Metadata, citation and similar papers at core.ac.uk

Provided by NDSU Libraries Institutional Repository

ONLINE DEFECT TRACKING SYSTEM

A Paper
Submitted to the Graduate Faculty
of the
North Dakota State University
of Agriculture and Applied Science

By

Gaurav Soni

In Partial Fulfillment of the Requirements
for the Degree of
MASTER OF SCIENCE

Major Department:
Computer Science

November 2016

Fargo, North Dakota

https://core.ac.uk/display/211298194?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

North Dakota State University
Graduate School

Title

Online Defect Tracking System

By

Gaurav Soni

The Supervisory Committee certifies that this disquisition complies
with North Dakota State University’s regulations and meets the accepted

standards for the degree of

MASTER OF SCIENCE

SUPERVISORY COMMITTEE:

Dr. Kendall Nygard

Chair

Dr. Kenneth Magel

Dr. Sangita Sinha

Approved:

04/04/2017 Dr. Brian M. Slator

Date Department Chair

ABSTRACT

For Improving Software Reliability, Defect Tracking System (DTS) gives the facility to
define the tasks and allow the managers to track the Defects and time spent by each employee for
that particular task. This tool can help managers for Defects (Bugs) estimation per project. This
tool also helps employees to document their Defects and analyze the quality of their output.

Moreover the project aims at creation of a Defect Tracking System which will be accessible
to all developers and its facility allows to focusing on creating the database schema and while
letting the application server define table based on the fields in JSP and relationships between
them.

The objectives of this system are to keep track of employee skills and based on the skills,
assignment of the task is done to an employee. Employee does Defects capturing. It can be done

on daily basis.

ACKNOWLEDGEMENTS

Sincere gratitude is hereby extended to Dr. Kendall Nygard who never ceased in helping
until this report paper was structured and finalized. | appreciate the time, support, guidance and
patience for the development and completion of this research project. He has always motivated me
and helped me at every step starting from writing the proposal to finalize the report. He always
answered all my questions with detailed and precise guidance and feedback | needed.

I would also like to thank Dr. Kenneth Magel, Professor of Computer Science and
Operations Research at North Dakota State University, for his time and to be a member of my
supervisory committee. Also, for his continuous guidance and the compassion he had shown
throughout my Master degree program that helped me immensely to achieve my goals.

| am also grateful and appreciate Dr. Sangita Sinha, Professor of Chemistry and
Biochemistry for her consideration and taking out time from her busy schedule to be a part of my
supervisory committee and showing interest in my research work.

A special thanks to the faculty of Computer Science department for all their help and

support that was necessary at all the time throughout my program.

TABLE OF CONTENTS

AB ST RA CT ettt b et et bt he e e bt e Rttt nRe e e b e e Re e nne e nre e nbeenree s i
ACKNOWLEDGEMENTS. ...ttt reennee s 1\
LIST OF TABLES ...ttt b ettt e b e e be e e be e sneeenes viil
LIST OF FIGURES ...t neennee s IX
LIST OF ABBREVIATIONS ...ttt Xi
1. INTRODUCGCTION ..ttt e s e e e nneas 1
1.1. PUIPOSE GNG SCOPE..... .ottt ettt sttt b bbbttt e st st benbeeneas 1

1.2. Development APPIOACH......cc.iiiiiic et e e e e e 1

1,30 OVEIVIBW ..tttk b bbbt bbbttt e et bbbt b ene s 3

2. CURRENT SYSTEM ...ttt 4
3. PROPOSED SYSTEM ...ttt sttt 5
3.1. FUNCLIONAl REQUITEMENTS.....c..iiiiiiiiciecie sttt re e e nas 6

3.2. Non-Functional REQUITEMENTSciiiiiiiieiieiesii e 9

3.3. USE CaSE DIAQIAMSecveeivieie ettt ettt b et sae e ste s sbeenbe e e e sneennas 9

4. ARCHITECTURE ..ottt bttt b et e et e e nbe e nne e nbeennees 11
4. L. OVEIVIBW ..otttk b bbb bbb bbbt b bbbttt bt 12
4.1.1. USEIr COMPONENT ...ttt ettt nb et nn e ne s 13

4.1.2. Management/Administration COMPONENL.........cccocvveiieiieiieiiece e 13

4.1.3. Database COMPONENTccuiiiiiiiiiiireeeeee bbb i 13

4.1.4. System Request COMPONENTuveiiiieiiie e sae e 14

4.2. SUDSYStEM DECOMPOSITIONvviiiiiiieiieiie sttt e 14
N N O ST o @0 4T[0 1= | PR 14

4.2.2. Management/Administration COMPONENT........cccoiverereiirierinieeeeie e 15

4.2.3. Database COMPONENTioiiiiieiiie sttt e era e 17

4.2.4. System Request COMPONENTc.oiiiiiiiiiieiieie e 18

4.3. Persistent Data Managementccuviieiuiiieieeie et e e se e sre e e e e 19

5. ENTITY RELATIONSHIP DIAGRAM FOR DTS DATABASE ... 20
6. OBJECT DESIGN AND IMPLEMENTATION ..ottt 21
6.1, STAtIC MOTE ... 22
6.1.1. MembersDataACCESSODJECT........cciiiieee e 23

6.1.2. ProfileDataACCESSODJECEccviieiiieieiie e 23

6.1.3. AbstractDataACCESSODJECTc.ecviiiiicieee e 23

6.1.4. SecurityDataACCESSODJECT........ciieiiieieie e 23

6.1.5. ProjectsDataACCESSODJECTc.ccuiiiiiiece et 24

6.1.6. BUGDAtAACCESSODJECT ...t 24

B.1.7. INIESEIVIEL.......eiviiiii bbb 24

6.2. DYNAMIC MOTEL ... e 24

6.3. Algorithms (PSEUAO COUES)......cviiriiiiieiecie sttt sre et sre e 28

T. TESTING PROGCESS ... oottt sttt sbe et e st e nte e saeesbeesbeeenteeas 30
7.1, UNIt ANd SYSTEM TESESiiuieiiiciiiiiecte ettt et sre e s ra e ste e e e reesreeneaas 30

7.2. EVAlUBLION OF TESTS ...ttt bbb 34

8. TABLE AND DIAGRAM DESCRIPTIONcoiitiiiiiiiieiie e 36
8.1. USE CaSE DESCITPLION ...ttt ettt ettt st 36

8.2, SCIEEIN SNOTS ...ttt ettt bbb nne e 41

8.3. Detailed Class DIAgramcoiiiiiieiiieieie sttt bbb 45
8.3.1. MEMDEI DAD ... 46

8.3.2. BUGDAD ..ot 46

8.3.3. PTOJECIDAD. ...ttt ettt 47

8.3.4. SECUILYDAD.....uiiiiiieitete ettt bbbttt ettt nbenne s 47

Vi

8.3.5. PrOfIEDAOD ... 48

8.3.6. AbstractDataACCESSODJECTecviiiiiiecie e 49

837 INIESEIVIEL. ... 49

8.4. Coding Standards and Ul GUIAEIINEScoeiiiiieiiiieiie e 50

9. CONCLUSION AND FUTURE WORKcotiiiiiii et 54
REFERENGCES ... oottt b e e e e nne e 55
APPEND X ettt e e nr e e 59

vii

LIST OF TABLES

Table Page
12 EVAIUALION OF TESES ...ttt 35
22 USE CASE TOF LOGIN ..ttt bbb bbbttt ettt nb et beeneene s 36
3: Use Case for ADA/EAIt NEW BUQJccveiiiieiieie ettt 36
4: Check/UpPdate BUQ STATUSocviiiiiiiiiiiei ettt 37
Ao [0 A To T N LC YV T 1 OSSR 37
6: ASSIGN BUQ 10 EMPIOYEES.......c.eiiiiiiiiieeee et 38
T AAU NEW PIOJECL. ...ttt et ettt e e e s re e beeeesaeesaeeneesneennas 38
8: AdA/UPAALE EMPIOYEE........oiieiiiitieieeieeie bbbttt bbb 39
0. RESOIVE BUQ ...evievieieetie ettt ettt et e st et e et esae e s teene e s be e te e st e sse e teeneeareete e e e nreenas 39
107 REPOITS ...ttt bRt E et b e n e n e 40

