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ABSTRACT 

Watersheds are complex systems that are influenced by many factors including 

geomorphology, climate, soil, vegetation, and land management. Due to this complexity, a 

watershed assessment that evaluates both the riparian and upland areas has yet to be developed. 

We proposed investigating a combination of plant community composition within the greenline, 

upland ecological site function assessment with the Interpreting Indicators of Rangeland Health 

(IIRH) protocol, and stream morphological parameters. Stream parameters investigated were 

Rosgen’s classification method, bank erosion hazard index (BEHI) and bank height ratio (BHR). 

This research was conducted on five intermittent streams in southwestern North Dakota. We 

found that facultative wetland species offered the most protection to intermittent streambanks as 

a result of hydrology. When assessing the uplands it was determined that there is a positive 

correlation between rangeland health and riparian health. The stream parameter that showed the 

strongest relationship was the BEHI.  
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GENERAL INTRODUCTION 

Riparian areas are narrow corridors adjacent to bodies of water whose soil and vegetation 

are influenced by hydrology. River and stream riparian areas are an important part of the 

landscape despite making up less than two percent of terrestrial environments. These areas are 

important not only to fish and wildlife, but also to humans as they are a source of water. 

However, assessing the condition of watersheds has been difficult as methods often times focus 

on the immediate riparian area regardless of several researchers acknowledging the stream is 

influenced by its catchment. To date, there has not been a monitoring protocol developed that 

accurately ties the condition of the watershed catchment to the state of its stream or river. 

Research has recently focused on intensive small grain and row crop production and its effects 

on riparian function, but assessment protocols have not been developed.  

The purpose of watershed assessments is to give insight into the function of the streams 

morphology, water quality, and biotic integrity. Current watershed assessment protocols utilize a 

combination of quantitative and qualitative methods that can provide opportunities for biased 

results. This leaves opportunities for varying results depending on the individual(s) conducting 

the assessment. Watershed assessments intensity varies from one protocol to the next. This 

allows for different protocols to investigate different functions or to focus on just one function. 

For example, Karr (1981) developed an assessment for investigating fish communities as they 

are influenced by water quality. Karr’s protocol can give great detail into the biotic integrity of 

the stream assuming there is flow, but it does not give insight into the land use and management 

issues influencing the biology of the stream. The Multiple Indicator Monitoring of stream 

channels and streamside vegetation protocol, oftentimes referred to as MIM, is more intensive as 

it investigates riparian plant communities, streambank condition, and stream channel 
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morphology (Burton et al. 2011). However, MIM fails to look at the riparian condition at a 

landscape level and allows for subjective observations. Oftentimes a state will use a rapid 

assessment method to get detail into how a stream is functioning, but due to no quantitative data 

being recorded long-term monitoring can be difficult to observe.  

As a result of difficulties assessing watersheds in rural areas the North Dakota 

Department of Health (NDoH) and Bowman-Slope County Soil Conservation District (SCD) 

reached out to North Dakota State University Animal Sciences Department concerning the 

development of a protocol for grazed watersheds that can be effective regardless of flow. The 

reasoning behind this project is that in remote and rural areas characterized by ephemeral and 

intermittent stream flow opportunities to collect water samples can be rare. Furthermore, the use 

of quantitative based monitoring can allow for more effective development of best management 

practices. In cooperation with the NDoH, Bowman Slope County SCD, and Natural Resource 

Conservation Service (NRCS) we proposed using a combination of the Interpreting Indicators of 

Rangeland Health Protocol (IIRH) and Rosgen’s classification of natural streams to interpret the 

ecological function of the uplands and their influence on the state and stability of the adjacent 

stream reaches.  
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CHAPTER 1: LITERATURE REVIEW  

Riparian zones are dynamic portions of the landscape that contain valuable water 

resources, plant communities, fisheries, and wildlife (Gregory et al. 1991; Swanson et al. 1988). 

Riparian ecosystems are unique as they dissect terrestrial landscapes with small bands of habitat 

that abruptly transition into aquatic environments (Gregory et al. 1991). In uplands hydrology 

has minimal influence; whereas, hydrology has a significant impact on aquatic ecosystems 

function and formation (Gregory et al. 1991; Naiman et al. 1993; Svejcar 1997). Riparian areas 

are influenced by many factors including geomorphology, climate, soils, vegetation, ecological 

processes, and management (Gregory et al. 1991; Kovalchik and Chitwood 1990; Lytle and Poff 

2004; Naiman et al. 1993; Svejcar 1997).  

