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ABSTRACT

Massive amounts of biological data are being accumulated in science. Searching for

significant meaningful information and patterns from different types of data is necessary

towards gaining knowledge from these large amounts of data available to users. However,

data mining techniques do not normally deal with significance. Integrating data mining

techniques with standard statistical procedures provides a way for mining statistically signi-

ficant, interesting information from both structured and unstructured data. In this dissertation,

different algorithms for mining significant biological information from both unstructured

and structured data are proposed. A weighted-density-based approach is presented for

mining item data from unstructured textual representations. Different algorithms in the

area of radiation hybrid mapping are developed for mining significant information from

structured binary data. The proposed algorithms have different applications in the ordering

problem in radiation hybrid mapping including: identifying unreliable markers, and building

solid framework maps. Effectiveness of the proposed algorithms towards improving map

stability is demonstrated. Map stability is determined based on resampling analysis. The

proposed algorithms deal effectively and efficiently with multidimensional data and also

reduce computational cost dramatically. Evaluation shows that the proposed algorithms

outperform comparative methods in terms of both accuracy and computation cost.
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CHAPTER 1. GENERAL INTRODUCTION

Gaining interesting information from large amounts of data is the major role of

data mining techniques. Data mining techniques [60, 49, 15, 27] range from information

extraction, supervised and unsupervised learning to pattern mining. Typically, none of

these techniques address statistical significance. Conversely, standard statistical analysis

[53, 54] cannot solve some of the complex problems in sciences. For some applications,

determining significance can be as important as the result itself. Integrating data mining

algorithms with standard statistical analysis procedures, provides means for mining signif-

icant information from both unstructured and structured data sources.

Data Mining 

Artificial 

Intelligence 

Database 

Systems 

 Machine 

Learning 
 statistics 

Figure 1: The relationship between data mining and other disciplines.

Figure 1 shows how data mining utilizes concepts and methods from database, artifi-

cial intelligence, machine learning, and statistics. Statistical methods are commonly used in
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data mining. However, measuring how statistically significant the results are is uncommon.

In this dissertation, we provide several algorithms towards further integrating data mining

and statistical methods on both unstructured and structured data.

1.1. Mining for significance from the Unstructured Data Forms

Unstructured data that do not follow a specific model or is not represented in a

relational fashion are the predominant data representation [69, 62, 43]. For that reason,

new means for mining from the unstructured data are required. One application of mining

significant information from unstructured data is the evaluation whether prediction from

text is promising. Large parts of the biological science are represented through published

documents. Valuable information can be extracted from such unstructured forms of data

through bioinformatics analysis [69, 62, 43]. Classification techniques [64, 25] on textual

forms can be used for prediction of gene ontology terms [9], and classifying gene expres-

sion [66].

Predicting functions directly from available protein domains is a common task in

bioinformatics. However, since most biological science information is available through

publications, it would be interesting to know whether or not this information can be used

directly for prediction purposes. Standard classification techniques might produce mislead-

ing results because of the multi-relational nature between biological publications and item

data. Figure 2 is a schematic that represents the problem of finding how useful the textual

representations are in predicting class labels. Each publication can be related to many

genes, which in turn can be related to many items, such as protein domains or ontology

functions. Each item also can be related to many genes. The high dimensionality and muti-

relational nature of this problem makes standard classification techniques and probabilistic

relational models unsuitable to be used in this context.

As discussed above, standard classification techniques cannot be used in a multi-

relational setting. Other techniques, such as probabilistic relation models [33] cannot be

2



Chromosome 

DNA 

Publications 

g1 

g2 

Ontology Functions: 

 

-Transcription 

-Cell Cycle 

-  … 

Figure 2: The problem of predicting item data (protein domains or ontology functions)

from textual representations.

used for high dimensional data. On the other hand, integrating a proper re-weighting

model with a density-based algorithm provides a solution to the multi-relational nature

of the problem and finds whether prediction from text is promising. The proposed model

is discussed in detail in Chapter 2.

1.2. Mining for significance from the Structured Data Forms

Significant information can also be mined from structured forms of data. These

structured forms follow a data model, such as the relational model [19]. An evaluation

of significance is important in the ordering problem in radiation hybrid (RH) mapping

[24, 63, 32, 38, 34, 22, 26, 50] which is computationally equivalent to the traveling sales-

man problem (TSP) with the exception that the first and last markers in the map need not be

3



linked. Identifying unreliable markers in RH mapping (Chapters 3 and 4) is an application

examples.

Figure 3: The process of scoring in radiation hybrid mapping.

Genome mapping [5, 32] is considered to be an important step in the sequencing

of genomes since it provides valuable information towards the assembly of the sequenced

data. In genome sequencing, a large number of DNA sequences are found. However,

putting all these sequenced DNA pieces together in the correct order is a key task. Radiation

hybrid (RH) mapping [24] is an experimental technique for ordering markers within the

chromosomes of species. Figure 3 shows the experimental process where the chromo-

somes are irradiated with X− or γ− radiation to create deletions. These chromosomes

are scored using a binary scoring system. If a marker is present in an individual it is

scored 1, otherwise 0. This process is repeated on multiple individuals to create a mapping
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population. Heuristic algorithms can be used to analyze these deletion patterns and find the

best possible order. Table 1 is a toy example of a RH mapping data of a population with 10

individuals (v1 to v10) and 3 markers M1, M2, and M3. The goal of RH mapping is to order

markers using the frequency of co-deletions/co-retention pattern between them. As can be

seen from Table 1, markers M1 and M2 are retained together in the individual v6 and

while markers M2 and M3 are co-deleted in individual v5. So, based on co-retention/co-

deletion patterns, the best possible order, with minimum number of breakage, in this case

is {M1, M2, M3}. However, ordering markers for RH mapping is computation intensive

for many reasons. First: since the mapping problem is equivalent to the TSP problem,

the ordering problem scales exponentially with number of markers. Second: there is

a possibility of human scoring errors (mis-scoring problem). Some markers might be

mistakenly mis-scored in the experimental process. Third: for many species, especially

plants, sequence sections are repeated across the genome. The detection of markers might

then not be sequence specific and might result in mistakes when scoring the data. Fourth:

the missing data problem; it is very common that some of the experimental data are missing.

The detection of markers for some markers cannot be clearly identified as 0 or 1, so these

data are scored as missing data.

Table 1: A toy example of RH experimental data. The data consists of 3 markers tested on

a population of 10 individuals.

Mrk/Indv v1 v2 v3 v4 v5 v6 v7 v8 v9 v10
M1 1 1 1 0 1 1 0 1 1 1

M2 1 1 1 0 0 1 0 1 1 1

M3 1 1 1 0 0 0 0 1 1 1

Genome mapping is an application of a TSP problem. The standard TSP problem

has to be adapted to the problem of genome mapping by modifying it such that the first

and the last markers are not required to be linked. Heuristic algorithms can be used to find

a map for every chromosome with the minimum cumulative physical distance. However,

5



even when using state-of-the-art heuristic algorithms for mapping, all the reasons discussed

above may make a marker unreliable. If a marker cannot be placed reliably, such a marker

may contribute to an overall poor map. These unreliable markers need to be detected

and removed from the data to create a solid and reliable genome map. Chapters 3 and

4 describe two algorithms for detecting unreliable markers with the goal of both improving

map quality, and building reliable solid framework maps.

Traditional methods for finding unreliable markers [39, 40, 41, 51] are computa-

tionally expensive. These methods rely on mapping data by resampling from the mapping

population and creating histograms of the mapping results. Unreliable markers are removed

iteratively using these histograms. In Chapters 3 and 4 we provide an alternative solution

for discovering those unreliable markers without the need to map all the resampled data.

The proposed network-based approach is computationally fast and outperforms clustering-

based approaches in many aspects, including accuracy, map alignment with a baseline

model, and physical map distance.

Building solid framework maps using the most reliable markers is another application

of the techniques we develop. Under a scenario of mapping large numbers of markers with

missing data and mis-scoring, the best strategy is to start with a solid framework map

and iteratively insert other markers in the best possible position. Traditional techniques

for filtering unreliable markers that rely on mapping data from resampling analysis as

they are discussed above are not useful in this scenario due to their high computational

complexity. The support network algorithm described in Chapter 4 is a successful solution

in this scenario.

1.3. Organization of the Dissertation

This dissertation is organized into five chapters. In Chapter 2 a weighted-density-

based approach is described for identifying items that can be predicted using the unstruc-

tured biological literature. An algorithm for distinguishing those pieces of information that

6



can be predicted, while other predictions might be spurious, is provided. The evaluation is

done on data related to the model species yeast. Unstructured textual abstracts were used

for identifying which protein domains and gene ontology annotations can be successfully

predicted. This work was published in the SIAM SDM 2011 Text Mining Workshop

proceedings [3].

Algorithms for mining significant information from structured binary data are pro-

vided in Chapter 3 for genome mapping. This chapter addresses the problem of identifying

markers that cannot be placed reliably in the map and contribute to an overall poor mapping

outcome if included. Description of the similarity network algorithm is provided. Our

proposed algorithm largely matches other conventional approaches while reducing the

computation cost by more than two orders of magnitude. The evaluation of the proposed

approach is based on data from the radiation hybrid mapping of the wheat genome. This

work was published at the ICMLA 2011 main conference [4].

The problem of creating solid framework genome maps is addressed in Chapter 4.

The supported network algorithm is presented for this purpose. An iterative approach is

followed for filtering unreliable markers to create a final solid framework map. The goal

is to find a consistent map skeleton by filtering out unreliable markers. This work will be

submitted to the BMC Bioinformatics journal. Chapter 5 concludes the dissertation.
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CHAPTER 2. A WEIGHTED DENSITY-BASED APPROACH FOR

IDENTIFYING STANDARDIZED ITEMS THAT ARE

SIGNIFICANTLY RELATED TO THE BIOLOGICAL

LITERATURE

Chapter 1 introduced different applications for mining for significance from un-

structured and structured data forms. In Chapter 2, a weighted-density-based approach

is introduced for identifying the significance between item data and unstructured textual

information.

2.1. Abstract

A large part of scientific knowledge is confined to the text of publications. An

algorithm is presented for distinguishing those pieces of information that can be predicted

from the text of publication abstracts from those, for which successes in prediction are

spurious. The significance of relationships between textual data and information that is

represented in standardized ontologies and protein domains is evaluated using a density-

based approach. The approach also integrates a weighting system to account for many-to-

many relationships between the abstracts and the genes they represent as well as between

genes and the items that describe them. We evaluate the approach using data related from

the model species yeast, and show that our results are in better agreement with biological

expectations than a comparison algorithm.

2.2. Introduction

Much information in the sciences is stored in textual form, whether in scientific

publications or on the World Wide Web [69, 62, 43]. It is tempting to use this information

directly for prediction purposes rather than making an effort of representing experimental

results in a structured form. Controlled vocabularies, such as ontologies [9, 37], which

are more directly suited to predictive modeling, have been developed in many fields, es-

pecially in the life sciences, but training scientists to use them is time consuming. This
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paper presents an algorithm that evaluates the usefulness of text in predicting different

potential class labels by testing for significant relationships between the attributes and the

text data. The rationale is that knowing whether prediction from text is promising may be

as important as the prediction result itself.

A common task in bioinformatics is the prediction of protein function [9]. When

scientific abstracts are to be used for the prediction, it can not only happen that an abstract

relates to more than one gene, and correspondingly protein, but also that the gene is

discussed in more than one abstract. In other words, the textual documents are often related

to attributes in a many-to-many fashion, resulting in a need for multi-relational techniques.

Standard classification algorithms, when applied to one joined table of document-word and

protein-function information, may erroneously appear to produce significant classification

results. One could consider using relational techniques such as probabilistic relational

networks [33]. Documents are, however, typically represented using the bag-of-words

model, which results in high-dimensional vectors that are not suitable towards techniques

that are derived from a Bayesian framework. Density-based approaches, in contrast, scale

well with high dimensions. We demonstrate that the significance of the relationships

between the textual information and functional annotations can be tested using density-

based techniques with a suitable re-weighting scheme.

Figure 4 illustrates the multi-relational nature of the problem of predicting functional

annotations from publication abstracts. Document records correspond to publication ab-

stracts, and their attributes are the normalized frequencies of all words in the textual corpus

according to the bag-of-words representation. Gene records hold the binary information on

presence or absence of protein domains or gene ontology items. Each document record may

be related to multiple gene records if the publication abstract refers to more than one gene,

and genes may be discussed in any number of publication abstracts. The DocumentGene

table captures this many-to-many relationship.

