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Abstract 
Background: Subclinical changes on the electrocardiogram are risk factors for 
cardiovascular mortality. Recognition and knowledge of electrolyte associations in cardiac 
electrophysiology are based on only in-vitro models and observations in patients with severe 
medical conditions.  
Objectives: Investigate associations between serum electrolyte concentrations and changes in 
cardiac electrophysiology in the general population. 
Methods: Summary results collected from 153,014 individuals (54.4% women; mean [SD] 
age: 55.1 [12.1] years) from 33 studies (of 5 ancestries) were meta-analysed. Linear 
regression analyses examining associations between electrolyte concentrations (mmol/L of 
calcium, potassium, sodium and magnesium), and electrocardiographic intervals (RR, QT, 
QRS, JT and PR) were performed. We adjusted for potential confounders and also stratified 
by ancestry, sex and use of antihypertensive drugs.   
Results: Lower calcium was associated with longer QT (-11.5 ms, 99.75%CI: -13.7,-9.3) and 
JT, with sex-specific effects. In contrast, higher magnesium was associated with longer QT 
(7.2 ms, 99.75%CI: 1.3,13.1) and JT. Lower potassium was associated with longer QT (-2.8 
ms, 99.75%CI: -3.5,-2.0), JT, QRS and PR durations, but all potassium associations were 
driven by use of antihypertensive drugs. No physiologically relevant associations were 
observed for sodium or RR intervals.  
Conclusions: We identified physiologically relevant associations between electrolytes and 
electrocardiographic intervals in a large-scale analysis combining cohorts from different 
settings. The results provide insights for further cardiac electrophysiology research and could 
potentially influence clinical practice, especially the association between calcium and QT 
duration, by which calcium levels at the bottom 2% of the population distribution led to 
clinically relevant QT prolongation by >5 ms.  
Condensed Abstract 
Subclinical changes on the electrocardiogram are risk factors for cardiovascular mortality. 
Recognition and knowledge of electrolyte associations in cardiac electrophysiology are based 
on only in-vitro models and observations in patients with medical conditions. In our large-
scale analysis (N=153,014), we identified physiologically relevant associations between 
electrolytes and electrocardiographic intervals. The results provide insights for further cardiac 
electrophysiology research and could potentially influence clinical practice, especially the 
association between calcium and QT duration, by which calcium levels at the bottom 2% of 
the population distribution led to clinically relevant QT prolongation by >5 ms.  
 
Key words: Electrolytes, electrocardiographic intervals, epidemiology, meta-analysis, cohort 
studies 
 
List of abbreviations: 
BMI, body mass index 
BP, blood pressure 
CI, confidence interval  
ECG, electrocardiogram 
FDA, Food and Drug Administration  
HTN, hypertension 
QC, quality control 
Q, quantiles 
SD, standard deviation 
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Introduction 

Disturbances in cardiac electrophysiology are well-recognized risk factors for 

cardiovascular morbidity and mortality. Prolonged QT intervals, as collective measures of 

ventricular depolarisation and repolarisation, and elevated resting heart rates have been 

consistently associated with adverse outcomes in epidemiological studies (1-4). 

Electrocardiogram (ECG) parameters correlate well with cardiac electrophysiology -- in 

particular cardiac action potential measurements made in single cells or tissue preparations. 

The duration of the action potential often mirrors the QT interval, whilst the maximum rate of 

depolarisation determines conduction velocity and influences PR and QRS durations (5,6).  

Extreme serum electrolyte concentrations, particularly for potassium and calcium, are 

well-known risk factors for repolarisation disturbances, conduction abnormalities and cardiac 

arrhythmias (7,8). The influence of electrolytes on cardiac action potentials can be studied 

unambiguously (9). For example, increases in extracellular calcium concentration shortens 

the action potential duration (10). However, the mechanisms are counterintuitive and not 

clearly explained. In a modelling study, in addition to increases in repolarising potassium 

currents with increasing extracellular and intracellular calcium, it was also necessary to 

include increasing calcium dependent inactivation of the calcium current, to reproduce the 

observed relationship (11). A decrease in the sodium-calcium exchange may also contribute 

to the shortened action potential duration (12). In contrast, the effects of changes in action 

potential duration with extracellular magnesium are much smaller (13).  

Importantly, variation in serum electrolyte concentrations within normal ranges is 

associated with occurrence of cardiovascular disease (14). For example, risks for myocardial 

infarction increased by 20% for every 0.1 mmol/L rise in calcium (15). Increased hazard 

ratios for mortality have been observed at the extreme limits of the normal range for 

potassium (16). Studies evaluating electrolyte effects, however, are often cellular experiments 
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or analyses in patient populations with multiple comorbidities. Such studies have difficulties 

in disentangling electrolyte versus direct disease effects. There is little information on 

associations between electrolytes and cardiac electrophysiology amongst relatively healthy 

individuals. 

