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Abstract: The human archaeological record changes over time. Finding such change in other 23 
animals requires similar evidence, namely, a long-term sequence of material culture. Here, 24 
we apply archaeological excavation, dating and analytical techniques to a wild capuchin 25 
monkey (Sapajus libidinosus) site in Serra da Capivara National Park, Brazil. We identify 26 
monkey stone tools between 2400 and 3000 years old, and based on metric and damage 27 
patterns demonstrate that capuchin food processing changed between ~2400 and 300 years 28 
ago, and between ~100 years ago and present day. We present the first example of long-term 29 
tool-use variation outside of the human lineage and discuss possible mechanisms of extended 30 
behavioral change. 31 
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Our understanding of long-term human behavioural evolution is primarily built upon changes 38 
in stone technology. Palaeolithic archaeologists and palaeoanthropologists use this variation 39 
to infer changes in hominin cognition1 and manual dexterity2, as well as subsistence strategies 40 
and environmental adaptations3. However, there is no long-term record of tool use variation 41 
in any other animal lineage. Excavations of western chimpanzee (Pan troglodytes verus) nut 42 
cracking sites have highlighted the potential antiquity of primate stone tools4, but without 43 
finding changes in tool function5. Similarly, although previous excavations of wild Burmese 44 
long-tailed macaque (Macaca fascicularis aurea) and bearded capuchin monkey (Sapajus 45 
libidinosus) sites have identified a range of stone tool behaviour6, 7, we have lacked evidence 46 
of behavioural variation through time. Here we show that wild bearded capuchins in Brazil 47 
have been using stone tools for at least the last ~3000 years, with marked variation in tool use 48 
through this period. This discovery presents the first example of long-term tool use variation 49 
outside of the human lineage, providing comparative data on the mechanisms of extended 50 
behavioural change. 51 

The wild S. libidinosus of Serra da Capivara National Park (SCNP) use stone tools in a wider 52 
variety of behaviours than any living animal other than Homo sapiens. These activities 53 
include nut cracking, seed processing, digging, stone on stone percussion, sexual displays, 54 
and fruit processing8–12. For percussive tasks, the SCNP capuchins use rounded quartzite 55 
cobbles as hammerstones, which are readily available in the immediate landscape. For anvils 56 
they use tree roots and limbs, as well as loose cobbles and conglomerate blocks10. 57 

The current study focuses on Caju BPF2, an open-air site located in the Baixão da Pedra 58 
Furada (BPF) valley (S 08° 49.740’, W 42° 33.292’) in SCNP (7) (Fig 1). Wild capuchins 59 
currently bring stones to this site to process endemic cashew nuts (Anacardium spp.), 60 
resulting in the accumulation of cashew-residue-covered hammerstones and broken cashew 61 
shells, along with heavy percussive damage on local cashew trees. Our most recent 62 
excavations build on the those previously reported7 and extend the site’s limits and time-63 
depth.  64 

A total of 16 radiocarbon dates closely associated with percussive stone tools demonstrate 65 
that capuchins have used this location during four separate chronological phases (I-IV; 66 
Supplementary Table 1). Caju BPF 2 consists of two separate excavated areas: Caju BPF2 67 
East (20 m2) and Caju BPF 2 West (47 m2). Combined, a total area of 67 square metres was 68 
excavated to a maximum depth of 0.77 m. 1699 lithics larger than 2cm were recovered, with 69 
123 (7.2%) exhibiting percussive damage. The excavation was separated into 16 arbitrary 70 
5cm spits, grouped into four chronological phases based on radiocarbon dating, Phase I being 71 
the most recent and Phase IV representing the oldest currently-known capuchin occupation.. 72 
The sedimentology (fine sand with frequent small rounded pebbles) is consistent throughout, 73 
with no discernible change between spits or levels. Gaps in the radiocarbon dating, however, 74 
suggests periods of low sedimentation rates. Dates for the lowest levels push the earliest 75 
known capuchin occupation at SCNP back to approximately 3000-2400 cal BP, quadrupling 76 
the time depth of evidence for non-ape tool use. A natural control sample representative of 77 
the raw materials available to capuchins within the landscape was samples (see 78 
Supplementary Information).   79 