9



!
Document

W1, W2, ..., Wi I1, I2, ..., Ij
DocID

DocumentGene

"#" DocID

GeneID

GeneID

Gene

!

"

Figure 4: Relational skeleton of our problem domain. Notice the many-to-many relation-

ship problem between documents and genes.

In this chapter, we propose an algorithm for evaluating whether the text data repre-

sented in the Document table have the potential of allowing the prediction of the protein

domains or gene ontology items in the Gene table. For this purpose we use the concept of

vector-item patterns [13]. The density-based nature of this approach allows an integration

of the multi-relational nature of the problem through a re-weighting scheme that is similar

to the term weighting common in text data mining. As a result, we show that predictions

may be spurious even if they appear strong when classification is performed on the table

that results when joining the Document, DocumentGene and Gene tables of Figure 4. Our

goal is to develop means for identifying those properties that can be successfully predicted

from text.

Figure 5 illustrates the problem of identifying significant relationships between mul-

tiple continuous attributes and items, which can be considered as potential class labels.

The upper part of the schematic shows data points in 2-dimensions, with each data point

representing a text document. In a realistic example, the space would have as many

dimensions as there are words in the corpus, but the concepts can be illustrated in this

simple setting: The potential class label or item can be seen as selecting a subset of
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Figure 5: Schematic of a vector-item pattern between a 2-dimensional vector and two items.

Blue filled circles represent objects that have item 1. Objects that have item 2 are shown

as red filled squares. The remaining data set is represented as crosses. Middle: Objects

with item 1 have more neighboring objects that also have item 1 than would be expected by

random chance; vector-item pattern present. Bottom: Distribution of objects with item 2

does not differ significantly from the expected distribution; no vector-item pattern present.

data points. These items could be protein domains or gene ontology items. In Figure 5

two example items are shown, item 1 being represented by blue filled circles and item

2 by red filled squares. Data points that do not have either of these items are shown as
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crosses. If the distribution of these items has the same statistical properties as a random

subset, we conclude that there is no relationship. The statistical properties are summarized

using histograms of the occurring densities. Densities are calculated as the number of

neighboring data points with a cosine similarity that is larger than a predefined threshold.

The density histogram of each item is compared with the average over histograms for

several (in this case 20) random subsets using a χ2 goodness-of-fit significance test. In

Figure 5 the distribution of item 1 (middle of diagram) differs significantly from a random

distribution. Therefore, item 1 represents a strong pattern. In contrast, the distribution of

densities of item 2, which is shown on the bottom of the diagram, does not show a pattern.

Another way to calculate items significance is by calculating p-values from contin-

gency tables [20]. For comparison purposes, we classified the same item data using naive

Bayes classifier. We treated the classification results as contingency tables and calculated

χ2 goodness-of-fit. More details can be found in [20]. We proved that our results are more

reliable than the comparison approach. It will be shown in the evaluation, that the patterns

confirm the expectation that gene ontology item information often is significantly related

to text, while protein domain information typically is not.

2.3. Related Works

Text mining [21, 44, 64, 25] is of interest in many areas, such as in bioinformatics.

Recently text mining has become a focus area in genomics [69, 62]. Lexical methods have

also been used on genomic sequences themselves [30]. Work has been done on discovering

links and relationships of biomedical terms from biomedical text literature [43]. Natural

language processing (NLP) techniques have been applied for biomedical text collections

[28] and for classification [58].

Classification has been studied for text data [65, 57, 64, 25]. However, questioning

whether textual data can lead to a successful classification of protein domains and ontology

functions remains a major research question. Some significance tests have been applied for

12



testing classification results. The significance of gene ranking was studied in [67, 59]. A

comparative studies of the significance tests used for information retrieval was conducted

in [56, 55].

Probabilistic relational models (PRMs), which have been introduced in [33] are strong

representations for structured relational data. These PRMs combine Bayesian networks

with object and relational models [33]. PRMs specify probability distributions for the

objects’ attributes in the relational skeleton of the structured database. Specifying this

probability distribution is done by defining the relational model of the domain and the

dependencies between attributes by assigning parent-child relationships. The PRMs dis-

cussed in [33] are most suitable for domains that have objects with a limited number of

attributes. However, in text mining, we almost always have a large number of attributes.

Since the dominant textual representation is the bag-of-words [68] model, having several

hundreds or even thousands of attributes is common. The time for constructing the depen-

dencies between attributes does not scale well with the number of attributes.

Some work has been done to address the problem of a large number of attributes

proposed in [42] by using Bayesian multinets. Bayesian multinets build a tree-like network

that is used in the learning task. Since our approach is density based, it does not depend

strongly on the number of attributes and scales well to high dimensions.

2.4. Concepts

In this chapter we introduce an algorithm for testing if textual information can be used

for a successful classification of gene ontology items and protein domains. Our approach

is to build a density histogram for every item (gene ontology item or protein domain). We

compare the observed density histograms (of item data) with expected density histograms

(of random data of equal size at large sampling rate). We measure an existence of a pattern

based on the χ2 goodness-of-fit test. If item data are significant; their textual information

can be used in a classification task for predicting gene ontology items and protein domains.
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Within our proposed framework we address the problem of many-to-many relationships by

assigning appropriate weights to document vectors. The outline of our algorithm is:

• Data pre-processing

– Stop word removal

– Stemming

– Term weighting

• For each item

– Document vectors re-weighting

– Construction of density histogram

– Construction of expected histogram

– Determining item significance (χ2)

In the remainder of this section, data pre-processing is covered in Section 2.4.1,

data representation is covered in Section 2.4.2, our proposed re-weighting framework is

discussed in Section 2.4.3, deriving observed density histograms of item data are discussed

in Section 2.4.4, computing expected density histogram is discussed in Section 2.4.5,

significance testing is covered in Section 2.4.6, and the comparison algorithm is explained

in Section 2.4.7.

2.4.1. Data Preprocessing

We apply the standard preprocessing steps that are commonly used in text mining

[6, 8]. First, we remove stop words from every text document. Stop words are words

that occur frequently in the text and are not predictive of any class label. We also remove

other elements that are not useful within the bag-of-words model, such as digits, special

symbols, punctuation marks, etc. Secondly, we apply stemming which has been shown to
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have a positive impact on text mining and information retrieval systems [6], using porter

stemmer [47]. Thirdly, we limit ourselves to terms that can be found in the standard English

dictionary. The corpus used in the evaluation contains many names and identifiers that are

not useful within the bag-of-words model. Finally, we use standard text normalization

(TF*IDF)[17, 29] to weight terms in the text documents. Using this scheme each abstract

document is represented by a vector of weighted terms (stemmed terms of those terms that

can be found in standard dictionary).

2.4.2. Text Representation

Each text document d ∈ D is represented by a vector of weighted terms, where |D|

is the total number of text documents in the corpus. The jth document is represented as

~dj = { w1j , w2j , . . . , wnj }, where n is the total number of terms in the corpus. ~dj is the

vector of the jth document, and wij is the weight of term i in document j. Term weights are

calculated using the expression:

wij =
fij

maxlflj

[

log(
| D |

| d : mi ∈ d | +1
)

]

where fij is the frequency of term i in document j, maxl flj is the frequency of the most

frequent term in document j, and | d : mi ∈ d | is the number of documents that contain

term i.

Item data (T: both gene ontology items and protein domains) are represented as bit

vectors. Each item tk ∈ T, is a vector of zeros and ones of length = |D|. For each item

we aggregate documents from DocumentGene table described in Fig. 4. If document dj is

related to item tk then position j of the item vector is set to 1, otherwise 0.

2.4.3. Vector Re-weighting

The term weighting that is used for text documents can be seen as a way of addressing

the imbalances in the number of terms associated with each document, because of varying

document lengths, and the frequency with which terms appear in documents, because
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of different term usage. A second need for re-weighting comes from the many-to-many

relationship problem between documents and genes: Documents can be associated with

a varying number of genes as seen in Figure 4 and genes can be discussed in a varying

number of documents. The third need for re-weighting results from the nature of the Gene

table: Each gene is associated with a number of items, that may also vary depending on

how well-studied the gene is. The items are, in turn, associated with a varying number

of genes, depending on how commonly the corresponding gene property is found. This

section will discuss these additional two re-weighting schemes.

The problem can also be stated using two bipartite graphs that link documents to

genes and genes to items. The first bipartite graph links the two disjoint sets, documents D

and genes G, while the second bipartite graph links the two disjoint sets, genes G and items

T. Consider the following two definitions:

Definition 1 (Document-gene bi-adjacency matrix). Let GDG = (D, G, E(1)) be the bipartite

graph between the two disjoint sets, documents (D) and genes (G), where D= {d1, d2, . . . ,

dn} and G= {g1, g2, . . . , gm}, and let E(1) be the set of edges between these two disjoint

sets. We define the bi-adjacency matrix B(1) as B
(1)
ij = 1 if (di, gj) ∈ E(1) and B

(1)
ij = 0

otherwise.

Definition 2 (Gene-item bi-adjacency matrix). Let GGT = (G, T, E(2)) be the bipartite graph

between the two disjoint sets, genes (G) and items (T), where G= {g1, g2, . . . , gm} and T=

{t1, t2, . . . , tk}, and let E(2) be the set of edges between these two disjoint sets. We define

the second bi-adjacency matrix B(2) as B
(2)
jl = 1 if (gj , tl) ∈ E(2) and B

(2)
jl = 0 otherwise.

Our proposed re-weighting scheme is inspired by the TF*IDF standard term weight-

ing discussed in Section 2.4.2 with some adaptation. The main difference between our

re-weighting measure and the TF*IDF measure is that the TF*IDF measure depends on the

word counts while our measure depends on the relation existence. The TF*IDF weighting

was developed to address the many-to-many relationship between words and documents.
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Any one word can occur in several documents, and each document contains many words.

This many-to-many relationship can be represented as a bipartite graph, in much the same

way as the relationships between documents and genes and between genes and items. For

the first bipartite graph, each document is linked independently to a varying number of

genes and each gene can be linked to many documents. For the second bipartite graph,

each gene is linked to many items (for example a gene can be annotated to many gene

ontology items) and also each item is related to many genes independently of other items.

TF*IDF measures the importance of a word to a document. This measure of TF*IDF

depends on the frequency of the words inside a document and its occurrence on other

documents. However, some changes are necessary since our problem statement is different

in some ways. Namely, the first part of the (TF) measure depends on the word count, while

in our problem statement we are dealing with simple existence relationships. A document

can be either linked to a gene or not linked at all, and similarly the relationship between a

gene and an item. Hence, replacing the first part of the measure by a constant is mandatory.

Our proposed re-weighting measure is composed of 2 parts. The first part is a

constant weight depending on the existence of the relationship between the two disjoint

sets on its corresponding bipartite graph. The second part is derived in the same way

of deriving the standard IDF measure. Our re-weighting scheme gives a measure of the

importance of a documents to a gene, and for a gene to an item.

To illustrate our re-weighting scheme consider the first bipartite graph GDG = (D, G,

E(1)) between documents D and genes G. First, for every document di we check for the

existence of the relationship to the set G. If document di has any edge to the set G we give

it a constant weight normalized by the maximum number of links from documents D to

genes G. According to this, document di will have a weight:

W
(d)
i =

1

maxl(
∑|G|

j=1 B
(1)
lj )

(1)
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Following the same analogy of computing the IDF in text, the inverse gene frequency

of gene gj will be the natural logarithm of the total number of documents divided by the

number of links between gene gj and the set of documents D. (We add 1 to the denominator

to avoid division by zero in case a gene is not linked to any document).

IW
(g)
j = log[

|D|
∑|D|

i=1 B
(1)
ij + 1

] (2)

To calculate the relative weight of documents di in gene gj , we multiply the constant

weight of document di (Equation (1)) by the inverse gene frequency of gene gj (Equation

(2)).

RW
(d)
ij = W

(d)
i ∗ IW

(g)
j (3)

Weights for the second bipartite graph between genes and items are derived corre-

spondingly. If gene gj has any edge to the set T of items, its weight will be:

W
(g)
j =

1

maxl(
∑|T |

k=1 B
(2)
lk )

(4)

Similarly, the inverse item frequency is:

IW
(t)
k = log[

|G|
∑|G|

j=1 B
(2)
jk + 1

] (5)

To calculate the relative weight of gene gj in item tk, we multiply the weight of gene

gj (Equation(4)) by the inverse item frequency of tk (Equation(5)).

