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Abstract 
Animal models have for long been pivotal for parasitology research. Over the last few 

years, techniques such as intravital, optoacoustic and magnetic resonance imaging, optical 

projection tomography, and selective plane illumination microscopy developed promising 

potential for gaining insights into host-pathogen interactions by allowing different visualization 

forms in vivo and ex vivo. Advances including increased resolution, penetration depth, and 

acquisition speed, together with more complex image analysis methods facilitate tackling biological 

problems previously impossible to study and/or quantify. Here we discuss advances and 

challenges in the in vivo imaging toolbox, which hold important potential for the field of 

parasitology. 
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Imaging toolbox in parasitology  
Imaging techniques developed for biomedical applications have had an important impact 

in parasitology research. Such techniques include platforms developed to image host-pathogen 

interactions at various scales, ranging from molecules to whole organisms (summarised in table 

1). These techniques have complementary advantages with respect to each other. This review 

focuses on the technological advances used for visualization of host-pathogen interactions either 

in vivo, or ex vivo in whole organisms in five imaging techniques: intravital microscopy (IVM), optical 

projection tomography (OPT), bioluminescence imaging, optoacoustic imaging (OAI), and 

magnetic resonance imaging (MRI).  

Advanced fluorescence methods applied to intravital microscopy  

  Intravital microscopy (IVM) is a powerful technique to investigate dynamic cellular 

processes and host-parasite interactions within functioning organs. Organs studied by IVM in the 

context of parasitology include the brain [1–4], the skin [5–7], the placenta [8,9], the lungs [10], the 

liver [11–13], and the spleen [14,15] (summarized in table 2, green=IVM exists; yellow=organ 

relevant but IVM never done; grey = IVM not done). Important advances in parasitology have 

been achieved using wide-field epifluorescence, confocal, spinning disc, or two-photon IVM. 

Recent developments, which have expanded the applications of IVM include the generation of 



longer wavelength excitation lasers; a wider range of fluorescent reporters for dyes; transgenic 

fluorescence reporter mice and parasites; fluorescence lifetime measurements; adaptive optics; 

imaging windows and micro-endoscopes, but also software advances for high throughput 

automated analyses and motion correction. Moreover, for fixed specimens, tissue-clearing 

techniques providing deeper optical penetration into organs have opened new avenues of research 

[16].  

  Longer wavelength excitation lasers offer substantial advantages for IVM. Wavelengths in 

the 700-1000 nm excitation range are to some extent limited by penetration depth and background 

emission from tissue endogenous signals. Ultrafast tuneable infrared lasers are now available which 

enable imaging at 1300 nm overcoming both problems [17]. Longer wavelength light is less 

scattered and absorbed by tissues, as long as the wavelength is shorter than the water absorption 

peaks, resulting in deeper optical penetration. This new generation of lasers, coupled with novel 

far-red probes take advantage of wavelengths that elicit less autofluorescence signals, thus helping 

to improve the signal-to-noise ratio. Moreover, phototoxicity to tissues is believed to be reduced 

at longer wavelengths [18]. Further, wavelength mixing of synchronized lasers, or multi-photon 

excitation achieved either via dual output laser sources, or specialized lasers such as the recently 

reported femtosecond diamond Raman laser [19], enable multi-colour imaging, expanding the 

range of structures that can be studied in vivo by IVM. In parallel, a wide range of fluorescent 

probes in the form of immuno-fluorophores, genetic tags, quantum dots, and organic dyes have 

been developed over the past few years to study dynamic processes in vivo including protein-protein 

interactions, and host-pathogen interactions in healthy and diseased states (Reviewed in [20,21]).  

 Microscopy tools that are key to investigate cell or protein dynamics and interactions in 

vitro, have in recent years successfully permeated into IVM (Reviewed in [22]). Examples of these 

methods include Förster resonance energy transfer (FRET), fluorescence loss in photobleaching 

(FLIP), and fluorescence recovery after photobleaching (FRAP). FRET in mice has been achieved 

by either of two methods: the generation of transgenic animals with chromophores acting as 

partners for resonance energy transfer, or the transfection of cells followed by their transfer into 

living animals [23]. FRET poses important challenges in IVM, which are usually not encountered 

in in vitro conditions. These include signal strength limitations, photobleaching and photodamage. 

