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15 Abstract

16 Hypatia-trackRadar is a Java standalone application designed to help biologists extract and process bird 

17 movement data from marine surveillance radars. This application integrates simultaneous collection of radar 

18 data and field observations by allowing the user to link information gathered from visual observers (such as 

19 bird species and flock size) to the radar echoes. A virtual transparent sheet positioned on the radar screen 

20 allows the user to visually follow and track the echoes on the radar screen. The application translates the 

21 position of the echoes on the screen in a metric coordinate system. Based on time and spatial position of the 

22 echoes the software automatically calculates multiple flight parameters, such as ground speed, track length 

23 and duration. We validated Hypatia-trackRadar using an unmanned aerial vehicle. Here we present the 

24 features of this application software and its first use in a real case study in a raptor migration bottle-neck.

25 Keywords: radar, tracking system, animal movement, Java, bird migration, drone.
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26 1 INTRODUCTION

27 The movement of an animal, defined as the change in its spatial location over time, is considered a central 

28 topic in behavioural and ecological studies (Nathan et al. 2008). Bird migration is a natural event that involves 

29 the movement of a large number of individuals from breeding to wintering sites and back. An average of 2 

30 billion birds move twice a year between Europe and Africa (Hahn et al. 2009). Interest in such impressive 

31 mass movements by the scientific community was originally driven by fascination and curiosity. Nowadays 

32 however, the study of bird movement has become an important field of research because of the mutual link 

33 between bird migration and human activities. Human activities impact the conservation of bird species and 

34 their migratory behaviour at multiple scales; in turn, current migratory patterns and their changes over time 

35 have far-reaching consequences for human societies. For this reason, monitoring and understanding bird 

36 migration has gained interest across multiple fields of research. Assessing the hazard of collision with 

37 anthropogenic infrastructures (Michev et al. 2017, Aschwanden et al. 2018), predicting the effect of climate 

38 change (Both and Marvelde 2007, Cox 2010, Saino et al. 2011, Panuccio et al. 2016a) and the spread of avian 

39 diseases (Sullivan et al. 2018, van Toor et al. 2018), and estimating seed dispersal and other ecosystem 

40 services (Kleyheeg et al. 2019) are just some examples.

41 Radars are widely used to investigate and monitor bird migration. The first radar studies started in 1940s and 

42 from the 1960s rapidly increased in number (Bruderer 1997a). Radars allow the remote monitoring of flying 

43 animals when visual observations are not possible, for instance during the night, at high altitudes or in case 

44 of fog. In addition, most radar systems allow simultaneous detection and tracking, at different spatial scales, 

45 of all targets moving in a certain section of the aerosphere. Over the years, different radar systems have been 

46 employed in bird migration studies. Pulse radars are particularly useful for this purpose. They use the delay 

47 between transmission and reception of the pulsed radio energy to measure the distance to a target. Examples 

48 of this system are tracking radars (derived from military equipment) and Fan-beam radars (i.e. Marine 

49 Surveillance Radars) (Cooper et al. 1991, Bruderer et al. 1995, Bruderer 1997a, 1997b). These systems, and 

50 different generations or modifications of the same system, can differ in their structure, geographical scope, 

51 data acquisition and processing, and reliability of the collected information. These differences make it 

52 challenging to compare and analyse data collected with such systems (Larkin 1991, Liechti et al. 1995, 
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53 Schmaljohann et al. 2008, Stepanian et al. 2014, Dokter et al. 2011, Nilsson et al. 2018). In recent years, 

54 multiple studies have been focussing on how to calibrate different radar systems in order to collect reliable 

55 information on bird movements (Schmaljohann et al. 2008, Hilgerloh et al. 2010, Nilsson et al. 2018), and 

56 various software applications have been developed to process the different types of radar data (Dokter et al. 

57 2011, Taylor et al. 2010, Rosa et al. 2016). 

58 Marine Surveillance Radars have been extensively used in bird migration studies (Kerlinger and Gauthreaux 

59 1985a, 1985b, Dokter et al. 2013, Panuccio et al. 2016b, 2019, Pastorino et al. 2017, Becciu et al. 2018). There 

60 radar systems are easy to both transport and operate and are the least expensive (Cooper et al. 1991). They 

61 use a rotating antenna to emit a narrow beam of microwaves and detect targets in their range. These radar 

62 systems are usually sold together with a software application which automatically pre-processes and 

63 transforms the radar signal of the detected targets in a two-dimensional visual output, that is directly 

64 visualised on the radar screen at each rotation of the antenna. Depending on the radar manufacturer, Marine 

65 Surveillance Radars can differ hugely in the native software they come with, but most native software display 

66 the pre-processed data using a plan position indicator (PPI). A PPI is a type of display that represents the 

67 radar location in the centre and uses concentric circles to mark the radial distance from the radar location. 

68 The radar signal is visualised on the PPI as echoes, that are a two-dimensional representation of the targets 

69 detected by the radar at each rotation of the antenna, on the horizontal or vertical plane (depending on the 

70 rotation plane of the antenna). However, the characteristics of the echoes obtained from the native radar 

71 software (in terms of number of pixels they occupy on the screen and pixel arrangement) are not directly 

72 related to the size and shape of the corresponding real target (Schmaljohann et al. 2008) and therefore 

73 cannot help the radar user in the identification of the target. Even when a pre-processing software is not 

74 involved in the procedure, the raw signal of Marine Radar systems with rotating antenna is not suitable to 

75 discriminate among species (Zaugg et al. 2008).

76 Researchers interested in the behavioural ecology of single species should thus integrate data obtained from 

77 this type of radar with visual observations. As early as the 1980s, Kerlinger and Gauthreaux (1985a, 1985b) 

78 combined, for the first time, the use of Marine Surveillance Radars with visual observations to study the 

79 diurnal migration of raptors in southern Texas (USA). At that time, all the equipment was analogue and the 
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80 researchers used hand-held tools directly on the PPI to calculate the movements of the birds (Kerlinger and 

81 Gauthreaux 1985a, 1985b). Based on the same idea but using the currently available technology, we 

82 developed Hypatia-trackRadar, an open-source application software that allows the user to:

83 -  Manually select targets on the radar screen, associate subsequent echoes of the same target to the 

84 same id and store the resulting tracks.

85 - Automatically calculate flight parameters related to the single echo as well as to the entire track, 

86 such as distance from the radar, track length, track straightness, ground speed) and flight altitude 

87 (for vertically oriented radars).

88 - Associate each track with information collected by visual observers (such as species or number of 

89 individuals).

90 - Standardise the collection of radar data and associated visual information to ease the comparison 

91 across studies and years.

