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ABSTRACT 

Thambidorai, Ganesh, M.S., Department of Industrial and Manufacturing Engineering, 

College of Engineering and Architecture, North Dakota State University, September 2011. 

Multiresponse Optimization Methodology Considering Correlated Quality Characteristics. 

Major Professor: Dr. Om Prakash Yadav. 

Engineering problems often involve many conflicting quality characteristics that 

must be optimized simultaneously. Engineers are required to select suitable design 

parameter values which provide better trade-off among all quality characteristics. Multi-

response optimization is one of the most essential tools for solving engineering problems 

involving multiple quality characteristics. Optimizing several quality characteristics when 

the quality characteristics are correlated makes the optimization process more complex. 

The aim of this research is to evaluate the performance of several existing multi-

response optimization methods and investigate their capabilities in dealing with 

correlated quality characteristics. This study also investigates the impact of uncertainty in 

terms of input parameter selection. A new multi-response optimization approach has 

been proposed for solving correlated quality characteristics. The proposed approach is 

compared with the existing methods and found more robust in terms dealing with 

uncertainty in target selection. The comparative study and application of the proposed 

approach is demonstrated by considering two examples from the literature having 

correlated quality characteristics. 
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CHAPTER 1. INTRODUCTION 

The increasing customer awareness and global competition have forced 

manufacturing companies to design highly reliable complex products faster and at a 

reasonable cost. Furthermore, the performance of these complex products is one of the 

indicators of competitiveness of the company. The overall performance of these complex 

products is determined based on their ability to satisfy several changing customer 

requirements and expectations. This requires incorporation of appropriate product 

(quality) characteristics in design and also the achievement of optimal tradeoff among 

several quality (sometimes conflicting) characteristics. Therefore, design engineers are 

constantly searching for different tools and techniques to optimize multiple quality 

characteristics. Any tool that helps to optimize multiple quality characteristics can help 

companies to survive in today's market. Multi-response optimization is one of the tools 

used in recent years for achieving better trade-off among multiple quality characteristics. 

Generally multiresponse methods rely on response surface models (RSM) for 

developing the relation between design factors and responses. In RSM, higher order 

polynomial models are developed to establish a relationship between the design factors 

and responses by conducting designed experiments. The design factors are also known as 

controllable, design, or independent variables denoted by x. These design variables are 

within control of design engineers to make necessary changes in order to optimize quality 

characteristics. The responses are also known as dependent variables or quality 

characteristics denoted by Y, which should meet the cu:;tomer functional requirement or 

expectations. These models are developed from the data collected by conducting physical 
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or simulation experiments. It is important to note that these models are valid only to the 

experimental region. The experimental region is determined from the different levels 

selected for each design variable. A design engineer is interested in determining 

controllable factor settings within the experimental region such that it produces optimal 

values for all quality characteristics. The focus of this research is to understand and 

summarize different existing multiresponse optimization methods, perform a comparative 

study and finally propose a more effective multiresponse optimization methodology, 

which is capable of handling correlated responses. 

1.1. Significance of the Problem 

A single product has to meet several customer requirements and hence 

incorporate several quality characteristics in design. Design engineers are required to 

determine optimal design factor settings such that all objectives are satisfied by the 

product. In some cases, it is difficult to achieve the target for all quality characteristics, 

resulting in tradeoff between different objectives to achieve optimal product 

performance conditions. In order to achieve tradeoff between quality objectives, the 

design engineer has to prioritize these quality characteristics keeping in mind their 

importance in meeting functional requirements. This requires selection or assigning 

appropriate weights to each quality characteristic that introduces uncertainty in the 

decision making process to certain extent. 

Several methods have been developed for optimizing single product quality 

characteristic such as, Design of experiments (Montgomery, 2005), Taguchi's robust 

design (Taguchi, 1986), and response surface methods (Myers et al., 2004). When these 
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methods are used for solving multiple responses, engineering judgment is widely used for 

achieving tradeoff between different responses (Logothetis and Haigh, 1998; Jeypaul et 

al., 2005). Multiresponse optimization methods were later introduced to achieve a better 

tradeoff between the multiple responses. Myers and Carter (1973) introduced the 

constrained optimization technique in which two responses (primary and secondary) are 

optimized simultaneously. The primary response is treated as objective function and the 

secondary response is treated as constraints. In the optimization process, the primary 

response is either maximized or minimized depending on the nature of quality 

characteristic while satisfying the secondary response. Other multi response optimization 

methods developed later also combine multiple responses to form a composite objective 

function. In desirability function, a maximum overall desirability is modeled using the 

geometric mean of individual desirability to determine the optimum factor setting 

(Harrington, 1965; Derringer and Suich, 1980; Del Castillo et al., 1996). The quality loss 

function based multiresponse optimization models treat the deviation of expected 

response from target as a loss and use it as objective function in the model (Taguchi, 

1986; Pignatiello, 1993; Riberto and Elsayed, 1995; Artiles-Leon, 1996-97; Bhamare et al., 

2009). Using multiresponse optimization methods for solving multiple quality 

characteristics, some of the input parameters like weights, target, upper and lower 

response limits are required for optimization. The selection of input parameters depends 

entirely on designer engineers' prior knowledge and experience. This subjective input 

introduces uncertainty in the decision making process. Therefore, there is an urgent need 

to develop optimization approaches that is robust or insensitive to this uncertainty 
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(subjective input parameter values). In real life, the products not only have multiple 

quality characteristics but some of these quality characteristics are correlated to each 

other making the tradeoff process more difficult and complex. There are two levels of 

correlation that need to be dealt with in optimization process. The first level includes 

correlation between controllable factors that must be eliminated while developing 

response models using response surface methods. The models developed including 

correlated design factors will not predict the exact relation between design factors and 

responses (Mendenhall and Sincich, 1996). Generally correlation between the design 

factors is solved by removing the variable which causes correlation from the analysis. This 

problem is also solved using principal component analysis (PCA) where correlated data set 

is transformed into uncorrelated data set. The second type of correlation represents 

correlation among the quality characteristics. The unique example of correlation between 

quality characteristics is weight and fuel efficiency in case of automotive design. There 

have been some efforts to deal with correlated quality characteristics using PCA (Antony, 

2000; WU, 2004; Sibalija and Majstorovic, 2009). However, in a multiresponse 

optimization scenario, no major work has been done in the past to capture correlation in 

the optimization model. 

1.2. Objectives of Research 

The objectives of this research are as follows: 

The first objective of this thesis is to perform a comparative study on existing 

multiresponse optimization methods. The comparison i<: performed to determine which 

method is more effective in dealing with uncertainty in parameter selection and to 
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develop insight in terms of advantages and limitations of existing methods. Furthermore, 

the comparison is performed to understand their capability in dealing with correlated 

quality characteristics. 

The second objective of this thesis is to propose multiresponse optimization 

methods which capture the correlation among quality characteristics. It is compared with 

existing method which captures correlation among the quality characteristics. The 

robustness in terms of parameter selection test is performed on the proposed method. 

1.3. Overview of Research 

This research is presented in the following order: Chapter 2 covers the background 

on conducting designed experiment and various methods involved in developing response 

surface models. The six multiresponse optimization methods are compared for sensitivity 

in parameter selection in Chapter 3. The proposed new method for solving multiple 

correlated quality characteristics is then presented, which is an improvement over the 

existing method in chapter 4. Conclusion with recommendation for future direction is 

presented in Chapter 5. 
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CHAPTER 2. BACKGROUND STUDY AND EXPERIMENTAL DESIGN 

In multiresponse optimization, response surface models are used to build a 

relationship between independent and dependent variables. A parameter diagram is used 

to identify independent and dependent variables to build relationships. A parameter 

diagram classifies the functionality associated with the product functions such as different 

design parameters, output responses, and noise factors. Figure 1 shows the parameter 

diagram for a system. 

Input Factors (X's) Responses (Y's) 

~ ~ 

~ 

~ ~ 

;. 
System 

;. 

•• t ~ •• 

Noise Factors (Z's) 

Figure 1. Parameter Diagram 

The input factors are the design factors which are controlled by design engineers' to 

achieve the desired responses (quality characteristics). The noise factors are unwanted 

factors which affect the product performance but the design engineers' are not interested 

in them. There are two types of noise factors: known and controllable, known and 

uncontrollable. It is necessary for the design engineer to minimize or eliminate the effect 

of noise factors. Blocking is done to minimize the impact of known and controllable noise 
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factors. Randomization is performed to minimize the effects of known and uncontrollable 

noise factors. 

2.1. Design of Experiments 

Statistically designed experiment was introduced by Sir Ronald Fisher in 1920 with 

the analysis technique called Analysis of variance (ANOVA) to improve the yield of 

agricultural crops (Phadke, 1989). Design of experiments was mainly used to study the 

effect of input design factors on a single quality characteristic. The optimal factor setting 

is determined by changing the design variable levels in a systematic way and measuring 

the effect on a quality characteristic. There are different types of experimental design 

available in the literature. The selection of a particular design depends on the objective of 

the experiment and also the availability of resources. The different types to exper"lmental 

design and usages are given below: 

Completely randomized design is used for studying one primary design factor 

without considering any noise factors in the analysis. The experiments are conducted 

randomly with different levels of the primary factor. Randomized block design is used for 

studying one primary factor by considering the noise factors in the analysis. Randomized 

block designs reduce residual error in an experiment by blocking the known and 

controllable noise factor. Latin square design is used to remove two nuisance source of 

variability. Graeco-Latin square design and Hyper Graeco-Latin square design is used to 

control three and four nuisance source of variability respectively. 

A full factorial experiment considers all input factors which are always set at two 

levels (high and low). The experimental design is conducted for all possible combinations 
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of high and low levels. If there are k factors and each factor is at two levels, a full 

fractional design consists of 2k experiments for all possible combinations. The limitation 

of this experimental design is that the designer has to conduct comparatively more 

experiments. To reduce the number of experiments, fractional factorial experiment was 

developed where the higher order interactions are relaxed. In all the above experimental 

designs, the factor effect plots are used to determine the design factor settings to achieve 

optimal response. 

2.2. Taguchi Robust Design 

Taguchi worked with Ronald Fisher and C.R. Rao at Indian Statistical Institute 

where he was introduced to the concept of orthogonal arrays which laid the foundation 

for Taguchi's Robust Design. Taguchi's robust design involves orthogonal arrays with ·,nner 

array and outer arrays. The inner array consists of design factors while the outer array has 

noise factors in the experimental design. The two arrays are crossed with each other so 

that each experiment includes both design variables and noise factors. The combination 

of the inner array and the outer array is called a crossed-array design. As the optimum 

values are determined from experiments which are conducted by including noise factors, 

the system will be robust to those included noise factors. Taguchi used signal to noise (SN) 

ratio and factor effects to determine the optimum value for responses. Robust design 

concepts focus on reducing variability around the mean to minimize the nonconformance. 

The limitations of using SN ratio is that the SN ratio might confound mean and variance 

(Myers et al., 2009) and it can be applied only to single response or single quality 

characteristic (Antony, 2000). Taguchi's robust design was often criticized by statisticians 
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for limitation and weakness (Montgomery, 2005). In his philosophy of robust design, 

Taguchi states "as product quality characteristics departs from target it creates loss to the 

society". This loss could be early failure of the product or higher operating cost of the 

product. This philosophy has been widely accepted and plays a major role in imparting 

quality into the product design. 

2.3. Response Surface Methods 

Response surface methodology was developed by Box and Wilson in 1951 for 

improving the process of the chemical industry. This was done by sequential experiments 

using different factors such as temperature, pressure, time, and amount of reactants 

(Dean and Voss, 1999). Myers et al. (2004) define response surface methodology as "a 

collection of statistical design and numerical optimization techniques used to optimize 

process and product designs". Response surface methodology plays a major role in 

developing new products/ processes and also for improving the performance of existing 

products/ processes. Extensive work has been done in response surface methods with 

four review papers (Myers et al., 2004; Myers et al., 1989; Mead and Pike, 1975; Hill and 

Hunter, 1966). A simple response surface model is shown in the equation below: 

Y = f {A,B) +€ (2-1) 

where, Y is the response, A and Bare input controllable factors, and€ is the random error. 