viii

Figure Page
11 USE CaSE FOI AGMIN ...ttt bbb bbbt e bbb bbb ene s 7
2: USE CaSE FOI TSI ...ttt 8
32 USE CaSE FOI DEVEIOPET ...ttt et 8
4: Use Case Diagram for CONQregatedcoveiveieiieie et ste e sna e 9
52 ATCRITECTUIE ...t b bbbttt et nb e bbb ene s 11
6: SUDSYSEEM ATCNITECIUIEc.viieiiciice ettt e re e te e eneeanas 13
T2 FACAAR USET ...ttt bbbt b e bbbt bt ettt bbb ere s 15
SR (o= Yo (o Y P TP To T T o OSSO 16
9: FACAAE DALADASEcivieieeiieieiet bbb 17
10: Facade SYSIEMREGUESLcviiuieiieeie ittt ra e re e e s beebesneesreeeeeneesreeeeas 18
R = o B T To] = o o E OO T O S O PO TP PP PPN 20
12: Minimal Class DIAGIAMccveiiieieiie ittt e e te et e e e sbe s e e sreeteeneesaeeeeas 22
13: Sequence Diagram-AdmMINISIIALONccoiiiiiiriiririeee e 25
14: Sequence Diagram DEVEIOPENcoviiiiii ettt 26
15: SEqUENCE DIagram TESTETeiuiiiiiieeieieie sttt bbbttt bbb b e 27
16: SNapshot 1 (DTS LOGIN PAGE) ..cvecuiiivieiiieec ettt st sre e 41
17: Snapshot 2 (VIEW PrOJECT PAGE)ccveieieieiiisiesie ettt 41
18: Snapshot 3 (VIeW PrioritieS PAGE)coviviiieii ettt 42
19: Snapshot 4 (VieW DETFECES PAJE)cveveiiieiieiiesiiseseee et 42
20: Snapshot 5 (View All DEfECtS PAgR)eoivieiiieiiiccie ettt 43
21: Snapshot 6 (Change PassWOrd PAgE)coeiiririiiriiieieie et 43
22: Snapshot 7 (Change Security QUESLION PAQJE)ccveiiiiiiiieiiieiie e 44
23: Detailed Class Diagram MembersDAOccooviiiiiiiieieiesiese et 45

LIST OF FIGURES

file:///C:/Users/Pratima%20Soni/Documents/GP/Online%20Defect%20Tracking%20SystemV2.docx%23_Toc481009450

D ClASS IMBIMEISDAD ... e e s e enen s s nsnnnnennnnsennnnnnnnnn 46

S ClaSS-BUGDAD ...ttt et e et e r et e ae e e re e e 46
2 C1aSS PrOJECE DAD ...ttt bbbt 47
2 Class SECUNILY DAcui ettt et e e e s aeeste e st e sbeenteanaesneesreenee e 48
2 ClaSS PrOTIE DAD ... bbbttt 48
2 C1asS ADSLIACE DAOD.... ..ot 49
T CIASS INIESEIVIEL ...t 49

LIST OF ABBREVIATIONS

DTS e Defect Tracking System

DAO ... Data Access Object

SDLC ot Software Development Life Cycle
UML. i Unified Modeling Language

HT TP Hyper Text Transfer Protocol

DB e Data Base

TC o Test case

Xi

1. INTRODUCTION
In any organization, Tracking System must be in place for every infrastructure we design.
Software and Employee Data base are no exception to this [22]. This application which will
be implemented on Java platform is designed to track the status of bugs that are reported during
Software testing [4] [14][28].
1.1. Purpose and Scope
The purpose of Defect Tracking for improving software reliability is to provide better
service to the administrator or useful for applications developed in an organization [1][10]. The
“Defect Tracking for Improving Software Reliability” is a web based application that can be
accessed throughout the organization [2][16]. This system can be used for logging Defects or
Bugs against an application/module, assigning them to team members and tracking them for
resolution [13][25][28]. There are features like email notifications, user maintenance, user
access control, report generators etc. in this system [22].
1.2. Development Approach
For this project our strategy is to follow Spiral Model of SDLC. We found this model
appropriate for this software application because it is enterprise level [14] software and has
significant size which would require reviews of developed prototype [9]. This will help the
customer to find the risks and abort the project if risks are deemed too great. This is relatively
very efficient and effective way of dealing with software of such magnitude [18].

The steps for Spiral Model can be generalized as follows:

e The new system requirements are defined in as many details as possible. This
usually involves interviewing a number of users representing all the external or
internal users and other aspects of the existing system A preliminary design is created

for the new system.

A first prototype of the new system is constructed from the preliminary design.
This is usually a scaled-down system, and represents an approximation of the
characteristics of the final product [11].
A second prototype is evolved by a fourfold procedure:

1. Evaluating the first prototype in terms of its strengths, weakness, and risks.

2. Defining the requirements of the second prototype.

3. Planning and designing the second prototype.

4. Constructing and testing the second prototype
At the customer option, the entire project can be aborted if the risk is deemed too
great. Risk factors might involve development cost overruns, operating-cost
miscalculation, or any other factor that could, in the customer’s judgment, result in a
less-than-satisfactory final product.
The existing prototype is evaluated in the same manner as the previous prototype,
and if necessary, another prototype is developed from it according to the fourfold
procedure outlined above.
The preceding steps are iterated until the customer is satisfied that the refined
prototype represents the final product desired.
The final system is constructed, based on the refined prototype.

The final system is thoroughly evaluated and tested. Routine maintenance is carried on

a continuing basis to prevent large scale failures and to minimize down time.

1.3. Overview
In this document we are providing detailed description of current system and proposed
system. All functional and non-functional requirements are mentioned in chapter 3. Detailed
UML diagrams like use cases, class diagrams, sequence diagrams have been created with all the
details of the proposed system architecture [6]. Explanation of each class, components, modules,
sub-systems is provided with all the content required to understand the design framework, and
development process [11][29].
Testing is done on different modules and results are shown in chapter 6. Coding
standard, Glossary, definitions, Graphical user interface snapshots are provided at the end

[15]

2. CURRENT SYSTEM
The current system is mostly concerned with the storing defects onto the file system with
little to no traceability, making the tracking of the defects difficult at a later time. Most of the
work of inserting the defects and tracking them back at some later point of time requires human
intervention and is done manually [10][25]. This makes the system limited and hence results
in degraded performance [22].

e Information retrieval is a very big process and it becomes very difficult to handle
huge databases manually with same efficiency and at the same time with the increase in
the database the time to retrieve the concerned information also increases manifolds.

e Lack of organization of the files makes it prone to information loss due to accidental
deletion of files.

e No security because the files are visible to the users. More over every user has the
same level of access to the files.

e Report generation is a big task and precision is as much important as output is.

e Most of the work is done by humans with minimum to no intervention by machines.
Humans are subjected to other factors like stress, emotions etc. that may reduce their
work efficiency which is not the case with the machines, hence prolonged and

maintained efficiency.

3. PROPOSED SYSTEM

We are proposing a Defect Tracking System that will help the companies in tracking the
raised defects in the software projects [10][25]. Defect tracking is the process of reporting
and tracking the progress of Defects from discovery through to resolution, where a Defect is
defined as a deviation from requirements [1] [2]. Other terminology frequently used to describe
this process includes [22]:

e problem tracking

e change management

e fault management

e trouble tickets

Defect tracking systems are most commonly used in the coding and testing phases of the
software development process [1] [4][18]. However, tracking systems can in fact be used for many
other purposes such as general issue tracking, simple task lists, help desk situations or contact
management, where the focus is on the tracking aspect rather than what is being tracked
[3][22][23]. Even in software development, tracking systems are quite often not limited to simply
tracking Defects, but extended to track feature requests or enhancements as well as enquiries
[4][10][18].

Advantages of the proposed system are:

e Efficient centralized database schema.
¢ Increased security with access only to authorized personnel.
e Quick report generation.

e Easy to update the records and track the defects.

3.1. Functional Requirements
FR-1 Administrator shall be able to Login to the system.
FR-2 The system shall allow administrator to add new design department.
FR-3 The system shall allow administrator to Add/ Edit new defects.
FR-4 The system shall allow administrator to Add/ Edit priority to the defects.
FR-5 The system shall allow administrator to add new projects to the system.
FR-6 The system shall allow administrator to add new modules to the existing projects.
FR-7 The system shall allow administrator to generate reports corresponding to the status of
each defect i.e. is it under process, completed or pending?
FR-8 The system shall allow administrator to add new employee or update existing employee’s
status in the system.
FR-9 The system shall allow administrator to change/update the status of the defects.
FR-10 The system shall allow administrator to assign the bugs to a particular employee new

defects.

Administrator

Figure 1: Use Case For Admin

Fr-11 The system shall allow the tester to login to the system.

