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ABSTRACT

This dissertation uses Barndoff-Nielsen and Shephard (BN-S) models to model swap, a type

of financial derivative, and analyze geophysical data for estimation of major earthquakes. From

empirical observation of the stock market activity and earthquake occurrence, we observe that the

distributions have high kurtosis and right skewness. Consequently, such data cannot be captured

by stochastic models driven by a Wiener process. Non-Gaussian processes of Ornstein-Uhlenbeck

type are one of the most significant candidates for being the building blocks of models of financial

economics. These models offer the possibility of capturing important distributional deviations

from Gaussianity and thus these are more practical models of dependence structures. Introduced

by Barndorff-Nielsen and Shephard these processes are not only convenient to model volatility in

financial market, but have an independent interest for modeling stationary time series of various

kinds. For the financial data we use BN-S models to price the arbitrage-free value of volatility,

variance, covariance, and correlation swap. Such swaps are used in financial markets for volatility

hedging and speculation. We use the S&P500 and NASDAQ index for parameter estimation and

numerical analysis. We show that with this model the error estimation in fitting the delivery price

is much less than the existing models with comparable parameters.

For any given time interval, the earthquake magnitude data have three main properties:

(1) magnitude is a non-negative stationary stochastic process; (2) for any finite interval of time

there are only finite number of jumps; (3) the sample path of the magnitude of an earthquake

consists of upward jumps (significant earthquake) and a gradual decrease (aftershocks). For such

geophysical data we specifically use Gamma Ornstein Uhlenbeck processes driven by a Lévy process

to estimate a major earthquake in a certain region in California. Rigorous regression analysis is

provided, and based on that, first-passage times are computed for different sets of data. Both

applications demonstrate the significance of BN-S models to phenomena that follow non-Gaussian

distributions.
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1. INTRODUCTION

A financial security is a financial contract whose value at expiration is determined by the

price process of the underlying assets. A derivative is a financial security whose price depends upon

or is derived from one or more underlying assets. There are two types of derivitatives: options and

forwards. An option is a contract to buy or sell a financial product at a designated date, over a fixed

period of time. An option gives the buyer (the owner or holder) the right, but not an obligation,

to buy or sell an underlying asset or financial instrument at a price specified in the contract,

which is called strike price, at a fixed period. Option pricing in stochastic volatility models of

the Ornstein-Uhlenbeck (OU) type is discussed in detail by Barndorff-Nielsen and Shephard (BN-

S) in 1997. This research has changed how financial data is modeled, including option pricing.

Moreover, BN-S models have an interesting feature that captures stock volatility and stationary

distributions. A forward contract is similar to an option that obliges the buyer to exercise the

contract at the specified period of time. A swap is a financial derivative in which two counter

parties agree to exchange future cash flow, where at the begining of the contract the size of the

cash flow is determined. Swap is first introduced in the 1980s, and is an agreement between two

financial sectors to exchange cash flow at one or several future dates as defined in [65]. Swap is

used to hedge and speculate on stock price. For example, volatility swap gives traders an exposure

to profit from the risk of increase or decrease in the volatility of the stock, or hedge against these

volatility risks. The four types of swaps, in order of their quantitative importance are listed below.

• An interest rate swap allows two parties to exchange a fixed and floating cash flow on

investments or loans held by either parties. The most popular type of interest rate swap is

the plain vanilla swap that allows two companies to exchange cash flow based on interest rate

of the same currency: i.e., fixed versus floating interest rate on a fixed date.

• A currency swap is a contract based on two currencies. An example can be an American

company that wants to expand in Europe, and a European company that wants to expand in

America. Moreover, assume the interest rate to buy a currency for domestic and international

is different. At this point, these two companies agree to exchange the interst rate to buy

1



currency.

• A commodity swap is commonly used among companies or people that use finished products

or raw materials. The commodity swap is usually used to hedge against the price of a

commodity. The most common commodity swap is observed in the oil market.

• A credit default swap deals with insurance for a third-party borrower.

Figure 1.1. How does swap work.

In Figure 1.1, we see how swap works between two companies (company A versus company

B), to exchange cash flow based on fixed and floating interest rate. It literally means that, at

the end of the contract, if the volatility of the market surges, then company A is obliged to pay

company B the difference between fixed and floating interest rate. Likewise, if the volatility of the

market falls, then company A is going to get back the difference between fixed and floating interest

rate.

There are many other types of swaps including volatility, variance, covariance, and correla-

tion. These are forward contracts whose value is determined at the begining of the contract.

Variance, volatility, covariance, and correlation swap have been an active research area

within quantitative finance since the publication of Black-Scholes (BS) equation in [10]. Researchers

devote a lot of time in expanding the Black-Scholes equation for pricing call and put options of a

financial market. One of the drawbacks of Black-Scholes formula is the assumption of normality

of the stock return which commonly has a right tailed distribution. This was remedied in the late

2



1980s and early 1990s using a class of infinitely divisible distributions known as Levy processes.

Levy processes have a higher kurtosis and skewness than that of the Normal distribution. Since

then they have been refined to take into account different variations of the Black-Scholes model

and different models of the market. The Black-Scholes model also assumes that the volatility is

constant, which is unrealistic given the empirical observations of the log-return. These problems

have been addressed in several models. Volatility is assumed to be a deterministic function of time

(σ = σ(t)). Volatiltiy is assumed to be a function of time and current level of the stock, which

mathematically means, σ = σ(t, St) which is known as a local volatility. The volatility of the

log-retun of the market can be also made more realistic by incorporating stock movement from a

designated period of time, which means σ = σ(t, S(t − τ))τ∈[−θ,0], θ > 0. These and others are

natural extensions of a model in which volatility is a function of stochastic process.
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Figure 1.2. Closing Price of the S&P500 Stock Price from 2010 to 2015.
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From Figure 1.2, we can observe a pattern of the stock price movement. First, we can clearly

see that the stock price has a mean reverting property. Second, given any finite time interval, the

distribution of the stock movement is stationary and makes big jumps followed by an exponential

decay. Stationary distributions driven by a subordinator have the ability of capturing the big jumps.

In this dissertation we focus on modeling realized variance, volatility, covariance and correlation of

the above stock dynamics. Volatility is an important element in determining the stock movement.

The higher the volatility is the riskier the market. Volatility swap gives investors an exposure of

profiting from the increase or decrease in the stocks movement or to hedge against these risks. Here

we define two types of volatility swap and conclude this chapter by reviewing literature.

1.1. Types of Volatility

1.1.1. Historical Volatility

Historical volatility is the volatility that is calculated based on the underlying stock, as it

is determined in terms of the annualized standard deviation of the stock price. It is also called

statistical volatility, as it calculates how much the volatility is moving during a certain time interval.

It is the standard deviation calculated using historical price data (daily, weekly, monthly, quarterly,

and yearly). The log returns over a one-year period is called the annualized volatility. Historical

volatiltiy is important in comparing the volatiltiy of one stock with the volatility of other stocks.

We can mathematically represent historical volatility as

σ =

√√√√ 1

n− 1

n∑
i=1

(Ri − R̄)2, (1.1)

where the log-return Ri = log
(

(St)i
(St)i−1

)
, and (St)i is the closing stock price at time ti for i =

1, 2, . . . , n, and R̄ is the mean of the log-return. Log-return of the stock is assumed to be standard

normal distribution and therefore R̄ = 0.

1.1.2. Implied Volatility

Despite the fact that future volatility is not directly observable in the market, it is possible

to extract the market expectation of future volatility from the options traded on public exchange (or

over the counter). Such estimation is called Implied volatility. The Implied and historical volatility

have two major differences. Historical volatility is directly measured by the recent movement of the

4



price of the stock over a given time (day, weeks, or yearly). Implied volatility, on the other hand,

is set by the market price of the derivative contract. BS equation gives the implied volatility of the

option.

The BS frame-work is first introduced in [10]. Since then, it has become an important model

in option pricing. The BS model assumes that the stock price St follows a Geometric Brownian

motion which is given by

dSt = µStdt+ σStdWt, (1.2)

where the diffusion µ is the annualized expected return on the stock, σ measures the annualized

stock volatility and Wt is the standard Wiener process. In this case, we call St is driven by a

Wiener process.

1.2. Recent Developments in Swaps

Recent literature on valuing volatility and variance swap is growing fast. We outline a brief

overview of recent developments in this area. In [8] the authors investigate swaps written on powers

of realized volatility in the stochastic BN-S models. In that paper, a formula for the realized variance

is derived and the swap price dynamics is represented in terms of Laplace transforms. In [68] the

author gives analytic approach for pricing discretely sampled generalized variance swaps under the

stochastic volatility models with simultaneous jumps in the asset price and variance processes.

An analytical approximation for the valuation of volatility swaps and analyze other options with

the provided analytic estimation is given in [16]. In [29] the authors have discussed the valuation

and hedging of volatility swaps within the frame of a GARCH(1,1) stochastic volatility model. A

general partial differential equation approach is utilized to determine the first two moments of the

realized variance in a continuous or discrete context. This information is used to approximate the

expected realized volatility via a convexity adjustment.

A new probabilistic approach using the Heston model to study variance, volatility, covari-

ance and correlation swaps for financial markets is given in the work by [60]. As an application, the

authors provide a numerical example using S&P60 Canada Index to price swap on the volatility.

In [61, 59] variance swaps for financial markets with underlying asset and stochastic volatility with

delay are considered. They provide some analytical closed form expressions for expectation and

variance of the realized continuously sampled variance. The variance swap is evaluated with delay

5



both in a risk-neutral world and in the physical world. An upper bound for delay as a measure of

risk is obtained and applications two numerical examples using S&P60 Canada Index (1998-2002)

and S&P500 Index (1990-1993) are provided to price variance swaps with delay. As observed in

[61], variance swap for stochastic volatility with delay is similar (but with more parameters) to

variance swaps for stochastic volatility in Heston model.

In [62] the authors present a variance drift-adjusted version of the Heston model which

leads to a significant improvement of the market volatility surface fitting compared to Heston

model. This model has two additional parameters compared to the Heston model and, thus, it can

be implemented very easily. The main idea of the proposed model is to take into account some

past history of the variance process. They used the change of time method for continuous local

martingales to derive a closed formula for the approximation of the volatility swap price. In [15]

the authors investigated the effect of discrete sampling and asset price jumps on fair variance and

volatility swap strikes. Fair discrete volatility and variance delivery prices (strikes) are derived in

different models such as the Black-Scholes model, the Heston stochastic volatility model, the Merton

jump-diffusion model and the Bates and Scott stochastic volatility and jump model. The fair

discrete and continuous variance and volatility strikes for these models are determined analytically

using variance reduction and numerical integration techniques. It was found that the effect of

discrete sampling is typically small while the effect of jumps can be significant.

In [32] a model-independent lower bound on variance swap is derived. In [23] a theory

of robust pricing and hedging of a weighted variance swap is developed given market prices for

a finite number of co-maturing put options. Assuming no arbitrage for the put option prices, no

arbitrage bounds on the weighted variance swap is deduced along with super and sub replicating

strategies that enforce them. It is shown in that paper that the market quotes for variance swaps

are very close to the model-free lower bounds. The main tool that is used in [23] is Föllmer’s path

wise stochastic calculus. In [17] the authors develop strategies for pricing and hedging options

on realized variance and volatility. These combined strategies have nice features such as readily

available inputs, comprehensive and readily computable outputs, accuracy and robustness, and easy

modification to price and hedge options on implied volatility. In [25] the author used Barndorff-

Nielsen and Shephard model to value variance, volatiliy, covariance, and correlation swap. In [19] it

is proved that a multiple of a log contract prices a variance swap, under arbitrary exponential Lévy
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dynamics, stochastically time-changed by an arbitrary continuous clock having arbitrary correlation

with the driving Lévy process, subject to integrability conditions. The valuations in some cases

admit enforcement by hedging strategies which perfectly replicate variance swaps by holding log

contracts and trading the underlying assets. In a further note [18], the work in [19] is extended

with G-variation, which generalizes power variation. In [18] quadratic variation is generalized to

G-variation, and the share-weighted payoff problems are solved. Also, the tools developed in [18]

are used to analyze and minimize the risk in a family of hedging strategies for G-variation.

Covariance swaps are a generalization of the variance swap. Covariance and correlation

swaps for financial markets with Markov-modulated volatility are analyzed in [50]. Stochastic

volatility driven by two-state continuous Markov chain are considered and numerical examples

are presented for two volatility indexes, VIX and VXN, for that case. In [33] pricing of derivatives

written on the discretely sampled realized variance of an underlying security is considered. Two new

methods are proposed to evaluate the prices of options on the discretely sampled realized variance.

The first method is based on correcting prices of options on quadratic variation by asymptotic

results and the other method is exact that uses Fourier-Laplace techniques. In [56, 57] analytical

methodology is developed for pricing and hedging options on the realized variance under the Heston

model augmented with jumps in asset returns and variance. Moreover they analyzed the effect of

the discrete sampling is analyzed on the valuation of options on the realized variance in the Heston

model. A method of mixing is proposed and accurately approximates the distribution of discrete

variance in the Heston model. Semi-analytical Fourier transform methods are applied for pricing

shorter-term options on the realized variance. In [27] a forward characteristic function approach

is implemented to price variance and volatility swaps and options on swaps that are defined via

contingent claims whose payoffs depend on the terminal level of a discretely monitored version of

the quadratic variation of some observable reference process.

One of the main challenges in the research on volatility, variance or covariance swaps is to

obtain a closed form pricing expression that can be accurately computed. The model should not

incorporate a large number of parameters to slightly improve the existing results. On the contrary,

if the major improvement over the existing results is possible with almost the same number of

parameters as in the existing models, then it would be a significant improvement. This will also

demonstrate the superiority of the new model. To this end, in this dissertation we consider Non-
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Gaussian processes driven by Lévy process. These processes have significant potential as building

blocks for stochastic models of time series in finance. Such models are mathematically tractable and

it is possible to build compelling stochastic volatility models using Ornstein-Uhlenbeck processes

to represent volatility. It is also well-known that log-returns from these types of models share many

common properties with familiar discrete time GARCH models. In our work we use the Barndorff-

Nielsen and Shephard model for stock and volatility dynamics and implement that to obtain the

arbitrage free pricing of variance, volatility, covariance, and correlation swaps. For the model we

obtain closed form expressions for the arbitrage-free pricing of variance, volatility, and covariance

swap and an approximation solution for correlation swap. Moreover, we show that such expressions

depend only on various cumulants of the driving Lévy process. This model has the same (or in

some cases one more) number of parameters as the Heston model and, thus, this model can be

implemented very easily. Moreover, it is shown that the error estimation for this model in fitting

the fair delivery price is much less than existing models. Thus, the models and pricing formulas

proposed in this dissertation are simple to compute and more accurate than similar models and

hence can be efficiently used in practical applications.

Finally, we have extended the Gamma-Ornstein-Uhlenbeck process, to model and analyze

geophysical data. Such non-Gaussian Ornstein–Uhlenbeck processes offer the possibility of captur-

ing important distributional deviations from Gaussianity and make the model flexible of dependence

structures. It is shown that the Gamma-Ornstein–Uhlenbeck process is a possible candidate for

earthquake data modeling. Rigorous regression analysis is provided and based on that the first-

passage times are computed for different sets of data. It is shown that this model may be used to

estimate parameters related to some major events namely major earthquakes. A detailed introduc-

tion and literature review toward modeling major earthquakes is given in the last chapter.

The structure of this dissertation is as follows. In Chapter 2 we give brief introduction to

the variance, volatility, covariance and correlation swap using the Hull-White Model when the stock

price follows Geometric Brownian motion. In addition, we discuss overview of pricing procedure

swap when the market and volatility dynamics are driven by Gaussian processes. In Chapter 3 the

Barndorff-Nielsen and Shephard (BN-S) model for stock and volatility dynamics is introduced and

derived the log cumulant function and characteristic function when the volatility is driven by BDLP

or subordinator. In Chapter 4, we derived the main result of variance and volatility swap if the

8



stock dynamics follows BN-S model and also used the S&P500 index to estimate model parameters

and compared our model with others such as Hull-White model and Heston model. In Chapter

5, we have extended the BN-S model to find the covariance and correlation swap for two assets.

Finally in Chapter 6, we derived a model to estimate a major earthquake using Ornstein-Uhlenbeck

(OU) process for a certain regions in California.
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2. THE HULL -WHITE MODEL FOR DERIVING SWAP

2.1. Introduction

In mathematical finance, the Hull-White model is used to model future interest rate. The

Hull–White model is introduced by John C. Hull and Alan White in 1990, and it is still one of

the popular models in capturing interest rates. The Hull-White model extends the Vasicek and

Cox-Ingersoll-Ross (CIR) models. It has a short term mean revertion (mean reversion is a theory

suggesting that prices and returns eventually move back towards the long term mean or average).

In this chapter we consider that a stock dynamic follows a Geometric Brownian motion and it is

given by equation (2.1) as described below. The volatility square of the log-return of the stock

dynamics follows the Hull-White model given in equation (2.2). Since the Hull-White model treats

the log-return of the stock price as a standard normal distiribution, its short-term average is zero.

This model is demonstrated to value the price of variance, volatility, covariance, and correlation

swap.

dSt = St(rdt+ σtdW
1
t ). (2.1)

Where r is the risk-free interest rate, W 1
t is the standard Wiener process, and σt is the

volatility of the stock at a given time t, this is given by

dσ2
t = κσ2

t dt+ ζσ2
t dW

2
t , κ < 0. (2.2)

Where κ and ζ are real numbers, and W 1
t and W 2

t are independent Wiener processes. The

instantaneous variance of the log-return is found by taking the variance of (2.1) which is given by

V ar(rdt+ σtdW
1
t ) = σ2

t dt. (2.3)
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2.2. Variance and Volatility Swap

2.2.1. Variance Swap

Definition 2.2.1. Variance swap is a forward contract in which two counter parties exchange cash-

flow on future realized price which is set at the initiation of the contract. The payoff of a variance

swap at maturity is given by

N(σ2
R(S)−Kvar), (2.4)

where N is the notional amount of the swap in dollar per annualized volatility point. The holder of

the variance swap receives N dollars for every time where the stock realized variance exceeds the

variance delivery price. σ2
R(S) is the realized variance is the average of the instantaneous variance

which is given by

σ2
R(S) :=

1

T

∫ T

0
σ2
sds, (2.5)

and Kvar is the delivery or exercise price for the variance swap. Valuing a variance forward price

is the same as that of other derivatives. The value of a variance swap price P at expiry is given by

the expected present value of a future payoff in the risk-neutral world.

