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ABSTRACT 

Advances in computing and communication have resulted in large-scale distributed 

environments in recent years. They are capable of storing large volumes of data and, often, have 

multiple compute nodes. However, the inherent heterogeneity of data components, the dynamic 

nature of distributed systems, the need for information synchronization and data fusion over a 

network, and security and access-control issues makes the problem of resource management and 

monitoring a tremendous challenge in the context of a Smart grid. Unfortunately, the concept of 

cloud computing and the deployment of distributed algorithms have been overlooked in the electric 

grid sector. In particular, centralized methods for managing resources and data may not be sufficient 

to monitor a complex electric grid. Most of the electric grid management that includes generation, 

transmission, and distribution is, by and large, managed at a centralized control. In this dissertation, 

I present a distributed algorithm for resource management which builds on the traditional simplex 

algorithm used for solving large-scale linear optimization problems. The distributed algorithm is 

exact, meaning its results are identical if run in a centralized setting. 

More specifically, in this dissertation, I discuss a distributed decision model, where a large-

scale electric grid is decomposed into multiple sub models that can support the resource assignment, 

communication, computation, and control functions necessary to provide robustness and to prevent 

incidents such as cascading blackouts. The key contribution of this dissertation is to design, develop, 

and test a resource-allocation process through a decomposition principle in a Smart grid. I have 

implemented and tested the Dantzig-Wolfe decomposition process in standard IEEE 14-bus and 

30-bus systems. The dissertation provides details about how to formulate, implement, and test such 

an LP-based design to study the dynamic behavior and impact of an electrical network while 
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considering its failure and repair rates. The computational benefits of the Dantzig-Wolfe approach 

to find an optimal solution and its applicability to IEEE bus systems are presented.  
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CHAPTER 1. INTRODUCTION 

The worldwide electric power industry is undergoing a transformation unlike anything it has 

seen in over a century. The entire supply chain for electricity, including how it is generated, 

transmitted, distributed, and consumed, is being overhauled with the goal of establishing a more 

sustainable energy future. Adopting new technologies and the associated market restructuring are a 

complex undertaking that requires understanding the many interacting variables and conflicting cost 

functions for various market participants, such as power producers, system operators, load-serving 

entities, regulators, aggregators, service providers, and consumers. The Smart grid is an information-

enriched energy network, and it is going to require substantial information processing, storage, and 

data-mining resources. An entire new software sector is rising to meet the challenges and to fill the 

many needs created by its arrival. Spending on the Smart grid is estimated to be $165 billion over the 

next 20 years, and a good portion of this cost will be on software and data services [RPT07, AW05]. 

The Smart grid is a complex, highly networked system that must operate in diverse and often 

challenging environments that combine very large complex facilities with vast numbers of edge 

nodes, e.g., the smart meters that are its consumer fronting boundary. The Smart meters will require 

sophisticated software in order to operate efficiently. Upgrading utility information and control 

infrastructure is critical to maintaining the reliability of the electric distribution system at a time of 

rising costs. 

To meet the enormous challenge of creating the sustainable energy infrastructure of the 

future, driven by a Smart grid, researchers and practitioners need to quantitatively investigate the 

complex interactions between different components of the electricity grid and to evaluate the impact 

of new ideas and technologies, taking into consideration the interdependencies between markets, 

power flows, and information and communication networks [Ami05]. To assist for a quantitative 
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understanding of the grid, there is an unprecedented need for (near) real-time visibility about the 

state of the grid and its loads, with volumes of data being collected from smart meters and other 

sensing devices added to the grid. The dissertation is a collection of design models which address 

these complex interactions through linear programming (LP) models. LP-based systems provide a 

paradigm for conceptualizing, designing, and implementing software systems with simplicity and 

robustness. The proposed master LP model can act autonomously and can communicate with other 

LP structures across open and distributed environments.  

The proposed approaches in the dissertation are comprised of multiple design models as 

given in the Table 1. The dissertation details these models in the following chapters. 

Table 1. List of linear programming models 

System models Models 

Model 1 
An LP-based resource optimization using the 
Dantzig-Wolfe technique 

Model 2 
An optimal resource assignment using branch and 
bound in a Smart grid 

Model 3 
A probabilistic energy-reallocation technique using 
linear programming in a Smart grid 

The Model 3 contribution is a probability-based LP formulation for a directed network 

under uncertainty conditions with supply and demand units. Here, my contribution is on modeling 

and expanding basic integer linear program formulation of a bi-partite graph to network grid 

structure with known uncertainty. This approach is described in chapter 3. The Model 2 

contribution of my work involves developing and implementing a branch-and-bound technique for 

allocating the distributed energy resources (DERs) to a set of demand units. Here, I discuss how 
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Distributed Energy Resources can maximize their preferences subjected to various equality and 

inequality constraints. The contribution of Model 3 is the formulation, implementation and testing 

of a decomposition procedure for an electric grid resource allocation problem. 

In the dissertation, we treat an agent as a piece of software code that can run LP functions 

continuously and autonomously in an environment where other processes take place and where 

other agents exist. The sense of “autonomy” means that the agent activities do not require constant 

human guidance or intervention. I envision this architecture as a distributed system consisting of a 

collection of autonomous micro grids, which can make decisions themselves, connected through an 

electrical network and distribution middleware, which enables the Independent System Operator 

(ISO) to coordinate their activities and to share the resources of the smart grid system so that 

consumers perceive the system as a single, integrated computing facility. 

Smart grid technology promises to revolutionize the way in which electricity is produced, 

delivered, and utilized. A fundamental problem in building open-distributed systems is to design 

mechanisms that compute optimal system-wide solutions effectively despite the self-interest of 

individual micro grids. In particular, using renewable energy sources is envisioned to result in a 

massively distributed power-generation and distribution system composed of a large number of 

generating stations operating on disparate renewable technologies. The optimal allocation of existing 

energy resources becomes a challenge due to the massively distributed nature of generation facilities 

and consumption sites, and due to the uncertainty caused by inherent random fluctuations in 

generation. How to allocate resources effectively and computationally to such a highly distributed 

system? Therefore, I target a distributed resource allocation problem to satisfy both local and global 

objectives to reach an optimum solution for a Smart grid application by studying the current IEEE 
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electric-grid bus systems. I propose an iterative, distributed algorithm for its solution. The algorithm 

is scalable for deployment in large electricity networks because it requires fewer computations than 

modeling via a centralized direct LP implementation.  

Objectives of the Dissertation 

The main objective of this dissertation can be summarized in a single sentence: “to develop 

an LP model for the resource-allocation problem in a Smart grid.”  The dissertation focuses on a 

distributed linear programming technique for an electric utility’s resource-allocation problem.  The 

computational effectiveness of the Dantzig-Wolfe modeling and solution technique is developed, 

and associated tasks and objectives are as given below. 

Objective #1. Formulate a Mathematical Model for the Smart grid Resource Allocation 

Problem 

Task 1: To study and review prior modeling approaches in the literature to ascertain the 

computational benefits for resource-allocation problems. To study how these approaches can be 

applied in a Smart grid application by reviewing various techniques, such as LP, fuzzy logic, and 

heuristic methods, a literature review section is detailed in Chapter 2. Compared to the other 

formulation types reported in the literature, the Dantzig-Wolfe (DW) LP formulation has a much 

simpler structure, and I argue that it can be modeled for large-scale systems such as the IEEE 30 

bus system for Smart grid. Solution algorithms for LP problems are well established and exist in 

commercially available software; these solvers, however, are intended for generic problems and 

cannot detect and take advantage of special problem structures, limiting the size of the problem that 

can be solved. I address how Smart grid resources can be formulated as a special case structure in 

order to apply the DW. 
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Task 2: Formulate the Dantzig-Wolfe decomposition constraints for an IEEE 14 and IEEE 

30-bus system. A LP formulation of inter region constraints by decomposition process is described 

in chapter 5.  

Task 3: Formulate bi-directional flow network constraints. 

Task 4: For the 14-bus system, decompose the entire grid into multiple regions (Regions 1, 

2, and 3), and formulate their constraints.  

Task 5: Develop a two-region decomposition of the same problem, and compare with the 

three-region decomposition formulation. This task provides information about whether all 

decompositions yield similar performance and computational time savings. 

Objective #2. Design, Develop, and Implement a Distributed Solution Procedure for the 

Mathematical Model 

Task 1: Develop any additional constraints and objectives for the proposed problem. Here 

the objectives are twofold: 1) reduce the overall system failure rate and 2) reduce the repair rate of 

an IEEE bus system. 

Task 2: Study the suitable LP solver tools to implement such a scheme. 

Task 3: Design a distributed solution procedure for computing dual values for the Dantzig-

Wolfe procedure, and interchange between local micro grids and global objectives. 

Task 4: Implement the LP approach directly without decomposition in a large-scale algebraic 

LP solver such as A Mathematical Programming Language (AMPL). 

Task 5: Implement Task 4 with decomposition applied. 
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Objective #3. Develop an Experimental Design for Testing the Procedure referred to in 

Objective 2 

Task 1: Set up the simulation environment in AMPL for the IEEE 14 and IEEE 30-bus 

systems.  

Task 2: Develop experimental design parameters for power flow constraints in transmission 

lines. Restrict flow in one direction at a time by using binary operators. 

Task 3: Study the feasibility regions of the proposed mixed-integer problem. 

Task 4: Develop contingency scenarios about how the method will react to and the 

feasibility of the solution it provides. 

Task 5: Choose the Computer Processing Unit (CPU) run time as one of the main 

performance parameters. 

Objective #4. Carry out the Experimental Testing referred in Objective 3 

Task 1: Test the experimental setup for various scenarios. Conduct sensitivity analysis by 

simulating line failures and observing the optimum. 

Task 2: Compare DW procedure with direct LP implementation, and analyze the resultant 

savings in computations. 

Task 3: Test the scalability of the procedure as the number of resources and the system 

demand increase. For example, how does the procedure scale in a 30-bus system? 

The results tested are discussed in detail in Chapter 6, yielding significant results on 

computational savings for such a decomposition procedure used by utility operators in the event of 

contingency scenarios. Such a decomposition formulation is neither tested nor formulated using real 

IEEE bus-system data. The applicability of DW procedure is the first of its kind in considering bi-

directional power-flow constraints. I strongly believe that this novel technique will enable local 
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system operators to predict, apply, maintain, and balance resource allocation effectively for their 

systems in a time-sensitive grid. I assert that this approach will generate broad interest in the utility 

market for analysis and adaptation. Moreover, the procedure is guaranteed to converge and does not 

require the revelation of local information from each micro grid, and all algorithm actions can be 

realized by programmable smart devices on the Smart grid. 

Table 2. Objectives and the number of tasks 

Completed Objectives Completed Tasks 

Objective #1 Task 1, Task 2, Task 3, Task 4, and Task 5 

Objective #2 Task 1, Task 2, Task 3, Task 4, and Task 5 

Objective #3 Task 1, Task 2, Task 3, Task 4, and Task 5 

Objective #4 Task 1, Task 2, and Task 3 

Table 2 shows the number of tasks for each objective that are completed as part of the 

dissertation. The dissertation has seven chapters that include this introduction chapter. Chapter 2 

details the literature review on linear programming and Smart grid modeling. Two published papers 

are included as Chapters 3 and 4, and they describe a probabilistic resource-reallocation modeling as 

well as a branch and bound technique, respectively.  

In summary, I have contributed to the three models using LP in the dissertation. The first 

model contribution is a probability-based LP formulation for a directed network under uncertainty 

conditions with supply and demand units. Here, my role of contribution is on modeling and 

expanding basic integer linear program formulation of a bi-partite graph to a network grid structure 

with known uncertainty. This approach is described in the published paper given in Chapter 3. The 

second contribution of my work involves developing and implementing a branch-and-bound 

technique for allocating distributed energy resources (DERs) to a set of demand units. Here, I 

present results that show how Distributed Energy Resources can maximize their preferences 
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subjected to various equality and inequality constraints. This model is completely developed, 

implemented and tested by me using a branch and bound method.  This method is outlined in the 

published paper of Chapter 4.  

Chapter 5 detail a decomposition modeling using the Dantzig-Wolfe procedure as well as its 

formulation for the standard IEEE 14-bus and IEEE 30-bus systems. This procedure is my third 

major contribution as part of the dissertation. I have directly contributed to all phases of the 

formulation, implementation and testing of the method and its applicability in an electric grid 

structure. Chapter 6 describes the the implementation and testing phase and results of the Dantzig-

Wolfe procedure. The conclusion and future work are provided in Chapter 7.    
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CHAPTER 2. LITERATURE REVIEW  

The goal of this chapter is to provide prior work conducted with linear-programming 

approaches for the resource-allocation problem. Operations research (OR) modeling often concerns 

finding the best quantitative solution for management problems [HL01, Mom01]. The OR methods 

include mathematical optimization modeling as simulation, and using OR methods has grown 

significantly since their origination during World War II. Templeman [Tem91] describes quantitative 

OR methods for designing and controlling industrial and economical operation. Many private and 

governmental organizations have improved their operations through the successful use of 

mathematical programming [Wad83, Aro02, Chv83, Dan63, and SS85]. This dissertation focuses on 

a resource-allocation problem and applies linear programming for the solution approach.  

Linear Programming in Practice 

LP problems are decision problems where the purpose is to compute values for a set of 

decision variables in order to optimize (maximize or minimize) a linear objective function, subject to 

a set of linear constraints. A formal definition for the class of LP problems is given below; first, 

because this dissertation is primarily about solving LP problems in practice, I briefly consider the 

context in which such problems arise and the importance of being able to solve them. 

A diverse range of real-world problems can be approximated and formulated as LP 

problems, and there is often great economic or other value attached to finding an optimal solution. 

The LP field was originally developed to plan military-logistic operations during the Second World 

War (The word “programming” in LP means “planning.”), and since then, the range of applications 

has flourished. Examples include industrial diamond blending, hired-car fleet management, 

distribution warehousing and supply chain management, oil refining, and gas pipeline flow. (See 

[GPS00, BBG77, Bou01, Bou02, and Wil93] for many other applications.)  
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The value of being able to identify an optimum solution, as opposed to a feasible solution or 

sometimes no solution at all, can run into the order of many millions of dollars. For instance, a 

difference of 1% in the objective value in the yearlong PowerGen problem represents an annual cost 

difference of $520 million [Pow98]. 

Dr. Warren Powell of Princeton University and others developed a model for the 

Commercial Transport Division of North American Van Lines. Under high levels of demand 

uncertainty, this model dispatches thousands of trucks from customer origin to customer destination 

each week. Working closely with upper management, the project team developed a new type of 

network model for assigning drivers to loads. The model, LOADMAP, combined real-time 

information about drivers and loads with an elaborate forecast of future loads and truck activities to 

maximize profits and service. It provided management with a new understanding about the 

economics of truckload operations; integrated load evaluation, pricing, marketing, and load 

solicitation with truck and load assignment; and increased profits by an estimated $2.5 million 

annually, while providing a higher level of service [PSN+88]. 

The growth of LP as a practical technique would not have been possible without 

simultaneous growth in the power and availability of computing. Today, software for LP 

optimization is highly sophisticated, with several commercial codes being actively developed and 

marketed. A symbiotic relationship exists between the capacity of the codes and the growth of 

applications, with solutions for larger problems being demanded in less time as codes improve. This 

dissertation investigates a well-known, but not well-used, solution method which has the potential to 

solve large problems quickly by exploiting the problem structure. 

LP optimization software uses two main method classes. The simplex method is a gradient 

descent method that moves along the edge of the feasible region [Chv83, Dan63]. Interior point 
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methods (IPM) move through the interior of the feasible region [Wri97]. I do not dwell on these 

well-known methods but take the solution of an LP problem with either of these methods as 

granted, provided that practical considerations allow it. DW decomposition was developed in the 

late 1950s, a decade after the simplex method and many years before interior point methods were 

applied to LPs [Dan63, Dan83].  The DW procedure immediately aroused widespread interest, and 

many attempts were made to implement it as a computational method. Practical experiences, 

however, were mixed, with some claims of success but no lasting achievements, when measured by 

the methods used to solve practical problems. There has been no evaluation about and development 

of different options and strategies for computational implementations, whereas there have been 

continued research and development for over 50 years with the simplex method and for over 20 

years with the Integer Programming Method (IPM). Perhaps the greatest challenge of Dantzig-

Wolfe decomposition has been that, when viewed simply as an alternative LP optimization method, 

successes has been rapidly overtaken by improvements in simplex and IPM implementations. The 

continued improvement in LP optimization technology could be used to enhance implementation of 

Dantzig-Wolfe decomposition. 

In the dissertation, I primarily focus on this technique referred as Dantzig-Wolfe 

decomposition (DW). DW is an optimization technique for solving large-scale, block-structured, 

linear-programming (LP) problems. Problems from many different fields, such as production 

planning, refinery optimization, and resource allocation, may be formulated as LP problems. Where 

there is some structure arising from repeated components in the problem, such as handling multiple 

periods, locations, or products, the problem may potentially be solved using Dantzig-Wolfe 

decomposition. 
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As preparation for our practical work, I investigate how suitable block structures can be 

identified in practical LP problems. I develop the decomposition algorithm from first principles, 

delineating the theoretical requirements and showing which aspects are open for experimentation in 

a practical implementation. I illustrate, geometrically, the transformation from the original problem 

to the Dantzig-Wolfe master problem, and I establish precisely how solutions obtained from the 

decomposition algorithm correspond to solutions for the original problem. I critically review 

previous practical work. 

Smart grid control systems have used both centralized and decentralized (distributed) 

approaches [BCP08]. Centralized control systems have the best performance for small-scale power 

networks and delivering power in one direction (i.e., from substation to loads). Today, the evolution 

of some power-distribution routines, such as distributed power storage and distributed generators 

(DGs), requires deploying smart control systems [NF12]. Most traditional power control systems act 

preventively or reactively to events, whereas more recent control systems add active control options 

to their strategies [Wan01]. Control architectures for power grids have widely used central and 

hierarchal methods. Considering their higher efficiency and reliability, decentralized and fully 

distributed intelligent controllers are beginning to appear [DNS+95]. 

