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ABSTRACT

Optimal design provides the most efficient design to study dose-response functions. It is
common to adopt the four-parameter logistic model to describe the dose-response relationships
in many dose finding trials. Under the four-parameter logistic model, optimal design to estimate
the ED,, accurately is presented. The ED,, is the dose achieving 100p% of the maximum
treatment effect. C-optimal design works the best to estimate the ED,,, but the value of p must be
predetermined in order to obtain the c-optimal design. Here we investigate the efficiency of c-
optimal design to estimate the ED,, for different values of p and present robust c-optimal design
that works well for the changes in the value of p. Five different values of p are considered in this
study: ED,, ED3g, EDg(, ED-(, and EDy,. The performance of the robust c-optimal design is

obtained and compared to the c-optimal designs and traditional uniform designs.
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1. INTRODUCTION

A dose-response study is a fundamental part in clinical trials. A common objective for the
dose-response study is to study dose-response relationships or to study a target dose level (such
as MED and ED,,). Optimal design helps to maximize the information of such a study objective.
It identities dose levels to be tested and how to allocate the subjects to the selected doses in the
most efficient manner (Bretz, Dette and Pinheiro, 2010; Dragalin, Hsuan and Padmanabhan,
2007).

Optimal design is a branch of experimental designs. It provides the best design to study
an interesting objective accurately with limited resources. Different types of optimal designs are
used for different purposes. For instance, D-optimal design enables researchers to estimate the
shape of dose-response accurately, and c-optimal design allows researchers to precisely estimate
an interesting target dose level. In this paper, we study c-optimal design for estimating the ED,,.
Here, the ED,, is the dose level that achieves 100p% of the maximum treatment effect within the
observed dose range and p is given between 0 and 1 (Ting, 2006). For example, ED¢, represents
the dose level that generates 50% of the maximum response.

C-optimal design for estimating the ED,, minimizes the variance for estimating the ED,,.
Here the value of p is given at the beginning of the study and it represents the target dose ED,, to
be estimated. One question we have here is the performance of c-optimal design for estimating
the ED,, for the changes in the value of p. For example, does the c-optimal design for estimating
the ED5, perform well for estimating ED, 4, ED3o, ED;, or EDgo? Bretz, Dette, and Pinheiro
(2010) states that c-optimal design for estimating the ED,, for one specific model (E;;, 4, model)
does not depend on the value of p. However, it might not be true for different models. In this
paper, we study the sensitivity of the c-optimal design for estimating the ED,, on the value of p
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under the four-parameter logistic model. Also, we present robust c-optimal design for estimating
the ED,, that works well for the changes in the value of p.

We consider a flexible model to describe dose-response relationships. In this paper, the
four-parameter logistic model is employed (Dragalin, Hsuan, and Padmanabhan, 2007). The
four-parameter logistic model is a frequently used non-linear model in dose-response study to
describe a sigmoid shaped curve. Under the four-parameter logistic model, c-optimal designs for
estimating the ED,, are studied.

In Chapter 2, basic knowledge to study optimal design is described. The four-parameter
logistic model and the Fisher information matrix under the model is presented in Chapter 3. In
Chapter 4, c-optimal designs for estimating the ED,, and the robust c-optimal design for
estimating the ED,, for the changes in the values of p are derived. Their performance are

obtained and compared in Chapter 5. We discuss the conclusion in Chapter 6.



2. BACKGROUND

2.1. Optimal Design

When researchers conduct experimental designs, they are often interested in obtaining
estimates of the parameters and using the fitted model for prediction. The variance of estimating
parameters and predictions depend on the experimental designs, and an efficient experiment
design can minimize the variance. The tool we use to minimize the variance is optimal design
(Atkinson and Donev, 1992).

Optimal design specifies how to distribute resources in the most efficient way. Given a
response surface, optimal design also provides the best locations to take observations. In
practical situations, optimal design provides accurate statistical inferences with reduced cost.
Different optimal designs have different criteria based on the goal of the experiment. To obtain
the optimal design, we find a design that minimizes the optimality criteria, denoted by V.

Under a given model, let © be the vector of model parameters, we use x; for the i** dose
level, n; represents the number of subjects allocated to the it" dose level and N represents the
total number of subjects, N=Y'X_, n;. Let M(Z; ©) denote the Fisher information matrix for ©.
M(E; ©) only depends on design € = {(x;,w;), i=1, 2... k} and the parameters of 0. Here, w; =
n;/N represents the proportional allocation of subjects to x;. Optimal design minimizes the
optimality criteria ¥ for the given 0. Several important optimality criteria are presented below:

(1) A-optimality

A-optimality minimizes the summation of asymptotic variances of the parameter
estimates. The criterion is
¥ =tr(M@E; ©)7).

