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ABSTRACT 

Understanding the impacts of surface microtopography on hydrologic processes is 

critical. The objectives of this thesis research are: (1) to evaluate the effects of DEM resolution 

on microtopographic characteristics, hydrologic connectivity, and modeling of hydrologic 

processes; and (2) to assess the influences of multiple rainfall events on surface and subsurface 

hydrologic processes with the use of a puddle-to-puddle (P2P) modeling system. The change in 

DEM resolution has a significant effect on how surface microtopography is depicted, which in 

turn alters the hydrologic response of a topographic surface. The smoothing of reduced DEM 

resolution tends to enhance hydrologic connectivity, reduce the depression storage and 

infiltration, and increase surface runoff. Temporal rainfall distribution results in spatio-temporal 

variations in soil water dynamics, depression storage, infiltration, hydrologic connectivity, and 

surface runoff. The reduction in ponding time and infiltration, and the enhancement of 

hydrologic connectivity further caused earlier and greater surface runoff generation.  
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CHAPTER 1. GENERAL INTRODUCTION 

Understanding the impacts of surface microtopography on hydrologic processes is 

critical. In order to improve hydrologic modeling, accurate surface topographic information is 

needed as the hydrologic processes basically reflect the responses of the topographic surface. 

One of the important variables that may be used in characterization of a topographic surface is 

elevation. Soil roughness elements quantify the variation in surface elevation and are available at 

different scales. Roughness elements include grains, aggregates, clods, tillage marks, and 

landscape features (Huang and Bradford 1992). Surface microtopography is a small scale surface 

roughness that plays a pivotal role in surface and subsurface hydrology and is portrayed by using 

various topographic features such as depressions/puddles, peaks, ridges, and channels (Chu 

2011).  Furthermore, the study of surface microtopography is essential for watershed modeling 

and management. Although it is not quantified precisely in most of the existing hydrologic 

models, surface microtopography must be well defined and outlined (Chu et al. 2010). When rain 

falls on a surface, the water first infiltrates into soil. After a ponding condition is achieved, filling 

of surface depressions starts. After depressions are fully filled, water may spill to the 

downstream or to adjacent depressions so that merged puddles may be formed. Combined 

puddles might separate during drying to form independent puddles. This dynamic puddle-to-

puddle filling-spilling-merging-splitting process is referred to as the P2P process (Chu 2011). 

The study of microdepressions is important as the functions of such surface topographic features 

may go beyond surface water detention and alter drainage flow paths and the inception of 

overland flow (Darboux et al. 2001). In addition, they may affect the quantification of depression 

storage (Huang and Bradford 1990), partitioning of rainfall into infiltration and surface runoff, 

and the whole water mass balance of a hydrologic system (Chu 2011). Moreover, the spatio-
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temporal distributions and depths of runoff water are functions of surface topography (Huang 

and Bradford 1990). To improve the understanding of surface runoff and infiltration processes, it 

is necessary to investigate surface microtopography and depressions storage. Surface 

microtopography is basically composed of small features. As surface depression storage depth 

has a comparable magnitude to these microtopographic features, quantifying the spatial surface 

microtopography becomes imperative as opposed to using single length scale (Huang and 

Bradford 1990). Use of a single scale can smooth several microtopographic features and 

ultimately underestimate the surface depression storage. 

Quantifying the effects and interrelationships of different hydrologic variables and 

processes has been presenting perplexing challenges to surface microtopography characterization 

and hydrologic modeling.  Resolution of a digital elevation model (DEM) and temporal 

distribution of rainfall are two factors that have a great impact on both surface microtopographic 

and hydrologic modeling. Grid spacing (i.e., DEM resolution) determines the extent of 

microtopographic information to be revealed or hidden. At larger grid spacing, some topographic 

features may be hidden and aggregated together, while at a finer scale (higher resolution), the 

topographic details can resemble the topography of a real surface. This effect can change the 

virtual hydrologic response of the topographic surface drastically. Temporal rainfall distribution 

is another important factor that can amend the dynamics of hydrologic processes over a 

topographic surface. When rain falls on a topographic surface, the water will infiltrate until the 

rainfall intensity exceeds the infiltration capacity. Thereafter, water will start to pond on the 

surface. When rainfall ceases, the surface will start drying and the ponded water will be depleted. 

During the pre-ponding, post-ponding and the dry time periods, soil moisture changes in 

different ways. Consequently, when another rainfall event starts, due to the change in moisture 
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regime of the topographic surface, hydrologic processes often show dissimilar behaviors when 

compared with those in the preceding rainfall event. Generally, DEM resolution and multiple 

rainfall events can affect the surface microtopographic characteristics, quantification of surface 

depression storage, hydrologic connectivity, spatio-temporal distribution of infiltration, overland 

flow generation processes, and subsurface water dynamics. Hence, a thorough study of such 

factors becomes important and their consideration can ameliorate the accuracy of currently used 

hydrologic models and improve the existing modeling approaches. 

1.1. Topographic Surface Characterization 

Topographic surface data can be acquired in several ways (Schiewe 2002; MacMillan et 

al. 2003).  DEMs and images have been some of the widely used data sources. Due to the scale 

of microtopographic study, precise instruments that can collect data in smaller units have been 

needed. Moreover, due to the lack of fast data processing machines, studies that focused on 

microtopography were facing limitations (e.g., Darboux et al. 2001). Technological 

advancements enabled researchers to examine microtopography and other related hydrologic 

processes at an increasingly smaller scale. Laser scanners brought major breakthrough in 

microtopographic studies (Govers 2000). Scanners which can acquire data in a resolution less 

than a millimeter are in common use for DEMs. Darboux and Huang (2003) developed an 

instantaneous-profile laser scanner, which was able to capture small scale data at a faster rate. 

Similarly, images were successfully utilized in topographic surface characterization and analysis 

(Blaschke 2010; Drăguţ and Eisank 2012). Depending on the techniques and types of data 

acquired, several methods have been proposed for topographic surface characterization and 

analysis. Deterministic approach might be employed to extract information from DEM data. 

While for images, some statistical approaches might be necessary to get accurate results.  
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In this thesis research, an Object-Based Image Segmentation (OBIS) tool and a Surface 

Topographic Parameters (STP) tool have been developed for characterization of surface 

microtopography and computation of topographic parameters. In addition, the Puddle 

Delineation (PD) program (Chu et al. 2010) was used for puddle characterization and modeling. 

It is also an essential part of the P2P modeling system. 

1.1.1. Object-based image analysis 

Object-based image analysis (OBIA) is a powerful method, by which similar pixels 

surrounding a given point are conglomerated to form an object, instead of treating pixels 

individually. Due to the lack of high resolution images, pixel-based image analysis was the only 

option available. The advancement in remote sensing has dramatically improved image quality 

and, on the other hand, created a challenge that is difficult to overcome with the classical pixel-

based image analysis. Using the latest imaging technologies, obtaining high resolution images is 

not difficult. Hence, instead of trying to analyze pixels individually, considering groups of pixels 

became an alternative and probably the efficient way with considerable advantages. This method 

is being utilized in a wide range of engineering and other fields. 

An object-based image segmentation (OBIS) tool has been developed based on the 

concept of OBIA in this study. K-means algorithm, color frequency table, and Euclidean distance 

were combined in order to avoid human intervention and come up with a non-supervised 

clustering approach. K-means is one of the simplest, fastest and efficient non-hierarchical 

clustering algorithms. In a set of T data points p1, p2, p3,…, pT; K clusters U1, U2, U3, …, UK; and 

K corresponding cluster centers u1, u2, u3, …, uK [note that each cluster contains ti data points (0 

< ti < T)], the mean-square-error function is given by (Zalik 2008): 

 


 


Ki

i Up

ii

ii

upE
1

2

 (1.1) 
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The idea behind the K-means clustering algorithm is to minimize the error function E so 

that the data point pi will be assigned to the cluster Ui with the minimum E. The cluster center 

shifts position adaptively and the iteration will terminate when the cluster center ceases to move 

and stays at the centroid of the cluster. The parameters that need to be specified are the number 

of clusters, their seeding location and threshold between clusters. Once these are specified, each 

data point (pixel) is assigned to a cluster center based on the minimized error function criteria. 

Based on this, a new cluster center is calculated and this process is repeated until the calculated 

cluster center is identical to the previous one. And this would be the final stage of the clustering, 

and the image would be segmented into a number of objects. The number of the objects is equal 

to the number of clusters specified. 

K-means is most commonly used with Euclidean distance when the distance between the 

image data points (pixels) and the cluster centers is calculated (Jain 2010). Color is defined by 

three positive primary color values which are Red (R), Green (G), and Blue (B), indicating that 

the color space is the representation of the primary colors (R, G, and B) in a space Cartesian 

coordinate system as a volume (Wright 2007). Therefore, vector addition should be used when 

calculating the Euclidean distance between two color points. In a set of T data points p1, p2, p3,…, 

pT; K clusters U1, U2, U3, …, UK and K corresponding cluster centers u1, u2, u3, …, uK, the 

Euclidean distance between the first cluster center and any data point can be calculated by: 

2

1

2

1

2

11 )()()( iBBiGGiRRi pupupud      ( Ti 1 ) (1.2) 

1.1.2. OBIS tool 

The Windows-based OBIS tool (Figure 1.1) was developed using C#. In the OBIS 

program, the K-means algorithm along with a RGB color frequency table is used for image 

segmentation. Specifically, the number of clusters and threshold are specified for an image. The 
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image is then segmented into a number of homogeneous regions determined by the clusters. The 

color frequency table lists the number of times that each color is used in the image (i.e., color-

frequency distribution). It is important to know where the initial cluster centers are located 

(seeding) as the entire process is very sensitive to this initialization criteria. If the cluster centers 

did not fall on the right locations, the segmentation process may end up with unexpected results. 

In OBIS, instead of randomly seeding initial cluster centers, they are made to fall on the 

predetermined color frequency table top list colors. Subsequent cluster centers are selected 

starting from top in such a way to exceed the specified threshold. This dramatically improves the 

traditional K-means clustering as it minimizes the sensitivity to initialization criteria and makes 

it more predictable and sensible. 

 

 

 
Figure 1.1. Main interface of OBIS tool 
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1.1.3. Surface topographic parameters  

The availability of high-resolution DEM data allows one to accurately characterize 

surface topography, which further improves watershed delineation and the related hydrologic and 

environmental modeling. Quantitative DEM-based analyses provide essential hydrotopographic 

information. The commonly used surface topographic metrics include slope, aspect, profile 

curvature, plan curvature, tangential curvature, and mean curvature. The equations used to 

calculate each parameter and the kernel window used in their derivation are given below. 

Kernel window 

A kernel or moving window was used to calculate topographic parameters for each DEM 

grid. The size of the kernel window was 3 × 3 (Figure 1.2). "z" denotes the grid elevation. 

Numbering starts from the upper left corner of the kernel window. The central cell is "the cell in 

focus." Assuming that there exists a function to represent the topographic land surface: z = 

h(x,y), the first and second derivatives of h(x,y) can then be calculated based on the nine cells.  

z1 z2 z3 

z4 z5 z6 

z7 z8 z9 

 

 

 

 

w 

Figure 1.2. 3 × 3 kernel window with a cell size of w 

Slope (S) 

Slope gradient is given by Evans-Young method (Pennock et al. 1987; Pike at al. 2008): 

22100 nmS   (1.3) 

                                                         

where S = slope (%); m = ∂z /∂x; n = ∂z/∂y; z = elevation; and x, y = coordinates.  
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Aspect (A) 

Aspect can be expressed as (Shary et al. 2002; Olaya 2008): 


















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0,1)(),(
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 (1.5) 

  

It should be noted that aspect is not defined if slope is zero. 

Curvatures (𝜅) 

Curvature calculation is considered difficult due to the fact that different curvatures can 

be obtained in different directions, depending on the purposes (Mitášová and Hofierka 1993). 

Profile curvature is in the direction of the gradient and signifies the change of slope angle, which 

is a governing factor for the change in velocity of mass flowing down along slope curve (Krcho 

1973; Young 1978; Mitášová and Hofierka 1993; Olaya 2008).  

32222

22

Pr
)1()(

2

nmnm

knjinmim
of




  (1.6) 

 

where i = ∂2z/∂x2; j = ∂2z//∂x∂y; and k = ∂2z/∂y2. 

Tangential curvature is measured normal to the plane in the direction perpendicular to 

gradient and it is always tangent to the contours (Mitášová and Hofierka 1993; Olaya 2008). 

2222

22

1)(

2

nmnm

kmjnmin
Tan




  (1.7) 

Plan curvature is in the direction perpendicular to gradient and measures the change in 

aspect angle, in which the divergence or convergence of flowing water is dictated. Normally, this 
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is measured in a horizontal plane (Evans 1972; Krcho 1973; Mitášová and Hofierka 1993; Olaya 

2008). 