A direct link between serum electrolyte levels and cardiac physiology is indicated by 

genetic studies. Genome-wide association studies have identified multiple genes encoding 

electrolyte transporter and signalling proteins involved in cardiac physiology (17-19). For 

example, KCNH2 encodes a subunit of the voltage-gated potassium channel hERG, and 

genetic variation in KCNH2 can be associated with either a prolonged or shortened QT 

interval (17). Loss of function variants in KCNH2 were identified in 30% of long QT 

syndrome cases, and gain of function mutations in KCNH2 were identified in individuals with 

short QT syndrome (20,21). 

Our hypothesis is that variation in serum electrolyte levels in the general population 

may alter cardiac electrophysiology. Identifying individuals at risk of electrophysiological 

disturbances may aid in prevention of cardiovascular disease and mortality. In this study, we 

performed a large-scale systematic analysis to investigate associations between serum 

electrolyte concentrations and electrocardiogram intervals within a healthy population free of 

severe cardiac abnormalities and including various ancestries.  

Methods 

Study setting 

Studies were eligible to join the project, if participants had data on at least one 

electrolyte measured in serum and at least one ECG trait, both measured at a similar time 

point. All contributing studies are described in the Online Appendix and in Online Table 1.  

All studies were approved by local Medical Ethical Committees in agreement with the 

declaration of Helsinki, and all participants provided written informed consent.  
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Participant exclusions 

Individuals were excluded if they were <18 years old or pregnant. For quality control 

(QC), outliers were excluded from the final electrolyte and ECG dataset (>5 standard 

deviations from the mean). Extreme RR-intervals were also excluded (<500 or >1,500 ms). 

To minimise bias, and to exclude individuals with cardiovascular disease, we excluded 

individuals with atrial fibrillation, Wolff-Parkinson-White syndrome, 2nd or 3rd degree AV 

block, a history of myocardial infarction or heart failure, or a pacemaker, and anyone taking 

class I and/or class III blocking medication (ATC code: CO1B). 

Exposure, outcome and covariate data 

Four electrolytes were considered as exposures: calcium, sodium, potassium and 

magnesium, measured in serum in mmol/L. Five ECG measures were included in the 

analysis: QT, JT (as a measure of ventricular repolarization; where JT = QT – QRS), QRS, 

PR and RR intervals, measured in milliseconds (ms). Studies without ECG data contributed 

data only for RR interval, if heart rate (HR) was available from pulse measurements (by 

converting to RR using the formula: RR (ms) = 60,000 / HR (bpm)). Participant age, sex, 

body mass index (BMI), creatinine level, diabetes mellitus status and hypertension (HTN) 

status were included as covariates. Individuals were defined as being hypertensive if they met 

any one of the following criteria: (i) systolic blood pressure (BP) ≥ 140 mmHg; (ii) diastolic 

BP ≥ 90 mmHg; or (iii) taking BP-lowering medication (ATC codes: C02, C03, C04, C07, 

C08, C09). Sensitivity analyses were performed using new cut-offs for systolic and diastolic 

blood pressures from AHA/ACC (22). Diabetes was defined according to: (i) a doctor’s 

diagnosis of diabetes mellitus; (ii) a fasting glucose concentration > 6.9 mmol/L; or (iii) 

taking any glucose-lowering medication (ATC code: A10), which is a generally accepted 

definition for harmonization across cohorts from different countries (23). Serum creatinine 

concentration levels were measured in µmol/L and were log-transformed within all models. 
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Study-level statistical analyses 

A centrally-written script using R statistical software (24) was provided to each 

participating study, and the generated output files were submitted centrally (which included 

study characteristics, histograms of variable distributions for QC and summary statistics of 

regression analysis results), so that all studies ran identical analyses according to a 

harmonised protocol. Each study contributed to as many different models as possible, based 

on available data on exposures, outcomes and covariates. Analyses were performed for each 

ECG trait separately, to allow for differing sample sizes for each combination of ECG trait 

and electrolyte. For studies with individuals of different ancestries (notably CHS, HABC and 

MESA), analyses were stratified by each ancestry.  