92

93 We validated Hypatia-trackRadar using an unmanned aerial vehicle (UAV). The UAV was simultaneously 

94 tracked by its built-in GPS and by the radar operator (using Hypatia-trackRadar). For each pair of tracks, we 

95 then calculated and compared position of the centroids, length, straightness, ground speed and bearing. We 

96 finally demonstrate the use of Hypatia-trackRadar in a real case study, in a raptor migration bottleneck in 

97 Southern Italy.
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98 2 MATERIALS AND METHODS

99 2.1 Radar equipment

100 We used a Marine Surveillance Radar for the validation of Hypatia-trackRadar and its application on a real 

101 case study. The equipment consists of a 24 kW X-band radar (9.1 GHz) with a 2.17 m T-bar antenna, 

102 manufactured by the company GEM (Italy). The radar manufacturing company provides the users with the 

103 native acquisition software ExtraSea, which automatically pre-processes the raw radar signals of the detected 

104 target into a visual output (radar echoes), displayed on a PPI. The radar can be oriented horizontally or 

105 vertically, giving access to different information (Nilsson et al. 2018, Panuccio et al. 2018). For the software 

106 validation we oriented the radar horizontally, with the antenna rotating on the horizontal plane with 38 

107 revolutions per minute (meaning that the native radar software acquires and pre-processes the radar signal 

108 into images with a 2 s interval). This radar equipment and its performances are more extensively described 

109 in Nilsson et al. (2018) and Dokter et al. (2013).

110 2.2 Structure of the application software

111 2.2.1 Programming language

112 Java is a general-purpose, object-oriented programming language, and it is specifically designed to have as 

113 few implementation dependencies as possible. This means that compiled Java code can run on all platforms 

114 that support Java, regardless of computer architecture and without need for recompiling 

115 (http://www.oracle.com/technetwork/java/intro-141325.html, 2/11/2015). Users commonly use a Java 

116 Runtime Environment installed on their own machines for standalone Java applications, or in a web browser 

117 for Java applets. The core of this application is composed by the Swing Framework and the java.awt.geom 

118 Package (a library of the Swing project). It provides the 2D classes for defining and performing operations on 

119 objects related to two-dimensional geometry in Java. Some important features of the package include: a) 

120 classes for manipulating geometry, such as AffineTransform and the PathIterator interface which is 

121 implemented by all Shape objects; b) classes that implement the Shape interface, such as CubicCurve2D, 

122 Ellipse2D, Line2D, Rectangle2D, and GeneralShape; c) the Area class which provides mechanisms for add 

123 (union), subtract, intersect, and exclusiveOR operations on other Shape objects. In Hypatia-trackRadar it was 

124 used to implement Cartesian transformations (java.awt.geom.Point2D library), and for the calculation of 
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125 track metrics. Swing is a toolkit for Java, part of Oracle's Java Foundation Classes, which provides a graphical 

126 user interface (GUI) for Java programs. This toolkit allows the user to emulate the design of several platforms: 

127 in addition to familiar components such as buttons, check boxes and labels, Swing provides several advanced 

128 components such as tabbed panels, scroll panes, trees, tables, and lists. All geometric manipulations were 

129 implemented using the java.awt.geom Package.

130 2.2.2 Reference system

131 The coordinate system used by the software is centred on the radar location, corresponding to the 

132 coordinates 0,0. The position of the radar has to be set by the user before starting the data collection. The 

133 conversion factor pixel-metres allows the application to transform the XY coordinates of the echoes on the 

134 screen into a metric system, and correctly calculate all the additional parameters (such as distance of the 

135 target from the radar and flight speed). The value of this conversion factor depends on the size, in pixels, of 

136 the radar screen (specifically the diameter, in pixels, of the circle in the radar software window) and on the 

137 radar scale (range) and has to be set by the user before starting the data collection. As an example, for a 

138 radar range of 1.2 km (2400 m diameter) and a diameter on the screen of 600 pixels, the conversion factor 

139 is: 2400 *1 / 600 = 4.  In this example each echo selected by the user has a minimum spatial error of ± 4 m.

140 After setting the conversion factor, the software will associate each echo tracked by the user on the radar 

141 screen with the corresponding XY metric coordinates relative to the radar position.

142 2.2.3 Application modes

143 We implemented two different versions of the application software, one for vertically oriented and one for 

144 horizontally oriented radar antennas. Both versions of the application can deal with different flight modes 

145 (two in the current implementation, e.g. soaring and gliding/flapping). The user can manually specify, for 

146 each specific echo in a track, when a different flight mode occurs and the application will calculate the 

147 additional parameters accordingly (see section 2.2.3.1).

148 In the two following paragraphs we describe the additional software features and calculation of the track 

149 parameters, separately for each version.

150 2.2.3.1 Horizontal mode

151 We selected the following flight parameters to be automatically calculated on each track when the 
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152 application is run in horizontal mode:

153 - Euclidean_distance: distance, in metres, between first and last point of each track.

154 - Dt: duration of the track, calculated as the difference in seconds between the time of the last point and the 

155 time of the first point of each track.

156 - Soaring_time: total time of soaring flight (points marked with an asterisk) for each track, in seconds. One 

157 value per track.

158 - Gliding_time: total time of gliding/flapping flight for each track, in seconds, calculated as the sum of the 

159 duration of gliding/flapping segments. One value per track.

160 - Cross_country_speed: calculated as Euclidean_distance/Dt, in km/h. One value per track.

161 - Track_length: total length of each track from the first to the last point, in metres, calculated as the sum of 

162 the length of all segments in a track, including soaring points. One value per track.

163 - Inter-thermal_length: total length of consecutive gliding/flapping segments until the next soaring segment, 

164 in metres. The occurrence of a soaring segment defines the end of a gliding/flapping bout and interrupts the 

165 calculation, thus the number of Inter-thermal_length values, separated by |, varies depending on the number 

166 of soaring segments in the track.

167 - Ground_speed: speed calculated separately for each gliding/flapping bout, in km/h. The number of 

168 Ground_speed values, separated by |, corresponds to the number of gliding/flapping bouts (as in the Inter-

169 thermal_length field).

170 - Straightness: calculated as Euclidean_distance/Track_length. One value per track.

171 - Tortuosity: calculated as Track_length – Euclidean_distance. One value per track.

172 - Radar_distance: distance of each point from the radar centre, in metres. The number of Radar_distance 

173 values, separated by |, corresponds to the number of points in the track.

174

175 The following example shows how the application computes Track length, Inter-thermal_length and 

176 Ground_speed of a track. G1,G2,...Gn indicate gliding/flapping points of a track; S1,S2,…Sn indicate soaring 

177 points. d(G1,G2) is the distance between point G1 and point G2.