322

22

)1(

2

nm

kmjnmin
Plan




  (1.8) 

Mean curvature is the average of profile and tangential curvatures. It shows the mean 

concavity or convexity, in which accumulations are given by positive values (Young 1805; 

Olaya 2008). 

  TanofMean


Pr2

1
 (1.9) 

1.1.4. Surface topographic parameters (STP) tool 

The STP tool (Figure 1.3) is designed to compute the aforementioned topographic 

parameters. The outputs can be displayed in tabular and graphic formats. Its user’s interface 

consists of seven command buttons and one combo box to enable flexibility of options. 

 

 

 

 

 

 

 

 

 

Figure 1.3. Main interface of STP tool 
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1.1.5. Introduction to Puddle Delineation (PD) program 

Chu et al. (2010) detailed the PD program (Figure 1.4), which has been used in this study 

for DEM-based puddle identification and characterization. The PD implements a new approach 

for the identification of puddle cells, centers, thresholds, flats, and levels, storage volume, 

maximum depression storage (MDS), maximum ponding area (MPA), and the relationships of 

multiple puddles, which ultimately are used in modeling of the puddle-to-puddle dynamic 

process. The PD search algorithm involves eight neighboring cells (top, bottom, right, and left) 

in addition to the cell in focus (central cell). If a cell has an elevation lower than its eight 

neighboring cells is termed as a center. If multiple cells are identified as centers they form a flat. 

The puddle spilling point is called threshold. The minimum criterion for a puddle is that it should 

have at least one center and one threshold. When one or more puddles share a threshold they may 

combine to form a larger puddle which is referred as a higher level puddle. Multiple higher level 

puddles may eventually merge to form the highest level puddle. Once all such hierarchical 

relationships are identified, puddle property parameters including puddle storage at all levels, 

MDS, MPA, and puddle depths are calculated. The PD program also determines flow directions 

and accumulations, and computes slopes and other microtopographic parameters. The PD 

program provides essential surface delineation data and microtopographic parameters for the P2P 

model. 
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1.2. Introduction to P2P Modeling System 

The P2P modeling system (Figure 1.5) (Chu et al. 2013a and b) was utilized in this study 

for characterization of surface microtopography and physically-based modeling of dynamic P2P 

filling-spilling-merging-splitting overland flow processes, infiltration, and unsaturated flow. The 

P2P model is a quasi-3D, distributed model that simulates overland flow across a topographic 

surface as well as infiltration and unsaturated flow in heterogeneous soils under complex rainfall 

events that may include both wet and dry time periods. It features a hierarchical modeling 

framework (Chu et al. 2013a).  The input data of the model primarily include surface 

topographic data from the PD program, and the data/parameters associated with spatial and 

temporal discretization (e.g., row and column of DEM grids, soil layers and cells, time interval, 

and total simulation period), rainfall, evaporation, soil properties, initial surface ponding, and 

initial soil moisture condition. The P2P model provides all details on both spatial and temporal 

variations in surface ponding, P2P filling-spilling-merging dynamics, overland flow, infiltration, 

unsaturated flow, and hydrologic connectivity. The results can be displayed using the built-in 

Figure 1.4. Main interface of PD program 
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Figure 1.5. Main interface of the Windows-based P2P modeling system and 3D distribution of 

simulated surface ponding areas 

2D/3D visualization tools or using a table or text format. My part in the P2P model was partial 

interface programming. 

In the P2P system, a modified Green-Ampt model (Chu and Marino 2005; Chu and 

Marino 2006) was used for simulating infiltration and unsaturated flow. This infiltration module 

can simulate infiltration through a layered soil profile of an arbitrary moisture distribution under 

any complex rainfall input (steady, unsteady, and multiple events). For the wet time period, the 

wetting front movement is tracked and the shift between ponding and non-ponding surface 

conditions is simulated. Once a particular rainfall event stops, the drainage and redistribution 

module takes over the task of simulating the soil moisture movement. In the P2P, different forms 

of Richards equations are used for vertical soil moisture drainage and redistribution.  

Based on the PD results, the P2P model automatically divides the entire topographic 

surface into basins and puddle based units (PBUs). PBU includes a puddle and its contributing 

area or the cells that are draining to the puddle, while a basin can include one or more PBUs 

(Chu et al. 2013a). PBUs may discharge to another downstream PBU or to the outlet when water 

level reaches the threshold thereby forming a cascading drainage network. No contribution is 

expected from PBU before the threshold is reached. In the P2P model, overland flow is routed 
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within each PBU for all respective cells (Cell to Cell (C2C) routing) and for all puddles 

in/between PBUs (P2P routing). Once all PBUs are connected, MDS will be reached and the 

entire surface will contribute runoff water to the outlet(s). 

The hydrologic connectivity of a topographic surface is interrupted by surface depression 

and as such it is represented by a series of spatially distributed hydrologically connected areas 

(ACs). Yang and Chu (2013) proposed a concept of P2P hydrologic connectivity to characterize 

hydrologic connectivity related to the P2P dynamics. The structural hydrologic connectivity 

(Antoine et al. 2009; Lexartza-Artza and Wainwright 2009) of a topographic surface reflects the 

static microtopographic properties of the surface and is subject to changes only by 

geomorphologic processes. Another indicator is functional hydrologic connectivity (Bracken and 

Croke 2007), which characterizes the dynamic changes and evolution of ACs and their 

linkage/separation to/from the outlet(s). The properties of ACs and MDS are functions of surface 

microtopography and puddle characteristics, and their evolution is strongly affected by the 

dynamic P2P processes (Yang and Chu 2013). 

1.3. Objectives 

The overall goal of my research is to model surface microtopography and the related 

hydrologic processes. Specifically, the objectives of  this thesis research are: (1) to evaluate the 

effects of DEM resolution on microtopographic characteristics, hydrologic connectivity, and 

modeling of hydrologic processes; and (2) to assess the influences of multiple rainfall events on 

surface and subsurface processes with the use of the P2P modeling system. 

The purpose of Chapter 1 was to provide a brief overview of surface microtopography 

and the associated factors that affect hydrologic modeling; and an introduction to the P2P 
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modeling system. Moreover, DEM- and image-based approaches that are used for topographic 

surface characterization were introduced.   

The objective of Chapter 2 was to show the effects of DEM resolution on 

microtopographic characteristics, hydrologic connectivity, and modeling of hydrologic 

processes. Specifically, this chapter covered the spatial and temporal changes in hydrologic 

connectivity, surface depression storage, infiltration as DEM resolution changed. The effects of 

DEM resolution on surface runoff and MDS were also discussed. Analysis of several 

microtopographic characteristics was included and the chapter as a whole described the 

interrelationships of surface microtopographic characteristics, hydrologic connectivity, and 

various hydrologic processes. 

The objective of Chapter 3 was to quantify the effects of multiple rainfall events on 

surface and subsurface processes. The changes in spatio-temporal distributions of infiltration and 

surface depression storage, initial moisture condition, and wetting front movement that were 

induced by different rainfall events were discussed. Moreover, this chapter also covered the 

effects of multiple rainfall events on hydrologic connectivity, depression filling time, and the 

time to reach maximum depression storage.  
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CHAPTER 2. EFFECTS OF DEM RESOLUTION ON 

MICROTOPOGRAPHIC CHARACTERISTICS, HYDROLOGIC 

CONNECTIVITY, AND MODELING OF HYDROLOGIC PROCESSES 

2.1. Abstract 

The resolution of a digital elevation model (DEM) is one of the crucial factors that need 

due consideration in watershed hydrologic and environmental modeling. DEM resolution (or grid 

size) can cause significant variability in the representation of surface topography, which further 

affects quantification of hydrologic connectivity and simulation of hydrologic processes. The 

objective of this study is to examine the effects of DEM resolution on (1) surface 

microtopographic characteristics, (2) hydrologic connectivity, and (3) the spatial and temporal 

variations of hydrologic processes including infiltration, surface depression storage, evaporation, 

and surface runoff. A puddle-to-puddle (P2P) modeling system was utilized for surface 

delineation and modeling of the P2P overland flow dynamics, surface runoff, infiltration, and 

unsaturated flow for nine DEM resolution scenarios. Comparisons of the simulation results for 

the nine modeling scenarios demonstrated that coarser DEM resolutions tended to eliminate 

topographic features, further reduce surface depression storage, infiltration, and evaporation, and 

strengthen hydrologic connectivity and surface runoff. In contrast, finer DEM resolutions 

captured more detailed microtopographic variations and facilitated more accurate simulation of 

hydrologic processes. This study emphasizes the importance of DEM resolution in 

characterization of surface microtopography and its critical role in improvement of hydrologic 

modeling. 
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2.2. Introduction 

Accurate representation of land surface is crucial to watershed hydrologic and 

environmental modeling. Distributed hydrologic models have been successfully utilized in 

conjunction with land surface models for hydrologic studies as the spatial and temporal 

distributions of hydrologic processes are dictated by surface topography. Digital elevation 

models (DEMs), which are available at different resolutions and scales, have been used as a data 

source to derive topographic and hydrologic attributes. However, no universal DEM exists, 

which can be used for different purposes without any bias. Thus, the biggest challenge to the 

modeling is how to identify the right DEM with the right resolution and scale.  

Studies have been conducted to evaluate the influences of DEM resolution (or grid size) 

on hydrologic analysis and modeling. Yang and Chu (2013a) investigated the effects of DEM 

resolution on surface depression properties and hydrologic connectivity, and analyzed the 

relationships and distributions of depression property parameters for various microtopographic 

surfaces with different DEM resolutions. They demonstrated the remarkable influences of DEM 

resolution on microtopographic characteristics and hydrologic connectivity. Wu et al. (2008) 

evaluated the effects of DEM resolution on topographic derivatives including slope, upslope 

contributing area, flow length, and watershed area. Zhang and Montgomery (1994) found that 

slope, drainage area per unit contour length, topographic index, surface saturation, and 

catchment's response to a storm event varied with DEM grid sizes for the same watersheds. 

Thompson et al. (2001) compared terrain attributes and quantitative soil-landscape models 

originated from grid based DEMs and found that terrain attributes varied spatially as a result of 

variations in DEM resolutions. Wolock and Price (1994) used TOPMODEL to show the effects 

of both DEM map scale and data resolution on the statistics of topographic index distribution and 
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prediction. Sørensen and Seibert (2007) also emphasized dissimilar topographic wetness indices 

resulted from different DEM resolutions. Li and Wong (2010) analyzed different DEM 

resolutions and sources and found that accurate stream networks could be extracted from higher 

resolution DEMs although it might not always be the case. In addition, they underlined that 

higher resolution data had a lesser impact on flood simulation. Charrier and Li (2012) concluded 

that DEM resolution had a great impact on flood plain delineation and also pointed out that 

coarser DEMs could be more appropriate for flood plain modeling and analysis as fine resolution 

DEMs were more sensitive to small topographic changes. Wang and Yin (1998) used the ArcGIS 

depression filling algorithm and obtained similar results for USGS DEMs with scales of 1:24,000 

and 1:250,000. Vaze et al. (2010) conducted a statistical analysis and presented a good 

comparison between LiDAR DEMs and field surveyed elevation data although the LiDAR 

DEMs were better than the elevation data derived from contour maps. They found that both 

accuracy and resolution of a DEM play an important role in the resulting hydrologic spatial 

indices. Zhang et al. (2014) studied the impacts of DEM resolution on hydrology and non-point 

source (NPS) contaminants in their SWAT modeling. Dixon and Earls (2009) evaluated the 

sensitivity of stream flow to DEM resolution using ArcSWAT and showed dissimilar modeling 

results between the original DEM and the resampled one. Lin et al. (2010) concluded that DEM 

resolution might affect uncertainty analysis.   

In addition, traditional DEM-based delineation often involves depression filling (fill sink) 

and surface reconditioning, which impose a permanent change in the original DEM and also 

potentially affect the subsequent modeling (Callow et al. 2007). Such models fail to directly 

account for the significance of surface depressions. In summary, the influences of DEM 

resolution on hydrologic modeling have been extensively studied for different conditions and 
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various purposes. However, some important issues still remain unaddressed. For example, how 

does DEM resolution affect specific hydrotopographic processes that are well connected and 

have intrinsic interactions? The focus of this study is on quantifying the changes in the 

interrelated microtopographic and hydrologic processes induced by different DEM resolutions. 