Fr-12 The system shall allow the tester to post new bugs in the system.

Fr-13 The system shall allow the tester to check the status of the existing bug in the system.
Fr-14 The system shall allow the tester to view the information related to each bug in the system.

Fr-15 The system shall allow the tester to view the priority assigned to each bug by the

administrator [21].

Post Bugs _

‘Check status

“ViewBugs Information

Tester

Figure 2: Use Case For Tester

FR-16 The system shall allow the developer to login to the system.

FR-17 The system shall allow the developer to view the bugs assigned to him.

FR-18 The system shall assist the developer to resolve the bugs.

FR-19 The system shall allow the developer to view the priorities assigned to each bug.

FR-20 The system shall allow the developer to view the bug reports [21].

Developer

Figure 3: Use Case For Developer

3.2. Non-Functional Requirements

NFR-1 The system shall be able to submit/search or any other activities done through the system
in less than 5 seconds.

NFR-2 The system shall allow the users to navigate between pages in less than 2 to 3 seconds.
NFR-3 The administrator, manager, developer and tester shall be able to generate error free
report within a maximum of 45 seconds (irrespective of size of data).

NFR-4 The system shall use Oracle database engine to run queries.

3.3. Use Case Diagrams

DefectTrackingSystem |

AddEditNewBug

Check/UpdateBugStatus
mclude>> I
SREe ~§
) - ; ViewBuginfo
- (_AddEditNewPriority <*

— Tester

i

/

=

A

admin/manager ~H—__ —

Developer

Completed

Figure 4: Use Case Diagram for Congregated

Admin: This module has the entire access to all other modules, admin creates the project
and assigning the projects created to the manager, adding members to the project, assigning
defects based on the priority. It can update the manager, members and access to the particular
project data. Generating reports based on the managers’ report submission.

Manager: This module has all administrative features to access once role is assigned by an

administrator.

Developer: Can access the task or Defect assigned by the manager, view assigned
projects and resolving the assigned Defect. Developer can view the Defects list assigned by the
manager.

Tester: Tester can access to the projects or Defects assigned by the manager, can view
the assigned projects and can add a new Defect to the list and send the bug back to the manager.
Tester can login to the system and access the assigned projects list [4].

Reports: Admin or Manager can access this module and generate the reports based on

the requirements.

10

4. ARCHITECTURE

HitpSerylet w -
— Web Componem (C___—1 =
——— =3 Reguest 4
/ Datsbase

Web

Client e
HttpServiet
R e—
Response veBens

Component

Figure 5: Architecture

There are a number of layers that work in collaboration to create an environment to get
things done. Following is a brief introduction of the layers that are working in our project.

The Presentation Layer: Also known as the client layer, this layer is dedicated to
present the data to the user. For example: Windows/Web Forms and buttons, edit boxes, Text
boxes, labels, grids, etc.

The Business Rules Layer: Encapsulation of the Business rules or the business logic is
done at this layer. Advantage of this layer is that any changes in Business Rules can be easily
handled, also if the interface between the layers remains the same, any changes to the
functionality/processing logic in this layer can be made without impacting the other. A lot of
client-server apps failed to implement successfully as changing the business logic was a painful
process.

The Data Access Layer: This layer helps in accessing the Database. If used in the right
way, this layer provides a level of abstraction for the database structures. Simply put changes

made to the database, tables, etc. do not affect the rest of the application because of the Data

11

Access layer. The different application layers send the data requests to this layer and receive the
response from this layer [14][28].
The Database Layer: Database Components such as DB Files, Tables, Views, etc. is part of
this layer [11]. Moreover database can be created using SQL Server, Oracle, Flat files, MS-Access
etc. in an n-tier application; the entire application can be implemented in such a way that it is
independent of the actual Database [14]. For instance, you could change the Database Location
with minimal changes to Data Access Layer. The rest of the application should remain unaffected.
4.1. Overview

Design Goals of the project are made to optimize the performance of the product.
Developers should optimize the code processing and functionalities in the software project [2][29].
For our defect tracking system (DTS) we have decided to meet certain design goals described
below [11][25]:

e Search or submission request or any other activities done through the system in must be

accomplished in less than 5 seconds.

e Menu/page navigation must not take more than 2-3 seconds.

e Reports must be generated in less than 45 seconds

e Oracle database engine will be used to run queries
Architectural Diagram including major subsystems:

This section will describe details of all individual subsystems including User,

Management, Database and System components with their internal connectivity.

12

Persistence

______ >|:5 =<infrastructures>
<<application=>

Management

1

| %

\ Request
' >0

IRequest

=

Database

Figure 6: Subsystem Architecture

4.1.1. User Component

In DTS, we have defined 4 categories of users i.e. Administrator, Manager, Tester,
Developer. Different users have different level of authorization to access data from the system.
These users use application’s user interface to interact with the system and database [14] [15].
4.1.2. Management/Administration Component

System access authorization or we can say Role assignment to use the system to the users is

managed by Management component. Only administrator is allowed to access the management

Component/subsystem to assign managers, testers and developers their tasks and role to access the
system features.
4.1.3. Database Component
Users’ data, Login details, Bug details, Priority list, Solution details are saved in different
tables that are connected with the application [21]. Users can retrieve data from the application

13

using the database components that provide the connectivity to the database (Oracle), firing
queries, viewing tables etc. on the basis of user authorization [11][14][28].
4.1.4. System Request Component

Any requests made to the system ranging from page navigation, searching for bugs,
looking for team members, finding assigned bugs to a team member (tester, developer or manager)
to submit a form, all are managed or maintained by the System Request component. Basically,
this component is responsible for HTTP requests made during client and server side interactions
[25]. This architectural style is very helpful to meet our design goals because all these
components contribute to provide great modularity to the system [11][29]. All our modules are
divided in different subsystem categories as user related information in User Component,
Administration related modules comes user Management component, bugs related information
like, IDs, issues, solutions, priorities are assigned under Database Component and any interaction
made to the system by the user (requests made to the system) is part of System Component
[22][23]. All these components play important role in our DTS (Defect Tracking System)
application that gives flexibility in code development and makes the system robust as proper
modularity is provided using these subsystems/components written above [1][2][28].

4.2. Subsystem Decomposition

This section shows detailed decomposition of all subsystems available in our project
including User, Administration, Database and System Requirement Components. This section
will also clear sun system’s internal connectivity together with Database handling with enhanced
security features.
4.2.1. User Component

This component provides the application interface to make requests to the

database/servers/web-components. Services provided by each subsystem:

14

Facade User

- 4

Al
R I W ™ ™
AdminRole | " anager Role Developer Role Tester Role

|

Figure 7: Facade User

Admin: All role properties are assigned to a user using this subsystem to have access to all
the components, sub-components and modules available in the application.

Manager: This subsystem is serving to assign a manager role to access the data related to
the projects once assigned to a manager user [23].

Developer: This subsystem is to provide access to the user who can view the bugs, priority
level (but cannot edit them), work on the piece of code and mark the bug issue as completed or
under-process etc [3][4][21][23].

Tester: This subsystem serves as role provider to tester who can raise bugs, edit bugs,
report bugs which can be assigned to the developer by managers later.

4.2.2. Management/Administration Component
This component provides the Manager/Admin Roles to make requests to the

database/servers/web-components. Services provided by each subsystem:

15

Management/Administration-facade

/

RoleAssignment | AssigningBugs | DefiningBugPriorityl NewProjects | GeneratingReportsl

Figure 8: Facade-Management

Role Assignment: This subsystem is used to assign the roles to the users. Roles definitions
are defined under User Component which will be used to give particular authorization to the user
based on his role in the company. Figure 8: Facade-Management

AssigningBugs: Bugs can be raised by the tester working on a project. But which bug will
be resolved by which developer is the task of management [21].

DefineBugPriority: Level of severity of bugs need to be defined by management as well.

Developers act according to the priority level of the bug.

NewProject: Management look for new software projects in which the bugs/Defects
needs to be detected and resolved. This subsystem let the management enter the details of new
projects that can be assigned to different managers later.

Reports: Report generation is a very important aspect that is involved in our DTS project.
Reports are used to generate data of the past work. A history of records can be pulled out using
this subsystem. For Example: list of pending defects (with pending status), resolved defects (with

completed status) and list of all the defects.

16

4.2.3. Database Component
This component provides the application Interface with Database connections to make

requests to the database components [28]. This component also deals with the security part with

Database-Facade

I DBConnection | Security | 4llnerDohils |lu.glldefactbenils |
L. Il _ | ‘ . II | |

Figure 9: Facade Database

login credentials. Services provided by each subsystem:

DBConnection: This is to provide the database connectivity among the application and

database.