The expected value for Y is denoted by ri, and ri is the response surface as plotted against 

levels of factors A and Bas shown in Figure 2. The design factor setting is selected from 

Figure 2 for which the value attains the desired response. 
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Figure 2. Response Surface Plot 

In response surface methods, empirical models are developed between response and 

controllable factors using the data collected by conducting experiments. A model can be a 

simple linear model, second order model, model with higher polynomial with interaction 

between the control factors. A simple linear model is shown in the equation below: 

(2-2) 

Higher degree polynomial models are used if there is a curvilinear relationship between 

the variables. A second order response surface model is shown in the equation below: 

(2-3) 

where, Y is the response (quality characteristic), xi is the i1h independent variable and r3 is 
I 

the coefficients for corresponding ;th independent variable. 

Box and Wilson (1951) introduced the concept of central composite design (CCD). 

It is the most common response surface design used for developing a second order 

response surface model. In general, CCD design consists of fractional factorial des·rgn of 

resolution V, 2K axial runs and nc center runs. For design factors with two levels, the CCD 

design consists of: four runs at the center of the square, four runs at the corner of the 
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squares and four axial runs. Three parts are used to estimate different components in the 

model: (1) factorial point estimates linear and two factor interaction terms (2) center 

point provide the information for the existence of curvature (3) the axial point consider 

the experimental design region. 

Box and Behnken (1960) proposed a design for factors with three levels. It is a 

spherical design that is formed by combining two designs: incomplete block design and 

zk factorial design. For cuboidal region of interest, face centered composite design (FCC) 

was developed. The advantage of FCC is that it does not require as many center points as 

CCD. When designing an experiment, the designer should select the best design which 

satisfies experimental conditions. 

2.4. Dual Response Surface 

The dual response surface was introduced by Myers and Carter (1973) for 

optimizing two quality characteristics. In dual response optimization methods, one 

response called as the primary response is treated as an objective function and the other 

response which is known as the secondary response is treated as a constraint. The 

problem is solved by either maximizing or minimizing the primary response while 

satisfying the secondary response. The response surface models are shown below: 

K K K 

Yp = ao + I aixi + I L aii xi + I L L I aiJ xi x1 
i=l i=l i<J 

Ys = ho + If=1 biXi + K L IK L L (2-6) Li=1 bii xi + I .. biJ xi x1 
L<J 

Taguchi emphasized the importance of considering both mean and deviation of a quality 

characteristic. Vining and Myers (1990) applied Taguchi's concept in dual response surface 
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optimization scenario for robust optimization. They optimized a single quality 

characteristic but considered both mean and variance as primary and secondary response. 

The objective function and constraints are selected based on the type of quality 

characteristics: nominal the best (NTB), larger the better (LTB), smaller the better (STB). 

The general formulation for NTB quality characteristic is shown in equation (2-7) and the 

formulation of LTB and STB quality characteristics is shown in equation (2-8): 

Minimize 

S.t. 

JI= p' 

Min/Max 

/1 

S.t. 

(J" = O"' 

(2-7) 

(2-8) 

In the literature, two types of development occur on dual response surface methods. 

Researchers are interested to improve the solution strategy by trying different algorithms 

to obtain better solutions and also they are interested to improve the model formulation 

to achieve different objectives. Castillo and Montgomery (1993) used a nonlinear 

programming method called generalized reduced gradient algorithm for solving the dual 

response surface problems. Fuzzy modeling was used by Kim and Lin (1998) for solving 

dual response surface approaches. Their research measured the degree of satisfaction 

level for the deviation of mean from target and also magnitude of dispersion. A similar 
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satisfaction level approach based on the desirability function was used by Koksoy (2005) 

for solving dual response problem. Dual response problems are widely used in industrial 

applications: Menon et al. (2002) used dual response surface methods for determining 

the optimal parameter setting which affects the performance of the spindle motor in hard 

disks. Kim and Rhee (2003) determined optimal operating condition for gas metal arc 

welding to achieve desired partial penetration. 
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CHAPTER 3. MULTIRESPONSE OPTIMIZATION METHODS 

This chapter presents a literature review of six multiresponse optimization 

methods (constrained optimization, desirability approach, expected loss function, 

gradient loss function, standardized loss function and hybrid quality loss function). A 

comparative study of these six methods was performed by solving multiple quality 

characteristics problems from the literature to determine their sensitivity to variations in 

input parameters. Furthermore, these methods were used for solving correlated 

multiresponse problems in order to analyze their effectiveness in achieving better trade

off process. 

3.1. Multiresponse Optimization Formulation Approaches 

Solving multiple response problems using traditional methods require engineering 

judgment to achieve on optimal solution. However, engineering judgment creates 

uncertainty in the decision making process (Jeyapaul et al., 2005). Therefore, in order to 

deal with uncertainty and achieve a better tradeoff between multiple responses, the role 

of engineering judgment in the tradeoff process should be minimized. This requirement 

led to the development of simultaneous optimization of multiple quality characteristics, 

which known as multiresponse optimization methods. 

Researchers have used different approaches for formulating multi response 

optimization models. These approaches are classified into three different categories: 

constrained optimization, desirability function, and loss function based optimization. Six 

different methods from the above categories are compared and analyzed in this chapter. 
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3.1.1. Constrained Optimization 

Constrained optimization process maximizes or minimizes its objective function by 

assigning constraints to the optimization process. These constraints are imposed based on 

the availability of material or other resource. In multiresponse optimization, one response 

is treated as an objective function, which could be maximized or minimized depending 

upon the nature of quality characteristics and other responses are treated as constraints. 

Contour plot optimization is a graphical method for solving multiresponse 

optimization problems using constraint optimization techniques. In contour plots, a single 

response is plotted using two design factors. The design factor which attains optimal 

response is identified from the contour plot. However, for multiresponse optimization, all 

individual contour plots drawn for each response are superimposed to form an overlaid 

contour plot. The region which satisfies all responses is identified and design factor 

setting is determined from the identified region. The limitation of this approach is that, as 

the number of responses increases, the overlaid contour plot is difficult to interpret. 

Additionally, only two design factors can be optimized using this graphical approach, also 

there is a great deal of subjectivity involved in selecting the design factor values from 

these plots (Montgomery, 2005). 

The constrained optimization was developed based on the dual response 

optimization model (Myers and Carter, 1973) for solving multiple response problems. In 

this method, one response is treated as the primary response, which is considered as an 

objective function, and remaining responses are treated as secondary responses which 
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are considered as constraints in the optimization model. The constrained optimization 

model can be expressed as: 

Max/ Min Yi(Xk) 

S.t. Lj < Yj (Xk) < Uj 

Xk ( R (3-1) 

where Yi and Yi represents primary and secondary responses, Li Jnd Ui are the lower 

and upper response limit for secondary responses. The lower and upper limits are 

marginally accepted values given by design engineers for each product quality 

characteristic. The performance of the product deteriorates when the response values are 

beyond the upper and lower limits. R is the experimental region through which the 

developed model is valid, j is the total number of responses given as constraints and k is 

the number of design factors. 

3.1.2. Desirability Approach 

The desirability-function-based optimization approach was originally proposed by 

Harrington (1965), where utility function is used to derive the desirability for each 

response. Later, Derringer and Suich (1980) modified this approach to incorporate 

different types of quality characteristics (NTB, LTB and 5TB). In desirability function, the 

desirability value for each quality characteristic is determined and the optimum factor 

setting is selected based on maximum desirability values. The desirability values provide a 

common metric for all responses, and it lies between O and 1. 
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where, di is the desirability value for ith response. A desirability value of O is assigned, if 

the response value is out of the acceptable range. A value of 1 is assigned, if the response 

value is on target. For response values, which lie between the target and acceptable 

range, Derringer and Suich (1980) proposed the following method to determine the 

desirability values. For STB quality characteristics with a target value (T), and upper limit 

value (U}, the equation to determine the desirability value is given below: 

(3-3) 

For LTB quality characteristics with a target value (T), and lower limit value (L}, the 

equation to determine the desirability value is given below: 

{ 

o, YJx) < J,i 

d = (Y;(x)-f,;)t L < Y(x) 
l T;- L; I l l 

l, Yi(x) > Ti 

(3-4) 

For two side specification limit with target value T, lower limit value (L) and upper limit 

value (U), the equation to determine the desirability value is given below: 

d -i-

O, Yi(x) > ui 

(3-5) 

where,\\ (x) is the predicted response value for ;th response, sand tare the user specified 

weights. The design parameter is determined for the response which has maximum 

overall desirability value. The overall desirability value is calculated by the geometric 

mean of individual desirability value as given below: 
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(3-6) 

where Dis the overall desirability value and n is the total number of quality 

characteristics. As the process contains non-differential points, Del Castillo et al. (1996) 

modified the solution approach by including differential points and solved using 

generalized reduced gradient procedure. In this approach, piecewise-continuous 

differential points are used to solve the non-differential points using local polynomial. The 

desirability function for non-differential points is given by: 

{ 

U1 + b1 Y if Y min < Y ::; T - <'ff 
d = f (Y) T - oY ::; y ::; T + oY 

a 2 + b2 Y if T - oY S Y ::; Ymux 
0 otherwise 

(3-7) 

where, 8Y represents small range around the non-differential points. Refer the literature 

paper written by Del Castillo et al. (1996) for further reading on modified desirability 

function. The desirability approach has been used widely by researchers for optimizing 

problems based on multiple quality characteristics. Montgomery et al. (2000) used the 

desirability function approach for optimizing printed circuit board in an electronic 

industry. Tyan et al. (2004) integrated the tool and vehicle dispatching strategy, as a 

multiple performance measures in a fully automated fab environment, the dispatching 

strategy was developed using desirability function. Pasamontes and Callao (2006) used 

the desirability function to develop a single objective function which is known as a single 

global desirability function for solving multi response problems, and their research was 

applied to determine the optimum response value for amoxicillin in pharmaceuticals 

industry. 
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3.1.3. Loss Function Based Approach 

The loss-functions are based on the economic importance of the quality 

characteristics. The deviation of response from the target is considered as loss. The loss

function based optimization approaches determine the factor settings, which minimizes 

the total loss for all quality characteristics. Taguchi (1986) proposed a quality loss-function 

approach, where he insisted that losses are caused when the product quality 

characteristics deviate from target. Taguchi's quality loss-function can be applied for 

problem requiring single response optimization, also for multiresponse optimization 

problems. Phadke (1989) used the quality loss function approach to study the surface 

defects and the thickness of poly-silicon wafer in a VLSI circuit board. The tradeoff 

between two responses was made using engineering knowledge and relevant experience. 

Tarng and Yang (1998) used Taguchi's signal to noise factors and loss-functions for solving 

multiresponse problem. Generally, when using Taguchi's loss function each quality 

characteristic is converted to a quality loss value and the weights are added to each loss 

value based on relevant experience. The total loss is calculated by the summation of 

weighted quality loss value for each quality characteristics. 

Pignatiello (1993) proposed a loss function based multiresponse optimization 

approach to minimize the deviation and also to improve the robustness. The robustness is 

captured by including the variance-covariance matrix of responses. The general 

formulation of loss function proposed by Pignatiello (1993) is given below: 

E(L(Y(X)) = E [(Y(X) - T)'C(Y(X)- T)] + trace[CEy(xJJ (3-8) 

where, E(L(Y(X)) is the expected loss function, Y(x) is the response, Tis the target matrix, C 
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is the cost matrix, which is determined by the process parameter setting and scrap cost, 

and £vex) is the variance - covariance matrix of responses. The first term in the expected 

loss function represents for bias and the second term accounts for variance. The 

advantage of this method is the addition of variance term but the cost matrix which is 

used as weights is difficult to obtain (Wurl and Albin,1999). 

Riberto and Elsayed (1995) proposed a gradient loss function based approach that 

minimizes the total deviation of response from target, includes term for maximizing 

robustness, and to minimize fluctuation in design parameters. The gradient loss function 

proposed by Riberto and Elsayed (1995) is given below: 

(3-9) 

The first term in equation (3-9) represent deviation of predicted response from target and 

the second term considers both the robustness and fluctuation in design parameters. The 

second term is expanded by Taylor expansion series. 

(3-10) 

where, wi is the weights for each response, cry, 2 is the predicted variance for ;th quality 

characteristic. Pkl , &xk 
2 and &x1 

2 
are the estimated correlation coefficient between 

xk and x 1, estimated variances for process parameter xk and x 1 respectively. This 

approach is used for minimizing total cost in multiresponse optimization environment 

(Ribeiro et al., 2001). 