The specific objective of this study is to examine the effects of DEM resolution on (1) surface 

microtopographic characteristics, (2) hydrologic connectivity, and (3) the spatial and temporal 

variations of hydrologic processes including infiltration, surface depression storage, evaporation, 

and surface runoff. To achieve the objective, surface delineation and puddle-to-puddle (P2P) 

overland flow modeling are performed for nine DEM resolution scenarios and the simulation 

results are analyzed and compared. 

2.3. Materials and Methods 

2.3.1. Modeling scenarios 

The area of the topographic surface selected for this modeling study was 179,200 cm2 

(560 × 320 cm) (Figure 2.1). The soil profile was discretized into 2.5-mm cells. The total 

simulation period was 100 min, which consisted of 100 time steps (i.e., time interval t = 1 min). 

The original surface was scanned in the field by using an instantaneous-profile laser scanner 

(Chu et al. 2010). Bogart (2014) described the detailed procedures regarding the field experiment 

setup. This study utilized the experimental data and focused on modeling. The horizontal and 

vertical resolutions of the laser scanner were 0.98 and 0.5 mm, respectively. Based on the 

original DEM, nine different resolution DEMs (grid size DX = 2, 4, 5, 8, 10, 16, 20, 40, and 80 

cm) were created by employing the Kriging method. These specific grid sizes were selected 

because they produced square grids that covered the entire field plot. Figures 2.1a-2.1d show 

four selected DEMs. In the analyses of most results, these four DEM grid sizes will be used. 
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Nine modeling scenarios (M1 - M9) corresponding to the nine DEM resolutions were 

created to evaluate the impacts of DEM resolution on microtopographic characteristics, 

hydrologic connectivity, and hydrologic processes simulated by the P2P model. For all modeling 

scenarios, identical rainfall, soil type, and initial soil moisture content (θ0) were used. A 30-min 

unsteady rainfall event was applied to a sandy clay loam soil surface. The intensities of the 

unsteady rainfall were 5.0 cm/hr at t = 0 - 10 min, 8.0 cm/hr at t = 11 - 20 min, 5.0 cm/hr at t = 

21 - 25 min, and 3 cm/hr at t = 26 - 30 min. There was no rain during the remaining time steps 

(i.e., t = 31 - 100 min). It was assumed that the soil and rainfall were uniformly distributed across 

the soil surface. Thus, only one soil zone and one rainfall zone were considered in the P2P 

modeling. Table 2.1 shows the soil hydraulic parameters for the selected soil (sandy clay loam). 

A uniform distribution of initial soil moisture (θ0 = 0.2 cm3/cm3) was assumed. 

Table 2.1. Major soil hydraulic parameters a 

Parameters Values 

Saturated hydraulic conductivity Ks (cm/h) 1.31 

Suction head hs (cm) 21.85 

Saturated water content θs (cm3/cm3) 0.39 

Residual water content θr (cm3/cm3) 0.10 

Soil water retention parameter n 1.48 

Soil water retention parameter α (1/cm) 0.059 
a Carsel and Parrish, 1988. 

(a) DX = 4 

cm 

 

(b) DX = 16 cm  

 

(c) DX = 40 cm 

 

(d) DX = 80 cm 

 Figure 2.1. DEMs for four selected DEM grid sizes (DX = 4, 16, 40, and 80 cm) 
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2.3.2. Hydrologic connectivity analysis 

The P2P filling-spilling-merging-splitting dynamics characterize overland flow 

generation (Chu et al. 2013a and b). The structural hydrologic connectivity (Antoine et al. 2009; 

Lexartza-Artza and Wainwright 2009) of a topographic surface is derived from its DEM. It 

reflects the static microtopographic properties of the surface and is subject to changes only by 

some geomorphologic processes. Another indicator is functional hydrologic connectivity 

(Bracken and Croke 2007), which characterizes the dynamic changes and evolution of 

hydrologically connected areas (ACs) and their linkage/separation to/from the outlet(s) as a 

result of puddle filling, spilling, merging, and splitting during and after a rainfall event. Such a 

hierarchical connecting and separating process was referred to as P2P hydrologic connectivity 

(Yang and Chu 2013b). Thus, structural hydrologic connectivity quantifies the microtopography-

determined static hydrologic connectivity, while functional hydrologic connectivity describes the 

dynamic connectivity due to the threshold-driven P2P process (Yang and Chu 2013b). 

In the P2P model, P2P hydrologic connectivity is used to characterize the static and 

dynamic states of hydrologic connectivity. It is portrayed by a network of contiguous polygons 

that are formed by contributing cells, puddle cells, or the combination of the two. From the 

temporal point of view, P2P hydrologic connectivity can be described by two stages. Structural 

hydrologic connectivity reflects the static connectivity pattern of the surface that is resulted from 

the spatial configuration of cells, which will not change until a surface ponding condition is 

established. Functional hydrologic connectivity reveals the dynamic connectivity pattern that is 

altered as a function of the dynamic P2P filling-spilling-merging-separating process. This study 

focused on the analyses of structural hydrologic connectivity (t = 0) and functional hydrologic 

connectivity at three critical time steps (t = 10, 30, and 100 min).  
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2.4. Results and Discussions 

2.4.1. Effects of DEM resolution on surface microtopographic characteristics 

The PD program in the P2P modeling system provided details on the surface 

microtopographic characteristics. Table 2.2 summarizes the related microtopographic attributes 

for the nine surfaces of different DEM resolutions, including the number and size of DEM cells, 

total surface area, number of puddles and puddle levels, number of the first and highest level 

puddles, number of basins, mean slope, MDS, MPA, mean contributing area (MCA), mean of the 

maximum puddle water depths, and mean of average puddle water depths. The relationships 

between DEM grid size and these topographic parameters are shown in Figure 2.2. 

Table 2.2. Surface microtopographic property parameters 

DEM grid size DX (cm) 2 4 5 8 10 16 20 40 80 

Number of rows 280 140 112 70 56 35 28 14 7 

Number of columns 160 80 64 40 32 20 16 8 4 

Total number of cells 44,800 11,200 7,168 2,800 1,792 700 448 112 28 

Surface area (cm2) 179,200 179,200 179,200 179,200 179,200 179,200 179,200 179,200 179,200 

Number of puddle 

levels 
9 7 5 4 3 3 3 1 1 

Number of puddles 102 69 57 38 32 22 19 4 2 

Number of the highest-

level puddles 
36 31 21 14 14 12 9 4 2 

Number of the first-

level puddles 
69 50 39 26 23 17 14 4 2 

Number of basins 4 4 3 2 1 1 1 1 1 

Mean slope (%) 17.68 17.24 16.79 15.90 15.24 13.26 12.02 7.45 4.01 

MDS (cm3) 90,863 88,687 87,791 84,435 81,502 64,035 58,578 21,121 2,220 

MPA (cm2) 54,148 53,312 52,575 50,688 49,100 43,776 41,600 20,800 12,800 

MCA (cm2) 16,095 15,863 15,778 15,856 15,935 16,131 17,072 14,471 23,543 

Mean of maximum 

puddle depths (cm) 
1.21 1.39 1.93 2.58 2.41 2.01 2.01 1.63 0.17 

Mean of average puddle 

depths (cm) 

0.49 0.57 0.80 1.09 1.06 0.92 0.90 0.67 0.09 

Notes: MDS = maximum depression storage; MPA = maximum ponding area; and MCA = mean contributing area. 
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Figure 2.2. Relationships between DEM grid size and surface topographic parameters 
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Lowering the DEM resolution significantly affected the microtopographic properties of 

the surface. The 2-cm resolution surface was represented by 44,800 cells, but this number 

dramatically decreased to 28 when the DEM grid size increased to 80 cm (Table 2.2). 

Resultantly, the microtopographic features of paramount hydrologic significance (e.g., small 

depressions and peaks) were eliminated (Figure 2.1d). Due to the “smoothing and aggregation” 

effect and the decrease in the number of DEM grids that were used to represent the surface 

topography, the total number of puddles decreased from 102 for the 2-cm DEM resolution to 2 

for the 80-cm DEM resolution (Table 2.2, Figure 2.2a). Similar reduction in the puddle levels 

and the numbers of the first- and highest-level puddles can be observed as the DEM grid size 

increased from 2 to 80 cm (Table 2.2, Figures 2.2b-2.2d). Particularly, significant decreases in 

these values occurred when the grid size was smaller than 20 cm (Figure 2.2a-2.2d).  

Both MDS and MPA of the surface also declined with an increase in DEM grid size due 

to the loss of topographic information and the decrease in the number of puddles (Figures 2.2e 

and 2.2f). The MDS and MPA of the 2-cm resolution surface were 90,863 cm3 and 54,148 cm2, 

respectively, while they decreased to 2,220 cm3 and 12,800 cm2 for the 80-cm resolution surface 

(Table 2.2). These two microtopographic parameters followed a similar decreasing trend. The 

mean of average puddle depths and the mean of maximum puddle depths were also affected by 

the change in DEM resolution. Unlike MDS and MPA, however, these two parameters exhibited 

a dissimilar changing pattern. Both increased within a range of smaller DEM grid sizes (higher 

resolution) and then decreased with an increase in DEM grid size (lower resolutions). The mean 

of average puddle depths was 0.49 cm at DX = 2 cm, reached the peak of 1.09 cm at DX = 8 cm, 

and then decreased to 0.09 cm at DX = 80 cm (Table 2.2, Figure 2.2g). Similarly, the mean of 

maximum puddle depths increased from 1.21 to 2.58 cm as the DEM grid size increased from 2 
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to 8 cm and afterwards it declined to 0.17 cm when the DEM grid size increased to 80 cm (Table 

2.2, Figure 2.2h). This changing pattern can be attributed to the mechanism of aggregation of 

DEM grids and the averaging effect when creating coarser DEMs. For high resolution DEMs 

(DX  8 cm), a coarser resolution surface may have fewer deeper depressions than a finer 

resolution surface that may consist of more and shallower depressions. 

The number of basins and the mean slope of a topographic surface are important to the 

related hydrologic processes. The smoothing effect imposed by the decrease in DEM resolutions 

tended to change the original surface to a more uniform surface. This affected the number of 

basins and the mean slope of the surface. The number of basins of the field plot reduced from 4 

to 1 and the mean slope decreased from 17.68% to 4.01 % when the DEM grid size increased 

from 2 to 80 cm (Table 2.2, Figures 2.2i and 2.2j). This effect on the surface delineation 

eventually affected hydrologic connectivity and all hydrologic processes simulated in the model. 

Also it should be noted that some DEM grid sizes may produce the same number of basins (e.g., 

DX = 2 - 4 cm and DX = 10 - 80 cm in Figure 2.2i) and the minimum number of basins for a 

surface is one. 

2.4.2. Effects of DEM resolution on hydrologic connectivity 

Figure 2.3 shows the evolution of hydrologic connectivity, the dynamic change of 

connected areas, and the spatial distributions of ponded water at three different time steps (t = 10, 

30, and 100 min) for the four selected DEM grid sizes (4, 16, 40, and 80 cm). The selected time 

steps represent three important stages of hydrologic connectivity. Figures 2.3a-2.3c respectively 

show the states of hydrologic connectivity at t = 10 min (soon after the ponding condition was 

achieved), t = 30 min (end of the rainfall period), and t = 100 min (end of the entire simulation 

period). It can be observed that the number of connected areas decreased with an increase in the 
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DEM grid size DX. The 4-cm DEM captured more microtopographic details of the surface and 

hence the functional hydrologic connectivity was characterized by more polygons (i.e., 

connected areas). It took a longer time to achieve the complete hydrologic connectivity. For DX 

= 80 cm, however, the isolated areas were quickly connected after the ponding condition was 

achieved at tp = 7.51 min. This can be attributed to the change in the nature and configuration of 

topographic elements as a result of the change in DEM resolution. The 80-cm resolution surface 

consisted of continuous planes (large DEM grids) that resulted in higher structural hydrologic 

connectivity. The depressions on this coarser resolution surface were not real topographic 

features. Instead, they were pits created by the DEM grid planes of different elevations (Figure 

2.3a4). 
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Figure 2.3. Functional hydrologic connectivity at t = 10, 30, and 100 min for four selected DEM 

grid sizes (DX = 4, 16, 40, and 80 cm) 
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  Figures 2.4-2.7 show the distributions and statistics (including total number N, mean , 

standard deviation , minimum, and maximum) of connected areas at t = 0, 10, 30, and 100 min 

for the DEM grid sizes of 4, 16, 40, and 80 cm. The distributions of connected areas at t = 0 min 

indicate the pre-rainfall hydrologic connectivity or structural hydrologic connectivity, while all 

others show the functional hydrologic connectivity. After the ponding condition was achieved, 

the number of connected areas reduced and ultimately the number of bars in the chart equaled the 

number of outlets for a particular DEM resolution. To better describe the distribution of 

connected areas for a selected time step and DEM resolution, an exponential function was fitted 

and basic statistical parameters were calculated and shown in Figures 2.4-2.7. 
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Figure 2.4. Distribution and statistics of connected areas CA (total number N, mean , standard 

deviation , minimum, and maximum) at t = 0, 10, 30, and 100 min for DEM grid size of 4 cm 

The 4-cm resolution surface consisted of 54 connected areas before the rainfall event (t = 

0 min) (Figure 2.4a). This number reduced to 26 at t = 10 min (Figure 2.4b). In other words, the 
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filled time (i.e., when the MDS was reached), the entire surface had 4 distinct areas, two of 

which were significantly larger, as indicated by the change in standard deviation  (Figure 2.4c). 

