
MINIMUM ENTROPY GENERATION IN THE 

CARDIOVASCULAR SYSTEM 

A Thesis 

Submitted to the Graduate Faculty 

of the 

North Dakota State University 

of Agriculture and Applied Science 

By 

Niccole Stephanie Schaible 

In Partial Fulfillment of the Requirements 

for the Degree of 

MASTER OF SCIENCE 

Major Department: 

Electrical & Computer Engineering 

August 2011 

Fargo, North Dakota 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NDSU Libraries Institutional Repository

https://core.ac.uk/display/211311918?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


North Dakota State University 
Graduate School 

Title 

Minimum Entropy Generation in the Cardiovascular System 

By 

Niccole S. Schaible 

The Supervisory Committee certifies that this disquisition complies with North Dakota State 
University's regulations and meets the accepted standards for the degree of 

MASTER OF SCIENCE 

North Dakota State University Libraries Addendum 

To protect the privacy of individuals associated with the document, signatures have been 
removed from the digital version of this document. 



ABSTRACT 

Schaible, Niccole Stephanie, M.S., Department of Electrical and Computer Engineering, 
North Dakota State University, August 2011. Minimum Entropy Generation in the 
Cardiovascular System. Major Professor: Dr. Dan Ewert. 

This study was performed under the motivation to find a scheme that could 

describe the complex behavior of cardiovascular homeostasis. This is hypothesized to 

be manifested in a thermodynamic description of the cardiovascular system (CVS). 

Seen from a thermodynamic framework, the mechanics of blood flow can be gauged in 

similar terms as metabolic exchange at the capillaries - thereby providing a holistic 

and novel perspective on overall CVS function. 

Entropy generation, a thermodynamic calculation, represents lost work and is 

hypothesized to reveal something about the "optimal" state of the CVS. In particular, it 

is hypothesized that the CVS state that generates minimal entropy, given certain 

constraints, will be physiologically preferred and that cardiovascular control operates 

to find this state. This will be tested by first proposing a method to calculate entropy 

generation in the CVS, and secondly characterizing entropy generation across unique 

CVS states by simulation of a mathematical model. 
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INTRODUCTION 

It is important to understand the homeostasis or control logic of the 

cardiovascular system for the treatment of cardiovascular disease. As a result, disease 

treatment can be planned to follow an optimal trajectory. In addition, the effect of a 

perturbation (disease or treatment) can be reliably predicted if the inherent control 

logic is defined. Given the enormity of cardiovascular disease, such understanding is a 

significant worldwide concern. However, despite decades of important scientific 

contributions to define this control logic, the complexity of cardiovascular system 

(CVS) homeostasis has not been successfully reduced into a coherent scheme. 

However, it is the proposal of this study that an innovative and effectual way to 

intellectually navigate the inherent complexity of the CVS, particularly CVS 

homeostasis, is to use classical thermodynamics. 

Homeostasis is a cornerstone concept within physiology - it is the ability of a 

system to maintain balance in the face of changing internal and external factors. The 

CVS demonstrates homeostasis by adjusting or maintaining blood flow in accordance 

with metabolic demand. For example, blood flow is relatively low in the resting state 

and high during exercise. However, even though blood flow can be altered in various 

ways by the CVS, the manner in which blood flow is changed has revealed patterns 

that cannot be justified or fully appreciated. Furthermore, these patterns seem to be 

optimal for the system given its metabolic needs. This pattern has been studied by 

focusing solely a prominent arm of the cardiovascular circuit (left ventricle and 

contiguous arterial bed) and is likewise referred to as ventricular-arterial coupling 
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(VAC) or ventricular-vascular coupling (VVC) studies. VAC theories, much like the 

work in this thesis, hypothesize that the cardiovascular system changes states in 

response to need in an optimal manner. The existence of optimum state/states would 

explain why the cardiovascular system in vivo occupies and moves through a limited 

set of states despite the alternatives available. However, none of the VAC theories 

have been able to reach full acceptance in the literature. This could be due to the 

narrow scope within the cardiovascular anatomy and physiology. After all, the 

ventricle and arterial bed are not the only components that impact blood flow. In 

addition, these theories largely ignore the capacity of a CVS state to meet metabolic 

demand which is an important facet of cardiovascular function and efficacy. 

The CVS is very challenging to understand, especially in a quantitative sense. 

Therefore, it is prudent that the simplest possible model is used as a starting point -

just as the studies concerning VAC theories have done. This thesis expands upon the 

current VAC thinking to include more detail concerning the cardiovascular system 

anatomy (whole circuit CVS and not just the ventricle to artery) and physiology 

(including metabolism and metabolic demand). Even so, new assumptions and 

simplifications were also made in this work out of necessity. 

The CVS, like all physiological systems that achieve homeostasis, is dynamical, 

nonlinear, and robust. The robustness is often due to the presence of redundant 

mechanisms. A common method for understanding a complicated system is to reduce 

the system into smaller, simpler parts, and is likewise referred to as the reductionist 

approach. The assumption is that the function of the system is equal to the sum of the 
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parts. However, redundant mechanisms as well as nonlinear behavior confound the 

identity of the system using the reductionist approach. Using the reductionist 

approach to understand the homeostasis of the CVS involves investigating the 

separate function of the various feedback systems, like the kidneys and the lungs and 

others, and then considering the integrated function as a whole as the simultaneous 

function of the parts. This method is unlikely to yield an accurate representation of 

the integrated whole for at least two reasons: 1) the assumption that the function of 

the feedback system in isolation is the same as it is within the integrated whole (in 

vivo) is not necessarily valid, and 2) the inherent complexity of physiological systems 

(dynamical, nonlinear, and robust). 

Alternatively, this thesis employs a more holistic style to understanding the 

homeostasis of the CVS. This is done using thermodynamics and is hypothesized to be 

a suitable approach to understand the systems-level operation of the CVS because it 

avoids the pitfalls associated with the more traditional, reductionist techniques. In 

any case, the application of cycle thermodynamics to the CVS is a new idea that has 

not yet been attempted. Specifically, it is hypothesized that entropy generation, a 

thermodynamic calculation of the CVS, is minimized, given constraints. Processes that 

contribute to entropy generation represent "work lost" and therefore it is reasonable 

that the optimum state is defined in terms of minimum entropy generation. Therefore, 

the focus of this thesis is to characterize entropy generation within the CVS as a 

means to address the hypothesis that entropy generation is minimized near normal or 

typical CVS states, given constraints. 
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BACKGROUND 

Hemodynamic Modeling 

In 1972, Guyton and colleagues wrote a review on the macroscopic regulation 

of the CVS using their own vast computational model as an illustration. (13) The very 

last sentence of this Guyton's review states: "If the general principles of this systems 

analysis are correct, and we believe they are, then it seems clear that the field of 

circulatory physiology is on the verge of changing from the realm of a speculative 

science to that of an engineering science." (13) 

It is due to many, especially Guyton, who showed the value of an engineering 

approach to the study of the CVS. In fact, the past forty years has yielded an explosion 

of computational analyses and models of the CVS thanks to modern numerical solvers 

and computational power. Additionally, the fact that there exists many models attests 

to the complexity of the CVS system - since virtually all models cannot claim to be 

general-purpose, but rather make simplifications according to a specific context. Yet, 

Guyton's model is unique given the large scope including not only the CVS but also 

various feedback mechanisms under the umbrella of integrative physiology. Guyton's 

model is able to show that the physiology of the CVS, which is difficult to intuit, can be 

effectively studied by pairing electrical circuit analysis with biology. 

Guyton's model is still studied and discussed in recent years. In 2006 there 

were a series of point/counterpoint-style articles concerning Guyton's 

approximations of the basic forces that determine blood flow. (1, 3, 4, 21, 22, 25, 29, 

30, 32, 33, 43) The introductory remarks in the point/counterpoint debate set the 
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stage with this comment, "What makes the blood go around? This must be one of the 

most fundamental questions in cardiovascular physiology." (21) This may be a 

surprising statement, because it seems obvious that it is the beating heart that drives 

blood flow. Conversely, ever since investigators began quantitative evaluations of the 

cardiovascular system, evidence indicates that various other factors are important 

and can often dominate over the influence of the heart. For instance, the Guyton 

model assumes a particular aspect of the CVS to be a primary factor that ultimately 

determines blood flow - this aspect has little to do with the heart directly. The 

reasoning is the heart is inconsequential to analyzing the hemodynamics in the 

steady-state because it acts to maintain the major pressure differential across the 

system and not create it. The heart, in the steady state, ejects exactly the amount of 

blood returned to the input, also called venous return. Rather, according to Guyton, 

creation of the major driving pressure difference (right atrial pressure vs. mean 

systemic filling pressure) is attributed to various downstream parameters having to 

do with features such as vessel diameter or resistance. Likewise, the title of this 

debate was "The classical Guyton view that mean systemic pressure, right atrial 

pressure, and venous resistance govern venous return is/is not correct". (1, 3, 4, 21, 

22, 25, 29, 30, 32, 33, 43) More recently, in 2011, Beard's critique of the Guyton model 

and the Guyton point/counterpoint debates indicates that the confusion amounts to 

identifying the dependent vs. independent variables. (2) In particular, a common 

misinterpretation of the Guyton model is that right atrial pressure functions to 

impede venous return, and therefore cardiac output is a function of right atrial 

pressure. This is not always true for the CVS in vivo. However Guyton's model does 
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produce a change in cardiac output in a proportional sense with a change in right 

atrial pressure as a consequence of holding a constant total blood volume. Total blood 

volume is a variable, especially in the clinical setting. Beard insists that the 

independent variable is actually cardiac output and right atrial pressure is a function 

of flow. Another point Beard makes is that there is misinterpretation of the term 

"venous resistance". Guyton had originally referred to a "resistance to venous return" 

which is dependent on the relative capacitances of the arteries and the veins. This is 

distinct from the "venous resistance" which is a particular feature of the anatomical 

veins exclusively. It is evident that modeling of the CVS in mathematical terms is not a 

straightforward task. 

Regardless, Guyton's model was able to impress upon the scientific and 

especially the medical community that the cardiovascular system is essentially a 

mechanically coupled system of the heart-pump and the dynamic vasculature gwhere 

the influence of the vasculature and its various control mechanisms were emphasized. 

Then, in a 1975 critique of Guyton's model, Sagawa makes a number of 

interesting observations. (36) Notably, he remarks that the Guyton model cannot 

actually make the claim to be a general-purpose model since there are a few 

important elements left out, like metabolic processes and the effect of blood volume 

distribution within lumped compartments of the vasculature. Furthermore, the 

endeavor to make a model more perfect by making it larger and more complex does 

not appear to be a worthwhile pursuit given this other comment by Sagawa about the 

ability of the model to make deductive predictions: "The probability of obtaining valid 
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(useful) conclusions becomes increasingly smaller as the number of incorporated 

assumptions increases." (36) Given this feedback from Sagawa, it seems that the 

reductionist way of studying the overall regulation of the CVS is the gain of small steps 

at the expense of tremendous, maybe infinite, effort. 

Since the main focus of this thesis is thermodynamic analysis of the CVS, an 

initial idea was to use a published CVS model, like Guyton's model, to provide a basis 

for the thermodynamics. However after scanning the literature, it was found that 

published CVS models would not be suitable for this application. For example, the 

assumptions and simplifications made by Guyton and colleagues toward creation of 

their model were done in the context of describing the etiology of Jong-term blood 

pressure regulation disease. Therefore, given that the timescale for processes relevant 

to the development of hypertension(>> 24 hrs) are much slower than the duration of 

a single heartbeat (-1 sec), the Guyton model was conceptualized as a non-pulsatile 

or steady-state approximation of CVS behavior. Non-pulsatile dynamics alone are not 

sufficient for this study as it results in a loss of information that may significantly 

impact thermodynamic analysis and entropy generation calculation. Even so, 

Guyton's model is very influential to this work for at least two reasons: 1) for proving 

the merit of the idea of circulatory physiology as an engineering science, and 2) for 

seeking to answer the large-scale, "systems" properties of the CVS. 

However, Guyton is certainly not the first credited for attempting a 

quantitative study of CVS physiology. Many reviews usually give this credit to William 

Harvey and his 1628 book Exercitatio Anatomica de Motu Cordis et Sanguinis in 
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Animalibus (An Anatomical Exercise on the Motion of the Heart and Blood in Living 

Beings). Before Harvey's work it was thought that the heart merely warmed the blood 

while the liver produced venous blood. Harvey used mathematics to prove that it was 

impossible for the liver to produce the amount of blood necessary. Instead, Harvey 

showed that the blood circulated. Harvey used tourniquets on arteries and veins to 

demonstrate this circulation as well as the existence of one-way valves. Reviews on 

the evolving understanding of circulation since Harvey include works by 

Noordergraaf (28), Coleman (8), Melchior (23) and Shaw (38). Most hemodynamic 

models are very similar. In fact, most are variants of Windkessel models of the arteries. 

Windkessel models are actually conceptual circuit models used to describe blood flow. 

The analogy of circuit analysis to CVS physiology is described next. 

The dimension or structure of the blood vessels has significant bearing on the 

pressure-flow relationship in the CVS. Common practice is to approximate a resistive 

component of blood vessels by modeling them as static, cylindrical tubes. It has been 

shown in cylindrical tubes that experimentally, under steady pressure-flow 

conditions, tube dimension has a direct relationship with pressure and flow. This 

relationship is shown in Equation 1 and is referred to as Poiseuille's equation. 

Alternatively, changes in flow are generally thought of in terms of properties 

that hinder it, commonly referred to as resistance or impedance. Rearranging 

Poiseuil!e's equation to cater to this perspective results in Equation 2. 
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Equation 1 - Poiseuille's Equation 

n rr r 4 1:,.P 
Q= ----

8 TJ L 

Q = flow 

n =- number of tubes in parallel 

r =- radius 

P = pressure 

TJ =- fluid viscosity 

L = tube length 

Equation 2 - Poiseuille's Equation Modified to Calculate Resistance 

1:,.P 8 TJ L 
R-----

- Q - n rr r 4 

The most physiologically significant variable of resistance is radius. Slight 

changes in radius will yield magnified changes in resistance and therefore induce 

pressure and flow responses. Furthermore, by framing the analysis in this way is 

strikingly similar to circuit analysis, specifically Ohm's law, shown in Equation 3, 

where pressure is like voltage (V), flow like current (1), and resistance has the same 

term in both cases. 

Yet static flow conditions do not justly characterize cardiovascular pressure

flow relationships. The arteries are supple and radius will change in submission to 

pressure surges, such as systolic pressure escalation during ejection. This pulsatile 
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component of impedance is termed compliance and defines the change in volume due 

to a change in pressure, shown below in Equation 4. 

Equation 3 - Ohm's Law 

V = l·R 

V = voltage 

I= current 

R = resistance 

Equation 4 - Physiological Compliance 

C - !J.Vj - /J.P 

C = compliance 

V = volume 

P = pressure 

The circuit analogy for compliance is the capacitor which is defined in electrical terms 

in Equation 5 In this case, capacitance (C) is like compliance, charge (Q) is like volume, 

and voltage (V) is akin to pressure. 

Equation 5 - Electrical Capacitance 

C= Q/v 

10 
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Both compliance and capacitance reflect a storage capacity: storage of blood in the 

vessels and storage of charge in the capacitor. The inverse of compliance, elastance, is 

also typically used to describe the vasculature. Elastance is defined mathematically in 

Equation 6. 

Equation 6 - Elastance (E) - Compliance (C) Relationship 

E = 1/c 

The low compliance (high elastance) property of arteries allows them to 

transfer pressure as flow, versus highly compliant vessels, like veins, that simply 

attenuate pressure by yielding to it and effectively storing volume. Elastance, and also 

resistance, can also be altered by neural control of the smooth muscle tone that lines 

the arteries. Neural control is only one example of the many control systems involved 

with the CVS. 

In addition to resistance and compliance, there exists a third property of 

vascular impedance caused by fluid inertance which is like the electrical inductor. 

Because of this analogous relationship to blood flow, the well-studied 

properties of electric current flow and impedance can be used to understand 

properties of the arterial system as they relate to blood flow. 

The interpretation of arterial properties into a "lumped" resistor-inductor

capacitor (RLC) model was introduced by Otto Frank in 1899. Frank referred to this 

model as a Windkessel. This concept has been modified through decades of study, yet 

most hemodynamic models of the vasculature are basically modified Windkessels. It is 
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important to point out that this analogy fails in at least one important regard: the 

electric RLC model is linear, time-invariant while physiological RLC are not. 

Modeling the action of the heart is a more challenging task, and unlike the 

arteries, there is no generally-accepted model. In fact, unlike the arteries which are 

best described in the time domain, the performance of the heart is best described in 

the pressure-volume (PV) domain. The left side of Figure 1 illustrates one complete 

cardiac cycle or heartbeat, in the PV domain, which transitions about four distinct 

phases: ejection, relaxation, filling and contraction. The right side of Figure 1 

demonstrates that a complete cardiac cycle is actuated by changes in cardiac 

elastance with the maximum elastance occurring at the transition from the ejection 

phase to the relaxation phase. 

Pressure 

relaxation 

filling 

end-systole 

Pressure 

contraction 

end-diastole 
Volume 

maximum 
elastance 

Figure 1 - Performance of the Heart in the Pressure-Volume Domain 

Furthermore these changes in elastance of the heart muscle are dependent on 

many factors, specifically volume in the ventricles. This dependence of pressure 

generation on volume is well-known in cardiac physiology and is referred to as the 
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Frank-Starling law of the heart. If multiple beats are considered, the PV loops seem to 

be constrained by a two main envelopes shown next in Figure 2. 

Pressure 

/ 
/ 

/ 
Volume 

Figure 2 - Constraints on the Operation of the Heart 

This scenario shown in Figure 2 illustrates an idealized heart ( constant 

inotropic state) in response to a decreasing input volume. The gray lines which form 

loops are the pressure-volume within the ventricle. The minimum volume needed to 

keep the wall from collapsing is known as the dead volume (Vo). For volume in excess 

of the dead volume, pressure increases nonlinearly with increasing volume. This 

relationship defines the filling phase during diastole. In addition to filling phase, a 

relationship for the maximum elastance or end-systolic elastance (Ees) is realized 

from multiple beats. For corresponding increments of fi!ling volumes, a linear trend in 

Ees is observed. This line is known as the end-systolic pressure volume relation 

(ESPVR) and is attributed to contractility or inotropic state of the heart. The nervous 

system has influence over the heart by altering its inotropic state (thereby changing 

the slope of the ESPVR) as well as heart rate. 
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Overall, the main parameters of ventricular function as a pump include: ESPVR, 

Ees, filling curve, and dead volume. Models of the CVS that include consideration of 

the heart as a pump most likely incorporate these parameters. One such model 

proposed by Ewert and colleagues is a circuit equivalent model of the heart that 

frames the heart as an ideal pressure source paired with volume-sensitive source 

impedance which can account for the dynamic nature of the myocardial 

viscoelasticity. (11) A circuit model of the heart pairs well with the Windkessel model 

of the arteries because it allows for cohesive study of the closed-loop CVS. 

To model the entire closed-loop circulation including heart-pump and 

vasculature will also necessitate the valves for an accurate representation of pulsatile 

behavior. However only a few have attempted CVS models with valves in the past, but 

it is considered a necessary feature to explore now in this thesis because the valve 

energetics may play a significant role in overall CVS entropy generation. The reason 

valves are difficult to implement is that numerical representation of nonlinear 

behavior, like that of the valves, is especially cumbersome. Hann et. al. have proposed 

a method for reducing computational complexity by introducing the use of Heaviside 

functions. (15) These functions are designed so that the valve is in the "open" state 

when the pressure differential is large enough, and conversely, "closed" when the flow 

is low. An event solver is used to detect these instances and trigger the change in 

phase - contraction phase to ejection phase, for example. Smith has developed a 

minimal model that includes both valves and inertia. (39) According to Smith, "Of the 

numerous models in the literature, few mentioned valve function, and the author 

could not find a realistic valve law for models that use inertia. The solution developed 
14 



allows the system state to change dynamically while solving." Therefore, Smith's 

model switches between different systems of equations depending on an event solver 

as a surrogate to valve operation. 

A concern with using a "switching" model is numerical stability and accuracy. 

This is an even bigger issue when various simulations of the same model are to be 

compared. 