As our primary analyses, we performed linear regression analyses regressing each 

ECG trait on each electrolyte, adjusting for sex and age. Expect for analyses on RR interval 

itself, all analyses were statistically adjusted for RR interval which is generally a more 

suitable heart-rate correction method than other methods such as Bazett (25,26). Our cohorts 

essentially had unrelated individuals except for the CHRIS, MICROS, ORCADES and 

VIKING studies which used mixed models to correct for relatedness between study 

participants. By analysing all paired combinations of the five ECG traits and four 

electrolytes, there were 20 primary linear regression analyses in all participants. For each 

electrolyte-ECG trait association, we assessed the role of confounding by adding – one by 

one – the other covariates to the statistical models (BMI [kg/m2, present in all subsequent 

adjusted models] diabetes mellitus status, HTN status, and creatinine). Our fully adjusted 

model using all covariates contained data from only the studies with all covariates available. 

We also performed analyses stratified by sex, use of antihypertensive drugs (+ 

digoxin) and HTN status. Use of antihypertensive drugs (+ digoxin) was defined according to 

ATC codes (C01AA05 for digoxin; or C02, C03, C04, C07, C08, C09 for any BP-lowering 
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medication). Note that individuals would belong to the “drug-users” subgroup but not to the 

“HTN-only” subgroup, if they were taking only digoxin. Similarly, participants would belong 

to the “HTN-only” subgroup but not in the “drug-users” subgroup, if they were untreated 

hypertensives. Due to the overlap with HTN as a covariate in the adjusted sub-models, these 

subgroup analyses stratified by drug use and by HTN status were performed for only the two 

basic models adjusted for age, sex (and RR interval), and additionally for BMI.  

Finally, to investigate the trend of associations across electrolyte levels and across the 

population distribution for the main electrolyte-ECG associations, we performed analyses 

stratified by quintiles of the electrolyte concentrations. The five quintiles were generated 

from the distribution of each electrolyte: Q1 to Q5. Pairwise comparison analyses were 

performed, using the minimally adjusted model (adjusted only for age and sex), with the 

middle quintile (Q3) as reference.  

Meta-analyses 

After QC of the received summary statistics data, fixed-effects inverse-variance-

weighted meta-analyses were performed centrally using the “rmeta” CRAN package in R 

statistical software (24), pooling together the beta effect estimates and standard errors from 

all studies. As further QC, prior to the meta-analyses, we excluded any analysis model results 

from studies that were estimated in small sample sizes (<100 individuals). Two sets of meta-

analyses were performed: an all-ancestry meta-analysis and five ancestry-stratified meta-

analyses.  

Due to the 20 different ECG-electrolyte associations, we corrected for multiple testing 

by the Bonferroni method and present results with 99.75% confidence intervals (CI). For any 

significant association from our primary analysis in the minimally adjusted model, we used 

the following sequential strategy for reporting results: (1) Significant associations from the 

minimally adjusted model were checked for robustness to covariate adjustment, by 
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comparing them to results from the fully adjusted model. (2) The effect sizes of the robust 

associations were evaluated for their physiological importance, and the plots from the quintile 

analyses were checked for clear linear trends supporting association results. (3) Associations 

meeting these requirements were reported and considered further within subgroup analyses 

by sex, drug use and HTN status. 

Post-meta-analysis interaction analyses 

Based on the coefficients from the meta-analyses from the models stratified by sex, 

drug use and HTN status, we additionally tested for evidence of effect modification on a 

multiplicative scale, using the methodology that has been previously described by Altman 

and Bland (27). Two-sided p-values for interaction <0.05 were considered significant.  

Results 

Characteristics of the study population 

In the present study, we used data from a total of 38 study groups from 33 cohorts 

representing 5 different ancestries: European (Nmax = 129,169 from 30 studies); African-

American (Nmax = 7,693 from 4 studies); “mixed” ancestry from Brazil (Nmax = 14,612 from 

2 studies: BAMBUI and ELSA); Asian (Nmax = 555 from 1 study: MESA); and 

Hispanic/Latino (Nmax = 985 from 1 study: MESA). Overall, we collected data from a total of 

153,014 individuals (45.6% men) (Table 1). Mean (SD) age was 55.1 (12.1) years, and 

individuals were on average slightly overweight (mean [SD] BMI: 27.3 (4.8) kg/m2). Serum 

electrolyte levels were distributed similarly among men and women and among drug-users 

and non-users. Study-specific characteristics are presented in Online Tables 1-3.  

Association between serum electrolyte concentrations and ECG parameters 

After observing no substantial heterogeneity between the different ancestry groups 

from inspection of forest plots (Online Figure 1), the all-ancestry meta-analyses were used 

as the primary analysis results, to maximise sample size. Of the 20 main electrolyte-ECG trait 
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associations, we found evidence for 14 associations between a serum electrolyte 

concentration and an ECG trait (Table 2, Figure 1). There was no consistent heterogeneity 

observed between the participating studies from inspection of cohort-level forest plots 

(Online Figure 2). 