RW
(g)
jk = W

(g)
j ∗ IW

(t)
k (6)

The two derived matrices (Equations(3 and 6)) are multiplied to give the total weight:
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RWik =

|G|
∑

j=1

RW
(d)
ij ∗ RW

(g)
jk (7)

Finally, we normalize our derived re-weighting factors using standard maximum nor-

malization, which results in a re-weighting factor for each document relative to each item

in the range [0,1]. Each re-weighting factor is multiplied by its corresponding document

vector that we derived in Section 2.4.2 before deriving both observed and expected density

histograms. We can imagine the re-weighted vectors as a 3-dimensional array of terms,

documents, and items. The re-weighted vectors are calculated using the below expression:

∀
|T |
k=1tk : wijk = wij ∗ RWjk (8)

where i, j, and k represents the term index, document index, and item index respectively.

2.4.4. Deriving Observed Density Histograms

The observed textual information, associated with each item, is summarized using a

histogram. For each item tk ∈ T, we consider the set of genes Sk= { gj ∈ G | B
(2)
jk = 1

} that represents this specific gene ontology item or protein domain. For each gene gj

we consider all abstract documents that are related to this gene. The set of documents is

{ di ∈ D | B
(1)
ij = 1 }. The union of all these sets represents all abstract documents

related to this specific item. According to this notation, each item is represented by
⋃|Sk|

j=1 {

di ∈ D | B
(1)
ij = 1 }.

To derive the observed density histograms for each item, we need to calculate the

number of neighbors for each data point that belong to each item. To determine neighbors

we consider the following function:

φ(di, dj) =











1, if cos(di, dj) ≥ h

0, otherwise
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The function φ is the neighbor function determiner between any two documents di

and dj . This function is 1 if the cosine similarity between the two documents exceeds a

specific predefined threshold h.

Definition 3 (Neighborhood selector function). Document di is a neighbor to document dj

if and only if φ(di, dj) = 1.

The observed density histograms are calculated as follows: For each document dj that

belong to item tk we determine its number of neighbors (assume n), then we increment the

density histogram at the point n by 1. After finding the number of neighbors for every text

document that belongs to item tk, we derive a density histogram. This density histogram

represents the number of neighbors for each text document versus their occurrences.

2.4.5. Computing Expected Histogram

For each item tk ∈ T, we also computed its corresponding expected density histogram:

Assume that item tk has m text documents associated to it. We calculate the expected

density histogram for item tk by random sampling. For each of the r samples, we select

a random subset of m documents and compute a density histogram. For each document

in the random subset, we determine its number of neighbors using the φ function. After

examining each text document in the random subset, we build an expected density his-

togram using the same terminology of building the observed ones. For every item, we

calculate the expected density histogram by averaging over 20 histograms derived from

random sampling.

2.4.6. Significance Test

A χ2 goodness-of-fit test is used to determine if the observed density histogram

differs from the expected one in a statistically significant way. We use a 99% significance

level. If the p-value from the χ2 goodness-of-fit test is less than 0.01, we consider this item

to be significant. A p-value of 0.01 means that in 1% of cases, by random chance alone, we

expect to see a result that is as extreme or more extreme.
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2.4.7. Comparison Algorithm

As a comparison approach the χ2 test is used to compare our results of significance

(calculated from comparing density histograms) with the classification significance of naive

Bayes classifier (calculated from comparing contingency tables). We have tested the output

significance of the naive Bayes classifier. Every confusion matrix resulting from classifying

each item was treated as a contingency table. We have carried out χ2 test on each confusion

matrix using one degree of freedom (since the confusion matrix consists of two rows and

two columns). Details of calculating p-values from contingency tables can be found in [20].

Table 2 in Section 2.5.2 shows how we calculated the classification significance from the

classification confusion matrix. The results of the two methods are discussed in the next

section.

2.4.8. Algorithm

The details of the density histogram approach can be seen in Algorithm 1. The inputs

of the algorithms are the unstructured textual corpus D and the set of items T of protein

domains and gene ontology. The outputs are the obtained p−values for each item. Pre-

processing steps explained in Sections 2.4.1 and 2.4.2 are carried out in lines 2 to 4. In

Lines 6 to 11 we re-weight the vectors of the text documents for each item (Section 2.4.3)

and we calculate the observed density histograms explained in Section 2.4.4. The expected

density histograms are calculated in lines 12 to 18. Finding the significance for each item

using χ2 goodness-of-fit is carried out in line 19.

2.5. Experimental Results

We consider the model species yeast to evaluate our algorithm. This data was the

training data for task 2 competition in KDD cup 2002 (http://www.sigkdd.org/kddcup/inde-

x.php?section= 2002&method=task). The textual data related to this task consists of 15234

scientific abstracts of publications, 18.9 MB in total. These abstract documents were origi-

nally downloaded from the MEDLINE database in NCBI web site (www.ncbi.nlm.nih.gov-
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Algorithm 1: Density Histogram Algorithm.

Data: Docs; /* Textual corpus */

Data: items; /* gene domains and ontology functions */

Result: significance; /* p-value for each item */

foreach d ∈ Docs do1

StopWordRemoval(d);2

Stemming(d);3

TermWeighting(d) ; /* vectors of weighted terms TF.IDF */4

foreach i ∈ items do5

dn=FindRelatedDocuments(i); /* dn ⊂ Docs related to item i */6

hist = zeros(1,NoOfElements(dn)); /* initialize */7

foreach d ∈ dn do8

Reweighting(d);9

density = NumberOfNeighbors(d);10

hist(density)++;11

randHist = zeros(1, NoOfElements(dn));12

for i=1 to SamplingRate do13

randDocs = SelectRandSubset(Docs,NoOfElements(dn));14

foreach d ∈ dn do15

density = NumberOfNeighbors(d);16

randHist(density)++;17

randHist = randHist/SamplingRate;18

significance(i) = chiSquaredGoodnessOfFit(hist, randHist);19

return significance20

/entrez/query.fcgi). Abstract documents associated the genes through the pointers of Sac-

charomyces Genome Database (genome-www.stanfo-rd.edu/Saccharomyces/) that are re-

lated to these scientific publications. There are 5013 protein domains in this data set. Only

1547 domains have been tested (those who have at least 10 abstract documents related to

them). We also applied the same algorithm on ontology functions (GO slim). Following

the same criteria of selecting items, we have considered 85 ontology functions out of 112

functions, which have at least 10 documents each. We have evaluated our algorithm on

both protein domains and ontology functions. We use 99% significance level to determine

item significance (p-value < 0.01).
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2.5.1. Test Cases

Initially, we use random test cases to verify that they are indeed predicted to be

insignificant. Each test case represents a comparison of a random set of abstract documents

of equal size that correspond to random selection of genes. A density histogram of each

test case is created. Then, the algorithm is applied to test if there is a strong pattern within

this random test set. In total, 30 test cases of different sizes of random data were created.

Using our algorithm, none of these test cases were found to be significant. The p-values

of these test cases was in the range [0.57, 1]. As expected, these p-values indicate that the

random histograms are insignificant.

2.5.2. Protein Domain Results

When testing, whether textual information is related to protein domain information

we expect many domains to be insignificant, since the sequence information may not

be represented in the articles written about the genes or proteins. We do expect some

significant domains, since protein domains may be associated with functional information.

We will show that the proposed algorithm finds both significant and insignificant domains

whereas the comparison algorithm results in significant predictions for almost all domains.

Among the 1547 tested domains, we have identified 876 protein domains with strong

patterns (i.e their textual data truly represents their particular domains). Also, we have

determined 671 non-significant domains, that their distribution do not differ significantly

from what we expect of random distribution. Below we will show two examples of two

real domains along with their density histograms. The first one is the G3DSA 1.10.510.10

domain. Figure 6 shows the density histogram of this domain comparing it with the

expected random distribution. This domain has been identified to be significant by our

algorithm and by the χ2 test of the confusion matrix from naive Bayes classifier (p-Value

= 0 for both algorithms; i.e the p-value is too small to be represented). Since this domain

has a know 3-d structure, it is plausible that its function is well enough preserved to result
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in a function that is reflected in publications. The identification as not random, is therefore

credible.
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Figure 6: Density histogram of a real protein domain (G3DSA 1.10.510.10) that shows a

significant pattern. Filled columns represent observed data of the domain. Unfilled columns

represents the average over histograms of 20 random subset of abstract documents of equal

number of the observed documents. Using the density histogram algorithm the domain was

found to be significant.

The second example is the SSF52833 domain. This domain corresponds to a su-

perfamily and is not likely to result in a particular type of abstract because superfamilies

group proteins with too many different functions. Our algorithm appropriately identifies

this domain as non-significant. Figure 7 shows the observed distribution of this domain

comparing it with the expected distribution of random data. It can be seen from the density

histogram that the two distributions do not differ significantly. For comparison purposes

we classified the same domain data (textual documents) using naive Bayes classifier, and
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Figure 7: Density histogram of a real protein domain (SSF52833) that does not show

a significant pattern. Filled columns represent observed data of the domain. Unfilled

columns represents random subset of abstract documents of equal number of the observed

documents at sampling rate=20. Using density histogram algorithm the domain found to

be non-significant.

calculated the significance of the classifier output (confusion matrix). Using a χ2 test of the

confusion matrix this domain was considered significant. Table 2 shows the classification

results of this domain. The table also illustrates the process of calculating the p-value for the

comparison approach. Table 2 part a) represents the confusion matrix of the classification.

Part b) represents what we expect of classifying random data. Part c) shows how we

calculate the p-Value using the equation
∑

(O−E)2/E . Although this is a non-significant

domain, using the χ2 test on the confusion matrix we have obtained a p-Value = 0; which

means that the p-Value is below the accuracy of the number type. This assumes that this

domain has a strong pattern and is significant, while our algorithm predicted it to be non
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significant with a p-Value = 0.0946. This result highlights our main contribution on this

paper. Our algorithm predicted many non-significant domains while other tests cannot

distinguish these non-significant domains (see Table 3).

Table 3 compares the results of the top 5 significant domains and top 5 non-significant

domains of the two algorithms. By top 5 we mean those domains that have the most relevant

text document to them. We notice that the top 5 significant domains were identified by both

algorithms to be significant. However, for the top 5 non-significant domains, the χ2 test of

the confusion matrix from naive Bayes classifier failed to identify 2 out of 5.
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Figure 8: p-Value for all tested protein domains.

Figure 8 visualizes the results for the 1547 domains that we have tested sorted accord-

ing to their p-values. We have identified 876 significant domains. Also, 671 non-significant

domains were found. It can be inferred from this figure that the textual information of the

significant domains strongly represents them and that the text is significantly related to

these item data.
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2.5.3. Gene Ontology Annotation Results

The same algorithm has been applied to test the significance of gene ontology items.

For gene ontology items we expect that many will be related to textual information, since

publication abstracts are likely to be related to the function, process or localization of the

protein. Note that, for simplicity, we will refer to the gene ontology items as ”functions”

regardless of the actual category. The results confirm the biological expectation that most

functions are significant but also present some exceptions of insignificant functions. These

exceptions can be understood from a biology perspective. The insignificance of the highest-

level items ”biological process”, and ”molecular function” confirms the biological expec-

tations.
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Figure 9: Density histogram of real non-significant gene ontology item (biological pro-

cess). Filled columns represent observed data of the function. Unfilled columns represents

random subset of abstract documents of equal number of the observed documents at

sampling rate=20. Using density histogram algorithm the function found to be non-

significant.
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Biological process has been identified as non-significant function by our algorithm,

while the significance test of naive Bayes confusion matrix could not identify it as non-

significant. Figure 9 shows this distribution. Biological process is a general gene ontology

item and it is located on the top level of the gene ontology tree. It is expected that an

item that is at the top of the gene ontology items hierarchy, and does not contain any gene-

specific information, is not a suitable candidate for prediction.

We also identified the insignificance of ”molecular function” item, which is also

located at the top of the gene ontology items hierarchy. For this item we achieved the

same result by the comparison algorithm.
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Figure 10: p-Value for all gene ontology functions.
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We have tested 85 gene ontology items for significance. Only 8 ontology functions

were found to be non-significant. We have noticed an agreement between our algorithm

and the comparing approach of all gene ontology items except for the biological process

function. Table 4 shows a comparison between the results of our algorithm and significance

test of naive Bayes classifier for the top 5 significant ontology functions and top 5 non-

significant functions. Figure 10 shows the obtained p-values for the 82 gene ontology

functions.

