
ONLINE DEFECT TRACKING SYSTEM

A Paper

Submitted to the Graduate Faculty

of the

North Dakota State University

of Agriculture and Applied Science

By

Gaurav Soni

In Partial Fulfillment of the Requirements

for the Degree of

MASTER OF SCIENCE

Major Department:

Computer Science

November 2016

Fargo, North Dakota

CORE Metadata, citation and similar papers at core.ac.uk

Provided by NDSU Libraries Institutional Repository

https://core.ac.uk/display/211298194?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

North Dakota State University
Graduate School

Title

Online Defect Tracking System

 By

Gaurav Soni

 The Supervisory Committee certifies that this disquisition complies

with North Dakota State University’s regulations and meets the accepted

standards for the degree of

 MASTER OF SCIENCE

 SUPERVISORY COMMITTEE:

Dr. Kendall Nygard

 Chair

Dr. Kenneth Magel

Dr. Sangita Sinha

 Approved:

 04/04/2017 Dr. Brian M. Slator

 Date Department Chair

 iii

ABSTRACT

For Improving Software Reliability, Defect Tracking System (DTS) gives the facility to

define the tasks and allow the managers to track the Defects and time spent by each employee for

that particular task. This tool can help managers for Defects (Bugs) estimation per project. This

tool also helps employees to document their Defects and analyze the quality of their output.

Moreover the project aims at creation of a Defect Tracking System which will be accessible

to all developers and its facility allows to focusing on creating the database schema and while

letting the application server define table based on the fields in JSP and relationships between

them.

The objectives of this system are to keep track of employee skills and based on the skills,

assignment of the task is done to an employee. Employee does Defects capturing. It can be done

on daily basis.

 iv

ACKNOWLEDGEMENTS

Sincere gratitude is hereby extended to Dr. Kendall Nygard who never ceased in helping

until this report paper was structured and finalized. I appreciate the time, support, guidance and

patience for the development and completion of this research project. He has always motivated me

and helped me at every step starting from writing the proposal to finalize the report. He always

answered all my questions with detailed and precise guidance and feedback I needed.

I would also like to thank Dr. Kenneth Magel, Professor of Computer Science and

Operations Research at North Dakota State University, for his time and to be a member of my

supervisory committee. Also, for his continuous guidance and the compassion he had shown

throughout my Master degree program that helped me immensely to achieve my goals.

I am also grateful and appreciate Dr. Sangita Sinha, Professor of Chemistry and

Biochemistry for her consideration and taking out time from her busy schedule to be a part of my

supervisory committee and showing interest in my research work.

A special thanks to the faculty of Computer Science department for all their help and

support that was necessary at all the time throughout my program.

 v

TABLE OF CONTENTS

ABSTRACT ... iii

ACKNOWLEDGEMENTS ... iv

LIST OF TABLES ... viii

LIST OF FIGURES ... ix

LIST OF ABBREVIATIONS .. xi

1. INTRODUCTION .. 1

1.1. Purpose and Scope .. 1

1.2. Development Approach .. 1

1.3. Overview .. 3

2. CURRENT SYSTEM ... 4

3. PROPOSED SYSTEM ... 5

3.1. Functional Requirements .. 6

3.2. Non-Functional Requirements ... 9

3.3. Use Case Diagrams .. 9

4. ARCHITECTURE .. 11

4.1. Overview .. 12

4.1.1. User Component ... 13

4.1.2. Management/Administration Component ... 13

4.1.3. Database Component .. 13

4.1.4. System Request Component ... 14

4.2. Subsystem Decomposition ... 14

4.2.1. User Component ... 14

4.2.2. Management/Administration Component ... 15

4.2.3. Database Component .. 17

 vi

4.2.4. System Request Component ... 18

4.3. Persistent Data Management .. 19

5. ENTITY RELATIONSHIP DIAGRAM FOR DTS DATABASE ... 20

6. OBJECT DESIGN AND IMPLEMENTATION .. 21

6.1. Static Model ... 22

6.1.1. MembersDataAccessObject .. 23

6.1.2. ProfileDataAccessObject .. 23

6.1.3. AbstractDataAccessobject .. 23

6.1.4. SecurityDataAccessObject .. 23

6.1.5. ProjectsDataAccessObject .. 24

6.1.6. BugDataAccessObject .. 24

6.1.7. InitServlet .. 24

6.2. Dynamic Model .. 24

6.3. Algorithms (pseudo codes) ... 28

7. TESTING PROCESS .. 30

7.1. Unit and System Tests .. 30

7.2. Evaluation of Tests ... 34

8. TABLE AND DIAGRAM DESCRIPTION ... 36

8.1. Use Case Description ... 36

8.2. Screen Shots ... 41

8.3. Detailed Class Diagram .. 45

8.3.1. Member DAO ... 46

8.3.2. BugDAO ... 46

8.3.3. ProjectDAO... 47

8.3.4. SecurityDAO... 47

 vii

8.3.5. ProfileDAO ... 48

8.3.6. AbstractDataAccessObject ... 49

8.3.7. InitServlet .. 49

8.4. Coding Standards and UI Guidelines .. 50

9. CONCLUSION AND FUTURE WORK ... 54

REFERENCES ... 55

APPENDIX ... 59

 viii

LIST OF TABLES

Table Page

1: Evaluation of Tests ... 35

2: Use Case for Login ... 36

3: Use Case for Add/Edit New Bug .. 36

4: Check/Update Bug Status ... 37

5: Add/Edit New Priority .. 37

6: Assign Bug to Employees ... 38

7: Add New Project ... 38

8: Add/Update Employee .. 39

9: Resolve Bug .. 39

10: Reports .. 40

 ix

LIST OF FIGURES

Figure Page

1: Use Case For Admin ... 7

2: Use Case For Tester .. 8

3: Use Case For Developer ... 8

4: Use Case Diagram for Congregated ... 9

5: Architecture .. 11

6: Subsystem Architecture .. 13

7: Facade User... 15

8: Facade-Management ... 16

9: Facade Database ... 17

10: Facade SystemRequest ... 18

11: ER Diagram .. 20

12: Minimal Class Diagram .. 22

13: Sequence Diagram-Administrator .. 25

14: Sequence Diagram Developer .. 26

15: Sequence Diagram Tester ... 27

16: Snapshot 1 (DTS Login Page) .. 41

17: Snapshot 2 (View Project Page) ... 41

18: Snapshot 3 (View Priorities Page) .. 42

19: Snapshot 4 (View Defects Page) .. 42

20: Snapshot 5 (View All Defects Page) .. 43

21: Snapshot 6 (Change Password Page) .. 43

22: Snapshot 7 (Change Security Question Page) .. 44

23: Detailed Class Diagram MembersDAO ... 45

file:///C:/Users/Pratima%20Soni/Documents/GP/Online%20Defect%20Tracking%20SystemV2.docx%23_Toc481009450

 x

24: Class MemersDAO ... 46

25: Class-BugDAO ... 46

26: Class Project DAO .. 47

27: Class Security DAO .. 48

28: Class Profile DAO .. 48

29: Class Abstract DAO.. 49

30: Class InitServlet .. 49

 xi

LIST OF ABBREVIATIONS

DTS ..Defect Tracking System

DAO ...Data Access Object

SDLC ...Software Development Life Cycle

UML...Unified Modeling Language

HTTP..Hyper Text Transfer Protocol

DB ..Data Base

TC ..Test case

1

1. INTRODUCTION

In any organization, Tracking System must be in place for every infrastructure we design.