Pvar = E(e−rT (σ2
R(S)−Kvar)). (2.6)

In the above expression r is the risk free interest rate and T is the exercise or expiry time.

Here we assume the notional amount to be one for convenience purposes.

To value the price of the variance swap, we need to calculate the expected value of the

realized variance. Moreover, we need to solve equation (2.2) completely. Notice that the variance

of the market varies with the variance of the stock price and if we divide equation (2.2) by σ2
t and

integrate from 0 to t, then

∫ t

0

dσ2
s

σ2
s

=

∫ t

0
κds+

∫ t

0
ζdW 2

t

σ2
t = σ2

0 exp

(
(κ− 1

2
ζ2)t+ ζW 2

t

)
. (2.7)

The exponential part of the above equation indicates a shifted Gaussian distribution. Using
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Itô’s lemma, E(eXt) = exp(E(Xt)+ 1
2V ar(Xt)) where Xt is a Brownian motion, we get the expected

value of equation (2.7)

E(σ2
t ) = σ2

0e
κt. (2.8)

The expected value of the realized variance is

E(σ2
R(S)) =

1

T

∫ T

0
E(σ2

s)ds

=
1

T
σ2

0

∫ T

0
eκtdt

=
σ2

0

κT

(
eκT − 1

)
. (2.9)

Theorem 2.2.2. The arbitrage free price of the variance swap for the Hull-White Model is given

by

Pvar = e−rT
(
σ2

0

κT

(
eκT − 1

)
−Kvar

)
. (2.10)

2.2.2. Volatility Swap

Definition 2.2.3. Volatility swap is a forward contract on the future realized volatility of a given

underlying asset.

Volatility is a statistical term which is a standard deviation of the stock return. From basic

statistics definition we know that volatility is square root of variance, hence the realized volatility

is given by

σR(S) :=

√
1

T

∫ T

0
σ2
sds. (2.11)

Volatility is an important element in determining whether one stock is risky or not. A high

volatility implies the security is risky and we may not want to invest in such security. On the other

hand, if the volatility is low, this means the stock is less risky, so it is good to invest in such security.

Volatility swap allows investors to trade the volatility of an asset directly, as much as they would

trade in price index. The payoff of a volatility swap at the trading date or maturity time T is given

by

N(σR −Kvol), (2.12)
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where N is the notional amount in dollar per annualized volatility point, σR is the realized volatility

of the stock which is given by equation (2.11), and Kvol is the annualized volatility delivery price.

The holder of the volatility swap at expiration receives N dollars for every point by which the

stock’s realized volatility σR has exceeded the exercise price Kvol. The price of the volatility swap

is the expected value of the present payoff in the risk neutral-world and is given by

Pvol = E
[
e−rt(σR −KVol)

]
, (2.13)

where r is the risk free interest rate and E(.) is the expectation with respect to some risk-neutral

measure. To find the price of the volatility swap in a risk neutral world, we need to find the

expected value of the realized volatility σR as it is the only random in equation (2.13). We observe

E(σR) = E(
√
σ2
R). (2.14)

It is not usually easy to find the expected value of a square root function. However, using

second degree Taylor series approximation around its mean is given by

E(
√
σ2
R) ≈

√
E(σ2

R)−
Var(σ2

R)

8(E(σ2
R)3/2

. (2.15)

Basic statistical definition of variance gives

Var(σ2
R) = E((σ2

R)2)− (E(σ2
R))2. (2.16)

To evaluate equation (2.15) for Hull-White model, it remains to find the expected value of

(σ2
R)2, which is given by the lemma below.

Lemma 2.2.4. For any given time s , t and given variance of the stock by equation (2.7),

E(σ2
t σ

2
s) = (σ2

0)2exp(κ(s+ t) + ζ2(t ∧ s)), (2.17)

where t ∧ s = min(t, s).
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Proof. Without loss of generality we can assume that s < t. Then using equation (2.7) we have

E(σ2
t σ

2
s) = (σ2

0)2exp

[
(κ− 1

2
ζ2)(s+ t)

]
E
[
eζ(W

2
t +W 2

s )
]

= (σ2
0)2exp

[
(κ− 1

2
ζ2)(s+ t)

]
E
[
eζ(W

2
t −W 2

s )
]
E
[
e2ζW 2

s

]
= (σ2

0)2exp(κ(s+ t) + ζ2s). (2.18)

Hence the lemma is proved .

Lemma 2.2.5. The expected value of the square of the realized variance is given by

E
[
(σ2
R)2
]

=
2(σ2

0)2

T 2(κ+ ζ2)

[
1− eκT

κ
− 1− e(2κ+ζ2)T

2κ+ ζ2

]
. (2.19)

Proof. We know that

σ2
R =

1

T

∫ T

0
σ2
t dt, (2.20)

which gives

(σ2
R)2 =

1

T 2

∫ T

0

∫ T

0
σ2
t σ

2
sdsdt. (2.21)

Using Lemma (2.2.4) and the fact that the double integral is invariant while the variables

s and t are interchangeable, we obtain

E
[
(σ2
R)2
]

= E

[
1

T 2

∫ T

0

∫ T

0
σ2
t σ

2
sdsdt

]
=

1

T 2

∫ T

0

∫ T

0
E(σ2

t σ
2
s)dsdt

=
2(σ2

0)2

T 2

∫ T

0

∫ t

s=0
exp(κ(s+ t) + ζ2s)dsdt

=
2(σ2

0)2

T 2(κ+ ζ2)

[
1− eκT

κ
− 1− e(2κ+ζ2)T

2κ+ ζ2

]
, (2.22)

which gives as desired.

Using equation (2.16) it can be easily shown that the realized variance of the underlying
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asset is given by

Var(σ2
R) =

2(σ2
0)2

T 2(κ+ ζ2)

(
1− eκT

κ
− 1− e(2κ−ζ2)T

2κ+ ζ2

)
−
[
σ2

0

κT
(eκT − 1)

]2

. (2.23)

Theorem 2.2.6. The arbitrage free price of volatility swap for the stock dynamics (2.1) and volatil-

ity dynamics (2.2) is given by

Pvol ≈ e−rT
((√

σ2
0

κT
(eκT − 1)−

Var(σ2
R)

8(
σ2
0

κT (eκT − 1))3/2

)
−KVol

)
, (2.24)

where Var(σ2
R) can be obtained from (2.23).

2.3. Covariance and Correlation Swap

Covariance and correlation swaps are among the recent financial derivatives used to hedge

and speculate using two different financial underlying assets. For example, options dependent

on the movement of exchange rate, such as those who pays different currency other than the

underlying currency. Such exposure to currency swaps lead to a correlation between the assets and

exchange rate. This risk can be eliminated by using a covariance swap. Covariance (Correlation)

swap is a forward contract on the stocks realized covariance (correlation) respectively. Covariance

(correlation) swap pays the difference between an implied covariance (correlation) respectively and

the realized pairwise covariance (correlation) stock prices.

2.3.1. Covariance Swap

Definition 2.3.1. A covariance swap is a forward contract on the underlying stocks S1 and S2 in

which the payoff at the maturity is given by the formula

N(covR(S1, S2)−Kcov). (2.25)

The value of the covariance forward swap price P on a future realized covariance with a

strike price Kcov is the expected value of the future payoff in the risk-neutral world, is given by

P = E{e−rT (covR(S1, S2)−Kcov)}, (2.26)

where r is the risk free interest rate, Kcov is the strike or exercise price of covariance swap and
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covR(S1, S2) is the realized covariance of the two stock prices. From the above equation all other

terms are constant except covR(S1, S2) which can be calculated using the definition of quadratic

variation. If the stocks dynamics of the two assets follow an exponential Brownian motion

dSit = Sit(r
idt+ σitd(W 1

t )i) i = 1, 2, (2.27)

where σit is the volatility of the log-return which follows the Hull-White model as

d(σ2
t )

1 = κ1(σ2
t )

1dt+ (ζ)1(σ2
t )

1dWt, κ1 < 0, (2.28)

and

d(σ2
t )

2 = κ2(σ2
t )

2dt+ (ζ)2(σ2
t )

2dŴt, κ2 < 0. (2.29)

and the two driving Wiener process are related by

dŴt = ρ2dWt +
√

1− ρ2dW̃t, (2.30)

where ri is the fixed interest rate of the ith stock, and ζ is constant real number and Ŵt, Wt and

W̃t are related by the above equation (2.30), and Wt and W̃t are independent standard Wiener

processes. Then one can calculate the realized covariance as

covR(S1
T , S

2
T ) =

1

T

[
lnS1

T , lnS
2
T

]
=

1

T

∫ T

0
σ1
t σ

2
t dt. (2.31)

The square bracket [, ] is the quadratic covariation of the two stocks and the solution of the

above model is given by equation (2.28) is

(σ2
t )

1 = (σ2
0)1 exp

(
(κ1 − 1

2
(ζ2)1)t+ ζ1Wt

)
. (2.32)

The solution of equation (2.29) and using (2.30) which is given by

(σ2
t )

2 = (σ2
0)2 exp

(
(κ2 − 1

2
(ζ2)2)t+ (ζ2)(ρ2Wt +

√
1− ρ2W̃t))

)
. (2.33)
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Now if we multiply the two above volatility square models we get

(σ2
t )

1(σ2
t )

2 = (σ2
0)1(σ2

0)2eφ(t), (2.34)

where

φ(t) = (κ1 + κ2)t− 1

2
((ζ2)1 + (ζ2)2)t+ (ζ1 + ζ2ρ2)Wt + ζ2

√
1− ρ2W̃t, (2.35)

and φ(t) is a shifted Brownian motion and remember that Wt and W̃t are independent, which makes

it easier to calculate the mean and variance of φ(t) which is given by

E(φ(t)) = (κ1 + κ2)t− 1

2
(ζ1 + ζ2)t, (2.36)

and

V ar(φ(t)) =
(
(ζ1 + ζ2ρ2)2 + (ζ2(1− ρ2))2

)
t. (2.37)

Applying Itô’s lemma and let

g(κ, ζ) = (κ1 + κ2)− 1

2
(ζ1 + ζ2) (2.38)

and

h(ζ, ρ) =
(
(ζ1 + ζ2ρ2)2 + (ζ2(1− ρ2))2

)
, (2.39)

the expected value of equation (2.35) is

E((σ2
t )

1(σ2
t )

2) = (σ2
0)1(σ2

0)2 exp

(
E(φ(t)) +

1

2
V ar(φ(t))

)
= (σ2

0)1(σ2
0)2 exp

(
g(κ, ζ)t+

1

2
h(ζ, ρ)t

)
. (2.40)

Hence the expected covariance is given by

E(covR(S1
T , S

2
T )) =

(σ2
0)1(σ2

0)2

T

∫ T

0
exp

(
g(κ, ζ)t+

1

2
h(ζ, ρ)t

)
dt

=
(σ2

0)1(σ2
0)2

T (g(κ, ζ) + 0.5h(ζ, ρ))

(
e(g(κ,ζ)+.5h(ζ,ρ))T − 1

)
. (2.41)
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Theorem 2.3.2. The arbitrage free covariance swap is given by

Pcov = e−rT
(

(σ2
0)1(σ2

0)2

T (g(κ, ζ) + 0.5h(ζ, ρ))

(
e(g(κ,ζ)+.5h(ζ,ρ))T − 1

)
−Kcov

)
. (2.42)

2.3.2. Correlation Swap

Definition 2.3.3. Correlation swap is a correlation forward contract of the underlying rates S1

and S2 which payoff at the maturity equal to

N(corrR(S1, S2)−KCorr). (2.43)

Where Kcorr is the strike or exercise price, N is the notional amount, corrR(S1, S2) is a

correlation between two assets S1 and S2.

The correlations of the two asset from the basic statistics formula is given by

corrR(S1, S2) =
covR(S1, S2)√

(VarR(S1))
√

(VarR(S2))
. (2.44)

To value the correlation swap in the risk neutral world we need to find

P = e−rT (E(corrR(S1, S2))−KCorr). (2.45)

To find the expected value of a realized correlation is a little bit challenging, here we are

going to use an approximation of squre roots which is given by ([59],p. 200) and we give the result

without proof,

E(corrR(S1, S2)) ≈ E(covR(S1, S2))√
E((σ2

R)1)
√

(E(σ2
R)2)

. (2.46)

Now since the denominator of the above equation is deterministic it can be factored to find

the expected value of the realized correlation. We will close this chapter by giving the final theorem

of the correlation swap
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Theorem 2.3.4. The arbitrage free correlation swap price in the risk-neutral world is given by

Pcorr ≈ e−rT
[

(σ2
0)1(σ2

0)2

T (g(κ, ζ) + 0.5h(ζ, ρ))
√

(σ2
0)1(eκ1T − 1)/κT

√
(σ2

0)2(eκ2T − 1)/κ2T

((
e(g(κ,ζ)+.5h(ζ,ρ))T − 1

)
−Kcorr

)]
.

(2.47)
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3. BARNDORFF-NIELSEN AND SHEPHARD MODEL FOR

STOCK AND VOLATILITY DYNAMICS

Consider a financial market without a transaction costs where a risk free asset with constant

return rate r and a stock are traded up to a fixed exercise date T . Barndorff-Nielsen and Shephard

(see [6, 5]) assumed that the price process of the stock S = (St)t≥0 is defined on some filtered

probability space (Ω,F , (Ft)0≤t≤T , P ) and is given by:

St = S0 exp(Xt), (3.1)

dXt = (µ+ βσ2
t ) dt+ σt dWt + ρ dZλt, (3.2)

dσ2
t = −λσ2

t dt+ dZλt, σ2
0 > 0, (3.3)

where the constants µ, β, ρ, λ ∈ R with λ > 0 and ρ ≤ 0 is the leverage effect. W = (Wt) is a

Brownian motion and the process Z = (Zλt) is a subordinator ( subordinator is a real-valued Lévy

process with no Gaussian component and non decreasing sample paths). Poisson process, Variance

gamma and inverse Gaussian are some examples of a subordinator Lévy process. Barndorff-Nielsen

and Shephard refer to Z as the background driving Lévy process (BDLP). Also W and Z are assumed

to be independent and (Ft) is assumed to be the usual augmentation of the filtration generated by

the pair (W,Z). This model is known in literature as Barndorff-Nielsen and Shephard model (BN-S

model) and in this dissertation is referred as classical BN-S model. The log-return of the stock

dynamic process of equation (3.2) is a linear process as it appeared to be a linear combination

of a Brownian motion and the Lévy process. Also, the negative sign appearing in (3.3) makes

the associated process mean-reverting. We want to mention that equation(3.3) is a non-Gaussian

process as it is driven by Z (instead of W ) .

Non-Gaussian processes of OU type have considerable potential as building blocks for

stochastic models of observational series from a wide range of fields. They offer the possibility

20



of capturing important distributional deviations from Gaussianity and for flexible modeling of

dependence structures. It is been well studied that financial time series of different assets has

many common features such as heavy tailed distribution and log-return, aggregational Gaussianity,

quasi long range dependence. Such properties of the stock dynamics are successfully modeled by

Ornstein-Uhlenbeck(OU) type stationary stochastic process driven by a subordinators.

This model is first introduced by Barndorff Nielsen and Shephard. Since then, it becomes

one of an important model in generalizing the BS model. For further reading about the BN-S

model we refer the reader to existing literature (see [3, 6, 5]). Since the BN-S model involves

a new idea in option pricing, it can be used in Ecomonetric analysis of realised variance and

estimating stochastic volatility model. This model has been used in different literature such as

[42, 52, 53, 36, 9]. Moreover, BN-S model and its generalized version are also used in pricing exotic

options (see [54, 55, 21]).

The formal definition of Lévy process is given below.

Definition 3.0.5. ([63],p68) Lévy process: A cadlag stochastic process (Xt)t≥0 on (Ω,F,P) with

values in R such that X0 = 0 is called a Lévy process if it possesses the following properties:

• Independent Increment: for every increasing sequence of times t0, t1, . . . , tn, the random vari-

ables Xt0 , Xt1 −Xt0 , . . . , Xtn −Xtn−1 are independent.

• Stationary increaments: the law of Xt+h −Xt does not depend on t.

• Stochastic Continuity: ∀ε > 0, limh→0 P(|Xt+h −Xt| ≥ ε) = 0.

A large family of mean reverting processes can be constructed using a Lévy process as a

driving noise. Positiveness and the choice of marginal distribution can be urged on those Lévy

process. These Lévy-driven processes are known as non-Gaussian Ornstein-Uhlenbeck processes or

simply Ornstein-Uhlenbeck processes. One of the most significant candidate for being the building

block of financial economics is Non-Gaussian processes of OU. The deviation from Gaussianity can

be captured by those models.

As it is well established by Barndorff-Nielsen and Shephard (see [6, 5]), these processes

are not only appropriate to model volatility in financial market, but have also an independent

interest for modeling stationary time series of different kinds. In this Chapter, we define properties
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of stationary disrtibution driven by Lévy processes and Show how to solve them. Log-laplace

transform and characteristic function of a stationary process is also derived.

We assume that the BDLP Z satisfies the assumptions as described in [42]. The assumptions

are as follows.

Assumption 1. Z has no deterministic drift and its Lévy measures have densities w(x) . Thus

by [51] (Theorem 19.3) the cumulant transform

κ(θ) = logE[eθZ1 ], (3.4)

where it exists, takes the form κ(θ) =
∫
R+

(eθx − 1)w(x) dx.