Initially, FRET was mostly used as a ratiometric technique in IVM, allowing the measurement of 

relative changes of different parameters of interest at high speed, generally using the fluorescent 

proteins cerulean and citrine as donor and acceptor fluorophores, respectively. Despite the value 

of ratiometric FRET, one of its main limitations is its dependence on relative quantifications rather 



than absolute measurements. So far, FRET has not been reported in vivo in parasitology, yet could 

be very useful to monitor the activity of kinases, proteases, GTPases [24]; calcium changes [25]; 

lipid concentrations [23,26–28] during infection; and even physical stresses such as temperature, 

mechanical stressors, or electromagnetic fields [29], as well as molecular interactions between host 

and pathogens; host cell subsets, or parasite molecules. Likewise, there has been significant 

progress in the development of software to allow separate quantification of signals from single 

cells in complex 3D environments, such as those present in organs of living animals [30,31].  

  Another set of fluorescence methods increasingly adapted to IVM are FRAP and FLIP. 

Both techniques are generally used to monitor molecular movement within cells, and are amenable 

to repeated use in vivo without causing tissue damage. They are particularly useful to assess 

macromolecular flux across cells and tissues. Both methods yield information such as half-time to 

recovery, rate of movement of fluorescent molecules within and between cellular compartments, 

and molecular transfer between regions independent of rate of movement. Like FRET, FRAP and 

FLIP have been largely explored in 2D environments using cell cultures, but have only recently 

been incorporated into in vivo research [22]. This has been possible due to the generation of 

transgenic mice with fluorescent reporters expressed in specific cell types, cell-cell junctions, or 

other structures. Particularly useful for the study of parasite cell migration, invasion and 

development, would be reporter mice that enable quantification of dynamic regulation of cell-cell 

junctions (e.g. E-cadherin-GFP) [32], or studying micro-vessel leakiness as a proxy of endothelial 

barrier function using dyes such as FITC-Dextran or albumin [33].  

 Super-resolution microscopy has gained significant momentum for use in in vitro imaging 

over the past decade, and its application in IVM contexts brings about equally exciting prospects. 

One limitation that prevented its faster adaptation to IVM, is the light scattering which results in 

depth-dependent deterioration of spatial resolution, due to spherical aberrations to the point 

spread function in complex tissue [34]. Although not yet used in the field of parasitology, other 

fields have developed methods to achieve super resolution microscopy while imaging living 

animals. Examples include a recently developed setup which incorporates multi-beam striped 

illumination, spatial modulation of excitation, and laser scanning microscopy [35], or the use of 

STED to achieve super-resolution to observe morphological changes of actin in the brain [36].  

 In addition to microscopy methods applicable to IVM, the use of optical windows and 

micro-endoscopes has greatly benefited various research fields, including parasitology, to enable 

long term imaging of organs throughout multiple days (reviewed in [37]). While most optical 



windows are limited to the surface of the surgically exposed organs, GRIN lenses and micro-

endoscopes enable access to deeper regions [38], otherwise inaccessible, including deeper 

structures in the brain, the spinal cord, the bone marrow, the lungs and the heart [38–41]. Both 

micro-endoscopes and temporary optical windows have benefited imaging parasites, giving 

insights into phenomena including parasite crossing of endothelial barriers enabling relevant to 

their dissemination across tissues, dynamics relevant to parasite survival, and mechanisms of 

transmission to and from the insect vectors. Further progress for penetration depth and resolution 

in living samples, has been achieved by adaptive optics, which is widely applied in astronomy. 

Biological specimens have refractive-index inhomogeneities which affect resolution. Adaptive 

optics allows reversing signal/resolution degradation by pre-distorting the wavefront of the 

incoming light to cancel distortions occurring in the light path [42]. 

 Finally, a significant challenge for IVM is motion induced by breathing, peristalsis, and 

circulation, which mostly affects organs in the chest and abdomen. A significant achievement for 

image analysis in IVM is automation for motion artefact removal [43,44]. This includes triggering 

imaging at specific time periods to coincide with the heartbeat or respiration or triggering heart 

contractions to coincide with image acquisition. Conversely, various pieces of software have been 

generated for image analysis, which allow correction of sample motion following image acquisition 

[45]. These methods are applicable to different laser scanning modalities, including confocal and 

multi-photon microscopy.  

