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ABSTRACT 

Lipid and polymeric nanoparticles, although proven to be effective drug delivery systems 

compared to free drugs, have shown considerable limitations pertaining to their uptake and 

release at tumor sites. Spatial and temporal control over the delivery of anticancer drugs has 

always been challenge to drug delivery scientists. Here, we have developed and characterized 

multifunctional nanoparticles (liposomes and polymersomes) which are targeted specifically to 

cancer cells, and release their contents with tumor specific internal triggers. To enable these 

nanoparticles to be tracked in blood circulation, we have imparted them with echogenic 

characteristic. Echogenicity of nanoparticles is evaluated using ultrasound scattering and 

imaging experiments. Nanoparticles demonstrated effective release with internal triggers such 

as elevated levels of MMP-9 enzyme found in the extracellular matrix of tumor cells, decreased 

pH of lysosome, and differential concentration of reducing agents in cytosol of cancer cells. We 

have also successfully demonstrated the sensitivity of these particles towards ultrasound to 

further enhance the release with internal triggers. To ensure the selective uptake by folate 

receptor- overexpressing cancer cells, we decorated these nanoparticles with folic acid on their 

surface. Fluorescence microscopic images showed significantly higher uptake of folate-targeted 

nanoparticles by MCF-7 (breast cancer) and PANC-1 (pancreatic cancer) cells compared to 

particles without any targeting ligand on their surface. To demonstrate the effectiveness of these 

nanoparticles to carry the drugs inside and kill cancer cells, we encapsulated doxorubicin and/or 

gemcitabine employing the pH gradient method. Drug loaded nanoparticles showed 

significantly higher killing of the cancer cells compared to their non-targeted counterparts and 

free drugs. With further development, these nanoparticles certainly have potential to be used as 

a multifunctional nanocarriers for image guided, targeted delivery of anticancer drugs. 
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GENERAL INTRODUCTION AND DISSERTATION ORGANIZATION 

Nanomedicine: During the last few decades, nanotechnology has revolutionized the 

science of drug formulation and delivery. Recent years have witnessed unprecedented growth in 

the field of nanoscience and nanomedicine. The scientific community all over the world is very 

optimistic, hoping that nanomedicine will bring significant advances in the strategies of 

diagnosis and treatment of diseases. Although the term “nano” has varied connotations in 

different disciplines, there is consensus that nanotechnology means not just miniaturization of 

larger particles, but the preparation of nanomaterial whose properties change drastically from 

their bulkier versions because of their nanoscale size [1]. Although it’s still a topic of debate, 

nanoparticles can be defined as ultra-dispersed, solid, supramolecular structures displaying 

submicron size, ideally smaller than 500 nm. It should also be noticed that many nanomedicine 

products don’t fall into the category of nanoparticles as per definition of nanoscale materials 

(size range between 0.2 to 100 nm) by The Royal Society (2004) [2]. However, this does not 

necessarily have impact on their functional aspects in medical applications. Large-sized particles 

are needed for loading higher amounts of drug onto the particles. The reasons why 

nanoparticles find attractive applications in medicine is based on their unique features, such as 

large surface to mass ratio, their ability to adsorb/carry other compounds, and ability to change 

their physicochemical behavior just by change in the size. The composition of engineered 

nanoparticles can vary, and they can be of natural origin (e.g., phospholipids, lipids, chitosan, 

dextran, carbohydrates, lactic acid), or can be of “synthetic” origin (polymers, carbon, silica and 

metals) [2]. The most important goals behind the use of “nanomaterials” in drug delivery 

include: 

� Target-specific delivery of drugs 

� Improved efficacy, reduced toxicity 

� Safety and biocompatibility 
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� Improved pharmacokinetics and bioavailability of drugs 

The primary requisite of an ideal nanomaterial for drug delivery would be not only to 

have capacity to load high amounts of drug, but also the ability to release the drug at the 

intended site. Currently, different types of nanoparticles are being tested for their effectiveness 

as drug delivery vehicles (e.g., liposomes, polymersomes, micelles, dendrimers, 

nanosassemblies, microcapsules etc.). Among these, the most popular are the bilayered vesicles 

of lipids (liposomes) and amphiphilic polymers (polymersomes). These vesicles have higher 

loading capacity compared to other nanoparticles [3]. 

Liposomes as drug delivery vehicles: The first closed bilayered phospholipid vesicles 

were called liposomes by Alec Bangham and colleagues in 1965 [4]. Initially termed as 

“bangosomes” and then liposomes, were soon tested as drug delivery vehicles. Early pioneers 

such as Gregory Gregoriadis, established that liposomes can be an excellent drug delivery 

system [5-7]. Several publications showed the effect of liposomes on the in vivo distribution and 

overall pharmacokinetics of the drug entrapped [8, 9]. New methods were developed to improve 

and control the entrapment efficiency and size distribution [10, 11]. Sonication and extrusion of 

multilamellar liposomes through polycarbonate filters to produce smaller size liposomes was a 

major advancement in the field of liposomal drug delivery [12]. Subsequently, several reports 

demonstrated the in vivo efficacy of anticancer drug-encapsulated liposomes [13, 14]. Liposomal 

doxorubicin showed improved efficacy and reduced cardiotoxicity [15, 16], ultimately leading to 

the clinical studies with liposomal drugs [17].  

Problems with liposomes: It soon became clear that conventional liposomes had several 

limitations with their in vivo use. Passive leakage of contents and rapid clearance of liposomes 

were hampering their efficacy as efficient drug carriers. Drug release was shown to be highly 

affected by the serum proteins. The opsonization of liposomes by serum proteins was proven to 

be the main mechanism behind rapid clearance of liposomes from the body. These problems 
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were partially solved by strengthening the bilayer (use of cholesterol and saturated lipids), pH 

gradient loading (remote loading/ammonium gradient), and PEGylation of liposomes (Stealth 

liposomes). Changing the composition of lipid bilayer, especially incorporation of cholesterol 

was shown to minimize the leakage by tightening the fluid bilayers. Switching from fluid bilayers 

(glass transition temperature below 37°C) to solid phase lipids (glass transition above 37°C) also 

decreased the passive leakage of contents from liposomes [18]. 

pH gradient method: One of the major advances in development of drug loading is the 

entrapment by pH gradient method. In this method, transmembrane pH gradient is created by 

encapsulating acidic buffer or proton-generating salts, such as ammonium sulfate, inside the 

aqueous interior of liposomes. The method is also known as remote loading, as the drug is 

loaded after formation of vesicles. Many currently used drugs possess amine groups and can be 

loaded using the pH gradient method. Some drugs (Doxorubicin) precipitate, and hence are 

retained efficiently in aqueous interior of liposomes whereas some drug (Ciprofloxacin) which 

do not precipitate readily are difficult to retain [19]. Drug precipitation can be enhanced by 

increasing the intraliposomal concentration of the compounds above their solubility. Drug that 

are not weak bases (Docetaxel) can be converted to weak base prodrugs [20]. 

Importance of PEGylation: To minimize the rapid clearance by MPS (Mononuclear 

Phagocyte System), initially smaller size liposomes showed some improvement. Addition of 

sphingomyelin for egg phosphatidylcholine resulted in longer circulating liposomes, likely due 

to the increase in surface hydrophilicity of liposomes. Earlier work of PEG attached to proteins 

to increase their circulation time, led to a simpler technique of making liposomes long 

circulating [21]. Several clinical studies showed that grafting of PEG to liposome surface resulted 

in substantial reduction in clearance [22, 23]. In 1995, the FDA approved the first nano-drug 

formulation of doxorubicin (Doxil®: passively targeted multilamellar PEGylated liposomes with 

remote loaded doxorubicin) for human use [24].  
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Need of targeting and triggering strategies: It soon became clear that there were still 

some unresolved problems with the use of these long circulating “stealth” liposomes. Although 

cardiac toxicity was minimized, because of lack of active targeting, the Doxil® liposomes would 

continue to leak contents slowly in circulation, and lead to side effects such as 

thrombocytopenia, neutropenia and hand-feet syndrome. Drug release rates have important 

implications for therapeutics activities of all types of drug delivery vehicles. The drug needs to be 

released from liposomes for bioavailability at the intended site of action. In the absence of any 

trigger, contents release was often slow, and hence, limited efficacy of treatment. Although 

Doxil® had an advantage of passive targeting due to the enhanced permeation and retention in 

cancer tumors, it had limitations [24]. As there was not active uptake of liposomes by the cells 

and no trigger to release the drug instantly, liposomes relied on passive release and convection 

to distribution in the tumor area. These might be some of the reasons why there are not many 

generic Doxil® versions in market.  

Active targeting: One of the major problems with liposomal drug delivery is the 

intracellular delivery of drugs across the membranes of cells to the sites of action. Hydrophobic, 

uncharged drugs diffuse though the cell membrane, while some hydrophilic drugs use 

membrane transporters to enter the cytosol. Most of the drugs require delivery systems to 

transport them to the site of action inside the cytosol. The most popular approach today is to use 

receptor-mediated endocytosis of ligand-targeted liposomes, as long as the drug can sustain the 

acidic environment inside the endosomal-lysosomal compartment [25]. However, the uptake 

should be selective for diseased cells. Many cancer cells overexpress certain receptors on their 

surface (folate, transferrin, integrin, HER2, etc.) which can be utilized to increase the selectivity 

of drug carriers. There are many reports of higher uptake of ligand-targeted liposomes 

compared to non-targeted counterparts. Currently, there are several actively-targeted 

nanoparticles in clinical trials, showing better therapeutics profiles compared to passively-

targeted nanoparticles [26, 27].  Active targeting can be classified into three types [28]. 
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1. Angiogenesis associated targeting: by targeting growth of neovascular, the size and 

metastasis can be controlled [29] : 

� VEGF receptor [30] 

� Integrin receptor [31] 

� Vascular cell adhesion molecule [32] 

� MMPs [33] 

2. Uncontrolled cell proliferation targeting: 

� Human epidermal factor (HER) [34] 

� Transferrin receptors [35] 

� Folate receptors [36] 

3. Tumor cell targeting: [28] 

� Breast cancer  

� Colorectal cancer 

� Lung cancer 

� Prostate cancer 

Folate targeting: Among all these targeting strategies, folate targeting is most widely 

used because folate ligand is inexpensive, nontoxic, easy to conjugate, non-immunogenic, has 

high binding affinity and is very stable on storage and in blood circulation [37]. Folate receptor 

is the most researched target for cancer therapeutics. Lung, ovarian, brain, head and neck, renal, 

and breast cancer tissues are known to overexpress folate receptors [38]. Because folate is 

essential for important cell functions (like purines and pyrimidine synthesis), the cargo attached 

to the ligand is retained within endocytic vesicle and released into the cytosol. Whereas, 

hormones, antibodies, and other ligands are internalized to clear the ligand from the receptor 

and to stop the activated signaling cascade, and thus, are shuttled into the lysosome for 

destruction [39]. Currently there are many folate targeted-formulations in clinical trials and 

some of those are ready to get the final FDA approval [40]. Vynfinit® (folate-targeted 
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vintafolide) is being evaluated in a global Phase 3 study named PROCEED for women with 

platinum-resistant ovarian cancer [41].  

Triggering strategies: Stability of nanoparticles in blood circulation is very important to 

avoid side effects. At the same time, the carriers should release their contents instantly as they 

reach the targeted site. Doxil® formulation, although showed enhanced accumulation in tumors, 

had no trigger to release the drug [24]. Various triggering strategies have been studied, and 

many literature reports have demonstrated their efficiency both in vitro and in vivo [42]. 

Triggers can be classified into two categories: remote (external/exogenous) and local 

(internal/endogenous). Remote triggers can be heat [43], light [44], ultrasound [45] or magnetic 

field [46], whereas local triggers can be specific to disease sites such as elevated levels of 

enzymes (MMPs) [47], change in pH [48] or GSH levels [49]. There are reports of using 

combinations of multiple triggers to enhance the release from nanoparticles [50]. It should be 

noted that patient rarely die of their primary tumors as these tumors can be removed surgically 

or ablated with radiation [51]. In most cases, metastatic tumors cause morbidity, as these are 

not accessible via external triggers. Clearly, the local triggers can offer significant advantages in 

this situation.  External triggers offer better temporal and spacial control over the release, 

whereas local triggers are important to target metastatic tumors. So it is important to focus on 

the smart use of a combination of these triggers to achieve maximum therapeutic outcomes.  

The first study to demonstrate effectiveness of trigger release strategy was hyperthermia 

induced release of methotrexate from liposomes [52]. Use of lipids with phase transition a few 

degrees above the physiological temperature made heat as an effective trigger to release the 

contents. Many literature reports showed its effectiveness, and currently some formulations are 

in the clinical trials [53-57]. One of the major advances in the field is ThermoDox® (Celsion 

Corporation), which demonstrated significant improvements in drug release rates and uptake in 

heated tumors (around 41°C). This formulation is currently in phase III clinical trials [58]. 
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Ligand-targeted nanoparticles, upon internalization into the target cells, can be designed to 

release the contents in response to high levels of GSH in the cytosol [59, 60], or the low pH 

environment inside lysosomes [61, 62].  

Ultrasound in drug delivery technology: During the last decade, ultrasound has gained 

tremendous popularity in therapeutic and diagnostic applications. This is primarily due to its 

versatility, cost effectiveness, and highly encouraging applications in drug delivery techniques. 

With the introduction of gas bubbles and echogenic particles, research in the field of ultrasound-

assisted drug delivery has really blossomed. Hyperthermia and cavitation are two important 

phenomena associated with use of ultrasound, and are primarily responsible for use of 

ultrasound in drug delivery [63]. Hyperthermia and acoustic cavitation lead to sonoporation, 

resulting in enhanced permeability of cell membranes. Different carriers are being developed for 

their responsiveness towards ultrasound. Echogenic liposomes [64], acoustically reflective 

liposomes [65], sonosensitive liposomes [66], “bubble” liposomes [67],and  echogenic lipid 

nanoparticles [68] are essentially nanoparticles designed to carry air/gas either inside or on the 

surface. Many of these carriers are being proposed for simultaneous drug delivery and 

ultrasound imaging applications. Although microbubbles and echogenic particles carrying drugs 

have shown encouraging results for targeted drug delivery to cancer cells, they have certain 

limitations. Echogenic liposomes often show low and variable release of contents with 

application of diagnostic frequency ultrasound [69]. Although low frequency ultrasound have 

shown excellent results in vivo, their safety towards healthy tissues is always a concern. 

Microbubbles, because of their large size, cannot extravasate into the tumor tissues, and hence 

their clinical use in drug delivery is limited. For better control over the release from echogenic 

nanoparticles, we have designed them such that they are sensitive to an internal trigger and 

externally applied ultrasound. 
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In this dissertation, we have developed and characterized four drug delivery 

carriers/nanoparticles which are responsive to an internal trigger and ultrasound. This 

dissertation is paper-based, and each chapter has been published as an article in a peer reviewed 

journal. Scattering experiments were carried out by our collaborators Dr. Sarkar. 

In Chapter 1, we have prepared liposomes which are responsive to elevated levels of 

MMP-9 enzymes at the tumor site, and are also responsive to ultrasound trigger. We have 

shown release kinetics with recombinant and cancer cells secreted MMP-9. These results are 

published in the American Chemical Society journal Molecular Pharmaceutics (Impact factor: 

4.6). 

In Chapter 2, we have prepared redox sensitive, polymer coated lipid nanoparticles 

which release their contents in the presence of millimolar concentrations of reducing agents and 

ultrasound. We have demonstrated their uptake and release in metastatic cancer cells. These 

results are published in the American Chemical Society journal Biomacromolecules (Impact 

factor: 5.4). 

In Chapter 3, we have prepared liposomes which release their contents in acidic 

environment of lysosomes and tumor microenvironment. We have also studied their ultrasound 

responsiveness to further enhance the release. These results are currently under review in the 

journal Molecular Pharmaceutics (Impact factor: 4.6). 

In Chapter 4, we have prepared polymersomes which are ultrasound reflective, and are 

redox sensitive. We have studied their effectiveness to carry and deliver a combination of two 

anticancer drugs using monolayer and spheroid cell cultures. These results are published in the 

Elsevier journal Biomaterials (Impact factor: 8.5). 
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CHAPTER I. ULTRASOUND ENHANCED MATRIX 

METALLOPROTEINASE-9 TRIGGERED RELEASE OF CONTENTS 

FROM ECHOGENIC LIPOSOMES 

Abstract  

The extracellular enzyme matrix metalloproteinase-9 (MMP-9) is overexpressed in 

atherosclerotic plaques and in metastatic cancers. The enzyme is responsible for rupture of the 

plaques and for the invasion and metastasis of a large number of cancers. The ability of 

ultrasonic excitation to induce thermal and mechanical effects has been used to release drugs 

from different carriers. However, the majority of these studies were performed with low 

frequency ultrasound (LFUS) at kHz frequencies. Clinical usage of LFUS excitations will be 

limited due to harmful biological effects. Herein, we report our results on the release of 

encapsulated contents from substrate lipopeptide incorporated echogenic liposomes triggered 

by recombinant human MMP-9. The contents release was further enhanced by the application of 

diagnostic frequency (3 MHz) ultrasound. The echogenic liposomes were successfully imaged 

employing a medical ultrasound transducer (4 – 15 MHz). The conditioned cell culture media 

from cancer cells (secreting MMP-9) released the encapsulated dye from the liposomes (30 – 

50%) and this release is also increased (50 – 80%) by applying diagnostic frequency ultrasound 

(3 MHz) for 3 minutes. With further developments, these liposomes have the potential to serve 

as multimodal carriers for triggered release and simultaneous ultrasound imaging. 

Introduction 

Liposomes are nano to micrometer-sized vesicles with a hydrated lipid bilayer 

encapsulating an aqueous phase. Due to their structural similarity with biological cells, 

liposomes show attractive features as drug carriers (e.g., lesser toxicity, increased uptake and 

longer circulation time). Hence, liposomes have been extensively investigated for targeted drug-
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delivery applications [70-73]. Currently, about 10 liposomal formulations are approved by the 

US Food and Drug Administration for human use.  Conjugation with targeting ligands leads to 

active-targeting of the liposomes to the intended sites for drug-delivery and imaging [74, 75]. 

However, after reaching the intended sites, most of the liposomes release the contents passively 

and this process is often slow [76].  The rate of release from the liposomes can be increased by 

the application of triggers, e.g., temperature [77], pH [78], light [79], ultrasound [45], metal ions 

[80] and enzymes [81]. Recently, we have demonstrated enzymatic release of liposomal contents 

in the presence of recombinant as well as cancer cell secreted matrix metalloproteinase-9 

(MMP-9) [82, 83].          

 MMP-2 and -9 are members of Zn2+ and Ca2+ dependent family of enzymes responsible 

for degradation of gelatin and collagen (IV and V) in the extracellular matrix [84]. MMPs play 

an important role in a variety of normal physiological processes e.g., embryonic development, 

tissue metamorphosis, angiogenesis, wound healing, ovulation etc. [85]. Increased expression 

levels of MMP-9 and MMP-2 correlate with arthritis, atherosclerosis, cancer and other diseases 

[86-89]. These two enzymes hydrolyze and weaken the fibrous caps of the plaques, leading to 

plaque rupture [90]. MMP-9 is also involved in progression and metastasis of many cancers and 

are being considered as biomarkers for various types of cancers [91]. Inhibitors of these enzymes 

are currently in clinical trials for adjuvant therapy of various cardiovascular diseases and 

cancers [92].  

The ability of ultrasonic excitation to induce thermal and cavitational effects has been 

used to release drugs from different carriers such as polymeric assemblies, micelles, emulsions, 

microcapsules, microspheres and liposomes.  However, majority of these studies were 

performed with low frequency ultrasound (LFUS) at kHz frequencies [93-95]. Although, 

inertial/transient cavitation thresholds are much lower at such frequencies [96, 97] favoring 

ultrasound mediated destruction and subsequent release from liposomes [98-100], clinical 

usage of similar excitations will be limited due to harmful biological effects. The release is 
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considerably diminished for MHz range excitation [101, 102]. Diagnostic frequency ultrasound 

has been used for drug delivery and imaging employing micron-sized bubbles [103-105] and 

microbubbles conjugated to liposomes. 

Recently, a modified protocol for preparing acoustically reflective liposomes (echogenic 

liposomes or ELIPs) has been reported [106-108]. The preparation protocol ensures that the 

liposomes entrap air pockets, although exact location of the entrapped air has not yet been 

exactly ascertained [105, 108, 109]. It strengthens the mechanical coupling with ultrasound 

resulting in strong ultrasound echoes. Ultrasound excitation can also be used to destabilize the 

bilayer membrane and release of contents from liposomes. Since ELIPs retain all the desired 

properties of normal liposomes, they have been extensively investigated for simultaneous 

imaging and drug delivery applications employing diagnostic frequency ultrasound (1 – 10 

MHz) [69, 109-111]. However, often the amount of contents released by ultrasound excitation of 

the ELIPs is not optimal, ranging from 20 – 50%  [112]. Herein, we demonstrate that the 

combination of enzymatic triggering (by MMP-9) and ultrasound excitation leads to 

considerably higher amounts of contents release from echogenic liposomes. The echogenic 

liposomes were successfully imaged employing a medical ultrasound transducer (4 – 15 MHz). 

We also demonstrate that conditioned cell culture media from cancer cells (secreting MMP-9) 

released the encapsulated dye from the liposomes (30 – 50%) and this release is also increased 

(50 – 80%) by applying diagnostic frequency ultrasound (3 MHz) for 3 minutes. 

Materials and Methods 

Synthesis of lipopeptide (LP4) 

The lipopeptide LP4 was synthesized using a microwave assisted peptide synthesizer 

(Liberty, CEM Corporation, Matthews, SC) following a reported protocol [113]. Commercially 

available Fmoc-protected amino acids (0.1 mM) (Peptides International, KY, USA) were used in 
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the synthesis employing Fmoc-Gly-CLEAR acid resin (Peptides International, KY, USA) as the 

solid support. A mixture of 1-hydroxybenzotriazole (HOBT, AK Scientific, CA) and O-

(benzotriazol-1-yl)-N,N,N',N'-tetramethyluronium hexafluorophosphate (HBTU, ChemPep, FL) 

was used as coupling agent in 5 fold excess. Coupling steps were performed with 20 W 

microwave power for 5 minutes at 50 °C except for arginine (25 °C for 25 minutes). 

Diisopropylethylamine was used as the activator base during the peptide coupling reactions. The 

Fmoc deprotection was carried out by 5% piperazine (TCI America) using N,N-

dimethylformamide as the solvent (Macron Chemicals, NJ). The peptide was cleaved from resin 

using a mixture of trifluoroacetic acid (TCI America), triisopropyl silane and water (95:2.5:2.5) 

for three hours at room temperature with constant stirring. Subsequently, the reaction mixture 

was filtered and the filtrate was treated with cold ether to precipitate the crude peptide, dried 

and stored at –20 oC until use. 

Purification of crude lipopeptide 

Purification of the crude LP4 was conducted by reverse phase high performance liquid 

chromatography (Shimadzu Scientific Instruments) using a diphenyl semipreparatory column 

(Grace Vydac, 300 Å pore diameter silica, 5 µm particle size, 10 x 250 mm) as the stationary 

phase. A linear gradient (0-70%) of acetonitrile in water was used at a flow rate of 8 mL/min 

over 45 minutes. Trifluoroacetic acid (25 mM) was added to both solvents and was monitored at 

235 nm using a UV detector. After evaporating solvents from the purified product, the purity 

was determined using MALDI-TOF mass spectrometry with an AB 4800 MALDI TOF/TOF 

Mass Analyzer using α-cyano-4-hydroxy-cinnamic acid as the ionizing matrix. The dried powder 

was stored in freezer (–20 °C) until use. 
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Circular dichroism (CD) spectroscopy 

CD spectra were recorded (to ascertain the triple helical structure of LP4) using a Jasco 

J-815 CD spectrometer with 1 mm path length quartz cuvette. The lipopeptide LP4 (0.5 mg/mL) 

was dissolved in 4 mM phosphate buffer (pH = 4.0) and stored at 4°C overnight before 

recording the spectra. For each spectrum, 12 accumulations were carried out at scanning speed 

of 50 nm/min in order to obtain a good signal to noise ratio. For liposome-incorporated LP4, 1 

mg/mL concentration was used and 36 accumulations were performed to reduce noise. The CD 

spectrum of MMP-9 was subtracted from CD spectrum of ELIPs treated with MMP-9. Melting 

temperature of LP4 was calculated by plotting the intensity at 225 nm against temperature. 

Preparation of dye encapsulated echogenic liposomes (ELIPs) 

Stock solutions of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC, Avanti 

Polar Lipids) was prepared (1 mg/mL) by dissolving in chloroform and stored in freezer.  

Solutions of POPC (2 mg) and LP4 (2.6 mg) were mixed in the molar ratio of 70:30 respectively 

in a 10 mL round bottom flask. A thin film at the bottom of the flask was formed by evaporating 

the solvent at 40 °C using a rotary evaporator. In order to remove any residual solvents, the flask 

was placed under high vacuum overnight. Subsequently, the dried film was hydrated with 100 

mM carboxyfluorescein (>90% fluorescence is quenched) in HEPES (2-[4-(2-

hydroxyethyl)piperazin-1-yl]ethanesulfonic acid) buffer (25 mM, pH = 8) with added ions (Ca2+ 

and Zn2+) and 2 mL of  0.64 M mannitol (final concentration 0.32 M) at 50 °C. Mannitol is a 

weak cryoprotectant; we have recently observed that finite amount of mannitol during 

preparation is critical for ensuring the echogenicity of ELIPs [108]. The lipids were hydrated for 

3 hours and the resultant multilamellar vesicles were bath sonicated for 10 minutes.  The 

liposomal solution was exposed to three freeze (–70 °C) and thaw cycles. Subsequently, the 

liposomes were extruded first through 800 nm and then 200 nm polycarbonate filters 

(Nuclepore, Whatman) 15 times at 60 °C using a mini-extruder (Avanti Polar Lipids). To remove 
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the unencapsulated dye, the liposomes were gel filtered using Sephadex G-100 column 

conditioned with HEPES buffer (25 mM, pH = 8). The osmolarity of the eluent buffer was 

adjusted (540 mOsm/kg with NaCl, 10 g in 1L, 0.17 M) to that of the liposomal solution to 

ensure the minimum leakage of dye from liposomes due to osmotic shock. A similar procedure 

was followed to prepare the liposomes without any encapsulated dye using HEPES buffer 

without carboxyfluorescein.  ELIPs for CD spectroscopic studies were prepared by the same 

method using a 4 mM phosphate buffer (pH = 4.0). 

Measurement of size distribution 

Particle size distribution (PSD) of ELIPs was measured using a Dynamic Light Scattering 

(DLS) instrument (Malvern Zetasizer Nano-ZS90). DTS 0012 polystyrene latex disposable sizing 

cuvette (RI: 1.59) was used and the measurements were conducted at a scattering angle of 90°. 