Assumption 2. Letting θ̂ = sup{θ ∈ R : κ(θ) < +∞}, then θ̂ > 0.

Assumption 3. limθ→θ̂ κ(θ) = +∞.

Then it is shown in ([42] Theorem 3.2) that there exists an equivalent martingale measure

(EMM) under which the equations (3.2) and (3.3) are transformed into the following equations.

dXt = bt dt+ σt dWt + ρ dZλt (3.5)

dσ2
t = −λσ2

t dt+ dZλt, σ2
0 > 0, (3.6)

where

bt = (r − λκ(ρ)− 1

2
σ2
t ), (3.7)

where Wt and Zλt are is Brownian motion and Lévy process respectively with respect to the

equivalent martingale measure, bt is the appreciation rate, and κ(θ) is the cumulant transform for

Z1 under the new measure. The heuristic derivation of the above EMM is given in ([41], ch 6). For

the rest of this section we assume that the risk-neutral dynamics of the stock price and volatility

are given by (3.1), (3.5) and (3.6) and we derive the formula for the price of variance, volatility,

covariance, and correlatin swap using this model.

Equation (3.6) is a linear stochastic differential equation and can be solved easly using an
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integrating factor as it is given by

σ2
t = e−λtσ2

0 +

∫ t

0
e−λ(t−s) dZλs. (3.8)

Since the process σ2 = (σ2
t ) is driven by a subordinator, it is strictly positive and bounded

from below by the deterministic function σ2
0 exp(−λt). Moreover, the stationary distribution σ2

t

jumps at the same time point of the subordinator but tailed off due to the negative sign. The

instantaneous variance the log return of the stock dynamics is given by calculating the variance

of equation (3.5) which is (σ2
t + ρ2λVar[Z1]) dt . Therefore the continuous realized variance in the

interval [0, T ] is the average of the instantaneous variance given by

σ2
R =

1

T

∫ T

0
σ2
t dt+ ρ2λVar[Z1]. (3.9)

Lemma 3.0.6. The realized variance is given by

σ2
R =

1

T

(
λ−1(1− e−λT )σ2

0 + λ−1

∫ T

0

(
1− e−λ(T−s)

)
dZλs

)
+ ρ2λVar[Z1]. (3.10)

Proof. Substituting equation (3.8) and using the integration by parts letting U =
∫ λt

0 esdZs and

dV = e−λtdt which gives

σ2
R =

1

T

∫ T

0

(
e−λtσ2

0 + e−λt
∫ λt

0
esdZsdt

)
dt+ ρ2λVar[Z1]

=
1

T

(
λ−1(1− e−λT )σ2

0 +

∫ T

0
e−λt

(∫ λt

0
esdZs

)
dt

)
+ ρ2λVar[Z1]

=
1

T

(
λ−1(1− e−λT )σ2

0 +
−1

λ
e−λt

∫ λt

0
esdZs|T0 +

1

T

∫ T

0
dZλt

)
+ ρ2λVar[Z1]

=
1

λT

(
(1− e−λT )σ2

0 +

∫ T

0

(
1− e−λ(T−s)

)
dZλs

)
+ ρ2λVar[Z1]. (3.11)

The purpose of this dissertation is to investigate the variance, volatility, covariance, and

correlation swap for a BN-S type model. For that we need to find the mean and variance of the

realized stock variance. In the above lemma all the terms are deterministic except the subordinator.
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We investiigate this in more details for the rest of this section. Below we are going to state some

definitions and theorems which help us to find the mean and varaince.

Definition 3.0.7. (Self-decomposability, [5]) A probability measure P on R is said to be self-

decomposable or to belong to the Lévy class L, if for each l > 0 there exists a probability measure

Ql on R such that

Φ(ζ) = Φ(e−lζ)Φl(ζ), (3.12)

where Φ and Φl denote the characteristic functions of P and Ql, respectively. A random variable

X with law in L is also called self-decomposable.

The following two theorems give a relation between self-decomposability and Lévy processes.

For the proofs see [4, 67].

Theorem 3.0.8. (Stationarity, [67]) If X is self-decomposable then there exists a stationary

stochastic process {σ2(t)}t≥0, and a Lévy process {Zt}t≥0, independent of σ2
0, such that σ2

t
d
=X for

all t ≥ 0 and

σ2
t = exp(−λt)σ2

0 +

∫ t

0
exp (−λ(t− s)) dZλs, for all λ > 0. (3.13)

Conversely, if {σ2
t }t≥0, is a stationary stochastic process and {Zt}t≥0 is a Lévy process independent

of σ2
0, such that {σ2

t } and {Zt} satisfy

dσ2
t = −λσ2

t dt+ dZλt, σ2
0 > 0, (3.14)

for all λ > 0, then σ2
t is self-decomposable.

Theorem 3.0.9. (Jurek and Vervaat,[31]) A random variable X has law in L if and only if

X has a representation of the form X =
∫∞

0 e−t dZt, where Zt is a Lévy process. In this case the

Lévy measure U and W of X and Z1 are related by U(dx) =
∫∞

0 W (et dx) dt. In addition, if u(x),

the Lévy density of U is differentiable, then the Lévy measure W has a density w, and u and w are

related by

w(x) = −u(x)− xu′(x). (3.15)

It is clear from ([51] Theorem 17.5(ii)) that for any self-decomposable law D there exists a
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Lévy process Z such that the process of OU type driven by Z has invariant distribution given by

D.

It is well known that inverse Gaussian (IG) distributions and variance gamma distributions

are self-decomposable. Suppose that the stationary distribution of σ2
t is given by IG(δ, γ) law.

IG(δ, γ) is concentrated on R+ and has probability density

p(x) =
1√
2π
δeδγx−3/2 exp

(
−δ

2x−1 + γ2x

2

)
, γ ≥ 0, δ > 0. (3.16)

Since IG is infinitely divisible, for all n ≥ 2 the sum of (σ2
t )n with distribution as IG(δ, γn)

have the same distribution as of (σ2
t ). Mathematically this is the same as

σ2
t
d
=

n∑
i=0

(σ2
t )i. (3.17)

Now it is easy to see that the Lévy density of (σ2
t ) as the limit of

lim
n→∞

nσ2
t n(dx) = νd(x). (3.18)

Here we give the result of an Inverse Gaussian Lévy density without proof, for detailed

proof we refer to [41].

u(x) =
1√
2π
δx−3/2 exp(−γ2x/2), x > 0. (3.19)

Applying theorem (3.0.9), Lévy density of Z1 is given by w(x) = δ
2
√

2π
x−

3
2 (1 + γ2x)e−

1
2
γ2x.

Likewise if the stationary distribution of σ2
t is given by gamma law Γ(ν, α) and knowing gamma

density as an infinitely divisible Lévy process, its Lévy density of Γ(ν, α) is given by u(x) =

νx−1e−αx, x > 0, then once again by (3.0.9) we obtain the Lévy density of Z1 as w(x) = ναe−αx,

x > 0.

Here we define the (unconditional) cumulant generating functions or the log Laplace trans-

forms of σ2
t and Z1 (if they exist) by

κ̄u(θ) = log(Eu[exp(θσ2
t )]), (3.20)
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and

κu(θ) = log(Eu[exp(θZ1)]), (3.21)

where the superscript “u” stands for unconditional. Moreover when we say unconditional which

means the distribution is independent of σ2
0. The relation of equations (3.20) and (3.21) are based

on the following key result from Lévy processes. We state this as a lemma and the proof can be

found in [41].

Lemma 3.0.10. (Key,Formula,Barndorff-Nielsen and Shephard [2], p.5) Let f denote a

continuous function, Z a Lévy process and set Y =
∫
R+

f(t)dZt . Then

κY (θ) =

∫
R+

κ(Z1)(θf(t))dt. (3.22)

Using the above lemma it is easy to see the relation as κ̄u(θ) =

∫ ∞
0

κu(θ exp(−s))ds.

This relation can be expressed using derivative as it is proved in equation (6.4) and is given by

κu(θ) = θ
d(κ̄u(θ))

dθ
. The expected value and variance is the first and second derivative of the cu-

mulant generating function evaluated at θ = 0 when they exist. It follows that if we write the

cumulant of Z1 and σ2
t (when they exist) as κm and κ̄m (m = 1, 2, 3, . . .) respectively where m

denotes the mth derivative, then

κum = mκ̄um. for m = 1, 2, 3 . . . . (3.23)

Therefore, Eu(Z1) = Eu(σ2
t ) and Varu(Z1) = 2Varu(σ2

t ). However, since Z is independent

of σ2
0 this relations can also be written as

E(Z1) := E(Z1|σ2
0) = Eu(Z1) = Eu(σ2

t ), (3.24)

and

Var(Z1) := Var(Z1|σ2
0) = Varu(Z1) = 2Varu(σ2

t ). (3.25)

In general

κm = mκ̄um, for m = 1, 2, 3 . . . . (3.26)
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Note that in present setting though the unconditional distribution of σ2
t is stationary, the

conditional distribution of σ2
t given σ2

0 is not stationary. However due to the independence of

the subordinator Z and σ2
0 and the relation (3.8), there is a tractable way of dealing with such

conditional distribution in terms of parameters of corresponding unconditional distribution. We

conclude this section with derivations of first two cumulants for Z1 when the unconditional station-

ary distribution of σ2
t is given by IG, Γ, or positive tempered stable (PTS) processes. In the next

section we use these results to compute the conditional cumulants of σ2
t .

Lemma 3.0.11. If the stationary distribution of σ2
t is given by an IG(δ, γ) then its log cumulant

function is given by

κ̄u(θ) = log(Eu(eθσ
2
t )) = δ(γ −

√
γ2 − 2θ). (3.27)

Proof. Since σ2
t follows inverse Gaussian distribution and using the definition of expected value we

can deduce

κ̄u(θ) = log(Eu(eθσ
2
t ))

= log

(∫ ∞
0

1√
2π
δeθxeδγx−3/2e−

δ2x−1+γ2x
2 dx

)
= log

(∫ ∞
0

1√
2π
δeδ
√
γ2−2θ−δ(

√
γ2−2θ−γ)x−3/2e−

δ2x−1+(γ2−2θ)x
2 dx

)
= log

(
e−δ(
√
γ2−2θ−γ)

∫ ∞
0

1√
2π
δeδ
√
γ−2θx−3/2e−

δ2x−1+(γ2−2θ)x
2 dx

)
= −δ(

√
γ2 − 2θ − γ). (3.28)

Therefore Using the above relation or from equation (6.4) the log cumulant function of Z1

can be deduced as follows

κ(θ) = θ
d

dθ
(κ̄u(θ)) = θ

(
d

dθ

[
δ(γ −

√
γ2 − 2θ)

])
=

δθ√
γ2 − 2θ

. (3.29)

Since the expected value of Z1 is the first derivative of the log cumulant function at θ = 0
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which is given by

E(Z1) =
d

dθ
(

δθ√
γ2 − 2θ

)
∣∣∣
θ=0

= δγ−1. (3.30)

Similarly the variance of Z1 can be obtained by

Var(Z1) =
d2

dθ2

(
δθ√
γ2 − 2θ

)∣∣∣
θ=0

= 2δγ−3. (3.31)

Lemma 3.0.12. If the stationary distribution of σ2
t is given by an Γ(ν, α) law then its log cumulant

function is given by

κ̄u(θ) = log(Eu(eθσ
2
t )) = −ν log(1− θα−1). (3.32)

Proof. If σ2
t follows a Γ(ν, α) with its density function is given by p(x) = αν

Γ(ν)x
ν−1e−αx then the

log cumulant function is given by

κ̄u(θ) = log(Eu(eθσ
2
t ))

= log

(∫ ∞
0

eθx
αν

Γ(ν)
xν−1e−αxdx

)
= log

(∫ ∞
0

αν(α− θ)ν

Γ(ν)(α− θ)ν
xν−1e−(α−θ)xdx

)
= log

((
α

α− θ

)ν ∫ ∞
0

(α− θ)ν

Γ(ν)
xν−1e−(α−θ)xdx

)
= ν log

(
α

α− θ

)
. (3.33)

Therefore using the above lemma the log cumulant function of Z1 can be also found as

κ(θ) = θ
d

dθ
(κ̄u(θ)) = θ

(
d

dθ

[
−ν log(1− θα−1)

])
=

νθ

α− θ
. (3.34)

Similarly the expected and variance of Z1 can be calculated using the log cumulant function

which is given by

E(Z1) =
d

dθ
(
νθ

α− θ
)
∣∣∣
θ=0

= να−1, (3.35)
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and

Var(Z1) =
d2

dθ2

(
νθ

α− θ

) ∣∣∣
θ=0

= 2να−2. (3.36)

So far we have seen a self-decomposable process having two parameters. Here we are

going to add one more self-decomposable Lévy process which has three parameters and is called

Positive Tempered Stable (PTS). For further reading regarding PTS Lévy process we refer to (see

[35, 49, 66, 13, 14]). Now consider a positive stable PS(κ, δ) process whose its Lévy density for

such a process is given by u(y) = δ2k κ
Γ(1−κ)y

−1−κ. Unfortunately, the probability density function

pS(y;κ, δ) of PS(κ, δ) of Positive stable process is unknown in general. However the Probability

density function of PTS(κ, δ, γ) family is obtained by exponentially tilting the probability density

function pS(y;κ, δ) and is given by:

p(y;κ, δ, γ) = eδγ exp

(
−1

2
γ2y

)
pS(y;κ, δ), y > 0. (3.37)

This is not in general known in simple form. However, for PTS(κ, δ, γ) process and its Lévy

density is given by (see [7])

u(x) = δγ−2κ κ

Γ(κ)Γ(1− κ)
y−κ−1 exp

(
−1

2
γ2y

)
, y, δ > 0, 0 < κ < 1, γ ≥ 0. (3.38)

Now again if you assume the stationary distribution of σ2
t follows a PTS(κ, δ, γ) law. Then

κ̄u(θ) = δγ − δ(γ1/κ − 2θ)κ, and Eu(σ2
t ) = 2κδγ

κ−1
κ and Varu(σ2

t ) = 4κ(1− κ)δγ
κ−2
κ . Hence in this

case

E(Z1) = 2κδγ
κ−1
κ , (3.39)

and

Var(Z1) = 8κ(1− κ)δγ
κ−2
κ . (3.40)

Now we have seen enough background to be able to come up to our result of valuing price of

the variance, volatility, covariance and correlation swap if the stock dynamics follows a BN-S model.

The rest of this dissertation discusses particularly on our main result and numerical analysis.
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4. PRICING VARIANCE AND VOLATILITY SWAP FOR

BN-S MODEL

4.1. Variance Swap

Definition 4.1.1. A variance swap is a forward contract on the realized variance. The payoff of a

variance swap at expiry is given by

N(σ2
R −Kvar). (4.1)

Furnished with the BN-S model and the understanding of the variance process, in this

chapter we are going to prove the main result related to the arbitrage-free pricing of variance and

volatility swap. Since variance swap is easy to implement, we are going to derive the price of the

variance swap first, then using equation (2.15) we showed an approximate estimate for volatility

swap price. However, the Taylor series approximation may not converge if the stock market is not

stable, and it might not be appropriate to use equation (2.15) when there is highly volatile market

and, in this section we also derive a closed form solution for volatility swap pricing for general case.

Theorem 4.1.2. The arbitrage free price of the variance swap is given by

PVar = e−rT
[

1

T

(
λ−1

(
1− e−λT

) (
σ2

0 − κ1

)
+ κ1T

)
+ ρ2λκ2 −KVar

]
, (4.2)

where κ1 and κ2 are the first cumulant (i.e., the expected value) and the second cumulant (i.e., the

variance) of Z1 respectively.

Proof. The (conditional given σ2
0) expected value of equation (3.10) gives the value

E(σ2
R) =

1

T

(
λ−1(1− e−λT )σ2

0 + λ−1κ1

∫ T

0

(
1− e−λ(T−s)

)
λ ds

)
+ ρ2λVar[Z1]

=
1

T

(
λ−1(1− e−λT )σ2

0 + κ1(T − λ−1(1− e−λT ))
)

+ ρ2λκ2. (4.3)

Hence the theorem follows from simplification of (4.3).
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4.2. Volatility Swap

Definition 4.2.1. A volatility swap is a forward contract on future realized volatility of a given

underlying asset. The payoff of a volatility swap at the maturity T is given by

N(σR −Kvol), (4.4)

where N is the notional amount in dollar, σR is the realized volatility and KVol is the annualized

volatility delivery price.

Theorem 4.2.2. The arbitrage free value of the volatility swap is given by

PVol ≈ e−rT
(√

1

T

(
λ−1 (1− e−λT )

(
σ2

0 − κ1

)
+ κ1T

)
+ ρ2λκ2

−
λ−2

T 2 κ2(2e−λT − 3
2 −

1
2e
−2λT + λT )

8
(

1
T

(
λ−1 (1− e−λT )

(
σ2

0 − κ1

)
+ κ1T

)
+ ρ2λκ2

)3/2 −KVol

)
, (4.5)

where κ2 is the second cumulant (i.e., the variance) of Z1.

Proof. The (conditional given σ2
0) variance of σ2

R can be obtained from the following computation.

Var(σ2
R) = Var

(
λ−1

T

∫ T

0

(
1− e−λ(T−s)

)
dZλs

)
=
λ−2

T 2
κ2

∫ λT

0

(
1− e−s

)2
ds

=
λ−2

T 2
κ2(2e−λT − 3

2
− 1

2
e−2λT + λT ). (4.6)

Hence the theorem follows from (2.15) with the substitution of E(σ2
R) from (4.3) and

Var(σ2
R) from the above expression.

4.3. Closed Form Solution of Volatility Swap

Since equation (2.15) uses Taylor series expansion around the mean of the realized variance.