Security: Login details like username, passwords, first and last name and other user
related information required to implement security is placed here. Any changes made to
username/passwords will be stored here as soon as a user made these changes.

UserDetails: Users information, like role, email and contact information is served with
this component

Bug/defects: This subsystem of database is to set and get the information of defects raised

by a tester. Each bug/defect is linked to a particular project in the database.

17

4.2.4. System Request Component

This component provides the application Interface with Search and Submission requests

for report generation. Services provided by each subsystem:

SystemRequest-Facade

e / Thi
il \

I ReportRequest |
SearchRequest ‘

FormSubmissionRequest | PageNavigation |

Figure 10: Facade SystemRequest

SearchRequest: This is to provide service to the user (Admin, manager, developer or
tester) to search into the database for required information. For example: A project can be searched
using project name, which will run a query into the database to pull out the information from
various tables to list Project name, start date, End Date and status.

FormSubmissionRequest: There are forms to create a new user, new project, new bug
etc. to make the request to the system [4].

ReportRequest: Reports can be requested from the application using this subsystem[28].

PageNavigation: Pages can be easily navigated using hyperlinks provided on Menu

navigation, table navigation etc. This service is provided by PageNavigation subsystem [21].

18

4.3. Persistent Data Management

In our Defect tracking system, we are using MS Access database for data storage [1]. We
are running database on local machine [25]. Database connectivity is done by following the
regular database connectivity steps [22]. This database is stored on the local machine which is
secured by an username and password. This database can only be accessed using ODBC Data
Sources Workspace using the assigned user and password, thereby enforcing the data security.

Login Details of the users are saved in LOGINDETAILS Table. This data is important
and must be secured from any unauthorized access. This data must be saved or backed up on

separate hard disk drive.

19

5. ENTITY RELATIONSHIP DIAGRAM FOR DTS DATABASE

This entity diagram provides the information of our database schema, relations among

tables including primary keys and other important details required in an ER diagram.

BugAssigned
Bugia
AssignedTo
~ssignedaate

— Prionty

Priorty
¥ Priontyid
PriorityType

ProjectMembers
Projectia
member
status

O T —,
Bugs

¥ Bugle
Bugname
Projectid

RaisedDate
RalsedSy

Description
status

i

Solution
Bugid
SolvedBy
SolvedDate
Solution

-
logindetails
V loginname
password

questionbase
¥ questionid
questiondetail

firstname
Iastname
logintype

regdate

Project
V Projectid
Projectnames
Startdate
Enddate
Status
Assignedto

Figure 11: ER Diagram

sanswer
firstiogin

i leginprofile

loginid
birthadate
Hno

Straet

city

state
country
pincode
Contactho
Emal
locale
profilemodifieddate

loginstatus

squestionid lozgmaud.-tﬁ

passmodifieddate

loginid

logindate
logindesc

20

6. OBJECT DESIGN AND IMPLEMENTATION

This section focuses on design Models (Class Diagrams) and description of Data Access
Objects (DAO) [11][24].

One aspect of the business layer is the data access layer that connects the services with the
database. Accessing data varies depending on the source of the data [26]. Access to persistent data
varies greatly depending on the type of storage [18]. The goal is to abstract and encapsulate all
access to the data and provide an interface [20][27]. This is called the Data Access Object pattern.
In a nutshell, the DAO "knows" which data source (that could be a database, a flat file or even a
WebService) to connect to and is specific for this data source (e.g. a OracleDAO might use oracle-
specific data types, a WebServiceDAO might parse the incoming and outgoing message etc.)
[24][26].

From the applications point of view, it makes no difference when it accesses a relational
database or parses xml files (using a DAO)[28]. The DAO is usually able to create an instance of
a data object (“'to read data") and also to persist data (*'to save data") to the data source [20][24][27].

Data Access Objects (DAOs) [24][26]:

can be used in a large percentage of applications - anywhere data storage is required.

hide all details of data storage from the rest of the application.

e act as an intermediary between your application and the database. They move data back
and forth between Java objects and database records [28].

o allow ripple effects from possible changes to the persistence mechanism to be confined

to specific area.

21

6.1. Static Model

Static modeling is used to specify structure of the objects that exist in the problem domain.
These are expressed using class, object and USECASE diagrams [27]. Static Model refers to the
model of system not during run time [23]. This is more structural than behavioral. This includes
classes and it relationships (Class Diagram), Packages etc. For example, the concept of class itself
static. At runtime there is no concept of Class, Sub class etc [26]. Static modelling is a time
independent view of a system. However, Static modelling is supposed to detail what preferably
might happen instead of the numerous possibilities [24]. That’s why, it is more rigid and cannot
be changed. This is the minimal class diagram for our DTS application without any detailed

information about attributes or operations performed by classes [27][28].

EIMembersDAO
Attributes

Operations
package MembersDAO()

ElInitserviet MediatorPattern
Attributes
- Vv
Operations = <
public InitServlet() [=1 =] AbstractDataAccessObject =l ProfileDAO
Attributes Attributes
= BugDAO Operations Operations
Atribon ///V public AbstractDataAccessObject() public ProfileDAO()
riputes
Operations \
public BugDAO()
=isecurityDAO
! Attributes
=l ProjectbAO _ Operations
Aiia public SecurityDAC()
Operations \
public ProjectDAO()

Ei LoginAudit
Attributes

Operations
public LoginAudit()

Observer Pattern

Figure 12: Minimal Class Diagram

22

6.1.1. MembersDataAccessObject
Subsystem to which this class belongs: User
This class will take care of the different profiles of users. This class contains four roles of users-
Admin, manager, tester and developer. Each user can view only those features of the
application/system that are assigned to these profiles [14]. This operation is implemented at
the time of Login.
6.1.2. ProfileDataAccessObject
Subsystem to which this class belongs: User
This class is used to register a user. Once a user is registered, it can create, modify or delete a
profile of the user. A login ID will be assigned to each user with their registration status.
6.1.3. AbstractDataAccessobject
Subsystem to which this class belongs: SystemRequest
This class is used to provide an interface in between database and system request. This class
keeps the two different parts of the application isolated from each other. Any changes made to
any part — database or the system itself will not affect each other [14].
6.1.4. SecurityDataAccessObject
Subsystem to which this class belongs: Database
This class consists of all the login details such as password, loginname, logincheck, login audit,
changing password, change question, password recovery etc. This class is responsible to give

authorization to the users by checking their username and password.

23

6.1.5. ProjectsDataAccessObject

Subsystem to which this class belongs: Management.

Projects DAO provide access to add a new project, update, and assign manager to the
project details and list of members involved in the project [20][27]. This class can only be
accessed by administrators with editing authority, other users are allowed for read-only view
[24].

6.1.6. BugDataAccessObject

Subsystem to which this class belongs: Database

The class is used to provide interface to add, edit or delete priorities, bugs; and set
solutions, assign bugs to the users [20].

6.1.7. InitServlet

Subsystem to which this class belongs: SystemRequest

This class comprises java init method that creates the instance of servlets just like constructor.
6.2. Dynamic Model

Dynamic model refers to runtime model of the system. This includes the concept of
Objects, interactions, Collaborations, sequences of operations, Activities, state changes, memory
model etc. Dynamic Modelling is time dependent and more appropriately, it shows what an object
does essentially with many possibilities that may arise [27]. It is flexible but its flexibility is limited
to the design on the system. This section contains Sequence diagrams that shows a particular
scenario of DTS use case, the events that external actors generate, their order, and possible inter-
system events. These System sequence diagrams illustrate how certain tasks are done between

users and the DTS system [29][30].

24

''''''''''''''''''''''''''''' ‘ ..!.
|
|
|
|
|
|
|
L
|||||||||||||||||||||||| JllLll — s "
|
ﬁ ! a
| 2
! s
| 2
| &
................. NI 1 W S
x | =2
k3] 2 m_ £
k= [
£l g2l @8
s| 23!
@ b= .m_
SRS NE——— -1 DO B o1 R——
& |
E w |
3 3 |
g2 “
b=}
< |

Figure 13: Sequence Diagram-Administrator

25

- oo 1
Viewing Assigned Bugs

1
1

Receive New Bugs
1

=]

<
=]

Py
@
2
-
@
w

@

> ———

Checking Bug Priorities

B

View Bug Reports Sending Completed Bugs

Logout

v e Sy vl P s ey el e Sy s ey Sy et e weuk S v e S

Figure 14: Sequence Diagram Developer

26

{SequenceDiagram For Tester} lj

Login | | PostBugs || Check Status View Priority Information | ““T"f
1]
Teste ogin Requesll : View Bugs Information
“Invalid Login :
——— !
:
S

Paosting The Bug
™

|
|
|
Checking The Status of Bugs

S

|
Sending the Coméleted Bugs

e S s e it e i i i o it e it e it b it St i o]

!