In summary, due to the unique context of this model and the numerically 

complicated but obligatory task of implementing the operation of the valves, a new 

model was created for this study. 

Optimal Control Logic 

Even though consideration of a valid hemodynamic model alone is a complex 

endeavor, it is not enough to make meaningful, clinical impact. This is because a 

hemodynamic model reveals all possible CVS states as equivalent. For example, there 

are infinite possible CVS states that can all result in the same cardiac output. The 

bigger question naturally follows: if there are infinitely many combinations of 

parameters that give rise to the same cardiac output, which one(s) is (are) optimal 

and why? There are a number of theories, such as VAC or VVC theories that have 

attempted to answer this question. 

Definition of control logic basically amounts to a function or a criterion that is 

hypothesized to be optimized. There are at least three criterion functions that have 

been previously proposed as a control logic or optimal state. They are as follows: 

1. Maximal mechanical power 
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2. Maximal mechanical efficiency 

3. Minimal relative oscillatory power. 

Maximal mechanical power refers to the maximum external work delivered 

from the ventricle to the arterial load, and is thought to occur when the stiffness of the 

heart matches the stiffness of the arteries. This is analogous to the concept of 

impedance matching in circuit analysis. Impedance matching, for a simple circuit 

consisting of a source, source impedance and load impedance, results in maximum 

power transfer if the load impedance is equivalent to the source impedance. 

However, the literature is not particularly precise about what is considered to be a 

physiological impedance match. (16, 27, 41) 

Maximal mechanical efficiency is defined as the maximum ratio of external 

work generated by the ventricle relative to the myocardial oxygen consumption 

(MV02), which can be roughly approximated as the fuel used by the heart. (27, 41) 

Minimum relative oscillatory power weighs the loss of energy required for the 

pulsatile pump action of the heart that generates the net flow of blood. (2 7) 

The three aforementioned criterions have been observed in some way to 

define the optimal coupling of the ventricle to the arteries. However, the scope of all is 

limited to only a portion of the CVS - the ventricle and the arteries. More importantly, 

the three theories are not robust in that many states exist that result in either 

maximal mechanical power, maximum efficiency, or minimum relative oscillatory 

power, but are not truly "optimal" - they do not necessarily meet metabolic demand, 

for example. 
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Considering the achievements of the initial theories of VAC and acknowledging 

their shortcomings have motivated the notion of a new optimal criterion which 

embraces the entire CVS. This new optimal criterion is proposed to be contained in 

the language of energy transformations: thermodynamics. 

Thermodynamics & Entropy Generation 

Thermodynamic analysis of the CVS circulation is a novel approach; however, 

thermodynamics has been successfully applied to living systems and even isolated 

parts of the CVS. For example, Denslow and colleagues showed that thermodynamics 

can provide additional support for the PVA-MV02 relationship by approximating the 

cardiac cycle as an ideal thermodynamic cycle. (9) The PVA-MV02 relationship relates 

MV02 with a feature of the PV loop of the left ventricle. This feature is the area 

enclosed by the dead volume, ESPVR, filling curve, and the PV loop. This area is 

specifically referred to as the pressure-volume area (PVA) and is shown in Figure 3 as 

Pruoure 

/ 
/ 

/ 
.( 

/ 

:ure 3 - Illustration of the PVA 
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the sum of the areas labeled "triangle" and "stroke work". As a result, the MV02 can 

easily be approximated using only left ventricle pressure and volume data. 

In fact, thermodynamics seems like a natural tool to study optimization of the 

CVS given that thermodynamics has been successfully used to optimize engines for 

decades. Furthermore, thermodynamics and entropy are extremely fundamental: 

"Scientists discovered that heat was produced by the collision of millions of particles 

in a perfect gas, generating irreversible entropy, a lower level of energy. However, 

Poincare showed that it is practically impossible to study the motion of more than 

three bodies and thus understand the process. Boltzmann (1872) bridged this gap by 

introducing statistical methods to describe kinetic phenomena and equate their 

average kinetic energy with entropy." (37) In light of this, the beauty of 

thermodynamics is that useful information about a system can be found without the 

need to reduce that system into a set of deterministic mechanisms. This is an 

attractive concept in the realm of systems biology, such as the study of the CVS, in 

which the emergent behavior seems to transcend the most thorough deterministic 

models and careful reductionist techniques. 

Prigogine's minimum entropy production principle is an application of 

thermodynamics to understand systems that are stable yet not at equilibrium, which 

is the case for all biological systems. (31) At a high-level understanding, it is logical 

that a living system would tend to maintain a functional order and reduce energy loss 

due to irreversible processes. However, the complexity that lies around the definition 

of "entropy" - in both the qualitative and the quantitative sense - is a major roadblock 
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to its successful application as pointed out in a number of reviews on the matter. (17, 

19) Therefore, with the cautions of previous misuse of entropy in the life sciences in 

mind, a cursory, initial attempt is made here to help understand the optimal state of 

the CVS as an alternative to classical, reductionist attempts. 

The application of thermodynamic analysis to the CVS has been considered in 

an unpublished work by Ewert, Penoncello, and Swope. (10) With the authors' 

permission, portions of that work have directed this section of the background which 

will provide the basic thermodynamic foundation which follows. 

The novel application of thermodynamic analyses to the CVS will mimic 

methods typically employed when analyzing engineering-based cycles. The first step 

in this process will be to represent the CVS hemodynamics as a thermodynamic cycle. 

To represent as a thermodynamic cycle, the CVS must be studied as a series of so

called control volumes each delineated by a system boundary. The control volumes 

will exchange mass at a certain rate defined by Equation 7. 

Equation 7 - Definition of Mass Flow Rate 

rh= P*A*V 

p = density of fluid 

v = velocity of substance 

A = area of flow, rh 

Furthermore, if this control volume does not change (in terms of net volume) 

over time, it is in a steady-state, steady-flow (SSSF) condition, which is shown in 

Equation 8. 
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Equation 8 - Steady-State, Steady-Flow (SSSF) Condition 

mi = mass flow rate into control 
volume 

nie = mass flow rate out of control 
volume 

The SSSF assumption is valid over time scales longer that the period of a heart 

beat (-1 sec) but shorter than blood volume regulation processes (hours). Therefore, 

to apply SSSF simplifications is to the analysis, time-averaged CVS control volumes 

were used to meet this criterion. The motivation for this is to simplify the initial stage 

of thermodynamic analysis, but it is anticipated that pulsatile dynamics (non-SSSF) 

behavior could/should be investigated in the future. 

Thermodynamic analysis is based upon two general laws. The general laws of 

thermodynamics will be shown, along with simplifying assumptions to allow for a 

more convenient mathematical form. 

The first law, shown in Equation 9, relates the rate of heat transfer into the 

volume as the sum of three main quantities: 1) rate of energy stored, 2) rate of net 

energy entering, and 3) power produced. 

For uniform states of mass crossing the control surface, the first law can be 

simplified to as shown in Equation 10. 
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Equation 9 - First Law of Thermodynamics for a Control Volume 

tJc.v. = :t Iv (e * p) dV + L ( h + ;
2 

+ g * Z) (p * v,..nJdA + W c.v. 

Q c.v. = rate of heat transfer into the 
control volume (C.V.) surface 

e = energy contained in volume, dV 

p = density of fluid 

h = enthalpy of substance 

v = velocity of substance 

g = gravitational constant 

Z = elevation of substance 

Vr.n. = outward-directed normal 
velocity 

dA = area of flow, rh 

W c.v. = work done by the control 
volume (C.V.) 

Wc.v 

mi = mass flow rate into control 
volume 

rrie = mass flow rate out of control 
volume 

Furthermore, if one assumes steady energy content in the control volume, that 

the control volume does not move relative to the coordinate frame, and that the mass 

flux and its state do not change in time, and finally, that Oc.v. and W c.v. remain 
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constant, one obtains a steady-state, steady-flow (SSSF) equation as shown in 

Equation 11. 

Equation 11- Steady-State, Steady-Flow Version of the First Law 

Q C.V. + I mi ( hi + Vt + g * zi) = I me ( he + vf + g * le) + w c.v. 

The CVS does not operate under SSSF conditions, as mentioned previously the 

pulsatile or intra-beat dynamics may prove to be important considerations of CVS 

thermodynamics. However, as an initial step forward, SSSF conditions where used 

over time-averaged hemodynamics. However, the same hemodynamic model will 

allow for seamless integration to pulsatile time-domain thermodynamic analysis in 

the future. 

If a chemical reaction takes place or if there is a transformation of material 

within the control volume, the enthalpies take the form as displayed in Equation 12. 

Thus, under SSSF conditions and neglecting kinetic energy and potential 

energy, a system which undergoes heat transfer, work and chemical transformation 

can be described by Equation 13. 

Equation 12 - Consideration of a Chemical Reaction in Terms of the First Law 

mihi = Hi = n 1 h1 + n 2 h2 + ... + nnhn 
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nnhn = product of moles and molar 
enthalpy of species n 

hn = [h; + fih] 
n 

h; = enthalpy of formation at 

reference temperature and pressure 

t:i.h = enthalpy change due to non
reference temperature and pressure 



Equation 13 - SSSF First Law with Chemical Reactions 

With the first law in place, the second law of thermodynamics can now be considered 

as shown in Equation 14. 

Equation 14- Second Law for a Control Volume 

:tr (s * p) dV + L (s * p * Vr.n) dA = L 

s = entropy 

T = temperature 

LW = lost work due to irreversibility 

Equation 14 is showing that, for a control volume, the sum of the rate change in 

entropy plus the net entropy leaving is equal to the sum of entropy due to heat 

transfer plus entropy generation. This relationship can be modified under the 

simplification of SSSF conditions as shown in Equation 15. 

In summary, thermodynamic analysis of the CVS will be based on first law 

(Equation 11 or Equation 13) and second Jaw (Equation 15) applied to distinct 

control volumes that constitute the CVS. As seen in Equation 15, calculation of entropy 
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generation per control volume is possible given a few assumption (i.e. SSSF) and 

hemodynamic quantities (i.e. pressure and mass flow rates). 

Equation 15 - SSSF Version of the Second Law 
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a = entropy generated 

Se = entropy exiting the control 
volume 

si = entropy entering the control 
volume 



METHODS 

The following analyses were performed under the motivation to find a way to 

simply describe the complex behavior of cardiovascular control. This is felt to be 

manifested in a minimal description of CVS hemodynamics that allow for fundamental 

thermodynamic investigation. The thermodynamics, in turn, are hypothesized to 

reveal something about the "optimal" state of the CVS. In particular, it is hypothesized 

that the CVS state that results is minimum entropy generation will be physiologically 

preferred and that cardiovascular control operates to find this state. To test this 

hypothesis, entropy generation was calculated over many unique hemodynamic 

states via simulation of a mathematical model. The method of analysis, which lastly 

results in the calculation of entropy generation, is explored in this chapter in three 

stages: 1) hemodynamics, 2) thermodynamics and 3) simulation method. The Matlab 

code created to implement the following models is attached in Appendix A. 

Hemodynamics 

The hemodynamic model is based upon an analogous circuit model 

(Windkesse{) which serves as a framework to derive the mathematical equations that 

describe the cardiovascular hemodynamic state over time. The mathematical 

equations include a system of state space equations plus additional auxiliary 

equations. Lastly, the parameter values and initial conditions necessary to solve the 

aforementioned equations are included. The following section explores the derivation 

of the equations, while the actual implementation of this model into code is included 

in Appendix A. 
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The dynamics of blood flow are modeled in this work as a series of elastic 

compartments in a closed-loop configuration and displayed in Figure 4. This closed

loop circuit, for this minimal description, includes four main elastic compartments: 

1. Heart (Left and Right) 

2. Arteries 

3. Veins 

4. Pulmonary Vasculature 

and two types of additional components: 

1. Valves 

2. Coronary Vasculature 

Aortic Valve Tricuspid Valve 

Veins 

Left HPart 

Mitra! Valve Pulmonary Valve 

L _______ _ 

Figure 4 - Elastic Compartments of the Cardiovascular Closed-loop Model 
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Utilizing classical Windkessel theory, each elastic compartment of this model is 

generally defined by both an elastic and a resistive component as shown in Figure 55. 

Figure 5 - Windkessel Model of Elastic Compartment 

The Windkessel model is useful for this study as it is a simple approximation of 

vasculature hemodynamics. Even so, the most important benefit of this type of model 

is that the components and their parameter values have physiological significance. 

The resistive component represents the restriction of axial flow of blood due 

to, mostly, the caliber of the blood vessel. The elastance component (capacitor) 

represents the storage capacity of a vessel as well as its ability to recoil in response to 

pressure transients. The elastance component assumes a certain amount of volume, 

called the dead volume (Vo), which is the minimum initial volume required to keep the 

vessel from collapsing. Any amount of volume in the vessel beyond the dead volume is 

known as the stressed volume or effective volume. Therefore, the value of the 

capacitor as well as the dead volume will need to be defined as specific parameter 

values necessary to solve the model equations. The total volume, that is dead volume 

plus the effective volume, represent the total capacity of the compartment. 
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In this manner the Windkesse/ is a minimal description for the dynamics of 

blood flow through an elastic compartment - and a complete mathematical 

description requires specified parameter values/initial conditions (resistance, 

capacitance, dead volume, and initial stressed volume). Table 4 and Table 5 lists the 

values chosen for this model. 

The translation of the elastic compartment model of the CVS shown in Figure 4 

to a circuit model is shown in Figure 6. As shown, the veins and pulmonary circulation 

are felt to be adequately captured by the simple Windkessel model. However, the 

arteries experience higher pressures and flows than the other compartments. 

Therefore, the arteries are modified into a hybrid lumped-distributed model that 

includes inertance. 

Unlike the elastances of the vasculature, the elastance in the ventricles is 

continuously pulsing to function as a pump. Therefore the elastance of the ventricles 

is represented as a time-varying capacitor (the symbol of an arrow crossing the 

capacitor signifies a time-varying behavior). In addition, there exists a resistance in 

the heart compartment, representing the viscoelastic impedance of the heart muscle 

cells and surrounding material. Inclusion of the viscoelastic component of cardiac 

function was hypothesized to be an important consideration with the following 

thermodynamic analysis in mind. For example, as the heart is using energy to perform 

work (generate time-varying elastance) some of this energy is turning into heat due to 

compression of the myocardium (losses dissipated by the viscoelastic resistance). The 

amount of energy lost in left-ventricular pressure generation may be an important 
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consideration of entropy generation of the overall cardiovascular system. 

Representation of cardiac function in this way is analogous to a model proposed by 

Sunagawa in 1980. ( 42) In Sunagawa's model of the heart, there is an ideal time

varying pressure source which is referred to as the hydromotive pressure (HMP). 

Likewise, in this model, the pressure before viscoelastic losses is named HMPI and 

HM Pr for the left and right ventricles, respectively. 

The valves, unlike the other compartments, were modeled as a small 

resistance, an inertance, and a flow-dependent diode in series as illustrated in Figure 

7. The inertance will account for the effects of inertia during blood flow. The diode 

component represents the action of the valves to "opens" for large, positive blood 

flow, and "closes" for an arbitrarily small or negative flow effectively restricting flow 

to one direction. Therefore this diode will be represented by a nonlinear function, 

similar to a step or switch function. 

Lastly, the coronary circulation was also modeled as a distinct compartment as 

shown in Figure 6. While inconsequential to gross hemodynamics, coronary blood 

flow plays a key role in the energetics of the cardiovascular system. The flow in the 

coronaries provides metabolic fuel to the myocardium (heart muscle). However, 

unlike the Windkessel dynamics of other elastic compartments, the coronary bed fills 

only during diastole. This results because pressure, generated by the myocardium 

during systole, occludes the coronary vasculature. Therefore the coronary resistance 

is directly related to left ventricular pressure, permitting coronary blood flow only 

during low left ventricular pressure. To capture this behavior, the coronary 
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Coronaries 

Arteries Veins 

Right Heart 

Pulmonary 

Figure 6 - Cardiovascular Circuit Model (Main Compartments) 

Aortic Valve 
T ncuspid Valve 

Mtlral Valve Pulmonary Valve 

Figure 7 - Cardiovascular Circuit Model (Valves) 
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compartment is modeled as a pressure-dependent resistance which is a nonlinear 

function. The final circuit representation is summarized in Figure 9. 

State Space Equations 

Given the complete circuit model of the CVS hemodynamics shown in Figure 8, 

the equations that describe the model can be found by circuit analysis. Therefore, the 

circuit model serves as an intermediate concept from physiology to mathematical 

equations. So that standard numerical ODE solvers can be used to simulate the model, 

the math resulting from the circuit analysis was transformed into a system of first

order differential equations. Using this circuit model, there are 14 first-order 

differential equations that form the backbone of the hemodynamic model. These 

equations are listed in Table 1. 

There are various auxiliary equations that merely simplify expression of the 

main state space equations. Two notable sets of auxiliary equations are the functions 

that describe time-varying elastance (named CLv and CRv in the model for the left and 

right ventricle respectively and shown in Table 2) and the function that describes the 

behavior of the on/off state of the valve (named D1-D4 and shown in Table 3). 

In addition, to complete the model, initial conditions were also assumed 

according to normal human CVS parameters. (5, 14) Table 4 and Table 5 list the major 

parameters in terms of their corresponding variable name and initial value used for 

simulation. 
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Table 1 - Cardiovascular State Space Equations 
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Auxiliary Equations 

Cardiac Pump Function 

The beating heart is the result of autonomous electrical events as well as 

cardiac muscle (myocardium) dynamics. Both of these aspects of cardiac function will 

be empirically modeled as shown below. 

The timing of the heart beat is the result of autonomous, oscillating excitation 

of the myocardium. This excitation triggers rhythmic contraction (increase in 

elastance) of the myocardium. Therefore, the first aspect of cardiac pump function 

will be to form a driving function to provide the timing cue for the onset of 

contraction. This driving function is modeled here as a simple harmonic oscillator 

function as shown in Equation 16 and plotted in Figure 9. 

Equation 16 - Harmonic Oscillator 

•• 
E(t) + o/- · E(t) = 0 

This mathematical function maintains constant amplitude despite changes in 

frequency (w). Therefore, Equation 16 provides a timing cue for time-varying 

elastance and can tolerate simulated changes in heart rate. 

This oscillating function, a sinusoid, is then half-wave rectified, as shown in Figure 10, 

to simulate the typical pattern of a heart beat: contracting phase (systole) followed by 

a resting phase (diastole). 
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Figure 9 - Elastance Driving Function 
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Figure 10 - Rectified Elastance Driving Function 

This function is merely a frame to simulate rhythm of the heart - the ultimate 

pressure generated during a heartbeat is also a function of the mechanical properties 

of the heart muscle or myocardium. To account for the impact of the myocardium, the 

driving function is then scaled by a function derived from known pressure-volume 

relationships of the ventricle. This scaling function is designed from idealized end

systolic pressure-volume relationships (ESPVR). The model ESPVRs and filling 

envelopes were made from polynomials that were manipulated to resemble pressure

volume relationships seen experimentally. After finding appropriate polynomial 

functions, the first derivative of both functions (ESPVR and filling curve) were used as 
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maximum and minimum amplitude of the time-varying elastance. The driving 

function is ultimately scaled by these volume-sensitive extremes to yield ventricular 

pressures that succumb to the designed pressure-volume envelopes. 

The left heart scaling function is shown below in Equation 17, followed by the 

plot (Figure 11) of the designed operating envelopes from which the function in 

Equation 17 was derived. 
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Equation 17 - Left Heart Pressure-Volume Equation 
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Figure 11- Designed Left Heart Pressure-Volume Envelopes 
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Since the left heart generates more pressure than the right, there are two separate 

scaling functions for the left and right heart. Both use the same driving function and 

are therefore in sync. The right heart elastance is only a diminished version of the left 

heart elastance function. The right heart scaling function is shown below in Equation 

18 and the designed P-V relationships plotted in Figure 12. 
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Equation 18 - Right Heart Pressure-Volume Equation 
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Figure 12 - Designed Right Heart Pressure-Volume Envelopes 
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Incorporating both pressure-volume envelopes into the elastance function is 

effectively incorporating feedback dependent on the current volume in the heart. This 

dependence of pressure generation on volume is referred to as the Frank-Starling law 

of the heart. 

The compliance, which is simply the inverse of elastance, can be solved for and 

used in the state space system to solve the overall hemodynamics. Table 2, shown 

below, summarizes the time-varying elastance function (named CLv and CRv in the 

state-space equations) proposed for this model. 