2.6. Conclusion

In this chapter, we have presented an algorithm for identifying significant patterns

between standardized items of information and textual representations of genomic infor-

mation. The algorithm uses a re-weighting framework for document vector re-weighting

that takes into account many-to-many relationships between documents and genes as well

as between genes and item information. Our proposed re-weighted density-based algorithm

correctly identifies some relationships as non-significant that are not expected to be signifi-

cant based on domain knowledge, and that appear strong using Naive Bayes classification.

Abstract text documents are represented using a vector space model. We evaluate the

significance of patterns by considering their observed density histograms in comparison

with expected ones. We compare with the results of a χ2 test on the confusion matrix

resulting from classification using the naive Bayes classifier. We evaluated the algorithm

using publication abstracts as text data and protein domains and ontology functions as item

data. We found our results to be in better agreement with biological expectations than

the comparison results. As would be expected based on domain knowledge, many protein

domain text relationships were insignificant according to our algorithm, far more than the

comparison algorithm. Two highest-level gene ontology items that were expected to be

insignificant were also confirmed as such by our algorithm but one of them was not by the

comparison algorithm.
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CHAPTER 3. NETWORK-BASED FILTERING OF UNRELIABLE

MARKERS IN GENOME MAPPING

In Chapter 2, a weighted-density-based approach is discussed and applied for testing

the significance of the unstructured data in predicting class labels. In Chapter 3 a network-

based approach is presented for unreliable marker detection from the structured data.

3.1. Abstract

Genome mapping, or the experimental determination of DNA marker order on a chro-

mosome, is an important step in genome sequencing and ultimate assembly of sequenced

genomes. The presented research addresses the problem of identifying markers that cannot

be placed reliably. If such markers are included in standard mapping procedures they can

result in an overall poor map. Traditional techniques for identifying markers that cannot

be placed consistently are based on resampling, which requires an already computationally

expensive process to be done for a large ensemble of resampled populations. We propose a

network-based approach that uses pairwise similarities between markers and demonstrate

that the results from this approach largely match the more computationally expensive

conventional approaches. The evaluation of the proposed approach is done on data from

the radiation hybrid mapping of the wheat genome.

3.2. Introduction

Genome mapping [32] is important for determining the order of genes and markers

(DNA sequences) within the chromosome of a species. It is an integral step in developing a

marker scaffold, which is a prerequisite for the complete genome sequencing of a species.

Molecular maps are also valuable for crop improvement and for identifying biotic and

abiotic stress related genetic factors, both of which are of vital importance considering the

increasing global demand for food and climatic changes. Radiation Hybrid (RH) mapping

[24, 63, 32, 38, 34, 31] is a widely used mapping technique, in which parts of chromosomes

are broken using radiation. This chapter addresses the problem of identifying markers
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that cannot be consistently ordered and may, thereby, decrease the overall quality of the

resulting map.

There are two potential problems in RH experimental data. First, some markers

may have a higher percentage of miss-scorings for experimental reasons. Second, for

some markers the amplification may not be sequence specific due to the repeated nature of

underlying sequence. Recovering from scoring problems requires repeating the biological

experiment. Since re-checking every single marker is costly, providing algorithms for

detecting those unreliable markers will help in reduce the cost.

In this chapter we propose a fast algorithm for finding unreliable markers without

using time consuming resampling techniques. The idea of our algorithm is to define

neighbors based on markers LOD (logarithms of odds -base 10) scores. The LOD score

is a measure of the likelihood that two markers are linked. Considering a fixed number

of nearest neighbors, we construct a similarity network by linking only markers that are

mutually neighbors to each other. Figure 11 shows the complete similarity network for a

small artificial data set of 8 markers on 6 individuals visualized using graphviz [18]. The

sequence M1 to M8 is the reference map created using all individuals. We filter markers

based on a range of linkage. In this example if r = 2, markers M3 and M4 will be defined

as unreliable because both of them failed to meet the linkage range of [1, 5] and [2, 6]

respectively.

Another way to study the stability of the mapping results is through resampling

analysis [23]. In resampling analysis, multiple data sets are created by sampling from the

full data set. We use jackknife resampling, in which samples are created by considering all

individuals except one. Consensus mapping proposed in [39, 40, 41, 51] depends mainly on

mapping the re-sampled data and looking at the neighborhood relationships of the results.

Unreliable markers are filtered iteratively based on the mapping results of the re-sampled

data. Table 5 shows the mapping results for the same artificial data discussed in Figure 11.
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Figure 11: Similarity network for artificial data set. Nodes represent markers labeled

according to their position in the reference map. Edges are labeled with LOD scores.

Table 5: Mapping results of data consist of 8 markers on 6 individuals. J (0) is the reference

map created using all information. J (l), with l ≥ 1 are the maps created using jackknife

resampled data.

Data Map

J (0) M1, M2, M3, M4, M5, M6, M7, M8

J (1) M1, M2, M3, M8, M5, M4, M6, M7

J (2) M1, M2, M4, M3, M5, M6, M8, M7

J (3) M1, M2, M3, M4, M5, M6, M7, M8

J (4) M2, M1, M3, M7, M8, M4, M6, M5

J (5) M1, M2, M3, M5, M6, M4, M7, M8

J (6) M8, M7, M6, M5, M4, M3, M2, M1

J (0) is the map created using all information. J (l), were l ≥ 1 is the map created using

jackknife re-sampled data using all individuals except individual l. The results can be

summarized as a neighborhood matrix. J (0) is used as a reference map. For every map J (l)

we look at the neighborhood relationship between every ordered pair of markers (Mi, Mj)

and we increment both indexes (i, j) and (j, i) in the neighborhood matrix by 1. After
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parsing every map we normalize by dividing by the number of individuals. Table 6 shows

the neighborhood matrix for the maps in Table 5. This algorithm [39, 40, 41, 51] gives

insights for the mapping results stability and can be used to filter unreliable markers. If we

filter markers based on neighborhood threshold t ≤ 0.7 in Table 6, the same markers M3

and M4 will be defined as unreliable as defined in Figure 11. However, the algorithm does

not scale well with large data sets. Even with moderate-size data sets, distributed systems

might be required to handle the intensive computation time. Construction of neighborhood

matrix and markers filtering will be discussed in Section 3.4.2.

Table 6: Neighborhood matrix summarizes the mapping results shown in Table 5.

Mrk M1 M2 M3 M4 M5 M6 M7 M8
M1 - 1 0.17 0 0 0 0 0

M2 1 - 0.67 0.17 0 0 0 0

M3 0.17 0.67 - 0.5 0.33 0 0.17 0.17

M4 0 0.17 0.5 - 0.5 0.5 0.17 0.17

M5 0 0 0.33 0.5 - 0.83 0 0.17

M6 0 0 0 0.5 0.83 - 0.5 0.17

M7 0 0 0.17 0.17 0 0.5 - 0.83

M8 0 0 0.17 0.17 0.17 0.17 0.83 -

Using our algorithm, only the original data set has to be mapped. Because defining

the unreliable markers does not depend on the resampling analysis, computation time can

be decreased dramatically. We will discuss the similarity network construction in more

details in Section 3.4.1. We use the neighborhood matrix algorithm [39, 40, 41, 51] as

a baseline model and compare with standard clustering provided by the Carthagene [12]

software. We will show in the evaluation that our algorithm outperforms the comparison

approach.

3.3. Related Works

RH mapping, first introduced by Goss and Harris [24], has been successfully used to

map the human genome [63], animals [32] and most recently plants [32, 31, 34]. Unlike
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genetic maps, RH maps [32] provide information about the physical distance between

markers within the chromosome. Various mapping programs [12, 52] are available online

for RH mapping. These programs use heuristic algorithms for finding the best map (or k

maps), since RH mapping is related to the traveling salesman problem (TSP).

Resampling analysis [23] has been used in [39, 40, 41, 51] to check map stability and

building map skeletons by filtering out unreliable markers by considering the neighborhood

relationships between markers. However, resampling analysis does not scale well with

the number of markers and individuals, which motivates the proposed similarity network

algorithm.

3.4. Concepts and Algorithms

There is no ground truth for defining unreliable markers. For that reason we use

the neighborhood matrix algorithm as baseline model. Markers that are considered to be

unreliable by the baseline model are treated as truly unreliable markers. We evaluate our

network algorithm (discussed in Section 3.4.1) against the baseline model (Section 3.4.2)

and use clustering, which is provided by the Carthagene software [12], as comparison

approach.

3.4.1. Construction of similarity network

Marker labeling: All markers are used in Carthagene to create a reference map. Each

marker, Mi, is labeled according to its position, i, in the reference map.

Mutual K-Nearest Neighbors: For every marker in the data set, we find its k-nearest

neighbors, according to the LOD score as a similarity measure. The higher LOD value

between a pair of markers, the more likely those markers are to be linked. Our approach is

computationally fast, since LOD scores do not depend on the mapping and are calculated

upon loading the data set into Carthagene. The computational cost for calculating the LOD

scores and finding the k-nearest neighbors for every marker is negligible in comparison
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with the computational cost of mapping. We define the similarity network of markers as

follows:

Definition 4 (Similarity network). Let G = (M, E) be the undirected graph of the set

of markers (M), where M = {M1, M2, . . . ,Mn}, and let E be the set of edges between

markers. For every pair of markers (Mi, Mj) ∈ E if and only if Mi is a neighbor to Mj

and Mj is a neighbor to Mi. The k nearest neighbors for marker Mi, KNN(Mi, k), are

the k markers that have the highest LOD scores with respect to Mi:

∀n−1
i=1 ∀

n
j=i+1(Mi, Mj) ∈ E (9)

if Mi ∈ KNN(Mj, k)
∧

Mj ∈ KNN(Mi, k)

We consider several parameter settings (k=3,5,7,10, and 15).

Marker Filtering: We define the unreliable markers, F , using two parameters k and r,

where r is a range. Mi is defined to be unreliable if it is not linked to any marker in the

range [Mi−r, Mi+r]:

∀n
i=1Mi : Mi ∈ F (10)

if 6 ∃i+r
j=i−r(Mi, Mj) ∈ E

Algorithm: The details of the process can be seen in Algorithm 2. The inputs of the

algorithms are RH data, fixed number of k nearest neighbors, and range r. The outputs

are the undirected graph G and the set F of unreliable markers. In line 1 we find the

reference map using all individual information. Lines 2 and 3 reflects marker labeling

explained in Section 3.4.1. In lines 4 to 7 the k nearest neighbors for every marker are

found. Construction of the similarity network explained in Section 3.4.1 is carried out in
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lines 8 to 11. In lines 12 through 19 we find the set F of unreliable markers explained in

Section 3.4.1.

Algorithm 2: Similarity Network Filtering.

Data: RHData, M, I; /* RHDate: M by I matrix */

Data: k, r; /* K=number of neighbors, r:range element */

Result: G = (M,E); /* graph of connected markers */

Result: F ⊂ M ; /* list of potential markers to be filtered */

RefMap(R) = Map(RHData) ; /* find best map using carthagene */1

foreach m ∈ M do2

Label(m) = M&pos(m) ; /* label markers according to position */3

KNNmatrix(n, k) = zeros(n, k); /* initialize */4

foreach mi ∈ M do5

for j=1 to k do6

KNNmatrix(i, k)=KNN(mi);7

for j=1 to n-1 do8

for l=j+1 to n do9

if mj ∈ KNNmatrix(l, k) AND ml ∈ KNNmatrix(j, k) then10

(mj ,ml) ∈ E ; /* determine edges in graph */11

foreach mi ∈ M do12

Flag = False;13

foreach (mi,mj) ∈ E do14

if mj ∈ [mi−r,mi+r] then15

Flag = True;16

exitFor;17

if Flag = False then18

mi ∈ F ;19

return G;20

return F ;21
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3.4.2. Construction of Neighborhood Matrix

Jackknife Resampling: The RH data is represented by a matrix of n rows (markers) and

v columns (individuals), where each entry in the matrix is a binary value representing the

presence or absence of a marker i in individual j:

RHDatan,v =



















d1,1 d1,2 · · · d1,v

d2,1 d2,2 · · · d2,v

...
...

. . .
...

dn,1 dn,2 · · · dn,v



















where,

d(i,j) =























1, if marker i is present in individual j

0, if marker i is absent in individual j

−, missing information

To check the mapping consistency, we resample the RH data using jackknife resam-

pling technique and build a map for every resampled data set. By removing one individual

at a time from the mapping population, we create as many data sets as there are individuals

in the mapping population.