1

1

' 1

|
Viewing The Bugs Information
A i

1

1

1

Viewing The Bugs Priority

+
I
I
)
I
I

|
|
| Feedback Report
|
|
|
|
|
|

Figure 15: Sequence Diagram Tester

27

6.3. Algorithms (pseudo codes)

This section describes our algorithms for implementing our DAO classes used in our

DTS project [20][24].

a)

b)

c)

class BugDAO:

1.

N

This class inherits the properties of AbstractDataAccessObject class.

Provides the functionality for adding the priority using

getSequencelD('PRIORITY™", "priorityid") and bug.getPriorityName()

mrthods.

Provides the functionality for updating the bug priority by using bug.getPrioritylD()
Method [21].

Also, provides functionality for deleting priority with use of deleteBug(int bugid)
method.

Provides functionality for bug solution by getBugSolution(int bugid) and bug

deletion by deleteBug(int bugid) [4][21].

class MembersDAO:

6. Provides the functionality for achiving the user profiles using getProfiles(String role)

method.

class ProjectsDAO:

7.

8.

This class inherits the properties of AbstractDataAccessObject class.

Provides the functionality for adding the project using addProject(Project aProject)
method

Provides the functionality for updating the project using

pdateProject(Project aProject) method.

28

10

11

. Provides the functionality for getting all the projects using CoreHash getAllProject()
method.
. Provides the functionality for getting all the aasigned projects using CoreHash

getManagerProjects(String assignedto) method.

12. Provides the functionality for seeing all the members using

d)

13.

14.

15.

16.

17.

18.

getProjectMembers(String manager) method[27].
class ProjectsDAOTest:
This class is mainly used for testing the available functionalities.
Provides the functionality for testing add project methods using void testAddProject()
method.
Provides the functionality for testing the updating method for the project

using void testUpdateProject() method.

Provides the functionality for testing all the projects using void testGetAllProject()
method.
Provides the functionality for testing all the managed projects using void

testGetManagerProjects() method.
Provides the functionality for testing all the assigned projects using

voidtestAssignProject() method.

29

7. TESTING PROCESS

Testing is the process of evaluating our DTS and its component(s) with the intent to find

whether it satisfies the specified requirements or not [16].
7.1. Unit and System Tests
In our DTS project we performed Unit Tests and System Tests. Units Tests test individual
single unit like a module or a class to check if it behaves as expected [16]. System Tests test the
entire functionality of our DTS project. This section shows our Test Cases with their purpose and

expected results.

Test Case Id: TC1

Purpose: To check the priority of the bug.

Precondition: int priorityid=bug.getPrioritylD();

Inputs: Value of priorityid

Expected Results: If priorityid equals 1 then it is severe priority, if priorityid is 2 then

it is warning.

Test Case Id: TC2

Purpose: Check whether the bug is assigned with severe priority or warning

Precondition: int priorityid= aBug.getAssignedTo();

Inputs: Value of priorityid

Expected Results: If priorityid = 1 assign the bug with severe priority else if it is 2 assign

with warning.

30

Test Case Id: TC3

Purpose: Inserting the value in projectid and projectname.
Precondition: int projectid = aProject.getProjectID() ;
String projectname= aProject.getProjectName()

Inputs: setvalue of projectid and projectname.

Expected Results: if setvalue =1=> enter projectid

If setvalue= 2=> enter projectname.

Test Case Id: TC4
Purpose: Inserting the start and ending date of the project

Precondition: String projectenddate= aProject.getEndDate(); String
aProject.getStartDate();

Inputs: Set value of startdate & enddate

projectstartdate=

Test Case Id: TC5
Purpose: Find the status of the project & find to whom it is assigned

Precondition: String projectstatus= aProject.getStatus();

String projectassignedto= aProject.getAssignedTo();
Inputs: Set value of projectstaus & projectassignedto.
Expected Results: if setvalue=5=> getprojectstatus

If setvalue=6=> get projectassignedto

31

Test Case Id: TC6

Purpose: To find the designation of employee.

Precondition: value= String getRole()

Inputs: String getMemberName();

Expected Results: if this.role= ‘devp’=> member is developer
If this.role="test’=> member is tester

If this.role="manage’=> member is manager

Test Case Id: TC7
Purpose: To get the raiser date of a defect.

Precondition: value= String getRaisedDate();
Inputs: String getBugName()

Expected Results: if this.setDate()="Startingdate’=> the date on which the bug was raised.

Test Case Id: TC8

Purpose: To check the successful or unsuccessful login into the system
Precondition: String loginid = regbean.getLoginID();

String oldpassword regbean.getPassword();

Inputs: int LoginID, String Password

Expected Results: if password = = oldpassword && loginid =’True’=> Successful log

32

Test Case Id: TC9

Purpose: To check the authenticity of the existing user on login.

Precondition: String loginid=regbean.getLoginID();

String password= regbean.getPassword(); String role=“";

Inputs: String loginid, String password, String role.

Expected Results: if loginid="True’ && oldpassword= =password && role=

‘True’=>authenticate user login.

Test Case Id TC10
Purpose: Changing of the secret question for security.

Precondition: String loginid= regbean.getLoginID();
String password= regbean.getPassword();
int secretquestid= regbean.getSecretQuestionID();
String
regbean.getOwnSecretQuestion();
String secretans= regbean.getSecretAnswer();
Inputs: String Logingid password;

Int secretquestid,;
String ownsecretquest, secretans;
Expected Result: If checkPassword(regbean="True’ && secretquestid=0) &&

secretquestid= rs.getInt(1); => secret question is changed.

33

Test Case Id TC11

Purpose: Recovery of password using existing questions.
Precondition: String loginid=regbean.getLoginID();
Inputs: String loginid,

int secretquestid, int secretans

Expected Result: if int secretquestid= regbean.getSecretQuestionID()

&& int secretans= regbean.getSecretAns() => password is

7.2. Evaluation of Tests

Testing is one of the main stages in the development process in which we check the
project for the different data sets and to see which the cases in which the project failed are [16].
This helps in deciding which necessary steps that can be taken to make sure that the system is
immune to such Kkind of data inputs in the future. In our project we have used the above
mentioned test cases. These test cases from TC1 to TC11 test all the important functionalities of
the system and pinpoint the cases which make the system fail.

Our system failed for test cases TC1 and TC2 where, if the priority of the bug was set to
some number other than 1 or 2 then system crashed. To overcome such problem in future we
restricted the input from the user to only 1 and 2 using dropdown list [21]. The table below
mentions the summary of all the test cases; which of them passed and which of them failed along

with the recuperative action that we took to prevent the failing cases.

34

Table 1: Evaluation of Tests

Test Case

Pass

Fail

Comment

TC1

v

Restricted the user’s input to 1 or 2 by using drop down
list

TC2

v

Restricted the user’s input to 1 or 2 by using drop down
list

TC3

Q

TC4

TCS

TC6

TC7

TC8

TC9

TC10

TC11

AN NY N N Y N B N BN

35

8. TABLE AND DIAGRAM DESCRIPTION
This section of DTS covers remaining aspects of design descriptions of projects
which includes Use Cases, tables and Snapshots.
8.1. Use Case Description
This section shows description of various Use Cases implemented during design of
Defect tracking System [25].