178 The application will interpret a selected bird track as:



8

179 G1 G2 G3 G4 S1 S2 S3 S4 G5 S5 S6

180 This track contains two gliding/flapping bouts, characterised by consecutive gliding/flapping segments (G1 

181 G2 G3 G4 S1 and S4 G5 S5) and two soaring bouts (S1 S2 S3 S4 and S5 S6).

182 The application will calculate the track parameters as follows:

183 Track_length = 

184 d(G1,G2)+d(G2,G3)+d(G3,G4)+d(G4,S1)+d(S1,S2)+d(S2,S3)+d(S3,S4)+d(S4,G5)+d(G5,S5)+d(S5,S6)

185 Inter-thermal_length = d(G1,G2)+d(G2,G3)+d(G3,G4)+d(G4,S1)|d(S4,G5)+d(G5,S5)

186 Ground_speed = v(G1 G2 G3 G4 S1) | v(S4 G5 S5)

187 The Inter-thermal_length is a sequence of values separated by |, each indicating the length of a 

188 gliding/flapping bout. In this example the Inter-thermal_length includes two values. The first one is the length 

189 of G1 G2 G3 G4 S1, which corresponds to the sum of the length of the segments connecting the first 

190 gliding/flapping point of the track (G1) to the first soaring point encountered along the track (S1). The second 

191 one is the length of S4 G5 S5, which corresponds to the second gliding/flapping bout. The soaring segments 

192 S1 S2 S3 S4 and S5 S6 are excluded from the calculation of the Inter-thermal_length. The Ground_speed will 

193 also have two values, corresponding to the Inter-thermal_length values divided by the temporal duration of 

194 the corresponding gliding/flapping bout.

195 The pseudocode of these functions is available in SM1.

196 2.2.3.2 Vertical mode

197 When Hypatia-trackRadar is run in vertical mode the X-axis represents the ground, in a direction that 

198 depends on the orientation of the radar, while the Y axis represents the elevation above the radar. Before 

199 starting the data collection, in addition to the radar location and the conversion factor required for both 

200 horizontal and vertical modes, the user is also required to specify the radar elevation above the sea level.

201 For each echo recorded in the vertical mode, the application automatically computes the elevation above 

202 the sea level and above the ground level (Fig. 1). The calculation of these two parameters depends on the 

203 initial settings provided by the user, who can:

204 1. Provide a terrain profile, by (a) uploading a file with comma separated values (CSV format) (recommended 

205 option for a more accurate calculation of the elevation parameters) or (b) manually drawing the profile within 
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206 the software environment.

207 2. Assume a flat terrain, asking the software to calculate the elevation of the echoes relative to the horizontal 

208 line passing through the radar centre.

209 When the first option is preferred, the file containing the terrain profile is expected to include one entry for 

210 each point of the terrain profile P(Xp,Yp). In each entry:

211 - Xp should correspond to the distance between P and the radar location in the direction of the radar 

212 orientation, and

213 - Yp should represent the elevation a.s.l. of P.

214 The values of both Xp and Yp are expected in metres. An example of this file is provided in the supplementary 

215 material (SM2). 

216 Once the terrain profile is provided, the application calculates the elevation parameters as follows: given the 

217 radar centre C(xr,yr) and the terrain profile points P1(Xb1,Yb1), P2(Xb2,Yb2), ...Pn(Xbn,Ybn), the application 

218 will calculate, for each echo A (Xa,Ya), the intersection point B(Xb,Yb) between the terrain profile and the 

219 projection of the point A on the X axis (Fig. 1). The software identifies the point B(Xb,Yb) using the following 

220 algorithm:

221 - For each point Pi of the ground profile, it calculates the straight line passing between Pi and the next point 

222 Pi+1.

223 - If the line Pi-Pi+1 intersects the line passing for the input point A and parallel to the Y axis (that is, the 

224 projection of the point A on the X axis) it identifies the coordinates of the intersection point B, and it stops.

225 - Otherwise it continues until the next point B is found.

226 The application can then compute:

227 - Elevation above the sea level (elevation a.s.l.) = Ya + Yr.

228 - Elevation above the ground level (elevation a.g.l.) = elevation a.s.l. – Yb

229

230 When the user assumes a flat terrain (no terrain profile is provided) the application calculates the elevation 

231 parameters relative to a virtual line, parallel to the X-axis and passing through the radar centre:

232 - Elevation a.s.l. = Ya + Yr
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233 - Elevation a.g.l. = Elevation a.s.l. – Yr

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251 Fig. 1 - Terrain profile. Information required by Hypatia-trackRadar when running in vertical 
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252 mode. The origin C(Xr,Yr) represents the radar position and elevation a.s.l., used as reference 

253 for the following calculations. The line parallel to the X axis passing from the radar centre (Xr, 

254 Yr) is shown in red and the terrain profile provided by the user in green. The grey points 

255 represent the position of all radar echoes at a certain time. For each radar echo, e.g. point A, 

256 the software calculates the intersection between the projection of point A on the X axis and 

257 the terrain profile (black point B). Point B is then used by the software to compute the 

258 elevation a.g.l. (Ya in the example) and a.s.l. (Ya + Yr).

259

260 2.3 User interface and usage

261 When the application is run, the user is asked to select the current radar mode (horizontal or vertical). In 

262 both cases the user has to specify the position of the radar (by clicking on the screen) and the conversion 

263 factor pixels-metres. When run in vertical mode, the application additionally requires the user to specify 

264 radar elevation and terrain profile (see section 2.2.3.2). All settings required by the application at the 

265 beginning of the session can be saved by the user in the working environment. When the user restarts the 

266 application software, the last working environment is restored (anytime the user saves the working 

267 environment previous settings are overwritten). On the same machine it is possible to save simultaneously 

268 two working environments, one for the horizontal mode and one for the vertical mode. The parameters 

269 calculated by the application differ for the horizontal and the vertical mode (the mode-specific parameters 

270 have been described in section 2.2.3), whereas the user interface of the application does not change between 

271 modes.

272 2.3.1 Global environment

273 The global environment consists of two different windows: the Track Manager and the Labelling System (Fig. 

274 2). The former includes the buttons to change the settings, open a new track, enter the track information, 

275 close and save the tracks. The latter works like a virtual transparent sheet, which can be precisely overlapped 

276 on the radar screen, by simply dragging the corners of the window. The transparency of the Labelling System 

277 allows the user to easily follow the echoes on the radar screen. The user can select the echoes of interest, by 

278 directly clicking on them on the transparent window. Each echo clicked by the user on the Labelling System 

279 is automatically stored in a CSV file with all the associated information; for safety reasons, the stored echoes 

280 are not editable from the user interface.
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281

282 Fig. 2 - User interface. Example of the Hypatia-trackRadar environment. The Track Manager 

283 is focused on track 3. The id 3 is assigned to all points collected while the Track Manager 

284 window is focused on track 3, as shown in the picture. The points selected in the Labelling 

285 System are associated to the previous track, with id 2, already complete and therefore closed 

286 in the Track Manager. In the Labelling System, as well as in the final output file, an asterisk 

287 differentiates soaring points from gliding/flapping points.

288

289 When the user starts a new track in the Track Manager, each echo clicked by the user in the Labelling System 

290 is automatically associated to a unique track id, to the current timestamp (taken directly from the PC) and to 

291 metric X, Y coordinates (calculated relative to the radar centre set by the user). The sequence of all 

292 subsequent points clicked by the user will be associated to the same track id until the track is closed. More 

293 tracks can be opened simultaneously and different points can be associated to the different opened tracks 

294 by selecting them in the Track Manager window (Fig. 2). Note that once a track is closed, it cannot be 

295 reopened or edited.