It assumes that, the long-term expected value of the realized variance, E(σ2
R) < 1, which is not

usually the case, as the market might be highly volatile. For example during the market crash 2008

where the stock price was fluctuating and unpredictable. Since it is sufficient to know E(σR) to

find the price of the volatility swap, in this section we find an analytical formula for E(σR) where
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the terms can be computed using the parameters of unconditional distribution of σ2
t .

Let us assume At, be any stochastic process defined on 0 ≤ t ≤ T which is independent of

σ2
0. Assume that the characteristic function and the cumulant generating function of At is given

by ΦAt(θ) = E(exp(iθAt)) and κAt(θ) = logE(exp(θAt)) respectively. Since At is independent

of σ2
0 there is no any difference between superscript u and without u, for that case we omit the

subscript. The relation between the characteristic function and the cumulant generating function

of At is given by

ΦAt(θ) = exp[κAt(iθ)]. (4.7)

It is easy to see the above equality as

κAt(iθ) = log(E(exp(iθAt))) = log(ΦAt(θ)). (4.8)

Lemma 4.3.1. The moments of At can be obtained from ΦAt(θ) by

E(Akt ) = (−i)k d
kΦAt(θ)

dθk

∣∣∣
θ=0

, k = 1, 2, . . . . (4.9)

Proof. From the definition of expected value for a continuous functions and assume P is some

distribution of At we have

dk

dθk
(ΦAt(θ)) =

dk

dθk

(∫ ∞
0

(exp(iθAt))d(P (At))

)
=

(∫ ∞
0

dk

dθk
(exp(iθAt))d(P (At)

)
=

(∫ ∞
0

((iAt)
k exp(iθAt))d(P (At)

)
=

(∫ ∞
0

((iAt)
kd(P (At)

)
= ikE(Akt ). (4.10)

The fourth step is found by substituting θ = 0.

Lemma 4.3.2. Suppose that At = α+

∫ λt

0
(1− e−s) dZs, where α ∈ R is a constant, and 0 ≤ t ≤ T .
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Then

ΦAt(θ) = exp

(
iθα+

∫ λt

0
κ(iθ(1− e−s)) ds

)
, (4.11)

where κ(·) is the cumulant generating function for Z1. The moments of At are given by

E(Akt ) = (−i)kgk(0), k = 1, 2, . . . , (4.12)

where

g1(θ) = i

(
α+

∫ λt

0
(1− e−s)κ′(iθ(1− e−s)) ds

)
, (4.13)

and

gk+1(θ) = g1(θ)gk(θ) + g′k(θ), k = 1, 2, . . . . (4.14)

In the above formulas prime represents the derivative with respect to the parameter in paren-

thesis.

Proof. We have

κAt(iθ) = logE(exp(iθAt))

= logE

(
exp(iθα) exp(iθ

∫ λt

0
(1− e−s)dZs)

)
= iθα+ logE

(
exp

(
iθ

n∑
i=1

(1− e−si)(Zsi − Zsi−1)

))

= iθα+
n∑
i=1

log
(
E
(
exp(iθ(1− esi)Z(si−si−1))

))
= iθα+

∫ λt

0
logE

(
exp(iθ(1− e−s)Z1)

)
ds

= iθα+

∫ λt

0
κZ1(iθ(1− e−s)) ds. (4.15)

Step three is using the fact that the BDLP Z has a finite variation on any closed interval and using

(4.7) we obtain (4.11).

To prove the formula for moments we observe κ(0) = 0. By differentiation (4.11) and using

(4.9) we obtain E(At) = −ig1(0). The results related to E(Akt ) for k = 2, 3, . . . follows from

induction.
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Note that κ(k)(0) = κk, for k = 1, 2, . . . . Using Lemma 4.3.2 we can compute any moment

for At = α+
∫ λt

0 (1− e−s) dZs in terms of cumulants of Z. For example

E(At) = −ig1(0) = α+

∫ λt

0
κ1(1− e−s) ds = α+ κ1(λt− 1 + e−λt). (4.16)

E(A2
t ) = (−i)2g2(0) = −(g1(0)2 + g′1(0))

=

(
α+

∫ λt

0
κ1(1− e−s) ds

)2

+

∫ λt

0
κ2(1− e−s)2 ds

=
(
α+ κ1(λt− 1 + e−λt)

)2
+ κ2

(
2e−λt − 3

2
− 1

2
e−2λt + λt

)
. (4.17)

Since the realized variance is a finite number, it is necessary to bound by a constant real

number from above. Assume that σ2
R < β2, for some β > 0. For example, since σt is expressed in

percentage, for a stable market, where it does not have “crash-like fluctuations” β = 1 is a very

reasonable assumption. We also note that for |x| < 1,
√

1 + x can be represented by the convergent

series
√

1 + x =
∞∑
k=0

(−1)k+1(2k)!

4k(k!)2(2k − 1)
xk. (4.18)

The theorem which is given below gives an analytic formula for the arbitrage free value of

the volatility swap. The theorem gives the arbitrage free value of the volatility swap in terms of

a convergent infinite series. As the series converges very fast it is reasonable to take the first few

terms for analysis purpose.

Theorem 4.3.3. Assume that σ2
R < β2, for some β > 0. Then the arbitrage free value of the

volatility swap is given by

Pvol = e−rT

( ∞∑
k=0

(−1)k+1(2k)!

4k(k!)2(2k − 1)

1

β2k−1λkT k
E(AkT )−KVol

)
, (4.19)

where c1 =

√
σ2
0

λT (1− e−λT ) + ρ2λκ2 and AT = α +
∫ λT

0 (1− e−s) dZs, with α = λT (c2
1 − β2). The

quantities E(AkT ), k = 1, 2, . . . can be computed using Lemma 4.3.2.
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Proof. We obtain from (3.10)

σ2
R =

σ2
0

λT
(1− e−λT ) + ρ2λκ2 +

1

λT

∫ T

0

(
1− e−λ(T−s)

)
dZλs

=
σ2

0

λT
(1− e−λT ) + ρ2λκ2 +

1

λT

∫ λT

0

(
1− e−s

)
dZs

= β2

(
σ2
0

λT (1− e−λT ) + ρ2λκ2 + 1
λT

∫ λT
0 (1− e−s) dZs

β2

)

= β2

(
1 +

λT (c2
1 − β2) +

∫ λT
0 (1− e−s) dZs

β2λT

)

= β2

(
1 +

α+
∫ λT

0 (1− e−s) dZs
β2λT

)
, (4.20)

where c2
1 =

σ2
0

λT (1− e−λT ) + ρ2λκ2, and α = λT (c2
1 − β2). By the construction we have

∣∣∣∣∣α+
∫ λT

0 (1− e−s) dZs
β2λT

∣∣∣∣∣ < 1. (4.21)

Therefore we obtain

σR = β

(
1 +

α+
∫ λT

0 (1− e−s) dZs
β2λT

)1/2

=
∞∑
k=0

(−1)k+1(2k)!

4k(k!)2(2k − 1)

1

β2k−1λkT k

(
α+

∫ λT

0

(
1− e−s

)
dZs

)k
. (4.22)

Therefore

E(σR) =
∞∑
k=0

(−1)k+1(2k)!

4k(k!)2(2k − 1)

1

β2k−1λkT k
E

(
α+

∫ λT

0

(
1− e−s

)
dZs

)k
=
∞∑
k=0

(−1)k+1(2k)!

4k(k!)2(2k − 1)

1

β2k−1λkT k
E(AkT ). (4.23)

It is intuitive that the infinite series in (4.23) converges from (4.18) and (4.21). Thus (4.23)

gives an analytical formula for computation of E(σR) where the quantities E(AkT ), k = 1, 2, . . .

can be computed using Lemma 4.3.2. Thus the theorem follows from the fact that the price of a

volatility swap in a risk-neutral world is Pvol = e−rT (E(σR)−KVol).
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Next we consider the infinite series
∑∞

k=0
(−1)k+1(2k)!
4k(k!)2(2k−1)

1
β2k−1λkTk

E(AkT ) of Theorem 4.3.3.

It is clear from the proof of that theorem that AT /β
2λT < 0. It is also clear from (4.21) that

|AT /β2λT | < 1.

Theorem 4.3.4. Suppose that AT is given by Theorem 4.3.3. Then the quantity E(σR) can be

approximated by n-th partial sum

n−1∑
k=0

(−1)k+1(2k)!

4k(k!)2(2k − 1)

1

β2k−1λkT k
E(AkT ), (4.24)

with the absolute error of approximation less than the quantity β 1
(2n−1)

√
3n+1

, for n ≥ 1.

Proof. The infinite series representation of E(σR) is an alternating series and therefore

∣∣∣∣∣E(σR)−
n−1∑
k=0

(−1)k+1(2k)!

4k(k!)2(2k − 1)

1

β2k−1λkT k
E(AkT )

∣∣∣∣∣
≤ β

4n(2n− 1)

(
2n

n

)
E

∣∣∣∣ ATβ2λT

∣∣∣∣n
<

β

4n(2n− 1)

(
2n

n

)
. (4.25)

It can be proved by induction the lower and upper bound of the following inequality which

is given by

4n
√
n

2n
≤
(

2n

n

)
≤ 4n√

3n+ 1
, (4.26)

for all n ≥ 1. Therefore we obtain

∣∣∣∣∣E(σR)−
n−1∑
k=0

(−1)k+1(2k)!

4k(k!)2(2k − 1)

1

β2k−1λkT k
E(AkT )

∣∣∣∣∣ < β
1

(2n− 1)
√

3n+ 1
. (4.27)

The constant β can be used as a “control parameter” that improves the rate of convergence

of the infinite series
∑∞

k=0
(−1)k+1(2k)!
4k(k!)2(2k−1)

1
β2k−1λkTk

E(AkT ). This is shown in the next theorem.

Theorem 4.3.5. Suppose that AT is given by Theorem 4.3.3 and it is possible to choose β so that

|AT /β2λT | < 1
2+ε , for some ε > 0. Then the quantity E(σR) can be approximated by the n-th
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partial sum of the infinite series

∞∑
k=0

(−1)k+1(2k)!

4k(k!)2(2k − 1)

1

β2k−1λkT k
E(AkT ), (4.28)

with the absolute error of approximation less than the quantity β1
1

(2n−1)
√

3n+1
1

(1+ε)n , for n ≥ 1,

where β1 is a constant and is equal to β
(

1+ε
2+ε

) 1
2
.

Proof. It is easy to obtain that

σR = β

(
n−1∑
k=0

(−1)k+1(2k)!

4k(k!)2(2k − 1)

(
AT
β2λT

)k
+

(−1)n+1(2n)!

4n(n!)2(2n− 1)

(
AT
β2λT

)n 1

(1 + µ)n−
1
2

)
, (4.29)

for some µ between
AT
β2λT

and 0. Thus the assumption |AT /β2λT | < 1
2+ε gives − 1

2+ε < µ. We have

E(σR) =
n−1∑
k=0

(−1)k+1(2k)!

4k(k!)2(2k − 1)

1

β2k−1λkT k
E(AkT ) + E [Rn] , (4.30)

where we denote the error term by

Rn = β
(−1)n+1(2n)!

4n(n!)2(2n− 1)

(
AT
β2λT

)n 1

(1 + µ)n−
1
2

. (4.31)

We obtain

|Rn| =
β

4n(2n− 1)

(
2n

n

) ∣∣∣∣ ATβ2λT

∣∣∣∣n 1

|1 + µ|n−
1
2

<
β

4n(2n− 1)

(
2n

n

)(
1

2 + ε

)n 1

(1− 1
2+ε)

n− 1
2

=
β

4n(2n− 1)

(
2n

n

)(
1 + ε

2 + ε

) 1
2 1

(1 + ε)n
. (4.32)

Therefore using (4.26) we obtain

|Rn| < β1
1

(2n− 1)
√

3n+ 1

1

(1 + ε)n
, (4.33)
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and consequently,

|E(Rn)| ≤ E(|Rn|) < β1
1

(2n− 1)
√

3n+ 1

1

(1 + ε)n
, (4.34)

where β1 = β
(

1+ε
2+ε

) 1
2
.

The next theorem gives a control on estimation of regression parameters based on partial

sum approximation of E(σR). For convenience we denote

Sn =

n−1∑
k=0

(−1)k+1(2k)!

4k(k!)2(2k − 1)

1

β2k−1λkT k
E(AkT ). (4.35)

We note that Sn depends on λ and various parameters of the stochastic process AT . To

emphasis this dependence, in the next theorem, we write Sn as Sn(p), where p stands for all

parameters that govern Sn. Also, the value of E(σR) computed based on the set of parameter p is

denoted as E(σR, p).

Theorem 4.3.6. Let DT be a finite set of empirical data for volatility delivery prices with var-

ious maturity days T such that 0 < T ≤ Tmax, for some Tmax > 0. Suppose for ε > 0, there

exists a set of parameters p(n) such that max0<T≤Tmax |DT − Sn(p(n))| < ε
6 , for some n > 0. If er-

rors max0<T≤Tmax |DT − Sn(p(k))| are decreasing as k increases, then max0<T≤Tmax |E(σR, p
(n1))−

E(σR, p
(n2))| < ε for sufficiently large n1, n2 ≥ n.

Proof. It is clear that for n1, n2 ≥ n,

max
0<T≤Tmax

|Sn1(p(n1))− Sn2(p(n2))|

< max
0<T≤Tmax

|DT − Sn1(p(n1))|+ max
0<T≤Tmax

|DT − Sn2(p(n2))|

<
ε

6
+
ε

6
=
ε

3
. (4.36)

By Theorem 4.3.4 it is clear that for for a given ε > 0, sufficiently large n1 and n2 can be

chosen such that

max
0<T≤Tmax

|E(σR, p
(n1))− Sn1(p(n1))| < ε

3
, (4.37)
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and

max
0<T≤Tmax

|E(σR, p
(n2))− Sn2(p(n2))| < ε

3
. (4.38)

Hence the result max0<T≤Tmax |E(σR, p
(n1)) − E(σR, p

(n2))| < ε follows from (4.36), (4.37),

and (4.38).

4.4. Model Fitting and Parameter Estimate

In this chapter we demonstrate the theoretical result using numerical data of the stock

price. We also show that the performances of our results agree with the empirical data better (with

respect to various measures of goodness of fit as described below), than the existing comparable

models. We use Theorems 4.1.2, 4.2.2 and 4.3.3 to calibrate fair delivery price. We use closing stock

prices of the S&P 500 index for 943 trading dates from 12/05/2011 to 09/04/2015. Once calibration

is performed over the described historical data set, we obtain the model parameters that can be

used to price the fixed leg (fair delivery price) of the variance or volatility swap. For goodness of

fit of the calibration of fair delivery price, we use the absolute percentage error (APE), the average

absolute error (AAE), the average relative percentage error (ARPE) and the root-mean-square

error (RMSE) given by the following formulas.

APE =
1

mean price

∑
data points

|market price−model price|
data points

, (4.39)

AAE =
∑

data points

|market price−model price|
data points

, (4.40)

ARPE =
1

data points

∑
data points

|market price−model price|
data points

, (4.41)

RMSE =

√√√√ ∑
data points

(market price−model price)2

data points
. (4.42)

We also use Residual standard Error (RSE) for the goodness of fit analysis. This is a sta-

tistical measure that is used to describe standard deviation of a point estimate around the fitted

function, and this is an estimate of the accuracy of the dependent variable being measured. Math-
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ematically, RSE =
√

SSE
n−k where n is the number of observations, k is the number of parameters

to be estimated, and SSE is the sum of square error.

For the calibration we consider the BN-S model with ρ = −1 in (3.2), so that the Γ and

inverse Gaussian models have the same number of parameters as in the Heston model. For the

analysis, σ0 is taken to be 0.01. The calibration results for various cases, with the application of

Theorem 4.1.2 for variance swap, are shown in Table 1,2, and 3. The corresponding fittings are

shown in Figure 1.

The t-value and the probability of each table explains the rejection region under any α level

for the significance of the variable. In the tables, “Pr(> |t|) < 2e− 16” means that the probability

of that parameter being zero is less than 2e−16. The column marked “Standard Error” displays the

estimated standard errors of these parameter estimate.

Table 4 gives goodness-of-fit comparison for different models. It is clear that the BN-S model

with ρ = −1 is producing significant improvement in the root mean square error, than the Heston

model with the same parameter. From table (4.3), we can see that the PTS has four parameters,

which is one more parameter than Inverse Gaussian, Variance Gamma or Heston model. The

improvement of the error is even significant shown in table (4.4).

Table 4.1. Parameter estimate of Gamma distribution for variance swap

Parameters Estimate Standard Error t Value Pr(> |t|)
ν 0.0065283 0.0005311 12.29 < 2e− 16
λ 0.1092836 0.0052738 20.72 < 2e− 16
α 0.1603521 0.0087384 -18.35 < 2e− 16

Table 4.2. Parameter estimate of Inverse Gaussian for variance swap

Parameters Parameter estimate Standard Error t Value Pr(> |t|)
λ 0.109283 0.005274 20.72 < 2e− 16
γ 0.023807 0.0010678 -54.90 < 2e− 16
δ 0.586191 0.01039 22.90 < 2e− 16

We use analysis of variance to establish the best model used to estimate the variance swap.

40



Table 4.3. Parameter estimate of Positive tempered stable for variance swap

Parameters Estimate Standard Error t Value Pr(> |t|)
λ 0.109283 0.005274 20.7 < 2e− 16
δ 0.023807 0.001039 22.86 < 2e− 16
κ .456078 0.005483 24.98 < 2e− 16
γ 0.586191 0.010678 54.90 < 2e− 16

For this, R2 is calculated for each model. The quantity R2 is used to estimate the percentage of

the given data that can be explained by the model. It is found that the IG and Γ model explain

81.05% and 82.65% of the data respectively, and all parameters in these cases turn out to be highly

significant. On the other hand, the PTS model uses one more parameter. The R2 value of the

PTS is found to be around 85.05%. Heston model and Hull-White model explain about 72.85%

and 65.28% of the given data respectively.