Software and Employee Data base are no exception to this [22]. This application which will

be implemented on Java platform is designed to track the status of bugs that are reported during

Software testing [4] [14][28].

1.1. Purpose and Scope

The purpose of Defect Tracking for improving software reliability is to provide better

service to the administrator or useful for applications developed in an organization [1][10]. The

“Defect Tracking for Improving Software Reliability” is a web based application that can be

accessed throughout the organization [2][16]. This system can be used for logging Defects or

Bugs against an application/module, assigning them to team members and tracking them for

resolution [13][25][28]. There are features like email notifications, user maintenance, user

access control, report generators etc. in this system [22].

1.2. Development Approach

For this project our strategy is to follow Spiral Model of SDLC. We found this model

appropriate for this software application because it is enterprise level [14] software and has

significant size which would require reviews of developed prototype [9]. This will help the

customer to find the risks and abort the project if risks are deemed too great. This is relatively

very efficient and effective way of dealing with software of such magnitude [18].

The steps for Spiral Model can be generalized as follows:

 The new system requirements are defined in as many details as possible. This

usually involves interviewing a number of users representing all the external or

internal users and other aspects of the existing system A preliminary design is created

for the new system.

2

 A first prototype of the new system is constructed from the preliminary design.

This is usually a scaled-down system, and represents an approximation of the

characteristics of the final product [11].

 A second prototype is evolved by a fourfold procedure:

Evaluating the first prototype in terms of its strengths, weakness, and risks.

2. Defining the requirements of the second prototype.

3. Planning and designing the second prototype.

4. Constructing and testing the second prototype

 At the customer option, the entire project can be aborted if the risk is deemed too

great. Risk factors might involve development cost overruns, operating-cost

miscalculation, or any other factor that could, in the customer’s judgment, result in a

less-than-satisfactory final product.

 The existing prototype is evaluated in the same manner as the previous prototype,

and if necessary, another prototype is developed from it according to the fourfold

procedure outlined above.

 The preceding steps are iterated until the customer is satisfied that the refined

prototype represents the final product desired.

 The final system is constructed, based on the refined prototype.

 The final system is thoroughly evaluated and tested. Routine maintenance is carried on

a continuing basis to prevent large scale failures and to minimize down time.

3

1.3. Overview

In this document we are providing detailed description of current system and proposed

system. All functional and non-functional requirements are mentioned in chapter 3. Detailed

UML diagrams like use cases, class diagrams, sequence diagrams have been created with all the

details of the proposed system architecture [6]. Explanation of each class, components, modules,

sub-systems is provided with all the content required to understand the design framework, and

development process [11][29].

Testing is done on different modules and results are shown in chapter 6. Coding

standard, Glossary, definitions, Graphical user interface snapshots are provided at the end

[15]

4

2. CURRENT SYSTEM

The current system is mostly concerned with the storing defects onto the file system with

little to no traceability, making the tracking of the defects difficult at a later time. Most of the

work of inserting the defects and tracking them back at some later point of time requires human

intervention and is done manually [10][25]. This makes the system limited and hence results

in degraded performance [22].

 Information retrieval is a very big process and it becomes very difficult to handle

huge databases manually with same efficiency and at the same time with the increase in

the database the time to retrieve the concerned information also increases manifolds.

 Lack of organization of the files makes it prone to information loss due to accidental

deletion of files.

 No security because the files are visible to the users. More over every user has the

same level of access to the files.

 Report generation is a big task and precision is as much important as output is.

 Most of the work is done by humans with minimum to no intervention by machines.

Humans are subjected to other factors like stress, emotions etc. that may reduce their

work efficiency which is not the case with the machines, hence prolonged and

maintained efficiency.

5

3. PROPOSED SYSTEM

We are proposing a Defect Tracking System that will help the companies in tracking the

raised defects in the software projects [10][25]. Defect tracking is the process of reporting

and tracking the progress of Defects from discovery through to resolution, where a Defect is

defined as a deviation from requirements [1] [2]. Other terminology frequently used to describe

this process includes [22]:

 problem tracking

 change management

 fault management

 trouble tickets

Defect tracking systems are most commonly used in the coding and testing phases of the

software development process [1] [4][18]. However, tracking systems can in fact be used for many

other purposes such as general issue tracking, simple task lists, help desk situations or contact

management, where the focus is on the tracking aspect rather than what is being tracked

[3][22][23]. Even in software development, tracking systems are quite often not limited to simply

tracking Defects, but extended to track feature requests or enhancements as well as enquiries

[4][10][18].

Advantages of the proposed system are:

 Efficient centralized database schema.

 Increased security with access only to authorized personnel.

 Quick report generation.

 Easy to update the records and track the defects.

6

3.1. Functional Requirements

FR-1 Administrator shall be able to Login to the system.

FR-2 The system shall allow administrator to add new design department.

FR-3 The system shall allow administrator to Add/ Edit new defects.

FR-4 The system shall allow administrator to Add/ Edit priority to the defects.

FR-5 The system shall allow administrator to add new projects to the system.

FR-6 The system shall allow administrator to add new modules to the existing projects.

FR-7 The system shall allow administrator to generate reports corresponding to the status of

each defect i.e. is it under process, completed or pending?

FR-8 The system shall allow administrator to add new employee or update existing employee’s

status in the system.

FR-9 The system shall allow administrator to change/update the status of the defects.

FR-10 The system shall allow administrator to assign the bugs to a particular employee new

defects.

7

Figure 1: Use Case For Admin

Fr-11 The system shall allow the tester to login to the system.

Fr-12 The system shall allow the tester to post new bugs in the system.

Fr-13 The system shall allow the tester to check the status of the existing bug in the system.

Fr-14 The system shall allow the tester to view the information related to each bug in the system.

Fr-15 The system shall allow the tester to view the priority assigned to each bug by the

administrator [21].

8

Figure 2: Use Case For Tester

FR-16 The system shall allow the developer to login to the system.