[Insert Figure 1] 80 



 

 

 
 

Figure 1 | The Caju BPF2 site, Serra da Capivara National Park, Brazil. a, Map of Brazil 81 
with the location of Serra da Capivara National Park. b,The Baixão da Pedra Furada with the 82 
location of the Caju BPF2 excavation. c, Stratigraphic cross section of Caju BPF2 West with 83 
locations of radiocarbon dating samples and artefacts. 1 = OxA – 31432, 2 = OxA – 31433, 3 84 
= OxA – 31858, 4 = OxA – 31859, 5 = OxA – 31434, 6 = OxA – 31860, 7 = OxA – 31861, = 85 
OxA –  831435, 9 = OxA – 33134, 10 = OxA – 33135, 11 = OxA – 33136, 12 = OxA – 86 
33137, 13 = OxA – 33138. All radiocarbon samples are listed in Supplementary Table 1. 87 
Note overlapping artefacts is due to slope of excavation. d, Plan of Caju BPF2 West.  88 

 89 

We recovered 122 clearly identifiable capuchin stone artefacts, weighing 46.7kg in total, 90 
from the Caju BPF2 excavations. Percussive evidence on these tools includes multiple 91 
individual impact points, incipient cones of percussion, adhering residue, crushing of the 92 
stone surface, or a combination of these (Supplementary Information). The Caju BPF2 93 
artefacts include active percussive tools, as well as passive elements and fragments 94 
(Supplementary Table 2), with the majority being quartzite pebbles and cobbles (97.1%), and 95 
the remainder sandstone. Raw material representation parallels that of the landscape at SCNP 96 
(Supplementary Information), with the closest lithic material source being a seasonally dry 97 
streambed about 25 m to the east. All recovered hammerstones are significantly bigger than 98 
the natural background stones, indicating capuchin tool selection throughout the site’s 99 
occupation. 100 

The earliest hammerstones at the site (Phase IV; ca. 2993-2422 cal BP) are heavily damaged 101 
by percussive battering (Figure 2), and the large majority of hammerstones with flake 102 
detachments were found in this level (Supplementary Information). Tools from this phase 103 
possess significantly more impact points across more surfaces, have more extensive use-104 
wear, and are significantly smaller and lighter than those from the more recent Phases I and 105 
II. These damage patterns most likely result from strikes that contact the underlying substrate 106 
in addition to the target, suggesting that small foods were the main target; however, variation 107 
in tool use behaviour and repeated tool use should not also be overlooked. Further, 108 
observations of modern wild S. libidinosus have shown that stone tool dimensions and 109 
weights correlate positively with food hardness or resistance14, 15. Compared with the known 110 
use of the site for cashew processing in Phase I, this association points to the low weight of 111 
hammerstones in Phase IV likely resulting from processing smaller, less resistant food 112 
sources than cashews. 113 

The lithic assemblage from Phase III (ca. 640-565 cal BP) is not significantly different from 114 
either the preceding or following phases in terms of hammerstone dimensions and weight 115 
(Supplementary Information). Percussive damage is similar to that seen in Phase IV, 116 
suggesting a continued reliance on small foods, while the relatively high percentage of anvils 117 
is most similar to the later Phase II. In its wider site context, this phase therefore preserves an 118 
intermediate capuchin pounding behaviour. Hammerstones in Phase II (ca. 257-27 cal BP) 119 
are significantly larger than the cashew-processing material from Phase I (Figure 2). Coupled 120 
with the fact that large anvils and anvil fragments make up the majority of artefacts from this 121 
level, the evidence suggests that capuchin percussive activity at the site during this period 122 
also centred less exclusively on cashews, and more on the opening of harder foods. 123 



 

 

 
 

Heavy percussive damage to the roots and branches of the cashew trees at Caju BPF2 124 
indicates their use as anvils during Phase I, which may help explain the lower percentage of 125 
large stone anvils in this phase. All stone artefacts from this period are discoloured with 126 
identifiable cashew residue7. Residue analysis on older artefacts is, however, impossible due 127 
to a lack of preservation of any identifiable adhering residue7. It is likely this is due to a 128 
combination of mechanical removal and water based dilution of residues over time. This 129 
finding indicates either a diminished role of cashew processing in the past, or the 130 
decomposition of cashew nut residue over time. Combined with modern day observations, the 131 
archaeological data confirm that the primary recent activity at Caju BPF2 was cashew nut 132 
processing. 133 