RH Mapping: We use Carthagene software [12] for the actual mapping. We use the

Linux version and have it installed on 120 high performance computing machines, each

with 8 processors. Such computational power is required to map all resampled data. The

following mapping strategy is used for all the resampled data:

• Merging double markers

• Pattern expansion algorithm (build)
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• Greedy search algorithm

• Genetic algorithm

• Simulated annealing algorithm

• Sliding window permutations

We first merge groups of markers that have identical mapping information (double

markers) and represent them by a single marker. Second, we build an initial map using

a heuristic (build) that starts with the pair of most strongly linked markers and inserts the

remaining markers incrementally. Third, we try to enhance the map by using the greedy

search algorithm. Fourth, we use both a genetic and a simulated annealing algorithms to

find a better map in case of a local optimum. Finally, we use a fixed sliding window to try

all permutations within the window and check if a better map is achieved.

Neighborhood Matrix: The neighborhood matrix summarizes the mapping results for

all the maps created using the resampled data. To construct the neighborhood matrix, we

first use the map created using all individual information (J (0)) as a reference map. Second,

we treat every map created using resampled data (J (l)), where l ≥ 1 as an order list. For

every neighboring pair of makers in the ordered list, we find the positions of those markers

in the reference map and we increment the entry in the intersection of both indexes by 1.

We parse the maps in both directions to maintain the information about the order of the map

and its reverse. For each pair of markers J
(l)
(i) and J

(l)
(i+1) we increment the neighborhood

matrix N for the corresponding index pair.

We normalize the neighborhood matrix by dividing by the number of individuals.

Using this scheme every entry in the matrix is a value in the range [0, 1], where 1 means

the pair of markers are always in the same order for every re-sampled data map:
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∀i∀jN(i, j) =
1

v

v
∑

l=1

n−1
∑

k=1

(J
(l)
k = i)(J

(l)
k+1 = j) (11)

Marker Filtering: The neighborhood matrix can be used to define the set of unreliable

markers. If the maps constructed using the resampled data are consistent with the reference

map, the entries immediately beside the diagonal of the neighborhood matrix will have

values close to 1. We define the set F of unreliable markers as follows: for every marker

in the reference map, we check its neighborhood values in the neighborhood matrix. If

the maximum neighborhood value is below a specific threshold t we define that marker as

unreliable:

∀n
i=1J

(0)
(i) :























J
(0)
(1) ∈ F, if N(J

(0)
(1) , J

(0)
(2) ) ≤ t

J
(0)
(i) ∈ F, if max(a, b) ≤ t

J
(0)
(n) ∈ F, if N(J

(0)
(n−1), J

(0)
(n)) ≤ t

where, a = N(J
(0)
(i−1), J

(0)
(i) ) and b = N(J

(0)
(i) , J

(0)
(i+1))

Algorithm: The details of the process can be seen in Algorithm 3. The inputs of the

algorithms are RH data and a predefined neighborhood threshold t. The outputs are the

neighborhood matrix N and the set F of unreliable markers. In line 1 we find the reference

map using all individual information. Jackknife resampling and mapping the resampled

data is carried out in lines 2 to 4. Lines 6 to 14 reflects the creation of the neighborhood

matrix explained in Section 3.4.2. In lines 15 to 17 we find the set F of unreliable markers

explained in Section 3.4.2.

3.5. Experimental Results

3.5.1. Data Set

A radiation hybrid population of 1542 RH plants was generated in the laboratory for

D-genome chromosomes and genotyped initially using 35 SSR (Simple Sequence Repeat)

markers (5 from each chromosome) selected across the seven D-genome chromosomes of
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Algorithm 3: Neighborhood Matrix Filtering.

Data: RHData, M, I; /* RHDate: NoOfMrk by NoOfindv matrix

*/

Data: t; /* normalized neighborhood frequency threshold

*/

Result: N ; /* Neighborhood Matrix */

Result: F ⊂ M ; /* list of potential markers to be

filtered */

RefMap(R) = Map(RHData) ; /* find best map using carthagene1

*/

foreach i ∈ I do2

J (i) = Resampling(RHData) ; /* Jackknife Re-sampling */3

Map(i) = Map(J (i));4

N(m, m) = zeros(m, m); /* initialize */5

foreach Map(i) do6

for j=1 to n-1 do7

mrk1 = Map(i)(j);8

mrk2 = Map(i)(j + 1);9

pos1 = FindMarkerPosition(mrk1) ; /* position in RefMap10

*/

pos2 = FindMarkerPosition(mrk2);11

N(pos1, pos2) + +;12

N(pos2, pos1) + +;13

N = Normalize(N);14

foreach mi ∈ M do15

if max(N(i, i − 1), N(i, i + 1)) < t then16

mi ∈ F17

return N ;18

return F ;19

wheat. Based on the genotypic data of 35 markers, 178 RH lines showing maximum marker

loss were selected and analyzed using Diversity Array Technology (DArT; Triticarte, Can-

berra) markers. DArT analysis yielded 641 D-genome specific markers which were then

used along with 35 SSR markers (676 in total) to construct radiation hybrid maps for wheat

D-genome chromosomes.
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3.5.2. Similarity Network Results

Seven data sets were mapped (one data set per chromosome). We refer to markers

using pseudonyms because the data and the maps are still in the process of being pub-

lished. Figure 12 shows part of the similarity network for chromosome 2D visualized using

graphviz [18]. At k=5 nearest neighbors and a range of [i− 1, i + 1] only 3 markers where

found unreliable (those with gray filling). Two of those markers were singletons (M32 and

M36) that are not linked to any other marker. The third unreliable marker was M25 that is

linked only to M30 (which is not in the range to consider it reliable). For the neighborhood

matrix comparison approach, the same three markers where defined as unreliable using

neighborhood thresholds of 0.9 and 0.95.

3.5.3. Baseline Model Results

We resampled the mapping population of 178 individuals using the jackknife resam-

pling method discussed in Section 3.4.2 resulting in 178 resampled data per chromosome

each of 177 individuals plus the main data set of 178 individuals. The total data sets mapped

is 179 * 7 = 1253 data sets.

Figure 13 shows the resampling results for chromosome 1D. The X and Y axis

represents the reference map and Z axis is the normalized neighborhood frequency. The

figure is a visualization of the results, in which the matrix elements, as in Table 6, are

represented as z-values in a 3-dimensional plot. For perfect results we would see two

peaks of hight 1 immediately adjacent to the diagonal and height 0 elsewhere. The results

for this chromosome show few peaks that are far from the diagonal. Using neighborhood

threshold of 0.95 only 7 markers out of 59 where defined as unreliable markers.

3.5.4. Comparisons

Sensitivity, Specificity, and Accuracy: We first try to determine if the similarity network

algorithm captures the same information as the neighborhood matrix algorithm. For that

purpose, we calculate classification-style quality measured and compare them with the
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Figure 12: Part of chromosome 2D similarity network. Nodes represent markers labeled

according to their position in the reference map. Edges are labeled with LOD scores.

Unreliable markers are highlighted in gray.

clustering algorithm provided by Carthagene software. In the software, using specific

distance and LOD score, markers can be clustered into several clusters. Any marker that

cannot be grouped to any cluster (singleton) is defined as an unreliable marker.

Table 7 shows this comparison. We calculate the sensitivity, specificity, and accuracy

for the whole D-genome results for both our algorithm and the comparison approach. The

comparison in Table 7 shows that our algorithm outperforms the comparison approach. For

all seven chromosomes we achieved better sensitivity and accuracy. The specificity of our
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Figure 13: Neighborhood Matrix for the 1D chromosome.

algorithm was also better except for chromosome 1D and 5D where it was close. The three

measures for our algorithm and the comparison approach are listed in Table 7.

Table 7: Comparison between the similarity networks filtering algorithm and clustering

provided by the Carthagene software.

similarity network Algorithm Clustering

Chr. Sens. Spec. Acc. Sens. Spec. Acc.

1D 0.63 0.95 0.90 0.38 0.97 0.79

2D 1 0.88 0.89 0.60 0.88 0.85

3D 0.80 0.90 0.90 0.50 0.87 0.86

4D 0.71 0.89 0.86 0.63 0.88 0.83

5D 0.56 0.85 0.81 0.50 0.90 0.79

6D 0.43 0.90 0.84 0.25 0.87 0.78

7D 0.82 0.76 0.77 0.75 0.69 0.69
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Filtering Percentage: The Filtering percentage can be controlled in the neighborhood

matrix algorithm by using neighborhood threshold t. To achieve good results, a value of t

close to 1 is recommended. We used various neighborhood thresholds ranging from 0.5 to

0.95. In the same way filtering percentage using the similarity networks can be controlled

by both parameters k and r. We used various number of neighbors ranging from 5 to 15

and r range factor from 1 to 6.

Figure 14 shows the filtering percentages for all seven chromosomes using both

algorithms. The top part of Figure 14 represents the filtering percentage of the neighbor-

hood matrix algorithm using different neighboring thresholds t. The filtering percentage

was in the interval [0, 0.22]. The bottom part shows the filtering percentage using the

similarity networks algorithm. We used different parameter settings of both k and r. The

filtering percentage was in [0, 0.16]. The figure shows that filtering percentages for most

chromosomes were comparable. Using the right parameter settings of k and r we can

achieve any filtering percentage that is achieved by using t in the neighborhood matrix

algorithm.

Time complexity: The neighborhood matrix algorithm is time consuming. The run time

for moderate-size data set does not scale well with both number of markers and individuals.

If we assume on average a data set contains n markers tested on 100 individuals, using the

neighborhood matrix jackknife resampling-based algorithm means mapping 100 different

data sets, while in our algorithm, we only need to map one data set. For this example the

run time can be decreased by 2 orders of magnitude. Even if we decide to re-sample using

90% of the individuals at a time, our algorithm will be faster by one order of magnitude.

The testing data set for the wheat D-genome is for seven chromosomes with 178

individuals. Using the neighborhood matrix algorithm, 1253 data sets where mapped in

total (for both the original 7 data sets and the re-sampled data). While using our similar-

ity networks algorithm only the 7 original data sets need to be mapped. Our algorithm
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Figure 14: Comparison of filtering percentage for wheat D-genome using neighborhood

matrix and similarity network algorithms. Different chromosomes are shown along the X
axis. Top: neighborhood matrix filtering. Bottom: similarity network filtering. Different

parameter settings of t, k and r are used.

decreased the run time by more than 2 orders of magnitude, and removed the need for

high-performance computing equipment.

3.6. Conclusions

In this chapter, we presented an algorithm for identifying unreliable markers for radi-

ation hybrid mapping. Our algorithm is based on building similarity networks and testing

for connectivity relationships between markers based on their LOD scores. We consider the

map built using all individual information as a reference map and checked for unreliable

markers in the network. As a baseline model, we used a resampling-based algorithm

that builds a neighborhood matrix summarizing the neighborhood relationships between

markers for maps built on the different resampled data. We showed that our algorithm can

capture this information much faster than the baseline model, decreasing the run time by

more than two orders of magnitude. We tested our algorithm on a data set generated using
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radiation hybrids developed for mapping of wheat D-genome chromosomes. For the seven

wheat D chromosomes we confirmed unreliable markers and showed that our algorithm

outperforms a clustering based algorithm provided by the mapping software.
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CHAPTER 4. SCALING UP THE EVALUATION OF MARKER

RELIABILITY FOR GENERATING ACCURATE FRAMEWORK

MAPS TO LARGE GENOMES

In Chapter 3, the similarity network algorithm is discussed for filtering unreliable

markers. In Chapter 4, an enhanced network-based approach that uses concepts from

the previous algorithm is presented. The presented algorithm is a fast way for detecting

unreliable markers and building solid framework maps.

4.1. Abstract

Background: Genome mapping is an important methodology to assist in the sequence as-

sembly of large and complex genomes, especially when repetitive sequences are prevalent.

The mapping process is affected by mis-scoring and missing data, resulting in potentially

unstable maps. Increasing map size increases the chances for incorrect ordering. This

problem can be alleviated by first creating a framework map of markers that are particularly

stable. An algorithm is presented for eliminating loose markers that result in unstable

maps and building framework maps in radiation hybrid mapping. Conventional approaches

for discovering those loose markers depends mainly on resampling from the mapping

population and mapping all the resampled data. By considering the mapping distribution,

loose markers are filtered iteratively one marker in each iteration. Those techniques do not

scale well to large genome sizes.

Results: In this chapter, we provide an alternative approach for discovering unreliable

loose markers. We build a framework map by constructing networks from the resampled

data. The support for each edge of the network is derived using all individual information.