The standardized loss function proposed by Artiles-Leon (1996-97) eliminates the 

difficulty in measuring the proportionality constant in Taguchi's loss-functions. Ideally, the 
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value of K is measured from process scrap and it involves uncertainty in the measuring 

process. Standardized loss function considers the economic loss within the upper and 

lower limit region. When the response value is at target, a quality loss value of O is 

obtained. When the response is at upper or lower limits, a quality loss value is 1 is 

obtained. Taguchi's loss function for nominal-the-best quality characteristic is given 

below: 

L(Y) = K (Y - T) 2 (3-11) 

where, L(Y) is the total loss value, K is the proportionality constant, Y is the quality 

characteristic value and Tis the target value. The total loss value is unity when the 

predicted response value is at upper specification or at lower specification level. The value 

of proportionality constant is determined using the equation (3-11) by equating the total 

loss to unity and response to upper specification limit. 

K 
( USL - T) 2 

(3-12) 

Considering the NTB quality characteristic, the proportionality constant K can be equated 

as shown below: 

( 2 )2 
K = USL-LSL 

(3-13) 

As the total loss is equated to 1, the loss function is known as standardized loss function 

and for NTB quality characteristics it is: 

Sloss(Y) = 4 ( 
y T )2 

USL-LSL 
(3-14) 

This approach is extended to LTB and STB type by MA and 7hao (2004) and the 

standardized loss function for other types of quality characteristics are: 
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For LTB type 

( 
y y )2 

Sloss (Y) = ~'!.. 
1,,-Y1 

(3-15) 

For 5TB type 

(
Y-Y )L Sloss (Y) = --; Y,, -) I 

(3-16) 

Considering all three types of quality characteristics, the overall standardized loss 

function is formulated as: 

Minimize 

S.t. 

(3-17) 

where, Y is the predicted response value, Tis the target for NTB of quality characteristic, 

USL and LSL are the upper and lower specification limit, Yu is the upper range above which 

the response are undesirable, and Y1 is the lower range below which the response are 

undesirable. K is the number of design factors involved in the optimization process and R 

is the experimental region through which the model is valid. 

A loss function based approach known as Hybrid quality loss function (HQLF) 

proposed by Bhamare et al. (2009) is based on the concept of goal programming and 

quality loss function. The HQLF minimizes the undesirable deviation and maximizes 

desirable deviation using exponential transformation of deviational variable. In order to 

develop a composite quality loss function for all quality characteristics and achieve 
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continuous function, an exponential transformation is used for the undesirable 

deviational variables and a negative exponential transformation is used for the desirable 

deviational variables, which are given as: 

L = l (cxp(d))L J 

L = l (exp( -d))2] 

For NTB quality characteristics both underachievement and overachievement are 

considered as undesirable deviation and the loss function is given below: 

(3-18) 

(3-19) 

For 5TB type of quality characteristics, underachievement is considered as desirable and 

over achievement is considered as undesirable and the loss function is given as: 

L = I (cxp(d+))L + (cxp(-d ))2] (3-20) 

For LTB type of quality characteristics, over achievement is considered as desirable and 

under achievement is considered as undesirable and the corresponding loss function is 

given as: 

(3-21) 

The overall hybrid quality loss function-based optimization model as given as: 

Minimize 

n I W1d(exp(dti))2 + (exp(d~i)) 2
] + 

i= 1 

71 I W2 i[(exp(dJJ) 2 + (exp(-d~i))2] + 
i=l 

71 

I W3i [(exp(-dti))2 + (exp(d~J)2] 
1= 1 
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5.t. 

f1i(xj) + d~i - d7i = Tli 

f2i(xj) + d:;_i - dJi = T2.i 

f3i(xj) + d~i - d:ti = 'f,i 

Xk €R (3-22) 

where w 1i, Wzi, and w,i are the weights attached for each response. d 1\, dli and d~ 1 are 

undesired deviational variables. d~i, d 2i and d!1 are desired deviational variables. 

T1i, T2i and T3i are the required target value for each response. f1i(xj), f2i(xi) and f,i(xj) 

are the response surface models developed as a function of x. 

3.2. Comparative Study 

In this section, a comparative study is performed to analyze the sensitivity of 

parameter selection. Selection of input parameters for each quality characteristic is not an 

easy task, and it involves uncertainty due to design error or subjective judgment. The 

sensitivity analysis is performed by changing the input parameters like response range, 

targets and weights using reasonable alternatives. The criteria by which these methods 

evaluate multiresponse problems are explained in this section. This approach helps to 

determine which among these six methods are least sensitive to variation in input 

parameters and yet provide design factor setting that achieves better tradeoff. 

Furthermore, the effect of correlation among multiple quality characteristics is 

also discussed in this comparative study. The correlation between the responses makes 

the optimization process more complex (Wu, 2004). The six methods are used to solve 

two correlated multiple response problems from literature, to study the impact of 
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correlation on achieving optimal response values. The problems are selected based on 

responses having different magnitude, involving multiple correlation, and are of different 

quality characteristics. The quality loss value is used as performance measure to compare 

different multiresponse optimization methods. The quality loss values are calculated from 

the deviation between the response and the target. To avoid the influence of higher 

magnitude on quality loss values, the deviations are normalized. The normalized deviation 

assigns equal importance to all responses, and minimizes the domination of responses 

having higher magnitude. The normalized deviation and the quality loss values are 

calculated using the equation below: 

For undesirable deviation: 

For desirable deviation: 

2 

Loss= (/+) (3-23) 

where, N; is the normalized deviation value for i1h quality characteristic, Ti is the target 

value for i1h quality characteristic, ct+and d- are the desirable and undesirable deviation 

of the quality characteristics. 

3.3. Example 1 

To evaluate the performance of the six multiresponse optimization methods and 

to investigate the sensitivity of these methods, we consider a dual response problem from 
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Vining (1998), which was originally presented by Box, Hunter and Hunter (1978). In this 

problem, engineers need to maximize the conversion of polymer (Y1 ) and achieve a target 

value for thermal activity (Y2 ). The controllable factors are: reaction time (X 1 ), reaction 

temperature (X2 ) and the amount of catalyst (X 3 ). The acceptable value for Y1 is greater 

than 80 and for Y2, it is 55 to 60 with a target value of 57.5. The second order model is 

developed for two responses from the experimental data. The experiments are conducted 

within the experimental range: -1.682 and 1.682 for all design factors. The response 

surface models for these two quality characteristics are given below: 

Y1 = 81.09 + 1.03X1 + 4.64X2 + 6.2X; - 1.83X/ + 2.91X/ 

- 5.19X:/ + 2.13X1X2 + 1l.37X 1X, -- 3.B7 X2Xi 

Y2 = 60.23 + 3.58X1 + 2.23X2 (3-24) 

The problem explained above is solved using the six multiresponse optimization methods, 

in each method the sensitivity of the parameter selection is analyzed by changing the 

input response parameters such as response range, target, and weight for each quality 

characteristic. To calculate the quality loss for each predicted response, a target of 100 

needs to be achieved for conversion of polymer and 57.5 for thermal activity. 

3.3.1. Constrained Optimization 

For solving the above problem using constrained optimization approach, the 

conversion of polymer (Y1 ) is considered as the primary response and the thermal activity 

(Y2 ) is considered as the secondary response in the model. The primary response (Y1 ) is 

maximized while satisfying the secondary response (Y2 ) between the acceptable range 55 

and 60. The constrained optimization model for this problem is given below: 
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Maximize 

Y1 == 81.09 + 1.03X1 + 4.64X2 + 6.2X3 - 1.83X/ + 2.94X/ - 5.19X/ 

S. t. 

55::; 60.23 + 3.58X1 + 2.23X2 S: 60 

-1.682 ::; X1 s; 1.682 

1.682 ::; X2 ::; 1.682 

1.682 ::; X3 ::; 1.682 

The above model is solved using Nonlinear programming software called as General 

(3-25) 

Algebraic Modeling Software (GAMS) and the results are shown in Table 1. For alternative 

1, this method attains a quality loss value of 0.0029 units. 

Table 1. Constrained Optimization - Results 

--~---- ---- -----T -- - --- --------~~----------,---------~ -------
Alternatives I Response Range I Design Factor 

~-~-u--;-~ -- T2- "l X1 -- X2 - xi 
-~--~--~------ __ j - ------- -

__ 1 ____ 55~~~~-~N/AJ_-o.~~~ 1.682 -0.891 

2 50 65 N/A 1 -1.682 1.682 -1.682 
~--~- - -- -~----~~~~-~-~-

Predicted Response 

96.864 

102.28 

55 

50.45 

Furthermore, to analyze the sensitivity of this method, the lower and upper parameter 

value for Y2 is widened to 50 and 65 as shown in alternative 2. The widening of response 

limits increased the predicted response value for Y1 to 102.28 units and there is a 

decrease in Y2 to 50.45 units which produces overall quality loss value of 0.0156 units. 

Constraint optimization is highly sensitive to variations in lower and upper 

response limits, a small variation in this limit changes the entire optimal solution set. In 
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this example, widening of response range for secondary response (thermal activity) has 

increased the solution space thereby it improves the predicted response value for the 

primary response (conversion of polymer). In terms of assigning priorities to the 

responses, this method doesn't allow the design engineer to assign priorities directly to 

each response. The only way to assign priorities for each response is to increase or 

decrease the response upper and lower limits. For example, to assign higher importance 

for Y1 , the response upper and lower limits for Y-2 has to be increased as shown in 

alternative 2. To increase the priority for Y.2 , the upper and lower response limits for 

Y2 has to be decreased. These priorities can be effectively assigned only if the process 

related information is known to the design engineer. 

3.3.2. Desirability Approach 

For using the desirability-function-based optimization model, it is required to 

calculate desirability value for each response. The desirability values for the conversion of 

polymer {d 1 ) and the thermal activity (d 2 ) are calculated using equations given below: 

( o. 
Yi(x) < J,i 

d1 = c,(x~ -1.,r Li< Y1 (x) < Ti 
Ti Lz 

1, ~(x)>T1 

(3-26) 

0, Yi (x) > Ui 

The overall desirability function is obtained using the geometric mean and it is calculated 

from the equation below: 
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Maximize 

(3-27) 

The problem is solved using the traditional desirability approach as proposed by 

Derringer and Suich (1980) and the optimal result is shown in Table 2. Alternative 1 show 

the result of the problem solved using the input parameter taken from the example and 

attains a quality loss value of 0.0087units. The response upper and lower limits with the 

target value are varied as shown in alternative 2. 

Table 2. Desirability Function - Results 

I 
·· .. ----r-- ... 

j Alt L1 U1 T1 L2 U2 T2 W1 W2 X1 X2 x, Y1 Y2 
- -- - - - --- ----- - ---- -

1 80 100 100 55 60 57.5 
I 

1 1 0 0 0 91.00 58.9 
--~-----

2 65 105 105 45 70 57.5 1 1 0 1.68 0 97.00 60.7 
-- ,-----~-------

3 65 105 105 45 70 57.5 0.1 0.9 0 0 0 91.00 58.9 
---- ------ ----~ -------------- - J o_.9 4 65 105 105 45 70 57.5 0.1 0 1.68 0 97.00 60.7 

--- -------- ----------- -

The variation in the input parameter, changes the optimal solution, and it attains 

quality loss value of 0.004 units. Furthermore, the user assigned priorities (or weights) are 

changed for two responses by assigning higher priorities to YL in alternative 3 and 

assigning higher priorities to Y1 in alternative 4. In desirability approach, the weights are 

assigned to the desirability value (di), which changes the overall desirability value (D), 

thereby changing the optimum predicted response values. Thus, the result from Table 2 

shows that, this method is sensitivity for selecting input parameter values. Using 

desirability approach for solving L TB and 5TB quality characteristics, a desirability value of 

1 is assigned for the response value at target, and also for the response value above and 

below target respectively. By assigning equal desirability value for response values at 
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target and beyond target, the approach fails to determine the better solution with lower 

quality loss values 

3.3.3. Expected Loss Function 

For using the expected loss function based approach, the cost matrix and the 

covariance matrix has to be estimated from the experimental data. The cost matrix for 

h. I . . d C (0.200 t 1s examp e 1s estimate as = 
0

_
025 

0.025) d h . · · · d O.SOO an t e covariance matrix 1s estimate 

(
11.16 

as Ey(x) = _ 0_71 

shown below: 

-;_~2~
1 ). The loss function based model which has to be minimized is 

Minimize 

(Y1 - 100 y _ 57.5) (0.100 
2 0.025 

0.025) ( Y1 - 100) 
0.500 Y2 - 57.5 + 

1(0.100 
trace 

0
_
025 

0.025) (11.16 
0.500 -0.71 

S.t. 