(2) D-optimality



D-optimal design is used when we are interested in estimating parameters in the
model. It minimizes the determinant of the inverse of the Fisher information matrix
for ©. The criterion is
Y= IME; )71l
(3) c-optimality
When our goal is to estimate a function of model parameters, c-optimality criteria is
commonly used. It minimizes the variance of estimating the function of the model
parameters, g (6). Then the criterion is
¥ =[g(8)]"M(E; 0)~'g(6),
where g’(0) is the first derivative of g (6) with respect to ©.
2.2. The General Equivalence Theorem
The General Equivalence Theorem (Kiefer, 1958; Pukelsheim, 2006) is a fundamental
part to find and verify optimal designs. The General Equivalence Theorem can be applied to any
optimal design that uses the function of the Fisher information matrix for the criterion. Here we
present the General Equivalence Theorem for the c-optimal design. Let £* denote the c-optimal
design. When the interest is in estimating a function of the model parameters g (6), the Fisher
information matrix can be written as M (;0) = ciz Y& wif(X;, 0)F (X;,6)7T, and the General
Equivalence Theorem states that
{fTM™I(E"; ©)g(0) ¥<[g(@]I"M™'(§"; ©)g(6).
Here g’(0) is the first derivative of g (6) with respect to 8, and the equality holds when x is one
of the optimal design points in &*.
It can be viewed as an application of the result that the derivative is zero at the minimum

of the convex function. The above inequality equation is the directional derivative of the c-



optimality criterion. The left side of the equation represents the standardized variance of the
predicted response, and its maximum is always less than or equal to the variance of estimating g
(6) on the c-optimal design. The General Equivalence Theorem plays an important role in the V-
algorithm to search the c-optimal design.

2.3. The V-algorithm

The V-algorithm is an efficient algorithm to search for optimal design. This method is
established by Fedorov and Hackl (1997).

We set the values of model parameters first. In order to run the VV-algorithm we need to
set an initial design. Usually, a uniform design can be used for an initial design. One concern to
set the initial design is that the number of initial design points must be greater than or equal to
the number of model parameters. Otherwise, the information matrix based on the initial design
becomes a singular matrix and the algorithm cannot be run.

The V-algorithm for searching c-optimal deign is stated here. Assume that we start with
one initial design & with the Fisher information matrix M (§; ®). Then we calculate the sensitive
function in the General Equivalence Theorem at n™ iteration, which is denoted by d,,

dn = {fTCO M, (€5 ©)g(0) ¥ - [g(O)] ™M, ' (§; ©)g:(6)
where M,, (¢ ; 0) is the information matrix evaluated at n'™ iteration. And the x* will be selected
from the predetermined design space that maximizes d,,. Then the Fisher information matrix is

updated as
Mpi1 (€5 ©)=(1- any1) My (5 ©)+an 1 f(X) a1y f(X*)T(n+1) ’

1
where @, = —-



The stepwise process will continue until the sensitive function is very close to zero. The c-
optimal design is reached when the stepwise stops (Federov and Hackl, 1997).
2.4. The Newton-Raphson Algorithm

The V-algorithm works well for finding optimal design points. However, it does not
perform effectively to find optimal weights for the optimal design points. Here we use the
Newton-Raphson algorithm to search optimal weights (Quinn, 2001).

For solving our problems, we rewrite this algorithm with respect to our optimality
criterion ¥ and the design weights w, w = (wy, w, ...wy). The nonnegative solutions of % Y=

0 are the optimal weights for the given design points (Hyun, 2011). By the Newton-Raphson

algorithm, w is update by

i} 9% _
Wnew = Woiqd - [ﬁ LP][% Lp] 1-

When | Wyew - Woig | < €, where ¢ is a very small number, say e=107°, the algorithm stops and
Wrew are the optimal weights for the given design points.
2.5. Carathéodory’s Theorem

Carathéodory’s Theorem provides an upper bound on the number of design points. By the
theorem, we have no more than p(p+1)/2 +1 design points, where p is the number of parameters

in the model.



3. MODEL

In this Chapter, we describe the four-parameter logistic model and present the Fisher
information matrix, which plays an important role to obtain the c-optimal design.

We often observe that dose-response relationships follow a sigmoid curve. To describe
such relationships, the four-parameter logistic model is frequently used. The mean response for

the four-parameter logistic model at a given dose X; is

1(X;,0) = 6, +(0,- 91)

where X; is the i™" dose; 6, is the mean response at the minimum dose; 6, is the mean response at
the maximum dose; 65 is the dose corresponding to the mean response that is halfway between
the minimum and the maximum effects (we also call it EDs), 6, is the slope parameter that
controls the steepness of the curve.

To perform our study, we assume that the dose effect Y is a continuous response, then the
mean response at X; is

Yii= u (X:,0) + &, & ~N (0, 0?).
Here u (X;,0) is the mean dose-response from (3), ® = (84, 6,, 65, 6,),j=1,2,3... n;, =1,
2, ..., k. We assume that the variance a2 is an unknown constant. Under this model setup, the
normalized Fisher information matrix for @ is obtained below
M (&;0) == Z _ wif (X, O (X;,0)7,

u (xl ©) 9u(X;,0) 0u(X,0) ou(X,0)

where f (X;) = N
ere f (X;) = ( " oe, ' a0, ' o6, A
0 T
0 %) 4 X
0,94 X% 0,(0,-0,)0;@4 Dy, * 04(82-01)0374X; "ing-
x;%4405%4 " x;%440,%4’ (Xie4+6394)2 ’ (Xie4+e3e4)2

Then, we obtain the normalized Fisher information matrix as



.n\ — 1 vk
M (§:6) = = Xizq wi
0 . B

_ 04 _ 204 4, Xi
0 204 0 e4’X 0, (91_92) 9493(294 1)XL (92 91)93 XL lne3

3 3 Xi 3 3

— B 5 - 0 0 0 0

(Xie4+6394)2 (Xie4+6394)2 (Xi 4405 4) (Xi 440, 4)