 

Optical projection tomography (OPT) and selective plane illumination 
microscopy (SPIM)  

  Photon scattering in tissues hinders imaging at depths exceeding a few hundred 

micrometers in vivo, making imaging of whole organs impossible. Hence, imaging at depth requires 

the physical sectioning of tissues due to photon scattering. The imaging limit of conventional 

microscopy in terms of penetration depth is set by a physical parameter of photons known as the 

mean free path (MFP) (reviewed in [46]). The MFP translates as the number of scattering or 

collision events that a photon undergoes, each of which modifies the photon’s direction of travel, 

ultimately resulting in image blur. For widefield epifluorescence microscopy a traditional thickness 

for tissue sections is 10-50 µm, which ensures high image quality, and diffraction-limited 

resolution. Confocal and multi-photon microscopy allow greater penetration depths of up to 0.5 

to 1 mm. Nevertheless, to acquire a 3D image of an entire sample using confocal or multi-photon 



microscopy, automated methods for the digital reconstruction of thin serial sections require 

acquisition of hundreds of individual sections and/or long imaging periods under high energy 

illumination. This ultimately renders confocal and multi-photon techniques impractical for imaging 

intact, large specimens.  

Mesoscopic imaging techniques such as light sheet fluorescence microscopy (LSFM; also called 

selective plane illumination microscopy: SPIM) and optical projection tomography (OPT) enable 

visualization of larger fields of view across entire organs. The prerequisite is that these organs must 

be transparent or optically cleared. Tissue clearance has gained significant momentum in recent 

years, as shown by a rising number of clearing methods which offer different advantages, despite 

their use being limited to fixed tissues [47–49]. Altogether, tissue clearance methods must satisfy 

three basic criteria: a) all tissues must be efficiently cleared, b) cellular and sub-cellular structures 

must be adequately preserved, and c) tissue clearance must be compatible with fluorescence 

detection. Current techniques include the use of organic solvents [50–53], water [47,54,55], and 

electrophoresis-based protocols [56,57]. A summary of relevant methods for tissue clearance is 

shown in table 3.  

Once the sample is transparent, OPT imaging is achieved via tissue trans- and epi-

illumination over multiple projections [58]. With the OPT setup, the specimen is rotated through 

360 degrees in angular steps around a single axis while being held in position for imaging (Figure 

1a). Virtual sections are independently reconstructed from the acquired images using a back-

projection algorithm [59]. This method allows high resolution imaging at penetration depths of up 

to 15 millimeters [58]. As a result, high resolution digital sections, and 3D image reconstructions 

of the sampled specimen’s volume can be obtained.  

LSFM in contrast, uses a thin plane of light (or light sheet), that is shaped by a cylindrical 

lens or a laser scanner to exclusively illuminate the focal plane of the sample at any one time and 

has been used extensively to image living, if small organisms (Figure 1b) [60]. While in 

conventional microscopes illumination and detection follows the same path, the detection pathway 

in LSFM is rotated by 90°. Altogether, these characteristics make it a powerful tool for live cell 

imaging of large samples due to its high imaging speed, reduced toxicity, and photobleaching 

(reviewed by [61]). 3D image formation is based on raw images being assembled after translation 

or rotation of the entire sample. Multiple LSFM setups have been developed, including 

illumination from multiple directions which enable doubling the penetration depth [62], or 

combining different mesoscopic techniques, including OPTiSPIM (Optical projection 



tomography integrated in light sheet microscopy) [63], a hybrid setup which benefits from the high 

resolution of SPIM with the possibility to image fluorescent and non-fluorescent contrasts of 

OPT. The first commercial devices were made available and an open source, custom built-version 

named OpenSPIM was produced [64,65]. OPT and/or LSFM have been used to image multi-

cellular culture models [66–69], zebrafish [70], sparse cell populations [71], the development of 

plants [72], living embryos and gene mapping [58,73], as well as multiple rodent organs in health 

and disease conditions [50,53,74,75]. OPT and LSFM were both successfully used to obtain 

detailed insight of the anatomy of the flight musculature of a Drosophila fly, its nervous and 

digestive systems, and ß-galactoside activity at whole-body level [76,77]. While in its origins, the 

application of tissue clearing and imaging was limited to rodent organs or small whole bodies (such 

as that of Drosophila flies), a build up on previous hydrogel embedding, tissue clearing techniques 

(PACT), imaging reagents (RIMS), and delivery routes (PARS) made it possible to image whole 

optically cleared mice [78].  