Samples (0.1 mg/mL in HEPES buffer) were equilibrated for 120 seconds and 12 readings were 

then taken for a single sample at constant temperature (25 °C). Each batch of ELIPs was tested 

for polydispersity and each experiment repeated three times to ensure reproducibility of the 

results. 

Transmission electron microscopy 

The ELIPs samples were dispersed to 1 mg/mL concentration and dropped onto 300 

mesh Formvar coated copper grids previously coated with 0.01% poly-L-lysine and allowed to 

stand for 1 min before wicking off with filter paper.  After air drying for 2 minutes, the samples 

were negatively stained with 1% phosphotungstic acid for 1.5 minutes and subsequently wicked 

off with filter paper and allowed to dry before viewing.  The samples were observed using a 

JEOL JEM-2100-LaB6 transmission electron microscope operating at 200 kV. 
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Release studies with recombinant MMP-9  

The release experiments were carried out using a microplate multidetection instrument 

(Spectramax-M5, Molecular devices) employing the liposomes prior to freeze drying at 25 °C. 

Release was monitored by recording the fluorescence emission intensity at 518 nm with 

excitation wavelength 480 nm. All experiments were conducted in triplicate. Each well 

contained 20 µL of 0.1 mg/mL ELIPs in HEPES buffer (25 mM, pH = 8.0, osmolarity 540 

mOsm/kg adjusted with NaCl, 10 g in 1L, 0.17M) and 16 µL of 25 µM MMP-9 (final 

concentration: 2 µM). Release of dye was observed over 60 minutes. The emission intensity was 

recorded in one minute interval.  After 1 h, 10 µL of Triton-X100 was added to disrupt all the 

liposomes and the emission intensity was measured (excitation: 480 nm). This fluorescence 

intensity was treated as total (100%) release. The percent release was calculated using the 

formula: 

Observed intensity - Initial intensity
Release (%) 100

Final intensity - Initial intensity
= ×

  

Measurement of echogenicity of ELIPs 

For echogenicity experiments, the freeze-dried ELIPs sample was suspended in a 

solution of phosphate buffered saline (PBS) with 0.5% by weight of bovine serum albumin 

(BSA). We observed that the liposome solution prior to freeze-drying was not echogenic. 

Echogenicity of the freeze dried and then reconstituted ELIPs was investigated using an in vitro 

acoustic setup (Figure 1.1) which is capable of measuring non-linear response from contrast 

agents. The setup employs two single element spherically focused immersion transducers 

(Panametrics-NDT) confocally positioned at right angles. This type of transducer placement 

ensures the similarity of scattered signals to backscattered echoes [114] and also provides high 

spatial resolution [115]. Each transducer has an individual diameter of 1.27 cm and focal length 

of 3 cm. The sample is held in a rectangular chamber. Holes were drilled on adjacent walls for 
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insertion of transducers. Complete immersion of the transducers required 100 mL of solution. 

Appropriate amount of ELIPs was dissolved in 100 mL of PBS-BSA solution to yield a final lipid 

concentration of 10 µg/mL which is low enough to ensure absence of multiple scattering effects. 

The transmitting transducer has a nominal center frequency of 3.87 MHz with a –6 dB 

bandwidth of 86.4%. The receiving transducer has a center frequency of 5.54 MHz with an 85% 

bandwidth. The transmitting transducer was excited at 3.5 MHz with a 32 cycle sinusoidal wave. 

A 0.4 mm needle hydrophone (PZT-Z44-0400, Onda Corporation, CA, USA) was used to 

calibrate transducers.  A programmable function generator was utilized (Model 33250A; 

Agilent, Santa Clara, CA) to generate the wave which was amplified using a power amplifier 

(Model A-300; ENI, Rochester, NY) and fed to the transmitting transducer. The scattered signal 

was received using the other transducer and a pulser/receiver (Model 5800; Panametrics-NDT, 

Waltham, MA) with a 20 dB gain. A digital oscilloscope (Model TDS2012; Tektronix, Beaverton, 

OR) was used to observe the signal in real-time. Scattered voltage-time responses were acquired 

from the oscilloscope using LabView (Version 6.0.3; National Instruments, Austin, TX) via a 

GPIB IEEE 488 cable and GPIB card and saved on a PC for post-experimental analysis using 

MATLAB (MathWorks, Natick, MA). Fast Fourier Transforms of 50 oscilloscope acquisitions 

were obtained and averaged in frequency domain which was then converted to dB scale using 

unit reference. Responses at fundamental, second and sub-harmonic frequencies were extracted 

from the resultant data set and plotted. 
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Culture of cancer cells and harvesting of conditioned media

All cell lines were obtained from American Type Culture Collection (Manassas, VA). 
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MA). The active element of the tr

frequency of 3.5 MHz with a –6 dB bandwidth of 85%.  An arbitrary function generator was used 

to generate a continuous sinusoidal wave with desired parameters (Model 33250A; Agilent, 

17 
 

 

Schematic of the experimental setup for in vitro measurement of scattering

harvesting of conditioned media 

All cell lines were obtained from American Type Culture Collection (Manassas, VA). 

1 (Human pancreatic cancer), PC-3 (Human prostate cancer), MCF-7 (Human breast 

1 (Human prostate cancer), HeLa (Human cervical cancer) and bEnd

(immortalized rat brain endothelial cells) were cultured in clear (without added phenol red) 

RPMI media supplemented with 5% antibiotics (penicillin, streptomycin), 10% (by volume) fetal 

bovine serum and grown in incubator at 37 °C in humidified atmosphere containing 5% CO

After three generations, confluent cells were centrifuged (200 g) and the supernatant media 

asound mediated release studies 

setup for ultrasound enhanced release studies employed a single element 

unfocused immersion transducer (Model IP301HP; Valpey Fisher Corporation, Hopkinton, 

MA). The active element of the transducer has a diameter of 0.3175 mm and a nominal center 

6 dB bandwidth of 85%.  An arbitrary function generator was used 

to generate a continuous sinusoidal wave with desired parameters (Model 33250A; Agilent, 

measurement of scattering 

All cell lines were obtained from American Type Culture Collection (Manassas, VA). 

7 (Human breast 

1 (Human prostate cancer), HeLa (Human cervical cancer) and bEnd-3 

(immortalized rat brain endothelial cells) were cultured in clear (without added phenol red) 

ibiotics (penicillin, streptomycin), 10% (by volume) fetal 

bovine serum and grown in incubator at 37 °C in humidified atmosphere containing 5% CO2. 

After three generations, confluent cells were centrifuged (200 g) and the supernatant media 

setup for ultrasound enhanced release studies employed a single element 

unfocused immersion transducer (Model IP301HP; Valpey Fisher Corporation, Hopkinton, 

ansducer has a diameter of 0.3175 mm and a nominal center 

6 dB bandwidth of 85%.  An arbitrary function generator was used 

to generate a continuous sinusoidal wave with desired parameters (Model 33250A; Agilent, 



 

18 
 

Santa Clara, CA) which was then amplified with a power amplifier (Model A-150; ENI, 

Rochester, NY) and fed to the transducer. The release studies were carried out in a 48 well plate 

filled with 500 µL sample with a total lipid concentration of 0.02 mg/mL. The transducer face 

was always kept immersed in the sample volume at a distance of 20 mm from the base (Figure 

1.2). The homogeneity of the sample was maintained using a small magnetic stirrer. The entire 

plate was kept on an ice bath to minimize the temperature changes. Most release studies were 

performed with 3 MHz continuous wave at 1 MPa pressure for an exposure period of 180 

seconds.  We note that although the current setup has often been used to subject biological cells 

or liposomes to ultrasound [67, 116-119], it allows reflections from air-water interface. This 

effect has been studied in detail recently [120, 121] to show that the reflection creates a standing 

wave pattern giving rise to a spatially varying acoustic field. Following these studies, we are 

currently developing a setup that would address this effect, and will be used to determine 

optimal ultrasound excitation parameters. For the limited goal of demonstrating ultrasound-

mediated release here, current setup is adequate.  Also note that less than 1% energy transfer 

due to stimulation from a transducer positioned in one well was measured at a neighboring well 

indicating negligible inter-well interference.  All experiments were repeated three times to 

ensure the reproducibility of results obtained. 

 

Figure 1.2: Schematic of the in vitro experimental setup for ultrasound mediated release 
studies 
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Ultrasound enhanced MMP-9 triggered release 

This study was carried out in a 48 well plate, with 500 µL of 0.02 mg/mL of liposomes 

(prior to freeze drying) in each well using an ice bath. Three different procedures were followed 

for these experiments. In one set of experiments, we incubated 0.02 mg/mL of ELIPs with 2 µM 

MMP-9 for an hour and then applied the ultrasound (3 MHz, 1 MPa) for 180 seconds. In second 

set, we applied the ultrasound first and then allowed ELIPs to incubate with MMP-9. In third set 

we added MMP-9 to ELIPs and immediately applied the ultrasound to get the simultaneous 

exposure result. Control samples were also acquired for each of these set of experiments. All the 

experiments were conducted in triplicates in order to ensure repeatability of the results 

obtained. 

For studies with conditioned media harvested from different metastatic cancer cell lines, 

we added 50 µL of media to 450 µL of ELIPs (lipid concentration: 0.02 mg/mL) and after one 

hour we applied the ultrasound. Two different negative control measurements were performed: 

one without the cell culture media (RPMI) and ultrasound and other with RPMI media as well 

as ultrasound whereas bEnd-3 cell media was treated as a positive control. 

Ultrasonic imaging of the echogenic liposomes  

The Terason t3200™ Diagnostic Ultrasound (MedCorp LLC., Tampa, FL) was utilized to 

image the reflection of the echogenic liposomes.  A layer of Aquasonic® 100 (Parker 

Laboratories, Inc., Fairfield, New Jersey) ultrasound gel was applied to the 15L4 Linear (4.0-

15.0 MHz) (MedCorp LLC., Tampa, FL) ultrasound transducer sound plate. The transducer with 

gel was placed over the parafilm covering the wells containing ELIPs (0.2 mg/mL in all four 

wells) in a 96-well plate.  The ultrasound scan properties of the echogenic liposomes were set at 

0.7 Mechanical Index (MI), 0.6 Thermal Index (TIS), Omni Beam activated, level C Image Map, 
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level 3 Persistence, high (H) frequency, level 3 TeraVision, level 51 2D Gain, level 60 Dynamic 

Range (DR), 3 cm scan depth, and 22 Hz frame rate. The images were labeled and saved. 

Results and Discussion 

Nonfibrillar collagens (types IV and V) are the principal substrates of MMP-9 [122]. The 

collagens contain high amounts of the amino acid triad Glycine-Proline-Hydroxyproline (GPO) 

and this contributes to the triple helical structure [123]. We have previously synthesized triple-

helical substrate lipopeptides for MMP-9 and optimized the contents release from liposomes in 

the presence of this enzyme [82].  For these studies, we decided to synthesize the same 

lipopeptide [LP4, amino acid sequence: CH3(CH2)16CONH-GPQGIAGQR(GPO)4GG-COOH, 

where MMP-9 cleavage site is between Glycine and Isoleucine] for preparing the ELIPs. The 

lipopeptide LP4 was synthesized employing a microwave-assisted peptide synthesizer, purified 

by reverse-phase HPLC and the purity was confirmed by MALDI-TOF mass spectrometry 

(Calculated MH+: 2333.26; Observed: 2333.28).  Circular dichorism (CD) spectroscopic studies 

confirmed triple helical structure for LP4 in phosphate buffer (pH = 4.0; Figure 1.3A). Poor 

solubility of the lipopeptide in buffer of higher pH prevented us from conducting these studies at 

physiological pH (7.4). Temperature-dependent CD spectra (5 – 60 oC) indicated the presence of 

an isosbestic point (Figure 3A) and the melting temperature was determined to be 49 oC (Figure 

1.3B).  This melting temperature is similar to that observed for human collagen (48 oC) [124].  

The isosbestic point in Figure 1.3A indicates that the triple-helical lipopeptide is melting to 

monomeric species without going through any intermediates [125]. 

After confirming triple helical structure of lipopeptide LP4 in solution, we prepared 

ELIPs incorporating 30 mol% of LP4 and 70 mol% of POPC in phosphate buffer (pH = 8.0) 

employing a reported protocol [104, 105]. This liposomal composition was based on our 

previous mechanistic and optimization studies on MMP-9 triggered release of liposomal 

contents [82, 83]. We observed that LP4 retains the triple helical structure when incorporated 
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into the liposomes (Figure 1.4, black trace). It is hypothesized that the hydrolysis of triple-helical 

substrate peptides by MMP-9 requires unwinding of the triple helix by the enzyme followed by 

hydrolysis [126]. We observed that upon incubation of these liposomes with 2 µM recombinant 

human MMP-9, the triple helicity decreased substantially (Figure 1.4, red trace). These results 

demonstrate that MMP-9 is able to unwind and cleave the triple helical LP4 even when 

incorporated in the lipid bilayer of the ELIPs. We also observed that 2 µM of MMP-7, MMP-10 

or trypsin released less than 5% of the encapsulated contents from the liposomes. This is likely 

due to the inability of these enzymes to unwind the triple helix [75, 127]. 
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Figure 1.3. (A) Temperature dependent CD spectra (5-60 °C) of LP4 (0.5 mg/mL) in 4 mM 
phosphate buffer (pH = 4). The presence of positive peak at 225 nm and negative peak at 198 
nm indicates the triple helical nature of LP4. (B) The melting curve for LP4 monitored at 225 
nm is shown.   

Next, we prepared ELIPs with carboxyfluorescein encapsulated and the liposomes were 

subsequently freeze-dried for long-term storage and shipment [128]. We determined the 

average diameters of the ELIPs before and after freeze-drying employing dynamic light 

scattering.  We observed that average diameter of the liposomes in the reconstituted powder was 

larger (190 + 35 nm; Figure 1.5D) compared to that prior to freeze drying (116 + 22 nm, Figure 

1.5C).  The polydispersity index also increased to 0.85 from 0.3 – indicating a large distribution 

of size in the reconstituted liposomes [129]. Transmission electron microscopy corroborated 

these observations.  TEM images show that the reconstituted ELIPs were heterogeneous (50 nm 
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– 1 µm) with median size between 100 – 200 nm (Figures 1.5A and B). During the freeze-drying 

and subsequent reconstitution steps, some of the liposomes fuse with each other – leading to a 

more heterogeneous size distribution. We have used mannitol [130] during the ELIPs 

preparation which plays a crucial role in ensuring echogenicity by aiding air entrapment [108]. 

Also note that the relatively high polydispersity indicates presence of larger liposomes (also seen 

in the inset of Figure 1.5D). These larger liposomes with air pockets of size around a micrometer 

are primarily responsible for the echogenicity of ELIPs. Consistent with this, we also observed 

that the liposome solution prior to freeze drying was not echogenic. 
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Figure 1.4. CD spectra of liposome-incorporated LP4 is shown before (black trace) and after 
(red trace) incubation with 2 µM MMP-9 for an hour.  These experiments were conducted in 25 
mM phosphate buffer, pH = 8.0. 

Echogenicity of the ELIPs (reconstituted from freeze dried powders) with and without 

encapsulated carboxyfluorescein was investigated using the acoustic setup for scattering 

measurements shown in Figure 1.1. We observed that the liposomes showed echogenicity only 

when freeze dried and subsequently reconstituted. However, this leads to some loss of the 

encapsulated dye. As mentioned above, the echogenicity is likely due to the presence of larger 

size liposomes with encapsulated gas in the reconstituted samples (see Figures 1.5B and 1.5D). 

The ELIPs were excited at an acoustic pressure amplitude of 500 kPa. Figure 1.6A shows the 
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FFT of the scattered response from suspension with and without any ELIPs. At an acoustic 

pressure of 500 kPa, we observed distinct peaks at both fundamental frequency (i.e., at 

excitation frequency of 3.5 MHz) and second-harmonic frequency (i.e., at twice the excitation 

frequency, 7 MHz) in presence of the ELIPs. However, no distinct subharmonic peak (i.e. 

response at half the excitation frequency, 1.75 MHz) was observed. The nominal central 

frequency (5.54 MHz) of the receiving transducer is rather high compared to the subharmonic 

frequency (1.75 MHz). However, using a receiving transducer with a lower central frequency 

(2.25 MHz) did not change the result. We conclude that these ELIPs do not generate any 

significant subharmonic response at this excitation frequency.  Figure 1.6B shows the 

experimentally measured echogenic response from the ELIPs (the scattered fundamental and 

second-harmonic components). Control measurements are acquired without any ELIPs in the 

sample solution. Each set of experiments was repeated five times. The mean of the five different 

runs is plotted along with the corresponding standard deviation. We also imaged the ELIPs (in a 

well plate) employing a Terason t3200 ultrasonic medical imaging system using a 4 – 15 MHz 

transducer (Figure 1.6C, D). 

We observed that both ELIP formulations with and without encapsulated dye show 

echogenicity with nearly 20 dB enhancement of the fundamental response when reconstituted 

in PBS-BSA. The preparation procedure includes addition of mannitol, a weak cryoprotectant. It 

has been hypothesized that lyophilization in presence of mannitol creates defects in the bilayer 

that serves as nucleation sites for air entrapment [106, 107, 110, 131]. The presence of air creates 

a mismatch in acoustic impedance rendering the liposomes echogenic i.e., capable of reflecting 

ultrasound waves [132, 133]. It has been reported that these air pockets are created during the 

rehydration step in the PBS-BSA/PBS solution [132]. Creation of air pockets is facilitated by the 

use of mannitol during the lyophilization [106, 110, 132]. Mannitol thus plays a critical role in 

the echogenicity of the ELIPs. Recently, we have shown that a small but finite amount of 

mannitol is required for echogenicity [108]. Although echogenicity of the ELIPs have been 
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attributed to the presence of these air pockets, the exact location of these air pockets still 

remains uncertain [134, 135]. Hypothesized structure of ELIPs considers existence of trapped air 

within the bilayer in between hydrophobic tails of the lipid molecules [109, 136]. Air can also be 

trapped as a small lipid monolayer coated bubble freely floating within the aqueous core of the 

liposomes [107, 109]. Recently, TEM image have shown the existence of such individual lipid 

coated bubbles [137]. The lipid coating in both situationsin the bilayer or for individual 

bubblescan render the air pocket stable against Laplace pressure driven dissolution by 

drastically decreasing the effective surface tension at the air-liquid interface [138-140]. The lipid 

shell also modifies the echogenicity of the air pocket and thereby of the emulsion [115, 141, 142]. 

Notably, there is no difference in the echogenicity of the ELIPs due to dye-loading. The ELIPs 

also show non-linear response with around 10 dB enhancement for second-harmonic response.  

We conducted the enzymatic release studies employing an optimized concentration of 

freshly-prepared liposomes (0.01 mg/mL of total lipid). We used the self-quenching property of 

the encapsulated dye (carboxyfluorescein) in determining the contents release from the 

liposomes [83]. In order to determine if the presence of the entrapped air pockets in the 

echogenic emulsion has any effect in the fluorescence of the dye, we recorded the emission 

spectra of carboxyfluorescein (5 µM in 25 mM HEPES buffer, pH = 8.0) in the presence of 

ELIPs (without any encapsulated dye) and regular liposomes. We observed that these emission 

intensities were same, indicating that the entrapped air in the ELIPs is not affecting the 

emission from carboxyfluorescein (Appendix A, Table A1). 

In the absence of any added enzyme, less than 10% of the encapsulated dye was released 

in 60 minutes (Figure 1.7, magenta spheres).  Upon incubation with 1 µM of recombinant 

human MMP-9, we observed 25% release of the encapsulated dye in 20 minutes (Figure 1.7A, 

blue spheres).  After this time, no further release was observed from the liposomes (Figure 1.7A, 

blue spheres).  Increasing the concentration of MMP-9 to 2 µM leads to 62% release in 50 
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7A, green spheres). These release profiles can be fitted with a single 

exponential rate equation (Figure 1.7A, red lines through the observed data points) with rate 

–1 (1 µM MMP-9) and (15.1 + 0.1) x 10–2 s–1 (2 µM MMP
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: before freeze drying B: after freeze drying) and DLS size 
distributions (by number) of carboxyfluorescein encapsulated ELIPs (C: before freeze drying; 
after freeze drying). The inset plot of panel D shows the presence of liposomes in the size range 

1100 nm.  The TEM images of the samples were obtained using a LaB6 emitter at low 
magnifications and with the beam spread to reduce the amount of electron beam interaction per 
unit area and hence beam damage to sample.   
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 Figure 1.6. (A) FFT of the scattered signal from a suspension with (red trace) and without 
(blue trace) liposomes at an acoustic pressure of 500 kPa. (B) Fundamental (green columns) 
and second harmonic (red columns) of ultrasound scattered response from ELIPs prepared with 
or without dye-loading and reconstituted in PBS and PBS-BSA solutions. (C, D): Ultrasound 
images (5 – 10 MHz transducer) of 4 wells of a 96-well plate containing buffer (C) and 
echogenic liposomes (0.2 mg/mL in each well) incorporating LP4 peptide and encapsulating 
the dye carboxyfluorescein (D). 

MMP-9 cleaves the triple helical peptide exposed on the liposome surface, leading to 

destabilization of the lipid bilayer and release of the encapsulated content [47].  As the bilayer 

“heals” itself, the release from the liposomes slows down.  We also observed that the 

recombinant MMP-9 used in these studies undergoes self-hydrolysis and resulting in the 

formation of catalytically inactive enzyme.  The reduction in the concentration of the active 

enzyme will also contribute to reducing the rate of release from the liposomes.  It should be 
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noted that for healthy individuals, the serum concentration of MMP-9 is less than 10 nM.  For 

gastric, colorectal and pancreatic cancer patients the serum concentration of MMP-9 can be as 

high as 1 µM [74]. We also observed that exposing the liposomes to diagnostic frequency 

ultrasound (3 MHz,  1 MPa) for 3 minutes led to around 25% release of the encapsulated dye 

(Figure 1.7B); ultrasound destabilizes the ELIPs[143]. 

The lipopeptide LP4 adopts triple helical conformation in the liposomes (Figure 1.4).  

The fibronectin domain of MMP-9 unwinds the triple helix and subsequently, the catalytic 

domain hydrolyzes the peptide bond [144].  We hypothesized that enzymes incapable of 

unwinding the triple helix should not release the encapsulated dye from the liposomes.  In 

accordance with this, we observed that MMP-7, MMP-10 and trypsin (2 µM each) failed to 

release the encapsulated dye from the liposomes (data not shown).  

After ensuring release by MMP-9 and diagnostic frequency ultrasound separately, we 

proceeded to determine the combined effect of these two triggers on contents release from the 

ELIPs.  In this endeavor, we first incubated the ELIPs with MMP-9 (2 µM) for an hour and 

observed 62% release of the encapsulated dye.  Subsequent application of ultrasound (3 MHz, 3 

minutes) increased the release to 71% (Table 1.1).   As MMP-9 releases the encapsulated dye by 

disturbing the lipid bilayer of the liposomes, it is likely that the entrapped air is also escaping – 

making the resultant liposomes less responsive to ultrasound trigger. When we applied the 

ultrasound first for 3 minutes, we observed 15% release of the contents from the liposomes. This 

indicates that a majority of the liposomes are not releasing the contents in the presence of 

ultrasound alone. However, upon subsequent treatment with MMP-9 (2 µM) for an hour, the 

release increased to 65%.  When we incubated the liposomes with MMP-9 (2 µM) and applied 

ultrasound at the same time, the release decreased to 30%.  A probable reason for this may be 

the local increase in temperature during the ultrasonic excitation [145].  The local heating will 

deactivate MMP-9, leading to a decrease in the contents release from the liposomes. The control 
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in Table 1 represents release when the transducer was inserted in the liposomal solution without 

sending any ultrasound waves (for 3 minutes). 
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Figure 1.7. (A) MMP-9 triggered release profile for encapsulated carboxyfluorescein from 
ELIPs after incubation for an hour with 1 µM (blue spheres) and 2 µM (green spheres) 
recombinant MMP-9. The magenta spheres indicate the release from the liposomes in the 
absence of any added enzyme. The red lines indicate the fitted curves through these data points 
using a single exponential rate equation. (B) High frequency ultrasound (3 MHz, continuous 
wave, 1 MPa) triggered release from ELIPs with varying exposure time.  

Table 1.1: Ultrasound (US) enhanced recombinant MMP-9 triggered contents release from 
ELIPs. 

Conditions 
Release (% ± SD) 

with MMP-9 

Release (% ± SD) 

with US 

Total Release (% ± 

SD) 

MMP-9 followed by US 62 ± 10 9 ± 1 71 ± 5 

US followed by MMP-9 50 ± 12 15 ± 4 65 ± 10 

Simultaneous  30 ± 2 

Control (no US)  4 ± 4 

 

Various cancer cells are known to secrete varying amounts of MMP-9 in the extracellular 

matrix [146].  We decided to determine if the conditioned media from cancer cells can release 
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the encapsulated dye from the ELIPs and if this release can be further enhanced by the 

application of diagnostic frequency ultrasound.  In this endeavor, we cultured the cells HeLa 

(cervical cancer), PC-3 (prostate cancer), 22Rv1 (prostate cancer), MCF-7 (breast cancer) and 

PANC-1 (pancreatic cancer) in dye-free RPMI. After reaching confluency, the cells were pelleted 

and the media was harvested. The immortalized mouse brain endothelial cell line bEnd-3 

(which does not secrete MMP-9) was taken as control [147].  Based on our results with 

recombinant MMP-9, we incubated the ELIPs with the conditioned media for an hour, followed 

by the application of ultrasound pulses (3 MHz) for 3 minutes.   

We observed that the culture media (RPMI containing 10% by volume of fetal bovine 

serum) released 16% of the liposome encapsulated dye (Figure 1.8A).  As cells become confluent 

and consume fetal bovine serum, the conditioned media from bEnd-3 cells showed less release 

(<5%) compared to fresh RPMI (Figure 1.8A). The release also decreases slightly over time.  

Since the release was very low (< 5%), we did not conduct any further studies to determine the 

reasons for this time-dependent decrease. The conditioned media from the cancer cells released 

varying amounts of encapsulated dye (16 – 50%, Figure 1.8A). We observed that the release was 

highest in the presence of the conditioned media from the PC-3 cells (47%, Figure 1.8A and 

1.8B). The time course of the dye release in the presence of conditioned media from PC-3 cells 

can be fitted with a single exponential rate equation with rate constant of (57.4 + 1.6) x 10–2 s–1. 