-0.71)1 
2.20 

Y1 = 81.09 + 1.03X1 + 1.61x2 + 6.2x, - unx/ + 

-1.682 ::; X1 ::; 1.6B2 

1.682 ::; XL ::; 1.682 

1.682 ::; Xi ::; 1.682 

(3-28) 

The above model is solved using General Algebraic Modeling Software and the optimal 

solution is shown in Table 3. The alternative 1 shows the optimal response value solved 

using the input parameter from the model, attains quality loss value of 0.0014 units. In 
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alternative 2, the target value for Y1 is changed to 105 increases the predicted response 

value to 97.45, and attains a quality loss value of 0.0029 units. In alternative 3, the target 

value of Y1 is changed to 90 attains the response value to 90. This shows the sensitivity of 

this method in terms of target selection. 

Table 3. Expected Loss Function - Results 

C 

0.2 0.025 
1 100 57.5 -0.379 1.682 -0.499 96.22 57. 8 

0.025 0.5 

0.2 0.025 
2 105 57.5 0.087 1.682 -0.114 97.45 60.28 

0.025 0.5 

I 

0.2 
57.5 

I 0.025 o.5 

0.025 
3 90 -0.531 1.248 -0.371 90 57.14 

r o.s - 0.025 

--4~-_j______1_o_o_s~7-~.5 lo_~25 o.l 
0.385 1.682 0.119 99.12 61.8 

In alternative 4, the cost matrix is selected such that it assigns higher importance to 

response Y1 , which produces an overall quality loss value of 0.00567 units. The expected 

loss function is sensitivity to cost matrix, and selection of cost matrix plays a major role in 

deciding the optimum value. The different ways of selecting cost matrix and the 

effectiveness of cost matrix in optimization processes are discussed in (Vining, 1998). 

3.3.4. Gradient Loss Function 

In gradient loss function based approach the deviation between the predicted 

response and target is minimized and the robustness is achieved by minimizing the 

variation. In this method, the variation is calculated using Taylor expansion series. The 

model formulated is shown below: 
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Minimize 

( 
1.03 - 3.66X1 + 2.13 X2 + l 1.37X, + 4.64 + ) 

+ O.l 5.88 X2 + 2.137X1 - 3.87X,, + 6.2 - 10.38 X, + l l.37X 1 - :1.B7X2 

+ (92 - 57.5) 2 + 0.1 C 3.58 + 2.23) 

where, 

S.t. 

Y1 = 81.09 + 1.03X1 + 4.64X2 + 6.2X,, - l.83X 1
2 + 

Y2 = 60.23 + 3.58X1 + 2.23X, 

-1.682 ::::; X1 '.S 1.6B2 

1.682 ::::; X1 ::; 1.682 

1.682 ::::; X, '.S 1.6B2 

Xk ( R 

d~ . 
dXi = 1.03 - 3.66X1 + 2.13 X2 + l 1.37X,, 

dY1 - = 4.64 + 5.88 X2 + 2.137X1 - 3.87X; 
dX 2 

dY1 
dX

3 

= 6.2 - 10.38 X, + 11.37X1 - 3.87X2 , 

dY2 

dX1 = 3.58, 

dY2 

dX,, = 2.23, 
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(3-29) 

The formulated model is solved using nonlinear programming software called General 

Algebraic Modeling Software and the results are shown in Table 4. This method produces 

quality loss of 0.0021 units, when it is solved using the input parameters from example, 

and the optimal response value is shown in alternative 1. 

Table 4. Gradient Loss Function - Results 

1 100 57.5 1 1 
~------------

2 105 57.5 1 1 
-- - i- - - -

3 90 57.5 t 1 1 

4 100 57.5 ~~} 0.8 

~ --~oo _5}~~l~~~-~o} 

0.684 1.682 

-0.862 

-0.326 
j .. -

.. j _0.387 

1.682 

1.682 

1.682 

0.36 

0.173 

-0.434 

0.12 

96.839 59.438 

101.525 63.48 

89.97 57.5 

96.28 58.096 

99.104 61.85 

The target value for Y1 is changed to 105 as shown in alternative 2; the increase in 

target value, increases the deviation between responses and target, which changes the 

output optimal value to 101.53 units. In alternative 3, the target value is changed to 90, 

which attain the optimal solution at 89.97 units. The priorities assigned for each response 

are changed by assigning different weights. In alternative 4, higher priority is assigned to 

Y2 , which shifts the mean towards target attaining an overall quality loss value of 0.0015 

units. In alternative 5, higher importance is assigned for Y1 , which increases the predicted 

response to 99.104 and attains an overall quality loss value of 0.0058 units. The change in 

response weights attains different optimal solution and weights should be applied only 

when the complete product related information's are known to design engineer. For 

example, if the cost loss due to thermal activity is lower than the cost loss due to the 
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conversion of polymer, the weights applied as shown in alternative 4 can be used. This 

emphasizes the sensitivity of the method in selecting the target and weights. 

The limitations of the two types of loss-function based approach (Expected loss 

function and gradient loss function) are: it does not classify different types of quality 

characteristics, especially LTB and 5TB. A target value is assigned for solving LTB and 5TB 

quality characteristics, assigning a target value shifts the focus of the optimization process 

to search for an optimal value near target, and it does not explore the solution beyond 

the assigned target. 

3.3.5. Standardized Loss Function 

For using the standardized loss function based approach, the conversion of 

polymer is maximized considering a target value of 100 and the target value of 57.5 is to 

be achieved for thermal activity. The Standardized loss function based model is 

formulated and it is given below: 

Minimize 

SLoss(y) = (Y1 (X) - 100)
2 

+ 4 (Y2 (X) - 57.5 ),. 
100 - 80 60 - 55 

S.t. 

L. Y1 = 81.09 + 1.03X1 + 4.64X2 + 6.2X, - 1.83X1 + 

Y,. = 60.23 + 3.58X1 + 2.23X2 

-1.682 s; X1 < 1.682 

1.682 s; x,. < 1.682 

1.682 :::; X:i < 1.682 
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(3-30) 

The above model is solved using nonlinear optimization software called as General 

Algebraic Modeling Software and the result is shown in Table 5. The model is solved using 

the input parameters from example and the optimal result is shown in alternative 1 

attains a quality loss value of 0.0015 units. 

Table 5. Standardized Loss Function - Results 

------~--- --- ----------- --

Alt L1 U1 T1 L2 lJ 2 T2 X1 X2 X, Y1 Y2 
- -- ---·-- -- --------- - --

1 80 100 100 55 60 57.5 -0.436 1.682 -0.523 96.188 57.5 
-- - ·--- -- --- -- ---- ~ 

2 70 110 100 50 65 57.5 -0.435 1.682 -0.522 96.188 57.5 

In this approach the upper and lower limit is increased to study the behavior in parameter 

selection. In alternative 3, the lower and upper limit value for Y1 is changed to 70 and 110, 

and for Y2 it is changed to 50 and 65. The change in response upper and lower limits as 

shown in alternative 2 attains a quality loss value of 0.0015 units. For this particular 

example, the result shows that the change in response range does not produce any 

significant impact in the solution. In this method, the denominator term in its objective 

function acts as weights which are assigned to each response. In alternative 1, the weight 

2 
assigned by its denominator term equals (-

1
-) = 0.0025 units for Y1 , and for Y2 it is 

100-HO 

2 
4 * (-1

-) = 0.16 units. The response range in alternative 1, assigns higher importance 
60-SS 

for Y2 when compared to Y1 . The result of assigning higher importance for Y2 attains the 

predicted response value exactly at target. In alternative 2, the response range is 

widened, which further increases the priority for Y2 . Thus, the standardized loss function 

35 



method attains the same optimum predicted response value. This method is highly 

sensitivity to change in response upper and lower limits. 

3.3.6. Hybrid Quality Loss Function 

For using hybrid quality loss function two type of deviation has to be determined: 

the desirable deviation which is maximized and the undesirable deviation which is 

minimized. As the conversion of polymer is LTB type of quality characteristics, a target 

value of 100 is considered for optimization. The deviation calculated for the response 

values above 100 are considered as desirable deviation (dn . The deviation calculated for 

response values below 100 are considered as undesirable deviation (d1 ). As the thermal 

activity is NTB type, a target value of 57.5 has to be achieved. The response values greater 

than and less than 57.5 has to be minimized. The (d,:) and (dj) represents the 

undesirable deviations which are greater than and less than S7.7 are minimized. The HQLF 

modeled for conversion polymer (Y1 ) and thermal activity (Y 'L) is given by: 

Minimize 

w1 {(exp(d-;-))'2- + (exp(-di ))2} + w;d(exp(c11 ))2 + (exp(cl 2))2} 

S.t. 

Y1 = 81.09 + 1.03X1 + 4.64Xl + 6.2X, - 1.83X1 
2 + 

2.94X/ - 5.19X/ + 2.13X1X2 + 11.37 X1X, - 3.87 X2X; + cl~ - df = 90 

60.23 + 4.26X1 + 2.23X2 + c1 2 - cl{ = 57.S 

-1.682 S: X1 < 1.682 

1.682 S: X2 < 1.682 

1.682 s: x, s: 1.682 
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(3-31) 

The above model is solved using nonlinear optimization software called General Algebraic 

Modeling Software. In this method, the user assigned priorities are changed to analyze 

the effectiveness of tradeoff between the responses. The example problem is solved using 

HQLF and the result is shown in Table 6. In alternative 1, equal weights are assigned to 

responses and the optimum response values are obtained. This method produces quality 

loss value of 0.0027 units. In alternative 2 and 3, the weights are changed such that, 

alternative 2 assign higher importance to thermal activity and alternative 3 assigns higher 

importance to conversion of polymer. 

Table 6. Hybrid Quality Loss Function - Results 

~----1 ·- ---- -
Alt T1 TL ·r wl WL 

: ::: :: : t2 o

1

s 

0
o

0
:6 

3 I 100 57.5 1-0.8- -o.i 
~4-~-[loo 57.5- 1 1 

0.127 

1-0.361 
I 

----- ~ 

1 -0.356 
I ____j ___ -~- --- __ j - L 

1.682 

1.682 

1.682 

1.682 

1.682 

1.682 

1.682 

X; 

-0.144 

-0.21 

-0.083 

-0.464 

-1.682 

-0.463 

-0.461 

97.29 

96.96 

97.63 

96.23 

102.28 

96.24 

96.23 

60.08 

59.63 

60.4 

57.65 

50.45 

57.65 

57.66 

The change in weight does not produce any significant impact in the optimal solution and 

produces quality loss value of 0.0023 and 0.0031 units for alternative 2 and 3 respectively. 

The major concern in this method is that, it gives higher preference to the deviation (di~) 

which has higher magnitude. In this example, the conversion of polymer is higher in 

magnitude when compared to thermal activity. One of the possible remedy for this 
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problem is to normalize the model. The response surface model is normalized before 

optimization and the solution is shown in alternative 4, 5, 6, and 7. Once it is normalized, 

the HQLF attains the target value for thermal activity when equal weights are assigned 

and produces a quality loss value of 0.0014 units. It also produces a better trade off when 

the weights are changed as shown in alternative 5. Furthermore, in alternative 6 and 7 the 

target value is changed to 105 and 90 for response variable Y1 which attains the same 

solution as shown in alternative 4. Therefore, this method show is insensitiveness to 

target selection. The main advantage of using this method is that, it does not restrict the 

design engineer with a predefined target value for all types of quality characteristics. It 

also gives the flexibility to the design engineer for selecting the design parameter values. 

The HQLF method provides robustness in parameter selection, and it does not require any 

upper and lower response limits. 