0,94 x,94 X204 (04-1), 204 (8,-6,)8 0ay 204 X1
93—19 5 i 5 (01—-6,) 6,63 X 27Y1)Us3 i 03
(Xi"*+057%)2 (X 4+083°%)2 (X.94+6394)3 (X 8449 94)3

6 26 t i 3
(01-05) 0,05 %4 Vx; ' (8;-0,) 0,05+ Vx; 2Oty 20 Youor 204 X
(X e4+9 94)3 (X 94+e 94_)3 (91—62)2 94263 Xi —(61—62)293 4 0,X; lne—;
i 3 i 3 T
.0 04 0.\ %
264, 94 X 204, 294 X; (X‘ 485 ) (Xi94+63 4)
(0,-6,)03°7*X; Inzt (0,-61)03°74X; Int
3 2 3 o 20.204—1 204 X; bn 204 204 X,
(XL,94+9394) (Xi94+e394_) —(6,-6,)°03 0,X; lng 2(0,-01)“63 X lnE

(044004 (xrr0.00)"

This information matrix is very important to search c-optimal designs for estimating the ED,, in

the next Chapter.




4. DESIGNS

In this Chapter, we discuss c-optimal designs for estimating the ED,, under model (4). We
employ the V-algorithm (Fedorov, 1972) to obtain the optimal design points and the Newton-
Raphon algorithm to obtain the optimal weights for the selected design points. Then we verify
these optimal designs by the General Equivalence Theorem. To evaluate the c-optimal designs,
we adopt the experimental setup in Padmanabhan and Dragalin (2010). Let the design space be
[0, 8] and the values of the model parameters ® = (0, -1.7, 4, 5).

4.1. Uniform Design

When there is no previous knowledge, it is very common to use a uniform design in dose-
response study. It allocates equal number of subjects to equally spaced dose levels. The number
of design points should be greater than or equal to the number of parameters, which is 4 in our
model. Also, based on the Carathéodory’s Theorem, we have no more than p(p+1)/2 +1 design
points, which is 11. Then the possible number of design points are between [4,11]. For our paper,

we consider three different uniform designs. £V is a uniform design with 4 points

.0001 267 533 8
§U1 - 1 l )
4

1 1
4 4 4

This uniform design allocates 25% of the subjects at each of the four design points. U2 is a

uniform design with 8 points

.0001 114 229 343 457 571 686 8
§re= 1 1 E oo 11 1)
8 8 8 8 8 8 8 8

This one allocates 12.5% of the subjects at each of the eight design points. £Y3 is a uniform

design with 11 points

.0001 8 16 24 32 40 48 56 64 72 8
V3= 1 1 1 1 1 1 1 1 11 1 .

11 11 11 11 11 11 11 11 11 11 11



This allocates around 9% of the subjects at each of the 11 design points. These three uniform
designs will be compared to our c-optimal designs for estimating the ED,, in chapter 5.
4.2. c-Optimal Design for Estimating the ED,,

In general, c-optimal design estimates a function of model parameters with a minimum
variance. The c-optimal design criterion is already shown in the background. For this paper, we
are interested in c-optimal design for estimating the ED,,. Under model (4), ED,, is expressed in
explicit form. ED,, is the solution of the following equation,

— p (Xh@) - e1
626, '

where p represents 100p% of the maximum treatment effect, u (X;,®) is the mean response at X;.

Then the ED,, is obtained as
P
EDp = 63 (g)e‘h
Let ED,, denote the maximum likelihood estimate of ED,,, then the variance of estimating the
ED, is

Var(ED, ) =[ ED,']"M(§ ©)'ED,,

1 =S
/ — 7]
were 80, 7=(0, 0, 2%~ () log )1 ).

C-optimal design for estimating the ED,, minimizes the variance of estimating the ED,,.
We use the V-algorithm to find the c-optimal design points and the Newton-Raphson algorithm
to find the optimal weights for the optimal design points. Then we use the General Equivalence
Theorem to verify the design is indeed the c-optimal design. According to the General

Equivalence Theorem, the design &* is a c-optimal design if and only if

{fTEOMTIE"; )g(0) 3 - [g(®]"M™'(€"; ©)g(8) <0.
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Here the equality holds if the x is one of the c-optimal design points. To illustrate the c-optimal
design for estimating the ED,,, we consider five different values of p (10, 30, 50, 70, 90).

We use the V-algorithm to find the c-optimal design points (Appendix A) and the
Newton-Raphson algorithm to find the optimal weights (Appendix B). The c-optimal designs for
estimating ED;, ED3q, EDsq, ED-(, and EDg, are as follows:

(1) c-optimal design for estimating ED; is

¢ _(.001 3.111 5221)
ED10™\ 36 50 14 )

The c-optimal design for estimating ED,, allocates 36% of the subjects to .001,
50% of the subjects to 3.111 and 14% of the subjects to 5.221. The optimal design is
verified by the General Equivalence Theorem (Figure 1). According to the General
Equivalence Theorem, only when the design points are c-optimal design points, the

sensitive function becomes very close to zero. Otherwise, it is always less than zero.

Verily the ¢-optimal design for ED10

o - ~ /\
i I3
\ A \.
! H : H Y
5 : b
B 1
;

Seneltve lunsien

1 N N H ]
] : H h
L=2 ;i. :! :.:
= L Vo

0 2 a 6 8

Dose evels

Figure 1. Plot of the sensitive function for c-optimal design for estimating ED4,,.
(2) c-optimal design for estimating ED, is

¢ :(.001 3.511 1991)
ED3o™\ 323 500 176/
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The c-optimal design for estimating ED;, allocates 32.3% of the subjects to .001,
50% of the subjects to 3.511 and 17.6% of the subjects to 7.991. The optimal design

is verified by the General Equivalence Theorem (Figure 2).

