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ABSTRACT 

The timely identification and localization of roadway anomalies that pose hazards to 
the traveling public is currently a critical but very expensive task. Hence, 
transportation agencies are evaluating emerging alternatives that use connected 
vehicles to lower the cost dramatically and to increase simultaneously both the 
monitoring frequency and the network coverage. Connected vehicle methods use 
conventional GPS receivers to tag the inertial data stream with geospatial position 
estimates. In addition to the anticipated GPS trilateration errors, numerous other 
factors reduce the accuracy of anomaly localization. However, practitioners currently 
lack information about their characteristics and significance. This study developed 
error models to characterize the factors in position biases so that practitioners can 
estimate and remove them. The field studies revealed the typical and relative 
contributions of each factor, and validated the models by demonstrating agreement of 
their statistics with the anticipated norms. The results revealed a surprising potential 
for tagging errors from embedded systems latencies to exceed the typical GPS errors 
and become dominant at highway speeds. 

Keywords: accelerometer; GPS; inertial profiler; pavement performance; ride 

quality; sensor fusion; smartphone 
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1 Introduction 

Localized roughness from anomalies such as frost heaves, pavement cracking, potholes, 

spills, and debris pose serious hazards to the traveling public. Rough roads cause damage to 

transported goods (Steyn et al. 2015), and increase the cost of operating a vehicle (Robbins 

and Tran 2015). Transportation agencies rely on the regular and accurate reporting of 

localized roughness to prioritize maintenance needs (Karamihas and Senn 2012). Hence, 

the inaccurate reporting of anomaly positions could lead to unnecessary and costly 

decisions or maintenance actions. To enforce measurement precision and accuracy 

requirements, some transportation agencies penalize contractors for erroneously reporting 

localized roughness (Chen and Dye 2014). 

Existing approaches use heavily instrumented vehicles with laser-based systems and 

computers to measure the road elevation profile. Post processing transforms the data to the 

international roughness index (IRI) for a selected spatial resolution. These probe vehicles 

are relatively expensive to deploy and maintain. In addition, agencies do not use such 

vehicles on most local and unpaved roads because of numerous technical shortcomings 

(Papagiannakis 1997) and practical limitations (Ahlin and Granlund 2002). Such 

constraints also limit monitoring of the critical highways to at most once annually (NCHRP 

2015). Hence, important vulnerabilities such as frost heaves, dangerous spills, or debris that 

appear and disappear between monitoring cycles go undetected. Consequently, agencies are 

evaluating connected vehicle methods because of their potential to provide more affordable 

and continuous monitoring for the entire network. 

Connected vehicle methods use on-board accelerometers and conventional GPS 

receivers to report the inertial response and position of vehicles. However, the ability to 
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transform inertial and geospatial position data from many vehicles into a consistent 

summary of roughness has remained a significant challenge (Du et al. 2014). In related 

work, we recently addressed this challenge (Bridgelall 2014a) by inventing and 

demonstrating a signal transform that converts and merges the sensor data stream from 

many connected vehicles to produce a new roughness index that is directly proportional to 

the IRI. The road impact factor (RIF) transform produces the RIF-index from direct inertial 

measurements to characterize the actual roughness that riders experience within a specified 

speed band. In contrast, the IRI is an estimate of the roughness experienced based on a 

simulated quarter-car moving at a fixed speed across the elevation profile samples 

collected. 

The IRI procedure computes the damped mass-spring motions of a standard quarter-

car model as it responds to traversing the sampled elevation profile, at a precise reference 

speed of 80 km h-1 (Papagiannakis 1997). The procedure computes the IRI as the 

accumulated absolute rate difference between the sprung- and unsprung-mass motions for a 

specified traversal distance. In contrast, the RIF-transform computes the energy of the 

longitudinal velocity-modulated vertical acceleration sensed from the vehicle’s body. This 

computation produces a RIF-index per unit of distance travelled (Bridgelall 2014a). 

Therefore, the RIF-index is the linear energy density of the actual g-forces that riders 

experience within any speed band. On the other hand, the IRI is an accumulation of the 

simulated vertical motions of a quarter-car model. Nevertheless, both indices result from 

the linear time-invariant transformation of motions from equivalent damped mass-spring 

systems. Hence, the RIF-index and the IRI are directly proportional at any fixed speed. 
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Previous work demonstrated this proportionality at both local and highway speeds 

(Bridgelall 2014a). 