FR-17 The system shall allow the developer to view the bugs assigned to him.

FR-18 The system shall assist the developer to resolve the bugs.

FR-19 The system shall allow the developer to view the priorities assigned to each bug.

FR-20 The system shall allow the developer to view the bug reports [21].

Figure 3: Use Case For Developer

9

3.2. Non-Functional Requirements

NFR-1 The system shall be able to submit/search or any other activities done through the system

in less than 5 seconds.

NFR-2 The system shall allow the users to navigate between pages in less than 2 to 3 seconds.

NFR-3 The administrator, manager, developer and tester shall be able to generate error free

report within a maximum of 45 seconds (irrespective of size of data).

NFR-4 The system shall use Oracle database engine to run queries.

3.3. Use Case Diagrams

Figure 4: Use Case Diagram for Congregated

10

Admin: This module has the entire access to all other modules, admin creates the project

and assigning the projects created to the manager, adding members to the project, assigning

defects based on the priority. It can update the manager, members and access to the particular

project data. Generating reports based on the managers’ report submission.

Manager: This module has all administrative features to access once role is assigned by an

administrator.

Developer: Can access the task or Defect assigned by the manager, view assigned

projects and resolving the assigned Defect. Developer can view the Defects list assigned by the

manager.

Tester: Tester can access to the projects or Defects assigned by the manager, can view

the assigned projects and can add a new Defect to the list and send the bug back to the manager.

Tester can login to the system and access the assigned projects list [4].

Reports: Admin or Manager can access this module and generate the reports based on

the requirements.

11

4. ARCHITECTURE

Figure 5: Architecture

There are a number of layers that work in collaboration to create an environment to get

things done. Following is a brief introduction of the layers that are working in our project.

The Presentation Layer: Also known as the client layer, this layer is dedicated to

present the data to the user. For example: Windows/Web Forms and buttons, edit boxes, Text

boxes, labels, grids, etc.

The Business Rules Layer: Encapsulation of the Business rules or the business logic is

done at this layer. Advantage of this layer is that any changes in Business Rules can be easily

handled, also if the interface between the layers remains the same, any changes to the

functionality/processing logic in this layer can be made without impacting the other. A lot of

client-server apps failed to implement successfully as changing the business logic was a painful

process.

The Data Access Layer: This layer helps in accessing the Database. If used in the right

way, this layer provides a level of abstraction for the database structures. Simply put changes

made to the database, tables, etc. do not affect the rest of the application because of the Data

12

Access layer. The different application layers send the data requests to this layer and receive the

response from this layer [14][28].

The Database Layer: Database Components such as DB Files, Tables, Views, etc. is part of

this layer [11]. Moreover database can be created using SQL Server, Oracle, Flat files, MS-Access

etc. in an n-tier application; the entire application can be implemented in such a way that it is

independent of the actual Database [14]. For instance, you could change the Database Location

with minimal changes to Data Access Layer. The rest of the application should remain unaffected.

4.1. Overview

Design Goals of the project are made to optimize the performance of the product.

Developers should optimize the code processing and functionalities in the software project [2][29].

For our defect tracking system (DTS) we have decided to meet certain design goals described

below [11][25]:

 Search or submission request or any other activities done through the system in must be

accomplished in less than 5 seconds.

 Menu/page navigation must not take more than 2-3 seconds.

 Reports must be generated in less than 45 seconds

 Oracle database engine will be used to run queries

Architectural Diagram including major subsystems:

This section will describe details of all individual subsystems including User,

Management, Database and System components with their internal connectivity.

13

Figure 6: Subsystem Architecture

4.1.1. User Component

In DTS, we have defined 4 categories of users i.e. Administrator, Manager, Tester,

Developer. Different users have different level of authorization to access data from the system.

These users use application’s user interface to interact with the system and database [14] [15].

4.1.2. Management/Administration Component

System access authorization or we can say Role assignment to use the system to the users is

managed by Management component. Only administrator is allowed to access the management

Component/subsystem to assign managers, testers and developers their tasks and role to access the

system features.

4.1.3. Database Component

Users’ data, Login details, Bug details, Priority list, Solution details are saved in different

tables that are connected with the application [21]. Users can retrieve data from the application

14

using the database components that provide the connectivity to the database (Oracle), firing

queries, viewing tables etc. on the basis of user authorization [11][14][28].

4.1.4. System Request Component

Any requests made to the system ranging from page navigation, searching for bugs,

looking for team members, finding assigned bugs to a team member (tester, developer or manager)

to submit a form, all are managed or maintained by the System Request component. Basically,

this component is responsible for HTTP requests made during client and server side interactions

[25]. This architectural style is very helpful to meet our design goals because all these

components contribute to provide great modularity to the system [11][29]. All our modules are

divided in different subsystem categories as user related information in User Component,

Administration related modules comes user Management component, bugs related information

like, IDs, issues, solutions, priorities are assigned under Database Component and any interaction

made to the system by the user (requests made to the system) is part of System Component

[22][23]. All these components play important role in our DTS (Defect Tracking System)

application that gives flexibility in code development and makes the system robust as proper

modularity is provided using these subsystems/components written above [1][2][28].

4.2. Subsystem Decomposition

This section shows detailed decomposition of all subsystems available in our project

including User, Administration, Database and System Requirement Components. This section

will also clear sun system’s internal connectivity together with Database handling with enhanced

security features.

4.2.1. User Component

This component provides the application interface to make requests to the

database/servers/web-components. Services provided by each subsystem:

15

Figure 7: Facade User

Admin: All role properties are assigned to a user using this subsystem to have access to all

the components, sub-components and modules available in the application.

Manager: This subsystem is serving to assign a manager role to access the data related to

the projects once assigned to a manager user [23].

Developer: This subsystem is to provide access to the user who can view the bugs, priority

level (but cannot edit them), work on the piece of code and mark the bug issue as completed or

under-process etc [3][4][21][23].

Tester: This subsystem serves as role provider to tester who can raise bugs, edit bugs,

report bugs which can be assigned to the developer by managers later.

4.2.2. Management/Administration Component

This component provides the Manager/Admin Roles to make requests to the

database/servers/web-components. Services provided by each subsystem:

Façade User

Admin Role Manager Role Developer Role Tester Role

16

Figure 8: Facade-Management

Role Assignment: This subsystem is used to assign the roles to the users. Roles definitions

are defined under User Component which will be used to give particular authorization to the user

based on his role in the company. Figure 8: Facade-Management

AssigningBugs: Bugs can be raised by the tester working on a project. But which bug will

be resolved by which developer is the task of management [21].

DefineBugPriority: Level of severity of bugs need to be defined by management as well.

Developers act according to the priority level of the bug.