296 2.3.2 Manually added data

297 In addition to the automatic information associated by the application software to each echo (track id, 

298 timestamp and XY coordinates), the Track Manager allows the user to enter, in the designated fields, 

299 additional information collected by visual observers (Fig. 2). The designated fields are:

300 - Flock type: S if the echo corresponds to a single individual, G for a group, MG for a mixed group (more than 

301 one species).
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302 - Species 1.

303 - Species 2 (if applicable, when flock type is MG).

304 - Number of individuals observed in species 1.

305 - Number of individual observed in species 2 (if applicable, when flock type is MG).

306 - Sex (if applicable, when flock type is S).

307 - Age (if applicable, when flock type is S).

308 - Number of males and number of females (if applicable, when flock type is G or MG).

309 - Number of juveniles and number of adults (if applicable, when flock type is G or MG).

310 - Type of flight (set by selecting a point with the left or the right click of the mouse).

311 - Any additional note.

312 The information related to the flight mode can be acquired by the user directly from the Labelling System, 

313 by selecting a point using the left or the right button of the mouse; a right click marks the selected echoes 

314 with an asterisk (Fig. 2). This feature can be used, as in the case of this study, to separate gliding/flapping 

315 points from soaring points when tracking soaring birds. A change from gliding/flapping flight to soaring flight 

316 of a flock or a single bird can be easily detected both from the observers (when they are communicating with 

317 the radar operators) or from the radar operator (with a temporal resolution of 1 Hz, the soaring flight appears 

318 as a sequence of echoes around the same centre, with limited horizontal displacement). In addition to the 

319 automatic information associated to each echo and the manually added data, for each closed track, the 

320 application automatically calculates the parameters described in section 2.2.3, that are different depending 

321 on the application mode (horizontal or vertical) chosen at the beginning of the session.

322 2.3.3 Output

323 Any time the user closes Hypatia-trackRadar, a new CSV file will appear in the installation folder of the 

324 application. Each CSV file is automatically named with the application mode (horizontal or vertical) and the 

325 date and time at which the application session was started. In the file, each entry corresponds to one selected 

326 echo (point of the track); echoes belonging to the same track have different timestamp and XY coordinates 

327 but share the same track id and the same additional track information (such as group type, species, ground 

328 speed, etc).
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329 2.4 Validation of Hypatia-trackRadar using an unmanned aerial vehicle

330 We used an unmanned aerial vehicle “DJI Phantom 3” (UAV) to validate the application software and quantify 

331 its error in the computed parameters. The UAV was simultaneously tracked by its built-in GPS and by Hypatia-

332 trackRadar using a Marine Surveillance Radar (see section 2.1 for details on the radar equipment). The radar 

333 was operated at 2 km range, which given the setup of the native software window, implied a conversion 

334 factor of 6.67 (1 px = 6.67 m). We used a double-blind approach, in which the radar operator was isolated 

335 from the aerial vehicle sight. We flew the UAV along 46 flight tracks, under different scenarios of speed, 

336 straightness, and bearing, which are among the most common flight parameters recorded during studies on 

337 bird movement (Spaar 1997, Meyer et al. 2000, Malmiga et al. 2014, Nilsson et al. 2018). Each flight was 

338 simultaneously tracked by the radar operator (using Hypatia-trackRadar) and recorded by the built-in GPS of 

339 the UAV (135 Hz temporal resolution). We assumed the GPS provided precise and accurate information, and 

340 therefore used the GPS tracks as a reference to validate the radar tracks. For each track recorded by the radar 

341 we considered the following parameters: Track_length, Ground_speed, Cross_country_speed, tortuosity (all 

342 automatically calculated by the application Hypatia-trackRadar), flight direction and centroid of the track on 

343 the XY plane (both calculated in R during the data analysis (R Core Team 2018)); flight direction was calculated 

344 as the angle, in clockwise degrees from the North, of the straight line connecting the first and the last point 

345 of the track). The same flight parameters were calculated for the tracks collected by the GPS of the UAV, 

346 using the same procedure implemented by Hypatia-trackRadar for all variables except the ground speed, as 

347 we considered the instantaneous ground speed provided by the built-in GPS as more accurate. We then 

348 compared the distribution of the flight parameters of tracks collected with the two methods using a non-

349 parametric test for paired samples (Wilcoxon test). To compare flight directions we used a Watson-Wheeler 

350 test for circular paired samples using the R package “circular” (Agostinelli and Lund 2017). For the ground 

351 speed and the centroids of the tracks, we additionally investigated if the flight parameters of the UAV could 

352 partially explain the difference in the parameters calculated with the two tracking methods. Specifically, we 

353 used the difference in ground speed (Δ ground speed = Hypatiaspeed - GPSspeed), the difference in tortuosity 

354 (M2; Δtortuosity = Hypatiatortuosity – GPStortuosity) and the distance between the centroids of the tracks 
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355 collected with the two methods as response variables in three separate linear regression models. We used 

356 the distance between centroids as a measure of distortion in the track recorded by the radar. The following 

357 parameters (measured by the built-in GPS of the UAV) were used as explanatory variables: ground speed 

358 (m/s), radial distance from the radar (m), vertical distance from the horizontal plane of the radar (difference 

359 in the elevation between the UAV and the radar in m), maximum change in elevation within the track 

360 (calculated as the difference between the minimum and the maximum elevation of the GPS track) (m), and 

361 track tortuosity (m). The response variable “distance between centroids” was log-transformed to match the 

362 model assumptions. All analyses were performed in R (R Core Team 2018).

363

364 2.5 Application of Hypatia-trackRadar to track migrating birds

365 We used Hypatia-trackRadar for the first time at the Strait of Messina (southern Italy), a well-known 

366 bottleneck for migrating raptors in the Mediterranean basin (Panuccio 2011). We used Hypatia-trackRadar 

367 with the radar equipment described in section 2.1 to collect data on bird movement during Spring and 

368 Autumn migration, in 2015. During both Spring and Autumn, the radar was operated horizontally, at a 2 km 

369 scale (same settings as for the validation with the UAV). The radar station was located at 15.799501° long, 

370 38.230814° lat in Spring and at 15.823741° long, 38.215285° lat in Autumn.

371

372 3 RESULTS

373 3.1 Validation of Hypatia-trackRadar using an unmanned aerial vehicle

374 The considered flight parameters, calculated with Hypatia-trackRadar and with the built-in GPS of the UAV, 

375 showed overall similar results. However, the distribution of the ground speed and track straightness recorded 

376 with the two methods showed significant differences.