However, we observed that the amount of contents release does not correlate with the total 

amount of MMP-9 present in the conditioned media (as determined by ELISA). ELISA 

determines the total amount of MMP-9, which includes both catalytically active and inactive 

enzymes.  It is also possible that besides MMP-9, other triple helicase secreted in the 

conditioned media (i.e., MMP-2, MMP-14, ADAM-10 etc.) are contributing to the release of the 

dye [87, 148].  However, we were pleased to find that upon application of ultrasound for 3 

minutes, the amounts of dye release increased to 25 – 75% (Figure 1.8A).  Currently we are 
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testing the effects of ultrasound frequency, incorporation of PEG-lipid and cholesterol on the 

contents release from these liposomes and these results will be reported later. 
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Figure 1.8. (A) Release of liposomal contents in presence of conditioned cell culture media 
from metastatic cancer cells (blue bars) and upon subsequent application of 3 minutes of 3 MHz 
ultrasound pulse (orange bars) are shown. Control represent release in absence of media as well 
as ultrasound (B) The kinetic profiles of the contents release in the presence of conditioned 
media of PC-3 (Green spheres) and bEnd-3 (Magenta spheres) cells and in the absence of any 
media i.e. Control (Blue spheres) are shown.  The red line shows the fitted curve using a single 
exponential rate equation. 

Conclusion 

We have demonstrated that echogenic liposomes can be prepared incorporating a 

substrate lipopeptide for MMP-9 in the lipid bilayer. The liposomes retain echogenicity after 

encapsulation of a hydrophilic dye and can be imaged by ultrasound.  The encapsulated contents 

from the liposomes are released in presence of recombinant as well as cancer cell secreted 

MMP-9.  The contents release can be further increased by the application of diagnostic 

frequency ultrasound pulses.  This study demonstrates that diagnostic frequency ultrasound can 

be used simultaneously with enzymes as an additional method to trigger contents release from 

suitably constructed liposomes. We employed continuous excitations for the release study, 

which deliver more energy than a pulsed excitation used in ultrasound imaging. Future studies 

are required systematically varying the intensity, frequency and duty cycles of the ultrasound 
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stimulation to determine the optimum excitation parameters. With further developments, these 

liposomes have the potential to serve as multimodal carriers for triggered release and 

simultaneous ultrasound imaging.   
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CHAPTER II. POLYMER COATED ECHOGENIC LIPID 

NANOPARTICLES WITH DUAL RELEASE TRIGGERS 

Abstract 

Although lipid nanoparticles are promising drug delivery vehicles, passive release of 

encapsulated contents at the target site is often slow. Herein, we report contents release from 

targeted, polymer coated, echogenic lipid nanoparticles in the cell cytoplasm by redox trigger 

and simultaneously enhanced by diagnostic frequency ultrasound. The lipid nanoparticles were 

polymerized on the external leaflet using a disulfide cross-linker. In the presence of cytosolic 

concentrations of glutathione, the lipid nanoparticles released 76% of encapsulated contents. 

Plasma concentrations of glutathione failed to release the encapsulated contents. Application of 

3 MHz ultrasound for 2 minutes simultaneously with the reducing agent enhanced the release to 

96%. Folic acid conjugated, doxorubicin loaded nanoparticles showed enhanced uptake and 

higher cytotoxicity in cancer cells overexpressing the folate receptor (compared to the control). 

With further developments, these lipid nanoparticles have the potential to be used as 

multimodal nanocarriers for simultaneous targeted drug delivery and ultrasound imaging. 

Introduction  

Targeted drug delivery remains one of the major challenges in current pharmaceutical 

research. Upon injection, drugs get distributed in the body according to their pharmacokinetic 

and pharmacodynamics properties, resulting in low therapeutic concentrations at the target site 

and unwanted side effects. The drug biodistribution can be suitably altered and side effects can 

be minimized by employing targeted delivery systems. A wide variety of drug carriers and 

passive and active targeting strategies have been reported in the literature [149].  However, 

upon reaching the intended site, the rate of drug release from the carriers is often very slow.  For 

example, one of the marketed liposomal doxorubicin formulations (Doxil®) is passively targeted 
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to the tumors employing the enhanced permeation and retention (EPR) effect [150].  Because of 

its long circulation time and slow drug release kinetics, several side effects of Doxil® are 

reported (e.g., hand-foot syndrome, neutropenia, anemia and thrombocytopenia) [151]. 

Stimuli responsive drug delivery vehicles are highly attractive because of local control over 

payload release and consequently, reduced systemic toxicity. Both biological/endogenous/local 

(e.g., enzymes [82, 152], redox [49], pH [153]) and non-biological/exogenous/remote (e.g., 

temperature [154], light [155], ultrasound [156]) triggers have been used as stimuli to release the 

payload of these drug carriers. A combination of a biological and an external trigger can give 

dual levels of control for drug release at the targeted site. Incorporation of concurrent contrast 

imaging capability renders multimodal characteristics to the drug carrier. However, there are 

only a few reports of such multimodal nanocarriers  responding to multiple triggering stimuli 

with simultaneous imaging capability [157]. 

Ultrasound has been extensively used as a tool for different applications using different 

carriers such as polymers [158], micelles [159], emulsions [160], microcapsules [161], 

microspheres [162] and liposomes [106].  Most of these reported applications use low frequency 

ultrasound (LFUS) [95, 98-101, 163-166]. Although application of kHz frequency ultrasound 

leads to more release compared to MHz frequency, it has very limited clinical applications due 

to the associated harmful biological effects [101]. There are only a few reports of MHz frequency 

ultrasound utilized to release drugs from liposomes [112, 156, 167-169] and microbubbles 

conjugated to liposomes [170].  

Acoustically reflective lipid nanoparticles/liposomes (echogenic liposomes or ELIPs) 

have been developed as stimuli responsive drug carriers [107, 171]. The ELIPs are prepared in 

presence of a cryoprotectant (e.g., mannitol) that helps in entrapping air pockets within the 

liposomes and thereby, making them responsive to acoustic excitation. Ever since the first 

report [172] of acoustically reflective liposomes, questions are raised on the presence and the 

exact location of entrapped air, especially when the diameters of the vesicles are small (< 1 µm). 



 

34 
 

Consequently, different terms are currently used for this system, e.g., lipid nanoparticles, lipid 

dispersions, bubble liposomes [67, 106, 116], acoustically reflective liposomes [173] and 

echogenic liposomes [174]. Although termed differently, these systems are fundamentally 

acoustically reflective lipid nanoparticles (ARLINs) as these are made of phospholipids and are 

in nanometer dimensions. Thus, we will refer to these lipid particles as ARLINs in this 

manuscript. Although the exact location of the entrapped air in ARLINs remains uncertain [107, 

109, 137, 175] their echogenic properties have been well established through comprehensive 

acoustic experiments [105, 175, 176]. The ARLINS are being studied as novel ultrasound imaging 

contrast agents for atherosclerotic plaques and cancerous tumors [105]. Extensive ultrasound 

mediated drug release studies [45, 109, 112] with ARLINs have established their potential as 

simultaneous drug delivery and ultrasound imaging agents.  

The lipid-based drug delivery systems offer excellent biocompatible vehicles for both 

hydrophilic and lipophilic drugs. However, in the biological system, they get destabilized due to 

interactions with plasma proteins and biomembranes, resulting in leakage of the encapsulated 

drugs in the circulation (before reaching the intended site) [177]. This could result in only a 

small fraction of drug actually reaching the targeted site. Polymerization of the lipid bilayer 

improves stability but their clinical usage is limited because of poor biocompatibility.  

The tripeptide glutathione (L-γ-glutamyl-L-cysteinylglycine, GSH) functions as an important 

free radical scavenger and protects cells from harmful effects of reactive oxygen species, toxins, 

drugs and many mutagens. It is one of the most abundant organic reducing agents present in 

human body.  GSH level is elevated in various human cancer tissues (such as breast [178, 179], 

ovary [178], colon [180],  lung [181], bone marrow [182], and larynx [183]) compared to normal 

tissues. It has been implicated in drug resistance and in tumor growth [184]. The disulfide 

functional group has gained attention in the preparation of stimuli-responsive drug carriers 

because of its stability in mildly oxidizing environments (of atmospheric oxygen and blood 

stream [185]) and it’s lability in the presence of reducing agents. Due to the large redox potential 
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difference between the extracellular matrix (thiol concentration: 10 – 40 µM) and the cytosol of 

cancer cells (thiol concentration: 0.5 – 10 mM because of the presence of GSH), [186] the 

reversible disulfide thiol conversion is being widely used for cytosolic drug delivery [60, 187-

189].  

Herein, we have prepared folate conjugated, disulfide-cross-linked polymer-coated 

acoustically reflective lipid nanoparticles for cytosolic drug delivery. When exposed to mM 

concentration of reducing agents, these polymer-coated lipid nanoparticles release their 

contents and this release is further enhanced by applying diagnostic frequency ultrasound (3 

MHz, 0.5 MPa, CW) for 2 minutes. We have also imaged these lipid nanoparticles by using 

diagnostic frequency ultrasound. With further developments, these polymerized lipid 

nanocarriers hold promise as a vehicle for ultrasound image guided, targeted cytosolic drug 

delivery. To the best of our knowledge, there are no reports of using polymer-coated acoustically 

reflective lipid nanoparticles for simultaneous targeted drug delivery and ultrasound imaging. 

Materials and Methods 

Preparation and polymerization of ARLINs 

The gallate derivative with three propargyl groups coupled to 1-palmitoyl-2-oleoyl-sn-

glycerol-3-phosphoethanolamine (POPE-G) was synthesized following a published procedure 

[190]. Stock solution of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC, Avanti Polar 

Lipids) was prepared (1 mg/mL) by dissolving the lipid powder in chloroform and methanol 

(9:1) and stored in freezer (-20°C).  Solutions of POPC (3 mg), POPE-G (3.9 mg) and 1,2-

dipalmitoyl-sn-glycero-3-phosphoethanolamine-N-(lissamine rhodamine B sulfonyl) 

ammonium salt (DPPE-LR, 0.045 mg)  were mixed in the molar ratio of 50:49:1 respectively in a 

10 mL round bottom flask. The mixture was swirled to ensure proper mixing of components. 

Solvent was evaporated using a rotary evaporator and the flask was placed under vacuum 

overnight to remove any residual solvent traces. Next day, the dried film was hydrated for 3 h 

with 3 mL of 10 µM calcein dissolved in 10 mM HEPES buffer (pH adjusted to 7.4) and 3 mL of 
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0.64 M mannitol (final concentration 0.32 M). The lipid dispersion was then bath sonicated for 

10 minutes with constant swirling and exposed to 3 freeze (-70°C) and thaw (23°C) cycles to 

enhance calcein encapsulation.  Sequential extrusion was performed using a mini-extruder 

(Avanti Polar Lipids) using 800 nm, 200 nm polycarbonate filters (Nuclepore, Whatman) in 

succession. For cancer cells uptake studies, ARLINs were prepared using the same protocol 

except that the concentration of calcein used was 3 mM. Two different batches were prepared, 

one with and other without (1 mole%, 0.1 mg) of 1,2-distearoyl-sn-glycero-3-

phosphoethanolamine-N-[folate(polyethylene glycol)-2000] (ammonium salt).  

For polymerization, the reported procedure [190] was modified in order to make it 

suitable for our experiments. To the above 6 mL solution, the cross linker CL, 150 µL of 0.04 M 

aqueous solution), Cu-complex (150 µL of 0.053 M aqueous solution prepared by mixing 3 mL 

of CuCl2, 71.7 mg, 0.53 mmol) solution, 3 mL of PMDETA solution (442 µL, 2.1 mmol)) and 

sodium ascorbate (150 µL of 27 mg/mL solution, 1.4 µmol) were added together.  Mixture was 

divided into 6 closed vials and stirred slowly at room temperature for 24 h.  After 24 h, the 

mixture was passed through a Sephadex-G100 gel (GE healthcare) filtration column in order to 

remove unencapsulated dye and other compounds from the ARLINs. Mannitol was added to the 

ARLINs solution to 0.32 M concentration, the solution was frozen and subsequently, the 

ARLINs were placed in a lyophilizer. The freeze dried powder was stored in a refrigerator and 

reconstituted just before use. 

Preparation of doxorubicin loaded ARLINs  

To encapsulate doxorubicin into the lipid nanoparticles, the reported pH gradient 

loading method was employed [191] with some modifications. Briefly, the lipid film was 

hydrated with 400 mM citrate buffer (pH 4.0) and after bath sonication and freeze thaw cycles, 

the external pH of buffer increased to 7.4 by addition of dilute sodium hydroxide. To this lipid 

dispersion, 0.2 mg of doxorubicin/mg of lipid was added and the dispersion was stirred for 30 

minutes at room temperature. The lipid dispersion was then passed through a Sephadex-G100 
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gel filtration column to remove unencapsulated doxorubicin. Encapsulation efficiency was 

determined by recording the absorbance of doxorubicin at 475 nm before and after gel filtration. 

These lipid nanoparticles were then polymerized using the same procedure described earlier. 

After polymerization, the doxorubicin content was determined by plotting the absorbance onto 

the calibration curve established at 475 nm.   

Measurement of size distribution, zeta potential and mobility 

The size distribution, zeta potential and mobility of the ARLINs were measured by 

Malvern Zetasizer Nano-ZS90 using dynamic light scattering (DLS) method before and after 

lyophilization. Polystyrene latex disposable cuvettes (DTS 0012 for Size and DTS 1061 for zeta 

potential and mobility) were used and scattering measurement was performed at 90° angle. 

Each sample (0.1 mg/mL in 10 mM HEPES buffer pH 7.4) was equilibrated for 60 seconds and 

10 readings were taken for each sample of ARLINs at room temperature. All the batches were 

tested and each sample was tested 5 times to ensure reproducibility and to calculate the 

standard deviation. 

Transmission electron microscopy 

The samples were observed using a JEOL JEM-2100-LaB6 transmission electron 

microscope operating at 200 kV at low magnifications and with the beam spread, which is not 

converged, to reduce the amount of electron beam interaction per unit area and hence beam 

damage to sample if it were to occur. Lyophilized ARLINs sample reconstituted in 10 mM 

HEPES buffer pH 7.4 to obtain 1 mg/mL concentration and dropped onto 300 mesh Formvar 

coated copper grids previously coated with 0.01% poly-L-lysine and allowed to stand for a 

minute before wicking off with filter paper.  After air drying for 2 minutes, the sample was 

negatively stained with 1% phosphotungstic acid for 1.5 minutes and subsequently wicked off 

with filter paper and allowed to dry before viewing.  
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Atomic force microscopy 

The sample (freshly reconstituted in 10 mM HEPES buffer pH 7.4) was dropped onto a 

mica sheet and air dried for performing the AFM experiments. For performing AFM imaging, a 

MultimodeTM atomic force microscope with Nanoscope III a controller and J type piezo scanner 

from Veeco Metrology Group, Santa Barbara, CA was used. Antimony (n) doped Si tip was used 

for obtaining images in Tapping ModeTM under laboratory conditions. Images were taken before 

and after treatment with 5 mM GSH. 

Measurement of echogenicity of ARLINs 

Echogenicity of the ARLINs was measured in vitro using the acoustic setup to measure 

scattered response discussed in our previous publications [175] (Figure 2.1A). The setup 

consisted of two single element focused immersion transducers (Panametrics-NDT) confocally 

positioned at right angles by inserting them through holes drilled on the adjacent walls of a 

rectangular polycarbonate chamber that held our sample volume. Each transducer had an 

individual diameter of 1.27 cm with a focal length of 3 cm. The transmitting and receiving 

transducers had nominal central frequencies of 3.87 MHz and 5.54 MHz and -6 dB bandwidths 

of 86.4% and 85% respectively. A programmable function generator (Model 3325A; Agilent 

Santa Clara, CA) was used to generate a 32 cycle sinusoidal wave at 3.5 MHz frequency which 

was then amplified using a power amplifier (Model A-300; ENI, Rochester, NY) before being fed 

to the transmitting transducer. The output of the transducer was calibrated using a needle 

hydrophone (PZT-Z44-0400, Onda Corporation, CA). All scattering experiments were 

performed at an acoustic pressure of 500 kPa. The scattered signal was received through a 

pulser/receiver (Model 5800; Panametrics-NDT, Waltham, MA) with a 20 dB gain. The received 

signal was observed in real-time utilizing a digital oscilloscope (Model TDS2012; Tektronix, 

Beaverton, OR). Scattered voltage-time responses were saved on a desktop computer for post-

experimental analysis using LabView (Version 6.0.3; National Instruments, Austin, TX) 

connected to the oscilloscope via a GPIB IEEE 488 cable and GPIB card. The voltage-time 



 

responses were analyzed using a Matlab® code (MathWorks, Natick, MA) by taking Fast 

Fourier Transforms of 50 oscilloscope acquisitions which were averaged and converted to dB 

scale with unit reference before extracting the response

second and sub-harmonics). Each experiment was repeated five times and the average 

responses with corresponding standard deviation errors were plotted.

Phosphate buffered saline (PBS) solution mixed with 0.5% by weigh

albumin (BSA) were prepared and kept refrigerated for a minimum of 48 hours before using 

them to reconstitute the freeze dried ARLINs. Correct amounts of ARLINs were weighed and 

dissolved in 100 mL of PBS-BSA solution and poured into the 

scattering measurements.  At the lipid concentration 5 µg/mL, it was sufficiently diluted so that 

multiple scattering could be safely neglected.  

Figure 2.1. (A) Schematic of the experimental setup for 
Schematic of the in vitro experimental setup for ultrasound mediated release studies.
 

Ultrasonic imaging of ARLINs 

Terason t3200™ Diagnostic Ultrasound (MedCorp LLC., Tampa, FL) was used to image 

reconstituted ARLINs.  A layer of Aquasonic

Jersey) ultrasound gel was applied to the 15L4 Linear (4.0

FL) ultrasound transducer sound plate. The transducer with gel was placed over the parafilm 
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responses were analyzed using a Matlab® code (MathWorks, Natick, MA) by taking Fast 

Fourier Transforms of 50 oscilloscope acquisitions which were averaged and converted to dB 

scale with unit reference before extracting the responses at desired frequencies (fundamental, 

harmonics). Each experiment was repeated five times and the average 

responses with corresponding standard deviation errors were plotted. 

Phosphate buffered saline (PBS) solution mixed with 0.5% by weight of bovine serum 

albumin (BSA) were prepared and kept refrigerated for a minimum of 48 hours before using 

them to reconstitute the freeze dried ARLINs. Correct amounts of ARLINs were weighed and 

BSA solution and poured into the sample chamber to carry out the 

scattering measurements.  At the lipid concentration 5 µg/mL, it was sufficiently diluted so that 

multiple scattering could be safely neglected.       

) Schematic of the experimental setup for in vitro measurement of scattering. (
experimental setup for ultrasound mediated release studies.

Terason t3200™ Diagnostic Ultrasound (MedCorp LLC., Tampa, FL) was used to image 

er of Aquasonic® 100 (Parker Laboratories, Inc., Fairfield, New 

Jersey) ultrasound gel was applied to the 15L4 Linear (4.0-15.0 MHz) (MedCorp LLC., Tampa, 

FL) ultrasound transducer sound plate. The transducer with gel was placed over the parafilm 

responses were analyzed using a Matlab® code (MathWorks, Natick, MA) by taking Fast 

Fourier Transforms of 50 oscilloscope acquisitions which were averaged and converted to dB 

s at desired frequencies (fundamental, 

harmonics). Each experiment was repeated five times and the average 

t of bovine serum 

albumin (BSA) were prepared and kept refrigerated for a minimum of 48 hours before using 

them to reconstitute the freeze dried ARLINs. Correct amounts of ARLINs were weighed and 

sample chamber to carry out the 

scattering measurements.  At the lipid concentration 5 µg/mL, it was sufficiently diluted so that 

 

measurement of scattering. (B) 
experimental setup for ultrasound mediated release studies. 

Terason t3200™ Diagnostic Ultrasound (MedCorp LLC., Tampa, FL) was used to image 

100 (Parker Laboratories, Inc., Fairfield, New 

15.0 MHz) (MedCorp LLC., Tampa, 

FL) ultrasound transducer sound plate. The transducer with gel was placed over the parafilm 
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covering the wells containing the ARLINs in a 96-well plate.  The ultrasound scan properties of 

the ARLINs were set at 0.7 Mechanical Index (MI), 0.6 Thermal Index (TIS), Omni Beam 

activated, level C Image Map, level 3 Persistence, high (H) frequency, level 3 TeraVision, level 51 

2D Gain, level 60 Dynamic Range (DR), 3 cm scan depth, and 22 Hz frame rate.  The images 

were labeled and saved. 

Ultrasound mediated release studies 

For ultrasound mediated release studies with ARLINs, we used a setup similar to the one 

described in our previous publication [175] (Figure 2.1B). A single element unfocused 

immersion transducer (Model IP301HP; Valpey Fisher Corporation, Hopkinton, MA) was used 

to excite the ARLINs suspension. Frequency (3 MHz) continuous sinusoidal waves utilized for 

the release studies were generated using the waveform generator (Model 33250A; Agilent, Santa 

Clara, CA) and amplified using a power amplifier (Model A-150; ENI, Rochester, NY) before 

being input to the transducer. The transducer output was calibrated using a needle hydrophone 

(PZT-Z44-0400, Onda Corporation, CA). All of our release studies with ultrasonic excitation 

were carried out at a pressure of 0.5 MPa with a 2 minute exposure time. The release studies 

were performed in 48 well plates with a 500 µL sample volume and a lipid concentration of 0.02 

mg/mL. The entire plate was placed on constant temperature water bath to minimize 

temperature fluctuations and homogeneity of the sample was ensured by placing small magnetic 

stirrers within each well during the course of the experiment. Although this setup allows 

reflection of ultrasound wave from the air-water interface thereby giving rise to standing wave 

patterns [121, 192] the setup was found adequate for the present study to demonstrate the 

validity of the proof of concept. Also as mentioned in our previous publication we observed 

negligible (less than 1%) energy transfer to neighboring wells during stimulation indicating 

almost no inter-well interference. All experiments were performed three times and in triplicates 

each time to ensure reproducibility of results and calculate standard deviations.  
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Redox triggered release studies 

Release studies were carried out using a fluorescence microplate multidetection 

instrument (Spectramax-M5, Molecular devices) using calcein and CoCl2 quenching method. 

Since sub-self-quenching concentration (10 µM) of calcein was used, we could quench external 

fluorescence by adding CoCl2. CoCl2 quenches fluorescence of unencapsulated calcein outside 

the ARLINs, so the fluorescence signal observed is from the encapsulated dye only. For the 

release studies, 0.02 mg/mL ARLINs were taken into 96 well plate and external calcein was 

quenched with 10 mM CoCl2. Dithiothreotol (DTT), Glutathione (GSH) and Cysteine (CYS) were 

added in specific concentration to determine the release of calcein. Fluorescence was monitored 

at 515 nm (excitation 495 nm) for an hour and subsequently, the ARLINs were disrupted using 

triton-X100 to record background fluorescence (if any). Initial fluorescence intensity was 

treated as 100% and percent decrease in fluorescence intensity was treated as percent release 

accordingly. 
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Ultrasound enhanced thiol triggered release 

For these experiments, a 48 well plate was used, in which 0.02 mg/mL of freeze dried 

ARLINs were suspended in 10 mM HEPES buffer (pH 7.4). Two different set ups were employed 

to study the combined effects of reducing agents and ultrasound on release. In the first set up, 

ARLINs were incubated with 5 mM reducing agent and after 60 minutes, the solution was 

exposed to ultrasound (3 MHz, 0.53 MPa) for 2 minutes. In the second set up, we applied 

ultrasound immediately after the addition of the reducing agent. Control samples were kept and 

release was checked for each experiment. Care was taken to keep two sample wells as far as 

possible to minimize the effect of ultrasound in other wells. 
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Cell culture and ARLINs uptake studies 

For cancer cell uptake studies, MCF-7 (human breast adenocarcinoma) and HeLa 

(human cervical carcinoma) were cultured in clear (without added Phenol red) RPMI media 

supplemented with 10 % fetal bovine serum and 1% antibiotics. The culture flasks were 

incubated at 37 °C in humidified atmosphere containing 5% CO2. When cells became 90% 

confluent, they were suspended using trypsin-versene. The suspended cells then cultured onto 

sterile 6 well plates until 90% confluent.  

For uptake studies with calcein encapsulation, the media was removed and MCF-7 cells 

were gently washed with HBBS (Hank’s Balanced Salt Solution) 2-3 times to completely remove 

any media. Subsequently, the ARLINs suspended in media (0.2 mg/mL) were incubated with 

the cells for 30 minutes. After specific time intervals, ARLINs solution was removed from wells 

and cells were again rinsed with HBSS to remove ARLINs on the surface of cells. Hoechst-33342 

stain (1 mg/mL, 1:1000 dilution) was used to stain nuclei of cells. Finally, fresh media was added 

to cells and were observed under fluorescent microscope at different time points (10, 20, 30 

min.) A similar procedure was followed for the uptake studies with doxorubicin loaded ARLINs 

(targeted, non-targeted) using the HeLa cells. 

Percent uptake of ARLINs by HeLa cells was calculated by measuring fluorescence of 

MCF-7 cells lysed with 5% triton. For this cells were seeded onto 96 well plate and once 

confluent, incubated with ARLINS loaded with 50 mM calcein for 6 h at two different 

concentrations - 40 µg/mL and 20 µg/mL. After incubation, cells were washed with HBSS thrice 

and lysed using 5% triton-X100. Fluorescence was measured (Ex: 485 nm Em: 515 nm) and then 

compared with fluorescence of respective ARLINs solution lysed using 5% triton. Percent uptake 

was calculated for Folate targeted and non-targeted ARLINs for both concentrations. 

Cell viability assay 

The cytotoxicity of targeted and non-targeted ARLINs was determined by AlamarBlue® 

assay, measuring the fluorescence of resorufin (red) formed by reduction of resazurin (blue) in 
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the cytosol of viable cells (metabolically active) [193]. Briefly, HeLa cells were transferred to flat, 

clear bottomed 96-well tissue culture plates (Corning) at a density of 2 x104 per well 24 hours 

prior to the assay (or 70-80% confluency).  The culture medium in each well was carefully 

removed and replaced with doxorubicin loaded folate conjugated ARLINs, doxorubicin loaded 

non-targeted ARLINS and doxorubicin solution mixed with media. After incubation at 37 °C for 

6 h, 12 h and 24 h, the cells were washed three times with sterile HBSS and incubated in fresh 

culture medium. At this point, 20 µL of AlamarBlue® was added to each well and the 

fluorescence readings (Ex: 560 nm Em: 590 nm) were taken after 3 h of incubation at 37°C. 

Average readings were then compared with control and plotted on the graph.  

Results and Discussion 

The gallate-derived polymerizable lipid (POPE-G) and the diazide cross-linker (CL) were 

synthesized in our laboratory.  The lissamine rhodamine lipid (DPPE-LR) and the DSPE-PEG-

2000-Folate are commercially available (Figure 2.2).  We prepared the ARLINs incorporating 

50 mol% POPC, 49 mol% POPE-G and 1% DPPE-LR in 10 mM HEPES buffer (pH 7.4). 

