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ABSTRACT 

These days, most enterprise service centers deploy Knowledge Discovery and 

Management (KDM) systems to address the challenge of timely delivery of a resourceful service 

request resolution while efficiently utilizing the huge amount of data. These KDM systems 

facilitate prompt response to the critical service requests and if possible then try to prevent the 

service requests getting triggered in the first place. Nevertheless, in most cases, information 

required for a request resolution is dispersed and suppressed under the mountain of irrelevant 

information over the Internet in unstructured and heterogeneous formats. These heterogeneous 

data sources and formats complicate the access to reusable knowledge and increase the response 

time required to reach a resolution. Moreover, the state-of-the art methods neither support 

effective integration of domain knowledge with the KDM systems nor promote the assimilation 

of reusable knowledge or Intellectual Capital (IC). With the goal of providing an improved 

service request resolution within the shortest possible time, this research proposes an IC 

Management System. The proposed tool efficiently utilizes domain knowledge in the form of 

semantic web technology to extract the most valuable information from those raw unstructured 

data and uses that knowledge to formulate service resolution model as a combination of efficient 

data search, classification, clustering, and recommendation methods. Our proposed solution also 

handles the technology categorization of a service request which is very crucial in the request 

resolution process. The system has been extensively evaluated with several experiments and has 

been used in a real enterprise customer service center.  
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1. INTRODUCTION 

These days, knowledge discovery and management (KDM) has become an important 

organizational tool for enterprise customer service centers. KDM systems allow organizations to 

manage their knowledge capitals effectively and efficiently. Specifically, for enterprise customer 

service centers, knowledge management system plays a very critical role. The growing business 

of service centers and IT consulting services is an indispensable part in customer-organization 

communications. These service centers generally receive an enormous number of product and 

technology service requests from their customers and partners on a daily basis. In a service 

center like this, customer support engineers offer assistance to the customers by addressing and 

solving their requests. To ensure the highest level of service, providing an accurate and 

appropriate solution in a timely manner for a service request is very vital for these service 

centers. The solution for a service request can either be delivered in the form of a pre-generated 

Intellectual Capital (IC) or can be used to pervade the problem request with knowledge on how 

to address that problem. Apart from serving customer requests, this information can also be used 

to form an automated processing of future service requests having similar issues, thereby 

avoiding reinvention of request resolution all together. Moreover, knowledge can be used to 

handle scenarios including proactive bug or problem fixing, preventing issues with similar 

devices, and software images in advance within customer networks. In other words, knowledge 

management may facilitate to avoid service requests altogether. 

 Researches have shown that the significant relationship between IC and the value it adds 

to the customer service productivity is gaining importance day by day (Phusavat 2013). 

Enterprise customer service centers should put more effort on exploiting the competitive 

advantages of Intellectual Capitals with the aim to increase their operating efficiency (Lu 2014).  
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The following subsections briefly represent the research challenges, the limitations of existing 

systems in solving those challenges, contributions of this research to address those limitations, 

and a short outline of this dissertation.  

1.1. Research Challenges 

 The common practice of storing organizational knowledge assets includes various data 

sources like knowledge repositories, enterprise websites, white papers, and social networks of 

Subject Matter Experts (SMEs). In addition, the data stored in these diverse repositories may 

have heterogeneous and unstructured formats such as text files, command line interface output, 

and Web pages. These diverse data sources and huge volume of heterogeneous data formats not 

only complicate the request resolution procedure but also cause extensive processing time. As a 

matter of fact, researches have shown that 25% to 50% of the time spent by the technical support 

teams is for searching the solutions (Feldman 2004). 

Request for 
Assistance

Determine 
Problem 
Category

Assign 
Assistance 

Request

Structured 
Intellectual 
Capital (IC)

Request 
Resolution(s)

Existing Resolutions
In-house Knowledgebase
External Resources

 

Figure 1. Request Resolution Process in an Enterprise Service Center 

On the other hand, consulting services are expected to serve customers with the expertise 

to build, improve and scale their IT environment. Consulting engineers often execute repetitive 

tasks like performing network assessments and optimizations manually due to the lack of 

reusable knowledge or intellectual capital necessary to complete a task. So, the knowledge 
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captured from customer engagements must be a part of the workflow of technical support teams 

to make effective use of it. Nevertheless, solutions to new service requests increase both the 

prospect of capturing reusable knowledge and the challenge of scaling the search and distribution 

of newly captured information.  

In enterprise customer service centers, customer support engineers receive an enormous 

number of service queries from customers and partners regarding enterprise products and 

technologies. As depicted in Figure 1, upon receiving a customer’s query requesting assistance a 

Service Request (SR) is created. After the SR is stored in enterprise service request management 

database, it assigned to a customer service engineer.  While working on a service request, the 

engineer may quickly give suggestions based on his experiences if the request is a known one. 

However, for new problems, before organizing the solutions, he may need to do an extensive 

search related to the issue from different sources- such as the Internet / social network sites, 

related service requests, enterprise’s white papers and/or technical reports. A service request 

system is then used to document the information traded between the customer and the service 

center. Furthermore, informal methods like manuals, binders, sticky notes, case histories, etc. are 

also used by the engineers to research inquiries and provide solutions (Rasooli 2007). But, these 

conventional methods are not optimal as they do not promote automation, knowledge sharing, 

and knowledge reuse or expedient resolutions. 

1.2. State-of-the-art Methods 

These days, to improve the request resolution efficiency there is an increasing demand of 

knowledgebase solutions among the customer support service centers. Knowledge management 

systems also help these service centers to reduce their need for in-house and business support 

escalations (Ashu 2012). In most cases, it is very likely that a service request being asked to a 
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service center, has been asked before, and in all probability will be requested again. Hence, most 

service centers try to capture both the resolution, and the procedure followed in solving a 

previously posed request and build structured knowledge, which is called Intellectual Capital 

(IC), from this experience (Rasooli 2007), and  (Heitz 2008). Therefore, after receiving a service 

request enterprise knowledge management systems should be capable of matching the service 

requests with similar cases that have been resolved before. The Intellectual Capitals are 

contributed by expert support engineers based upon their concrete experience and can be 

structured in the form of a knowledge database. These ICs promote faster access to enterprise 

knowledge repository and efficient service request response.  

Although KM systems, built upon service engineers’ previous experiences, facilitate 

efficient responses to customer inquiries and resolutions of similar requests, but such systems 

have limitations-  

i) These systems suffer from cold start problem. In other words, new service requests 

cannot benefit from such system.  

ii) Up-to-date information from sources like social network discussion threads or e-mail 

exchanges between service engineers and customers cannot be quickly integrated to 

the system.  

iii) The existing systems lack in utilizing domain knowledge in granular level of service 

request resolution. 

iv) The state-of-the-art methods do not consider incorporating multi-word lexicons and 

noise or information in their KM systems. 

Research study has shown that with an overwhelming number of service requests, service 

center staffs endeavor to balance between the complexity of requests, existing tools or skills and 
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quality service expectations by customers (Dimension Data 2013-2014). Due to these inevitable 

challenges, the request resolution rate is decreasing for consecutive years and as a result, the 

ratio of customers requesting for services and get their issues resolved has also dropped to 75%. 

1.3. Contributions of the Dissertation 

To address the aforementioned challenges, we propose an efficient knowledge 

management system to transform the huge amount of data into reusable knowledge or 

Intellectual Capital (IC). The IC can be utilized by service management solutions to make 

service processes more efficient, effective, and predictable. In particular, our effective IC mining 

system collects, processes and analyzes data from heterogeneous sources like enterprise data 

repositories and social network sites to extract and store ICs into machine-interpretable format to 

facilitate inference and reuse. This model offers better categorization of service request 

resolution data by integrating rich semantics, advanced search with data mining and machine 

learning technologies. The goal of this work is to make fundamental contributions towards 

realizing a usable, intelligent, and effective framework for IC mining. 

Our goal is to help service engineers and customers find the right information they 

require and present the information in an understandable and reusable format. But before a 

service engineer can start working on a service request resolution, the very first step is to identify 

the problem category and if possible, the subcategory to make the service request assignment 

process smooth and accurate. To achieve this goal we build a technology-sub technology 

identifier which precisely outputs the problem category of a service request. In the next phase of 

service request resolution, we implement an integrated custom search engine by utilizing Google 

Custom Search. The search engine locates the documents related to service request, but with 

massive amount of noise. To remove noise and shape the extracted information into a powerful 
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representation, we have utilized a multi-level classifier. At the third and the most important step 

of this process, we implement a semantics-guided classifier to categorize the information 

returned by the search engine to a structured Intellectual Capital which can be easily understood 

and absorbed by service center engineers or customers. Once the IC is extraction is complete, it 

is stored in an IC repository which clusters together similar ICs for making the knowledge reuse 

efficient and easy. Later, when a new service request comes in, the support engineers use the 

recommender module in our IC management system to search for already resolved similar cases 

before attempting the request resolution process. 

We use ontology to incorporate domain knowledge to unstructured information for 

precise and intelligent KM. Ontology (Fensel 2001) provides a shared and common 

understanding of a domain that can be communicated across people and application systems, and 

thus facilitate interoperability, knowledge sharing and reuse. With the assistance of this semantic 

web technology our mining tool can automatically infer relationships between important 

concepts thus enabling accurate knowledge extraction and organization. There will also be a 

module for continuous learning to optimize the results where engineers’ captured knowledge will 

be used as a feedback in areas such as query refinement, problem definition, results evaluation 

and verification to improve the results. 

1.4. Dissertation Outline 

The dissertation is organized as follows. Chapter 2 presents the related works in 

knowledge discovery and management with background knowledge. Chapter 3 gives an 

overview of the system architecture with the details of the methodologies. In Chapter 4 we 

evaluate the proposed methods and presented the effectiveness of the IC management system 
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with a comprehensive set of experiments. Chapter 5 presents and concluding remarks with future 

research directions.  
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2. BACKGROUND AND RELATED WORK 

The first section in this chapter briefly outlines the state-of-the-art methodologies in 

knowledge discovery and management (KDM) that have been investigated throughout this 

dissertation.  Following the related works, the background knowledge related to KDM and our 

methodology, which is described in Chapter 3, has also been presented to better understand the 

problem domain. 

2.1. Related Work 

Knowledge is considered as a critical asset for organizations to leverage competitive 

advantage in today’s economy. To stay competitive, organizations constantly seek for different 

data sources that can be used for new knowledge creation. However, business success is 

significantly dependent on organization’s capabilities to acquire, manage, develop and use 

knowledge dynamically (Alavi 2001), (McEvily 2000), (Ravichandran 1999), (Sambamurthy 

2005), and (Wu 2008). In other words, enterprise’s capabilities are considered to be interrelated 

with its knowledge and the ability to manage it. In fact, knowledge management is a combination 

of knowledge assets and knowledge processes which are foundation of development, 

maintenance and renewing of enterprise proficiencies (Adler 1989), (Prahalad 2006), (Marr 

2001), (Leonard-Barton 1995), and (Nelson 2009). In recent years, organizations’ attempts to 

capture and reuse their intellectual assets have accelerated the use of knowledge management 

systems (KM). Knowledge management system has particularly abetted the customer support 

managers by reducing their support cost through the automation of complex support problems.  

As defined by Nada K. Kakabadse et al., knowledge represents the organized and 

meaningful information which is accumulated through experience, communication and reasoning 

(Kakabadse 2003). Knowledge is acquired from raw facts or observations and classified or 
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analyzed data utilizing human expertise and experience (Varun Grover 2001), (Kakabadse 2003), 

and (I. Nonaka 1994). Organizational knowledge and intangible assets determining an 

organization’s value and competitiveness, often refer to the concept of Intellectual Capital (IC) 

(Magrassi 2002). Knowledge and innovation are considered as two very valuable intangible 

resources because of their key roles in organization’s long-term business competitiveness. Proper 

management of organization’s IC can reinforce the continuing productivity measurement efforts 

on an organization’s intangible assets (Phusavat 2013). Researches have shown that operating 

efficiency of an organization is heavily dependent on its intellectual capital (Lu 2014). Grant 

(Grant 1996) and Spender (Spender 1996) have presented a knowledge-based view of 

organization where intangible resources have been categorized into different types of knowledge.  

Enterprise customer support is one major area which requires management of data and 

information in a large context. Data like customer & business partners’ contact information, 

products that require support, actions taken to resolve customer’s request for a service, time 

spent on the service request resolution process—all these need to be captured and analyzed 

properly. Nevertheless, the knowledge of tackling and cracking complex service problems was 

not easily managed until lately. The enormous amount of knowledge available in electronic 

format requires a considerable amount of time & resources to search through. One solution to 

this problem is employing more experts as they can solve many customer problems. But, for 

organizations it is not always possible to appoint an adequate number of experts to keep up with 

the growing product knowledge and customers needing help. Another problem of expert 

dependent system is that when they leave the organization, part of the knowledge gets lost as the 

knowledge transfer process is not always easy. Moreover, the invasion of new, complex, and 

highly technical products comes with the requirement of high-end customer support as they may 
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have very little knowledge about the products and their underlying technology. Enterprise 

customer service centers can have several thousand employees over the world and it is very 

unlikely that who takes service requests about problem and issues are all experts. These 

requirements incur huge costs both in infrastructures and in people. As a solution of these 

problems, enterprise support centers have started using knowledge management system to make 

the captured support knowledge available for their employees serving the customers. These 

customer support centers have already achieved quantifiable amount of benefits through the 

deployment of support knowledge management system. These knowledge management systems 

have enabled the enterprise customer support in reducing the call times, resolving problems 

without the involvement of in-person visit to customer’s place. The ability to distribute, reuse, 

and apply the captured knowledge through the knowledge management systems has been 

beneficial for the organizations in reducing the dependency of expert & expensive support 

workforces. 

Though the identification and management of an organization’s intellectual capital is 

gaining importance but mining IC is inherently challenging and is often imprecise. The major 

challenge is that in most cases the knowledge related to IC is embodied in unstructured or semi-

structured formats. The traditional approach of mining organization’s IC is carried out manually 

through labor and time demanding tools like interviews, assessments, workshops, etc. (Yin 

2003). Moreover, the quality of the results is greatly reliant on the experience & expertise of the 

persons involved in the process. The quality of the manually captured ICs also vary in quality 

due to the unavailability of uniform architecture for knowledge creation, acquisition and 

elicitation. 
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One key challenge in managing customer support knowledge is deciding whether to 

structure the information in advance prior to use or to formulate the structure in real time. In 

general, knowledge management involves various technologies which mostly involve relatively 

unstructured online repositories of enterprise product or service related documents (Davenport 

1998). For instance, almost all customer service centers provide the facility to search for 

solutions to non-time-critical problems (Salton 1986). However, in most cases, this keyword 

based repository search can be quite time intensive and often results many documents that do not 

fulfill user's exact needs. On the other hand, the requirement is more vigorous for customer 

support environment requiring support analyst’s assistance as customer’s time is considered 

important. So engineers in customer support need instantaneous and accurate resolutions to solve 

customer queries in real time. In addition, after finding an appropriate document, the support 

engineer needs to read through the document to interpret it in the context of the customer’s 

service request. Moreover, many of the customer support engineers may be apprentices at surfing 

through enterprise knowledge bases to address customer support problems. This process of 

request resolution process may be suitable to off-line problem-solution research, but it is 

inefficient & unacceptable for the real-time requirements. 