Optimization techniques have been used for power systems and studied in many resource-

allocation applications [Son99, Moo01, and Sal04]. Power-distribution networks are usually designed 

radially with load-feed flows in one direction. This type of network experiences increased loss, 

decreased voltage amplitude, and voltage instability (when using a motorized maximum load) due to 

its radial design and, probably, its long length. One effective solution for improving the performance 

of distribution networks, from a technical point of view, is using distributed generation supplies. 
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Generally speaking, the advantages of using a distributed generation pattern can be categorized into 

two technical and economic aspects [KHS05]. 

The technical advantages of a distributed generation include decreased line loss, improved 

voltage profile, decreased environmental pollution, increased energy efficiency, higher-quality power, 

improved system reliability, and security. On the other hand, economic advantages of applying 

distributed generation patterns include various investments to improve facilities, decreased 

operational and operation costs, optimized production, decreased costs to save energy, and 

increased security for critical loads. A distributed allocation technique using branch and bound is 

studied for allocating DERS in the context of a Smart grid by Ranganathan [RN10]. A probabilistic 

approach using linear programming is applied for a Smart grid resource-allocation problem by 

Nygard [NP11]. Several other Smart grid implementations for a self-healing grid using LP are 

studied [PFR09]. LP-based decision support for situational awareness is outlined [RN11]. 

Comprehensive universal markup language (UML) representations of micro grid architecture are 

developed [PND11]. The preliminary results of the resource-allocation problem in a Smart grid 

using Dantzig-Wolfe procedure are presented [PKN12]. 

Development of a Distributed Linear Programming Model 

The massive power blackout that caused some 5 million people in Arizona, California, and 

Mexico to lose electricity was apparently triggered by one person in Arizona. Figure 1 shows a map 

of electric outage areas. An Arizona Public Service worker "removed a piece of monitoring 

equipment," which set off a chain reaction across the region, according to the Associated Press 

[RN12]. The outage appeared to be related to a procedure an Arizona Public Service (APS) 

employee was conducting at the North Gila substation which is located northeast of Yuma. 

Operating and protection protocols typically would have isolated the resulting outage to the Yuma 
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area. The reason the isolation did not occur in this case was mostly blamed on a lack of automated 

programs in place and heavy reliance on heavy manpower, although the investigation into the event 

is under way. Our approach addresses such events through the LP programs discussed in the next 

paragraph [DCN04, FES12, GPR+09]. 

 

Figure 1. Electric outages in SDG&E Territory: September 8, 2011, 6:39 pm [RN12]. 

I restrict the attention to the general LP approach and the Dantzig-Wolfe decomposition 

technique in the context of a Smart grid. The following macro-grid architecture has a centralized 

agent called an Independent System Operator (ISO) which coordinates the micro-grid activities.  An 

agent is a piece of software code that performs tasks autonomously in the event necessary action is 

needed to restore the grid process, such as self-healing the grid during an outage, running resource 

allocation, or scheduling tasks [Kar01, NF12]. Thus, every micro grid has an objective function and 

constraints that are formulated as an LP problem. I treat each individual LP program as an 

individual agent that monitors these micro grids and associated activities as shown in Figure 2. 
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Figure 2. LP as Agents. 

Similarly, any macro operations, such as coordinating all micro grids, are conducted by 

Independent system operator and they are treated as master LP program and constraints run by 

AMPL. The master LP program interacts with the sub problems via the exchange of dual variables. 

Figure 3 shows AOLP architecture. 

 

Figure 3. A distributed linear programming architecture. 

As an information infrastructure with monitoring, control, and protection functions in a 

smart transmission grid, the wide-area measurement system (WAMS), based on a synchronized 
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phasor measurement unit (PMU), gradually becomes an important guarantee for the security and 

stability of power systems. The WAMS can be used to conduct real-time monitoring and control in 

dynamic system states, enhancing the system’s security level because it utilizes the highly precise, 

synchronous clock system global positioning system (GPS) to build unified time-space 

synchronization. The WAMS usually includes the PMUs, phasor data concentrator (PDC), control 

center (CC), and the high-speed data communication networks. Figure 4 shows a local micro grid 

with PMU-PDC integration as part of the WAMS. I assume that each block of the micro grid 

structure shown in Figure 4 has these units and integration in place. 

 

Figure 4. Local micro grid integration as part of WAMS. 

The application of the Dantzig-Wolfe procedure would be significant, if it is applied to the 

WAMS or micro-grid architecture. In the dissertation, I will show the computational significance of 

a small-scale grid, such as an IEEE bus network, to demonstrate its computational efficiency. 

Chapters 3 and 4 discuss a resource-allocation procedure where the preliminary results motivated me 

to continue the computational study of the Dantzig-Wolfe procedure. 
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CHAPTER 3. ENERGY REALLOCATION IN A SMART GRID  

Kendall E. Nygard, Prakash Ranganathan1, Steve Bou Ghosn, Md. Minhaz Chowdhury 

Davin Loegering, and Ryan McCulloch 

 When a malfunction occurs in a Smart grid electricity provisioning system, it is vitally 

important to quickly diagnose the problem and take corrective action. The self-healing problem 

refers to the need to take action in near real time to reallocate power in order to minimize the 

disruption. To address this need, I present a collection of integer linear programming (ILP) models 

designed to identify optimal combinations of supply sources, demand sites for them to serve, and 

the pathways along which the reallocated power should flow. The models explicitly support multiple 

time periods and the uncertainty associated with alternative sources such as wind power. Model 

solutions are evaluated using a simulator configured with multiple, intelligent, distributed software 

agents.   

Introduction 

A Smart grid is a digital-age electrical generation and distribution system that is fully 

networked, instrumented, controlled, and automated. A Smart grid is a quintessential machine-to-

machine system where the major components, such as generators, relays, transformers, power lines, 

and electrical meters, are networked and digitally addressable with methods such as Internet 

Protocol (IP) addresses. Many components are also equipped with sensors and processors that are 

                                                 

1
 The material in this chapter was co-authored by Prakash Ranganathan and Kendall Nygard. 

Prakash Ranganathan had primary responsibility for developing linear programming formulation of 
a resource allocation problem that includes flow balance constraints and uncertainty information. 
Prakash Ranganathan was the primary developer of the modeling conclusions that are advanced 
here. Prakash Ranganathan also drafted and revised all versions of this chapter. Kendall Nygard 
served as proofreader and checked the LP formulation conducted by Prakash Ranganathan. 
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capable of carrying out intelligent actions with little or no human intervention. Available power 

resources in the Smart grid include conventional types of generating plants and small-scale, 

renewable Distributed Energy Resources (DERs).   

A Smart grid provides great potential advantages for many stakeholders. At the user level, 

smart meters at power demand sites create possibilities for dynamically pricing electricity, making it 

possible for consumers to receive lower rates by shifting their usage from periods of high demand to 

times of low demand. Smart meters also assist utilities by reducing peak loads and allowing meters to 

take action to optimize resource allocation and to maximize efficiency. When disruptions occur, 

instrumentation in the grid immediately communicates exact information that pinpoints the location 

and type of problem, making maintenance and repair activities more responsive and efficient. At the 

transmission grid level, PMU’s placed at strategic locations provide detailed information about grid 

health, and can trigger messages that report problems or initiate control actions.       

Cascading failures that have occurred in past years highlight the need to understand the 

complex phenomena that can occur in power networks and to develop emergency controls and 

restoration procedures. In addition to mechanical failures, overloading a line can create power-

supply instabilities such as phase or voltage fluctuations. A truly intelligent grid is able to predict 

impending fault states and failures [ADH+94, CLD+02, AS08, DCN04].   

Self-healing capabilities are highly desirable in a Smart grid. I define self-healing as the ability 

to detect the need for corrective actions in the grid and to autonomously carry out such actions. 

Once a fault state is detected, the grid should perform appropriate procedures, such as dynamically 

controlling the power flow to restore grid components from a fault state to normal operation. 

Examples of common failures that occur in the power grid are power outages, low power quality, 

overloads that could lead to cascading failures, and service disruptions. 
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In our work, we model the topology of the Smart grid as an abstract network of nodes 

representing supply sources, demand sites, and transshipment junctions that are interconnected by 

links representing transmission lines. Devices such as generators, relays, and transformers are 

associated with specific nodes. Our models are integer linear programs that provide a self-healing 

capability by identifying optimal alternatives for reallocating and rerouting power when disruptions 

and failures occur. Failures affect the ability of certain supply sources to meet energy demands at 

certain sites. Our primary modeling goal is to balance the flow of power across the system to ensure 

that no consumer site experiences an outage, while also maximizing the overall efficiency, cost 

effectiveness, and reliability of the system. Our models account for multiple factors, such as 

availability, reliability, uncertainty, cost-effectiveness, and consumer preference. The basic modeling 

template is the Capacitated Transshipment Problem (CTP). An additional model structure 

incorporates uncertainty at supply sources and ensures that capacities (load limits) for transmission 

lines and through devices are not exceeded. Uncertainty of the available supply at certain sources is 

modeled within the integer linear programming framework using chance-constrained programming 

methods. The integer linear programming models provide the basis for intelligent decision making in 

the grid as it pertains to resource allocation.  An agent-oriented simulation of Smart grid operation is 

available to test and evaluate alternative resource-allocation solutions.     

This chapter is organized in six sections following the Introduction. Section 2 provides the 

problem statement and necessary background. Section 3 provides a brief review of Smart grid 

modeling and ILP. In Section 4, we present a collection of ILP models that capture various aspects 

of the self-healing problem, including an uncertainty model. Section 5 discusses the evaluation of the 

integer linear programming models in a Smart grid simulation environment. In Section 6, we present 

conclusions and describe future work.  
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Problem Statement 

When building a Smart grid self-healing model, multiple issues need to be included. Some 

issues pertain to the physical infrastructure, such as the generators, busses, relays, and transmission 

lines. Other considerations pertain to the cyber infrastructure, such as the communication networks, 

storage, protocols, security, and procedures for managing the grid. Here, we focus on the issues in 

the physical infrastructure that involve resource allocation.   

Physical Infrastructure Issues 

Distributed Device Control Functions 

Most devices associated with nodes in the system must be controllable through remote 

action. One example is the traditional remote relay-control circuit that is capable of tripping a circuit 

breaker when electrical current is higher than the threshold. A second example is adaptive control of 

inverters to ensure stable voltages. Fully centralized control is impossible, but local-device control 

with distributed intelligence is highly desirable. 

Selective Load Control 

The ability to selectively switch off customers under certain conditions can help avoid a 

wide-ranging blackout. This selection process also allows consumers to manage their energy 

consumption, emphasizing low-cost time periods. 

Micro Grid Islanding 

Distributed Energy Resources (DERs) are small-scale power generators, such as micro 

turbines, diesel generators, solar arrays, fuel cells, and wind farms, that are located near a customer 

cluster. When configured into a micro grid, these systems automatically disconnect themselves from 

a single point of connectivity with the primary grid when a disruption occurs. When the primary grid 

is returned to normal conditions, a micro grid must reconnect and resynchonize its operation. 
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Distributed Pathway Control 

The use of alternative, redundant pathways for electricity can be utilized to maintain service 

under disruptive conditions. The mathematical models we develop are focused on the distributed 

pathway control issue, with the objective of finding an optimal set of alternative pathways for 

electricity to flow from supply sources to demand sites while also satisfying constraints for the 

transmission line’s capacity [CT99, CLD+02, DCN04, DNS+95]. 

Smart Grid Modeling 

Several models have been developed to characterize the grid functioning under various 

conditions. A probabilistic model of load-dependent cascading failure is presented in [KJN+04] and 

[Kru06]. The important area for managing consumer consumption of electricity in response to 

supply conditions and pricing has received attention. The role of factors such as load scheduling and 

market prices in driving consumer behavior and achieving energy efficiency is described in 

[MWJ+10] and [She95]. In [She95], user preferences are modeled using the concept of the 

discomfort level within an optimization-problem formulation that balances the load and minimizes 

user inconvenience caused by demand scheduling. In [Kad09], an energy-consumption scheduling 

problem is established to minimize the overall energy cost. In [JAW+10], the authors formulated a 

linear program for distribution management. Kadar [Kad09] developed an optimization model to 

design the Smart grid network infrastructure. Our work is the first development of optimization 

models, specifically for real-time self-healing, that directly incorporate uncertainty.  Several studies 

were made on multi-agent based architecture in Smart grid [JW00, NGL+11M PFR09, Wan01, 

NS02, PKN12].  

At the center of any power-system design is the control and communication architecture, 

comprising the hardware and protocols for exchanging critical status and control signals. In 
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conventional electric power systems, this communication architecture can be accomplished by the 

Supervisory Control and Data Acquisition (SCADA) system [BW03, RI10]. 

Integer Linear Programming Models 

Early linear programming (LP) models came into prominence and practice during World 

War II as a means to improve the efficiency and utilization of scarce resources. LP models have a 

linear objective function to minimize or maximize as well as linear constraints in the form of 

inequality equations. The simplex method developed by Dantzig [Dan98] has been a mainstay 

solution methodology, and the more recent interior point method is also prominent. Integer ILP 

models often arise from node-arc network formulations. Network models of this type date to the 

pioneering work of Ford and Fulkerson [FF10]. The work in [BBG77] on the Capacitated 

Transshipment Problem (CTP) gave the first full descriptions of highly efficient solution algorithms 

for the type of ILP that applies to the self-healing problem.         

In a self-healing Smart grid, we assume that disruptions in energy availability occur due to 

malfunctioning or failed devices and/or inoperative transmission lines [Ami04, AS08, Ami08, 

BCP08, and CT99]. These disruptions affect the ability of specific supply sources to meet energy 

demands at specific sites. In response to the associated need to allocate electrical power in 

alternative ways to accomplish self-healing, we devise several optimization models for increasing 

complexity to assign supply sources to demand sites. More specifically, we assume that there is J 

distinct energy demands for which alternative supply sources must be allocated in the short term to 

respond to disruptions. For each of these J demands, there is a finite set of available supply sources 

that can be allocated to meet the demand. We index the supply sources by i = 1, 2, 3, …, I. Figure 5 

shows a bipartite graph where the supply sources are nodes in the left set and where demand sites 

are nodes in the right set.   
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Figure 5. A bipartite graph with supply and demand sites. 

The graph’s arcs model intact transmission paths with multiple links that utilize sequences of 

transmission lines, busses, relays, transformers, capacitors, and other devices. The graph is typically 

not complete, with missing arcs modeling the unavailability of a viable transmission path. We use cij 

to denote the cost of assigning supply source i to demand site j. The objective function’s parameters 

are evaluations of a utility function that includes multiple factors taken together, such as prices 

established under existing contracts, regulatory principles, prices negotiated in near real time, issues 

related to the transmission paths’ viability, and expected reliability. Given supply source i has a 

specified level, si, of energy available; demand sites have a specified level, dj, of energy needed; 

sources can supply multiple demand sites; and demand sites can be served from multiple sources. 

We note that available supplies and demands can be split freely in their allocations, and the variables, 

xij, can be viewed as power flows from supply sources to demand sites. We must also ensure that the 

transmission paths connecting supply sources to demand sites have sufficient capacity to bear their 

load levels. In a self-healing situation, we let uij denote increased load level (capacity) that can be 

allocated to an available pathway connecting nodes i and j. This node to pathway relationship leads 

to the following problem:    
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One limitation of this basic model is the implicit assumption that the transmission paths 

modeled by the arcs have no links in common, which may not be the case in practice. This leads to 

an expanded model formulation that breaks the bipartite graph into a more general network and 

includes capacities on individual links: 

Notation: 

 The directed graph (network) has node set N and link set A = N x N. We denote typical 

elements: 

 i belongs to N, (i,j) belongs to  A.  

cij = utility per power flow unit on (i,j)  

uij = capacity (upper bound) of (i,j)  

bi = supply of power at node i (interpret negative bi as a demand of -bi  units)  

Variable xij  =  power flow on link (ij). 

The problem is to find the set of flows that minimizes the total cost subject to constraints 

which require i) "flow balance'' at each node and ii) capacity restriction on each link. The 
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formulation is as follows:  

Max z = ij

Aji

ij xc∑
∈),(

   

Subject to: 

i

Ajij

jiij

Ajii

bxx =− ∑∑
∈∈ ),(:),(:

     for all i,j           (5) 

ijij ux ≤≤0               for all i,j            (6) 

Constraint set 1 consists of flow-balance constraints. The first term in such a constraint is 

summed over all links with a tail at node i, referred to as the forward star of node i. Similarly, the 

second term is summed over all links with a head at node i, the ''reverse star'' of node i. This model 

requires that the total supply and total demand are equal. The model is known as the Capacitated 

Transshipment Problem (CTP) in the literature. Figure 6 illustrates the topology for this type of 

network. 

 

Figure 6. Smart grid topology. 
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More generally, it may be important to explicitly distinguish supply sources by type. For 

example, if a site supplies power with wind, there may be specific, important information about that 

source, such as uncertainty. In the following model, supply sources and demand sites are indexed 

and differentiated by type, p, where the index takes on values p = 1, 2, …, P. Accordingly, we now 

have the following notation:   

Parameters: 

cijp = utility per unit of flow of type p on link (i,j)  

uij = capacity (upper bound) for flow on link (i,j)  

bip= supply of power of type p at node i (interpret negative bi as a demand of -bi) 

 xijp  =  flow of power of type p on link (ij) 

                              

 ���	� = 	 � 	��	
��∈�(	,
)∈! �	
� 
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(8) 

 �	
� 	≥ 0										            For all (i,j) and p  																																																																			 (9) 

 

 In the literature, this type of modeling is known as the multi-commodity CTP. The first 

constraint set enforces that flow balance must occur for each type of power through every node i. 

The value of bip is positive at strictly supply-source nodes, negative at strictly demand-site nodes, and 
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zero at pure transshipment nodes. The model allows for supply sources or demand sites to also 

serve as transshipment points, but such transshipment arrangement would be unusual in practice. 