Nanoparticles were polymerized in the presence of added diazide CL, CuSO4, ascorbic acid and 

subsequently freeze dried in presence of a weak cryoprotectant mannitol. Based on a literature 

report, we anticipate that the disulfide cross-links were formed only on the outside surface of the 

lipid nanoparticles[190] (Figure 2.2). Being a weak cryoprotectant, mannitol does not provide 

effective protection during lyophilization which leads to defects in the polymer coated lipid shell. 

It has been hypothesized that these defects are responsible for the entrapment of air within the 

lipid nanoparticles during the rehydration/reconstitution stage [105, 132]. This entrapped air 

(which gives rise to mismatch of acoustic impedance) is critical for the echogenicity of these 

lipid structures. We have recently reported that a finite amount of mannitol is necessary during 

lyophilization for making them echogenic [175]. We also observed that these lipid nanoparticles 

were echogenic only when lyophilized and reconstituted; prior to freeze drying these were not 

echogenic i.e., did not respond to ultrasonic excitation. Hence, the polymerized ARLINs studied 
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here were prepared using the freeze-drying technique mentioned above and tested for 

echogenicity. 

We determined the size distribution of ARLINs before and after lyophilization using a 

dynamic light scattering (DLS) instrument. We observed that the number average diameter after 

lyophilization increased (117 ± 11 nm, Figure 1.3A) compared to the average diameter before 

lyophilization (78 ± 14 nm, Figure 1.3B). Polydispersity index was also found to increase from 

0.37 ± 0.04 to 0.71 ± 0.05, indicating a more heterogeneous distribution of sizes in the 

lyophilized sample. This was confirmed in subsequent transmission electron microscopic images 

obtained for lyophilized ARLINs (Figure 1.4B). Note that, due to the modified preparation 

protocol, the ARLINs indeed entrapped air as verified by TEM images (Figure 1.4A) and gave 

rise to a more polydispersed suspension with a larger average diameter. We also studied the 

effect of addition of GSH on the morphology and size distribution of ARLINs employing an 

atomic force microscope (AFM). We observed that, before treatment ARLINs look spherical with 

average size about 100-200 nm (Figure 1.5A); but upon addition of 5 mM GSH, the particles 

fuse with each other and their size distribution becomes more heterogeneous (Figure 1.5B).  

We also characterized these particles for their physical properties. We determined zeta 

potential and mobility of empty and doxorubicin loaded ARLINs using dynamic light scattering 

method on Zetasizer instrument (Table 2.1). During gel filtration with Sephadex column, lipid 

particles can get adsorbed and thus their stability and physical characteristics can get changed. 

To check this, we studied these particles before and after passing through Sephadex column for 

their size, zeta potential, mobility and stability. We observed that gel filtration did not the 

stability of ARLINs as they leaked less than 5% when incubated for an hour. We also noticed 

that gel filtration also don’t affect the physical characteristics of particles like size, zeta potential 

and mobility (Table 2.1). 



 

 Figure 2.2.  Lipids used in preparation of lipid nanoparticles and proposed structure of lipid 
nanoparticle with disulfide polymer coating (red coating around nanoparticle) after 
polymerization by diazide cross-
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Lipids used in preparation of lipid nanoparticles and proposed structure of lipid 
nanoparticle with disulfide polymer coating (red coating around nanoparticle) after 

-linker CL. 
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Figure 2.3. Size distribution analysis of nanoparticles by dynamic light scattering method. (
Size distribution by number before lyophilization (
lyophilization. (n=5) 
 

Figure 2.4. Transmission Electron Microscopic images of negatively stained ARLINs with 1% 
phosphotungstic acid, using a JEOL JEM
operating at 200 kV. The beam is spread and not converged, 
beam interaction per unit area and to minimize beam damage to sample. (
lyophilization showing presence of air bubble entrapped in the shell. (
distribution of ARLINs after lyophilization
 

Figure 2.5. MultiMode™ atomic force microscopic images of ARLINs before (
treatment with 5 mM GSH. 
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Size distribution analysis of nanoparticles by dynamic light scattering method. (
Size distribution by number before lyophilization (B) Size distribution by number after 

. Transmission Electron Microscopic images of negatively stained ARLINs with 1% 
phosphotungstic acid, using a JEOL JEM-2100-LaB6 transmission electron microscope 
operating at 200 kV. The beam is spread and not converged, to reduce the amount of electron 
beam interaction per unit area and to minimize beam damage to sample. (A) ARLINs after 
lyophilization showing presence of air bubble entrapped in the shell. (B) Heterogeneous size 
distribution of ARLINs after lyophilization. 
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Table 2.1. Zeta potential and mobility of empty and doxorubicin loaded ARLINs determined 
using dynamic light scattering method (Zetasizer). 
 

N=5 Zeta Potential (mV) Mobility (µmcm/Vs) 

 Empty ARLINs Dox-loaded ARLINs Empty ARLINs Dox-loaded ARLINs 

Avg -16.28 -17.8 -1.27 -1.39 

SD 0.38 1.31 0.03 0.10 

 

Table 2.2: Effect of gel filtration on physical properties of ARLINs determined using dynamic 
light scattering method (Zetasizer). 
 

N=5 Size (nm) Zeta (mV) Mobility (µmcm/Vs) 

 Before* After* Before* After* Before* After* 

Avg 147 158.3 -18.02 -17.8 -1.4 -1.54 

SD 12.7 8.1 0.55 1.3 0.04 0.07 

 

Similar to other literature reports [172, 194], we observed by TEM the presence of air 

bubble either inside the aqueous interior or in the shell of the ARLINs (Figure 2..4A). The 

ARLINs prepared following freeze-drying/reconstitution in presence of mannitol also showed 

significant echogenicity, incontrovertibly indicating air entrapment. Figure 2.6 shows the 

scattered response from a suspension of ARLINs under ultrasonic excitation for two different 

frequency components viz. fundamental (at frequency of excitation 3.5 MHz), second harmonic 

(at twice the excitation frequency 7 MHz). The control data indicates the response without any 

ARLINs in suspension. There was an enhancement in response for both components which 

demonstrates the echogenic nature of the ARLINs. The fundamental response shows around 20 

dB enhancement for the lipid concentration of 5 µg/mL at an acoustic pressure of 500 kPa.  The 

nonlinear response from the ARLINs is much weaker with only 8 dB enhancement for the 

second harmonic component. Note that normal ELIPs[175] and our previously-reported 

lipopeptide conjugated ELIPs generated larger (33 and 25 dB respectively) enhancement of the 
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fundamental response at 10 µg/mL (double the concentration accounts for 3 dB discrepancy) 

lipid concentration and 500 kPa. The weaker response here may be attributed to the change in 

the lipid composition and increased strength of lipid shell due to polymerization. Note that as 

reported previously [169, 175] with other ELIPs, scattered responses from lipopeptide 

incorporated ELIPs do not show any distinct peak at the subharmonic frequency (at half the 

excitation frequency or 1.75 MHz). Echogenicity was also confirmed by ultrasound imaging with 

a Terason t3200 ultrasonic medical imaging system using a 4–15 MHz transducer. 

Reconstituted ARLINs reflected ultrasound indicating the presence of entrapped air inside 

(Figure 1.7B) whereas control samples (no ARLINs) were dark due to no reflection (Figure 1.7A).  
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Figure 2.6. In vitro ultrasound scattering: fundamental (dark cyan) and second harmonic 
(green) responses from ARLINs. (n=5) 
 

We encapsulated the dye calcein in the aqueous interior of the ARLINs and added cobalt 

(II) chloride (CoCl2) in the outside buffer.  Most of the triggered release reports from drug 

carriers containing disulfide bonds employ either dithiothreitol (DTT [195]) or cysteine (CYS 

[196]) as the reducing agent.  Hence, we decided to perform the release studies using DTT, CYS 

as well as the physiologically more relevant reducing agent glutathione (GSH).  Upon addition of 

the reducing agent, as the encapsulated calcein is released, its emission intensity is quenched by 

the CoCl2 in the external media. 
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Figure 2.7. Ultrasound imaging of ARLINs reconstituted in 10 mM HEPES buffer pH 7.4, 
using a Terason t3200 ultrasonic medical imaging system using a 12–15 MHz transducer. (A) 
Control- 10 mM HEPES buffer pH 7.4 (B) ARLINs sample- 0.1 mg/mL. 

 

We studied the release of encapsulated calcein from the ARLINs using 10 µM to 10 mM 

concentrations of reducing agents. The range was selected based on the concentrations of 

reducing agents in the extracellular matrix/blood plasma (10 µM) and cancer cell cytosol (10 

mM). The disulfide bonds on the external surface of the ARLINs were cleaved (disulfide to thiol 

exchange) by the added reducing agents.  This process creates sufficient disturbance to make 

nanoparticles unstable and leaky. We observed that the percent release was directly 

proportional to the concentration of reducing agents (Figure 1.8A).  The maximum release of 

around 90% was observed with 10 mM concentration of either GSH or DTT. DTT has a very low 

redox potential (E0 = – 0.332 V at pH 7.0) and it rapidly reduces the disulfide bonds [197] as 

compared to glutathione (E0 = + 0.062 V) and cysteine (E0 = + 0.025 V) [198, 199]. In fact, DTT 

reduces the bonds so rapidly that we were unable to obtain a reliable release profile from the 

ARLINs. However, the release profiles employing GSH and CYS were slow enough to be easily 

analyzed (Figure 1.9). Given the relative concentrations of reducible disulfide bonds and 

reducing agents, we expected the overall kinetic profile to be single exponential in nature. The 

latter was found to be the case for the release of the encapsulated content from photocleavable 

as well as enzyme (MMP-9) cleavable liposomes [152], albeit in both these cases the single 

exponential phases proceeded with a finite lag phase. No lag phase was noticeable during the 
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GSH and CYS dependent cleavage of these ARLINs. However, in attempting to analyze the data 

of Figure 1.9, we realized that the release profile did not confirm to the single exponential rate 

equation. The data could only be fitted by the single exponential plus steady-state equation in 

the following format (Equation 1).  

1
1 2Release (1 )k tF e k t offset−

= − + +
   ……………………………………………………. (Equation 1) 

Where k1 and k2 are the rate constants of exponential and steady-state phases.  The solid 

lines in Figure 1.9 are the best fitted curves of the data.  We determined the magnitudes of k1 to 

be 0.21 + 0.03 min–1 (for CYS mediated release) and 0.23 + 0.02 min–1 (for GSH mediated 

release); the values for k2 being equal to 0.18 + 0.01 (for CYS mediated release) and 0.25 + 0.01 

min–1 (for GSH mediated release).  

The question arose as to why, unlike other formulations [82], the thiol mediated cleavage 

and content release from disulfide linked ARLINs exhibited the single exponential (burst) phase 

followed by the steady-state phase. In contemplating the mechanistic origin of such profile 

(Figure 1.9), we realized that due to initial high concentration of GSH and CYS, they would 

rapidly reduce a major fraction of the disulfide bonds of the ARLINs. Subsequently, the reducing 

agent (e.g., CYS or GSH) as well as the reduced thiol groups on the ARLINs surface would 

trigger the sulfhydryl-disulfide exchange reaction in a steady-state fashion. Such situation is 

unlikely to prevail either with photo- or MMP-9 cleavable drug carriers, and thus the release 

profiles are devoid of the steady-state phase. We are currently assessing the molecular 

mechanism underlying the release of contents under different experimental conditions to 

validate or refute our working hypothesis, and we will report our findings subsequently.  

We observed minimal leakage (less than 5% over 12 hours at room temperature in pH 7.4 buffer) 

from the ARLINs in the absence of any added reducing agent (Figure 1.8A). With 10 µM 

concentration of the reducing agents, the release was less than 5% – indicating the relative 

stability of ARLINs in extracellular environments/blood stream.  This is likely due to the 
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polymerized external leaflet of the ARLINs. We note that the extracellular environment of 

tumors is more reducing compared normal cells (because of cell deaths, necrosis) and this can 

lead to release of some of the encapsulated contents from the ARLINs.  

DTT is a chelating agent and forms complexes with many transition metals ions[176]. We 

added 10 mM CoCl2 in the buffer to quench the fluorescence emission from the calcein released 

from the ARLINs. It is likely that a considerable amount of DTT is consumed in forming 

complexes with the added Co2+ ions. This will likely contribute to lesser release from the ARLINs 

in presence of 5 mM DTT as compared to 5 mM GSH. We also observed and confirmed that that 

DTT results in the highest amount of complex formation and precipitation followed by CYS.  The 

formation of colored complex and precipitate were minimal with GSH. 
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Figure 2.8. (A) Thiol triggered release of calcein from polymer coated ARLINs with increasing 
concentration of reducing agents CYS (violet), GSH (orange) and DTT (green). (B) Ultrasound 
enhancement of redox triggered release from ARLINs. The dark cyan columns indicate release 
with reducing agents at 5 mM concentration and violet columns indicate release with 
simultaneous application of two triggers - reducing agent (5 mM) and ultrasound (CW excitation 
at 3 MHz, 0.5 MPa for 2 minutes). (n=5) 
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Figure 2.9. Release profiles of calcein from ARLINs in presence of 5 mM CYS (A) 5 mM GSH 
(B). The red lines indicate the fitted curves for the observed data using the equation 1. (n=3) 
 

It was evident from the in vitro scattering experiments, TEM images and ultrasound 

imaging, that these lipid nanoparticles were echogenic and contains entrapped air inside. After 

ensuring release with reducing agents, we proceeded to determine whether the ARLINs release 

calcein in response to an ultrasound trigger. In this endeavor, reconstituted ARLINs along with 

CoCl2 were taken in the wells of a 48 well plate and excited with continuous wave ultrasound. 

We observed that in absence of any reducing agents, ultrasound alone failed to release calcein 

from ARLINs. Less than 5% release was observed in both control and test samples after 

application of continuous wave ultrasonic excitation (3 MHz frequency, 0.5 MPa acoustic 

pressure for 2 minutes). Increasing the intensity of ultrasound to higher values had no 

significant effect on the results. Subsequently, we added 5 mM reducing agents to ARLINs and 

applied ultrasound concurrently to observe the combined effects of both triggers on the release. 

With simultaneous application of both triggers, 8-20% enhancement in release was observed as 

compared to release with reducing agents alone. ARLINs treated with GSH showed the highest 

additional enhancement (20%) with ultrasound trigger whereas CYS treated sample showed 

only 8% additional ultrasound induced enhancement under the same excitation conditions. We 
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note that GSH is more effective in reducing the disulfide groups on ARLIN surface and release 

more contents compared to CYS (Figure 2.9). 

In another set of experiments, ultrasonic excitation was initiated an hour after 

incubating ARLINs with the reducing agents (5 mM). No significant change in calcein release 

was observed. We hypothesize that upon incubating ARLINs with reducing agents for an hour, 

the lipid shell of nanoparticle becomes leaky, allowing the entrapped air to escape and thereby, 

diminishing their acoustic reflectivity. 

These observations suggest that polymerization on the external surface makes lipid shell 

stronger and less responsive to disturbance created by ultrasound excitation of air entrapped 

inside. Hence, ultrasound alone fails to create a sufficient disturbance or defects in the polymer-

coated lipid shell in order to release calcein from its aqueous core.  But once reducing agents are 

added, the effects of polymerization are reversed, making ARLINs sensitive to ultrasound and 

release the contents. This further corroborates our hypothesis that cross-linking/polymerization 

using reversible disulfide bonds leads to stronger and more stable ARLINs without 

compromising release efficacy at targeted sites (reducing environment of cell cytosol). This 

hypothesis was also supported by the release data obtained upon application of low frequency 

ultrasound (CW, 22.5 kHz, 4 W, usually used to disrupt cells) to non-polymerized and 

polymerized ARLINS (Figure 2.10). The obtained results clearly show that at each time interval, 

the release was less with polymer coated ARLINs compared to non-polymerized ARLINs.  
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Figure 2.10. Low frequency ultrasound (CW, 22.5 kHz, 4W) triggered release from ARLINs 
prior to polymerization (black spheres) and after polymerization (red spheres). 
 

Subsequently, we proceeded to demonstrate the effectiveness of our ARLINs in releasing 

the encapsulated contents in the cytosol of cancer cells.  In this endeavor, we used folic acid as 

the targeting group for the ARLINs.  Folic acid is a vitamin B family member which plays an 

important role in cell survival by participating in the biosynthesis of nucleic acids and amino 

acids [200]. Due to the faster growth rate, cancer cells need more folic acid compared to normal 

cells. As a result, cancer cells express higher number of folic acid receptors on the surface 

compared to normal cells. Folate receptors actively internalize bound folic acid or folate 

conjugated entities via receptor mediated endocytosis [201, 202]. Folate conjugation to anti-

cancer drugs or delivery vehicles improves drug selectivity for cancer cells overexpressing the 

folate receptor on the surface [75, 203-207].  

 



 

Figure 2.11. Fluorescence microscopic images of ARLINs uptake by folate receptor 
overexpressing MCF-7 cancer cell line (20x magnification). 
 

Figure 2.12. (A) Cell viability studies with HeLa cells:  Folate conjugated doxorubicin loaded 
ARLINs (red), non-targeted doxorubicin loaded ARLINs (green) and free doxorubicin (blue). 

55 
 

Fluorescence microscopic images of ARLINs uptake by folate receptor 
7 cancer cell line (20x magnification).  
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Cell viability studies with HeLa cells:  Folate conjugated doxorubicin loaded 
targeted doxorubicin loaded ARLINs (green) and free doxorubicin (blue). 

 

Fluorescence microscopic images of ARLINs uptake by folate receptor 

     20 µg/mL

Concentration of ARLINs 
 

Cell viability studies with HeLa cells:  Folate conjugated doxorubicin loaded 
targeted doxorubicin loaded ARLINs (green) and free doxorubicin (blue). 



 

Doxorubicin final concentration used was 50 µg/mL in all the samples. (n=6) *P<0
**P<0.05 (B) Percent uptake of ARLINs by MCF
 

 

Figure 2.13. Fluorescence microscopic images for the uptake of doxorubicin loaded ARLINs by 
folate receptor overexpressing HeLa cells. (
(B) non-targeted doxorubicin loaded ARLINs. (20x magnification)
 

For the cellular studies, we incorporated the DPPE

mol%) in the ARLINs and studied their uptake by folate overexpressing breast 

MCF-7. For these experiments, the non

breast cancer cell line known to overexpress folate receptors and has been used to demonstrate 
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Doxorubicin final concentration used was 50 µg/mL in all the samples. (n=6) *P<0
**P<0.05 (B) Percent uptake of ARLINs by MCF-7 cells after incubation for 6 h.

Fluorescence microscopic images for the uptake of doxorubicin loaded ARLINs by 
folate receptor overexpressing HeLa cells. (A) Folate conjugated doxorubicin loaded ARLINs 

targeted doxorubicin loaded ARLINs. (20x magnification). 

For the cellular studies, we incorporated the DPPE-PEG2000-Folate lipid (Figure 

mol%) in the ARLINs and studied their uptake by folate overexpressing breast cancer cell line

7. For these experiments, the non-targeted ARLINs were used as the controls. MCF

breast cancer cell line known to overexpress folate receptors and has been used to demonstrate 

Doxorubicin final concentration used was 50 µg/mL in all the samples. (n=6) *P<0.001 
7 cells after incubation for 6 h. 

 

 

Fluorescence microscopic images for the uptake of doxorubicin loaded ARLINs by 
doxorubicin loaded ARLINs 

Folate lipid (Figure 2.2, 1 

cancer cell line-

targeted ARLINs were used as the controls. MCF-7 is a 

breast cancer cell line known to overexpress folate receptors and has been used to demonstrate 
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enhanced uptake of folate conjugated drug delivery systems [208-212]. We observed 

significantly higher uptake of folate-lipid incorporated ARLINs in the MCF-7 cells compared to 

the non-targeted ARLINs. There was a significant difference in calcein fluorescence observed in 

fluorescence microscopic images (at 10 and 20 minutes) of folate conjugated ARLINs compared 

to the non-targeted ARLINs (Figure 2.11). We also observed that maximum uptake of the folate 

incorporated ARLINs in the MCF-7 cells takes place after 20 minutes of incubation. We further 

determined the percent of ARLINs uptake by the cells. For that cells were incubated with 40 

µg/mL and 20 µg/mL of ARLINs encapsulating 50 mM calcein for 6 h. Cell and ARLINs were 

disrupted using 5% Triton-X100 solution and fluorescence was measured and percent uptake 

was calculated accordingly. Complying with fluorescence microscopic images, we noticed that 

folate targeted ARLINs were taken up by MCF-7 cells in higher amount compared to non-

targeted ARLINs. Uptake was slow and it took around 6 h incubation to get around 10% of 

uptake with folate targeted ARLINs (Figure 2.12B). We also observed that uptake was 

concentration dependent, percent uptake increased with decrease in concentration but the total 

uptake increases with increase in concentration of ARLINs. When concentration was reduced 

from 40 µg/mL to 20 µg/mL, uptake was almost doubled with non-targeted ARLINs. 

Subsequently, we encapsulated the anticancer drug doxorubicin in the folate-PEG lipid 

incorporated ARLINs by pH gradient method (80-90% encapsulation efficiency). Although 

some leakage of doxorubicin was observed during polymerization, we found that cell viability 

decreases to 37% when folate conjugated doxorubicin encapsulated ARLINs were incubated 

with HeLa cells (human cervical carcinoma overexpressing folate receptors) for 24 h. The cell 

viability was significantly lower for folate conjugated ARLINs compared to non-targeted 

ARLINs (p<0.001) and free doxorubicin (p<0.05), indicating that folate conjugation enhances 

the uptake in the HeLa cells (Figure 2.12).  This was further confirmed by capturing fluorescence 

images of HeLa cells incubated with doxorubicin-ARLINs. The images clearly show enhanced 

uptake of doxorubicin-loaded-ARLINs into the cytosol of the HeLa cells (Figure 2.13). 
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Conclusion 

We have successfully demonstrated the preparation of polymer coated ARLINs. These 

lipid nanoparticles were stable in the extracellular oxidizing environment but released their 

contents efficiently in the reducing environment of cell cytosol. The ARLINs were also found to 

be echogenic with a 20 dB enhancement in fundamental scattered response with 3.5 MHz 

excitation at 500 kPa acoustic pressure for a lipid concentration of 5 µg/mL. Although, the 

ARLINs failed to show significant release under diagnostic frequency ultrasonic excitation 

alone, the release was enhanced by simultaneous application of ultrasound and redox triggers. 

Doxorubicin loaded ARLINs showed enhanced uptake and cytotoxicity when conjugated to folic 

acid and thus can be used for targeted drug delivery for cancer cells overexpressing folate 

receptors on their surface. We have employed continuous wave ultrasound excitation for release 

studies, which sends more energy than pulsed ultrasound. Future studies are needed to optimize 

the ultrasound parameters such as frequency, intensity and duty cycles to establish optimum 

parameters maximum possible release. The current study however successfully validates the 

proof of concept and with further developments and modifications, these polymer-coated 

ARLINs have the potential to be used as multimodal nanocarriers for targeted drug delivery and 

simultaneous ultrasound imaging. 
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CHAPTER III. pH-TRIGGERED ECHOGENICITY AND CONTENTS 

RELEASE FROM LIPOSOMES 

Abstract  

Liposomes are representative lipid nanoparticles, and are widely used for delivering 

anticancer drugs, DNA fragments or siRNA to cancer cells.  Upon targeting, various internal and 

external triggers have been used to increase the rate of contents release from the liposomes.  

Amongst the internal triggers, the decrease in pH within the cellular lysosomes has been 

successfully used to enhance the rate of contents release.  However, imparting pH-sensitivity to 

liposomes requires the synthesis of specialized lipids whose structures are substantially 

modified at reduced pH.  Herein, we report an alternative strategy to render liposomes pH-

sensitive by encapsulating a precursor which generates gas bubbles in situ in response to acidic 

pH. The disturbance created by the escaping gas bubbles leads to the rapid release of the 

encapsulated contents from the liposomes. Atomic force microscopic studies indicate that the 

liposomal structure is destroyed at reduced pH.  The gas bubbles also render the liposomes 

echogenic – allowing ultrasound imaging. In order to demonstrate the applicability of this 

strategy, we have successfully targeted doxorubicin-encapsulated liposomes to the pancreatic 

ductal carcinoma cells overexpressing the folate receptor on the surface.  In response to the 

decreased pH in the lysosomes, the encapsulated anticancer drug is efficiently released. 

Contents release from these liposomes is further enhanced by the application of (1 MHz) 

continuous wave ultrasound, resulting in substantially reduced viability for the pancreatic 

cancer cells (14%).   

Introduction 

Amongst the lipid nanoparticles, liposomes are widely studied as drug delivery vehicles 

[213-215]. Liposomes protect the encapsulated drugs from getting metabolized in the circulation 



 

60 
 

prior to reaching the target. The US Food and Drug Administration has approved liposome-

based formulations for the treatment of several types of cancers [216]. However, upon targeting, 

the passive release of the encapsulated drugs from the liposomes is often slow[76]. 

Reorganization of the lipid domains has been used as a trigger to enhance, and to control the 

rate and extent of contents release from liposomes [47, 83]. Amongst the various triggers, the 

decrease in pH in the lysosomes have been widely used as a successful strategy to efficiently 

release the encapsulated liposomal contents [217, 218].  However, imparting pH-sensitivity to 

liposomes requires the synthesis of specialized lipids whose structures are substantially 

modified at reduced pH, either due to hydrolysis or due to changes in the protonation states of 

the lipid head groups [217, 219-221]. 

Stabilized gas bubbles are widely used as contrast enhancing agents for ultrasound 

imaging of perfused tissues [222].  There are many reports of ultrasound mediated drug release 

from nanoparticles, liposomes and other carriers [45, 223-227].  Majority of these studies were 

conducted employing KHz frequency ultrasound [93, 94, 228].  Although ultrasound in KHz 

frequency efficiently releases the drugs from the carriers (due to cavitation and high local 

temperatures), the harmful biological effects associated with low-frequency ultrasound limits 

the usefulness of such strategies [229]. To make liposomes responsive to high-frequency 

ultrasound, they need to be coupled with gas pockets.  Echogenic liposomes (ELIPs) entrap 

small amounts air along with hydrophilic drug in its aqueous interior and are currently being 

developed as drug delivery vehicles for ultrasound triggered drug release and simultaneous 

imaging [172, 230]. Although there is uncertainty about the exact location and size of the 

entrapped air bubbles in ELIPs, their acoustic characterization has been reported extensively in 

literature [105, 175, 231, 232].   

We are developing targeted, multimodal liposomes for triggered release of encapsulated 

contents, and simultaneous ultrasound imaging. Furthermore, we are interested in enhancing 
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the contents release from the liposomes employing diagnostic frequency (MHz) ultrasound.  We 

have recently demonstrated ultrasound enhanced, extracellular release of liposomal contents 

mediated by the cancer cell secreted enzyme matrix metalloproteinase-9 (MMP-9) [169]. 