As mentioned by Rasooli et al., the process of knowledge management consist of 

knowledge acquisition, knowledge creation, knowledge distribution, knowledge adaptation and 

knowledge utilization (Rasooli 2007). Ikujiro Nonaka defined knowledge creation not only as a 

process of making obtainable and intensifying knowledge created by individuals but also as a 

method to connect it to an enterprise knowledge system (I. G. Nonaka 2006). An organization’s 

success in knowledge creation is closely linked to its proficiency to extract, convert, and 

combine implicit and explicit knowledge from various sources.  Conversely, the amount of 
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available electronic data within organization in increasing dramatically and most of these are 

either unstructured or semi-structured (Waters 2005). Unstructured data like e-mails, white 

papers, and other text-based documents contain important information like expert knowledge, 

details of customer relationships, common problem fixes, etc. Researchers have shown that the 

knowledge inherent in unstructured information can constitutes up to 80–98% of all the 

organization knowledge are very valuable for organization intellectual capital management 

(Cheung 2005). Researchers are working to provide more structured knowledge content which 

are capable in rapid and precise knowledge retrieval with more detailed solution descriptions. 

One of the most popular method for identifying intellectual capital-related information is content 

analysis (J. R. Guthrie 2004). The method presented by the authors is manual and requires 

codification of the qualitative and quantified IC-related information into some pre-defined IC 

indicator categories. These categories were compiled based on the literatures on government 

policy and professional policy announcements (J. R. Guthrie 1999). 

However, manual method of IC extraction critically restricts the volume of texts that can 

be processed due to the labor demanding data assemblage process (Beattie 2007), and 

(Abeysekera 2006). The data extracted in this manual process is affected by personal bias even 

after the researchers’ participation in assessment. Another issue is- the risk of inconsistency 

increases due to the different coding rules followed by different coders for interpretation. These 

inevitable disadvantages of manual IC creation inspired researchers to model the IC extraction 

problem to a machine solvable one. Nick Bontis utilized electronic search and a list of IC 

terminology to be used as the IC revelation references to capture the IC-related information in 

the electronic database of Canadian Corporations annual reports which contains approximately 

11,000 records (Bontis 2003). Though this automatic method makes the identification of huge 
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amount intellectual capitals conceivable but the low level of IC disclosure exhibits the fact that 

this kind of electronic search was not an efficient way of IC-related information extraction. The 

system could not recognize the synonyms and words with multiple meanings related to an IC 

(Beattie 2007). Furthermore, the number of matched IC related information was reduced as the 

machine-operated system cannot comprehend the background knowledge of the keywords. 

Oliverira et al. investigated the level of IC disclosure in Spain using Concordance, a 

software program which aids in the study and analysis of textual data by improving the 

reliability, replicability, and objectivity of the extracted data. However, the performance of the 

system was not encouraging as the number of recognized ICs were less as compared to the 

manual identification. Lee and Guthrie exploited Factiva to identify the knowledge related to 

intellectual capitals in the business and analyst reports (Lock Lee 2010). Factiva (Dow Jones 

2016) is an intelligent classification tool which support automatic organization of the IC related 

information and provides full-text access to current and archived news and business information. 

The authors applied electronic search to extract the IC-related data which were corrected using 

human assessments. After the correcting the gross errors, accepted IC terms were manually 

mapped to the Factiva intelligent taxonomy terms. Weng et al. presented their method of 

knowledge extraction and reuse using a text analytics system which includes hierarchical 

classifier and a recommender (C. R. Wang 2011) (C. R. Wang 2010). In their system, the authors 

formulate the classifier to label service center requests to well-defined categories, explicitly 

what, why, and how. The recommender module in the system recommends previously solved 

solutions for similar requests. A knowledge discovery framework utilizing a service oriented 

architecture (SOA) was proposed by Klieber et al. (Klieber 2009). The algorithm consists of 

three different steps- concept vectorization, concept clustering, and mapping finding and was 
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designed with the primary goal to ease usage for non-knowledge discovery experts. Suganya et 

al. proposed a two-level model demonstration of textual data representation- syntactic and 

semantic (Suganya. S 2013). The syntactic information was presented using a tf-idf model and 

for semantic data representation, the authors have used Wikipedia. The authors employed three 

support vector machine, nearest neighbor classifiers on three different levels- syntactic, semantic, 

and the combined result of the two previous levels correspondingly.  

Nevertheless, all of these existing classification approaches work on the single lexicon 

level and do not address these challenges efficiently- 

i) How to deal with the dynamic social media data? 

ii) How to provide support for never-seen service requests? 

iii) How to properly incorporate the enterprise domain knowledge in service request 

resolution?  

iv) How to effectively consider multi-word semantic entity, noise, and error information? 

Our proposed IC Mining system effectively solved these problems utilizing a MaxEnt 

classifier. The output of the IC extractor (classifier) is then clustered together to create a reusable 

& machine understandable IC repository.  

2.2. Background Knowledge 

This sub-section provides preliminary terminologies related to the work and the literature 

survey of recent works on knowledge discovery and management.  

Knowledge discovery (KD) is the process of generating knowledge from data using tools 

like artificial intelligence, mathematics, and statistics. According to Gregory Piatetsky & 

William Frawley, knowledge discovery is a method for extracting implicit, previously unknown, 

and potentially useful information from data (Piateski 1991). The process of discovering 
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knowledge can be designed to exploit the underlying features and structures of various 

application domains- card analysis, customer analysis, and product analysis & enquiries. Table I 

represents some of the document management techniques, developed to reduce the workload of 

huge data handling. 

Table 1. Document Handling Techniques 

Function Method Data Representation Output 

Document 

Searching 

Keyword extraction, 

Information Retrieval 

Keywords, character 

strings 

A set of 

documents 

Document 

Organization 

Keyword distribution analysis, 

classification, clustering 

Set of keywords, 

features 

Clusters of 

documents 

Knowledge 

discovery 

Semantic analysis, NLP, data 

mining 

Semantic concepts Concept 

 

Management of data and information is an integral part of customer support. It is very 

crucial for the organizations to manage knowledge assets with intelligence in order to provide 

better service to the customers. However, for technology-intensive industries, it has always been 

a painstaking task to manage the knowledge of approaching & solving complex service 

problems. Searching through organization’s technical white papers, internal databases, intranet & 

Internet for the knowledge required to solve the client service request has always been a time-

consuming task. On the other hand, employing a good number of domain experts may reduce the 

request response time reasonably. But, for most of the technology-intensive call and service 

centers it is not always cost-effective to hire enough experts to match the increasing growth of 

both product knowledge and service requests. Moreover, losing even a single expert staff 

significantly impacts both the customer-organization relationships and company finance as the 

best practice knowledge seems to get lost when that expert leaves the organization (Nolan 

Norton 1998). Another challenge for cost effective business operations is to share & collaborate 

the knowledge among the stakeholders in order to establish the best practices (Kuehnast J 2009). 
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To handle these problems, organizations have started to capture, distribute and reuse support 

knowledge by deploying knowledge management systems (KMS). This reusable knowledge 

includes already solved service requests & their solutions, product enquires, answers and 

recommendations.  

Table 2. Intermediate Forms and Corresponding Text Units 

Intermediate Form (IF) Text Unit  

Bag of Words (BoW) 

N-grams 

Word 

Token 

Multi-term text phrase 

Paragraph 

Paragraph 

Concept Graph 

Semantic Graph 

Concept Hierarchy 

Concept 

Document Document 

 

In other words, knowledge management is the process of recognizing, capturing, and 

utilizing organizations’ collective knowledge not only to help them compete (Von Krogh 1998) 

but also to increase the receptiveness and innovativeness at the same time (Hackbarth 1998). The 

activities involved in the process of knowledge management of call centers and service centers 

include knowledge acquisition, generation, distribution, adaptation and utilization (Rasooli 

2007). The authors have used a case study approach to propose an abstract high-level knowledge 

management model for call centers based on the aforementioned actions. Knowledge in KMS is 

represented both in human and machine readable forms. The human-readable format of 

knowledge can be accessed using tools like search engines, browsers, etc. On the other hand, 

machine-understandable knowledge forms the knowledge base to aid in decision making of 

intelligent systems. These intelligent expert systems can be an essential part of KM systems. To 

formulate the machine readable knowledge base, it is very important to choose the form of 

knowledge representation. Ontology is one such form of representation where data 
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conceptualization is explicitly specified (Guber 1993). In organizational knowledge management 

systems, ontology specification represents product or service taxonomy to define the knowledge 

for the system. Ontologies serves as a common resource in the KM system which facilitates 

knowledge search, storage, representation and reuse. 

However, the quality of the knowledge varies depending on several factors including the 

source that has been used to produce that knowledge. For example, on discussion forums, users 

tend to rely more on the best practice solutions posted by the domain experts as compared to the 

ones suggested by the general users. So it is very crucial to filtering out the noisy and irrelevant 

data before knowledge extraction takes place. We will discuss the state of the art methodologies 

that are being used for knowledge extraction in the following subsections. 

2.2.1. Text Mining 

The process of automatic extraction of new, previously unknown information, from 

heterogeneous data sources is known as Text mining (Senellart 2008). Text is the most common 

form of information storage for most of the organizations. In fact, there is a rule of thumb, cited 

by Merrill Lynch (Shilakes 1998), which says that around 80% of potentially usable information 

may contained in unstructured textual documents, primarily text. As a multidisciplinary 

technique for knowledge discovery from unstructured text, text mining comprises of information 

retrieval, natural language processing, information classification, clustering, and visualization 

which provides computational intelligence (Sorensen 2009).  

Text mining has been considered a variation of data mining (Navathe 2000) where the 

later aims to find interesting patterns from a large datasets. However, the fuzzy and unstructured 

nature of natural language text makes text mining more complex with a higher commercial 

potential as compared to data mining (Kano 2009). The aim of text mining is to finding out 
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interesting and useful patterns in natural language text. To achieve the vision of text mining as 

data mining on raw unstructured data, text mining procedures aim to obtain structured datasets 

called intermediate forms (IF) to make data accessible for knowledge extraction techniques. 

Table 2 represents the intermediate forms and their corresponding atomic text units used by our 

IC mining system to extract the reusable knowledge from the raw data. Among these four IF, we 

briefly discuss BoW and N-gram techniques in the later subsections.  

2.2.2. Natural Language Processing 

One important step in machine understandable data preparation is to remove noisy 

information from the unstructured text/document used in knowledge capital extraction. To 

prepare the unstructured data to be used for knowledge extraction, Natural Language Processing 

(NLP) techniques are applied. In other words, knowledge discovery is achieved through NLP.  

The origin of NLP was in the 1950s as the intersection of linguistics and artificial 

intelligence (AI). At the beginning, research areas of NLP and text information retrieval (IR) 

were diverged from each other.  As stated by Manning et al. (Manning 2008), focus of IR is to 

index and search high volumes of textual data efficiently by deploying highly scalable statistics-

based techniques. However, with time both these area have converged and NLP borrows from 

several other diverse fields as well. The following subsection describes the phases and the roles 

of natural language processing that has been used in our IC mining system to retrieve useful & 

reusable knowledge capital. 

2.2.3. Named Entity Recognition 

Named entity recognition (NER) is an essential component in applications like 

information extraction (Khalid 2008), machine translation (Babych 2008), question answering 

(Toral 2005), etc. NER aims to find all textual mentions of named entities (persons, 
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organizations, locations, quantities, etc.) in the document. Named entities also include numerical 

expressions like dates, time, and percent. Moreover, named entities are domain dependent. In the 

domain of service centers, a named entity (NE) can be a product name or service name or a 

technology, etc. NER can either be gazetteer based, or trained. 

2.2.3.1. Gazetteer-based NER 

Gazetteer based approaches for named entity recognition systems utilize peripheral 

knowledge base to match text phrases via some dynamically constructed gazette to the names 

and entities. One useful feature of this approach is that gazetteers also provide a non-local model 

for resolving multiple names into the same entity. Gazetteer approaches performs better in 

certain domains (Torisawa 2007), (Richman 2008), and (Ritter 2011). 

2.2.3.2. Trained NER 

Trained NER performs better across the domains while performing predictive analysis for 

entities unknown to a gazette. These named entity recognition systems use statistical models to 

make predictions about named entities in document. However, systems like these require a huge 

amount of annotated training data to be effective in entity recognition. Also, trained NER don’t 

naturally provide a non-local model for entity resolution (Funayama 2009), (Florian 2003), 

(Chieu 2002), and (McCallum 2003). 

Results achieved by the Statistical NERs are comparable to hand-coded systems. For 

instance, IdentiFinder (Bikel 1999), which is based on Hidden Markov Model (HMM) has 

achieved remarkably good performance. Apart from these two categories, NER can also be rule 

based. The entity extraction module in our IC mining system uses a hybrid approach of entity 

recognition using both n-gram (gazetteer) and rules.  



 

20 

 

Considering the underlying semantics of the natural language text is vital during the 

phase of preprocessing to convert raw unstructured text into machine understandable format. The 

entity extractor module in IC Mining system employs semantic web technology to retrieve this 

contextual information and to extract the machine understandable and reusable knowledge from 

the raw, unstructured natural language text. The following subsection briefly presents the role of 

semantic web technology, more specifically the role of ontology in knowledge discovery and 

management. 

2.2.4. Ontology in Knowledge Management 

This section outlines a short overview of the distinguished NLP model named Ontology 

Web Language (OWL) (McGuinness 2004) and Ontology in general. Sharing extracted 

knowledge among different platforms/applications remains a challenging task. Ontology, a 

domain specific hierarchical and conceptual representation of information, provides a way for 

knowledge sharing and reuse through logical interpretation of textual data (Hsieh 2011), 

(Marinica 2010), and (K. B. Ahmed 2014).  According to Gruber, ontology is an explicit formal 

specification of a shared conceptualization (Wong 2012). The notion of explicit denotes that 

ontology should define the types of constraints used in model, formal means that it should be 

comprehensible to machines, shared specifies that it should be shared by group rather than being 

restricted to individuals. Ontology improves the interoperability by providing a shared and 

machine-executable meaning on concepts across users and systems. In addition, ontology 

supports inference mechanisms that can be used to enhance semantic matchmaking. For 

knowledge engineering and knowledge representation, ontologies provide a number of useful 

features (Gomez-Perez 2006). 
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Studies related to semantic web, especially ontologies, have advanced from the specific 

needs related to knowledge management within a computational environment, in particular from 

the challenge of knowledge sharing and reuse (Wong 2012). Ontologies facilitate domain 

specific knowledge sharing and reuse through semantics and hierarchical relationships between 

concepts and objects (Lin 1999), (Wimalasuriya 2010), (Vogrinčič 2011), (Marinica 2010), 

(Serra 2014), (Turney 2010), and (Glimm 2012). For instance, ontologies in the medical domain 

comprise concepts related to treatments of various diseases and clinical procedures that simplify 

the propagation of standard terminologies in the healthcare systems. Some of the most popular 

ontologies include Unified Medical Language system (UMLS), Basic Formal Ontology (BFO), 

Protein Ontology (PO), Suggested Upper Merged Ontology (SUMO), and Bio Investigation 

Ontology (BIO) (Turney 2010), (X.-Y. J.-H. Liu 2009), and (Domingos 1997). Flexible 

annotations and hierarchical conceptualization made ontologies instrumental in other application 

areas like semantic search, entity recognition and text mining (J. D.-P. Fernández 2010), 

(Subhashini 2011), and (K. B. Ahmed 2014).  

