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a b s t r a c t 

The main objective of this contribution is to develop a novel continuum-kinematics- 

inspired approach for peridynamics (PD), and to revisit PD’s thermodynamic foundations. 

We distinguish between three types of interactions, namely, one-neighbour interactions, 

two-neighbour interactions and three-neighbour interactions. While one-neighbour inter- 

actions are equivalent to the bond-based interactions of the original PD formalism, two- 

and three-neighbour interactions are fundamentally different to state-based interactions in 

that the basic elements of continuum kinematics are preserved exactly. In addition, we 

propose that an externally prescribed traction on the boundary of the continuum body 

emerges naturally and need not vanish. This is in contrast to, but does not necessarily 

violate, standard PD. We investigate the consequences of the angular momentum bal- 

ance and provide a set of appropriate arguments for the interactions accordingly. Further- 

more, we elaborate on thermodynamic restrictions on the interaction energies and derive 

thermodynamically-consistent constitutive laws through a Coleman–Noll-like procedure. 

© 2019 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY license. 
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1. Introduction 

Peridynamics (PD) is an alternative approach to formulate continuum mechanics ( Silling, 20 0 0 ) the roots of which can

be traced back to the pioneering works of Piola ( dell’Isola et al., 2015; 2016; 2017 ) which prepared the foundations for

nonlocal continuum mechanics and peridynamics. PD has experienced prolific growth as an area of research, with a sig-

nificant number of contributions in multiple disciplines. PD is a non-local continuum mechanics formulation. However, it

is fundamentally different from common non-local elasticity (e.g. Eringen, 2002 ) in that the concepts of stress and strain

are not present. As a non-local theory, the behaviour of each material point in PD is dictated by its interactions with other

material points in its vicinity. Furthermore, in contrast to classical continuum mechanics, the governing equations of PD are

integro-differential equations appropriate for problems involving discontinuities such as cracks and interfaces. 

While the discretized format of PD bears a similarity to discrete mechanics formulations such as molecular dynamics

(MD), it is still a continuum formulation and only takes advantage of basic MD concepts such as the cutoff radius and
∗ Corresponding author. 

E-mail address: ajavili@bilkent.edu.tr (A. Javili). 

https://doi.org/10.1016/j.jmps.2019.06.016 

0022-5096/© 2019 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license. 

( http://creativecommons.org/licenses/by/4.0/ ) 

https://doi.org/10.1016/j.jmps.2019.06.016
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jmps
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jmps.2019.06.016&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:ajavili@bilkent.edu.tr
https://doi.org/10.1016/j.jmps.2019.06.016
http://creativecommons.org/licenses/by/4.0/


126 A. Javili, A.T. McBride and P. Steinmann / Journal of the Mechanics and Physics of Solids 131 (2019) 125–146 

Table 1 

Major applications and selected key contributions of PD. 

PD application Important contributions 

Quasi-static problems Dayal and Bhattacharya (2006) , Mikata (2012) , Breitenfeld et al. (2014) , Huang et al. (2015) , and Madenci and 

Oterkus (2016) 

Coupled problems Gerstle et al. (2008) , Bobaru and Duangpanya (2010) , Oterkus et al. (2014a, 2014b, 2017) 

Multiscale modeling Bobaru et al. (2009) , Shelke et al. (2011) , Rahman and Foster (2014) , Talebi et al. (2014) , Ebrahimi et al. (2015) , 

Tong and Li (2016) , and Xu et al. (2016) 

Structural mechanics Silling and Bobaru (2005) , Diyaroglu et al. (2016) , O’Grady and Foster (2014) , Taylor and Steigmann (2015) , 

Chowdhury et al. (2016) , and Li et al. (2016) 

Constitutive models Aguiar and Fosdick (2014) , Sun and Sundararaghavan (2014) , Tupek and Radovitzky (2014) , Silhavý (2017) , and 

Madenci and Oterkus (2017) 

Material failure Kilic and Madenci (2009) , Foster et al. (2011) , Silling et al. (2010) , Agwai et al. (2011) , Dipasquale et al. (2014) , 

Chen and Bobaru (2015) , Han et al. (2016) , Emmrich and Puhst (2016) , De Meo et al. (2016) , Sun and 

Huang (2016) , and Diyaroglu et al. (2016) 

Biomechanics Taylor et al. (2016) , Lejeune and Linder (2017a, 2017b, 2018a, 2018b) 

Wave dispersion Zingales (2011) , Vogler et al. (2012) , Wildman and Gazonas (2014) , Bazant et al. (2016) , Nishawala et al. (2016) , 

Silling (2016) , and Butt et al. (2017) 

Fig. 1. Schematic illustration and comparison between the standard PD formulation (left) and the proposed continuum-kinematics-inspired alternative 

(right). One-neighbour interactions in our framework are identical to bond-based interactions in the PD formulation of Silling (20 0 0) . Two and three- 

neighbour interactions corresponding to Eq. (4) and Eq. (5) , respectively, are alternatives to state-based interactions. The difference between the bond- 

based, ordinary state-based, and non-ordinary state-based PD formulations lies in the magnitude and direction of the interaction forces (green arrows) 

between the materials points. In our approach, the difference between the one-, two- and three-neighbour interactions lies in their kinematic descriptions. 

(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

point-wise interactions. For further connections and differences between PD theory, continuum mechanics and particle sys-

tems see the fundamental contributions by Fried (2010) , Murdoch (2012) , Fosdick (2013) , and Podio-Guidugli (2017) , among

others. PD inherently accounts for geometrical discontinuities, hence it is readily employed in fracture mechanics and related

problems. However, the applications of PD extend far beyond fracture and damage. For an extensive study of the balance

laws, applications, and implementations, see Madenci and Oterkus (2014) , and for a brief description of PD together with a

review of its applications and related studies in different fields to date, see Javili et al. (2018) . Table 1 categorises various

PD applications and the associated key contributions in the literature. It is clear that the range of PD applications is broad

and not limited to fracture mechanics. 

The original PD theory of Silling (20 0 0) was restricted to bond-based interactions. This limited its applicability for ma-

terial modelling, including the inability to account for Poisson’s ratio other than 1/4 for isotropic materials. This shortcom-

ing was addressed in various contributions and finally rectified by Silling et al. (2007) via the introduction of the notion

of state and categorising the interactions as bond-based, ordinary state-based and non-ordinary state-based as schemati-

cally illustrated in Fig. 1 (left). Despite the large amount of research on PD, its thermodynamic foundations have not been

fully investigated. Fundamental works on PD are limited in number but include those of Silling and Lehoucq (2010) , Ostoja-

Starzewski et al. (2013) , and Oterkus et al. (2014a) . The starting point of these contributions is the PD theory and constitutive

formulation of Silling et al. (2007) . The goal here is to adopt a continuum-kinematics-inspired approach and thereby bridge

the gap between classical continuum thermodynamics and PD. More precisely, we propose an alternative PD formulation

whose underlying concepts are reminiscent of classical continuum mechanics. In particular, we firstly propose to decom-

pose the interaction potentials into three parts corresponding to one-neighbour interactions , two-neighbour interactions and
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three-neighbour interactions within the horizon, as illustrated in Fig. 1 (right). Note, one-neighbour interactions are identical

to bond-based interactions in the PD formulation of Piola ( dell’Isola et al., 2015 ) and Silling (20 0 0) . Secondly, we derive

the balance of linear and angular momentum corresponding to our interaction potentials and identify the fundamental

properties of these potentials such that angular momentum balance is a priori fulfilled. Finally, we derive the dissipation in-

equality and propose thermodynamically-consistent constitutive laws. Crucially, we postulate the virtual power equivalence

as the key requirement of our approach and build our entire framework solely on this variational assumption. 

Remark. Before proceeding, we revisit the notions of a “localization procedure” and a “point-wise equation” since in the

current context they serve a broader purpose than they usually do in classical continuum mechanics. Localization refers

to the process of deriving a point-wise relation from an integral form over a domain. The resulting point-wise relation

itself may or may not be an integral form. Applying the localization procedure on global forms in CCM renders point-wise

relations at each X that are not integrals and thus are local. On the contrary, point-wise equations at each X in CPD include

integrals over the horizon and are hence non-local. It is possible to apply a localization procedure on these non-local forms

to derive neighbour-wise equations that are point-wise forms at each neighbouring particle’s location X 

| . Henceforth, we

use the term “local form” exclusively to indicate the point-wise quantities and equations of CCM. The term “non-local form”

on the other hand refers to point-wise integral forms associated with CPD. Finally, the term “neighbour-wise form” refers to

non-integral quantities and relations in CPD obtained via localization of their non-local forms. �

The manuscript is organized as follows. Section 2 introduces the notation, elaborates on the kinematics of the problem

and presents the geometrical aspects of the proposed framework. Here the novelty is to introduce two- and three-neighbour

interactions inspired by basic elements of classical continuum kinematics. Firstly, as a motivation, we derive the governing

equations using the Dirichlet principle in Section 3 via minimizing the total energy functional, for the special case of a quasi-

static, conservative problem. Next, for the general case, thermodynamic balance laws are discussed in Section 4 . In particular,

we detail the kinetic energy, energy and entropy balance equations. Afterwards, through a Coleman–Noll-like procedure

based on the dissipation inequality, we provide thermodynamically-consistent constitutive laws. Section 5 concludes this

work. 

2. Kinematics 

Consider a continuum body that occupies the material configuration B 0 ∈ R 

3 at time t = 0 and that is mapped to the

spatial configuration B t ∈ R 

3 via the nonlinear deformation map y as 

x = y ( X , t) : B 0 × R + → B t ⇒ B t = y (B 0 ) 

in which X and x identify the points in the material and spatial configurations, respectively illustrated in Fig. 2 . Central to

the PD theory, and in contrast to standard local continuum mechanics, is the non-locality assumption that any point X in

the material configuration can interact with points within its finite neighbourhood H 0 ( X ) . The neighbourhood H 0 is referred

to as the horizon in the material configuration. The measure of the horizon in the material configuration is denoted δ0 and

is generally the radius of a spherical neighbourhood at X . The spatial horizon H t is the image of the material horizon H 0

under the deformation map y and its measure is denoted δt , that is 

H t = y (H 0 , t) with δ0 := meas (H 0 ) and δt := meas (H t ) = y (δ0 ) . 

