G58 and Salmonella typhi Ty21α were cultured overnight in 5 ml TSB medium 

supplemented with ampicillin (100 μg/mL) at 37°C. The overnight bacterial culture was 

transferred to 10 ml TSB at a 1:50 ratio for an additional 2 hours. When the OD600 reached 0.5-

0.6, the bacterial cultures were centrifuged at 3000 × g for 5 mins and resuspended in PBS at a 
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concentration of 1.5×106 CFU/mL. The contents of each well were added to 100 μL diluted 

bacterial cultures (1:10 ratio of cells to bacteria), followed by a 1 hour incubation at 37°C in 5% 

CO2. The cells were lysed in 500 μl sterile 0.5% Triton X-100. Dislodged cells and adherent 

bacteria were removed to separate tubes and resuspended in 500 μL sterile PBS. The mixtures 

were diluted to 10-1, 10-2, 10-3, 10-4 and 100 μl from 10-3 or 10-4 and spread on TSA (Tryptic Soy 

Agar) (Sigma-Aldrich, St. Louis, MO) plates for CFU calculations. 

Statistics. Data management and analysis were performed using GraphPad Prism 

software version 7.0. One-way ANOVA was performed with the antibody titration and 

neutralization assay data. A p-value <0.05 was considered statistically significant. The results 

were expressed as the mean ± standard deviation (SD). Adherence assays were repeated two 

times using duplicate samples, while GM1 ELISAs were repeated two times using triplicate 

samples. 

 

5.3 Results 

Expression of the PWD holotoxin-structured MEFA. The synthesized LT A1 part 

overlapped with the A2 part and B subunit, between which the cistron gene structure was 

reinserted to reverse an LT-like gene encoding an LT-like holotoxin-structured protein (Fig 

5.1A). The protein 3-D modeling software PyMOL was used to map the locations of epitopes 

and confirmed that all epitopes were surface exposed (Fig 5.1B-E). PWD holotoxin-structured 

MEFAs of approximately 99.3 kDa were successfully secreted into the supernatant by the E. coli 

DH5a strain (Fig 5.1F). The PWD holotoxin-structured MEFAs reacted with anti-CT and anti-

PWD monomeric MEFAs by Western blotting (Fig 5.1F). 
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Secretion and GM1-binding evaluation of the PWD holotoxin-structured MEFA. A 

GM1 ELISA showed that the PWD adhesin-toxoid MEFA was successfully optimized to form a 

holotoxin structure (Fig 5.2). Moreover, the data also indicated that the 9740 strain (E. coli 

DH5a carrying the PWD holotoxin-structured MEFA), the 9741 strain (Salmonella typhi Ty21α 

carrying the PWD holotoxin-structured MEFA) and the 9742 strain (porcine E. coli G58 carrying 

the PWD holotoxin-structured MEFA) could secrete the PWD holotoxin-structured MEFA 

protein to the outer membrane (Fig 5.2A). At a 1:1600 dilution of bacterial supernatant, all 

strains carrying the PWD holotoxin-structured MEFA had significantly higher OD650 values than 

the corresponding empty strains (p<0.001). The 9741 strain showed a better OD650 value than the 

9740 or 9742 strain (p<0.001), while there was no significant difference between the 9740 and 

9742 strains (p>0.99). 

Detection of each epitope on the PWD holotoxin-structured MEFA. A GM1 ELISA 

additionally demonstrated that the PWD holotoxin-structured MEFA could react with anti-

fimbriae and anti-toxin sera (Fig 5.2B). The 9741 strain showed better reactivity with anti-K88 

and anti-F18 sera than the 9742 strain (p<0.05), while those two strains had no significant 

differences in anti-STa, anti-Stx2e or anti-LTA reactions (p>0.05). 