The second constraint set allows for each link in the distribution system to be restricted by joint 

capacity over all flows that pass through it. The model is NP-complete. 

Uncertainty in Resource Allocation 

We now consider the possibility that supplies and demands at certain nodes are uncertain, as 

is often the case for supply sources such as wind or solar power. The typical power curve in Figure 7 

illustrates the uncertainty of the power output obtainable from a wind machine.   

 

Figure 7. Wind machine power curve. 

For a given source node i and power type p, we modify a constraint in set (1) to make it 

probabilistic as follows:   

For a specific i and p     

 																	Pr . � �	
� 	= 	 #	�	:(	.
)∈! 0 	≥ 1 −	∝	�																																																										 (10) 
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For an easier explanation, we assume that node i is the sole source of commodity type p and 

that it does not serve as a transshipment point for power originating at other sites. In this constraint, 

1 - αip is the pre-assigned, smallest-allowable probability with which the power available from source 

i is sufficient to supply bip units for a demand site. We view αip as the acceptable risk of not receiving 

bip MegaWatts [MW] of electrical power from the specific DER source. For specific values of i and 

p, we assume that bip is a random variable that follows a statistical distribution. We note that varying 

the value of bip results in different flows through the network links which then, in turn, affects the 

links’ capacity constraints. In the case where bip follows the normal distribution with mean E{bip} 

and variance var{bip}, we standardize the random variable by subtracting the mean and dividing by 

the square root of the variance, resulting in the following equivalent, probabilistic condition: 

 3� .	4∑ �	
�			:(	,
)∈!	 – 67#	�89:��{#	�} = 	= 4#	�	–67#	�89:��{#	�} =0 ≥ 1 −	>	�																										 (11) 

 

The true meaning of the equation in the application should be to enforce the condition that 

the power distributed from supply source i to its outgoing links is at a level for which there is 

confidence that at least that much power will actually be delivered with a prescribed probability. Any 

overage would likely be dissipated. This consideration makes it legitimate to replace the equation 

with an inequality in the analysis: 

 3� .	4∑ �	
�			:(	,
)∈!	 – 67#	�89:��{#	�} = 	≥ 4#	�	–67#	�89:��{#	�} =0 		≥ 1 −	>	�																													 (12) 

 

We let Φ represent the cumulative distribution function for the standard normal distribution 

and let ?∝@A	be the standard normal value such that 
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Then, probabilistic condition given above is realized if  
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The above equation can be rewritten as a constraint: 

 ∑ �	
� ≤ 67#	�8 + ?∝@AM:��7#	�8	:(	,
)∈!                                       
(15) 

 

This constraint gives the condition that the power delivered will be within the upper-bound 

value given by the right-hand side with a probability 1 – αip. By the symmetry of the normal 

distribution, constraint 

 � �	
� ≤ 67#	�8 − ?∝@AM:��7#	�8	:(	,
)∈!  (16) 

 

sets the requirement for the minimum level of power that is delivered with the prescribed 

probability. This is a linear constraint that is incorporated into the optimization problem as a so-

called “chance constraint,” effectively modeling probabilistic conditions within a linear program. As 

an example, suppose that the supply for node 3 is a wind source that provides power with a mean 

value of 7 MW and a variance of 4 MW, and that the supply has outgoing distribution links to 

transshipment nodes 4, 7, and 8.  Node index 3 also identifies the type of power generated at node 
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3. If we allow a 5% risk for not meeting the supply objective, we have the following condition: 

�RSR + �RTR + �RUR ≤ 7 + 1.645 ∗ 2 

or 

  �RSR + �RTR + �RUR ≤ 11.935  																																																																																  

(17) 

The value 1.645 comes from a table of standard normal variates. The condition means that 

there is a 95% chance that the realizable power from the wind source is no more than 11.935 MW. 

Using the symmetry, 

�RSR + �RTR + �RUR ≤ 7 − 1.645 ∗ 2 

Or 

 �RSR + �RTR + �RUR ≤ 3.71																																																																																							 (18) 

 

This means that at least 3.71 MW of power can be realized with 95% probability. If we 

increase the prescribed probability to a more stringent 99%, the standard normal variate value is 

2.33, and the constraint becomes 

 �RSR + �RTR + �RUR ≤ 2.34                      (19) 

 

The model can also be readily extended to multiple indexed time periods with a time-

dependent, supply-demand allocation with fixed costs. This is important for consistency with the 

time-period planning granularity models used by most utilities. 

Smart Grid Simulation 

Our Smart grid simulator runs as a Multi-Agent System (MAS) using the Java Agent 

Development Framework (JADE). Software agents act autonomously and communicate with each 
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other across open and distributed environments, making an agent design ideal for simulating a Smart 

grid. The agents can sense, act, communicate, and collaborate with each other; be empowered with 

degrees of autonomy; are decentralized; and have local views and knowledge. The simulation has a 

low-level, physical-device layer with components that can exhibit fault conditions and fail. A middle 

layer has agents with a knowledge base, including consumer, DER, device-managing, and 

monitoring agents. An upper layer consists of management agents that receive the system’s state 

information, carry out analyses, and invoke decision-support models. The optimization models 

described in this chapter reside at this third level. However, the simulator is also designed to support 

suites for decision-support models, including fuzzy logic, statistical hypothesis testing, Bayesian 

belief networks, and constraint satisfaction. These agents also stream reporting information, 

allowing for convenient performance comparisons [GK03, FG96, KH09, Bri94].   

When a three-layer optimization model generates a workable solution in a self-healing 

situation, it is converted into the associated corrective actions that are done at lower layers to invoke 

the appropriate response. Each corrective action is modeled by an agent/task pair. The task breaks 

into detailed roles and actions at the device and transmission-line level. A graphical user interface 

allows human intervention, if appropriate, or autonomous execution by simply setting initial values 

for parameters, conditions, and state information. 

 

Conclusions 

The optimization models developed include objective functions that maximize a utility 

function and constraints that ensure feasibility for the resource allocations. Stochastic information 

can be directly included in the constraints to model situations with known uncertainty. The agent-



32 

 

based simulation provides a realistic and readily validated means for evaluating the performance of 

the integer linear programming solutions as they would function in an operational Smart grid.   
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CHAPTER 4.  RESOURCE ALLOCATION USING BRANCH AND BOUND 

Prakash Ranganathan2 and Kendall Nygard 

The chapter describes a resource-allocation problem in a Smart grid application that is 

formulated and solved as a binary integer programming model. To handle power outages from the 

main distribution circuit, the intelligent agents in the Smart grid have to utilize and negotiate with 

distributed energy resource agents that act on behalf of the local generators in the grid in order to 

negotiate power-supply purchases to satisfy shortages. We develop a model that can optimally assign 

these DERs to the available multiple regional utility areas or units (RUAs) that are experiencing 

power shortages. This type of allocation is a resource assignment problem. The DERs in our model 

depict the behavior of power generated through a wind turbine, solar generation, or other renewable 

generation units, and the region or area refers to a centralized distribution unit. The integer 

programming approach is called a capacity-based Iterative Binary Integer Linear Programming (C-

IBILP). All simulation results are carried out using the optimization tool box in MATLAB. 

Computation results exhibit very good performance for the problem instances tested and validate 

the assumptions made. 

Distributed Energy Resources in Smart Grid 

Dynamic, real-time power systems often operate in continuously changing environments, 

such as adverse weather conditions, sudden transformer failures, or malfunctioning of a sub-system 

                                                 

2 The material in this chapter was co-authored by Prakash Ranganathan and Kendall Nygard. 
Prakash Ranganathan had primary responsibility for developing linear programming formulation of 
a resource allocation problem using branch and bound method. Prakash Ranganathan was the 
primary developer of the modeling, implementation and testing the conclusions that are advanced 
here. Prakash Ranganathan also drafted and revised all versions of this chapter. Kendall Nygard 
served as proofreader and checked the LP formulation conducted by Prakash Ranganathan. 
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in a transmission or distribution network. These disruptions, along with the complexity of our 

power systems, cause the energy demand and loads of a power system to fluctuate, potentially 

resulting in widespread outages and huge price spikes. Data from the North American Electric 

Reliability Council (NERC) and analyses from the Electric Power Research Institute (EPRI) indicate 

that the average outages from 1984 to the present time have affected nearly 700,000 customers per 

event annually [Ami04]. Smaller outages occur much more frequently and affect tens to hundreds of 

thousands of customers every few weeks or months, while larger outages occur every two to nine 

years and affect millions. Although preventing these outages remains a challenge, such demand 

changes (increases or decreases) from consumers can often be offset by distributed energy resources 

(DERs), which are renewable resources. Solar and wind-based power can satisfy the shortages or 

reduce the outage levels. In our work, we consider the use of such DER-based standby mechanisms 

to support any additional demand. We apply an Iterative Binary Integer Linear Programming 

(IBILP) technique [Web01] to optimally assign DERs for a region based on criteria such as power 

levels, demands, and preferences. Resource allocation for complex power system is robust with 

respect to demand variations and power-level fluctuations. The amount of additional power that 

DERs can generate and that can be effectively utilized in a power network is a measure of 

robustness. Hence, we argue that a capacity-based Iterative Binary Integer Linear Programming (C-

IBILP) model is, inherently, a robust resource allocation.  

The structure for the rest of the chapter is as follows. In Section 2, an overview and related 

work for the Smart grid is discussed. In Section 3, we present a general formulation of this DER 

assignment problem. In Section 4, we describe how to solve this problem optimally by using a 

branch-and-bound based (BB) algorithm with equality and inequality constraints. In Section 5, we 

show the experimental results. 
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Related Work 

Mathematical programming has enjoyed a burgeoning presence in theoretical computer 

science, both as a framework for developing algorithms and, increasingly, as a bona fide model of 

computation where the limits are expressed in terms of the formulations’ sizes and the formulations’ 

integrality gaps [ABL+06, AAT05, BJN98]. Linear formulations are an appealing model of 

computation because both optimization and decision problems fit naturally into the framework and 

because both theoretically tractable and efficient practical algorithms exist to solve linear programs. 

For instance, state-of-the-art approaches to exactly solve large-scale instances of many NP hard 

problems rely on integer programming approaches that require the repeated solution of integer 

programs representing the problems [BJN98]. The polynomial-time algorithms of [Kru56] and other 

algorithms [KY97, KP94] cannot be used in this application due to high complexity and extensive 

run-times. Modification will be investigated in future work. We refer to a fundamental model for 

DER assignment as the capacity-based Iterative Binary Integer Linear Programming (C-IBILP) 

model. There has been little attention given to this type of approach in smart electrical-grid analyses. 

To our knowledge, smart grid problems of this type have not been solved for DER allocations using 

optimization models that perform optimal matching for supply sources’ demand sites by predicting 

generation and market-controlled consumption. Such optimization algorithms are comparable to 

hard, unsolved problems in inference, optimization, and control [Web02].  

Assigning DER to RUA Formulation 

To illustrate our problem formulation, we assume that there are 7 areas (RUAs) and 6 DER 

units with the demand and preference levels shown in Figure 8 and Figure 9 respectively. We define 

a regional utility area (RUA) as the local-distribution power utilities within the micro grid that 

distribute power within their network for its loads [Ami04]. For simplicity, we name them Area 1, 
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Area 2, …, Area 7 as illustrated in Figure 8. The power demand and the preferences in Figure 9 

depict a demand-driven DER assignment problem that also accommodates preference information. 

The parameters in the figure are for illustration purposes. 

 

Figure 8. RUA layout. 

A simple allocation “text” script in MATLAB would be as follows: text (0.1, .73, 'area1'); text 

(.35, .73, 'area2'); text (.60, .73, 'area3'); text (.82, .73, 'area4'); text (.35, .42, 'area5'); text (.60, .42, 

'area6'); text (.82, .42, 'area 7'). 

For example, suppose our simulation study is charged with a need to optimally assign six 

DERs, DER1, DER2, DER3, DER4, DER5, and DER6, to seven regional utility areas (RUAs) 

based on criteria such as the power-level capacity that these DERs are able to generate and 

preferences in the area where these DERs wish to operate. For simplicity in our optimization 

procedure, we also assume that each RUA can have no more than one DER and that each DER gets 

exactly one RUA. The DERs can have a preference for the area that they wish to join, and their 

preferences are considered based on their capacity; i.e., the more power they have been able to 

generate, the higher the capacity is. We weigh the preferences based on the power-level capacity of 

area1 area2 area3 area4

area5 area6 area 7

Area layout: the areas in higher power demand are in the bottom row
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DERs through a preference weight matrix (pwm) so that the more power that the DERs can 

generate, the more their preferences count. 

 

Figure 9. DER vs. RUA assignment problem. 

Also, we impose multiple constraints, such as some RUAs have demand, some do not, and 

some demands are higher than others. DER3 and DER4 often work together, so we would like 

them to be no more than one RUA away from each other; DER5 and DER6 often work together, 

so they, too, should be no more than one RUA away from each other. Our approach to solve the 

assignment problem is to formulate it as a capacity-based Iterative Binary Integer Linear 
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Programming (C-IBILP) model and to relax the integrality constraints. Our overall objective is to 

maximize the satisfaction for the preferences weighted by capacity which will allocate these DERs to 

their areas. This is done through a binary integer programming model by defining a linear objective 

function. Our algorithm uses a branch-and-bound procedure with linear-programming bounds that 

have “minimum integer infeasibility” as the branch strategy anda “depth-first search” for the node-

search strategy.  

To develop our problem formulation, the first step is to choose what each element of our 

solution vector, |x|, represents. We use binary integer variables which represent the specific 

assignments of DERS to RUAs. If the DER is assigned to a RUA, the variable takes the value 1, and 

if not assigned, the variable takes the value 0. We consider the DERs in sequential order as DER1, 

DER2, DER3, DER4, DER5, DER6, and DER7. The nth sequence of elements in vector |x| 

stores the assignment variables for DER n. In our example, |x (1)| to |x (7)| correspond to DER1 

being assigned to Area 1, Area 2, etc., up to Area 7. In all, vector |x| has 6 sequences of 7 elements 

each, or 42 elements in all. Each sequence has a single binary variable set to 1, enforcing a multiple-

choice condition for each DER.  

DER Capacities 

We impose constraints based upon DER preference level in the area of operation driven by 

the capability to generate power. The concept is that, the more power a DER can generate, the 

higher the preference level is. For example, consider the randomly set power levels given in kilowatts 

(kW) below. 

DER1�9 kW 

DER2�10 kW 

DER3�5 kW 
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DER4�3 kW 

DER5�1.5 kW and  

DER6� 2 kW 

We create a normalized weight vector based on capacity and also assume that certain DERs 

should be used in some preferred region or area, such as a DER with more power-generation 

capability being used in high-demand areas. This normalized weigh vector can be obtained in 

MATLAB as follows: 

 capacity = [9 10 5 3 1.5 2]; 

weight vector = capacity/sum (capacity); 

 

RUA Preferences 

We set up a preference weight matrix (pwm or prefmatrix) where the rows correspond to 

areas and the columns correspond to DERS. We assume that each DER will give values for each 

area so that the sum of all their choices (i.e., their columns) sums to 100. A higher number means 

that the DER prefers the area. We justify the use of the preference matrix by noting that limitations 

in algorithm scalability and data availability preclude a fully centralized solution to the problem of 

interest. Thus, decision making must be decentralized, and we accordingly divide the power network 
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into many smaller RUAs, where the prefmatrix concept is applied to individual regions in the 

network. An example of DER preferences is shown below: 

DER1 = [0; 0; 0; 0; 10; 40; 50]; 

DER2 = [0; 0; 0; 0; 20; 40; 40]; 

DER3 = [0; 0; 0; 0; 30; 40; 30]; 

DER4 = [1; 3; 3; 3; 10; 40; 40]; 

DER5 = [3; 4; 1; 2; 10; 40; 40]; 

DER6 = [10; 10; 10; 10; 20; 20; 20]; 

The ith element of a DER’s preference vector is the value the ith RUA. Thus, the combined 

preference matrix is expressed as “prefmatrix”:  

prefmatrix = [DER1 DER2 DER3 DER4 DER5 DER6]; 

 

Case 1 

We treat the above “prefmatrix” arrangement as case 1 for analysis. We then weigh the 

preference matrix by the |weightvector| to scale the columns by capacity. We also reshape this 

matrix as a vector in column-order so that it corresponds to our |x| vector. This task is achieved in 

MATLAB script as follows:  
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PM = prefmatrix * diag (weightvector); 

 

c = PM (:); 

 

Our objective is to maximize the total preference measure weighted by capacity. This is a 

linear objective function, max c'*x or, equivalently, min -c'*x, with c being the DER preferences. We 

use the BINTPROG script of MATLAB to run our model that is defined as follows:  

 









=

≤

binary:x

beqAeq.x

b,A.x

  :xTf
x

min
 

where  
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f=Vector containing the coefficients of the linear objective function. 

A=Matrix containing the coefficients of the linear inequality constraints, A�x≤ b. 

b= Vector corresponding to the right-hand side of the linear inequality constraints. 

Aeq= Matrix containing the coefficients of the linear equality constraints, Aeq�x = beq. 

beq= Vector containing the constants of the linear equality constraints. 

x0=Initial point for the algorithm. 