Loose markers are filtered based on network linkage. Our approach is computationally fast

since building those networks does not depend on actual mapping results. We show that

the framework maps created using our approach align very well with the framework maps
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created using standard computationally expensive algorithms. In addition, the size of our

framework maps are comparable with the size of framework maps created using standard

approaches. We compare with other framework mapping techniques based on filtering out

singletons from clustering results and show that those techniques are not suitable. Filtering

out singletons from clustering does not match either our approach or standard conventional

approaches for detecting unreliable markers and building framework maps in terms of map

size and marker alignment on the framework. Evaluation is carried out on wheat 1D and

2D chromosomes from data generated in the laboratory from radiation hybrid technique.

Conclusions: We present a fast way of building framework maps in radiation hybrid

mapping by filtering out loose markers from networks created using a pairwise similarity

measure. The algorithm scales well with both number of markers and number of indi-

viduals. While our algorithm decreases the computation time dramatically, the results

are comparable with more computationally expensive standard approaches in terms of

marker alignment and framework physical map size. The results are clearly superior to

a comparison algorithm based on clustering.

4.2. Background

Genome mapping, or the problem of the assignment of DNA sequences to chromo-

somes, has been widely studied for humans, animals, and most recently for plants. High-

throughput genotyping platforms [2, 7, 61, 45] has a dramatic impact in increasing the

pace of genome mapping, resulting in a large amount of new data. These high-throughput

genotyping technologies helped in the development of high density marker scaffolds that

can be used for genome assembly. Complex genomes such as wheat, with a genome of 17

Gb (approximately five times larger than human genome), for which ≥80% of the genome

consists of repetitive sequences [36], require such scaffolds for assembly. Under such a

scenario, Bacterial Artificial Chromosome (BAC) contigs of limited length are created, and

a high quality high density map is used to align the contigs. The high density molecular
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map can also provide the information to help fill gaps between contigs [46].

We are in the process of genotyping thousands of markers and creating high reso-

lution radiation hybrid maps for wheat D-genome. These radiation hybrid maps would

help in creating such a marker scaffold for sequence assembly of wheat. Radiation hybrid

mapping provides both the resolution required to map a large number of markers, while

minimizing the population size [11]. When using high-throughput genotyping platforms,

a small degree of mis-scoring is expected. In addition, the amplification result of some

markers may be ambiguous, and instead of scoring data points as 0 or 1, some are scored

as missing data. In most cases, it is not economically feasible to validate the genotyping

results by repeating the experiments. Under such a scenario, it is beneficial to identify the

most reliable markers for building a framework map that can then be used for creating an

accurate marker scaffold or molecular map of the chromosome. For that purpose, detecting

DNA markers that contribute unstable, poor quality maps is a key task. Conventional

techniques are based on using resampling analysis [39, 40, 41, 51] and filtering the loosest

marker each time iteratively. These approaches evaluate the relevance and reliability of

markers by mapping all resampled data and creating a histogram of the neighborhood

relationships of the markers based on a reference map [39, 40, 41, 51]. These techniques

are time consuming and are not practical for large or even moderate size data sets. The

mapping problem scales exponentially with the number of markers to be mapped. This

problem is aggravated by the need to run compute maps for each sample for a single

neighborhood matrix algorithm [39, 40, 41, 51] and repeating this process for each filtered

marker. Figure 15 shows the process of iterative filtering/resampling using the standard

conventional approach for the wheat chromosome 2D. For this chromosome, 28 iterations

were needed for algorithm convergence.

Mapping software [12, 52] provide options for fast alternatives to fast framework

map building. However, those techniques do not measure map stability based on mapping
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Figure 15: The process of iterative filtering of unreliable markers using neighborhood

matrix algorithm for wheat chromosome 2D. X and Y axis represent the marker index in

the reference map. Z axis is the normalized neighborhood frequency. Top: neighborhood

matrix of all maps created using jackknife resampled data for the first iteration. The top

sub figure shows that the mapping results have noise. Bottom: the neighborhood matrix

for last iteration. The resampling results shows a stable map. In each iteration exactly one

marker with the lowest neighborhood point is filtered out. The algorithm converges when

every marker has a neighborhood value that exceeds or equals specific threshold (100% on

this example).

results nor based on linkage results. The framework map generation provided by the

mapping software [12] uses an incremental insertion procedure. It is recommended to use

an LOD score of at least 3 for building a solid framework map. However, when using such

a threshold, very large number of markers are discarded. In some cases, approximately

5% of markers remains as the framework map. Those techniques are considered to be too

simple and might not be suitable for noisy data sets. After a framework map has been built,

it is used as scaffold to merge the less stable markers generating and creating a full and
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high quality molecular map. This work proposes an algorithm that is computationally less

expensive than conventional approaches but results in maps of comparable quality.
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Figure 16: Schematic represents the process of creating support networks. Artificial data

consists of 10 markers on 4 individuals. Nodes represents marker index in best map created

using all individual information J (0). An edge is created between two markers only if they

are mutual neighbors based on fixed number of neighbors K. Sub-figures (a) to (d) are

networks created using resampled data J (l). Sub-figure (e) is the network created using

all individual information J (0). Sub-figure (f) is the final network after calculating support

for each edge. Edges are labeled with their support calculated from sub-figures (a) to (d).

Edges in red are broken. Markers in gray fillings are defined as unreliable.
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In this chapter, we propose a fast algorithm for creating solid framework maps by

filtering out groups of markers iteratively from the network created based on a 2-point sim-

ilarity measure. This process is fast because it does not depend on mapping the resampled

data. We used the concept of the similarity network first introduced in [4]. We propose

an algorithm that iteratively identifies unreliable markers based on marker linkage of all

networks created on resampled data. The LOD (logarithm of odds-base10) score, which is

a measure of the odds that two markers are indeed linked to the odds that the appearance

of linkage is caused by random chance alone, is used to build these networks. Figure 16

shows a toy example of artificial data of 10 markers on 4 individuals. We first resample the

data set using the jackknife resampling method [23, 10], in which exactly one individual

is left out each time. For each resampled data set, we create the similarity network in the

same way as described in [4] by only linking markers that are mutually neighbors to each

other based on a fixed number of neighbors k. Those networks are shown in panels (a) to

(d) of Figure 16. In the same way, we create the network for the full data that contains

information on all individuals (J (0)). This network is shown in panel (e). After creating

these networks, we calculate the support for each edge in the network created using all

individual information by finding its proportion on all resampled similarity networks. The

support network for Figure 16 is shown in panel (f). Edges on the support network are

removed using a predefined support threshold. In this example, edges marked in red in

panel (f) are broken using support threshold s ≥ 0.80. Markers that fail to meet a specific

linkage range r can be defined as unreliable. In this example, if r = 1, then the set F of

unreliable markers is : F = {M5, M6, M10}. This process can be carried out iteratively

until no other marker can be added to the set F .

Once a solid framework map is found, other filtered markers can be inserted to the

best position in this framework by enforcing the order of framework markers and inserting

other markers to the best possible position.
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4.3. Methods

4.3.1. Support Network Construction

The RH data is a binary matrix D of n markers and v individuals, where each entry

is a binary value indicating the presence or absence of a marker in an individual:

D =



















d1,1 d1,2 · · · d1,v

d2,1 d2,2 · · · d2,v

...
...

. . .
...

dn,1 dn,2 · · · dn,v



















where,

di,j =























1, if marker i is present in individual j

0, if marker i is absent in individual j

−, missing information

We formulate the problem of detecting the unreliable markers as an undirected graph

of M markers and E edges, where each edge is labeled with its support. At first, we

find the best map using the Carthagene software [12] by mapping the data containing the

information on all individuals J (0). The markers then, are labeled sequentially according

to their position in the best map. A marker with position i in the map is labeled as Mi.

The RH data is then resampled using the jackknife resampling method by removing

one individual at a time. J (l) is the resampled data set that contains all individual infor-

mation except for individual l. Notice that by using this resampling method, we will have

exactly v resampled data sets, where v is the number of individuals.

Definition 5 (Similarity network). Let G(l) = (M, E(l)) be the undirected graph con-

structed using the resampled data l. M = {M1, M2, . . . ,Mn} is the list of markers labeled

sequentially according to their position on the map using data from J (0). (Mi, Mj) ∈ E(l)

only if Mi and Mj are mutually connected to each other based on their k nearest neighbors
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with the highest LOD scores:

∀v
l=0∀

n−1
i=1 ∀

n
j=i+1(Mi, Mj) ∈ E(l) (12)

if Mi ∈ KNN (l)(Mj, k)
∧

Mj ∈ KNN (l)(Mi, k)

Definition 6 (Support network). G(0) = (M, E(0)) is the support network created using

Definition 5 using all individual information. For each edge (Mi, Mj) ∈ E(0) we calculate

the edge support by finding the proportion of how many times (Mi, Mj) occurs on all

graphs built on resampled data:

∀(Mi, Mj) ∈ E(0), Supp (Mi, Mj) =

∑v

l=1 f(l)

v

Where, f(l) =











1, if (Mi, Mj) ∈ E(l)

0, otherwise
(13)

The details of the support network construction can be seen in Algorithm 4. The

input is the RH binary data matrix of n markers and v individuals, where entries are binary

values indicating the presence or absence of the marker in an individual. The output

is an undirected graph, where nodes are marker labels and edges are labeled with their

support. In line 1, the full data set is mapped using the Carthagene software [12]. Jackknife

resampling is carried out in line 3. In lines 4 and 5, we label markers for all the resampled

data according to the marker positions in the best map found in line 1. In lines 6 to 9, we

find the k−nearest neighbors for each marker in each resampled data. In lines 10 through

13, we create an undirected graph for each resampled data J (l). Finally, we calculate the

support for each edge on the graph created using all individual information (G(0)) in lines

14 and 15.
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Algorithm 4: Support Network Construction.

Data: D, n, v; /* D: RH data matrix of n markers and v

individuals */

Result: G(0) = (M, E(0)); /* graph of connected markers.

Edges are labeled with support */

J (0) = Map(D) ; /* find best map using carthagene1

(reference map) */

for i=0 to v do2

J (i) = Resampling(D) ; /* Jackknife Re-sampling */3

foreach m ∈ M do4

Label(m) = M&pos(m) ; /* label markers according to5

position */

KNN (i)(n, k) = zeros(n, k); /* initialize */6

foreach mp ∈ M do7

for j=1 to k do8

KNN (i)(p, k)=KNN(mp);9

for j=1 to n-1 do10

for l=j+1 to n do11

if mj ∈ KNN (i)(l, k) AND ml ∈ KNN (i)(j, k) then12

(mj, ml) ∈ E(i) ; /* determine edges in graph */13

foreach E(0) ∈ G(0) do14

Support(E(0));15

return G(0);16

4.3.2. Edge Breaking

After calculating the support for each edge in G(0), all edges that fail to meet specific

predefined support threshold are broken. The process of breaking edges from the graph

decreases the number of cycles and increases number of markers filtered out by removing

connections. Edge breaking is performed according to the formula below:

∀(Mi, Mj) ∈ E(0), (Mi, Mj) /∈ E(0) (14)

if Supp(Mi, Mj) ≤ s
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4.3.3. Marker Filtering

We filter unreliable markers from G(0) based on the same criteria proposed in [4].

Makers that fail to meet a specific linkage range r, i.e., which do not have an edge with

respect to a node with an index that differs by no more than r, are added to the set F of

unreliable markers:

∀n
i=1Mi : Mi ∈ F (15)

if 6 ∃i+r
j=i−r(Mi, Mj) ∈ E(0)

Algorithm 5: Marker Filtering from Support Network.

Data: G(0) = (M, E(0)); /* graph created using all individual

information */

Data: r, s; /* r:range threshold, s:support threshold */

Result: F ⊂ M ; /* list of potential markers to be

filtered */

foreach (mi, mj) ∈ E(0) do1

if Supp((mi, mj)) < s then2

Remove((mi, mj)) ; /* edge breaking */3

foreach mi ∈ M do4

Flag = False;5

foreach (mi, mj) ∈ E(0) do6

if mj ∈ [mi−r, mi+r] then7

Flag = True;8

exitFor;9

if Flag = False then10

mi ∈ F ;11

return F ;12

The details of edge breaking and identifying unreliable markers can be seen in Algo-

rithm 5. The inputs are the undirected graph G(0) created using all individual information

J (0) and the two parameters r and s indicating range threshold and support threshold

respectively. The output is the set F of unreliable markers. In lines 1 to 3, we break
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all edges that fail to meet a specific support threshold s. In lines 4 to 11 we find the set F .