NewProject: Management look for new software projects in which the bugs/Defects

needs to be detected and resolved. This subsystem let the management enter the details of new

projects that can be assigned to different managers later.

Reports: Report generation is a very important aspect that is involved in our DTS project.

Reports are used to generate data of the past work. A history of records can be pulled out using

this subsystem. For Example: list of pending defects (with pending status), resolved defects (with

completed status) and list of all the defects.

RoleAssignment AssigningBugs DefiningBugPriority NewProjects GeneratingReports

Management/Administration-facade

17

4.2.3. Database Component

This component provides the application Interface with Database connections to make

requests to the database components [28]. This component also deals with the security part with

login credentials. Services provided by each subsystem:

DBConnection: This is to provide the database connectivity among the application and

database.

Security: Login details like username, passwords, first and last name and other user

related information required to implement security is placed here. Any changes made to

username/passwords will be stored here as soon as a user made these changes.

UserDetails: Users information, like role, email and contact information is served with

this component

Bug/defects: This subsystem of database is to set and get the information of defects raised

by a tester. Each bug/defect is linked to a particular project in the database.

Figure 9: Facade Database

18

4.2.4. System Request Component

This component provides the application Interface with Search and Submission requests

for report generation. Services provided by each subsystem:

Figure 10: Facade SystemRequest

SearchRequest: This is to provide service to the user (Admin, manager, developer or

tester) to search into the database for required information. For example: A project can be searched

using project name, which will run a query into the database to pull out the information from

various tables to list Project name, start date, End Date and status.

FormSubmissionRequest: There are forms to create a new user, new project, new bug

etc. to make the request to the system [4].

ReportRequest: Reports can be requested from the application using this subsystem[28].

PageNavigation: Pages can be easily navigated using hyperlinks provided on Menu

navigation, table navigation etc. This service is provided by PageNavigation subsystem [21].

FormSubmissionRequest

SystemRequest-Facade

ReportRequest

SearchRequest

19

4.3. Persistent Data Management

In our Defect tracking system, we are using MS Access database for data storage [1]. We

are running database on local machine [25]. Database connectivity is done by following the

regular database connectivity steps [22]. This database is stored on the local machine which is

secured by an username and password. This database can only be accessed using ODBC Data

Sources Workspace using the assigned user and password, thereby enforcing the data security.

Login Details of the users are saved in LOGINDETAILS Table. This data is important

and must be secured from any unauthorized access. This data must be saved or backed up on

separate hard disk drive.

20

5. ENTITY RELATIONSHIP DIAGRAM FOR DTS DATABASE

This entity diagram provides the information of our database schema, relations among

tables including primary keys and other important details required in an ER diagram.

Figure 11: ER Diagram

21

6. OBJECT DESIGN AND IMPLEMENTATION

This section focuses on design Models (Class Diagrams) and description of Data Access

Objects (DAO) [11][24].

One aspect of the business layer is the data access layer that connects the services with the

database. Accessing data varies depending on the source of the data [26]. Access to persistent data

varies greatly depending on the type of storage [18]. The goal is to abstract and encapsulate all

access to the data and provide an interface [20][27]. This is called the Data Access Object pattern.

In a nutshell, the DAO "knows" which data source (that could be a database, a flat file or even a

WebService) to connect to and is specific for this data source (e.g. a OracleDAO might use oracle-

specific data types, a WebServiceDAO might parse the incoming and outgoing message etc.)

[24][26].

From the applications point of view, it makes no difference when it accesses a relational

database or parses xml files (using a DAO)[28]. The DAO is usually able to create an instance of

a data object ("to read data") and also to persist data ("to save data") to the data source [20][24][27].

Data Access Objects (DAOs) [24][26]:

 can be used in a large percentage of applications - anywhere data storage is required.

 hide all details of data storage from the rest of the application.

 act as an intermediary between your application and the database. They move data back

and forth between Java objects and database records [28].

 allow ripple effects from possible changes to the persistence mechanism to be confined

to specific area.

22

6.1. Static Model

Static modeling is used to specify structure of the objects that exist in the problem domain.

These are expressed using class, object and USECASE diagrams [27]. Static Model refers to the

model of system not during run time [23]. This is more structural than behavioral. This includes

classes and it relationships (Class Diagram), Packages etc. For example, the concept of class itself

static. At runtime there is no concept of Class, Sub class etc [26]. Static modelling is a time

independent view of a system. However, Static modelling is supposed to detail what preferably

might happen instead of the numerous possibilities [24]. That’s why, it is more rigid and cannot

be changed. This is the minimal class diagram for our DTS application without any detailed

information about attributes or operations performed by classes [27][28].

Figure 12: Minimal Class Diagram

23

6.1.1. MembersDataAccessObject

Subsystem to which this class belongs: User

This class will take care of the different profiles of users. This class contains four roles of users-

Admin, manager, tester and developer. Each user can view only those features of the

application/system that are assigned to these profiles [14]. This operation is implemented at

the time of Login.

6.1.2. ProfileDataAccessObject

Subsystem to which this class belongs: User

This class is used to register a user. Once a user is registered, it can create, modify or delete a

profile of the user. A login ID will be assigned to each user with their registration status.

6.1.3. AbstractDataAccessobject

Subsystem to which this class belongs: SystemRequest

This class is used to provide an interface in between database and system request. This class

keeps the two different parts of the application isolated from each other. Any changes made to

any part – database or the system itself will not affect each other [14].

6.1.4. SecurityDataAccessObject

Subsystem to which this class belongs: Database

This class consists of all the login details such as password, loginname, logincheck, login audit,

changing password, change question, password recovery etc. This class is responsible to give

authorization to the users by checking their username and password.

24

6.1.5. ProjectsDataAccessObject

Subsystem to which this class belongs: Management.

Projects DAO provide access to add a new project, update, and assign manager to the

project details and list of members involved in the project [20][27]. This class can only be

accessed by administrators with editing authority, other users are allowed for read-only view

[24].

6.1.6. BugDataAccessObject

Subsystem to which this class belongs: Database

The class is used to provide interface to add, edit or delete priorities, bugs; and set

solutions, assign bugs to the users [20].

6.1.7. InitServlet

Subsystem to which this class belongs: SystemRequest

This class comprises java init method that creates the instance of servlets just like constructor.

6.2. Dynamic Model

Dynamic model refers to runtime model of the system. This includes the concept of

Objects, interactions, Collaborations, sequences of operations, Activities, state changes, memory

model etc. Dynamic Modelling is time dependent and more appropriately, it shows what an object

does essentially with many possibilities that may arise [27]. It is flexible but its flexibility is limited

to the design on the system. This section contains Sequence diagrams that shows a particular

scenario of DTS use case, the events that external actors generate, their order, and possible inter-

system events. These System sequence diagrams illustrate how certain tasks are done between

users and the DTS system [29][30].