Table 4.4. Comparing errors of different models for variance swap

Model RMSE RSE APE AAE ARPE

Hull-White 0.9610284 0.518945 0.00854231 0.0296473 1.9821059
Heston Model 0.0588036 0.0791205 0.000785167 0.59817601 1.0516412

Variance Gamma 0.00229305 0.00105 0.000005095391 0.002303117 0.1287677
Inverse Gaussian 0.00221305 0.00163 0.000005095203 0.002303032 0.1287595

Positive tempered stable 0.001002722 0.0001006 0.0000005106 0.0001350163 0.013285

Again, for the calibration of the volatility swap, we consider the BN-S model with ρ = −1

in (3.2), so that the Γ and inverse Gaussian models have same number of parameters as in the

Heston model. The calibration results for various cases with the application of Theorem 4.2.2 for

approximate volatility swap, are shown in Table 5, 6, and 7. Their corresponding fittings are shown

in Figure 2. Table 8 gives a comparison of goodness-of-fit for different models. It is clear that the

BN-S models with ρ = −1 are producing better result than the Heston and Hull-White models,

which both models are driven by a Brownian motion.

Next, we compare the results for the volatility swap for different models and estimate the

parameters along with their standard errors. Using statistical analysis at the α level of 0.00001,

it turns out that all the model parameters are highly significant to predict the true value of the
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Figure 4.1. Fitting of variance swap

realized volatility. Analysis with R2 reveals that more than 83.79% of the data can be explained

by Γ model, and more than 83.60% of the data can be explained by IG model. For both cases

all the parameters are highly significant. On the other hand, the PTS model uses one additional

parameter and as a consequence gives a better goodness-of-fit estimate. From the R2 value it is

found that around 87.54% of the given data is explained by PTS model. The Heston model and

the Hull-White model explain about 68.83% and 63.45% of the given data respectively.

Finally, we consider he calibration for the BN-S model with ρ = −1 using Theorem 4.3.3.

The calibration parameters for fair delivery price of volatility swaps are shown in Table 9, 10, and

11. The corresponding fittings are shown in Figure 3. Table 12 gives a comparison of goodness-of-fit
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Table 4.5. Parameter estimates for Γ volatility swap with Theorem 4.2.2

Parameters Estimate Standard Error t Value Pr(> |t|)
λ 0.1845832 0.0085634 21.55 < 2e− 16
ν 0.0093435 0.0002426 38.511 < 2e− 16
α 0.8902156 0.0202934 43.87 < 2e− 16

Table 4.6. Parameter estimates for IG volatility swap with Theorem 4.2.2

Parameters Estimate Standard Error t Value Pr(> |t|)
λ 0.483033 0.027331 17.649 < 2e− 16
δ 0.038029 0.001266 30.052 < 2e− 16
γ 1.577838 0.027993 56.38 < 2e− 16

for different models.

It is clear that the expression in Theorem 4.3.3 is a formal asymptotic expansion. However,

Theorem 4.3.4 and Theorem 4.3.5 gives control over the convergence of the infinite series. Theorem

4.3.6 can be used in practice to demonstrate the reliability of the approximation. It is clear from the

above results and the proof of Theorem 4.3.6, that in order to have rapid convergence of the infinite

series for E(σR), the quantity max0<T≤Tmax |Sn1(p(n1))−Sn2(p(n2))| must be reasonably small as n1

and n2 increase. This reliability analysis is important when the method is completely wrong, but

the calibration procedure gives good fit (see [12]). In the following Figure 4, we take n2 = N and

n1 = N + 1, to demonstrate the rapid convergence of the expression max0<T≤Tmax |SN+1(p(N+1))−

SN (p(N))| for various N . Along with Theorem 4.3.6, these results show the numerical evidence for

reliability of the procedure.

4.5. Conclusion

In this Chapter we have presented a new approach based on the BN-S model to obtain

the arbitrage-free pricing for variance and volatility swaps for financial markets. The stochastic

volatility models used for analysis are empirically reasonable,and the many appealing features

from a finance perspective. The results derived in this dissertation are potentially important as

this means that stochastic volatility models built out of OU processes with gamma or inverse

Gaussian or positive tempered stable marginals have excellent numerical accuracy in obtaining

the fair delivery prices for various swaps. Further, we get closed form pricing formulas depending

on various cumulants of the BDLP Lévy process Z. In this dissertation we have also derived an
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Table 4.7. Parameter estimates for PTS volatility swap with Theorem 4.2.2

Parameters Estimate Standard Error t Value Pr(> |t|)
λ 0.483033 0.027406 17.64 < 2e− 16
δ 0.038029 0.001266 30.05 < 2e− 16
κ 0.61204 0.0054186 40.05 < 2e− 16
γ 1.577838 0.0027993 56.38 < 2e− 16

Table 4.8. Comparing errors of different models for volatility swap

Model RMSE RSE APE AAE ARPE

Hull-White 0.8245997 0.721024 0.0001446324 0.076537383 0.5889565
Heston Model 0.245611 0.1746 0.0005610508 0.253595 1.887359

Variance Gamma 0.007656574 0.005441 0.00001886869 0.008528647 0.06435461
Inverse Gaussian 0.0077152225 0.005483 0.00001867513 0.008441158 0.06352462

Positive tempered stable 0.00021903 0.000163 0.00001867513 0.00844115 0.006352462

algorithmic process to compute the cumulants of Z. The improvement of numerical results in the

analysis is very significant over the existing models with a similar number of parameters, such as

the Heston model.

More generally, we also used numerical approximations and statistical analysis for model

adequecy and it turns out that Ou Prcess captured most of the variance and volatiltiy jumps as

suppose to Heston and Hull-white model. Those models can be also extended for commodity swap

of natural gass and crude oil. The approach towards this model can be considered in future works.
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Figure 4.2. Fitting of volatility swap

Table 4.9. Parameter estimates for Γ volatility swap with Theorem 4.3.3

Parameters Estimate Standard Error t Value Pr(> |t|)
λ 0.204673 0.003423 59.80 < 2e− 16
ν 0.443597 0.013299 33.35 < 2e− 16
α 1.386975 0.041721 33.24 < 2e− 16

Table 4.10. Parameter estimates for IG volatility swap with Theorem 4.3.3

Parameters Estimate Standard Error t Value Pr(> |t|)
λ 0.199502 0.003372 59.16 < 2e− 16
δ 0.385977 0.005965 64.70 < 2e− 16
γ 1.206734 0.08757 64.33 < 2e− 16

45



Table 4.11. Parameter estimates for PTS volatility swap with Theorem 4.3.3

Parameters Estimate Standard Error t Value Pr(> |t|)
λ 0.199554 0.003373 59.17 < 2e− 16
δ 0.385881 0.005962 64.72 < 2e− 16
κ 0.614802 0.001289 64.78 < 2e− 16
γ 1.206434 0.018746 64.36 < 2e− 16

Table 4.12. Comparing errors of different models for volatility swap

Model RMSE RSE APE AAE ARPE

Variance Gamma 0.007674167 0.005123 0.00001907175 0.009620432 0.0513133
Inverse Gaussian 0.007663909 0.005446 0.00001905593 0.008613282 0.06508503

Positive tempered stable 0.000137236 0.00054102 0.00000127545 0.008620456 0.06513158
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Figure 4.3. Fitting of volatility swap with improved model
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5. PRICING COVARIANCE AND CORRELATION SWAP

FOR TWO ASSETS WITH A STOCHASTIC VOLATILITY

In this chapter we price covariance swaps for financial market when it is governed by the BN-

S model. Covariance swaps are recent financial products that are useful for volatility hedging and

speculation using two different financial underlying assets. Introduced in [20] this contract pays the

excess of the realized covariance between two derivatives over a constant specified at the outset of

the contract. Such a contract may serve as a useful complement for the variance contracts that trade

over the counter on several currencies. This makes covariance swap an over the counter financial

derivative that allows one to speculate on or hedge risks with the magnitude of the movement, i.e.

volatility of the underlying assets like exchange rate, interest rate, or stock index. For example,

options dependent on exchange rate movements have an exposure to movements of the correlation

between the asset and the exchange rate. This risk may be hedged by using covariance swap. The

analysis of a contract paying the realized covariance is a necessary precursor for the analysis of

further derivatives written on covariance.

5.1. Pricing Covariance Swap

Definition 5.1.1. The covariance swap is a covariance forward contract between two assets (S1
t

and S2
t , 0 ≤ t ≤ T ) of a realized covariance, and its payoff at maturity is given by

N(CovR(S1, S2)−KCov), (5.1)

where N is a notional amount, CovR(S1, S2) is the realized covariance of two given assets and KCov

is the strike price.

The arbitrage free price of the covariance swap (over the period 0 ≤ t ≤ T ) is given by

PCov = E
[
e−rT (CovR(S1, S2)−KCov)

]
, (5.2)

where E(·) is the expectation with respect to some equivalent martingale measure. In this section

we implement a generalized version of the Barndorff-Nielsen and Shephard model to model one
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of the two assets for covariance and correlation swaps. Let Zt and Z∗t be two independent Lévy

subordinators. Here the independence of the Lévy processes Zt and Z∗t is understood in the sense

of [63] (Proposition 5.3). That is, if (Xt, Yt) is a Lévy process with Lévy measure ν(X,Y ) and

without Gaussian part, then its components are independent if and only if the support of ν(X,Y ) is

contained in the set {(x, y) : xy = 0}, that is, if and only if they never jump together. In this case

ν(X,Y )(A) = νX(AX) + νY (AY ), where AX = {x : (x, 0) ∈ A} and AY = {y : (0, y) ∈ A}, and νX

and νY are Lévy measures of Xt and Yt.

In this case, we define a subordinator which a linear combination of the above to Lévy

processes as

dZ̃t = ρ′ dZt +
√

1− ρ′2 dZ∗t , (5.3)

provided 0 ≤ ρ′ ≤ 1. Thus, for 0 ≤ ρ′ ≤ 1, Zt and Z̃t are positively correlated Lévy subordinators

(see [55]). It is clear that Var(Zt) = tκ2, Var(Z̃t) = tκ̃2, and using the linearity of covariance and

Z̃t = ρ′Zt +
√

1− ρ′2Z∗t gives

Cov(Zt, Z̃t) = Cov(Zt, ρ
′Zt +

√
1− ρ′2Z∗t )

= (Cov)(Zt, ρ
′Zt) + Cov(Zt,

√
1− ρ′2Z∗t )

= ρ′(Cov)(Zt, Zt)

= ρ′tκ2. (5.4)

The last step is from independence and κ2 and κ̃2 are the variances (second cumulant) of

Z1 and Z̃1 respectively. Therefore the correlation coefficient between Zt and Z̃t is independent of

time t and is given by

Corr(Zt, Z̃t) =
Cov(Zt, Z̃t)√

Var(Zt)
√

Var(Z̃t)

=
ρ′tκ2√
tκ2

√
tκ̃2

= ρ′
√
κ2

κ̃2
. (5.5)

Assume that the risk-neutral dynamics of the two assets are given by Sit = eX
i
t , with i = 1, 2,
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where the stochastic processes Xi
t are driven by a linear combination of a Weiner process and a

Lévy process as given by:

dXi
t = bit dt+ (σi)t dW

i
t + ρ(i) dZλt, i = 1, 2, (5.6)

and

d(σ1)2
t = −λ(σ1)2

t dt+ dZλt, (σ1)2
0 > 0, (5.7)

and

d(σ2)2
t = −λ(σ2)2

t dt+ dZ̃λt, (σ2)2
0 > 0, (5.8)

where W 1
t and W 2

t are correlated Wiener processes with Cov(W 1
t ,W

2
t ) = ρ̄t, and b1t and b2t are

deterministic functions of (σ1)2
t and (σ2)2

t respectively. In (5.6) ρ(1) and ρ(2) are leverage parameters

corresponding to S1 and S2 respectively.

From the definition of CovR(S1, S2) we have

CovR(S1, S2) =
1

T
[lnS1

T , lnS
2
T ] =

1

T
[X1

T , X
2
T ], (5.9)

where [·, ·] represents the quadratic covariation.

We make the following assumption for the Lévy subordinator Zt.

Assumption 4. Zt is a Lévy subordinator with finite variation and no deterministic drift. There-

fore, if JZ is the random measure describing jumps of Z then

Zt =

∫ t

s=0

∫ ∞
0

yJZ(ds, dy). (5.10)

Remark 5.1.2. If the Lévy measures of Z and Z∗ are νZ and νZ∗ respectively, then by Assumption

1 and [63] (Theorem 4.1), the characteristic triplet of Z̃ is given by (Ã, γ̃, νZ̃), where Ã = 0,

νZ̃(B) = νZ

(
B
ρ′

)
+ νZ∗

(
B√

1−ρ′2

)
, for B ∈ B(R) and

γ̃ = ρ′γ +
√

1− ρ′2γ∗ −
∫
R
y
(
1|y|≤1(y)− 1S1(y)

)
νZ̃(dy) = ρ′γ +

√
1− ρ′2γ∗, (5.11)

where S1 is given by S1 = {ρ′x1 +
√

1− ρ′2x2|x2
1 + x2

2 ≤ 1, x1, x2 ∈ R}. Therefore in general
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Z̃ has a drift component. However, if both Z and Z∗ satisfy Assumption 4, i.e., if both Z and

Z∗ are processes of finite variation and γ =
∫
|x|≤1 xνZ(dx) and γ∗ =

∫
|x|≤1 xνZ∗(dx), then γ̃ =∫

|x|≤1 xνZ̃(dx) and hence the deterministic drift (in the sense of Corollary 3.1 in [63]) for Z, Z∗

and Z̃ is zero. Therefore, if JZ̃ is the random measure describing jumps of Z̃ then

Z̃t =

∫ t

s=0

∫ ∞
0

yJZ̃(ds, dy). (5.12)

From (5.6) we obtain

Xi
T =

∫ T

0
bit dt+

∫ T

0
(σi)t dW

i
t +

∫ λT

0

∫ ∞
0

ρ(i)yJZ(ds, dy), i = 1, 2. (5.13)

Therefore the quadratic covariation of X1
T and X2

T is given by (see [63], Section 8.2.2)

[X1
T , X

2
T ] =

∫ T

0
ρ̄(σ1)t(σ

2)t dt+ ρ(1)ρ(2)

∫ λT

0

∫ ∞
0

y2JZ(ds, dy). (5.14)

It is clear from (5.2) and (5.9) that to find the arbitrage free price of covariance swap it

is sufficient to compute E(CovR(S1, S2)) = 1
TE[X1

T , X
2
T ]. We proceed to find this in the following

results. The first lemma is similar to Lemma 4.3.2

Lemma 5.1.3. Suppose that Bt = α1 +
∫ λt

0 es dVs, where λ > 0, α1, λ ∈ R are constants, and

0 ≤ t ≤ T , and V is a Lévy subordinator with no deterministic drift. Then

ΦBt(θ) = exp

(
iθα1 +

∫ λt

0
κV1(iθes) ds

)
, (5.15)

where κV1(·) is the cumulant generating function for V1. The moments of Bt are given by

E(Bk
t ) = (−i)kg̃k(0), k = 1, 2, . . . , (5.16)

where

g̃1(θ) = i

(
α+

∫ λt

0
esκ′V1(iθes) ds

)
, (5.17)
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and

g̃k+1(θ) = g̃1(θ)g̃k(θ) + g̃′k(θ), k = 1, 2, . . . . (5.18)

In the above formulas prime represents the derivative with respect to the parameter in parenthesis.

Proof. The proof is similar to that of Lemma 4.3.2 and we omit the details here.

When Vt = Zt, or Vt = Z̃t, any moment for Bt = α1 +
∫ λt

0 es dZs (or, Bt = α1 +
∫ λt

0 es dZ̃s)

can be obtained in terms of κm, m = 1, 2, . . . , which are cumulants of Z1 (or, in terms of κ̃m,

m = 1, 2, . . . , which are cumulants of Z̃1). For example with Bt = α1 +
∫ λt

0 es dZs,

E(Bt) = −ig̃1(0) = α1 +

∫ λt

0
κ1e

s ds = α1 + κ1(eλt − 1), (5.19)

and

E(B2
t ) = (−i)2g̃2(0) = −(g̃1(0)2 + g̃′1(0))

=

(
α+

∫ λt

0
κ1e

s ds

)2

+

∫ λt

0
κ2e

2s ds

=
(
α+ κ1(eλt − 1)

)2
+
κ2

2
(e2λt − 1). (5.20)

Similar results hold for Bt = α1 +
∫ λt

0 es dZ̃s, with κ1 and κ2 replaced by κ̃1 and κ̃2 respectively.

Before proceeding further we prove a result related to the correlation coefficient of (σ1)2
t

and (σ2)2
t . We show that if Z, Z̃, and Z∗ are related by (5.3) then the correlation coefficient of

(σ1)2
t and (σ2)2

t is independent of t.

Theorem 5.1.4. Suppose Z, Z̃, and Z∗ are related by (5.3). Then the correlation coefficient of

(σ1)2
t and (σ2)2

t is independent of time and is given by ρ′
√

κ2
κ̃2

, where κ2 and κ̃2 are second cumulant

of Z1 and Z̃1 respectively.

Proof. It is clear from (5.7) and (5.8) that

(σ1)2
t = e−λt

(
(σ1)2

0 +

∫ λt

0
esdZs

)
, (5.21)
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and

(σ2)2
t = e−λt

(
(σ2)2

0 +

∫ λt

0
esdZ̃s

)
. (5.22)

Therefore by Lemma 5.1.3, we can obtain

Var((σ1)2
t ) = e−2λtVar

(∫ λt

0
esdZs

)
= e−2λtκ2

2
(e2λt − 1), (5.23)

and

Var((σ2)2
t ) = e−2λtVar

(∫ λt

0
esdZ̃s

)
= e−2λt κ̃2

2
(e2λt − 1). (5.24)

Note that

(σ2)2
t = ρ′(σ1)2

t + e−λt((σ2)2
0 − ρ′(σ1)2

0) +
√

1− ρ′2
∫ λt

0
es dZ∗s . (5.25)

Therefore using the independence of Z and Z∗, we obtain

Cov((σ1)2
t , (σ

2)2
t ) = ρ′Var((σ1)2

t ) = e−2λt ρ
′κ2

2
(e2λt − 1). (5.26)

Hence the theorem follows from (5.23), (5.24), and (5.26).