OWL, an XML based vocabulary, provides a comprehensive ontology representation 

using class definitions, relationships between classes and constraint based class properties or 

attributes. It is an extension of Resource Description Framework (RDF) which supports the 

subject-predicate-object model to make assertions about a resource. Many ontology-based 

knowledge management systems have been designed & proposed by the researchers in recent 

years to facilitate effective knowledge sharing and reusing as ontology can efficiently handle 

heterogeneous data sources. A. Hotho et al. proposed a semantic method of document clustering 

(Hotho 2002) where the authors have used ontology to identify distinct interests. The authors had 

incorporated background knowledge to improve the clustering results where the system can 
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make selection between results. Fernández et al. proposed a semantic search model which 

addresses the challenges of the massive and heterogeneous Web environment by utilizing 

ontologies (A. S. Fernández 2008). In conjunction of ontology, the authors have used a Fuzzy 

Rule Classification System to handle disproportionate data sets.  Similarly, G. Rong et al., 

presented an ontology-based information retrieval system which retrieves and manages non-

metallic pipe knowledge of oilfield (Rong 2012).  Phoenix, an information management system, 

was proposed by A. Uszok et al. (Uszok 2013) which uses global ontology to manage knowledge 

in coalition environment domain and from documents of different format. An ontology-based 

KM approach which integrates a data quality component was presented by Sangodiah, 

Anbuselvan, and Lim Ean Heng for e-learning systems (Sangodiah 2012). However, the system 

does not provide a method to recognize the interaction of various technologies used within the 

component. Fan, Jing, et al. describes an ontology-based method for forest knowledge 

management (Fan 2012). But, during the system design, the authors did not incorporate the 

dynamic factors like resource competition and mutual benefits between species which influence 

the species configuration. As surveyed in (J. D. Huang 2010), ontology has also been extensively 

used for knowledge discovery and sharing in bioinformatics and medical informatics. 

Several methodologies have been proposed for document annotation and classification 

based on features like pre-defined categories, domain knowledge or ontology.  Labrou, Yannis, 

and Tim Finin presented a method which uses Yahoo!-Categories as a concept hierarchy and 

annotates Webpages using an n-gram classifier (Labrou 1999). The system has been designed to 

solve applications in the area of text mining. The authors used a notion of similarity matrices to 

test the new document topics and then at the final classification results were given based on a 

predefined threshold value.  De Luca, Ernesto William, Andreas Nürnberger, and O. von-
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Guericke have presented a system to classify search results into semantic classes by utilizing 

linguistic ontologies (specifically MultiWord-net (Pianta 2002)) (Luca 2004). For classification, 

the authors simply computed the cosine similarity between the search results and the multi-

senses returned from the MultiWord-net ontology of the keyword. The system is not independent 

as the disambiguation has been after classification of the information was done. As a result, the 

systems does not benefit from the different semantics consideration. In another similar approach, 

Cheng et al. modeled knowledge management as a document clustering problem by utilizing 

Ontology-based Semantic Classifications framework (Cheng 2004). The two key components 

utilized by this framework are: context free text interpreter- for syntactic analysis & context-

based categorization agent-for context model usability enhancement. But, the authors did not 

provide any implementation details to support the proposed framework. In (Bawakid 2010), the 

authors expand words in a document with the synonyms defined in WordNet claiming this would 

improve the classification accuracy for semantic categorization of text. However, the issue of 

expanding words with multiple semantic meanings was not addressed by them. Our IC mining 

system overcomes all these shortcomings of the existing systems by addressing the inherent 

domain knowledge with the help of semantic web technologies. 

2.2.5. Classification  

Data classification can be defined as the task of identifying the category for each of the 

given data based on a training data set whose category membership is known. Single-labeled 

classification is one of the two different categories of classification where each data belong to 

exactly one category and the categories do not overlap. One simple version of single-labeled 

classification is Binary Classification where each data point is assigned to one of the two 

predefined categories. Classification methods like Naïve Bayes and Support Vector Machine 
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(SVM) have been developed to address the single-labelled classification problem. The second 

category is multi-labelled classifiers where a single data point can belong to multiple categories 

concurrently. Multi-labelled classification problems are very common in the area of information 

retrieval. The following subsections represent the different types of classifiers used to classify 

textual data. 

2.2.5.1. Maximum Entropy Classifier 

The main idea behind this probabilistic classifier is that unknown model generating the 

sample data should be the model that is most uniform and satisfy all constrains from training data 

(A. Ratnaparkhi 1996). In other words, training data is used to constrain the conditional 

distribution in maximum entropy where each of the constraints defines a characteristic of the 

training. The model is represented by the following: 

P(c|d)=
1

Z(d)
exp(∑𝜆𝑖

𝑖

𝑓𝑖(𝑑, 𝑐)) 

Here, fi(d, c) defines a feature as a real-valued function of the document d and the class c, 

and λ is a weight vector. The weight vector is found by numerical optimization of the lambdas so 

as to maximize the conditional probability which can be estimated using different 

methodologies. For example, some of the iterative calculation methods include Generalized 

Iterative Scaling (GIS) (Darroch 1970), Improved Iterative Scaling (IIS) (Berger 2005), and 

LBFGS Algorithm (Malouf 2002). We use the Stanford Classifier to perform MaxEnt 

classification. To train the weight in our system, we have used conjugate gradient ascent and 

added smoothing (L2 regularization) (Ng 2004). Z(d) is the normalization function which is 

computed as: 

𝑍(𝑑) =∑exp(

𝑐

∑ 𝜆𝑖

𝑖

𝑓
𝑖
(𝑑, 𝑐)) 
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The first step in using maximum entropy is to identify and select a set of feature functions 

to be used for classification. Expected value for each feature over the training data is then 

measured to be used as a constraint for the model distribution. Some examples of maximum 

entropy classifier include sentence boundary detection (Mikheev 2000), sentiment analysis (Pang 

2008), and ambiguity resolution (A. Ratnaparkhi 1998). 

2.2.5.2. Support Vector Machine 

Support Vector Machine (SVM), a supervised method of classification, was proposed by 

Vapnik (Vapnik 2013) to solve two-class problems. SVM, which is very popular for text 

classifications, aims to measure a separation line between two hyperplanes defined by classes of 

data as shown in Figure 1. This goal of finding the margin separating two datasets rather than 

focusing on feature matching enables SVM to operate on fairly large feature set. In contrast to 

other classification methods, SVM algorithm uses both negative and positive training datasets to 

construct a hyper plane that separates the positive and negative data. The document that is closest 

to decision surface is called support vector (Baumer 2010). 
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Figure 2. Support Vector Machine 

2.2.5.3. Naïve Bayes Classifier 

Naïve Bayesian (NB) classifier is a probabilistic learning method for text classification 

(Narayanan 2013). NB classifier assigns the most likely class to a given document by utilizing 

feature vector and the assumption that features are independent. The probability of a document d 

being in class C is computed using the conditional probability P(tk|C) for term tk in a document d 

of class C- 

𝑃(𝐶|𝑑) = 𝑃(𝐶)∏ 𝑃(𝑡𝑘|𝐶)
1≤𝑘≤𝑛𝑑

 

Where P(C) is the prior probability of the document of being in class C. Bayesian 

classifier has proven success in text classification applications (Domingos 1997). 

Ting Min et al. described a Support Vector Machine (SVM) based call-type classification 

and acoustic modeling for speech recognition in the context of a telephone-based call center 

corpus (Tang 2003). The authors modeled this problem as a text classification problem by 



 

27 

 

manually labeling the topics and then used them to place calls in different loads. However, the 

proposed model focuses mainly on handling the contact center performance rather than focusing 

on the business metrics. K-nearest Neighbor is a simple classification algorithm which is very 

effective and used very widely for text classification problems (Lan 2009). K. Gayathri et al. 

studied the performance of KNN and SVM classifiers (Gayathri 2013). However, in terms of 

time require for classification, the efficiency of KNN algorithm decreases with the increase of 

data dimensions. In another study, authors have investigated the effect of SVM one-class 

approach in a non-stationary environment (Ho 2013). 

2.2.6. Clustering  

To statistically evaluate the occurrences of words and group similar documents in text 

corpora (K. B. Ahmed 2014), (Hu 2014), and (J. D.-P. Fernández 2010), machine learning 

techniques like clustering is very useful. Clustering is an unsupervised method of machine 

learning as the numbers, properties, class memberships are not known in advance (Luger 2005).  

The authors in (Baumer 2010) presented different clustering based approaches for document 

retrieval and compared those techniques for logical pattern extraction from unstructured text.  

Document clustering refers to the grouping of semantically related text documents 

(Hayes 1963). These days, one important focus of document clustering is to provide an efficient 

way to browse large collections of enterprise documents and World Wide Web data. The system 

should also be capable of representing the data in a structured manner. However, the preliminary 

aim of document clustering was to improve precision and recall of information retrieval systems.  

Clustering methods can be categorized as: (a) hierarchical clustering, (b) partitional clustering, 

and (c) semantic based clustering. A brief description of these categories has been presented in 

the following subsections.  
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2.2.6.1. Hierarchical Clustering 

Hierarchical clustering organizes the group of documents into a dendrogram (tree 

structure) with a topic/subtopic relationship between the documents (Chen 2009).  Two common 

methods of achieving hierarchical clustering is to use either: (a) agglomerative or (b) divisive 

methods (Kavitha 2010). Agglomerative method of clustering follows a bottom up approach by 

successively merging adjoining pairs of clusters together until the whole dataset form single 

large cluster. The closeness of clusters is determined by calculating the distance between the 

objects. On the other hand, divisive method of hierarchical clustering follows a top-down 

approach by starting with the complete dataset as a single cluster and then recursively splitting 

the cluster into smaller clusters until each document is in a classified cluster. 

Hierarchical clustering is very useful because of the structural hierarchal format. 

However, the approach may suffer from a poor performance adjustment once the merge or split 

operations are performed that generally leads to lower clustering accuracy (Jain 2010). 

Furthermore, the clustering approach is not reversible and the derived results can be influenced 

by noise. In (Yonghong 2010), the authors suggested agglomerative hierarchical clustering 

techniques for document clustering. 

2.2.6.2. Partitional Clustering 

Partitional clusters determine the relationship between objects using a feature vector 

matrix (Kavitha 2010). Features of every object are compared and objects having similar patterns 

are placed in a cluster (F. a. Liu 2011). The partitional clustering can be further categorized as 

iterative partitional clustering, where the algorithm repeats itself until a member object of the 

cluster stabilizes and becomes constant throughout the iterations. However, the number of 

clusters should be defined in advance (F. a. Liu 2011). Some common forms of the iterative 
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partitional cluster-based approaches include K-mean, K-medoid, C-mean, C-medoid, single-pass, 

probabilistic methods, and nearest neighbor (Kavitha 2010), (Jain 2010), and (F. a. Liu 2011). 

2.2.6.3. Semantic-based Clustering 

In semantic-based clustering, the structured patterns are extracted from an unstructured 

natural language data by utilizing meaningful context analysis of contents for knowledge 

extraction. Researchers have proposed several algorithms for computing semantic similarities 

between text documents. For instance, Resnick and Lin algorithms (F. a. Liu 2011) are proposed 

to measure the semantic similarity of natural language text in a specific categorization. WC Chen 

& MS Wang present a detailed descriptions of these algorithms in (Chen 2009). WT Yu and CC 

Hsu introduce an innovative technique to automate the ontology construction process utilizing 

data clustering and pattern tree mining (Yu 2011). The authors evaluated their proposed method 

using weather news data collected form e-paper and revealed remarkable results by extracting 

the regions with high temperature. 

Finding similar objects requires the notion of similarity measure which is computed between 

the objects to decide their closeness. The following subsections briefly describes the methods 

used to determine the similarity or closeness of service request. 

2.2.7. Similarity Measures 

One important step in determining the closeness or likelihood of two documents is to 

measure similarity/distance between them. The measure determines the degree of 

closeness/separation of the objects by mapping the similarity/distance between two objects into a 

single numeric value. The chosen measurement should correspond to the characteristics that 

distinguish the clusters embedded in the data. However, in some cases, these characteristics are 

dependent on the problem context and this makes it very difficult to select any single measure 
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suitable all domains. Choosing a similarity measure appropriate for a problem domain is also 

very crucial for a clustering algorithm. For instance, DBScan, a density based clustering 

algorithms relies greatly on the similarity computation (Ester 1996). 

Some of the most popular techniques used for similarity measurements are Euclidean 

Distance, Cosine Similarity, Jaccard Coefficient, and Pearson Correlation Coefficient. A brief 

description of these methods along with Semantic Similarity have been presented in the 

following subsections. 

2.2.7.1. Euclidean Distance 

Euclidean distance is a standard metric for geometrical problems which measures the 

distance between two points. For most clustering problems, specifically in the domain of 

document clustering, Euclidean distance is widely used. For example, it is the default distance 

measure used with the K-means algorithm (MacQueen 1967). The Euclidean distance of the two 

documents, da and db, represented by their term vectors ta and tb respectively, is defined as 

follows: 

𝐸𝑑(𝑡𝑎,𝑡𝑏)=√∑|𝑤𝑡𝑎 − 𝑤𝑡𝑏|
2

𝑚

𝑡=1

 

Here, the term set is T = {t1,...,tm} and the term weight w is defined as: 

𝑤𝑡𝑎 = 𝑡𝑓𝑖𝑑𝑓(𝑑𝑎, 𝑡) 

2.2.7.2. Cosine Similarity 

The similarity of two documents, represented as term vectors, corresponds to the 

correlation between those vectors and can be enumerated as the cosine of the angle between 

vectors. Cosine similarity is one of the most popular similarity measures applied to text 
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documents including information retrieval applications and clustering (Rong 2012). Given two 

term vectors, ta and tb, the cosine similarity can be calculated using the following equation where 

ta and tb are m-dimensional vectors over the term set is T = {t1,...,tm}: 

𝑠𝑖𝑚𝑐(𝑡𝑎, 𝑡𝑏) =
𝑡𝑎. 𝑡𝑏

|𝑡𝑎| × |𝑡𝑏|
 

Each dimension represents a term with its corresponding non-negative weight in the 

document and this results a non-negative cosine similarity value ranging from 0 to 1. 

2.2.7.3. Jaccard Coefficient 

Jaccard coefficient measures similarity as the intersection of the two objects divided by 

their union. For text document, Jaccard coefficient compares weights of shared terms to the 

weights of terms which are present in either of the two document but not in the set of shared 

terms: 

𝑠𝑖𝑚𝑗(𝑡𝑎, 𝑡𝑏) = 
𝑡𝑎. 𝑡𝑏

|𝑡𝑎|2 + |𝑡𝑏|2 −𝑡𝑎. 𝑡𝑏
 

Here, ta and tb are m-dimensional term vectors for the term set T = {t1,...,tm}. Like cosine 

similarity, similarity measurement for Jaccard coefficient also ranges between 0 and 1. Jaccard 

coefficient can also be used as a distance measure. 

2.2.7.4. Pearson Correlation Coefficient 

Pearson correlation coefficient is another similarity measure to relate two vectors are 

related. One commonly used form of this coefficient formula among many others is as follows: 

 

𝑠𝑖𝑚𝑝 =
𝑚∑ 𝑤𝑡𝑎 × 𝑤𝑡𝑏 − 𝑇𝐹𝑎 × 𝑇𝐹𝑏

𝑚
𝑡=1

√[𝑚∑ 𝑤𝑡𝑎
2 − 𝑇𝐹𝑎2

𝑚
𝑡=1 ][𝑚∑ 𝑤𝑡𝑏

2 − 𝑇𝐹𝑏
2𝑚

𝑡=1 ]
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𝑇𝐹𝑎 =∑𝑤𝑡𝑎

𝑚

𝑡=1

𝑎𝑛𝑑𝑇𝐹𝑏 =∑𝑤𝑡𝑏

𝑚

𝑡=1

 

The document clustering module in our proposed IC mining system uses semantic 

similarity (Zaman 2014) for similarity measurement as it performs better in terms of finding a 

balanced cluster (A. Huang 2008). The semantic similarity, sims, is calculated using the shortest 

path between two entities in the document with the following equation: 

𝑠𝑖𝑚𝑠 = 1 −
1

2
(
∑ 𝑤𝑖𝑑𝑖𝑠(𝐸𝑖, 𝐸𝑖+1)𝑖∈𝑝𝑎𝑡ℎ(𝐸𝑎,𝐸𝑝)

∑ 𝑤𝑖𝑑𝑖𝑠(𝐸𝑖, 𝐸𝑖+1)𝑖∈𝑝𝑎𝑡ℎ(𝐸𝑎,𝐸𝑟𝑜𝑜𝑡)
+

∑ 𝑤𝑖𝑑𝑖𝑠(𝐸𝑖, 𝐸𝑖+1)𝑖∈𝑝𝑎𝑡ℎ(𝐸𝑏,𝐸𝑝)

∑ 𝑤𝑖𝑑𝑖𝑠(𝐸𝑖, 𝐸𝑖+1)𝑖∈𝑝𝑎𝑡ℎ(𝐸𝑏,𝐸𝑟𝑜𝑜𝑡)
) 

𝑤(𝐸𝑎, 𝐸𝑏) = 1 +
1

𝑘𝑑(𝐸𝑏)
 

Here, Ep is the nearest common parent of Ea and Eb; w is the weighting factor. d(Eb) 

represents the depth of entity Eb from the root in the hierarchy. k, an user defined factor with a 

value of 2 in our case, defines the decreasing behavior of weight values from root to leaves.  