Table 2 - Left and Right Heart Time-Varying Compliance Function Derivation 

Description 

Oscillating Driving 
Function 

Half-wave Rectify 

Pressure-Volume 
Envelope Scaling 
Function 

(Frank-Starling Law) 

Elastance to 
Compliance 

Equation 

E'(l)=E(I) if EU)::2'.0 

En =[(-.0083 LVV,,, (tJ+l.lJ-(.0003 LVV,.11 (l))j E' UJ+.0003 LVV,.
11 

(f) 

ER\ = [(-.0016 RVV: /I (t) + .624) - ( .00025 RVV:11 (f)) j £" (f )+ .00025 RVV:.11 (f) 

C - I 
RI -T; 
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Valves (Diodes) 

The valves were modeled as a function which dynamically changes value 

depending on the input. In this case the function changes resistance, and the input is 

blood flow. As shown in Figure 13 , this idealized function presents low resistance to 

high flows and increases resistance, in a smooth, continuous manner to low or 

negative flows. This function is similar in concept to a "switch" typically modeled as a 

step or Heaviside function; however, this function is differentiable, and as a result will 

comply with the numerical ODE simulation of the model. 
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Figure 13- Diode Function Output (D1) versus Input (Qol) 

All of the valves use the same form of equation, yet scaled accordingly 

depending on the magnitude of flow that each valve typically experiences. This was 

done as a precaution to ensure that the system remains numerically stable. For 

instance the mitral valve usually experiences low flows while the aortic experiences 
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high flows. The functions, listed next in Table 3, reflect this distinction. The particular 

function shown in Figure 13 above is the model for the aortic valve, which is not 

significantly different from the other three valve functions all shown in Table 3. 

Table 3- Valve Diode Functions 

Description Equation 

Aortic Valve l
r I 15 

D1 U) = 20 ' - l 
l.'i + t "'l_! 

Tricuspid Valve D,(f/=20''[-( _I __ J+1l - I+<' h·(lh1'I 

Pulmonary Valve 
I r 15 , l 

f},(IJ = 20*l-l ~--, -j' + I \ l'i + (' ,, u' ,,, J 

Mitra! Valve 
l 

- '+I' ,,, I I 
/ ! 

Other Equations 

Nonlinear resistors were used to simulate the complicated hemodynamics in 

the coronaries in addition to the viscoelastic resistance of the myocardium. Both of 

these resistances were made to change depending on the pressure generated in the 

ventricle. 

The viscoelastic resistance in the right and left ventricle (RLv and R1w) are 

described in Equation 19 and Equation 20 respectively. (11) 
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Equation 19 - Left Heart Viscoelastic Resistance 

RI\ (I) = k * LVP (t) 

Equation 20 - Right Heart Viscoelastic Resistance 

RR\ (t) = k I ' ' RVP (t) 

Both functions for viscoelastic impedance depend on ventricular pressure. Ventricular 

pressure can be solved from the circuit model as shown in Equation 21 and 

Equation 22. 

Equation 21- Left Ventricular Pressure (LVP) 

LVP (t) = HMP1. (f )- R 11 · Q,,, (1) + R,_ 1 · Q,, (t) 

Equation 22 - Right Ventricular Pressure (RVP) 

RV p (f) = HM p R (f) - RR\ · Q nR (r) + R RV · Q ,R (f) 

Additionally, the coronary vessel resistance behaves in a similar manner to the 

viscoelastic impedance function and is likewise modeled by similar functions. During 

the high pressure phase of contraction in the myocardium, the coronary vessels are 

occluded. This results in restricting coronary blood flow to the low pressure phases of 

the cardiac cycle. The function for coronary resistance, shown in Equation 23, is 

defined to depend on left ventricular pressure (defined in Equation 21) for simplicity. 

Equation 23 - Coronary Resistance 

R,(t)=k, 0~LVP(I) 
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Hemodynamic Parameter Descriptions and Initial Conditions 

For completeness and reference, Tables 4 and 5 list the major parameters in 

terms of their corresponding variable name and initial value used for simulation. 

Table 4 - Parameter Names & Initial Conditions 

Name Value Description (Units) 

Ra 1 Arterial Resistance (mmHg/mL/sec or PRU) 

Cal 1.5 Proximal Arterial Compliance (mL/mmHg) 

Ca2 1.5 Distal Arterial Compliance (mL/mmHg) 

Cv 60 Venous Compliance (mL/mmHg) 

Cp 15 Pulmonary Compliance (mL/mmHg) 

w 6 Heart Rate (rad/sec) 

Lal 0.0001 Proximal Arterial Inertance (mmHg/mL/secZ) 

La2 0.0001 Distal Arterial lnertance (mmHg/mL/sec2) 

Lav 0.0001 Arterial Valve lnertance (mmHg/mL/sec2) 

Lmv 0.0001 Mitra) Valve lnertance (mmHg/mL/sec2) 

Lpv 0.0001 Pulmonary Valve lnertance (mmHg/mL/sec2) 

Ltv 0.0001 Tricuspid Valve lnertance (mmHg/mL/sec2) 

Rav 0.01 Arterial Valve Resistance (PRU) 

Rmv 0.01 Mitra! Valve Resistance (PRU) 

Rpv 0.01 Pulmonary Valve Resistance (PRU) 

Rtv 0.01 Tricuspid Valve Resistance (PRU) 

Rp 0.08 Pulmonary Resistance (PRU) 

Rv 0.05 Venous Resistance (PRU) 

kc 0.5 Coronary Resistance Factor, Rc=kc*LVP 

k 0.0001 Left Ventricle Resistance Factor, Rlv=k*LVP 

kr 0.0001 Right Ventricle Resistance Factor, Rrv=kr*RVP 

Voa1 250 Proximal Arterial Dead Volume (mL) 

Voa2 250 Distal Arterial Dead Volume (mL) 

Vov 2700 Venous Dead Volume (mL) 

Volv 20 Left Ventricular Dead Volume (mL) 

Vorv 20 Right Ventricular Dead Volume (mL) 

Vop 200 Pulmonary Vasculature Dead Volume (mL) 
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Name 

Veff_al(t=O) 

Veff_a2(t=O) 

Veff_v(t=O) 

Veff_p(t=O) 

LVV(t=O) 

RVV(t=O) 

AoP1(t=O) 

AoP2(t=O) 

CVP(t=O) 

PuP(t=O) 

QoR(t=O) 

Q;R(t=O) 

QoL(t=O) 

Q;L(t=O) 

QLa1(t=O) 

QLaz(t=O) 

Table 5 - System Initial Conditions 

Value 

150 

150 

800 

250 

150 

150 

Veff_al (t=O)/Cal 

Veff_a2(t=O)/Ca2 

Veff_ v(t=O)/Cv 

Veff_p(t=O)/Cp 

0 

0 

0 

0 

0 

0 

Description (Units) 

Proximal Effective Arterial Volume (mL) 

Distal Effective Arterial Volume (mL) 

Effective Venous Volume (mL) 

Effective Pulmonary Volume (mL) 

Total Left Ventricle Volume (mL) 

Total Right Ventricle Volume (mL) 

Proximal Arterial Pressure (mmHg) 

Distal Arterial Pressure (mmHg) 

Central Venous Pressure (mmHg) 

Pulmonary Vasculature Pressure (mmHg) 

Right Heart Flow-out (mL/sec) 

Right Heart Flow-in (mL/sec) 

Left Heart Flow-out (mL/sec) 

Left Heart Flow-in (mL/sec) 

Proximal Arterial Flow (mL/sec) 

Distal Arterial Flow (mL/sec) 

Left Ventricle Hydromotive Pressure 

[LVV(t=O)-Volv]*Elv(t=O) (mmHg) 

Right Ventricle Hydromotive Pressure 

[RVV(t=O)-Vorv ]*Erv(t=O) ( mm Hg) 
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Thermodynamics 

The thermodynamic viewpoint of the CVS requires an alternative but 

complementary model. The analysis will separate the CVS into a series of closed-loop 

compartments in which energy transfers and/or transformations are the main focus. 

This will involve organizing the original compartments, as shown in Figure 14, in a 

manner more suitable for thermodynamic analysis, as shown in Figure 15. The 

arteries and veins will be lumped into a single compartment. Also the left and right 

heart will be lumped together to allow for a simpler view of energy exchange at the 

myocardium. Overall, each compartment will then be treated as a control volume 

under which first and second-law analyses will ultimately result in a value of entropy 

generation (a). 

To more easily demonstrate the thermodynamic analysis, the process will first 

be demonstrated on a simple, generic control volume. The analysis of the simple 

control volume can be extrapolated to the special cases of each of the CVS 

compartments. 

The first and second law analysis of the CVS components will be shown after 

the analysis of the simple control volume. Following thermodynamic analysis of each 

CVS component will be a consideration of the metabolic demand and its impact on 

thermodynamics within the CVS. Finally, the thermodynamic equations will be 

recapitulated in the overall context of the CVS thermodynamic cycle which results in a 

certain value of entropy generation. For completeness, the values of the parameters 

including initial conditions are listed at the end of this section. 
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Figure 14- Hemodynamic Compartmental CVS Model 
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Figure 15 - Thermodynamic Compartmental CVS Model 
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Introduction to Thermodynamic Analysis 

The analysis of a generic control volume, though well established, is shown 

here for reference as well as for a building block for which the rest of the 

thermodynamic analysis of the CVS will follow. 

The first law of thermodynamics accounts for the conservation of energy. For a 

closed system (no mass crossing the system boundary) in the absence of kinetic and 

potential energy changes, the first law is written as shown in Equation 24. 

Equation 24 - First Law 

dU =dQ-dW 

U = Internal Energy 

Q = Heat added to the system 

W = Work done by the system 

Therefore, the first law assures that a change in internal energy can be accounted for 

by tracking the heat transfer and/or work performed. When applied to a control 

volume in which mass is flowing steadily from inlet to exit, the first law can be written 

in the form (Equation 25) below assuming kinetic and potential energy are negligible. 

Equation 25 - First Law Applied to a Control Volume 

' 1i1 · h - ' ,h · h = Q. - W ~ {' (' ~ / / 

1i1,. = Mass Flow exiting 

1i1, = Mass Flow incoming 
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The sum is used to account for all inlets and exits in the case of multiple flows. 

The second law of thermodynamics states that, for a system that interacts with 

its surroundings, the total entropy change is either zero or positive. A total entropy 

change of zero represents what is known as a reversible process, whereas a positive 

total entropy change represents a process that possesses irreversibilities. Any real

world energy conversion process, such as the conversion of metabolic fuel to 

contracting myocardium, contains inherent irreversibilities that contribute to an 

overall increase of entropy. 

The first law of thermodynamics is a statement of energy conservation. 

Similarly, the second law of thermodynamics treats entropy as a conserved quantity. 

For a steady flow process, the second law can be written as shown in Equation 26. 

Equation 26 - Second Law Applied to a Control Volume 

a == I m" · s" - I, ,n, · s, - ff;{ 2 o 

CT= Entropy Generation 

s = Entropy 

Entropy generation is zero in the case of an ideal reversible process, or positive 

in the case of a real-world, irreversible process. The magnitude of the entropy 

generation rate gives an indication of the level of irreversibility within the control 

volume. From this equation, it can be seen that the entropy generation rate (and thus 
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the irreversibility) is made up of two components: 1) the entropy change of the flows 

in and out of the control volume, and 2) the heat transfer to/from the control volume. 

In any control volume analysis where the goal is to determine the entropy 

generation rate due to irreversibilities within the control volume, both the first and 

second laws of thermodynamics must be used together. The first law allows for the 

calculation of the heat transfer rate and the second law determines the entropy 

generation rate. 

As illustrated next in Panel 1, the entropy generated (a) within the control 

volume can be completely determined as long as mass flows ( rn ), pressures (P), 

temperatures (T), heat (Q) and work (W) are known. When analyzing the control 

volumes of the CVS model, the mass flows and pressures will be simulated directly in 

the hemodynamic model. Temperature and heat transfers will be determined by a 

combination of assumptions with first law and second law analysis. 

Eventually, with the aforementioned analysis, there will be enough 

information to calculate entropy generation. The same method will be applied to the 

CVS by applying the analysis of a generic control volume to each control volume or 

compartment of the CVS with modifications or assumptions where necessary. 

First and Second Law Application to the CVS 

Following the method shown for a generic control volume, the entire CVS 

system can be analyzed using the first and second laws of thermodynamics. To start,. 
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Panel 1 - Analysis of a Generic Control Volume 

( CPlltc1I Vu!11r111 

First Law Analysis: ' ,;z . h - ' ,;, .. h. = Q. - W 
- ~ !' (' ~ I I 

,n -h -,n -h =Q· -w /J /; U 11 

Assuming Steady-State Steady-Flow (SSSF) Conditions: ri,,, = 1i1" 

11·1 • (h - h ) = Q. - \V 
{/ h (/ 

/rJ II • (t:,.h/,-a) = Q - w 
Since M=i1.u+v·M 

then 11h = c,.11T + v · b..P 

,n 
O 

• (c, L'1 T"_
11 

+ v · t1P1,_ 11 
) = Q - w 

Second Law Analysis: & = " ,i1 . s - " n1 . s - Q I :::: o ~ C {' ~ I I IT 

Assuming steady-state, steady-flow conditions, ,n,, = ,;,,, 

T 
The entropy change of an incompressible substance is Lis= c, ln / . Therefore, 

<I 

ct = ,n C In T,, - QI 
<l \ T IT 

<I 

49 



each control volume will have uniquely numbered inlet and exit nodes as shown in 

Figure 16. This will be used to designate mass flows, temperatures, and pressures 

2a 3a 

2 2c 3c 3 

~ _____ _J_ _______ ---- ~r~ 

il_ I_ 
l __ _ 

,------------1 

I I 

i 
L_. __ -·~---- -·--··-· _J 

----11 
I! 
i I 

_ __ J I 
i 

______ _j 

Figure 16- Thermodynamic Compartmental CVS Model with Numbered Nodes 

The analysis for the thermodynamic model was done under the assumption of 

steady-state conditions. Therefore, the hemodynamic data was time-averaged over a 

single beat. In addition, data was converted to units that are convenient for 

thermodynamic analysis. There are two main conversions: 

1. pressure (mmHg to Pascals) 

2. blood flow (volumetric flow in mL/sec to mass flowing/sec). 

so 



The hemodynamic pressure across the left and right heart is conceptualized 

differently from the steady-state, steady-flow thermodynamic model. For example, the 

pressure at node 8, Ps, is the average left ventricular pressure during systole and P1 is 

the average left ventricular pressure during diastole - therefore representing the 

extremes of pump function. However, in the previous hemodynamic model, the 

equivalent node represented anatomic inlet and outlets which could vary over time. 

To start, the important energy transfers need to be identified, such as work 

and heat, to orient the following thermodynamic discussion - the model proposed for 

this study is shown in Figure 17. 

--~~-------- --- L-----t,.", . 
l 
! 

__ i 

r,c: .1' 

J 

. I -
L ________ -~-: 

:, .. -, ~HPat 

',t 1,,,, 

Figure 17 - Thermodynamic Compartmental CVS Model with Energy Transfers 
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First of all, the metabolic exchange at the systemic vasculature is assumed to 

be balanced. That is, the metabolic energy consumed by the body is exactly 

replenished by metabolic fuel intake. Next, it is assumed that a core body temperature 

is maintained via a single point of heat transfer at the pulmonary compartment. 

Lastly, the various energy transformations occurring within the heart are revealed by 

the hemodynamics - that is the pressure and volume of blood in the ventricle reflect 

the work done by the myocardium. The heat generated to do this work is assumed to 

transfer entirely to the coronaries. Although some heat may also transfer into the 

ventricle, it is assumed to be negligible. 

Given the thermodynamic model of the CVS, the first and second law analysis 

of each compartment or control volume is shown in the following series of paneled 

images (Panels 2-7). Panel 2 demonstrates the analysis of the systemic compartment. 

Panel 3 shows the pulmonary compartment. The mitral valve is shown in Panel 4. The 

next three panels illustrate analysis of the heart by its three main compartments: the 

coronary vasculature, the myocardium, and the ventricles. Panels 5, 6, and 7 represent 

the coronaries, myocardium and ventricles respectively. 

Analysis of the mitral valve is shown in Panel 4. The other three valves (aortic 

valve, tricuspid valve, and pulmonary valve) can be analyzed in exactly the same way 

as the mitral valve since the same mathematical formulation and assumptions apply. 

Therefore the analysis outlined in Panel 4 for the mitral valve is used for rest of the 

valves by using the specific flow inlet and exit identities were used as shown in 

Table 6. 
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Panel 2 -Analysis of the Systemic Vasculature 

2a 
,- • ' ·----- ---···--i 
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Assumptions 

2. Sufficient metabolic fuel to meet 
demand: 

II] fllt'f our · '11111'1 ==111 
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·h 
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3. No heat or work cross the 
boundary: 

. . 
Q==O&W==O 

First Law Analysis: L 1i1c · h,. - L ,ii, · h, = Q - W 

,iz 1o . h,u - ,n 2a . h2u + ,h /Ill'{ 1!1// • hi//{'/ __ (II// - r11,w1 II' h/1/vf Ill == () 

v·M T = 3a-2a +T 
2tJ le, 

c,, 

Second Law Analysis: CY="1ri ·S -"m ·S _Q/ :2'.Q £...i e e L.. I 1 /T 

CT\ = ri1211 · (L\s -i.a-2a )+ ,j1 me,_ I!! ( L\s/1/('f _ 11111 -1111,, _ 111 ) 

. = m · C · In ---2"_ + n1 ~s 
[ T J CY, 2u , Tcu ,,,,., _ 111 ( mer_ 11111-11wr _ 111 ) 
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Panel 3 - Analysis of the Pulmonary Compartment 

7 6 

Pulmonary Heat 

Assumptions 

Q=Q/J 

W =0 

First Law Analysis: L ,n, · h, - L ,j1, · h, = Q - W 

Second Law Analysis: d"='m ·s -'m ·S _QI 20 ~ e e ~ 1 1 /T 
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fl 
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Panel 4-Analysis of the Valves 

Mitra! Valve 
8 

[><]< 
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< ft • 
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Table 6 - Analysis of the Valves Applied to Each Specific Valve 

Mitra\ Valve 

< D><r 
First Law Analysis: 

Second Law Analysis: 

Tricusp1d Valve 

~~ > 

First Law Analysis: 

v·11P T = .,-..i + T ..i .1 
c,. 

Second Law Analysis: 

& =1jz ·(c ·ln!..i) ,, ' ,. T 
.1 
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/\ortic Valve 

~~ > 

First Law Analysis: 

T = V . f...Pi 2 ]' 
1 I + 2 

C 
\' 

Second Law Analysis: 

a . = nz · [c · In T,. ) 
111 I 1 

7 
.. 
I 

Pulrno11ary Valve 

< Di<} 
First Law Analysis: 

Second Law Analysis: 

& =m ·(c ·lnT".) /H ) 1· T 
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Panel 5 -Analysis of the Heart (Coronaries) 

(orondries 
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Panel 6-Analysis of the Heart (Myocardium) 

Assumptions 

t:~., 11111/1'/ r('(11r ~ 111/11('/ 1,n,dwt\ = ll1111t'/ 

Q=Q/11 

W=W +w 
111 _ le/r 111 

First Law Analysis: ' 111 . h - ' ,j1 . h = Q - w L (' I' LI I 

n1111et_proc/11Cf\ ·hmer_proJ1u(.\ -mmet /t(i([ ·h,,u[_l{(/(f =-Qm -w,,, 
m111,,, · (llh111,,,_,,mJ11u.,-111c1._mu, )= -QI/I -W,11 

Second Law Analysis: ct= I ,i1,, · s,. - I ,ii,· s, -°;{ 2'. O 

all/= 1n///e/(L'ls///('[_f'/OdU1/l-ll/e[_/('IJ<[) + Qlr 
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Panel 7 -Analysis of the Heart (Ventricles) 

'~ 
1 '4 

1 / r- ---~------1 
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Metabolic Demand 

The consideration of the metabolic demand is necessary to ensure the CVS 

state is physiological viable. Also, metabolism will impact the first and second law 

calculations. 

For practical purposes, it is assumed that all of the body's energetic needs are 

derived aerobically. The flow of fuel and energy proceeds in the body as shown in 

Figure 18. 