Note that the horizon H 0 coincides with the point X in the limit of an infinitesimal neighbourhood and therefore 

lim 

δ0 → 0 
H 0 → X and lim 

δ0 → 0 
H t → x 

recovering the kinematics of the local continuum mechanics formalism. 

To be more precise and to better distinguish the PD formalism from conventional continuum mechanics, we identify the

points (neighbours) within the horizon by a superscript. For instance the point X 

| ∈ H ( X ) denotes a neighbour of point X
0 

Fig. 2. Motion of a continuum body. Illustration of classical continuum mechanics formalism (left) and the peridynamics formulation (right). The continuum 

body that occupies the material configuration B 0 ∈ R 3 at time t = 0 is mapped to the spatial configuration B t ∈ R 3 via the nonlinear deformation map y . 
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in the material configuration. The point x | within the horizon of x is the spatial counterpart of the point X 

| defined through

the nonlinear deformation map y as 

x | := y ( X 

| 
, t) . (1) 

For our proposed framework, we identify the neighbour set of point X as {
X 

| 
, X 

|| 
, X 

||| } ∀ X 

| ∈ H 0 ( X ) , X 

|| ∈ H 0 ( X ) , X 

||| ∈ H 0 ( X ) . 

These neighbours of X denoted X 

| , X 

|| , X 

||| are mapped onto x | , x || , x ||| , respectively. The relative positions, i.e. the finite

line elements, in the material and spatial configurations are denoted as �{ • } and ξ{ • } , respectively, where the superscript { • }
identifies the neighbour, that is 

�| 
:= X 

| − X and ξ
| 

:= x | − x where ξ
| = ξ( X 

| ; X ) = y ( X 

| ) − y ( X ) , 

�|| 
:= X 

|| − X and ξ
|| 

:= x || − x where ξ
|| = ξ( X 

|| ; X ) = y ( X 

|| ) − y ( X ) , 

�||| 
:= X 

||| − X and ξ
||| 

:= x ||| − x where ξ
||| = ξ( X 

||| ; X ) = y ( X 

||| ) − y ( X ) . 

(2) 

In addition, we define the conventional infinitesimal line elements, by a limit operation, as 

d X 

| := lim 

δo → 0 
�| 

, d x | := lim 

δo → 0 
ξ
| 
, d X 

|| := lim 

δo → 0 
�|| 

, d x || := lim 

δo → 0 
ξ
|| 
, d X 

||| := lim 

δo → 0 
�||| 

, d x ||| := lim 

δo → 0 
ξ
||| 

. 

In order to overcome the bond-based restrictions of early PD formulations, and in the spirit of classical constitutive mod-

elling, we first recall the three local kinematic measures of relative deformation, namely the deformation gradient F , its

cofactor K and its determinant J , where 

F := Grad y and K := Cof F and J := Det F . (3) 

We now introduce three non-local PD kinematic measures of relative deformation chosen to resemble the local measures

(3) . 

(i) The first relative deformation measure ξ| mimics the linear map F from the infinitesimal line element d X 

| in the

material configuration to its spatial counterpart d x | . The infinitesimal spatial line element d x | is related to its material

counterpart d X 

| via a Taylor expansion at X as 

d x | = lim 

δ0 → 0 
[ x | − x ] 

= lim 

δ0 → 0 
ξ
| 

= lim 

δ0 → 0 

[ 
F 
∣∣

X 
· �| + 

1 
2 

G 

∣∣
X 

: 
[
�| 

� �| ] + . . . 

] 

≈ F · d X 

| 
, 

where G is the second gradient of the deformation map y . In view of our proposed PD formalism, the relative deformation

measure x | − x is the main ingredient to describe one-neighbour interactions , see Fig. 3 . 

(ii) Similar to finite line elements, we introduce finite area elements constructed from two finite line elements. For

instance, the vectorial area element A 

| 
/ 
|| 

in the material configuration corresponds to the vector product of the line elements

�| and �|| as A 

| 
/ 
|| 

:= �| × �|| with its counterpart in the spatial configuration denoted as a 

| 
/ 
|| 

:= ξ
| × ξ

|| 
, i.e. 

A 

| / || := �| × �|| 
and a 

| / || := ξ
| × ξ

|| 
where a 

| / || = a ( X 

| 
, X 

|| ; X ) . (4) 
Fig. 3. Illustration of finite line elements within the horizon in the material and spatial configurations corresponding to one-neighbour interactions. The 

finite line elements are the relative positions between points. 
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Fig. 4. Illustration of finite area elements within the horizon in the material and spatial configurations corresponding to two-neighbour interactions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The second relative deformation measure a 

| 
/ 
|| 

mimics the linear map from the infinitesimal (vectorial) area element d A 

| 
/ 
||

in the material configuration to its spatial counterpart d a 

| 
/ 
|| 

. An infinitesimal area element is constructed from three points

within the horizon in the limit of infinitesimal horizon measure as 

d a 

| / || = lim 

δ0 → 0 
a 

| / || = lim 

δ0 → 0 

[
[ x | − x ] × [ x || − x ] 

]

= lim 

δ0 → 0 

[ 
ξ
| × ξ

|| ] 

= 

[
F · d X 

| ] ×
[
F · d X 

|| ]
= K · d A 

| / || . 

This is essentially the Nanson’s formula frequently used in conventional continuum kinematics. In our proposed framework,

the relative area measure [ x | − x ] × [ x || − x ] is the main ingredient to describe two-neighbour interactions , see Fig. 4 . (iii)

In a similar fashion to finite line elements and area elements, we define finite volume elements formed by three finite line

elements. Let V | / || / ||| denote the finite volume element in the material configuration with its spatial counterpart being v | / || / ||| .
The volume elements V | / || / ||| and v | / || / ||| are obtained by a scalar triple product, also referred to as a mixed product, of their

edges as 

V 

| / || / ||| := 

[ 
�| × �|| 

] 
· �||| 

and v | / || / || := 

[ 
ξ
| × ξ

|| ] · ξ||| 
where v | / || / || = v ( X 

| 
, X 

|| 
, X 

||| ; X ) . (5)

The third and last deformation measure v | / || / ||| mimics the linear map J from the infinitesimal volume element d V | / || / ||| in

the material configuration to its spatial counterpart d v | / || / ||| . However unlike J that must be strictly positive, the volume

elements v | / || / ||| and V | / || / ||| can be positive or negative as long as they are consistent in the sense that v | / || / ||| /V | / || / ||| > 0

must hold. The infinitesimal volume elements are formed from four points within the horizon in the limit of infinitesimal

horizon measure as 

d v | / || / ||| = lim 

δ0 → 0 
v | / || / ||| = lim 

δ0 → 0 

[ [
[ x | − x ] × [ x || − x ] 

]
· [ x ||| − x ] 

] 

= lim 

δ0 → 0 

[ [ 
ξ
| × ξ

|| ] · ξ||| ] 

= 

[[ [
F · d X 

| ] ×
[
F · d X 

|| ]] · [F · d X 

||| ]]

= J d V 

| / || / ||| . 

The relative volume measure [[ x | − x ] × [ x || − x ] · [ x ||| − x ]] is the main ingredient to describe three-neighbour interactions ,

see Fig. 5 . 

3. Dirichlet principle setting 

To gain insight into the thermodynamic balance laws before investigating the general case in Section 4 , we begin with

the special case of a quasi-static conservative problem. Thus, in order to set the stage and to motivate the structure of

the governing equations for the important problem of a conservative system that is equipped with a total potential energy

functional, we consider the Dirichlet principle. More precisely, we obtain the governing equations by minimizing the cor-

responding total potential energy functional via setting its first variation to zero. The total potential energy functional �
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Fig. 5. Illustration of finite volume elements within the horizon in the material and spatial configurations corresponding to three-neighbour interactions. 

 

 

 

 

 

 

 

 

 

 

 

consists of internal and external contributions, denoted as �int and �ext , respectively, and is given by 

� = �int + �ext . (6) 

The internal and external contributions are detailed in Sections 3.1 and 3.2 , respectively. In Sections 3.3 the governing

equations are derived and their connection to classical (local) Cauchy continuum mechanics is highlighted. The discussion

on the variational setting in this section is entirely restricted to non-dissipative processes. As outlined by dell’Isola and

Placidi (2011) , however, this variational setting can be extended to more generic dissipative cases using the Hamilton–

Rayleigh variational principle, as will be explored in a separate contribution. 

3.1. Internal potential energy 

The internal potential energy of the system �int is assumed without loss of generality to be separable, i.e. to be com-

posed of the internal potential energy due to one-neighbour interactions �
1 
int , two-neighbour interactions �2 

int and three-

neighbour interactions �3 
int , that is 

�int = �
1 

int + �2 
int + �3 

int , 

where the number in the subscript indicates the type of interaction. These contributions to the internal potential energy are

now explored. 

3.1.1. One-neighbour interactions 

To proceed, we define the one-neighbour interaction energy density per volume squared in the material configuration

w 

1 
| as a function of the relative position ξ| between two points, that is 

w 

1 

| := w 

1 
( ξ

| 
) = w 

1 
( ξ( X 

| ; X )) ≡ w 

1 
( ξ

| ;�| 
, X ) with [ w 

1 ] = N . m / m 

6 

where the semi-colon delineates arguments of a function from its parametrisation. Furthermore, we define the more familiar

energy density per volume as half of the integral of w 

1 
over the horizon H 0 , that is 

W 

1 
:= 

1 

2 

∫ 
H 0 

w 

1 
d V 

| with [ W 

1 ] = N . m / m 

3 

wherein the factor one-half is introduced to prevent double counting since we visit each point twice due to the resulting

double-integration in the next step. Consequently, the internal potential energy due to one-neighbour interactions �
1 
int is

defined by 

�
1 

int := 

∫ 
B 0 

W 

1 
d V = 

1 

2 

∫ 
B 0 

∫ 
H 0 

w 

1 
( ξ

| 
) d V 

| d V with 

[
�

1 

int 
]

= N . m 

≡ 1 

2 

∫ 
B 0 

∫ 
B 0 

w 

1 
( ξ

| 
) d V 

| d V. 