For proceeding further with the arbitrage free pricing for covariance swap, we assume that

for 0 ≤ t ≤ T , (σ1)2
t < β2

1 and (σ2)2
t < β2

2 , for some β1, β2 > 0. We take β = max{β1, β2}. This is a

very reasonable assumption. For example, since (σ1)t and (σ2)t are expressed in percentages, for a

normal market, where it does not have “crash-like fluctuations” β = 1 can be assumed. With this

definition of β we state the next lemma.

Lemma 5.1.5. Suppose that (σ1)2
t and (σ2)2

t are given by (5.7) and (5.8) respectively, and Z, Z̃

and Z∗ are related by (5.3). Let there exists β > 0 such that for 0 ≤ t ≤ T , (σ1)2
t , (σ

2)2
t < β2.

Then

E
(
(σ1)t(σ

2)t
)

= e−λt
∞∑
k=0

k∑
p=0

p∑
u=0

(−1)p+1(2k)!

4k(k!)2(2k − 1)

(
k

p

)(
p

u

)
(β)−4p+2ρ′u(1− ρ′2)

(p−u)
2 Nt(p, u), (5.27)
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where

Nt(p, u) = E

(
(σ1)2

0 +

∫ λt

0
esdZs

)p+u
E

(
(σ2)2

0 − ρ′(σ1)2
0√

1− ρ′2
+

∫ λt

0
esdZ∗s

)p−u
, (5.28)

can be computed using Lemma 5.1.3.

Proof. It is clear from (5.7) and (5.8) that

(σ1)2
t = e−λt(σ1)2

0 + e−λt
∫ t

0
eλsdZλs = e−λtβ2

(
(σ1)2

0 +
∫ λt

0 esdZs

β2

)
, (5.29)

and

(σ2)2
t = e−λt(σ2)2

0 + e−λt
∫ t

0
eλsdZ̃λs

= e−λtβ2

(
(σ2)2

0 + ρ′
∫ λt

0 esdZs +
√

1− ρ′2
∫ λt

0 esdZ∗s
β2

)
. (5.30)

We denote Ft = (σ1)2
0 +
∫ λt

0 esdZs, c
′ = (σ2)2

0−ρ′(σ1)2
0 and Gt =

∫ λt
0 esdZ∗s and Therefore we obtain

(σ1)t(σ
2)t = e−λtβ2

√
ρ′F 2

t + c′Ft +
√

1− ρ′2FtGt
β4

= e−λtβ2

√
1 +

ρ′F 2
t + c′Ft +

√
1− ρ′2FtGt − β4

β4
. (5.31)

By the construction we have

∣∣∣∣∣ρ′F 2
t + c′Ft +

√
1− ρ′2FtGt − β4

β4

∣∣∣∣∣ < 1. (5.32)

Using (4.18) we obtain
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(σ1)t(σ
2)t = e−λt

∞∑
k=0

(−1)k+1(2k)!

4k(k!)2(2k − 1)

1

β4k−2

(
ρ′F 2

t + c′Ft +
√

1− ρ′2FtGt − β4
)k

= e−λt
∞∑
k=0

(−1)k+1(2k)!

4k(k!)2(2k − 1)β4k−2

k∑
p=0

(
k

p

)
F pt

(
ρ′Ft + c′ +

√
1− ρ′2Gt

)p
(−β)4k−4p

= e−λt
∞∑
k=0

(−1)k+1(2k)!

4k(k!)2(2k − 1)

k∑
p=0

(
k

p

)
F pt

p∑
u=0

(
p

u

)
ρ′uF ut (c′ +

√
1− ρ′2Gt)p−u(−β)4k−4p

= e−λt
∞∑
k=0

k∑
p=0

p∑
u=0

(−1)p+1(2k)!

4k(k!)2(2k − 1)

(
k

p

)(
p

u

)
(β)−4p+2ρ′u(1− ρ′2)

(p−u)
2 F p+ut G̃p−ut (5.33)

where G̃t = Gt+
c′√

1−ρ′2
. Since Z and Z∗ are independent, we note that Ft and G̃t are independent.

Therefore

E
(
(σ1)t(σ

2)t
)

=

= e−λt
∞∑
k=0

k∑
p=0

p∑
u=0

(−1)p+1(2k)!

4k(k!)2(2k − 1)

(
k

p

)(
p

u

)
(β)−4p+2ρ′u(1− ρ′2)

(p−u)
2 E

(
F p+ut

)
E
(
G̃p−ut

)
. (5.34)

We note that E(F p+ut ) in (5.34) can be computed by Lemma 5.1.3 where α1 = (σ1)2
0 and Vt = Zt.

Similarly E(G̃p−ut ) in (5.34) can be computed by Lemma 5.1.3 where α1 =
(σ2)20−ρ′(σ1)20√

1−ρ′2
and Vt =

Z∗t .

Next we consider the infinite series

e−λt
∞∑
k=0

k∑
p=0

p∑
u=0

(−1)p+1(2k)!

4k(k!)2(2k − 1)

(
k

p

)(
p

u

)
(β)−4p+2ρ′u(1− ρ′2)

(p−u)
2 Nt(p, u) (5.35)

of Lemma 5.1.5. It is clear from the proof of that Lemma that
ρ′F 2

t +c′Ft+
√

1−ρ′2FtGt−β4

β4 < 0. It is

also clear that

∣∣∣∣ρ′F 2
t +c′Ft+

√
1−ρ′2FtGt−β4

β4

∣∣∣∣ < 1.

Lemma 5.1.6. The quantity E((σ1)t(σ
2)t) can be approximated by the n-th partial sum

e−λt
n−1∑
k=0

k∑
p=0

p∑
u=0

(−1)p+1(2k)!

4k(k!)2(2k − 1)

(
k

p

)(
p

u

)
(β)−4p+2ρ′u(1− ρ′2)

(p−u)
2 Nt(p, u), (5.36)
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with the absolute error of approximation less than the quantity e−λtβ2 1
(2n−1)

√
3n+1

, for n ≥ 1.

Proof. Observe that ∣∣∣∣∣ρ′F 2
t + c′Ft +

√
1− ρ′2FtGt − β4

β4

∣∣∣∣∣ < 1, (5.37)

and

(σ1)t(σ
2)t = e−λtβ2

∞∑
k=0

(−1)k+1(2k)!

4k(k!)2(2k − 1)

1

β4k

(
ρ′F 2

t + c′Ft +
√

1− ρ′2FtGt − β4
)k
. (5.38)

The rest of the proof is similar to the proof of Theorem 4.3.4.

Remark 5.1.7. The quantity β can be used as a “control parameter” that improves the rate of

convergence of the infinite series

e−λt
∞∑
k=0

k∑
p=0

p∑
u=0

(−1)p+1(2k)!

4k(k!)2(2k − 1)

(
k

p

)(
p

u

)
(β)−4p+2ρ′u(1− ρ′2)

(p−u)
2 Nt(p, u). (5.39)

Suppose that it is possible to choose β so that

∣∣∣∣ρ′F 2
t +c′Ft+

√
1−ρ′2FtGt−β4

β4

∣∣∣∣ < 1
2+ε , for some ε > 0 and

0 ≤ t ≤ T . Then a procedure analogous to the proof of Theorem 4.3.5 can be used to show that

the quantity E((σ1)t(σ
2)t) can be approximated by the n-th partial sum of the infinite series (5.39),

with the absolute error of approximation less than the quantity

e−λtβ2

(
1 + ε

2 + ε

) 1
2 1

(2n− 1)
√

3n+ 1

1

(1 + ε)n
, for n ≥ 1. (5.40)

Also, we note that in this context it is possible to derive a result analogous to Theorem 4.3.6.

Now we prove the main theorem for this section. As in Remark 5.1.2 we denote the Lévy

measure for Z by νZ .

Theorem 5.1.8. The arbitrage-free value of a covariance swap is given by

PCov = e−rT (g1(T ) + g2 −KCov) , (5.41)
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where

g1(T ) =
ρ̄

T

∞∑
k=0

k∑
p=0

p∑
u=0

(−1)p+1(2k)!

4k(k!)2(2k − 1)

(
k

p

)(
p

u

)
(β)−4p+2ρ′u(1− ρ′2)

(p−u)
2 L(p, u), (5.42)

where L(p, u) =
∫ T

0 e−λtNt(p, u) dt with Nt(p, u) given by (5.28), and

g2 = ρ(1)ρ(2)λκ2. (5.43)

Proof. It is sufficient to show that under the equivalent martingale measure

E(Cov(S1
T , S

2
T ) = g1(λ, T ) + g2(λ, T ). (5.44)

From (5.14) we obtain

E(CovR(S1, S2)) =
1

T
E[X1

T , X
2
T ]

=
1

T

∫ T

0
ρ̄E
(
(σ1)t(σ

2)t
)
dt+

ρ(1)ρ(2)

T
E

(∫ λT

0

∫ ∞
0

y2JZ(ds, dy)

)
. (5.45)

Using Lemma 5.1.5 we obtain

1

T

∫ T

0
ρ̄E
(
(σ1)t(σ

2)t
)
dt

=
ρ̄

T

∞∑
k=0

k∑
p=0

p∑
u=0

(−1)p+1(2k)!

4k(k!)2(2k − 1)

(
k

p

)(
p

u

)
(β)−4p+2ρ′u(1− ρ′2)

(p−u)
2

∫ T

0
e−λtNt(p, u) dt, (5.46)

where Nt(p, u) is given by (5.28).

Observing E(JZ(ds, dy)) = νZ(dy) ds, we obtain

ρ(1)ρ(2)

T
E

(∫ λT

0

∫
R
y2JZ(ds, dy)

)
= ρ(1)ρ(2)λ

∫ ∞
0

y2νZ(dy). (5.47)

However since Zt is a subordinator, therefore (see [63], Proposition 3.13) we obtain that

κ2 = Var(Z1) =
∫∞

0 y2νZ(dy). Hence the theorem is proved.
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5.2. Pricing Correlation Swap

Definition 5.2.1.

We can immediately derive a corollary of Theorem 5.1.8 related to the correlation swap. A

correlation swap is a forward contract on the correlation between the underlying assets S1 and S2

for which payoff at maturity is equal to

N(CorrR(S1, S2)−KCorr), (5.48)

where KCorr is the strike price, N is the notional amount and CorrR(S1, S2) is the realized corre-

lation defined by

CorrR(S1, S2) =
CovR(S1, S2)√
(σ1)2

R

√
(σ2)2

R

. (5.49)

The arbitrage free value of the correlation swap is given by

PCorr = e−rTE
(
CorrR(S1, S2)−KCorr

)
. (5.50)

Corollary 5.2.2. Suppose that (σ1)2
R and (σ2)2

R are realized variances of S1 and S2 respectively

over the time interval [0, T ]. Then the arbitrage-free value of a correlation swap can be approximated

by

PCorr ≈ e−rT
 g1(T ) + g2√

E(σ1)2
R

√
E(σ2)2

R

−KCorr

 , (5.51)

where g1(T ) and g2 can be obtained from Theorem 5.1.8, and

E(σ1)2
R =

1

T

(
λ−1(1− e−λT )(σ1)2

0 + κ1(T − λ−1(1− e−λT ))
)

+
(
ρ(1)
)2
λκ2, (5.52)

E(σ2)2
R =

1

T

(
λ−1(1− e−λT )(σ2)2

0 + κ̃1(T − λ−1(1− e−λT ))
)

+
(
ρ(2)
)2
λκ2. (5.53)

Proof. As both X1
t and X2

t are driven by Z, the realized volatility are given by

(σ1)2
R =

1

T

∫ T

0
(σ1)2

t dt+
(
ρ(1)
)2
λκ2, (5.54)
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and

(σ2)2
R =

1

T

∫ T

0
(σ2)2

t dt+
(
ρ(2)
)2
λκ2. (5.55)

Thus the expressions of E(σ1)2
R and E(σ2)2

R can be obtained from (4.3).

It follows from [50] that

E(CorrR(S1, S2)) ≈
E
(
CovR(S1, S2)

)√
E(σ1)2

R

√
E(σ2)2

R

. (5.56)

Hence the corollary follows from Theorem 5.1.8.

We conclude the theoretical part of this section by an alternative approximate version of

Theorem 5.1.8. For that we need the following lemmas.

Lemma 5.2.3. Suppose Z, Z̃, and Z∗ are related by (5.3). For the volatility dynamics (5.7) of

two assets S1
t and S2

t ,

E
[
(σ1)2

t (σ
2)2
t

]
= e−2λt(σ1)2

0(σ2)2
0 +

(
(σ1)2

0

√
1− ρ′2κ∗1 + (ρ′(σ1)2

0 + (σ2)2
0)κ1

)
e−2λt(eλt − 1)

+ e−2λt
(
ρ′
(
κ2

1(eλt − 1)2 +
κ2

2
(e2λt − 1)

)
+
√

1− ρ′2κ1κ
∗
1(eλt − 1)2

)
, (5.57)

and where κ1 and κ2 are first two cumulants of Z1, and κ∗1 is the first cumulant of Z∗1 .

Proof. It is clear from (5.7) and (5.8) that

(σ1)2
t (σ

2)2
t = e−2λt(σ1)2

0(σ2)2
0 + e−2λt

(
(σ1)2

0

∫ t

0
eλsdZ̃λs + (σ2)2

0

∫ t

0
eλsdZλs

)
+ e−2λt

∫ t

0
eλsdZλs

∫ t

0
eλsdZ̃λs. (5.58)

Note that the first cumulant of Z̃1 (denoted as κ̃1) is related to those of Z1 and Z∗1 by the

simple relation κ̃1 = ρ′κ1 +
√

1− ρ′2κ∗1. Therefore we observe

E

(∫ t

0
eλsdZλs

)
= κ1(eλt − 1), (5.59)
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and

E

(∫ t

0
eλsdZ̃λs

)
= (ρ′κ1 +

√
1− ρ′2κ∗1)(eλt − 1). (5.60)

Using (5.3) and the independence of Lévy processes Z and Z∗, we obtain

E

(∫ t

0
eλsdZλs

∫ t

0
eλsdZ̃λs

)
= ρ′E

(∫ t

0
eλsdZλs

)2

+
√

1− ρ′2E
(∫ t

0
eλsdZλs

)
E

(∫ t

0
eλsdZ∗λs

)
= ρ′

(
κ2

1(eλt − 1)2 +
κ2

2
(e2λt − 1)

)
+
√

1− ρ′2κ1κ
∗
1(eλt − 1)2. (5.61)

Hence (5.57) follows from (5.58) and the above results.

To keep track of constants for the next computations, we define the followings:

a1 = (σ1)2
0(σ2)2

0, (5.62)

a2 = (σ1)2
0

√
1− ρ′2, (5.63)

a3 = (σ2)2
0 + ρ′(σ1)2

0, (5.64)

a4 = ρ′, (5.65)

and

a5 =
√

1− ρ′2. (5.66)

Using Lemma 5.1.3 we can compute the following:

E

(∫ t

0
eλsdZλs

)3

= κ3
1(eλt − 1)3 +

3κ1κ2

2
(eλt − 1)(e2λt − 1) +

κ3

3
(e3λt − 1), (5.67)
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and

E

(∫ t

0
eλsdZλs

)4

= κ4
1(eλt − 1)4 + 3κ2

1κ2(eλt − 1)2(e2λt − 1)

+
3

4
κ2

2(e2λt − 1)2 +
4

3
κ1κ3(eλt − 1)(e3λt − 1) +

κ4

4
(e4λt − 1). (5.68)

Let us define X1t =
∫ t

0 e
λsdZλs and X2t =

∫ t
0 e

λsdZ∗λs. For notational convenience we will

simply write X1t = X1 and X2t = X2. Clearly X1 and X2 are independent. Thus from (5.58) it

can be easily shown that

Var
[
(σ1)2

t (σ
2)2
t

]
= Var(a1 + a2X2 + a3X1 + a4X

2
1 + a5X1X2)

= a2
2Var(X2) + a2

3Var(X1) + a2
4Var(X2

1 ) + a2
5Var(X1X2)

+ 2a2a5Cov(X2, X1X2) + 2a3a4Cov(X1, X
2
1 )

+ 2a3a5Cov(X1, X1X2) + 2a4a5Cov(X2
1 , X1X2). (5.69)

Using the independence of X1 and X2, it is easy to show

Var(X2
1 ) = E(X4

1 )− (E(X2
1 ))2, (5.70)

Var(X1X2) = E(X2
1 )E(X2

2 )− (E(X1))2(E(X2))2, (5.71)

Cov(X2, X1X2) = E(X1)Var(X2), (5.72)

Cov(X1, X
2
1 ) = E(X3

1 )− E(X2
1 )E(X1), (5.73)

Cov(X1, X1X2) = E(X2)Var(X1), (5.74)

Cov(X2
1 , X1X2) = E(X2)(E(X3

1 )− E(X2
1 )E(X1)). (5.75)
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Clearly,

E(X1) = κ1(eλt − 1), E(X2) = κ∗1(eλt − 1), (5.76)

E(X2
1 ) = κ2

1(eλt − 1)2 +
κ2

2
(e2λt − 1), E(X2

2 ) = (κ∗1)2(eλt − 1)2 +
κ∗2
2

(e2λt − 1), (5.77)

and

Var(X1) =
κ2

2
(e2λt − 1), Var(X2) =

κ∗2
2

(e2λt − 1). (5.78)

The quantities E(X3
1 ) and E(X4

1 ) can be computed using (5.67) and (5.68) respectively.