Options: Option structure containing the algorithm’s options.  

 x: A binary integer solution vector—that is, its entries can only take on the values 0 or 1.                                                                                                           

Constraints 

The first set of constraints requires that each DER is assigned to exactly one area. For 

example, because DER2 is the second DER, we enforce the condition that |sum(x (8:14)) =1|. We 

represent these linear constraints in an equality matrix, Aeq, and right-hand side vector, beq, where 

|Aeq*x = beq|, by building the appropriate matrices.  Matrix |Aeq| consists of ones and zeros. For 

example, the second row of |Aeq| corresponds to DER2 getting exactly one RUA, so the row 

pattern is as follows:  

0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 

These conditions are implemented in MATLAB code as follows: 

|Aeq (2, :)*x = 1| is equivalent to |sum(x (8:14)) = 1|. 

numAREAS = 7; 

numDERS = 6; 

numDim = numAREAS * numDERS; 

onesvector = ones (1, numAREAS); 

Each row of Aeq corresponds to one DER.  
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Aeq =blkdiag (onesvector, onesvector, onesvector, onesvector, onesvector, onesvector); 

beq = ones (numDERS, 1); 

view the structure of Aeq, that is, where there are nonzeros (ones) Figure; 

The second sets of constraints are inequalities. These constraints specify that each area has 

no more than one DER in it; i.e., each AREA has one DER in it or is empty. We build matrix |A| 

and vector |b| such that |A*x <= b| to capture these constraints. Each row of |A| and |b| 

corresponds to a RUA, so row 1 corresponds to the DER assigned to RUA 1. In this case, the rows 

have the pattern type shown below for row 1: 

1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0  ... 1 0 0 0 0 0 0 

Each subsequent row is similar but is shifted (circularly) to the right by one spot by one. For 

example, row 3 corresponds to RUA 3 and enforces |A(3,:)*x <= 1| so that AREA 3 cannot have 

more than one DER. Figures 10 and 11 illustrate the equality and inequality constraints. 

 

Figure 10. Equality constraints. 

 

Figure 11. Inequality constraints. 

A = repmat(eye(numAREAS),1,numDERS); 

0 5 10 15 20 25 30 35 40

DER1
DER2
DER3
DER4
DER5
DER6

nz = 42

Equality constraints: each DER gets exactly one RUA or Area

DER1 DER2 DER3 DER4 DER5 DER6

AREA 1

AREA 3

AREA 5

AREA 7

nz = 42

Inequality constraints: no more than one DER per RUA or area
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b = ones(numAREAS,1); 

where repmat represents the replicate and tile array. Elements of the next constraint set are also 

inequalities, so they are added to matrix |A| vector |b| that already contain the above inequalities. 

We wish to enforce that DER3 and DER4 are no more than one area (RUA) from each other, and 

similarly for DER5 and DER6 are no more than one area away from each other. First, the 

symmetric distance matrix for the RUAs is built using physical locations and Manhattan (i.e., the 

“taxicab” metric).  

D = zeros(numAREAS); // generates a 7 x 7 zero matrix 

Setting up the top-right half of the matrix, 

D(1,2:end) = [1 2 3 2 3 4]; 

D(2,3:end) = [1 2 1 2 3]; 

D(3,4:end) = [1 2 1 2]; 

D(4,5:end) = [3 2 1]; 

D(5,6:end) = [1 2]; 

D(6,end)   = 1; 

The lower-left half is the same as the upper-right D = triu(D)' + D. We find the RUAs that are more 

than one distance unit away. 
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[AREAA,AREAB] = find(D > 1); 

numPairs = length(AREAA); 

This finds |numPairs| area pairs. For example, if DER3 occupies one area in the pair, then 

DER4 cannot occupy the other AREA in the pair; otherwise, it would be more than one unit away 

in terms of AREA. The same condition holds for DER5 and DER6. This situation gives 

|2*numPairs| additional inequality constraints which we add to |A| and |b|. By adding rows to A, 

we accommodate these constraints as follows: 

numrows = 2*numPairs + numAREAS;  

A((numAREAS+1):numrows, 1:numDim) = zeros(2*numPairs,numDim); 
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For each pair of AREAS in numPairs, for the |x(i)| that corresponds to DER3 in 

|AREAA| and for the |x(j)| that corresponds to DER 4 in |AREAB|, x(i) + x(j) <= 1; i.e., either 

DER3 or DER4, but not both, can occupy one of these AREAS. 

Branch-and-Bound (BB) Strategy             

The branch-and-bound algorithm is a well-known optimal solution method. Branch-and-

bound (BB) algorithms are methods for solving non-convex global optimization problems [BB91, 

LW66, BJN98, Moo91]. They are exact (non-heuristic), in the sense that they calculate a provable 

upper and lower bound on the globally optimal objective value and that they terminate when all 

suboptimal feasible solutions have been eliminated. Branch-and-bound algorithms can be 

computationally slow. In the worst case, they require effort that grows exponentially with problem 

size. We achieve fast convergence in our problems. We note that, due to total unimodularity of the 

basic A matrix, a network-based, customized linear-programming solver could be used to provide 

the lower bounds very quickly in large problems. The BB algorithm is a well-known algorithm in the 

research community [Wol98]. An example run of the BB algorithm is shown in Figure 12, followed 

by a snippet of MATLAB code showing the iterative output for each node displayed in the branch-

and-bound algorithm. We let the BINTPROG choose the starting point. 

x0 = []; 

f = -c; 

options = optimset('Display','iter','NodeDisplayInterval',1); 

[x,fval,exitflag,output] = bintprog(f,A,b,Aeq,beq,x0,options); 

fval 

exitflag 

output 
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To reduce the number of nodes explored, the time, or the number of iterations taken, there are 

alternative options available. BINTPROG use the options to adjust the algorithm with differing 

nodes and branching-variable strategies [Moo91, MG05].   

 

Figure 12. Branch and bound algorithm with inequality constraints. 

For example, the default branching strategy is |'maxinfeas'|, which chooses the variable with 

the maximum integer infeasibility for the next branch, that is, the variable with the value closest to 

0.5. Running the problem again with the branching strategy set to |'mininfeas'|, the option of 

minimum integer infeasibility is chosen (that is, the variable where the value is closest to 0 or 1, but 

not equal to either).  

For structuring the tree, depth-first and best-node search strategy are available. For example, 

in “df,” at each node in the search tree, if there is a child node one level down in the tree that has 
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not already been explored, the algorithm chooses one such child to search. Otherwise, the algorithm 

moves to the node one level up in the tree and chooses a child node one level down from that node. 

In best-node (bn) strategy, the node with lowest bound on the objective function is the default. In 

our limited computational experience, convincing and acceptable results are quickly reached. For 

future work, we plan to increase the scale of our test problems and to investigate improved BB 

schemes.  

Results 

The simulation is done with a MATLAB platform. The prebuilt in command for branch and 

bound algorithm was used to simulate the following cases. 

Case 1 

The results show that the optimal value is reached after 163 iterations with 54 nodes 

participating in 1.22 seconds (case 1) using the capacity-based Iterative Binary Integer Linear 

Programming (C-IBILP) based branch-and-bound method which maximizes the satisfaction of the 

DER preferences weighted by its capacities. The final output shown in Figure 13 presents the DER 

allocation with RUA1, or area 1, treated as empty for optimal assignment. 

            

Figure 13. An optimal DER assignment solution for case 1. 

 

 empty   DER4   DER6 DER5 

  DER3   DER2 DER1
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Case 2 

If we change the DER preferences according to the matrix shown below, then the optimal 

solution is reached with 13 iterations and 1 node in 0.047 seconds by using the default-node and 

branch strategies shown in Figure 14. 

 

 

Figure 14. An optimal DER assignment solution for case 2. 

 

Conclusions 

The chapter presented a resource-assignment problem for Smart grid applications. The 

capacity-based Iterative Binary Integer Linear Programming (C-IBILP) model was designed to 

specify an optimal allocation of distributed energy resources (DERs) during power-outage periods to 

 DER6 DER5  empty    DER3   

DER2 DER1  DER4  
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satisfy shortages. Computational results from two cases studied showed that our C-IBILP algorithm 

exhibits very good performance for the problem instances tested. A branch-and-bound algorithm 

for the Smart grid problem was described. It combined the extension results previously presented in 

the literature with new elements, such as a new lower bound that works by exploiting some 

properties connected with the ad-hoc branching rule we developed. Computational results 

established that the algorithm is very competitive. It greatly improved the results obtained by 

methods that have recently appeared in the literature. Our approach’s limitation was that the method 

does not scale well for larger DERs. Our current efforts involve extending this assignment model to 

a more scalable assignment formulation where more DERs can serve each RUA.   
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CHAPTER 5. RESOURCE ALLOCATION USING DW DECOMPOSITION 

Dantzig-Wolfe decomposition is a technique for dealing with linear and integer 

programming problems that have embedded substructures that permit efficient solution. The 

technique has been applied successfully in a variety of contexts [Dan63, Chv83, BJN98]. 

Implementing DW-decomposition-based algorithms poses various challenges. The primary 

challenges revolve around convergence of the dual-bound computations and, in the context of 

integer programming, the enforcement of integrality restrictions. The standard view of DW 

decomposition is that it exploits the linear-programming formulation of the Lagrangian dual. This 

so-called master linear program has an exponential number of variables that are handled using 

dynamic column generation. An alternative view is that DW is a reformulation technique that gives 

rise to a mixed-integer master program. Viewing DW as a reformulation technique allows for the 

development of a theoretical framework that facilitates the handling of branching decisions and 

cutting planes in the master program.  

Why Decompose? 

There are computational and organizational advantages when using decomposition 

algorithms. From a computational perspective, the advantage is that sub problems are usually easier 

to solve than the original problem. The sub problems are, by definition, smaller than the original 

problem. Moreover, in many cases, the sub problems have special properties, such as convexity, 

sparsity, or network constraints, that enable the use of efficient, specialized algorithms to solve them 

[Dan63]. By decomposing the original problem, we can take advantage of the efficient solution 

method available for sub problems. Decomposition algorithms also allow Smart grid problems to be 

solved in a distributed manner. The key point when designing a decomposition algorithm in this 

environment is that only limited communication between the sub problems and the master problem 
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is required. The aim is that different engineering teams or sub groups of a Smart grid, such as the 

transmission side or distribution side, can solve only their own sub problems and that only a small 

amount of communication is required with the central coordinator.  

Objective Function and Illustration of DW Algorithm 

The linear-programming problem set up for the Dantzig-Wolfe solution technique can be 

formulated as follows: 

Minimize Cx 

Ax=b  (Master problem constraints) 

x∈ to X (where X is set of  corner points 

To illustrate the Dantzig-Wolfe decomposition method, we first consider a 4-bus system 

with 2 generators and 3 loads that plans to maximize its power based on certain constraints (Figure 

15). A bus is a communication link that transports energy from one point to another point. A 

network model of the 4-bus system is shown in Figure 16. The buses are declared using variables x1, 

x2, x3, and x4. The objective is to maximize the power flow while keeping these constraints in mind. 

Constraints 1 and 3, namely C1 and C3, describe  the line voltages that these buses should not 

exceed, 5 kv and 8 kv, respectively. Constraints C2 and C4 specify the average repair time needed for 

these buses in the event of any failure to correct themselves, and the time should not exceed 12 

hours/year and 10 hours/year, respectively. Constraint C5 tells us that the total bus reactive load 

power should not exceed 7 kW, and constraint C6 points out that the total resistance of these buses 

should not exceed 17 Mega ohms. 
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Figure 15. A 4-bus system. 

 

Figure 16. A network model of 4-bus system. 
 

Let the objective function be defined as follows: 

maximize		power ∶ 	 6x
 + 5xe + 3xR + 4xS;		 
Subject to	

	x
 + xe ≤ 5kV; 																																		Constraint	#	1	
3x
 + 2xe ≤ 12	hours	per	year; 			Constraint	#	2	
xR + 2xS ≤ 8kV; 																																	Constraint	#	3	
2xR + xS ≤ 10	hours	per	year; 						Constraint	#	4	
x
 + xe + xR + xS ≤ 7kw; 															Constraint	#	5	
	2x
 + xe + xR + 3xS ≤ 17MΩ; 							Constraint	#	6 

We can compute the border feasible points (corner points) using AMPL software directly or 

using a graphical approach. The corner points for the first two equations (i.e., C1 and C2) are (0, 0), 
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(0,5), (2,3), and (4,0), and of the four points, point (2,3) maximizes the objective function with a 

value of Z=27. Similarly, the corner points for the next two equations (i.e., C3 and C4) are (0, 0) (5, 

0), (0, 4), and (4, 2), and of the four points, point (4, 2) maximizes the objective function with a 

value of Z=20. Constraints C5 and C6 are called master constraints.  

	t�u�t��v			w�xv�:	 − 6�
 − 5�e − 3�R − 4�S; 
minimize ∶ 	�CyλyXy 
subject to ∑ ≤λ ;bXA ijj  

subject to ∑{
 = 1; 
i. e. , Y	Py − Cy > 0; 

Considering dual variables (Y) and the entering column (Pj), we can formulate the stopping 

criteria for the DW algorithm to terminate as follows: 

;0X)C,w(

;0cX
1

Ax
),w(

j

j
j

>α+−α

>−







α

 

where y [i.e., w and α] is the dual variable, 

pj = entering column, 

cj = objective function coefficients. 

Let us introduce two slack variables, S1 and S2, to the master problem constraints because 

these variables do not have any impact on the objective function or on the optimal values. We create 

an identity matrix as shown in Table 3 for S1, S2, and λ1. We then assign the right-hand side 

coefficients of  master constraints (C5 and C6) toward the RHS column. The coefficients of  the 



55 

 

master constraints are in the A matrix, and the initial corner values for x are taken as (2,3,4,2). The 

resultant product is (11, 17). 

Table 3 shows the procedure for computing optimal values using the Dantzig-Wolfe 

technique. Table 3 has two slack variables, S1 and S2, and four convexity constraints are needed to 

attain an optimal solution for the above-mentioned constraints and objective function. The table 

provides analysis for attaining a basic feasible solution and determining which variable leaves the 

basis. The computation step for row and column operations is explained after the table. 

Table 3. Simplex table for Dantzig-Wolfe for 4 bus system 

Variables S1 S2 λ1 RHS 








1

Ax  θ θ 

S1 1 0 0 7 11 7/11  
S2 0 1 0 17 17 1  
λ 1 0 0 1 1 1 1  

Z-Cj 0 0 0 0 47   
λ 2 1/11 0 0 7/11 1 4/11 7/4 
S2 -17/11 1 0 68/11 0 20/11 17/5 
λ 1 -1/11 0 1 4/11 0 7/11 4/7 

Z-Cj -47/11 0 0 -329/11 76/11   
λ 2 1/7 0 -4/7 3/7 0 4/7 3/4 
S2 -9/7 1 -20/7 36/7 0 48/7 3/4 
λ 3 -1/7 0 11/7 4/7 1 3/7 4/3 

Z-Cj -23/7 0 -76/7 -237/7  20/7  
λ 4 ¼ 0 -1 ¾ 1   
S2 -3 1 4 0 0   
λ 3 -1/4 0 2 ¼ 0   

 -4 0 8 36    
 










1

Ax j

=

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













=






























1

17

11

2

4

3

2

3112

1111

 

The minimum value of  θ leaves the basis, hence row S1 with θ=7/11 is replaced with λ2 in 

the next set. Then, a set of  row operations is performed in the following sequence. 
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λe = s
11 ;	Se = (se − 17λe);	λ
(new) = λ
 − λe; Z − C = Zc − 47λe 

Using the termination condition of  the DW technique, we solve for  

Max (WA-C)x + α: 

( ) 







−=

3112

1111
0,11/47WA  

( )11/4711/4711/4711/47WA −−−−=  

=− CWA ( )11/311/1411/811/19 −−  

Hence, the current objective function is modified as follows: 

4x
11

3
3x

11

14
2x

11

8
1x

11

19
−−+  

Let us apply the same corner points into the new objective function, (0,0), (0,5), (2,3) and 

(4,0), to get a point that maximizes the objective function. Here it is (4,0) for the first two 

constraints. Similarly, (0,0) maximizes constraints c3 and c4 from border points (0,0), (5,0), (0,4), and 

(4,2).  

Then, the current corner-point values are Xj=(4,0,0,0) and maximize at Z=76/11. Again, let 

us calculate the new entering column information, Pj, that will enable us to obtain 








1

Ax j . 

Pj= 








1

Ax j
=

















=






























1

8

4

0

0

0

4

3112

1111
; 

B-1


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
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1
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=
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







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
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
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




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





−

−

11/7

11/20

11/4

1

8

4

1011/1

0111/17

0011/1

; 

The value of  dual variables w and α  is noted (-47/11,0, 0) to improve the objective 

function. This process continues until an optimal solution is reached as shown in Table 4.  
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Table 4. Final corner points and objective 

x1,x2,x3,x4 Optimal value Iteration 

(0,0,0,0) 0 Start 0 

(2,3,4,2) 47 Iteration 1 

(4,0,0,0) -76/11 Iteration 2 

(4,0,0,4) 20/7 Iteration 3 

(4,0,0,0) 0 Terminated 

 

As noted in Table 4, corner point (4,0,0,0) repeats, and we have obtained the preferred 

objective function to have a value of  0. This terminates the algorithm, enabling the calculation of  

the final corner point that maximizes our objective function, resulting in Z=36. An AMPL output 

using a direct LP implementation for our 4-bus example is shown in Figure 17. 
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Figure 17. An AMPL run of  DLP. 
 

 The data file has the following parameters: data; param x1:=0; param x2:=0; param x3:=0; 

param x4:=0. 

 Notice that solution for both the direct LP and DW approaches is the same. The final corner 

values that buses can take to achieve their maximization objective can be calculated as 

= λ3*x3+λ4*x4  

=1/4 *(4,0,0,0)+3/4 *(4,0,0,4) 

 =(1,0,0,0)+(3,0,0,3) 

Thus, x1, x2, x3, x4 =(4,0,0,3). 

 For these point combinations, the final optimal value results in Z=36, hence Bus 1 and Bus 4 
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should be kept at 4 kv and 3 kv of  generation to obtain a maximum power-flow capacity of  36 MW 

in the network. Thus, at each DW iteration, a relaxed version of the master problem is solved. Then, 

N sub problems are solved using the reduced costs of the master linear program as parameters. As a 

result, each sub problem generates a candidate variable that is introduced in the master problem. 

The current relaxed master problem is updated by including all candidate variables found by the sub 

problems. We code both the Dantzig-Wolfe technique and direct LP formulation for the same 4-bus 

problem and observe the computational savings as shown in Table 5. 