The last step holds since at any point X one-neighbour interactions with points outside the horizon vanish. Next, the varia-

tion of �
1 
int can be expressed as 

δ�
1 

int = 

∫ 
B 0 

∫ 
B 0 

∂w 

1 

∂ ξ
| · δξ| 

d V 

| d V 

= 

∫ 
B 0 

∫ 
H 0 

∂w 

1 

∂ ξ
| · δξ| 

d V 

| d V (7) 
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in which the previously introduced factor one-half disappears due to the variation rules on multiple integrals. Motivated by

the structure of Eq. (7) , we define the force density per volume squared due to one-neighbour interactions by 

p 

1 

| := 

∂w 

1 

∂ ξ
| with 

[
p 

1 

| ] = N / m 

6 (8)

and therefore the variation of �
1 
int , using δξ

| = δy | − δy from Eqs. (1) and (2) , reads 

δ�
1 

int = 

∫ 
B 0 

∫ 
H 0 

p 

1 

| · δξ| 
d V 

| d V 

= 

∫ 
B 0 

[∫ 
H 0 

p 

1 

| · δy | d V 

| −
∫ 
H 0 

p 

1 

| d V 

| · δy 

]
d V 

= 

∫ 
B 0 

∫ 
B 0 

p 

1 

| · δy | d V 

| d V −
∫ 
B 0 

∫ 
H 0 

p 

1 

| d V 

| · δy d V. (9)

We identify the internal force density per volume in the material configuration due to one-neighbour interactions b int 
01 as

b 

int 
0 1 := 

∫ 
H 0 

p 

1 

| d V 

| with 

[ 
b 

int 
0 1 

] 
= N / m 

3 . (10)

Note, we recognize the right-hand side of Eq. (10) as an internal force density since it is the virtual power conjugated

quantity to δy according to Eq. (9) . Finally, the variation of the internal potential energy due to one-neighbour interactions

�
1 
int reads 

δ�
1 

int = 

∫ 
B 0 

∫ 
B 0 

p 

1 

| · δy | d V 

| d V −
∫ 
B 0 

b 

int 
0 1 · δy d V . 

3.1.2. Two-neighbour interactions 

Next, we define the two-neighbour interaction energy density per volume cubed in the material configuration w 2 
| 
/ 
|| 

as a

function of the area element a 

| 
/ 
|| 

between three points, that is 

w 2 
| / || = w 2 ( a 

| / || ) = w 2 

(
ξ( X ı; X ) × ξ( X 

|| ; X ) 
)

≡ w 2 ( a 

| / || ; A 

| / || , X ) with [ w 2 ] = N . m / m 

9 . 

Furthermore, we define the more familiar energy density per volume as one third of the double integral of w 2 over the

horizon H 0 , that is 

W 2 := 

1 

3 

∫ 
H 0 

∫ 
H 0 

w 2 d V 

|| d V 

| with [ W 2 ] = N . m / m 

3 . 

The factor one-third is introduced to prevent triple counting due to the resulting triple-integrals that come next. Note that

the sequence of integration may be exchanged. The internal potential energy due to two-neighbour interactions denoted

�2 
int is defined by 

�2 
int := 

∫ 
B 0 

W 2 d V = 

1 

3 

∫ 
B 0 

∫ 
H 0 

∫ 
H 0 

w 2 ( a 

| / || ) d V 

|| d V 

| d V with [�2 
int ] = N . m 

≡ 1 

3 

∫ 
B 0 

∫ 
B 0 

∫ 
B 0 

w 2 ( a 

| / || ) d V 

|| d V 

| d V. 

Again, the last step holds since at any point X two-neighbour interactions with points outside the horizon vanish. Next, the

variation of �2 
int can be written as 

δ�2 
int = 

∫ 
B 0 

∫ 
B 0 

∫ 
B 0 

∂w 2 

∂ a 

| / || · δa 

| / || d V 

|| d V 

| d V =: 
1 

2 

∫ 
B 0 

∫ 
B 0 

∫ 
B 0 

m 

| / || · δa 

| / || d V 

|| d V 

| d V, 

in which the previously introduced factor one-third disappears and the factor one-half is introduced for convenience. The

double force density per volume cubed is defined by m 

| 
/ 
|| 

where 

m 

| / || ≡ m 

(
ξ
| × ξ

|| )
:= 2 

∂w 2 

∂ a 

| / || with 

[
m 

| / || ] = N / m 

10 . 

Importantly, 1 m is assumed to be homogeneous of degree one in a 

| 
/ 
|| 

so that 

m 

|| / | = m 

(
ξ
|| × ξ

| ) = m 

(
−ξ

| × ξ
|| ) = −m 

(
ξ
| × ξ

|| ) = −m 

| / || . (11)
1 This is not only a model assumption but also requirement to satisfy sufficiently the balance of angular momentum, as will be shown in the discussion 

after Eq. (35) . 
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Using the relation δa 

| 
/ 
|| = δξ

| × ξ
|| + ξ

| × δξ
|| 

from Eq. (4) , the variation of �2 
int reads 

δ�2 
int = 

1 

2 

∫ 
B 0 

∫ 
B 0 

∫ 
B 0 

[[ 
ξ
|| × m 

| / || 
] 

· δξ| + 

[ 
m 

| / || × ξ
| ] · δξ|| 

]
d V 

|| d V 

| d V 

= 

1 

2 

∫ 
B 0 

∫ 
B 0 

∫ 
B 0 

[[ 
ξ
|| × m 

| / || 
] 

· δξ| −
[ 
ξ
| × m 

| / || 
] 

· δξ|| 
]

d V 

|| d V 

| d V. 

To proceed, we change the order of integration for the second term and relabel the quantities, which yields 

δ�2 
int = 

1 

2 

∫ 
B 0 

∫ 
B 0 

∫ 
B 0 

[[ 
ξ
|| × m 

| / || 
] 

· δξ| −
[ 
ξ
|| × m 

|| / | 
] 

· δξ| 
]

d V 

|| d V 

| d V 

= 

1 

2 

∫ 
B 0 

∫ 
B 0 

∫ 
B 0 

[[ 
ξ
|| × m 

| / || 
] 

· δξ| + 

[ 
ξ
|| × m 

| / || 
] 

· δξ| 
]

d V 

|| d V 

| d V 

= 

∫ 
B 0 

∫ 
B 0 

∫ 
B 0 

[ 
ξ
|| × m 

| / || 
] 

· δξ| 
d V 

|| d V 

| d V 

= 

∫ 
B 0 

∫ 
H 0 

∫ 
H 0 

[ 
ξ
|| × m 

| / || 
] 

· δξ| 
d V 

|| d V 

| d V. (12) 

Motivated by the structure of Eq. (12) , we define the force density per volume squared due to two-neighbour interactions

by 

p 2 
| := 

∫ 
H 0 

ξ
|| × m 

| / || d V 

|| with 

[
p 2 

| ] = N / m 

6 . (13) 

This result should be compared with the force density per volume squared due to one-neighbour interactions (8) . The

variation of �2 
int with δξı = δy ı − δy reads 

δ�2 
int = 

∫ 
B 0 

∫ 
H 0 

p 2 
| · δξ| 

d V 

| d V 

= 

∫ 
B 0 

[∫ 
H 0 

p 2 
| · δy | d V 

| −
∫ 
H 0 

p 2 
| d V 

| · δy 

]
d V 

= 

∫ 
B 0 

∫ 
B 0 

p 2 
| · δy | d V 

| d V −
∫ 
B 0 

∫ 
H 0 

p 2 
| d V 

| · δy d V, (14) 

where we identify the internal force density per volume in the material configuration due to two-neighbour interactions

b int 
0 2 as 

b 

int 
0 2 := 

∫ 
H 0 

p 2 
| d V 

| with 

[ 
b 

int 
0 2 

] 
= N / m 

3 . (15) 

Again, we recognize the right-hand side of Eq. (15) as an internal force density since it is the virtual power conjugated

quantity to δy according to Eq. (14) . Finally, the variation of the internal potential energy due to two-neighbour interactions

�2 
int reads 

δ�2 
int = 

∫ 
B 0 

∫ 
B 0 

p 2 
| · δy | d V 

| d V −
∫ 
B 0 

b 

int 
0 2 · δy d V. 

3.1.3. Three-neighbour interactions 

The three-neighbour interaction energy density per volume to the fourth power in the material configuration w 3 
| / || / ||| is

a function of the volume element v | / || / ||| between four points and reads 

w 3 
| / || / ||| = w 3 (v | / || / ||| ) = w 3 

([
ξ( X ı; X ) × ξ( X 

|| ; X ) 
]

· ξ( X 

||| ; X ) 
)

≡ w 3 (v | / || / ||| ;V 

| / || / ||| , X ) 

with 

[
w 3 

| / || / ||| ] = N . m / m 

12 . 

We define the more familiar energy density per volume as one quarter of the triple integral of w 3 over the horizon H 0 by 

W 3 := 

1 

4 

∫ 
H 0 

∫ 
H 0 

∫ 
H 0 

w 3 d V 

||| d V 

|| d V 

| with [ W 3 ] = N . m / m 

3 
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with the factor one-fourth preventing quadruple counting due to the following quadruple interchangeable integrals. Conse-

quently the internal potential energy due to three-neighbour interactions denoted �3 
int reads 

�3 
int := 

∫ 
B 0 

W 3 d V = 

1 

4 

∫ 
B 0 

∫ 
H 0 

∫ 
H 0 

∫ 
H 0 

w 3 (v | / || / ||| ) d V 

||| d V 

|| d V 

| d V with 

[
�3 

int 
]

= N . m 

≡ 1 

4 

∫ 
B 0 

∫ 
B 0 

∫ 
B 0 

∫ 
B 0 

w 3 (v | / || / ||| ) d V 

||| d V 

|| d V 

| d V. 

Next, the variation of �3 
int can be written as 

δ�3 
int = 

∫ 
B 0 

∫ 
B 0 

∫ 
B 0 

∫ 
B 0 

∂w 3 

∂v | / || / ||| 
δv | / || / ||| d V 

||| d V 

|| d V 

| d V =: 
1 

3 

∫ 
B 0 

∫ 
B 0 

∫ 
B 0 

∫ 
B 0 

p | / || / ||| δv | / || / ||| d V 

||| d V 

|| d V 

| d V 

wherein the previously introduced factor one-fourth disappears due to the variation rules on multiple integrals and the

factor one-third on the last term is introduced for convenience. The triple force density per volume to the fourth power

p | / || / ||| is defined by 

p | / || / ||| ≡ p 

([
ξ
| × ξ

|| ] · ξ||| )
:= 3 

∂w 3 

∂v | / || / ||| 
with 

[
p | / || / ||| 

]
= N / m 

14 . 