Oxygen Glucose 

\ I 
Carbohydrate 

Oxidation 

1r 

Metabolic 
Energy 

1, 

Work 

Heart Body 

Figure 18 - Metabolism 

However, calculation in this study will be retrograde. Therefore the simulation 

will result in a calculation of total work, and the necessary calculations will backtrack 

through the stages of metabolism to find the required rate of oxygen needed to 
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sustain this demand. This oxygen demand must be within normal physiological limits 

to be a possible CVS state. 

For simplicity, the blood was assumed to be initially lQQ(Jlo saturated with 

oxygen. Normal blood that is 100% saturated carries 20mL oxygen per lOOmL blood. 

Therefore, if a CVS state requires an unattainable oxygen demand - that is more than 

20mL of oxygen per lOOmL of blood - then the state is considered "unphysiological". 

There are two points of metabolic demand in this model: 1) systemic and 2) 

coronary. Both points of metabolic demands will be analyzed separately. 

Systemic 

The systemic metabolic demand is an external influence that was set as a 

constant rate. The value of this was set at a modest level of 100W which his equivalent 

to the metabolic needs of a 70kg male at rest. (5) Therefore, the oxygen content 

needed to sustain this demand can be calculated as using the relationship shown 

below in Equation 27 which is rearranged for convenience in Equation 28. 

Equation 27 - Metabolic Energy Demand as a Function of Blood Flow 

ME= k · ¥- · ~02 
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ME= Metabolic Energy 

k = Energy Equivalent of Oxygen 

¥- = Cardiac Output 

fi0 2 = A-V Oxygen Difference 



Equation 28 - Oxygen Content of Blood Necessary to Meet Metabolic Demand 

ME 
ti0 2 = --. 

k. ¥-

This relationship shows that metabolic demand will be sustained by both the rate of 

blood flow (cardiac output) and the oxygen content of blood. Since ME is declared to 

be lOOW, and k is known to be 20.2 J/(ml 02), and cardiac output is known from 

simulation of the hemodynamic model, the oxygen difference, ti0 2, can be simply 

calculated. ( 40) 

Using the calculation of ti0 2 , the heat transferred due to conversion of energy 

can also be deduced. The relationship between oxygen consumed and heat produced 

by metabolism is dependent on the type of metabolic fuel consumed. This could be a 

mix of lipids and carbohydrates depending on the diet, but for simplicity, only 

carbohydrate oxidation will be considered as the metabolic fuel source. This 

assumption defines the exact stoichiometry for the consumption of fuel (glucose), as 

shown in Equation 29. 

Equation 29 - Glucose Metabolism 

C,,H 12 0" + 60 2 ~ 6C0 2 + 6H 20 

Based on known properties of this reaction, the heat liberated per mole of glucose 

consumed is known to be 77.7 kJ/mol. (7) To convert this rate of heat production, 

which is per mole of glucose, the molar rate of glucose is needed. However since this 

relationship follows a stoichiometry (see Equation 29) such that for every mole of 

glucose consumed in carbohydrate oxidation, there are 6 mo! oxygen needed. 

Therefore a sixth of the molar rate of oxygen can be substituted for the molar rate of 
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glucose. Since oxygen content of blood in the systemic compartment has already been 

calculated based on the assumed metabolic demand, the molar rate of oxygen can be 

deduced as demonstrated in Equation 30. 

Equation 30 - Molar Rate of Systemic Oxygen Demand 

¥-. t:,,02 
1102 = ---

con3 

1102 = Molar rate of oxygen (moles 

Oz/sec) 

¥-=Cardiac Output (mL or cc blood 
per sec) 

!:,,0 2 = A-V Oxygen Difference (mL 
oxygen per mL blood) 

con3 = Conversion Factor #3 
(22400 ml/mole) 

After molar rate of oxygen is calculated, and also since glucose consumption is 1/6 

that of oxygen, the heat liberated by glucose metabolism to oxygen flow is calculated 

as follows in Equation 31. 

Equation 31 - Heat from Metabolic Oxygen Consumption 

1 
T!:,,sMET = 1102 • 6 · 77,700 
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TfisMET = Heat liberated due to 
glucose consumption (J/sec or 
Watts) 

1102 = Molar rate of oxygen (moles 

Oz/sec) 



In this manner, the rate of oxygen consumption also determines the amount of 

heat transfer due to metabolism in the systemic compartment (see Panel 2). Therefore 

the second law formulation for the systemic compartment, shown in Panel 2, can be 

expanded as shown in Equation 32. 

Equation 32 - Entropy Generation in the Systemic Compartment 

. . [ I T,") ['°1 0 -(l/6)·77,700Yr 
(j = Ill, · C · n -~ + · , 

.\ _u \ T, 7 
-" 

Coronary 

Unlike the systemic metabolic demand, the coronary metabolic demand can be 

calculated entirely from the hemodynamic data. It has been shown by Suga that a 

quantity calculated from pressure and volume signals, PVA (pressure-volume area), 

correlates very closely to the myocardial oxygen demand ( M\\ ) in the relationship 

shown in Equation 33. ( 40) 

Equation 33 - Myocardial Oxygen Demand as a Function of PVA 

MV() =1.64-10-)(PVA)+0.015 
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MV02 = Myocardial oxygen demand 

PVA = Pressure-Volume Area 



The calculation of PVA involves analysis of the cardiac cycle in the pressure

volume domain. PVA is a quantity constituted by the total area encircled by both the 

PV loop (stroke work) plus the triangle between the PV loop and the dead volume 

(Vo). Therefore, PVA is calculated as the sum of two areas illustrated in Figure 19. 

Pressure 

/ 

Volume 

Figure 19 - The Pressure-Volume Area (PVA) = Stroke Work+ Triangle 

Using this information and the hemodynamic data for left and right ventricular 

pressure and volume, the myocardial oxygen demand ( MVn ) can be calculated using 

Equation 33. 

Therefore the work performed reveals the metabolic fuel needed for this 

demand. Given the simulated value of coronary flow from the hemodynamic model, 

the coronary oxygen content needed to sustain this metabolic demand can be solved 

as shown in Equation 34. 
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Equation 34 - Myocardial Oxygen Demand as a Function of Coronary Blood 

Flow 

MV02 = V--c . L\Oz 

MV02 = Myocardial Oxygen Demand 
(mL oxygen per sec) 

V--c = Coronary Blood Flow (mL/sec) 

L\0 2= A-V Oxygen Difference (mL 
oxygen per mL blood) 

Equation 34 is rearranged for convenience as Equation 35. Equation 35 shows that 

the calculation of the necessary oxygen content of coronary blood, or L\OL, involves 

the value for MV02 which in turn is calculated using data from the hemodynamic 

model and Equation 33 in addition to the value of coronary blood flow also provided 

by simulation of the hemodynamic model. 

Equation 35 - Oxygen Content of Coronary Blood to Meet Myocardial Oxygen 

Demand 

MV02 
L\Oz = 

V--[ 

The value for l'.\0 2 is bounded by physiological limits of the oxygen carrying 

capacity of blood. Therefore this value is calculated as a check to ensure that the 

simulated CVS state is within physiological limits. 
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Summary 

Metabolic demand is sustained by both blood flow and oxygen content of 

blood. In addition metabolic demand is also proportional to the body's metabolic 

needs (kept constant in this simulation) and the varying demands of the heart. 

Interestingly, the heart both consumes energy carried by the blood and also creates 

the pressure that gives rise to blood flow. Therefore the complicated interplay 

between both opposing forces will determine whether a CVS state can meet the 

demand. 

Metabolic demand is an important consideration in this study for two reasons: 

1. To determine whether simulated CVS state is able to meet metabolic 

demand 

2. To complete the thermodynamic calculations which depend on metabolic 

energy transfer. 

To determine whether a simulated CVS state was able to meet metabolic 

demand, the required oxygen content of blood was calculated retrospectively for both 

the systemic and coronary compartments. If a value that exceeded the maximum 

carrying capacity of blood was found, then the state was excluded from the analysis. 

The metabolism-based calculations discussed in this section will contribute 

further to remaining thermodynamic analysis described next. 
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CVS as Thermodynamic Cycle 

Using the first and second law analysis of the individual CVS components plus 

the consideration of metabolic demand, there is enough information to solve for 

entropy generation. This will involve first solving for the temperature changes and 

heat transfers using the first law equations presented for each compartment 

presented in Panels 2 through 7. After the temperatures and heat transfer quantities 

are calculated, entropy generation can finally be calculated. 

Temperatures & Heat 

Before the temperatures of the CVS can be calculated, quantities associated 

with metabolism must be addressed beforehand. Note that the metabolic exchange 

quantity is mutual between the coronaries and the myocardium (see Figure 17). ln the 

coronaries, high-energy metabolic fuel is flowing out, while low-energy waste is 

flowing in - and vice versa for the myocardium. Therefore the entropy change due to 

this mutual exchange is equal and opposite. Considering the second law analysis 

simultaneously over the entire heart, this term cancels out from the calculation. This 

process is outlined next. 

First, as shown in Equation 36, the entropy generation over the entire heart is 

the sum of entropy generation of each compartment within the heart. 
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Equation 36 - Entropy Generation for the Entire Heart 

a-heart = Entropy Generation for the 
entire heart (J/K/sec) 

6-c= Entropy Generation for the 
Coronaries Compartment (J/K/sec) 

6-m = Entropy Generation for the 
Myocardium Compartment 
(J/K/sec) 

av = Entropy Generation for the 
Myocardium Compartment 
(J/K/sec) 

After substituting the respective equations for entropy generation for the coronaries 

(see Panel 5), the myocardium (see Panel 6), and the ventricles (see Panel 7) the 

expanded expression is as shown in Equation 37. 

Equation 37 - Entropy Generation for the Entire Heart (Expanded) 

6" = 1i1 · c · In - 1
-' + ,iz ~ 1· - Q, 

[ ( T J ·h] heart 2, , Tc, ""'' ( · ""'' n·u, ,- ,11<"1 _ f'n«/11, ,, ) T 

+ 1i1 ~1· - "' + m ·c -ln--[ 
Q."lr/] [· ~-T,] 

111,., ( ' 111<'1 1nodru I< -111cl 1cc1, I ) T I I J~ . J~ 
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The heat transfer terms for the coronaries and the myocardium are in fact one in the 

same as shown in Equation 38. 

Equation 38 - Mutual Heat Transfer from Myocardium to Coronaries 

(Jc= -Qm 

Using the substitution shown in Equation 38 above and also noting that the entropy 

change term for the metabolic exchange in the coronaries ( L'l.1,,,,., '""' _,,,,, I"'""'" ) is 

exactly equal but opposite to the metabolic exchange in the myocardium 

(!ls,,,,, _,,,,,,1,,,,, ""' ,,,,,, ), the simplified version of Equation 37 is displayed next in 

Equation 39. 

Equation 39 - Entropy Generation for the Entire Heart (Simplified) 

.. (IT']. 1~·T, ah t = m, · c · n ~· + 111 · c · n -~-
ear _, , T, 1 , T . T 

-' X -I 

The only unknown quantity in the expression for entropy generation in the 

heart, Equation 39, is the ration of T3c to T2c. This ratio can be solved for indirectly by 

determining the temperature change across the coronaries ( L'l T, ,, ) via combination 

of the first law analysis for all of the compartments of the heart: coronaries, 

myocardium, and ventricles. The procedure is demonstrated as follows. 
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First the initial expression for t-. T, . will be used from the first law section of 

Panel 5. This expression is merely rearranged to form Equation 40 so that the term 

with t-.T1, -c, is alone. 

Equation 40 - Expression for Temperature Change Across the Coronaries 

Compartment 

,, = -Ill_,_, . \'. !1I' ' - 1i1 . (11h 
_ '( _( /111'! 11/d ''""'' "''' -1""""''' )+ Q, 

Next, since it was previously noted in Equation 38 that the heat term Q, is equal and 

opposite to Q,,,, Equation 40 can be expanded to Equation 42 by first solving for(},,, 

and substituting for negative of Q, . To solve for Q"', the first law expression from 

Panel 6 can be rearranged as shown below in Equation 41. 

Equation 41 - Heat Transfer from the Myocardium Compartment 

. ( ) . = 1i1 · t,,.h + W Qm 111er 11/t'! 1u,d111/\ Ilic/ rcu,r 111 

Equation 42 - Temperature Change Across the Coronaries Compartment 

(Expanded) 

1i1c_, · c, · /17',,1 _ 2, = -1i7c_1 • V · M,_, _2, - 1iz111 e1 • (tJ111w, ,ni, ,__ 11 w, 
11111

<111 , J-1 

+ l-1i1 · (!':J1 )- W j 
111('/ II/!'/ /11/1,///1/1 111('/ /f1J1/ Iii 
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The fact that the quantities f..h 11 ,,., '""·1,,,,, "'" ,.,,., and t,,.h"',·' ,.,,,, ,,,,, '"'"''"'' are equal 

and opposite will be used to simplify the final expression for f.. T,. 2 , shown in 

Equation 43. 

Equation 43 - Temperature Change Across the Coronaries Compartment 

(Simplified) 

,ii,, ·c, -f..T,, ,, =-1i1,, -,·.t,,.P,, ·-W
11

, 

Equation 43 can be further modified to Equation 45 by solving for work done 

by the myocardium (w,,,) which is done by rearranging the expression from the first 

law analysis of Panel 7 as shown in below in Equation 44. 

Equation 44 - Work Done by the Myocardium 

Equation 45 - Temperature Change Across the Coronaries Compartment 

(Modified) 

-111,, · 1· · f..P,,_,, -[1i1 1 • (c, · (f..T1_, + /'J.T, -1) + 1· · (/'J.P1 x + /'J.P, 4 J)] /'J.T,, -2, = ----=-----=--__c_ _ _c___-'--'----'.-----'--'------'----'---

Ill, · C _, ' 

The quantities11T
1 

x and llT, 1 are representative of the temperature change of 

blood after passage through the ventricles. Although the value of this quantity is also 

unknown, it is assumed that this particular temperature change is due predominantly 
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to the dissipation of power in the viscoelastic resistance of the myocardium. Power 

dissipated can be calculated by multiplying the blood flow (¥) squared multiplied by 

the resistance (R). Therefore !J.T
1 

, and t,,. T, 
1 

can be solved using the equation for 

power dissipation through a resistor. The particular equations used in this analysis 

are shown in Table 7. 

Therefore, this alternate calculation of heat in the ventricles can be substituted 

into the conglomerate first law equation of the heart as shown next in Equation 46. 

Equation 46 - Temperature Change Across the Coronaries Compartment (Final) 

!J.T = - 1i1 2, · 1· · !J.P1, 2, - [hmt 11 . + heat m + 1i1 1 · 1· · ( !J.I'i x +_ !J.f\ .i J] 
~( - ~ { 

Finally, given that all of the first law equations define a temperature change, at 

least one temperature point will have to be defined explicitly before all of the 

temperature values can be solved. In this model, temperature point T:ia was assigned 

the typical core body temperature value which is 310K (37°C). All of the temperatures 

are solved by first starting at temperature point T3a and working around the 

thermodynamic model. This process is outlined in the overall 11-step scheme shown 

next in Panel 8. The calculation of temperatures of the CVS will allow for calculation of 

entropy generation in the CVS. 
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Table 7 - Heat Dissipated by Viscoelastic Impedance of the Myocardium 

Name 

T 

-\loL 

ViL 

heatLv 

Value 

Calculated/Declared in 

the Hemodynamic Model 

l f T ((. . )2 ) - lloL + ¥it · RLV dt 
T 0 

Entropy Generation 

Description (Units) 

-----

Period of heart rate (sec) 

Blood Flow out of left ventricle (cc/sec) 

Blood Flow into left ventricle (cc/sec) 

Blood Flow out of right ventricle ( cc/sec) 

Blood Flow into right ventricle (cc/sec) 

Viscoelastic Resistance of left ventricle (PRU) 

Viscoelastic Resistance of right ventricle (PRU) 

Left Ventricle power dissipation (Watts) 

Right Ventricle power dissipation (Watts) 

Following the calculation of the temperatures and the pulmonary heat transfer, 

entropy generation can be calculated directly from the second law analysis in each 

compartment (summarized in Table 8). 
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Panel 8 - Calculation of CVS Temperatures 

Step 1. 

Assign T3a = 310K 

Step 2. 

Solve for T2a using first law equation for 

the systemic vasculature (see Panel 2). 

v·M T = ,a-2a +T 
~u ~u 

(' 
I 

Step 3. 

75 

T,, 

T, -· -·----------, 



Step 4. 

Solve for T1 using the first law equation 

for the Aortic Valve. 

: 

>----------------------~----1------------------------~ 

Step 5. 

Solve for T3c using the derived equation 

from the analysis over the entire heart. 

i\T, 
= -1i1, ~['_, __ -[he111 + 1i1, ,._ U\I~ . + !'i.l'. , 1J 

,ii, (' 

_, -/heat +1i1, , 1,H;, +!'i.f',_,~+/ 

,;1 ( 

hear = hem 1 , + hem"' 

Step 6. 

Solve for T3 by using the relationship of 

mixing between two flows. 

1i11 · T1 + 1i11 -T1 T __ u . u ( . ( 
1 - . . 

1111" + 111,, 
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Step 7. 

T-~--~~~-----~~-
Solve for T4 using the first law equation I 

for the Tricuspid Valve. 

7
, - V . !1P,_4 T 
4 - + ' 

C 
I 

Step 8a. Solve for Ts 

T = - (Q,,1_ + Q,1f'. Rn + T 
8 . I 

m1 ·c, 

Step 8b. Solve for Ts 

Ill; . C \ . ~ T, j = ( Q "R + Q ,R ) C • RR\ 

Step 9. 

T, = ( QoR + Q,R / . RR\ + T4 
111 4 ·C, 

Solve for T6 using the first law equation 

for the Pulmonary Valve. 

T 
== , .. 11P,_6 T 

6 + ' 
C 

I 
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Step 10. 

Solve for T7 using the first law equation : - : 

for the Mitra! Valve. 

T1 = i· . !1P1-s + T~ 
(' 

I 

T, T6 

Step 11. 

Solve for Q,, using the first law equation 
:: :; 

for the pulmonary vasculature. 

1i16 . (c, !1T7-6 + \'. !1P7 6) = -QI' 
T1 r. . -

Q,, = -1i1" · k !1T7_6 + 1• · !1P7 (,) Q .. 
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Table 8 - Entropy Generation Equations per Compartment 
--------------------·--· -----··----~---- --~--------- -Location Equation 

Systemic er =1i1, -[c ·In~-)+ [,(i -(l/ 6 )· 77 ,700J( 
I ·" I T, IT 

-" 

Pulmonary 
. - . . 7 ~/' [ T) 1ji er I' - 111 h . ( ' . l 11 Th + r 

Mitra) Valve = 1i1, · ( c · l n T.~.. ) 
I l I T, 

Pulmonary Valve er = 1i1_ · [c · In T"_ ) rn 'i \ T 
' 

Tricuspid Valve er = 1i1_ · ( c · In T-1 ) {\ ~ l I T\ 

Aortic Valve 
. [ T,) = 111 · c · In --

1 , T 
I 

Heart (theart =m 2, 
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Thermodynamic Parameter Descriptions and Initial Conditions 

The following tables, Table 9 and Table 10, define the parameters as well as 

initial values for the thermodynamics. 