Table 5. Computational savings of  Dantzig Wolfe over direct approach  

#
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c
e
 

O
p

ti
m

u
m

 P
o

w
e
r 

It
e
ra

ti
o

n
s 

u
si

n
g

 L
P

 

4 0.000999 .000183 10 8.16 x 10-4 Z=36 2 

5 0.01999 .000181 11 .019802 Z=39 3 

6 0.000999 .00017 12 .01982 Z=37.66 6 

7 0.000999 .00014 13 8.59 x 10-4 Z=37 7 

8 0.000999 .00014 14 8.59 x 10-4 Z=37.1 9 

 

Thus, Dantzig-Wolfe decomposition is an efficient optimization method when applied to 

large-scale problems with a special block-angular structure. Unlike the sub-gradient method, the 

Dantzig-Wolfe decomposition method is able to properly define new Lagrangian multipliers for 

subsequent sub problems. The fast and monotonic convergence is a distinct feature of  the Dantzig-

Wolfe decomposition [Dan63, Chv83].                 
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LP Formulation of the IEEE 14-BUS System  

The IEEE bus system is a common practice the academic and researh community uses to 

test any new models. The data are readily available to develop models and to perform analysis. We 

have used data from the system to develop our formulations. We have formulated an LP model of 

the standard IEEE 14-bus system using the AMPL package. The basic system is implemented and 

tested with bus failure and repair rates to study the impact of line voltages and the dynamic behavior 

of buses. The failure-rate and repair-rate data of the IEEE 14 bus is taken from [WG10, Wan01] as 

shown in Tables 7, 8, and 9. The objective for our formulation is to minimize the failure rate and 

repair rate subject to flow-balance constraints and capacity constraints. For simplicity, we have 

multiplied the failure rate and repair rate, defining the objective function variable as a “risk” or 

“loss.” Hence, the goal is to minimize the risk of any energy loss for the IEEE bus system subjective 

to populated constraints. 

A single-line diagram for the IEEE 14-bus standard system extracted from [Son99, Moo91] 

is shown in Figure 18. It consists of five generators with IEEE type-1 exciters, three of which are 

synchronous compensators that are only used for reactive power support. There are 11 loads in the 

system, totaling 258 MW and 81.3 Mvar. For our analysis, we have taken only the real power of the 

supply. The supply and demand in the IEEE 14-bus system equal 258 MW. Hence, it is a balanced 

system with equal values for the supply and demand units. Dynamic data for the generator exciters 

are selected from [WG10]. 
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Figure 18. IEEE 14-bus system and three decomposed regions: RN1, RN2, and RN3. 

The IEEE bus system shown in Figure 18 is decomposed into three regions, RN1, RN2, and 

RN3, as shown in Figure 19. The IEEE 14-bus network model contains 14 nodes and 18 

transmission lines. A node is similar to a bus or point junction where two or multiple lines 

interconnect.   

For example, lines 12 and 11 interconnect at node 6, and lines 14 and 12 connect at line 13. 

We have decomposed the system into three regions as used in a reliability study conducted in 

[WG10]. We may adapt random decomposition when choosing lines. In this system, we treat 

transmission lines 1, 2, 3, 4, and 5 as region 1; lines 7, 8, 9, 10, 11, and 14 are considered as region 2; 

and lines 6, 12, and 13 are region 3.  

The number of generators varies in each region of the IEEE 14-bus system. For example, 

there are three generators in region 1 (G1, G2, G3), one generator in region 3 (G4), and one 

generator in region 2 (G5). 
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Figure 19. Network model of Regional decomposition. 

In real electric networks, transformers are used to interconnect multiple regions. For our 

analysis, we introduce new nodes A1, A2, B1, B2, C1, and C2 that interconnect regions. This 

structure is shown in Figure 20.  For example, nodes A2 and A1 interconnect regions 1 and 3, and 

nodes C1 and C2 interconnect regions 1 and 2. Similarly, nodes B1 and B2 interconnect regions 3 

and 1. We include these nodes and apply flow-balance constraints in our formulation. 

In Figure 20, the demands units (nodes) are represented as yellow circles, and the generators 

are not colored. The individual regions that interconnect to key nodes are shown separately in 

Figures 21, 22, and 23, respectively. For example, only nodes A1, A2, C1, and C2 from other regions 

are involved in our analysis for the region 1 study. These nodes represent the total supply and 

demand allocation from their respective regions, hence it is not necessary to include all nodes. 
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Figure 20. IEEE 14-bus network model with local R constraints. 

As seen in Figure 20, we introduce new artificial nodes R1, R2, and R3 in the IEEE 14-bus 

system to keep excess power from reaching other regions and nodes. The presence of this node is 

due to the fact that we assume any loads can take power from the five generators in all three regions. 

By adding these new R nodes, we make sure that network follows the restriction on the available 

supply and demand values as per IEEE 14-bus data. For example, joint capacities at node 4 should 

not exceed the demand of G41. G41 has an initial allocation of 16.5 MW, thus the contribution of 

generator 4 to region 1 should not exceed 16.5 MW. A negative sign in the R1 node for G41 

indicates that it is a demand. Figure 21 show the R1 node constraints for region 1. 

We outline our basic formulation for Direct LP and Dantzig Wolfe in Table 6. The term 

“Direct LP” refers to allocation of the IEEE 14-bus into regions without any decomposition. The 

Dantzig-Wolfe formulation has variables “d” and “f” indicating the sub problems or regional 
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constraints. In Direct LP, we combine all constraints in Ax=b notation, whereas with DW, only the 

master constraints are constructed. We will discuss the details in the implementation section of 

Chapter 6. 

Table 6. LP formulation of Dantzig Wolfe and direct approach 

 

Region 1 Constraints  

The nodes that participate in region 1 are nodes 1, 2, 3, 4, and 5. The individual regional 

decomposition for regions 1, 2, and 3 is detailed in Figures 21, 23, and 22, respectively. The 

objective function for region 1 is the product of the failure rate and repair rate, which we define as 

the power loss or risk factor. The goal is to minimize the risk or loss for region 1 subject to the 

flow-balance constraints and the non-negativity additional constraints. The objective function for 

region 1 and the actual values for the repair and failure rates are given in Table 7. 
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Objective for Region 1 (Z����) 
�������
 = 100�
�e�
 + 186�
���
 + 123�e�R�
 + 376�e�S�
 + 140�e���
 +

273�R�S�
 + 262�S���
 + 100�
�e�e + 186�
���e + 123�e�R�e + 376�e�S�e +
140�e���e + 273�R�S�e + 262�S���e + 100�
�e�R + 186�
���R + 123�e�R�R +
376�e�S�R + 140�e���R + 273�R�S�R + 262�S���R + 100�
�e�S + 186�
���S +
123�e�R�S + 376�e�S�S + 140�e���S + 273�R�S�S + 262�S���S + 100�
�e�� +
186�
���� + 123�e�R�� + 376�e�S�� + 140�e���� + 273�R�S�� + 262�S����; 

Table 7. Failure and Repair rates for Region 1 

Lines 
connecting 

Failure rate (λλλλ) Repair rate (r) 

1-2 5.5552 18 

1-5 7.1424 26 

2-3 6.1504 20 

2-4 9.9200 38 

2-5 6.3488 22 

3-4 8.5312 32 

4-5 7.3408 36 

 

 

Figure 21. R1 node constraint for nodes in Region 1. 
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The flow balance constraints in region 1 are formulated at each node as follows: 

Node 1 

Here, there is no demand in node 1, so we assign zero on the right-hand side. 

 (�
�e�
 + �
���
) − (�e�
�
 + ���
�
) + �
��
�
 = 	0; (20) 

 (�
�e�e + �
���e) − (�e�
�e + ���
�e) + �
��
�e = 	0; (21) 

 (�
�e�R + �
���R) − (�e�
�R + ���
�R) + �
��
�R = 	0; (22) 

 (�
�e�S + �
���S) − (�e�
�S + ���
�S) + �
��
�S = 	0; (23) 

 (�
�e�� + �
����) − (�e�
�� + ���
��) + �
��
�� = 	0; (24) 

Node 2 

The flow balance constraints at node 2 in region 1 are formulated at each node as follows: 

 (�e�
�
 + �e���
 + �e�S�
 + �e�R�
)
− (�
�e�
 + ���e�
 + �S�e�
 + �R�e�
) + �e��
�

≤ �

 − 21.7; 

(25) 

 (�e�
�e + �e���e + �e�S�e + �e�R�e)
− (�
�e�e + ���e�e + �S�e�e + �R�e�e) + �e��
�e
≤ �e
 − 21.7; 

(26) 

 (�e�
�R + �e���R + �e�S�R + �e�R�R)
− (�
�e�R + ���e�R + �S�e�R + �R�e�R) + �e��
�R
≤ �R
 − 21.7; 

(27) 

 (�e�
�S + �e���S + �e�S�S + �e�R�S)
− (�
�e�S + ���e�S + �S�e�S + �R�e�S) + �e��
�S
≤ �S
 − 21.7; 

(28) 
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 (�e�
�� + �e���� + �e�S�� + �e�R��)
− (�
�e�� + ���e�� + �S�e�� + �R�e��) + �e��
��
≤ ��
 − 21.7; 

(29) 

Node 3 

The flow balance constraints at node 3 in region 1 are formulated at each node as follows: 

 (�R�e�
 + �R�S�
) − (�e�R�
 + �S�R�
) + �R��
�
 ≤ �

 − 94.2; (30) 

 (�R�e�e + �R�S�e) − (�e�R�e + �S�R�e) + �R��
�e ≤ �e
 − 94.2; (31) 

 (�R�e�R + �R�S�R) − (�e�R�R + �S�R�R) + �R��
�R ≤ �R
 − 94.2; (32) 

 (�R�e�S + �R�S�S) − (�e�R�S + �S�R�S) + �R��
�S ≤ �S
 − 94.2; (33) 

 (�R�e�� + �R�S��) − (�e�R�� + �S�R��) + �R��
�� ≤ ��
 − 94.2; (34) 

Node 4 

The flow balance constraints at node 4 in region 1 are formulated at each node as follows: 

 (�S���
 + �S�e�
 + �S�R�
) − (���S�
 + �e�S�
 + �R�S�
) + �S��
�

≤ �

 − 47; (35) 

 (�S���e + �S�e�e + �S�R�e) − (���S�e + �e�S�e + �R�S�e) + �S��
�e
≤ �e
 − 47; (36) 

                  (�S���R + �S�e�R + �S�R�R) − (���S�R + �e�S�R + �R�S�R) +
�S��
�R ≤ �R
 − 47; (37) 

 (�S���S + �S�e�S + �S�R�S) − (���S�S + �e�S�S + �R�S�S) + �S��
�S
≤ �S
 − 47; (38) 

                  (�S���� + �S�e�� + �S�R��) − (���S�� + �e�S�� + �R�S��) +
�S��
�� ≤ ��
 − 47; (39) 
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Node 5 

The flow balance constraints at node 5 in region 1 are formulated at each node as follows: 

 (���
�
 + ���e�
 + ���S�
 + ��,�e,
)
− ��
���
 + �e���
 + �S���
 + ��e,�,S� + ����
�

≤ �

 − 7.6; 

(40) 

 (���
�e + ���e�e + ���S�e + ��,�e,e)
− ��
���e + �e���e + �S���e + ��e,�,S� + ����
�e
≤ �e
 − 7.6; 

(41) 

 (���
�R + ���e�R + ���S�R + ��,�e,R)
− ��
���R + �e���R + �S���R + ��e,�,S� + ����
�R
≤ �R
 − 7.6; 

(42) 

 (���
�S + ���e�S + ���S�S + ��,�e,S)
− ��
���S + �e���S + �S���S + ��e,�,S� + ����
�S
≤ �S
 − 7.6; 

(43) 

 (���
�� + ���e�� + ���S�� + ��,�e,�)
− ��
���� + �e���� + �S���� + ��e,�,S� + ����
��
≤ ��
 − 7.6; 

(44) 

Joint Capacity Constraints for Region 3 

The joint capacity constraints in region 1 are formulated at each node as follows: 

 �
��
�
 + �e��
�
 + �R��
�
 + �S��
�
 + ����
�
 ≤ −�

; (45) 

 �
��
�e + �e��
�e + �R��
�e + �S��
�e + ����
�e ≤ −�e
; (46) 
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 �
��
�R + �e��
�R + �R��
�R + �S��
�R + ����
�R ≤ −�R
; (47) 

 �
��
�S + �e��
�S + �R��
�S + �S��
�S + ����
�S ≤ −�S
; (48) 

 �
��
�� + �e��
�� + �R��
�� + �S��
�� + ����
�� ≤ −��
; (49) 

Other Constraints 

     The other constraints in region 1 are formulated at each node as follows: 

 At A1,  

��,�
,S − ���
,�e,S� = 0;	 
��e,�
,
 − ���
,�,
� = 0;	 
��e,�
,e − ���
,�,e� = 0; 

(50-52) 

 At A2,  

(��e,�
,
) = 0;  

��,�e,e − ��e,�
,e = 0	; 
��,�e,R − ��e,�
,R = 0 

��
,�e,S − ���e,�,S� = 0;	 
(53-55) 

 ��,�e,R = �RR; 
��,�e,e = �eR; 
��,�e,
 = 	�
R; 
��,�e,S = 	�SR; 
��,�e,� = 	��R; 
��e,�,S = 	�S
; 

(56-61) 

[END OF SUB PROBLEM 1] 
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Region 3 Constraints (nodes 6, 12 and 13) 

The nodes that participate in region 3 are nodes 6, 12, and 13. The individual regional 

decomposition for region 3 is detailed in Figure 22. The objective function for region 3 is the 

product of the failure rate and the repair rate, which we define as the power loss or risk factor. The 

goal is to minimize the risk, or loss, for region 3 subject to flow-balance constraints and non-

negativity additional constraints. The following equation is the objective function for region 3, and 

the actual values for the repair rate and failure rate are given in Table 7. 

 

Figure 22. R3 node constraints for nodes in Region 3. 
 

Objective for Region 3 (�����) 
 The objective function for Region 3 can be written as 

�������R = 6.3���
e�
 + 5.5	�
e�
R�
 + 6.3���
e�e + 5.5	�
e�
R�e + 6.3���
e�R
+ 5.5	�
e�
R�R + 6.3���
e�S + 5.5	�
e�
R�S + 6.3���
e�� + 5.5	�
e�
R��; 
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          The data to calculate the coefficients for objective function are taken from Table 8. 

Table 8. Failure and Repair rates for Region 3 

Lines 
connecting 

Failure rate 

(λλλλ) 

Repair rate 
(r) 

6-12 0.274 23 
6-13 0.44 0.44 
12-13 0.25 22 

 

 The flow-balance constraints in region 3 are formulated at each node is given as: 

Node 12 

 �
e�
R�
 + �
e���
 − (�
R�
e�
 + ���
e�
) + �
e��R�
) ≤ �
R − 6; (62) 

 �
e�
R�e + �
e���e − (�
R�
e�e + ���
e�e) + �
e��R�e) ≤ �eR − 6; (63) 

 �
e�
R�R + �
e���R − (�
R�
e�R + ���
e�R) + �
e��R�R) ≤ �RR − 6; (64) 

 �
e�
R�S + �
e���S − (�
R�
e�S + ���
e�S) + �
e��R�S) ≤ �SR − 6; (65) 

 �
e�
R�� + �
e���� − (�
R�
e�� + ���
e��) + �
e��R��) ≤ ��R − 6; (66) 

Node 13 

 �
R�
e�
 + �
R,�
,S − (�
e�
R�
) + �
R��R�
 ≤ �
R − 13.5; (67) 

 �
R�
e�e + �
R,�
,S − (�
e�
R�e) + �
R��R�e ≤ �eR − 13.5; (68) 

 �
R�
e�R + �
R,�
,S − (�
e�
R�R) + �
R��R�R ≤ �RR − 13.5; (69) 

 �
R�
e�S + �
R,�
,S − (�
e�
R�S) + �
R��R�S ≤ �SR − 13.5; (70) 

 �
R�
e�� + �
R,�
,S − (�
e�
R��) + �
R��R�� ≤ ��R − 13.5; (71) 

Node 6 

 (���
e�
) − (�
e���
) + ����R�
 ≤ �
R − 11.2; (72) 

 (���
e�e) − (�
e���e) + ����R�e ≤ �eR − 11.2; (73) 

 (���
e�R) − (�
e���R) + ����R�R ≤ �RR − 11.2; (74) 
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 (���
e�S) − (�
e���S) + ����R�S ≤ �SR − 11.2; (75) 

 (���
e��) − (�
e����) + ����R�� ≤ ��R − 11.2; (76) 

Joint Capacity Constraints for Region 3 

 �
e��R�
 + �
R��R�
 + ����R�
 ≤ −�
R; (77) 

 �
e��R�e + �
R��R�e + ����R�e ≤ −�eR; (78) 

 �
e��R�R + �
R��R�R + ����R�R ≤ −�RR; (79) 

 �
e��R�S + �
R��R�S + ����R�S ≤ −�SR; (80) 

 �
e��R�� + �
R��R�� + ����R�� ≤ −��R; (81) 

Other Constraints 

 ��,�
,S − ���
,�,S� = 0; 
��,�
,S − ��
,�,S = 0; (82-89) 

 A1: 

��,�
,S − ���
,�e,S� = 0; 
��e,�
,
 − ���
,�,
� = 0; 
��e,�
,e − ���
,�,e� = 0; 
A2:  

��,�e,
 − (��e,�
,
) = 0;	��,�e,R − ��e,�
,R = 0; 	
��
,�e,S − ���e,�,S� = 0; 	
��,�e,e − ��e,�
,e = 0 
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 B1: 

�
R,�
,S + ��,�
,S − ���
,�e,S� = 0; 
��e,�
,� − ���
,�,� + ��
,
R,�� = 0; 
B2: 

�
S��e�� + �

��e�� − ���e,�
,�� = 0; 
��
,�e,S − (��e�
S�S + ��e�

�S) = 0; 
��,�
,S + �
R,�
,S = �Se; 
��
,�e,S = �Se; 
��e,
S,S + 	��e,

,S = �Se; 

(90-96) 

 ��e,�
,� = �
S��e�� + �

��e��; 
[END OF SUB PROBLEM 2] 

 

   

Region 2 Constraints 

The nodes that participate in region 2 are nodes 7, 8, 9, 10, 11, and 14. The individual 

regional decomposition for region 2 is detailed in Figure 23. The objective function for region 2 is 

the product of the failure rate and the repair rate, which we define as the power loss or risk factor. 