377

378 Table 1. Result of test for paired samples of different flight parameters for tracks collected 

379 with the two methods. The value W indicates the results of non-parametric Wilcoxon test, or 

380 in the case of Bearing, Watson-Wheeler test. We also show the mean and standard error of 

381 the difference between the same parameters of the two methods.

Flight parameter Difference Hypatia – GPS Test for paired samples
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(mean ± st.err.) (W, p-value)
Track length (m) 17.868 ± 4.99 1100, 0.747
Tortuosity (m) 25.760 ± 2.791 1361, 0.018

Ground speed (m/s) 0.897 ± 0.226 1061, 0.055
Cross country speed (m/s) 0.474 ± 0.219 894, 0.699

Distance between centroids (m) 28.889 ± 3.567 Centroid coord X: 1075, 0.898
Centroid coord Y: 1061, 0.985

Bearing (°) 0.347 ± 0.003 0.007, 0.996
382

383 Specifically, the ground speed estimated by Hypatia-trackRadar (mean ± SE = 13.39 ± 0.27 m/s), was just 

384 under 1 m/s higher than the one measured by the GPS (12.66 ± 0.28), whereas the average track tortuosity 

385 measured by Hypatia-trackRadar (76.26 ± 12.47), was about 26 m higher than the one derived from the GPS 

386 (48.53 ± 10.95; Table 1). The distribution of the track centroids (calculated for X and Y coordinates separately; 

387 Table 1) did not significantly differ between the two methods, but some distortion can be visually detected 

388 in Fig. 3.

389
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390

391 Fig. 3 – Tracks of the UAV. Visualization of the tracks of the UAV collected with Hypatia-

392 trackRadar (in red) and the built-in GPS of the UAV (in blue). The green point indicates the 

393 radar location.

394

395 We used three linear models to investigate if the difference in speed and tortuosity, and the distance 

396 between the centroids of the tracks recorded with the two methods could be affected by the flight 

397 parameters of the target (the UAV) (Table 2; section 2.4).
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398

399 Table 2. Summary of the three linear models. All predictors were measured by the built-in 

400 GPS of the UAV. Results show estimates and standard errors.

Response 
variables:
Δ ground speed
(Hypatia - GPS)

Δ tortuosity
(Hypatia - GPS)

log(distance
between centroids)

Intercept 4.902*** 37.147 3.147***

(1.765) (25.419) (1.020)
Ground speed -0.357*** -1.168 0.037

(0.129) (1.854) (0.074)
Radial distance from Radar 0.0004 -0.003 -0.001*

(0.001) (0.013) (0.001)
Tortuosity 0.003 0.100** -0.003*

(0.003) (0.047) (0.002)
Change in elevation within track 0.007 0.110 -0.001

(0.009) (0.132) (0.005)
Vertical distance from radar 
horizontal plane -0.004 0.020 0.013**

(0.011) (0.160) (0.006)
Observations 37 37 37

R2 0.236 0.176 0.246

Adjusted R2 0.113 0.043 0.124

Note:
*p<0.1; **p<0.05; 

***p<0.01
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401 The results of the linear models showed that the difference between the ground speed recorded with the 

402 two methods decreased with increasing speed of the UAV (estimate ± SE = -0.357 ± 0.128, P<0.01), whereas 

403 the difference in tortuosity significantly increased with increasing track tortuosity of the UAV (0.100 ± 0.047, 

404 p<0.05; Table 2; Fig. 4a, 4b). The distance between centroids was affected by multiple parameters; 

405 specifically, the model showed a significant increase of about 1.3% with one unit increase in vertical distance 

406 from the radar (above or below the radar horizontal plane), a decrease of 1% with one unit increase in radial 

407 distance from the radar and a decrease of 3% with one unit increase in tortuosity (Table 2; Fig. 4c). These 

408 results indicate that higher ground speed of the target and lower tortuosity in its flight, the higher the 

409 accuracy of the flight parameters recorded by the radar. They also show that tracks with higher tortuosity, 

410 recorded closer to the radar horizontal plane and farther away from its location are more accurately 

411 positioned relative to the GPS tracks.

412

413
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414

415

416

417

418

419

420

421

422

423 Fig. 4 – Result of the linear models. Partial effect plots for the three linear regression models, 

424 investigating the relationship between the flight parameters of the UAV and the difference 

425 in the measurements of Hypatia-trackRadar and the built-in GPS. Specifically, the three plots 

426 show the effect of the speed (A), tortuosity (B) and radial distance (C) of the UAV on the 

427 difference in speed, tortuosity and distance between centroids, respectively. In all plots, the 

428 solid points correspond to the observations used in the models; the solid lines represent the 

429 regression lines and the dashed lines the 95% confidence intervals.

430

431 3.2 Application of Hypatia-trackRadar to track migrating birds
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432 During Spring and Autumn migration in 2015, we used Hypatia-trackRadar to collect about 1000 tracks of 

433 migrating raptors and storks. The output of Hypatia-trackRadar corresponding to a selection of these tracks 

434 with 

435 the 

436 associated flight parameters is reported in the supplementary material (SM3). Here we provide two 

437 visualizations of the application output, separate for the two migratory seasons, with tracks of individuals 

438 from different species performing both gliding/flapping flight and soaring flight (Fig. 5).

439 A

440

441

442

443

444

445

446
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447

448

449 B

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464 Fig. 5 – Tracks of migrating birds. Selection of tracks collected at the Strait of Messina using 

465 Hypatia-trackRadar and a Marine Surveillance Radar, in Spring (A) and Autumn (B) 2015. 

466 Different colours indicate different bird species. Solid points correspond to gliding/flapping 
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467 flight and spiral points to soaring flight. Background colour and contour lines are based on a 

468 30 m resolution Digital Elevation Model (DEM) (EEA 2013). The map was prepared using the 

469 open source GIS software QGIS (QGIS Development Team 2017). The flight parameters 

470 automatically associated by Hypatia-trackRadar to each track are presented in the 

471 supplementary material (SM3).

472

473 DISCUSSION

474 The use of the UAV, and the assumed accuracy of the information collected by the built-in GPS, allowed us 

475 to test the reliability of the information provided by Hypatia-trackRadar. The results showed a general 

476 agreement between the flight parameters and the position of the tracks collected by the GPS and by Hypatia-

477 trackRadar. However, we detected some differences in the ground speed, track tortuosity and track 

478 centroids. In the explanation of the fine scale differences detected during the validation, three main sources 

479 of bias have to be taken into account, related to hardware, software and user. First, the intrinsic error of the 

480 GPS (the positioning system of the UAV) and the radar equipment (the tool used to detect the target). Second, 

481 the error in the native radar software used to transform the radar signal into a visual output on the screen 

482 (the target is represented by a green echo on the screen, whose size in pixels is not directly related to the 

483 real size of the target), and the error of Hypatia-trackRadar. Finally, the precision of the radar operator 

484 selecting the radar echoes on the screen. The error of Hypatia-trackRadar mainly depends on the scale at 

485 which the radar is used, which is directly related to the pixel-metres conversion of each measurement (in our 