At the end of the simulation time period (t = 100 min), the surface was represented by 45 

connected areas (Figure 2.4d), indicating that there were still certain connected areas left due to 

the presence of ponded water (Figure 2.3c1). 

The 16-cm resolution surface had a smaller number of connected areas (18) at the 

beginning of the modeling time period (Figure 2.5a), and it reduced to 15 at t = 10 min (Figure 

2.5b). By the time of full hydrologic connectivity, the whole surface was represented by only one 

area (Figure 2.5c). At t = 100 min, the surface was depicted by 16 connected areas (Figure 2.5d), 

which was smaller than the number of connected areas (18) at t = 0 min, indicating an existence 

but lower ponded water on the surface (Figure 2.3c2). 

  

 

 

N = 18 

 = 9,956 

 = 5,456 

Min = 4,352 

Max = 26,368 

N = 15 

 = 11,947 

 = 7,236 

Min = 5,632 

Max = 29,440 

N = 1 

 = 179,200 

  
Min = 179,200 

Max = 179,200 

N = 16 

 = 11,200 

 = 7,928 

Min = 4,352 

Max = 32,256 

(a) t = 0 min (b) t = 10 min (c) t = 30 min (d) t = 100 min 

Figure 2.5. Distribution and statistics of connected areas CA (total number N, mean , standard 

deviation , minimum, and maximum) at t = 0, 10, 30, and 100 min for DEM grid size of 16 cm 

The distributions of connected areas for DX = 40 and 80 cm were similar (Figures 2.6 
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number reduced to 1 at the time of maximum connectivity (Figure 2.6c) for DX = 40 cm. The 

80-cm resolution surface included 3 connected areas at t = 0 min (Figure 2.7a), and 1 connected 

area at t = 10 and 30 min (Figures 2.7b and 2.7c) when full connectivity was prevailed. By the 

end of the modeling time period (t = 100 min), the connected areas on both surfaces (DX = 40 

and 80 cm) increased to the original numbers at t = 0 min (i.e., 5 and 3 for DX = 40 and 80 cm, 

respectively) (Figures 2.6d and 2.7d). This can be attributed to the fact that the 40-cm resolution 

surface had a very small amount of ponded water stored in the first-level puddles (Figures 2.3c3) 

and that no ponded water existed on the 80-cm resolution surface at t = 100 min (Figure 2.3c4).  
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Figure 2.6. Distribution and statistics of connected areas CA (total number N, mean , standard 
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For all the selected DEM resolutions, MDS was reached before the end of the rainfall 

event (t = 30 min). Thus, the functional hydrologic connectivity at t = 30 min depicted a fully 

matured connectivity pattern. For DX = 16, 40, and 80 cm, the whole topographic surface was 

represented by one basin when functional hydrologic connectivity was at its peak, while the 

surface of 4-cm DEM resolution included two major basins and two small basins (Figures 2.3b1 

– 2.3b4). This affected the average of connected areas. Figure 2.8a shows the temporal changes 

in average connected areas for the four DEM resolutions (DX = 4, 16, 40, and 80 cm). Time lags 

can be observed for the curves in Figure 2.8a, in addition to the differences in their peaks. 

Ultimately, all curves leveled off at their peaks although they occurred at different time steps. 

The leveled off portion of each curve shows the period at which the MDS was maintained. The 

curve of the 80-cm DEM surface was the earliest one to level off while the 4-cm DEM curve 

leveled off much later. At the full maturity of functional hydrologic connectivity, the average 

connected area was 44,800 cm2 for the 4-cm DEM grid size. This indicates that the average 

connected area depended on the number of basins, and more basins resulted in a lower peak. For 

the 4-cm resolution surface, the total area was divided into four basins. After the end of rainfall 

event (t = 30 min), the curves plunged dramatically (Figures 2.8a). This was due to the sharp 

transition from fully matured functional hydrologic connectivity to a very earlier stage of 

functional hydrologic connectivity. At this stage, the 4-cm resolution curve had a slightly gradual 

change, compared with all other resolution curves. During the dry time period (t = 30 - 100 min), 

the ponded water decreased; some higher-level puddles were separated into their lower-level 

embedded puddles; and more puddles were depleted due to evaporation and infiltration. 

Resultantly, more areas were disconnected and the number of connected areas increased at the 

end of the modeling period (t = 100 min) (Figures 2.3c1 – 2.3c4, Figures 2.8b). Also due to the 
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puddle splitting process, more lower-level puddles were formed. For the coarser DEM 

resolutions, the surface depression storage became empty before the end of the modeling period 

and hence the functional hydrologic connectivity was equivalent to the structural hydrologic 

connectivity of the surface (Figure 2.3c4, Figure 2.8c). Note that the structural hydrologic 

connectivity increased in accordance with an increase in DEM grid size. Overall, this study 

demonstrated that hydrologic connectivity was significantly affected by DEM resolution and it 

varied with the topographic details of a surface and its MDS.
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Figure 2.8. Temporal distributions of (a) average connected area, (b) number of connected areas, 

(c) cumulative depression storage, and  (d) normalized connected area (ratio of the area 

connected to the outlet to the total surface area) for four selected DEM grid sizes (DX = 4, 16, 

40, and 80 cm)  

 

For a larger DEM grid size (e.g., DX = 80 cm), the quick response of depressions to the 

P2P process on the corresponding surface facilitated the connection or separation of 
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hydrologically connected areas (Figure 2.8b). Due to the characteristics and sizes of the 

depressions, the linkage of connected areas to the final outlet became instant during the time of 

rainfall. As soon as rainfall stopped, the connected areas were detached immediately. In contrast, 

a surface with a finer DEM resolution (e.g., DX = 4 cm) exhibited a more gradual connection 

and disconnection process (Figure 2.8b). Also, at the time of puddle spilling and merging 

(connection) the number of connected areas was declining very steeply. After the rainfall 

stopped, the disconnection process also became gradual as indicated by the gentle slopes (Figure 

2.8b). This can be attributed to the fact that surface depression filling was faster than depression 

depleting which resulted from slower infiltration and evaporation. The depth of the “valley” 

curves increased proportionally to the number of connected areas and DEM grid size. Hence, the 

4-cm resolution surface had an NCA curve with the deepest “valley” while the 80-cm resolution 

surface had the shallowest one (Figure 2.8b). Figure 2.8c shows the temporal variations of 

cumulative surface depression storage as a result of the expansion of connected areas. The finest 

DEM resolution (DX = 4 cm) had the highest ordinate signifying the highest surface depression 

storage. There were remarkable differences among the ordinates for the four grid sizes (4, 16, 40, 

and 80 cm) and all curves leveled off after their MDS values were reached although this 

happened at different times (Figure 2.8c). The 80-cm resolution surface reached its MDS first 

and it had the lowest ordinate. Also, the cumulative storage curves showed steeper slopes at the 

initial stage than the later stage when the surface depression storage was close to the MDS due to 

the narrow bottom and wider top shape of most depressions. As was evident from Figures 2.8b 

and 2.8c, changes in DEM grid size affected the number, rearrangement, and configuration of 

puddles, which resulted in noticeable differences in the number of connected areas and the 

cumulative surface storage.  



 

37 

 

Figure 2.8d shows the temporal changes of normalized connected area (NLCA) for the 

four selected DEM resolutions. NLCA is the ratio of the areas connected to the outlet to the total 

surface area. At the beginning, the four curves showed different NLCA values. The 80-cm 

resolution surface had the highest ordinate. For all curves, there was no change in NLCA until 

the ponding condition was reached at t = 7.51 min, which was depicted by the horizontal portion. 

The NLCA curves exhibited sudden stepwise increases that were caused by the puddle spilling 

process. Such a changing pattern continued until their MDS values were reached. The puddle 

filling process dominated before t = 7, 8, 10, and 9 min for the 4-, 16-, 40-, and 80-cm DEM grid 

sizes, respectively (Figure 2.8d). After these times, puddle spilling was triggered and the puddles 

began to contribute runoff to the outlet. Additionally, merging of some puddles and spilling of 

the associated higher-level puddles induced even greater stepwise increases in the curves. For the 

4-cm resolution surface, although the spilling time started earlier, the response of the outlet was 

slower because of the existence of a greater number of depressions which served as “barriers.” 

The surface reached its MDS at t = 22 min (Table 2.3). However, the 80-cm resolution surface 

reached its MDS at t = 10 min (Table 2.3) and it took only 2.5 min for the entire surface to 

become connected to the outlet after the ponding time. The span of the maintained MDS in the 

curve affected the water budget of the related surface. Once the rainfall stopped, almost all 

curves plummeted to the state prior to the ponding time (Figure 2.8d), which was the sign of 

separation of the connected areas. 

From this study, it was found that both structural and functional hydrologic connectivity 

were dependent on DEM grid size. The change in DEM grid size altered the spatial configuration 

and the size of connected areas even before the rainfall event (i.e., structural hydrologic 

connectivity). The smoothing and aggregation effect induced by increasing DEM grid size also 



 

38 

 

resulted in more geometrically connected shapes rather than topographic features such as ridges 

and depressions. It was found that the pits created from large DEM grid planes had a higher 

potential to connect to the downstream outlet in addition to a faster filling time. This can be 

attributed to the regularity of their shapes and reduction in their roughness. An increase in DEM 

grid size tended to mask smaller-scale microtopographic features that were captured by a higher 

resolution DEM. Particularly, removal of such important topographic features and reduction in 

surface roughness further enhanced the continuity of the drainage network and directly affected 

hydrologic connectivity.  

2.4.3. Effects of DEM resolution on simulated hydrologic processes 

Due to the changes in DEM grid size, all simulated hydrologic processes, including 

infiltration, surface depression storage, evaporation, and surface runoff became significantly 

different. Table 2.3 summarizes the modeling results for the nine scenarios (M1 to M9). Figure 

2.9a shows the relationships of DEM grid size and cumulative rainfall, infiltration, surface 

depression storage, and outlet discharge, while Figure 2.9b displays ponding time and fully-filled 

time for the nine different DEM grid sizes (2, 4, 5, 8, 10, 16, 20, 40, and 80 cm). Note that all 

cumulative values on Figure 2.9a correspond to the final simulation results at the last time step (t 

= 100 min). 
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Figure 2.9. Relationships of DEM grid size and (a) cumulative volumes of rainfall, infiltration, 

surface depression storage, and outlet discharge; (b) ponding time Tp and fully-filled time 

TMDS 

Table 2.3. Modeling results for scenarios M1 – M9 (sandy clay loam soil and unsteady rainfall a) 

Scenario M1 M2 M3 M4 M5 M6 M7 M8 M9 

DX (cm) 2 4 5 8 10 16 20 40 80 

P (cm3) 507,733 507,734 507,733 507,733 507,733 507,733 507,733 507,733 507,733 

I (cm3) 384,423 383,081 382,469 380,682 378,641 367,490 362,588 332,614 315,343 

S (cm3) 19,266 18,439 18,157 16,592 15,704 9,427 8,890 1,550 0 

E (cm3) 2,069 2,030 2,012 1,960 1,902 1,574 1,429 559 62 

Q (cm3) 101,975 104,184 105,095 108,500 111,487 129,242 134,826 173,012 192,329 

Tp (min) 7.51 7.51 7.51 7.51 7.51 7.51 7.51 7.51 7.51 

MDS (cm3) 90,863 88,687 87,791 84,435 81,502 64,035 58,578 21,121 2,220 

TMDS (min) 22 21 22 21 21 19 20 16 10 

 

Notes: DX = DEM grid size; P = cumulative rainfall; I = cumulative infiltration; S = ponded water in 

surface depressions at last time step; E = cumulative evaporation; Q = cumulative outlet discharge; Tp = 

ponding time; MDS = maximum depression storage; and TMDS = fully-filled time (i.e., all depressions are 

fully filled and the system reaches the MDS at this time). 
a 30-min unsteady rainfall (10-min 5 cm/hr, 10-min 8 cm/hr, 5-min 5 cm/hr, and 5-min 3 cm/hr).  
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As shown in Table 2.3 and Figure 2.9a, with an increase in DEM grid size, the simulated 

cumulative infiltration decreased approximately linearly by 18.0%, from 384,423 cm3 for DX = 2 

cm to 315,343 cm3 for DX = 80 cm (Table 2.3, Figure 2.9a). The reduction in MDS with an 

increase in DEM grid size can be one of the reasons for the decrease in cumulative infiltration. 