High calcium was associated with shorter QT (-11.5 [99.75%CI: -13.7,-9.3] ms per 

mmol/L) and JT (-15.6 [99.75%CI: -18.3,-12.9] ms per mmol/L) intervals, and effect sizes 

increased in the fully adjusted model (Table 2), due to adjustment for HTN and diabetes 

status. In contrast, high magnesium was associated with longer QT (7.2 [99.75%CI: 1.3,13.1] 

ms per mmol/L) and JT intervals (9.9 [99.75%CI: 4.1,15.6] ms per mmol/L), with similar 

results observed in the fully adjusted model (Table 2). High potassium was associated with 

shorter QT (-2.8 [99.75%CI: -3.5,-2.0] ms per mmol/L), QRS (-1.6 [99.75%CI: -1.9,-1.3] ms 

per mmol/L), JT (-1.0 [99.75%CI: -1.8,-0.3] ms per mmol/L) and PR intervals (-1.7 

[99.75%CI: -2.4,-1.1] ms per mmol/L), also with similar effect sizes in the fully adjusted 

model (Table 2). There were clear trends for the calcium, magnesium and potassium 

associations when study populations were stratified by quintiles, indicating support for the 

associations across the population distribution of electrolyte levels (Online Figure 3).  

High sodium was associated with longer QRS (0.1 [99.75%CI: 0.0, 0.1] ms per 

mmol/L) and JT intervals (0.2 [99.75%CI: 0.1, 0.3] ms per mmol/L). But sodium was 

associated with only QRS interval in the fully adjusted model, suggesting an influence of 

confounding, which was found to be from HTN and diabetes (Table 2, Figure 1). Moreover, 

the small effect sizes for sodium would not be viewed as physiologically relevant (0.1-0.2 ms 

increase in QRS per 1 mmol/L increase in sodium), and there was no meaningful trend in the 

quintile analyses to support an association (Online Figure 3).  

In general, all electrolytes examined were associated with RR interval, and results 

were similar in the fully adjusted model (Table 2). Although associations with RR intervals 
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reached statistical significance, effect sizes were very small (e.g., 64.1 ms change in RR per 1 

mmol/L increase in magnesium). Such changes would not be viewed as physiologically 

important, considering the population distributions of electrolyte levels and RR durations. 

Furthermore, the electrolyte-RR associations did not show clear trends when electrolyte 

levels were stratified by quintiles (Online Figure 3).  

Hence, none of the associations for RR interval or sodium were considered further. 

Therefore the eight key associations of interest are: calcium and magnesium with QT and JT 

intervals; and potassium with four ECG traits (QT, QRS, JT and PR).  

Subgroup analyses 

Based on the eight electrolyte-ECG trait associations observed in the main analysis, 

we additionally stratified by sex, drug use or HTN status. With the minimally adjusted model, 

we found evidence of sex-specific associations (p-value interaction < 0.05) for only calcium 

and QT (pinteraction = 0.008) and JT (pinteraction = 0.008) intervals (Online Table 4, Figure 2), 

with stronger associations in women than in men. Specifically, per mmol/L increase, calcium 

was associated with 8.8 (99.75%CI: -12.1,-8.0) ms shorter QT intervals and 12.1 (99.75%CI: 

-16.3,-8.0) ms shorter JT intervals in men, compared to 12.6 (99.75%CI: -15.5,-9.8) and 16.9 

(99.75%CI: -20.4,-13.4) ms, respectively, for women. 

When stratified according to drug use, non-drug-users had attenuated associations 

between potassium and QT, QRS, JT, and PR intervals (Online Table 5, Figure 3). For each 

mmol/L increase in potassium, QT intervals were -5.5 (99.75%CI: -6.9,-4.2) ms shorter in 

drug-users, but only -0.9 (99.75%CI: -1.8, 0.0) ms shorter in non-users, in the minimally 

adjusted model (pinteraction <0.001). Similar results were observed for JT intervals, and to a 

lesser extent for PR and QRS intervals. Attenuation also occurred for calcium, but to a much 

lesser extent, and associations were still observed in non-users. An increase of 1 mmol/L of 

calcium was associated with a -16.1 (99.75%CI: -21.1,-10.9) ms shorter QT interval in drug-
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users, but with a -11.1 (99.75%CI: -13.4, -8.7) ms shorter QT interval in non-users (p-value 

for interaction = 0.007). Results were similar when we stratified by HTN status (drug 

use/140/90 mmHg), but the differences in associations were usually less pronounced than 

when we stratified by drug use (Online Table 6), particularly with lower hypertension cut-

offs (drug use/130/90 mmHg or drug use/120/80 mmHg) in the analyses on potassium 

(Online Table 7). All subgroup results remained comparable in the adjusted model.  