Verify the c-optimal design for ED30

o \ A

Seneltive function

Figure 2. Plot of the sensitive function for c-optimal design for estimating ED5,.
(3) c-optimal design for estimating EDg,, is

¢ =(.991 4.181 7.991)
EDso™\ 214 500 286 /)

The c-optimal design for estimating EDs, allocates 21.4% of the subjects to .991,
50% of the subjects to 4.181 and 28.6% of the subjects to 7.991. The optimal design

is verified by the General Equivalence Theorem (Figure 3).
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Verify the c-optimal design for ED50

“ N A
‘II i::.: '::il::
w | | :::' i
§ § ;
_g ::’ /
é l:’a 5': /
% < :::'i. :::: /
S ::::a, f:l:l
] \\/;
T T T T T
1] 2 4 6 8
Dose levels

Figure 3. Plot of the sensitive function for c-optimal design for estimating EDs,.
(4) c-optimal design for estimating ED-, is

¢ _(2.461 4.601 7.991)
ED707\ 17 50 33/

The c-optimal design for estimating ED-, allocates 17% of the subjects to 2.461,
50% of the subjects to 4.601 and 33% of the subjects to 7.991. The optimal design is

verified by the General Equivalence Theorem (Figure 4).

Verify the c-optimal design for ED70

o /\ y ;"/\‘-.

§
#
i

Seneltve function
-20
|

Dose levels
Figure 4. Plot of the sensitive function for c-optimal design for estimating ED-,,.
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(5) c-optimal design for estimating EDg is

.001 3.021 4901 7991
fEDgO_( )'

.051 201 449 299

The c-optimal design for estimating EDy, allocates 5.1% of the subjects to .001,
20.1% of the subjects to 3.021, 44.9% of the subjects to 4.901 and 29.9% of the
subjects to 7.991. The optimal design is verified by the General Equivalence Theorem

(Figure 5).

Verify the c-optimal design for ED90

o \ Ay N\

40

Sonelive funetion

80

20

:_;I: ::E' '._\ i
AV v \\J/

0 2 4 Li] a8

20

Dose kevels

Figure 5. Plot of the sensitive function for c-optimal design for estimating EDq,.

Clearly, we can see that the c-optimal design for estimating the ED,, is changed by
different values of p.
4.3. Robust c-Optimal Design

From previous section, we can see that for the four-parameter logistic model, the c-
optimal designs for estimating the ED,, is changed by different values of p. In real studies, the
researcher may want to change the values of p to study different ED,,s in the middle of the study.
For example, they set the experiments to study the EDs,. Then later, they change their goal to
study the ED3, or EDy,. Because c-optimal design for estimating the ED,, is changed by different
values of p, it cannot be guaranteed that the c-optimal design for estimating the ED,, provides the

14



same performance when the values of p are changed. Thus, we are interested in studying robust
c-optimal design for estimating the ED,, that works well for the changes in the values of p. For
illustration, we consider the five values of p to study the robust c-optimal design, but this could
be extended to any values of p. The robust c-optimal design combines the five c-optimality
criteria into one optimality criteria using the idea of compound design (Atkinson et al., 2007).
The idea is that the robust c-optimal design maximizes the product of the five efficiencies for
estimating the five different ED,,s, so that the robust design maximizes the efficiency for
estimating each ED,,.

A design efficiency shows how a design performs with respect to some criteria.

EffEDp (&) measures the efficiency of a design ¢ for estimating the ED,, against $ED, and itis

obtained as

-1
[ED)] " M(¢£p,:0) ED)
[ED,]"M(Z; ©)~1 ED),

Effgp, () =

Since EEDp provides the minimum variance of estimating the ED,,, the EffEDp (&) is always

between 0 and 1. We discuss the efficiency in the next chapter in detail.

The robust c-optimal design for estimating the ED,, is

$robust = Max (EffED10 (&).Effgp,,(§).Effgp_ (). Eff gp, (£). Effgp,, (f)) =

Max(VaT( EDlO)fEDlo ) Var( ED30)€ED30 ) Var( ED50)§ED50 ) Var( ED70)€ED70 ) Var( EDgo)fEDgo)

Var( EDlO)Erobust Var( ED30)$robust Var( EDSO)Erobust Var( ED70)$robust Var( EDgO)Erobust

The above equation can be rewritten as
$robust= Max(-log(Var(EDyo)¢, ... )-109(Var(EDso )¢, . )-109(Var (EDso)g, o .)

-|Og(Va7”( ED70)§robust)-|Og (Var( ED90)§robust))'

15



The General Equivalence Theorem states that &z, p.s¢ 1S the robust c-optimal design if

and only if

(£ MERobust ; @)~ [EDp])?
2D A ED] M Eropuse O BORT

where ¥ 4, 4; = 1 and 4; is a weight that represents the relative importance of ith ED, in the
list of interesting ED,,s. Here we assume that the five different ED,,s are equally important and it
provides that A; =1/5. To find the robust c-optimal design, we again apply the V-algorithm
(Appendix C). The robust c-optimal design for estimating the five different ED,,s is

:(.001 3221  4.581 7.991)
Robust™\ 197 269 322 212/

The robust c-optimal design allocates 19.7% of the subjects to .001, 26.9% of the subjects to
3.221, 32.2% of the subjects to 4.581 and 21.2% of the subjects to 7.991. The optimal design is

also verified by the General Equivalence Theorem (Figure 6).