The problem of incorporating semantic information within the document representation 

has recently enticed a lot of research attention. Hotho et al. (A. Hotho 2003) integrated 

conceptual account of terms within WordNet to examine its effects for unsupervised document 

clustering. The authors in (Y. a. Wang 2006) used WordNet to define a sense disambiguation 

method based on the semantic relationships among the senses and used that in document 

clustering algorithms like k-means. They discovered that incorporating the semantic information 

can improve the clustering performance. However, they have used most frequently used terms to 

represent the clusters. But, it is sometimes challenging to find a term appropriate for representing 

the cluster as different users have incongruous views for the same word. The clustering module 
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in our proposed intellectual capital mining system avoids this problem by utilizing the extracted 

semantic entities and k-means algorithm to cluster together similar service requests data. 
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3. METHODS AND PROCEDURES 

This chapter presents a detail description of the Intellectual Capital mining system 

architecture along with the procedures followed in each step of knowledge mining. The 

following subsection provides a brief scenario of the typical process followed by the service 

engineers to resolve a service request. In the later subsections, a detail overview of the system 

modules and the architecture of the system are presented. Following to these subsections, the 

working methodology of our proposed knowledge mining system has been described with 

specifics. 

3.1. System Overview 

In enterprise service centers, after receiving a call or email from a customer, a Service 

Request (SR) gets inserted in the database. These service requests generally include information 

about the customer requesting a solution, the problem statement, the product information related 

to the service request (if possible), and some other metadata. A service request also records all 

in-house and customer interactions, the tests and procedures followed by the support engineers. 

Based on the service environment, it is not very uncommon for support stuff or engineers in a 

customer support center to get an overwhelming number of requests from their customers and 

partners every day. Each of these incoming requests are assigned to the support engineers based 

on several factors- engineer’s expertise on problem domain, problem solving rate, availability, 

and so on. However, it very likely that a SR can be re-assigned to other support engineers 

somewhere in the middle of request resolution process. So, to make this service request 

assignment process smooth, it is very important to identify the problem category upon receiving 

a service request. 
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After an engineer gets assigned with the service request, the very first thing that support 

personnel attempts to achieve is an understanding of the problem described in that service 

request. However, extracting the problem keywords is not easy as in most cases service requests 

data is either semi-structured or unstructured. So the manual process of extracting these 

keywords, which will help the engineer to get an idea about the issue customer is seeking help 

with, is quite time consuming and troublesome. Once the support engineer gets a good 

understanding of the problem domain, she attempts to explore the approaches that can be applied 

to solve the problem. Again, this manual step embroils a thorough search within an enormous 

number of documents related to the problem domain and can be very time-intensive. The 

traditional methodology also incurs large amount of operating overhead as compared to an 

automated web-based support system which provide support knowledge directly to customers. 

Moreover, the request resolution process can take a significant amount of time based on 

engineer’s familiarity with the problem domain. The resolution process to a service request 

merely takes any time if the engineer has past experience in solving similar problem requests. On 

the other hand, it can take a substantial amount of time for engineers to solve completely new, in 

other words never-seen problems. In such cases, engineers may examine different knowledge 

sources including the Internet, enterprise social network sites, organization’s support forum, 

related service request solutions, enterprise white papers or technical reports and then read the 

relevant documents before summarizing the resolution process.  

In an effort to better customer service knowledge management, organizations’ deploy 

service request system which keeps track of the customer-service center interactions. These 

systems not only capture the case history in conversation/action format but also include 

information like the workflow, the final resolution, etc. However, this process is semi-automatic 
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as engineers working a problem often end digging deep through the unstructured text containing 

written phone or email conversations, output from devices’ command line interfaces which 

neither encourages knowledge sharing and reuse nor promotes convenient and quick resolutions. 

To make things worse, these service requests often contain duplicate data from repetitive email 

threads, textual data with syntax, grammatical, and/or typographic error, data that contain an 

extensive amount of acronyms and abbreviations, etc. As a result, once the service request is 

solved, the length of that SR can range from couple of pages to hundred pages or more. These 

days, most organizations are equipped with knowledge management systems to manage the 

knowledge base & support solutions in a superior way. It has also been proved beneficial for 

these systems to have the ability to capture request resolution process of previously requested 

problems and build structured knowledge for future reuse. Thus, after receiving a service request, 

the system will attempt to match the service request with already solved similar request 

resolution processes. In such way, engineers can reduce both the time and cost related to the 

request resolution process considerably. Such knowledge management systems will also expedite 

efficient responses to customer inquiries and resolutions.  

However, there are several challenges that need to be addressed in the existing systems. 

First of all, determining the problem category upon the arrival of a service request; which will 

help to propagate the SR to a support engineer having appropriate domain knowledge and 

expertise. Secondly, to extract the Intellectual Capital (IC) which describes the actual problem, 

the impacts of that problem, and possible recommended techniques to solve the problem, 

engineers have to search though those bulk textual data. The third challenge is cold-start problem 

handling- service requests which are not related to some previously solved service problems 

cannot be benefited from such system. Moreover, these systems do not have the option to utilize 
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up-to-date information from other sources such as the social network discussions between users 

and experts on support problems. In most cases, the system may not have the capability quick 

incorporation of e-mail exchanges. IC management system in our work, handles these challenges 

efficiently and provide support solution using most relevant information related to the service 

requests, even if the users’ re-quests are new to the system.  

Our proposed IC management system aims to help support engineers and customers 

finding accurate information related to the service problems. Another important feature of 

knowledge management systems is, the knowledge should be presented and managed easily to 

promote better understand and reuse of knowledge. To carry out this goal, we implemented an 

integrated custom search engine by customizing Google Custom Search which locates 

documents related to the service requests. However, these documents contain large amount of 

noise. The system then utilizes a multi-level classifier to remove noise, extract knowledge and 

contour the mined information into a useful representation. The next step implements a 

semantics-assisted classifier which classifies the clean, preprocessed data to a structured format 

which then can be easily utilized by service center engineers or customers. 

Our IC management system annotates unstructured data with domain knowledge utilizing 

semantic web technologies. This marked up information empower the system to handle 

knowledge management in a more accurate and intelligent way. As mentioned in earlier sections, 

ontology gives a platform for sharing the common understanding of a domain and thus can be 

communicated across people and application systems, and thus simplify the processes like 

knowledge sharing and reuse. The ontology assisted IC mining tool in our knowledge 

management system deduces the relationships between key concepts automatically which in 

turns enables the system to perform an accurate knowledge extraction & management.  
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Our proposed IC management system comes with an interface which allows user 

feedback during query refinement, problem characterization and results verification. Moreover, 

the system is equipped with a re-training module which allows users to incorporate feedback to 

facilitate system learning thus improve overall system performance & accuracy. In other words, 

to discover & organize intellectual capitals efficiently, our IC management system attempts to 

employ machine learning techniques in a combination with the knowledge provided through 

human feedback. The following subsection briefly describes the overall system architecture. 

3.2. System Architecture 

As depicted in Figure 3, our proposed Intellectual Capital mining system is comprised of 

five main components: a technology/sub-technology identifier, a custom IC search module, 

entity extractor, intellectual capital extractor, and IC repository. Another significant component 

of our IC management system is the enterprise ontology. All of the five abovementioned 

components utilize the domain knowledge to improve system performance through this 

predefined & pre-generated semantic information. 

After a service request is created in the database, it needs to be escalated to a customer 

support engineer who has expertise in the service request problem domain. This service request 

assignment process is very crucial as improper assignment can make the request resolution 

process longer than expected. One very important assignment criteria is knowing the 

technology/sub-technology group a service request problem belongs to. However, this field can 

be entered either by the customer when submitting an online support request or can be entered by 

the front-end support personal who might not have the proper knowledge to identify the category 

instantly. As a result, in most cases, the service requests do not get tied with the proper category 

which in turns results into an incorrect service request to service support engineer. To solve is 
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issue we build a technology identifier which examines the problem description section of a 

service request thoroughly and then output the precise technology or sub-technology with the 

help of semantic relationships. The next step in mining intellectual capital from huge, 

heterogeneous data sources is to select the documents related to the service requests and having 

high intellectual value. The custom search module of our IC mining system aids the engineers in 

mining such data. The keywords entered by the service engineers can also be enhanced 

semantically to filter the search results. After retrieving the documents related to the search 

query, they are fed into the entity extractor module. Entity extractor removes the noisy and 

irrelevant portion of the data by performing data cleansing. The entity extractor module in our IC 

mining system extracts semantic entities which are then used in combination with the statistical 

features to classify the different IC segments. These features are then enhanced with the concepts 

mined from the domain specific ontologies. We have utilized a maximum entropy classifier to 

identify different IC categories. Maximum entropy classifier has proven to produce effective text 

classification results (Elder IV 2012). We attempt to decrease the size of the effective vocabulary 

and eliminate noisy features in the feature selection step. Moreover, we try to determine features 

most relevant to the classification process as some of the words are much more likely to be 

correlated to the class distribution than others. Besides commonly used preprocessing 

technologies such as tokenization, stop-word removal, stemming, and parts-of- speech tagging, 

our preprocessor also selects the significant keywords and phrases that carries important 

semantic meanings of the documents and contribute more to distinguish between documents.  
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Figure 3. IC Management System Architecture 

At the next phase of knowledge extraction, the engineers formulate the IC after 

verification and summarization of classified results and store it in the IC repository utilizing 

clustering algorithm to group similar problem cases. This helps users locate a group of similar 

problems and their best practice solution. Engineer's corrections of the classification will be 

observed and automatically forwarded as feedback to the classifier for continues learning. 
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The following subsections represents the working procedure for each of the components 

used in our knowledge extraction tool. 
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Figure 4. Tech/Sub-tech Identifier Example Scenario 

3.3. Tech/Sub-tech Identifier 

As mentioned in the previous section, to categorize the technology or sub-technology 

group for a service request, we exploited the semantic relationships between the entities 

presented in the problem description. Service request management system in an enterprise 

customer service center stores SR data as a combination of semi-structured and unstructured 

format. The SR metadata sometimes contains a field which stores a short description of the 

problem. Technology identifier in our IC management system accomplish its goal in two steps- 

firstly, it takes description text as an input and preprocess to discard the unnecessary clutters. 

Once the preprocessing is complete, technology identifier further processes the extracted entities 

to detect the problem or technology category they fall under. We use the enterprise ontology 

along with the entity extractor module, described in section 3.5, to find out the entities that help 

determining the technology/sub-technology group.  

Figure 4 presents an example scenario how this identifier module process the problem 

description- “STP bpdu guard best practices”. The entity extractor takes this descriptive text and 

identifies STP as an important term. Later, we have followed a rule-based approach to find out 
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the technology group STP belongs to. In enterprise ontology database, entities can be directly 

tied with one or more technologies using the property prod_has_tech. However, in most cases, 

such direct relationship cannot be found and to solve those cases, we need to traverse back 

towards the root in the ontology graph to determine the technology group if there is any. The 

latter case is applicable in our example scenario which has been depicted in Figure 5. 

Technologies

LAN Switching

Spanning Tree 
Protocols

STP

Ethernet Switches

WAN MAN

 

Figure 5. Part of the Ontology Graph 

3.4. Custom Search Module 

The custom search module in IC mining system searches through the world wide web 

data and categorizes the IC keywords relevant webpages and documents into the different 

groups- enterprise documents, social forums’ data, and general. For instance, in the context of a 

network service center, a customer service engineer would likely be interested on how to 

configure different routing protocols on various router models. Those queries can be expanded to 

help users polish, and disambiguate their queries, thus finding the most relevant results. This 

expansion is achieved by combining Google’s Custom Search API and enterprise ontology. 

Through the refinement function of Google Custom Search, the search module in our IC 
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management system can associate the sites with topics by creating sophisticated tags. Moreover, 

the grouped search results also enable the users to customize the ranking of the search results, 

such as preferring webpages from a specific site/forum. 

3.5. Entity Extractor 

The documents and webpages, returned by the search module contain the information 

related to user queries. However, the data required by the users are buried under substantial 

amount of irrelevant and noisy information which needs to be discarded before making them 

machine understandable. The manual approach of relevant information mining out of this 

massive amount of irrelevant data involves reading & understanding the contents of these web 

pages and documents which is very time and energy consuming. In other words, mining the 

documents & webpages from organizational repository or social forums is not sufficient to 

collect the information required by service engineers to solve service requests. This leads to 

another problem- extracting specific chunk of the information from these documents. Another 

important task is to make a compact representation to the extracted information needs so that it 

can be easily understood and consumed by the service center engineers. This form of data 

representation also help to create machine understandable data. So these extracted information 

are then used as features by the IC extractor module to classify the IC segments. One important 

step in feature selection is to preprocess the massive data found in previous step. Before applying 

the preprocessing technologies such as tokenization, stop-word removal, parts of speech tagging, 

stemming, our preprocessor module performs a data deduplication & cleansing method. 

Moreover, the substantial keywords and phrases which carry essential semantic connotations are 

also get extracted by the preprocessor module. A brief description of these preprocessing 

techniques has been documented in the following subsections. 
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3.5.1. Preprocessing 

The preprocessor module within entity extractor removes noisy, irrelevant data and 

obtains key features to enhance the relevancy between phrases and document and category. The 

very first step of our knowledge mining systems is to remove unnecessary data like document 

markups- HTML/XML tags, duplicate information, and so on. In next round of data 

preprocessing, sentence segmentation is done using the Punkt sentence segmenter proposed by 

Kiss et al (Kiss 2006).  Segmented data is then tokenized using an adopted Penn Treebank 

Tokenizer (Marcus 1999). These tokens roughly correspond to "words". The preprocessor then 

removes stopwords if there is any and also performs word stemming. Improved Porters 

Algorithm (Willett 2006) has been used to perform word stemming. A brief description of the 

data deduplication method and preprocessing tools used by the IC mining system has been 

presented in the following subsections. 

3.5.1.1. Tokenization 

One frequently performed preliminary step in natural language processing & Information 

Extraction is splitting a text into sentences and then to words. This process of splitting is termed 

as segmentation or tokenization. Sentence segmentation is also called sentence boundary 

detection. We have introduced sentence segmentation and word tokenization in the following 

subsections. 

3.5.1.1.1.  Sentence Boundary Detection 

Sentence boundary detection or sentence segmentation aims to divide the textual 

document into sentences. Detecting sentence boundaries is challenging as punctuations used to 

indicate the end of sentences can have other usage as well. For example, apart for marking 

sentence ending, a period is also used to mark abbreviations. Moreover, some periods 
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concurrently indicate sentence termination and abbreviations. The preprocessor module in our IC 

mining system splits the document into sentences considering all these conditions. The next step 

involves tokenizing the sentences into words.  

3.5.1.1.2. Word Tokenization 

In general, word tokenization is an early step of processing where a text is segmented into 

basic units such as words, numbers and punctuations. Tokenization based on whitespace is 

inadequate for many applications because it bundles punctuation together with words. On the 

other hand, punctuation along cannot be used as the splitter. For instance, the text segment- 

“…software release 12.4(24)T” cannot be tokenized based on punctuation, period in particular, 

as we may lose some valuable information. Furthermore, different locale have different usage of 

punctuations. Thus, tokenization is considered to be a language specific task which can be solved 

either by a system trained with manually tokenized texts or by using some hand-crafted rules. 