486 study case at 2 km scale, 1 pixel=6.67 m). This conversion factor in turn affects the impact of the manual 

487 error potentially made by the user while selecting echoes on the screen. Additionally, the echo visualised on 

488 the screen can occupy multiple neighboring pixels. For these reasons, the biases introduced by the Hypatia-

489 trackRadar application and by the radar operator are expected to play a minor role when the radar is used 

490 at a scale < 2 km and a bigger role when the radar is used at larger scales. Our validation showed that all 

491 parameters collected with the combination of radar equipment, Hypatia-trackRadar and radar operator were 

492 overestimated relative to the ones collected with the built-in GPS of the UAV, but the differences between 

493 the two methods are small and mostly non-significant. Our models suggest that all sources of biases might 

494 be contributing to the differences detected in our dataset. In fact, our results show that lower ground speed 

495 and higher tortuosity in the flight of the target lead to higher differences in the flight parameters collected 
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496 with the two methods. Specifically, a target flying both at a low (about 10 m/s) and a high (16 m/s) ground 

497 speed would lead to a higher difference in the ground speed calculated with the two methods. Assuming the 

498 GPS measurement is more accurate, a lower ground speed of the target leads to an overestimation of the 

499 speed calculated with the radar system, whereas a higher ground speed leads to an underestimation. We 

500 suggest that the proximate cause of this bias is the imprecision of the radar operator while selecting the 

501 targets on the screen. A slow flying target is more unpredictable in its flying direction leading to errors 

502 perpendicular to the flying direction. In contrast, a fast flying target can make it difficult for the radar operator 

503 to keep up with its track leading to errors along the direction of the track. The extent of the error in the 

504 recorded ground speed is closely related to the scale at which the radar operates (defining how many meters 

505 of error will be produced when the user commits an error of one pixel). Concerning the Δtortuosity, a 

506 minimum value of tortuosity (straighter tracks) in the UAV flight seemed to minimise this difference. Finally, 

507 the last model showed how tracks of targets flying slower, closer to the horizontal plane of the radar (low 

508 vertical distance), farther away from the radar (high radial distance) and with less change in altitude within 

509 the track, are less subject to distortions. This result is in agreement with our expectation concerning the 

510 results of the previous models and the distortion caused by the radar equipment, mainly due to the ground 

511 clutter (close to the radar) and to the shape and the width of the radar beam (the latter increases with the 

512 distance from the radar); these effects are also visually detectable in Fig. 3. Unexpectedly, this model also 

513 showed that an increased tortuosity would decrease the distance between centroids, but we did not find a 

514 possible direct cause for this result. Overall, considering the different sources of bias involved in the 

515 calculation and comparison of the flight parameters collected with the two methods, this validation showed 

516 that the distortions detected in the tracks recorded by the radar occur at very fine scale. The validation also 

517 highlighted the effect of the different factors and sources of bias affecting these distortions and can be used 

518 as a reference during the analysis and interpretation of radar data.

519 After the Marine Surveillance Radar and the native radar software are correctly calibrated, Hypatia-

520 trackRadar allows the user to collect and store standardised data on the spatial displacement of animals 

521 moving in the radar range, and to integrate these data with information collected through visual observation 

522 regarding species, flock size, sex and flight behaviour of the tracked individuals. Beyond the need of these 



25

523 additional information per se, they also help the radar operator to minimise the misinterpretation of the 

524 radar echoes appearing on the screen, reducing one of the main biases in avian studies involving the use of 

525 radar systems (Larkin 1991, Schmaljohann et al. 2008). Hypatia-trackRadar can be used on any type of radar 

526 system that allows visualisation of echoes on a PPI on a personal computer (for an example of this application 

527 used with a broad-band radar see Xirouchakis and Panuccio 2019). The user interface of the application is 

528 flexible and can be adapted to the screen of different native radar software (which are different according to 

529 the manufacturing company selling the radar equipment). The output files of Hypatia-trackRadar can be 

530 directly used for the analysis of the flight parameters that are automatically calculated by the application. In 

531 addition, the metric coordinates assigned to each echo relative to the radar position allow the users to easily 

532 calculate additional movement parameters, localise the data in a geographic reference system, visualise 

533 them in their environmental context, and associate them to environmental information.

534 In conclusion, the availability of a simple and flexible software application as Hypatia-trackRadar is promising 

535 for meeting the needs of different radar studies, by easing the acquisition, standardisation and analysis of 

536 radar data associated with observational data of flying animals.

537 Hypatia-trackRadar is an open source application, freely-available at: http://www.radar4birds.com/hypatia-

538 trackradar/
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SM1.  Pseudocode of the parameters computed by Hypatia-trackRadar, in horizontal and vertical

mode.

1) For the parameters calculated in horizontal mode:

for(Point nextPoint :listPoint):

Soaring = false; 

firstTrackLengthX = secondTrackLengthX;

firstTrackLengthY = secondTrackLengthY;

if(!hasFirstTimeTrackLength){

firstTimeTrackLength = timeTrackLength;

timeTrackLength = nextPoint.hour;

hasFirstTimeTrackLength = true;

}

if(nextPoint.fliType.equals("*")){

IS A SOARING POINT

Soaring = true;

}else{Soaring = false;}

if(!hasFirstPoint){

firstX = nextPoint.x;

firstY = nextPoint.y;

starTime = nextPoint.h;

hasFirstPoint = true;



last_index = nextPoint.index;

}

if(checkPoint){

if(Soaring){isFirstSoaring=true;}else{isFirstSoaring=false;}

}

if(lastIndex = nextPoint.index){

IS A POINT OF THE CURRENT TRACK

Radardistance = distance(0, 0, x, y);

if(Radardistance >0){

radarDistanceString += radarDistance +"|"; }

secondTrackLengthX = nextPoint.x;

secondTrackLengthY = nextPoint.y;

endTimeTrackLength = nextPoint.h;

if(!Soaring && !start){

distance = distance(firstTrackLengthX, firstTrackLengthY, secondTrackLengthX, 

secondTrackLengthY);

trackLengthWithSoaring = trackLengthWithSoaring + distance;

isFirstSoaring = true;

}else{

 

CASE 1: TRACK MORPHOLOGY IS G1G2G3S1S2S3

distance = distance(firstTrackLengthX, firstTrackLengthY, secondTrackLengthX,   



secondTrackLengthY);

trackLengthWithSoaring = trackLengthWithSoaring + distance;

if( trackLengthWithSoaring > 0){

trackLengthWithSoaringString += trackLengthWithSoaring + "|";

GROUND SPEED CALCULATION:

TAKE TIME OF THE START AND THE END POINT TRACK

if(firstTimeTrackLength!=null){

time_1 = (firstTimeTrackLength);