A corresponding Time Wavelength-Intensity Transform (TWIT) combines the RIF-

indices from all available speed bands to produce a speed-independent summary of 

roughness. The connected vehicle approach obviates the need for calibration with 

individual vehicle installations by leveraging the central limit theorem for a large data 

volume (Bridgelall 2014a). Hence, the average RIF-index across all speed bands reflects 

the typical ride quality experienced at any speed, and establishes a practical figure-of-merit 

to trigger specific remediation actions. 

One shortcoming of the connected vehicle approach is that the data fusion produces 

a resultant position tagging error. This aggregate bias accumulates from the position 

tagging errors of the individual data streams. Therefore, the main idea of this paper is to 

develop a method to characterize and remove position biases from the individual data 

streams. This method will enhance the accuracy of localizing anomalies from the merged 

data. The ever-increasing traversal volume of connected vehicles will yield a corresponding 

enhancement in the precision of localization. 

Related research investigated participatory sensing approaches to identify clusters 

of roughness from smartphone user reports to estimate the position of possible anomalies 

such as potholes (Byrne et al. 2013). Methods that directly analyse the accelerometer signal 

stream from individual vehicles used short-time spectral transforms to identify the 

signatures of anomalies (Ayenu-Prah and Attoh-Okine 2009). Other methods include 

attempting to recover the road profile by double integration of the accelerometer signal 
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(Islam et al. 2014, Nomura and Shiraishi 2015), and signal classification using machine 

learning methods (Rajamohan, Gannu and Rajan 2015). 

In adjacent fields, researchers report on the use of non-conventional GPS receivers 

such as differential GPS to measure the static and dynamic behaviours of large structures 

such as bridges (Yi, Li and Gu 2010), and high-rise buildings (Yi, Li and Gu 2013). Such 

applications focus on designing or using high performance geospatial positioning systems 

to maximize the accuracy of structural models used in finite element analysis. Given the 

high specialization of using connected vehicles to localize roadway anomalies, practitioners 

currently know very little about how to estimate and remove errors in position tagging of 

the inertial data stream. 

The main objective of this study is to develop models for the position tagging 

errors. Practitioners will benefit by using the models to estimate and remove bias from the 

position tags of the RIF-indices derived from each data stream. Therefore, the sensor data 

fusion will produce minimal bias, and the precision will continue to improve with traversal 

volume. To evaluate the model, we designed and conducted six field studies to characterize 

the error distribution and to compare the relative magnitude of each error component. To 

validate the model, we tested the error distribution against classic distributions to 

demonstrate agreement with the established norms. Subsequently, the organization of this 

paper is as follows: the next section develops the error model. The third section describes 

the field studies conducted to characterize the statistics of the overall position tagging error 

and to compare the relative contributions from each factor. The final section summarizes 

the findings and recommends an approach to minimize the localization error. 
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2 Anomaly position estimate 

For an isolated anomaly, the position tag p̂  of the corresponding inertial signal peak is an 

estimate of the true position p  of the anomaly. The estimate includes distance biases such 

that 

 .ˆ sbiDSPGPSpp  
 (1) 

This expression groups the biases into two categories: GPS and non-GPS related. The GPS 

related bias is the average offset in position tags GPS . The position bias from digital signal 

processing (DSP) is the expected delay DSP  from digital filtering. The position bias i  is 

the average error in locating a peak within the interpolation sub-interval. For the typical 

anomaly type, the vehicle mechanical response delay b  primarily depends on the 

frequency response of the vehicle suspension and the traversal speed. The sensor position 

bias s  is the longitudinal distance of the GPS antenna from the first axle that traverses the 

anomaly. 

2.1 GPS related errors 

The geospatial position tag GPS  reported by the GPS receiver and its associated embedded 

system has two error components such that the average position bias is 

dlagdGPSGPS  
 (2) 

The first error component dGPS  is the familiar geospatial position bias from GPS 

trilateration that the literature has long established to have zero mean and normal 

distribution (Gade 2010). However, the literature seldom identifies or reports on the second 
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error component dlag . It arises from latencies in the embedded system that fetches 

coordinates from the GPS receiver at the selected update interval to assign position tags to 

the inertial samples. Therefore, unlike the trilateration error, the expected value of position 

tagging latency will be non-zero, and equation (2) becomes dlagGPS   . 