Thus (5.69) can be used to construct the variance of (σ1)2
t (σ

2)2
t .

We conclude the section with following approximation theorem.

Theorem 5.2.4. The arbitrage-free value of a covariance swap is given by

PCov ≈ e−rT (g3(T ) + g2 −KCov) , (5.79)

where g2 = ρ(1)ρ(2)λκ2, and

g3(T ) ≈ ρ̄

T

∫ T

0

(√
E[(σ1)2

t (σ
2)2
t ]−

Var[(σ1)2
t (σ

2)2
t ]

8(E[(σ1)2
t (σ

2)2
t ])

3/2

)
dt, (5.80)

where E[(σ1)2
t (σ

2)2
t )] can be computed using Lemma 5.2.3 and Var[(σ1)2

t (σ
2)2
t )] can be obtained

using (5.69).

Proof. We observe that,

E
(
(σ1)t(σ

2)t
)
≈
√
E[(σ1)2

t (σ
2)2
t ]−

Var[(σ1)2
t (σ

2)2
t ]

8(E[(σ1)2
t (σ

2)2
t ])

3/2
. (5.81)

The rest of the proof follows from Theorem 5.1.8.

5.3. Model Fitting and Parameter Estimate

We use the stock prices of S&P500 index and NASDAQ during the time period 10/01/2010

through 01/15/2015. The data set has 1080 closing daily stock prices, and these are used for the

computation of realized covariance. For the numerical simulation we take ρ(1) = ρ(2) = −1. From
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the regression fit model for non linear least square estimate we find that the α level of the parameters

for all cases are significantly less than 0.05. Therefore this tells us all the parameters are significantly

important to estimate the realized covariance swap price. Once calibration is performed over the

described historical data set, we obtain the model parameters and these parameters can be used

to price the fixed leg (fair delivery price) of the covariance swap. The calibration results with the

application of Theorem 5.1.8 for covariance swap for various cases are shown in Tables 5.1, 5.2 and

5.3 and the corresponding fittings are shown in Figure 5.1. Moreover Figure 5.2 deals with the

error and rate of convergence for theorem (5.1.8) and it clearly shows how fast the convergence

existst as n→∞.

For Table 5.1 it is assumed that for the unconditional distribution (σ1)2
t ∼ Γ(ν1, α1) and

(σ2)2
t ∼ Γ(ν2, α2). For Table 5.2 it is assumed that for the unconditional distribution (σ1)2

t ∼

IG(δ1, γ1) and (σ2)2
t ∼ IG(δ2, γ2). Finally for Table 5.3 it is assumed that for the unconditional

distribution (σ1)2
t ∼ PTS(κ1, δ1, γ1) and (σ2)2

t ∼ PTS(κ2, δ2, γ2).

It is clear that the expression in Theorem 5.1.8 is a formal asymptotic expansion. However,

Remark 5.1.7 gives a control over the convergence of the infinite series. This can also be used in

practice to demonstrate the reliability of the approximation. A similar argument as in the case of

volatility swap and Remark 5.1.7 show that in order to have rapid convergence of the infinite series in

context, the quantity max0<T≤Tmax |n1 th partial sum−n2 th partial sum|must be reasonably small

as n1 and n2 increase. In the following Figure 6, we take n2 = N and n1 = N + 1, to demonstrate

the rapid convergence of the expression max0<T≤Tmax |(N + 1)th partial sum − N th partial sum|

for various N . These results show the numerical evidence of reliability of the procedure.

5.4. Conclusion

In this Chapter we have presented a new extended approach based on the BN-S model to

obtain the arbitrage-free pricing for covariance and correlation swaps for financial markets. We

used the S&P500 index and NASDAQ for numerical purposes and model fitting. Covariance and

correlation swap are important in minimizing the risk that might come from different currencies.

We use an OU process driven by a subordinator.

The stochastic volatility models that are used for analysis are empirically reasonable as

well as having many appealing features from a theoretical finance perspective. The results derived

in this dissertation are potentially important as this means that stochastic volatility models built
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out of OU processes with gamma or inverse Gaussian or positive tempered stable marginals have

excellent numerical accuracy in obtaining the fair delivery prices for various swaps. Further, we

get closed form pricing formulas depending on various cumulants of the BDLP Lévy process Z. In

this dissertation we have also derived an algorithmic process to compute the cumulants of Z. The

improvement of numerical results in the analysis is very significant over the existing models with a

similar number of parameters, such as the Heston model.

More generally, the results obtained in this dissertation have important implications for

their use in, for example, energy markets. Energy is the most important commodity sector. Crude

oil and natural gas are one of the most liquid option markets among all commodities. Since Crude

oil and natural gas have the properties of mean reverting,which means that they tend to return

over time to the long term average.So it is important to estimate or model the direction of price

of those types of commodites. Varianceor volatility risk premia for energy commodities, crude oil

and natural gas, is becoming increasingly popular and the approach considered in this dissertation

can be further developed to analyze such markets. Moreover, the idea used in this dissertation can

be generalized for the analysis of covariance and correlation risk of two commodities of an energy

market. These aspects will be developed in future works.
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Table 5.1. Parameter estimates for Variance Gamma Covariance swap

Parameters Estimate Standard Error t Value Pr(> |t|)
λ 0.15247 0.03418 4.460 9.05e-06
ν1 65.01301 25.08776 2.591 0.009688
ν2 65.01301 25.08776 2.591 0.009688
ρ̄ −0.1415 0.0215 3.219 2e− 8
ρ′ 0.038901 0.0014 214.913 < 2e− 16
α1 33.99290 10.25798 3.314 0.000951
α2 19.72202 4.64716 4.244 2.39e− 05

Table 5.2. Parameter estimates for Inverse Gaussian covariance swap

Parameters Estimate Standard Error t Value Pr(> |t|)
λ 0.15247 0.03418 4.460 9.05e− 06
δ1 11.15092 2.62873 4.242 2.41e− 05
δ2 11.15092 2.62873 4.242 2.41e− 05
ρ̄ −0.38901 0.0215 3.219 2e− 8
ρ′ 0.38901 0.0014 214.913 < 2e− 16
γ1 5.83038 0.87971 6.628 5.39e− 11
γ2 3.38266 0.30425 11.118 < 2e− 16

Table 5.3. Parameter estimates for Positive Tempered Stable covariance swap

Parameters Estimate Standard Error t Value Pr(> |t|)
inserts single horizontal line λ 0.000644975 6.954e− 6 -92.75 < 2e− 16

ρ̄ 91.9824 1.4e− 6 214.913 < 2e− 16
ρ′ 2.46078 9.708e− 2 -17.77 < 2e− 16
κ1 0.508837 2.62873 4.242 < 2e− 16
κ2 0.508837 2.53e− 03 1166.18 2e− 16
δ1 3.06699 2.53e− 03 1166.18 2e− 16
δ2 3.06699 2.53e− 03 1166.18 2e− 16
γ1 1.5000 2.148e− 03 793.16 < 2e− 16
γ2 1.98114 0.00030425 212.861 < 2e− 16
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Figure 5.1. Fitting of covariance swap
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Zoomed in version of the left picture.
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6. ORNSTEIN-UHLENBECK PROCESS FOR

GEOPHYSICAL DATA ANALYSIS

6.1. Introduction

Earthquake occurs in a region where there is a multiscale networks or systems that are

driven by an external forces arising from plate tectonic motions. In the study of the relations

between seismic dynamics and underlying physical processes, a major role is played by the question

of how the magnitude rates evolve with time and if it is at all possible to have a priori estimate

of big jumps in the magnitude rate. Recent researchers showed a renewed interest in modeling the

earthquake. But still there is an argument whether earthquake is a deterministic or stochastic. OU

Process has an interesting futures in detecting random jumps followed by a mean reverting. As the

historical data reveals that earthquake is a stochastic which is not random, here we are going to use

one of a financial model to estimate the future major earthquakes. The main objective is to explore

and develop mathematical and computation related to estimation of earthquake. The models are

complex and new numerical methods need to be devised for solving these problems. We have been

working on related subjects like critical phenomena modeling, and more recently we have embarked

to work in seismologic events modeling. In earthquake studies, the primary tool which describes

the earthquake signal is the ground acceleration signal recorded using a seismometer. Seismometers

placed at different locations will record the signal differently, depending on the distance from the

epicenter of the earthquake and the soil composition between the epicenter and the location of

recording. The earthquake signal exhibited clear stochastic volatility behavior. This led us to

believe that the tools we develop in this area will have great importance for the field.

In [34] the authors analyze the signal recorded for the Parkfield county California earthquake

of September 28, 2004. The magnitude of this earthquake was 6.0 on the Richter scale. The author

analyzed data from two different stations: Red Hills and Donna Lee, situated approximately 20

miles apart. In the top left of Figure 6.1 a plot of the raw acceleration signal recorded is provided.

An application of the technique of estimating the variability of the signal using a Markov chain

gives the variability (stochastic volatility) estimate in bottom left of Figure 6.1. The two signals
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are plotted using the same scales and clearly the one recorded further away bears little resemblance

with the one recorded closer to the epicenter. An application of the technique of estimating the

variability of the signal using a Markov chain gives the variability (stochastic volatility) estimate

in the right side of Figure 6.1.Donna Lee/Red Hills Comparisons: 
27 – 42 Seconds From 17:15 on 9/4/04
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Figure 6.1. Images comparing the raw signal and the variability estimates for two locations. The
Red Hills variability is trailing the Donna Lee variability by about 1.3 seconds

A further extension is to use more general Lévy flight dynamics for the earthquake signal.

In the study of relations between seismic dynamics and underlying physical processes, a major role

is played by the question of how the magnitude rates evolve with time and if it is at all possible

to have an a priori estimate of big jumps in the magnitude rate. This is highlighted in the fault

interaction model [58] which is based on the hypothesis that small and sudden stress changes

cause large changes in seismic rate. Several statistical methods have been developed to serve this

purpose. The general framework assumes that the temporal dynamics on a closed time interval of

geophysical processes is fully described by the expected numbers of events in the time period. In

[24] the author used Gamma-Ornstein–Uhlenbeck process to capture major earthquakes in certain

region of California.

In a recent work [38] scale invariant functions and stochastic Lévy models are applied to

geophysical data and it is shown that a pattern arises from the scale invariance property and

Lévy flight models that may be used to estimate parameters related to some major earthquakes.

Modern literature also uses the generalized Omori law and ETAS model (Epidemic-Type aftershock

sequence) for quantitative statistic modeling of seismic regime [40, 46, 48]. However, it appears

that there is a major drawback with the procedure described in the previous works. Firstly, it is
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now well accepted that an earthquake model is not a deterministic one and hence the deterministic

models such as scale-invariance technique may not be a suitable model.

However, it appears that there is a major drawback with the procedure described in the

previous works. Firstly, it is now well accepted that an earthquake model is not a deterministic

one and hence the deterministic models such as scale-invariance technique may not be a suitable

model. For the existing stochastic models there is no concrete theory that models the data point

and estimate the earthquake data from a separate estimation depending on the model parameters.

For example, in [37, 38] earthquake estimation is solely dependent on the data itself and the first

outlier data gives an estimation. This method is good for some geographical regions but fails

significantly for most of the other regions. The possible reasons are: (i) those models do not take

into account the physical behavior of the earthquake data, and (ii) all the previous models are not

completely stochastic.

In this proposal we propose a model of earthquake data based on a completely stochastic

process. The model process will depend on some parameters which will be dependent on a particular

time frame and a specific geographical location. One of the most important features of such

modeling is the stationary. This means the magnitude process of a geophysical event has invariant

statistical distributions for different temporal non-overlapping ranges of the same size. A stochastic

process (Xt)t≥0 has stationary increments if the law of Xt+h−Xt, with h > 0, does not depend on t.

This means that the statistical description of the process over a closed interval of time is invariant

with respect to shifts of the starting time provided the same length of time interval is considered.

Stationary is used in literature for modeling different geophysical events (see [26, 40, 46, 64] and

references therein). For a particular earthquake prone region if the time series of data points

(magnitude) of an earthquake are joined with lines then the following properties are clear for any

earthquake data:

1. Magnitude is a non-negative stationary stochastic process.

2. For any finite interval of time there are only finite number of jumps.

3. The sample path of magnitude of earthquake consists of upward jumps (significant earth-

quake) and gradual decrease (aftershocks).
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The purpose of this proposal is to use non-Gaussian Ornstein-Uhlenbeck (OU) processes to

model the magnitude process of earthquake. Non-Gaussian processes of OU type have consider-

able potential as building-blocks for different stochastic models of observational time series from a

variety of fields. They offer the possibility of capturing important distributional deviations from

Gaussianity and provide flexibility in modeling dependence structure.

Most common Non-Gaussian OU processes in literature are Gamma-OU and Inverse Gaus-

sian OU processes. For Inverse Gaussian OU process, it jumps infinitely often in every interval of

time and hence it may not be a good candidate for modeling geophysical data. However, Gamma

OU process satisfies all the three aforementioned criteria. This proposal aims at developing Gamma-

OU process and its modifications in relation with the geophysical data, drawing on and extending

powerful results from probability theory for applications in stochastic computations. This analysis

will eventually lead to the estimation of future major earthquakes.

6.2. Ornstein-Uhlenbeck Processes for Geophysical Modeling

When Lévy processes are used as driving noise it is possible to construct a large family of

mean-reverting jump processes with linear dynamics on which various properties such as positive-

ness or the choice of marginal distribution, can be imposed. We consider continuous time stationary

and non-negative processes which are defined by the following stochastic differential equation

dMt = −λMt dt+ dZλt, M0 > 0, (6.1)

where the process Zt is a subordinator- that is, it is a Lévy process with no Gaussian component

and positive increments. The rate parameter λ is arbitrary positive and Zt is called the Background

Driving Lévy Process (BDLP). The unusual timing Zλt is deliberately chosen so that it will turn

out that whatever the value of λ the marginal distribution of (Mt) will be unchanged. We call the

process M = (Mt)t≥0 to be Ornstein-Uhlenbeck (OU) process.

The solution of (6.1) can be explicitly written as

Mt = e(−λt)M0 +

∫ t

0
exp (−λ(t− s)) dZλs, (6.2)

which can also be written as Mt = e−λtM0 + e−λt
∫ λt

0 es dZs. As Z is an increasing process and
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M0 > 0, the process (Mt) is strictly positive and it is bounded from below by the deterministic

function exp(−λt)M0. Since the process Zt has positive increments and no drift, (Mt) moves up

entirely by jumps and then tails off exponentially. Since equation (6.2) is a driven by a subordinator

we can apply the definition of (3.0.7) and theorems of (3.0.8) and (3.0.9). We can find the log

cumulant function of Mt and Z1 respectively by the identity we saw on chapter 3.

It is clear from [51] (Theorem 17.5(ii)) that for any self-decomposable law D there exists a Lévy

process Z such that the process of OU type driven by Z has invariant distribution given by D. If

κD(θ) = logE[eθD], and κ(θ) is the cumulant transform for Z1, then it is well known (see [3, 6])

that they are related by the fundamental equality

κD(θ) =

∫ ∞
0

κ(θ exp(−s))ds. (6.3)

This can be expressed as

κ(θ) = θ
dκD

dθ
(θ). (6.4)

To prove the above relation let u = θe−s then du = −uds hence the above equation (6.4)

can be derived as

κD(θ) =

∫ ∞
0

κ(θ exp(−s))ds

= −
∫ 0

θ

κ(u)

u
du,

κ(θ) = θ
dκD

dθ
(θ) (6.5)

Lemma 6.2.1. If Mt follows a Γ(ν, α) then its cumulative generating function is given by

κMt(θ) = ν log

(
α

α− θ

)
(6.6)

Proof. We refer you to (3.0.12).
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From the above lemma it is easy to see that the cumulative function of Zt is given by

κ(θ) =
νθ

α− θ
. (6.7)

It has been know that Γ(ν, α) is an infinite divisible which makes it easier to find its Lévy

density which is given by u(x) = νx−1e−αx. Using theorem (3.0.9), we can calculate the Lévy

density function of the BDLP Z and is

w(x) = ανe−αx. (6.8)

It is clear from (Schoutens [52]) the BDLP for the Γ(ν, α)-OU process is a compound Poisson

process

Zt =

Nt∑
n=1

xn, (6.9)

where (Nt)t≥0 is a Poisson process with E(Nt) = νt and {xn, n = 1, 2, . . . } is an independent and

identically distributed sequence with each xn has Γ(1, α) (that is Exp(α)) law. From the properties

of the compound Poisson process it is clear that the stochastic process (Mt)t≥0 has many desired

properties such as (see [63]):

• The process Z (which is the BDLP of M) has cádlág piece wise constant functions.

• The jump times of Z (and thus for M) have the same law as the jump times of the Poisson

process Nt.

• Zt has the characteristic function given by

E(eiuZt) = exp

(
tν

∫ ∞
0

(eiux − 1)αe−αx dx

)
, u ∈ R. (6.10)

The stochastic process (Mt) which is defined above BDLP is called the Gamma-OU process.

Since the BDLP is compound Poisson process, on any compact time interval it jumps a finite number

of times.Immediately this will follow that the Gamma-OU process (Mt) also jumps a finite number

of times in every compact time-interval as it is driven by BDLP. Since a selected region of interest

have finite number of major earthquakes, We need a model which has a finite number of jumps on
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a certain compact interval. That is why we choose Gamma-OU process over Inverse Gaussian-OU

process as the later jumps infinitely over any compact time interval.