Depressions were serving as a reserve supply for cumulative infiltration after rainfall had ceased 

and as a barrier to the flowing water so that it was able to infiltrate at a pace of the hydraulic 

properties of the soil. However, with an increase in DEM grid size the surface lost these 

characteristics and the rainfall excess quickly left the system without much contribution to the 

infiltration demand. 

By the end of the simulation period (t = 100 min), surface depression storage decreased 

from 19,266 to 0 cm3 when the DEM grid size increased from 2 to 80 cm (Table 2.3, Figure 

2.9a). This can be attributed to the combined effect of the decrease in MDS and the spatial 

changes in infiltration and evaporation. Note that MDS was 90,863 cm3 for DX = 2 cm and 

2,220 cm3 for DX = 80 cm (Table 2.2). Similar to the analysis of the changes in MDS, the 

increase in DEM grid size induced the loss of topographic details, which in turn resulted in a 

decrease in surface depression storage.  

The cumulative outlet discharge behaved opposite to the cumulative infiltration (Figure 

2.9a). Accordingly, whatever did not infiltrate into soil contributed to surface runoff. For DX = 2 

cm, the cumulative outlet discharge was 101,975 cm3 and then surged to 192,329 cm3 when the 

DEM grid size increased to 80 cm (Table 2.3, Figure 2.9a), which amounted to an increase of 

88.6 %. This large change in the magnitude of discharge can be attributed to the effect of the 

changes in surface microtopography and the smoothing effect, which was manifested herein by a 

declining MDS and the response to the declining cumulative infiltration. For a higher resolution 
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DEM, surface microtopography was highly detailed and consisted of numerous micro-

depressions, which increased the volume of water that could be stored on the surface, and further 

increased the surface detention volume and time. The ramifications of these were stressed by the 

enhanced infiltration and attenuated peak discharge.  

Evaporation is one of the mass balance terms. However, it was much smaller than other 

hydrologic processes (Table 2.3). At t = 100 min, the cumulative evaporation was only 2,030 

cm3 for the 4-cm resolution surface and 62 cm3 for the 80-cm resolution surface (Table 2.3). For 

this reason, evaporation is not shown in Figure 2.9 and also it will not be discussed in detail in 

the following sections. 

As shown in Table 2.3 and Figure 2.9b, the ponding time was 7.51 min for all DEM grid 

sizes since it depended on the soil hydraulic properties only. This was valid as the same 

homogeneous soil, identical initial soil moisture distribution, and identical zero initial ponded 

water (dry surface) were assumed for all DEM resolution scenarios. In terms of depression 

filling, it took 22 min to fully fill all depressions for the 2-cm resolution surface. This fully-filled 

time decreased to 10 min when the DEM grid size increased to 80 cm (Table 2.3 and Figure 

2.9b). This result was associated with the decrease in MDS due to the smoothing and aggregation 

effect that was induced by the reduction in DEM resolution.  

Figures 2.10a – 2.10d show the temporal changes in incremental precipitation, 

infiltration, outlet discharge, and surface depression storage for DEM grid sizes of 4, 16, 40, and 

80 cm. Before the ponding time (t = 7.51 min), all rainwater infiltrated into soil; and there were 

no surface depression storage and surface runoff. During the post-ponding period, infiltration 

started decreasing; surface depression storage started increasing; and eventually surface runoff 

commenced. This changing pattern can be observed for all the DEM resolution scenarios (Figure 
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2.10). For the two finer resolution surfaces (DX = 4 and 16 cm), certain time lags between the 

surface depression storage and outlet discharge curves existed (Figures 2.10a and 2.10b). A 

larger number of depressions delayed the initiation of surface runoff. Both curves showed a 

rising limb, a peak, and a recession limb that were consistent with the rainfall changing pattern 

(Figures 2.10a and 2.10b). For the two coarser resolution surfaces (DX = 40 and 80 cm), the 

depression storage and outlet discharge curves started increasing immediately after the ponding 

condition was achieved (Figures 2.10c and 2.10d). Due to fewer depressions on these two 

surfaces, a considerable portion of the surfaces could directly contribute runoff to the outlet even 

before reaching their MDS. Besides, as the surface depression storage capacity was smaller, the 

discharge curves exhibited remarkably higher peaks than the depression storage curves (Figures 

2.10c and 2.10d).  



 

43 

 

0 10 20 30 40 50 60 70 80 90 100

V
o
lu

m
e
 (

1
0

3
 c

m
3
)

-5

0

5

10

15

20

25

0 10 20 30 40 50 60 70 80 90 100

V
o
lu

m
e
 (

1
0

3
 c

m
3
)

-5

0

5

10

15

20

25

Time (min)

0 10 20 30 40 50 60 70 80 90 100

V
o
lu

m
e
 (

1
0

3
 c

m
3
)

-5

0

5

10

15

20

25

Time (min)

0 10 20 30 40 50 60 70 80 90 100

V
o
lu

m
e
 (

1
0

3
 c

m
3
)

-5

0

5

10

15

20

25

Rainfall

Infi ltration

Discharge

Storage

(a) DX = 4 cm (b) DX = 16 cm

(c) DX = 40 cm (d) DX = 80cm

 

Figure 2.10. Incremental volumes of rainfall, infiltration, outlet discharge, and surface depression 

storage for four selected DEM grid sizes (DX = 4, 16, 40, and 80 cm) 

After rainfall ceased at t = 30 min, depression storage water started depleting (negative 

values, Figure 2.10) due to infiltration and evaporation. The 4-cm resolution surface had the 

largest surface depression storage and hence the highest infiltration. Infiltration decreased as 

surface depression storage became lower during the dry time period. The 80-cm resolution 

surface had the lowest surface depression storage and hence the lowest infiltration (Figure 2.10).  

Figures 2.11a-2.11d show the comparisons of the rates of rainfall, infiltration, depression 

storage, and outlet discharge for the four selected DEM grid sizes. Under the same rainfall 

(Figure 2.11a), the infiltration rate was essentially similar during the rainfall period (t = 0 - 30 

min) for the four DEM grid sizes (4, 16, 40 and 80 cm) (Figure 2.11b) since the same soil was 

used. The only possible difference was due to the variations in surface ponding. However, the 
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hydraulic effect of ponded water depths was minimal and caused a very small difference in 

infiltration rate within the duration of the rainfall. During the dry time period (t = 30 - 100 min), 

surface runoff from the connected areas also stopped and the infiltration from all contributing 

cells became zero. Infiltration only occurred in the water-ponded puddle areas, and as a result, 

infiltration varied depending on the MDS. The surface with the finest DEM resolution had the 

largest MDS and gave rise to the greatest infiltration rate while for the surface of the coarsest 

DEM resolution, infiltration ceased soon after rainfall had stopped. Such differences in 

infiltration for the four resolution surfaces can be observed in Figure 2.11b. For a given DEM 

grid size, the soil moisture content, soil water movement, and the depth of wetting front varied 

with surface microtopography. The existence of depressions sustained the soil saturation for a 

longer period, which resulted in greater infiltration, deeper wetting front, and higher soil 

moisture content.  
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Figure 2.11. Comparisons of the rates of rainfall, infiltration, depression storage, and outlet 

discharge for four selected DEM grid sizes (DX = 4, 16, 40, and 80 cm) 

Significant differences in both magnitude and temporal distribution of surface depression 

storage can be observed in Figure 2.11c. A surface with a higher DEM resolution had a greater 

and delayed peak. In the dry period (Figure 2.11c), the decreasing rate of surface depression 

storage was proportional to the MDS. That is, the water in depressions of a higher resolution 

surface that had a greater MDS was removed faster, which can be attributed to the larger water-

covered area of the surface, resulting in more infiltration and evaporation losses (Figures 2.11c). 

For all DEM resolution scenarios, the outlet discharge rate increased steadily due to high rainfall 

intensities, then decreased with reduced rainfall intensities, and eventually reached zero in the 

dry time period (Figure 2.11d). The 80-cm resolution surface had the highest peak of outlet 
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discharge and the steepest increasing slope, while the 4-cm resolution surface had the lowest 

peak and the slowest increase in outlet discharge (Figure 2.11d). 

More importantly, the change in DEM grid size significantly affected the spatial 

distributions of hydrologic variables, such as surface ponding and infiltration. Figure 2.12 shows 

the spatial distributions of surface ponded water depths at t = 10, 30, and 100 minutes. This was 

another consequence of the smoothing and aggregation effect induced by the change in DEM 

resolution. Coarser DEM resolutions averaged surface topographic details. The spatial 

distribution of ponded water shrank as the DEM grid size increased (Figure 2.12). For the 4-cm 

resolution surface, sparsely distributed ponded water can be observed for t = 10 min (Figure 

2.12a1). At t = 30 min, the ponded water reached its full maturity (MDS and MPA) (Figure 

2.12b1). The connected mounds represented the ponded water in higher-lever merged puddles 

while the isolated ones showed the ponded water in independent puddles. Figure 2.12c1 shows 

the spatial distribution of ponded water depths at the end of the modeling period. Clearly, many 

smaller and shallower puddles became empty by t = 100 min, while the remaining puddles still 

had certain amount of water although their water covered areas had shrunk. The 16-cm 

resolution surface displayed a similar changing pattern in the ponded water distributions for the 

three time steps, with the absence of some small puddles (Figures 2.12a2-2.12c2). When the 

DEM grid size increased to 40 and 80 cm, the distributions of ponded water were very different. 

The ponded water was extremely low and also localized at limited spots. The 40-cm resolution 

surface only showed a few mounds of ponded water at t = 30 min (Figures 2.12b3). For the 80-

cm resolution surface, the depths of ponded water at t = 10 and 30 min were too small to see on 

Figures 2.12 a4 and 2.12b4. Note that surface depressions were fully filled at t = 30 min (i.e., its 

MDS was achieved). The surface was completely drained at t = 100 min (Figure 2.12c4).  
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(a1) DX = 4 cm, t = 10 min        (b1) DX = 4 cm, t = 30 min           (c1) DX = 4 cm, t = 100 min     

 

 

       

 

(a2) DX = 16 cm, t = 10 min            (b2) DX = 16 cm, t = 30 min   (c2) DX = 16 cm, t = 100 min     

 

 

       

 

(a3) DX = 40 cm, t = 10 min        (b3) DX = 40 cm, t = 30 min   (c3) DX = 40 cm, t = 100 

min     

 

 

       

 

(a4) DX = 80 cm, t = 10 min       (b4) DX = 80 cm, t = 30 min   (c4) DX = 80 cm, t = 100 min     

 

 

       

 

Figure 2.12. Spatial distributions of ponded water depths (cm) at t = 10, 30, and 100 

min for four selected DEM grid sizes (DX = 4, 16, 40, and 80 cm) 
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Figure 2.13 shows the comparison of spatial distributions of the simulated cumulative 

infiltration at the end of the modeling time period (t = 100 min) for the four DEM grid sizes (DX 

= 4, 16, 40, and 80 cm). Clearly, the change in DEM grid size resulted in significant differences 

in the spatial distributions of cumulative infiltration. The 4-cm DEM characterized detailed 

microtopographic variations with a greater number of depressions (Figure 2.1a). The distribution 

of the simulated cumulative infiltration for this high-resolution surface featured numerous peaks 

(Figure 2.13a) that were consistent with the distribution of puddles. The distribution of 

cumulative infiltration for the 16-cm resolution surface (Figure 2.13b) was roughly similar to 

that of the 4-cm resolution surface. However, some details were missing and the peaks were 

lower. After further increase in the DEM grid size, more essential details that indicated the 

infiltration variability disappeared. As shown in Figure 2.13c, the 40-cm resolution DEM only 

captured a few infiltration peaks located at the major large puddles. Due to fewer shallower 

depressions on such a low-resolution surface, there was less ponded water for infiltration. When 

the DEM grid size increased to 80 cm, the spatial distribution of the simulated cumulative 

infiltration was almost planar (Figure 2.13d). Overall, the spatial distribution of cumulative 

infiltration matched the variability in surface microtopography. Cumulative infiltration declined 

with increasing DEM grid size and its peaks were located in puddle areas. 
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2.5. Summary and Conclusions 

This study highlighted the significance of DEM resolution and evaluated its impacts on 

characterization of surface microtopography, quantification of hydrologic connectivity, and 

simulation of hydrologic processes. Nine DEM resolution scenarios were considered; puddle 

delineation and P2P overland flow modeling were conducted for the corresponding topographic 

surfaces; and the results were analyzed and compared. The findings from this study would 

potentially help select proper DEM data and improve the capabilities of a DEM-based 

hydrologic model that is often scale dependent. 