Six multiresponse optimization methods are used to determine the settings for the 

design factors: reaction time, reaction temperature, and amount of catalyst to achieve the 

optimum responses: conversion of polymer, and thermal activity. The comparative study 

is further extended to analyze the impact of correlation between the responses. Six 

multiresponse optimization methods are used for solving problems from literature which 

has correlated quality characteristics. Two problems from the literature are selected 

based on intensity of correlation, Example 2 has linear correlation between two 

responses, and Example 3 has multiple correlations between responses. 
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3.4. Example 2 

To analyze the effects of correlation among the responses, we consider a 

correlated response problem from Kim and Lin (2006) to study the properties of colloidal 

gas aphirons {CGA - colloidal gas aphirons is the micro bubbles formed due the mixing of 

surfactant solutions). The colloidal gas aphirons is measured by three responses: stability 

(Y1 ), volumetric ratio (Y2 ) and temperature (Y;). The design factors which affect the 

performance of colloidal gas aphirons properties are concentration of surfactant (X 1 ), 

concentration of salt (X 2 ) and time of stirring (X;). The responses are: stability - LTB, 

volumetric ratio- 5TB and temperature - NTB types of quality characteristics. The optimum 

parameter value for stability is greater than 3, for volumetric ratio it is less than 0.6, and 

for temperature it is 15 and 45 with a target value of 30. A central composite design with 

eight factorial points, six axial points, and a center point is conducted and a second order 

model is developed for each response and the model are shown below: 

! ! Y2 = 0.46 + 0.13X1 - 006X2 + O.OSXi - 0.07 X1 - 0.01Xi 

(3-32) 

In this example, a positive correlation is being reported between stability (Y1 ) and 

volumetric ratio(Y2 ). The correlation coefficient between the two responses is +0.865 but 

the two responses are of different quality characteristics: stability - LTB and volumetric 

ratio - STB type of quality characteristics. Table 7 shows the results of solving correlated 

response problem using six multiresponse optimization r.1odels. The results clearly show 

the impact of correlation between stability (Y1 ) and volumetric ratio (Yz) as their optimal 
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values either increase or decrease simultaneously. Although these two design 

characteristics are of opposite nature (stability- LTB type and volumetric ratio-STB type), 

the change in their optimal values is simultaneous and in same direction because of the 

positive correlation between them. 

Table 7. Example 2 - Results 

Alter- r·~-- - Design Factor Response Quality 
Method 

native X1 XL X:, Y1 YL Y, Loss 
---------·-

1 Constrained Optimization -1 1 -1 0.11 25.2 0.22 
---~-~-~-----

2 Desirability Approach -1 -1 -1 0.22 26 1.59 
---·---- --·- ··-------~.-

3 Expected Loss Function 0.567 -1 1 0.58 27.98 22.11 
---------·· ------ ---·--- - -- - --- --- --- -----

4 Gradient Loss Function 0.3 I -1 i 1 0.54 29.45 19.4 
-·- -------- -- + 5 Standard Loss Function -1 I -1 -1 0.25 25.2 2.38 

b -----·--- ---- -----. -t 
Hybrid Quality Loss Function -1 I 1 -1 0.11 25.2 0.22 

------ ----- ·- l 

The optimal solution for both the responses are increased for the multiresponse 

optimization methods shown in alternative 3, and 4, and they are decreased for the 

multiresponse optimization methods shown in alternative 1, 2, S and 6. Furthermore, 

constraint optimization method and HQLF based model provided relatively better trade-

off in terms of quality loss values. However, it is important to note that these two models 

also failed to address the problem of correlation between design characteristics in multi-

response optimization process. 

3.5. Example 3 

To study the behavior of multiple correlations between responses we consider another 

problem from Schmidt et al. (1979) in which four responses are considered. In this 

problem, both positive and negative correlation occurs between different responses. The 
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effects of calcium chloride (CaCI) and cysteine on gel texture parameters, and 

compressible water on the dialyzed whey protein concentrate were studied. The gel 

texture parameter consists of hardness, cohesiveness, and springiness. A central 

composite experiment was conducted within the experimental region -1.414 and 1.414. 

Multiple regression analysis was used to obtain the prediction equation to measure the 

effects of design factors such as: cysteine (X 1 ) and calcium chloride (X,J on responses 

hardness (Y1 ), cohesiveness (YL), springiness (YJ and compressible water (Y4 ). All four 

responses are LTB type quality characteristics. The individual maximum value for 

responses hardness, cohesiveness, springiness and compressible water are 2.69, 0.68, 

1.90 and 0.71 which are used as the target value for optimization. The lower and upper 

limits are 2.16 and 3.22 for hardness, 0.65 and 0.71 for cohesiveness, 1.82 and 1.98 for 

springiness and 0.61 and 0.83 for compressible water. Second order response surface 

model is developed for four quality characteristics as given below: 

L L Y4 = 0.468 + 0.131X1 + 0.073XL + 0.026X1 + 0.024XL - 0.083X1X'2 (3-33) 

The correlation matrix for the four responses is calculated using Minitab 15 and the 

significant correlation coefficient values are shown in the Table 8. The above problem is 

solved using the six multiresponse optimization methods and the optimum results 

obtained from each method is shown in Table 9. 
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Table 8. Example 3 - Correlation Matrix 

Res~~~e-~l ~ Y1 

Y1 I 1 
~---~~-L-------- - -

Y2 I 
0.79 

-0.93 

1 

0.86 

I 
- l 

1 

-0.84 

Table 9. Example 3 - Results 

~-------- --

Method 

Constrained Optimization 

(-0.564, 0.415} 

Desirability Approach 

(-1.414, O} 

Expected loss function 

(-0.741, -0.893} 

Gradient Loss function 

(-0.164, -1.414) 

Standard Loss function 

(-0.284, -0.166) 

Hybrid Quality Loss Function 

l~:~45~-~-0~48-6} _ 

1.488 

2.28 

2.46 

2.235 

1.775 

2.68 

Responses 

Yi 

0.684 1.820 

0.59 1.75 

0.59 1.89 

0.554 1.778 

0.675 1.846 

0.53 1.81 

Inf sol 

0.33 

0.28 

0.373 

0.418 

0.24 

Quality 

loss 

N/A 

0.21 

0.16 

0.24 

0.3 

0.15 

The results clearly show the quality characteristics: cohesiveness and springiness are close 

to target, but the major impact of correlation is between hardness and compressible 

water. Although the two responses, hardness and compressible water are same type of 

quality characteristics (LTB type) but the optimal solutior, either increase for hardness or 

decrease for compressible water or vice versa due to negative correlation between them. 
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In standardized loss function approach the predicted response value for compressible 

water is greater than 0.4 units, which decreases the predicted response value for 

hardness to less than 2 units. Similarly for methods like expected loss function and hybrid 

quality loss function models the predicted response value for hardness is greater than 2.5 

units, which decreases the predicted response value for compressible water to below 0.3 

units. Further, the quality loss values are used to determine the effectiveness of the 

different model in terms of better tradeoff. The HQLF method provides relatively better 

tradeoff among different responses. 

3.6. Discussion 

Optimizing multiple quality characteristics using traditional methods involve 

uncertainty in the decision making process. The multiresponse optimization methods 

discussed in this chapter try to minimize the uncertainty in the decision making process. 

The sensitivity in selecting input parameter and the impact of correlation between the 

responses are analyzed. The six methods are sensitive for weights assigned to each 

response, and the way of assigning priority differs for each method. All methods except 

standardized loss function, and constraint optimization, allows the design engineer to 

assign priorities directly in its objective function. These methods are highly sensitive for 

assigning priority and the weight assignment should be considered as critical input. The 

standardized loss function and constraint optimization are highly sensitive to response 

upper and lower limits. These two methods use response limits as weights, and it should 

also be considered as critical input in the optimization process. All methods except HQLF 

are sensitive for variation in target parameter selection. In these methods, different 
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optimal solution is obtained when the target value is varied. The change in the optimal 

solution indicates the sensitiveness in the target selection parameter. 

Furthermore, assigning the target values for L TB and STB quality characteristics in 

expected loss function, gradient loss function, and standardized loss function based 

approaches hinder the optimization process for searching optimal values beyond the 

target value. These methods consider the two types of deviation (desirable and 

undesirable) as total deviation and it minimizes the total deviation. The total deviation, 

which is considered as objective function is not a continuous function, but it is in a form of 

step function. The two limitations (minimizes total deviation and continuous function) in 

these methods have been addressed in HQLF. The HQLF maximizes the desirable 

deviation, minimizes undesirable deviation, and it uses exponential data transformation 

on original deviation variables to address the objective function continuity problem. 

3.7. Conclusion 

This chapter presented a comparative study on multi-response optimization 

methods. The result shows that all methods were sensitive in assigning priorities for each 

quality characteristic. All methods, except HQLF method were sensitive for selecting 

target values. This chapter also explored the effectiveness of these existing methods in 

dealing with correlated multiresponse optimization problems. It was found that none of 

the existing methods were capable to deal with correlated problems effectively. 

Therefore, this chapter concludes that correlation between responses affects the 

optimization process. A multi-response optimization model capturing correlation between 
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responses is proposed in Chapter 4, and the proposed method is evaluated by solving 

examples from literature. 
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CHAPTER 4. MULTIRESPONSE OPTIMIZATION WITH CORRELATED QUALITY 

CHARACTERISTICS 

This chapter discusses different optimization technique for solving multiple 

correlated quality characteristics. A multiresponse optimization method have been 

proposed for capturing correlation based on Awad and Kovach (2011) model, and it is 

used for solving correlated multiple quality characteristics problems. Furthermore, the 

effectiveness of the proposed method is compared with existing methods proposed by 

Awad and Kovach (2010) model, and PCA based methods. 

In multiresponse optimization methods, correlation occurs in two different ways: 

it occurs between the design factors, and between the responses. An article published by 

Coleman et al. (1966) on equal opportunity in public education has correlated design 

factors. Correlation between the design factors has to be identified and eliminated before 

developing the response surface model. The most common method for eliminating the 

correlation between design factors is to identify the design factor causing correlation, and 

eliminating them from analysis. The model when developed without removing correlation 

between design factors increases the design factor coefficient value. The increase in 

design factor coefficients will not predict the exact relationship between the response and 

design factors (Mendenhall and Sincich, 1996). In practical applications, the correlation 

also occur between the noise factors, Hejazi et al. (2011) used PCA to develop a response 

model for solving problems with correlated noise factors, and correlation occurs between 

different quality characteristics, Sibalija and Majstorovic (2009) used PCA based approach 
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for solving correlated quality characteristics in a thermo-sonic copper wire bonding 

process, Darwish and AI-Dekhial (1999) developed a statistical model for spot welding 

process in which the design factors such as failure load and nugget area are correlated 

with process parameter. The following methods are used for solving multiple quality 

characteristics problem by considering correlation in their optimization process. 

4.1. Principal Component Analysis 

Su and Tong (1997) proposed a multiresponse method based on PCA for solving 

correlated multiple quality characteristics. PCA was used to transform the correlated 

response data into uncorrelated data set. The optimal factor level is determined from the 

uncorrelated data set. In their proposed approach, a quality loss value is calculated for 

each response using Taguchi's quality loss function. To minimize the impact of scale 

parameter, the quality loss value is normalized using the equation given below: 

Y,; = (4-1) 

where, Lii is the quality loss value for ith response at j1h trial respectively, Yii is the 

normalized quality loss value calculated for i1h response at j1h trial respectively, L7is the 

maximum loss value obtained for i1h response and Li is the minimum loss value obtained 

for i1h response. Using PCA on the normalized quality loss value, the parameters such as 

Eigen values, Eigenvectors, and percentage of variation are obtained from the data. These 

parameters are used to calculate a multiresponse performance index using the equation 

given below: 

(4-2) 
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where, D.kj is the multiresponse performance index corresponding to kth Eigenvalue and 

/h trial, aki is the element of the Eigenvector corresponding to k1h Eigenvalue and ith 

response. The optimum factor level combination is selected from the multiresponse 

performance index. The larger the multiresponse performance index implies better the 

quality of the product. Kaiser (1960) study has been used to select the components whose 

Eigenvalues are greater than one. For every Eigenvalue greater than one, a 

multiresponse performance index is obtained. For more than one multiresponse 

performance index, Su and Tong (1997) suggested tradeoff for selecting optimal design 

factor level setting but the author did not address this issue in their analysis. 

The drawback in this approach is that, it uses only one principal component for 

which Eigenvalue is greater than one. This is not applicable in the present day 

manufacturing condition because most of the problems occur with more than one 

principal component having Eigen values greater than one, and considering the first 

principal component does not produce optimal solution (Fung and Kang, 2005). 

Fung and Kang (2005) proposed a rnultiresponse optimization method which 

considers all principal components with Eigen value greater than one, and also reduces 

the uncertainty in the decision making process. Their research used Taguchi method and 

PCA for optimizing frictional properties of PBT composites in the injection molding 

process. Frictional coefficients and surface roughness are two quality characteristics 

involved in the optimization process. Their research also used coefficient of determination 

to integrate all principal components to form a comprehensive index. The correlation 
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coefficient is calculated for the normalized response values using the equation given 

below: 

(
Cov(y 1,y 1)) . 