Abilities of porcine E. coli G58 and Salmonella typhi Ty21α to adhere to the porcine 

cell line IPEC-J2. Adherence assays were used to examine whether E. coli G58 and Salmonella 

typhi Ty21α had similar attachment activities. The adhered CFUs are reported in Table 5.3. The 

3030-2 strain (18.6±6.02 ×103 CFU) showed better adherence ability than the other strains 

(p<0.001), while the E. coli G58 strain (2.82±0.74 ×103 CFU) and Salmonella typhi Ty21α strain 

(2.77±0.33 ×103 CFU) showed no significant difference (p>0.99). 
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5.4 Discussion 

Researchers have found that traditional injection routes, such as subcutaneous 

vaccination, may effectively induce systemic immunity (Ti Lu, Seo, et al., 2019). However, it is 

difficult for protection to reach the intestinal mucosa, which is the gateway of bacterial infection 

(Pavot, Rochereau, Genin, Verrier, & Paul, 2012). Therefore, an ideal enteric vaccine, first of all, 

should be able to induce an immune response in the gastrointestinal mucus. In this study, two 

live PWD MEFA vaccine strains that expressed an LT-like holotoxin-structured MEFA protein 

were constructed. The PWD holotoxin-structured MEFA was secreted to the outer membrane in 

the Salmonella typhi Ty21α and E. coli G58 strain and could bind to the GM1 receptor. These 

results suggested that these two live vaccine candidates could potentially induce an immune 

response in the pig gastrointestinal mucosa against PWD. 

The Salmonella typhi strain Ty21a has been used globally as an oral typhoid vaccine. 

However, due to the superior immunogenicity of the Salmonella antigen, it has rarely been tested 

as a living carrier for a heterologous antigen (Bumann et al., 2001). Recent studies have shown 

that the Salmonella typhi strain Ty21a can be used as a vector for some pathogens, such as 

Helicobacter pylori (Metzger et al., 2004). These vaccine candidates can induce a comparative 

immune response in the gastrointestinal mucosa. Moreover, researchers have found that maternal 

antibodies from immunized sows will not significantly disturb the tissue invasion of the vaccine 

strain in piglets (Wales & Davies, 2017). Here, the attachment of the Salmonella typhi Ty21a 

strain and the E. coli G58 strain to the porcine cell line IPEC-J2 was tested, and the two strains 

were found to have similar attachment levels. We used the E. coli G58 strain as the host strain 

for PWD vaccine development and determined that this strain could deliver MEFA proteins to 

the pig intestinal mucosa. Since Salmonella typhi Ty21α had an adherence ability similar to that 
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of E. coli G58 when tested with the porcine cell line, Salmonella typhi Ty21α could be a host 

strain for PWD MEFA delivery. This finding has important implications for developing an oral 

recombinant Salmonella vaccine to elicit an efficient swine mucosal response against ETEC 

infection. 

In conclusion, this study constructed two live PWD MEFA vaccine strains expressing an 

LT-like holotoxin-structured MEFA protein by using the Salmonella typhi Ty21α or E. coli G58 

strain. This PWD holotoxin-structured MEFA could bind to the GM1 receptor with a functional 

B pentamer. These results suggested that these two live vaccine candidates could potentially 

induce an immune response in the pig gastrointestinal mucosa against PWD. The data of this 

study provide new ideas for constructing a recombinant Salmonella-based PWD vaccine as well 

as strong support for porcine vaccination strategies against ETEC-associated PWD. Further 

studies are required to establish the immunogenicity and safety of these two vaccine candidates 

in a pig model and optimize the acid-resistance system of the Ty21α host strain to achieve lower 

costs and industrialized production. 
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Table 5.1 Escherichia coli strains and plasmids used in the study. 

  

Strains and 

plasmids 

Relevant properties Reference  

Strains   

E. coli BL21 huA2, Δ(argF-lacZ), U169, phoA, glnV44, φ80, 

Δ(lacZ)M15, gyrA96, recA1, relA1, endA1, thi-1, and 

hsdR17 

GE Healthcare 

S. typhi Ty21α  Vivotif® 

E. coli G58 K88ac−LT−STb− (Francis & 

Willgohs, 1991)  

9703 A1 subunit of PWD MEFA synthesized in pUC57 in 

DH5α 

This study 

9740 pBR322 - the holo-structure of the PWD-fimbriae-

toxoid MEFA in DH5α 

This study 

9741 pBR322 - the holo-structure of the PWD-fimbriae-

toxoid MEFA in Ty21α 

This study 

9742 pBR322 - the holo-structure of the PWD-fimbriae-

toxoid MEFA in G58 

This study 

8460 eltAB genes + pBR322 in TOP10, LT recombinant 

strain 

(Liu et al., 2011) 

3030-2 porcine ETEC challenge strain, K88ac/LT/STb (W. P. Zhang & 

Francis, 2010) 

Plasmids    

pBR322  Promega 
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Table 5.2 Primers used in the study. 