Table 2: Use Case for Login

Use Case Login

Actor Admin/Manager, Tester, Developer

Precondition System displays login page to the user
User login successful, if correct user

Postcondition and password is entered

Main path User opens the browser

System’s home page is displayed

System demands for user login

User enters username and password

If correct information is entered, user login to
system successfully

Alternative Login failure if entered information is incorrect

Table 3: Use Case for Add/Edit New Bug

Use Case Add/EditNewBug

Actor Admin/Manager, Tester

Precondition User click on add new defects under ‘defects’
tab

Postcondition User successfully add a new bug/defect or edit

existing defect

Main path Actor Login to the system
Go to defects

Click on view Defects
Enter new defect or edit existing defect

36

Alternative

No access to add/edit defects

Table 4: Check/Update Bug Status

Use Case

Check/Update Bug status

Actor

Admin/Manager, Tester

Precondition

User click on view defects under ‘defects’ tab

Postcondition

User successfully view or update bug/defect

Main path

Actor Login to the system

Go to defects

Click on view Defects

View defects or make changes existing
defect Changes displayed on view defects

Alternative

No access to check/update the defects to the
user

Table 5: Add/Edit New Priority

Use Case

Add/Edit New Priority

Actor

Admin/Manager

Precondition

User login as admin

Postcondition

User successfully view defects with
added priority

Main path

Actor Login to the system

Go to defects

Click on view Defects

Click on Add priority button to add
priority Priority is displayed on view

Alternative

No access to add/edit priority to the defects to
the user

37

Table 6: Assign Bug to Employees

Use Case

Assign Bug to Employees

Actor

Admin/manager

Precondition

User login as admin

Postcondition

User successfully assigned bugs to employees
(tester/developer)

Main path

Actor Login to the system
Go to Organization

Click on view
Members Click on
assign bugs

Alternative

Failure to access to assign bugs to a user

Table 7: Add New Project

Use Case

Add New Project

Actor

Admin

Precondition

User login as Admin

Postcondition

Actor Successfully added new project

Main path

Actor Login to the system
Go to Organization

Click on view

Projects Click on

Add New

Added project is displayed on View
Projects

Alternative

Proper access to add a project is not given to
the user

38

Table 8: Add/Update Employee

Use Case

Add/Update Employee

Actor

Admin/Manager

Precondition

User login as admin

Postcondition

Actor added new employee successfully

Main path

Actor Login to the system

Go to Organization

tab Click on view

members Click on

Add New

Added employee is displayed on View

Alternative

Proper access to add an employee is not given
to the user

Table 9: Resolve Bug

Use Case

Resolve Bug

Actor

Developer

Precondition

Actor Login as developer

Postcondition

Developer successfully mark the bug as
resolved

Main path

Actor Login to the system
Go to Defects tab

Click on view

Defect

Change status to resolve

Alternative

Proper access to marl bug status is not given
to the user

39

Table 10: Reports

Use Case Reports

Actor Admin

Precondition Actor Login as Admin
Postcondition Admin view reports successfully
Main path Actor Login to the system

Go to Reports tab
Click on pending defects, resolved defects,
or view

all defects
Reports are displayed as per of click

Alternative Proper access to ‘view reports’ is not given to
user

40

8.2. Screen Shots

,'l‘ Socalhost 000 1/BTIRON . = AR '._g!
€ c o

Tavalhast Yy ® @ ¢

ﬁ Defect Tracking System

Homepage Products Services About Us Contact Us

Welcome to Defect Tracking System!

Login

S0

Fussword

fogn In
Frpi ywir passwint

g >
P —

Figure 16: Snapshot 1 (DTS Login Page)

Horapage Ovganilation Defects Keporty Seaurity Logoet

Ve b

Welcome to Defect Tracking System!

\ (View Meomers
% Lgen Hame Viernier Mame et
=trn Geass taee -
L. Linn brnen e
e Yo arse Chetdr e Wders -
Anees e—— e »
em her: Sriaviey eczae [CETRRE ST
Vas ot Losr - = PIEETRAM
v
- >

Figure 17: Snapshot 2 (View Project Page)

41

ﬁ Defect Tracking System

Or Defwcts Reoperts Sadutety Legout
Ve Pt
Welcome to Defecl".. ..o ~ystem!

(View Prsority

- -

Figure 18: Snapshot 3 (View Priorities Page)

ﬁ Defect Tracking System

L oy Dwtpcts Reparts Zacurty Legon

Figure 19: Snapshot 4 (View Defects Page)

42

. Y x -
V(& ocathansoni wTE0H . x B TN - W
< C O localhost v ® 6 |

ﬁ Defect Tracking System

M Or Defocts Reports Seaurity Logout

View ALl Defeets

Welcome to Defect Trackiny ™23,

View Bug Status

)

Vigw
View |

Figure 20: Snapshot 5 (View All Defects Page)

| "i— focalhort 800 1 /BTSN » m = G—
¢ @ @ Iescoalhont Yy © @ |

ﬁ Defect Tracking System

Homepage OrganiZation Defects Reports Security Logout

Changs Paviwerd

 Wongr Quistion

Welcome to Defect Tracking System!

A

|t Password
|New Paxsword
| Ghanae Meset

Figure 21: Snapshot 6 (Change Password Page)

43

- C O Loohost 5021 NS08 Wekifooy Changelussson apTrele=admn y* 9 6 :

0

Figure 22: Snapshot 7 (Change Security Question Page)

44

8.3. Detailed Class Diagram
This section explains all the attributes and operations of individual classes in detail
together with their internal connectivity. This section describes MembersDAO,
BugDAO,ProjectDAO, SecurityDAO, ProfileDAO, AbstractDataAccessObject and

InitServlet in detail [20].

MexbersDAOC
[70m 180

DAY s Conmiton cen

o Vs
pade CanxMash ge@ralies Drrg e)
oabic Conrbianh go®rafiend)
astic Goratiash gefrafien Breg covwionsr, 200 eater)

ProjectsDAQ PUCKE ST 110V RIS mIEMATISR10N, M IThS 13 e sn)
i Flomden) PUSIC ST 1IOVa PICT W BTG Lataon | Frofle regbaan |
Aadee

POXTRgE Cornadaen tin

et
P sl 1P et Fiage t aProgeit)

P M e et | Progect 3 rajert)

PAlrle i) prlATORIE |

PR Coredasly (eI b O P s s STy aE g)
ORI Pt gurPenherOaing 1 g gt |

e T R s R P

PARKIE MM SREQNFTISCT P INeet BFeaja i)

POMIE CORH3EN OV I GCW MTEETa] SUMY TaNagun)
Futrir Canwbonn gutbonsblamabers! Senigrab)

U e PIopact geibaject Shg gt rane |

Figure 23: Detailed Class Diagram MembersDAO

45

IntServiet
§ Fhom o)
st
PrefileDAD
s o (e SeetCon iy o) [Eron dso)
o> AbstractDataAczessObject ’
ym— gonece 17 e) T
e Lon ean
(e | pspehe | pvars tosken 1oy
[re—— -
e allic Froperies JetPupstes)) s
pacxage Conrasier fen LI vokd wetProces B esd Props ries poop | PRI Prti e DO)
G UK Cowiaon gaGore=cinre) PURIE DR g TR RS e s0d
PRtAIT vou) AP S| Fug g | ~ PRI O Ot et s S0 Saten Puarme Strog 1he) PR e QR AT AN DO EN)
Pt W0 UDINSMIAIT BLO 1UY) | I hoowan MaRyS kel Se mghesr)
DU W SR ETRR TTTRY TR IO WEIEDINEY N POIRY, ML)
publin eedd coteteliugl it bupa)
Pl red 30309 Mag tag) s.“,mo
Pt rod wpaskesa)| Bug g) (Haren)
puttn By quBugCoaaisi et age |
petile Covshas qetBige | isseaneos
'] {} 13 2| B e T
x” .Eon.mm q::mt Qg mn.m-)m,mnopmul SeLnDAY)
1Ems(ne P ACOM AN MrrkP an e i Pt oo ghwan)
ot Corbianh getfsrtes)) <
R 0BRSS AL SN BRI G Nigena e)
il g GUBLORSLEMN TS upd) DN STING INONC RSN P I0803 14 g0 5)
ral
x: - :::"’9""‘:" :;‘ l';" U VI 1EQNSUTY S1INg SOTIE, SN 086c |
e fvseiig PUSC 10CHIN TIINgEAtYWORT| Frote gt ean)
Pt BOChEn IAENGRIUA ML O Ol & g hean |

8.3.1. Member DAO
This class saves the profiles of different users into the database. It provides the
getprofile() operation which is used to obtain the profile of the user. It also tells us whether

the user is developer, manager, admin or a tester [20][27].

MemhbersDAO

{ From dao |

Annbutes
package Connection con

Opemtions
public CarzHash gziProfiles(String role)

public CareHash gztProfiles()

public CareHash getProfiles(String developer, String tester)
1

Figure 24: Class MemersDAO

8.3.2. BugDAO

This class is responsible to store the information related to the bugs into the database [21].
Using this class we can perform various operation on the bugs like using addPriority() [20] we
can add the priority to the bug, or we can update the existing priority of the bug using

updatePriority(), deletion of priority can be accomplished through operation deletePriority()[4].