25

Figure 13: Sequence Diagram-Administrator

26

Figure 14: Sequence Diagram Developer

27

Figure 15: Sequence Diagram Tester

28

6.3. Algorithms (pseudo codes)

This section describes our algorithms for implementing our DAO classes used in our

DTS project [20][24].

a) class BugDAO:

1. This class inherits the properties of AbstractDataAccessObject class.

2. Provides the functionality for adding the priority using

getSequenceID("PRIORITY", "priorityid") and bug.getPriorityName()

mrthods.

3. Provides the functionality for updating the bug priority by using bug.getPriorityID()

Method [21].

4. Also, provides functionality for deleting priority with use of deleteBug(int bugid)

method.

5. Provides functionality for bug solution by getBugSolution(int bugid) and bug

deletion by deleteBug(int bugid) [4][21].

b) class MembersDAO:

6. Provides the functionality for achiving the user profiles using getProfiles(String role)

method.

c) class ProjectsDAO:

7. This class inherits the properties of AbstractDataAccessObject class.

8. Provides the functionality for adding the project using addProject(Project aProject)

method

9. Provides the functionality for updating the project using

pdateProject(Project aProject) method.

29

10. Provides the functionality for getting all the projects using CoreHash getAllProject()

method.

11. Provides the functionality for getting all the aasigned projects using CoreHash

getManagerProjects(String assignedto) method.

12. Provides the functionality for seeing all the members using

getProjectMembers(String manager) method[27].

d) class ProjectsDAOTest:

13. This class is mainly used for testing the available functionalities.

14. Provides the functionality for testing add project methods using void testAddProject()

method.

15. Provides the functionality for testing the updating method for the project

using void testUpdateProject() method.

16. Provides the functionality for testing all the projects using void testGetAllProject()

method.

17. Provides the functionality for testing all the managed projects using void

testGetManagerProjects() method.

18. Provides the functionality for testing all the assigned projects using

voidtestAssignProject() method.

30

7. TESTING PROCESS

Testing is the process of evaluating our DTS and its component(s) with the intent to find

whether it satisfies the specified requirements or not [16].

7.1. Unit and System Tests

In our DTS project we performed Unit Tests and System Tests. Units Tests test individual

single unit like a module or a class to check if it behaves as expected [16]. System Tests test the

entire functionality of our DTS project. This section shows our Test Cases with their purpose and

expected results.

Test Case Id: TC2

Purpose: Check whether the bug is assigned with severe priority or warning

Precondition: int priorityid= aBug.getAssignedTo();

Inputs: Value of priorityid

Expected Results: If priorityid = 1 assign the bug with severe priority else if it is 2 assign

with warning.

Test Case Id: TC1

Purpose: To check the priority of the bug.

Precondition: int priorityid=bug.getPriorityID();

Inputs: Value of priorityid

Expected Results: If priorityid equals 1 then it is severe priority, if priorityid is 2 then

it is warning.

31

Test Case Id: TC3

Purpose: Inserting the value in projectid and projectname.

Precondition: int projectid = aProject.getProjectID() ;

String projectname= aProject.getProjectName()

Inputs: setvalue of projectid and projectname.

Expected Results: if setvalue =1=> enter projectid

If setvalue= 2=> enter projectname.

Test Case Id: TC5

Purpose: Find the status of the project & find to whom it is assigned

Precondition: String projectstatus= aProject.getStatus();

String projectassignedto= aProject.getAssignedTo();

Inputs: Set value of projectstaus & projectassignedto.

Expected Results: if setvalue=5=> getprojectstatus

If setvalue=6=> get projectassignedto

Test Case Id: TC4

Purpose: Inserting the start and ending date of the project

Precondition: String projectenddate= aProject.getEndDate(); String projectstartdate=

aProject.getStartDate();

Inputs: Set value of startdate & enddate

Expected Results: if setvalue = 3 => start date If setvalue =4=> end date.

32

Test Case Id: TC6

Purpose: To find the designation of employee.

Precondition: value= String getRole()

Inputs: String getMemberName();

Expected Results: if this.role= ‘devp’=> member is developer

If this.role=’test’=> member is tester

If this.role=’manage’=> member is manager

Test Case Id: TC8

Purpose: To check the successful or unsuccessful login into the system

Precondition: String loginid = regbean.getLoginID();

String oldpassword regbean.getPassword();

Inputs: int LoginID, String Password

Expected Results: if password = = oldpassword && loginid =’True’=> Successful log

Test Case Id: TC7
Purpose: To get the raiser date of a defect.

Precondition: value= String getRaisedDate();

Inputs: String getBugName()

Expected Results: if this.setDate()=’Startingdate’=> the date on which the bug was raised.

33

Test Case Id: TC9

Purpose: To check the authenticity of the existing user on login.

Precondition: String loginid=regbean.getLoginID();

String password= regbean.getPassword(); String role= “ ”;

Inputs: String loginid, String password, String role.

Expected Results: if loginid=’True’ && oldpassword= =password && role=

‘True’=>authenticate user login.

 Test Case Id TC10

Purpose: Changing of the secret question for security.

Precondition: String loginid= regbean.getLoginID();

String password= regbean.getPassword();

int secretquestid= regbean.getSecretQuestionID();

String

regbean.getOwnSecretQuestion();

String secretans= regbean.getSecretAnswer();

Inputs: String Logingid password;

Int secretquestid;

String ownsecretquest, secretans;

Expected Result: If checkPassword(regbean=’True’ && secretquestid=0) &&

secretquestid= rs.getInt(1); => secret question is changed.

34

7.2. Evaluation of Tests

Testing is one of the main stages in the development process in which we check the

project for the different data sets and to see which the cases in which the project failed are [16].

This helps in deciding which necessary steps that can be taken to make sure that the system is

immune to such kind of data inputs in the future. In our project we have used the above

mentioned test cases. These test cases from TC1 to TC11 test all the important functionalities of

the system and pinpoint the cases which make the system fail.

Our system failed for test cases TC1 and TC2 where, if the priority of the bug was set to

some number other than 1 or 2 then system crashed. To overcome such problem in future we

restricted the input from the user to only 1 and 2 using dropdown list [21]. The table below

mentions the summary of all the test cases; which of them passed and which of them failed along

with the recuperative action that we took to prevent the failing cases.

Test Case Id TC11

Purpose: Recovery of password using existing questions.

Precondition: String loginid=regbean.getLoginID();

Inputs: String loginid,

int secretquestid, int secretans

Expected Result: if int secretquestid= regbean.getSecretQuestionID()

&& int secretans= regbean.getSecretAns() => password is

recovered.