R11 = where, J ~, 
CJ I CJ I 

(4-3) 

where, Rjl is the correlation coefficient between the normalized j°1 and l'h responses, 

oi and o 1 are the standard deviation of the response sequence. The coefficient of 

determination is used as weights to integrate all principal components. The coefficient of 

determination is multiplied with principal component, and it is added to form a 

comprehensive index. The higher the comprehensive index values, better the quality of 

the product. 

Liao (2006) proposed a method to address the limitations in Su and Tong (1997) by 

considering all principal components obtained from the analysis. The multiresponse 

optimization method proposed by Liao (2006) uses Taguchi's quality loss function, and 

weighted principal component for solving multiple correlated quality characteristics. In 

this approach, the explained variance is used as weight to integrate all principal 

components into single overall multiresponse performance index and it is given by: 

/J 

nki I ak1Yt1 
l ~ 1 

(4-4) 

where, aki is the elements of the eigenvector corresponding to k1h Eigen-value and i1h 

response respectively. Yii is the normalized quality loss value calculated for i1h response at 

j1h trial respectively. flki is the principal component score corresponding to k1h Eigen value 

and j'h trial respectively. Vk is the explained variance for k1
h principal components. The 
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major difference between Liao (2006), and Fung and Kang (2005) method is that, Fung 

and Kang (2005) used coefficient of determination to integrate the principal components 

having Eigenvalues greater than one, whereas Liao (2006) used explained variation 

obtained from the analysis to integrate all principal components. 

Wu (2004) proposed a method based on PCA and grey relational analysis for 

solving correlated multiple quality characteristics. The grey system was proposed by Deng 

(1982), and the grey relational analysis is a sub part of the grey system. It is a useful 

technique to deal with incomplete, poor, and uncertain data (Wu, 2004). Also, the 

research uses the proportional quality loss value instead of Taguchi's quality loss value 

used by Su and Tong (1997). The proportional quality loss uses signal to noise (SN) ratio as 

the performance measure. The SN ratio is changed from starting parameter condition to 

optimal parameter condition after initial process optimization. The change in the 

parameter condition results in a new quality loss value (L'). The proportional quality loss 

value is the ratio of the new quality loss value to the average quality loss value. 

PQ/, = ~ 
{, 

(4-5) 

Furthermore, the proportional quality loss is normalized to eliminate the domination due 

to scale parameter using following equation: 

f'Ql.,k··min l'(jl.,k 
NNj/,ik = 

max PQl.,k min l'(jl.,k 
(4-6) 

where, NPQL is the normalized proportional quality loss value, PQLik is the proportional 

quality loss value for ;th response and k1
h trial. The PCA is performed on normalized 

proportional quality loss values. The principal component score is obtained using the 
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Eigenvectors and the normalized proportional quality loss values is shown in the equation 

below: 

(4-7) 

where, EVi is the Eigenvector obtained from principal component analysis for ;th quality 

characteristic and Yik is the principal component score for ;th quality characteristics and kth 

trial. In grey relational analysis, the principal component score is transformed to a set of 

comparable sequences using the equation shown below: 

Z _ mux/Y,k/- /Y,k/ 
'lk - nwx/Y,kl - mrnll',,I 

(4-8) 

where, Zik is the standard multiresponse performance statistics and Yik is the principal 

component score for ;th quality characteristic and kth trial. The grey relational coefficients 

and grey relational grade are determined from the equation below: 

(4-9) 

where, ~i is the grey relational coefficient for ith quality characteristic, Z0 (i) is the ideal 

sequence with a value of 1, c; is the distinguished coefficient with a value of 0.5, Yk is the 

grey relational grade for kth treatment, and (JJ 1 is the percentage variance of? 

component in principal component analysis. The higher the grey relation grade, the better 

quality of the product can be achieved. The method proposed by Wu (2004) is used by 

Sibalija and Majstorovic (2009) for solving correlated responses in thermo-sonic copper 

wire bonding process. The wire bonding process has three correlated quality 
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characteristics namely: pull test average, pull test minimum, and process yield which are 

controlled by nine design factors. 

The drawbacks of PCA based approach is that, the optimal factor setting is 

obtained only at the design factor levels. The levels are selected when conducting the 

experiments. These methods do not explore the optimum solution between the design 

factor levels. Implementing PCA based approach, requires significant amount of 

experimental data which is costly to obtain (Awad and Kovach, 2011), and these methods 

requires rigorous computation. Also these methods use Taguchi's quality loss value, which 

creates uncertainty when calculating proportionality constant values. 

4.2. Awad and Kovach Method 

A multiresponse optimization method for solving multiple quality characteristics 

has been proposed by Awad and Kovach (2011), which maximizes the overall multivariate 

process capability indices. Awad and Kovach (2011) used the mean, variance of each 

response, and covariance between multiple responses to determine the multivariate 

process capability index. We consider this method for analysis as it captures covariance of 

two quality characteristics. The general form of multivariate process capability index is 

described as: 

1 

( 
Vol.of s-pec1/1calirm rc,qion );; 

voLof prou,,s ,prewi reqirm 
(4-10) 

where, v is the number of quality responses and MCrm is the multivariate process 

capability index. As the specification region is ellipsoidal, Chan et al. (1991) proposed a 

formula to measure the multivariate process capability index which is given below: 
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MC7nn = nt' 
(4-11) 

where, Yi is the ith vector of dimension v, and n is the sample size of the data collected. In 

the above equation, as n and v are constants, the denominator term is minimized to 

increase the overall process capability index. Awad and Kovach (2011) derived a 

generalized model using the denominator term in the above equation and it is minimized 

to increase the multivariate process capability index. The generalized model proposed by 

Awad and Kovach (2011) is given below: 

Minimize 

V V V 

z = L B/(91 - 'f'i) 2 + LL 2a11CY1 - 'f'i)(y1 - '11) where i * j 
1=1 j= 1 

S.t. 

X€R (4-12) 

where, cri is the fitted response of standard deviation for ;th quality characteristic, .Yi is the 

fitted mean response of ith quality characteristic, Ti is the target values for ;th quality 

characteristic, (Jij is the covariance between the ith and r response respectively, and z is 

the denominator term in the equation (4-11). The covariance (oij) between two 

responses is estimated from the response value, which are obtained from experimental 

data. This approach uses multivariate process capability indices as the performance 

measures, which is often used for monitoring processes and determining quality control 

issues. To use this model for product design, the model has to be customized to fit the 

product design issues as the model is not a perfect fit for design optimization. Moreover, 
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this method does not classify different types of quality characteristics (L TB, STB and NTB). 

The optimization model (equation 4-12) requires a target value for each response to 

determine the optimal design factor setting. Assigning a target value during optimization, 

especially for LTB and STB type of quality characteristics restrict the optimization process 

near the target, and it will not explore the optimum values above and below target 

(Bhamare et al., 2009). 

In summary, the PCA based approaches were able to determine the optimal factor 

setting only at the factor levels, which are considered in the designed experiment, and it 

requires more trial runs for determining optimal solution. The Awad and Kovach (2011) 

model does not classify different types of quality characteristics (LTB, STB and NTB), and it 

also uses the target value for all quality characteristics, which minimizes the total 

deviation (both desirable and undesirable). 

4.3. Proposed Method 

To address the limitations of PCA based approach and the model proposed by 

Awad and Kovach (2011), a multiresponse optimization method has been proposed in this 

section. The proposed method combines both HQLF model (Bhamare et al., 2009) and 

model proposed by Awad and Kovach (2011) to achieve better trade-off and to provide 

robust methodology. The integration of HQLF model treats the deviations from target 

value as desirable and undesirable deviation. This consideration facilitates the model to 

explore the optimal solution above or below the assigned target for LTB or STB type 

quality characteristics respectively. The proposed method further captures the correlation 

between the responses, and determines factor settings, which are least affected by 

54 



correlation. The inclusion of the model suggested by Awad and Kovach (2011) further 

minimizes the overall variance of all quality characteristics, and hence making the model 

more robust to random variability. To develop an overall model, the variance of two 

independent variables is calculated, and it is shown below: 

(4··13) 

where, Z1 and Z2 are the two independent variable. If these two variables are dependent, 

the overall variation of these two variables can be calculated using the equation below: 

Var(Y1 + Y2 ) = Var(Y1 ) + Var(Yt) + LCov(Y1, Y2 ) 

Var ( Y1 ) = /:' ( ( Y1 - p 1 f) 

Cov (Y1, Y,J = (Y1 - P1)(Y2 - P;J 

Var(Y1 + Y2 ) = E((Y1 - µ1)2) + l:'((Y2 - µ2 )
1

) + L(Y1 -- ~t1HY2 - µ2 ) (4-14) 

where, Y1 and Y2 are the random dependent variables associated with first and second 

quality characteristic. µ1 and µ2 are the mean values associated with the first and second 

quality characteristic. If the mean associated with each quality characteristic is replaced 

by the target value, the equation (4-14) can be modified as: 

(4-15) 

without loss of generality, the random variable Yi is replaced by fitted mean response .Yi. 

Equation (4-15} can be generalized for solving multiple responses problem is shown 

below: 

(4-16) 

The term (5\ - ti) in the above equation represents the difference between optimal 

response and assigned target value. Furthermore, to avoid the optimization process from 
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focusing near the assigned target for all types of quality characteristics, and to maximize 

the desirable deviation for LTB and STB quality characteristics, the above equation is 

merged with hybrid quality loss function (Bharnare et al., 2009}. The Hybrid quality loss 

function minimizes the undesirable deviation and maximizes the desirable deviation using 

exponential transformation. The loss value for undesirable deviations is calculated using 

the equation below: 

/, ( d) = I (exp (cf)) 2 I 

To calculate the total loss value for the desirable deviation, a negative exponential 

transformation is used as shown below: 

/,(cl) = I (exp(--ct))1 I 

(4-17) 

(4-18) 

To achieve continuous nonlinear objective function, the exponential data transformation 

for the deviation variable is used in the objective function (Bhamare et al., 2009). The 

HQLF concept is applied on equation (4-16), and it is modeled for all types of quality 

characteristics as shown below: 

For LTB quality characteristics 

V V V 

z = Ircexp(-d;\)) 2 + (exp(cl~i)f J +II 2 fexp(d1)H exp(c11-;)} where i * j 
i=1 /cc) r-1 

For 5TB quality characteristics 

V V V 

z == L [(exp(d!J) 2 + (exp( -ci;JJ21 +LI 2 { exp(c11J }f exp( d~;)} where i * j 
i=1 i= 1 j=1 
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For NTB quality characteristics where both side deviations are undesirable: 

V V I' 

z = L[(exp(d:t1))
2 + (exp(d~1))2 J +IL :Z {cxp(cj~1) + exp(cfU) 

i = 1 i . 1 J .• l 

{exp(diJ + exp(d~J)} where i -:t j (4-19) 

where vis the number of quality responses, d7i, d;i and d:1 are undesired deviational 

variables for mean response model, d;i, and d 2 i are desired deviational variables for 

mean response model. To include the random variability in the proposed approach, the 

equation (4-19) is merged with the Awad and Kovach (2011) model shown in equation (4-

12). The integrated objective function of the proposed model is formulated below. 

For LTB quality characteristics: 

n 

z = L l (exp(d;1))2 + (exp( -cin 1)):!] I { exp( -cl
1
'.i)f + {exp( c1

11
i) )1 

J 

l=l 

n n 

+II 2aiJ { exp( ci 1; 1) +exp(-d1:J }{ exp( ci 11J +exp( -c11'. 1 )} 

i=l j=1 

For 5TB quality characteristics 

n 

where i * j 

z = L[(exp(d;)f + (exp(-cf~J)2Jl{cxp(c1 1:i)}
2 + {cxp(-d 1u)} 2

J 

i= 1 

n n +IL 2a11 {exp(-d~J +exp(d1~i)}{ cxp(-d 111 ) +cxp(c11:J} where i -:t j 
i=1 j=1 

For NTB quality characteristics 

n 

z = L [ (exp ( d; 1) )2 + (exp ( - d n 1 ) i ][ { c xp (di J f + {exp ( cl Pi) f l 
i=l 
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n n 

+ _L _L 2CJiJ { exp( d~i) +exp( cir~J}{ exp( cf ~1 ) +exp( c1
1
:
1

)} where i * j 
i=l J=l 

The overall model for all three types of quality characteristics is formulated and it is 

shown below: 

Minimize 

1J 

z = _L{(exp(-d:i)) 2 + (exp(ci;i)f}{(exp(-ciiJ/ + (cxp(dPJy'} 
i=l 

V 

+ _L [(exp(ci:i))2 + (exp(-ci~i))2 }{( exp( ct 1: 1 ) y' + ( exp(-cilli))"} 
i=l 

V 

+ L {(exp (cf; i) )2 + (exp (cf~ 1))"} { (exp ( d 1'. J )" + (exp ( d P J f} 
i=l 

V V 

+LL 2au {exp(ci 1~1 ) +exp(d1~1)H exp(<1P 1 ) +exp(ci1'.J} where i * j 
i=l J=l 

s. t. 