Our preprocessor module’s tokenization algorithm has been designed to accommodate all these 

characteristics of service center domain. More specifically, we have added certain predefined 

rules to enable the tokenizer handle these circumstance. So after tokenizing the above mentioned 

example sentence fragment, we will have “12.4(24)T” as a single token. 

3.5.1.2. Data Deduplication 

Another important task of our pre-processing module is to perform data deduplication. In 

most cases, problem requests contain redundant information which should be discarded to 

improve the performance of IC mining system. One such example of redundant data is the auto-

embedded part of the original message that gets appended each time a response is created for a 

service request in customer service centers. We have adopted the document resemblance method 

proposed in (Muhammad Rafi 2010) where the authors defined resemblance r(A, B) of two 
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documents, A and B, having a value in between 0 and 1. In other words, if the resemblance is 

close to 1 then it is very likely that the documents are roughly the same. Formally, resemblance, 

r, can be defined as: 

𝑟(𝐴, 𝐵) =
|𝑡(𝐴) ∩ 𝑡(𝐵)|

|𝑡(𝐴) ∪ 𝑡(𝐵)|
 

The word tokens, processed in the previous steps, are fed into the deduplication module 

before continuing with the remaining preprocessing tools. The preprocessor component is able to 

discard a significant amount of irrelevant data after performing this step. 

3.5.1.3. Stopwords Removal 

Before further processing of the documents and queries, a very usual & important step in 

almost all IR applications is stopwords removal. This is another step towards reducing the 

amount of unnecessary and context irrelevant information. Stopwords removal aims to eliminate 

function words, low-content words, very high frequency words in order to achieve an increased 

system performance. In addition to the common English language stopwords, the preprocessor 

module in our IC management system also eliminates the domain specific stopwords. 

3.5.1.4. Parts of Speech Tagging 

The ultimate research focus of NLP is to parse and understand the language. To achieve 

this goal, most researchers have focused on transitional task like inherent language structure 

identification. One such common preprocessing task of natural language processing is part-of-

speech tagging (POS tagging) or simply tagging where the words are classified and labeled into 

their parts-of-speech. Some of the existing techniques of POS tagging include statistical 

(Manning 2008) (A. Ratnaparkhi 1996), memory-based (Brants 2000), rule-based (Daelemans 
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1996) (Brill 1992) methods. For our system, POS tagging plays an important role to identify the 

relevant feature. In our pre-processing module, we have used a statistical based POS tagger. 

3.5.1.5. Stemming  

Stemming involves linguistic normalization which removes the prefixes and suffixes 

from a word or token. Through stemming several terms are mapped onto one base form, which is 

then used as a term in the vector space model. This means that, on average, it increases 

similarities between documents or documents and queries because they have an additional 

common term after stemming. Though this increase the recall, but sacrifices the precision. 

However, in our case, stemming seems to have little or no effect on precision. 

Stemming can be done using either one of the two available methodologies: (a) 

dictionary-based stemming, and (b) Porter-style stemming (Willett 2006). For our work, we have 

chosen to work with Porter-style stemming. 

3.5.2. Named Entity Extraction 

Named Entity Extractor module in the IC mining system aims to identify the features to 

be used in user query expansion, with our semantics assisted classifier, and also with the 

clustering module. These extracted entities improve classification performance as they contain 

the important contextual information about the documents being processed. The classification 

performance was then enhanced further by expanding the semantic representation of the 

documents. In other words, the identified entities were extended using the relationships defined 

by the domain ontology. In our system, we have used the most popular hierarchical 

specialization/generalization (or IS-A) relationship and the type relationship between a particular 

class and its corresponding instances. To efficiently locate related concepts bounded by the 

above-mentioned two relationships, two other inverse index tables were used where each 
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keyword is associated with its corresponding super classes (or type class for individual objects). 

Each semantic entity within the document gets expanded with all of its ancestor concepts up to a 

maximal distance. It is important to note that the distance parameter needs to be chosen carefully 

as climbing up the taxonomy too far is likely to obfuscating the concept representation 

(Bloehdorn 2004). The following subsections describe the features used by the Entity extractor 

module of our IC Mining system. 

3.5.3. Features of NER 

Feature selection is the most important aspect of a named entity recognizer system. The 

machine understandable characteristics (a Boolean value, a numerical value, etc.) of a word, 

defined by the domain experts, comprise the feature set for a NER system. Features are also 

known as indication functions for the named entity recognizer systems. A brief description of 

some of the popular features of NER systems are presented in the following subsections: 

3.5.3.1. Word Features:  

This category of considers current word, previous word, next word and all words within 

the window as features for a NER system. In additional to these there can be other word features 

like- orthographic features (Fargo Xxxxx, ND-58103 XX-#####), prefixes and suffixes 

(Fargo <F, <Fa, <Far... rgo>, go> o>), stem (stems, stemmer, stemming  stem), n-grams, 

length and so on.  

3.5.3.2. Dictionaries: 

Abbreviations, stop words also comprises the feature set for NER. Gazetteers containing 

entities like first names, last names, locations are also used as the dictionary based features for 

NER. 
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3.5.3.3. Metadata: 

Metadata in a document like position of a word in a sentence, word frequency, words co-

occurrences make feature set for NER systems. 

3.5.4. Lookup Techniques 

Lookup technique is one of the crucial tasks of gazetteer based NERs. Some common 

techniques used to lookup in the dictionary include the following: 

 Exact matching- with this lookup technique, a dictionary entry is exactly matched with 

the phrases in the document.  

 Approximate matching- method to find phrases having approximate match for a given 

pattern. This method is also known as fuzzy-text matching. The approximate matching 

uses edit distance as the similarity measure between the strings. The number of unit 

operations needed to convert one string into another determines the similarity measures 

between two strings. 

 Lemmatization-based matching- lemmatization is a process to determine the root form of 

a word. For instance, the word “done" is lemmatized to its lemma “do". Lemmatization is 

done using the parts-of-speech tag of a word before matching the phrases in a dictionary. 

In other words, lemmatizer applies parts-of-speech specific rules to the word. 

 Soundex based matching- Soundex refers to a string alteration method which transforms a 

word into its sound as uttered in English. In other words, English words are decoded such 

that the similarly spelled or pronounced words build the same code. Soundex helps with 

misspelled words during document processing. 
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Exact matching is the most used and simplest lookup technique among the 4 

abovementioned methods. In contrast, approximate matching is not language dependent and 

complex in terms of implementation and running time. However, accuracy of approximate 

matching as a lookup technique outperforms the rest. For our IC mining engine, we have used 

both approximate & exact matching to extract the named entities. 

3.5.5. Bag of Words 

Bag of words (BoW) model is the representation of the text document as a set of words 

contained in that document. The BoW model is often used in natural language processing and 

information retrieval because of its simplifying approach. One common usage of BoW model is 

document classification where the words and their frequencies are used as features for the 

classifier. The term frequency-inverse document frequency (tf-idf) weighting scheme has been 

used for text representation in (Li 2003). In another research (Dumais 1991), authors improved 

the average performance by 30% by using global IDF and entropy weighting scheme along with 

tf-idf. Several other weighting schemes have been proposed in (Eikvil 1999), (Joachims 1997), 

and (Jones 2000) to improve the performance of general bag of words model. However, BoW 

model often suffers from issues like overfitting and poor system performance when the set of 

words or terms is huge. We have utilized the BoW model to capture the frequently used 

important word phrases to be used as a feature in our IC extractor module. 

3.5.6. N-grams 

N-gram is a sequence of n items (characters or words) extracted from the given text. N-

grams can either be character based where n-gram is a set of n consecutive characters from a 

word in the document or it is a set of n words if it is word based. Word based n-grams are often 

called shingles. Character n-grams often make document preprocessing language independent 
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and simple as they may span across word boundaries (Monz 2002). However, the cost of index 

size also increases with this approach. Our Named Entity Extractor module utilizes a tri-gram 

gazetteers which has been built using enterprise ontology and bag of words. 

3.6. IC Extractor 

Our IC extractor is based on an ontology-assisted classification approach in which 

semantic entities, enhanced with concepts extracted from the domain ontologies, are used as 

features. 

3.6.1. Ontology-guided Feature Selection 

So far, most existing text classification systems have adopted the Bag-of-Words (BoW) 

model where single words or word stems are used as features and word frequencies or weighting 

schemes like TF-IDF are used as feature values (Rong 2012).  However, the BoW model ignores 

the conceptual relationships and domain knowledge. For example, using BoW model, the multi-

word entity “catalyst 5000” will be treated as totally different things although semantically they 

are closely related. This problem is addressed by utilizing organization’s ontology to identify 

important concepts and relationships between those concepts.  These identified semantic entities 

were then extended with their semantically related concepts and select them as features. In this 

way, semantic meaning of the feature will be preserved and classification would be more 

accurate. 

However, before utilizing semantic entities as features for classification, the non-trivial 

problem of Entity Recognition (ER) needs to be addressed. Traditional NER works to identify all 

textual references of named entities- noun phrases referring to specific individuals like persons, 

organizations, location and so on and do not consider the usage of the ontology as a reference. 
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Algorithm 3.1 The semantic entity extraction algorithm 

Input: document d={t1, t2, …, tn}, // ti: token 

           ngram_dictionary n={ n1, n2, …, nn},  

           entity set s={} 

 

for each ti in d do 

     for each nj in n do 

           if isValid(ti) and ej contains ti  then // ei: reversed index of n-gram entity 

                tag ti with ej’s ID 

for each ti in d do 

      phrase p=null 

      returnedPhrase rp = AddToEntityPhrase(ti, p)   

     if rp != null 

        p = rp 

    else 

        printEntity(p) 

 return entity 

      

 

 

Besides, the form of a named entity in free text can be significantly different from its 

ontology version. For example, the semantic entity ‘Cisco Catalyst 5000 Series Switches’ in the 

ontology might be referred to as ‘Catalyst 5000’ in the text. Since entities in the ontology are 

represented as strings, the ontology-guided named entity extraction problem can be modeled as 

an approximate string matching problem. Our proposed approximate semantic entity recognition 

utilizes the well-known string-based dissimilarity measure – Levenshtein distance (W. C. Wang 

2009). The potential entity extraction methodology is given in Algorithm 3.1 - 3.3. 

Algorithm 3.2 AddToEntityPhrase Algorithm 

Input: token ti 

           phrase p 

 

if TaggedAsEntity(ti) and TaggedAsEntity(p) 

    if TokensFromSameEntity(ti, p) 

        return merge(ti, p) 

    else 

       return null 
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Algorithm 3.3 PrintEntity Algorithm 

Input: phrase p 

 

entityList = [] 

if ngramAcronymDictionary contains p 

    entityList.add(p) 

if ngramSynonymDictionary contains p 

    entityList.add(p) 

if entityList is not empty and generalNgramDictionary contains p 

    entityList.add(p) 

 

return entityList         

 

 

3.6.2. Semantic Extension 

The performance of classification is further enhanced by expanding the identified entities 

with semantically relevant entities based on the most important relationships: the hierarchical 

specialization/generalization (or IS-A) relationship and the type relationship between a particular 

class and its corresponding instances. Classification with ontology enhancement will capture the 

semantics of the text by overcoming the shortcomings in the syntax level. For example, in the 

training data, we have a case on how to configure a router. In the testing data, we have a similar 

case which is about configuring a switch. Without considering the semantics of the data, the 

classifier may fail to catch the semantic relationship between these two cases as entities “router” 

and “switch” share the same semantic ancestor entity ‘Network Device’. 

Table 3. Feature List 

Semantic Features Statistical Features 

expanded semantic entities n-most frequent words 

type of data source presence of query keywords 

bag-of-hit-words length of paragraphs 

 relative location of a paragraph 
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3.6.3. Classification 

As mentioned in earlier section, we choose to deploy maximum entropy classifier 

(Banerjee 2007) for classifying the IC segments in our system as. Table III lists the semantic and 

statistical features that have been used by the classification module in our IC Mining system. For 

semantic entities, we use their presence instead of using their frequency count. In other words, if 

the feature is present, the value is 1, but the value is 0 if that feature is absent in the document. 

Document source should also be incorporated with the feature list as they require different 

processing methods. For example, social network discussions should be processed differently 

from whitepaper documents. A document, especially an enterprise whitepaper may include 

multiple topics/sub-topics. IC-relevant problem may be contained within a minor part of the 

document. Therefore, whether a paragraph contains the query keywords should also be 

considered as a feature related to determine if that paragraph is IC associated. 

The document containing ICs are disproportionate in most cases in terms of the number 

of IC-relevant paragraphs and IC-irrelevant paragraphs: on average the IC relevant information is 

one tenth of the irrelevant information. In most cases, the classifier’s performance degrades 

considerably on imbalanced data-sets as they are designed to minimize the global error rate (A. 

S. Fernández 2008). To address the issue of biased data, a multi-level hybrid-sampling 

classification mechanism is proposed in our system. At the first level of classification, we 

identify and remove noisy information.  Then at the next level, we distinguish IC-relevant 

information from irrelevant ones by utilizing two effective methods- under-sampling (Chawla 

2002) & over-sampling (X.-Y. J.-H. Liu 2009). We then further classify them to different IC 

categories- criteria, impact and recommendation after IC-relevant data have been identified. 

Here, Criteria is the principle or standard by which the problem or the service request may be 
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judged or decided, Impact is the influence caused by the problem and recommendation is the 

suggestions to solve the problem. So as an output from the IC extractor, we retrieve an 

intellectual capital related to the search query which specifies the problem area followed by the 

impact they might have on the system and the possible solution to that problem. Once we have 

all the ICs related to specific problem or service request, the next step in our IC management 

system is to make a repository to make these mined ICs reusable for future use. 

3.7. IC Repository 

 The task of document clustering can be divided into two sub-tasks: first, the semantics of 

the documents need to be represented in a machine understandable way, and second, a similarity 

measure needs to be defined based on the semantic representation such that it documents having 

higher semantic relationship get higher numerical values (Muhammad Rafi 2010). The 

techniques proposed by various authors differ in terms of document representation, semantic 

measure, and usage of background semantic information. 

Semantic similarity plays very vital role in tasks like natural language processing, 

information retrieval, text categorization, document clustering and so on. To store the ICs in the 

repository, we applied k-means algorithm for document clustering using semantically enhanced 

data sets. The findings from performance evaluation shows that incorporation of semantics with 

the dataset significantly improves the clustering performance. A brief discussion on the result of 

this experiment evaluation has been presented in section 4.6. 

3.8. IC Recommender  

For customer support engineers, it is sometime very helpful to go through the request 

resolution process of some similar ICs he currently is working on. This  not only helps the 
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support engineers to generate idea on the possible solutions for current service request, but also 

assist with a better understanding the problem domain.   

Our proposed IC management system includes a recommender module which takes the 

IC stored in the repository as an input along with the new request and utilizes semantic enhanced 

k-nearest neighbor approach to find out most similar service request(s). We have considered only 

the problem description paragraph(s) of the stored knowledge capital for similarity measurement. 

Instead of using traditional similarity measurements to determine the closeness between service 

request problem descriptions, we have calculated the semantic similarity using the approach 

described under the section 2.4.5.
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4. EXPERIMENT RESULTS 

This chapter describes the experimental evaluations of our implemented IC Management 

system which consists of five different components- technology identifier, a custom content 

search module, entity extractor, IC extractor (auto and manual), and an IC repository. Each of 

these five major components utilizes the contextual information in the form of semantic entities.    