From equation (2) the total variance in geospatial position tagging 2
GPS  is 

2
dlag

2
dGPS

2
GPS  

 
(3) 

According to GPS system administrators (USDHS 1996), the variance 2
dGPS  from 

trilateration errors can be substantial because of random changes in atmospheric effects, 

multipath propagation, and GPS receiver performance. System administrators expect that 

the 95% confidence interval for horizontal position precision under direct line-of-sight 

conditions will be about 6.7 meters. However, this uncertainty could increase to more than 

10 meters when multi-path reflections from buildings, large trees, and other tall structures 

distort the weak satellite signals. 

The average latency in position tagging  dlag  and its variance 2
dlag  depends on the 

embedded system implementation, which is often a trade secret. The average lag distance in 

position tagging is directly proportional to the average lag time lag  from embedded 

system latencies such that 

.lagdlag v 
 (4) 
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Hence, the corresponding variance in position tagging bias 2
dlag  is 

   2lag
2

τlag
2
dlag vv  

 
(5) 

where 2
v  is the variance in vehicle velocity. The asynchronous timing of GPS receiver 

updates with respect to the interrupt response times of the embedded system lead to 

variances in the lag time 2
τlag . Such information is not generally available from the 

equipment manufacturers. 

2.2 Non-GPS related errors 

The phase response of the vehicle suspension system causes a predictable delay of the 

response motion peak (Jazar 2008). This is analogous to the established approach of 

estimating the time delay of a signal by knowing the phase response of the filter (Young, 

Freedman and Ford 2011). Researchers have recently demonstrated that it is also possible 

to estimate the equivalent quarter-car parameters directly from the inertial response signal 

of any vehicle that traverses a rough spot (Blum 2015). We have also demonstrated similar 

results in previous work (Bridgelall 2014b) and established that the distance delay of the 

peak inertial response for typical anomalies is approximately 1.5 cm per m s-1 change in 

longitudinal velocity such that 

.0.015b v  (6) 
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Subsequently, the corresponding variance 2
εb  of the first peak offset is 

  2
v

22
εb 015.0    

(7) 

The signal processing for the case studies applies a standard digital low-pass filter 

to suppress noise and improve the precision of detecting the inertial peak. The expected 

filter delay DSP  is 

A
LPDSP

f

v
N

 
(8) 

where NLP is the number of stages in the digital filter cascade, and Af  is the average sample 

rate, which is the same as the accelerometer sample rate. Hence, the corresponding variance 

of the DSP filter delay 2
εDSP  is 
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(9) 

where v  and fA  are the standard deviations of the vehicle speed and the accelerometer 

sample rate, respectively. The covariance factors are zero because the vehicle speed is not a 

function of the accelerometer sample rate. 

The average sample interval is Av   v  where the average sample period of the 

accelerometer signal is A . Hence, the error in estimating the position of a signal peak 

within the sample interval will be at most v . If the distribution of the peak position is 

uniform within the sample interval, then the average error is 
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A
Ai

22

1

f

v
v  

 
(10) 

Therefore, the variance 2
εi  is 
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(11) 

This variance is directly proportional to the DSP variance such that  

.
FIR

2
εDSP2

εi
N


 

 
(12) 

3 Field studies and results 

We designed the field studies to compare the position tags assigned to an isolated inertial 

peak with its known reference position. Isolated anomalies produce an easily detectable 

peak response in the samples of the inertial signal. The anomalies were a speed bump on a 

park road, a raised concrete-to-asphalt pavement joint on an airport access road, and an 

uneven rail grade crossing a local road. Figure 1 shows street level views of those isolated 

anomalies. Each anomaly interrupted smoother segments measuring 30-meters on either 

side to produce a single dominant inertial peak.  

[Figure 1 near here]. 

Even though the areas of uneven pavement joint and the rail grade crossing produced 

multiple signal peaks, one peak remained dominant for all traversals. A local geographic 
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information systems (GIS) database (North Dakota State Government 2015) provided the 

ground truth coordinates of each anomaly, and a GPS receiver validated the position by 

resting the device on top of the anomaly. 

To simulate connected vehicles, we developed a smartphone data logger application 

(app) called Pavement Analysis Via Vehicle Electronic Telemetry (PAVVET) to collect the 

accelerometer and GPS data (Bridgelall 2014b). We mounted the smartphone on the 

dashboard of each vehicle and left it in the same position for all traversals. We also 

travelled at the speed limit for those facilities. A 2001 Ford Explorer sports utility vehicle 

(SUV) produced the data from the park bump traversals at three different speeds. A 2007 

Toyota Camry LE sedan produced the data from traversing the rail grade crossing at a 

steady speed. A 2007 Subaru Legacy sedan produced the data from the airport road bump 

for eastbound (EB) and westbound (WB) traversals at a steady speed. We excluded two 

data logs from the 30 traversals in each of the six datasets to remove outlier GPS position 

tags. 