Verify the robust c-optimal design for different EDp

o H y
L =" | 4
; |
N il
\ i '
| ; |

Seneltive functicn
08
|

05
!

08 04
| |
-

Figure 6. Plot of the sensitive function for robust c-optimal design.
Figure 6 shows that &g, 1S indeed robust c-optimal design and it maximizes the

efficiencies for estimating the five different ED,,s.
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5. EFFICIENCY

In this Chapter, we compare the efficiencies of our optimal designs to see their
performance. In this paper, we focus on efficiency with respect to c-optimality criterion. We
compare the variance of estimating the ED,, for a given design to the variance of estimating the
same ED,, under c-optimal design for the ED,,. The formula was given in the earlier chapter.

In general, if the efficiency of a design ¢ is g, it implies design ¢ needs 100(1/g-1)%
more subjects to provide the same accuracy for estimating interesting features as the optimal
design provides. So, EffEDp (&) tells us how many more samples we still need for estimating the
ED,, to have the same accuracy as the c-optimal design does. If a design & works very close to

the c-optimal design for estimating the ED,,, then EffEDp (&) = 1. Otherwise, EffEDp (&) becomes

far from 1. For example, Eff;EDp = .5 implies 100(1/.5-1)% =100% more subjects are needed for

a design ¢ to estimate the ED,, with the same accuracy as the c-optimal design provides.

We compare all the designs: the c-optimal designs for estimating the ED,, , the uniform
designs, and the robust c-optimal design for estimating five different ED,,s. Again, we consider
the five different values of p to demonstrate the ED,,. Their relative efficiencies are shown in
Table 1. We can see that the c-optimal design for the ED,, works really poorly for different
values of p and their changes are very dramatic.

The uniform designs provide efficiencies for estimating the five different ED, s between
25% and 60%, regardless of the number of design points they used.

The robust c-optimal design does not provide very high efficiency for estimating the
five ED,,s. However, it outperforms compared to the other designs and provides at least 58%

efficiency for estimating the five different ED,,s and the changes are not dramatic.

17



Table 1

Efficiency matrix of designs for estimating the ED

Design Eff; ED1 Eff; EDs0 Eff; Eps, Effs EDo Effs EDog
$epy, | 1 0.0003042608 | 0.0001011274 | 0.000089 0.0001514567
$Ep,, |0.001247212 |1 0.0009560702 | 0.0004052225 | 0.0004448016
$Epg, | 0.001347372 | 0.003143176 |1 0.004628685 | 0.002447087
$Ep,, | 0.000195762 | 0.000218999 | 0.000767351 |1 0.001818278
$Ep,, | 0.2247709 0.1990899 0.3369822 0.7059026 1

gUt 1 0.3591172 0.2489504 0.2611956 0.3516158 0.6050842
gvz 0.3888831 0.4560005 0.4627377 0.3724073 0.4291427
gus 0.3911447 0.4581159 0.4603254 0.369661 0.4270645
Erobust | 0.5757116 0.6056778 0.6771305 0.6325133 0.7589418
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6. CONCLUSION

Optimal design plays a key role in designing experiments efficiently. It specifies how to
distribute our resources over treatments in the most efficient way. Different types of optimal
designs have different goals. For our paper, we study c-optimal designs for estimating the ED,,.
We found that the c-optimal design for estimating the ED,, is changed by the value of p under
the four- parameter logistic model. We checked the efficiencies and observed that the c-optimal
design performs poorly when the value of p is changed. In order to avoid this problem, we
present the robust c-optimal design for estimating the ED,, and it works fairly well when the
values of p are changed.

The robust c-optimal design works well for the values of p that we used to construct the
robust c-optimal design. In future research, we want to investigate whether the robust c-optimal
design also works well for the values of p that are not used to build the robust design. For
example, in our study we used ED, 4, ED3o, EDsy, ED(, and EDy, to construct the robust c-
optimal design. However, does the robust c-optimal design still work well for estimating
ED,q, ED,y, EDgo, and EDg,?

Bretz, Dette and Pinheiro (2010) states that c-optimal design for estimating the ED,, is
very sensitive on the model choice. Here we used the four-parameter logistic model. We are also
interested in studying the robust c-optimal design that works well for different models. In the
future, we will find a robust c-optimal design that works well for both different values of p and

the changes in the models.
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APPENDIX A. R CODE FOR C OPTIMAL DESIGN POINTS

## Generalized Inverse of a Matrix
ginv<-function(X, tol = sqrt(.Machine$double.eps))
{
dnx <- dimnames(X)
if(is.null(dnx)) dnx <- vector("list", 2)
s <- svd(X)
nz <- s$d > tol * s$d[1]
structure(
if(any(nz)) s$v[, nz] %*% (t(s$u[, nz])/s$d[nz]) else X,
dimnames = dnx[2:1])
}
###c-optimality for research###
library(matrixcalc)
#Number of Parameters
k=4
#Value of Parameters
sital=0
sita2=-1.7
sita3=4
sitad=5
#Initial value

x0=c(0.1,2.91,4.83,8)
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n0=Ilength(x0)

w=rep(1/n0,(n0-1))