Herein, we report a strategy to render liposomes pH-sensitive by encapsulating ammonium 

bicarbonate which generates gas bubbles in situ in response to acidic pH [233]. Our strategy 

does not require the use of pH-sensitive lipids in the liposomal formulations. We hypothesize 

that at reduced pH, the hydronium ions diffuse into the aqueous interior of the liposomes, 

produce carbon dioxide bubbles and thereby, “turning on” the echogenicity. We have 

successfully imaged the liposomes employing a medical ultrasound scanner. As more bubbles 

are generated, the liposomal bilayer is disturbed, leading to the release of encapsulated contents. 

We observed that the release was further enhanced by the application of ultrasound with a 

frequency 1 MHz. To the best of our knowledge there are no reports in the literature of 

ultrasound enhanced triggered release from pH tunable echogenic liposomes.   

Materials and Methods 

Preparation of liposomes 

Liposomes were prepared with POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-

phosphocholine; Avanti Polar Lipids) lipid solution using traditional lipid film formation, 

hydration and sonication method. The lipid solution (4 mL of 1 mg/mL) was placed in a rotary 

evaporator for approximately 10 minutes to allow for the lipid film to form, and then placed 

under a vacuum overnight to remove traces of chloroform. Subsequently, 4 mL of 100 mM 

carboxyfluorescein solution was added, along with ammonium bicarbonate (0.4 M) and allowed 

to hydrate for three hours. The lipid dispersion was then sonicated for ten minutes to form 

liposomes. The liposomes were then exposed to three freeze (-70 °C) and thaw (23 °C) cycles to 

ensure dye encapsulation inside the aqueous interior of the liposomes. After the freeze-thaw 

cycles, an extrusion apparatus (Avanti Polar Lipids) was used to extrude the liposomes through 
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800 nm, then 200 nm polycarbonate membrane filters. The liposomes were then placed in a 

Sephadex-G100 gel filtration column preconditioned with HEPES buffer (pH 7.4, osmolarity 

adjusted to liposomal levels) to separate unencapsulated contents from the liposomes. Liposome 

fractions were collected and used for subsequent studies.  

For cellular uptake studies, the lipids used were POPC (99 mol%) and 1,2-distearoyl-sn-

glycero-3-phosphoethanolamine-N-[folate(polyethylene glycol)-5000] (ammonium salt; Avanti 

Polar Lipids) (1 mol%). The same procedure as described in the previous paragraph was 

followed for preparing these liposomes. 

Preparation of doxorubicin loaded liposomes 

Doxorubicin (Bridge Bioservices) was encapsulated by the traditional passive 

entrapment method. Briefly, the lipid film was hydrated with 400 mM ammonium bicarbonate 

and 0.2 mg of doxorubicin per mg of lipid for 3 hours.  After bath sonication for 10 min and 

freeze thaw cycles liposomes were passed though Sephadex column to remove unencapsulated 

doxorubicin. Encapsulation efficiency was determined by recording the absorbance of 

doxorubicin at 475 nm before and after gel filtration. The doxorubicin content was determined 

by plotting the absorbance onto the calibration curve established at 475 nm.  

Size distribution analysis (Dynamic light scattering) 

Dynamic light scattering method (NanoZS 90 Zetasizer, Malvern Instrument) was used 

to study size distribution of the liposomes. For these experiments, 0.1 mg/mL of liposomal 

solution was taken in DTS 0012 polystyrene disposable sizing cuvette. The measurements were 

performed at a scattering angle of 90°. Samples were equilibrated for 60 seconds and ten 

readings were taken for a single sample at a constant temperature (25 °C). Each batch of 

liposomes was studied for size distribution and each experiment was repeated three times for 

consistency.  
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Transmission electron microscopy 

The samples were observed using a JEOL JEM 2000 transmission electron microscope 

operating 100 kV and at low magnifications with the beam spread, which is not converged, to 

reduce the amount of electron beam interaction per unit area and hence beam damage to sample 

if it were to occur. The liposomal samples were dispersed to 1 mg/mL and dropped onto a 300 

mesh Formvar coated copper grids previously coated with 0.01% poly-L-lysine and allowed to 

stand for one minute before wicking off with filter paper. Then it was allowed air dry for two 

minutes and after that it was negatively stained with 1% phosphotungstic acid for 90 seconds 

and subsequently wicked with filter paper and then allowed to dry before being beamed.  

Atomic force microscopy 

The liposomal sample was placed onto a mica sheet and air dried. For performing AFM 

imaging, a MultimodeTM atomic force microscope with Nanoscope III controller and J type 

piezo scanner (Veeco Metrology Group, Santa Barbara, CA) was used. Antimony (n) doped Si tip 

was used for obtaining images in Tapping ModeTM under laboratory conditions. Images of 

liposomes were taken before and after incubating in pH 6.0 buffer for an hour to study the effect 

of bubbles generated on the morphology of the liposomes. Images were captured, processed and 

labeled properly.  

Ultrasound imaging of liposomes  

A Terason t3200 diagnostic ultrasound (MediCorp LLC) instrument was utilized to 

image liposomal solution incubated in different pH buffers. A layer of Aquasonic 100 (Parker 

Laboratories) ultrasound gel was applied on 15L4 linear ultrasound transducer (4-15 megahertz 

MediCorp LLC). The gel was placed over parafilm covering 96 well plates containing 200 µL of 

liposomal solution in each well. The ultrasound scan properties were fixed at 0.7 mechanical 

index (MI) and 0.6 thermal index,(omni Mean activated, level C image map, level C persistence, 
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high frequency, level three TeraVision, level 51 2D gain, level 60 dynamic range, 3 cm scan 

depth, and 22 Hz frame rate). The images were taken for liposomes (0.05 mg/mL) incubated in 

different pH buffers [7.4 (control), 7, 6, 5] at different time intervals and saved. Images were 

further analyzed using ImageJ software (version 1.45s, NIH, USA) to calculate mean and 

maximum grey scale values for each pH for a specific concentration of liposomes. 

pH triggered release 

The release studies were carried out on a spectrophotometer (Spectramax M5, Molecular 

Devices) by exciting at 460 nm and monitoring the emission at 497 nm using a 96 well plate. In 

each well, 20 µL of the liposomal solution (0.02 mg/mL) was incubated with phosphate buffer 

saline solutions with pH adjusted to 7.4 (control), 6.0 and 5.0. The release was monitored for 

two hours and reading was taken at 30 second intervals. Each sample was taken in triplicates 

and each study was repeated three times in order to check the repeatability of the results. 

Release was calculated using formula: 

Observed intensity - Initial intensity
Release (%) 100

Final intensity - Initial intensity
= ×

 

Ultrasound enhanced pH triggered release 

For the release experiments, Sonitron 1000® (Richmar) ultrasound instrument was 

employed. Carboxyfluorescein encapsulated liposomes (0.02 mg/mL) were incubated in 48 well 

plate with HEPES 25 mM buffers with different pH 7.4 (control), 6, and 5. Ultrasound probe tip 

was immersed into the solution and ultrasound was applied at different time points after 

incubation for different time intervals to check the release. Ultrasound parameters were 

optimized and employed to enhance contents release from liposomes (frequency 1 MHz, 100% 

Duty cycles, 2 W/cm2, 5 minutes of application time). Release was monitored on Spectramax 

(Molecular devices) spectrofluorimeter (λex = 460 nm; λem = 497 nm) after ultrasound 
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application for of 2 hours. Percent release was calculated using formula mentioned in the 

previous section. 

Effect of temperature on ultrasound triggered release 

Application of ultrasound leads to cavitation and thermal effects, and are often 

responsible for release from liposomes. To determine individual contribution of these two 

phenomena in release of contents, we carried out two different experiments. In one set up, we 

conducted release studies at room temperature (25 °C) and temperature of solution was noted 

before and after ultrasound application. In another experiment, we kept the plate on ice bath to 

decrease the temperature (below 10 °C) and noted the temperature before and after application 

of ultrasound. Although set up used to carry out this study allows reflection of ultrasound waves 

from air –water interface which gives rise to standing wave pattern, we see that the set-up is 

adequate for the present study for demonstration of proof of concept. Also, as mentioned in our 

previous publications, we noticed negligible (less than 1%) energy transfer to adjacent wells 

during stimulation indicating almost no interwell interferences [120, 121]. All experiments were 

performed thrice and in triplicates each time to ensure reproducibility of results and calculate 

standard deviations. 

Cell culture and liposomal uptake studies 

For liposomal uptake studies, HeLa (cervical cancer) and PANC-1 (Pancreatic epithelioid 

carcinoma) was cultured in clear (without added Phenol red) RPMI media supplemented with 

10 % fetal bovine serum and 1% antibiotics. Culture flasks were incubated at 37 °C in humidified 

atmosphere containing 5% CO2. When 90% confluent; the cells were suspended using trypsin-

versene reagent. The suspended cells were then cultured onto sterile 6 well culture plate until 

90% confluent.  



 

66 
 

Once confluent, the media was removed and cells were gently washed with HBSS 

(HyClone®, Thermo Scientific, UT) 5-6 times to completely remove any media left. 

Subsequently, liposomes were suspended in HBBS (0.2 mg/mL) and were incubated with the 

cells for 30 minutes. HOESCHT 33342 dye (Enzo Life Sciences) in 1 in 1000 dilution was added 

to stain the nuclei of the cells. After specific time intervals, the liposomal solution was removed 

from wells and the cells were again washed with HBSS to remove any liposomes on the surface 

of cells. Cells were then observed under fluorescence microscope at different time points for 

liposomal uptake. All images were obtained with Olympus IX81® motorized inverted 

microscope, viewed using 20X and 40X objectives and captured using CellSens Standard 

software (version 1.6).  A similar procedure was followed for doxorubicin-encapsulated 

liposomal uptake by HeLa cells. 

Cell viability studies 

For cell viability studies, 5x105 seeded cells onto the 400 nm pore sized transwell inserts 

(Thincert-6 well, Greiner bio-one) and bottom of 6 well plates. Once confluent cells in the upper 

compartment (Figure 3.11A-8) were exposed to different combinations treatments involving 

doxorubicin liposomes (targeted and non-targeted), bicarbonate liposomes without doxorubicin, 

free doxorubicin and ultrasound. Cells were kept in incubator for 6 hours and then live-dead 

staining (Enzo life sciences) was performed. Cells in the upper and bottom compartment were 

incubated with live-dead stain for 15 minutes, washed thrice with HBSS and then observed 

under fluorescence microscope using filters (FITC for live cells and rhodamine for dead cells). 

Images were taken and merged using ImageJ software. Percent killing was calculated by 

measuring green (live) and red (dead) fluorescence of three images of each sample using ImageJ 

software (http://rsbweb.nig.gov).  
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Migration assay 

For migration assay 5x105 cells/well in serum free media were seeded on the top of 8 µm 

pore sized cell culture inserts, with serum containing media in the lower chamber of 6 well 

plates. To determine %relative migration, cells were seeded onto membrane without any 

treatment. Once cells get attached (around 6-8 hrs), cells were exposed to ultrasound treatment 

and incubated overnight. After overnight incubation at 37°C, media was removed and cells were 

washed with HBSS thrice. Non-migrated cells on the filter were removed with sterile cotton 

swab and migrated cells were quantified by 10% of the total volume of Alamar blue. The assay 

measures the fluorescence of resorufin (red) formed by reduction of resazurin (blue) in the 

cytosol of viable cells (metabolically active). Percent relative migration was calculated using 

following formula: 

Percent relative migration = Fluorescence intensity of treated sample*100/Fluorescence 

intensity of control sample. 

Results and Discussion 

Preparation of liposomes encapsulating ammonium bicarbonate and demonstration of 

pH-tunable echogenicity: In order to demonstrate tunable echogenicity, we prepared the 

liposomes from 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), encapsulating 400 

mM ammonium bicarbonate along with the self-quenching dye carboxyfluorescein (100 mM). 

We reasoned that for multilamellar liposomes, the outside hydronium ions need to diffuse 

through several lipid bilayers to generate sufficient amounts of CO2 gas inside the liposomes. 

The presence of several lipid bilayers is also expected to decrease the efficiency of contents 

release in response to escaping gas bubbles and ultrasonic excitation.  Hence, we decided to 

formulate unilamellar liposomes with a narrow size distribution by sonicating and sequentially 

extruding (through 800 nm and 200 nm polycarbonate membrane filters) the initially formed 



 

multilamellar vesicles. We observed (by dynamic light scattering) that the average 

hydrodynamic diameter of the liposomes is 110 ± 15 nm with polydispersity index of 0.05 

(Figure 3.1A). These results were corroborated by transmission electron microscopic imaging of 

the liposomes (Figure 3.1B).  
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Figure 3.1. (A) Representative particle size distribution (by number) of the liposomes using 
dynamic light scattering instrument. (
2100 LaB6 200 kV) of pH tunable echogenic POPC liposomes using negative staining by 1% 
phosphotungstic acid. The beam is spread and not converged, to reduce the amount of electron 
beam interaction per unit area and to minimize beam damage to liposomal sample. The white 
arrow (Panel B) indicates the unilamellar bilayer structure of liposome. 

In order to demonstrate the tunable echogenicity, we added the liposomes to buffers of 

different pH (7.4 – 5.0), and recorded the images using a Terason t3200 high

MHz) diagnostic ultrasound transducer.  We observed that there was a lag time before the 

liposomes became echogenic and the duration of this lag phase decreased with the reduction in 

pH.  For example, the liposomes in pH 7.4 buffer did not show any ultrasound contrast in 10 

minutes.  The liposomes at pH 6

pH 5.0 were fairly echogenic within 3 minutes.  The ultrasound images of the l

buffers of different pH after 5 minutes are shown in 
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multilamellar vesicles. We observed (by dynamic light scattering) that the average 

hydrodynamic diameter of the liposomes is 110 ± 15 nm with polydispersity index of 0.05 

ere corroborated by transmission electron microscopic imaging of 
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) Representative particle size distribution (by number) of the liposomes using 
dynamic light scattering instrument. (B) Transmission electron microscopic image (JEOL JEM 

200 kV) of pH tunable echogenic POPC liposomes using negative staining by 1% 
phosphotungstic acid. The beam is spread and not converged, to reduce the amount of electron 

area and to minimize beam damage to liposomal sample. The white 
) indicates the unilamellar bilayer structure of liposome.  

In order to demonstrate the tunable echogenicity, we added the liposomes to buffers of 

recorded the images using a Terason t3200 high-frequency (12 

MHz) diagnostic ultrasound transducer.  We observed that there was a lag time before the 

liposomes became echogenic and the duration of this lag phase decreased with the reduction in 

r example, the liposomes in pH 7.4 buffer did not show any ultrasound contrast in 10 

minutes.  The liposomes at pH 6.0 became weakly echogenic in 5 minutes, but the liposomes in 

were fairly echogenic within 3 minutes.  The ultrasound images of the liposomes in 

buffers of different pH after 5 minutes are shown in Figure 3.2.   
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phosphotungstic acid. The beam is spread and not converged, to reduce the amount of electron 

area and to minimize beam damage to liposomal sample. The white 

In order to demonstrate the tunable echogenicity, we added the liposomes to buffers of 
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liposomes became echogenic and the duration of this lag phase decreased with the reduction in 
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Figure 3.2. (A) pH-Dependent diagnostic ultrasound imaging of POPC liposomes 
encapsulating 400 mM ammonium bicarbonate. 
interest (ROI) used to calculate the grey scale values.
gray scale values of ultrasound images shown in (

We anticipated that the concentration of hydronium ions in the external buffer will affec

the rate of diffusion inside the liposomes and the subsequent generation of CO

encapsulated ammonium bicarbonate is depleted, the generations of CO

finally stops.  Consistent with this hypothesis, we observed that the

are not echogenic after 20 minutes 

bubbles inside the liposomes are likely to be small (in nm) and they may not reflect the 

ultrasound very well [234]. It is likely that the nanobubbles coalesce in the lipid bilayer of the 

liposomes, generating larger bubbles, and reflecting ultrasound. POPC lipid has a gel low 

transition temperature (–2 oC) and the liposomal bilayer is in the fluid phase under t

69 
 

 

 

Dependent diagnostic ultrasound imaging of POPC liposomes 
encapsulating 400 mM ammonium bicarbonate. Dotted white lines represent the regions of 

(ROI) used to calculate the grey scale values. (B) Mean grey scale values (
gray scale values of ultrasound images shown in (A) as a function of pH (n = 3). 

We anticipated that the concentration of hydronium ions in the external buffer will affec

the rate of diffusion inside the liposomes and the subsequent generation of CO2 

encapsulated ammonium bicarbonate is depleted, the generations of CO2 gas slows down and 

finally stops.  Consistent with this hypothesis, we observed that the liposomes in pH 5

are not echogenic after 20 minutes (Figure 3.3).  However, we note that the diameters of the gas 

bubbles inside the liposomes are likely to be small (in nm) and they may not reflect the 

. It is likely that the nanobubbles coalesce in the lipid bilayer of the 

liposomes, generating larger bubbles, and reflecting ultrasound. POPC lipid has a gel low 

C) and the liposomal bilayer is in the fluid phase under t

Dependent diagnostic ultrasound imaging of POPC liposomes 
Dotted white lines represent the regions of 

) Mean grey scale values (C) maximum 
 

We anticipated that the concentration of hydronium ions in the external buffer will affect 

 bubbles. As the 

gas slows down and 

liposomes in pH 5.0 buffer 

.  However, we note that the diameters of the gas 

bubbles inside the liposomes are likely to be small (in nm) and they may not reflect the 

. It is likely that the nanobubbles coalesce in the lipid bilayer of the 

liposomes, generating larger bubbles, and reflecting ultrasound. POPC lipid has a gel low 

C) and the liposomal bilayer is in the fluid phase under the 
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experimental conditions (20 oC) [235].  The loose lipid packing and fluidity of the POPC bilayer 

accommodate the coalescence and size increase of the gas bubbles. 

We analyzed the ultrasound images of Figure 3.2A using the ImageJ software 

(http://rsbweb.nih.gov) to calculate mean and maximum grey scale values of region of interest 

(ROI, shown in Figure 3.2A). As expected, the mean and maximum grey scale values increase 

with decrease in pH.  We observed that the highest grey scale value was observed at pH 5.0, and 

it does not increase any more below this pH (data not shown). We also observed time-dependent 

decrease in echogenicity of these liposomes at pH 5.0 (Figure 3.3). These results demonstrated 

that the liposomes are programmed to reflect ultrasound only after reaching the acidic 

microenvironment of cancer cells. 

pH-Triggered release of liposomal contents and mechanistic studies: Having 

demonstrated pH-tunable echogenicity, we decided to determine if the escaping gas bubbles are 

sufficiently disturbing the lipid bilayer to release the encapsulated contents from the liposomes. 

In this endeavor, we incubated the POPC liposomes (encapsulating carboxyfluorescein and 400 

mM ammonium bicarbonate) in buffers of different pH (7.4 – 5.0), and monitored the emission 

intensity of carboxyfluorescein.  However, the emission intensity of carboxyfluorescein is 

quenched as the pH is lowered [236].  In order to correct for this decrease in emission intensity, 

we measured the absorption spectra of carboxyfluorescein as a function of pH and determined 

the isosbestic point to be 460 nm.  Subsequently, the dye solution was prepared in buffers of pH 

7.4, 6.0 and 5.0, excited at 460 nm, and the emission spectra were recorded.  We observed that 

the emission spectra produced an isosbestic point at 497 nm.  We then monitored the emission 

of the dye at 497 nm (excitation: 460 nm) for 2 hours.  Correction factors were calculated at 

each pH as a function of time, and all emission intensities were appropriately corrected for 

calculating the percent release (Appendix B). 



 

Figure 3.3. Diagnostic ultrasound Imaging of POPC liposomes encapsulating 400 mM 
ammonium bicabonate as function of frequency and incubation time in pH 5 buffer. The images 
were acquired employing high Frequency (12
D), and low frequency (4-8 MHz; 

 

When the liposomes were incubated in acidic buffers, there was a time lag before dye 

release (Figure 3.4).  However, the liposomes continued to leak the contents for considerably 

long time (2 – 3 hours).  This indicates that the disturbances created in the lipid bilayers by the 

escaping gas bubbles are either not sealed, or take a long time to heal. 
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Diagnostic ultrasound Imaging of POPC liposomes encapsulating 400 mM 
ammonium bicabonate as function of frequency and incubation time in pH 5 buffer. The images 
were acquired employing high Frequency (12-15 MHz; A, B), medium frequency (8

8 MHz; E, F) ultrasound. 

When the liposomes were incubated in acidic buffers, there was a time lag before dye 

However, the liposomes continued to leak the contents for considerably 

indicates that the disturbances created in the lipid bilayers by the 

escaping gas bubbles are either not sealed, or take a long time to heal.  

 

Diagnostic ultrasound Imaging of POPC liposomes encapsulating 400 mM 
ammonium bicabonate as function of frequency and incubation time in pH 5 buffer. The images 

), medium frequency (8-12 MHz; C, 

When the liposomes were incubated in acidic buffers, there was a time lag before dye 

However, the liposomes continued to leak the contents for considerably 

indicates that the disturbances created in the lipid bilayers by the 
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Figure 3.4. Representative release profile of carboxyfluorescein from POPC liposomes 
encapsulating 400 mM ammonium bicarbonate, incubated in buffers of pH 7.4 (blue circles), 
pH 6.0 (purple triangles), and pH 5.0 (green stars). The lines are generated by connecting the 
observed data points. 

While the liposomes at pH 7.4 (control) released only 15% of the encapsulated dye in 2 

hours, at pH 5, the release increased to 55% (Figure 3.5A).  When we encapsulated sodium 

bicarbonate in the liposomes (instead of ammonium bicarbonate), the amount of contents 

release decreased.  In 2 hours, we observed that the sodium bicarbonate encapsulated liposomes 

released 40% of the encapsulated dye (at pH = 5.0; Appendix B, Figures B2 and B3). For both of 

these liposomal formulations, the rate of contents release decreases considerably after 2 hours.  

In 3 hours at pH 5.0, the ammonium bicarbonate encapsulated liposomes released 75% of the 

contents and the sodium bicarbonate encapsulated liposomes released 44% of the contents 

(Figure 3.5A). Decreasing the amount of encapsulated ammonium bicarbonate (from 400 mM 

to 200 mM) also reduces the amount of contents release from the liposomes (Figure 3.5B).  
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Figure 3.5. Contents release from POPC liposomes as a function of pH encapsulating (A) 400 
mM ammonium bicarbonate and (B) 200 mM ammonium bicarbonate after 2 hours (violet 
bars) and after 3 hours (olive bars)  (n = 3). 

The acidic decomposition of ammonium bicarbonate generates NH3 and CO2, while 

sodium bicarbonate produces the sodium salt of the buffer, H2O and CO2. The ammonia gas will 

react with the hydronium ions in the liposome interior, leading to a reduction in pH.  The 

resultant pH-gradient will facilitate the diffusion of more hydronium ions into the liposomal 

lumen, and generating more CO2 gas and ammonia. Amount of generated gas decreases by 

reducing the concentration of encapsulated ammonium bicarbonate, leading to a reduction in 

contents release from the liposomes (Figure 3.5B). As an additional control, we prepared the 

POPC liposomes without encapsulating any gas precursor, and studied the contents release as a 

function of pH.  We observed minimal release (< 10%) of the encapsulated carboxyfluorescein at 

pH 7.4 and 6.0.  However, at pH 5.0, about 20% of the dye was released in 2 hours (Figure B4, 

Appendix B). 

In these liposome formulations, we have used POPC as the bilayer forming lipid.  The 

POPC molecules contain the saturated palmitoyl and the unsaturated oleoyl groups. Due to the 

presence of an alkene in the Z-configuration, this lipid does not form a tight bilayer and the gel 

transition temperature is also low (– 2 oC) [235]. In order to determine if the packing of the 

lipids in the liposomal bilayer and the gel transition temperature affect the contents release, we 

prepared two batches of DSPC liposomes encapsulating ammonium and sodium bicarbonate 
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respectively (400 mM each). The DSPC molecules contain two saturated stearoyl groups; hence 

it forms tight bilayer and has a melting temperature of 56 oC [237]. We anticipated that the tight 

packing of the lipid molecules in the bilayer will hinder the coalescence of the generated CO2 

bubbles. In addition, the rate of diffusion of hydronium ions across the lipid bilayer will be 

slower compared to the POPC bilayer. We observed that both ammonium bicarbonate and 

sodium bicarbonate encapsulated DSPC liposomes released less than 5% of contents after 

incubation for 2 hours at pH = 5.0 (Appendix B, Table B1).  

We employed tapping mode atomic force microscopic imaging to determine if the 

escaping gas bubbles at pH 5.0 cause any structural changes (shape and surface morphology) to 

the ammonium bicarbonate encapsulated POPC liposomes.  After preparation, the ammonium 

bicarbonate encapsulated liposomes (pH = 7.4 buffer) were found to be spherical with average 

diameter of about 100 nm (Figure 3.6A).   However, after incubating in pH 5.0 buffer for an 

hour, the liposomes were observed to be fused and the majority of the structures showed 

irregular shapes with sizes up to 800 nm (Figure 3.6B).  These results demonstrate that the 

escaping gas bubbles caused permanent changes to the morphology of these liposomes, leading 

to the leakage of encapsulated contents.  

 

Figure 3.6. Atomic force microscopic images of 400 mM ammonium bicarbonate pH tunable 
echogenic POPC liposomes (A) before incubation (B) after incubation in pH 5.0 buffer for an 
hour. 



 

75 
 

Triggered release of liposomal contents with pH and ultrasound: We reasoned that the 

released gas bubbles inside the liposomes will allow for an additional control on contents release 

employing high-frequency ultrasound.  In order to test this hypothesis, we incubated the 

ammonium bicarbonate encapsulated POPC liposomes in pH 5.0 buffer and after 5 minutes, 

and exposed them to continuous wave ultrasound (1 MHz, 2 W/cm2) for 5 minutes. We observed 

that 80% of the encapsulated contents were released from the liposomes in 2 hours (compared 

to 55% release in the absence of ultrasound; Figure 3.7A).  Decreasing the concentration of 

encapsulated ammonium bicarbonate (from 400 mM to 200 mM) reduced the amount of 

contents release upon application of ultrasound to 45% (Figure 3.7B). We also observed that the 

applied ultrasound exerted maximum effect when applied within 5 – 15 min of incubation of the 

liposomes with the pH 5.0 buffer (Figure 3.7B).  It is likely that the generated CO2 bubbles 

escape from the liposomes within 15 minutes, and after that liposomes become less responsive 

to ultrasound.  During the imaging studies, we have also observed a decrease in the echogenicity 

of the liposomes after 15 minutes of incubation in the pH 5 buffer (Figure 3.3).  
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Figure 3.7. Ultrasound (1 MHz, CW, 2 W/cm2, 5 min) enhanced, pH-triggered release from 
POPC liposomes encapsulating 400 mM ammonium bicarbonate (A), and 200 mM ammonium 
bicarbonate encapsulated liposomes (B). Violet bars: release after 20 min with ultrasound 
application; Orange bars: release after 2 h with ultrasound application (n = 3). 
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When the ammonium bicarbonate encapsulated POPC liposomes (400 mM) were 

incubated in pH 6.0 buffer, we observed that the application of ultrasound enhanced the release 

by 10%. Contrary to the pH 5.0 experimental results, this enhancement in contents release was 

not strongly dependent on the time when the ultrasound was applied (Figure 3.8). At pH 6.0, 

the concentration of hydronium ions is 10 times less compared to that at pH 5.  This contributes 

to a slow generation of gas bubbles inside the liposomes and it takes longer time to consume the 

encapsulated ammonium bicarbonate. These two factors are likely contributing to the results 

observed with ultrasound at pH 6.0. If the concentration of ammonium bicarbonate is reduced 

to 200 mM, application of ultrasound did not induce any significant increase in contents release 

from the liposomes (< 5%). 
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Figure 3.8. Ultrasound (1 MHz, CW, 2 W/cm2, 5 min) enhanced pH triggered release from 
POPC liposomes encapsulating 200 mM ammonium bicarbonate at pH = 6.0 (A) and pH = 5.0 
(B). Green bars: release after 20 min with ultrasound application, Orange bars: release after 2 h 
with ultrasound application (n = 3). 