(4-17} 

where, vis the number of quality responses, d~i is the desirable and undesirable deviation 

for standard deviation model for i1h quality characteristics, dt, is the desirable and the 
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undesirable deviation (mean response) for i1h quality characteristics, oii is the covariance 

between i
1
h and /h quality characteristic, which is determined from experimental data. 

T1i, T2i and T3i are the required target value for each response, f1i(xj), f2 i(xi) and f1j(x 1
) 

are the response surface model as a function of x. 

The main advantage of proposed approach is that it classifies all quality 

characteristics into three different categories (NTB, L TB, and 5TB), and it explores the 

optimal response values beyond the assigned target by maximizing the desirable 

deviation for LTB and 5TB type of quality characteristics. The applicability of the proposed 

model is demonstrated by considering two examples, and comparing the result with 

existing approaches. Furthermore, to study the superiority, and robustness of the 

proposed approach, the sensitivity analysis is performed by considering different values of 

input parameter (target). 

4.5. Example 4 

To compare the effectiveness of the proposed model, we consider a problem 

discussed in Kim and Lin (2006), and Awad and Kovach (2011) to measure the properties 

of colloidal gas aphirons (colloidal gas aphirons is the micro bubbles formed due the 

mixing of surfactant solutions) and it is measured using three responses. These three 

responses are, stability (Y1 )--LTB, volumetric ratio (Y2 )-STB, and temperature (Yi)-NTB 

type of quality characteristics. The design factors which affect the performance of CGA 

properties are concentration of surfactant (X 1 ), concentration of salt (X 1 ), and time of 

stirring (X 3 ). The optimum parameter values for Y1 is greater than 3, Y2 is less than 0.6, 

and Y3 is between 15 and 45, with a target value of 30. Design engineers are interested in 
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achieving stability close to 7 and volumetric ratio close to 0.1 as targets. The two quality 

characteristics: stability and volumetric ratio are positively correlated with correlation 

coefficient of 0.865. Using experimental data, a second order models are developed for 

each response as shown in the equation below: 

y[l2 = 0.46 + 0.13Xl - 006XL + O.OSX; - 0.07 Xi 2 
- 0.04X; 2 

(4-23) 

The experiments are replicated to determine the variance within the experiments. 

Response surface model for standard deviation is developed for three quality 

characteristics. The desired standard deviation for stability and volumetric ratio is O with 

an upper bound value of 0.1. The acceptable standard deviation for temperature is 1 with 

an upper bound value of 2. The second order models developed for three standard 

deviations are given below: 

- L L r:-Yal = 0.06 + 0.llX2 + 0.06X1 + 0.12X 1 + 0.11X, - 0.10X 1X; + O.(bX;,X; 

Ya2 = 0.02 - 0.01X1 + O.OlX, - O.OlX, + o.02x/ -- O.OlX1X, + 0.02X2X; 

(4-24) 

4.5.1. PCA Based Approach 

A weighted principal component method proposed by Liao (2006) is used to solve 

the above multiresponse problem. The quality loss value is determined for all quality 

characteristics, and the proportionality constant is set to unity for calculation purpose. 

The quality loss value is normalized for each quality characteristic using the equation 

shown in (4-1), and normalized quality losses (NQL) are shown in Table 10. The PCA is 
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performed using the statistical software, Minitab 15 on normalized quality loss data to 

calculate Eigen value, explained variation, and Eigen vector for each principal component, 

and it is shown in Table 11. 