We note that p is invariant with respect to even permutations in ξ| , ξ|| and ξ||| since [ 
ξ
| × ξ

|| ] · ξ||| = 

[ 
ξ
|| × ξ

||| ] · ξ| = 

[ 
ξ
||| × ξ

| ] · ξ|| ⇒ v | / || / ||| = v || / ||| / | = v ||| / | / || ⇒ p | / || / ||| = p || / ||| / | = p ||| / | / || . (16)

We emphasize that m was assumed to be homogeneous of degree one such that the property m 

| 
/ 
|| = −m 

|| / | holds. However,

p is invariant with respect to even permutations by definition . Using the relation δv | / || / ||| = [ ξ
|| × ξ

||| 
] · δξ| + [ ξ

||| × ξ
| 
] · δξ|| +

[ ξ
| × ξ

|| 
] · δξ||| 

from Eq. (5) , the variation of �3 
int reads 

δ�3 
int = 

1 

3 

∫ 
B 0 

∫ 
B 0 

∫ 
B 0 

∫ 
B 0 

p | / || / ||| 
[ 

[ ξ
|| × ξ

||| 
] · δξ| + [ ξ

||| × ξı] · δξ|| + [ ξ
| × ξ

|| 
] · δξ||| ] 

d V 

||| d V 

|| d V 

| d V 

= 

∫ 
B 0 

∫ 
B 0 

∫ 
B 0 

∫ 
B 0 

p | / || / ||| 
[ 

[ ξ
|| × ξ

||| 
] · δξ| ] 

d V 

||| d V 

|| d V 

| d V 

= 

∫ 
B 0 

∫ 
H 0 

∫ 
H 0 

∫ 
H 0 

p | / || / ||| 
[ 

[ ξ
|| × ξ

||| 
] · δξ| ] 

d V 

||| d V 

|| d V 

| d V, (17)

in which in the second step we changed the order of integration and relabelled the quantities. Motivated by the structure

of Eq. (17) , we define the force density per volume squared due to three-neighbour interactions as 

p 3 
| := 

∫ 
H 0 

∫ 
H 0 

p | / || / ||| [ ξ|| × ξ
||| 

] d V 

||| d V 

|| with 

[
p 3 

| ] = N / m 

6 . 

This should be compared with the force density per volume squared due to one-neighbour interactions (8) and the force

density per volume squared due to two-neighbour interactions (13) . The variation of �3 
int with δξ

| = δy | − δy reads 

δ�3 
int = 

∫ 
B 0 

∫ 
H 0 

p 3 
| · δξ| 

d V 

| d V 

= 

∫ 
B 0 

[∫ 
H 0 

p 3 
| · δy | d V 

| −
∫ 
H 0 

p 3 
| d V 

| · δy 

]
d V 

= 

∫ 
B 0 

∫ 
B 0 

p 3 
| · δy | d V 

| d V −
∫ 
B 0 

∫ 
H 0 

p 3 
| d V 

| · δy d V (18)

in which we identify the internal force density per volume in the material configuration due to three-neighbour interactions

b 0 3 
int as 

b 

int 
0 3 

:= 

∫ 
H 0 

p 3 
| d V 

| with 

[ 
b 

int 
0 3 

] 
= N / m 

3 . (19)

The right-hand side of Eq. (19) is again an internal force density since it is the virtual power conjugated quantity to δy

according to Eq. (18) . Finally, the variation of the internal potential energy due to three-neighbour interactions �3 
int reads 

δ�3 
int = 

∫ ∫ 
p 3 

| · δy | d V 

| d V −
∫ 

b 

int 
0 · δy d V . 
B 0 B 0 B 0 
3 
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3.2. External potential energy 

Let �ext be the external potential energy functional consisting of the contributions from both the externally prescribed

forces within the bulk and tractions on the surface of the body. Note that, in contrast to Silling (20 0 0) , we allow for the

externally prescribed tractions exclusively acting on the boundary of the body, i.e. they are not considered as the result of

a cut-out volume within the body. We emphasize that our assumption is in contrast to, but not necessarily in violation of the

standard PD since the tractions could be embedded within the internal force densities. The external potential energy �ext 

can thus be expressed as 

�ext = −
∫ 
B 0 

b 

ext 
0 · y d V −

∫ 
∂B 0 

t ext 
0 · y d A 

where b ext 
0 denotes the external force density per volume in the material configuration, with units N/m 

3 , and t ext 
0 is the

external traction on the boundary in the material configuration, with units N/m 

2 . Note, this format of the external potential

energy is a particular sub-case of a more general case applicable to higher gradient and non-local continua as elaborated by

Auffray et al. (2015) ; Javili et al. (2013a) , among others. 

3.3. Governing equations 

The total potential energy functional � that we seek to minimize with respect to all admissible (spatial) variations δy at

fixed material placement is composed of the internal and external contributions according to Eq. (6) , that is 

δ� = 0 ∀ δy with � = �int + �ext and �int = �
1 

int + �2 
int + �3 

int , 

and therefore 

δ� = 

∫ 
B 0 

∫ 
B 0 

p 

| · δy | d V 

| d V −
∫ 
B 0 

b 

int 
0 · δy d V −

∫ 
B 0 

b 

ext 
0 · δy d V −

∫ 
∂B 0 

t ext 
0 · δy d A 

! = 0 ∀ δy , (20) 

in which 

p 

| := p 

1 

| + p 2 
| + p 3 

| and b 

int 
0 := b 

int 
0 1 + b 

int 
0 2 + b 

int 
0 3 , 

where 

p 

| := 

∂w 

1 

∂ ξ
| + 2 

∫ 
H 0 

ξ
|| × ∂w 2 

∂ a 

| / || d V 

|| + 3 

∫ 
H 0 

∫ 
H 0 

∂w 3 

∂v | / || / ||| 
[ ξ

|| × ξ
||| 

] d V 

||| d V 

|| and b 

int 
0 := 

∫ 
H 0 

p 

| d V 

| . (21)

From the structure of the variational form (20) we can readily extract the governing equation as 

b 

int 
0 + b 

ext 
0 = 0 ∀ X ∈ B 0 subject to 

∫ 
B 0 

∫ 
B 0 

p 

| · δy | d V 

| d V = 

∫ 
∂B 0 

t ext 
0 · δy d A ∀ δy . (22) 

The internal body force density here corresponds to the stress divergence in the classical continuum mechanics formalism

where b int 
0 = Div P and P is the Piola stress. The variational governing Eq. (22) should be compared to its counterpart in

classical continuum mechanics where 

b 

int 
0 + b 

ext 
0 = 0 ∀ X ∈ B 0 subject to 

∫ 
B 0 

Div (δy · P ) d V = 

∫ 
∂B 0 

t ext 
0 · δy d A ∀ δy , 

or in its more familiar local form 

Div P + b 

ext 
0 = 0 subject to P · N = t ext 

0 . 

The above should, in turn, be compared to the relation ∫ 
H 0 

p 

| d V 

| + b 

ext 
0 = 0 , (23) 

subject to the boundary conditions that can be extracted form Eq. (22) 2 and will be clarified shortly. We emphasize that the

requirement for the virtual power equivalence , ∫ 
B 0 

∫ 
B 0 

p 

| · δy | d V 

| d V = 

∫ 
∂B 0 

t ext 
0 · δy d A ∀ δy , (24) 

is an underlying postulate of our framework and a key feature of this contribution. This relation allows one to introduce and

prescribe external tractions on the boundary. If the external boundary is traction free or if only displacement type boundary

conditions are prescribed, the right-hand side of the requirement (24) vanishes and it reduces to ∫ 
B 0 

∫ 
B 0 

p 

| · δy | d V 

| d V = 0 . 

This is the more familiar requirement in classical PD. 
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Remark. Central to the state-based PD is the notion of “correspondence” which essentially states that a peridynamic consti-

tutive model can “correspond” to a classical constitutive continuum model for homogeneous deformations. Correspondence

allows one to calibrate a PD material model such that it furnishes the same result as the corresponding classical continuum

model for a given homogeneous deformation. However, the constitutive correspondence framework of PD can lead to non-

physical deformation modes including material collapse, matter inter-penetration at discontinuities, and may suffer from

zero-energy mode instability. These have been addressed by Tupek and Radovitzky (2014) and Silling (2017) among others.

The first and most significant step in deriving a correspondence model ( Silling et al., 2007 ) is to approximate the deforma-

tion gradient F . Since the kinematics in our approach coincides with that of classical continuum mechanics, the deforma-

tion gradient need not be approximated and can be obtained exactly. Therefore, it seems reasonable that the continuum-

kinematics-inspired approach can alleviate some of the aforementioned issues with the correspondence framework of PD.

Nonetheless, this task is beyond the scope of the current manuscript and shall be elaborated in a separate contribution. �

Remark While one-neighbour interactions are the more familiar type in mechanics, multiple-neighbour interactions are

commonly employed for atomistic modeling and molecular dynamics simulations. Such multiple-neighbour interactions are

often described in terms of angles and bond-length instead of area and volume. We adopt a continuum-kinematics-inspired

approach; our deformation measures are common continuum measures, namely length, area and volume. So equipped, var-

ious interaction energy densities can be proposed and their respective coefficients calculated via a suitable parameter iden-

tification procedure. The generic forms of interaction energy densities will be given in Section 4.2 . To aid understanding,

elastic one-neighbour interactions can be viewed as the resistance against the change of length between a point and its

neighbours, reminiscent of the elastic modulus in classical continuum mechanics. Elastic two-neighbour interactions can be

interpreted as the resistance against the change of the area of the triangle formed by a point and a pair of neighbours,

analogous to Poisson-like effects of classical continuum mechanics in two dimensions. Finally, elastic three-neighbour in-

teractions are essentially the resistance against the change of the volume of the tetrahedron formed by each point and its

triplet of neighbours, similar to Poisson-like effects of classical continuum mechanics in three dimensions. �
Remark Our formulation can impose both plane-strain and plane-stress assumptions via satisfying respective bound-

ary conditions on a three-dimensional domain. Our formulation in 2D, however, corresponds to a purely two-dimensional

case similar to the surface elasticity theory of Gurtin and Murdoch (1975) , see also ( Javili et al., 2013b ). Obviously, three-

neighbour interactions do not contribute in the 2D case. Note that neither “stress” nor “strain” is present in the peridynamic

formulation and they can only be computed through post-processing. Therefore, the notions of “plane strain” or “plane

stress” become naturally less relevant as they correspond to a local view on continuum mechanics. �
Remark Our formulation is inherently non-local and, similar to classical non-local theories, can capture a frequency-

dependent wave speed. Thus, dispersion of elastic waves occurs naturally. Dispersion would certainly be a feature

of our model and motivates further investigation, in a separate contribution, in the spirit of the analyses provided

by Bazant et al.(2016 ) and Butt et al.(2017 ). The current model may inherit some of the pathological behaviours reported in

this context and thus this potential issue shall be explored. An in-depth analysis is left for a future contribution. �

4. Thermodynamic balance laws 

Equipped with the virtual power equivalence (24) for a quasi-static conservative case, we can proceed to derive the

thermodynamic balance laws for more general cases. Note the virtual power equivalence (24) must hold for any arbitrary

δy . Among all admissible motions, we select rigid translation and rigid rotation in what follows. For a rigid translation of the

body δy = δy | = const . and therefore the virtual power equivalence reduces to ∫ 
B 0 

∫ 
H 0 

p 

| d V 

| d V = 

∫ 
∂B 0 

t ext 
0 d A ⇒ 

∫ 
B 0 

b 

int 
0 d V = 

∫ 
∂B 0 

t ext 
0 d A . (25)

This can be understood as traction equivalence and serves as the boundary condition for balance Eq. (23) . Its more familiar

counterpart in classical continuum mechanics, obtained using the Gauss theorem, and the traction boundary conditions are

given by ∫ 
B 0 

Div P d V = 

∫ 
∂B 0 

t ext 
0 d A with P · N = t ext 

0 . 