Discussion  

We investigated associations between serum electrolyte levels and measures of 

cardiac electrophysiology in a large-scale population-based meta-analysis. We observed eight 

associations that had cardiac electrophysiological relevance. After full adjustment for 

considered confounding factors, we found that higher calcium levels were associated with 

shorter QT and JT intervals, and magnesium with longer QT and JT intervals, reflecting 

shortened and prolonged ventricular repolarisation, respectively. Interestingly, the 

relationship between shortened ventricular repolarisation and calcium was stronger in 

women. Higher potassium levels were associated with shorter QT, QRS, JT and PR intervals. 

However, associations with potassium were observed specifically in drug users (mainly 

antihypertensive drugs) and hypertensive individuals. The associations with potassium are 

therefore assumed to be related to antihypertension treatment. No physiologically relevant 

associations were observed for sodium. Although all four electrolytes were significantly 

associated with RR interval, none of the associations was viewed as clinically or 

electrophysiologically important. Collectively, our findings from a collection of (population-

based) cohort studies of different settings contribute to understanding the role of electrolytes 

in cardiac electrophysiology in the general population. 

Lower calcium levels were robustly associated with longer QT and JT intervals -- but 

not QRS duration -- across different subgroups, reflecting ventricular repolarisation 
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primarily. Biologically, calcium is stored in large amounts in the sarcoplasm reticulum, ready 

to be released for cardiac muscle contraction initiated by an inward L-type calcium current.  

Based on the effect sizes in the fully adjusted model, we estimated the proportion of 

the general population that has clinically significant changes in the QT duration (which has 

clinical cut-off values; Figure 4A). According to our data, 2% of the general population 

(irrespective of sex) have a calcium concentration that prolongs the QT interval by 5 ms or 

more. The U.S. Food and Drug Administration (FDA) uses 5 ms as the threshold level for 

regulatory concern following a “thorough QT/QTc study” in healthy volunteers -- a required 

part of the evaluation of new treatment compounds before market launch (28). The FDA 

practices potentially highlight the clinical importance of our findings and suggest the possible 

usefulness of ECG assessment in patients with low calcium levels, to prevent arrhythmic 

events, particularly in the presence of other interacting risk factors for ventricular 

repolarisation prolongation.  

Our findings may be more clinically relevant to women, due to the larger observed 

effects, although we are unable to explain the sex-specific differences. To the best of our 

knowledge, there are no reports on sex-specific expression profiles of calcium channels or 

receptors in cardiac myocytes. Interestingly, 17β-estradiol -- an estrogen hormone -- inhibits 

calcium channels (29-31). However, considering the mean age (55 years), women in our 

study population are likely to be mostly postmenopausal, with significantly lower estradiol 

levels. More research is therefore required to elucidate the cause of the sex-specific 

observations.  

A higher magnesium concentration was associated with longer QT and JT intervals. 

However, magnesium effect sizes were fairly small (Figure 4B). Nevertheless, our results 

suggest a biological role for magnesium in ventricular repolarisation. In animal tissue 

samples, the effect of magnesium on transmembrane potentials of cardiac myocytes is also 
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less substantial, in contrast to other electrolytes [13]. Clinically, previous research suggested 

a linear relationship between magnesium and coronary heart disease mortality, where a 0.1 

mmol/L increase in serum magnesium -- even within normal ranges -- was associated with 

decreased risk (32). Our associations for magnesium in a large-scale study represent novel 

contributions, considering the fewer published reports on magnesium, compared to other 

electrolytes. 

We observed shorter PR, QRS, QT and JT intervals with increasing potassium. The 

effects of increasing potassium concentrations are recognised to be biphasic. Within the 

physiological range, increasing extracellular potassium causes a paradoxical increase in 

outward current mediated by hERG channels which initially shortens the action potential and 

stabilises the resting membrane potential (33). Combined with an increase in the velocity of 

phase 3 of the action potential, this manifests as shortening of the QT interval and peaking of 

the T wave (34,35). When potassium concentrations reach those associated with clinically 

defined hyperkalaemia, the resting membrane potential decreases, reducing the upstroke 

velocity of the action potential thus delaying interventricular conduction (34). This results in 

the classical ECG characteristics of hyperkalaemia such as a prolonged QRS duration.  