We observed that the application of ultrasound increased the temperature of the 

liposome solutions from 25 oC to 30 oC.  In order to determine if this temperature change is 

influencing the contents release from liposomes, we repeated the studies (in pH 5.0 buffer) in a 

large ice bath.  The temperature of the ice bath was maintained below 10 oC throughout the 

experiments.  The results from these two experiments were identical – indicating that the 
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temperature increase was not influencing the contents release from our pH-sensitive liposomes 

[238]. 

Internalization studies with pancreatic cancer cells: Having optimized the ultrasound 

enhanced release from the pH-sensitive liposomes, we proceeded to demonstrate the 

effectiveness of the strategy in cellular studies. In order to demonstrate efficient cellular 

internalization, we prepared liposomes incorporating 1 mol% of 1,2-distearoyl-sn-glycero-3-

phosphoethanolamine-N-[folate(polyethylene glycol)-5000] (ammonium salt, commercially 

available from Avanti Polar Lipids) and POPC encapsulating 100 mM carboxyfluorescein.  We 

selected the folate receptor overexpressing pancreatic ductal carcinoma cells (PANC-1) for our 

cellular studies [239]. It should be noted that pancreatic cancer is one of the leading causes of 

cancer-related deaths in both men and women in the U.S., with a 5-year survival rate of less 

than 5% [240, 241]. According to The American Cancer Society, 38,460 pancreatic cancer 

related death (nearly equally split between men and women) occurred in US in 2013. 

After incubating with the liposomes, we imaged the cells employing a fluorescence 

microscope. We noticed that liposomes incorporating 1 mol% of the folate lipid were taken up by 

cells more effectively by the PANC-1 cells compared to the liposomes without the folate lipid 

(Figure 3.9).  If the cells have a higher expression of the folate receptor, the rate of 

internalization was faster.  For example, the breast cancer cell line MCF-7 internalized the folate 

lipid containing liposomes faster compared to the PANC-1 cells (Appendix B: Figure B5). 



 

Figure 3.9. Fluorescence microscopic images for the uptake of pH
liposomes by folate receptor overexpressing PANC
after 3 hours of incubation (magnification: 20X). (
incubation (magnification: 20X). (
(magnification: 20X). (D) Folate
20X). 

 

Intracellular release of liposomal contents in response to reduced pH and application 

of ultrasound: After confirming cellular internalization, we encapsulated the anticancer drug 

doxorubicin in the POPC liposomes and studied its release in the cytosol of the PANC

the absence and presence of applied diagnostic frequency ultrasound). Although gemcitabine is 

the standard chemotherapeutic drug for pancreatic cancer, doxorubicin is currently being 

as a possible adjuvant therapy [242

question the safety of ultrasound for the healthy tissues surrounding a tumor 
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Fluorescence microscopic images for the uptake of pH-tunable, echogenic POPC 
liposomes by folate receptor overexpressing PANC-1 cancer cells. (A) Non-targeted liposomes 
after 3 hours of incubation (magnification: 20X). (B) Non targeted liposomes after 6 hours of 
incubation (magnification: 20X). (C) Folate-targeted liposomes after 3 hours of incubation 

) Folate-targeted liposomes after 6 hours incubation (magnification: 

Intracellular release of liposomal contents in response to reduced pH and application 

After confirming cellular internalization, we encapsulated the anticancer drug 

liposomes and studied its release in the cytosol of the PANC

the absence and presence of applied diagnostic frequency ultrasound). Although gemcitabine is 

the standard chemotherapeutic drug for pancreatic cancer, doxorubicin is currently being 

242-244]. We noted, a priori, that some literature reports 

estion the safety of ultrasound for the healthy tissues surrounding a tumor [63

tunable, echogenic POPC 
targeted liposomes 

) Non targeted liposomes after 6 hours of 
targeted liposomes after 3 hours of incubation 

mes after 6 hours incubation (magnification: 

Intracellular release of liposomal contents in response to reduced pH and application 

After confirming cellular internalization, we encapsulated the anticancer drug 

liposomes and studied its release in the cytosol of the PANC-1 cells (in 

the absence and presence of applied diagnostic frequency ultrasound). Although gemcitabine is 

the standard chemotherapeutic drug for pancreatic cancer, doxorubicin is currently being tested 

, that some literature reports 

63]. To determine 
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if the ultrasound has any deleterious effects for the normal cells, we seeded the PANC-1 cells 

onto the transwell inserts consisting of two chambers. In this experimental design, the PANC-1 

cells in the upper chamber represent the tumor tissue and receive direct exposure to the 

liposomes as well as applied ultrasound. The cells in the lower chamber represent the 

neighboring tissue which may be indirectly exposed to the treatment (Figure 3.10A). The pore 

size for the transmembrane was 400 nm and the average diameter of the liposomes was 110 nm. 

Hence, we expected that some of the liposomes as well as the ultrasound waves will pass 

through the membrane and reach the lower chamber.  

Upon reaching confluency, we exposed the cells in the upper chamber to various 

combinations of targeted/non-targeted doxorubicin-encapsulated liposomes and ultrasound 

(applied between 15-20 minutes of incubation) (Figure 3.10A). Subsequently, we placed the cells 

in an incubator for 6 hours and stained to visualize the live and the dead cells. We observed that 

indirect exposure to any of the treatments did not cause cell death in the lower chamber (Figure 

10A and B).  On the other hand, direct exposure to folate targeted or non-targeted, pH-tunable, 

doxorubicin-encapsulated liposomes and ultrasound led to significant cell death in the upper 

chamber (Figure 3.10A and B).   

We observed that the folate-targeted, doxorubicin and ammonium bicarbonate 

encapsulated POPC liposomes (Figure 3.10A-1) were more toxic (14% cell viability) compared to 

the corresponding liposomes without bicarbonate encapsulation (cell viability 25%) (Figure 

3.10A-5). It is reported that the cavitation force of exploding CO2 bubbles in the lysosomes 

mechanically disrupt the membranes, leading to the release of lysosomal proteolytic enzymes in 

the cytosol, and cell death [233, 238]. Contrary this report, we observed less than 5% cell death 

in the presence of liposomes encapsulating only ammonium bicarbonate (i.e., without 

doxorubicin, Figure 3.10A-4). These results indicate that in our experiments, cavitation induced 

by CO2 bubbles enhance the toxicity of the liposomal formulations. 



 

1 2 3
0

20

40

60

80

100

P
er

ce
nt

 C
el

l V
ia

bi
lit

y

Treatment given to PANC-1 cells

 * 
 *  * 

Figure 3.10. (A) PANC-1 cell viability studies using live (green) and dead (red) cell staining of 
different treatment groups (n = 3). Upper chamber cells received direct whereas the lower 
chamber cells received indirect exposure
upper chamber (orange bars) and lower chamber (violet bars). (
liposomes (encapsulating ammonium bicarbonate) + ultrasound; (
liposomes (encapsulating ammonium bicarbonate) + ultrasound;
ultrasound; (4) folate targeted liposomes (encapsulating ammonium bicarbonate but no 
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1 cell viability studies using live (green) and dead (red) cell staining of 
different treatment groups (n = 3). Upper chamber cells received direct whereas the lower 
chamber cells received indirect exposure to POPC liposomes and ultrasound. (B
upper chamber (orange bars) and lower chamber (violet bars). (1) Folate targeted doxorubicin 
liposomes (encapsulating ammonium bicarbonate) + ultrasound; (2) non-targeted doxorubicin 

sulating ammonium bicarbonate) + ultrasound; (3) free doxorubicin + 
) folate targeted liposomes (encapsulating ammonium bicarbonate but no 

) folate targeted doxorubicin liposomes (no ammonium 
tion) + ultrasound; (6) ultrasound only; (7) no treatment (control). (

1 cell viability studies using live (green) and dead (red) cell staining of 
different treatment groups (n = 3). Upper chamber cells received direct whereas the lower 

B) Cell viability of 
) Folate targeted doxorubicin 

targeted doxorubicin 
) free doxorubicin + 

) folate targeted liposomes (encapsulating ammonium bicarbonate but no 
) folate targeted doxorubicin liposomes (no ammonium 

) no treatment (control). (8) 
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Schematic representation of the experimental set up. Doxorubicin final concentration used was 
25 µg/mL. (* P < 0.05, **P < 0.01, n=4) 

Interestingly, the free doxorubicin was more effective compared to liposomal 

doxorubicin (without folate) in inducing cell death (Figure 3.10A-2 and 3). It is likely that 

sonoporation by the ultrasound is contributing to this effect. In the absence of any 

microbubbles, the pores formed in the cell membranes by the applied ultrasound are likely to be 

small and transient.  Possibly, the sizes of these transient pores are large enough to allow 

doxorubicin molecules to cross the cell membranes [245]. These observations are consistent 

with literature reports demonstrating higher uptake of smaller particles compared to larger ones 

upon sonoporation [246]. We observed that under our experimental conditions, direct or 

indirect exposure to the ultrasound does not induce cell death (Figure 3.10A-6).  

PANC-1 is a metastatic pancreatic cancer cell line known to secrete the enzymes matrix 

metalloproteinase (MMP) – 2 and – 9 in the extracellular matrix [247]. These two proteolytic 

enzymes are responsible for the hydrolysis of extracellular matrix, leading to the migration and 

metastasis of cancer cells [248]. Ultrasound treatment can loosen the extracellular material 

surrounding a tumor, resulting in dissemination of cancer cells into the blood stream.  This 

leads to increased migration and metastasis of the cancer cells when exposed to ultrasound 

[249]. In order to determine if our experimental conditions are contributing to such effects, we 

conducted migration assays of the PANC-1 cells in the presence of applied ultrasound.  In this 

endeavor, we seeded the PANC-1 cells onto 8 µm transwell insert.  After 6 hours, we exposed the 

cells to ultrasound (1 MHz, 5 minutes), incubated overnight and determined the migration of the 

cells. We observed that there was no significant difference (P > 0.01, n = 5) in migration ability 

of the ultrasound exposed cells compared to the control samples (no ultrasound exposure). This 

confirms that within our experimental parameters, the migration of the PANC-1 cells remains 

unaffected by the applied ultrasound. 
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Conclusion 

We have successfully demonstrated the proof-of-concept for a new strategy to release 

liposomal contents in response to reduced pH. In our design, the liposomes encapsulate the gas 

precursor ammonium bicarbonate, and do not incorporate pH-sensitive lipids in the bilayer.  

When incubated in buffers of acidic pH, CO2 gas bubbles are generated and thus, induces 

echogenicity to the liposomes.  The escaping gas bubbles cause structural changes to the 

liposomes, and release the encapsulated contents (up to 56%). The contents release is further 

enhanced by the simultaneous application of diagnostic frequency ultrasound (1 MHz, 5 min; 

80% release). The fluidity of the liposomal membranes plays a crucial role in the contents 

release. By incorporating a folate lipid in the bilayer, we have successfully targeted the 

liposomes to pancreatic cancer cells overexpressing the folate receptor on the surface.  

Liposome-encapsulated doxorubicin is efficiently released in the cancer cells, and the release is 

enhanced by the simultaneous application of diagnostic frequency ultrasound.  While 

ultrasound was innocuous, the combination of doxorubicin release from the liposomes and 

ultrasound reduced the viability of pancreatic cancer cells to 14%.  With further developments, 

these liposomes have potential to be an excellent option for ultrasound image guided, targeted 

drug delivery at tumor sites. 
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CHAPTER IV. MULTIFUNCTIONAL POLYMERSOMES FOR 

CYTOSOLIC DELIVERY OF GEMCITABINE AND DOXORUBICIN TO 

CANCER CELLS 

Abstract 

Although liposomes are widely used as carriers of drugs and imaging agents, they suffer 

from a lack of stability and the slow release of the encapsulated contents at the targeted site. 

Polymersomes (vesicles of amphiphilic polymers) are considerably more stable compared to 

liposomes; however, they also demonstrate a slow release for the encapsulated contents, limiting 

their efficacy as a drug-delivery tool. As a solution, we prepared and characterized echogenic 

polymersomes which are programmed to release the encapsulated drugs rapidly when incubated 

with cytosolic concentrations of glutathione. These vesicles encapsulated air bubbles inside and 

efficiently reflected diagnostic frequency ultrasound. Folate-targeted polymersomes showed an 

enhanced uptake by breast- and pancreatic-cancer cells in a monolayer as well as in three-

dimensional spheroid cultures. Polymersomes encapsulated with the anticancer drugs 

gemcitabine and doxorubicin showed significant cytotoxicity to these cells. With further 

improvements, these vesicles hold the promise to serve as multifunctional nanocarriers, offering 

a triggered release as well as diagnostic ultrasound imaging.  

Introduction 

Gemcitabine, a fluorinated nucleoside analog (2′,2′-difluorodeoxycytidine), has emerged 

as an effective anticancer drug against various malignancies [250] and is currently used in both 

palliative and adjuvant therapy following surgery for pancreatic cancer. However, the drug is not 

devoid of limitations. For example, it shows systemic toxicity [251] and has a very short half-life, 

ranging from 8 to17 minutes. In addition, it undergoes rapid conversion to an inactive 

metabolite in the blood stream [252]. Gemcitabine is a prodrug that requires cellular uptake by 
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the hENT1 receptors on the cancer-cell surface. Unfortunately, a majority of patients (more than 

65%) lack this receptor, further limiting the usefulness of the free drug [253].  

In order to overcome these limitations, gemcitabine has been delivered by employing 

various carriers, e.g., theranostic nanoparticles [254], targeted liposomes [255], micelles [256], 

and microbubbles [257]. Recent clinical studies demonstrate that gemcitabine, in combination 

with other antineoplastic agents, is more effective for treating pancreatic cancer [258-262]. For 

example, due to the non-overlapping toxicity profiles, gemcitabine’s efficacy is synergistically 

enhanced in the presence of the anticancer drug doxorubicin [263-265]. However, this drug 

combination also has severe side effects [266-268]. Consequently, there is an urgent and unmet 

need to deliver these drugs to tumor tissues using a drug-delivery vehicle. There is only one 

report of simultaneous delivery for these two drugs as polymer conjugates [269]. To date, there 

are no reports about the targeted delivery of this drug combination to pancreatic-cancer cells 

employing any other drug carrier. 

Currently, several liposomal drug formulations are approved by the U.S. Food and Drug 

Administration to treat cancer. Although these formulations show improved efficacy and safety, 

most of them still lead to severe side effects [24]. With these formulations, the presence of 

polyethylene-glycol (PEG) lipids renders the long-circulating property, and facilitates the 

accumulation of liposomes in the tumor tissues due to the enhanced permeation and retention 

effect [270]. Upon reaching the intended sites, the encapsulated contents are released passively, 

and this process is often slow [271]. In addition, anti-phospholipid antibodies cause other 

complications, such as pulmonary hypertension, due to pseudo-allergic reactions [272]. Thus, 

tunable release, specifically at the target site, would be desirable for a greater therapeutic impact 

for the drug formulation without compromising its safety profile. Several research groups, 

including ours, have successfully demonstrated that the integration of targeting and triggering 

strategies considerably improves the anti-tumor efficacy of liposomal formulations [68, 169].  
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Polymersomes are vesicles prepared from synthetic, amphiphilic-block copolymers 

[273]. They have several advantages over liposomes, including enhanced stability, longer 

circulation times, mechanical robustness, and the ability to carry large quantities of hydrophobic 

and hydrophilic drug molecules [274]. Due to the polymers’ higher molecular weights, 

polymersomes’ bilayer membranes are generally thicker, stronger, and hence, inherently more 

stable than conventional liposomes and micelles. The hydrophilic block of the copolymers is 

usually polyethyleneglycol, imparting the long-circulating property to the resultant 

polymersomes [275].   

The enhanced stability of the polymersomes also has disadvantages; the release of 

encapsulated drugs is rather slow [276, 277]. Because of robustness, the polymersomes require a 

stimulus to sufficiently disturb the compact bilayer and to release the encapsulated contents. 

There are a few reports of targeting [278-282] and content release from polymersomes that 

employ either internal (pH [283], glucose [284], or cysteine [285]) or external triggers (light 

[286], heat [287], or magnetic field [288]). 

In the pursuit of designing stimuli-response polymersomes for simultaneously delivering 

gemcitabine and doxorubicin to cancer cells, we noted that the concentration of thiol-based 

reducing agents increases from 10-40 µM in the blood to 1-10 mM in the cell cytosol [185, 186]. 

We are using this differential reducing-agent concentration to cause permanent structural 

changes in the amphiphilic-block copolymers. We demonstrate that the disturbance created 

compromises the vesicular structure of the polymersomes, resulting in a rapid release of the 

encapsulated anticancer drugs. In order to impart multimodal characteristics, we have 

encapsulated air bubbles as ultrasound contrast agents. In our design, targeting groups (folate-

conjugated lipids) on the outside surface of the polymer vesicles ensure the targeting and 

subsequent facile entry inside the cancer cells. We note that, currently, there are no reports of 
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air-encapsulated, echogenic polymersomes, although the corresponding liposomal counterparts 

are well documented and characterized [68, 169, 175].  

Materials and Methods 

Synthesis and characterization of polymers 

To synthesize the polymers, first, methoxy-PEG (MW: 1900) was reacted with succinic 

anhydride in dichloromethane solvent in the presence of triethylamine. The carboxy-terminated 

PEG thus obtained was subjected to further conjugation with cystamine dihydrochloride in the 

presence of EDC (ethyl-3-(3-dimethylaminopropyl)-carbodiimide). Finally, polylactic acid (MW: 

3600) was prepared by ring-opening polymerization of lactide at the amine terminal of PEG 

using tin (II) bis(2-ethylhexanoate) as the catalyst under the refluxing condition (Scheme 1) 

[289]. For the detailed procedure, see the Appendix D. 

Gel-permeation chromatography 

To determine the weight average molecular weights of polymers and disulfide 

degradation by glutathione, gel-permeation chromatography (Agilent) was performed. THF 

(tetrahydrofuran) was used to dissolve the polystyrene standards (Supelco) and the polymers. 

Analysis was done with an Ultrahydrogel 250 (7.8 mm × 300 mm) column with THF as the 

mobile phase at a flow rate of 0.6 mL/min. Run time was kept at 30 minutes with refractive-

index (RI) detection at room temperature. For each analysis, 50 µL of a sample (1 mg/mL) were 

injected. The calibration curve for standards was established, and retention times for polymers 

were extrapolated on the curve to obtain the average molecular weights. To check the sensitivity 

toward glutathione, the polymers were injected before and after incubation with 5 mM of 

glutathione for an hour. Changes for the retention times of polymer peaks were noted and 

compared.  
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Differential scanning calorimetry 

To determine the melting points of the synthesized polymers, a Nano DSC instrument 

(TA Instruments) was used. The polymer solution (1 mg/mL) of a 10-mM phosphate buffer (pH 

7.0) was used as the sample, and heated from 0 °C to 80 °C at the rate of 1 °C per minute. The 

phosphate buffer (pH 7.0) was taken as the control. The heating and cooling cycles were 

repeated twice to ensure reproducibility and reversibility of melting. The collected data were 

analyzed using Nanoanalyze software (version 4.2.2) provided by the vendor.  

Preparation of polymersomes 

Calcein encapsulation 

Initially, we prepared polymersomes with the thin-film hydration-sonication and 

solvent-exchange methods [273]. We observed that the solvent-exchange method produced a 

narrower-size distribution of polymersomes, and showed higher encapsulation efficiency. 

Briefly, polymers were dissolved in THF (5 mg/mL) and slowly added to a calcein solution (10 

µM) in a 10 mM HEPES buffer (pH 7.4) with constant stirring. After stirring for an hour, THF 

was removed under reduced pressure using a rotary evaporator. The solution was then sonicated 

for 60 minutes using a bath sonicator (Aquasonic, Model 250D) at room temperature. The 

polymersomes were then extruded at 70 °C through polycabonate membrane filters with a pore 

size of 1000 nm. 

Doxorubicin-gemcitabine encapsulation 

Doxorubicin (Bridge Bioservices) and gemcitabine (Matrix Scientific) were encapsulated 

into the polymersomes with the pH gradient method [290]. The polymersomes were prepared 

with the solvent-exchange method as described earlier, encapsulating a citrate buffer with a pH 

of 4.0. Subsequently, the pH of the external buffer was adjusted to 7.0 by adding sodium 

bicarbonate powder. The polymersomes were then incubated with a mixture (1:1) of gemcitabine 
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and doxorubicin at a 0.2 mg/mL concentration for an hour at 60 °C. Unencapsulated drugs were 

removed by passing the polymersomes through a SephadexTM G-100 (GE Healthcare) size 

exclusion column. The encapsulation efficiency was established by measuring the absorbance at 

276 nm (for gemcitabine) and 480 nm (for doxorubicin) before and after gel filtration. 

Simultaneous determination of doxorubicin and gemcitabine 

We used the dual-wavelength UV spectrophotometric method to simultaneously 

estimate the concentrations of encapsulated doxorubicin and gemcitabine [291]. We selected the 

two wavelengths as 276 nm and 480 nm. While doxorubicin has the same absorbance at these 

wavelengths, gemcitabine has negligible absorbance at 480 nm. Thus, gemcitabine can be 

determined at 276 nm by subtracting the absorbance of doxorubicin at 480 nm, and doxorubicin 

can be determined at 480 nm (Figure 4.11). The method was developed and validated by 

determining the linear dynamic range and reproducibility. 

Size-distribution analysis 

The dynamic light-scattering method (NanoZS 90 Zetasizer, Malvern Instruments) was 

used to study the polymersomes’ size distribution. The polymersomes were dispersed in a 10 

mM HEPES buffer (pH 7.4) at a concentration of 0.2 mg/mL in a DTS 0012 polystyrene, 

disposable sizing cuvette. The measurements were performed at a scattering angle of 90°. The 

samples were equilibrated for 60 seconds, and 10 readings were taken for a single sample at a 

constant temperature (25 °C). Each batch of polymersomes was studied for size distribution, 

and each experiment was repeated 5 times to check the repeatability of results and to calculate 

the standard deviation.  

Atomic force microscopy 

The polymersome samples in a 10 mM HEPES buffer (pH = 7.4) were placed onto a mica 

sheet and air dried. To perform AFM imaging, a MultimodeTM atomic force microscope with a 
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Nanoscope III controller and J type piezo scanner (Veeco Metrology Group) was used. An 

antimony (n) doped Si-tip was used to obtain images in Tapping Mode under laboratory 

conditions. Images were taken before and after incubation with glutathione (5 mM) for an hour. 

The effect of the reducing agent on shape and morphology of polymersomes was studied.  

Transmission electron microscopy 

The polymersome samples were imaged using a JEOL JEM 2000 transmission electron 

microscope operating at 100 kV and at low magnifications with the beam spread (not 

converged) to reduce the amount of electron-beam interaction per unit area and, hence, beam 

damage to the sample if it were to occur. The polymersome samples in a 10 mM HEPES buffer 

(pH = 7.4) were dispersed to 1 mg/mL and dropped onto a 300-mesh, Formvar-coated copper 

grid previously coated with 0.01% poly-L-lysine and allowed to stand for 1 minute before 

wicking off with filter paper. Then, sample was allowed to air dry for 2 minutes, negatively 

stained with 1% phosphotungstic acid for 90 seconds, and subsequently wicked with filter paper 

and then allowed to dry before being beamed.  

Ultrasound scattering experiment 

We studied the echogenic properties of several contrast agents in our earlier publications 

[68, 169, 175] utilizing an in-vitro acoustic setup that included a large sample volume (100 mL). 

Here, we adopted a modified version of that setup with a smaller sample volume (20 mL) to 

enable experiments at a higher concentration of polymersomes (Figure 4.1). The present setup 

utilized the same confocal arrangement described in our previous publications to have a better 

signal-to-noise ratio. The setup employed two single-element focused immersion transducers 

(Olympus NDT, Waltham, MA).  A 3.5-MHz and a 5-MHz transducer were used as the 

transmitter and receiver, respectively. Details about the instrumentation used and data-

acquisition procedure can be found in our previous publication [175], and are omitted here for 

brevity. A 90° angle made of polycarbonate blocks was used for the confocal alignment of the 
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The angle could be fixed to a base plate that was also made of polycarbonate. An acoustically 

transparent film (Saran™ wrap) was wrapped around the frame to pr

samples. It forms two acoustically transparent windows. Care was taken to keep the film taut 

and well stretched to keep film reflections from corrupting the data in our region of interest. 

When both the frame (wrapped with the fi

to the base plate, the confocal regions of the focused transducer aligned halfway between the 

acoustically transparent windows. The entire arrangement was placed in a large container with 

water to keep the sample chamber and the transducers submerged. The water level was adjusted 

to ensure that it did not spill into the sample chamber. 

Figure 4.1. (A) A three-dimensional rendition of the setup used for the acoustic experiments. 
(B) A schematic representation of the setup for in

 

Ultrasound Imaging 

A Terason t3200 diagnostic ultrasound (MediCorp LLC) instrument was used to image 

the polymersome samples. A layer of Aquasonic 100 (Parker Laboratories) ultrasound gel was 

applied to a 15L4 linear ultrasound transducer (4

over parafilm that covered 96 well plates that each contained 200 µL of polymersomes (in 10 

mM HEPES buffer, pH = 7.4). The ultrasound scan properties were fixed at
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transducers. The drilled holes on each wall of the angle allowed for the insertion of traducers. 

The angle could be fixed to a base plate that was also made of polycarbonate. An acoustically 

transparent film (Saran™ wrap) was wrapped around the frame to provide an enclosure for the 

samples. It forms two acoustically transparent windows. Care was taken to keep the film taut 

and well stretched to keep film reflections from corrupting the data in our region of interest. 