3.1 Distribution of peak position tags 

An algorithm identified the position tags of the inertial peak for each traversal by locating 

the peak of the first signal that exceeded a threshold Gσ set at two standard deviations 

above the signal mean. To demonstrate the variations in positon tags among traversals, 

Figure 2 shows the filtered accelerometer signal output from two traversals of the park 

bump at a relatively safe speed of approximately 7 m s-1. 

[Figure 2 near here]. 

The plots indicate the path distance tags of the first peaks from traversals 1 and 2 at the 

distance markers εp1 and εp2, respectively. These positions are located at -6.2 and 0.1 meters 
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relative to the actual position of the anomaly at 30 meters. The position tags of the first 

peaks of the remaining 26 traversals randomly appear before or after the actual position of 

the anomaly. Table 1 summarizes for each experiment the parameters related to the signal 

processing, the vehicle, and the GPS receiver. The average position bias of the first inertial 

peak ~  from the true position of the anomaly and the average spread   across all cases 

was -4.54 and 3.28 meters, respectively. The standard deviation of the spread   across all 

cases was 1.2 meters, which highlights that environmental differences can significantly 

affect the degree of uncertainty in GPS position tagging. 

[Table 1 near here]. 

The histograms of Figure 3 provide a visual confirmation of the average delay, and 

the relative magnitude and differences in the position tag spreads. The number of bins for 

each histogram is proportional to the typical guideline, which is the square root of the 

number of traversals available. A least squares fit of the Gaussian, Student-t, and logistic 

distributions superimpose each histogram. The fit for these three distributions are very 

similar and almost indistinguishable. 

[Figure 3 near here]. 

Table 2 summarizes the parameters of the distribution fit and the associated chi-

squared (χ2) values for the hypothesis that the data are accordingly distributed. The chi-

squared test statistic listed (χ2 data) is 
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(13) 
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where Ok are histogram values observed in bin k and Ek are the expected values from the 

hypothesized distribution (Papoulis 1991). The χ2 at  = 5% is the value where the 

cumulative chi-squared distribution 
2
df  reaches 95%. Hence, the significance  is the 

probability of observing a chi-squared value that is at least as large as the χ2 statistic from 

equation (18).  

[Table 2 near here]. 

Statisticians generally reject a null hypothesis that the data follows a tested distribution if 

the significance of the χ2 statistic is less than 5%, or equivalently, if the χ2 statistic is larger 

than the cumulative chi-square distribution value at 5% significance. Table 3 highlights the 

largest significance levels in bold font for each case study. Hence, the chi-squared method 

cannot reject the hypothesis that the distributions of the position tags for the first peak 

follow those classic distributions. 

[Table 3 near here]. 

3.2 Digital signal processing related errors 

Equations (8) and (9) provide the mean DSP filter delay DSP  and its standard deviation 

εDSP . The average delay and associated spread across all cases were 56 cm and 4 cm 

respectively. Equation (6) provides the bias i  and equation (7) provides the uncertainty 

εi  in peak position estimation given the sample rate of the accelerometer signal. The 

average sample rate was approximately 93 Hz, which was the highest rate practically 

achieved with the smartphone app. Across all cases, the average bias and spread of the peak 

position in the signal were 31 and 2 millimetres respectively. 

3.3 Vehicle response related errors 
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For each field study, the first two rows of Table 2 list the batch means of the average 

velocity v  and the speed standard deviations v , respectively. The average speed 

variability across all case studies was 0.38 m s-1 (less than 1 mph). The expected values for 

the aggregate vehicle suspension response related delay b  and delay spread εb  across all 

case studies were 87 mm and 6 mm, respectively. The spread in suspension delay across all 

case studies was 27 mm. The actual position delay of an inertial sample is associated with 

the instantaneous speed at that position. Therefore, any bias minimization algorithm should 

use the instantaneous speed when applying a distance correction to each position tag based 

on the estimate. This minimal delay is consistent with the results of previous work 

(Bridgelall 2014b). 