For a rigid rotation of the body δy = ω δ × y and δy | = ω δ × y | with ω δ = const . being the variational analogue to the angular

velocity vector and the virtual power equivalence reduces to ∫ 
B 0 

∫ 
H 0 

y | × p 

| d V 

| d V = 

∫ 
∂B 0 

y × t ext 
0 d A , (26)

which can be understood as torque equivalence . This should be compared with its more familiar counterpart in classical

continuum mechanics given by ∫ 
Div ( y × P ) d V = 

∫ 
y × t ext 

0 d A with P · N = t ext 
0 . 
B 0 ∂B 0 



136 A. Javili, A.T. McBride and P. Steinmann / Journal of the Mechanics and Physics of Solids 131 (2019) 125–146 

 

 

 

 

 

 

 

 

 

 

 

4.1. Momentum balances 

To derive the momentum balance equations of a dynamic and possibly non-conservative problem, we follow the standard

procedure of classical continuum mechanics. In doing so, we begin with the global form of the force or moment balance in

their integral forms and identify terms using the traction equivalence (25) and the torque equivalence (26) relations. Obvi-

ously, this process must be carried out for both the linear momentum balance and the angular momentum balance separately.

Let v denote the velocity of the material point X and ρ0 the mass density per volume in the material configuration. The

global form of the linear momentum balance reads ∫ 
B 0 

ρ0 ˙ v d V = 

∫ 
∂B 0 

t ext 
0 d A + 

∫ 
B 0 

b 

ext 
0 d V . 

The integral of external traction t ext 
0 is now replaced by the traction equivalence (25) and the definition of the internal

body force density (21) 2 is employed to obtain ∫ 
B 0 

ρ0 ˙ v d V = 

∫ 
B 0 

b 

int 
0 d V + 

∫ 
B 0 

b 

ext 
0 d V ⇒ 

∫ 
B 0 

ρ0 ˙ v d V = 

∫ 
B 0 

∫ 
H 0 

p 

| d V 

| d V + 

∫ 
B 0 

b 

ext 
0 d V , 

which yields the non-local form of the linear momentum balance via localization as 

ρ0 ˙ v = b 

int 
0 + b 

ext 
0 ⇒ ρ0 ˙ v = 

∫ 
H 0 

p 

| d V 

| + b 

ext 
0 . (27) 

Its counterpart in classical continuum mechanics is given by 

ρ0 ˙ v = b 

int 
0 + b 

ext 
0 ⇒ ρ0 ˙ v = Div P + b 

ext 
0 . 

To derive the angular momentum balance, we start from the global form of the moment balance ∫ 
B 0 

y × [ ρ0 ˙ v ] d V = 

∫ 
∂B 0 

y × t ext 
0 d A + 

∫ 
B 0 

y × b 

ext 
0 d V . 

The integral of external traction moment y × t ext 
0 is now replaced by the torque equivalence (26) to yield ∫ 

B 0 
y × [ ρ0 ˙ v ] d V = 

∫ 
B 0 

∫ 
H 0 

y | × p 

| d V 

| d V + 

∫ 
B 0 

y × b 

ext 
0 d V 

= 

∫ 
B 0 

∫ 
H 0 

[ ξı + y ] × p 

| d V 

| d V + 

∫ 
B 0 

y × b 

ext 
0 d V 

= 

∫ 
B 0 

∫ 
H 0 

ξ
| × p 

| d V 

| d V + 

∫ 
B 0 

∫ 
H 0 

y × p 

| d V 

| d V + 

∫ 
B 0 

y × b 

ext 
0 d V 

= 

∫ 
B 0 

∫ 
H 0 

ξ
| × p 

| d V 

| d V + 

∫ 
B 0 

y × [ b 

int 
0 + b 

ext 
0 ] d V . 

Using the linear momentum balance (27) , this reduces to the global form of the angular momentum balance ∫ 
B 0 

∫ 
H 0 

ξ
| × p 

| d V 

| d V = 0 , 

and upon localization yields the non-local form of the angular momentum balance ∫ 
H 0 

ξ
| × p 

| d V 

| = 0 . (28) 

Its counterpart in classical continuum mechanics is given by 

ε : [ F · P t ] = 0 with ε the third-order permutation tensor . 

4.2. Consequences of balance of angular momentum on elastic interaction forces 

Next, we explore the consequences of the angular momentum balance (28) on the interactions and the possible restric-

tions it imposes on interaction potentials. In particular, we investigate the conditions required for the nature of interactions

such that the angular momentum balance is a priori fulfilled. The force density per volume squared p ı is additively com-

posed of force densities per volume squared due to one-neighbour, two-neighbour and three-neighbour interactions. Thus,

the expanded version of the angular momentum balance reads ∫ 
H 0 

ξ
| × p 

| d V 

| ! = 0 ∀ X ⇒ 

∫ 
H 0 

ξ
| × p 

1 

| d V 

| + 

∫ 
H 0 

ξ
| × p 2 

| d V 

| + 

∫ 
H 0 

ξ
| × p 3 

| d V 

| ! = 0 ∀ X . 

Each of the three integrals must vanish identically in order to sufficiently satisfy the angular momentum balance. Accordingly,

we require ∫ 
H 0 

ξ
| × p 

1 

| d V 

| ! = 0 , 

∫ 
H 0 

ξ
| × p 2 

| d V 

| ! = 0 , 

∫ 
H 0 

ξ
| × p 3 

| d V 

| ! = 0 . (29) 

Therefore, we next investigate separately the one-neighbour, two-neighbour and three-neighbour interactions. 
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4.2.1. One-neighbour interactions 

Recall the one-neighbour interaction energy density per volume squared in the material configuration w 

1 
in its most

generic form is a function of the relative position ξ
| 
, i.e. the finite line element, between two points with the force density

per volume squared denoted as p 

1 
| , that is 

w 

1 

| = w 

1 
( ξ

| 
) ⇒ p 

1 

| := 

∂w 

1 

∂ ξ
| . (30)

Inserting p 

1 
| from Eq. (30) into Eq. (29) 1 yields the condition 

∫ 
H 0 

ξ
| × p 

1 

| d V 

| ! = 0 ⇒ p 

1 

| ! = ζ
1 
ξ
| 

or 
∂w 

1 

∂ ξ
| ∝ ξ

| 
, (31)

required to satisfy the angular momentum balance due to one-neighbour interactions with ζ
1 

= ζ
1 
( ξ

| 
) being an arbitrary

function of ξ
| 
. 

Example If the one-neighbour interaction energy density w 

1 
takes the form w 

1 
| = w 

1 
( l ) with l being a square function

l := | ξ| | 2 / 2 , it sufficiently fulfils the angular momentum balance condition (31) . That is 

w 

1 

| = w 

1 
( l ) with l := 

1 

2 

| ξ| | 2 = 

1 

2 

[ ξ | ] 2 and ξ | := | ξ| | , 
resulting in 

p 

1 

| = 

∂w 

1 

∂ ξ
| = 

∂w 

1 

∂ l 
∂ l 
∂ξ | 

∂ξ | 

∂ ξ
| = 

∂w 

1 

∂ l 
ξ | ξ

| 

ξ | = 

∂w 

1 

∂ l 
ξ
| = ζ

1 
ξ
| ∝ ξ

| 
, 

with the function ζ
1 

= ζ
1 
( ξ

| 
) defined as 

ζ
1 

:= 

∂w 

1 

∂ l 
. 

This is a generic example of central interaction forces corresponding to the original bond-based model of Silling (20 0 0) . 

4.2.2. Two-neighbour interactions 

The two-neighbour interaction energy density per volume cubed in the material configuration w 2 in its most generic

form is a function of the finite vectorial area element a 

| 
/ 
|| 

among three points with the force density per volume squared

denoted as p 2 
| , that is 

w 2 
| = w 2 ( a 

| / || ) ⇒ p 2 
| := 

∫ 
H 0 

ξ
|| × m 

| / || d V 

|| with m 

| / || := 2 

∂w 2 

∂ a 

| / || . (32)

Inserting p 2 
| from Eq. (32) into Eq. (29) 2 yields the condition ∫ 

H 0 

ξ
| × p 2 

| d V 

| ! = 0 ⇒ 

∫ 
H 0 

∫ 
H 0 

ξ
| × [ ξ

|| × m 

| / || ] d V 

|| d V 

| ! = 0 . (33)

Using the identity a × [ b × c ] = b [ a · c ] − c [ a · b ] for arbitrary vectors a , b and c , the condition (33) can be rewritten as ∫ 
H 0 

∫ 
H 0 

ξ
| × [ ξ

|| × m 

| / || ] d V 

|| d V 

| = 

∫ 
H 0 

∫ 
H 0 

−m 

| / || [ ξ| · ξ|| 
] d V 

|| d V 

| + 

∫ 
H 0 

∫ 
H 0 

ξ
|| 

[ ξ
| · m 

| / || ] d V 

|| d V 

| ! = 0 . (34)

The first double-integral on the right-hand side can be expressed equivalently by changing the labels as ∫ 
H 0 

∫ 
H 0 

−m 

| / || [ ξ| · ξ|| 
] d V 

|| d V 

| ≡
∫ 
H 0 

∫ 
H 0 

−m 

|| / | [ ξ|| · ξ| 
] d V 

|| d V 

| = 

∫ 
H 0 

∫ 
H 0 

m 

| / || [ ξ| · ξ|| 
] d V 

|| d V 

| (35)

in which the last step holds since m 

| 
/ 
|| = −m 

| 
/ 
|| 

according to assumption (11) . The relation (35) indicates that the first

double-integral on the right-hand side of Eq. (34) is equal to its negative and thus, it can only be zero. In order to guar-

antee that the second term on the right-hand side of Eq. (34) vanishes, we further require m 

| 
/ 
|| ∝ [ ξ

| × ξ
|| 

] , or alternatively

m 

| 
/ 
|| = ζ 2 [ ξ

| × ξ
|| 

] with ζ 2 being an arbitrary function of a 

| 
/ 
|| 

holding the property ζ 2 ( a 

| 
/ 
|| 
) = ζ 2 ( a 

|| / | ) so that m 

| 
/ 
|| = −m 

| 
/ 
||

according to assumption (11) . This requirement enforces ξ
| 

to be orthogonal to m 

| 
/ 
|| 

and therefore, ξ
| · m 

| 
/ 
|| 

vanishes identi-

cally and thus the condition (34) is fulfilled a priori. 