The change in DEM resolution had a significant effect on how surface microtopography 

was depicted. Full representation of the natural heterogeneity of a topographic surface was not 

possible as a result of the smoothing and aggregation effect induced by increasing DEM grid 

size, which tended to eliminate important topographic features. The mean and maximum puddle 

depths were affected by DEM resolution and interpolation/aggregation of DEMs. A coarser 

resolution DEM tended to remove surface depressions and lower the MDS. The number of 

Figure 2.13. Spatial distributions of cumulative infiltration (cm) at t = 100 min for four selected 

DEM grid sizes (DX = 4, 16, 40, and 80 cm) 
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basins and the mean slope declined as a result of smoothing for coarser DEM resolutions. 

Ultimately, a topographic surface became a single basin with a smoother surface.  

DEM grid size affected both structural and functional hydrologic connectivity. Reduction 

in DEM resolution tended to “enhance” hydrologic connectivity and resulted in early maturity of 

functional hydrologic connectivity. In contrast, a higher resolution DEM captured more detailed 

topographic features and the relevant surface was subject to smaller-scale dynamic processes 

before it reached a fully-connected status. Coarser resolution DEMs exhibited the propensity to 

mask the effect of important land surface features, ultimately creating a surface that consisted of 

a number of large planar DEM grids and resulting in virtually highly connected areas. During a 

rainfall event, the topographic elements of the surface became more responsive to connectivity. 

That is, they became connected soon after surface ponding occurred and disconnected instantly 

once rainfall ceased. Overestimation of functional hydrologic connectivity and underestimation 

of MDS induced by coarser DEM resolutions resulted in more surface runoff. For a higher 

resolution surface, however, the connection/separation to/from the downstream outlet was 

delayed and featured with a stepwise variation pattern. This can be attributed to the greater 

number of puddles, more connected areas, and larger MDS. This finding highlighted the 

dependence of functional hydrologic connectivity on the microtopographic characteristics (e.g., 

number of puddles, their sizes, and their hierarchical relationships). 

The change in DEM resolution also altered hydrologic processes simulated in the model. 

As the DEM grid size became larger, the topographic heterogeneity and roughness of a natural 

surface were reduced and the filling time of depressions was shortened, which in turn caused 

higher outlet discharge even at earlier stages of the rainfall period. Surface ponded water depth 

decreased with an increase in DEM grid size. The spatial distribution of ponded water depths 
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strongly depended on DEM grid size. The influence of DEM resolution on infiltration mainly 

occurred after rainfall stopped. The spatial distribution of cumulative infiltration was strongly 

affected by DEM resolution, which was primarily associated with puddles and their distributions. 

The greater MDS of a higher resolution surface sustained infiltration for a prolonged period of 

time, maintained higher soil moisture content, and yielded a deeper wetting front. 
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CHAPTER 3. EFFECTS OF MULTIPLE RAINFALL EVENTS ON 

SURFACE AND SUBSURFACE PROCESSES 

3.1. Abstract 

Temporal rainfall distribution is one of the most important factors that alter the hydrology 

and water balance of a given system. Rate of infiltration, soil water dynamics, surface water 

ponding and accumulation, and generation and propagation of surface runoff are some of the 

hydrologic phenomena which are affected by the pattern of rainfall. To highlight the effects of 

temporal rainfall distribution on the aforementioned hydrologic variables, a field-plot scale 

modeling was performed using a quisi-3D distributed hydrologic model – puddle-to-puddle 

(P2P) modeling system. Three different synthetic multiple rainfall distributions were applied on 

the field plot surface. The first and second rainfall distributions (RF1 and RF2) had two events 

each, while the third rainfall distribution (RF3) had three events. After comparing the simulation 

results for the three rainfall distributions, it was found that the spatio-temporal distributions of 

infiltration, ponded surface water, hydrologic connectivity, ponding time, time to reach 

maximum depression storage (MDS) and soil water dynamics were different for all the rainfall 

events considered. On the first rainfall event, moisture movement was faster in puddle cells, 

while in the subsequent events it became slower. On the later events, cumulative infiltration and 

ponding time decreased significantly while the time to reach MDS was generally shorter. In 

addition, due to the enhancement of hydrologic connectivity the entire topographic surface 

became connected to the final outlet(s) relatively faster, which ultimately resulted in higher 

surface runoff generation. Overall, the temporal rainfall distribution significantly affected the 

hydrologic processes.  
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3.2. Introduction  

The soundness and accuracy of any hydrologic model depend on the number of factors 

considered and the level of approximation assumed when conceptualizing a real system. One of 

the important aspects that can affect surface and subsurface hydrology of a system is temporal 

distribution of rainfall. Infiltration, surface depression storage, evaporation, surface runoff, 

hydrologic connectivity, surface ponding time, time to reach maximum depression storage, depth 

of wetting front, and subsurface moisture drainage and redistribution are some of the hydrologic 

variables that are affected by the temporal distribution of rainfall. Rainfall is a highly variable 

process over a wide range of scales, and in space and time. Hence, the investigation of all 

variations in rainfall and other hydrologic processes is crucial (Nicótina et al. 2008). Simulated 

rainfall in small scale experiments have been successfully used to understand runoff generation, 

infiltration and other hydrologic processes (Iserloh et al. 2012). Due to the temporal variation in 

rainfall, the dry time period between rainfall events can allow depletion of depression storage, 

alter runoff behavior following the dry time period, and cause reduction in top soil moisture 

content (Dunkerley 2008). Moreover, soil moisture dynamics and saturation could be determined 

by the rainfall events which in turn may affect surface ponding and overland flow generation 

process (Dunkerley 2010). Chu et al. (2014) conducted experimental studies on smooth and 

rough, lab and field surfaces where both artificial and natural multiple rainfall events were 

applied. It was found that in conjunction with surface microtopography, rainfall characteristics, 

soil properties, and initial soil moisture affected infiltration and surface runoff dynamics. It also 

was found that smooth surfaces were more responsive to the rainfall input on the first rainfall 

event, while in later events the hydrologic connectivity and surface runoff generation became 

faster for rough surfaces. It also was demonstrated that the hydrologic control factors varied at 
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any time with rainfall events. Overall, the spatio-temporal variation of precipitation can be one of 

the main causes for variability in different hydrologic processes and fundamental to surface and 

subsurface water budget (Bacchi and Kottegoda 1995). 

A fundamental research question is: how exactly do multiple rainfall events alter the 

hydrologic processes of a given system and what are the inter-relationships of these processes? 

The objective of this study is to evaluate the effects of multiple rainfall events on both surface 

and subsurface hydrologic processes using the P2P modeling system. The surface processes 

include surface ponding, infiltration, surface runoff generation, and hydrologic connectivity, 

while the subsurface processes involve wetting front movement, and drainage and redistribution. 

Moreover, the interaction between surface and subsurface hydrologic processes is also examined. 

3.3. Materials and Methods 

The topographic surface selected for this study was located at the North Dakota State 

University agricultural research fields. It had a surface area of 179,200 cm2 (560 × 320 cm) with 

a grid size of DX = 5 cm (Figure 3.1). The total soil profile was 60-cm deep and for the purpose 

of subsurface process simulation, it was discretized into 3-mm cells. The original surface was 

scanned in the field by using an instantaneous-profile laser scanner (Chu et al., 2010). The 

horizontal and vertical resolutions of the laser scanner were 0.98 and 0.5 mm, respectively. A 5-

cm DEM was created by employing the Kriging method.  

 
Figure 3.1. DEM surface used for the P2P modeling (DX = 5 cm) 
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3.3.1. Modeling scenarios 

The P2P model (Chu el al. 2013a and b) was used to simulate the impacts of multiple 

rainfall events on surface and subsurface hydrologic processes. To enable this evaluation, three 

modeling scenarios (M1, M2, and M3) were considered. The total simulation time periods for 

M1, M2, and M3 were 200, 270, and 540 min, respectively and a time interval of t = 1 min was 

selected. For all the modeling scenarios, the same topographic surface, soil type (sandy loam), 

and initial soil moisture content (θ0) were used. It was assumed that the soil was uniformly 

distributed across the topographic surface. Thus, only one soil zone was considered in the P2P 

modeling. Table 3.1 shows the soil hydraulic parameters for the selected soil. A uniform 

distribution of initial soil moisture (θ0 = 0.2 cm3/cm3) was assumed in the modeling. 

Table 3.1. Major soil hydraulic parameters a 

Parameters Values 

Saturated hydraulic conductivity Ks (cm/h) 4.42 

Suction head hs (cm) 11.01 

Saturated water content θs (cm3/cm3) 0.41 

Residual water content θr (cm3/cm3) 0.065 

Soil water retention parameter n 1.89 

Soil water retention parameter α (1/cm) 0.075 
a Carsel and Parrish, 1988. 

3.3.2. Rainfall distribution 

Three different synthetic multiple rainfall distributions were applied on the selected field 

plot surface. The first and second rainfall distributions (RF1 and RF2) had two events each 

(Figures 3.2a and 3.2b), while the third rainfall distribution (RF3) had three events (Figure 3.2c). 

The three rainfall distributions (RF1, RF2, and RF3) corresponded with the three modeling 

scenarios (M1, M2, and M3).  For the three rainfall distributions, the intensities and durations of 
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the first event were identical. The first rainfall event was repeated twice for RF1 and RF2, and 

thrice for RF3 with a dry time period in-between (Figure 3.2).  

 

Figure 3.2. Three multiple rainfall distributions (RF1, RF2, and RF3) 

The intensities of the first unsteady rainfall event (Figure 3.2) were 6.0 cm/hr at t = 0 - 10 

min, 15.0 cm/hr at t = 11 - 15 min, 8.0 cm/hr at t = 16 - 20 min, 2.0 cm/hr at t = 21 - 25 min, and 

1.0 cm/hr at t = 26 - 30 min. For the first rainfall distribution (RF1), an identical event was 

repeated at t = 101 - 130 min and there was no rain during t = 31 - 100 min and t = 131 - 200 

min. RF2 (Figure 3.2b) was similar to RF1 except that the modeling time period was extended to 

allow depletion of ponded water before the beginning of the second event. The first event of RF2 
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was replicated at t = 136 - 165 min and there was no rain during t = 31 - 135 min and t = 166 - 

270 min.  

For RF3, the first event was replicated at t = 181 - 210 min and t = 361 - 390 min and 

there was no rain during t = 31 - 180 min, t = 211 - 360 min and t = 391 - 540 min. For RF3 

(Figure 3.2c), the dry time period was extended further to allow enough time for the puddle 

draining process to take place. After the second event of RF3, the ponded depressions needed a 

longer time to drain when compared with the draining time needed after the first event. To 

maintain consistency, the longest dry time period was adopted for all events of RF3. It was 

assumed that rainfall was uniformly distributed across the soil surface and only one rainfall zone 

was considered in the P2P modeling. 

3.4. Results and Discussions 

3.4.1. Effects of multiple rainfall events on subsurface processes 

Eight representative cells (C1 - C8) were selected from the topographic surface (Figure 

3.3) to analyze soil water dynamics. Seven of them (C2-C8) were located inside a puddle that 

had 5 levels, while cell C1 was located outside of any puddle. C1 was a non-puddle cell; C2 was 

in the highest level-5 puddle; C3 and C4 were in the level-4 puddle; C7 and C8 were in the level-

3 puddle; and C5 and C6 were in the level-1 puddle.  
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Figure 3.4 shows the soil moisture distribution along the soil profile of cell C4 (Figure 

3.3) for RF3. Initially, the soil profile had a uniform moisture distribution which was depicted by 

a vertical line (Figure 3.4). After rainfall started, the top soil became saturated and the moisture 

content surged immediately, which was represented by a sudden break of the vertical line in the 

moisture profile curve (Figure 3.4). As rainfall continued, the sharp wetting front moved deeper 

and more water percolated into the soil profile. After rainfall ceased at t = 30 min, moisture 

redistribution process was triggered. This was depicted by a curve facing to the left (Figure 3.4). 

The inflection point of the curve was the dividing line between upward and downward moisture 

movements. Above this point, water moved upward primarily due to evapotranspiration and 

below it water drained downward. The inflection point continuously changed its position until 

upward and downward forces were virtually in equilibrium or interrupted by another rainfall 

event. The tail of this curve was still vertical as the moisture did not change from its initial value.  