3.4 Estimate of position tag latency 

Removing the non-GPS related biases produces an estimate for the position tagging latency 

as follows: 

 .~
sbiDSPdlag  

 (14) 

The residual distance bias from tagging latency was an average of -4.41 meters across all 

case studies. From equation (4), the equivalent tagging latency was 0.78 seconds at the 

local road speed limits. For all cases, the mean time lag was 77.8% of the mean update 

interval (approximately 1 second) for the GPS receiver. This result indicates that if the tag 

delays are normally distributed, then the embedded system of the GPS receiver biased the 

delay almost two standard deviations away from the midpoint of the update interval. Hence, 
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for a normal distribution of the tag latency, equation (5) indicates that the average spread in 

geospatial position tagging dlag  was 1.03 meters across all traversals. 

When not disclosed by the manufacturer, practitioners could conduct similar 

experiments to determine the latency of the actual embedded system used in a connected 

vehicle. Ideally, emerging standards for connected vehicle data exchanges should include 

the expected value of this delay. Otherwise, practitioners could simply apply a blind 

approximation by setting lag  equal to the median of the selected GPS update interval. It 

became evident in this study that a blind approximation will still achieve substantial 

improvements in localization accuracy relative to no bias removal. For these experiments, a 

50% (versus the full 77.8%) bias time removal would be equivalent to an average 

correction of 2.83 meters (versus 4.41 meters). 

3.5 Estimate of GPS precision 

The chi-squared tests promote a high level of confidence that the position tags distribute 

normally. Therefore, the residual variance is a good estimator for the actual GPS precision 

dGPS  realized for comparison with the expected norms. The residual variance is 
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(15) 
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Its average interval of uncertainty was 3.056 meters across all traversals. This result is 

consistent with the levels that operators expect for conventional GPS receivers (USDHS 

1996). 

3.6 Relative contribution of errors 

Table 3 summarizes the relative contribution of the individual error factors in the overall 

spread of peak position tags for the case studies. For normally distributed tag delays, 

variances in the tagging latency contributed 16.3% on average to the overall uncertainty 

while errors in GPS trilateration contributed 83.7%. The spread of relative contributions for 

both the tagging latency and the GPS position uncertainty was approximately 12% across 

all case studies. The insignificance of delay spreads from vehicle suspension filtering is 

consistent with the results from previous research (Bridgelall 2014b). Although the 

dominance from GPS spread is not surprising, the potential for embedded system latencies 

to contribute relatively large errors points to the importance of being able to estimate and 

remove them. In particular, the spread in tag latency increases in direct proportion to 

vehicle speed (equation 4) and, therefore, has the potential to dominate the overall error at 

high traversal speeds. 

4 Summary and conclusions 

Affordable and scalable methods of measuring localized roughness enable improved 

efficiencies and effectiveness in the practice of roadway asset management. The expense 

and limitations of existing approaches has motivated agencies to evaluate evolving methods 

that leverage connected vehicles. However, the potential adopters know very little about the 

practical performance of connected vehicle technologies that use accelerometers and 

conventional GPS receivers to characterize roadway roughness. 
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We reviewed the most recent approach called the road impact factor (RIF) 

transform that precludes the need for calibration with individual vehicle parameters. The 

RIF-transform leverages the central limit theorem by combining large data volumes from 

connected vehicles to produce a consistent measure of roughness. We then developed error 

models to estimate and remove position bias from the RIF-indices. With six field studies, 

we characterized the error distribution and compared the relative magnitude of each 

component. The dominant error from GPS position estimation (84%) and the relative 

insignificance of errors from suspension system filtering was not surprising. However, we 

did not anticipate the potential for position tagging errors from embedded systems latency 

(16% at local road speed limits) to dominate at highway speeds. The statistical distribution 

of position tagging errors agreed with the expected classic distributions, thereby validating 

the model. Furthermore, strong agreement with the normal distribution indicates that the 

precision of the approach will continue to improve with the ever-increasing volume of 

connected vehicles. 

This model and method of error characterization is broadly applicable to mobile 

applications that tag sensor data with position coordinates derived from GPS receivers. 

Future work will examine the utility of the error models for applications involving the use 

of unmanned aircraft systems (UAS) to monitor a variety of other transportation 

infrastructure issues. 
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Table 1. Parameters derived from the data of the six case studies. 