These diverse areas of the landscape are often interpreted by looking into riparian 

characteristics such as sediment load (Leopold 1994; Leopold and Wolman 1957; Magner and 

Steffen 2000; Simon and Rinaldi 2006; Wood and Armitage 1997), vegetative cover (Burton et 

al. 2011; Davies-Colley 1997; Micheli and Kirchner 2002a, b; Tufekcioglu et al. 1998), aquatic 

biology (Karr 1981; Wood and Armitage 1997), stream morphology (Rosgen 1985, 1994; 

Rosgen and Silvey 1996; Toledo and Kauffman 2001), and water quality (Magner et al. 2008; 

Meynendonckx et al. 2006). Recently catchment influence on water quality (Jarvie et al. 2002; 

Meynendonckx et al. 2006; Roberts et al. 2007; Tong and Chen 2002) and morphology (Allan 

2004; Clary et al. 2000; Covino 2017; Sheppard et al. 2017; Wiens 2002) have received 

attention.  

Due to the many factors influencing riparian areas, it has been difficult to assess 

watersheds at a catchment level. Furthermore, most of the research is focused on perennial 

streams with little research being focused on ephemeral and intermittent streams (Matthews 
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1988). A combination of the IIRH protocol (Pellant et al. 2005) and Rosgen’s classification 

method (Rosgen 1985, 1994) may have potential to provide further insight into the relationship 

of ecological site function and local hydrology influencing rivers and streams.  

Geomorphology 

Landscapes that are observed in a watershed have developed over geologic time while 

being shaped by climate, lithology, and vegetation patterns (Rosgen and Silvey 1996). The 

climatic forces have carved landforms on materials supplied by geologic structure through 

chemical and physical weathering (Kovalchik and Chitwood 1990). The sun is critical for 

physical weathering as it provides energy to drive the hydrologic cycle to slowly erode away 

geologic structures (Hudak 2005). Kovalchik and Chitwood (1990) credit geology, climate, and 

time for providing the landscape’s appearance and drainage pattern. The geomorphic surface is 

slowly created over geologic time through erosional and constructive forces from wind and water 

moving particles from one area to another (Ruhe 1954; Schaetzl and Anderson 2005). Erosional 

surfaces are those that are exposed to destructive forces such as wind and water and have 

sediment worn away. Constructive surfaces are those where the eroded sediment accumulates or 

aggrades. The drainage pattern is, therefore, a product of erosional and depositional processes 

(Daniels et al. 1971; Dunne 1980; Kovalchik and Chitwood 1990).  

The valley is a drainage basin formed between two adjacent uplands by erosional and 

depositional processes. The structure of the valley influences the pattern of the stream within the 

landscape (Dunne and Leopold 1978; Montgomery and MacDonald 2002). The structure of the 

valley floor is the result of basin geology, hydrology, and vegetation interacting with erosive 

forces over time to form various fluvial surfaces (Gregory et al. 1991; Rosgen and Silvey 1996). 

Fluvial surfaces that are formed by sediment movement consist of active channels, floodplains, 
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terraces, and alluvial fans (Gregory et al. 1991; Stringham and Repp 2010). Determining river 

morphology is aided by understanding the geomorphology, as the geomorphology dictates the 

soils and plants that are found within a specific area (Rosgen and Silvey 1996; Stringham and 

Repp 2010). Thus, the identification of a valley type can give insight to the potential suite of 

stream channels that may occur, as the stream type is a function of the valley type (Rosgen 1985, 

1994). According to Rosgen’s classification valley type is the first level of stream classification. 

The valley types are defined by the dimensions, gradient of the side-slopes, and aspect (Rosgen 

and Silvey 1996). Rosgen has identified eleven valley types based on these criteria: 1) steep 

canyons, 2) colluvial, 3) alluvial fans and debris flows, 4) natural gorges, 5) glacial troughs-

course materials, 6) bedrock controlled, 7) dissected-entrenched, 8) alluvial, 9) glacial outwash, 

10) lacustrine, and 11) deltas (Rosgen 1994; Rosgen and Silvey 1996).  