Several experiments are performed to evaluate the performance of the implemented IC 

management system. In all of these experiments, the minimum IC unit is a paragraph from a 

service request and each paragraph is classified as one of the three categories: 

i) Criteria (BP Problem): The description text used by the customer or the support 

engineer to define the problem. This is termed as BP (Best Practice) problem in the 

implemented toolkit. 

ii) Impact: Possible influences that problem can have. 

iii) Recommendation: The request resolution process suggested to the customer. 

iv) Irrelevant: A paragraph is considered as irrelevant if it does not any information 

related to the problem context. 

4.1. Data Set 

We conducted experiments for the technology identifier module using a dataset 

containing problem descriptions of 270 service requests data. On an average, the length of the 

problem description data ranges from 3 lines to 10 lines.  

In the next set of experiments, to evaluate the performance of the classifier, we consider 

109 manually tagged Best Practice (BP) use cases of Cisco Intellectual Capital Mining team. The 

documents returned by the IC search module were cleaned & preprocessed to remove noisy, 
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irrelevant, and clutter data. After pre-processing, human experts read the documents and tag each 

paragraph of the documents as one of the four categories- irrelevant, criteria, impact, and 

recommendation. 

 

Figure 6. Query Expansion (a) 

 

Figure 7. Query Expansion (b) 

One very productive method for classifier feature refinement is to execute error analysis 

which we adopted during the second phase of the experiments. A development set containing the 

corpus data is selected to create the model at the very first level of this method. In the next step, 
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development set is further divided into the initial training set and the development test set. The 

first data set is used to build the model and then error analysis is prepared using the development 

test set. Error analysis is very helpful to fine tune the classifier model by adjusting the feature 

set. Once the model is adjusted for a better performance, it can be applied on the original test 

data set. We split the development data set with a random partition of 80% data in initial training 

set and the rest 20% is the development test set.  

At the third level of experiment, we evaluated the performance of the IC repository 

module to see how effectively it can cluster together related service request data. For this 

experiment we have considered the paragraphs tagged as problem description/criteria of the 109 

manually tagged datasets. At the very last experimental phase, we evaluated the performance of 

IC recommender model using the same datasets. 

4.2. Use Case Scenario 

At the very first step of service request resolution process using our IC management 

system, the customer support employee enters the problem description in technology identifier 

module to determine the technology/sub-technology group of the service request. After this step, 

the service request is assigned to a domain expert in that identified technology/sub-technology 

group. Once the assignment is complete, the support engineer enters the keywords to the IC 

custom search module. For instance, Figure 6 represents a scenario where the support engineer is 

searching with the keywords “2500 servers and VLANs”. Figure 7 also displays that the entered 

query can also be extended using related semantic concepts and relationships. This feature is 

very useful as it allows the support engineers to narrow down the problem domain and to refine 

the query. To use this feature, support engineer click the Semantically Extend Query button in 
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the page and then he can select the appropriate concepts/relationships from the window that 

popped-up after the button click. 

 

Figure 8. Screenshot of IC Extractor 

 

Figure 9. Screenshot of Enterprise Ontology Manager 

After the user clicks the “Search” button, custom search module in our IC management 

system searches through multiple data sources (the Internet, the Cisco Intranet and Social 
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Network sites) for the query keywords. The customer support engineer either can manually 

choose from the search results for next step knowledge mining, or can use the system’s selected 

top k results to extract IC.  

Figure 8 presents a snapshot of the IC extractor tool in our system. The IC management 

system promotes easy management of enterprise knowledge base with the enterprise ontology 

management user interface. As depicted in Figure 9, the engineers can add, update, and delete 

the ontology records to better manage the classes and properties through this interface. 

4.3. Experiments 

4.3.1. Entity Extractor 

In our first experiment, we evaluated the performance of the Entity Extraction by 

comparing the extracted entities with manually tagged entities. We use precision and recall 

measurements for performance evaluation of our algorithm using the following formulas: 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 
|𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡𝐸𝑛𝑡𝑟𝑖𝑒𝑠 ∩ 𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑𝐸𝑛𝑡𝑟𝑖𝑒𝑠|

𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑𝐸𝑛𝑡𝑟𝑖𝑒𝑠
 

𝑟𝑒𝑐𝑎𝑙𝑙 = 
|𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡𝐸𝑛𝑡𝑟𝑖𝑒𝑠 ∩ 𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑𝐸𝑛𝑡𝑟𝑖𝑒𝑠|

𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡𝐸𝑛𝑡𝑟𝑖𝑒𝑠
 

 

 Table 4. Performance of Entity Extractor 

 1-Word 2-Word 3-Word 4-Word 

Precision 98.10% 100% 100% 100% 

Recall 96.30% 94.50% 94.40% 88.90% 

 

We should note that extracted entities are mapped with the semantic entities are using 

one-to-many relationships. An extracted entity is considered as a relevantEntity if it belongs to 

one of those mapped entities in the ontology. Our simplified approach of entity extraction 

exploits domain knowledge in a form of semantic entities and thus generates precise output. It 
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can be seen from Table 4 that precision and recall measurements of the entity extractor are very 

high for entities with different length. Moreover, we carefully considered both word-level and 

character-level variations of the semantic entities within the ontology database while designing 

the extraction algorithm. As a result, the entity extractor in our proposed IC management system 

effectively captures variations due to word-level insertion, substitution, deletion, permutation, 

and abbreviations. Figure 10 and 11 represent the entity extractor input-output and the extracted 

entities with the identified categories for that input sample respectively. 

 

Figure 10. Snapshot of Pre-processor Output  

 

Figure 11. Extracted Entities by Pre-processor Module 

4.3.2. Technology Identifier 

In our next experiment, we examined the performance of the technology identifier 

module using a data set of 270 problem descriptions. For entities having multiple technologies, 
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we choose the one at a lower level in the hierarchy to make the output as specific as possible. As 

compared to the manual process of verifying whether the Technology/Sub-technology metadata 

field in the Service Request is a correct one, our identifier module categorizes the SR instantly. 

Figure 12 summarizes the findings for this experiment. It can be clearly seen that our algorithm 

achieves high precision and recall with a high F-1 measure and thus generates precise output.  

 

Figure 12. Performance of Technology Identifier 

The performance of this module has also been tested in a large scale environment where 

technology identifier was deployed using MapReduce (Dean 2008). More specifically, we have 

implemented the system on Hadoop cluster, which gave us a convenient framework for 

distributed computing of technology/sub-technology identification. We also have a plan to 

implement and measure the scalability performance of the IC extractor segment on a similar 

distributed clustered platform.  

4.3.3. IC Extractor 

We also conducted experiment to evaluate the performance of the classifier in the IC 

management system. The feature set in our MaxEnt classifier includes extended semantic 

entities, top words, type of websites, query keywords, length of the paragraph, relative location 
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of the paragraph, and the bag-of-hit words. As mentioned earlier, we considered paragraph as the 

granular data level for evaluation and each of these features help the classifier determining the 

class label for a particular paragraph. Each data in training data set is represented as two tab-

separated columns where first column indicates the class label of a paragraph and the last column 

is a comma-separated list of features for that paragraph. The classifier in our IC management 

system also maintains a file to handle several configuration parameters. These parameters aid in 

tuning the model by adjusting different variables of the classifier for performance optimization. 

The variables we have used for model tuning include regularization, convergence tolerance for 

parameter optimization, smoothing method.  

To evaluate the efficiency of our IC mining system, we examined how this toolkit aid in 

productivity enhancement for Best Practice IC extraction in the domain of enterprise service 

request resolution, specifically for Cisco Service Request management. The average time needed 

for manually extracting IC related to a particular topic was compared with the time taken by IC 

Extractor in our toolkit. In the manual process of Intellectual Capital mining, support engineers 

input the IC topic as a set of keywords to external search engines and Cisco internal search tools. 

To further process the documents and/or webpages returned by the search engines, customer 

support engineers are required to read and comprehend those documents. Once they have a better 

understanding on those Best Practice IC related problem related documents, the engineers mark 

(copy/paste) the relevant information as “criteria”, “impact”, and “recommendation” and finally 

they can summarize the IC based on the documented information. On the other hand, our IC 

mining tool assists the support engineers by allowing them to simply enter the keywords in the 

toolkit and relevant categorized information will be automatically returned to them as output. In 



 

65 

 

addition, for incorrect or incomplete knowledge, the engineers can use our tool to highlight the 

documents/web pages to correct the returned IC.  

 

Figure 13. Comparison of Time Consumption of Manual & Auto IC Extraction 

 

Figure 14. Workload Comparison of Manual & Auto IC Extraction 
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The effectiveness of the proposed system is observed with a comparison of the average 

time used for extracting IC related to a particular topic manually and with the assistance of IC 

mining toolkit. Figure 13 plots the time required for these two scenarios to process the same 

problem set data including the time required for inaccurate IC correction. It is very obvious that 

our tool dramatically outperforms manual IC extraction in terms of time reduction. 

 

Figure 15. Confusion Matrix 

In the next phase of performance evaluation, we compared the information load for both 

the manual and automatic IC mining process and Figure 14 presents our finding. The information 

load is computed based on the number of paragraphs that needs to be read or processed when 

working on a request resolution. Like the previous experiment, if the paragraphs returned by the 

tool are incorrect then all the manually processed paragraphs will be added in the system. 

The performance of the IC mining classifier is measured using the aforementioned 

feature sets with the goal of determining whether inclusion of semantically enhanced entities 

along with other features actually help improving the performance. The feature set of the IC 

extractor includes frequent words (W), extended semantic entities (S), presence of search 

keywords (K), type of the documents (T), length of the paragraph being processed (L), and 
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relative location of that paragraph in the document (R). For measuring the performance, we use 

macro-averaged F1, accuracy, precision and recall and which are defined as follows: 

𝑟𝑒𝑐𝑎𝑙𝑙 = 
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃 + 𝑇𝑁
 

𝑚𝑖𝑐𝑟𝑜 − 𝑎𝑣𝑔.𝐹1 = 
𝑇𝑃

𝑛𝑢𝑚
 

𝑚𝑎𝑐𝑟𝑜 − 𝑎𝑣𝑔. 𝐹1 = 
2 × 𝑟𝑒𝑐𝑎𝑙𝑙 × 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑟𝑒𝑐𝑎𝑙𝑙 + 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
 

The confusion matrix in Figure 15 was used for the calculation of these measurements 

based on the two possible outcomes – positive (p: the result is present as expected) and negative 

(n: the result is not present). To conduct this experiment, we have performed 10 folds cross 

validation on the dataset. Moreover, we shuffled the dataset and took the average of 10 different 

runs before subdividing them for cross-validation. We attained similar results for each of these 

folds which clearly indicates the stability of the score performed by the system. 

Table 5. Performance Measurement for Different Feature Set – 10 Folds Cross Validation 

(Maximum Entropy Classifier) 

Feature Set Micro-avg. 

F1  

Macro-avg. 

F1 

Accuracy Precision Recall 

W 0.74 0.61 0.76 0.66 0.58 

W+S 0.80 0.71 0.80 0.73 0.68 

W+S+K 0.81 0.72 0.81 0.73 0.70 

W+S+K+T+L+R 0.82 0.73 0.82 0.74 0.72 

 

A summary of these performance measurements for the above mentioned feature sets can 

be found in Table 5. The findings in this table clearly indicates that semantic entities 



 

68 

 

dramatically improves performance and the combined feature set performs best as compared to 

others. 

Table 6. Performance Measurement for Different Feature Set – 10 Folds Cross Validation (Naïve 

Bayes Classifier) 

Feature Set Micro-avg. 

F1  

Macro-avg. 

F1 

Accuracy Precision Recall 

W 0.45 0.43 0.42 0.43 0.42 

W+S 0.33 0.41 0.32 0.40 0.44 

W+S+K 0.34 0.50 0.35 0.50 0.50 

W+S+K+T+L+R 0.69 0.64 0.69 0.80 0.53 

 

We also have tested our IC mining toolkit for Naïve Bayes classifier and the outcomes 

are listed in Table 6. However, for Naïve Bayesian we see that the performance is lower as 

compared to Maximum Entropy classifier. Also, we can see a performance degradation after the 

inclusion of semantic entities. But we got a better measurement for Macro-averaged F1, 

precision and recall after adding the feature ‘presence of search keywords’.  

 

Figure 16. IC Extraction with Different Under-sampling Rate 

 The next experiment, we executed is for measuring the performance of under-sampling 

the imbalanced data and the results are presented in Figure 17 which demonstrates system 

performance under different ratio of IC relevant and irrelevant data samples. As we can see, the 
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first set of data, which has been labeled as none, denotes the samples without under-sampling, 

has a very high accuracy but with the cost of low precision and recall. The underlying reason is 

that the classifier try to minimize the global error and classify more instances as IC-irrelevant 

which is the majority class in our case. However, in situation like ours, the precision and recall 

rate are more important than the accuracy as identifying irrelevant data as relevant is more 

acceptable than recognizing relevant data as irrelevant. In later part of this experiment, we under-

sampled the majority IC-irrelevant paragraphs. It can be seen that although the accuracy 

decreases, the system attains a higher precision and recall after under-sampling was applied on 

irrelevant data.  

4.3.4. IC Repository 

Our IC management module is equipped with an IC repository which not only stores 

already resolved service requests but also facilitates the search for similar Best Practice problem 

resolutions. Figure 17 represents a snapshot of this repository in our system. For evaluating the 

performance of this module, we compared the Silhouette Coefficient (Rousseeuw 1987) value 

for K-means algorithm, for unstructured data and extracted entities. We have used the 

description section of best practice ICs for this experiment and Figure 18 plots the finding for 

this evaluation. It should be noted that a higher score indicates a model with better defined 

clusters. Silhouette Coefficient (SC) uses the model itself to perform the evaluation for each 

sample using the following two scores: 

d1: mean distance between a sample and all other points in the class. 

d2: mean distance between a sample and all other points in the next nearest cluster. 
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The Silhouette Coefficient for a set of samples is calculated as the mean of the SC for 

each sample where SC for a single sample is defined as: 

𝑠𝑐 = 
𝑑2 − 𝑑1

max(𝑑1, 𝑑2)
 

 

Figure 17. IC Repository 

4.3.5. IC Recommender 

IC recommender facilitates the search for finding ICs with similar problem description. 

The experiment dataset includes the same dataset that was used in the performance measurement 

of technology identifier. To find out the closeness of two problem request data, we have 

considered semantic similarity calculation described in section 2.4.5. The finding, which has 

been plotted on Figure 19, shows that our simple approach of recommendation using semantic 
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concept distance outperforms the traditional KNN approach in terms of standard Mean Absolute 

Error (MAE). The lower MAE values are the higher is the recommendation accuracy. Given the 

datasets of actual and predicted values (a, p) for all the n problem descriptions in the test set, the 

MAE is computed as follows: 

𝑀𝐴𝐸 = 
∑ |𝑎 − 𝑝|𝑛
𝑖=1

𝑛
 

 

Figure 18. Comparison of Silhouette Coefficients 

It can be noted that though for this experiment, we have only used the problem 

description segment of the intellectual capital. However, the other related information, such as 

the impacts, recommendations can easily be tracked from the IC repository if the support 

engineers are interested in exploring how those similar ICs were resolved. 
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Figure 19. Performance Comparison of IC Recommender 
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5. CONCLUSION 

In this dissertation, we study knowledge discovery and management methods for 

enterprise service centers. The issues with existing knowledge management systems in this 

domain and our contributions to address those challenges have been summarized in this chapter 

with the hope that this will inspire new approaches and enlighten other researchers in better 

understanding the challenges in knowledge discovery and management in the context of service 

centers. 

5.1. Contribution Summary 

In order to provide a quality service to the customers, knowledge discovery and 

management is essential for enterprise service centers. A knowledge enabled infrastructure 

allows customer service centers to measure their customer support performance through 

automation of Intellectual Capital (IC) acquisition and automation. Along with expedite and 

efficient request resolution methodology, identification of an organization’s IC also provides 

insights on management action. These insights often relate to organizations’ goal of enhancing 

their transparency which is considered beneficial for both internal and external stakeholders as 

well as for beneficiaries. Traditional approaches of IC mining include manual methods like 

interviews, surveys, workshops which rely comprehensively on human participation and thus are 

time consuming and costly.  