When both the frame (wrapped with the film) and the angle fitted with transducers were affixed 

to the base plate, the confocal regions of the focused transducer aligned halfway between the 

acoustically transparent windows. The entire arrangement was placed in a large container with 

the sample chamber and the transducers submerged. The water level was adjusted 

to ensure that it did not spill into the sample chamber.  
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index (MI) and 0.6 thermal index (omni Mean activated, level-C image map, level-C persistence, 

high frequency, level-three TeraVision, level-51 2D gain, level-60 dynamic range, 3-cm scan 

depth, and 22-Hz frame rate). The Terason diagnostic-imaging instrument measured the 

reflected ultrasound (not the attenuations) when constructing the images. The images were 

recorded for polymersomes (0.01 mg/mL) and saved. Images were further analyzed using 

ImageJ software (version 1.47v, NIH, USA) to calculate the mean and maximum grey scale. 

Triggered-release studies 

Redox-triggered release 

We used the cobalt quenching method where external, unencapsulated calcein 

fluorescence is quenched by millimolar concentration of cobalt chloride [112]. The release was 

monitored using a spectrofluorimeter (Spectramax M5, Molecular Devices) by exciting at 495 

nm and recording the emission at 515 nm using a 96-well plate. In each well, 20 µL of the 

polymersome solution (0.02 mg/mL) was incubated in 10 mM of HEPES buffer (pH 7.4). The 

release was monitored for 60 minutes, and measurements were taken at 30-second intervals. 

Each sample was taken in triplicate, and each study was repeated 3 times to check the 

repeatability of the results. Release was calculated using the following formula: 
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Ultrasound-triggered release 

For the release experiments, a Sonitron 1000® (Richmar) ultrasound instrument was 

employed. Calcein-encapsulated polymersomes (0.02 mg/mL) were incubated in a 48-well plate 

with HEPES buffer (10 mM, pH 7.4). The ultrasound-probe tip was immersed into the solution, 

and ultrasound was applied at different times after incubation for different time intervals. The 

ultrasound parameters were varied to obtain maximum release from the polymersomes 

(frequency 1 MHz, 100% duty cycles, 2 W/cm2, 5 minutes of application time). The release was 
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monitored on a Spectramax (Molecular Devices) spectrofluorimeter (λex = 495 nm, λem = 515 

nm). The percentage release was calculated using the formula mentioned in the previous 

section. Although the setup used to carry out this study allows reflection of the ultrasound waves 

from the air-water interface, which gives rise to the standing wave pattern, we note that the 

setup is adequate to demonstrate the proof of concept. As mentioned in our previous 

publications, we noticed negligible (less than 1%) energy transfer to adjacent wells during 

stimulation, indicating almost no inter-well interferences [120, 121]. All experiments were 

performed three times and in triplicate each time to ensure reproducibility of results and to 

calculate standard deviations. 

Simultaneous application of redox and ultrasound triggers 

Three different designs were used for these experiments.  

(1) Ultrasound (frequency 1 MHz, 100% duty cycles, 2 W/cm2, 5 minutes of application 

time) was applied, followed by a redox trigger (5-mM GSH).  

(2) The redox trigger was immediately followed by ultrasound.  

(3) The redox trigger was followed by ultrasound after 60 minutes of incubation. 

Folate-targeting studies: 

For folate-targeted polymersome uptake studies, PANC-1 (pancreatic ductal carcinoma) 

and MCF-7 (breast cancer) cells were cultured in clear (without added Phenol red) RPMI media 

supplemented with 10% fetal bovine serum and 1% antibiotics (penicillin and streptomycin). 

Both cell lines were purchased from ATCC. The culture flasks were incubated at 37 °C in a 

humidified atmosphere that contained 5% CO2. When 90% confluent, the cells were suspended 

using a trypsin-versene reagent. The suspended cells were then cultured onto sterile, 6-well 

culture plates until 90% confluent.  
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Once confluent, the media was removed, and cells were gently washed with HBSS 

(HyClone®, Thermo Scientific, UT) 5-6 times to completely remove any leftover media. 

Subsequently, the polymersomes (0.025 mg/mL) were suspended in HBSS and were incubated 

with the cells for different time intervals. HOESCHT 33342 dye (Enzo Life Sciences, 1 in 1000 

dilution) was added to stain the cells’ nuclei. After specific time intervals, the polymersome 

samples were removed from the wells, and the cells were, again, washed with HBSS to remove 

any polymersomes on the cell surface. Cells were then observed under a fluorescence 

microscope at different times for uptake. All images were obtained with an Olympus IX81® 

motorized inverted microscope, viewed using 20X objectives, and captured using CellSens 

Standard software (version 1.6).  

Cell-viability studies (monolayer culture) 

The cytotoxicity of targeted and non-targeted polymersomes was determined by 

AlamarBlue® assay, measuring the fluorescence of resorufin (red) formed by the reduction of 

resazurin (blue) in the cytosol of viable cells (metabolically active) [193]. Briefly, PANC-1 and 

MCF-7 cells were transferred to flat, clear-bottomed, 96-well tissue-culture plates (Corning) at a 

density of 2 x104 per well 24 hours prior to the assay (or 70-80% confluency).  The culture 

medium in each well was carefully removed and replaced with gemcitabine + doxorubicin 

encapsulated folate-conjugated polymersomes, gemcitabine + doxorubicin encapsulated non-

targeted polymersomes, and a free gemcitabine + doxorubicin solution mixed with media. After 

incubation at 37 °C for 48 hours, the cells were washed 3 times with sterile HBSS and incubated 

in a fresh culture medium. At this point, 20 µL of AlamarBlue® were added to each well, and the 

fluorescence readings (λex = 560 nm, λem = 590 nm) were taken after 3 hours of incubation at 37 

°C. Average readings were then compared to the control and plotted.  
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Spheroid- 3D cell culture studies 

The MCF-7 cell spheroids were grown by modifying a published protocol [292]. Briefly, 

3% w/v of agar solution were prepared by boiling until it became translucent, to which an equal 

volume of RPMI media (37°C) was added. To a 48-well plate, 200 µL of the above mixture were 

added to each well. Once it solidified, 1×105 cells were added to each well and centrifuged at 

1000 g for 10 minutes. The plates were then slowly moved into a humidified incubator without 

disturbing them and were grown for 3 days. Spheroid growth was monitored for the entire study 

duration, and then, tests were conducted accordingly.  

Cell-viability studies (spheroid 3D culture) 

The spheroids were allowed to grow for 9 days after preparation. On the 10th and 11th 

days, gemcitabine + doxorubicin loaded polymersomes (targeted and non-targeted), and the 

free-drug combination were dispersed in media and incubated with the spheroids for 48 hours. 

Control spheroids were incubated with polymersomes without any encapsulated drugs. After 

treatment for 48 hours, the spheroid growth was monitored for 21 days by taking microscopic 

images.  

Results and Discussion 

Polymer synthesis, polymersome preparation, and structural characterization: The 

hydrophilic fraction (f) of an amphiphilic-block copolymer determines its ability to form bilayer 

vesicles. The formation of polymersomes is favored when the ratio of hydrophilic mass to the 

total mass of the polymer is similar to that of the naturally occurring phospholipids, with an f 

value of 35% ± 10% [275]. In order to optimize vesicle formation, we synthesized 5 polymers 

with varying f values from 25% to 68%. We kept the PEG molecular weight constant at 1900, 

and varied the molecular weights for the PLA (Polylactic acid) portion from 900 to 5800. Thus, 

we synthesized polymers with an average PLA molecular weight of 900, 1700, 1950, 3600, and 

5800 by ring-opening polymerization [293]. To incorporate the disulfide bond, m-PEG (MW 
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1900) was first reacted with succinic anhydride, followed by conjugation of cystamine. The 

resulting m-PEG derivative with free amine at one terminal was used for all polymer syntheses 

(Scheme 4.1). Polymers were purified, and their average molecular weights were confirmed by 

1H NMR spectroscopy and gel-permeation chromatography (Appendix C).  

 

Scheme 4.1. Synthesis of the diblock disulfide-linked copolymer PEG-S-S-PLA employing the 
ring-opening polymerization. 
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Figure 4.2. Differential scanning calorimetric thermograms of polymers (A) PEG1900-S-S-
PLA5800 and (B) PEG1900-S-S-PLA3600 (black: observed data points; red: fitted curve). 
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Although several protocols have been reported for preparing polymersomes, the thin-

film rehydration and solvent-exchange methods are most common [274]. If the copolymers have 

a low Tg (glass transition temperature below 25 °C), polymersomes can be prepared by directly 

putting them into water. In contrast, if the hydrophobic block has a high Tg (above 25 °C), the 

copolymers do not form polymersomes with such a treatment. In this situation, a suitable 

organic solvent needs to be used (solvent-exchange method) to lower the Tg of the hydrophobic 

polymer block. This solvent provides enough chain mobility for the polymers to form the 

bilayered vesicles [273].  

To determine the optimal method to form the polymersomes, we analyzed the thermal 

properties of the synthesized polymers by using differential scanning calorimetry (DSC). We 

subjected the polymers in a 10 mM phosphate buffer (pH 7.0) to gradual (1 ºC per minute) 

heating in DSC from 0 ºC to 80 ºC. We noticed that all the polymers had a transition 

temperature well above 60 ºC (representative thermograms for PEG1900-S-S-PLA3600 and 

PEG1900-S-S-PLA5800 are shown in Figure 4.2). We observed that polymers PEG1900-S-S-

PLA3600 and PEG1900-S-S-PLA5800 had glass transition temperatures of 64.1 ºC and 65.2 ºC, 

respectively (Figure 4.2). These results suggested that the solvent-exchange method would be 

most suitable for preparing the polymersomes. Glass transition temperatures well above the 

body temperature also ensured stability for the polymersomes in circulation with minimal 

passive leakage and, hence, reduced systemic toxicity. 

Having determined the optimal method for preparing polymersomes, we dissolved the 

polymers in THF and slowly added this solution to an aqueous buffer.  Subsequently, N2 gas was 

slowly passed over the mixture to evaporate THF. The resultant samples were lyophilized and 

observed under transmission electron microscopy (Figure 4.3).  



 

Due to the presence of the hydrophilic PEG and the hydrophobic PLA domains, PEG

PLA block copolymers spontaneously aggregated into different structures in an aqueous buffer 

[294]. We also observed that the hydrophilic fraction (f) of the synthesized amphiphilic

copolymers (Table 4.1) determined their ability to form different structures, e.g., micelles, 

bicelles, worms, and vesicles (Figure 

PLA900; Table 1), micelles were formed with a size around 50

PEG1900-S-S-PLA1700 (f = 53%) and PEG

and long, worm-like structures with a few ill

structured vesicles were only formed from PEG

PLA5800 (f = 25%) polymers (Figure 

by atomic force microscopy (Figure 

thickness was about 20-30 nm for the 

which is much larger than liposome
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esence of the hydrophilic PEG and the hydrophobic PLA domains, PEG

PLA block copolymers spontaneously aggregated into different structures in an aqueous buffer 

. We also observed that the hydrophilic fraction (f) of the synthesized amphiphilic

1) determined their ability to form different structures, e.g., micelles, 

bicelles, worms, and vesicles (Figure 4.3). When the f value was highest (68% for PEG

; Table 1), micelles were formed with a size around 50-100 nm (Figure 4.3, Panel 

(f = 53%) and PEG1900-S-S-PLA1950 (f = 49%) polymers only showed bicelles 

like structures with a few ill-formed vesicles (Figure 4.3, Panels 

structured vesicles were only formed from PEG1900-S-S-PLA3600 (f = 35%) and PEG

(f = 25%) polymers (Figure 4.3, Panels D and E). These results were also corroborated 

by atomic force microscopy (Figure 4.6, before treatment). We also noticed that the bilayer 

30 nm for the P4 and P5 polymersomes (Figure 4.3, Panels 

which is much larger than liposomes (with a bilayer thickness around 3-5 nm) [294

esence of the hydrophilic PEG and the hydrophobic PLA domains, PEG-

PLA block copolymers spontaneously aggregated into different structures in an aqueous buffer 

. We also observed that the hydrophilic fraction (f) of the synthesized amphiphilic-block 

1) determined their ability to form different structures, e.g., micelles, 

(68% for PEG1900-S-S-

3, Panel A). 

(f = 49%) polymers only showed bicelles 

3, Panels B and C). Well-

(f = 35%) and PEG1900-S-S-

). These results were also corroborated 

6, before treatment). We also noticed that the bilayer 

3, Panels D and E), 

294].  
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Figure 4.3. Transmission electron microscopic images of negatively stained polymersomes: (A) 
PEG1900-S-S-PLA900, (B) PEG1900

 

Table 4.1: Diblock, amphiphilic, redox

Polymer 
% Hydrophilic 

Fraction

PEG1900-S-S-PLA900 68

PEG1900-S-S-PLA1700 53 

PEG1900-S-S-PLA1950 49 

PEG1900-S-S-PLA3600 35 

PEG1900-S-S-PLA5800 25 

 

Because only the PEG1900

(polymersomes P4 and P5, respectively, Table 

these two formulations. We determined the average size distributions, zeta potentials, and 

electrophoretic mobility values of these polymersomes using a dynamic light

instrument (Table 4.2). We observed that the average hydrodynamic diameter of the 

polymersome (209 ± 34 nm) was higher compared to 
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Transmission electron microscopic images of negatively stained polymersomes: (A) 
1900-S-S-PLA1700, (C) PEG1900-S-S-PLA1950, (D) P4, and

Diblock, amphiphilic, redox-sensitive copolymers and their observed morphology.

% Hydrophilic 

Fraction (f) 
Observed Morphology 

68 Micelles, small spheres 

 Mostly bicelles, worms 

 Mostly bicelles, a few vesicles 

 bilayered vesicles, a few bicelles 

 Bilayered vesicles (polymersomes) 

1900-S-S-PLA3600 and PEG1900-S-S-PLA5800 polymers formed vesicles 

, respectively, Table 4.1), all further studies were performed with 

these two formulations. We determined the average size distributions, zeta potentials, and 

tic mobility values of these polymersomes using a dynamic light-scattering 

2). We observed that the average hydrodynamic diameter of the 

polymersome (209 ± 34 nm) was higher compared to P4 (157 ± 68 nm). This difference in size 

 

Transmission electron microscopic images of negatively stained polymersomes: (A) 
, and (E) P5. 

sensitive copolymers and their observed morphology. 

Polymersome 

Name 

- 

- 

- 

P4 

P5 

polymers formed vesicles 

1), all further studies were performed with 

these two formulations. We determined the average size distributions, zeta potentials, and 

scattering 

2). We observed that the average hydrodynamic diameter of the P5 

(157 ± 68 nm). This difference in size 
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is likely due to the higher molecular weight of the PEG1900-S-S-PLA5800 polymer compared to 

PEG1900-S-S-PLA3600. Dynamic light-scattering experiments also showed that the size 

distribution was quite disperse, ranging from 25 nm to 700 nm (Figure 4.4). These sizes for the 

polymersomes are large and may not be ideal for passive tumor targeting that employs the 

enhanced permeability and retention effect [295]. However, the vesicles can be extruded to 

smaller sizes, if needed, for future applications. 
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Figure 4.4. Representative size distribution for the number of structures formed by different 
polymers with the dynamic light-scattering method using a Zetasizer instrument: (A) P4 and (B) 
P5.  

 

Table 4.2. Physical characterization of the P4 and P5 polymersomes (n = 5). 

Polymersomes Zeta Potential 

(mV) 

Mobility (µm 

cm/Vs) 

Size (nm) PDI 

P4 -3.2 ±0.5 -0.25 ± 0.03 157 ± 68 0.58 ± 0.07 

P5 -2.4 ±0.6 -0.23 ± 0.04 209 ± 34 0.64 ± 0.03 

 

Structural studies in the presence of reducing agents: Prior to any release studies with 

polymersomes, we tested the copolymers’ sensitivity toward reducing agents. In this endeavor, 

the PEG1900-S-S-PLA3600 and PEG1900-S-S-PLA5800 copolymers were dissolved in THF and 
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exposed to the reducing agent glutathione (GSH, 5 mM).  Because cytosolic-concentration 

glutathione (GSH) ranges from 5 mM to 15 mM [186], we incubated the copolymers with 5 mM 

of GSH for an hour and then determined any degradation by gel permeation chromatography 

(Figure 4.5). The retention times (Rt) of both copolymers (PEG1900-S-S-PLA3600 and PEG1900-S-S-

PLA5800) showed a shift toward lower average molecular weight (increased Rt) components, 

indicating cleavage of the disulfide bond that connects the PEG and PLA parts.  

We also studied the effect of glutathione (5 mM) on the morphology and size of the P4 

and P5 polymersomes by employing atomic force microscopy. We observed that, before 

treatment, the polymersomes were spherical (Figure 4.6, before treatment). After 1 hour of 

incubation with 5 mM GSH, the spherical structures of the polymersomes were completely 

destroyed (Figure 4.6, after treatment).  
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Figure 4.5. Gel permeation chromatography of the (A) PEG1900-S-S-PLA3600 and (B) PEG1900-
S-S-PLA5800 polymers before (black trace) and after (red trace) incubation with 5 mM of GSH for 
60 minutes. 

Demonstration of the polymersomes’ echogenicity: We have previously established that 

echogenic liposomes can be prepared in the presence of at least 100 mM of mannitol as a 

cryoprotectant [175], and the ideal concentration is 320 mM. In this study, we used 320 mM of 

mannitol to prepare the echogenic polymersomes. The defects in the encapsulating layer created 

during the freeze-thaw and lyophilization process (mannitol is a weak cryoprotectant and 



 

cannot provide adequate protection for the bilayer) allow entrapment of air during the 

reconstitution of the lyophilized powder in a buffer solution 

entrapment of air inside vesicles, enabling them to reflect ultrasound. Although the exact 

location of air has not been determined conclusively, there are reports of a

hydrophobic part of shell or inside the aqueous interior 

Figure 4.6. Atomic force microscopic images of 
before (A) and after incubation (B)

To demonstrate echogenicity of the polymersomes, we studied their acoustic properties 

using an in-vitro acoustic setup (shown in Figure 

excitation pulse consisted of a 32

acoustic pressure amplitude of 250 kPa. A polymersome concentration of 10 µg/mL

all in-vitro acoustic experiments without any problem of signal attenuation due to the setup 
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cannot provide adequate protection for the bilayer) allow entrapment of air during the 

reconstitution of the lyophilized powder in a buffer solution [112, 172]. This method allows the 

entrapment of air inside vesicles, enabling them to reflect ultrasound. Although the exact 

location of air has not been determined conclusively, there are reports of air being trapped in the 

hydrophobic part of shell or inside the aqueous interior [230]. 

Atomic force microscopic images of P5 polymersomes and P4 polymersomes 
(B) with 5 mM of glutathione for 1 hour. 

To demonstrate echogenicity of the polymersomes, we studied their acoustic properties 

acoustic setup (shown in Figure 4.1) and diagnostic ultrasound imaging. The 

excitation pulse consisted of a 32-cycle sinusoidal wave with a frequency of 3.5 MHz and with an 

acoustic pressure amplitude of 250 kPa. A polymersome concentration of 10 µg/mL

acoustic experiments without any problem of signal attenuation due to the setup 

cannot provide adequate protection for the bilayer) allow entrapment of air during the 

. This method allows the 

entrapment of air inside vesicles, enabling them to reflect ultrasound. Although the exact 

ir being trapped in the 

 

polymersomes 

To demonstrate echogenicity of the polymersomes, we studied their acoustic properties 

1) and diagnostic ultrasound imaging. The 

cycle sinusoidal wave with a frequency of 3.5 MHz and with an 

acoustic pressure amplitude of 250 kPa. A polymersome concentration of 10 µg/mL was used for 

acoustic experiments without any problem of signal attenuation due to the setup 
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design. Figure 4.7 shows the scattered response from the P4 and P5 polymersome samples. 

Note that, for the P5 batch, both second-harmonic and subharmonic components were detected 

in the scattered acoustic spectra. Hence, all three components, i.e., fundamental, subharmonic, 

and second-harmonic, are shown for comparison. Unlike the nonlinear response from 

microbubble-based contrast agents [296], the detection of nonlinear responses from the P5 

polymersomes was inconsistent. For the P4 polymersomes, the nonlinear components were 

consistently absent in all experiments and, hence, are not shown here. The lack of a nonlinear 

response can either be due to the lower pressure amplitude (250 kPa) used here or due to the 

inherent acoustic properties of these polymersomes. Further studies are presently being 

conducted to verify these hypotheses.  

We observed that the P5 polymersomes show around 20 dB, 10 dB, and 4 dB 

enhancements over the control (i.e., without any polymersomes) for the fundamental, 

subharmonic, and second-harmonic components (Figure 4.7). However, the enhancement was 

much weaker for the P4 polymersomes; it was around 8 dB for the fundamental component. 

This finding indicated that modifying the copolymers’ PLA block enables us to tune their 

acoustic properties. Because the bilayers are made of ampliphilic copolymers, we expected these 

polymersomes to be mechanically stable. To test this hypothesis, we performed time-dependent 

scattering measurements with both batches (Figure 4.7C). The scattered response was stable for 

both batches with around 5 dB of decay over 10 minutes.  

Echogenicity was also confirmed by imaging with a Terason t3200 ultrasonic medical 

imaging system using a 4-15 MHz transducer. Reconstituted polymersomes reflected the 

ultrasound, indicating the presence of entrapped air (Figure 4.8), whereas the control samples 

(polymersomes before freeze drying) were devoid of such reflections. The mean and maximum 

grey-scale values were obtained by analyzing images with ImageJ software, and the comparison 

is shown in Figures 4.8E and 8F. The echogenic P4 and P5 polymersomes (Figure 4.8, Panels C 
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and D) showed higher grey-scale values compared to their non-echogenic counterparts 

(controls; Figure 4.8, Panels A and B). Moreover, the response from P5 polymersomes was 

higher than the P4 polymersomes (Figure 4.8, panels C and D), further corroborating our 

results with the acoustic scattering experiments (Figure 4.7). We also noticed that adding 5 mM 

of GSH to the polymersome samples reduced the ultrasound reflectivity (Appendix C).  
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Figure 4.7. Ultrasound scattered responses from echogenic polymersomes (A) P5 and (B) P4 
(dark cyan: fundamental, violet: subharmonic, and pink: second-harmonic responses). (C) 
Time-dependent scattering responses from polymersomes P5 (violet) and P4 (pink) (n = 3). 

 

Demonstration of redox-triggered release from the polymersomes: After confirming the 

echogenicity, we checked the redox-triggered release from these polymersomes. In this 



 

endeavor, we encapsulated 10 µM of calcein dye in the 

monitored the release by using the cobalt (II) quenching method. We studied the release profiles 

with 3 different reducing agents: glutathione (GSH), cysteine (CYS), and dithiothrei

concentrations ranging from 50 µM (extracellular concentration of thiol) to 5 mM (cytosolic 

concentration of thiol) [197]. Glutathione and cysteine are the primary reducing agents that 

maintain the redox equilibrium between the intracellular (slightly reducing) and extracellular 

environments within tissues (slightly oxidizing) 

rapidly released contents from the polymersomes within 10 minutes of incub
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Figure 4.8. Diagnostic-frequency ultrasound imaging and mean grey
polymersomes: (A) P5 polymersome before free drying (control), (B) P4 polymersome before 
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we encapsulated 10 µM of calcein dye in the P4 and P5 polymersomes, and we 

monitored the release by using the cobalt (II) quenching method. We studied the release profiles 

with 3 different reducing agents: glutathione (GSH), cysteine (CYS), and dithiothrei

concentrations ranging from 50 µM (extracellular concentration of thiol) to 5 mM (cytosolic 

. Glutathione and cysteine are the primary reducing agents that 

maintain the redox equilibrium between the intracellular (slightly reducing) and extracellular 

environments within tissues (slightly oxidizing) [185]. We observed that the reducing agents 

rapidly released contents from the polymersomes within 10 minutes of incubation. 

P5

frequency ultrasound imaging and mean grey-scale values for the 
polymersomes: (A) P5 polymersome before free drying (control), (B) P4 polymersome before 

polymersomes, and we 

monitored the release by using the cobalt (II) quenching method. We studied the release profiles 

with 3 different reducing agents: glutathione (GSH), cysteine (CYS), and dithiothreitol (DTT) at 

concentrations ranging from 50 µM (extracellular concentration of thiol) to 5 mM (cytosolic 

. Glutathione and cysteine are the primary reducing agents that 

maintain the redox equilibrium between the intracellular (slightly reducing) and extracellular 

. We observed that the reducing agents 

ation.  

 

scale values for the 
polymersomes: (A) P5 polymersome before free drying (control), (B) P4 polymersome before 
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freeze drying (control), (C) P5 polymersomes after freeze drying, (D) P4 polymersomes after 
freeze drying, (E) mean grey-scale values, and (F) maximum grey-scale value (n = 3). 

 

Figures 4.9 and 4.10 show the results for the release experiments with increasing 

concentrations of different reducing agents. When incubated in 5 mM of GSH and DTT, both the 

P4 and P5 polymersomes showed a very rapid burst release. We observed around 80% of 

content release from both polymersomes when incubated with 5 mM of GSH, whereas less than 

5% release was observed when incubated with 50 µM of GSH.  
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Figure 4.9. Redox-triggered release as a function of the reducing agents’ concentration (dark 
cyan: glutathione, violet: dithiothreiotol, and pink: cysteine) from (A) polymersome P5 and (B) 
polymersome P4 (n = 3). 
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Figure 4.10. Representative release profiles of calcein from polymersomes P4 (pink triangles) 
and P5 (violet spheres) when incubated with 5 mM of cysteine for an hour. The fitted curves, 
according to a single exponential-rate equation, are shown as black traces.  

 

DTT has a very low redox potential (E0 = −0.332 V at pH 7.0), and it rapidly reduces the 

disulfide bonds compared to glutathione (E0 = +0.062 V) and cysteine (E0 = +0.025 V) [199]. 

The release profiles of the polymersomes treated with 5 mM of cysteine can be fitted with a 

single exponential-rate equation (Figure 4.10, black trace) with rate constants of (39 ± 3) × 10-2 

s-1 for P5 polymersomes and (20 ± 2) × 10-2 s-1 for P4 polymersomes. These results indicate that 

the polymersomes would be stable while circulating in the blood and extracellular spaces, 

releasing less than 5% of their contents. After endocytosis, they will rapidly release the 

encapsulated contents inside the cell cytosol.   

Effect of ultrasound on the redox-triggered release from the polymersomes: Following 

the demonstration of reductive destabilization for the P4 and P5 polymersomes, we proceeded 

to determine their sensitivity to diagnostic-frequency ultrasound. For this purpose, we exposed 

the polymersomes to a 1 MHz ultrasound (continuous wave) for different time intervals, and 

monitored the release of the encapsulated calcein. We noted, a priori, that unlike liposomes, 

polymersomes do not exhibit high domain exchanges [297], and this may pose potential 

challenges for ultrasound-triggered release. We observed that both the P4 and P5 

polymersomes failed to release the encapsulated dye in the presence of the applied ultrasound. 