 
Park Bump Airport Road Joint Tracks 

Parameters 2.5 m s-1 5 m s-1 7 m s-1 EB WB NB 

Batch mean speed, v (m s-1) 2.552 4.983 7.187 6.769 6.715 6.685 

Batch mean spread, v (m s-1) 0.204 0.570 0.428 0.428 0.251 0.416 

Suspension delay, b (m) 0.038 0.075 0.108 0.102 0.101 0.100 

Suspension delay, b (m) 0.003 0.009 0.006 0.006 0.004 0.006 

DSP latency mean, DSP (m) 0.246 0.481 0.693 0.654 0.648 0.649 

DSP latency spread, εDSP  (m) 0.020 0.055 0.041 0.041 0.024 0.040 

Interpolation, i (m) 0.014 0.027 0.038 0.036 0.036 0.036 

Interpolation, i (m) 0.001 0.003 0.002 0.002 0.001 0.002 

Sensor position, s (m) -0.920 -0.920 -0.920 -0.710 -0.710 -0.710 

Inertial sample rate, fA (Hz) 93.227 93.277 93.341 93.169 93.198 92.669 

Inertial rate spread, fA (Hz) 0.097 0.070 0.101 0.073 0.103 0.077 

GPS update rate, μGPST (s) 1.009 1.004 0.993 0.986 0.988 1.015 

GPS update spread, τlag (s) 0.168 0.167 0.166 0.164 0.165 0.169 

GPS tag spread, dlag (m) 0.460 1.011 1.212 1.162 1.109 1.230 

First peak offset,~ (m) -2.712 -5.337 -3.944 -5.227 -2.334 -7.708 

GPS tag lag, lag (m) -2.091 -4.999 -3.864 -5.309 -2.409 -7.784 

GPS tag lag, lag (s) -0.819 -1.003 -0.538 -0.784 -0.359 -1.164 

First peak spread, υ (m) 5.013 4.361 3.349 2.637 2.010 2.294 

GPS spread, dGPS (m) 4.992 4.242 3.122 2.367 1.676 1.936 
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Table 2. Best fit parameters for distributions of the first peak position. 

  Park Bump Airport Road Joint Tracks 

Parameters 2.5 m s-1 5 m s-1 7 m s-1 EB WB NB 

Gaussian 
      

df 2 2 2 2 2 2 

χ2 , α = 5% 5.991 5.991 5.991 5.991 5.991 5.991 

χ2 Data 1.511 2.152 2.075 0.873 1.004 0.347 

Significance α (%) 46.986 34.103 35.431 64.628 60.527 84.062 

Amplitude 141.611 122.735 107.874 303.516 69.35 67.407 

Mean 28.173 25.67 25.784 18.684 27.345 25.169 

Standard Dev. 6.467 4.665 3.14 5.238 2.838 2.345 

Student-t 
      

df 2 2 2 2 2 2 

χ2 , α = 5% 5.991 5.991 5.991 5.991 5.991 5.991 

χ2 Data 3.071 3.574 1.534 1.064 2.626 2.135 

Significance α (%) 21.534 16.744 46.438 58.745 26.901 34.391 

Amplitude 166.519 143.144 120.988 130.934 81.315 77.353 

Mean 28.59 26.102 25.542 23.254 27.262 25.191 

Standard Dev. 6.415 4.658 2.839 2.661 2.835 2.255 

Logistic 
      

df 2 2 2 2 2 2 

χ2 , α = 5% 5.991 5.991 5.991 5.991 5.991 5.991 

χ2 Data 1.73 2.216 0.576 0.561 1.317 0.701 

Significance α (%) 42.111 33.026 74.974 75.53 51.763 70.441 

Amplitude 148.791 128.291 111.262 171.415 72.27 69.95 

Mean 28.373 25.841 25.703 21.741 27.305 25.164 

Scale 4.173 3.016 1.968 2.405 1.813 1.488 

 

Table 3. Summary of relative error contributions. 

 
Park Bump Airport Road Joint Tracks 

Parameters 2.5 m s-1 5 m s-1 7 m s-1 EB WB NB 

First peak spread, υ  (m) 5.013 4.361 3.349 2.637 2.010 2.294 

Ratio, 2
υ

2
εb   0.000% 0.000% 0.000% 0.001% 0.000% 0.001% 

Ratio, 2
υ

2
εDSP   0.002% 0.016% 0.015% 0.024% 0.014% 0.030% 

Ratio, 2
υ

2
dlag   0.842% 5.374% 13.097% 19.417% 30.442% 28.749% 

Ratio, 2
υ

2
dGPS   99.164% 94.617% 86.903% 80.571% 69.527% 71.224% 
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Figure 1. Isolated anomalies traversed for the case study measurements.

Figure 2. Accelerometer signal for two traversals of 
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Isolated anomalies traversed for the case study measurements. 

 

Accelerometer signal for two traversals of the same anomaly. 
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Figure 3. Distribution of peak position tags from the case study.
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Distribution of peak position tags from the case study. 
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