35

Table 1: Evaluation of Tests

Test Case

ID

Pass Fail Comment
TC1 Restricted the user’s input to 1 or 2 by using drop down

list
TC2 Restricted the user’s input to 1 or 2 by using drop down

list

TC3

TC4

TC5

TC6

TC7

TC8

TC9

TC10

TC11

36

8. TABLE AND DIAGRAM DESCRIPTION

This section of DTS covers remaining aspects of design descriptions of projects

which includes Use Cases, tables and Snapshots.

8.1. Use Case Description

This section shows description of various Use Cases implemented during design of

Defect tracking System [25].

Table 2: Use Case for Login

Use Case Login

Actor Admin/Manager, Tester, Developer

Precondition System displays login page to the user

Postcondition
User login successful, if correct user
and password is entered

Main path User opens the browser

 System’s home page is displayed

 System demands for user login

 User enters username and password

 If correct information is entered, user login to

the system successfully

Alternative Login failure if entered information is incorrect

Table 3: Use Case for Add/Edit New Bug

Use Case Add/EditNewBug

Actor Admin/Manager, Tester

Precondition User click on add new defects under ‘defects’
tab

Postcondition User successfully add a new bug/defect or edit

 existing defect

Main path Actor Login to the system

 Go to defects

 Click on view Defects

 Enter new defect or edit existing defect

37

Alternative No access to add/edit defects

Table 4: Check/Update Bug Status

Use Case Check/Update Bug status

Actor Admin/Manager, Tester

Precondition User click on view defects under ‘defects’ tab

Postcondition User successfully view or update bug/defect

Main path Actor Login to the system

Go to defects

Click on view Defects

View defects or make changes existing

defect Changes displayed on view defects

page Alternative No access to check/update the defects to the
user

Table 5: Add/Edit New Priority

Use Case Add/Edit New Priority

Actor Admin/Manager

Precondition User login as admin

Postcondition
User successfully view defects with
added priority

Main path Actor Login to the system

Go to defects

Click on view Defects

Click on Add priority button to add

priority Priority is displayed on view

defects page Alternative No access to add/edit priority to the defects to
the user

38

Table 6: Assign Bug to Employees

Use Case Assign Bug to Employees

Actor Admin/manager

Precondition User login as admin

Postcondition User successfully assigned bugs to employees

(tester/developer)

Main path Actor Login to the system

Go to Organization

Click on view

Members Click on

assign bugs

Assigned bug is displayed on view defects

page

Alternative Failure to access to assign bugs to a user

Table 7: Add New Project

Use Case Add New Project

Actor Admin

Precondition User login as Admin

Postcondition Actor Successfully added new project

Main path Actor Login to the system

Go to Organization

Click on view

Projects Click on

Add New
Added project is displayed on View
Projects
page Alternative Proper access to add a project is not given to
the user

39

Table 8: Add/Update Employee

Use Case Add/Update Employee

Actor Admin/Manager

Precondition User login as admin

Postcondition Actor added new employee successfully

Main path Actor Login to the system

Go to Organization

tab Click on view

members Click on

Add New

Added employee is displayed on View

member page Alternative Proper access to add an employee is not given
to the user

Table 9: Resolve Bug

Use Case Resolve Bug

Actor Developer

Precondition Actor Login as developer

Postcondition Developer successfully mark the bug as
resolved

Main path Actor Login to the system

Go to Defects tab

Click on view

Defect

Change status to resolve

Alternative
Proper access to marl bug status is not given
to the user

40

Table 10: Reports

Use Case Reports

Actor Admin

Precondition Actor Login as Admin

Postcondition Admin view reports successfully

Main path Actor Login to the system

 Go to Reports tab

 Click on pending defects, resolved defects,

or view

 all defects

 Reports are displayed as per of click

Alternative Proper access to ‘view reports’ is not given to
the user

41

8.2. Screen Shots

Figure 16: Snapshot 1 (DTS Login Page)

Figure 17: Snapshot 2 (View Project Page)

42

Figure 18: Snapshot 3 (View Priorities Page)

Figure 19: Snapshot 4 (View Defects Page)

43

Figure 20: Snapshot 5 (View All Defects Page)

Figure 21: Snapshot 6 (Change Password Page)

44

Figure 22: Snapshot 7 (Change Security Question Page)

45

Figure 23: Detailed Class Diagram

8.3. Detailed Class Diagram

This section explains all the attributes and operations of individual classes in detail

together with their internal connectivity. This section describes MembersDAO,

BugDAO,ProjectDAO, SecurityDAO, ProfileDAO, AbstractDataAccessObject and

InitServlet in detail [20].

Figure 23: Detailed Class Diagram MembersDAO

46

8.3.1. Member DAO

This class saves the profiles of different users into the database. It provides the

getprofile() operation which is used to obtain the profile of the user. It also tells us whether

the user is developer, manager, admin or a tester [20][27].

Figure 24: Class MemersDAO

8.3.2. BugDAO

This class is responsible to store the information related to the bugs into the database [21].

Using this class we can perform various operation on the bugs like using addPriority() [20] we

can add the priority to the bug, or we can update the existing priority of the bug using

updatePriority(), deletion of priority can be accomplished through operation deletePriority()[4].

Figure 25: Class-BugDAO

47

Other operations like addBug(), getBugs(), setBugSolution(), assignBug() perform the

same function as the named [24].

8.3.3. ProjectDAO

This class is responsible to do the operation on the projects in the system. Some operations

that this class provides are, addProject() for project addition, updateProject() for making updating

the project, getProjectDetails() to get the details related to the project, getManagerProjects() to get

the managers and their respective projects as assigned to them, assignProject() is used to assign

project to a member entity [20][24].

Figure 26: Class Project DAO

8.3.4. SecurityDAO

This class deals with security aspects of the system. Some operations that this class

provides are, checkPassword() which provides the functionality to checking the password related

to a particular username, loginCheck() which is used to check the login details of a user,

changePassword() which is used to change the password of a particular user, changeQuestion()

48

used for changing the password recovery question [20]. Other important operation provided are

recoverPasswordByExistQuestion() and recoverPasswordByOWNQuestion() [24][26].

Figure 27: Class Security DAO

8.3.5. ProfileDAO

This class provides necessary operation to perform on the profiles of the user.

Some operations that are provided are, registration() which is used to register into the system,

modifyProfile() which is used to modify the existing profile in the system,

changeAccountStatus() which is used to change the status of a profile in the system [24]

Figure 28: Class Profile DAO

49

8.3.6. AbstractDataAccessObject

This class is responsible to provide an interface between the browser and the database.

Some operations that this class provides are, getConnection() to get a connection for the database,

getSequenceID() to get the sequence of the table in the database [24].