To assist enterprise customer centers resolving the service requests and accelerate the 

time need to resolve cases using online and in-house data, we propose an efficient Intellectual 

Capital management system. Our proposed system converts enormous amount of semi-structured 

and unstructured data into reusable knowledge or Intellectual Capital. We model the service 

resolution problem as a combination of five different tasks- categorizing problem description, 
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online search for related documents, classification of IC sections, clustering similar service 

requests, and recommending previously solved request resolutions for new service requests 

based on their similarity. The knowledge base in our IC management system is data collected 

from enterprise data repositories and the Internet using a custom search module. Once a support 

engineer is assigned to a service request based on the problem domain category, he searches for 

documents related to customer’s service request in this knowledgebase. After that, the search 

results are pre-processed and classified to extract IC which includes the problem definition, 

possible impacts, and the recommended resolution steps to solve that problem. A novel classifier 

has been used for extracting IC from the mountain of data, which utilized the enterprise domain 

ontology to direct the classification process. Experimental results in Chapter 4 show that our 

semantics-assisted classifier dramatically enhances the system performance. In addition to 

enhanced specification and matching techniques, this proposed model offers improved method 

for service request resolution data categorization. The proposed Intellectual Capital Mining 

system achieves a precise result for identifying problem category, extracting, classifying 

different IC categories, and clustering and recommending similar service problems. A plugin 

based on the proposed strategy has been used in real enterprise service centers which efficiently 

improves the service engineer’s request resolution performance and intensifies the amount of 

reusable knowledge. Our proposed system is also equipped with an IC repository which helps 

grouping similar service requests and promotes knowledge reusability. The IC recommender 

module uses this repository to while recommending previously answered similar service 

requests. 
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5.2. Future Directions 

In our research we tried to focus on the knowledge extraction and reuse in the form of 

Intellectual Capital as this is very crucial for enterprise customer service centers in terms of 

reputation and business competitiveness. However, this is merely a fragment in the 

comprehensive area of knowledge mining in service centers context. We briefly listed some of 

these interesting research directions which we believe, if solved, will help improving the 

performance of request resolution process further: 

i) Utilizing enterprise service requests repository, how can we extract the information 

about the customer support engineer’s level of expertise on solving service requests 

on specific domain. This information is very useful when building tools to measure 

employee performance.  

ii) Significant research should be conducted on how topic modeling (Blei 2012) can be 

incorporated in the research of intellectual capital mining. 

iii) Performance of IC management system can be improved further with the assimilation 

of external ontology. For instance, Cisco IOS software routers implement 

Maintenance Operations Protocol (MOP), developed by Digital Equipment 

Incorporation, to collect configuration information. However, Cisco enterprise 

ontology lacks this information and as a result the entity extractor in our IC 

management systems cannot measure the semantic relationship for those missing 

terms.  

iv) In future, like the technology identifier, we also plan to include the parallelization of 

the IC extraction procedure to help expedite the computation process. 

 



 

76 

 

6. REFERENCES 

 

A. Hotho, S. Staab, and G. Stumme. 2003. "Wordnet improves text document clustering." 

Proceedings of the Workshop on Semantic Web, SIGIR-2003. Toronto, Canada. 

Abeysekera, Indra. 2006. "The project of intellectual capital disclosure: researching the 

research." Journal of intellectual capital 7.1 61-77. 

Adler, Paul S. 1989. "When knowledge is the critical resource, knowledge management is the 

critical task." Engineering Management, IEEE Transactions on 36, no. 2 87-94. 

Ahmed, Khalida Bensidi, Adil Toumouh, and Dominic Widdows. 2014. "Lightweight domain 

ontology learning from texts: graph theory–based approach using Wikipedia." 

International Journal of Metadata, Semantics and Ontologies 9, no. 2 83-90. 

Alavi, Maryam, and Dorothy E. Leidner. 2001. "Review: Knowledge management and 

knowledge management systems: Conceptual foundations and research issues." MIS 

quarterly, 107-136. 

Ashu, Roy. 2012. Business Value of Contact Center Knowledge Management: A Strategic 

Perspective. eGain Communications. 

Babych, Bogdan, and Anthony Hartley. 2008. "Improving machine translation quality with 

automatic named entity recognition." In Proceedings of the 7th International EAMT 

workshop on MT and other Language Technology Tools, Improving MT through other 

Language Technology Tools: Resources and Tools for Building MT. Association for 

Computational Linguistics. 1-8. 

Banerjee, Arindam. 2007. "An Analysis of Logistic Models: Exponential Family Connections 

and Online Performance." SDM. 



 

77 

 

Baumer, Eric PS, Jordan Sinclair, and Bill Tomlinson. 2010. "America is like Metamucil: 

fostering critical and creative thinking about metaphor in political blogs." In Proceedings 

of the SIGCHI Conference on Human Factors in Computing Systems. ACM. 1437-1446. 

Bawakid, Abdullah, and Mourad Oussalah. 2010. "A semantic-based text classification system." 

Cybernetic Intelligent Systems (CIS), 2010 IEEE 9th International Conference on. IEEE. 

Beattie, Vivien, and Sarah Jane Thomson. 2007. "Lifting the lid on the use of content analysis to 

investigate intellectual capital disclosures." In Accounting Forum. Vol. 31. No. 2. 

Elsevier. 

Berger, Adam. 2005. "The improved iterative scaling algorithm: A gentle introduction." 

citeseer.ist.psu.edu/berger97improved.html. 

Bikel, Daniel M., Richard Schwartz, and Ralph M. Weischedel. 1999. "An algorithm that learns 

what's in a name." Machine learning 34, no. 1-3 211-231. 

Blei, David M. 2012. "Probabilistic topic models." Communications of the ACM 55.4 77-84. 

Bloehdorn, Stephan, and Andreas Hotho. 2004. "Boosting for text classification with semantic 

features." WebKDD 149-166. 

Bontis, Nick. 2003. "Intellectual capital disclosure in Canadian corporations." Journal of Human 

Resource Costing & Accounting 7.1 9-20. 

Brants, T. 2000. "A statistical Part-of-Speech tagger." In Proceedings of the Sixth Conference on 

Applied Natural Language Processing (ANLP-2000). 224-231. 

Brill, Eric. 1992. "A simple rule-based part of speech tagger." In Proceedings of the workshop on 

Speech and Natural Language. Association for Computational Linguistics. 112-116. 



 

78 

 

Chawla, Nitesh V., Kevin W. Bowyer, Lawrence O. Hall, and W. Philip Kegelmeyer. 2002. 

"SMOTE: synthetic minority over-sampling technique." Journal of artificial intelligence 

research 16, no. 1 321-357. 

Chen, W. & Wang, M. 2009. "A fuzzy c-means clustering-based fragile watermarking scheme 

for image authentication." Expert Systems with Applications, 36(2) 1300-1307. 

Cheng, Ching Kang, Xiaoshan Pan, and Franz Kurfess. 2004. "Ontology-based semantic 

classification of unstructured documents." Adaptive Multimedia Retrieval. Springer 

Berlin Heidelberg. 120-131. 

Cheung, Chi Fai, W. B. Lee, and Y. Wang. 2005. "A multi-facet taxonomy system with 

applications in unstructured knowledge management." Journal of knowledge 

management 9.6 76-91. 

Chieu, Hai Leong, and Hwee Tou Ng. 2002. "Named Entity Recognition: A Maximum Entropy 

Approach Using Global Information." COLING '02 Proceedings of the 19th International 

Conference on Computational Linguistics, vol. 1. Stroudsburg, PA. 1-7. 

Daelemans, Walter, Jakub Zavrel, Peter Berck, and Steven Gillis. 1996. "MBT: A Memory-

Based." arXiv preprint cmp-lg/9607012 .  

Darroch, John N., and Douglas Ratcliff. 1970. "Generalized iterative scaling for log-linear 

models." The annals of mathematical statistics, 1470-1480. 

Davenport, Thomas H., and Laurence Prusak. 1998. Working knowledge: How organizations 

manage what they know. Harvard Business Press. 

Dean, Jeffrey, and Sanjay Ghemawat. 2008. "MapReduce: simplified data processing on large 

clusters." Communications of the ACM 51, no. 1 107-113. 



 

79 

 

Deerwester, Scott, Susan T. Dumais, George W. Furnas, Thomas K. Landauer, and Richard 

Harshman. 1990. "Indexing by latent semantic analysis." Journal of the American society 

for information science 41, no. 6, 391.  

Dimension Data. 2013-2014. "Global Contact Centre Benchmarking Report." 

http://www.dimensiondata.com/Global/Global-Microsites/CCBenchmarking. 

Domingos, Pedro, and Michael Pazzani. 1997. "On the optimality of the simple Bayesian 

classifier under zero-one loss." Machine learning 29, no. 2-3 103-130. 

Dow Jones. 2016. Factiva. Accessed April 8, 2016. 

https://global.factiva.com/factivalogin/login.asp?productname=global. 

Dumais, Susan T. 1991. "Improving the Retrieval of Information from External Sources." 

Behavior Research Methods, Instruments, & Computers 23, no. 2 229-236. 

Eikvil, K. Aas and L. 1999. Text Categorisation: A Survey. Technical Report Raport NR 941, 

Norwegian Computing Center. 

Elder IV, John, and Thomas Hill. 2012. Practical text mining and statistical analysis for non-

structured text data applications. Academic Press. 

Ester, Martin, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. 1996. "A density-based 

algorithm for discovering clusters in large spatial databases with noise." Kdd, vol. 96, no. 

34 226-231. 

Fan, Jing, Xiuying Liu, Ying Shen and Tianyang Dong. 2012. "Ontology-based Knowledge 

Management for Forest Channel‖." In Proc. 2012 9th International Conference on Fuzzy 

Systems and Knowledge Discovery (FSKD 2012). IEEE. 1523-1527. 

Feldman, Susan. 2004. "The high cost of not finding information." Information Today, 

Incorporated.  



 

80 

 

Fensel, Dieter. 2001. "Ontologies." Springer Berlin Heidelberg.  

Fernández, Alberto, Salvador García, María José del Jesus, and Francisco Herrera. 2008. "A 

study of the behaviour of linguistic fuzzy rule based classification systems in the 

framework of imbalanced data-sets." Fuzzy Sets and Systems 159, no. 18 2378-2398. 

Fernández, Javier D., Claudio Gutierrez, and Miguel A. Martínez-Prieto. 2010. "RDF 

Compression: Basic Approach." In Proceedings of the 19th international conference on 

World wide web. ACM. 1091-1092. 

Florian, Radu, Abe Ittycheriah, Hongyan Jing, and Tong Zhang. 2003. "Named Entity 

Recognition Through Classifier Combination." Proceedings of the seventh conference on 

Natural language learning at HLT-NAACL 2003-Volume 4. Association for 

Computational Linguistics. 168-171. 

Funayama, Hirotaka, Tomohide Shibata, and Sadao Kurohashi. 2009. "Bottom-Up Named Entity 

Recognition Using a Two-Stage Machine Learning Method." Proceedings of the 

Workshop on Multiword Expressions: Identification, Interpretation, Disambiguation and 

Applications. Association for Computational Linguistics. 55-62. 

Gayathri, K., and A. Marimuthu. 2013. "Text document pre-processing with the KNN for 

classification using the SVM." In Intelligent Systems and Control (ISCO), 2013 7th 

International Conference on. IEEE. 453-457. 

Glimm, Birte, Ian Horrocks, Boris Motik, Rob Shearer, and Giorgos Stoilos. 2012. "A Novel 

Approach to Ontology Classification." Web Semantics: Science, Services and Agents on 

the World Wide Web 14 84-101. 



 

81 

 

Gomez-Perez, Asuncion, Mariano Fernández-López, and Oscar Corcho. 2006. Ontological 

Engineering: with examples from the areas of Knowledge Management, e-Commerce and 

the Semantic Web. Springer Science & Business Media. 

Grant, Robert M. 1996. "Toward a knowledge‐based theory of the firm." Strategic management 

journal 17.S2 109-122. 

Guber, T. 1993. "A Translational Approach to Portable Ontologies." Knowledge Acquisition 5, 

no. 2 199-229. 

Guthrie, J., R. Petty, F. Ferrier, and R. Wells. 1999. "There is no accounting for intellectual 

capital in Australia: Review of annual reporting practices and the internal measurement 

of intangibles within Australian organisations." In International Symposium Measuring 

and Reporting Intellectual Capital: Experiences, Issues and Prospects 9-10. 

Guthrie, James, Richard Petty, Kittiya Yongvanich, and Federica Ricceri. 2004. "Using content 

analysis as a research method to inquire into intellectual capital reporting." Journal of 

intellectual capital 5, no. 2 282-293. 

Hackbarth, Gary. 1998. "The impact of organizational memory on IT systems." AMCIS 1998 

Proceedings. 197. 

Hayes, Robert M. 1963. "Mathematical models in information retrieval." In Natural Language 

and the Computer (Edited by PL Garvin). New York 287: McGraw-Hill. 

Heitz, Christoph, Geoffrey Ryder, and Kevin Ross. 2008. "Knowledge Management in Call 

Centers: How Routing Rules Influence Expertise and Service Quality." In MSOM 

Conference Proceedings. Washington DC: MSOM. 1-7. 

Ho, Anh Khoi Ngo, Nicolas Ragot, Jean-Yves Ramel, Véronique Eglin, and Nicolas Sidere. 

2013. "Document Classification in a non-stationary environment: A One-Class SVM 



 

82 

 

Approach." In Document Analysis and Recognition (ICDAR), 2013 12th International 

Conference on. IEEE. 616-620. 

Hotho, Andreas, Alexander Maedche, and Steffen Staab. 2002. "Ontology-based text document 

clustering." KI 16, no. 4 48-54. 

Hsieh, Shang-Hsien, Hsien-Tang Lin, Nai-Wen Chi, Kuang-Wu Chou, and Ken-Yu Lin. 2011. 

"Enabling the Development of Base Domain Ontology through Extraction of Knowledge 

from Engineering Domain Handbooks." Advanced Engineering Informatics 25, no. 2 

288-296. 

Hu, Fanghuai, Zhiqing Shao, and Tong Ruan. 2014. "Self-Supervised Chinese Ontology 

Learning from Online Encyclopedias." The Scientific World Journal.  

Huang, Anna. 2008. "Similarity measures for text document clustering." Proceedings of the sixth 

new zealand computer science research student conference (NZCSRSC2008). 

Christchurch, New Zealand. 

Huang, Jingshan, Dejing Dou, Lei He, Jiangbo Dang, Hayes, P. 2010. "Ontology-based 

knowledge discovery and sharing in bio-informatics and medical informatics: A brief 

survey." Seventh International Conference on Fuzzy Systems and Knowledge Discovery 

(FSKD).  

Jain, Anil K. 2010. "Data clustering: 50 years beyond k-means." Pattern recognition letters 31, 

no. 8 651-666. 

Joachims, Thorsten. 1997. "A Probabilistic Analysis of the Rocchio Algorithm with tfidf for 

Text Categorization." Proc. 14th Int’l Conf. Machine Learning (ICML ’97). 143-151. 



 

83 

 

Jones, K. Sparck, Steve Walker, and Stephen E. Robertson. 2000. "A probabilistic model of 

information retrieval: development and comparative experiments: Part 2." Information 

Processing & Management 36, no. 6 809-840. 

Kakabadse, Nada K., Andrew Kakabadse, and Alexander KouzminJournal of knowledge 

management 7, no. 4. 2003. "Reviewing the knowledge management literature: towards a 

taxonomy." Journal of knowledge management 7, no. 4 75-91. 