}else{

if(timeTrackLength!=null){

time_1 = (timeTrackLength);}

if(endTimeTrackLength!=null){

time_2 = (endTimeTrackLength);}

   

diff = 0;

diffSeconds = 0;

if(time_1!=null && time_2!=null ){

diff = time_2 - time_1;

diffSeconds = diff / 1000; 

gliding_time = gliding_time + diffSeconds;



}

Km_trackLengthWithSoaring =  trackLengthWithSoaring * 0.001;

ground_speed = 0;

hour = (diffSeconds / 3600.0);

if(hour>0){

ground_speed = Km_trackLengthWithSoaring/hour;

}

ground_speedString += ground_speed +"|";

trackLengthWithSoaring = 0;

hasFirstTimeTrackLength = false;

}

isFirstSoaring = true;

CASE 2: TRACK MORPHOLOGY IS S1ABCDE

   

distance = distance(firstTrackLengthX, firstTrackLengthY, secondTrackLengthX, 

              secondTrackLengthY);

trackLengthWithSoaring = trackLengthWithSoaring + distance;

if( trackLengthWithSoaring > 0){

trackLengthWithSoaring_string += trackLengthWithSoaring + "|";



GROUND SPEED CALCULATION:

TAKE TIME OF THE START AND THE END POINT OF THE TRACK

if(firstTimeTrackLength!=null){

time_1 = (firstTimeTrackLength);

}else{

if(timeTrackLength!=null){

time_1 = (timeTrackLength);}

if(endTimeTrackLength!=null){

time_2 = (endTimeTrackLength);}

   

diff = 0;

diffSeconds = 0;

if(time_1!=null && time_2!=null ){

diff = time_2 - time_1;

diffSeconds = diff / 1000; 

gliding_time = gliding_time + diffSeconds;

}

Km_trackLengthWithSoaring =  trackLengthWithSoaring * 0.001;

ground_speed = 0;



hour = (diffSeconds / 3600.0);

if(hour>0){

ground_speed = Km_trackLengthWithSoaring/hour;

}

ground_speedString += ground_speed +"|";

trackLengthWithSoaring = 0;

hasFirstTimeTrackLength = false;

}

isFirstSoaring = true;

isFirstSoaring = true;

}

CASE 3: TRACK MORPHOLOGY IS S1S2S3 

hasFirstTimeTrackLength = false;

}

if(!start){

CALCULATE NORMAL TRACKLENGTH

distance = distance(firstTrackLengthX, firstTrackLengthY, secondTrackLengthX, 

secondTrackLengthY);

trackLength = trackLength+distance; 

}



checkPoint = false;

}}

if(lastIndex != nextPoint.index){

START A NEW TRACK

if(Soaring){isFirstSoaring=true;}else{isFirstSoaring=false;}

DT CALCULATION FOR THE LAST TRACK:

time1 = starTime;

time2 = endTime;

diff = time2 - time1;

diffSeconds = diff / 1000;  

CROSS-COUNTRY SPEED CALCULATION FOR THE LAST TRACK:

cross_country_speed = 0;

km_LinearDistance = linear_distance * 0.001;

hour = (diffSeconds / 3600.0);

if(hour > 0){

cross_country_speed = km_LinearDistance/hour;

}



GROUND SPEED CALCULATION FOR THE LAST TRACK:

ground_Speed = "";

if(ground_speedString!=null){

ground_Speed = ground_speedString;

}

else{

Km_trackLength =  trackLength * 0.001;

ground_speed = 0;

if(hour > 0){

ground_speed = Km_trackLength/hour;

}

}

STRAIGHTNESS CALCULATION FOR THE LAST TRACK:

 

straightness = linear_distance/trackLength;

TORTUOSITY CALCULATION FOR THE LAST TRACK:

tortuosity = trackLength - linear_distance;

START A NEW TRACK PROCESS



firstX = nextPoint.x;

firstY = nextPoint.y;

starTime =nextPoint.hour;

timeTrackLength = nextPoint.hour;

hasFirstPoint = true;

hasFirstTimeTrackLength = false;

last_index = nextPoint.index;

radarDistance = "";

Radardistance = distance(0, 0, nextPoint.x, nextPoint.y);

if(Radardistance >0){

radarDistanceString += radarDistance +"|";

}

}

if(!hasLastPoint){

lastX = nextPoint.x;

lastY = nextPoint.y;

endTime = nextPoint.hour;

}

start = false;    

checkPoint = false;

}



2) For the parameters calculated in vertical mode:

CASE 1: EARTH PROFILE IS A SET OF GEOLOCALIZED POINT 

for(Point nextPoint :listPoint):

firstX = secondX;

firstY = secondY;

secondX = nextPoint.x;

secondY = nextPoint.y;

X = X_input/PixelToM_scale;

Y = Y_input/PixelToM_scale;

Point p = intersection(X,Y,X,0,firstX,firstY,secondX,secondY);

CASE A: INTERSECTION POINT IS FOUND

quotaMare  =  Y + Radar.centerY;

quotaSuolo = quotaMare - (p.y * PixelToM_scale));

break;

CASE B: INTERSECTION POINT ISN'T FOUND - IT CALCULATES DISTANCE FROM INPUT 



POINT TO X_AXIS

quotaMare  =  Y + Radar.centerY;

quotaSuolo = quotaMare - (Radar.y * PixelToM_scale);

CASE 2: EARTH PROFILE IS THE X-AXES

quotaMare  =  Y + Radar.centerY;

quotaSuolo = quotaMare - (Radar.y * PixelToM_scale);



SM3. Simplified example of the output of Hypatia-trackRadar. For visualization purposes, we included only the first echo of each track and we omitted some of the 
columns originally in the table. Field names were modified to improve readability. The track id (column "track_id") and the associated information correspond to the
tracks shown in Fig. 5.