Interestingly, potassium effects were significantly greater in individuals on 

antihypertensive medication, with prolongation of the QT interval of 5 ms or more in ~4% of 

participants (Figure 4D). The greater effect of potassium on ECG intervals in individuals 

taking antihypertensive medication may be explained by direct and indirect drug effects. In-

vitro studies have demonstrated inhibitory effects of beta-blockers on HERG channels, 

through direct blocking of the channel. Angiotensin receptor blockers (ARBs) impede 

currents carried by hKv1.5, KvLQT1, KCNQ1 and HERG(Ikr) subunits (36,37). 

Overexpression of angiotensin II type 1 receptors in mouse ventricular myocytes decreases 
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myocyte potassium currents, lengthen action potential duration and significantly prolong QT 

intervals (even after adjustment for QRS duration) (38).  

There are few reports on long-term effects of antihypertensive medication on 

ventricular repolarisation in humans. Three small studies of individuals with left ventricular 

hypertrophy related to hypertension showed improvement in echocardiographic and ECG 

findings of hypertrophy -- with shortening of the QT interval -- following use of an ACE 

inhibitor, ARB or beta-blocker (atenolol) (39-41). These ECG changes may be due to 

ventricular remodelling, or also to changes in autonomic tone. For example, the QT/RR slope 

relationship can be influenced by autonomic tone, which could augment effects of serum 

potassium on ECG intervals (42), as suggested by our study. Our study did not have complete 

information on the exact medications used (antihypertensive agents or other drugs that may 

affect ECG intervals). However, individuals taking class I or III anti-arrhythmics were 

excluded meaning that the number of individuals taking digoxin is expected to be very low 

and unlikely to impact results. Furthermore, indications for taking these drugs may differ 

among individuals, and the various underlying aetiologies may influence ECG characteristics.  

Historically, an influence of circulating electrolytes on the ECG has been known for 

~100 years. For example, 20 years after Einthoven reported his string galvanometer in 1903 

(43), Carter and Andrus observed long QT durations in infants with tetany from 

hypocalcemia (44). The QT duration decreased when the tetanic infants were given oral 

calcium. Prolonged QT intervals were seen with low potassium levels as early as 1950 (45). 

Several other reports on electrolytes and ECGs followed shortly thereafter (35,46-50). 

However, electrolyte effects have not been well described apart from patient populations. For 

example, electrolyte effects were not analysed in a study of 32,949 normal ECGs at 

Vanderbilt University (in subjects without heart disease, medications that affect ECGs, or 
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abnormal electrolytes (51)). Our report represents the first large-scale ECG analysis in 

relation to electrolyte levels in the general population. 

Study strengths and limitations 

A major strength is that our study is sufficiently powered to investigate associations 

between serum electrolyte levels and cardiac electrophysiology measures. The large 

collection of (population-based) cohorts in this study minimizes the risk of reporting cohort-

specific (false-positive) results. Also, all data were analysed by use of a standardised 

protocol, to minimise differences in analyses among the individual studies. This would be a 

useful strategy to adopt for future analyses incorporating data from multiple different cohorts, 

although meta-analyses techniques should always be performed and the assessment of 

nonlinearity remains difficult. Our analyses of different ancestries did not show major 

heterogeneity in our findings, and confounders were taken into consideration (where 

possible). However, the list of confounders considered was limited by access to individual 

level data available among the participating studies. The limitations in our study were that we 

were not able to study dynamic interrelations among all serum electrolytes jointly in relation 

to ECG intervals, because only a few cohorts had data on all four electrolytes. This would be 

an interesting area for follow-up in a subset of the cohorts. Calcium is usually bound to 

albumin, and low calcium can be caused by low albumin levels. However, we believe 

albumin plays a negligible role in the present study, because low albumin levels are rare in 

the general population. Although the observational nature of our study limits causal 

inferences, biological evidence supporting our results favours an interpretation the 

electrolyte-ECG interval associations are causal. Finally, we stratified according to use of any 

antihypertensive treatment overall, rather than to the use of specific antihypertensive drug 

classes as this information was not available. Possible alterations in potassium effects due to 

different antihypertensive drugs is an area to be explored in future studies. 
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Conclusions 

In summary, within our large-scale study, we identified multiple electrolyte-ECG 

associations relevant to ventricular repolarisation, involving calcium, magnesium and 

potassium, although causality has yet to be determined. Regarding calcium and ventricular 

repolarisation, a subgroup of the general population has an increase in QT-interval that may 

be medically relevant, based on the effect sizes observed. Further research is necessary to 

improve our understanding of the underlying (causal) mechanisms involved.  
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Perspectives 

Competency in patient care and procedural skills: Low calcium levels in the general 

population can result in a clinically significant prolongation of ventricular repolarization, 

reflected by prolonged QT and JT interval durations. 