Figure 3.3. DEM grid cells of different puddle levels 
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Figure 3.4. Moisture distribution along the soil profile of cell C4 for RF3 

Once the second rainfall event started at t = 181 min, the wetting front moved again in a 

sharp front (Figure 3.4). Moisture augmentation resumed from the previous redistribution stage 

which had a curved moisture distribution. After the second rainfall event, the moisture curve 

again exhibited a sharp wetting front (Figure 3.4). After the second rainfall event ended, the 

second stage of drainage and redistribution took over. At this stage, multiple curvatures were 

observed in the curve. As the moisture redistribution continued, the two curves merged and the 

redistribution was represented by a single-curvature curve (Figure 3.4). As the moisture content 

in the deeper soil increased, the curve became more bulged (Figure 3.4). By the end of the 

modeling time period (t = 540 min), the initial moisture content of the entire soil profile was 

changed and reached near saturation.  

Figure 3.5 shows the temporal distributions of soil moisture for RF3 at depth of d = 24 

cm for cells C1-C8 (Figure 3.3). After the beginning of the first rainfall event, water did not 
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immediately percolate to this depth which was depicted by a horizontal line at the beginning of 

the curves for all cells (Figure 3.5). In cell C8, due to the first rainfall event, the sharp moving 

wetting front was sustained until t = 53 min and reached a depth of 20.1 cm. Right after this time, 

drainage and redistribution was triggered and a sharp increase of moisture was noticed at d = 24 

cm (Figure 3.5). For cell C8, when the moisture content reached 0.348 cm3/cm3, it declined to θ 

= 0.329 cm3/cm3 due to drying.  

 

Figure 3.5. Temporal distributions of soil moisture of eight cell profiles for RF3 at                

depth d = 24 cm 

The moisture drainage and redistribution were interrupted by the second rainfall event 

and once the wetting front reached d = 24 cm, the moisture surged to a saturation value at t = 212 

min (cell C8, Figure 3.5). This was also 2 min after the end of the second rainfall event. 

Saturation was sustained for 30 min (until t = 241 min) in cell C8, after which the second stage 

of redistribution was triggered. And the moisture declined until it was interrupted by the third 

rainfall event at t = 360 min (Figure 3.5). Right before the third rainfall event the moisture 

content in cell C8 was 0.342 cm3/cm3. At t = 390 min the soil became fully saturated again as a 
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result of the third rainfall event. Saturation was maintained for 35 min (until t = 424 min) which 

was longer than that of the second rainfall event.  

After t = 424 min time, the third stage drainage and redistribution was initiated and the 

moisture content declined. By the end of the modeling time period (t = 540 min) the moisture 

content in cell C8 was 0.343 cm3/cm3. Similar patterns can be observed for other cells (C1 – C7) 

(Figure 3.5) although the magnitude of the moisture content was smaller. For the non-puddle cell 

(C1), the wetting front never reached the depth of 24 cm and as a result it was never fully 

saturated (Figure 3.5). The moisture increase in the soil profile of that cell was due to drainage 

and redistribution. Moreover, moisture drainage and redistribution for C1 did not take effect until 

t = 85 min. The temporal distributions of soil moisture for other cells (C2 – C7) were between 

cells C1 and C8 (Figure 3.5). Overall, the temporal moisture distribution of the eight selected 

cells (C1-C8) was different and the variations were function of rainfall event. Spatial location of 

the cells affected, the soil water dynamics. If ever achieved, saturation was only after the first 

event of RF3.   

3.4.2. Effects of multiple rainfall events on infiltration 

Prior to the application of the first rainfall event, the surface was basically dry (θ0 = 0.2 

cm3/cm3). Figure 3.6 shows the spatial distributions of cumulative infiltration for the two rainfall 

events of RF2 at a set of critical time steps. The time steps represented the ponding times for the 

first and second rainfall events (t = 11 min and t = 137 min, respectively) (Figures 3.6a2 and 

3.6b1), the ending times of both rain events (t = 30 and 165 min) (Figures 3.6a3 and 3.6b3), 

typical time steps at a dry time period (t = 85 and 165 min) (Figures 3.6a4 and 3.6b4), and the 

ending times of the dry periods (t = 135 and 270 min) (Figures 3.6a5 and 3.6b5). To enable 
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analysis of cumulative infiltration at comparable time intervals, t = 2 and 146 min (Figures 3.6a1 

and 3.6b2) were added to the set of critical times. 

 

 

(a1)  t = 2 min       (b1)  t = 137 min  

 

 

       

 

(a2)  t = 11 min       (b2)  t = 146 min  

 

 

       

 

(a3)  t = 30 min       (b3)  t = 165 min  

 

 

       

 

(a4)  t = 85 min       (b4)  t = 220 min  

 

 

       

 

(a5)  t = 135 min       (b5)  t = 270 min  

 

 

       

 

Figure 3.6. Spatial distributions of cumulative infiltration (cm) for RF2 
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The ranges of cumulative infiltration for the first rainfall event at t = 2, 11, 30, 85, and 

135 min were 0 - 0.2 cm, 0 - 1.12 cm, 2.20 - 3.02 cm, 2.20 - 6.44 cm, and 2.20 - 8.76 cm, 

respectively (Figures 3.6a1 – 3.6a5). The ranges of cumulative infiltration for the second rainfall 

event at t = 137, 146, 165, 220, and 270 min were 0.18 - 0.20 cm, 0.61 - 1.08 cm, 1.56 - 2.32 cm, 

1.97 - 4.84 cm, and 1.97 - 6.49 cm, respectively (Figures 3.6b1 – 3.6b5). The cumulative 

infiltration in the second rainfall event was lower than that of the first event. This can be 

attributed to the change in moisture regime of the soil profile as a result of the preceding rainfall 

event.  

After the second rainfall event started at t = 136 min, interesting reversal of the pattern of 

cumulative infiltration for the non-puddle and puddle cells was observed. In the first event, 

cumulative infiltration was higher at the puddle center due to the higher ponded water depth and 

it decreased towards the puddle boundaries, while non-puddle cells had the lowest value. This 

resulted in spatial and temporal variability in the soil water dynamics across the topographic 

surface.  

The non-puddle cells dried before puddle cells and underwent a process of moisture 

drainage and redistribution first. Resultantly, in the second event, the infiltration rate was higher 

in the non-puddle cells than in puddle cells. In the puddles, the boundary cells dried before the 

central cells. This caused a spatio-temporal variation in soil water dynamic with-in a puddle 

itself. The pattern of cumulative infiltration resembled the shape of the topographic surface when 

the puddle filling process was dominant (Figures 3.6a3 and 3.6a4). When the puddle depleting 

process was triggered, ridges with depressed top (Figures 3.6b3 and 3.6b4) were observed due to 

the spatial variability of soil moisture movement in boundary and central puddle cells.  
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For RF1, the spatial distribution of cumulative infiltration at the end of the first dry time 

period was similar to that at the end of the second dry time period, however, with a smaller 

magnitude. The cumulative infiltration values at the end of the first and second dry time periods 

of RF1 were 484,034 and 421,697 cm3, respectively. This also signified the reduction in 

cumulative infiltration due to stagnation of water in the depressions as a result of retarded soil 

water movement. For RF2, everything was similar to that of RF1 except the longer modeling 

period (270 min) that resulted in more infiltration and depletion of the surface depression 

storage. The cumulative infiltration values at the end of the first and second dry periods of RF2 

were 484,559 cm3 and 437,545 cm3, respectively.  

For RF3, the distribution of cumulative infiltration was similar to that of RF2. The first 

rainfall event of RF3 had a similar pattern to the corresponding event of RF2 while the second 

and third events of RF3 showed a behavior similar to that of the second event of RF2. The 

cumulative infiltration values at the end of first, second, and third dry time periods at t= 180, 

360, and 540 min were 484,559 cm3, 447,610 cm3, and 443,057 cm3, respectively. This signified 

a considerable reduction of cumulative infiltration as the number of rainfall events increased. 

The analyses of the results for the three rainfall events of RF3 suggested that infiltration 

decreased with the occurrence of more rainfall events. Moreover, the prevalence of depressions 

caused a variation of hydrologic response to different rainfall events. Resultantly, cumulative 

infiltration distributions varied across the spatial domain. 

3.4.3. Effects of multiple rainfall events on surface depression storage  

Figure 3.7 shows the ponded water distributions for the two rainfall events of RF2 at 

critical time steps (t = 2, 11, 30, 85, 135, 137, 146, 165, 220, and 270 min). When ponding 

condition was achieved at t = 137 min in the second rainfall event (2 min after the start of the 
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second event), infiltration was still the dominant process in the first event (t = 2 min) and water 

did not start to accumulate on the surface yet. When ponding condition was achieved in the first 

event at t = 11 min, 29,842 cm3 of water was already ponded on the surface at the corresponding 

time step of the second event (t = 146 min). The time of, t = 146 min was 11 min after the start of 

the second rainfall event. By the end of the first (t= 30 min) and second (t = 165 min) events, 

63,033 cm3 and 71,755 cm3 of water were accumulated in the surface depressions, respectively. 

In the dry time period of the first and second events of RF2, the ponded water volume declined 

and at t = 85 and 220 min the volume reached 2,248 cm3 and 6,690 cm3, respectively. By the end 

of the first (t= 135 min) and second (t = 270 min) dry time periods, 0 cm3 and 190 cm3 of water 

were accumulated in the surface depressions, respectively. The depression storage dynamics was 

different for all the events of the multiple rainfall distributions (RF1 – RF3). Both ponding time 

and the time to attain MDS were affected by the temporal distribution of the rainfall events. 
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For the first rainfall event of RF1, the ponding time and the time to reach MDS were 

longer than the corresponding times for the second rainfall event. The ponding condition in the 

second event of RF1 was achieved instantly (t = 101 min) while MDS was reached at t = 115 

(a1)  t = 2 min       (b1)  t = 137 min  

 

 

       

 

(a3)  t = 30 min       (b3)  t = 165 min  

 

 

       

 

(a4)  t = 85 min       (b4)  t = 220 min  

 

 

       

 

(a5)  t = 135 min       (b5)  t = 270 min  

 

 

       

 

Figure 3.7. Spatial distributions of ponded water depths (cm) for RF2 

(a2)  t = 11 min       (b2)  t = 146 min  
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min which was 4 min earlier than in first event of RF1. This can be attributed to the increase in 

the initial moisture content of the soil in the dry cells and saturation of the upper soil layer in 

water-ponded cells, both of which were due to the previous rainfall event. Water level in the 

puddles increased quickly during the second rainfall event. However, once MDS was reached the 

spatial distribution of the ponded water was identical for both events. Once rainfall stopped, the 

puddle levels started to decrease and the rate of depletion was found to be different in both 

events. Due to the change in the initial moisture condition in the soil profile in the second event, 

the puddle draining process was slower than the first event. At the end of the second dry time 

period, there was 2,708 cm3 of ponded water while it was only 535 cm3 at the end of the first dry 

period.  

For RF2, the ponding time and the time to reach MDS in the first event were identical to 

those of the first event of RF1 (t = 11 and 19 min, respectively) (Figure 3.7). The ponding time (t 

= 137 min) and the time to reach MDS (t = 150 min) in the second rainfall event were 9 and 4 

min shorter than those in the first rainfall event, respectively. As there was no ponded water 

before the beginning of the second rainfall event of RF2 (Figure 3.7a5), the ponding time was 

delayed by 2 min when compared with second event of RF1, although MDS was reached 

simultaneously. The puddle depleting process was faster in the first dry time period of RF2 than 

in the second dry time period of RF2. At the end of the first and second dry time periods of RF2, 

surface depression storages were 0 cm3 and 190 cm3, respectively. 

For RF3, the ponding time and the time to reach MDS for the first event were identical to 

those of the first event of RF1 and RF2 (t = 11 and 19 min, respectively). In the second event, 

ponding condition and MDS were achieved at t = 186 and 196 min, respectively, while for the 

third event they were attained at t = 364 and 376 min. The ponding time of the second rainfall 
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event was 5 min shorter than that of the first event and for the third rainfall event it was 7 min 

shorter than that of the first event. The time to reach MDS was equal for the second and third 

rainfall events (t = 16 min), which was 3 min shorter than that of the first rainfall event. At the 

end of the dry time periods of all rainfall events of RF3, all surface depressions were empty. The 

time to reach MDS was the same for the second and third rainfall events although they reached 

the ponding condition at different times. This can be attributed to the P2P filling-spilling-

merging-splitting dynamic process. That means, although the time to reach MDS was the same 

for the second and third events of RF3, the implication of the third rainfall event can be reflected 

indirectly in other hydrologic processes such as increased outlet discharge. 