Table 9 - Thermodynamic Parameter Values 

Name Value 

C 
I 

V 

T 

conl 

con2 

con3 

r 
T1,, 

1111, 

111, 

£WR 

4.18 

1.0068 

310 

101325/760 

1/10/\6 

22400 

1/ 0) 

!when Q,,, > O 

!when Q,, > 0 

I ' I 
- f<-·Q,,,)dt 
T O I' 

20.2 

100 

(area within LW vs. LVP 
over one beat)*con1 *con2 

( area within RW vs. RVP 
over one beat)*con1 *con2 

EW, + triangle 

EW R + triangle 

PVA, + PVAR 

Description (Units) 

Specific Heat of Water (J/g*K) 

Specific Volume (cc/g) 

Reference Temperature (K) 

Conversion Factor #1 (Pressure in mmHg to Pa) 

Conversion Factor #2 (Volume in cc or mL to m/\3) 

Conversion Factor #3 (mL/mol) 

Time length of entire heart beat 

Time length of ejection phase of heart beat 

Time length of relaxation phase of heart beat 

Mass Flow of Blood, Major Circuit (g/sec) 

Mass Flow of Blood, Coronary Circuit (g/sec) 

Energy Equivalent of 02 (J/mol Oz) 

Metabolic Energy, Systemic (W) 

External Work, Left Ventricle ()/sec) 

External Work, Right Ventricle (J/sec) 

Pressure-Volume Area, Left Ventricle 

Pressure-Volume Area, Right Ventricle 

Total Pressure-Volume Area 
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Table 10 -Thermodynamic Parameters Derived From Hemodynamic Variables 

Name 

Ps 

Ps 

Value 

_I J (LVP)dt 
r , 

<'/ 

J r - f ( AoP
1 
)dt 

T II 

I r - J( AoP
1 
)dt 

f II 

I r 

- {( AoP1 )dt 
T II 

J r 

- f(CVP2 )dt 
T II 

I T 

- J(CVP2 )dt 
T II 

I T - f (CVP2 )dt 
r o 

-
1 I (RVP)dt 

r " n 

_I J (RVP)dt 
r,,, . 

1 r 
- J(PuP)dt 
'o 
1 r 
-f(PuP-Q ·R )dt 1/ p 
r n 

_I i (LVP)dt 
r ., 

II 

Description (Units) 
------- ------------------ ·---------

Pressure at Node 1 

Pressure at Node 2 

Pressure at Node 2a 

Pressure at Node 2c 

Pressure at Node 3 

Pressure at Node 3a 

Pressure at Node 3c 

Pressure at Node 4 

Pressure at Node 5 

Pressure at Node 6 

Pressure at Node 7 

Pressure at Node 8 
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Simulation Technique 

Software & Numerical Solver 

The entire model was simulated using the computational software package 

MATLAB® Student Version, version 7.0.1.15 (R14) Service Pack 1 dated Sept 13, 2004 

(from the MathWorks, Natick, MA, USA). 

The numerical solver parameters are summarized in Table 11. Specifically, the 

hemodynamic model was solved using a "stiff' ode solver: ode23s (stiff/Mod 

Rosenbrock). Nonstiff solvers were attempted first, but were not able to handle the 

abrupt changes that occur in the hemodynamics during phase transitions, like the 

instantaneous change to ejection during the cardiac cycle. 

A stop time of 20 seconds was used to ensure each state would reach a steady

state. The last full beat in the 20 second simulation of the hemodynamics was used for 

the thermodynamics. 

Table 11 - Numerical Solver Parameters 

Start Time 0 

Stop Time 20 

Solver ode23s (stiff/Mod. Rosenbrock) 

Relative Tolerance le-3 

Initial Conditions See Table 4 and Table S 
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Simulation Scheme 

The goal of this thesis is to first propose a method to calculate entropy 

generation in the CVS, but then also to characterize how entropy generation compares 

across different CVS states. A CVS state is uniquely defined by the value of the 

parameters. Therefore the parameters form a "physiological hyperspace". Since there 

are infinite possible combinations of parameters to choose - and therefore infinite 

number of possible CVS states in the physiological hyperspace, a few representative 

points were selected for this study. Five parameters were chosen to be varied because 

of the key role they play in the hemodynamics and hemodynamic control. Therefore 

there are five dimensions to this hyperspace. 

The values chosen were thought to represent a generous sweep across the 

"normal" value for each parameter. Arbitrarily, a sweep of five values was chosen for 

all five variables. For parameters with very small values, a log scale sweep was used. 

For parameters with large values, a linear sweep was used. The exact values used to 

form this particular hyperspace are shown in the table. Each combination of 

parameters was simulated, resuiting in a grand total of 55 or 3125 simulations. 

In summary, each of the values shown in Table 12 represents a coordinate of 

the CVS hyperspace. And likewise each point in the hyperspace represents a CVS state. 

Each CVS state will be simulated in a hemodynamic model which will yield the time

series of pressures and flows with the CVS. 
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Table 12 - CVS Model Hyperspace 

Parameter Simulation Hyperspace Units 

Ra 0.2 0.5 1 2 3 
mmllg 

mL/scr 

Cal, Ca2 0.5 
mL 

1 1.5 2 3 --
mmllg 

Cv 
mL 

40 50 60 70 80 --
mm Ilg 

Cp 15 17.5 20 22.5 25 mL 
--
mmllg 

w 2 4 6 10.5 16 rad 
-
sec 

Simulation will involve solving the system of 14 first order differential 

equations given the initial conditions. Besides the parameters shown in the table, the 

other parameters that constitute the CVS model will be kept the same. The initial 

volumes, for each compartment, were defined so that the total volume was the same 

across all simulations. 

Ultimately, the results of simulation will be used to calculate temperature 

changes and finally entropy generation for each unique CVS state. 
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VALIDATION & RESULTS 

To calculate entropy generation in the CVS, the CVS was translated as a 

thermodynamic cycle as shown in the previous chapter. To characterize this value, 

entropy generation, a range of CVS states were simulated by varying five major 

hemodynamic parameters: heart rate, arterial resistance, arterial compliance, venous 

compliance, and pulmonary compliance. Therefore, in this study, the specific values of 

each of these parameters define a CVS state, and the collection of all CVS states 

simulated defines the hemodynamic range, referred to here as the simulation 

hyperspace. Using each unique CVS state within the hyperspace to calculate entropy 

generation revealed that entropy generation also spans a range of values. Using this 

range of entropy generation values in context with its respective hemodynamic state, 

the relationship between entropy generation and hemodynamics are explored next in 

the results section of this chapter. However, since the quality of the results depend on 

the validity of the models/assumptions, model validation in established first. 

Simulation 

As described previously in the Methods chapter, total entropy generation was 

calculated over a range of CVS states. Each CVS state is uniquely defined by the value 

of the parameters listed in Table 13. 
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Table 13- Simulation Parameters that Define the CVS State 

Parameter Name Description 

Ra Arterial Resistance 

Cal Arterial Compliance 

Cv Venous Compliance 

Cp Pulmonary Compliance 

w Heart Rate 

However, out of the hyperspace chosen for analysis, two states were not stable 

and therefore excluded from the analysis. Table 14 highlights the two unstable CVS 

states (marked with either * or # symbol) in the background of all 3125 possible 

combinations of the parameters values that define the simulation hyperspace. 

Table 14 - Unstable CVS States after Simulation 

Parameter Simulation Hyperspace Units 

Ra 0.2 0.5 1 2 3*# 
mmllg --
mL/scc 

0.5*# 2 
mL 

Cal, Caz 1 1.5 3 --
mmllg 

40*# 70 
ml. 

Cv so 60 80 --
mrnllg 

mL 
Cr 15*# 17.5 20 22.5 25 --

mm Ilg 

2 4 6 10.s· 16# rad 
w -

sec 

Therefore, out of the 3125 CVS states simulated, only 3123 could be used for 

thermodynamic analysis. The results of this analysis are shown after the following 

discussion of model validation. 
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Validation of Hemodynamic Model 

It is important to verify that the hemodynamic model created for this study 

results in behavior reasonably consistent with physiology. To do this, tests were 

applied to the model in which a physiologically sound behavior (that was not 

explicitly programmed for) would be expected. This includes maintenance of a 

constant total blood volume as well as recognizable profiles of cardiac cycle time

courses. Both of these will be demonstrated on the "normal" state - the state that is 

expected to generate cardiac profiles that are typical. The parameter values that 

define the normal CVS state are highlighted below in Table 15 . 

Table 15 - The Normal CVS State 

Parameter Simulation Hyperspace Units 

Ra 0.2 0.5 1 2 3 
mmHg 

mL/ser 

1.5 
mL 

Cal, Caz 0.5 1 2 3 --
mmHg 

mL 
Cv 40 50 60 70 80 --

mmllg 

mL 
Cp 15 17.5 20 22.5 25 --

mmHg 

2 4 6 10.5 16 
rad 

w -
sec 

In addition, a vena caval occlusion (VCO) experiment will be simulated to 

assess the transient behavior of the model in response to a perturbation. The VCO 

experiment has been demonstrated in vivo in various other studies in the literature. 

(6, 18) For a VCO experiment in vivo, the typical implementation involves inserting a 
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balloon-catheter into the inferior vena cava. By inflating the balloon, the preload to 

the heart is progressively restricted. As a result of this, the heart fills to a lesser extent 

with each beat and consequently generates Jess pressure. In light of this, the VCO 

effectively demonstrates the Frank-Starling law of the heart. Since the CVS model used 

in this study implements the Frank-Starling Jaw, it is expected that the model will 

respond to a decrease in preload in a manner consistent with the defined ESPVR and 

filling curve. 

In summary, the performance of the hemodynamic model will be 

demonstrated by monitoring the total blood volume and cardiac cycle waveforms for 

the normal CVS state and also inspecting the response to a perturbation which mimics 

the well-known VCO experiment. 

Hemodynamics of the Normal State 

The total blood volume, shown in Figure 20A, remains constant throughout an 

entire simulation despite redistribution of blood volume between compartments, 

shown in Figure 208. This provides support for the model basis (conservation of 

mass) and implementation (Matlab code) as well as the numerical stability of the ODE 

solver. Even so, this does not guarantee that the model is a good representation of in 

vivo hemodynamics. So, to address this, a few select waveforms were shown to 

illustrate the model's definition of a cardiac cycle for the left and right heart. The 

cardiac cycle, shown in Figure 21 demonstrates key features that would be expected 

from a genuine CVS. For example, outflow from the left ventricle, Qol, is active at the 
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instant left ventricular pressure, LVP, exceeds the aortic pressure, AoP. Also, outflow 

and inflow (Qol and Qi!, respectively, for the left heart) are generally not active at the 

same time. In fact, there is a brief "isovolumic" phase between these events. While the 

waveforms capture the essential aspects of a cardiac cycle, there is one aspect that 

does not: the waveforms for aortic pressure (AoP) exhibit a small degree of high

frequency oscillation or ripple. This is not expected of normal CVS physiology but is 

typical behavior of an RLC circuit. The oscillations dampen with appropriate tuning of 

the parameter values (particularly aortic valve inertance and resistances); however, 

in this model, certain parameter values, like the aortic valve inertance, were kept at 

the same constant value. Therefore the appearance of the AoP ripple varies depending 

on CVS state. For this study, this particular artifact was considered negligible. 

VCO Experiment 

The transient vena caval occlusion (VCO) is a popular method to inspect the 

pressure-volume properties of the heart. (6, 18) Since the response to a VCO is well

known, it is used here as a validation of the hemodynamic model. To simulate the VCO 

experiment in the hemodynamic model, the resistance of the pulmonary 

compartment, Rp, (resistance to left ventricular filling) is defined as a function which 

increases throughout the timespan of the simulation. The increasing Rp function is 

shown in Figure 22A. The left ventricular pressure (LVP) response to the increase in 

Rp in the time domain is shown in Figure 228. As expected, the LVP decreases as 

pre load (Rp) increases. 

89 



A. 

B. 

Total Volume 
5050.01 T 

:::J' 5050 005 

-S 
a, 5050 E 
::i 
0 
> 5049.995 -

5049.99 I I I I I ' 
0 2 4 6 8 10 12 14 16 18 20 

Time (sec) 

J :tr/:J/: /,~v; J ~: J .. ~ ./ >/ :J ~J j-Veins j 

0 2 4 6 8 10 12 14 16 18 20 

f : ~ I'.r /1 ~· r ''. J ( ; ~ r ~ r > I > r J 1-Purmonary I 
0 2 4 6 8 10 12 14 16 18 20 

Time (sec) 
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Figure 21 - Cardiac cycle for: A) Left Heart and BJ Right Heart 
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The VCO response is further explored by plotting LVP versus left ventricular 

volume (LVV). In the PV domain, the response is anticipated to closely follow the 

predefined elastance envelopes of the left ventricle. This is verified in Figure 22C 

where the pressure-volume signal is plotted by the black line, the filling curve is in 

blue and the ESPVR is in red. As expected, the series of PV loops are contained by the 

ESPVR and the filling curve. 

Validation of Thermodynamic Model 

Since a thermodynamic analysis of the CVS has never before been attempted, 

the results cannot be compared with other published studies. There are, however, a 

few things to expect: 

1. the first law analysis of the CVS should result in a balance between the power 

generated versus the power dissipated, and 

2. entropy generation should always be a positive value. 

Therefore, these features will be explored next but first the "normal" state will be fully 

characterized. 

Thermodynamics of the Normal State 

The thermodynamic calculations are built upon the hemodynamic simulation 

results as well as assumptions about the metabolic demand. Therefore, the first step 

in the thermodynamic calculation is to translate results into SI units and average them 
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over a single beat to comply with the steady-state form of thermodynamic analysis. 

Next, using the steady-state form of the hemodynamic data and the assumptions 

concerning metabolic demand, arterial-venous (A-V) blood oxygen difference, also 

called ~02, can be calculated. The result of this initial preprocessing is summarized in 

Table 16 and Figure 23. Further validation of the hemodynamic model is provided by 

the value calculated for systemic oxygen difference as it agrees with that expected for 

a normal state. However the coronary oxygen extraction is much lower than expected. 

mmHg 

mlJsa: 
mL 

mmHg 

Table 16 - Normal CVS State Results 

rad J/K 
sec sec 
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First Law Balance 

The sources that generate power are the left heart and the right heart. On the 

other hand, the components that will dissipate power are the four valves (Rav, Rmv, 

Rtv and Rpv) as well as the pulmonary, coronary, and the arterial/venous resistive 

components (Rp, Re and Ra). The power generated can be solved using Equation 47 

given that the pressure difference is in mm Hg and flow is in mL/sec: 

Equation 4 7 - Solving for Power 

. (101325 mmHg) (. 1 ml ) Power= .6P · m· · . 
760 Pa 10- 6 m 3 

Using Equation 47, power generated and power dissipated can be calculated 

and compared. As shown in Table 17, the calculations are consistent with the first law 

energy balance - total power dissipated is equal to total power produced. 

Table 17 - First Law Balance 

Power Dissipated (Watts) Power Produced (Watts) 
Rav 0.188 LV I 1.185 ~- ~-------·----t---~~-------
Rmv 0.020 RV 0.291 -~~- t-----~--r----~--~ 

Rtv 0.014 -~ r-----------·-----i--------

,__~v 0.071 
--+---

Re 0.379 --~ 

Ra 0.679 -----

Rp 0.126 -~ - ~-------- ~--

~-------·- ---- ·----- ------- ---

Total 1.477 Total 1.477 
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In addition, the magnitude of power (1.477 Watts) is a likely value for the 

normal state. For example, a standard value for left ventricular pressure change is 

lOOmmHg (or 13.3 kPa) and a typical stroke volume is 90mL (or 0.09*10·3 ml). Using 

these values to approximate stroke work which can be approximated as fipressure * 

fivolume gives 13.3 kPa * 0.09*10· 3 m' or 1.2). Considering a typical heart rate of 

60bpm (1 beat per second), the average power can be equated as work multiplied by 

heart rate in beats per second, which results in 1.2 J/s or 1.2 Watts for the left 

ventricle. The value for power produced by the left ventricle in Table 17 (1.185 Watts) 

is very close to this value (1.2 Watts). 

Entropy Generation ( a) Inspection 

The histogram shown in Figure 24 reveals the total value of entropy 

generation across all stable simulations of the CVS (n=3123). By inspection, all values 

are positive, which is expected for second law thermodynamics and supports the 

derivation. 
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Figure 24- Distribution of Entropy Generation Across All Simulations 
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Results 

Characterization of Total Entropy Generation within the CVS 

Searching over all stable CVS states (n=3123), the CVS state that resulted in 

overall minimum entropy generation (er= 0.010361 J/K/sec) was found to occur at 

the state highlighted in Table 18. 

Table 18 - The Minimum Entropy Generation State 

Parameter Simulation Hyperspace Units 

Ra 0.2 0.5 1 2 3 
mmHg 

mL/sec 

Ca1, Caz 0.5 1 1.5 2 3 
mL 
--
mmHg 

mL 
Cv 40 50 60 70 80 --

mmHg 

25 
mL 

Cr 15 17.5 20 22.5 --
mmHg 

2 4 6 10.5 16 
rad 

w -
sec 

Conversely, the state the resulted in maximum entropy generation 

( er = 0.040859 J/K/sec) is shown below in Table 19. 
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Table 19 - The Maximum Entropy Generation State 

Parameter Simulation Hyperspace Units 

Ra 0.2 0.5 1 2 3 
mmHg 

mL/sec 

Cai, Caz 0.5 
mL 

1 1.5 2 3 --
mmHg 

Cv 40 50 80 
mL 

60 70 --
mmHg 

(p 15 25 
mL 

17.5 20 22.5 --
mmHg 

2 4 6 10.5 16 
rad 

w -
sec 

To further explore the hemodynamic characteristics that correspond to these 

entropy generation extremes, entropy generation values will be shown alongside 

significant hemodynamic variables (see Table 20). In addition to the minimum and 

maximum entropy generation CVS states, a few of the closest neighbors in terms of 

entropy generation will be shown in the tables below to give an impression of the 

correlation between hemodynamics and entropy generation. The first five columns 

represent simulation parameters, and the sixth column lists the resultant entropy 

generation. The last five columns show key hemodynamic variables (the variables are 

defined in the legend of Table 16). 

The results of Table 8 show that the states that result in minimum entropy 

generation do so at extremely low aortic pressures (AoP - 20 mmHg). This is not a 
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Table 20 - Minimum Entropy Generation with Nearest Neighbors 

mmHg mL rad J/K g mL 0 2 -- -
mL/sec mmHg - - mmHg sec sec sec mL blood 

Ra Ca1 Cv Cp w a mh me AoP A02 A02 
systemic coronaries 

0.2 3 80 17.5 2 0.0104 53.16 4.67 22.11 0.093 0.010 
0.2 3 80 20 2 0.0104 52.84 4.99 21.66 0.093 0.010 
0.2 0.5 80 22.5 2 0.0104 53.52 2.66 22.94 0.092 0.026 
0.2 3 80 22.5 2 0.0104 52.32 5.21 21.22 0.094 0.009 
0.2 0.5 80 25 2 0.0104 52.71 2.75 22.41 0.093 0.025 
0.2 2 80 25 2 0.0104 52.45 4.72 21.41 0.094 0.010 
0.2 3 80 25 2 0.0104 51.85 5.45 20.79 0.095 0.008 

reasonable human hemodynamic profile. To ensure survival, the CVS must spend an 

excess of energy to maintain a CVS state that is capable of quickly meeting an 

increased metabolic demand, particularly a sympathetic or "flight or fight" response. 

Therefore to explain why the minimum entropy state is not a physiologically 

preferred state is to acknowledge the existence of these so-called survival reserves. 

To give a rough impression for the criteria of survival reserve maintenance, it was 

arbitrarily chosen to limit the search for minimum entropy generation over the CVS 

states that result in an AoP of 80 mmHg or greater. The results of this search are 

shown next in Table 21. 

The CVS state, shown above, is similar to the minimum entropy state shown 

earlier in Table 18; however, the main difference is the increased arterial resistance 

(Ra). This compensation was enforced by requiring a normal blood pressure, although 

there are a number of ways the CVS could increase blood pressure with the five 
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Table 21 - The Minimum Entropy Generation State for AoP > 80 mmHg 

Parameter Simulation Hyperspace Units 

Ra 0.2 0.5 1 2 3 
mmHg 

mL/sec 

Ca1, Caz 0.5 
mL 

1 1.5 2 3 --
mmHg 

Cv 40 50 80 
mL 

60 70 --
mmHg 

Cp 15 22.5 25 
mL 

17.5 20 --
mmHg 

2 4 6 10.5 16 
rad 

w -
sec 

parameters. For example, a list of similar CVS states (in terms of entropy generation) 

is provided in Table 22 on the next page. An inspection of the values in the first five 

columns (the five parameters of the CVS state) shows that Ra and w are consistent 

while the compliance values vary. This pattern indicates that entropy generation is 

most strongly correlated with w than the other four variables given that 

compensation via an increase in w does not make the minimum entropy criteria. 