Translational outlook: Future studies should examine causality of the observed associations, 

investigate the underlying biology, and examine whether frequent calcium measurements in 

individuals at risk can prevent or delay cardiovascular events.  
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Figure Legends 

Figure 1: Associations between serum electrolyte concentrations and measures on the 

electrocardiogram. Beta effect results can be interpreted as the difference in milliseconds of 

the ECG (electrocardiogram) measure per one standard deviation increase in serum 

electrolyte concentration. Red bars reflect positive associations, blue bars reflect negative 

associations. The intensity of the colour refers to the precision of the association. Analyses in 

model 1 were adjusted for age, sex, and RR interval (“minimally adjusted model”). Analyses 

in model 4 were adjusted for age, sex, RR interval, body mass index, hypertension status, 

diabetes mellitus status and natural log of serum creatinine concentration (“fully adjusted 

model”). A two-sided p-value < 0.0025 according to Bonferroni correction was considered 

statistically significant (Note: RR-interval associations not shown here). 

Figure 2: Sex-specific association between serum calcium and QT and JT intervals. 

Results are presented as the beta effect sizes with 99.75% confidence intervals (in 

milliseconds per mmol/L increase in calcium concentration), for men (shown as circles) and 

women (shown as squares) separately. The minimally adjusted model included covariate 

adjustment for age, sex, RR-interval and cohort-specific covariates. The fully adjusted model 

additionally included body mass index, diabetes mellitus status, hypertension status and 

natural log of serum creatinine concentration. “P-int” is the p-value from the interaction 

analysis. 

Figure 3: Associations for potassium and calcium stratified by drug use. Results are 

presented as the beta effect sizes with 99.75% confidence intervals (in milliseconds per 

mmol/L increase in calcium or potassium concentration), for drug use (shown as circles) and 

non-drug use (shown as squares) separately. The minimally adjusted model included 

covariate adjustment for age, sex, RR-interval and cohort-specific covariates. The fully 

adjusted model additionally included body mass index, diabetes mellitus status, hypertension 
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status and natural log of serum creatinine concentration. “P-int” is the p-value from the 

interaction analysis. 

Figure 4: Differences in effects of electrolytes on QT durations, for different percentiles 

of electrolyte levels. For each percentile point, the graphs indicate the difference between the 

beta estimate at that percentile and the beta estimate at the 50th percentile (in milliseconds of 

QT per mmol/L increase in calcium). For plots A-C, the estimated effects are calculated 

according to the fully adjusted model. For plots D and E from subgroup analyses, the 

estimated effects are calculated according to the model adjusted for age, sex, RR-interval and 

body mass index. The shading represents the 95% confidence interval. 
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Table 1: Pooled characteristics of the study populations 

 Total  By sex:  

mean (SD) 

 By drug use:  

mean (SD) 

 N Mean (SD)  Men Women  Users Non-Users 

Age in years 153,014 55.1 (12.1)  55.5 (11.9) 54.7 (12.2)  59.0 (9.9) 51.5 (11.6) 

Body mass index in kg/m2 152,481 27.3 (4.8)  27.5 (4.2) 27.1 (5.3)  27.8 (5.0) 26.2 (4.6) 

Creatinine in μmol/L 151,691 81.3 (22.4)  91.1 (22.9) 73.2 (18.6)  - - 

         

Electrolytes1         

   Calcium in mmol/L 90,575 2.33 (0.11)  2.33 (0.11) 2.33 (0.11)  2.36 (0.11) 2.32 (0.11) 

   Potassium in mmol/L 129,464 4.23 (0.37)  4.27 (0.37) 4.19 (0.36)  4.20 (0.43) 4.23 (0.35) 

   Sodium in mmol/L 125,760 141 (2.7)  141 (2.6) 141 (2.7)  141 (2.8) 141 (2.6) 

   Magnesium in mmol/L 42,720 0.83 (0.08)  0.83 (0.08) 0.82 (0.08)  0.83 (0.08) 0.83 (0.07) 
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ECG measures         

   RR interval in ms 153,014 917 (148)  935 (155) 903 (139)  872 (148) 903 (144) 

   QT interval in ms 125,104 399 (28.7)  403 (29.3) 400 (28.1)  388 (30.0) 395 (27.3) 

   QRS interval in ms 123,695 92.7 (12.9)  97.8 (12.9) 90.3 (11.6)  90.3 (13.9) 91.8 (12.1) 