  In parasitology, uses have included the generation of optically cleared guts from Tsetse 

flies (vectors of Trypanosoma brucei) [79] (Figure 1c) and optically transparent Anopheles mosquitoes 

(vectors of Plasmodium) (Figure 1d-1e). Importantly, the use of mesoscopic methods in 

parasitology has remained scarce, despite their relatively easy implementation and use. The 

potential of these techniques to study interactions at high resolution, and high throughput for the 

phenotypic characterization of parasite-induced changes in vectors, rodents, and other model 

organisms is high, and worth exploring and implementing in various areas of parasitology in years 

to come.  

 

Bioluminescence imaging 
 Photon production is achieved primarily through luminescence and fluorescence. Both 

processes yield photons as a consequence of energy transitions from excited-state molecular 

orbitals to lower energy orbitals. However, they differ in how the excited state orbitals are created. 

In luminescence, the excited state is the product of exothermic chemical reactions, whereas in 

fluorescence the excited states are created by absorption of light. The main advantage of 

luminescence assays is accurate quantification with high sensitivity, which can be applied in high 

throughput studies, both in vivo and in vitro. Luminescence is generated through a chemical reaction 

where the enzyme (e.g. luciferase) oxidizes a substrate (e.g. luciferin), leading to photon emission.  

 Bioluminescence imaging relies on processes occurring in nature via the generation of light 



by lower organisms including beetles, bacteria, mollusks, algae, crustaceans, annelids and 

coelenterates [80]. Various bioluminescent substrates have been isolated from these organisms, 

and their biochemical properties have been defined (Figure 2). Across parasitology research, the 

main bioluminescent probe used in vivo is firefly luciferase (reviewed by [81,82]), with Gaussia, 

NanoLuc and Renilla luciferase being less commonly used. Transgenic Plasmodium spp., Toxoplasma 

spp., Leishmania spp., Trypanosoma brucei, and Trypanosoma cruzi expressing bioluminescent probes 

have been used for investigating parasite growth and dissemination, virulence, co-infections, 

parasite stage-specific promoters, drug-screening, and monitoring host-pathogen interactions 

(reviewed by [81,82]).  

 In recent years, an important aim has been to achieve ultra-bright luminescence to detect 

signals with high sensitivity in deep tissues. This has been initially achieved by generating parasites 

expressing codon-optimized red-shifted firefly luciferases [83,84] and ultra-bright luminescent 

probes such as NanoLuc  [85,86]. Although NanoLuc luciferase has been extremely useful in vitro 

due to the extremely bright signal it produces [87], its performance in vivo is very poor due to its 

short emission wavelength. Recently, a novel red-shifted luciferase-luciferin pair based on the 

coelenterazine analogue diphenylterazine (DTZ) and a NanoLuc mutant fused to a fluorescent 

reporter (resulting in a ultra-bright probe known as Antares2), proved to be highly successful for 

in vivo imaging [88,89].  Similarly, another highly successful combination has been that of 

AkaLumine hydrochloride (AkaLumine-HCl- a synthetic D-luciferin analogue), which when 

catalysed by Firefly luciferase generates near-infrared emission, and has favourable distribution in 

deep organs [90]. Random mutagenesis of firefly luciferase-based libraries led to the generation of 

Akaluc, which displayed high thermostability and the brightest emission when combined with 

AkaLumine [91]. The AkaLuc/AkaLumine-HCl combination has allowed a revolutionary advance, 

namely visualization of single bioluminescent cells in deep tissues of freely moving animals [91].  

 Further technological advances in the field of bioluminescence include dual-probe reporters which 

allow detecting two signals simultaneously, at different wavelengths. These have been useful in the 

context of characterization of different promoters expressed at different parasite life stages [92,93]. 

Equally, bioluminescence can be used in the context of bioluminescence energy transfer (BRET), 

or hybrid biosensors (BRET-FRET, or hyBRET) for investigation of protein-protein interactions, 

analysis of xenografts, and optogenetics, in vivo [94]. 