Primer  Sequence (5’-3’) Amplified region 

PWD-

MEFA-A1 

nheI-F 

CGGGCTAGCATGAAAAATATAAC

TTTC 

Upstream of the PWD-MEFA A1 subunit 

gene, with an NheI site 

PWD-

MEFA-B 

eagI-R 

TTACGGCCGCTAGTTTTCCATACT

GAT 

Downstream of the LTB gene, with an 

EagI site 

PWD-

MEFA-A1-

L 

ATTACAAGTATCACCTGTGATGG

TACGGCTGTAGTTCTCGCA 

A1 subunit overlapping with the A2 

subunit PWD-

MEFA-A2-

R 

AACTACAGCCGTACCATCACAGG

TGATACTTGTAATGAGGAG 

pBR322-

check-F 

GTACTGCCGGGCCTCTTG 

Upstream of pBR322 from 164 aa 

pBR322-

check-R 

GCCAGCAAGACGTAGCCC 

Downstream of pBR322 from 969 aa 
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Table 5.3 Bacteria adherence assays. 

Bacteria  
Mean of attachment 

(CFU) ± SD 

p value 

vs Ty21α  vs G58 

3030-2  18.6±6.02 (×103) <0.001 <0.001 

Ty21α  2.77±0.33 (×103) - >0.99 

G58  2.82±0.74 (×103) >0.99 - 

The ETEC bacteria 3030-2 strain and porcine cell line IPEC-J2 were used. The CFUs of 

ETEC 3030-2, Salmonella typhi Ty21α, and E. coli G58 bacteria adhered to the IPEC-J2 cells 

were used to indicate the adhesive ability of each strain. Data are presented as the mean ± SD 

from three independent experiments. One-way ANOVA was used to calculate the p values 

comparing bacterial attachment among the strains. 
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Figure 5.1 Construction of the PWD holotoxin-structured MEFA. (A) Schematic illustration 

of the PWD holotoxin-structured MEFA gene. The synthesized A1 subunit was fused into the 

holotoxin-structured LT toxoid LTR192G by GenScript (Piscataway, NJ). (B) (C) (D) (E) 

Protein computational modeling by PyMOL was used to show the epitopes of the PWD 

holotoxin-structured MEFA. (A and B) The front (B) and back (C) of the PWD holotoxin-

structured MEFA is shown with the 7 fused epitopes indicated in different colors (2 copies of the 

STa epitope). White, LT A1 domain backbone; gray, LT A2 domain; and purple, LT B subunit. 

(D and F) A second structure of the PWD holotoxin-structured MEFA with each fused epitope in 

the same color as that shown in panels A and B is shown. (F) Western blot assays were used to 

detect the secretion of the PWD-holo-structure MEFA into the supernatant of the 9741 strain 

culture via anti-PWD MEFA-A1A2:1B (mouse; 1:1000) and anti-CT (rabbit; 1:3000) sera. The 

supernatant of the Ty21α empty strain was used as the background control. 
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Figure 5.2 Secretion and comparison of the PWD holotoxin-structured MEFA in different 

bacterial strains. (A) A GM1 ELISA was used to show the outer membrane secretion of the PWD 

holotoxin-structured MEFA and GM1-binding activity. The E. coli DH5α, Salmonella typhi Ty21α 

and E. coli G58 strains were used as negative controls. CT (2 μg per well) was added as the positive 

control. Anti-CT serum (rabbit; 1:3000) was used as the primary antibody. (B) A GM1 ELISA 

was used to show the exposed epitopes of the PWD holotoxin-structured MEFA. Anti-K88 