D=rbind(x0,w)

#information matrix

#1.Information matrix for one design point

infor=function(x)

{f=matrix(c(sita3"sitad/(x"sitad+sita3"\sitad), x"sitad/(x"sitad+sita3"sita4), (sital-
sita2)*sita3”\(sita4-1)*sitad*x"\sitad/(x"sitad+sita3"sita4)"2, (sita2-
sital)*(sita3”sitad)*x”sitad*log(x/sitald)/(x"\sitad+sita3”sitad)"2),nrow=4,ncol=1,byrow=F)
f%*%0t(f)}

#2.Updated information matrix

upinfor=function(W,X)

{k=length(X)

last_infor=infor(X[k])

infor=(1-sum(W))*last_infor

for (i in 1:(k-1))

{infor=infor+W[i]*infor(X[i])}

infor}

W=w[1:n0-1]

X=x0

newM=upinfor(W,X)

#initial information matrix

MO=upinfor(w,x0)
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#Find dn,
f<-function(x){
matrix(c(sita3”sitad/(x"\sitad+sita3”sitad), x"sitad/(x"sitad+sita3”sita4), (sital-
sita2)*sita3”\(sita4-1)*sitad*x"\sitad/(x"sitad+sita3"sita4)"2, (sita2-
sital)*(sita3”sitad)*x”sitad*log(x/sitald)/(x"sitad+sita3”sitad)"2),nrow=4,ncol=1,byrow=F)
}
phi.1 <- function(x){

matrix(c(0, 0, (x/(1-x))(1/sitad), -sita3/sitad"2*(x/(1-x))(1/sitad)*log(x/(1-x))), nrow=4,
ncol=1, byrow=F)
}
p=1
t=2
while(p>.0005){

x1=seq(0.001,8,.01)

p1=0.1

nl=length(x1)

dn=rep(0,n1)

for (j in 1:n1)

{dn[j]=(t(fF(x1[}]))%*%ginv(M0)%*%phi.1(p1)) 2}

for (j in 1:n1)

{if(max(dn)==dn[j])x1[j]=x1[j] else x1[j]=NA}
newX=na.omit(x1)

newdn=max(dn)
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k=t(phi.1(p1))%*%ginv(MO0)%*%phi.1(p1l)
#Find alpha(n+1)

#an=(newdn-k)/(k*(newdn-1))

an=1/t

#p<-abs(newdn-k)

#Get M(n+1)
newM=c(1-an)*MO0+c(an)*f(newX)%*%t(f(newX))
MO<-newM
p=abs((t(f(newX))%*%ginv(M0)%*%phi.1(pl))"2-

(t(phi.1(p1))%*%ginv(MO0)%*%phi.1(pl)))
newW=(1-an)*D[2,]
W=c(newW,an)
X=c(D[1,],newX)
newD=rbind(X,W)
D=newD
print(p)
t=t+1

}

#Summarize the result

c_optimal=by(D[2,],D[1,],FUN=sum)

#Verify c-optimal design

x0=DI[1,]
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n0=Ilength(x0)

w=D[2,1:(n0-1)]

M=upinfor(w,x0)

x1=seq(0.001,8,.01)

nl=length(x1)

ds=rep(0,nl1)

BB=t(phi.1(p1))%*%ginv(M)%*%phi.1(pl)

for (i in 1:n1)

{ds[i]=(t(f(x1[i]))%*%ginv(M)%*%phi.1(p1))*2-BB}
plot(x1,ds,cex=.1,main="Verify the c-optimal design for ED10",ylab="Sensitive

function”,xlab="Dose levels")
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APPENDIX B. R CODE FOR C OPTIMAL WEIGHTS

## Generalized Inverse of a Matrix
ginv<-function(X, tol = sqrt(.Machine$double.eps))
{
dnx <- dimnames(X)
if(is.null(dnx)) dnx <- vector("list", 2)
s <- svd(X)
nz <- s$d > tol * s$d[1]
structure(
if(any(nz)) s$v[, nz] %*% (t(s$u[, nz])/s$d[nz]) else X,
dimnames = dnx[2:1])
}
#number of parameter
k=4
#design spage(log(x))
LB=log(.001)
LB=round(LB,2)
UB=log(8)
UB=round(UB,2)

x=seq(LB,UB,.01)

sital=0

sita2=-1.7
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sita3=4

sitad=5

#value of parameter

T=c(sital,sita2,sita3,sitad)

#information matrix

#1.Information matrix for one design point

infor=function(T,X)

{f=matrix(c(T[3] T[4}/ (X T[4]+T[3]"T[4]), X T[4/ (X T[4]+T[3]"T[4]), (T[1]-
TRD*TERIN(TAI-L)*T[AP*XAT[AY (XA TIAH T3] T[4D2, (T[2]-
TIAD*(T[3INT[4])*XAT[4]*log(X/T[3])/ (X T[4]+T[3]"T[4])"2),nrow=4,ncol=1,byrow=F)
f%*%t(f)}

#2.Updated information matrix

upinfor=function(W,T,X)

{k=length(X)

last_infor=infor(T,X[k])

infor=(1-sum(W))*last_infor

for (i in 1:(k-1))

{infor=infor+W/[i]*infor(T,X[i])}

infor}

#g function

g=function(X)
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{matrix(c(0, 0, (X/(1-X))(1/sitad), -sita3/sitad2*(X/(1- X)) (1/sitad)*log(X/(1-X))), nrow=4,
ncol=1, byrow=F)}