Optoacoustic imaging and ultrasound 



All optical imaging techniques mentioned above have been shown to image biological structures 

with subcellular resolution (in the range of the wavelength used) and remarkable contrast but are 

limited by strong light scattering in tissue. Optoacoustic (OA) imaging, also referred to as 

photoacoustic imaging, offers the ability to not only overcome this limitation but to provide 

structural, functional, metabolic and even molecular information [95,96]. OA is a hybrid imaging 

modality, combining optics and acoustics via the thermoelastic effect [97,98]. The thermoelastic 

effect converts optically absorbed energy into acoustic waves, which are recorded at the tissue 

surface by means of ultrasound detection. Optical absorption provides the imaging contrast for 

OA, which means that any chromophore or molecule that selectively absorbs the illumination 

wavelength can be imaged [99]. Chromophores can be endogenous, such as haemoglobin, which 

provide via their spectral fingerprint quantitative and physiological information of the vasculature, 

or exogenous, such as antibodies functionalized by absorbing metallic nanoparticles or dyes suited 

to the assessment of tumours and other pathologies. These features make OA imaging an 

interesting technique for studying host-parasite interactions.   

Imaging can be performed both in a tomographic macroscopic setup visualizing the whole animal 

or in a microscopic setup. Tomography uses an array of ultrasound sensors, often partially or 

completely surrounding the target, to achieve image resolution of typically a few hundred 

micrometers, determined by the bandwidth of the ultrasound transducer and imaging depths of 

up to few centimetres [100]. In contrast, microscopy setups use a single mechanically scanned 

focused transducer (Figure 3a) or a tightly focused diffraction limited laser beam to generate an 

image. In the former case, termed acoustic resolution microscopy, the resolution is given by the 

properties of the acoustic lens and the ultrasound transducer (~40 µm at 50 MHz transducer 

frequency). In this configuration, OA microscopy has been shown to resolve fine structures in the 

dermis and assess dermal papillae [101]. It has also been used to visualize the cerebral vascular 

anatomy in mice up to a depth of 3.7 mm at submillimeter resolution (sub-100 µm at 1 mm depth), 

greatly surpassing what can be achieved with purely optical techniques [102]. In the latter case, 

called optical resolution microscopy, the lateral resolution is determined by the focal spot of the 

laser and imaging depth is limited by optical scattering to maximum of 1 mm, as it is in the case 

of pure optical microscopy [100,103]. In low-scattering tissue such as that found in mouse ears, 

the resolution can be pushed to 2.5 µm at a depth of 150 µm [104].  

Both contrast and penetration depth are affected by the choice of excitation wavelength. Shorter 

wavelengths (typically no shorter than 532 nm) are strongly absorbed by haemoglobin and thus 

higher contrast can be achieved, at the expense of penetration depth. For longer wavelengths 

(typically up to 1300 nm), penetration depth is increased at the expense of contrast. Since the 



propagation speed of ultrasound waves in biological tissue is comparatively low, depth information 

can be obtained by recording the pressure wave in a time-resolved manner. Thus, all OA imaging 

techniques have the potential to obtain three-dimensional images. Furthermore, differences in the 

wavelength-dependent absorption coefficients of oxygenated and deoxygenated haemoglobin can 

be utilised for oxygenation measurements in both tomographic [105] and microscopic setups 

[102,104]. 

Currently, only a few commercially available in vivo whole animal OA imaging devices are capable 

of capturing single cross-sectional tomographic images of living small animals with estimated in-

plane resolutions of ~ 150 µm [106–108]. OA tomography has also been combined with echo-

ultrasound imaging in a whole-body live mouse tomography system, with reported in-plane spatial 

resolutions of 150 µm (OA) and 350 µm (ultrasound) [109]. 

Using acoustic resolution OA microscopy (Figure 3a), we have imaged the brain of mice aged 4 

- 6 weeks infected with Plasmodium. The mice had their scalp removed (the skull was left intact) 

prior to imaging and were kept under anaesthesia during imaging. We have found that images of 

healthy mice (Figure 3b) show clearly discernible hemispheres and cerebellum, while in infected 

mice (5 days after infection) the major vascular landmarks could hardly be identified. The 

vasculature showed a large number of chaotically distributed screw-like blood vessels and the two 

hemispheres could no longer be distinguished (Figure 3c). In later stages of the disease (7+ days 

after infection), a significant decrease in optoacoustic signal amplitude was detected, possibly due 

to progressive anaemia.  