Each marker that fails to meet a linkage range r is defined as unreliable marker.

Notice that we carry out the process of support network construction and marker

filtering iteratively until no other marker can be filtered out.

4.3.4. Baseline Model - Mapped Neighborhood Matrix

Since there is no ground truth available to evaluate our result, we assume that the

markers filtered using the neighborhood matrix [39, 40, 41, 51] are the true answer. To

evaluate our approach we implemented the neighborhood matrix approach by iteratively

filtering exactly one marker each time. The criterion for filtering is that the marker has

the lowest neighborhood value from the neighborhood matrix created by mapping all the

resampled data. The remaining data are resampled again and the filtering process is car-

ried out until all markers have a neighborhood value of at least 99% with regard to their

immediate neighbor. The pseudocode for the baseline model can be seen in Algorithm 6.

4.4. Results and Discussion

4.4.1. Data Sets

The evaluation is done on two data sets from radiation hybrids and genetic mapping

data. The first data set is from the radiation hybrids of the wheat 1D and 2D chromosomes.

This data set was generated in the laboratory on a mapping population of 1542 radiation

hybrid individuals. Individuals showing maximum marker loss where selected resulting in

a mapping population of 178 individuals. The number of markers for chromosomes 1D

and 2D analyzed using Diversity Array Technology (DArT) [1] were 59 and 51 markers

respectively.

The second evaluation we carried out is on a genetic mapping data set of wheat

chromosome 1B (unpublished data). The data set represents the doubled haploid mapping

population developed from a cross of two durum wheat cultivars Rugby [48] and Maier

[16]. The mapping population consists of 105 individuals on 36 markers.
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Algorithm 6: Iterative Filtering of unreliable markers from Neighborhood Matrix.

Data: D,n, v; /* D: RH data matrix of n markers and v individuals */

Data: t; /* normalized neighborhood frequency threshold */

Result: RefMap(R); /* Framework map after filtering the unreliable

markers */

Result: F ⊂ M ; /* list of potential markers to be filtered */

m = n;1
F = {};2
MapStable = False;3
while MapStable = False do4

RefMap(R) = Map(D) ; /* find best map using carthagene */5
foreach i ∈ v do6

J (i) = Resampling(D) ; /* Jackknife Re-sampling */7

Map(i) = Map(J (i));8

N(m,m) = zeros(m, m); /* initialize */9

foreach Map(i) do10
for j=1 to m-1 do11

mrk1 = Map(i)(j);12

mrk2 = Map(i)(j + 1);13
pos1 = FindMarkerPosition(mrk1) ; /* position in RefMap */14
pos2 = FindMarkerPosition(mrk2);15
N(pos1, pos2) + +;16
N(pos2, pos1) + +;17

N = Normalize(N);18
min = 0;19
mrk = ””;20
foreach mi ∈ M do21

if N(i, i + 1) < min then22
mrk = mi;23
index = i;24

if min ≥ t then25
MapStable = True;26

else27
m = n − 1;28
F = F ∪ mrk;29
D(index, :) = [ ];30

return RefMap(R);31
return F ;32

4.4.2. Radiation Hybrids Results

Marker Alignment on Mapping Results: In order to test the stability of the mapping

results, we created several maps for the same chromosomes based on the filtering strategies
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discussed in Section 4.3. Figure 17 shows the mapping results for wheat chromosome 1D

visualized using [14]. The middle part of Figure 17 represents the mapping result for all

markers without any filtering. The left part of the figure is the mapping result using the

baseline approach for filtering of markers. Using this approach one marker is filtered out

in each iteration, as discussed in Section 4.3.4. The right part of Figure 17 represents the

mapping result when using our algorithm for filtering the unreliable markers as discussed

in Algorithm 5. As can be seen from the figure, those three maps are not consistent. The

original map (middle part) is not consistent with either framework maps. Creating such a

stability requires detecting and eliminating unreliable markers.

Similar inconsistencies can be seen in Figure 18. This figure represents the mapping

results for wheat chromosome 2D. We carried out the same test of how markers align if

all markers included (middle part of Figure 18) with our algorithm (left part of the figure)

and with the baseline algorithm (right part). Once again, those three maps where found

inconsistent.

Figure 17: Comparison between three maps created for the same 1D chromosome of wheat.

Left: map created after removing unreliable markers detected using the neighborhood

matrix approach. Middle: map created using all markers without any filtering. Right:

map created after removing unreliable markers detected using support network algorithm.
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Figure 18: Comparison between three maps created for the same 2D chromosome of wheat.

Left: map created after removing unreliable markers detected using the neighborhood

matrix approach. Middle: map created using all markers without any filtering. Right:

map created after removing unreliable markers detected using support network algorithm.

Figure 19: Comparison between three approaches for finding solid framework maps by

filtering out unreliable markers created for the same 1D chromosome of wheat. Middle:

the neighborhood matrix used as a baseline approach (framework map created after filtering

out loose markers iteratively based on their neighborhood values). Left: framework map

created after removing singleton markers detected using the clustering algorithm provided

by Carthagene software. Right: framework map created after removing unreliable markers

detected using support network algorithm.

We compared the framework maps created after filtering the unreliable markers us-

ing our support network algorithm with the computational expensive baseline algorithm

(neighborhood matrix algorithm proposed in [39, 40, 41, 51]) and with filtering singletons

from standard clustering algorithm used in Carthagene software [12]. Figure 19 shows this
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comparison for wheat chromosome 1D visualized using [14]. The middle part of Figure 19

is used as a reference (framework map created after filtering the unreliable markers using

the support network algorithm). The right part of Figure 19 corresponds to the framework

map created after filtering unreliable markers using the baseline model of neighborhood

matrix. As can be seen from the figure, the layout of most markers in our framework

map align very well with the computational expensive baseline model. The first and the

last markers in the two frameworks are the same. The order of other markers matches

the baseline framework map order with the exception of some local flipping. Note that

the baseline framework map does not align well with the map created by filtering out

only singletons from the clustering algorithm provided Carthagene software [12]. This

comparison can be seen in Figure 19. The left part of the figure correspond to the map after

filtering out singletons. As can be seen from the figure the location of most markers are

inconsistent with the baseline model along the whole chromosome.

Figure 20: Comparison between three approaches for finding solid framework maps by

filtering out unreliable markers created for the same 2D chromosome of wheat. Middle:

the neighborhood matrix used as a baseline approach (framework map created after filtering

out loose markers iteratively based on their neighborhood values). Left: framework map

created after removing singleton markers detected using the clustering algorithm provided

by Carthagene software. Right: framework map created after removing unreliable markers

detected using support network algorithm.

We conducted the same alignment test of the three framework maps on wheat chro-

mosome 2D. Figure 20 shows this comparison. The framework map created using the
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baseline model (right part of Figure 20) is consistent with the framework map created using

our proposed support network algorithm (middle part of Figure 20). The locations for all

markers align very well in both framework maps with the exception of only one marker

(wPt−667406). However, the inconsistency between the baseline framework map and the

framework map created after filtering singletons (left part of Figure 20) is clear. It would

be insufficient to depend only on filtering out singletons to remove noise from RH mapping

data.

Map Cumulative Distance: The second criteria we considered for our algorithm eval-

uation is the cumulative physical map distance of the created framework maps. Table 8

shows this comparison. In general, the cumulative distance of the framework maps created

using our proposed support network algorithm are comparable with the framework maps

created using the baseline method. The cumulative distance for the framework maps of

wheat chromosome 1D for the baseline method and the support network algorithm were

421 cR and 690.10 cR respectively (see Figure 19). One could question why the cumulative

distance differ, considering that the first and the last markers on the two framework maps

are the same. This can be explained considering that only 18 markers were mapped using

the baseline model while 34 markers were mapped using the support network algorithm. It

is well known that the measure cR (centi-Ray) depends on the number of breaks between

markers. Mapping more markers means creating more breaks which results in a larger

physical distance.

To make a fair comparison of the cumulative map distance between our algorithm

and the baseline model, we fixed the first and the last markers of the framework map and

resampled the data set by randomly choosing exactly 16 markers each time. The resampled

data was mapped and the cumulative distance was recorded for all 30 resampled data sets.

We averaged over all 30 cumulative distances and took the average cumulative distance

of 485.92 cR with standard deviation of 37.45 cR. Mapping an exactly equal number of
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markers as in the baseline model resulted in approximately the same cumulative distance.

The results for wheat chromosome 2D confirm that we can achieve approximately

the same physical map distance using the support network algorithm achieved by the

more computationally expensive approach. Figure 20 shows the cumulative distance for

the framework map created using the baseline model (right part of the figure) and the

cumulative distance of the framework map created using the support network algorithm

(middle part of the figure). Mapping 25 markers using the baseline model resulted in

a cumulative distance of 679.24 cR while mapping 35 markers resulted in a cumulative

distance of 1135.00 cR. However, considering only the portion of the map that aligns

with the baseline model framework map (the range [232.20 cR, 999.20 cR]) results in a

cumulative distance of 767.00 cR mapping 25 markers. We used the same resampling

strategy for wheat chromosome 2D. Fixing the first and the last markers of the framework

and resampling from the remaining markers by randomly choosing 23 markers each time

resulted in an average cumulative distance of 714.81 cR with 30.36 cR standard deviation.

The results of the proposed support network are better than the results of our previous

similarity network algorithm [4] for wheat chromosome 2D in terms of map cumulative

distance when resampling equal size of markers. In addition, the alignment between

support network maps and the baseline model is much better than the alignment between

the similarity network [4] maps and the baseline model. Table 8 summarizes this section.

Computation Time and Overlap Percentage: We compared the computation time re-

quired for creating the framework maps by filtering out the unreliable markers for the three

different approaches. The baseline model is computationally expensive since it requires

mapping all the resampled data in each iteration. In addition, it requires many iterations

to converge because it filters out exactly one marker in each iteration. To handle this

computation intensive problem, we used the Linux version of Carthagene [12] for the

actual mapping and installed it on cluster of 120 high performance machines. In contrast,
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our proposed support network algorithm is computationally fast since we only resample the

data to calculate the LOD scores needed to build the networks. Fewer iterations are required

to converge since there is no restriction on the number of markers filtered in each iteration.

Filtering out singletons from clustering is the fastest approach, however, we showed in

Section 4.4.2 that this approach is not sufficient for filtering out unreliable markers.

The run time required for the baseline approach is (R(b) = i(b) ∗ t(b) ∗ (v + 1)) where,

i(b) is the number of iterations required to converge, t(b) is the run time for a single data

set, and v is the number of individuals. On the other hand, the run time for the proposed

support network algorithm is (R(c) = i(c) ∗ t(c)) where i(c) is always much smaller than

i(b) because we do not have a restriction on the number of markers filtered in each iteration

and t(c) is always less than t(b) because we map less markers in each iteration. In the worst

case scenario, if i(b)=i(c) and t(b)=t(c), we are eliminating mapping the resampled data sets.

Table 9 shows a comparison of the number of iterations required to converge for the two

algorithms for wheat chromosomes 1D and 2D. Using the baseline approach, the number

of data sets mapped for wheat chromosomes 1D and 2D were 7697 and 5012 respectively,

while using our algorithm, only 5 and 3 data sets were mapped. For this data, the run time

was decreased by more than 3 orders of magnitude using our algorithm.

Table 9 shows the number of markers filtered using the three different algorithms and

the number of iterations required for algorithm convergence. Notice that we only needed

five and three iterations for our algorithm to converge for wheat chromosomes 1D and 2D

respectively, while the baseline model algorithm needed 43 and 28 iterations respectively.

We also achieved a good overlap percentage of the filtered markers between our

algorithm and the baseline algorithm. As can be seen in Table 9 the overlap percentage

was 86% and 75% for chromosomes 1D and 2D respectively.
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4.4.3. Genetic Mapping Results

Similar results have been achieved for wheat 1B chromosome genetic data. Figure

21 shows a comparison between the map created using map maker software [35] (left part)

and the map created using our support network algorithm (right part). As can be seen from

the figure, the two maps align very well. All markers are in positions with the exception

of one local flip (markers wPt-0420 and wPt-1684). The map cumulative distance for the

genetic map created using map maker software [35] was 110.5 cM while using our support

network algorithm we achieved a map cumulative distance of 77.4 cM. Only two iterations

where needed for algorithm convergence using our support network algorithm.

Figure 21: Comparison between two genetic maps of Wheat chromosome 1B. Left: Wheat

chromosome 1B genetic map created using map maker software [35]. Right: chromosome

1B genetic map created using support network algorithm.