 134 

The higher frequency and degree of percussive damage in the oldest level of the site, as well 135 
as an increased frequency of flaked hammerstones, supports the inference of a change in 136 
pounding behaviour between Phase IV and Phases II and I, sometime between ~2500 and 137 
~300 years ago. Hammerstones used for low-resistance food processing are significantly 138 
smaller and lighter than those used for all other capuchin percussive tasks10, 14–17, and the 139 
Phase IV hammerstones fall within the mean dimensions of those used for this activity. As 140 
noted, the increased damage on Phase IV tools is likely a consequence of frequent and 141 
repeated impacts between the hammerstone and an anvil stone, as a result of the smaller size 142 
of the processed food. Low-resistance food such as seeds also do not require a large anvil 143 
surface area, which would help explain why there are no large anvils in the earliest level. It 144 
may be that the corresponding passive elements at that time were hard natural substrates or 145 
quartzite pebbles of the same dimensions as hammerstones. The latter would mean that 146 
hammers and anvils in Phase IV may, in fact, be interchangeable, as observed in present day 147 
capuchins at SCNP.  148 

SCNP has a rich human archaeological record18, 19, however, the capuchin percussive lithic 149 
material identified at Caju BPF2 is clearly non-human in origin. The assemblage lacks 150 
knapped material such as exploited cores, flakes, and retouched material. In addition, the 151 
capuchin hammerstones at Caju BPF2 do not show the same percussive damage as typical 152 
human knapping hammerstones. Instead, it consists of repeated, superimposed incipient 153 
cones of percussion often located on flat surfaces, typical of capuchin percussive activities8. 154 
The Caju BPF2 site also lacks non-lithic material, such as ceramics or concentrated burnt 155 
areas, which is ubiquitous in late Holocene human archaeological sites at SCNP20. 156 

In traditional Early Stone Age lithic analyses, assemblage variation has been interpreted in a 157 
number of ways. Distinct substantial technological changes unique to hominins, such as the 158 
Oldowan to Acheulean transition have been used to infer hominin evolutionary adaptations, 159 
such as the appearance of a new species21 or cognitive developments22. However, more 160 
nuanced lithic differences within one technological tradition are interpreted in an equally 161 
varied manner. For example, both synchronic and diachronic variation within the Oldowan 162 
has been used to suggest regional adaptations to local environmental and raw material 163 
factors23, as well as varying cultural groups and traditions24. Furthermore, variation of 164 
artefact form within a single technological category such as percussive artefacts within the 165 
Oldowan, has been used to suggest change in function25, 26 and hominin subsistence 166 



 

 

 
 

strategies27. This study shows that similar inferences can now be made regarding non-human 167 
primate technological variation.  168 

The exact reasons behind the apparent diachronic technological change for the SCNP 169 
capuchins is currently unknown. SCNP is home to numerous capuchin groups, and these 170 
monkeys have been reported to acquire nut-cracking stone tool use behaviour by social 171 
learning processes28. If the same situation held in antiquity then the diachronic variation 172 
observed at Caju BPF2 may be a consequence of cultural variation in foods targeted with 173 
stone tools. That is, it may represent the archaeological signature of multiple capuchin 174 
populations that frequented this location, each of which used stones for different encased 175 
foods. Equally, it might instead record long-term site re-occupation by a single capuchin 176 
population undergoing tool use change. Outside of social explanations, the stone tool 177 
variation at Caju BPF2 may also reflect a past lack of cashew trees at this location. Although 178 
the palaeoenvironmental record at SCNP indicates a relatively continuous presence of dry 179 
savannah forest in this region20, the presence of cashew trees may have fluctuated in this 180 
specific location. 181 