Figure 29: Class Abstract DAO

8.3.7. InitServlet

This class provides the init operation which is used to initialize the servlet to help it handles

the requests that encounters from the browser.

Figure 30: Class InitServlet

50

8.4. Coding Standards and UI Guidelines

Introduction: Here we will describe our strategies and approach toward the existing

project design [11][17]. This section of the document provides the key constraints and

nomenclature we followed for the coding and implementation of our system. This portion

clears the coding conventions and guidelines that we followed for our software code [4][29].

So with the help of this document one can understand the key steps and foundation strategies

behind the structuring and implementation of the programming logic and the code structure

[18][30].

Coding Standards: while writing the codes for different logic and their implementation

we have followed the following nomenclature:

1. Class name: all class names started with a capital latter. It can be a combination of

two or more words, every new word starting with a capital latter.

2. Method name: all methods name start with a small latter and can be a combination

of two or more words with starting a new word by capital alphabet (except first

word).

3. Every class contains the descriptive note in its header section, explaining

the functionality and target.

4. Lots of single and multi-level comments sections were used for the

detailed understanding of the code before implementation of a new method.

Indentation, Spacing and Alignment Standards: We have followed the following

three indentation and Spacing approaches:-

1. Precede and follow single and compound delimiters by a space Example: if (a < -b)

2. Precede and follow binary operators by a space. Example: a + b

51

3. Precede unary operators by a space. Example: if (!isValid)

4. Use extra spaces, tabs, and blank lines to align closely related statements and

declarations in adjacent lines.

Example:

double errorPrecision = 0.005; // comments are aligned as well

We have also followed some general conventions. Usually the programmers do for

the good programming practices. We have used following conventions for our

programmable coding units:

Do not use variables of anonymous or implicit types. Example:

Bad Example:

John = new {ID = R10, firstName = "John"};

Good Example:

John = new PersonnelMember(R10, "John");

Use named numbers instead of numeric literals. (e.g., VALUEOFPI for 3.14159)

5. Conceal any information irrelevant to the user of a package through the use of private

and limited types. (i.e. class variables should be declared as private)

6. Handle exceptions at the lowest possible level at which the program can properly

respond to the error. (i.e. exceptions should be caught and handled as soon as possible)

int numberOfItems = 10; // variable names are all aligned

int

numberOfErrors = 5;

// variable values are also

aligned

52

7. Subprograms (functions and procedures) should perform a single logical function. (i.e.

use two different functions to calculate the mean and standard deviation instead of

having one function calculate both)

8. Place all include, import, or similar statements together immediately after the header.

Example:

/* ...

* end of header */

import

java.util.*;

import

java.swing.*;

...

UI Guidelines: It is the only part of the system that is visible to the user so a proper UI

design is an important requisite of any particular system. In development of our defect tracking

system we have followed the following UI guidelines [1] [2] [10][22]:

 Use a consistent design and commands when developing the user interface [15].

 Sequences of actions performed by users should be grouped and designed to provide

closure to a user upon completing those actions [11].

 Design the user interface so that the user feels in control of the system [15]Design the

system to protect users from committing critical errors and include mechanisms

for handling any errors that may occur.

 The interface should provide informative feedback for users in response to their actions.

Coupling and Cohesion: Coupling and cohesion are the two main principles that need

to be followed to make sure that the system performs in an appropriate manner. This makes

53

code more readable and at the end of the day makes it easy to trace down and correct any error

or bug in the system (Code) [21]. The rule of thumb here is to ensure that the system has High

Cohesion and Loose Coupling. Cohesion ensures that there is high level of interaction

between the component of a single module hence makes it self-reliant. On the other hand low

coupling makes sure that there is minimum level of interaction between various modules of the

system thus making sure that the individual modules are not too much reliant on each other and

hence if one module fails it doesn’t affect the other modules working.

54

9. CONCLUSION AND FUTURE WORK

With the results obtained after the evaluation of our test cases, we can conclude that the

concept of DTS is applicable in software engineering domain and should be used to track and

investigate defects with effectiveness [2][17]. Although the data size used is small, the results

show that 9 out of 11 test cases have been passed successfully [19]. Results of 2 test cases

lead to varied output identifying higher number of risks [18]. Over all this DTS is capable enough

to meet most of the proposed system requirements including correct tracking of defects at all

level [25DAO]. Also, at manager and admin level we are successful to have a capability of

generating defect reports and assignments of defects to developers [9]. Our software tool can be

used at any level by developers and project managers to manage the software process depending

on their need of overall defect coverage [4]. It also helps them focus on a particular type of defect

report depending on the use in the project [22].

Our future focus can be on testing our tool for larger data sets at an industrial level where

bug priority can be increased to more than 2 levels and on the generation of a larger report

containing defects of higher level [4][21]. The results were narrowed down for the requirement

and testing process, however this concept can be extended for quality improvement processed of

other activities involved in the SDLC process (like design review, code review, best practices

review etc.) [8][16].

55

REFERENCES

[1] "Defect Logging and Tracking." tutorialspoint,

www.tutorialspoint.com/software_testing_dictionary/defect_logging_and_tracking.htm.

Accessed 1 October 2015.

[2] "Best Practices for Effective Defect Tracking."tutorialspoint, www.seapine.com/papers/best-

practices-for-effective-defect-tracking. Accessed 1 October 2015.

[3] "Comparison of issue-tracking systems." Wikipedia,

www.wikipedia.org/wiki/Comparison_of_issue-tracking_systems. Accessed 3 October 2015.

[4] "15 Most Popular Bug Tracking Software to Ease Your Defect Management Process."

software testing help, www.softwaretestinghelp.com/popular-bug-tracking-software/.

Accessed 3 October 2015.

[5] "Welcome to bug-tracking.info." bug-tracking.info, www.bug-tracking.info. Accessed 6

October 2015.

[6] "Systems architecture." Wikipedia, www.wikipedia.org/wiki/Systems_architecture.Accessed

7 October 2015.

[7] "Systems architectures." Kasse Initiatives, LLC,

www.dtic.mil/ndia/2004cmmi/CMMIT1Mon/Track1IntrotoSystemsEngineering/KISE07Sys

tems Architecturesv2.pdf. Accessed 7 October 2015.