Increasing the ultrasound’s intensity (0.1 to 2 W/cm2), duty cycles (10% to 100%), and duration 

(1 minute to 15 minutes) of application did not have any observable effects either. We attributed 

these negative results to the mechanical and thermodynamic stability of the polymersomes’ 

bilayer. By employing transmission electron microscopy, we observed the bilayers to be 20-30 

nm thick (Figure 4.3, Panels D and E), attesting to the mechanical stability of the polymersomes.  
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Subsequently, we studied the effects of simultaneously applying a reducing agent and 

ultrasound on the contents released from the polymersomes. Although we observed some 

enhancements (5-10%) in the release due to the application of ultrasound (with the reducing 

agents GSH and CYS), the results were inconsistent. This lack of consistency may be due to the 

wide size distribution of polymersomes with a polydispersity index of 0.6 (Table 4.2). Because 

the polymersomes have heterogeneous sizes, they are expected to respond to ultrasound 

differently; the larger-sized vesicles couple more efficiently with the ultrasound waves. In 

addition, the reducing agents alone release the encapsulated contents rather rapidly (Figures 4.9 

and 4.10). Because the reducing agents destroy the polymersome structures (Figure 4.6), the 

entrapped air is likely to escape, making polymersomes less responsive to the applied 

ultrasound. 

Simultaneous encapsulation of gemcitabine and doxorubicin in the polymersomes: 

Following these studies, we proceeded to simultaneously encapsulate the anticancer drugs, 

gemcitabine and doxorubicin, into the P4 and P5 polymersomes. This combination is reported 

to be more effective compared to the individual drugs [298]. Currently, more than 80 clinical 

trials are in progress (www.clinicaltrials.gov; accessed on February 28, 2014) to test the efficacy 

of liposomal doxorubicin (Doxil) in combination with injections of gemcitabine for the 

treatment of various cancers [258, 267, 299]. 

Prior to encapsulating doxorubicin and gemcitabine into the polymersomes, we 

developed a UV-spectrophotometric, dual-wavelength method to determine their solution 

concentrations. Although liquid chromatographic methods are frequently-used for simultaneous 

determination of two or more drugs, they are expensive and time consuming [300, 301]. 

Specifically, we selected two wavelengths so that doxorubicin has equal absorbance at both the 

wavelengths and that, at one of the wavelengths, gemcitabine absorbance is negligible. By 

comparing the absorption spectra for the two drugs (Figure 4.11), we selected 480 nm and 276 
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nm as the wavelengths of choice. At 480 nm, doxorubicin can be determined reliably because 

gemcitabine absorbance is negligible at this wavelength. Because doxorubicin absorbs equally at 

276 nm and 480 nm, gemcitabine can be determined at 276 nm by subtracting the absorbance 

of doxorubicin at 480 nm from the total absorbance at 276 nm (Figure 4.11). Following this 

strategy, we established a standard calibration curve for both drugs (Appendix C).  
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Figure 4.11. Dual-wavelength UV spectrophotometric method for simultaneous determination 
of gemcitabine and doxorubicin. The absorption spectra for gemcitabine (black trace), 
doxorubicin (red trace), and the combination (blue trace) are shown. 

We compared the efficiencies for the passive- and active-loading methods to encapsulate 

gemcitabine and doxorubicin into the polymersomes. For passive entrapment, the drugs were 

dissolved in a 10 mM HEPES buffer (pH = 7.4), and the solutions of the polymers in THF were 

added slowly. For active loading, we used the pH gradient method. We prepared the 

polymersomes in a citrate buffer (pH 4.0), and the external pH was neutralized by adding solid 

sodium bicarbonate. The polymersomes were then incubated with the drug combination. The 

unencapsulated drugs were separated from the polymersomes, and encapsulation efficiency was 

established by measuring the absorbance before and after gel filtration.  
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The encapsulation efficiencies with the passive entrapment method were 43 ± 8% for 

gemcitabine and only 13 ± 4% for doxorubicin with both the P4 and P5 polymersomes. The pH 

gradient method produced a similar encapsulation efficiency for gemcitabine (43 ± 2%); 

however, the efficiency for doxorubicin entrapment was higher (27 ± 7%). We noticed that 

entrapment efficiencies were similar for both P4 and P5 as well as for targeted and non-

targeted polymersomes (Table 4.3). We attributed the moderate drug entrapment to the rigidity 

of the polymersome bilayers which minimizes the molecules’ entry into the aqueous core. We 

also noted that the higher molecular weight and larger size of doxorubicin (MW: 543) led to a 

lower encapsulation efficiency compared to gemcitabine (MW: 263.) Heating the polymersomes 

above their glass transition temperature (65 °C) did not improve the encapsulation.  

Table 4.3. Encapsulation efficiencies of gemcitabine and doxorubicin into the polymersomes 
using the pH gradient method (n = 3). 

 

Polymersomes Gemcitabine Doxorubicin 

 
Conc. 

(µg/mL) 

Percent 

Entrapment 

Conc. 

(µg/mL) 

Percent 

Entrapment 

P5 31.6 ± 6.1 41.7 ± 4.5 20.8 ± 7.4 27.2 ± 7.5 

P5 Folate 39.6 ± 9.8 46.1 ± 9.1 20.8 ± 5.8 27.4 ± 5.5 

P4 34.7 ± 7.5 45.7 ± 6.0 20.7 ± 7.9 27.2 ± 7.0 

P4 Folate 29.9 ± 4.3 39.4 ± 2.2 16.9 ± 5.7 22.2 ± 5.7 

 

Demonstration of release using monolayer cell culture: Having optimized the 

encapsulation of the drugs, we proceeded to evaluate the active targeting of these polymersomes 

to cancer cells. For this endeavor, 1 mol% folate conjugated lipid (DSPE-PEG-Folate, 

commercially available from NANOCS, NY) with PEG3400 (for P4 polymersomes) and PEG5000 

(for P5 polymersomes) was added to the polymers during polymersome preparation. We 
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selected the folate receptor overexpressing pancreatic ductal carcinoma (PANC-1) and breast 

cancer (MCF-7) cells for the uptake studies. After incubating the polymersomes for different 

times, we imaged the cells using a fluorescence microscope (Figure 4.12 for the PANC-1 cells; the 

corresponding images for the MCF-7 cells are included in the Appendix C). We noticed that 

polymersomes incorporating 1 mol% of the folate lipid were taken up by cells more effectively 

compared to the polymersomes without the folate lipid or the free drugs. The MCF-7 cells 

showed faster and higher uptake of the folate-targeted polymersomes compared to PANC-1 cells. 

Analyses of the mean red fluorescence intensities for all images indicated that there was no 

significant uptake difference for the initial 30 minutes (Figure 4.13). However, as the incubation 

period increased to 60 minutes, we observed enhanced cellular uptake for the folate-targeted 

polymersomes compared to the non-targeted counterparts and free drugs (Figures 4.12 and 

4.13).  

After demonstrating successful uptake for folate-targeted polymersomes, we assessed 

their ability to kill these folate-receptor overexpressing cancer cells. We exposed the MCF-7 and 

PANC-1 cells to different treatments for various time intervals, and we analyzed cell viability by 

employing the AlamarBlue® assay [302]. Both the P4 and P5 polymersomes showed 

significantly higher killing of MCF-7 cells compared to the free gemcitabine + doxorubicin 

combination (Figure 4.14A). Even non-targeted P5 polymersomes showed significant toxicity 

enhancement toward MCF-7 cells compared to the free drugs together. We also tested these 

polymersomes with the PANC-1 cell line, and we noticed that, although there was significant 

killing (around 60%) with folate-targeted polymersomes, it was not significantly better than 

non-targeted polymersomes and free drugs. These observations supported our results with 

uptake experiments where a significant uptake enhancement for folate-targeted polymersomes 

was observed in MCF-7 cells compared to the PANC-1 cells. 
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Figure 4.12. Fluorescence microscopic images of folate
uptake by PANC-1 cells as a function time. (Scale bar: 100 µm).
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luorescence microscopic images of folate-targeted P4 and P5 polymersomes’ 
1 cells as a function time. (Scale bar: 100 µm). 
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Figure 4.13. Mean fluorescence analysis for the uptake of polymersomes by MCF-7 (A and B) 
and PANC-1 (C and D) cells. Green: folate-targeted polymersomes; orange: non-targeted, 
regular polymersomes; and pink: free gemcitabine and doxorubicin. (*P < 0.05, n = 4). 
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Figure 4.14. Cell viability with folate-overexpressing MCF-7 cells (A) and PANC-1 cells (B) 
after 48-hours incubation. Green: folate-targeted polymersomes, orange: non-targeted 
polymersomes, and pink: free gemcitabine and doxorubicin. (*P < 0.05, **P < 0.01, n = 5). 

 

Demonstration of release using three-dimensional, spheroid cell culture: Although 

studies with a monolayer cell culture are fast, cost effective, and demonstrate a proof of concept, 

they also have limitations. For example, a monolayer cell culture bears little resemblance to the 

complex, three-dimensional growth of tumors in vivo. Multicellular tumor spheroids (3D cell 

culture) are models of intermediate complexity between the monolayer culture and tumors in 

vivo [303]. Among the various reported procedures to prepare the 3D spheroids, the liquid 

overlay method is widely used and convenient [292]. Following this protocol, we embedded the 

MCF-7 cells onto agar and added the growth media. Subsequently, the spheroids were prepared 

in 24-well plates by centrifuging to aggregate the cells at the center (Figure 4.15A). The plates 

were placed in an incubator, undisturbed, and we measured the spheroid area after 3 days. 

When observed under a light microscope, the growing cell spheroids showed three distinct 

regions, similar to in vivo tumors (Figure 4.15B). The center of the spheroid was necrotic; the 

cells died due to the limited availability of oxygen and nutrition (region 1). This center was 

surrounded by a region of inactive, but live cells (region 2). The actively proliferating cells were 

at the periphery of the spheroids (region 3), which had direct access to the media (region 4). 

This morphology of 3D spheroids makes them a better tool for conducting in-vitro cellular 

experiments. Spheroids varied in size from 1 mm to 2 mm with distinct areas as explained 

earlier. 



 

Figure 4.15. Spheroid culture of MCF
aggregation was facilitated by centrifugation. (B) A cell spheroid showing three distinct regions 
which mimic the in vivo conditions. Region 
amount of nutrition and oxygen; Region 
active/proliferating cells which grow rapidly; and Region 
bottom: 400 µ). 

 

On 10th and 11th day after preparation, we exposed the MCF

treatments for 48 hours (Figure 

group, normalized and plotted as a function of time (Figures 

folate-targeted P5 polymersomes were most effective among all the treatments, eliciting a 

significant reduction in size for the spheroids (Figure 

polymersomes and the free drugs. While the control 

average growth was restricted to only 73% in the presence of the folate
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improvement over the free-drug treatment. This i

uptake of polymersomes not only in the monolayer, but also in the three

cell culture. To our surprise, the folate

advantage over non-targeted polymersomes and the free
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Spheroid culture of MCF-7 cells: (A) 24-well plate coated with agar; cell 
aggregation was facilitated by centrifugation. (B) A cell spheroid showing three distinct regions 
which mimic the in vivo conditions. Region 1: central necrotic area (hypoxic) which gets a lesser 
amount of nutrition and oxygen; Region 2: inactive/resting cells which grow slowly; Region 
active/proliferating cells which grow rapidly; and Region 4: nutrition/media. (Scale bar at the 

day after preparation, we exposed the MCF-7-cell spheroids to different 

treatments for 48 hours (Figure 4.16A). Areas of spheroids were monitored for each treatment 

group, normalized and plotted as a function of time (Figures 4.16B and 4.16C). We observed that 

polymersomes were most effective among all the treatments, eliciting a 

significant reduction in size for the spheroids (Figure 4.16B) compared to the non

polymersomes and the free drugs. While the control spheroids grew by 185% of their initial size, 

average growth was restricted to only 73% in the presence of the folate-targeted 

polymersomes. We also noticed that non-targeted polymersomes did not show any 

drug treatment. This implies that the folate targeting improved the 

uptake of polymersomes not only in the monolayer, but also in the three-dimensional spheroid 

cell culture. To our surprise, the folate-targeted P4 polymersomes did not show any additional 

geted polymersomes and the free-drug combination (Appendix C

do not have an explanation for this observation. 
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Figure 4.16. (A) Images of MCF-7 cellular spheroids treated with P5 polymersomes. Spheroids 
were exposed to three different treatments for 48 hours on the 10th and 11th days. (B) Growth 
curves for the spheroids treated with P5 polymersomes. (C) Growth curves for spheroids treated 
with P4 polymersomes. Green stars: folate-targeted polymersomes, orange rectangles: non-
targeted polymersomes, pink triangles: free gemcitabine and doxorubicin, and black spheres: 
control samples. (*P < 0.05, n = 5). 

 

Conclusion 

We have successfully prepared echogenic, redox-sensitive, targeted polymersomes. 

Ultrasound-scattering and imaging experiments confirmed the echogenicity of the vesicles. 

These polymersomes showed excellent release profiles when incubated with cytosolic 

concentrations of reducing agents, releasing more than 80% of the contents within 20 minutes. 

However, in serum levels of reducing agents, minimal release was observed. When a folate lipid 

was incorporated in the bilayer, the polymersomes showed an enhanced uptake with folate-

receptor overexpressing breast- and pancreatic-cancer cells. A combination of the two 

anticancer drugs, gemcitabine and doxorubicin, was successfully encapsulated in the 

polymersomes. These targeted, dual-drug encapsulating polymersomes significantly decreased 

the viability of breast- and pancreatic-cancer cells in the monolayer as well as in spheroid 

cultures. Our results are expected to encourage further research about the use of ultrasound-
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reflective polymersomes as multimodal drug carriers with targeting and triggered release 

properties.  
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GENERAL CONCLUSION AND FUTURE STUDIES 

We have successfully addressed the problem of slow contents release with echogenic 

nanoparticles. We have demonstrated that echogenic nanoparticles can be successfully coupled 

to an internal trigger to rapidly release encapsulated contents. Combining two triggers offered 

better control over the release profiles of drugs from the nanoparticles. As these nanoparticles 

also carry air bubbles along with drug, they can be imaged using diagnostic frequency 

ultrasound, and have the potential to be tracked while in blood circulation. Folate targeting 

showed improved uptake of these particles by cancer cells leading to enhanced cytotoxicity. We 

have successfully demonstrated that proper combination of triggering and targeting strategies 

can be advantageous over existing nano formulations.  

The nanoparticulate systems developed need further improvements to make them 

suitable for in vivo applications. For example, the liposomes need the PEG layer to render them 

long circulating characteristic. This step is not necessary for the polymersomes developed, as 

they contain PEG as the hydrophilic polymer block. PEGylation is reported to improve retention 

of echogenicity [304], thus it would be important to study its effect on ultrasound imaging as 

well triggered release. PEGylation would have different effects on different parameters of 

nanoparticles. After PEGlylation of MMP-9 responsive liposomes (Chapter 1), MMP-9 could find 

it difficult to access the LP-4 peptide, and hydrolyze it to release the contents. Percent of 

peptide and PEGylated lipids in the bilayer could be very crucial to optimize the formulation. In 

case of PEGylated polymer coated ARLINs (Chapter 2), PEG groups can interfere with the linker 

reacting with POPE-G.  This can potentially affect the polymerization and thus release and 

stability of ARLINs. For the polymersomes (Chapter 4), we have studied effect of changing the 

PLA molecular weight on structure and morphology. In future, it would be interesting to study 

the effect of molecular weights of the PEG part on size and morphology of the vesicles. The “f” 

value can be fine-tuned further to improve the encapsulation efficiency of polymersomes.  
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Lipid bilayer composition is very important for the stability of liposomes. In this 

dissertation, we have used POPC as the major lipid for the liposomes. Due to the low glass 

transition temperature, POPC may not be the optimal lipid for in vivo studies. Addition of 

cholesterol (up to 5%) is reported to improve stability of liposomes. It would be interesting to 

study the effect of cholesterol on stability these systems. Making the lipid bilayer stronger would 

definitely minimize passive release of contents from the liposomes. However, it should also be 

noted that as bilayer becomes stronger, it is more difficult for triggers to disturb the bilayer 

sufficiently to release the contents. Clearly, these two parameters needs to be carefully optimized 

such that we do not compromise either safety or efficiency of these nanoparticles.  

After optimizing the composition and PEGylation of nanoparticles, next step for 

validation would be in vivo testing. Xenograft nude mouse models can be used to test efficacy of 

these particles to reduce/inhibit growth of tumors. We can inject either of the folate receptor 

over-expressing MCF-7, HeLa, or PANC-1 cells subcutaneously to obtain xenograft tumor. 

Anticancer drug (such as doxorubicin or/and gemcitabine) loaded nanoparticles can be injected 

to tumor bearing mice, and the size of tumor can be monitored to demonstrate the effectiveness. 

Diagnostic ultrasound imaging of mice will give us idea about the retention of echogenicity 

inside the in vivo system. It would be interesting to track echogenic nanoparticle, and observe 

their accumulation at tumor site employing diagnostic frequency ultrasound imaging.  
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APPENDIX A 

Quenching effect of ELIPs on carboxyfluorescein fluorescence 

To study effect of echogenic liposomes on the fluorescence of carboxyfluorescein, two 

batches of liposomes were prepared, regular liposomes and echogenic liposomes without 

encapsulation of dye following same protocol as described in main manuscript. Reconstituted 

liposomal solutions (0.02 mg/ml) were then incubated in 0.5 µM carboxyfluorescein in 25 mM 

HEPES buffer pH 8 with added Ca+2 and Zn+2 for an hour and fluorescence was monitored with 

excitation at 480 nm and emission spectra were recorded at 525 nm at different time intervals 

(0 min, 30 min and 60 min).  

Table A1. Fluorescence intensities of dye when incubated with regular (non-echogenic) and 
echogenic liposomes. 
 

 Fluorescence Intensities (units) 

Incubation time (min) Regular Liposomes Echogenic Liposomes 

0 13130 13633 

30 13099 13228 

60 13095 13221 
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APPENDIX B 

Fluorescence correction for carboxyfluorescein  

Fluorescence emission intensity of carboxyfluorescein decreases with decrease in pH. To 

compensate for this decrease, we obtained a calibration curve for carboxyfluorescein emission 

intensity by exciting at the isosbestic absorption (460 nm) and monitoring emission at the 

isosbestic point at 497 nm. 

ItpH= rpH . ItmpH …………………………………………………………………………………………… Equation (1) 

Where ItpH is the corrected fluorescence intensity, rpH is the correction factor for the 

effect of pH and It,mpH is the measured fluorescence intensity at a particular pH and time (t) of 

interest. To calculate correction factor for the effect of pH (rpH), calibration curves were 

generated for the fluorescence intensity of free carboxyfluorescein at pH 7.4, 6 and 5. 

Concentrations of carboxyfluorescein were taken from desired range for all the release 

experiments (0.5 µM to 5 µM). Correction factor (rpH) = Slope at pH 7.4 / Slope at particular 

pH  
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Figure B1. Calibration graphs for intensity of carboxyfluorescein (CF) as a function of pH. 
Black: pH 7.4; blue: pH 6.0 ; green: pH 5.0. 
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Corrections factors were found be 1.45 and 1.74 for pH 6, and 5 respectively. Corrected 

fluorescence emission intensity at particular pH was calculated each time by using equation 1. 

pH triggered release profile of sodium bicarbonate encapsulating POPC liposomes 
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Figure B2. Release profiles of carboxyfluorescein from 400 mM sodium bicarbonate 
encapsulated liposomes, incubated in HEPES buffer pH 7.4 (black spheres), pH 6 (blue 
spheres), and pH 5 (dark cyan spheres). The lines are generated by connecting the observed data 
points. 

pH triggered release from sodium bicarbonate encapsulating POPC liposomes 

0

10

20

30

40

50

P
er

ce
nt

 R
el

ea
se

pH of Buffers
7.4 6            5

 



 

141 
 

Figure B3. Release from pH tunable echogenic liposomes encapsulating  400 mM sodium 
bicarbonate after incubation in 25 mM HEPES buffer for 2 hours (violet) and 3 hours (orange) 
(n = 3). 

Release from control POPC liposomes (without bicarbonate encapsulation) when incubated in 

different pH buffers for 2 hrs 
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Figure B4. Release of carboxyfluorescein from POPC liposomes (without bicarbonate 
encapsulation) when incubated in different pH buffers for 2 hours (n = 3). 

pH triggered release from ammonium bicarbonate encapsulating DSPC liposomes: 

Table B1. Percent release of carboxyfluorescein from 400 mM ammonium bicarbonate and 
400 mM sodium bicarbonate encapsulated DSPC liposomes after incubation for 2 hours (Avg ± 
SD; n = 3). 

 

Type of Precursor (400 mM) pH 7.4 pH 6 pH 5 

Ammonium bicarbonate < 1 < 5 5 ± 1 

Sodium bicarbonate < 1 < 5 < 5 
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Uptake studies with MCF-7 cells and POPC liposomes 

 

Figure B5. Fluorescence microscopic images for the uptake of pH tunable echogenic liposomes 
by folate receptor overexpressing MCF-7 cancer cells as a function of incubation time. (A) 
Incubation time: 10 minutes (magnification: 20X); (B) Incubation time: 20 minutes 
(magnification: 20X); (C) Incubation time: 10 minutes (magnification: 40X); (D) Incubation 
time: 20 minutes (magnification: 40X);  (E) Non-targeted pH tunable echogenic liposomes;  
Incubation time: 10 minutes (magnification: 20X); (F) Non-targeted pH tunable echogenic 
liposomes; Incubation time: 20 minutes (magnification: 20X). 
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APPENDIX C 

Synthesis and characterization of the polymers 

O
O

O
O

n

OH

O

O  

To a stirred solution of methoxy PEG (MW 1900, 5.7 g, 3 mmol) in dichloromethane (50 

mL), succinic anhydride (450 mg, 4.5 mmol) was added followed by triethylamine (303 mg, 3 

mmol). The reaction mixture was stirred overnight under nitrogen at room temperature. Upon 

completion of the reaction, majority of the solvent was evaporated off under reduced pressure, 

and the residual solution was added slowly to cold ether. The precipitate thus formed was 

centrifuged, washed with ether and dried under vacuum to afford a white powder (5.3 g, 88%). 

 1H NMR (CDCl3):  4.23 (s, 2H), 3.52-3.57 (m, 175 H), 3.35 (s, 3H), 2.61 (s, 4H). 

O
O

O
O

n

O

O

H
N

S
S

NH2

 

Acid terminated m-PEG (2 g, 1 mM) was dissolved in dichloromethane (40 mL). To this 

stirred solution, cystamine dihydrochloride (336 mg, 1.5 mmol) was added followed by 

triethylamine (401 mg, 4 mM). After 5 minutes, EDC (194 mg, 1.25 mmol) was added and the 

reaction mixture was stirred overnight under nitrogen and at room temperature. Subsequently, 

the reaction mixture was washed with brine, and dried over Na2SO47. Removal of solvent, 

precipitation in ether, and drying under vacuum afforded the desired product in 76% Yield (1.62 

g). 

 1H NMR (CDCl3):  4.23 (m, 2H), 3.48-3.65 (m, 175 H), 3.3 (s, 3H), 3.05 (br S, 4H), 2.7 (m, 2H), 

2.5- 2.6 (m, 4H), 2.4 (m, 2H). 
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The PEG-cystamine conjugate was taken into toluene (40 mL) and was subjected to 

azeotropic distillation with the aid of Dean Stark apparatus for 5 hours. The solution was then 

cooled under nitrogen. Upon addition of required amount of D,L-lactide and catalytic quantity 

of octyl tin , the reaction mixture was further refluxed for six hours under nitrogen. 

Subsequently, the resulting reaction mixture was cooled, and slowly added to chilled ether 

causing precipitation. The sticky semi-solid precipitate was collected, washed, and 

reprecipitated in ether. Drying under vacuum afforded desired PEG-S-S-PLA conjugate in fair to 

good yield. 

PLA= 5800 (PEG cystamine- 200 mg, D,L- lactide 700 mg, octyl tin 15 mg, Yield- 82%) 1H NMR 

(CDCl3): 5.07-5.19 (m, 72H), 4.16-4.20(m, 2H), 3.50-3.64(m, 174 H), 3.32 (s, 3H), 2.74-2.77 (m, 

2H), 2.62-2.68 (m, 2H), 2.44-2.47 (m, 2H), 1.46-1.53 (m, 231 H) 

PLA 3600  (PEG cystamine- 200 mg, D,L- lactide 450 mg, octyl tin 11 mg, Yield- 69 %)    1H 

NMR (CDCl3): 5.04-5.13 (m, 51H), 4.13-4.17(m, 2H), 3.51-3.67(m, 174 H), 3.32 (s, 3H), 2.74-2.77 

(m, 2H), 2.62-2.68 (m, 3H), 2.44-2.47 (m, 4H), 1.46-1.53 (m, 152 H) 
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Size Distribution by dynamic light scattering  
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Figure C1. Representative size distribution by number of the structures formed by different 
polymers by dynamic light scattering method using Zetasizer instrument (A) PEG1900-S-S-
PLA900 (B) PEG1900-S-S-PEG1700 (C) PEG1900-S-S-PEG1950. 
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Figure C2. Effect of 5 mM GSH on echogenicity of polymersomes (A) Diagnotic ultrasound 
images of polymersomes exposed to 5
incubated in 5 mM GSH as a function of time (C) Maximum grey scale values of P4 
polymersomes incubated in 5 mM GSH as a function of time (D) Mean grey scale values of P5 
polymersomes incubated in 5 mM G
P5 polymersomes incubated in 5 mM GSH as a function of time.
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echogenicity of polymersomes 
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Effect of 5 mM GSH on echogenicity of polymersomes (A) Diagnotic ultrasound 
images of polymersomes exposed to 5 mM GSH (B) Mean grey scale values of P4 polymersomes 
incubated in 5 mM GSH as a function of time (C) Maximum grey scale values of P4 
polymersomes incubated in 5 mM GSH as a function of time (D) Mean grey scale values of P5 
polymersomes incubated in 5 mM GSH as a function of time (E) Maximum grey scale values of 
P5 polymersomes incubated in 5 mM GSH as a function of time. 
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Calibration curves for simultaneous determination of gemcitabine and doxorubicin  
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Figure C3. Calibration curve for simultaneous determination of doxorubicin at 480 nm (black) 
and gemcitabine (red) at 276 nm. Spheres indicate the observed data points whereas lines 
indicate fitted straight lines. 

Linear equation: 

Doxorubicin: Y = (8.98±0.24)*X + (0.052±0.013,) R2= 0.996 

Gemcitabine: Y = (14.39±0.32)*X + (0.046±0.01), R2= 0.997 
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Cellular uptake studies with MCF-7 cells  
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Figure C4. P4 and P5 polymersomes uptake studies with MCF-7 cells as a function time and 
folate targeting. 
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Cell viability of MCF-7 spheroids 

 

Figure C5. Images of MCF-7 Spheroids treated with P4 polymersomes. Spheroids were 
exposed to three different treatments for 48 hours on 10th and 11th day. 

 