The goal is to minimize the risk, or loss, for region 2 subject to flow-balance constraints and non-

negativity additional constraints. The following equation is the objective function for region 2, and 

the actual values for the repair rate and failure rate are given in Table 9. 
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Figure 23. R2 node constraints for nodes in Region 2. 
 

Objective for Region 2 (�����) 
The objective function for region 2 is given as 

	�������e = 38�T�U�
 + 4���
��
 + 7.84���
S�
 + 2.28�
��

�
 + 38�T�U�e +
4���
��e + 7.84���
S�e + 2.28�
��

�e + 38�T�U�R + 4���
��R + 7.84���
S�R +
2.28�
��

�R + 38�T�U�S + 4���
��S + 7.84���
S�S + 2.28�
��

�S + 38�T�U�� +
4���
��� + 7.84���
S�� + 2.28�
��

��; 
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Table 9. Failure and Repair rates for Region 2  

Lines Failure rate 

(λλλλ) 

Repair rate 
(r) 

7-8 1.9973 20 

7-10 0.946 15 

7-11 1.08 13 

8-9 1.506 14 

8-10 1.121 12 

9-10 0.595 8 

9-14 0.981 8 

10-11 0.38 6 

10-14 1.29 16 

10-0 1.12 13 

14-0 0.85 11 

Node 7 

There is no demand at node 7. 

 ���e,T,
 + ��e,T,e + ��e,T,R� − (�T,�e,�) + �T��e = 0; 
 

(97) 

 �U�T�
 − (�T�U�
) = 0;  
 

(98) 

 �U�T�e − (�T�U�e) = 0;  
 

(99) 

 �U�T�R − (�T�U�R) = 0;  
 

(100) 

 �U�T�S − (�T�U�S) = 0;  
  

(101) 

 														�U�T�� − (�T�U��) = 0; 
 

(102) 

Node 8 

There is no demand at node 8. 

 �U�T�
 − �T�U�
 + �U��e�
 = 0; (103) 

 �U�T�e − �T�U�e + �U��e�e = 0; (104) 

 �U�T�R − �T�U�R + �U��e�R = 0; (105) 

 �U�T�S − �T�U�S + �U��e�S = 0; (106) 
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 �U�T�� − �T�U�� + �U��e�� = 0; (107) 

Node 9 

 (�
����
 + �
S���
) − (���
��
 + ���
S�
) + ��,�e,
 + ����e�

≤ �
e − 29.5; (108) 

 (�
����e + �
S���e) − (���
��e + ���
S�e) + ��,�e,e + ����e�e
≤ �ee − 29.5; (109) 

 (�
����R + �
S���R) − (���
��R + ���
S�R) + ��,�e,R + ����e�R
≤ �Re − 29.5; (110) 

 (�
����S + �
S���S) − (���
��S + ���
S�S) + ��,�e,S + ����e�S
≤ �Se − 29.5; (111) 

 (�
����� + �
S����) − (���
��� + ���
S��) + ��,�e,� + ����e��
≤ ��e − 29.5;		 (112) 

Node 10 

 �
��

�
 + �
����
 − (�

�
��
 + ���
��
) + �
���e�
 ≤ �
e − 9; (113) 

 �
��

�e + �
����e − (�

�
��e + ���
��e) + �
���e�e ≤ �ee − 9; (114) 

 �
��

�R + �
����R − (�

�
��R + ���
��R) + �
���e�R ≤ �Re − 9; (115) 

 �
��

�S + �
����S − (�

�
��S + ���
��S) + �
���e�S ≤ �Se − 9; (116) 

 �
��

�� + �
����� − (�

�
��� + ���
���) + �
���e�� ≤ ��e − 9; (117) 

Node 11 

 �

�
��
 + �

,�e,
 − ��
��

�
 + ��e,

,
� + �

��e�
 ≤ �
e − 3.5; (118) 

 �

�
��e + �

,�e,e − ��
��

�e + ��e,

,e� + �

��e�e ≤ �ee − 3.5; (119) 

 �

�
��R + �

,�e,R − ��
��

�R + ��e,

,R� + �

��e�R ≤ �Re − 3.5; (120) 



77 

 

 �

�
��S + �

,�e,S − ��
��

�S + ��e,

,S� + �

��e�S ≤ �Se − 3.5; (121) 

 �

�
��� + �

,�e,� − ��
��

�� + ��e,

,�� + �

��e�� ≤ ��e − 3.5; (122) 

Node 14 

 �
S���
 + �
S,�e,
 − ���e,
S,
 + ���
S�
� + �
S��e�
 ≤ �
e − 14.8; (123) 

 �
S���e + �
S,�e,e − ���e,
S,e + ���
S�e� + �
S��e�e ≤ �ee − 14.8; (124) 

 �
S���R + �
S,�e,R − ���e,
S,R + ���
S�R� + �
S��e�R ≤ �Re − 14.8; (125) 

 �
S���S + �
S,�e,S − ���e,
S,S + ���
S�S� + �
S��e�S ≤ �Se − 14.8; (126) 

 �
S���� + �
S,�e,� − ���e,
S,� + ���
S��� + �
S��e�� ≤ ��e − 14.8; (127) 

Joint Capacity Constraints for Region 2 

 �
S��e�
 + �

��e�
 + �
���e�
 + ����e�
 + �T��e�
 + �U��e�
 ≤ −�
e; (128) 

 �
S��e�e + �

��e�e + �
���e�e + ����e�e + �T��e�e + �U��e�e ≤ −�ee; (129) 

 �
S��e�R + �

��e�R + �
���e�R + ����e�R + �T��e�R + �U��e�R ≤ −�Re; (130) 

 �
S��e�S + �

��e�S + �
���e�S + ����e�S + �T��e�S + �U��e�S ≤ −�Se; (131) 

 �
S��e�� + �

��e�� + �
���e�� + ����e�� + �T��e�� + �U��e�� ≤ −��e; (132) 

Other Constraints 

 B1: �
R,�
,S + ��,�
,S − ���
,�e,S� = 0;	��e,�
,� − ���
,�,� + ��
,
R,�� = 0;  
 
B2 �
S��e�� + �

��e�� − ���e,�
,�� = 0;	  ��
,�e,S − (��e�
S�S + ��e�

�S) = 0;  

 

(133-
135) 

 C1:  �S,�
,
 − ���
,�e,
� = 0;  													�S,�
,e − ���
,�e,e� = 0;	 �S,�
,R − ���
,�e,R� = 0;  ��e,�
,� − (��
,S,
 + ��
,S,e + ��
,S,R) = 0;  
 

(136-
139) 
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C2: 														��,�e,S + �T,�e,S − ���e,�
,S� = 0; ��,�e,� + �T,�e,� − (��e,�
,�) = 0;  ��
,�e,
 − (��e,�,
 + ��e,T,
) = 0;  ��
,�e,e − (��e,�,e + ��e,T,e) = 0;  ��
,�e,R − (��e,�,R + ��e,T,R) = 0;  
 

(140-
144) 

  	��e,�
,R, = �RR;	 
 ��e,�
,e = �eR; 
 ��e,�
,
�	�
R; 
 ��
,�,
 = 	�
R;	 
 ��
,�,e = �eR; 
 ��
,�,R = �RR; 

 

(145-
150) 

[END OF SUB PROBLEM 3] 

Master Constraints (Linking Constraints) 

The master constraints are the linking constraints that connect to subproblems or regional 

constraints. The generator variables present in the master constraints are also included or related to 

the region 1, region 2, and region 3 constraints, as discussed above, during flow-balance and joint-

capacity constraints. These constraints interact iteratively with the sub-constraints to reach an 

optimal solution via dual values and convexity constraints as proposed in the objective formulation. 

Constraints 153 to 158 serve as master constraints. 

 G

 + G
e + G
R = 88					(MC	#	1) 
	Ge
 + Gee + GeR = 60;			(MC	#	2)	 
GR
 + GRe + GRR = 60				(MC	#	3)	 
	GS
 + GSe + GSR = 25			(MC	#	4)		 
		G�
 + G�e + G�R = 25				(MC	#	5)		 

(153-
158) 

 This five set of constraints means Commodity 1 Constraints <=88; Commodity 

2 Constraints <=60; Commodity 3 Constraints <=60; Commodity 4 
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Constraints <=25; Commodity 5 Constraints <=25; 

Decomposing the IEEE 14-Bus System into Two Regions 

The constraints that change when modifying three region classifications to two regions are 

given in the following sections. 

R2 Node Constraint in Region 1 

�
e��e�
 + ����e�
 + �
R��e�
 + �

��e�
 + �
���e�
 + �
S��e�
 + ����e�
 + �U��e�

+ �T��e�
 ≤ −�
e; 																																																																																							(159) 

�
e��e�e + ����e�e + �
R��e�e + �

��e�e + �
���e�e + �
S��e�e + ����e�e + �U��e�e
+ �T��e�e ≤ −�ee; 																																																																																						(160) 

�
e��e�R + ����e�R + �
R��e�R + �

��e�R + �
���e�R + �
S��e�R + ����e�R + �U��e�R
+ �T��e�R ≤ −�Re; 																																																																																						(161) 

�
e��e�S + ����e�S + �
R��e�S + �

��e�S + �
���e�S + �
S��e�S + ����e�S + �U��e�S
+ �T��e�S ≤ −�Se; 																																																																																					(162) 

�
e��e�� + ����e�� + �
R��e�� + �

��e�� + �
���e�� + �
S��e�� + ����e�� + �U��e��
+ �T��e�� ≤ −��e; 																																																																																				(163) 

R1 Node Constraint in Region 1 

									�
��
�
 + �e��
�
 + �R��
�
 + �S��
�
 + ����
�
 ≤ −�

; 																																	(164)  

�
��
�e + �e��
�e + �R��
�e + �S��
�e + ����
�e ≤ −�e
; 																																	(165) 

�
��
�R + �e��
�R + �R��
�R + �S��
�R + ����
�R ≤ −�R
; 																																(166) 

�
��
�S + �e��
�S + �R��
�S + �S��
�S + ����
�S ≤ −�S
; 																															(167) 

�
��
�� + �e��
�� + �R��
�� + �S��
�� + ����
�� ≤ −��
; 																															(168) 
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The nodal constraints remain the same except for removal of the R3 variable. As seen in 

Table 10, certain nodes are not considered. The coefficients are assigned a zero if the variable is not 

involved in the decomposition process. Nodes B1 and B2are not considered. 

Table 10. Eliminated nodes for two region decomposition 
132 143 295 148 255 
133 144 298 149 256 
134 145 301 252 257 
135 146 304 253 258 
136 147 307 254 259 
260 261 271 272 273 
274     
G13=0 G23=0 G33=0 G43=0 G53=0 

 

Formulating the IEEE 30-Bus System’s Constraints 

The Dantzig-Wolfe implementation is also tested with the next level of the IEEE bus 

system. The IEEE 30-bus system has 6 generators and 20 loads as shown in Figure 24. This system 

is much larger compared to IEEE 14-bus system that was discussed previously. The generator and 

load data are given in Tables 11 and Table 12, respectively. 

 

Table 11. Generator data for the IEEE 30-bus system [WG10] 
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Figure 24. IEEE 30-bus system single-line diagram. 
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Table 12. Demand profile for the IEEE 30-bus system 

Nodes Load 

demand 
Nodes Load 

demand 
1 0 16 3.5 
2 21.7 17 9.0 
3 2.4 18 3.2 
4 67.6 19 9.5 
5 34.2 20 2.2 
6 0 21 17.5 
7 22.8 22 0 
8 30 23 3.2 
9 0 24 8.7 
10 5.8 25 0 
11 0 26 3.5 
12 11.2 27 0 
13 0 28 0 
14 6.2 29 2.4 
15 8.2 30 10.6 

 

           The risk, or loss factor is calculated for objective-function coefficients using the failure-rate 

and repair-rate data shown in Table 13. 
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Table 13. Repair and Failure rates for the IEEE 30-bus system 

 

  The IEEE network model for the 30-bus system is shown in Figure 25, and the 

decomposed regions are shown in Figure 26. 



 

  

 

Figure 25. Network model for the IEEE 30-bus system
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Figure 26. Network model for decomposing the IEEE 30-bus system to three regions. 

Nodal Constraints for Region 1 

Node 1 

 �
�e�
 + �
�R�
 − (�e�
�
 + �R�
�
) + �
��
�
) ≤ �

; (169) 

 �
�e�e + �
�R�e − (�e�
�e + �R�
�e) + �
��
�e) ≤ �e
; (170) 

    �
�e�R + �
�R�R − (�e�
�R + �R�
�R) + �
��
�R) ≤ �R
; (171) 

 �
�e�S + �
�R�S − (�e�
�S + �R�
�S) + �
��
�S) ≤ �S
; (172) 

 �
�e�� + �
�R�� − (�e�
�� + �R�
��) + �
��
��) ≤ ��
; (173) 

 �
�e�� + �
�R�� − (�e�
�� + �R�
��) + �
��
��) ≤ ��
; (174) 
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Node 2 

 �e�S�
 + �e���
 + �e���
 + �e�
�

− (�S�e�
 + ���e�
 + ���e�
 + �
�e�
) + (�e��
�
)
≤ �e
 − 21.7; 

(175) 

 �e�S�e + �e���e + �e���e + �e�
�e
− (�S�e�e + ���e�e + ���e�e + �
�e�e) + (�e��
�e)
≤ �ee − 21.7; 

(176) 

 �e�S�R + �e���R + �e���R + �e�
�R
− (�S�e�R + ���e�R + ���e�R + �
�e�R) + (�e��
�R)
≤ �eR − 21.7; 

(177) 

 �e�S�S + �e���S + �e���S + �e�
�S
− (�S�e�S + ���e�S + ���e�S + �
�e�S) + (�e��
�S)
≤ �eS − 21.7; 

(178) 

 �e�S�� + �e���� + �e���� + �e�
��
− (�S�e�� + ���e�� + ���e�� + �
�e��) + (�e��
��)
≤ �e� − 21.7; 

(179) 

 �e�S�� + �e���� + �e���� + �e�
��
− (�S�e�� + ���e�� + ���e�� + �
�e��) + (�e��
��)
≤ �e� − 21.7; 

(180) 

Node 3 

 �
�R�
 + �R�S�
 − (�R�
�
 + �S�R�
) + �R��
�
) ≤ �

 − 2.4; (181) 

 �
�R�e + �R�S�e − (�R�
�e + �S�R�e) + �R��
�e) ≤ �e
 − 2.4; (182) 
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 �
�R�R + �R�S�R − (�R�
�R + �S�R�R) + �R��
�R) ≤ �R
 − 2.4; (183) 

 �
�R�S + �R�S�S − (�R�
�S + �S�R�S) + �R��
�S) ≤ �S
 − 2.4; (184) 

 �
�R�� + �R�S�� − (�R�
�� + �S�R��) + �R��
��) ≤ ��
 − 2.4; (185) 

 �
�R�� + �R�S�� − (�R�
�� + �S�R��) + �R��
��) ≤ ��
 − 2.4; (186) 

Node 4 

 �S���
 + �S�R�
 + �S�e�
 + �S�
e�

− (���S�
 + �R�S�
 + �e�S�
 + �
e�S�
) + �S��
�
)
≤ �

 − 67.6; 

(187) 

 �S���e + �S�R�e + �S�e�e + �S�
e�e
− (���S�e + �R�S�e + �e�S�e + �
e�S�e) + �S��
�e)
≤ �e
 − 67.6; 

(188) 

 �S���R + �S�R�R + �S�e�R + �S�
e�R
− (���S�R + �R�S�R + �e�S�R + �
e�S�R) + �S��
�R)
≤ �R
 − 67.6; 

(189) 

 �S���S + �S�R�S + �S�e�S + �S�Se�S
− (���S�S + �R�S�S + �e�S�S + �Se�S�S) + �S��
�S)
≤ �S
 − 67.6; 

 

(190) 

 �S���� + �S�R�� + �S�e�� + �S�
e��
− (���S�� + �R�S�� + �e�S�� + �
e�S��) + �S��
��)
≤ ��
 − 67.6; 

(191) 
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 �S���� + �S�R�� + �S�e�� + �S�
e��
− (���S�� + �R�S�� + �e�S�� + �
e�S��) + �S��
��)
≤ ��
 − 67.6; 

(192) 

Node 12 

 �
e�
R�
 + �
e�S�
 + �
e�
��
 + �
e�
S�
 + �
e�
��

− (�
R�
e�
 + �S�
e�
 + �
��
e�
 + �
S�
e�
 + �
��
e�
)
+ �
e��
�
) ≤ �

 − 11.2; 

(193) 

 �
e�
R�e + �
e�S�e + �
e�
��e + �
e�
S�e + �
e�
��e
− (�
R�
e�e + �S�
e�e + �
��
e�e + �
S�
e�e + �
��
e�e)
+ �
e��
�e) ≤ �e
 − 11.2; 

(194) 

 �
e�
R�R + �
e�S�R + �
e�
��R + �
e�
S�R + �
e�
��R
− (�
R�
e�R + �S�
e�R + �
��
e�R + �
S�
e�R + �
��
e�R)
+ �
e��
�R) ≤ �R
 − 11.2; 

(195) 

 �
e�
R�S + �
e�S�S + �
e�
��S + �
e�
S�S + �
e�
��S
− (�
R�
e�S + �S�
e�S + �
��
e�S + �
S�
e�S + �
��
e�S)
+ �
e��
�S) ≤ �S
 − 11.2; ; 

(196) 