(mouse; 1:1000), anti-F18 (mouse; 1:1000), anti-STa (rabbit; 1:400), anti-Stx2e (mouse; 1:200) 

and anti-LTA (mouse; 1:400) sera were used as primary antibodies. HRP-anti-mouse (1:5000) and 

HRP-anti-rabbit IgG (1:5,000) antibodies were used as the secondary antibodies. ***, p<0.001; 

**, p<0.002; *, p<0.033; and ns, p>0.12. 
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Chapter 6 - Conclusion  

 

Enterotoxigenic Escherichia coli (ETEC) bacteria are the essential cause of post-weaning 

diarrhea (PWD) in piglets, which causes huge economic losses annually to the swine production. 

Currently, there are no licensed vaccines for ETEC. Immunodominant and neutralizing epitopes 

of F18 fimbrial adhesin subunit FedF and K88 fimbrial adhesin subunit FaeG were investigated. 

Then a PWD fimbriae-toxoid MEFA inducing broadly effective protection against PWD-

associated ETEC infection was developed and optimized.  

In chapter 2 and 3, we identified seven epitopes from F18 fimbrial adhesin subunit FedF 

and nine epitopes from K88ac fimbrial adhesin subunit FaeG. Those epitopes could maintain 

native antigenicity after being fused to heterologous carrier CfaB protein. Each epitope fusion 

protein was recognized by a special anti-fimbriae serum but also the ability to compete with F18 

or K88 fimbria for binding to special anti-fimbriae antibodies or to reduce anti-fimbriae 

antibodies from inhibiting adherence of E. coli bacteria expressing F18 or K88ac fimbriae. 

Furthermore, each epitope could induced antibodies specific to F18 or K88ac fimbriae in 

subcutaneously immunized mice. Derived antibodies from all FedF epitope fusions and 6 of 9 

FaeG epitope fusions showed neutralizing activities against F18 or K88ac fimbria adherence to 

pig intestine cell line IPEC-J2.   Among those neutralizing epitopes, epitope 3 and epitope 7 of 

FedF, as well as epitope 3 and epitope 5 of FaeG displayed better in inducing neutralizing anti-

F18 or anti-K88 antibodies, suggesting their potential application in vaccine development against 

PWD. 

In chapter 4, we constructed a monomeric PWD multiepitope fusion antigen (PWD-

MEFA) which provided broad protection against ETEC infection via inducing both anti-adhesin 
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and anti-toxin antibodies. Specific neutralizing epitopes of K88, F18, STa, STb, and Stx2e 

epitopes were embedded into the A subunit of LTR192G using gene synthesis. This is the first 

study to construct a subunit vaccine which includes all the major virulence factors of ETEC 

related to PWD. We proposed PWD monomeric MEFA as a better prospective vaccine candidate 

against ETEC-associated PWD, where PWD monomeric MEFA was found to exhibit broadly 

protective efficacy in a mouse model with the capability of neutralizing LT, STa, STb, and Stx2e 

as well as inhibiting K88 and F18 attachment at the same time. However, being limited to the 

mouse model, this study lacks direct results which confirm that this fimbria-toxoid MEFA can 

protect weaned piglets against ETEC-associated PWD. Further work needs to be done in the pig 

challenge model to evaluate the efficacy and safety of this vaccine candidate.  

In chapter 5, we continually optimized the monomeric PWD MEFA to an LT-like 

holotoxin-structured protein that could bind to GM1 receptor with a functional B pentamer. This 

PWD holotoxin-structured MEFA was expressed in Salmonella Ty21α strain or E. coli G58 

strain as the oral live vaccine candidates. We found that these two live vaccine candidates could 

potentially induce immune response on pig gastrointestinal mucus against PWD. Data of this 

study provide new ideas for constructing a recombinant Salmonella-based PWD vaccine, as well 

as strong support for porcine vaccination strategies against ETEC-associated PWD. Further 

works are required to establish the immunogenicity and safety of these two vaccine candidates in 

pig models and optimize the acid-resistant system of Ty21α host strain for lower cost and 

industrialized production. 
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