Stream types can be classified using a delineation system developed by Rosgen (1994), 

which groups streams based on entrenchment ratio, width to depth ratio, sinuosity, gradient, and 

channel materials. The entrenchment ratio is used to understand how incised the stream is, or the 

ease at which a stream can access its floodplain (Kellerhals et al. 1972). Entrenchment ratio can 

be found by dividing the flood-prone width by the surface bankfull discharge width (Rosgen 

1994). As a stream’s entrenchment ratio increases above 1.0, it becomes restricted laterally as it 

is vertically confined by its increasing bank heights (Rosgen 1997). The width to depth ratio is 

found by dividing the bankfull width by the average bankfull depth (Rosgen 1994; Rosgen and 

Silvey 1996). Streams with high width to depth ratios (>12) are wide and shallow, and as a result 

there is a lot of stress placed on the streambanks (Rosgen and Silvey 1996). Sinuosity is a 

measurement of how often a stream meander or curves, and is found by dividing the stream 

length by the valley length (Rosgen 1994; Rosgen and Silvey 1996). As a streams sinuosity 
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increases the energy of the flowing water is decreased as the turning dissipates water’s energy 

(Rosgen and Silvey 1996). The gradient, or slope, of a stream is a measurement that determines 

the elevation change of water’s surface in a stream (Rosgen 1994). Rosgen (1994) classified 

streams into eight main categories: 1) A, 2) B, 3) C, 4) D, 5) Da, 6) E, 7) F, and 8) G channels. 

The D and Da stream channels are distinctly different from the other six as they are characterized 

by a “braided” stream pattern (Rosgen 1994).  

Within the state of North Dakota B, C, E, F, and G channels may occur (Meehan et al. 

2014; Meehan et al. 2015; Meehan et al. 2016). C and E type streams are considered slightly 

entrenched with an entrenchment ratio (width of the flood prone area at an elevation twice the 

maximum bankfull depth / mean bankfull depth) less than 2.2 (Rosgen 1994; Rosgen and Silvey 

1996). These streams are considered stable as they have access to a well-developed floodplain. B 

channel streams have an entrenchment ratio of 1.4-2.2 and are moderately entrenched. B channel 

streams are characterized as having moderate gradient, stable banks, and irregularly spaced pools 

(Rosgen 1994; Rosgen and Silvey 1996). Within the Great Plains B channels are considered 

transitional despite being resistant to change (Meehan et al. 2016). The F and G channels will 

have an entrenchment ratio less than 1.4 and are considered entrenched (Rosgen 1994; Rosgen 

and Silvey 1996). F and G channels are not able to access their floodplains during high flow 

events because of their high banks; therefore, they are the least stable as they are unable to 

maintain their dimension and pattern (Rosgen 1994; Rosgen and Silvey 1996). When a stream is 

not able to access its floodplain the shear stress (friction) applied to the bank is increased leading 

to further incision and widening as the water’s energy cannot be dissipated by the floodplain 

(Galay 1983; Schumm et al. 1984; Simon and Hupp 1986; Simon and Rinaldi 2000).  
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Soils 

The infiltration rate is influenced by slope steepness, intensity of the rainfall, amount and 

type of vegetation, vegetation litter, soil moisture content, soil texture, quantity of shrink swell 

clays, and soil organic matter (Bagarello et al. 2004; Brooks et al. 2013; Chowdary et al. 2006; 

Schaetzl and Anderson 2005). Not all water that infiltrates the soil is retained and is known as 

excess water, which will either continue percolating down or it will move laterally when it 

intercepts an impermeable layer such as an argillic horizon or bedrock (Brooks et al. 2013). The 

water that reaches an impermeable layer will be forced to move horizontally until it reaches a 

wetland or stream (Brooks et al. 2013). When soil becomes saturated water will runoff, and the 

fate of the runoff is decided by the geomorphology of the valley (Huggett 1975, 1976).  

Infiltration rate has a direct relationship with the soil particle size, or texture, as higher 

infiltration rates occur on soils with larger particles sizes (Fayos 1997; Hwang 2004; Schaetzl 

and Anderson 2005). Therefore, the infiltration rate in a soil increases as there is an increase in 

sand content because of the larger particle size and pore space (Hudak 2005; Mazaheri and 

Mahmoodabadi 2012). Soils with higher infiltration rates reduce the potential of runoff as the 

water infiltrates and percolates into the soil profile instead of contributing to surface flow 

(Brooks et al. 2013; Schaetzl and Anderson 2005). Soils that have high silt and very fine sand 

content are the most erodible as they have lower infiltration rates and weak aggregate stability 

making them susceptible to being transported by overland flow (Gardiner and Miller 2008; 

Wischmeier and Mannering 1969). 

High aggregate stability will reduce erosion susceptibility due to its effects on water flow, 

erosion, and runoff (Gardiner and Miller 2008; Kodešová et al. 2009). Aggregate stability, the 

binding force of soil particles, can be used to determine the soil’s susceptibility to erosional 



 

8 

 

processes and runoff (Barthes and Roose 2002; Bissonnais et al. 2002; Cantón et al. 2009). 