However, this set of CVS states extract more oxygen (Ll02 systemic) in order to meet 

the metabolic demand than is expected for normal hemodynamics. A more complete 

definition of survival reserve may include consideration of the oxygen carrying 

capacity of blood in addition to blood pressure. 
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Table 22 - Min Entropy Generation (for AoP > 80 mmHg) with Nearest 

Neighbors 

mmHg mL rad - J/K g mL02 

mL/sec mmHg sec 
-
sec 

-
sec mmHg mL blood 

Ra Ca1 Cv Cp w (1 mh me AoP 402 402 
systemic coronaries 

3 3 70 15 2 0.0128 45.90 19.79 82.73 0.1071 0.0049 
3 3 60 17.5 2 0.0130 47.76 19.93 84.80 0.1029 0.0051 
3 2 80 17.5 2 0.0130 46.41 19.81 87.42 0.1059 0.0052 
3 3 60 20 2 0.0128 47.49 20.22 81.86 0.1035 0.0048 
3 2 80 20 2 0.0129 46.33 20.40 84.23 0.1061 0.0048 
3 2 70 22.5 2 0.0130 47.23 20.15 85.91 0.1041 0.0051 
3 2 80 22.5 2 0.0127 46.27 21.00 81.04 0.1063 0.0045 
3 3 50 25 2 0.0129 48.41 20.33 81.25 0.1016 0.0049 
3 2 70 25 2 0.0128 46.90 20.73 82.45 0.1048 0.0048 
3 1 80 25 2 0.0129 46.25 20.04 84.27 0.1063 0.0050 

To contrast the aforementioned results, the maximum entropy generation 

states are shown in Table 23. The blood pressures (AoP - 200 mmHg) are 

exceedingly high in this case and very little oxygen is extracted from the blood to meet 

metabolic demand. 

Table 22 and Table 23 demonstrate the extremes of entropy generation given 

the constraints of normal cardiovascular function. By comparing the two tables, heart 

rate (w) and arterial resistance (Ra) have the greatest influence on total entropy 

generation (cr) while the compliance values do not show a correlation with entropy 

generation. 
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Table 23 - Maximum Entropy Generation with Nearest Neighbors 

mmHg mL rad J/K g mL 0 2 -- -
mL/sec mmHg sec 

-
sec 

-
sec mmHg mL blood 

Ra Ca1 Cv Cp w a mh me AoP A02 A02 
systemic coronaries 

2 0.5 40 15 10.5 0.0360 126.51 27.17 222.31 0.0389 0.0402 

2 0.5 40 15 16 0.0409 143.31 33.66 235.23 0.0343 0.0426 

2 1 40 15 16 0.0361 140.67 47.52 201.56 0.0350 0.0227 

2 0.5 50 15 16 0.0374 138.92 40.65 213.80 0.0354 0.0295 

2 0.5 40 17.5 16 0.0384 138.93 35.70 222.48 0.0354 0.0368 

2 0.5 50 17.5 16 0.0352 134.87 41.66 202.03 0.0365 0.0267 

2 0.5 40 20 16 0.0371 138.51 40.94 212.01 0.0355 0.0290 

2 0.5 40 22.5 16 0.0351 135.20 43.00 200.64 0.0364 0.0254 

The following plot, Figure 25, explores the distribution of entropy generation 

values over all stable CVS states (n=3123). Specifically, Figure 25A demonstrates that, 

over the entire CVS hyperspace, there are many states that result in similar values of 

entropy generation while the states that contribute to maximum entropy are rarer. 

Limiting the scope to CVS states that maintain an AoP of 80 mmHg or greater, shown 

in Figure 25B, eliminates some of the low entropy values but not in a uniform manner. 

In fact, the resulting profile appears to have two peaks. Future work is anticipated to 

further explore the basis for this uneven distribution as well as the sharp cutoff at low 

entropy values. Figure 25C shows the residual states (AoP < 80mmHg) which also 

distribute over two peaks. 
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Entropy Generation per Compartment 

Total entropy generation is a sum of individual entropy generation per 

compartment within the CVS model. While the previous discussion focused on the 

identity of total entropy generation in terms of four major states that mark the 

extremes of entropy generation (normal, min, min with AoP > 80mmHg, and max), the 

next set of results, Figure 26 on the next page, explores the relative contribution of 

entropy generation per compartment for these same four CVS states. The results 

demonstrate that the major contributions to total entropy generation are due almost 

completely to the heart and the systemic compartments. Furthermore, the distinction 

between the extreme states is closely associated to changes in entropy generation 

within the heart specifically. 

Summary 

To summarize the results of calculation of entropy generation in various 

different CVS states, the extreme states are outlined in Figure 27 on the next page. The 

unstable states are also shown for reference. The normal state does appear to lie in 

the middle between the extremes of entropy generation. It was hypothesized that 

normal CVS physiology would prefer states of minimum entropy generation. 

However, the states that result in minimum entropy generation do not match the 

normal CVS state. This may be explained by the conflicting need to minimize entropy 

generation while aim maintaining adequate survival reserves. Therefore this normal 

state may be characterized by the balance between these two conflicting needs. 
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This was roughly approximated by searching for minimum entropy generation while 

maintaining a blood pressure of at least 80 mmHg. Blood pressure is used as a 

surrogate for survival reserve. but could be defined in other ways. This state does 

slightly move closer to the identity of the normal state. However, it appears that heart 

rate is strongly associated with entropy generation that a search for min entropy 

generation, regardless of blood pressure, will automatically assume a low heart rate. 

Also, when the relative values of entropy generation per compartment were analyzed, 

it was found that the heart compartment overwhelmingly determines the variability 

in entropy generation. In conclusion, a definition of the survival reserve is needed to 

test this new hypothesis: normal CVS tends to minimize entropy generation while 

maintaining an adequate survival reserve and meeting the metabolic need. 
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DISCUSSION & CONCLUSION 

The models used in this study are not perfect representations of the CVS (no 

model is). For example, the human CVS is integrated with other control systems of the 

body and also affected by the environment external to the body. Therefore the CVS is 

involved with many other aspects of regulation in addition to regulation of blood flow 

and is sensitive to factors such as temperature, metabolic demand, nutrition, age and 

sex. Many of these confounding factors impact the CVS in some way, but the physics of 

blood flow follow the same relationships regardless. Therefore this study uses a 

minimal, generic model which focuses on the physics of blood flow (hemodynamics) 

exclusively while simplifying or neglecting these confounding factors. However, it is 

unknown the extent which these underexplored features, especially temperature and 

metabolic demand, may contribute to the overall entropy generation within the CVS. 

Therefore these assumptions are discussed in detail next. Furthermore many of these 

approximations are intended to be the aim of future work to allow this thesis to focus 

on essential features of the hemodynamic/thermodynamic model as a means of 

introductory exploration. An interpretation and concluding thoughts of the results, 

with the assumptions and approximations in mind, are stated at the end of this 

chapter. 

Approximations & Limitations 

Assumed Perfect and Simple Thermo regulation 

To anchor the thermodynamic analysis, it was assumed that every CVS state 

generated by simulation was able to maintain the same fixed core body temperature 
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which is assigned in this model to be exactly 37 °C. This assumption allowed for 

assigning a fixed temperature which served as a reference for all other temperature 

points around the CVS. Core body temperature is indeed regulated in vivo to be very 

near 37°C despite fluctuating temperature gradients between the body and the 

environment. (26) Therefore declaring a fixed core body temperature is expected to 

be a reasonable approximation especially for a timespan of a single cardiac cycle and 

also given the model assumes a resting metabolic rate of 100W which is equivalent to 

that of a 70kg man at rest. 

In this analysis, the point T3a (see Panel 8) was arbitrarily used as the fixed 

point representing the tightly controlled core body temperature. The calculation of 

temperatures assumes that the system always maintains this fixed point. The 

resulting consequence is, according to this model, the pulmonary compartment must 

transfer the exact amount of heat to maintain a constant fixed point at T3a since the 

pulmonary is the only compartment defined in this model to experience a heat 

transfer to the environment. In reality, heat transfer with the environment may occur 

at other locations, like the cutaneous blood vessels. In fact cutaneous heat loss, being a 

variable under cardiovascular control, is significantly employed by the body to 

thermoregulate during scenarios of increased metabolic demand or exercise. (34) 

However the overall effect of this value of heat loss is uncertain given that it is largely 

dependent on factors like external environment or clothing. In addition, metabolically 

active tissues will also tend to transfer heat to the blood vessels that perfuse them. 

Therefore this net heat transfer (cutaneous heat loss versus bioheat gain from tissue) 

is unclear and was thought to be reasonably close to zero for resting metabolic rates 
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in an ideal environment. Therefore these other heat transfers were neglected in this 

simplified analysis. In general, the simplifying assumption was made for this study 

that all other heat loss to the environment besides the heat loss from the pulmonary 

compartment is negligible. 

Metabolism & Perfect Respiration 

In addition to the forces that circulate blood through the CVS, an equally 

important focus of this analysis is the transport of metabolites. Metabolic demand is 

reliant on blood flow to adequately deliver oxygen and fuel but also to remove waste. 

The only aspect (in terns if transport) of this relationship considered in this analysis is 

oxygen - the other components, fuel and waste, were assumed to be sufficiently 

transported or regulated as long as oxygen delivery was sufficient. In general, the 

system model was assumed to be in a state of perfect regulation of all other integrated 

variables, such as glucose supply and initial oxygen saturation of blood. In doing so, it 

was intended that the discussion of entropy generation would be entirely in context of 

the CVS hemodynamics alone. 

Contrary to what was originally expected, the systemic metabolic demand does 

not appear in the first law analysis of the systemic compartment based on the 

assumption the systemic compartment includes both the point of fuel input, such as 

food absorption in the gastrointestinal tract, but also the point of fuel delivery, such as 

an active skeletal muscle. Therefore, given the earlier assumption that metabolic fuel 

was constantly perfectly regulated, the enthalpy due to fuel delivery should be equal 

and opposite to the fuel consumed. In addition, the exchange of metabolites/waste 

111 



should be treated separately from the gas exchange ( oxygen for carbon dioxide) as 

they occur at separate anatomical locations - however in this analysis the gas 

exchange was lumped into the systemic compartment. 

Hemodynamic Model Limitations 

Another shortcoming discovered with this model is that the coronary blood 

flow is higher than expected for human coronary blood flow, which in turn resulted in 

a calculated coronary oxygen difference that is much less than expected. This may be 

improved by using a more robust model of coronary circulation. 

Thermodynamic Calculations 

The thermodynamic analysis was conducted assuming steady-state steady

flow conditions for all compartments. Also kinetic and potential energy effects were 

assumed to be negligible in this analysis. 

The data was converted to SJ units for the thermodynamic calculations. The 

conversion between units is straightforward, except for cases in which the 

thermodynamic properties of blood were unknown. In those cases, blood was 

approximated as water. This was done for the conversion from volumetric flow to 

mass flow and also in the calculation of entropy change. Both of these calculations are 

shown next. 

The translation of volumetric flows from the hemodynamic model to mass 

flows is done via the simple relationship shown below in Equation 48. 
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Equation 48 - Conversion of Volumetric Flow to Mass Flow 

1 
rh = . ¥ 

V 

,iz = Mass Flow of blood (g/sec) 

v = Specific Volume (mL/g) 

¥-=Volumetric Flow of blood 
(cc/sec) 

The specific volume of blood was approximated as the specific volume of water 

evaluated as a saturated liquid at 37°( which is 1.0068 mL/g 

Furthermore, fluids, such as blood, can be assumed to be incompressible 

( dv = 0) which simplifies the Gibbs equation from the form shown in Equation 49 to 

the form shown in Equation SO .. 

Equation 49 - Gibbs Equation 

T ·ds= du+ P·d\' 

Equation 50 - Gibbs Equation for an Incompressible Substance 

T·ds=du 

Therefore a change in entropy can be calculated as shown in Equation 51. 

Equation 51 - Using Gibbs Equation to Solve for Change in Entropy 

els = du = S . c/T 
T T 
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In the equations above, sis entropy, Tis the temperature, and c, is the specific heat. 

In this analysis the specific heat of blood was approximated to be sufficiently close to 

that of water, which is 4.18 J/g*K. 

Discussion 

It is anticipated that characterizing a CVS state in terms of entropy generation 

is an effectual way to unify major attributes of CVS function so that overall 

performance can be described quantitatively. The benefit of using a quantitative 

framework, such as this, is to be able to discern the relative impact of one form of 

compensation versus another. This knowledge is useful for the design of treatment 

strategies of cardiovascular disease. Since cardiovascular disease remains prevalent 

world-wide, cardiovascular therapies are a significant medical concern. The Jong-term 

goal of using entropy generation to understand CVS physiology has significant 

medical potential in this respect. Toward this long-term goal, an initial step of 

developing a framework for thermodynamic analysis of the CVS was done in a 

minimal fashion. Now that entropy generation in the CVS has been introduced, the 

results and newly arisen questions are expected to foster further development. 

After inspecting the CVS states that result in minimum entropy generation, it is 

found that these states are not physiologically viable especially because the blood 

pressure is extremely low. While this may be a very efficient arrangement, it is not 

likely to be the state that is ever actually realized in human. However, more accurate 

control logic of the in vivo CVS may be one that seeks minimum entropy generation 

while maintaining a "survival reserve". This survival reserve could be defined as an 
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excess of oxygen content in the blood, or a sufficiently high blood pressure, etc ... or a 

combination of things that guarantee a measure of quick fight/flight response. 

Furthermore the relative importance of survival reserve maintenance can change -

there exists "survival states" that are characterized by changing survival 

needs/reserves. It is expected that future study on entropy generation as an inherent 

control logic will involve consideration of survival states in addition to the 

hemodynamics and thermodynamics. The survival states, ranging from hibernation to 

maximal exercise, are likely to provide a more complete picture of the significance of 

entropy generation in the context of CVS physiology. Survival states are discussed 

briefly next as to how it may impact the characterization of entropy generation in the 

CVS. 

Survival States 

A normal survival state can be described qualitatively as a state that maintains 

the capacity to perform work useful for sustaining life - a state far from equilibrium. 

Furthermore, the manner in which work is performed can vary in terms of quality or 

efficiency. All processes that keep a system away from equilibrium are irreversible 

and generate entropy. Therefore a state that is maximally efficient (but not dead) is 

one that performs the minimum work necessary to sustain life. This state could be 

approached during sleep or hibernation. Any increase in work beyond this threshold 

will be increasingly inefficient - that is result in relatively greater entropy generation. 

Efficiency can be compromised either to maximize work, as in exercise, or to build a 
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reserve to ensure a capacity to quickly transition to a maximum work state (also 

referred to here as a survival reserve or fight/flight response). 

The normal state is a balance between the opposing forces illustrated in Figure 

28. The actual state, or the current state, can navigate this spectrum. A cardiovascular 

disease, for example, can also compromise efficiency and therefore bring the current 

state lower on the spectrum. 

For humans, high-intensity exercise is a state of maximum work that is also 

highly inefficient and therefore short in duration. Sleep is a state that seems to be the 

opposite in that work is low and efficiency is increased. However, certain mammals 

have the ability to achieve a dormant state, called hibernation, which is much more 

dramatic and longer in duration than the sleep state in humans. Therefore, 

hibernation is hypothesized to best exemplify the maximum efficiency state. 

Figure 28 - The Survival State Spectrum 
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Examples of studied animals that hibernate include ground squirrels (20) and 

bears (12). Interestingly, the transition to a hibernating state for the bear is different 

in many aspects from that of the ground squirrel. Particularly the core body 

temperature of the bear falls only a few degrees Celsius while the ground squirrel 

radically transitions to a body temperature only slightly above freezing. However, all 

hibernating mammals experience a significant drop in heart rate. Milsom et. al. report 

that, in all hibernating mammals, heart rate drops by 50% early in the transition to 

hibernation - that is before the body temperature changes significantly. This indicates 

that the diminishing heart rate is part of a concerted maneuver of the body and not a 

result of the cold environment. (24) On the other hand, the maximum work state is 

also tightly associated to heart rate. A state of maximum work production 1s 

equivalent to a human m a state of maximal exercise. Although humans vary in 

respect to their functional capacity for maximal exercise, heart rate at maximum 

exercise approaches 190 bpm for all groups of functional capacities. (35) Therefore, it 

seems that the extremes of heart rate correlate well with the extremes of survival 

states. On a similar note, the result of this study has also indicated that heart rate and 

entropy generation are especially correlated. However, other variables concerning 

cardiovascular control are more difficult to measure and therefore may simply be 

underexplored in respect to their role in extreme survival states. 

The survival state in the context of a survival spectrum is an alternative but 

complementary approach to the classical concept of homeostasis in physiology. A 

quantitative description of homeostasis sets the stage for further analysis, such as 

sensitivity and stability analysis, which can translate into important clinical 
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applications. Although this study focuses on the CVS, the above discussion on survival 

is relevant to the overall integrative physiology. The characterization of entropy 

generation in the CVS is intended serve as a starting point to quantitatively define 

efficiency. Efficiency, and likewise entropy generation, is suspected to be a major 

constituent of the survival state and homeostasis. 

Conclusion 

In conclusion, entropy generation is proposed here as a novel way to 

understand cardiovascular physiology. Because entropy generation involves 

thermodynamics and, therefore, consideration of major energy transformations 

within the system, this new concept unifies the mechanics of blood flow over the 

entire system with the aspects of transporting metabolic fuel. Therefore, entropy 

generation in the CVS is a more holistic form of CVS analysis compared with similar 

pre-existing theories, such as ventricular-arterial coupling theories. 

Since thermodynamics has not been applied to the CVS in this way, the goal of 

this thesis has been to approximate and characterize entropy generation within the 

CVS. This has been accomplished by firstly introducing the cardiovascular system as a 

thermodynamic cycle which generates entropy. In doing so it was found that entropy 

generation varies in a complex fashion dependent on aspects of the hemodynamic CVS 

state. This is demonstrated over thousands of distinct cardiovascular simulations 

which uniquely varied five major parameters (heart rate, arterial resistance, arterial 

compliance, venous compliance, and pulmonary compliance). Metabolic demand was 
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defined as an expected normal or resting metabolic rate of 100W. The hemodynamics 

and metabolic demand were then translated into a thermodynamic cycle and entropy 

generation was calculated. The results indicate that, in general, heart rate and arterial 

resistance appear to have the strongest correlation with entropy generation while the 

compliances do not show a correlation over the simulation hyperspace. 

Entropy generation is an aggregate or sum total of many discrete locations 

within the CVS, therefore it is also of interest to inspect the relative contributions 

within the CVS. This revealed that entropy generation is due in large to the heart and 

systemic vasculature, but the other parts of the CVS, like the pulmonary vasculature 

and the valves, contributed relatively negligible amounts of entropy generation. Total 

entropy generation variation between CVS states can be solely attributed to the 

entropy generation within the heart. 

In the end, the analysis presented in this thesis introduces entropy generation 

as a key feature concerning CVS function. The results have generated a new and 

untested hypothesis for defining the overall control logic of the CVS which involves 

minimizing entropy generation while maintaining survival reserves. 
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APPENDIX A. MATLAB CODE 

Model Simulation 

CVS_Model_Hyperspace.m 

% CVS_Model_Hyperspace.m 
% Niccole Schaible 
% Nov 23, 2011 

%% 
%Initialize Hemodynamic Model 
%Define Hyperspace for Hemodynamic Model Simulation 
%Analyze Hemodynamic Model with Numerical Solver over a timespan 
% (repeat for each location within the hyperspace) 
%Use results to calculate Thermodynamics 
%Organize relevant variables according to CVS State: "cvs() ." 
%Save all CVS states for entire Hyperspace to file: 
% "simulation results.mat" 
%% 

%% 
%Calls functions: CVS res 
% 

% 
% 
%% 

getLastBeat 
Cale Thermo 
cvs_hemodynamics 

%Initialize Hemodynamic Model 
clear all; clc; elf; 

global alphal alpha2 alpha3 betal beta2 beta3 k kr kc 
global Ra Cal Ca2 Cv Cp w 
global Lal La2 Rv Rp Lmv Rmv Ltv Rtv Lav Rav Lpv Rpv 
global P2 del_02_sys del 02 cor 

%Define Hyperspace for Hemodynamic Model Simulation 

Ra_array=[.2 .5 1 2 3]; 
Cal_array=[.5 1 1.5 2 3]; 
Cv_array=[40 50 60 70 80]; 
Cp_array=[l5 17.5 20 22.5 25]; 
w_array=[2 4 6 10.5 16]; 
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%Analyze Hemodynamic Model with Numerical Solver over a timespan 
% (repeat for each location within the hyperspace) 

for idx ra=l:5 
Ra=Ra_array(idx_ra); 

for idx ca=l:5 
Cal=Cal_array(idx_ca); 
Ca2=Cal; 

for idx cv=l:5 
Cv=Cv_array(idx_cv); 

for idx_cp=l:5 
Cp=Cp_array(idx_cp); 

for idx w=l:5 
W=w_array(idx_w); 

%skip states that are unstable: 5,1,1,1,4 % 5 
if (idx_ra==S && idx_ca==l && idx CV==l ... 