Table 10. PCA Data Summary 

I : 1 

X1 X2 X3 NQL 1 I NQL2 i 
NQL3 

I Z1 Z2 z, I MPI 
~~~---t I I 

i f------ -- ' 

-1 -1 -1 o.398 I 0.962 0.649 1 0.481 1 -0.386 -1.060 i 0.149 
._ ____ I I ----- -~---- --- ------i--

-0 426 1 1 -0.351 i 1 -1 -1 0.927 · 0.277 0.262 -0.167 -0.892 I 
I ' 

-- -- ----- -

0.6921 
i 

0.3931 -1 1 -1 0.068 1.000 i 0.336 -0.081 -0. 795 I 
--I------- - -- j 

1 I 
1 1 -1 0.746 0.567 0.000 I -0.140 i 0.154 -0.914 -0.061 ', 

- - 1 j 

-0.003 i -1 -1 1 0.373 0.795 0.995 I 0.439 I -0. 763 -0.993 
i ! ' -- ------ -

0.768 
1 1 1 -1 1 1.000 0.108 -0.513 i -0.698 -0.923 1 -0.586 i 
I I 

-- ---- -- t ; j j 

-1 1 1 0.000 0.988 0.951 I o.s29 
1 

-0.681 -0.854 0.276: 
! 

--1------- .. -

0.7311 1 1 1 0.740 0.400 -0.135 ' -0.596 -0.932 -0.311 , 
-~ ---~ ...------ ------ -- i 1 

j 

-1 0 0 0.258 0.918 1.000 I 0.606 I -0.740 -0.997 i 0.111 i 

' ---- ;.----·- ------ ---- j 

' 1 0 0 0.754 0.277 ( 0.802 i -0.218 I -0.695 -0.871 ! -0.396 
-----I----- -~ - -- -- -- - - - +--

0 -1 0 0.869 0.000 ( 0.884 I -0.4 77 -0.839 -0.778 I, -0.607 · 
-- ~-~ -- t -

0.951 ! 
j i 

0 1 0 0.455 0.775 \ 0.360 1 -0. 723 -1.029 I -0.041 '. 

~.5571 
1 

j 
1 

0 0 -1 0.815 1 0.556 i 0.253 I -0.328 -1.054 i 0.023 i 
I 

I 
0 0 1 0.602 0.277 1 0.951 -0.087 ' -0.842 -0.791 I -0.359 

I 
I j I ~ ------- -

- ' I 
0.926 0.025 -0.782 -0.881 -0.270 . 0 0 0 0.587 0.429 : 

I 
I ---- J __ 

Table 11. Explained Variance and Eigen Vector 

~~:::-~~ -~ ----T Explained Cumulative ncipal I Eigen 1 I 

I I 
Eigen Vector ponent f Value 1 Variation Variation 

ro ___ -11.911-8 1 0.637 0.637 (0.709, 0.021, -0.705) 

~~---~--- - -

(2 I 1.0103 1 0.337 0.974 I (0.687, 0.244, -0.684) 
-:---- ---- - I r PC3 0.0779 0.026 1.000 (0.158, -0.97, -0.187) I ! 
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Using the Eigenvectors from Table 11 and the normalized quality loss value from Table 

10, a relation between the principal component and the response is derived which is 

known as principal component score (zi) and it is shown below: 

Z1 = -0.709NQ/,1 + 0.02.lNQ/,2 - 0.705NQl,i 

z2 = 0.687 NQL 1 + 0.2.44NQl,1. - 0.(,B4NQJ,, 

7 3 = 0.15BNQL 1 - 0.97NQJ, 2 - ll.1B7N()l,i 

M Pl = 0.6377 1 + O.:U7z2 + 0.02.(,z3 (4-25) 

Furthermore, the overall multiresponse performance index (MPI) is calculated using 

explained variation for integrating all principal component score. The overall 

multiresponse performance index is calculated using the equation shown in (4-25). The 

principal component scores, and the overall performance index are calculated for all 

experiments and the obtained values are shown in Table 10. The larger the multiresponse 

performances index, the better quality of the product. Considering the multiresponse 

performance index, the optimal factor setting is selected by computing main effects of 

each design factor level. The design factor setting which attains optimal response value is 

shown in Table 12. Furthermore, the design factor value is used in the standard deviation 

models to determine the optimal standard deviation values. 

4.5.2. Awad and Kovach Method 

The problem is solved using multi-response optimization model suggested by 

Awad and Kovach (2011), the covariances between the quality characteristic are 

determined using the response value obtained from experimental design. The 

optimization model for the Example 2 is shown below: 
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Minimize 

2 ( 7)!. !. ( )!. L ( )!. Ya1 Yµ1 - + Yo2 Y112 - 0.1 + Ya i Y1u - :-rn 

+2(0.095)(Yµ1 - 7)(Y11L - 0.1) 

+ 2(-0.95)(Yµ 1 - 7)( Y1u - :rn) 

+ 2c-o.os)(Yµ2 - o.1)(y11 , - :rn) 

S.t. 

0.46 + 0.13X1 - 006X2 + 0.05X, - 0.07 X / - 0.0'1X / = Yp2. 

28.36 - 1.48X1 + 2.33X, - O.lSX/ - 1.42X/ - 0.71X 1K, = y 111 

0.06+0.11X2+ 0.06X,+ o.12x/+o.11x/-O.lOX1X1+0.0:iX2K1 =yo\ 

0.02 - 0.01X1 + 0.01X, - 0.01X, + 0.02X/ - 0.01X1X, + 0.02X2X, = YoL 

- 1 :s: X, :s: 1 (4-26) 

The model is solved using GAMS nonlinear programming software. The design factor 

setting, corresponding optimal value for each quality characteristic, and the quality loss 

value is shown in Table 12. 

4.5.3. Proposed Method 

The multiresponse optimization problem is solved using the proposed method and 

the model developed for the example problem is given below: 
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Minimize 

Z = [(exp(-d4)) 2 + (exp(ci1)) 2 }{(exp(-cit))2 + (exp(c/ 1 ))
2

} + 

{(exp(-d5)) 2 + (exp(dt)) 2 }{(exp(-d;_)) 2 + (exp(dl)f} 

+ { (exp(-d;:))2 + (exp(cli;))2}{(exp(d, )) 2 + (exp(d'. ))2} 

+ 2 (0.095) {exp(-c1n +exp(d1 )} {exp(-cf.,,_) +exp(dJ)} 

+ 2(-0.95) {exp(-dn +exp(d:)} {exp(d i) +exp(d;)} 

+ 2(-0.05) {exp(-ct;_) +exp(dJ)} {exp(d,) +exp(d/)} 

S.t. 

r 2 2 + _ 0.46 + 0.13X1 - 006X2 + O.CbX, - 0.07X; - O.(HX; + d!. - d 2 - 0.1 

28.36- 1.48X1 + 2.:nx, - 0.1SX 1
2 

- 1.12X/ - 0.71X1X1+ ci1 - cl) = :rn 

2. l. r + -0.06 + 0.11X2 + 0.06X, + 0.12X1 + 0.1 lX; -- 0.1X1X; + O.(hX2.X;+ d4 - cl4 - () 

0.02 - 0.01X1 + 0.01X, - 0.01K, + 0.02X/ - 0.01X 1X1 + 0.02X2 X;+ dr, - c1:, = () 

-1 < x, s; 1 

(4-27) 

In the above model, (d~, dt) are the undesirable and the desirable deviations for stability, 

(di, d2) are the undesirable and the desirable deviation for volumetric ratio, and 

( d3, d;t) are the undesirable deviation for temperature, (d1 , c1:,, cir'.:) and (d4 , c1;·) are 

the undesirable deviation and the desirable deviation for standard deviation constraints 
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for stability, volumetric ratio and temperature respectively. The model is solved using 

GAMS nonlinear optimization software. Table 12 show the results obtained by solving the 

multiresponse optimization problem considering three different approaches (Awad and 

Kovach (2011), proposed method, and PCA based approach). 

Table 12. Example 4 - Results 

f Parameter -- ~ -
T-- --- - --- - --

I Awad and i Proposed PCA based 
! 

I 

/Method 1 Kovach (2011) Method approach 

Design Setting 

X1 1 0.212 -1 

X2 -0.16 -0.112 1 

X3 -1 -1 -1 
----- -- ---

Mean 

\11 5.67 5.16 3.95 

Yµ2 0.47 0.40 0.19 

Yru 25.07 25.84 24.5 
~--~---

Standard Deviation 

Yrn 0.32 0.13 0.19 

Y03 0.04 0.05 0.04 

y03 0.22 1 4.2 

Quality Loss 14.47 9.18 11.31 
__J____~_ 

Quality loss value is used as performance measure to compare the effectiveness of the 

models. Quality loss values are calculated using the equation shown in equation (3-23). 

The result shows that, for temperature (Y0 ,), the solution attained by PCA based 

approach and Awad and Kovach (2011) are not within the desirable range. Furthermore, 

none of the method attains solution within the desirable range for stability (Y n 1 ) but the 
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proposed method is close to the target value. The PCA-based method also has limitations 

in solving multiple quality characteristics problems. These limitations are: it requires more 

complex calculation to determine optimal solution, the optimal parameter values are 

selected from factor levels only, and do not explore the optimal points between the factor 

level combinations. PCA does not minimize the variance directly instead uses Taguchi's 

robustness concept when experiments are conducted. The other methods (Awad and 

Kovach, (2011), and proposed method} considered in this analysis explore the design 

factor setting between the factor-levels to achieve better solution. Among the methods 

compared, the proposed method achieves better tradeoff by producing lower quality loss 

value. The ratio between the stability and volumetric ratio is used to analyze the effect of 

correlation among the two quality characteristics. Higher the ratio between the optimal 

response values for stability and volumetric ratio indicates lesser correlation effect. The 

proposed method produces higher ratio of 12. 74 units between stability and volumetric 

ratio, which is higher than Awad and Kovach (2011) method with value of 12.01 units. 

Furthermore, assigning the target value for L TB and STB quality characteristics is 

relatively difficult and it involves subjective input (expert's opinion) for selecting a 

particular target. Therefore, to investigate the robustness in terms of parameter selection 

of the two models (Awad and Kovach, (2011) and proposed method), we perform a 

sensitivity analysis by changing the target value especially for LTB and STB type of quality 

characteristics. The purpose of the sensitivity analysis is to understand the behavior of the 

model in dealing with the subjective input (target) or un-ertainty. The target value for LTB 

and STB type responses is varied to perform the sensitivity analysis. Table 13 and Table 14 
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show the results of sensitivity analysis for Awad and Kovach (2011) model and the 

proposed method. The result of the sensitivity analysis clearly shows the robustness of 

the proposed method for varying target value. 

Table 13. Sensitivity Analysis - Awad and Kovach Method 

Target Design Mean 
1 

Standard Deviation 
I 

Quality .. 
---- ---

-x1J_~L Y1 Y2 Y3 
~ 

7 0.1 30 1.00 -0.16 
- ---- t----- -------

5 0.3 30 -0.56 0.00 
--- ----

3 0.3 30 -1.00 0.04 

I 

Y0 L l Y0 { Loss 
I 
1 14.46 

1 
, 8.74 

i 
0.05 i 0.22 

I I 
1 1 
: 0.03 ' 8.56 
I ! 

\ 

1 o.o3 j 8.23 : 3.78 

x.J Ylj 1 \ v,JL 
·' '1 ' I 
- ... i f 1 

-1.0 i 5.64 , 0.44 25.07 I 0.32 
I 1· , . 

- . - ' I 
0.31 i 4.43 ' 0.38 1 29.99 , 0.15 

• J ' 
0.11 3.96 : 0.26 : 30.01 ', 0.20 

5 0.5 30 -0.52 -1.0 

3 0.5 30 -0.87 -0.15 
____ L 

i O : + 
I o. 1 

1 

12.81) 13.15 
I 1 , 
i 0.03 

1 

8.31 : 5.52 
I I 
j j 

- - - - -- r . . 
o.86 5.12 , o.45 . 30.00 I 0.12 
- j l , 
0.17 4.17: 0.31 1 30.01 I 0.16 

Table 14. Sensitivity Analysis - Proposed Method 

Target --r Design Mean Standard Deviation : Quality , 

Y1 Y2 Y, 
7 0.1 30 0 

5 0.3 30 0 
--------r----

3 0.3 30 0 
-- ---

5 0.5 30 0 
~- ------ ----- -

3 0.5 30 0 
I -----

X
1
-J--x; 

.212 -0.11 

.219 -0.08 

.224 -0.06 

X, 

-1.0 
: i 
I 5.16 1 0.4 ' 25.84 i 0.13 

1 • 
-1.0 1 5.15 : 0.40 I 25.84 1 0.13 
- -- i 

0.13 -1.0 I 5.14 0.40 2s 84 
-------,.- l 

0.05 

0.05 

0.05 

.225 -0.06 -1.0 I 5.14 I 0.40 25.84 0.13 0.05 
I ------ 1--

.229 -0.05 -1.0 i 5.14 ' 0.40 ' 25.85 0.14 , 0.05 

Yni Loss 
, 

0.95 I 9.18 

I 1.00 \ 9.11 
J 

i 1 

I 
1.00 I 9.08 

f j 
i 1.00 ' 9.08 
·, I 

I 1 

' 
1.00 I 9.07 

As shown in these two tables, the model proposed by Awad and Kovach (2011) produces 

high variation in the optimal results for all quality characteristics when the target value is 

changed. The quality loss value also shows a large variation when the target value is 

changed. On the other hand, the proposed approach provides almost similar results with 

minimum variation in both optimal response and quality loss values, which demonstrates 

the robustness for subjective uncertainty. This clearly proves the superiority of proposed 
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method over existing methods, which includes the model proposed by Awad and Kovach 

(2011). 

4.6. Example 5 

To study the behavior and to demonstrate the applicability of the proposed 

methods, another correlated multiple quality characteristics problem is considered for 

analysis. This study is based on chemical filtration process taken from Kovach and Cho 

2008. The effectiveness of the chemical filtration process is determined by measuring 

dosages. In order to optimize the chemical filtration process, engineers are interested in 

three responses: filtration time (5TB), filtration volume (NTB), and filtration purity (LTB). 

The three responses are controlled by two input design factors: chemical temperature 

(X1 ), and pressure (X 2 ). It is required to reduce the filtration time to less than 7 seconds; 

filtration volume has to be maintained at a target value of 10 within the allowable 

tolerance of ±0.5 ml. Filtration purity needs to be as high as 100% if possible. The 

response surface model is developed by conducting experiments, and the models are 

shown below: 

Yµ2 = 10.0005 + 0.049SX1 + 0.0492X;, - O.OB9X/ - o.oosx/ - 0.032SX1X;, 

Yµ3 = 95.11 + 0.52X1 + 0.6SX2 - 0.17.SX/ - 0. usx/ - (J.071 X1 X2 (4-28) 

The experiments are replicated to study the variance parameter involved in the 

experiment. The standard deviation model is developed for three quality characteristics. 

The desired standard deviation values for filtration time, filtration volume and filtration 
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purity is 0. A second order model is developed for three quality characteristics, which is 

given below: 

y(Jl = 0.169 + 0.00189X1 + 0.001:iX2 - o.os:rnx/ - O.OS1SX/ + O.OO:Z:dX1X2 

Y(J2 = 0.0478 - 0.0003X1 - 0.0B771X2 + O.OOY3X/ + 0.00103X/ + o.on12X1X2 

(4-29) 

For optimization purpose, a target value of 1, 10, and 100 is assigned to filtration time, 

filtration volume, and filtration purity. The three quality characteristic<,: filtration time, 

filtration volume, and filtration purity are correlated each other. Table 15, shows the 

significant correlation coefficient values for three quality characteristics calculated using 

Minitab 15. The filtration time and filtration volume are negatively correlated; filtration 

time and filtration purity are negatively correlated; filtration volume and filtration purity 

are positively correlated. 

Table 15. Example 5 - Correlation Matrix 

Responses 

Y.2 

1--~ Y, 
L-~·---- --

-0.623 
i 

-0.585 , o.86 I 

The above problem is solved using the proposed method, PCA based method, and Awad 

and Kovach (2011) method. The design factor setting which attains optimal response 

value is shown in Table 16. The design setting for chemical temperature and pressure are 

determined to produce optimal filtration time, filtration volume, and filtration purity. In 

order to compare the effectiveness of each method in achieving optimal solution, overall 

quality loss values are calculated using the equation (3-23). The result shows that among 

the three methods, the proposed method provides lesser quality loss value. 
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Table 16. Example 5 - Results 

Parameter -f Awad and 1 Proposed I PCA based 
I I 

/Method : Kovach (2011) 1 approach I 
! approach ---------1-Design Setting 

X1 1.259 0.857 0 

X2 1.159 1.386 -1.68 
-~--

Mean 

\11 0.944 0.995 1.605 

Yr,2 10.04 10.053 9.904 

\13 95.96 95.991 93.63 

Standard Deviation 

Ya1 0.02 .042 0.016 

Ya:, 0.08 0.064 0.074 

Ya3 0 0 0 
~----------

Quality Loss 0.012 0.008 0.376 
~~--------

Furthermore, the robustness in terms of variation in input parameters of proposed 

method and Awad and Kovach (2011) models is studied by analyzing the sensitivity of 

input parameter for LTB and STB type of quality characteristics. The analysis showed that, 

the Awad and Kovach (2011) model produces high variation in optimal results and the 

proposed method is insensitivity to parameter variation, and achieves better tradeoff 

between the quality characteristics. This demonstrates the robustness of the proposed 

model for subjective uncertainty. 

The results of these two examples and the sensitivity analysis show the 

consistency and repeatability of the proposed approach In all the cases, the proposed 

approach achieves better result. Furthermore, the proposed method is more robust and 
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reliable in attaining more consistent optimal solution for rnultiresponse optimization 

problems. For LTB and STB quality characteristics, the proposed methods explore the 

solution space beyond the target values to determine optimal solution. 

4.7. Conclusion 

This chapter presents alternative multiresponse optimization approach for solving 

multiple correlated quality characteristics. The proposed method achieves better tradeoff 

between multiple quality characteristics in design optimization, and the mechanics of the 

proposed approach is illustrated using two correlated multiple quality characteristic 

examples from literature. The proposed approach is also compared with two other 

optimization techniques, which consider correlation in the analysis. The comparison 

shows the superiority of the proposed method. The sensitivity analysi~ '>how~ that the 

proposed method is highly robust to subjective input and hence provide~ better trade-off 

consistently under uncertain conditions as well. 
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CHAPTER 5. CONCLUSION AND FUTURE DIRECTION 

5.1 Conclusion 

In this research, a comparative study was performed to investigate the 

effectiveness and ability of existing multiresponse optimization methods for achieving 

better tradeoff among multiple quality characteristics. Furthermore, the comparative 

study was extended to analyze the sensitivity in selecting parameters for optimization. 

The constraint optimization, desirability function based approach, and standard quality 

loss function methods are sensitive in selecting response upper and lower limits. All loss 

function based methods except hybrid quality loss function method are sensitive to target 

values assigned in the model. 

Furthermore, all the multiresponse optimization methods compared arc sensitive 

to the priority assigned for each quality characteristic. The sensitivity of these models to 

input parameters shows that parameter selection is a more critical input and it is highly 

subjected to expert's engineering judgment. When considering all loss function based 

multiresponse optimization methods, the HQLF method showed certain advantages in 

exploring the optimal region beyond the target value. One of the reasons for this 

advantage is that HQLF based model includes desirable deviation in objective function 

whereas other loss function based models minimize total deviation including both 

undesirable deviation and desirable deviations. 

The comparative study also investigated the effertiveness of these six 

multiresponse optimization methods in dealing with correlated multiple response 
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problems. The six multiresponse optimization methods discussed in this study were found 

incapable to deal with correlated responses effectively. The results showed that the 

correlation between the quality characteristics (especially when correlated quality 

characteristics are opposite in nature) significantly affect the optimal solution. 

A multiresponse optimization method has been proposed for addressing the 

correlation issue between quality characteristics. The proposed method simultaneously 

minimizes the deviation between mean and target, increases the robustness in terms of 

random variability and also minimizes the effect of correlation between quality 

characteristics. The validation and comparative study of the proposed model showed that 

the proposed method attains lower quality loss values resulting in better tradcoff among 

the correlated quality characteristics. The study further demonstrated that propose 

model is insensitive to uncertainty in input parameter values and showed significant 

superiority over existing methods including one proposed by Awad and Kovach (2011) 

5.2 Recommendations for Future Research 

In this research, the problems from literature are selected based on the response 

surface models which are developed already. These problems do not include noise factors 

in the optimization. The inclusion of noise factors will increase the input variable in the 

response surface model and will predict the practical operating scenario. 

The proposed model can be integrated to reliability based robust design 

approaches in product design and development process. While integrating, the 

advantages of proposed approach should be combined with reliability models. In the 

73 



product development process, the proper functioning of a product depends on the 

performance of the subsystem. The proposed approach can be used for optimizing 

different quality characteristics from different sub systems of a product. 
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