Example If the two-neighbour interaction energy density w 2 takes the form w 2 
| = w 2 ( a ) , with a being a square function

such as a := | a 

| 
/ 
|| | 2 / 2 , it sufficiently fulfils the angular momentum balance condition (33) . That is 

w 2 
| = w 2 ( a ) with a := 

1 | a 

| / || | 2 = 

1 

[ a | / || ] 2 and a | / || := | a 

| / || | 

2 2 
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resulting in 

m 

| / || = 2 

∂w 2 

∂ a 

| / || = 2 

∂w 2 

∂ a 
∂ a 

∂a | / || 
∂a | / || 

∂ a 

| / || = 2 

∂w 2 

∂ a 
a | / || a 

| / || 

a | / || 
= 2 

∂w 2 

∂ a 
a 

| / || = 2 

∂w 2 

∂ a 
ξ
| × ξ

|| = ζ 2 ξ
| × ξ

|| ∝ ξ
| × ξ

|| 
, 

with the function ζ 2 = ζ 2 ( a 

| 
/ 
|| 
) defined as 

ζ 2 := 2 

∂w 2 

∂ a 

which satisfies the property ζ 2 ( a 

| 
/ 
|| 
) = ζ 2 ( a 

|| / | ) so that m 

| 
/ 
|| = −m 

| 
/ 
|| 

and finally 

p 2 
| = 

∫ 
H 0 

ξ
|| × m 

| / || d V 

|| = 

∫ 
H 0 

ξ
|| × [ ζ 2 ξ

| × ξ
|| 

] d V 

|| = 

∫ 
H 0 

ζ 2 

[ 
ξ
| 
[ ξ

|| · ξ|| 
] − ξ

|| 
[ ξ

|| · ξ| 
] 

] 
d V 

|| . 

This is an example of interaction forces that do not fall in the class of the bond-based models, however, it is also an alter-

native to the state-based approach due to Silling et al. (2007) . 

4.2.3. Three-neighbour interactions 

The three-neighbour interaction energy density per volume to the fourth power in the material configuration w 3 in its

most generic form is a function of the finite volume element v | / || / ||| constructed by four points with the force density per

volume squared denoted as p 3 
| , that is 

w 3 
| = w 3 (v | / || / ||| ) ⇒ p 3 

| := 

∫ 
H 0 

∫ 
H 0 

p | / || / ||| [ ξ|| × ξ
||| 

] d V 

||| d V 

|| with p | / || / ||| := 3 

∂w 3 

∂v | / || / ||| 
. (36)

Inserting p 3 
| from Eq. (36) into Eq. (29) 3 yields the condition ∫ 

H 0 

ξ
| × p 3 

| d V 

| ! = 0 ⇒ 

∫ 
H 0 

∫ 
H 0 

∫ 
H 0 

ξ
| ×

[ 
p | / || / ||| [ ξ|| × ξ

||| 
] 

] 
d V 

||| d V 

|| d V 

| ! = 0 . (37) 

Relabelling the condition (37) furnishes ∫ 
H 0 

∫ 
H 0 

∫ 
H 0 

p | / || / ||| 
[ 
ξ
| × [ ξ

|| × ξ
||| 

] 

] 
d V 

||| d V 

|| d V 

| = 

∫ 
H 0 

∫ 
H 0 

∫ 
H 0 

p ||| / | / || 
[ 
ξ
||| × [ ξ

| × ξ
|| 

] 

] 
d V 

|| d V 

| d V 

||| 

= 

∫ 
H 0 

∫ 
H 0 

∫ 
H 0 

p || / ||| / | 
[ 
ξ
|| × [ ξ

||| × ξı] 

] 
d V 

| d V 

||| d V 

|| ! = 0 . 

After adding up the arguments of the integrals considering that p | / || / ||| is by definition invariant with respect to even per-

mutations (16) , the condition (37) reduces to 

1 

3 

∫ 
H 0 

∫ 
H 0 

∫ 
H 0 

p | / || / ||| 
[ 
ξ
| × [ ξ

|| × ξ
||| 

] + ξ
||| × [ ξ

| × ξ
|| 

] + ξ
|| × [ ξ

||| × ξı] 

] 
d V 

||| d V 

|| d V 

| ! = 0 , 

which is a priori satisfied due to the Jacobi identity 

ξ
| × [ ξ

|| × ξ
||| 

] + ξ
||| × [ ξ

| × ξ
|| 

] + ξ
|| × [ ξ

||| × ξı] = 0 . 

Thus, the condition (37) is fulfilled a priori with no further restriction on p | / || / ||| . 
Example If the three-neighbour interaction energy density w 3 takes the form w 3 

| = w 3 ( v ) , with v being a square function

as v := [ v | / || / ||| ] 2 / 2 , it sufficiently fulfils the angular momentum balance condition (37) . That is 

w 3 
| = w 3 ( v ) with v := 

1 

2 

[ v | / || / ||| ] 2 

resulting in 

p | / || / ||| = 3 

∂w 3 

∂v | / || / ||| 
= 3 

∂w 3 

∂ v 
∂ v 

∂v | / || / ||| 
= 3 

∂w 3 

∂ v 
v | / || / ||| = ζ 3 v | / || / ||| ∝ v | / || / ||| 

with the function ζ 3 = ζ 3 (v | / || / ||| ) defined as 

ζ 3 := 3 

∂w 3 

∂ v 

holding the property ζ 3 (v | / || / ||| ) = ζ 3 (v ||| / | / || ) = ζ 3 (v || / ||| / | ) so that p | / || / ||| would be invariant with respect to even permuta-

tions. Finally the force density per volume squared p 3 
| due to three-neighbour interactions reads 

p 3 
| := 

∫ 
H 0 

∫ 
H 0 

p | / || / ||| [ ξ|| × ξ
||| 

] d V 

||| d V 

|| = 

∫ 
H 0 

∫ 
H 0 

ζ 3 v | / || / ||| [ ξ
|| × ξ

||| 
] d V 

||| d V 

|| . 

This is another example of an interaction force that do not fall in the class of bond-based models. It is also an alternative

to the state-based approach due to Silling et al. (2007) . Table 2 summarizes our methodology, unifies the main observations

and gathers the consequences of the angular momentum balance (28) on the interactions. 
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Table 2 

Unification of concepts and consequences of angular momentum balance (28) on elastic interactions. 

One-neighbour interactions Two-neighbour interactions Three-neighbour interactions 

w 

1 

| = w 

1 
( ξ

| 
) w 2 

| = w 2 ( a 
| / || ) w 3 

| = w 3 (v | / || / ||| ) 

m 

| / || := 2 
∂w 2 

∂ a | / || 
p | / || / ||| := 3 

∂w 3 

∂v | / || / ||| 
Properties 

m 

| / || ! = −m 

|| / | p | / || / ||| = p ||| / | / || = p || / ||| / | 
Force density per volume squared in the material configuration with dimension N/m 

6 

p 
1 

| := 

∂w 

1 

∂ ξ
| p 2 

| := 

∫ 
H 0 

ξ
|| × m 

| / || d V || p 3 
| := 

∫ 
H 0 

∫ 
H 0 

p | / || / ||| [ ξ|| × ξ
||| 

] d V ||| d V || 

Angular momentum balance 
∫ 
H 0 

ξ
| × p 

1 

| d V | ! = 0 

∫ 
H 0 

ξ
| × p 2 

| d V | ! = 0 

∫ 
H 0 

ξ
| × p 3 

| d V | ! = 0 

Further restrictions due to angular momentum balance 

∂w 

1 

∂ ξ
| 

! = ζ
1 
ξ
| ∂w 2 

∂ a | / || 
! = 

1 

2 
ζ 2 [ ξ

| × ξ
|| 

] 
∂w 3 

∂v | / || / ||| 
! = 

1 

3 
ζ 3 ξ

| · [ ξ
|| × ξ

||| 
] 
∣∣

ζ
1 

= ζ
1 
( ξ

| 
) ζ 2 = ζ 2 ( a 

| / || ) ! = ζ 2 ( a 
|| / | ) ζ 3 = ζ 3 (v | / || / ||| ) 

! = ζ 3 (v ||| / | / || ) 
! = ζ 3 (v || / ||| / | ) 

Generic examples of interaction energy densities 

w 

1 

| = w 

1 
( l ) , l := 

1 
2 
| ξ| | 2 w 2 

| = w 2 ( a ) , a := 

1 
2 
| a | / || | 2 w 3 

| = w 3 ( v ) , v := 

1 
2 

[ v | / || / ||| ] 2 

ζ
1 

:= 

∂w 

1 

∂ l 
ζ 2 := 2 

∂w 2 

∂ a 
ζ 3 := 3 

∂w 3 

∂ v 
p 

1 

| = ζ
1 
ξ
| 

p 2 
| = 

∫ 
H 0 

ζ 2 

[ 
ξ
| 
[ ξ

|| · ξ|| 
] − ξ

|| 
[ ξ

|| · ξ| 
] 