 �
e�
R�� + �
e�S�� + �
e�
��� + �
e�
S�� + �
e�
���
− (�
R�
e�� + �S�
e�� + �
��
e�� + �
S�
e�� + �
��
e��)
+ �
e��
��) ≤ ��
 − 11.2; 

(197) 

 �
e�
R�� + �
e�S�� + �
e�
��� + �
e�
S�� + �
e�
���
− (�
R�
e�� + �S�
e�� + �
��
e�� + �
S�
e�� + �
��
e��)
+ �
e��
��) ≤ ��
 − 11.2; 

(198) 
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Node 13 

 �
R�
e�
 − (�
e�
R�
) + (�
R��
�
) ≤ 0; (199) 

 �
R�
e�e − (�
e�
R�e) + (�
R��
�e) ≤ 0; (200) 

 �
R�
e�R − (�
e�
R�R) + (�
R��
�R) ≤ 0; (201) 

 �
R�
e�S − (�
e�
R�S) + (�
R��
�S) ≤ 0; (202) 

 �
R�
e�� − (�
e�
R��) + (�
R��
��) ≤ 0; (203) 

 �
R�
e�� − (�
e�
R��) + (�
R��
��) ≤ 0; (204) 

Node 14 

 �
S�
��
 + �
S�
e�
 − (�
e�
S�
 + �
��
S�
) + (�
S��
�
) ≤ 0; (205) 

 �
S�
��e + �
S�
e�e − (�
e�
S�e + �
��
S�e) + (�
S��
�e) ≤ 0; (206) 

 �
S�
��R + �
S�
e�R − (�
e�
S�R + �
��
S�R) + (�
S��
�R) ≤ 0; (207) 

 �
S�
��S + �
S�
e�S − (�
e�
S�
 + �
��
S�S) + (�
S��
�S) ≤ 0; (208) 

 �
S�
��� + �
S�
e�� − (�
e�
S�� + �
��
S��) + (�
S��
��) ≤ 0; (209) 

 �
S�
��� + �
S�
e�� − (�
e�
S�� + �
��
S��) + (�
S��
��) ≤ 0; (210) 

Node 16 

 �
��
e�
 + �
��
T�
 − (�
e�
��
 + �
T�
��
) + (�
���
�
) ≤ �

 − 3.5; (211) 

 �
��
e�e + �
��
T�e − (�
e�
��e + �
T�
��e) + (�
���
�e) ≤ �e
 − 3.5; (212) 

 �
��
e�R + �
��
T�R − (�
e�
��R + �
T�
��R) + (�
���
�R) ≤ �R
 − 3.5; (213) 

 �
��
e�S + �
��
T�S − (�
e�
��S + �
T�
��S) + (�
���
�S) ≤ �S
 − 3.5; (214) 

 �
��
e�� + �
��
T�� − (�
e�
��� + �
T�
���) + (�
���
��) ≤ ��
 − 3.5; (215) 

 �
��
e�� + �
��
T�� − (�
e�
��� + �
T�
���) + (�
���
��) ≤ ��
 − 3.5; (216) 
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Artificial Nodes in Region 1 

     The nodes participate in region 1 are 1, 2, 3, 4, 5, 12, 13, 14, and 16. Each of these nodes is 

connected to R1 nodes. 

 �
��
�
 + �e��
�
 + �R��
�
 + �S��
�
 + ����
�
 + �
e��
�
 + �
R��
�

+ �
S��
�
 + �
���
�
 ≤ −�

; (217) 

 �
��
�e + �e��
�e + �R��
�e + �S��
�e + ����
�e + �
e��
�e + �
R��
�e
+ �
S��
�e + �
���
�e ≤ −�e
; (218) 

 �
��
�R + �e��
�R + �R��
�R + �S��
�R + ����
�R + �
e��
�R + �
R��
�R
+ �
S��
�R + �
���
�R ≤ −�R
; (219) 

 �
��
�S + �e��
�S + �R��
�S + �S��
�S + ����
�S + �
e��
�S + �
R��
�S
+ �
S��
�S + �
���
�S ≤ −�S
; (220) 

 �
��
�� + �e��
�� + �R��
�� + �S��
�� + ����
�� + �
e��
�� + �
R��
��
+ �
S��
�� + �
���
�� ≤ −��
; (221) 

 �
��
�� + �e��
�� + �R��
�� + �S��
�� + ����
�� + �
e��
�� + �
R��
��
+ �
S��
�� + �
���
�� ≤ −��
; (222) 

Nodal Constraints for Region 2 

Node 30 

 �R��e��
 − (�e��R��
) + (�R���e�
) ≤ �
e − 10.6; (223) 

 �R��e��e − (�e��R��e) + (�R���e�e) ≤ �ee − 10.6; (224) 

 �R��e��R − (�e��R��R) + (�R���e�R) ≤ �Re − 10.6; (225) 

 �R��e��S − (�e��R��S) + (�R���e�S) ≤ �Se − 10.6; (226) 

 �R��e��� − (�e��R���) + (�R���e��) ≤ ��e − 10.6; (227) 
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 �R��e��� − (�e��R���) + (�R���e��) ≤ ��e − 10.6; (228) 

 

Node 29 

 �e��R��
 + �e��eT�
 − (�R��e��
 + �eT�e��
) + (�e���e�
) ≤ �
e − 2.4; (229) 

 �e��R��e + �e��eT�e − (�R��e��e + �eT�e��e) + (�e���e�e) ≤ �ee − 2.4; (230) 

 �e��R��R + �e��eT�R − (�R��e��R + �eT�e��R) + (�e���e�R) ≤ �Re − 2.4; (231) 

 �e��R��S + �e��eT�S − (�R��e��S + �eT�e��S) + (�e���e�S) ≤ �Se − 2.4; (232) 

 �e��R��� + �e��eT�� − (�R��e��� + �eT�e���) + (�e���e��) ≤ ��e − 2.4; (233) 

 �e��R��� + �e��eT�� − (�R��e��� + �eT�e���) + (�e���e��) ≤ ��e − 2.4; (234) 

 

Node 27 

 �eT�e��
 + �eT�e��
 − (�e��eT�
 + �e��eT�
) + (�eT��e�
) ≤ �
e; (235) 

 �eT�e��e + �eT�e��e − (�e��eT�e + �e��eT�e) + (�eT��e�e) ≤ �ee; (236) 

 �eT�e��R + �eT�e��R − (�e��eT�R + �e��eT�R) + (�eT��e�R) ≤ �Re; (237) 

 �eT�e��S + �eT�e��S − (�e��eT�S + �e��eT�S) + (�eT��e�S) ≤ �Se; (238) 

 �eT�e��� + �eT�e��� − (�e��eT�� + �e��eT��) + (�eT��e��) ≤ ��e; (239) 

 �eT�e��� + �eT�e��� − (�e��eT�� + �e��eT��) + (�eT��e��) ≤ ��e; (240) 

Node 15 

 �
��
S�
 + �
��
e�
 + �
��
U�
 + �
��eR�

− (�
S�
��
 + �
e�
��
 + �
U�
��
 + �eR�
��
)
+ (�
���e�
) ≤ �
e − 8.2; 

(241) 
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 �
��
S�e + �
��
e�e + �
��
U�e + �
��eR�e
− (�
S�
��e + �
e�
��e + �
U�
��e + �eR�
��e)
+ (�
���e�e) ≤ �ee − 8.2; 

(242) 

 �
��
S�R + �
��
e�R + �
��
U�R + �
��eR�R
− (�
S�
��R + �
e�
��R + �
U�
��R + �eR�
��R)
+ (�
���e�R) ≤ �Re − 8.2; 

(243) 

 �
��
S�S + �
��
e�S + �
��
U�S + �
��eR�S
− (�
S�
��S + �
e�
��S + �
U�
��S + �eR�
��S)
+ (�
���e�S) ≤ �Se − 8.2; 

(244) 

 �
��
S�� + �
��
e�� + �
��
U�� + �
��eR��
− (�
S�
��� + �
e�
��� + �
U�
��� + �eR�
���)
+ (�
���e��) ≤ ��e − 8.2; 

(245) 

 �
��
S�� + �
��
e�� + �
��
U�� + �
��eR��
− (�
S�
��� + �
e�
��� + �
U�
��� + �eR�
���)
+ (�
���e��) ≤ ��e − 8.2; 

(246) 

 

Similarly, flow-balance constraints for nodes 23, 26, 18, 19, 20, 24, 25, and 28 can be 

formulated. Due to space constraints, we have not included them here. 

 �eU�eT�
 + �eU�U�
 + �eU���
 − (�eT�eU�
 + �U�eU�
 + ���eU�
)
+ (�eU��e�
) ≤ �
e; (247) 

 �eU�eT�e + �eU�U�e + �eU���e − (�eT�eU�e + �U�eU�e + ���eU�e)
+ (�eU��e�e) ≤ �ee; (248) 
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 �eU�eT�R + �eU�U�R + �eU���R − (�eT�eU�R + �U�eU�R + ���eU�R)
+ (�eU��e�R) ≤ �Re; (249) 

 �eU�eT�S + �eU�U�S + �eU���S − (�eT�eU�S + �U�eU�S + ���eU�S)
+ (�eU��e�S) ≤ �Se; (250) 

 �eU�eT�� + �eU�U�� + �eU���� − (�eT�eU�� + �U�eU�� + ���eU��)
+ (�eU��e��) ≤ ��e; (251) 

 �eU�eT�� + �eU�U�� + �eU���� − (�eT�eU�� + �U�eU�� + ���eU��)
+ (�eU��e��) ≤ ��e; (252) 

Joint Capacity Constraints for Nodes in region 2  

   

 �R���e�
 + �e���e�
 + �eT��e�
 + �
���e�
 + �eR��e�
 + �e���e�

+ �
U��e�
 + �
���e�
 + �e���e�
 + �eS��e�
 + �e���e�

+ �eU��e�
 ≤ −�
e; 

(253) 

 �R���e�
 + �e���e�
 + �eT��e�
 + �
���e�
 + �eR��e�
 + �e���e�

+ �
U��e�
 + �
���e�
 + �e���e�
 + �eS��e�
 + �e���e�

+ �eU��e�
 ≤ −�ee; 

(254) 

 �R���e�
 + �e���e�
 + �eT��e�
 + �
���e�
 + �eR��e�
 + �e���e�

+ �
U��e�
 + �
���e�
 + �e���e�
 + �eS��e�
 + �e���e�

+ �eU��e�
 ≤ −�Re; 

(255) 

 �R���e�
 + �e���e�
 + �eT��e�
 + �
���e�
 + �eR��e�
 + �e���e�

+ �
U��e�
 + �
���e�
 + �e���e�
 + �eS��e�
 + �e���e�

+ �eU��e�
 ≤ −�Se; 

(256) 
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 �R���e�
 + �e���e�
 + �eT��e�
 + �
���e�
 + �eR��e�
 + �e���e�

+ �
U��e�
 + �
���e�
 + �e���e�
 + �eS��e�
 + �e���e�

+ �eU��e�
 ≤ −��e; 

(257) 

 �R���e�
 + �e���e�
 + �eT��e�
 + �
���e�
 + �eR��e�
 + �e���e�

+ �
U��e�
 + �
���e�
 + �e���e�
 + �eS��e�
 + �e���e�

+ �eU��e�
 ≤ −��e; 

(258) 

Nodal Constraints for Region 3 

    The nodes participate in region 3 are nodes 5, 7, 6, 8, 22, 21, 10, 17, 11, and 9. 

Node 5 

 ���T�
 + ���e�
 − (�T���
 + �e���
) + (����R�
) ≤ �
R − 34.2; (259) 

 ���T�e + ���e�e − (�T���e + �e���e) + (����R�e) ≤ �eR − 34.2; (260) 

 ���T�R + ���e�R − (�T���R + �e���R) + (����R�R) ≤ �RR − 34.2; (261) 

 ���T�S + ���e�S − (�T���S + �e���S) + (����R�S) ≤ �SR − 34.2; (262) 

 ���T�� + ���e�� − (�T���� + �e����) + (����R��) ≤ ��R − 34.2; (263) 

 ���T�� + ���e�� − (�T���� + �e����) + (����R��) ≤ ��R − 34.2; (264) 

Similarly, constraints for nodes 7, 6, 8, 22, 21, 10, 17, 11, and 9 can be formulated. 

Node 9 

 ���

�
 + ���
��
 + �����
 − (�

���
 + �
����
 + �����
) + (����
�
)
≤ �
R; (265) 

 ���

�e + ���
��e + �����e − (�

���e + �
����e + �����e) + (����
�e)
≤ �eR; (266) 
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 ���

�R + ���
��R + �����R − (�

���R + �
����R + �����R) + (����
�R)
≤ �RR; (267) 

 ���

�S + ���
��S + �����S − (�

���S + �
����S + �����S) + (����
�S)
≤ �SR; (268) 

 ���

�� + ���
��� + ������ − (�

���� + �
����� + ������) + (����
��)
≤ ��R; (269) 

 ���

�� + ���
��� + ������ − (�

���� + �
����� + ������) + (����
��)
≤ ��R; (270) 

Joint Capacity Constraints for Region 3 

 ����R�
 + �T��R�
 + ����R�
 + �U��R�
 + �ee��R�
 + �e
��R�

+ �
���R�
 + �
T��R�
 + �

��R�
 + ����R�
 ≤ −�
R; (271) 

 ����R�e + �T��R�e + ����R�e + �U��R�e + �ee��R�e + �e
��R�e
+ �
���R�e + �
T��R�e + �

��R�e + ����R�e ≤ −�eR; (272) 

 ����R�R + �T��R�R + ����R�R + �U��R�R + �ee��R�R + �e
��R�R
+ �
���R�R + �
T��R�R + �

��R�R + ����R�R ≤ −�RR; (273) 

 ����R�S + �T��R�S + ����R�S + �U��R�S + �ee��R�S + �e
��R�S
+ �
���R�S + �
T��R�S + �

��R�S + ����R�S ≤ −�SR; (274) 

 ����R�� + �T��R�� + ����R�� + �U��R�� + �ee��R�� + �e
��R��
+ �
���R�� + �
T��R�� + �

��R�� + ����R�� ≤ −��R; (275) 

 ����R�� + �T��R�� + ����R�� + �U��R�� + �ee��R�� + �e
��R��
+ �
���R�� + �
T��R�� + �

��R�� + ����R�� ≤ −��R; (276) 
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      The additional constraints that interconnect regions 

 ��
,
S,
 − ��
S,�
,
� = �
e; 
��
,
S,e − ��
S,�
,e� = �ee; 
��
,
S,R − ��
S,�
,R� = �Re; 
��
,
S,S − ��
S,�
,
� = �Se; 
��
,
S,� − ��
S,�
,�� = ��e; 
��
,
S,� − ��
S,�
,�� = ��e; 
��e,�,
 − ���,�
,
� = �
R; 
��e,�,e − ���,�
,e� = �eR; 
��e,�,R − ���,�
,R� = �RR; 
��e,�,S − ���,�
,S� = �SR; 
��e,�,� − ���,�
,�� = ��R; 
��e,�,� − ���,�
,�� = ��R; 
��e,�
,
 = �

; 
��e,�
,e = �e
; 
��e,�
,R = �R
; 
��e,�
,S = �S
; 
��e,�
,� = ��
; 

��e,�
,� = ��
; and additional constraints. 

(277-
296) 

Thus, the LP formulation of the IEEE 14-bus and 30-bus systems is developed. Now, we 

investigate the AMPL implementation of Dantzig Wolfe procedure and results in Chapter 6. 
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CHAPTER 6. IMPLEMENTATION AND TESTING OF  

DANTZIG WOLFE PROCEDURE 

This chapter discusses the AMPL implementation and results run for the IEEE 14-bus and 

IEEE 30-bus systems. The environment for the AMPL modeling software is discussed regarding 

how to specify the model, data, and run file information. 

Overview of Modeling in AMPL and Results 

Practical, large-scale mathematical programming involves more than just the minimization or 

maximization of an objective function subject to constraint equations and inequalities. Before any 

optimizing algorithm can be applied, some effort must be expended to formulate the underlying 

model and to generate the requisite computational data structures. If algorithms could deal with 

optimization problems as people do, then the formulation and generation phases of modeling might 

be relatively easy. In reality, however, there are many differences between the form in which human 

modelers understand a problem and the form in which algorithms solve it. Reliable translation from 

the “modeler's form to the algorithm's form” is often a considerable expense.  

In the traditional approach for translation, the work is divided between a human and a 

computer. First, a person who understands the modeler's form writes a computer program where 

the output represents the required data structures. Then, a computer compiles and executes the 

program to create the algorithm's form. This arrangement is often costly and error-prone; most 

seriously, the program must be debugged by a human modeler even though the algorithm's output 

form is not meant for people to read. 

In the important special case of linear programming, the largest part of the algorithm's form 

is the representing the constraint coefficient matrix. Typically, this matrix is a very sparse matrix 

where rows and columns number in the hundreds or thousands, and where nonzero elements 
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appear in intricate patterns. A computer program that produces a compact representation of the 

coefficients is called a matrix generator. 

Compared to previous languages, AMPL is notable for the generality of its syntax and for 

the similarity of its expressions to the algebraic notation customarily used in the modeler's form. 

AMPL offers a variety of types and operations to define indexing sets as well as a range of logical 

expressions. AMPL draws considerable inspiration from the XML prototype language [Fou83], 

incorporating many changes and extensions. 

AMPL is a new language designed to make these steps easier and less error-prone. AMPL 

closely resembles the symbolic algebraic notation that many modelers use to describe mathematical 

programs, yet it is regular and formal enough to be processed by a computer system; it is particularly 

notable for the generality of its syntax and for the variety of its indexing operations. We have 

implemented a translator that takes a linear AMPL model and the associated data as input and 

produces output suitable for standard Dantzig Wolfe linear-programming optimizers.  