Kano, Y., W. A. Baumgartner, L. McCrohon, S. Ananiadou, K. B. Cohen, L. Hunter, and T. 

Tsujii. 2009. "Data Mining: Concept and Techniques." Oxford Journal of Bioinformatics 

25, no. 15 1997-1998. 

Kavitha, V., and M. Punithavalli. 2010. "Clustering time series data stream - A literature 

survey." International Journal of Computer Science and Information Security, 8(1) 289-

294. 

Khalid, Mahboob Alam, Valentin Jijkoun, and Maarten De Rijke. 2008. "The impact of named 

entity normalization on information retrieval for question answering." 705-710. Springer 

Berlin Heidelberg. 

Kiss, Tibor, and Jan Strunk. 2006. "Unsupervised multilingual sentence boundary detection." 

Computational Linguistics 32, no. 4 485-525. 

Klieber, Werner, Vedran Sabol, Markus Muhr, Roman Kern, Georg Öttl, and Michael Granitzer. 

2009. "Knowledge discovery using the KnowMiner framework." Proc. IADIS 9.  

Kuehnast J, and Hengeveld W. 2009. "Enterprise application integration (white paper)." GmbH, 

Berlin: T-systems enterprise services. 



 

84 

 

Labrou, Yannis and Tim Finin. 1999. "Yahoo! as an ontology: using Yahoo! categories to 

describe documents." Proceedings of the eighth international conference on Information 

and Knowledge Management. Kansas City. 

Lan, Man, Chew Lim Tan, Jian Su, and Yue Lu. 2009. "upervised and traditional term weighting 

methods for automatic text categorization." Pattern Analysis and Machine Intelligence, 

IEEE Transactions on 31, no. 4 721-735. 

Leonard-Barton, Dorothy. 1995. Wellspring of knowledge. Boston, MA: Harvard Business 

School Press. 

Li, Xiaoli, and Bing Liu. 2003. "Learning to Classify Texts Using Positive and Unlabeled Data." 

In IJCAI, vol. 3 587-592. 

Lin, Dekang. 1999. "MINIPAR: a minimalist parser." Maryland linguistics colloquium.  

Liu, Fasheng, and Lu Xiong. 2011. "Survey on text clustering algorithm." Software Engineering 

and Service Science (ICSESS), 2011 IEEE 2nd International Conference on. IEEE. 901-

904. 

Liu, Xu-Ying, Jianxin Wu, and Zhi-Hua Zhou. 2009. "Exploratory undersampling for class-

imbalance learning." Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE 

Transactions on 39.2 539-550. 

Lock Lee, Laurence, and James Guthrie. 2010. "Visualising and measuring intellectual capital in 

capital markets: a research method." Journal of intellectual capital 11.1 4-22. 

Lu, Wen-Min, Wei-Kang Wang, and Qian Long Kweh. 2014. "Intellectual capital and 

performance in the Chinese life insurance industry." Omega 42.1 65-74. 



 

85 

 

Luca, De, Ernesto William, Andreas Nürnberger, and O. von-Guericke. 2004. "Ontology-based 

semantic online classification of documents: Supporting users in searching the web." 

Proc. of the European Symposium on Intelligent Technologies (EU-NITE 2004). Aachen. 

Luger, George F. 2005. Artificial Intelligence: Structure and Strategies for Complex Problem. 

Pearson education. 

MacQueen, James. 1967. "Some methods for classification and analysis of multivariate 

observations." Proceedings of the fifth Berkeley symposium on mathematical statistics 

and probability, vol. 1, no. 14. 281-297. 

Magrassi, Paolo. 2002. A taxonomy of Intellectual capital. Wikimedia Foundation Inc. 

Malouf, Robert. 2002. "A comparison of algorithms for maximum entropy parameter 

estimation." In proceedings of the 6th conference on Natural language learning-Volume 

20. Association for Computational Linguistics. 

Manning, Christopher D., Prabhakar Raghavan, and Hinrich Schütze. 2008. Introduction to 

information retrieval. Cambridge: Cambridge university press. 

Marcus, Mitchell, Beatrice Santorini, Mary Ann Marcinkiewicz, and Ann Taylor. 1999. 

Treebank-3. Accessed April 5, 2016. https://catalog.ldc.upenn.edu/LDC99T42. 

Marinica, Claudia, and Fabrice Guillet. 2010. "Knowledge-based interactive postmining of 

association rules using ontologies." Knowledge and Data Engineering, IEEE 

Transactions on 22, no. 6 784-797. 

Marr, Bernard, and Giovanni Schiuma. 2001. "Measuring and managing intellectual capital and 

knowledge assets in new economy organisations." In Handbook of performance 

measurement. Gee, London. 



 

86 

 

McCallum, Andrew, and Wei Li. 2003. "Early Results for Named Entity Recognition with 

Conditional Random Fields, Feature Induction, and Web-Enhanced Lexicons." 

Proceedings of the seventh conference on Natural language learning at HLT-NAACL 

2003-Volume 4. Association for Computational Linguistics. 188-191. 

McEvily, Susan K., Shobha Das, and Kevin McCabe. 2000. "Avoiding competence substitution 

through knowledge sharing." Academy of Management Review 25, no. 2 294-311. 

McGuinness, Deborah L., and Frank Van Harmelen. 2004. "OWL web ontology language 

overview." W3C recommendation 10, no. 10.  

Mikheev, Andrei. 2000. "Tagging sentence boundaries." In Proceedings of the 1st North 

American chapter of the Association for Computational Linguistics conference. 

Association for Computational Linguistics. 264-271. 

Monz, Christof, Jaap Kamps, and Maarten de Rijke. 2002. "The University of Amsterdam at 

CLEF 2002." In CLEF (Working Notes).  

Muhammad Rafi, M. Shahid Shaikh, Amir Farooq. 2010. "Document Clustering based on Topic 

Maps." International Journal of Computer Applications (0975 – 8887), Vol. 12– No.1.  

Narayanan, Vivek, Ishan Arora, and Arjun Bhatia. 2013. "Fast and Accurate Sentiment 

Classification Using Enhanced Naïve Bayes Model." 194-201. Springer Berlin 

Heidelberg. 

Navathe, Shamkant B., and Elmasri Ramez. 2000. "Data warehousing and data mining." 

Fundamentals of Database Systems 841-872. 

Nelson, Richard R., and Sidney G. Winter. 2009. An evolutionary theory of economic change. 

Harvard University Press. 



 

87 

 

Ng, Andrew Y. 2004. "Feature selection, L1 vs. L2 regularization, and rotational invariance." In 

Proceedings of the twenty-first international conference on Machine learning. ACM. 78. 

Nolan Norton, Institute. 1998. Putting the Knowing Organization to Value. Nolan Norton 

Institute. 

Nonaka, Ikujiro. 1994. "A dynamic theory of organizational knowledge creation." Organization 

science 5, no. 1 14-37. 

Nonaka, Ikujiro, Georg Von Krogh, and Sven Voelpel. 2006. "Organizational knowledge 

creation theory: Evolutionary paths and future advances." Organization studies 27, no. 8 

1179-1208. 

Pang, Bo, and Lillian Lee. 2008. "Opinion mining and sentiment analysis." Foundations and 

trends in information retrieval 2, no. 1-2 1-135. 

Phusavat, Kongkiti, Narongsak Comepa, Agnieszka Sitko-Lutek, and Keng-Boon Ooi. 2013. 

"Productivity management: integrating the intellectual capital." Industrial Management 

& Data Systems 113, no. 6 840-855. 

Pianta, Emanuele, Luisa Bentivogli, and Christian Girardi. 2002. "Multiwoednet: Developing an 

aligned multilingual database." In Proc. 1st Int’l Conference on Global WordNet.  

Piateski, Gregory, and William Frawley. 1991. Knowledge discovery in databases. MIT press. 

Prahalad, Coimbatore K., and Gary Hamel. 2006. The core competence of the corporation. 

Springer Berlin Heidelberg. 

Rasooli, Pooya, and Amir Albadvi. 2007. "Knowledge Management in Call Centres." Electronic 

Journal of Knowledge Management 5, no. 3 323-332. 



 

88 

 

Ratnaparkhi, A. 1996. "A Maximum Entropy Model for Part-of-Speech Tagging." In 

Proceedings of the Conference on Empirical Methods in Natural Language Processing 

EMNLP-96. Philadelphia, PA. 

Ratnaparkhi, Adwait. 1998. "Maximum entropy models for natural language ambiguity 

resolution." PhD diss. University of Pennsylvania. 

Ravichandran, Thiagarajan, and Arun Rai. 1999. "Total quality management in information 

systems development: key constructs and relationships." Journal of Management 

Information Systems 16, no. 3 119-155. 

Richman, Alexander E., and Patrick Schone. 2008. "Mining Wiki Resources for Multilingual 

Named Entity Recognition." Proceedings of the 46th Annual Meeting of the Association 

of Computational Linguistics: Human Language Technologies. Stroudsburg, PA. 1-9. 

Ritter, Alan, Sam Clark, and Oren Etzioni. 2011. "Named Entity Recognition in Tweets: An 

Experimental Study." Proceedings of the Conference on Empirical Methods in Natural 

Language Processing. Association for Computational Linguistics. 524-1534. 

Rong, Guo, and Wu Jun. 2012. "Design and implementation of domain ontology-based oilfield 

non-metallic pipe infor-mation retrieval system." Computer Science and Information 

Processing (CSIP), 2012 International Conference on. IEEE.  

Rousseeuw, Peter J. 1987. "Silhouettes: a graphical aid to the interpretation and validation of 

cluster analysis." Journal of computational and applied mathematics 20 53-65. 

Salton, Gerard, and Michael J. McGill. 1986. Introduction to modern information retrieval.  

Sambamurthy, V., and Mani Subramani. 2005. "Special issue on information technologies and 

knowledge management." MIS quarterly 29, no. 1, 1-7. 



 

89 

 

Sangodiah, Anbuselvan, and Lim Ean Heng. 2012. "Integration of data quality component in an 

ontology based knowledge management approach for e-learning system." In Computer & 

Information Science (ICCIS), 2012 International Conference on, vol. 1. IEEE. 105-108. 

Senellart, Pierre, and Vincent D. Blondel. 2008. "Automatic discovery of similarwords." 25-44. 

Springer London. 

Serra, Ivo, Rosario Girardi, and Paulo Novais. 2014. "Evaluating Techniques for Learning Non-

Taxonomic Relationships of Ontologies from Text." Expert Systems with Applications 

41, no. 11 5201-5211. 

Shilakes, Christopher C., and Julie Tylman. 1998. Enterprise information portals. Merrill Lynch, 

November 16. 

Sorensen, L. 2009. "User managed trust in social networking-Comparing Facebook, MySpace 

and Linkedin." 1st International Conference on Wireless Communication, Vehicular 

Technology, Information Theory and Aerospace&Electronic Systems Technology.  

Spender, J‐C. 1996. "Making knowledge the basis of a dynamic theory of the firm." Strategic 

management journal 17.S2 45-62. 

Subhashini, R., and J. Akilandeswari. 2011. "A Survey on Ontology Construction 

Methodologies." International Journal of Enterprise Computing and Business Systems 1, 

no. 1 60-72. 

Suganya. S, Gomathi. C and Mano Chitra. S. 2013. "Syntax and Semantics based Efficient Text 

Classification Framework." International Journal of Computer Applications 65(15):18-

21.  



 

90 

 

Tang, Min, Bryan Pellom, and Kadri Hacioglu. 2003. "Call-type classification and unsupervised 

training for the call center domain." Automatic Speech Recognition and Understanding, 

2003. ASRU '03. 2003 IEEE Workshop on (IEEE) 204-208. 

Toral, Antonio, Elisa Noguera, Fernando Llopis, and Rafael Munoz. 2005. "Improving question 

answering using named entity recognition." In Natural language processing and 

information systems, 181-191. Springer Berlin Heidelberg. 

Torisawa, Jun'ichi Kazama and Kentaro. 2007. "Exploiting Wikipedia as External Knowledge 

for Named Entity Recognition." Joint Conference on Empirical Methods in Natural 

Language Processing and Computational Natural Language Learning 698-707. 

Turney, Peter D., and Patrick Pantel. 2010. "From Frequency to Meaning: Vector Space Models 

of Semantics." Journal of artificial intelligence research 37, no. 1 141-188. 

Uszok, Andrzej, Larry Bunch, Jeffry M. Bradshaw, Thomas Reichherzer, James Hanna and 

Albert Frantz. 2013. "Knowledge-Based Approaches to Information Management in 

Coalition Environments." Intelligent Systems, IEEE Vol. 28, Issue 1 34-41. 

Vapnik, Vladimir. 2013. "The nature of statistical learning theory." Springer Science & Business 

Media.  

Varun Grover, Thomas H. Davenport. 2001. "General perspectives on knowledge management: 

Fostering a research agenda." Journal of management information systems 18, no. 1 5-21. 

Vogrinčič, Sergeja, and Zoran Bosnić. 2011. "Ontology-based Multi-Label Classification of 

Economic Article." Computer Science and Information Systems 8, no. 1 101-119. 

Von Krogh, Georg. 1998. "Care in knowledge creation." California management review 40, no. 

3 (California management review 40, no. 3) 133-153. 



 

91 

 

Wang, Chunye, Ram Akella, and Srikant Ramachandran. 2010. "Hierarchical service analytics 

for improving productivity in an enterprise service center." In Proceedings of the 19th 

ACM international conference on Information and knowledge management. ACM. 1209-

1218. 

Wang, Chunye, Ram Akella, Srikant Ramachandran, and David Hinnant. 2011. "Knowledge 

Extraction and Reuse within "Smart" Service Centers." In SRII Global Conference (SRII) 

Annual. IEEE. 163-176. 

Wang, Wei, Chuan Xiao, Xuemin Lin, and Chengqi Zhang. 2009. "Efficient approximate entity 

extraction with edit distance constraints." In Proceedings of the 2009 ACM SIGMOD 

International Conference on Management of data. ACM. 759-770. 

Wang, Yong, and Julia Hodges. 2006. "Document clustering with semantic analysis." System 

Sciences, 2006. HICSS'06. Proceedings of the 39th Annual Hawaii International 

Conference on, vol. 3. IEEE. 54c-54c. 

Waters, John K. 2005. "Managing unstructured information." Application Development Trends 

Articles 2, no. 1.  

Willett, Peter. 2006. "The Porter stemming algorithm: then and now." Program: electronic 

library and information systems 40.3 219-223. 

Wimalasuriya, Daya C., and Dejing Dou. 2010. "Ontology-based Information Extraction: An 

Introduction and a Survey of Current Approaches." Journal of Information Science.  

Wong, Wilson, Wei Liu, and Mohammed Bennamoun. 2012. "Ontology Learning from Text: A 

Look Back and into the Future." ACM Computing Surveys (CSUR) 44, no. 4.  

Wu, Chuni. 2008. "Knowledge creation in a supply chain." An International Journal 13, no. 3 

241-250. 



 

92 

 

Yin, Robert K. 2003. Case Study Research: Design and Methods, 3rd edn. Applied Social 

Research Methods Series, vol. 5.  

Yonghong, Yu, and Bai Wenyang. 2010. "Text clustering based on term weights automatic 

partition." Computer and Automation Engineering (ICCAE), 2010 The 2nd International 

Conference on, vol. 3. IEEE. 373-377. 

Yu, Yao-Tang, and Chien-Chang Hsu. 2011. "A structured ontology construction by using data 

clustering and pattern tree mining." Machine Learning and Cybernetics (ICMLC), 2011 

International Conference on. Vol. 1. IEEE. 

Zaman, Nazia, and Juan Li. 2014. "Semantics-Enhanced Recommendation System for Social 

Healthcare." In Advanced Information Networking and Applications (AINA), 2014 IEEE 

28th International Conference on. IEEE. 765-770. 

 