4.5. Conclusions

In this chapter, we proposed a fast algorithm for building solid framework maps

by filtering out loose unreliable markers from support networks. Our algorithm depends

on creating a support network of marker linkage by aggregating the information of all

similarity networks built on resampled data. These similarity networks are built using

2-point LOD scores. We create a solid framework map by iteratively filtering out unre-

liable markers detected by the support network algorithm. Building support networks is

computationally fast since creating these networks does not depend on the actual mapping
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results of all resampled data. We have shown that our algorithm largely matches conven-

tional approaches for detecting unreliable markers that build framework maps by creating

a distribution of the neighborhood relationships from the mapping of resampled data, and

have a prohibitively high computational complexity. While our approach matches standard

approaches in terms of marker alignment on the framework map as well as map cumulative

distance, our algorithm outperforms standard approaches in terms of computation time. In

addition, we have shown that other approaches that depend on filtering singletons from

standard clustering algorithms are insufficient for filtering markers from RH data. Evalua-

tion is carried out on radiation hybrid data for wheat chromosomes 1D and 2D.
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CHAPTER 5. GENERAL CONCLUSIONS

In this dissertation, several algorithms for mining significant information from both

structured and unstructured data formats have been proposed. The general theme of this

dissertation is integrating data mining techniques with standard statistical methods. This

integration made it possible to address statistical significance when solving complex prob-

lems in sciences.

Several applications of mining significant information have been introduced in this

dissertation. In Chapter 2 an algorithm for identifying significant patterns between stan-

dardized items of information and textual representations of genomic data have been in-

troduced. A re-weighting model is integrated with a density-based algorithm for finding

the usefulness of textual representations for predicting biological class labels. The re-

weighting model addressed problems due to the multi-relational nature of the data that

would be responsible for spurious predictions when using standard classification tech-

niques. According to the biological expectations, most protein domains are expected to

be non-significant while gene ontology information is expected to be significant because

most publications address gene functions rather than domain knowledge. The results shown

in the evaluation confirm the biological expectations. Based on domain knowledge, more

than half of the protein domains are found to be non-significant, while the Naive Bayes

classifier predicted most of them as significant relationships. Most ontology functions were

confirmed to be significantly related to the textual representations. In addition, two highest

level gene ontology functions were predicted as non-significant using our algorithm but

one of them was not predicted as non-significant by the comparison algorithm.

Several applications have been introduced in the ordering problem in radiation hybrid

mapping. Detecting unreliable markers in genome mapping is addressed in Chapters 3 and

4. In Chapter 3, a network-based algorithm has been introduced for finding unreliable

markers. The networks are created using the 2-piont LOD similarity measure. Standard
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conventional approaches that rely on mapping data as part of a resampling analysis are

used as a baseline model. The proposed network-based algorithm can detect the unreliable

markers much faster than the baseline model, decreasing the run time by more than two

orders of magnitude and outperforming a hierarchical clustering algorithm in terms of

accuracy.

In Chapter 4, a modified network-based algorithm is introduced. The proposed

support network is an iterative approach for finding the unreliable markers in genome

mapping and building solid framework maps. While creating support networks is compu-

tationally fast in comparison to the baseline model, it largely matches the baseline model

in terms of marker alignment on the framework map as well as map cumulative distance.

Simple approaches that rely on filtering singletons from clustering algorithm for creating

framework maps were proven to be insufficient for filtering noise from RH data.

In summary, several algorithms have been proposed for mining significant informa-

tion from different data sources. Applications shown proved that the presented algorithms

are efficient, effective, can be applied for high-dimensional data, and reduce computational

cost.

73



REFERENCES

[1] M. Akbari, P. Wenzl, V. Caig, J. Carling, L. Xia, S. Yang, G. Uszynski, V. Mohler,

A. Lehmensiek, and H. Kuchel, Diversity arrays technology (dart) for high-

throughput profiling of the hexaploid wheat genome, TAG THEORETICAL AND

APPLIED GENETICS 113 Number 8 (2006), 1409–1420.

[2] E. Akhunov, C. Nicolet, and J. Dvorak, Single nucleotide polymorphism genotyping in

polyploid wheat with the illumina goldengate assay, Theor. Appl. Genet. 119 (2009),

507 517.

[3] O. Al-Azzam, J. Wu, L. Al-Nimer, C. Chitraranjan, and A. Denton, A weighted

density-based approach for identifying standardized items that are significantly

related to the biological literature, Text Mining Workshop in conjunction with the

Eleventh SIAM International Conference on Data Mining, Mesa, AZ, USA, ACM,

2011.

[4] O. Al Azzam, L. Al Nimer, C. Chitraranjan, A. M. Denton, A.Kumar, F., M. J. Iqbal,

and S. F. Kianian, Network-based filtering of unreliable markers in genome mapping,

The Tenth International Conference on Machine Learning and Applications, ICMLA

2011, Honolulu, HI, USA, IEEE Computer Society, 2011.

[5] B. Birren, E. D. Green, P. Hieter, S.Klapholz, R. M. Myers, H. Riethman, and

J. Roskams, Genome analysis a library manual, Cold Spring Harbor Laboratory

Press, 1999.

[6] T. Brants, Natural language processing in information retrieval, CLIN, Antwerp

papers in linguistics, vol. 111, University of Antwerp, 2003.

[7] A. Brard, MC. Le Paslier, M. Dardevet, F. Exbrayat-Vinson, I. Bonnin, A. Cenci,

A. Haudry, D. Brunel, and C. Ravel, High-throughput single nucleotide polymorphism

genotyping in wheat (triticum spp.)., Plant Biotechnol J. 7 (2009), 364–374.

[8] G. Carvalho, D. Martins de Matos, and V. Rocio, Document retrieval for question

answering: a quantitative evaluation of text preprocessing, PIKM ’07: Proceedings of

the ACM first Ph.D. workshop in CIKM (New York, NY, USA), ACM, 2007, pp. 125–

130.

[9] J. Chiang and H. Yu, Meke: Discovering the functions of gene products from

biomedical literature via sentence alignment, Bioinformatics 19 (2003), no. 11, 1417–

1422.

[10] L. E. Clifford, Data analysis by resampling: Concepts and applications, Duxbury

(Pacific Grove, CA), 2000.

74



[11] D. Cox, M. Burmesiter, E. Price, S. kim, and R. Myers, Radiation hybrid mapping:

a somatic cell genetic method for constructing high-resolution maps of mammalian

chromosomes, Science 12 Vol. 250no 4978 (1990), 245–250.

[12] S. de Givry, M. Bouchez, P. Chabrier, D. Milan, and T. Schiex, Carthagene:

multipopulation integrated genetic and radiation hybrid mapping, Genome analysis

21 no. 8 (2005), 1703–1704.

[13] A. M. Denton and J. Wu, Data mining of vector-item patterns using neighborhood

histograms, Knowl. Inf. Syst. 21 (2009), no. 2, 173–199.
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APPENDIX A. SIGNIFICANCE CALCULATION

Hypotheses testing is a statistical way for determining if a set of observations can

occur by random chance. There are two parts of hypotheses testing:

• H0 : the observed and the expected data do not differ

• H1 : the observed and the expected data differ significantly

Under a specific significance level α the null hypotheses H0 is either accepted or

rejected. The null hypothesis is accepted only if the derived P−value is less than the

significance level α. These P−values are derived based on the distribution that the data

follow. In this study the χ2 distributions is used:

• χ2 distribution: used to determine if the distribution of two sets of random variables

(categorical data) differ. Using Table A. 1 the P−values can be calculated using the

equation:
∑

(Observed−Expected)2/Expected. The observed data in a classification

style results is the (2 X 2) confusion matrix. The matrix is treated as a contingency

table and the P−values is derived using the above equation with one degree of

freedom ((number of rows -1) * (number of columns -1))

80



Table A. 1: Chi-Square Probabilities

df/α 0.995 0.99 0.975 0.95 0.90 0.10 0.05 0.025 0.01 0.005

1 — — 0.001 0.004 0.016 2.706 3.841 5.024 6.635 7.879

2 0.010 0.020 0.051 0.103 0.211 4.605 5.991 7.378 9.210 10.597

3 0.072 0.115 0.216 0.352 0.584 6.251 7.815 9.348 11.345 12.838

4 0.207 0.297 0.484 0.711 1.064 7.779 9.488 11.143 13.277 14.860

5 0.412 0.554 0.831 1.145 1.610 9.236 11.070 12.833 15.086 16.750

6 0.676 0.872 1.237 1.635 2.204 10.645 12.592 14.449 16.812 18.548

7 0.989 1.239 1.690 2.167 2.833 12.017 14.067 16.013 18.475 20.278

8 1.344 1.646 2.180 2.733 3.490 13.362 15.507 17.535 20.090 21.955

9 1.735 2.088 2.700 3.325 4.168 14.684 16.919 19.023 21.666 23.589

10 2.156 2.558 3.247 3.940 4.865 15.987 18.307 20.483 23.209 25.188

11 2.603 3.053 3.816 4.575 5.578 17.275 19.675 21.920 24.725 26.757

12 3.074 3.571 4.404 5.226 6.304 18.549 21.026 23.337 26.217 28.300

13 3.565 4.107 5.009 5.892 7.042 19.812 22.362 24.736 27.688 29.819

14 4.075 4.660 5.629 6.571 7.790 21.064 23.685 26.119 29.141 31.319

15 4.601 5.229 6.262 7.261 8.547 22.307 24.996 27.488 30.578 32.801

16 5.142 5.812 6.908 7.962 9.312 23.542 26.296 28.845 32.000 34.267

17 5.697 6.408 7.564 8.672 10.085 24.769 27.587 30.191 33.409 35.718

18 6.265 7.015 8.231 9.390 10.865 25.989 28.869 31.526 34.805 37.156

19 6.844 7.633 8.907 10.117 11.651 27.204 30.144 32.852 36.191 38.582

20 7.434 8.260 9.591 10.851 12.443 28.412 31.410 34.170 37.566 39.997

21 8.034 8.897 10.283 11.591 13.240 29.615 32.671 35.479 38.932 41.401

22 8.643 9.542 10.982 12.338 14.041 30.813 33.924 36.781 40.289 42.796

23 9.260 10.196 11.689 13.091 14.848 32.007 35.172 38.076 41.638 44.181

24 9.886 10.856 12.401 13.848 15.659 33.196 36.415 39.364 42.980 45.559

25 10.520 11.524 13.120 14.611 16.473 34.382 37.652 40.646 44.314 46.928

26 11.160 12.198 13.844 15.379 17.292 35.563 38.885 41.923 45.642 48.290

27 11.808 12.879 14.573 16.151 18.114 36.741 40.113 43.195 46.963 49.645

28 12.461 13.565 15.308 16.928 18.939 37.916 41.337 44.461 48.278 50.993

29 13.121 14.256 16.047 17.708 19.768 39.087 42.557 45.722 49.588 52.336

30 13.787 14.953 16.791 18.493 20.599 40.256 43.773 46.979 50.892 53.672

40 20.707 22.164 24.433 26.509 29.051 51.805 55.758 59.342 63.691 66.766

50 27.991 29.707 32.357 34.764 37.689 63.167 67.505 71.420 76.154 79.490

60 35.534 37.485 40.482 43.188 46.459 74.397 79.082 83.298 88.379 91.952

70 43.275 45.442 48.758 51.739 55.329 85.527 90.531 95.023 100.425 104.215

80 51.172 53.540 57.153 60.391 64.278 96.578 101.879 106.629 112.329 116.321

90 59.196 61.754 65.647 69.126 73.291 107.565 113.145 118.136 124.116 128.299

100 67.328 70.065 74.222 77.929 82.358 118.498 124.342 129.561 135.807 140.169
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APPENDIX B. CLASSIFICATION STYLE MEASURES

The results of a classification style data is represented in (2 X 2) confusion matrix as

can be seen in the below table:

Table B. 1: Classification Style Confusion Matrix

TP FN

FP TN

Where,

• TP: are the true positives. Data with class label 1 and predicted as 1.

• FN: are the false negatives. Data with class label 1 and predicted as 0 (type I error).

• FP: are the false positives. Data with class label 0 and predicted as 1 (type II error).

• TN: are the true negatives. Data with class label 0 and predicted as 0.

The below measures are used across this study:

Sensitivity =
TP

TP + FN
(8)

Specificity =
TN

TN + FP
(9)

Accuracy =
TP + TN

TP + FN + FP + TN
(10)
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