track_id season timestamp X_utm Y_utm
species

1
species

2
flock
type

flock
size 1

flock
size 2

duratio
n

soar glide length
ground
speed

cross-
country
speed

straight tort

K_a spring
22/03/2016

10:38
570220 4232826

Black
kite

flock 2 88 32 56 1,327.240 19.0717 13.860 0.920 107.550

BS_a spring
29/04/2016

18:55
569508 4231067

Black
stork

flock 2 140 0 140 1,920.430 13.7174 9.630 0.700 572.240

E_a spring
26/04/2016

17:17
568836 4231755

Boot.
eagle

single 1 119 29 90 1,460.640
8.1948|
17.0771

11.519 0.940 898.980

CB_a spring
29/03/2016

14:48
569223 4232181

Com.
buzzard

single 1 96 9 87 1,150.090
13.2951|
12.0816

11.342 0.950 612.480

CB_b spring
27/04/2016

15:11
569108 4231942

Com.
buzzard

single 1 100 38 62 1,149
13.7454|
15.9834

11.212 0.980 278.530

FT_a spring
22/03/2016

11:25
569803 4232482

Com.
kestrel

single 1 143 48 95 1,382.140
7.1387|
12.1544

5.486 0.570 597.620

HB_a spring
21/04/2016

13:24
569062 4232537

Hon.
buzzard

flock 3 202 85 117 2,701.570
6.282|

10.9071
5.740 0.430 1,542.070

HB_b spring
29/04/2016

11:17
568841 4232592

Hon.
buzzard

flock 3 26 0 26 2,601.010 10.0039 9.198 0.920 209.620

HB_c spring
05/05/2016

14:05
568478 4231314

Hon.
buzzard

flock 5 209 8 201 2,138.250
9.2525|
10.8386

10.052 0.980 374.240

HB_d spring
05/05/2016

13:29
568708 4231302

Hon.
buzzard

flock 2 268 54 214 2,079.750
6.379|
9.2254|
10.4933

7.153 0.920 162.730

HB_e spring
05/05/2016

13:52
568738 4230936

Hon.
buzzard

flock 11 315 114 201 2,059.670
13.9595|
8.0504|
7.3913

5.572 0.850 304.500

HB_f spring
05/05/2016

14:54
568835 4231246

Hon.
buzzard

flock 16 205 44 161 1,967.090 10.7946 7.831 0.820 361.720

MH_a spring
27/03/2016

16:03
569094 4231059

Marsh
harrier

single 1 164 48 116 1,905.390
12.6801|
14.5647

10.966 0.940 106.890

MH_b spring
28/03/2016

18:37
569730 4231119

Marsh
harrier

flock 3 157 0 157 1,736.320 11.0594 10.608 0.960 707.900



SE_a spring
05/05/2016

15:00
568959 4232002

Snake
eagle

single 1 233 67 166 2,287.330
12.6549|
8.4211|
12.9199

7.045 0.720 645.790

WS_a spring
30/03/2016

16:17
568109 4231042

White
stork

flock 24 184 0 184 2,825.560 15.3563 14.456 0.940 165.740

BE_1 autumn
07/09/2016

13:10
570916 4229833

Bee
eater

flock 25 275 0 275 3,494.030 12.7056 9.726 0.770 819.460

BE_2 autumn
02/09/2016

18:15
572996 4228566

Bee
eater

flock 27 141 0 141 1,557.270 11.0445 10.437 0.940 856.590

BE_3 autumn
02/09/2016

14:17
572129 4228699

Bee
eater

flock 25 207 97 110 1,536.460
9.1533|
8.9534|
14.8329

6.205 0.840 251.970

BE_4 autumn
04/09/2016

11:00
571496 4229453

Bee
eater

flock 23 122 0 122 1,439.340 11.7979 10.168 0.860 198.830

BE_5 autumn
25/08/2016

11:02
572242 4228666

Bee
eater

flock 40 170 54 116 1,347.290
5.2275|
10.8162

6.739 0.850 201.620

BE_6 autumn
26/08/2016

13:30
571302 4228866

Bee
eater

flock 20 62 0 62 1,095.840 17.6748 16.832 0.950 522.720

K_1 autumn
13/08/2016

09:55
571222 4229880

Black
kite

flock 30 341 133 208 3,397.240
10.8978|
13.934

8.245 0.830 585.680

K_2 autumn
22/08/2016

16:36
571903 4229059

Black
kite

flock 27 140 0 140 1,831.770 13.0841 12.675 0.970 572.060

K_3 autumn
16/08/2016

12:25
572082 4228746

Black
kite

flock 12 165 0 165 1,692.490 10.2576 9.848 0.960 673.680

K_4 autumn
11/09/2016

12:08
572389 4228819

Black
kite

flock 25 87 0 87 1,078.450 12.3961 12.177 0.980 190.590

CB_1 autumn
25/08/2016

10:38
571669 4228639

Com.
buzzard

flock 1 100 1 99 1,033.490
5.2974|
10.3581

9.359 0.910 975.730

HB_1 autumn
24/08/2016

13:41
570976 4229800

Hon.
buzzard

flock 16 201 10 191 2,592.500
15.843|
7.9623

12.528 0.970 742.800

HB_10 autumn
11/09/2016

13:11
571202 4229793

Hon.
buzzard

single 1 123 0 123 1,310.480 10.6544 10.174 0.950 590.720

HB_11 autumn
26/08/2016

12:51
571689 4228599

Hon.
buzzard

flock 5 91 0 91 1,014.220 11.1454 10.517 0.940 571.500

HB_2 autumn
24/08/2016

13:25
570869 4229059

Hon.
buzzard

flock 30 215 0 215 2,114.890 9.8367 8.940 0.910 192.870

HB_3 autumn 24/08/2016 571649 4228799 Hon. flock 33 210 68 142 1,922.400 5.6993| 8.005 0.870 241.290



13:26 buzzard 13.4993

HB_4 autumn
26/08/2016

11:05
573783 4229866

Hon.
buzzard

flock 85 166 4 162 1,884.820
13.1747|
10.0389

10.165 0.900 197.500

HB_5 autumn
26/08/2016

10:44
572242 4228619

Hon.
buzzard

flock 59 271 107 164 1,868.790
8.0415|
9.4098|
4.3617

5.302 0.770 431.920

HB_6 autumn
26/08/2016

11:12
573062 4229926

Hon.
buzzard

flock 39 175 80 95 1,803.300
14.0377|
10.9489

9.197 0.890 193.850

HB_7 autumn
24/08/2016

13:23
570769 4228706

Hon.
buzzard

flock 50 149 0 149 1,738.740 11.6694 11.034 0.950 946.420

HB_8 autumn
26/08/2016

12:01
570735 4228899

Hon.
buzzard

flock 12 101 16 85 1,473.560 16.3635 14.302 0.980 290.690

HB_9 autumn
07/09/2016

10:09
571162 4229833

Hon.
buzzard

single 1 148 2 146 1,429.700 9.5615 7.921 0.820 257.340

MF_1 autumn
13/09/2016

15:19
571549 4228999

Hon.
buzzard

Marsh
harrier

mixed
flock

5 1 106 0 106 1,129.680 10.6574 10.164 0.950 522.930

MF_2 autumn
14/09/2016

11:41
571322 4229840

Hon.
buzzard

Marsh
harrier

mixed
flock

5 1 84 0 84 1,012.690 12.0559 11.740 0.970 265.110

MH_1 autumn
14/09/2016

10:13
571523 4229013

Marsh
harrier

flock 3 107 1 106 1,129.260 10.3987 9.566 0.910 105.660

MH_2 autumn
10/09/2016

10:30
571209

4228973 Marsh
harrier

single 1 82 0 82 1,101.090 13.4279 13.250 0.990 145.520

WS_1 autumn
26/08/2016

11:51
574083 4229753

White
stork

flock 33 318 150 168 3,078.140
11.004|
6.1711|
20.2459

8.612 0.890 339.380

WS_2 autumn
03/09/2016

14:35
570842 4229580

White
stork

flock 6 319 26 293 2,101.280

8.0758|
8.5494|
2.9327|
7.1363|
6.8319

3.069 0.470 1,122.130