BugDAO
{From dao)

Atibutes
package Connaction can

(perahonz
publie vold aaaP nonty(Eug bug)
publie vold updatePrionty(Bug bug)
public vold caeistePnormyl int priortyld |
public void deisteBug(intbugid)
public void add8ug(Bug bug)
public void updatosug(Bug bug)
public Bug gotBugDoatalls(Int bugla)
public CoreHash getBugs()
public CoreHash getBuga(String bug. String priority, String project)
public CoreHash getBugs(String membeamame)
public CarelHash qetPriortias()
public Bug getBugSoiution intbugid)
public void setBugSolution(Bug bug)
public void assignBugl Bug abug)

Figure 25: Class-BugDAO

46

Other operations like addBug(), getBugs(), setBugSolution(), assignBug() perform the
same function as the named [24].
8.3.3. ProjectDAO

This class is responsible to do the operation on the projects in the system. Some operations
that this class provides are, addProject() for project addition, updateProject() for making updating
the project, getProjectDetails() to get the details related to the project, getManagerProjects() to get
the managers and their respective projects as assigned to them, assignProject() is used to assign

project to a member entity [20][24].

ProjectsDAO
{Fromdao}

Atidbutes
package Connaclian con

Cuerations
public void addProject({ Project aFroject)

public vold updateProject(Project aProject)

public CoreHash getAllFroject)

public CareHash getanagerProjecis(Siring assignadto)
public Project getProjectDetails(Int projectic)

publie Project deleteProject] int projectid)

publie vald assignProject(Project akrojact)

public Coreash getProjeciMembers(String manager)
public CoreHash getFraaemaners{ String role)

public Project getProjact] String laginname)

Figure 26: Class Project DAO

8.3.4. SecurityDAO

This class deals with security aspects of the system. Some operations that this class
provides are, checkPassword() which provides the functionality to checking the password related
to a particular username, loginCheck() which is used to check the login details of a user,

changePassword() which is used to change the password of a particular user, changeQuestion()

47

used for changing the password recovery question [20]. Other important operation provided are

recoverPasswordByEXxistQuestion() and recoverPasswordByOWNQuestion() [24][26].

SecurityDAO
{From dao }

Adhibutes

Dperations
public SecuriyDAOC)

public boolean theckPasswordi Profilz regbean)

public Int checkfirstlogin(String loginname)

public STIng loginCheck] Proflle raghean)

public vold leginaudit(String loginid, String desc)

publiic hoolean changePassword(Profle raghean)

public haclean changeQuaston(Profile regbean)

public String racovarPasswordByExistOuastion(Profile ragbaan)
public String recoverPasswordByOWNGuesiion(Frofile reghaan |

Figure 27: Class Security DAO

8.3.5. ProfileDAO

This class provides necessary operation to perform on the profiles of the user.
Some operations that are provided are, registration() which is used to register into the system,
modifyProfile() which is used to modify the existing profile in the system,

changeAccountStatus() which is used to change the status of a profile in the system [24]

ProfileDAO
{Fram dan }
Attrbutos
public Connaction con
private kecolaan flag
Querations

public PromileDAOC)

public boolean ragisiration(Profile ragbean)

public Profile getProfile(Stiing loginname)

public banlean madiyProfliel Proflie regbean)

pubilic boslean changeAccountSiatus(Siring laginid, Int status)

Figure 28: Class Profile DAO

48

8.3.6. AbstractDataAccessObject
This class is responsible to provide an interface between the browser and the database.
Some operations that this class provides are, getConnection() to get a connection for the database,

getSequencelD() to get the sequence of the table in the database [24].

AbstractDataAccessObject
{ From dao }

A#ributos

Ooelions
puklic Propertes getProperties!)
public void setProperties{ Properies props)
public Connection getConneciion()
publicint getSequencelD(String lableName, String pkid)

Figure 29: Class Abstract DAO

8.3.7. InitServlet
This class provides the init operation which is used to initialize the servlet to help it handles

the requests that encounters from the browser.

InitServlet
{ From ulil }

Abributas

Coembions
pubiic void inil(S2nvetConfig sc)

Figure 30: Class InitServlet

49

8.4. Coding Standards and Ul Guidelines

Introduction: Here we will describe our strategies and approach toward the existing
project design [11][17]. This section of the document provides the key constraints and
nomenclature we followed for the coding and implementation of our system. This portion
clears the coding conventions and guidelines that we followed for our software code [4][29].
So with the help of this document one can understand the key steps and foundation strategies
behind the structuring and implementation of the programming logic and the code structure
[18][30].

Coding Standards: while writing the codes for different logic and their implementation
we have followed the following nomenclature:

1. Class name: all class names started with a capital latter. It can be a combination of
two or more words, every new word starting with a capital latter.

2. Method name: all methods name start with a small latter and can be a combination
of two or more words with starting a new word by capital alphabet (except first
word).

3. Every class contains the descriptive note in its header section, explaining
the functionality and target.

4. Lots of single and multi-level comments sections were used for the
detailed understanding of the code before implementation of a new method.

Indentation, Spacing and Alignment Standards: We have followed the following
three indentation and Spacing approaches:-
1. Precede and follow single and compound delimiters by a space Example: if (a<-b)

2. Precede and follow binary operators by a space. Example:a+b

50

3. Precede unary operators by a space. Example: if (lisValid)

4. Use extra spaces, tabs, and blank lines to align closely related statements and

declarations in adjacent lines.

Example:
int numberOfitems = 10; // variable names are all aligned
int numberOfErrors = 5; // variable values are also aligne

double errorPrecision = 0.005; // comments are aligned as well

We have also followed some general conventions. Usually the programmers do for
the good programming practices. We have used following conventions for our
programmable coding units:
Do not use variables of anonymous or implicit types. Example:
Bad Example:
John = new {ID = R10, firstName = "John"};
Good Example:
John = new PersonnelMember(R10, "John™);
Use named numbers instead of numeric literals. (e.g., VALUEOFPI for 3.14159)
5. Conceal any information irrelevant to the user of a package through the use of private
and limited types. (i.e. class variables should be declared as private)
6. Handle exceptions at the lowest possible level at which the program can properly

respond to the error. (i.e. exceptions should be caught and handled as soon as possible)

51

7. Subprograms (functions and procedures) should perform a single logical function. (i.e.
use two different functions to calculate the mean and standard deviation instead of
having one function calculate both)

8. Place all include, import, or similar statements together immediately after the header.
Example:

I* ...

*end of header */

import
java.util.*;
import

java.swing.*;

Ul Guidélines: It is the only part of the system that is visible to the user so a proper Ul
design is an important requisite of any particular system. In development of our defect tracking
system we have followed the following Ul guidelines [1] [2] [10][22]:

e Use a consistent design and commands when developing the user interface [15].

e Sequences of actions performed by users should be grouped and designed to provide

closure to a user upon completing those actions [11].

e Design the user interface so that the user feels in control of the system [15]Design the
system to protect users from committing critical errors and include mechanisms
for handling any errors that may occur.

e Theinterface should provide informative feedback for users in response to their actions.

Coupling and Cohesion: Coupling and cohesion are the two main principles that need

to be followed to make sure that the system performs in an appropriate manner. This makes

52

code more readable and at the end of the day makes it easy to trace down and correct any error
or bug in the system (Code) [21]. The rule of thumb here is to ensure that the system has High
Cohesion and Loose Coupling. Cohesion ensures that there is high level of interaction
between the component of a single module hence makes it self-reliant. On the other hand low
coupling makes sure that there is minimum level of interaction between various modules of the
system thus making sure that the individual modules are not too much reliant on each other and

hence if one module fails it doesn’t affect the other modules working.

53

9. CONCLUSION AND FUTURE WORK

With the results obtained after the evaluation of our test cases, we can conclude that the
concept of DTS is applicable in software engineering domain and should be used to track and
investigate defects with effectiveness [2][17]. Although the data size used is small, the results
show that 9 out of 11 test cases have been passed successfully [19]. Results of 2 test cases
lead to varied output identifying higher number of risks [18]. Over all this DTS is capable enough
to meet most of the proposed system requirements including correct tracking of defects at all
level [25DAO]. Also, at manager and admin level we are successful to have a capability of
generating defect reports and assignments of defects to developers [9]. Our software tool can be
used at any level by developers and project managers to manage the software process depending
on their need of overall defect coverage [4]. It also helps them focus on a particular type of defect
report depending on the use in the project [22].

Our future focus can be on testing our tool for larger data sets at an industrial level where
bug priority can be increased to more than 2 levels and on the generation of a larger report
containing defects of higher level [4][21]. The results were narrowed down for the requirement
and testing process, however this concept can be extended for quality improvement processed of
other activities involved in the SDLC process (like design review, code review, best practices

review etc.) [8][16].