Whichever is the case, while capuchins operated within the same basic stone tool percussive 182 
tradition over at least 3000 years of activity at Caju BPF2, they implemented this technology 183 
to different ends. The lithic material recovered from four chronologically distinct phases 184 
represents around 450 generations of repeated but not necessarily continuous capuchin tool 185 
use within the SCNP landscape. The predominant behaviour between 2993 and 565 cal BP 186 
was likely the processing of small low-resistance foods, whereas, by 257 cal BP this 187 
behaviour altered to encompass larger and harder resources than cashew processing seen in 188 
modern times. Our identification of diachronic stone tool behavioural change in the primate 189 
archaeological record indicates that humans are not unique in terms of long-term artefactual 190 
variation. This recognition of millennial-scale technological change outside the human 191 
lineage opens the door for future investigations into how stone-tool-using animals adapt to 192 
long-term ecological trends, as well as potentially broadening the comparative scope of 193 
primate models for plio-pleistocene hominin technological variation in the archaeological 194 
record.  195 

 196 
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 200 

Figure 2 | Examples of hammerstones and anvils from Caju BPF2, Serra da Capivara 201 
National Park, Brazil. a, Examples of cashew residue covered hammerstones from Phase I. 202 
b, Hammerstone from Phase II with clear incipient cones of percussion. c, Example of an 203 
anvil from Phase II. d, e and f, Examples of hammerstones with typical capuchin percussive 204 
damage from Phase IV. g, Relative frequency of impact points on all hammerstones and 205 
hammerstones with flake detachments from all phases. h, Average weights of all 206 
hammerstones and hammerstones with flake detachments from all phas 207 
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Methods 216 

Lithic analysis. Strict selection criteria were employed during the excavation process. All 217 
lithics both natural and artefactual larger than 2cm were collected. These were separated into 218 
natural unmodified pieces and artefacts that possessed clear percussive damage. A six-way 219 
inter-analyst agreement was used to assign an artefact as a capuchin percussive tool or 220 
fragment; if an individual analyst disagreed, the artefact was not recorded as capuchin-used. 221 
In this way we have been extremely conservative in our identification and recovery of 222 
capuchin cultural material. It is very likely that the true frequency of capuchin artefacts in 223 
each chronological phase at Caju BPF2 is greater, as ambiguous capuchin artefacts were set 224 
aside, as well as those that showed no percussive damage but may have been lightly used. 225 
However, by employing a conservative estimate, we have ensured that only the most 226 
diagnostic artefacts are included. One large, highly rounded hammerstone from Phase II may 227 
be either anthropogenic or capuchin-used (or both) and was excluded from this analysis, 228 
leaving 122 artefacts for our analyses. As Caju BPF2 is still frequented by capuchin groups, 229 
we decided that hammerstones on the surface should be kept in circulation so as not to disrupt 230 
the animals’ natural behaviour. The location of these surface hammerstones was plotted and 231 
they were documented in terms of dimensions and weight; however, these were not collected 232 
and not subjected to technological analysis. These hammerstones have been included in our 233 
analysis of tool dimensions but have been excluded from our comparisons of percussive 234 
damage. The remaining artefacts were measured, weighed and subjected to a full 235 
technological lithic analysis. Technological classifications were based on criteria previously 236 
used to describe primate percussive material8 , and shown to be adequate in describing the 237 
range of artefacts associated with capuchin percussive behaviour.  238 

 239 

Statistical analysis. Both categorical and nominal data were used to assess inter-phase 240 
variability. Depending on the data distribution, parametric and non-parametric tests were 241 
employed. A combination of Chi-square and Cramer’s V (for categorical data) and Kruskal–242 
Wallis and Mann-Whitney U tests (for numerical data) were used to test for overall 243 
diachronic variation. The 0.05 significance level was applied as the threshold for each 244 
statistical test. Post hoc analyses were employed to identify individual sources of variation 245 
between assemblages. For Kruskal-Wallis and Mann-Whitney U tests, post hoc pair-wise 246 
comparisons were undertaken. For significant Chi-square results, adjusted residuals were 247 
calculated to identify significant trends within the data; a value of 2.0 and −2.0 were taken to 248 
assess significance at a 0.05 confidence level. All data manipulation and statistical testing 249 
was undertaken in Excel and SPSS. 250 
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Data Availability 252 

All data pertaining to the study is included within the text and Supplementary Information. 253 
Access to the collections is available upon request.  254 
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