Lagrangian Relaxation Procedure 

Dual decomposition, and more generally Lagrangian relaxation, is a classical method for 

combinatorial optimization [Sal04]. Dual decomposition leverages the observation that many 

decoding problems can be decomposed into two or more subproblems, together with linear 

constraints that enforce some notion of agreement among solutions for the different problems. The 

subproblems are chosen such that they can be solved efficiently using exact combinatorial 

algorithms. The agreement constraints are incorporated using Lagrange multipliers, and an iterative 

algorithm—for example, a sub-gradient algorithm—is used to minimize the resulting dual variables. 

Dual decomposition algorithms have the following properties. They are typically simple and 

efficient. For example, sub-gradient algorithms involve two steps for each iteration: first, each 
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subproblem is solved using a combinatorial algorithm; second, simple additive updates are made to 

the Lagrange multipliers. They have well-understood formal properties, particularly through 

connections to linear-programming (LP) relaxations. In cases where the underlying LP relaxation is 

tight, they produce an exact solution for the original decoding problem, with a certificate of 

optimality. In cases where the underlying LP is not tight, heuristic methods can be used to derive a 

good solution; alternatively, constraints can be added incrementally until the relaxation is tight, at 

which point an exact solution is recovered.  

Dual decomposition, where two or more combinatorial algorithms are used, is a special case 

of Lagrangian relaxation (LR). It is useful to consider LR methods that utilize a single combinatorial 

algorithm, together with a set of linear constraints that are, again, incorporated using 

Lagrange multipliers. Utilizing a single combinatorial algorithm is qualitatively different from 

dual-decomposition approaches, although the techniques are very closely related. Lagrangian 

relaxation has a long history in the combinatorial optimization literature, going back to the seminal 

work of Held and Karp in 1971 [HK71], who derive a relaxation algorithm for the traveling 

salesman problem.  

The Lagrangian relaxation of general LP is given as  
 Z = minCx 		subject	to	Ax ≤ b, Bx ≤ d	and	x ≥ 0 

 The DW version of the LP in equation is given by  

Minimize � = �� − λ�(�� − #�)																																													                       (297) 

subject	to 

 � ≤ #; �	 ≥ 0; #	 ≥ 0                (298) 
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Figure 27 illustrates the interaction between the sub problems and master problems via dual 

variables and theta. The Lagrangian multiplier is chosen iteratively by the AMPL code to solve the 

problem.  

 

Figure 27. Lagrangian relaxation of the Dantzig-Wolfe decomposition. 

Computational Results of IEEE Bus System 

In testing this approach, we observe that the Lagrangian relaxation version of DW performs 

poorly when compared to other models such as Direct LP and Direct DW implementation.  

Table 14 indicates the real power values of the loads and generators for an IEEE 14-bus system. 

There is a balance in the total supply and demand for this system which equals 258 MW. This 

system has 5 generators and 11 loads as seen in Table 14. The initial assumption on generator values 

to individual regions is shown in Table 15. 



 

 

Table 14. Supplies and demand profile for the IEEE 14-bus system 

 L1(2) L2(3) L3(5) L4(4) L5(6) L6(11) L7(10) L8(9) L9(12) L10(13) L11(14) Supply 

G1 (1) 0.55 1.7 .14 4.47 .15 .16 .52 .11 .424 7.67 8.21 88 

G2 (2) 1 0.15 6.34 9.92 6.35 6.36 6.72 7.31 6.624 6.87 7.41 60 

G3 (3) 6.15 1 12.79 8.53 15.88 15.89 16.25 16.84 16.15 16.4 16.9 60 

G4 (8) 11.92 10.53 9.34 2.0 3.31 3.3 2.94 2.35 3.58 3.83 3.33 25 

G5 (6) 6.35 15.88 0.01 7.35 1 0.01 0.37 0.96 0.274 0.44 0.98 25 

 
21.7 94.2 7.6 47 11.2 3.5 9 29.5 6 13.5 14.8 258 

 

Table 15. Intial allocation of generator values for three regions 

Generators Region 1 Region 2 Region 3 

G1 58.10 19.36 9.68 

G2 39.65 13.20 6.60 

G3 39.65 13.20 6.60 

G4 16.50 5.50 2.75 

G5 16.52 5.50 2.75 

101 
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To run the DW procedure, we make initial assumptions about the generator values as shown 

in Table 15. This assumption is reasonable when considering the number of loads and generators in 

the given system. 

A print screen view of model, data, and run file is shown in Figure 28.  

 

Figure 28. Snapshot of the AMPL model file showing DW Implementation. 

The number of master constraints or complicating constraints is indicated using the “param” 

command in AMPL. For example, the “cr” variable refers to master constraints, and the “or” 

variable refers to region constraints or other constraints. The subproblem classification is 

determined using the “nsub” parameter. The convexity constraint is denoted using the lamda 

variable. The subproblem matrices are denoted using variables d and f in the model file. Separate 

data and run files are used to run the program. The subproblems setting as seen in AMPL is shown 

in Figure 29 and the commodity constraints are shown in Figure 30. 
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Figure 29. AMPL model file of DW. 

 

The model file in Figure 29 show how the interactions between the master and sub problems 

occur iteratively and the process in which dual values are calculated. The run file is embedded in the 

data file itself for convenience. As indicated in Figure 30, the commodity constraints for each 

generators in the IEEE 14 bus system is satisfied. This figure indicate that our algorithm did not 

exceed and within limits of the capacities of these generators. For example, the generator 1 capacity 

has not exceeded more than 88 MW and similarly generator 2 is within its limit of 60 MW. The 

nodes that participate is included when performing aggregate “sum” operation. 
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        Figure 30. Snapshot of commodity constraints. 

 

Figure 31 shows the AMPL allocation output for all variables involved in the IEEE 14-bus 

simulation. The total number of variables involved in the allocation process is 307 varaibles. Each 

variable is represented as a “node” in AMPL modeling.  
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Figure 31. Allocation results of the IEEE 14 bus system. 
 

 The individual nodes responsible for each commodity are listed in Figure 32. The 

computational results of DW using 14 bus is shown in Table 16. 



 

 

Table 16. Computational results on the IEEE 14-bus system 

Parameters 
Direct 

LP 
 

Lag. 
with 1 
sub-
prob. 

(Relax.) 

Lag 
with 2 
sub-
prob. 

(Relax.) 

Lag 
with 3 
sub-
prob. 

(Relax.) 

Lag with 10 
sub-prob. 
(Relax.) 

DW 
with  

1 sub-
prob. 

DW 
with  

2 sub-
prob. 

DW 
with  

3 sub-
prob. 

DW 
with  

10 sub-prob. 

Computatio
n time (sec) 

1.5 4.781 4.64 4.6875 4.796 2.437 2.421 2.328 2.375 

Variables 307 307 307 307 307 307 307 307 307 

Total # of  
Constraints 

SP: Sub-
problem 

MC – 
Master 

Constraints 

135 
SP 1: 130 

MP: 5  

SP 1:  
1-36 

 
SP 2:  

37-130 
 

MP: 5  

SP 1:  
1-36 

 
SP 2:  
37-83 

 
SP 3:  

84-130 
 

MP: 5  

SP 1: 1-20 
SP 2: 21-40 
SP 3: 41-50 
SP 4: 51-60 
SP 5: 61-80 
SP 6: 81-90 
SP 7: 91-100 
SP 8: 101-110 
SP 9: 111-115 
SP10:116-130 

MP: 5  

SP 1: 125 
MP: 5  

SP 1:  
1-36 

 
SP 2:  

37-130 
 

MP: 5  

SP 1:  
1-36 

 
SP 2:  
37-83 

 
SP 3:  

84-130 
 

MP: 5  

SP 1: 1-20 
SP 2: 21-40 
SP 3: 41-50 
SP 4: 51-60 
SP 5: 61-80 
SP 6: 81-90 
SP 7: 91-100 
SP 8: 101-110 
SP 9: 111-115 
SP10:116-130 

MP: 5  

Cost 14015 14015 14015 14015 14015 14015 14015 14015 14015 

Allocation 
result 

Same Same Same Same Same Same Same Same Same 
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Figure 32. Snapshot of nodes and variables in the IEEE 14 bus simulation. 

The complete list of all variables involved in the IEEE 14-bus system is indicated through an 

Excel snapshot in Figure 33. 

The model is extended and tested with the IEEE 30-bus system. The results show that 

directly implementing LP takes a little longer than the decomposition scheme. Moreover, the 

Dantzig-Wolfe relaxation procedure takes much longer and performs the worse compared to 
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Dantzig Wolfe procedure. The Dantzig-Wolfe implementation runs faster and provides reasonable 

computational time savings. Table 16 reflects the 14-bus system performances with multi-region 

decomposition. The total number of variables in the 14-bus and 30-bus systems is 307 and 650 

variables with 130 and 225 sub-constraints. The computational results of the IEEE 30 bus with 

various decomposition structures are given in Table 17. The allocation and objective value of cost 

parameter yield in same solution. The interactions between the master and sub problems take 212 

iterations to attain an optimal cost for three region decomposition. The same formulation can be 

decomposed into two regions with some modifications. Certain variables that link to nodes are not 

considered. The coefficients are assigned as zero if  the variable is not involved in the decomposition 

process. For example, joint-capacity constraint R3 is not involved in the two-region problem. 

Similarly, nodes B1 and B2 are not considered or removed. 

 

 

 

 

 

 

 

 

 



 

 

Table 17. Computational results on the IEEE 30-bus system 

Parameters 
Direct 

LP 
 

Lag with 
1 sub-
prob. 

(Relax.) 

Lag 
with 2 
sub-
prob. 

(Relax.) 

Lag with 
3 sub-
prob. 

(Relax.) 

Lag with 10 
sub-prob. 
(Relax.) 

DW with  
1 sub-
prob. 

DW with  
2 sub-
prob. 

DW 
with  

3 sub-
prob. 

DW 
with  

10 sub-prob. 

Computation 
time: (sec) 

4.5 14.781 14.765 14.6875 14.96 3.4375 3.421 3.38 3.95 

Variables 650 650 650 650 650 650 650 650 650 

Total # of  
Constraints 

SP: Sub-
problem 

MC – Master 
Constraints 

275 
SP 1: 270 

MP: 5 

SP 1:  
1-36 

 
SP 2:  

37-275 
 

MP: 5   

SP 1: 
1-36 

 
SP 2:  

37-150 
 

SP 3: 
150-275 

 
MP: 5   

SP 1: 1-20 
SP 2: 21-40 
SP 3: 41-50 
SP 4: 51-60 
SP 5: 61-80 
SP 6: 81-90 
SP 7: 91-100 
SP 8: 101-110 
SP 9: 111-115 
SP10:116-275 

MP: 5   

SP 1: 270 
 

MP: 5   

SP 1: 
1-36 

 
SP 2:  

37-275 
 

MP: 5   

SP 1: 
1-36 

 
SP 2: 
37-83 

 
SP 3: 

84-275 
 

MP: 5   

SP 1: 1-20 
SP 2: 21-40 
SP 3: 41-50 
SP 4: 51-60 
SP 5: 61-80 
SP 6: 81-90 
SP 7: 91-100 
SP 8: 101-110 
SP 9: 111-115 
SP10:116-275 

MP: 5   

Cost 
67485.

4 
67485.4 67485.4 67485.4 67485.4 67485.4 67485.4 67485.4 67485.4 

Allocation 
result 

Same Same Same Same Same Same Same Same Same 
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Our results show huge savings for computational cost and response time with the entire 

IEEE 30-bus system compared to Direct LP and Lagrangian relaxation formulations. The key 

contribution is that we have developed, implemented, and tested the Dantzig-Wolfe procedure in 

the IEEE bus system with various decomposition structures. It is important to note that all 

decomposition results and methods result in same cost and allocation values, the main contribution 

of this dissertation. 

Sensitivity analysis of the IEEE 14-bus system and the IEEE 30-bus system for loss (failures 

and repair rates) is investigated. Finding the optimal solution for a linear programming model is 

important, but it is not the only information available. There is a tremendous amount of sensitivity 

information, or information about what happens when data values are changed. When formulating a 

problem as a linear program, we have to invoke a certainty assumption: we have to know what 

values the data took; finally, decisions are made based on that data from the LP run. Often, this 

assumption is somewhat dubious: the data might be unknown, guessed, or otherwise inaccurate. 

How can we determine the effect on the optimal decisions if values such as the failure or repair rates 

change? Clearly, some numbers in the data are more important than others. Can we find the 

“important” numbers? Can we determine the effect of misestimating? Linear programming offers 

extensive capabilities to address these questions. In the model, I test the sensitivity of our LP 

formulation with respect to the effect on line failures. I have simulated certain line failures by 

treating a certain variables to zero and notice the change in the allocation procedure. 

In an IEEE 14 bus system, I simulated lins failures I Region 1 by treating 

x
e, xeR	and	xeS	¡�	0. I was able to observe the re-allocation of power to loads via other lines such 

as x
�	and	x�S	to other regions and eventually reaching an optimum value. Similarly, in IEEE 30 

bus system, the lines xe�, x�T	and	xT�		was set to zero and the re-routing of allocation can be seen 
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via �
R, �RS	lines to other regions. The failure scenario thus can easily be modeled by treating those 

lines as zero. Thus it is evident from these AMPL runs, the sensitivity of DW allocation process and 

transmission lines in the IEEE 14 bus and 30 bus system are bound to flow limits set on the 

transmission lines. 

 The inferences about the results and possible future tasks related to this procedure are 

discussed in the final chapter with conclusions. 
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CHAPTER 7. CONCLUSION 

A distributed linear-programming model has been created, developed, implemented, and 

tested. Two standard IEEE bus systems were modeled and successfully decomposed in multiple 

ways into sub problems. The problem was solved iteratively in each case, and directly supports 

resource allocation in a Smart grid environment. I have shown that thean LP-based design using 

Dantzig-Wolfe decomposition can execute and quickly determine the primary resource scheduling 

and allocation issues in the event that a failure occurs in the grid. The decomposition procedure can 

be easily managed by system operators. In the study using the 4-bus, 14-bus, and 30-bus systems, the 

results indicate that the computational benefits of the Dantzig-Wolfe approach enable fast responses 

on the order of a millisecond to a few seconds as network size increases. Although the 30-bus 

system is not a large bus network, the results clearly indicate a faster computation time if an 

appropriate Dantzig-Wolfe structure is formulated. This approach can enable system operators in 

the electric grid to respond to any allocation request for resources in the event of any outages or line 

failures. The key contribution of the dissertation is the design, development, and testing of a 

procedure that successfully decomposes an optimization problem that is defined over a large grid, 

but can be solved in regional pieces.  

The following inferences are made for my defined problem: 

 Inference 1: The larger size of decomposing into regions does not guarantee computational 

savings for the overall problem. For example, the computational time savings is greater with the 3-

region decomposition of the IEEE network rather than in the 10-region decomposition network, an 

important and interesting contribution of this dissertation because it conveys that not all 

decompositions can yield savings for the computation time. However, the solution procedure is 

decomposed by regions, which significantly spreads out the computational load. In addition, the 
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procedure demonstrates that feasible resource allocation solutions can be obtained on an 

intermediate basis, allowing solutions to be terminated early with a still valuable heuristic problem 

solution. 

 Inference 2: The Dantzig-Wolfe decomposition performs better in the IEEE 30-bus system 

than the IEEE 14-bus system. This finding is probably due to increased variables and large number 

of constraints and many interrelated complicated constraints with the subproblems in the network’s 

structure tested. Also, a large number of iterations between the subproblems and the master model 

were required. 

 Inference 3: The Lagrangian Relaxation procedure performs poorly compared to actual 

Dantzig-Wolfe version. This suggests that a more sophisticated procedure for setting Lagrangian 

multipliers is need.   

 Inference 4: Direct LP formulation performs better in the IEEE 14-bus system compared to 

the decomposition scheme This is likely due to the relative small size of the test problems. 

  Inference 5: All models result in the identical resource allocation and identical cost as 

measured by the objective function value. This demonstrates that the computational procedures, 

although solved through decomposition, still provide the best possible solution.  

 Inference 6: The number of iterations for interactions between master and sub problems is 

different, ranging from 100-300 iterations. The approach takes multiple iterations to reach an 

optimal cost as solution of our objective, which demonstrates the appropriate and accurate 

interactions between the master and sub problem constraints. 

 Inference 7: The proposed DW method is tested for scalability up to IEEE 30 bus system. 

Due to the large number of constraints for a given formulation, scalability issues remain.  
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  Inference 8: The benefits and significance of decomposition by regions yields reasonable 

savings on time computations compared to running all constraint sets directly. 

In summary, the key contribution is that I have developed, implemented, and tested the 

Dantzig-Wolfe procedure in the IEEE bus system with various decomposition structures. It is 

important to note that all decomposition structure results in the same cost and allocation values. 

This is a significant and main contribution for this dissertation. In addition, I have modeled the LP 

formulation for resource allocation with known uncertainty information included in chapter 3. A 

branch and bound based algorithm for resource allocation is also presented in chapter 4 as part of 

the contribution.  

 In this work, I define scalability is the ability of a DW process to handle a growing amount 

of sub-problem or constraints in a capable manner, or its ability to be enlarged to accommodate that 

growth. For example, it can refer to the capability of a system to increase total throughput (such as 

computational time) under an increased load when resources constraints are added.  

  The DW algorithm said to scale if it is suitably efficient and practical when applied to large 

problems, such as when there are a large number of participating nodes, as is the case of a typical 

distributed Smart grid system. The dissertation work shows that feasible scalability  up to the level of 

IEEE 30 bus system with 650 variables and 325 constraints. 

The application of the evaluated decompositions can be implemented on a hierarchical US 

electric grid. For example, the practicality for true large scale grid can be envisioned as distributing 

resources among the 4 Independent System Operators (ISOs), which are the NYISO, MISO, 

Western Interconnection and Southern Interconnection systems. 
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Regarding future plans for individuals who wish to study this problem, I recommend that 

they test with large-scale systems such as the standard 118-bus, 300-bus, and 1000-bus models. The 

efficiency of the Dantzig-Wolfe procedure relies on how complicated constraints are greatly 

involved in sub-problem variables and solutions. 
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