Altogether, OA imaging, which combines high contrast and spectral sensitivity with the 

high spatial resolution obtained in ultrasound imaging, provides excellent visualization of 

microvasculature, making it a powerful tool for basic parasitological research and pre-clinical 

applications. Combined with exogenous optically absorbing agents or genetically expressed 

reporters it has been proven to provide molecular information with high sensitivity and specificity.  

While OA imaging is a hybrid technique employing ultrasound as one of its components, 

ultrasound imaging itself has also been successfully used in the field of parasitology and in medical 

imaging. Ultrasound uses high-frequency sound waves, which are reflected off of body structures, 

rendering an image. Key advances in ultrasound over the past decade include elastography [110], 

ultrasound contrast agent imaging using micro-bubbles (reviewed by [111]), super resolution 

imaging, 2D array transducer, and ultra-fast ultrasound imaging [112]. While these advances have 

been widely explored in other fields of research, they remain to be used in in vivo parasitology, and 

have enormous potential. Elastography is a technique referred to as “palpating by imaging”, 



enabling measurement and visualization of tissue mechanical properties in health and disease.  In 

terms of contrast agents, microbubbles provide considerable advantages to ultrasound imaging, 

including the possibility of studying blood rheology and tissue perfusion, and of enhancing 

vascular permeability, drug and gene delivery, and local heating (reviewed by [113]). Finally, 

ultrafast and super-resolution ultrasound imaging were achieved using intravenous injection of 

microbubbles, the properties of which allowed haemodynamic quantification and imaging 

structures at 10mm under the cranium. Single echoes from individual microbubbles could be 

detected, allowing accurate quantification of blood flow speeds at an imaging rate of 1000 frames 

per second [112]. Altogether, technological improvements in ultrasound speed and resolution, as 

well as echosonography applications, hold enormous potential for parasitology in terms of 

studying changes in rheology, vascular permeability, tissue perfusion, and changes in the 

physiology of important structures such as the brain blood barrier. 

 

Magnetic resonance imaging 
 
 Magnetic resonance imaging (MRI) is a non-invasive imaging technique uniquely suited to 

image deep inside tissue with high spatial resolution and without ionizing radiation. MRI is based 

on the magnetic properties of protons and neutrons within atomic nuclei of the body, particularly 

of hydrogen, as water is a major component of the human body. The spin of hydrogen nuclei can 

be measured as they show an uneven number of protons. Therefore, after placing the body inside 

the magnetic field of the MRI scanner, the spins start to process with the Lamour frequency and 

align with the magnetic field (in both directions, however slightly more in the field direction). 

Upon application of a radiofrequency (RF) pulse with exactly the same Lamour frequency, the 

nuclei can absorb energy and transition from lower to higher energy states (so called spin 

excitation). After the RF-pulse is switched off, the nuclei return to their equilibrium state. This 

process requires time and depends on the surrounding tissue (also known as relaxation time). 

During the relaxation process, a signal can be detected by RF coils in the scanner, which can be 

reconstructed by advanced imaging techniques to an image of the human body (reviewed by [114]). 

MRI offers extraordinary advantages, including high spatial resolution, and the opportunity of 

simultaneously extracting physiological, molecular, and anatomical information from the body. 

Conversely, its limitations include low sensitivity, long scanning time, and probe quantity required 

for imaging.  

 MRI has improved understanding of diseases in parasitology, by detecting pathological 

alterations e.g. in the brain caused by Toxoplasma [115] (Figure 4a), Trypanosoma brucei [116] (Figure 



4b), and Plasmodium [117] (Figure 4c, courtesy of Angelika Hoffmann). In this section we discuss 

the advances in the technique relevant to parasitology, in three specific aspects: MRI probes, 

multimodal mesoscopic imaging, and uses of functional MRI to address translational questions. 

 Contrast agents are exogenous compounds administered to improve the image contrast 

and detect pathological alterations more accurately. Significant efforts have been made to improve 

MRI by developing contrast agents for use as probes and sensors. These include gadolinium agents 

(Gd3+) and derivatives including gadolinium hexanedione [118], gadofluorine and liposomal-based 

gadolinium nanoparticles [119]. These contrast agents are e.g. used in the study of brain nerve 

barrier permeability [120], blood vessel remodelling [121], or cellular uptake. Other agents include 

manganese-based agents such as manganese chloride (MnCl2) [122], manganese oxide (MnO) 

[123], and silica-coated particles, which allow detection of specific cell populations in vivo either on 

their own, or by combining with other contrast agents. Equally, paramagnetic iron oxide (SPIO) 

agents, perfluorocarbons (PFCs), and highly shifted proton MRI [124–126], have been particularly 

useful for sensitively tracking and visualizing cell homing in vivo [127–129]. Altogether, advances 

in MRI contrast agents and probes have allowed monitoring functions of cells, including enzymatic 

activity, gene expression, and death, as well as sensitive tracking of cell populations (reviewed in 

[130]).  