] 
d V || p 3 

| = 

∫ 
H 0 

∫ 
H 0 

ζ 3 v | / || / ||| [ ξ
|| × ξ

||| 
] d V ||| d V || 

 

 

 

 

 

 

 

 

 

4.3. Kinetic energy balance 

Equipped with the balance of momentum derived in Section 4.1 , we now consider energy relations. We begin with the

kinetic energy and then proceed to energy, entropy and dissipation. Note that the kinetic energy balance is not an additional

equation but is rather a consequence of the balance of linear momentum (27) . Let K denote the global kinetic energy in the

material configuration with its rate denoted by 

K := 

˙ K with K := 

1 

2 

∫ 
B 0 

ρ0 v · v d V ⇒ K = 

∫ 
B 0 

v · [ ρ0 ˙ v ] d V , 

Expressing the term ρ0 ˙ v via the linear momentum balance (27) yields 

K = 

∫ 
B 0 

v · [ ρ0 ˙ v ] d V = 

∫ 
B 0 

v · [ b 

int 
0 + b 

ext 
0 ] d V 

= 

∫ 
B 0 

v ·
∫ 
H 0 

p 

| d V 

| d V + 

∫ 
B 0 

v · b 

ext 
0 d V , 

in which b int 
0 is replaced using Eq. (21) 2 . Using the relation v = v | − ˙ ξ

| 
, the rate of the global kinetic energy K reads 

K = 

∫ 
B 0 

∫ 
H 0 

[ v | − ˙ ξ
| 
] · p 

| d V 

| d V + 

∫ 
B 0 

v · b 

ext 
0 d V 

= 

∫ 
B 0 

∫ 
H 0 

v | · p 

| d V 

| d V + 

∫ 
B 0 

v · b 

ext 
0 d V −

∫ 
B 0 

∫ 
H 0 

˙ ξ
| · p 

| d V 

| d V , 
(38)

in which the first term can be expressed via the virtual power equivalence (24) particularized to δy = v as the power

equivalence given by ∫ 
B 0 

∫ 
H 0 

v | · p 

| d V 

| d V = 

∫ 
∂B 0 

v · t ext 
0 d A . (39)

Inserting Eq. (39) into Eq. (38) yields 

K = 

∫ 
∂B 0 

v · t ext 
0 d A + 

∫ 
B 0 

v · b 

ext 
0 d V −

∫ 
B 0 

∫ 
H 0 

˙ ξ
| · p 

| d V 

| d V 

or alternatively 

K = P 

ext − P 

int , (40)

with 

P 

ext := 

∫ 
∂B 0 

v · t ext 
0 d A + 

∫ 
B 0 

v · b 

ext 
0 d V and P 

int := 

∫ 
B 0 

∫ 
H 0 

˙ ξ
| · p 

| d V 

| d V . (41)

Here, P 

int denotes the internal mechanical power due to the interaction forces and P 

ext the external mechanical power due

to the externally prescribed forces and tractions. 
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4.4. Balance of energy 

Let u 0 denote the internal energy density in the material configuration. The integral of u 0 over B 0 renders the global

internal energy U with its rate denoted U , that is 

U := 

˙ U with U := 

∫ 
B 0 

u 0 d V ⇒ U = 

∫ 
B 0 

˙ u 0 d V . 

We also allow for (external) thermal power denoted by Q 

ext . Note that Q 

ext is the thermal power due to the externally pre-

scribed heat within the continuum body and externally prescribed heat flux on its boundary. Thus, the sum of the external

mechanical power P 

ext and the thermal power Q 

ext equals the sum of the rate of internal energy U and the rate of the

kinetic energy K as 

K + U = P 

ext + Q 

ext . 

Alternatively, by substituting K from Eq. (40) , the sum of the internal mechanical power P 

int and the thermal power Q 

ext 

equals the rate of internal energy U , that is 

U = P 

int + Q 

ext . (42) 

In other words, the internal energy balance states that the internal mechanical power and (external) thermal power cause

a change in the internal energy. The thermal power Q 

ext is composed of thermal power Q 

ext 
B within the body and thermal

power Q 

ext 
∂B on the boundary as 

Q 

ext = Q 

ext 
B + Q 

ext 
∂B (43) 

where 

Q 

ext 
B := 

∫ 
B 0 

R 

ext 
0 d V and Q 

ext 
∂B := −

∫ 
∂B 0 

Q 

ext 
0 d A . (44) 

The external thermal power term Q 

ext 
B is the integral of the heat source density R 

ext 
0 

in the material configuration. The

(external) heat source density R 

ext 
0 

should be compared with the externally prescribed body force density b ext 
0 for the

mechanical problem. In a similar fashion, the external heat flux density Q 

ext 
0 

is reminiscent of the externally prescribed

traction t ext 
0 for the mechanical problem. Similar to the virtual power equivalence (24) , or its direct consequence (23) 2 for

the mechanical problem, a thermal power equivalence can be established as ∫ 
B 0 

∫ 
H 0 

q | d V 

| d V = 

∫ 
∂B 0 

Q 

ext 
0 d A (45) 

with q | being the heat flux density per volume squared in the material configuration with units N.m/s.m 

6 . The thermal

power equivalence (45) should be compared with its more familiar counterpart in classical continuum mechanics, obtained

via the Gauss theorem and the flux boundary condition, and given by ∫ 
B 0 

Div Q d V = 

∫ 
∂B 0 

Q 

ext 
0 d A subject to Q · N = Q 

ext 
0 

with Q being the heat flux vector in the material configuration. Inserting the thermal power equivalence (45) and the defi-

nition (44) into the thermal power (43) results in 

Q 

ext = 

∫ 
B 0 

R 

ext 
0 d V −

∫ 
B 0 

∫ 
H 0 

q | d V 

| d V = 

∫ 
B 0 

[ 
R 

ext 
0 −

∫ 
H 0 

q | d V 

| 
] 

d V . (46)

To proceed, we substitute the thermal power Q 

ext from Eq. (46) and the internal (mechanical) power P 

int from Eq. (41) 2 
into the internal energy balance (42) which yields the important global relation 

U = 

∫ 
B 0 

∫ 
H 0 

˙ ξ
| · p 

| d V 

| d V + 

∫ 
B 0 

[ 
R 

ext 
0 −

∫ 
H 0 

q | d V 

| 
] 

d V 

or alternatively 

∫ 
B 0 

˙ u 0 d V = 

∫ 
B 0 

[ ∫ 
H 0 

˙ ξ
| · p 

| d V 

| + R 

ext 
0 d V −

∫ 
H 0 

q | d V 

| 
]

d V . 

The non-local form of the energy balance follows via localization of the global form as 

˙ u 0 = 

∫ 
H 0 

˙ ξ
| · p 

| d V 

| + R 

ext 
0 −

∫ 
H 0 

q | d V 

| . (47) 

This is also referred to the first law of thermodynamics. The non-local form of the energy balance (47) should be compared

with its local form in classical continuum mechanics 

˙ ext 
˙ u 0 = P : F + R 0 − Div Q . 



A. Javili, A.T. McBride and P. Steinmann / Journal of the Mechanics and Physics of Solids 131 (2019) 125–146 141 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.5. Balance of entropy 

Let s 0 denote the entropy density in the material configuration with its rate denoted ˙ s 0 . The integral of s 0 over B 0 renders

the global entropy S with its rate denoted S as 

S := 

˙ S with S := 

∫ 
B 0 

s 0 d V ⇒ S = 

∫ 
B 0 

˙ s 0 d V . (48)

The balance of entropy states that the rate of the entropy S equals the entropy input as 

S = H 

ext + H 

prd with H 

prd ≥ 0 (49)

where the global entropy input is decomposed into external contributions H 

ext and the positive entropy production H 

prd .

We further decompose the external entropy input H 

ext into a source part within the body and a flux part on the boundary

of the body, that is 

H 

ext = H 

ext 
B + H 

ext 
∂B . (50)

To proceed, we adopt the widely adopted Clausius–Duhem assumptions to express H 

ext 
B and H 

ext 
∂B in terms of the heat source

density R 

ext 
0 

and heat flux density Q 

ext 
0 

, respectively, as 

H 

ext 
B = 

∫ 
B 0 

R 

ext 
0 

T 
d V and H 

ext 
∂B = −

∫ 
∂B 0 

Q 

ext 
0 

T 
d A (51)

with T > 0 denoting the absolute temperature. Furthermore, we define D 0 as the dissipation power density in the material

configuration resulting in the entropy production rate H 

prd as 

H 

prd = 

∫ 
B 0 

D 0 

T 
d V with D 0 ≥ 0 . 

Next, Eq. (51) is inserted into the external entropy input (50) and then using the thermal power equivalence (45) , in ac-

cordance with the virtual power equivalence (24) or its direct consequence (23) 2 for the mechanical problem, an entropic

power equivalence is established as ∫ 
B 0 

∫ 
H 0 

q | 

T | 
d V 

| d V = 

∫ 
∂B 0 

Q 

ext 
0 

T 
d A or 

∫ 
B 0 

∫ 
H 0 

q | 

T | 
d V 

| d V = 

∫ 
B 0 

R 

ext 
0 

T 
d V − H 

ext (52)

with T | the temperature of the neighbouring point X 

| within the horizon. Inserting the relations (52) and (48) 3 into the

entropic power equivalence (49) results in the global balance of entropy ∫ 
B 0 

˙ s 0 d V = 

∫ 
B 0 

R 

ext 
0 

T 
d V −

∫ 
B 0 

∫ 
H 0 

q | 

T | 
d V 

| d V + 

∫ 
B 0 

D 0 

T 
d V 

which after localization reads 

˙ s 0 T = R 

ext 
0 − T 

∫ 
H 0 

q | 

T | 
d V 

| + D 0 . (53)

The non-local form of the entropy balance (53) should be compared with its local form in classical continuum mechanics 

˙ s 0 T = R 

ext 
0 − T Div 

(
Q 

T 

)
+ D 0 . 