#NW algorithm to find weight

¢_weight=function(W,T,X,d,r)

{p=length(W)

k=length(X)

inv=ginv(upinfor(W,T,X))

V=g(n)%*%t(g(r))

M=upinfor(W,T,X)

f1=rep(0,p)

f2=matrix(c(rep(f1,p)),nrow=p,ncol=p,byrow=F)

for (iin 1:p)
{f1[i]=sum(diag(-inv%*%(infor(T,X[i])-infor(T,X[K]))%*%inv%*%V))}

for(i in 1:p)

{for(j in 1:p)
{f2[i,j]=(sum(diag((inv%*%(infor(T,X[j])-infor(T,X[k]))%*%inv%*%(infor(T,X[i])-
infor(T,X[k]))%*%inv+inv%*%(infor(T,X[i])-infor(T,X[k]))%*%inv%*%(infor(T,X[j])-
infor(T,X[k]))%*%inv)%*%V)))}}

newweight=W-d*(f1%*%ginv(f2))

newweight}

##NW algorithm

Search_weight=function(X,T,r)

{diff=10

29



k=length(X)
W=rep(L/k,k-1)
while(diff>.000000001)

{d=2

NW=c_weight(W, T X,d,r)
minW=min(min(NW),1-sum(NW))
while(minW<0 & d>.0001)

{d=d/2

NW=c_weight(W, T X,d,r)
minW=min(min(NW),1-sum(NW))}
NW=c(NW, 1-sum(NW))
n=length(NW)

minW=min(NW)

if (MinW<0)

{for(i in 1:n)

{if (NW[i]==minW)NW[i]=0}}
diff=max(abs(W-NW[1:n-1]))
D=rbind(X,NW)

for (i in 1:n)

{if (D[2,i]==0) D[,i]=NA}
X=D[1]

W=D[2]

X=na.omit(X)
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W=na.omit(W)

k=length(X)

W=W/[1:k-1]

}

W=c(W,1-sum(W))
D=rbind(X,W)

D}

r=.9

X=c(0.001, 3.02, 4.90, 7.99)

Search_weight(X,T,r)
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APPENDIX C. R CODE FOR ROUBST C-OPTIMAL DESIGN

## Generalized Inverse of a Matrix
ginv<-function(X, tol = sqrt(.Machine$double.eps))
{
dnx <- dimnames(X)
if(is.null(dnx)) dnx <- vector("list", 2)
s <- svd(X)
nz <- s$d > tol * s$d[1]
structure(
if(any(nz)) s$v[, nz] %*% (t(s$u[, nz])/s$d[nz]) else X,
dimnames = dnx[2:1])
}
###c-optimality for research###
library(matrixcalc)
#Number of Parameters
k=4
#Value of Parameters
sital=0
sita2=-1.7
sita3=4

sitad=5

#lnitial value
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x0=c(0.1,2.91,4.83,8)

n0=Ilength(x0)

w=rep(1/n0,(n0-1))

D=rbind(x0,w)

#information matrix

#1.Information matrix for one design point

infor=function(x)

{f=matrix(c(sita3"sitad/(x"sitad+sita3"\sitad), x"sitad/(x"sitad+sita3"sita4), (sital-
sita2)*sita3”\(sita4-1)*sitad*x"\sitad/(x"sitad+sita3"sita4)"2, (sita2-
sital)*(sita3”sitad)*x”sitad*log(x/sitald)/(x"sitad+sita3”sitad)"2),nrow=4,ncol=1,byrow=F)
f%*%0t(f)}

#2.Updated information matrix

upinfor=function(W,X)

{k=length(X)

last_infor=infor(X[k])

infor=(1-sum(W))*last_infor

for (i in 1:(k-1))

{infor=infor+W[i]*infor(X[i])}

infor}

W=w[1:n0-1]

X=x0

newM=upinfor(W,X)

#initial information matrix
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MO=upinfor(w,x0)
#Find dn,
f<-function(x){
matrix(c(sita3”\sitad/(x"\sitad+sita3”sitad), x"sitad/(x"sitad+sita3"sita4), (sital-
sita2)*sita3”\(sita4-1)*sitad*x"\sitad/(x"sitad+sita3"sita4)"2, (sita2-
sital)*(sita3”sitad)*x”sitad*log(x/sitald)/(x"\sitad+sita3”sitad)"2),nrow=4,ncol=1,byrow=F)
}
phi.1 <- function(x){

matrix(c(0, 0, (x/(1-x))(1/sitad), -sita3/sitad"2*(x/(1-x))(1/sitad)*log(x/(1-x))), nrow=4,
ncol=1, byrow=F)
}
p=1
t=2
ob=function(x,p)
L(((t(F(x))%*%ginv(MO0)%*%phi.1(p))"2/(t(phi.1(p)))%*%ginv(MO0)%*%phi.1(p)))}
while(p>.0005){

x1=seq(0.001,8,.01)

pl=c(.1, .3, .5,.7,.9)

T=length(pl)
nl=length(x1)
dn=rep(0,n1)

for (j in 1:n1)
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{dn[j]=.2*ob(x1[j],p1[1])+.2*0b(x1[j]p1[2])+.2*ob(x1[j],p1[3])+.2*ob(x1[j] p1[4])+.2*
ob(x1[j].p1[5])}

for (j in 1:n1)