[8] Mukesh Soni, "Defect Prevention: Reducing Costs and Enhancing Quality.",

www.isixsigma.com/industries/software-it/defect-prevention-reducing-costs-and-enhancing-

quality/#comments/artical/writeliving. Accessed 10 October 2015.

http://www.tutorialspoint.com/software_testing_dictionary/defect_logging_and_tracking.htm
http://www.seapine.com/papers/best-practices-for-effective-defect-tracking
http://www.seapine.com/papers/best-practices-for-effective-defect-tracking
http://www.wikipedia.org/wiki/Comparison_of_issue-tracking_systems
http://www.softwaretestinghelp.com/popular-bug-tracking-software/
http://www.bug-tracking.info/
http://www.wikipedia.org/wiki/Systems_architecture
http://www.dtic.mil/ndia/2004cmmi/CMMIT1Mon/Track1IntrotoSystemsEngineering/KISE07Systems
http://www.dtic.mil/ndia/2004cmmi/CMMIT1Mon/Track1IntrotoSystemsEngineering/KISE07Systems
http://www.dtic.mil/ndia/2004cmmi/CMMIT1Mon/Track1IntrotoSystemsEngineering/KISE07Systems
http://www.isixsigma.com/industries/software-it/defect-prevention-reducing-costs-and-enhancing-
http://www.isixsigma.com/industries/software-it/defect-prevention-reducing-costs-and-enhancing-

56

[9] Sultan, Torky. "A Proposed Defect Tracking Model for Classifying the Inserted Defect

Reports to Enhance Software Quality Control, Aug.2013,

www.ncbi.nlm.nih.gov/pmc/articles/PMC3766546. Accessed 11 October 2015.

[10] "Bug and Defect Tracking Tools." aptest, www.aptest.com/bugtrack.html. Accessed 11

October 2015.

[11] "Access: Database Design." YouTube, uploaded by Trainer Lori, 24 Feb 2012,

www.youtube.com/watch?v=edFALnG3Amo.

[12] "JSPs and Servlets Tutorial 01 - Setting up." YouTube, uploaded by Java Brains, 28 April

2011, www.youtube.com/watch?v=b42CJ0r-1to&list=PLE0F6C1917A427E96.

[13] "Top Bug Tracking Software Products." Capterra, www.capterra.com/bug-tracking-

software. Accessed 15 October 2015.

[14] "How to Build and Deploy an Issue Tracking Application." Oracle Help Center,

docs.oracle.com/cd/E14373_01/appdev.32/e13363/issue_track_ui.htm#HTMAD014.

Accessed 16 October 2015.

[15] "Eclipse for JSP 1.2: How to Install Apache Tomcat on Windows 10." YouTube,

uploaded by Jeremy Druin, 6 Jan 2016, www.youtube.com/watch?v=HhI2CDrlGOI.

[16] "What is Software Testing All About?" Software Testing Help,

www.softwaretestinghelp.com/what-is-software-testing-all-about/. Accessed 18 October

2015.

[17] "Web-based application development: a software engineering approach.

dl.acm.org/citation.cfm?id=571949&dl=ACM&coll=DL. Accessed 21 October 2015.

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3766546
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3766546
http://www.aptest.com/bugtrack.html
http://www.youtube.com/watch?v=edFALnG3Amo
http://www.youtube.com/watch?v=edFALnG3Amo
http://www.youtube.com/watch?v=b42CJ0r-1to&list=PLE0F6C1917A427E96
http://www.youtube.com/watch?v=b42CJ0r-1to&list=PLE0F6C1917A427E96
http://www.capterra.com/bug-tracking-
http://www.youtube.com/watch?v=HhI2CDrlGOI
http://www.softwaretestinghelp.com/what-is-software-testing-all-about/
http://www.softwaretestinghelp.com/what-is-software-testing-all-about/
http://www.softwaretestinghelp.com/what-is-software-testing-all-about/
http://www.softwaretestinghelp.com/what-is-software-testing-all-about/

57

[18] "Web-based application development: a software engineering approach,

www.researchgate.net/publication/220613119_Webbased_application_development_a_soft

ware_engineering_approach. Accessed 1 January 2016.

 [19]" A principled approach to software

engineering"http://www.adacore.com/knowledge/technical-papers/a-principled-approach-to-

software-engineering/ Accessed 18 February 2015.

[20] "Data access object." Wikipedia, www.wikipedia.org/wiki/Data_access_object, 20 Feb

2016

[21] "Bug Tracking System." Wikipedia, www.wikipedia.org/wiki/Bug_tracking_system, 5 Mar

2016

[22] "Tracking Tools." www.templatemonster.com/blog/top-10-bug-tracking-tools-of-2014/, 25

Mar 2016

[23] "What is bug and issue tracking tools." www.atlassian.com/software/jira/bug-tracking,10

Apr 2016

[24] "Data Access Objects." www.oracle.com/technetwork/java/dataaccessobject-

138824.html,21 Apr 2016

[25] "Issue Tracking Tools." opensource.com/business/16/2/top-issue-support-and-bug-tracking-

tools, 15 May 2016

[26] "Data Access Object patterns."

www.tutorialspoint.com/design_pattern/data_access_object_pattern.htm, 25 May 2016

[27] "Data Access Objects." Best Practice Software, best-practice-software-

engineering.ifs.tuwien.ac.at/patterns/dao.html, 15 June 2016

58

[28] "Create a bug tracking application." docs.sitefinity.com/tutorial-create-a-bug-tracker-

application, 21 June 2016

[29] "How to Build and Deploy an Issue Tracking Application" Application Express

AdvancedTutorial,docs.oracle.com/cd/E14373_01/appdev.32/e13363/issue_track_ui.htm#H

TMAD014, 5 July 2016

[30] "Bug Tracking Guidelines.", bug-tracking-guidelines.com/, 20 Aug 2016

59

APPENDIX

 Administrator: He is the person who has the whole authority over the system.

 Developer: He is the person who is responsible to solve the raised bugs.

 Tester: He is the person who is responsible to check the system and raise the bugs as

encountered.

 Manager: Manager is the person whose role is to supervise the developers and testers

under him/her.

 Defect: Defect can be defined as any anomaly that can disrupt the normal functionality of

the system.

 Bug: Bug and defect are used interchangeably in our project.

 Tracking: Tracking means to trace down the life cycle of the bug through its resolution

cycle [4].

 Software Reliability: Reliability of a software means how immune is the software

against the crashes and how well is the data preserved in case of one.

 SDLC: Software development life cycle is the stages through which the software

passes before it is completely deployed at the user’s end [18].

 UML: Unified modeling language

 Façade: It is the design patter that ensures that the data libraries can be used more

effectively and efficiently [2].

 Subsystem: It is the part of system that performs some specific function.

 Component: Component is again a part of the system which provides some specific

functionality.

 Class: Class is a group of data and embedded functions

60

 Module: Module is part of the subsystem which interact together to make system work.

 System Request: Request made to the server via system.

 Database: The collection of all the data in a system

 Roles: Role defines the access rights in a system. Each role has a specific set of rights

assigned to it.

 HTTP: Hyper Text Transfer Protocol

 Security: Security authorizes user in logging into the system.