&& idx_cp==l && (idx_w==4 I I idx_w==5)) 
disp('51114&5 skipped'); 

else 

% Display index of current simulation 
disp(['i = ',num2str(idx_ra)]); 
disp(['ii = ',num2str(idx_ca)]); 
disp(['iii = ',num2str(idx_cv))); 
disp(['iv = ',num2str(idx_cp)]}; 
disp(['v = ',num2str(idx_w))); 

% Declare Initial Conditions 
CVS_ICs %dependent on adjustable param values 

% Settings for Numerical Solver 
options= odeset('RelTol' ,le-3); 
yO = [yOl y02 y03 y04 y05 y06 y07 ... 

y08 y09 yOlO yOll y012 y013 y014]; 

% Solve the Hemodynamic Model (from o to 20 sec) 
[t,Y] = ode23s(@cvs_hemodynamics, ... 

[O 20) ,yO,options); 

% Find the last beat 
[t2, Y2) = getLastBeat(w,t,Y); 
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%Use results to calculate Thermodynamics 

% Calculate Entropy Generation 
[thermo] = Calc_Thermo(t2,Y2); 

%Organize relevant variables according to CVS State: "cvs() 
cvs(idx_ra,idx_ca,idx_cv,idx_cp,idx_w) .del_02_sys=del_02_sys; 
cvs(idx_ra,idx_ca,idx_cv,idx_cp,idx_w) .del_02_cor=del_02_cor; 

cvs(idx_ra,idx_ca,idx_cv,idx_cp,idx_w) .entropy=thermo(l); 
cvs(idx_ra,idx_ca,idx_cv,idx_cp,idx_w) .entropy_sys=thermo(2); 
cvs(idx_ra,idx_ca,idx_cv,idx_cp,idx_w) .entropy_pulm=thermo(3); 
cvs(idx_ra,idx_ca,idx_cv,idx_cp,idx_w) .entropy_MV=thermo(4); 
cvs(idx_ra,idx_ca,idx_cv,idx_cp,idx_w) .entropy_PV=thermo(5); 
cvs(idx_ra,idx_ca,idx_cv,idx_cp,idx_w) .entropy_TV=thermo(6); 
cvs(idx_ra,idx_ca,idx_cv,idx_cp,idx_w) .entropy_AV=thermo(7); 
cvs(idx_ra,idx_ca,idx_cv,idx_cp,idx_w) .entropy_heart=thermo(B); 
cvs(idx_ra,idx_ca,idx_cv,idx_cp,idx_w) .P2=thermo(9); 
cvs(idx_ra,idx_ca,idx_cv,idx_cp,idx_w) .total_mheat_dis=thermo(lO) 
cvs(idx_ra,idx_ca,idx_cv,idx_cp,idx_w) .m_dot_h=thermo(ll); 
cvs(idx_ra,idx_ca,idx_cv,idx_cp,idx_w) .m_dot_c=thermo(l2); 

end 
end 

end 

end 

end 
end 

%Save all CVS states for entire Hyperspace to file: 
%"simulation results.mat" 
save simulation results cvs 
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CVS_ICs.m 

% CVS ICs.m 
% Niccole Schaible 
% Nov 23, 2011 

global alphal alpha2 alpha3 betal beta2 beta3 k kr kc 
global Ra Cal Cv Cp w 
global Lal La2 Rv Rp Lmv Rmv Ltv Rtv Lav Rav Lpv Rpv 
global Volv Vorv 

%---------- Time-Varying Elastance Parameters----------% 

%Left Ventricle 
alpha1=3.1; 
alpha2=-.0086; 
alpha3=.0003; 

%Right Ventricle 
betal=0.624; 
beta2=-.00185; 
beta3=.00025; 

%---------- Effective Volumes----------% 

%Ventricles 
LVVeff0=13 0; 
RVVeff0=130; 

%Systemic 
Veffal=l50; 
Veffa2=150; 
VeffV=800; 
Veffp=250; 

%---------- Dead Volumes----------% 

%Ventricles 
Volv=20; 
Vorv=20; 

%Systemic 
Voa1=250; 
Voa2=250; 
Vov=2700; 
Vop=200; 
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%---------- Static Systemic Resistance/Capacitance 

Lav=.0001; 
Rav=.01; 

Lal=.0001; 
La2=.0001; 

Ca2=Cal; 

RV=.05; 

Ltv=.0001; 
Rtv=.01; 

Rpv=.01; 
Lpv=.0001; 

Rp=.08; 

Rmv=. 01; 
Lmv=.0001; 

k=.0001; %Rlv=k*LVP 
kr=.0001; %Rrv=kr*RVP 
kc=.5; %Rc=kc*LVP (coronary resistance) 

%---------- State Equation ICs ----------% 

yOl=LWeffO; 
y02=RWeffO; 
y03=alpha3*LWeffOA2; 
y04=0; 
yOS=Veffal/Cal; 
y06=0; 
y07=Veffa2/Ca2; 
y08=0; 
y09=Veffv/Cv; 
y010=0; 
yOll=beta3*RWeffOA2; 
y012=0; 
y013=Veffp/Cp; 
y014=0; 

%LWeff 
%RWeff 
%HMP1 
%Qol 
%AoPl 
%Qlal 
%AoP2 
%Qla2 
%CVP 
%Qir 
%HMPr 
%Qor 
%PuP 
%Qil 
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cvs_hemodynamics.m 

function dy = cvs_hemodynamics(t,y) 
global alphal alpha2 alpha3 betal beta2 beta3 k kr kc 
global Ra Cal Ca2 Cv Cp w 
global Lal La2 Rv Rp Lmv Rmv Ltv Rtv Lav Rav Lpv Rpv 

%---------- Auxilary Equations----------% 

%% Time-varying elastance (heart beat) 

%Sine Wave 
e_gen=sin(w*t-pi/2); 

%Half-Wave Rectified (+ Derivative) 
if e_gen >= 0 

e=e_gen; 
de=w*cos(w*t-pi/2); 

else 
e=O; 
de=O; 

end 

%Left Ventricle 
Elv=[alphal+alpha2*y(l)]*e+alpha3*y(l); 
dElv=(alpha2*e+alpha3)*(y(l4)-y(4))+[alphal+alpha2*y(l)]*de; 

%Right Ventricle 
Erv=[betal+beta2*y(2)]*e+beta3*y(2); 
dErv=(beta2*e+beta3)*(y(l0)-y(l2))+[betal+beta2*y(2)]*de; 

%% Nonlinear Resistances 

Rlv=k*y(3)/(l-k*(y(l4)-y(4))); 
Rrv=kr*y(ll)/(1-kr*(y(10)-y(l2))); 
Rc=kc*y(3)/(1-k*(y(14)-y(4))); 

D1=20* (1- .15/ (. lS+exp (-6*y(4)))); 
D2=20* (1-1/ (l+exp(-6*y(10)))); 
D3=20*(1-.l5/(.15+exp(-6*y(12)))); 
D4=20*(l-1/(l+exp(-6*y(14)))); 
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%---------- State Equations----------% 
Z=l/(l+(Rv/Rc)); 
Z2=1/(Rc+Rv); 

Qoil y(14)-y{4); 
Qoir = y(10)-y(12); 

dy = zeros(14,l); 

dy(l) Qoil; 
dy{2) = Qoir; 
dy{J) = Qoil*Elv + y(J)*l/Elv*dElv; 
dy(4) (y(3)-y(5)+Rlv*y(14)-(Rlv+Rav+Dl)*y(4))*1/Lav; 
dy(S) = (y(4)-y(6)-z2*y(5)+z2*y(9)-z2*Rv*y(lO))*l/Cal; 
dy(6) = (y(5)-y(7))*1/Lal; 
dy(7) = (y(6)-y(8))*1/Ca2; 
dy(B) = (y(7)-y(9)-Ra*y(8))*1/La2; 
dy(9) = (y(8)-z2*y(9)-z*y(lO)+z2*y(5))*1/Cv; 
dy(lO)= (z*y(9)-y(ll)+Rrv*y(l2)+z*Rv/Rc*y(5)- ... 

(z*Rv+Rrv+Rtv+D2)*y(10))*1/Ltv; 
dy(ll)= Qoir*Erv + y(ll)*l/Erv*dErv; 
dy(12)= (y(11)-y(l3)+Rrv*y(l0)-(Rrv+Rpv+D3)*y(l2) )*1/Lpv; 
dy(13)= (y(12)-y(14))*1/Cp; 
dy(14)= (y(l3)-y(3)+Rlv*y(4)-(Rlv+Rp+Rmv+D4)*y(l4))*1/Lmv; 
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getLastBeat.m 

function [tt, YY] = getLastBeat(w,t,Y) 

%Each Simulation runs to 20secs to ensure SS 1s reached. 
%Need only the last beat for thermo analysis. 

HMPl=Y(:,3); %Can use any of the state variables 
time=t; 

T=((2*pi)/w); %period in seconds 

start=20-T; %give just enough space to catch last full period 

%search for this point and mark the start and end 
idxl=find(time >= start,1, 'first'); 
idx2=find(HMP1 == HMPl(end)); 

%output all data for only the last beat 
tt=time(idxl:idx2); 
YY=Y(idxl:idx2, :) ; 
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Calc_ Thermo.m 

function [thermo] = Cale Thermo(t2,Y2) 
global alphal alpha2 alpha3 betal beta2 beta3 k kr kc 
global Ra Cal Ca2 Cv Cp w 
global Lal La2 Rv Rp Lmv Rmv Ltv Rtv Lav Rav Lpv Rpv 
global P2 del_02_sys del 02 car 

%% Thermodynamic Parameters (Constants) 

cv=4.18; %water (J/g*K) 
VV=l.0068; %specific volume (cc/g) 
conl=l01325/760; %%to convert P(mmHg) to P(Pa) {101.325kPa=760mmHg} 
con2=1/10A6; %%convert V(cc) to V(mA3) {10A6cc=lOA6cmA3=lmA3) 
vcon2=vv*con2; %specific volume (mA3/g) 
con3=22400; %22400mL/mol 

%% Hemodynamic Variables 

LWeff=Y2 (:, l); 
RWeff=Y2 (:, 2); 
HMPl=Y2(:,3); 
Qol=Y2(:,4); 
AoPl=Y2 (:, 5); 

Qlal=Y2 (:, 6); 
AoP2=Y2 (:, 7); 
Qla2=Y2 (:, 8); 
CVP=Y2 (:, 9); 
Qir=Y2 (:, 10); 
HMPr=Y2 (:, 11) ; 
Qor=Y2 (:, 12); 
PuP=Y2 (:, 13); 
Qil=Y2 (:, 14); 

LW=LWeff+20; %Volv=20; 
RW=RWeff+20; %Vorv=20; 

Rlv=k*HMPl./(1-k*(Qil-Qol)); 
LVP=Rlv/k; 
Rrv=kr*HMPr./(1-kr*(Qir-Qor)); 
RVP=Rrv/kr; 

Rc=kc/k*Rlv; 

Z=l./(l+(Rv./Rc)); 
CVP2=z.*CVP-z.*Rv.*Qir+z.*Rv./Rc.*AoP1; 

Qc= (AoPl-CVP2) . /Re; 

D1=20* (1- .15. / (. lS+exp (-6. *Qol))); %AV 
D2=20*(1-1./(l+exp(-6.*Qir))); %TV 
D3=20* (1- .15. / (. lS+exp (-6. *Qor))); %PV 
D4=20*(1-l./(l+exp(-6.*Qil))); %MV 
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%% Calculate Average Filling/Ejection Pressures 

n=length (t2) ; 
ejection_l=find(Qol>O); 
filling_l=find(Qil>O); 
ejection_r=find(Qor>O); 
filling_r=find(Qir>O); 

del_t8=t2(filling_l(end))-t2(filling_l(l)); 
LVP_filling=trapz(t2(filling_l),LVP(filling_l))/del_t8; 
del tl=t2(ejection l(end))-t2(ejection 1(1)); 
LVP=ejection=trapz(t2(ejection_l) ,LVP(;jection_l))/del_tl; 
del_t5=t2(ejection_r(end))-t2(ejection_r(l)); 
RVP_ejection=trapz(t2(ejection_r) ,RVP(ejection_r))/del_t5; 
del_t4=t2(filling_r(end))-t2(filling_r(l)); 
RVP_filling=trapz(t2(filling_r) ,RVP(filling_r))/del_t4; 

%% Calculate Steady-State Values of the Hemodynamic Variables 

T=((2*pi)/w); %period in seconds 

Yss=(l/T)*trapz(t2,Y2); 

ssLVVeff=Yss(:,1); 
ssRVVeff=Yss(:,2); 
ssHMPl=Yss (: , 3) ; 
ssQol=Yss (: , 4) ; 
ssAoPl=Yss(:,5); 
ssQlal=Yss(:,6); 
ssAoP2=Yss(:,7); 
ssQla2=Yss(:,8); 
ssCVP=Yss (: , 9) ; 
ssQir=Yss (:, 10); 
ssHMPr=Yss(:,11); 
ssQor=Yss (: , 12) ; 
ssPuP=Yss (:, 13) ; 
ssQil=Yss (: , 14) ; 

ssCVP2=(1/T)*trapz(t2,CVP2); 
ssQc=(l/T)*trapz(t2,Qc); 
ssRlv=(l/T)*trapz(t2,Rlv); 
ssRrv=(l/T)*trapz(t2,Rrv); 

ssQlv=(l/T)*trapz(t2,Qol+Qil); 
ssQrv=(l/T)*trapz(t2,Qor+Qir); 

m dot lv=(ssQlv)/vv; 
m=dot=rv=(ssQrv)/vv; 

m dot h=ssQol/vv; 
m=dot=c=ssQc/vv; 
m dot_a=m_dot_h-m_dot_c; 
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P2a=ssAoPl; 
P3a=ssCVP2; 
P2=P2a; 
P2c=P2a; 
P3c=P3a; 
PS=RVP_ejection; 
P4=RVP_filling; 
P3=P3a; 
P6=ssPuP; 
P7=(1/T)*trapz(t2,PuP-Qil*Rp); 
PB=LVP_filling; 
Pl=LVP_ejection; 

%------------------%%% POWER BALANCE INSPECTION%%%------------------% 

%% Heat Dissipated (using m_dot) %% 

% Output Power Produced by Ventricular Pumps 
powlv=(Pl-PB) .*(m_dot_h)*conl*con2; 
powrv=(P5-P4) .*(m_dot_h)*conl*con2; 

total_pow=powlv+powrv; 

% Valves 
mheatav=(Pl-P2)*(m_dot h)*conl*con2; 
mheatmv=(P7-P8)*(m_dot_h)*conl*con2; 
mheatpv=(P5-P6)*(m_dot_h)*conl*con2; 
mheattv=(P3-P4)*(m_dot_h)*conl*con2; 

% Compartments 
mheatc=(P2c-P3c)*(m_dot c)*conl*con2; %Coronaries 
mheata=(P2-P3)*(m_dot_a)*conl*con2; %Arterial+ Venous 
mheatp=(P6-P7)*(m_dot_h)*conl*con2; %Pulmonary 

total mheat dis=mheatav + - -
mheatmv + 
mheattv + 
mheatpv + 

mheatc + 
mheata + 
mheatp; 
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% First Law Balance Inspection 

disp(['Power Dissipated 
disp(['Rav=' ,num2str(mheatav),' 
disp ( [ 'Rmv=', num2str (mheatmv), ' 
disp( ['Rtv=' ,num2str(mheattv),' 
disp ( [ 'Rpv=', num2str (mheatpv), ' 

Power Produced']); 
LV=',num2str(powlv)J); 
RV=',num2str(powrv)J); 
----------']); 

Total=', num2str (total_pow) J} ; 
----------']}; disp ( ['Re=', num2str (mheatc), ' 

disp(['Ra=',num2str(mheata)J); 
disp(['Rp=',num2str(mheatp)J); 
disp(['----------']); 
disp(['Total=',num2str(total_mheat_dis)J); 
disp(['----------']); 
disp([' ']); 

%--------------------------------------------------------------------% 

del_P_3a_2a=conl*(P3a-P2a); 
del_P_2_1=conl*(P2-Pl}; 
del_P_3c_2c=conl*(P3c-P2c); 
del_P_5_4=conl*(P5-P4}; 
del_P_3_4=conl*(P3-P4}; 
del_P_5_6=conl*(P5-P6); 
del_P_8_7=conl*(P8-P7}; 
del_P_7_6=conl*(P7-P6); 
del_P_1_8=conl*(Pl-P8}; 

heatlv=m dot lvA2*ssRlv*conl*con2; 
heatrv=m=dot=rvA2*ssRrv*conl*con2; 

heatc=(Qc) .A2.*Rc*conl*con2; 
heatca=(l/T)*trapz(t2,heatc); 

del T 1 8=heatlv/(m dot h*cv}; 
del=T=5=4=heatrv/(m=dot=h*cv}; 

%%%---------- THERMODYNAMIC CALCULATION----------%%% 

%% First Law 

%Step1 
T3a=310; 

%Step2 
T2a=(vcon2*del_P_3a_2a)/cv+T3a; 

%Step3 
T2=T2a; 
T2c=T2a; 
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%Step4 
Tl=(vcon2*del_P_2_1)/cv+T2; 

%Step5 
xl=m dot_c*vcon2*del_P_3c_2c; 
x2=m_dot_h*vcon2*(del_P_l_8+del_P_5_4); 
T3c=(-xl-heatlv-heatrv+x2)/(m_dot c*cv)+T2c; 

%Step6 
T3=(m_dot_a*T3a+m dot c*T3c)/(m dot a+m dot c); 

%Step7 
T4=vcon2*del_P_3_4/cv+T3; 

%Step8a 
T8=-del_T_l_8+Tl; 

%Step8b 
T5=del T 5 4+T4; 

%Step9 
T6=vcon2*del_P_5_6/cv+T5; 

%Step10 
T7=vcon2*del_P_8_7/cv+T8; 

%Step11 
del T 7 6=(T7-T6); 
Qp=-m_dot_h*(cv*del_T_7_6+vcon2*del_P_7_6); 

%% Metabolic Demand 

%Systemic (External= Declared as a constant rate) 

ME_dot=lOO; %Metabolic Demand (lOOW = lOOJ/s = 70kg male at rest) 
k02=20.2; %Energy Equivalent of 02 (20.2kJ/L02=20.2J/mL02) 

del_02_sys=ME_dot/(k02*ssQol); %Metabolic demand (systemic) converted to 
%02 demand 

n_dot_02_sys=(del_02_sys*ssQol)/con3; % Molar rate of 02 demand 

%Coronary (Depends on Hernodynamics 

%Step1 

%Left Heart 
EW=polyarea(LVV,LVP); %mL, mmHg 

Work generated by the heart) 

Volv=20; pva2=polyarea( [Volv min(LVV) min(LVV)], [O max(LVP) O]); 
PVA=EW+pva2; 
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%Right Heart 
EWr=polyarea(RVV,RVP); 
Vorv=20; pva2r=polyarea([Vorv min(RVV) min(RVV)], [O max(RVP) OJ); 
PVAr=EWr+pva2r; 

%Left-Right Combined 
PVA_total=PVA+PVAr; 

%Step2 
MV02=1.64*10A-5*PVA_total+0.015; 

HR=w*(l/(2*pi)); %beat per second 

%Step3 

%Oxygen Demand of the Heart 
%provided by the coronaries 

del 02 cor=MV02*HR/ssQc; %Oxygen content of blood required given flow 
%Coronary A-V 02 difference 

0 O 1i - -- - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - -- - - - - - - - 1i" 

%% Second Law 

T=310; 

Qmet=n_dot_02_sys*(l/6)*(77.7)*(1000); %1 glc per 6 02 
%heat liberated per mole 02 

entropy_sys=m_dot_a*cv*log(T3a/T2a)+Qmet/T; 

entropy_pulm=m_dot_h*cv*log(T7/T6)+Qp/T; 

entropy_MV=m_dot_h*cv*log(T8/T7); 

entropy_PV=m_dot_h*cv*log(T6/T5); 

entropy_TV=m_dot_h*cv*log(T4/T3); 

entropy_AV=m_dot_h*cv*log(T2/Tl); 

entropy_heart=m_dot_c*cv*log(T3c/T2c)+m_dot_h*cv*(log((Tl*T5)/(T8*T4)); 

entropy=entropy_sys+ ... 
entropy_pulm+ .. . 
entropy_MV+ .. . 
entropy _PV+ .. . 
entropy_TV+ .. . 
entropy_AV+ .. . 
entropy_heart; 
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%% Outputs 

thermo=zeros(l,12); 

thermo(l)=entropy; 
thermo(2)=entropy_sys; 
thermo(3)=entropy_pulm; 
thermo(4)=entropy_MV; 
thermo(S)=entropy_PV; 
thermo(6)=entropy_TV; 
thermo(7)=entropy_AV; 
thermo(B)=entropy_heart; 
thermo(9)=P2; 
thermo(lO)=total_mheat_dis; 
thermo(ll)=m_dot_h; 
thermo(l2)=m_dot_c; 
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VCO Experiment 

CVS_Model_Hyperspace_ vco.m 

% CVS_Model_Hyperspace_vco.m 
% Niccole Schaible 
% Nov 23, 2011 

g..~ 
0 0 

%CVS_Model_Hyperspace.m modified to simulate vco experiment 
%by using "cvs vco.m" instead of "cvs hemodynamics.m" 
%% 

%% 
%Calls functions: CVS ICs 
0 
"o 

% 
% 
%% 

getLastBeat 
Cale Thermo 
CVS VCO 

%Initialize Hemodynarnic Model 
clear all; clc; elf; 

global alphal alpha2 alpha3 betal beta2 beta3 k kr kc 
global Ra Cal Ca2 Cv Cp w 
global Lal La2 Rv Rp Lmv Rmv Ltv Rtv Lav Rav Lpv Rpv 
global P2 del_02_sys del 02 cor 

%Define Hyperspace for Hernodynamic Model Simulation 

Ra_array=[.2 .5 1 2 3]; 
Cal_array=[.5 1 1.5 2 3]; 
Cv_array=[40 50 60 70 80]; 
Cp_array=[15 17.5 20 22.5 25]; 
w_array=[2 4 6 10.5 16]; 

%Analyze Hemodynamic Model with Numerical Solver over a timespan 
% (for normal state only) 

for idx ra=3:3 
Ra=Ra array(idx_ra); 

for idx_ca=3:3 
Cal=Cal_array(idx_ca); 
Ca2=Cal; 

for idx cv=3:3 
Cv=Cv_array(idx_cv); 
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for idx_cp=3:3 
Cp=Cp_array(idx_cp); 

for idx w=3:3 
w=w_array(idx_w); 

%skip states that are unstable: 5,1,1,1,4 % 5 
if (idx_ra==S && idx_ca==l && idx cv==l ... 