 Secondly, while the output of MRI is imaging of anatomical changes, functional MRI 

(fMRI) is based on allowing visualization of metabolic function by tissues. fMRI allows 

measurement of blood flow changes, or blood oxygen level fluctuations, providing a picture of 

oxygen consumption. It is based on the use of blood oxygen level dependent (BOLD)-contrast, 

based on increased or decreased concentrations of paramagnetic deoxyhaemoglobin associated 

with changes in neuronal activity. (reviewed in [131]). The use of this technique has been relatively 

scarce in parasitology, yet has potential for a wide number of parasites, which induce metabolic 

and/or functional changes in tissues. Similarly, the generation of MRI scanners such as the 9.4 T 

equipment [132], offers improved imaging resolution.  

  

Further X-ray and gamma-ray-based non-invasive imaging methods  

 Other imaging methods which have relevant clinical translation potential include 

radiography, computed tomography, X-ray micro-CT, and radioisotope-based imaging such as 

single photon emission computed tomography (SPECT) and positron emission tomography 

(PET). Two categories of X-ray-based imaging are structural and functional imaging enabling 

studies of anatomical structures, and of changes in biological functions such as metabolism, blood 



flow, and biochemical composition of tissues. Functional analysis of tissues and their composition 

using X-rays has seen progress with the use of exogenous contrast agents, and is based on the 

possible interactions between X-rays and matter (Figure 5). These include X-ray attenuation, X-

ray fluorescence and X ray excited optical luminescence (reviewed by [133,134]). Equally non-

invasive is imaging based on gamma-emission from radioisotope-labelled biomolecules within 

samples upon radioactive decay, namely PET and SPECT. In both methods, radioactive 

biomolecules synthesized from radio-nucleotides are administered, and following biological 

interactions in specific tissues, decay, resulting in the emission of gamma photons. These photons 

can be detected by PET and SPECT scanners and can be tomographically reconstructed to 

generate 3D images of functional tissue activity [135]. The use of radiography-based and nuclear-

imaging-based methods has been relatively limited in parasitology, yet has potential for the study 

of host-pathogen interaction effects on organ functions, tissue composition and metabolic changes 

upon infection.  

 

Concluding remarks and future perspectives 
  

Altogether, multiple methods for in vivo imaging as stand-alone techniques have allowed 

improved resolution (e.g., advanced microscopy methods such as super-resolution now possible 

with IVM), decreased invasiveness (e.g., by the use of OAI), increased penetration depth allowing 

for imaging of organ regions previously impossible to observe in vivo (e.g., through the use of 

GRIN lenses for IVM), and functional imaging with high resolution (e.g., fMRI, MRI). Although 

many of these techniques have successfully reached the parasitology field, particularly IVM, 

advances in IVM methods, and other techniques altogether, have enormous potential and 

applicability, which still need to be explored. Equally relevant is the use of hybrid, multimodality 

systems, which could provide the opportunity to study different host-pathogen interactions in vivo.  
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Table 1 Imaging scales and current/potential applications in parasitology.  



 
 
Table 2 Key examples of organs and parasites by IVM. Table includes key examples for each 

parasite and organ rather than an exhaustive coverage. Green – IVM exists; yellow – organ 

relevant, but IVM never done; Grey – IVM not done.  

 

  



 



Table 3 Tissue clearance methods for SPIM and OPT. 