   JT interval in ms 121,355 311 (28.4)  304 (28.3) 316 (27.4)  297 (29.4) 303 (27.2) 

   PR interval in ms 124,078 159 (24.3)  164 (24.4) 158 (23.5)  156 (25.3) 156 (22.9) 

Study-level characteristics were collected from each study, with summary descriptive statistics for all continuous variables used within the 

analysis models: covariates; electrolytes and ECG (electrocardiogram) measures. These characteristics were then pooled together centrally 

across all studies. The “Total” columns are for all individuals, with “N” showing the number of individuals; the “By sex” columns correspond to 

the subgroup analyses stratified by sex, showing separate summaries for Men and Women; the “By drug-use” columns correspond to the 

subgroup analyses stratified by drug-use, showing separate summaries for Users and Non-Users (where drug-use is defined as the use of 

antihypertensive drugs + digoxin). Within each set of columns are the Mean and SD (Standard Deviation) values. 1Due to the alternative analysis 

pipeline used in the ORCADES and VIKING studies, these studies were not able to provide means and standard deviations for the electrolytes.  
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Table 2: Association between serum electrolyte concentrations and ECG measures in the general population 

 Minimally adjusted model  Fully adjusted model for all potential confounders 

 N (studies) Beta 99.75% CI  N (studies) Beta 99.75% CI 

Calcium        

   RR interval 94,264 (33) -21.1 -33.6; -8.7  77,520 (26) -32.1 -46.6; -17.5 

   QT interval 77,479 (31) -11.5 -13.7; -9.3  62,874 (25) -22.3 -25.7; -18.9 

   QRS interval 77,471 (31) 0.45 -0.6; 1.5  62,869 (25) 0.4 -1.0; 1.8 

   JT interval 75,222 (29) -15.6 -18.3; -12.9  62,342 (24) -22.7 -26.0; -19.4 

   PR interval 76,834 (30) 1.4 -0.7; 3.6  62,267 (24) 1.2 -1.5; 3.9 

        

Magnesium        

   RR interval 44,682 (16) 64.1 37.5; 90.7  36,940 (13) 39.8 10.6; 69.0 

   QT interval 36,165 (14) 7.2 1.3; 13.1  30,509 (12) 6.4 0.0; 12.8 

   QRS interval 36,138 (14) -1.0 -3.6; 1.5  30,509 (12) -0.3 -3.0; 2.5 

   JT interval 36,165 (14) 9.9 4.1; 15.6  30,529 (12) 7.9 1.6; 14.2 

   PR interval 35,956 (14) 2.5 -2.2; 7.2  30,355 (12) 3.3 -1.9; 8.5 
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Potassium        

   RR interval 126,528 (29) 13.9 10.6; 17.3  87,875 (23) 12.4 8.5; 16.3 

   QT interval 98,669 (26) -2.8 -3.5; -2.0  66,941 (22) -2.8 -3.6; -1.9 

   QRS interval 97,283 (26) -1.6 -1.9; -1.3  65,576 (22) -1.3 -1.7; -1.0 

   JT interval 96,656 (25) -1.0 -1.8; -0.3  64,995 (21) -1.2 -2.1; -0.3 

   PR interval 97,725 (25) -1.7 -2.4; -1.1  66,312 (21) -1.6 -2.3; -0.8 

        

Sodium        

   RR interval 122,732 (28) 2.4 1.9; 2.9  84,116 (22) 1.3 0.8; 1.8 

   QT interval 94,787 (25) 0.0 -0.1; 0.1  63,182 (21) 0.1 -0.1; 0.2 

   QRS interval 93,483 (25) 0.1 0.0; 0.1  61,815 (21) 0.1 0.0; 0.1 

   JT interval 92,857 (24) 0.2 0.1; 0.3  61,236 (20) 0.0 -0.1; 0.1 

   PR interval 93,914 (24) -0.1 -0.2; 0.0  62,541 (20) 0.0 -0.2; 0.1 

Abbreviations: N, number of individuals included in the analyses; “studies”, the number of studies contributing to the analysis; 95% CI, 95% 

confidence interval; Beta, the effect estimate from the linear regression model. The “Minimally adjusted model” included adjustment for age, 



31 

sex, RR-interval and cohort-specific covariates. The “Fully adjusted model,” in the cohorts with data on all covariates available, was additionally 

adjusted for body mass index, diabetes mellitus status, hypertension status and natural log of serum creatinine concentration. The Beta effect 

results presented are the changes in ECG (electrocardiogram) measure in milliseconds per 1 mmol/L increase in electrolyte concentration. A 

two-sided p-value was considered statistically significant. 
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