3.4.4. Effects of multiple rainfall events on hydrologic connectivity 

Figure 3.8a shows the temporal distributions of the numbers of connected areas for the 

three rainfall events of RF3. The effect of temporal rainfall distribution was less pronounced in 

the wet time periods. However, in the dry time periods the differences were very discernible. 

This can be attributed to the reduction in the rate of infiltration as a result of saturation of the 

upper soil zone from the subsequent rainfall events. And consequently, puddle filling and 

merging processes were quicker in the second and third events while puddle splitting process 

was relatively slower in the later dry time periods when compared to the first event of RF3. 

Moreover, MDS was sustained for a longer time period in later rainfall events. The increase in 

moisture content reduced the ponding time and infiltration rate thereby enhanced the hydrologic 

connectivity. In addition, the relationship of rainfall intensity, duration, and event is important 

when analyzing the dynamics of hydrologic connectivity as it may be facilitated or delayed, 

depending on the pattern of rainfall. 
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Figure 3.8b shows the depression storage of the topographic surface. This increased 

constantly when P2P process was underway and it peaked 19 min after the start of the first event 

and 16 min after the start of the second and third events. After sustaining MDS for 2 min in the 

first event and 5 min in the second and third events, the depression storage declined and 

ultimately it became zero by the end of each dry time periods. It must also be noted that although 

the three events happened in series they were overlapped in one figure (Figure 3.8b) for the ease 

of comparison. For the second and third events, the depression storage curves were receding 

gently, while for the first event this curve was receding sharply showing a faster storage 

depletion rate.  
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Figure 3.8c shows the temporal variations in normalized connected area to the outlet 

(NLCA). NLCA is the ratio of the area that is hydrologically connected to the outlet to the total 

area. The horizontal portion at the beginning of the curves shows the time before ponding 

condition was reached and the area that was structurally connected the outlet. After the ponding 

time, NLCA increased continuously. When MDS was reached, NLCA reached its maximum 

value of 1. Then after the rainfall intensity decreased, it declined to the initial value. An early 

maturity of the hydrologic connectivity was noticed in the later rainfall events when compared 

with the first event. 

Hydrologic connectivity was one of the variables that were affected by the temporal 

distribution of rainfall. When the topographic surface was dry, the hydrologic connectivity was 

characterized by structural hydrologic connectivity. The hydrologic connectivity dynamics was a 

function of rainfall events. In the earlier rainfall event, it took a longer time for the surface to 

attain full hydrologic connectivity, while in the following rainfall events, hydrologic connectivity 

was faster. In the dry time period, the separation of connected areas took longer time after the 

later rain events. 

3.4.5. Effects of multiple rainfall events on surface runoff generation 

The changes in infiltration, soil water dynamics, and hydrologic connectivity that were 

resulted from the temporal changes in rainfall affected the way surface runoff was generated. 

Figure 3.9a shows the surface runoff rate for the three events of RF3. For ease of visualization, 

only the first 50-min surface runoff rate graphs were shown instead of the whole period of each 

event (180 min). The runoff initiation times for events one, two, and three of RF3 were 11, 10, 

and 9 min, respectively. This was attributed to the spatio-temporal change in surface depression 

storage and subsurface water dynamics as a result of increase in rainfall events. As more rainfall 
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events occurred, the depression filling time shortened and moisture content of the soil profile 

increased. Moreover, the limited infiltration capacity of the soil and enhancement in the 

hydrologic connectivity caused an earlier runoff generation in the later rainfall events. The runoff 

generation rate was consistent with the non-uniform rainfall events. The peak discharges for 

rainfall events one, two, and three were 1.30×106, 1.53×106 and 1.55×106 cm3/hr, respectively. 

This increase in peak discharge was another effect of multiple rainfall input. The combined 

effect of spatio-temporal changes in surface and subsurface water dynamics resulted in higher 

surface runoff and peak discharge. 

 

Figure 3.9. (a) Surface runoff rate (r) and (b) cumulative runoff volume (R) 

Figure 3.9b shows the cumulative runoff volumes for the three rainfall events of RF3. At 

the beginning of the first rainfall event, the topographic surface was dry and it had to reach 

ponding condition before the area connected to the outlet started to contribute runoff or until the 

P2P filling-spilling-merging-splitting dynamic process was initiated. Cumulative runoff volume 

increased continuously during the P2P process. Moreover, decrease in cumulative infiltration and 

the increase in hydrologic connectivity during the later stages of the dynamic P2P process caused 

an increase in cumulative runoff volume. At the end of the first, second, and third events of RF3, 

the cumulative runoff volumes were 82,002, 118,610, and 123,007 cm3, respectively. This can be 
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attributed to the mutual effects of surface and subsurface hydrologic processes in response to 

multiple rainfall inputs. The difference in cumulative runoff volumes between the first and 

second events was more significant than between the second and third events. This can attributed 

to the reduction in moisture deficit of the soil profile with occurrence of more rainfall events 

3.5. Summary and Conclusions 

In this study, the effects of temporal distribution of rainfall on hydrologic processes were 

analyzed and evaluated. To enable this evaluation, three modeling scenarios that corresponded to 

three different types of multiple rainfall distributions were created and analyzed using the P2P 

modeling system. From the modeling results, it was found that temporal rainfall distribution 

affected many hydrologic processes. In the first event of all the scenarios, the behaviors of all 

hydrologic processes investigated were identical as there was no rainfall prior to this event. A 

pronounced variation in the hydrologic processes was observed in the second and third rainfall 

events. Temporal variations in rainfall caused corresponding spatial and temporal changes in the 

soil water dynamics. The wetting front moved deeper as more rainfall was precipitating on the 

surface and the moisture content in the deeper soil was boosted via drainage and redistribution; 

and how deep this redistribution goes was function of the wetting front depth prior to the 

drainage and redistribution. The ponding time and the time to reach maximum depression storage 

(MDS) were generally shorter in the later rainfall events. This caused spatial variability of 

surface water ponding. Due to the slower puddle depleting process and variation in the 

sustainability of surface water ponding, spatial variations in soil moisture content were observed. 

This in turn affected the spatial distribution of infiltration. Hydrologic connectivity was 

enhanced as a result of earlier saturation of the top soil and reduction of infiltration. The 
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reduction in ponding time and infiltration, and the enhancement of hydrologic connectivity in 

turn caused earlier and greater surface runoff generation.  
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CHAPTER 4. OVERALL CONCLUSIONS AND FUTURE WORK 

This thesis research addressed (1) the effects of DEM resolution on microtopographic 

characteristics, hydrologic connectivity, and modeling of hydrologic processes; and (2) the 

influences of multiple rainfall events on surface and subsurface hydrologic processes with the 

use of the P2P modeling system for different scenarios. 

In Chapter 1, a brief overview of surface microtopography and the associated factors that 

affect hydrologic modeling, and an introduction to the P2P modeling system were given. In 

addition, DEM- and image-based approaches that had been used for topographic characterization 

were introduced. The P2P model is a quasi-3D, distributed model that simulates overland flow 

across a topographic surface as well as infiltration and unsaturated flow in heterogeneous soils 

under complex rainfall events that may include both wet and dry time periods. The novel features 

of the P2P modeling system enable a unique analysis of hydrologic processes. The P2P model 

also encompasses a series of tools that can be used independently for surface microtopography 

characterization and analysis. Object-based image segmentation (OBIS) is one of the P2P tools, 

which implements object-based image analysis (OBIA) to partition images to a desired number 

of clusters. The surface topographic parameter tool (STP) is used to calculate and visualize slope, 

aspect, and different types of curvature. The puddle delineation (PD) tool is a part of the P2P 

model for identification of puddle cells, centers, thresholds, flats, and their levels, computation of 

maximum depression storage (MDS) and maximum ponding area (MPA), and determination of 

the relationships of multiple puddles. The results of the PD program are used in modeling of the 

dynamic P2P processes. 

In Chapter 2, the effects of DEM resolution on microtopographic characteristics, 

hydrologic connectivity, and modeling of hydrologic processes were studied. Specifically, this 
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chapter covered the spatial and temporal changes in hydrologic connectivity, surface depression 

storage, and infiltration as DEM resolution changed. The effects of DEM resolution on surface 

runoff and MDS were also discussed. Analysis of several microtopographic characteristics was 

included and the chapter as a whole described the interrelationships of surface microtopographic 

characteristics, hydrologic connectivity, and various hydrologic processes. Nine modeling 

scenarios corresponding to different DEM resolutions were created to evaluate their impacts.  

The change in DEM resolution had a significant effect on how surface microtopography 

was depicted. Full representation of the natural heterogeneity of a topographic surface was not 

possible as a result of the smoothing and aggregation effect induced by increasing DEM grid 

size, which tended to eliminate important topographic features. DEM grid size affected both 

structural and functional hydrologic connectivity. Reduction in DEM resolution tended to 

“enhance” hydrologic connectivity and resulted in early maturity of functional hydrologic 

connectivity. In contrast, a higher resolution DEM captured more detailed topographic features 

and the relevant surface was subject to smaller-scale dynamic processes before it reached a fully-

connected status. Coarser resolution DEMs exhibited the propensity to mask the effect of 

important land surface features, ultimately creating a surface that consisted of a number of large 

planar DEM grids and resulting in virtually highly connected areas. During a rainfall event, the 

topographic surface became more responsive to connectivity.  

The change in DEM resolution altered hydrologic processes simulated by the P2P model. 

As the DEM grid size became larger, the topographic heterogeneity and roughness of a natural 

surface were reduced and the filling time of depressions was shortened, which in turn caused 

higher outlet discharge at earlier stages of a rainfall period. Surface ponded water depth 

decreased with an increase in DEM grid size. The spatial distribution of ponded water depths 
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strongly depended on DEM grid size. The influence of DEM resolution on infiltration mainly 

occurred after rainfall stopped. The spatial distribution of cumulative infiltration was strongly 

affected by DEM resolution, which was primarily associated with puddles and their distributions. 

The greater MDS of a higher resolution surface sustained infiltration for a prolonged period of 

time, maintained higher soil moisture content, and yielded a deeper wetting front. 

In Chapter 3, the effects of temporal distribution of rainfall on the surface and subsurface 

hydrologic processes were simulated and evaluated. The changes in spatio-temporal distributions 

of infiltration and surface depression storage, and wetting front movement that were induced by 

different rainfall events were discussed. Moreover, this chapter also covered the effects of 

multiple rainfall events on hydrologic connectivity, depression filling time, and the time to reach 

maximum depression storage. Three multiple rainfall distributions were created to quantify and 

underline their effects on different hydrologic processes. The first rainfall distribution had two 

rain events with ponded water on the surface before the beginning of the second event. The 

second rainfall distribution was similar to the first event except that the modeling time period 

was increased to allow full drainage of the ponded water from the first rainfall event. The third 

rainfall distribution had three rain events and there was no ponded water before the start of the 

subsequent rainfall events.  

From the P2P simulation results, it was found that temporal rainfall distribution affected 

both surface and subsurface hydrologic processes and the system responded differently to each 

rainfall event. In the first event of all the scenarios, the behaviors of all hydrologic processes 

investigated were identical as there was no rainfall prior to this event. A pronounced variation in 

the hydrologic processes was observed in the second and third rainfall events. Temporal 

variations in rainfall caused corresponding spatial and temporal changes in the soil water 
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dynamics. The wetting front moved deeper as more rainfall was precipitating on the surface and 

the moisture content in the deeper soil was boosted via drainage and redistribution. How deep the 

redistribution goes was a function of the wetting front depth prior to the drainage and 

redistribution. The ponding time and the time to reach maximum depression storage (MDS) were 

generally shorter in the later rainfall events. This caused spatial variability of surface water 

ponding. Due to the slower puddle depleting process and variation in the sustainability of surface 

water ponding, spatial variations in soil moisture content were observed. This in turn affected the 

spatial distribution of infiltration. Hydrologic connectivity was enhanced as a result of moisture 

augmentation and reduction of infiltration. The reduction in ponding time and infiltration, and 

the enhancement of hydrologic connectivity further caused earlier and greater surface runoff 

generation. 

As described earlier, this thesis research had very specific goals and, in this regard, the 

effects of DEM resolution on hydrologic processes were addressed using a field plot surface 

where the originally scanned data was used to create different DEM resolution surfaces.  

Moreover, the field plot surface was used to address the effects of multiple rainfall events on 

hydrologic processes. For future research, the number of scenarios can be increased by using 

different topographic surfaces that may include rough and smooth surfaces, in field and/or lab 

setups; the soil types used and their homogeneity can be varied; the distribution of rainfall and 

soil can be varied spatially instead of using uniform distribution only. The P2P model has the 

capability to handle all such combinations and the addition of more scenarios can allow the 

coverage of a wide range of hydrologic topics. 

 