  



 
Figure 1 Optical projection tomography and selective plane illumination microscopy 

(A) Principle of OPT. The optically cleared specimen is embedded in agarose, attached to a 

metallic cylinder within a rotating stage, and suspended in an index-matching liquid to reduce 

scattering and heterogeneities of refractive index throughout the specimen. When the specimen is 

rotated to a series of angular positions, images are captured at each orientation. The setup is aligned 

to ensure that the axis of rotation is perpendicular to the optical axis, so that straight line 

projections going through the sample can be generated, and collected by pixels on the CCD of the 

camera. (B) Principle of LSFM. The optically cleared sample is embedded in agarose, and 

suspended within a sample holder inside an index-matching liquid. A thin (nm – um) slice of the 

sample is illuminated perpendicularly to the direction of observation. Scanning is performed using 

a plane of light, which allows very fast image acquisition. (C) Surface rendering model of isolated 

infected fly guts. The intestinal tissue is visualised by autofluorescence (grey). The PM is stained 



with rhodamine-labelled WGA (cyan) and the trypanosome nucleus with a GFP-reporter 

(yellow). (D) 3D reconstruction and rendering of a female Anopheles mosquito clearly showing 

abdominal segments, thorax and head features. (E) 3D reconstruction and clear view of all body 

cavities of an optically cleared Anopheles mosquito.  

 

  



 
Figure 2 Bioluminescence imaging probes  

Bioluminescence probes commonly used in in vivo imaging include Gaussia luciferase, NanoLuc, 

Renilla luciferase, click beetle luciferase (and its red- and green-shifted forms), red-shifted firefly 

luciferases, railroad worm luciferases, and novel probes with bright luminescence to image deep 

into tissues such as AkaBLI and Antares/Antares2. Isolated from different organisms, these 

probes have a varied range of molecular weights and maximum peak of emission wavelengths as 

schematically illustrated here, allowing for dual luminescence systems to be used.  

 

  



 
Figure 3 Optoacoustic microscopy setup and imaging of the brain  

(A) Optoacoustic (OA) microscopy setup (acoustical resolution). The laser illumination induces 

thermo-elastic pressure waves in the sample and triggers signal acquisition (photodetector). The 

generated pressure wave (red) is collected by the acoustic lens and directed to the US transducer. 

(B) OA microscopic image of the brain of a healthy mouse shows clearly distinguishable 

hemispheres (C) the same image of a mouse infected with Plasmodium (5 days after infection) shows 

chaotic structure of the vasculature. 

 
  



 
Figure 4 Magnetic Resonance Imaging of the brain  

(A) T2*-weighted images and high resolution fiber maps of (A1) uninfected and (A2) T. gondii 

infected mouse brains. Arrows in infected brains show injuries in the somato-sensory cortex (T2*-

weighted images), and affected fiber density and cortical connectivity pattern (hrFM images). (B) 

MRI scan of a mouse at 28 days post-infection with T. brucei, following administration of contrast. 

Arrow shows meningeal enhancement of the hind-most section of the brain. (C) T1 subtraction 

maps to illustrate blood-brain barrier (BBB) disruption with rostral predominance in a Plasmodium-

infected mouse (C1) compared to a mouse not displaying BBB disruption (C2) (courtesy of 

Angelika Hoffmann).  

 

  



 
Figure 5. X-Ray-Based and Positron Emission Tomography (PET)-Based Imaging. (A) 

Principal components of a microcomputer tomography scanner include an X-ray source that 

produces X-rays which travel through the sample and are collected on the other side by an X-ray 

detector (scintillation screen, lens, and charge-coupled device camera). Rotation of the X-ray 

source and detector allows acquisition over 360_, allowing the generation of a series of projection 

images. These images can be processed to produce a 3D image of the specimen. (B) Maximum-

intensity projection from an X-ray micro-computed tomography (micro-CT) study of the 

brainvasculature of foetuses from malaria-infected rodent mothers. The brain vasculature shown 

is that of a foetus from an uninfected mouse. Figure adapted from [154]. (C) Radioactive tracers 

are injected into the mouse and will emit positrons by radioactive decay. Upon decay, positrons 

are released from the nucleus of the radionuclide and annihilate with electrons in the tissue, 

releasing gamma-photons that can be detected within a coincidence detector ring (composed of a 

collimator and scintillation crystals). This allows mapping the anatomical localization of the tracer. 

(D) 3D reconstruction of a mouse imaged by PET-CT in a study investigating glucose uptake 

during the dark phase of a 24 h light–dark cycle. (18)F-fluorodeoxyglucose (FDG) was used as a 

tracer, and shows highest accumulation in the brain, heart, and bladder, followed by the kidneys 

and brown adipose tissue. Scale bars represent CT intensity (grey scale), and FDG uptake (colour 



scale, radioactivity per tissue volume). Figure adapted from [155]. 
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