{if(max(dn)==dn[j])x1[j]=x1[j] else x1[j]=NA}

newX=na.omit(x1)

newdn=max(dn)

k=1
#Find alpha(n+1)

#an=(newdn-k)/(k*(newdn-1))

an=1/t

#p<-abs(newdn-k)

#Get M(n+1)
newM=c(1-an)*MO0+c(an)*f(newX)%*%t(f(newX))
MO<-newM
p=abs(newdn-1)
newW=(1-an)*D[2,]

W=c(newW,an)
X=c(D[1,],newX)
newD=rbind(X,W)
D=newD

print(p)

t=t+1
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¥

#Summarize the result

c_optimal=by(D[2,],D[1,],FUN=sum)

#Verify c-optimal design

x0=D[1]]

n0=Ilength(x0)

w=D[2,1:(n0-1)]

M=upinfor(w,x0)

x1=seq(0.001,8,.01)

nl=length(x1)

ds=rep(0,nl1)
#BB=t(phi.1(.1))%*%ginv(M)%*%phi.1(.1)%*%(t(phi.1(.3))%*%ginv(M)%*%phi.1(.3))%*%(t
(phi.1(.5))%*%ginv(M)%*%phi.1(.5))%*%(t(phi.1(.7))%*%ginv(M)%*%phi.1(.7))%*%(t(phi.
1(.9))%*%ginv(M)%*%phi.1(.9))

for (i in 1:n1)
{ds[i]=.2*ob(x1[i],p1[1])+.2*ob(x1[i],p1[2])+.2*0b(x1[i],p1[3])+.2*0b(x1[i],p1[4])+.2*0b(x1[i]
P1[5])}

plot(x1,ds,cex=.1,main="Verify the robust c-optimal design for different EDp",ylab="Sensitive

function”,xlab="Dose levels")
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APPENDIX D. R CODE FOR FINDING EFFICIENCY

## Generalized Inverse of a Matrix
ginv<-function(X, tol = sqrt(.Machine$double.eps))
{

dnx <- dimnames(X)

if(is.null(dnx)) dnx <- vector("list", 2)

s <- svd(X)

nz <- s$d > tol * s$d[1]

structure(

if(any(nz)) s$v[, nz] %*% (t(s$u[, nz])/s$d[nz]) else X,
dimnames = dnx[2:1])

}
#information matrix
#1.Information matrix for one design point
infor=function(T,X)
{f=matrix(c(T[3] T[4}/ (X T[4]+T[3]"T[4]), X T[4}/ (X T[4]+T[3]"T[4]), (T[1]-
TRD*TERIN(TAI-L)*T[AP*XAT[AY (XA TIAH T3] T[4D)2, (T[2]-
TIAD*(T[3INT[A])*XAT[4]*log(X/T[3])/ (X T[4]+T[3]"T[4])"2),nrow=4,ncol=1,byrow=F)
f%*%t(f)}
#2.Updated information matrix
upinfor=function(W,T,X)
{k=length(X)

last_infor=infor(T,X[k])

37



infor=(1-sum(W))*last_infor

for (i in 1:(k-1))

{infor=infor+W/[i]*infor(T,X[i])}

infor}

f<-function(x){

matrix(c(sita3”sitad/(x"\sitad+sita3”sitad), x sitad/(x"sitad+sita3”sita4), (sital-
sita2)*sita3”\(sita4-1)*sitad*x"\sitad/(x"sitad+sita3"sita4)"2, (sita2-
sital)*(sita3”sitad)*x”sitad*log(x/sitald)/(x"sitad+sita3”sitad)"2),nrow=4,ncol=1,byrow=F)
}

#g function

g=function(X)

{matrix(c(0, 0, (X/(1-X))(1/sitad), -sita3/sitad”2*(X/(1- X)) (1/sitad)*log(X/(1-X))), nrow=4,
ncol=1, byrow=F)}

#Value of Parameters

sital=0

sita2=-1.7

sita3=4

sitad=5

T=c(sital,sita2,sita3,sitad)

#robust design points

X2=c(0.001,3.221,4.581,7.991)

W2=¢(0.197, 0.269, 0.322)

#c-optimal design points
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X1=c(0.001,3.021,4.901,7.991)

W1=c(0.051, 0.201, 0.449)

LB=.0001

UB=8
U4=c(LB,LB+8/3,LB+2*(8/3),LB+3*(8/3))
Wi=rep(1/4,3)
U8=c(LB,LB+8/7,LB+2*(8/7),LB+3*(8/7),LB+4*(8/7),LB+5*(8/7),LB+6*(8/7),LB+7*(8/7))
W8=rep(1/8,7)
U11=c(LB,LB+8/10,LB+2*(8/10),LB+3*(8/10),LB+4*(8/10),LB+5*(8/10),LB+6*(8/10),LB+7*
(8/10),LB+8*(8/10),LB+9*(8/10),LB+10*(8/10))
W11=rep(1/11,10)

##Varl0

eff10=function(X2,W2)
{M10=upinfor(W1,T,X1)

M=upinfor(W2,T,X2)

p=.90

N=(t(9(p))%*%ginv(M10)%*%g(p))
DN=t(g(p))%*%ginv(M)%*%g(p)

eff=N/DN

eff}

eff10(X2,W2)

effl0(U4,W4)

effL0(US,W8)
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eff10(U11,W11)
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