54

REFERENCES

[1] "Defect Logging and Tracking." tutorialspoint,
www.tutorialspoint.com/software_testing_dictionary/defect_logging_and_tracking.htm.
Accessed 1 October 2015.

[2] "Best Practices for Effective Defect Tracking."tutorialspoint, www.seapine.com/papers/best-
practices-for-effective-defect-tracking. Accessed 1 October 2015.

[3] "Comparison of issue-tracking systems.” Wikipedia,
www.wikipedia.org/wiki/Comparison_of_issue-tracking_systems. Accessed 3 October 2015.

[4] "15 Most Popular Bug Tracking Software to Ease Your Defect Management Process."
software testing help, www.softwaretestinghelp.com/popular-bug-tracking-software/.
Accessed 3 October 2015.

[5] "Welcome to bug-tracking.info." bug-tracking.info, www.bug-tracking.info. Accessed 6
October 2015.

[6] "Systems architecture.” Wikipedia, www.wikipedia.org/wiki/Systems_architecture.Accessed
7 October 2015.

[7] "Systems architectures.” Kasse Initiatives, LLC,
www.dtic.mil/ndia/2004cmmi/CMMIT1Mon/TracklIntrotoSystemsEngineering/KISEQ7Sys
tems Architecturesv2.pdf. Accessed 7 October 2015.

[8] Mukesh Soni, "Defect Prevention: Reducing Costs and Enhancing Quality.",
www.isixsigma.com/industries/software-it/defect-prevention-reducing-costs-and-enhancing-

quality/#comments/artical/writeliving. Accessed 10 October 2015.

55

http://www.tutorialspoint.com/software_testing_dictionary/defect_logging_and_tracking.htm
http://www.seapine.com/papers/best-practices-for-effective-defect-tracking
http://www.seapine.com/papers/best-practices-for-effective-defect-tracking
http://www.wikipedia.org/wiki/Comparison_of_issue-tracking_systems
http://www.softwaretestinghelp.com/popular-bug-tracking-software/
http://www.bug-tracking.info/
http://www.wikipedia.org/wiki/Systems_architecture
http://www.dtic.mil/ndia/2004cmmi/CMMIT1Mon/Track1IntrotoSystemsEngineering/KISE07Systems
http://www.dtic.mil/ndia/2004cmmi/CMMIT1Mon/Track1IntrotoSystemsEngineering/KISE07Systems
http://www.dtic.mil/ndia/2004cmmi/CMMIT1Mon/Track1IntrotoSystemsEngineering/KISE07Systems
http://www.isixsigma.com/industries/software-it/defect-prevention-reducing-costs-and-enhancing-
http://www.isixsigma.com/industries/software-it/defect-prevention-reducing-costs-and-enhancing-

[9] Sultan, Torky. "A Proposed Defect Tracking Model for Classifying the Inserted Defect
Reports to Enhance Software Quality Control, Aug.2013,
www.ncbi.nlm.nih.gov/pmc/articlessPMC3766546. Accessed 11 October 2015.

[10] "Bug and Defect Tracking Tools." aptest, www.aptest.com/bugtrack.html. Accessed 11
October 2015.

[11] "Access: Database Design." YouTube, uploaded by Trainer Lori, 24 Feb 2012,
www.youtube.com/watch?v=edFALNG3Amo.

[12] "JSPs and Servlets Tutorial 01 - Setting up.” YouTube, uploaded by Java Brains, 28 April
2011, www.youtube.com/watch?v=b42CJOr-1to&list=PLEOF6C1917A427E96.

[13] "Top Bug Tracking Software Products.” Capterra, www.capterra.com/bug-tracking-
software. Accessed 15 October 2015.

[14] "How to Build and Deploy an lIssue Tracking Application.” Oracle Help Center,
docs.oracle.com/cd/E14373_01/appdev.32/e13363/issue_track ui.htm#HTMADO014.
Accessed 16 October 2015.

[15] "Eclipse for JSP 1.2: How to Install Apache Tomcat on Windows 10." YouTube,
uploaded by Jeremy Druin, 6 Jan 2016, www.youtube.com/watch?v=HhI2CDrIGOIl.

[16] "What is Software Testing All About?" Software Testing Help,
www.softwaretestinghelp.com/what-is-software-testing-all-about/. Accessed 18 October
2015.

[17] "Web-based application development: a software engineering approach.

dl.acm.org/citation.cfm?id=571949&dI=ACM&coll=DL. Accessed 21 October 2015.

56

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3766546
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3766546
http://www.aptest.com/bugtrack.html
http://www.youtube.com/watch?v=edFALnG3Amo
http://www.youtube.com/watch?v=edFALnG3Amo
http://www.youtube.com/watch?v=b42CJ0r-1to&list=PLE0F6C1917A427E96
http://www.youtube.com/watch?v=b42CJ0r-1to&list=PLE0F6C1917A427E96
http://www.capterra.com/bug-tracking-
http://www.youtube.com/watch?v=HhI2CDrlGOI
http://www.softwaretestinghelp.com/what-is-software-testing-all-about/
http://www.softwaretestinghelp.com/what-is-software-testing-all-about/
http://www.softwaretestinghelp.com/what-is-software-testing-all-about/
http://www.softwaretestinghelp.com/what-is-software-testing-all-about/

[18] "Web-based application development: a software engineering approach,
www.researchgate.net/publication/220613119 Webbased_application_development_a_soft
ware_engineering_approach. Accessed 1 January 2016.

[19]" A principled approach to software
engineering"http://www.adacore.com/knowledge/technical-papers/a-principled-approach-to-
software-engineering/ Accessed 18 February 2015.

[20] "Data access object.” Wikipedia, www.wikipedia.org/wiki/Data_access_object, 20 Feb
2016

[21] "Bug Tracking System." Wikipedia, www.wikipedia.org/wiki/Bug_tracking_system, 5 Mar
2016

[22] "Tracking Tools." www.templatemonster.com/blog/top-10-bug-tracking-tools-of-2014/, 25
Mar 2016

[23] "What is bug and issue tracking tools.” www.atlassian.com/software/jira/bug-tracking,10
Apr 2016

[24] "Data Access Objects.” www.oracle.com/technetwork/java/dataaccessobject-
138824.html,21 Apr 2016

[25] "Issue Tracking Tools." opensource.com/business/16/2/top-issue-support-and-bug-tracking-
tools, 15 May 2016

[26] "Data Access Object patterns.”
www.tutorialspoint.com/design_pattern/data_access_object_pattern.htm, 25 May 2016

[27] "Data Access Objects.” Best Practice Software, best-practice-software-

engineering.ifs.tuwien.ac.at/patterns/dao.html, 15 June 2016

57

[28] "Create a bug tracking application." docs.sitefinity.com/tutorial-create-a-bug-tracker-
application, 21 June 2016

[29] "How to Build and Deploy an Issue Tracking Application™ Application Express
AdvancedTutorial,docs.oracle.com/cd/E14373_01/appdev.32/e13363/issue_track ui.htm#H
TMADO014, 5 July 2016

[30] "Bug Tracking Guidelines."”, bug-tracking-guidelines.com/, 20 Aug 2016

58

APPENDIX
Administrator: He is the person who has the whole authority over the system.
Developer: He is the person who is responsible to solve the raised bugs.
Tester: He is the person who is responsible to check the system and raise the bugs as
encountered.
Manager: Manager is the person whose role is to supervise the developers and testers
under him/her.
Defect: Defect can be defined as any anomaly that can disrupt the normal functionality of
the system.
Bug: Bug and defect are used interchangeably in our project.
Tracking: Tracking means to trace down the life cycle of the bug through its resolution
cycle [4].
Software Reliability: Reliability of a software means how immune is the software
against the crashes and how well is the data preserved in case of one.
SDLC: Software development life cycle is the stages through which the software
passes before it is completely deployed at the user’s end [18].
UML.: Unified modeling language
Facade: It is the design patter that ensures that the data libraries can be used more
effectively and efficiently [2].
Subsystem: It is the part of system that performs some specific function.
Component: Component is again a part of the system which provides some specific
functionality.

Class: Class is a group of data and embedded functions

59

Module: Module is part of the subsystem which interact together to make system work.
System Request: Request made to the server via system.

Database: The collection of all the data in a system

Roles: Role defines the access rights in a system. Each role has a specific set of rights
assigned to it.

HTTP: Hyper Text Transfer Protocol

Security: Security authorizes user in logging into the system.

60