6.3. Computation of Characteristic Function

Assume that the magnitude of the earthquake data is given by M = (Mt)t≥0 (defined in

(6.1) or (6.2)) on some filtered probability space (Ω,F , (F)0≤t≤T , P ). Estimation of a major event

in a future time depends on the analysis of the conditional distribution of the magnitude process

MT given the information up to a certain time t0. In practice t0 is taken to be the time till which

the magnitude data for the geophysical process is available and T is taken to be some reasonable

time after t0 on which the estimation of future major event is computed. The characteristic

function for MT given the information up to time t0 ≤ T is given by E[exp(iuMT )|Ft0 ], where

u ∈ R. The conditional distribution of MT given the information up to time t0 ≤ T will be

denoted by MT |t0 . The characteristic function of a stochastic process completely characterizes

its law. That is, two stochastic processes with the same characteristic function are identically

distributed. A characteristic function is always continuous and its value is unity when u = 0.

Additional smoothness properties of the characteristic function depend on the existence of the

statistical moments of the stochastic process.

We need the following theorem to attain the main result of this section. We quote this

result from [42].

Theorem 6.3.1. Let Z be a subordinator with cumulant transform κ and let f : R+ → C be a

complex-valued, left continuous function such that <(f) ≤ 0. Then

E

[
exp

(∫ t

0
f(s) dZλs

)]
= exp

(
λ

∫ t

0
κ(f(s)) ds

)
. (6.11)

We can now compute the characteristic function of the stochastic process (Mt) given by

(6.1) or equivalently by (6.2).

Theorem 6.3.2. Consider the OU-process given by (6.1). Then the characteristic function φ(u) =
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E[exp(iuMT )|Ft0 ] of MT |t0 is given by

φ(u) = exp

[
iuMt0e

−λT + λ

∫ T

t0

κ
(
iue−λ(T−s)

)
ds

]
, (6.12)

where κ(·) is the cumulant transform for Z.

Proof. Substituting equation (6.2) and using the above theorem (6.3.1) we get and <
(
iue−λ(T−s)) =

0 we get

φ(u) = E[exp(iuMT )|Ft0 ]

= E

[
exp

(
iu

(
exp(−λT )Mt0 +

∫ T

t0

exp (−λ(T − s)) dZλs
))
|Ft0

]
= exp

(
iue−λTMt0

)
E

[
exp

(∫ T

t0

iue−λ(T−s) dZλs

)]
= exp

[
iuMt0e

−λT + λ

∫ T

t0

κ
(
iue−λ(T−s)

)
ds

]
. (6.13)

It is easy to see that equation (6.12) is true for u = 0. Thus, statistically, all moments of

MT |t0 exist. Also, the probability density of the process MT |t0 can be recovered from a straight-

forward generalization of φ(u) to Laplace transform. This is similar to the computations in [42].

We now compute the characteristic function for M when it is Gamma-OU process. Using (6.7) we

obtain

∫ T

t0

κ
(
iue−λ(T−s)

)
ds =

∫ T

t0

iνue−λ(T−s)

α− iue−λ(T−s)ds

= − ν

2λ
[2λ(T − t0) + log(α2 + u2)− log

(
α2e2λ(T−t0) + u2

)
+ 2i

(
arctan

(α
u

)
− arctan

(
αeλ(T−t0)

u

))
]. (6.14)

Thus for Gamma-OU process substituting (6.14) into theorem (6.12) gives a closed form solution

of the characteristic function which is given by
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φ(u) = exp[−ν
2

[
2λ(T − t0) + log(α2 + u2)− log

(
α2e2λ(T−t0) + u2

)]
+ i

[
uMt0e

−λT − ν arctan
(α
u

)
+ ν arctan

(
αeλ(T−t0)

u

)]
]. (6.15)

Thus

|φ(u)| = exp
[
−ν

2

[
2λ(T − t0) + log(α2 + u2)− log

(
α2e2λ(T−t0) + u2

)]]
= e−νλ(T−t0)(α2 + u2)−

ν
2

(
α2e2λ(T−t0) + u2

) ν
2

=

(
α2 + u2e−2λ(T−t0)

α2 + u2

) ν
2

. (6.16)

For the regression analysis in Section 6.5 this theoretical |φ(u)| ∈ R for Gamma-OU pro-

cesses are fitted with the absolute value of the characteristic function computed from the observed

data to estimate the appropriate values of α, ν and λ.

6.4. Analysis of the First-Passage Time

In this section we will give some definition of the exit time that will help us in the earthquake

data modeling with a Gamma-OU process. The first passage time or exit time has many interesting

applications in different area such as mathematical finance, dam theory reliability analysis, etc.

Here we give the formal definition stopping time.

Definition 6.4.1. If U is an open subset of R then the first passage time of a stochastic process

(Xt)t≥0 is defined as

τU = inf{t > 0 : Xt /∈ U}. (6.17)

Thus for a given geophysical data which is modeled by (Mt)t≥0, it is important to approxi-

mate the distribution of the first passage time or exit time of a major earthquake. The first passage

time has some interesting futures, for example the first passage time is stopping time (or Markov

time) with respect to the filtration of the given stochastic process. Also exit time are also used

harmonic measure and hitting distribution,for detailed we refer the reader to [22, 47].

If b is a threshold of the magnitude above which earthquakes can be attributed as “major”

or “devastating” for a certain geographical region, then it is important to understand the exit time
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Figure 6.2. Graphical example of exit time.

given by

τb = inf{t > 0 : Mt ≥ b}, (6.18)

for some given value b > M0. The distribution of τbusing the transition density of a process is

is well understood for the Gaussian OU processes from the pioneering work [22]. However, this

problem is significantly complicated for non-Gaussian OU processes.

The distribution of the first passage time is determined through its Laplace transform

which is found by exploiting certain stopped martingales derived from using bounded partial eigen-

functions for the infinitesimal generator for the stochastic processes. There are several works in

literature which deal with approximation, asymptotic expansions, integral equations, and implicit

expressions related to the exit time of non-Gaussian OU processes (see [44, 43, 45, 28, 11]). How-
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ever, an explicit expression of the distribution of the first-passage time for a general non-Gaussian

OU process is still an area of active research interests.

For the analysis of the geophysical data we can reasonably assume

E(log(1 + |Zλ|)) <∞, (6.19)

which is a necessary and sufficient condition of convergence of (Mt) in distribution to a proper limit

(see [67]). When M is a Gamma-OU process, clearly Zλt =
∑Nλt

n=1 xn, is a compund poisson process

, where E(Nλ) = νλ and thus the moment generating function for Zλ can be obtained from (6.10)

as

E(evZλ) = exp

(
λν

∫ ∞
0

(evx − 1)αe−αx dx

)
. (6.20)

As used in [11], set

K = sup{u ≥ 0 : E(euZλ) <∞}, (6.21)

and

Φ(u) =
1

λ

∫ u

0

log(E(evZλ))

v
dv, 0 ≤ u < K. (6.22)

We need the following simple Lemma to have an estimate of the expectation of the first

passage time for Gamma-OU processes.

Lemma 6.4.2. When M is a Gamma-OU process K = α and

Φ(u) = ν log

(
α

α− u

)
, 0 ≤ u < α. (6.23)

Proof. It follows directly from (6.20) that K = α. Moreover, simple calculation shows

log(E(evZλ)) = λν

∫ ∞
0

(evx − 1)αe−αx dx

= λνα

(
e(v−α)x

v − α
+
e−αx

α

)
|∞x=0

=
λνv

α− v
. (6.24)

The last statement comes from the fact that v < α. Thus for 0 ≤ u < α, Φ(u) = ν log
(

α
α−u

)
.
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It is clear from Lemma 6.4.2 that when M is a Gamma-OU process Φ(K) = Φ(α) = +∞.

Also, for this case, it is evident from [43] that if G(z, µ) =
∫ α

0 euz−Φ(u)uµ−1 du, with µ > 0 and

Φ(u) defined as in (6.23), then

E(e−µλτbG(Mτb , µ)) = G(Mt0 , µ), µ > 0. (6.25)

We now state the main result for estimation of the first passage time of the process M .

Theorem 6.4.3. Let M be a Γ(ν, α)-OU process given by (6.1). Then the expected value of τb

satisfies the following relation

E(τb) ≥
1

λ

∫ α

0

(eub − euM0)

u

(
α− u
α

)ν
du. (6.26)

Proof. We observe that (6.19) is satisfied and 0 < K = α < ∞ and Φ(K) = +∞. Thus all

conditions of [11] (Theorem 2) are satisfied. Hence

E(τb) =
1

λ
E

[∫ K

0

(euMτb − euM0)

u
e−Φ(u) du

]
≥ 1

λ

∫ α

0

(eub − euM0)

u
e−Φ(u) du

=
1

λ

∫ α

0

(eub − euM0)

u

(
α− u
α

)ν
du, (6.27)

where in the last step result for Φ(u) from Lemma 6.4.2 is used

Theorem 6.4.3 plays a key role in Section 6.5. The parameters α, ν and λ will be found

using regression analysis. Thus for the Gamma-OU model we can estimate the expected value of

the major events using (6.26). This gives the estimated time after which the awareness level should

be raised significantly that a major event will follow.

6.5. Statistical Analysis of the Data

In this section we analyzed the earthquake data using method of non-linear least square

(nls) estimation regression. This nls use the given data and try and finds the given parameter

which minimzes the least square error. We used a statistical software which is called R to do the
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analysis and get the root mean square error (RMSE). the first part of this section (Section 6.5.1)

we describe the geophysical data set used for the computation. In Section 6.5.2 we give a detailed

account of our results with comparison with existing results.

6.5.1. Geophysical (Earthquake) Data

The geophysical data was obtained from U.S. Geological Survey (USGS) from January 1,

1973 to November 9, 2010 for a certain region in California. This data contains information about

the date, longitude, latitude, and magnitude of each recorded earthquake in the region.

This study will be characterized by the geographical region in a neighborhood of location

of the major earthquake. The choice of this region should be done carefully. This area can not be

too small because in that case there will be not enough data to run the regression analysis. The

area can not be too big because in that case the magnitude data set is distorted due to noise from

unrelated events. As in [38] the data is obtained using a square centered at the coordinates of the

major event. The sides of the square are usually chosen as ±0.1◦–0.5◦ in latitude and ±0.2◦–0.5◦

in longitude. A segment 0.1◦ of latitude at the equator is ≈ 6.9 miles ≈ 11.11 km in length.

The earthquake magnitude is the recorded data used for 5 different square regions and

the model is fitted to get the parameter estimate. The policy of the USGS regarding recorded

magnitude is the following [1]: (i) Magnitude is a dimensionless number between 1 and 12. (ii) The

reported magnitude should be moment magnitude, if available. (iii) The least complicated, and

probably most accurate, terminology is to just use the term “magnitude” and to use the symbol

M for it.

The magnitude is recorded in the data used and where available moment magnitude is used.

A major earthquake event is defined as an earthquake with magnitude greater than 7. For more

information we refer to the specific USGS documentation available at

http://earthquake.usgs.gov/aboutus/docs/020204mag policy.php.

6.5.2. Regression Analysis and Estimation of Major Events

For the regression analysis we use data prior to a major earthquake event. The time

series is shifted in such a way that the initial time is 0 and the final time (up to which data is

available to estimate future major event) is t0. For the model t0 is taken to be the time before

a major earthquake for which the magnitude is actually recorded. Consequently, for a particular

geographical location, M0 and Mt0 denote the magnitude of the data for the recorded initial and
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final times respectively. The time T can be taken to be any day between t0 and the day of the

major earthquake. Choice of T is on users’ discretion as long as the time series for the magnitude

process of earthquake in a geographical region is provided up to time t0 < T . However, the

two important aspects to keep in mind are: (i) T can not be too large. The geophysical data

is not provided for small magnitudes which potentially distort the probability distribution of the

magnitude process from the data. If too long is waited after t0 it is very much possible that the

probability distribution from the computed data set is already changed quite significantly. (ii) T

can not be too small. Because, in that case there may not be any jump in the Lévy process Z and

thus the contribution from the stochastic term in (6.12) is zero (or close to zero). So the model

itself becomes insignificant.

Hence it is important to choose T carefully. For example, in our regression analysis T is

taken to be t0 + 1.

Based on the data of the magnitude process (Mt)0≤t≤t0 it is possible to compute the char-

acteristic function φO(u) = E[exp(iuMT )|Ft0 ], where the suffix ‘O’ of φ stands for “observed”

characteristic function based on the data set up to time t0. We numerically compute the probabil-

ity distributions and then use Fast Fourier Transform (FFT) to compute φO(u). We take modulus

of these complex function to get |φO(u)|, which is a real function of u. For the Gamma-OU model,

we fit (6.16) to the observed |φO(u)| using non-linear regression. The fitting minimizes root-mean

square error (RMSE). The software which is used for regression is R. This gives the best fit values

of the parameters α, ν and λ. We find for each specific region, p-value is much less than 0.05 for

all the parameters which shows that all the three parameters (α, ν and λ) are very significant for

the model. Finally (6.26) is used to compute the lower bound of the expected time of a major

earthquake. At that time the awareness level should be raised significantly in anticipation of a

major earthquake. We note that (6.26) does not give a lower bound for τb. Instead it gives the

lower bound for E(τb) which is a statistical property of τb. We acknowledge the fact that in some

exceptional cases it is still possible to get a major earthquake even before the lower bound time of

E(τb). However, statistically those incidences are very less probable. Partial compensation of the

lower bound of E(τb) can be attained by little flexibility in the values of b in the definition of major

earthquake. For our calculation b is chosen from a range 6.2 to 6.7.

Table 6.1 presents the estimated parameters from regression analysis. Table 6.2 presents the
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estimations from the regression model. In Table 6.2, tr is the estimated date on which alert should

be raised about possible earthquake in near future, and tm is the actual known major earthquake

date.

The following Figures (Figure 6.3 to Figure 6.7) present the fitting of absolute value of the

characteristic function. In each of the figures, circles denote values of |φO(u)| which are computed

from actual data points and the solid line is the regression fitting.

It is clear from Table 6.2 that the Gamma-OU model can be very effective in modeling

magnitude process of earthquake in certain geographical locations. At the time tr a near-future

earthquake warning should be issued. Observe that tr is always less than tm which is why this

model is reasonable for estimating earthquake date. For the previous works where the Ising model,

scale invariance or Lévy flights are used [30, 39, 37, 38] the estimated date is typically but not always

preceding the major event. For different deterministic models the estimation is based on finding

some accumulation point of a sequence of numbers. However, there is no reason that the limit

point is before the actual date of major earthquake. As shown in the following tables and figures,

Gamma-OU works surprisingly good in that respect. On the other hand, for the stochastic Lévy

flight models in literature, the estimated date was found from the given data set and some points

in that data set may be after a major earthquake. For example, for the Lévy flight model with unit

variance the estimation is based on the deviation of the data set from the cumulative distribution

of the model [38]. However, that deviation can very well occur after the major earthquake. The

model proposed in this study do not take into account the data after major earthquake. Gamma-

OU model only takes the historical data and thus more realistic for practical applications.

6.6. Conclusion

In this chapter we use Gamma-OU process to model magnitude process of earthquake data.

The predicted time is typically preceding the time of the major event. This methodology can be

used in real time by looking at the minor earthquakes up to a certain date to estimate a major

earthquake in future. However, there are some difficulties with this method in terms of false alarm.

When this model is used to analyze some other data sets most of the time it works reasonably.

However, sometime the predicted time is within some days after the first data. That is of course

correct (in the sense that the estimated time precedes the actual time) but sort of false alarm to

the situation as no major earthquake was reported near to that point. There are two ways two
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improve those situations. Firstly, we can modify the value of the major earthquake b so that tr

becomes bigger than t0. Such tr (with reasonable b) will be the new estimation. Secondly, we can

modify the Gamma-OU model to a superimposition of several OU processes. This will allow the

model to be the sum, or superimposition, of independent OU processes. As the processes do not

need to be identically distributed, this offer some extra flexibility in the model. Modified processes

are potential candidates for modeling long-range dependence and self-similarity (see for example

[3, 6] and references therein). Additional work is in progress on this aspect in order to improve the

present model.
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Figure 6.3. Fitting for Latitude 40.37◦ ± 0.1◦ and Longitude −124.32◦ ± 0.2◦.
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Figure 6.4. Fitting for Latitude −23.34◦ ± 0.5◦ and Longitude −70.30◦ ± 0.5◦.
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Figure 6.5. Fitting for Latitude 63.52◦ ± 0.17◦ and Longitude −147.44◦ ± 0.34◦.
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Figure 6.6. Fitting for Latitude −17.66◦ ± 0.03◦ and Longitude −178.76◦ ± 0.06◦.
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Figure 6.7. Fitting for Latitude −19.93◦ ± 0.05◦ and Longitude −178.18◦ ± 0.1◦.

Table 6.1. Results from regression analysis

Latitude Longitude M0 t0 α ν λ RMSE

40.37◦ ± 0.1◦ −124.32◦ ± 0.2◦ 3.9 12/20/1991 2.4113 1.2045 2.3879 0.06346

−23.34◦ ± 0.5◦ −70.30◦ ± 0.5◦ 4.6 06/01/1995 2.0007 0.4244 0.9951 0.05913

63.52◦ ± 0.17◦ −147.44◦ ± 0.34◦ 4.2 11/03/2002 2.8355 2.3713 0.99289 0.06875

−17.66◦ ± 0.03◦ −178.76◦ ± 0.06◦ 4.1 07/15/2004 2.7123 2.7231 0.99052 0.04582

−19.93◦ ± 0.05◦ −178.18◦ ± 0.1◦ 4.7 08/25/2005 3.2601 1.6960 0.99552 0.03451

Table 6.2. Estimation from the regression model.

Latitude Longitude t = 0 tr tm

40.37◦ ± 0.1◦ −124.32◦ ± 0.2◦ 09/30/1973 6572 6782

−23.34◦ ± 0.5◦ −70.30◦ ± 0.5◦ 07/13/1973 7759 8052

63.52◦ ± 0.17◦ −147.44◦ ± 0.34◦ 03/26/1976 10632 10753

−17.66◦ ± 0.03◦ −178.76◦ ± 0.06◦ 01/17/1973 11394 11501

−19.93◦ ± 0.05◦ −178.18◦ ± 0.1◦ 04/04/1976 10454 10865
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