4.6. Dissipation inequality and coleman–Noll procedure 

Motivated by the format of the entropy balance (53) , we proceed with the dissipation inequality and derive the consti-

tutive relations via a Coleman–Noll-like procedure. Henceforth, we limit our study to isothermal (mechanical) problems for

the sake of brevity. Further discussions on the implication of temperature shall be postponed to a separate contribution. Em-

ploying the energy balance (47) , the non-local form of the entropy balance (53) for isothermal processes can be re-written

as 

˙ s 0 T = 

˙ u 0 −
∫ 
H 0 

˙ ξ
| · p 

| d V 

| + D 0 with D 0 ≥ 0 . (54)

Next, we introduce the Helmholtz energy density and exploit the dissipation inequality via a Coleman–Noll-like proce-

dure to obtain constitutive equations. The Helmholtz energy density �0 in the material configuration is introduced as a

Legendre transformation of the internal energy density in terms of entropy and temperature as 

�0 := u 0 − T s 0 ⇒ 

˙ �0 = 

˙ u 0 − s 0 ˙ T − ˙ s 0 T ⇒ 

˙ �0 = 

˙ u 0 − ˙ s 0 T , (55)

in which the last relation holds since for isothermal problems of interest here ˙ T vanishes identically. Replacing the internal

energy density (55) into the entropy balance (54) results in the non-local form of the dissipation inequality 

D 0 = 

∫ 
H 

˙ ξ
| · p 

| d V 

| − ˙ �0 ≥ 0 . (56)

0 
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Table 3 

Governing equations of classical continuum mechanics (CCM) and continuum-kinematics-inspired peridynamics (CPD). 

Linear momentum balance CCM ρ0 ˙ v = Div P + b 
ext 
0 subject to P · N = t ext 

0 

CPD ρ0 ˙ v = 

∫ 
H 0 

p | d V | + b 
ext 
0 subject to 

∫ 
B 0 

∫ 
B 0 

p | d V | d V = 

∫ 
∂B 0 

t ext 
0 d A 

Angular momentum balance CCM ε : [ F · P t ] = 0 

CPD 

∫ 
H 0 

ξ
| × p | d V | = 0 

Energy balance CCM ˙ u 0 = P : ˙ F + R 

ext 
0 − Div Q subject to Q · N = Q 

ext 
0 

CPD ˙ u 0 = 

∫ 
H 0 

˙ ξ
| · p | d V | + R 

ext 
0 −

∫ 
H 0 

q | d V | subject to 

∫ 
B 0 

∫ 
B 0 

q | d V | d V = 

∫ 
∂B 0 

Q 

ext 
0 d A 

Entropy balance CCM ˙ s 0 T = R 

ext 
0 − T Div 

(
Q 

T 

)
+ D 0 subject to 

Q 

T 
· N = 

Q 

ext 
0 

T 

CPD ˙ s 0 T = R 

ext 
0 − T 

∫ 
H 0 

q | 

T | 
d V | + D 0 subject to 

∫ 
B 0 

∫ 
B 0 

q | 

T | 
d V | d V = 

∫ 
∂B 0 

Q 

ext 
0 

T 
d A 

Dissipation inequality CCM P : ˙ F − ˙ �0 ≥ 0 

CPD 

∫ 
H 0 

˙ ξ
| · p | d V | −

∫ 
H 0 

˙ ψ 

| 
0 

d V | ≥ 0 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3 gathers the key governing equations of continua for both classical continuum mechanics and the current continuum-

kinematics-inspired peridynamics approach and highlights their similarities and differences. 

Before we proceed to the Coleman–Noll-like exploitation, we further localize the non-local form of the dissipation in-

equality (56) within the horizon to obtain the neighbour-wise form. To do so, we define the Helmholtz energy density per

volume squared in the material configuration ψ 

| 
0 

with units N.m/m 

6 and the dissipation density per volume squared in the

material configuration d 
| 
0 

as 

�0 = 

∫ 
H 0 

ψ 

| 
0 

d V 

| and D 0 = 

∫ 
H 0 

d 
| 
0 

d V 

| . (57) 

Inserting the densities (57) into the non-local form of the dissipation inequality (56) yields 

∫ 
H 0 

d 
| 
0 

d V 

| = 

∫ 
H 0 

˙ ξ
| · p 

| d V 

| −
∫ 
H 0 

˙ ψ 

| 
0 

d V 

| ≥ 0 . (58) 

Consequently, the neighbour-wise form of the dissipation inequality (58) reads 

d 
| 
0 

= 

˙ ξ
| · p 

| − ˙ ψ 

| 
0 

≥ 0 . (59) 

Note, the more restrictive condition d 
| 
0 

≥ 0 on the neighbour-wise form of the dissipation implies but is not implied by its

non-local form D 0 ≥ 0 or more precisely 

d 
| 
0 

≥ 0 ⇒ D 0 ≥ 0 but D 0 ≥ 0 �⇒ d 
| 
0 

≥ 0 . 

Therefore, in the exploitation process that follows next we begin with the non-local form (56) first and thereafter elaborate

on the implications due to the neighbour-wise form of the dissipation inequality (59) . 

To exploit the non-local form of the dissipation inequality (56) using a Coleman–Noll-like procedure and to derive the as-

sociated constitutive laws, we particularize the Helmholtz energy density for the case of elasticity and specify its arguments

as 

�0 = 

∫ 
H 0 

ψ 

| 
0 

d V 

| with ψ 

| 
0 

= ψ 0 ( ξ
| 
, a 

| / || , v | / || / ||| ) . (60) 

Remark Motivated by the discussion in Section 4.2 on the consequences of angular momentum balance, one can argue

that a more precise representation of the Helmholtz energy density per volume squared in the material configuration to

sufficiently fulfil the angular momentum balance ( 28 ) would be in terms of l , a and v instead of ξ| , a | / || and v | / || / ||| ,
respectively. �

Following the classical Coleman–Noll procedure, we (i) calculate the rate of the Helmholtz energy density �0 from its

density integral over the horizon (60) , (ii) replace ˙ �0 in the non-local form of the dissipation inequality (56) and (iii) analyse

its consequences to sufficiently satisfy the second law of thermodynamics. To calculate the rate of the Helmholtz energy

density � , consider that ψ includes a 

| / || and v | / || / ||| resulting in a double-integral and a triple-integral, respectively. The
0 0 
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Fig. 6. Computational illustration of the proposed theory. A cube under large deformations whose constitutive behaviour is defined by our continuum- 

kinematics-inspired theory. Further details on computational aspects of the proposed theory shall be provided in a separate contribution. 

 

 

 

 

rate of the Helmholtz energy density reads 

˙ �0 = 

∫ 
H 0 

˙ ψ 

| 
0 

d V 

| = 

∫ 
H 0 

˙ ψ 0 ( ξı, a 

| / || , v | / || / ||| ) d V 

| = 

∫ 
H 0 

δψ 0 

δξ
| · ˙ ξ

| 
d V 

| , (61)

in which the term δψ 0 / δξ
| denotes a variational derivative defined as 

δψ 0 

δξ
| := 

∂ψ 0 

∂ ξ
| + 

∫ 
H 0 

2 ξ
|| × ∂ψ 0 

∂ a 

| / || d V 

|| + 

∫ 
H 0 

∫ 
H 0 

3 [ ξ
|| × ξ

||| 
] 

∂ψ 0 

∂v | / || / ||| 
d V 

||| d V 

|| , (62)

the derivation of which is omitted for the sake of brevity. To obtain the relation (62) , we have assumed the properties 

∂ψ 0 

∂ a 

| / || = − ∂ψ 0 

∂ a 

|| / | and 

∂ψ 0 

∂v | / || / ||| 
= 

∂ψ 0 

∂v || / ||| / | 
= 

∂ψ 0 

∂v ||| / | / || 
, 

consistent with our earlier assumptions. Replacing Eq. (61) into the non-local form of the dissipation inequality (56) yields

D 0 = 

∫ 
H 0 

˙ ξ
| · p 

| d V 

| −
∫ 
H 0 

δψ 0 

δξ
| · ˙ ξ

| 
d V 

| ≥ 0 ⇒ D 0 = 

∫ 
H 0 

[ 
p 

| − δψ 0 

δξ
| 

] 
· ˙ ξ

| 
d V 

| ≥ 0 . (63)
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The sufficient condition to fulfil Eq. (63) , in the case of equality, yields the constitutive relation 

p 

| = 

δψ 0 

δξ
| . 

Next, we discuss the more restrictive neighbour-wise form of the dissipation inequality (59) . The neighbour-wise form of

the dissipation inequality for the case of ψ 

| 
0 

= ψ 0 ( ξ
| 
, a 

| / || , v | / || / ||| ) reads 

d 
| 
0 

= 

˙ ξ
| · p 

| − ˙ ψ 0 ≥ 0 . (64) 

Using the relation (61) , it can be readily seen that 

˙ �0 = 

∫ 
H 0 

δψ 0 

δξ
| · ˙ ξ

| 
d V 

| ⇒ 

˙ ψ 0 = 

δψ 0 

δξ
| · ˙ ξ

| 
. (65) 

Replacing ˙ ψ 0 from Eq. (65) into the dissipation inequality (64) yields 

d 
| 
0 

= 

˙ ξ
| · p 

| − δψ 0 

δξ
| · ˙ ξ

| ≥ 0 , (66) 

The sufficient condition to fulfil Eq. (66) , in the case of equality, yields the constitutive relation 

p 

| = 

δψ 0 

δξ
| . 

Summarizing, the outcome of the Coleman–Noll procedure imposed on the neighbour-wise form of the dissipation inequality

(59) is identical to that obtained from the non-local form of the dissipation inequality (56) . 

5. Concluding remarks 

Peridynamics is an alternative approach to formulate continuum mechanics that inherently allows for geometrical discon-

tinuities thanks to the integro-differential nature of its governing equations. This contribution critically revisits the kinematic

foundations of peridynamics and provides a continuum-kinematics-inspired alternative. To do so, we define one-neighbour,

two-neighbour and three-neighbour interactions. While our one-neighbour interactions are essentially identical to bond- 

based interactions, two- and three-neighbour interactions are alternative to and fundamentally different from state-based

interactions. Thermodynamic restrictions on the interaction energies have been discussed and thermodynamically-consistent 

constitutive laws are provided. 

In order to demonstrate the potential of our proposed framework, a numerical example is shown in Fig. 6 . The results

show the deformation of a cube under extension governed by the proposed theory. The deformation due to one-neighbour

interactions is identical to that of a bond-based PD. The contribution of two- and three-neighbour interactions is clearly

observed by comparing the resulting deformations to one another and with the one-neighbour interactions. In summary,

this manuscript presents a continuum-kinematics-inspired formulation of peridynamics in a thermodynamically consistent 

framework. We believe that this generic approach is broadly applicable to enhance understanding of material behaviour for

a large variety of applications in multi-field problems accounting for geometrical discontinuities. 
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