&& idx_cp==l && (idx_w==4 I I idx_w==S)) 
disp('51114&5 skipped'); 

else 

% Display index of current simulation 
disp(['i = ',num2str(idx_ra)]); 
disp(['ii = ',num2str(idx_ca)]); 
disp(['iii = ',num2str(idx_cv)]); 
disp(['iv = ',num2str(idx_cp)]); 
disp ( [ 'v = ',num2str (idx_w)]); 

% Declare Initial Conditions 
cvs_rcs %dependent on adjustable param values 

% Settings for Numerical Solver 
options= odeset('RelTol',le-3); 
yO = [yOl y02 y03 y04 yOS y06 y07 ... 

y08 y09 yOlO yOll y012 y013 y014]; 

% Solve the Hemodynamic Model (from Oto 20 sec) 
[t,Y] = ode23s(@cvs_vco, ... 

[O 20] ,yO,options); 

% Find the last beat 
[t2, Y2] = getLastBeat(w,t,Y); 

%Use results to calculate Thermodynamics 

% Calculate Entropy Generation 
[thermo] = Calc_Thermo(t2,Y2); 
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%Organize relevant variables according to CVS State: "cvs() 

cvs(idx_ra,idx_ca,idx_cv,idx_cp,idx_w) .del_02_sys=del_02_sys; 
cvs(idx_ra,idx_ca,idx_cv,idx_cp,idx_w) .del_02 cor=del_02_cor; 

cvs{idx_ra,idx_ca,idx_cv,idx_cp,idx_w) .entropy=thermo{l); 
cvs(idx_ra,idx_ca,idx_cv,idx_cp,idx_w) .entropy_sys=therrno(2); 
cvs(idx_ra,idx_ca,idx_cv,idx_cp,idx_w) .entropy_pulrn=therrno(3); 
cvs(idx_ra,idx_ca,idx_cv,idx_cp,idx_w) .entropy_MV=therrno(4); 
cvs(idx_ra,idx_ca,idx_cv,idx_cp,idx_w) .entropy_PV=therrno(S); 
cvs(idx_ra,idx_ca,idx_cv,idx_cp,idx_w) .entropy_TV=therrno(6); 
cvs(idx_ra,idx_ca,idx_cv,idx_cp,idx_w) .entropy_AV=therrno(7); 
cvs(idx_ra,idx_ca,idx_cv,idx_cp,idx_w) .entropy_heart=thermo(8); 
cvs(idx_ra,idx_ca,idx_cv,idx_cp,idx_w) .P2=thermo(9); 
cvs(idx_ra,idx_ca,idx_cv,idx_cp,idx_w) .total_mheat_dis=thermo(lO); 
cvs(idx_ra,idx_ca,idx_cv,idx_cp,idx_w) .m_dot_h=thermo(ll); 
cvs{idx_ra,idx_ca,idx_cv,idx_cp,idx_w) .m_dot_c=thermo(l2); 

end 
end 

end 

end 

end 
end 

%Save all CVS states for entire Hyperspace to file: 
%11 vco results.mat" 
save vco results cvs t Y 
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cvs_vco.m 

function dy cvs_vco(t,y) 
global alphal alpha2 alpha3 betal beta2 beta3 k kr kc 
global Ra Cal Ca2 Cv Cp w 
global Lal La2 Rv Rp Lmv Rmv Ltv Rtv Lav Rav Lpv Rpv 

%---------- Auxilary Equations----------% 

%VCO - increase Rp to progressively restrict venous return (preload) 
Rp2=.005*t.A3+Rp; 

%% Time-varying elastance (heart beat) 

%Sine Wave 
e_gen=sin(w*t-pi/2); 

%Half-Wave Rectified (+ Derivative) 
if e_gen >= O 

e=e_gen; 
de=w*cos(w*t-pi/2); 

else 
e=O; 
de=O; 

end 

%Left Ventricle 
Elv=[alphal+alpha2*y(l)]*e+alpha3*y(l); 
dElv=(alpha2*e+alpha3)*(y(l4)-y(4))+[alphal+alpha2*y(l)]*de; 

%Right Ventricle 
Erv=[betal+beta2*y(2)]*e+beta3*y(2); 
dErv=(beta2*e+beta3)*(y(l0)-y(l2))+[betal+beta2*y(2)]*de; 

%% Nonlinear Resistances 

Rlv=2*(k*y(3)/(l-k*(y(14)-y(4)))); 
Rrv=kr*y(ll)/(l-kr*(y(l0)-y(l2))); 
Rc=kc*y(3) / (1-k* (y(14) -y(4))); 

D 1 = 2 O * ( 1 - . 15 . / ( . 15 + exp ( - 6 * y ( 4) ) ) ) ; 
D2=20*(l-l./(l+exp(-6*y(10)))); 
D3=20*(l-.l5./(.l5+exp(-6*y{l2)))); 
D4=20*(l-l./(l+exp(-6*y{l4)))); 

Z=l/ (l+ (Rv/Rc)); 
z2=1/(Rc+Rv); 

Qoil = y(l4)-y(4); 
Qoir = y{l0)-y(l2); 
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l---------- State Equations--------- l 
dy = zeros(14,1); la column vector 

dy(l) Qoil; 
dy(2) Qoir; 
dy(3) Qoil*Elv + y(3)*1/Elv*dElv; 
dy(4) (y(3)-y(S)+Rlv*y(14)-(Rlv+Rav+D1)*y(4))*l/Lav; 
dy(S) (y(4)-y(6)-z2*y(5)+z2*y(9)-z2*Rv*y(l0))*1/Cal; 
dy(6) (y(S)-y(7))*1/Lal; 
dy(7) (y(6)-y(8))*1/Ca2; 
dy(8) (y(7)-y(9)-Ra*y(8))*1/La2; 
dy(9) (y(8)-z2*y(9}-z*y(lO)+z2*y(S))*l/CV; 
dy(lO)= (z*y(9)-y(ll)+Rrv*y(l2)+z*Rv/Rc*y(5)- ... 

(z*Rv+Rrv+Rtv+D2)*y(10))*l/Ltv; 
dy(ll)= Qoir*Erv + y(ll)*l/Erv*dErv; 
dy(l2)= (y(ll)-y(l3)+Rrv*y(l0)-(Rrv+Rpv+D3)*y(l2))*l/Lpv; 
dy(l3)= (y(l2)-y(14))*1/Cp; 
dy(l4)= (y(l3)-y(3)+Rlv*y(4)-(R1v+Rp2+Rmv+D4)*y(14))*1/Lmv; 

142 



Data Analysis 

CVS_Plots.m 

% CVS Plots.m 
% Niccole Schaible 
% Nov 23, 2011 

global alphal alpha2 alpha3 betal beta2 beta3 k kr kc 
global Ra Cal Cv Cp w 
global Lal La2 Rv Rp Lmv Rmv Ltv Rtv Lav Rav Lpv Rpv 
global Volv Vorv 

load vco_results; 

%CVS res 

Ra=l; 
Cal=l. S; 
Cv=60; 
Cp=20;; 
W=6; 

%Rename variables for convenience 
LW=Y2(:,l); 
RW=Y2 (: , 2) ; 
HMPl=Y2(:,3); 
Qol=Y2(:,4); 
AoPl=Y2 (:, 5) ; 
Qlal=Y2 (:, 6) ; 
AoP2=Y2 (:, 7); 
Qla2=Y2 (:, B); 
CVP=Y2(:,9); 
Qir=Y2(:,10); 
HMPr=Y2 (:, 11); 
Qor=Y2 (:, 12); 
PUP=Y2 (:, 13) ; 
Qil=Y2 (:, 14); 

t=t2; 

Rlv=k*HMPl./(1-k*(Qil-Qol)); 
LVP=Rlv/k; 

Rrv=kr*HMPr./(1-kr*(Qir-Qor)); 
RVP=Rrv/kr; 

Rc=kc/k*Rlv; 

Z=l./(l+(Rv./Rc)); 
CVP2=z.*CVP-z.*Rv.*Qir+z.*Rv./Rc.*AoPl; 

Qc=(AoPl-CVP2) ./Re; 
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%Plot Cardiac Cycle (Left Heart) 
figure(l); elf; 
subplot(2,l,l); plot(t,LVP,t,AoPl,t,PuP); title('Left Heart'); 
legend ( 'LVP', 'AoP', 'PuP' , 'Location', 'EastOutside') ; 
ylabel('Pressure (mmHg) '); 
axis ( [t2 (1) 20 -5 120]); 
subplot(2,l,2); plot(t,Qol,t,Qil); 
legend ( 'Qol', 'Qil', 'Location', 'EastOutside') ; 
xlabel ('Time (sec)'); ylabel (' Flow (mL/sec) '); 
axis ( [t2 (1) 20 -so 2000]); 

%Plot Cardiac Cycle (Right Heart) 
figure(2); elf; 
subplot(2,l,l); plot(t,RVP,t,PuP,t,CVP); title('Right Heart'); 
legend ( 'RVP', 'PuP', 'CVP', 'Location', 'EastOutside') ; 
ylabel('Pressure (mmHg) '); 
axis ( [t2 (1) 20 -5 40]); 
subplot(2,l,2); plot(t,Qor,t,Qir); 
legend ( 'Qor', 'Qir' , 'Location' , 'EastOutside') ; 
xlabel('Time (sec)'); ylabel('Flow (mL/sec) '); 
axis ( [t2 (1) 20 -50 llOO]) ; 

%Plot PV Domain (Left Heart) 
figure (3); elf; 
plot (LW, LVP, 'k') ; axis ( [ -20 350 -20 200]) ; 
xlabel('Left Ventricular Volume (mL) '); 
ylabel('Left Ventricular Pressure (mmHg) '); 

%Plot PV Domain+ PV envelopes (Left Heart) 
figure(4); elf; 
plot(LW,LVP,'k'); axis([ -20 350 -20 200)); 
xlabel('Volume (mL) '); ylabel('Pressure (mmHg) '); 
hold on; 

%% Envelopes%% 
X=O: .1:450; 

Pmin=0.5*.0003*x.A2; 
Pmax=0.5*-.0083*x.A2+3.l*x; 

Edia=.OOl*x; 
Esys=-.0166*x+3.1; 

Pminr=0.5*.00025*x.A2; 
Pmaxr=0.5*-.0016*x.A2+.624*x; 

Ediar=.OOOS*x; 
Esysr=-.006*x+l.09; 

plot(x,Pmax, 'r' ,x,Pmin, 'LineWidth' ,2); 
xlabel ('Volume (mL) '); ylabel ('Pressure (rnmHg) '); 
title('Left Heart'); 
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VCO_Plots.m 

% VCO Plots.m 
% Niccole Schaible 
% Nov 23, 2011 

global alphal alpha2 alpha3 betal beta2 beta3 k kr kc 
global Ra Cal Cv Cp w 
global Lal La2 Rv Rp Lmv Rmv Ltv Rtv Lav Rav Lpv Rpv 
global Volv Vorv 

%Load vco results (simulation workspace) 

%CVS res 

Ra=l; 
Cal=l.5; 
Cv=60; 
Cp=20;; 
W=6; 

%Rename variables for convenience 
LVV=Y (:, 1); 
RVV=Y(:,2); 
HMPl=Y(:,3); 
Qol=Y (: , 4) ; 
AoPl=Y(:,5); 
Qlal=Y(:,6); 
AoP2=Y(:, 7); 
Qla2=Y(:, 8); 
CVP=Y (: , 9) ; 
Qir=Y(:,10); 
HMPr=Y (:, 11); 
Qor=Y ( : , 12) ; 
PuP=Y (:, 13) ; 
Qil=Y (:, 14) ; 
Rlv=k*HMPl./(1-k*(Qil-Qol)); 
LVP=Rlv/k; 
Rrv=kr*HMPr./(1-kr*(Qir-Qor)); 
RVP=Rrv/kr; 

Rc=kc/k*Rlv; 

z=l./ (1+ (Rv./Rc)); 
CVP2=z.*CVP-z.*Rv.*Qir+z.*Rv./Rc.*AoP1; 

Qc=(AoP1-CVP2) ./Re; 
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%Plot Results (3 Figures) 
figure(l); elf; 
plot(t,LVP); xlabel('Time (sec)'); ylabel('LVP (mmHg)'); 
title('Venal Caval Occlusion Experiment Response'); 

figure(2}; elf; 
plot(LW,LVP, 'k'); axis([ -20 350 -20 200]); 
EW=polyarea(LW,LVP); %mL, mmHg 
Volv=20; pva2=polyarea([Volv min(LW) min(LW)], [O max(LVP) O)); 
PVA=EW+pva2; 
title('Venal Caval Occlusion Experiment Response'); 
xlabel('Volume (mL) '); ylabel('Pressure (mmHg) '); 

figure (3) ; elf; 
plot (LW,LVP, 'k'}; axis ( [ -20 350 -20 200]}; 
EW=polyarea(LW,LVP); %mL, mmHg 
Volv=20; pva2=polyarea([Volv min(LW) min(LW}], [O max(LVP) O]}; 
PVA=EW+pva2; 

title('VCO Experiment Response with Operating Envelopes'); 

xlabel('Volume (mL) '); ylabel('Pressure (mmHg) '); 
hold on; 

%% PV Envelopes%% 
X= 0 : . 1 : 4 5 0 ; 

Pmin=0.5*.0003*x.A2; 
Pmax=0.5*-.0083*x.A2+3.l*x; 

Edia=.001*x; 
Esys=-.0166*x+3.1; 

Pminr=0.5*.00025*x.A2; 
Pmaxr=0.5*-.0016*x.A2+.624*x; 

Ediar=.0005*x; 
Esysr=-.006*x+l.09; 

plot(x,Pmax, 'r',x,Pmin, 'LineWidth',2); 
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Search_SigmaDot.m 

% Search_SigmaDot.m 
% Niccole Schaible 
% Nov 23, 2011 

%% 
%Check for Physiological 02 Demand 
%Enforce Constraints over Hyperspace 
%Given constraints, find the CVS state with min sigma dot 
%Display results for min CVS state plus nearest neighbors 
%% 

Ra_array=[.2 .5 1 2 3); 
Cal_array=[.S 1 1.5 2 3); 
Cv_array=[40 SO 60 70 80); 
Cp_array=[lS 17.5 20 22.5 25); 
w_array=[2 4 6 10.5 16); 

%Check for Physiological 02 Demand 
%at Command Line 
%If all values are within range, then max< 0.2 
%CORONARIES 
[max_cor_value,max_cor index)=max([cvs.del 02 cor]); 
[i ii iii iv v) = ind2sub([5,S,5,S,S), max_cor_index); 
%SYSTEMIC 
[max sys value,max sys index]=max(cvs.del 02 sys)); 
[i ii iii iv v] = ind2sub([5,5,S,5,S], ma;_sys_index); 

%Enforce Constraints over Hyperspace 
limited_list=find((cvs.P2] > 0); 

%Given constraints, find the CVS state with min sigma dot 
[min_entropy_value,min_entropy_index]= ... 

min([cvs(limited_list) .entropy]); 

[i ii iii iv v] = ind2sub([5,5,S,5,5], min_entropy_index); 
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%Check min_entropy_value at command Une 
%and pick nearby value (save as variable "threshold") 
%Display results for min CVS state plus nearest neighbors 
list=find{{[cvs(limited_list) .entropy] <threshold)); 
n=length(list); 

for idx=l:n 

end 

[i ii iii iv v] = ind2sub([5,5,5,5,5], limited_list(list(idx)}); 

results_table{idx,l)=Ra_array(i); 
results_table(idx,2)=Cal_array(ii); 
results_table(idx,3)=Cv_array(iii); 
results_table(idx,4)=Cp_array(iv); 
results_table(idx,5)=w_array(v); 

results_table(idx,6)=cvs(i,ii,iii,iv,v) .entropy; 
results_table(idx,7)= cvs(i,ii,iii,iv,v) .m_dot_h; 
results_table(idx,8)=cvs(i,ii,iii,iv,v) .del_02_sys; 
results_table(idx,9)=cvs(i,ii,iii,iv,v) .m_dot_c; 
results_table(idx,lO)=cvs(i,ii,iii,iv,v) .del_02_cor; 
results_table(idx,lJ.)=cvs(i,ii,iii,iv,v) .P2; 

header= { 'Ra ' ; 'Cal' ; 'Cv ' ; 'Cp' ; 'w' ; ' 
' 02 s ' ; 'me ' ; ' 02 c ' ; 'AoP ' } ; 

sigma ' ; 'rnh '. I••• 

disp (header') 
disp(sortrows([results_table] ,5)) 
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Distribution_SigmaDot.m 

% Distribution_SigmaDot.m 
% Niccole Schaible 
% Nov 23, 2011 

load simulation_results 

nonzero=find([cvs.entropy] -= O); 
limited_list=find((cvs.P2] > 80); 
leftover=find(((cvs.entropy] -= O)&((cvs.P2] < 80)); 

figure(l); 
hist ( [CVS (nonzero) . entropy], 50); axis ( [O . 05 o 180]); 
xlabel('Entropy Generation (J/K/sec) '); 

figure(2); 
hist ( [CVS (limited_list) . entropy], 50); axis ( [O . 05 0 180]); 
xlabel ( 'Entropy Generation (,J/K/sec) '); 
ylabel('For AoP > 80mmHg'); 

figure (3); 
hist ( [CVS (leftover). entropy], 50); axis ( [O . 05 0 180]); 
xlabel('Entropy Generation (J/K/sec) '); 
ylabel('For AoP < 80mmHg'); 
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