Because soil aggregates are exposed to moving water in fluvial areas it is important to note that 

erosional and depositional processes can modify the soil properties (Stavi and Lal 2011). 

Aggregate stability is primarily a function of organic matter (Bronick and Lal 2005; Schaetzl and 

Anderson 2005). Organic matter flocculates soil particles, particularly clay, acting as a 

cementing agent in soil aggregates reducing the risk of erosion (Abiven et al. 2009; Jakšík et al. 

2015; Schaetzl and Anderson 2005). This means that soils higher in organic matter have more 

aggregate stability and faster infiltration rates. Aggregate stability is therefore dependent upon 

organic inputs (Abiven et al. 2009), and further protected by vegetative cover by reducing 

raindrop impact (Gardiner and Miller 2008; Kauffman and Krueger 1984; Klemmedson 1956; 

Schaetzl and Anderson 2005; Trimble 1994). Thus, more energy is required to disperse the soil 

that have high organic matter and vegetation cover to facilitate runoff and erosion (Duniway et 

al. 2010; Gardiner and Miller 2008; Schaetzl and Anderson 2005; Wischmeier and Mannering 

1969).  

Vegetation 

Numerous authors have documented vegetation plays a critical role in soil retention and 

erosion reduction (Bilbro 1991; Butler et al. 2006; Clary and Leininger 2000; Trimble 1994; 

Unger and Vigil 1998). Soils with high vegetative cover cycle nutrients more effectively, have 

higher infiltration rates and have lower erosion rates than soils with low cover (Printz et al. 2014; 

Rook and Tallowin 2003; Russell and Bisinger 2015). Vegetation’s influence on soil erosion and 

loss can be seen in both riparian areas and uplands. Un-vegetated streambanks are more likely to 

fail leading to mass soil wasting as plant roots are not present to bind and reinforce the soil 

(Beeson and Doyle 1995; Marcuson 1977; Meehan et al. 1977). Opposite of riparian areas the 
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adjacent uplands are subject to rill and gully erosion as well as blowout formation when plant 

cover is reduced (Clary et al. 2000; Gardiner and Miller 2008; Stubbendieck et al. 1989). A wild 

card in vegetation’s influence on soil enhancement is introduced vegetation, as exotic species can 

alter soil function and reduce cover of more desirable and beneficial species (Estes et al. 2011; 

Harris 1967; Knapp 1996; Melgoza et al. 1990; Morrow and Stahlman 1984; Murphy and Grant 

2005; Toledo et al. 2014). In circumstances where the soil is influenced by a high water table or 

seep, soil salinity can have a strong influence on the available plant species (Worcester and 

Seelig 1976). For this reason riparian, upland, exotic, and halophytic vegetation were further 

researched. 

Riparian Vegetation 

Riparian vegetation consists of plants typically found in hydric soils (Lichvar et al. 2012; 

Reed 1988; Tiner 1991). Reed (1988) classified riparian vegetation as facultative wetland and 

obligate wetland. Facultative wetland species are found in hydric soils 67-99 percent of time; 

whereas, obligate species are found in hydric soils 99 percent of the time (Lichvar et al. 2012; 

Reed 1988). Riparian vegetation has a significant impact on stream stability and morphology. 

However, the influence of the vegetation on stability varies depending on the stream types. A 

stream types are the least affected; whereas, E and C stream types being the most affected by 

riparian vegetation (Rosgen 1994). Riparian vegetation supports streambank stability with roots 

that bind the soil together (Abernethy and Rutherfurd 2001) and by providing canopy cover that 

dissipates raindrops energy (Behnke and Raleigh 1979; Gregory 1992; Naiman and Decamps 

1997).  

Riparian vegetation is crucial as it also acts as a filter, preventing sediments, excess 

nutrients, pollutants, and debris from accessing the stream (Butler et al. 2006; Clary and 
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Leininger 2000; Clary et al. 1996; Cooper et al. 1987; Fleming et al. 2001; Lowrance et al. 1984; 

Marcuson 1977; Meehan et al. 1977; Svejcar 1997; Winward 1994, 2000). The increased ability 

to entrap and stabilize sediment by riparian vegetation within the greenline aids in floodplain 

development (Clary and Leininger 2000; Winward 2000). The sediment trapping action of the 

riparian zone is a product of the tall vegetation as it adds roughness removing energy from 

flowing water, allowing for sediment to settle out (Li and Shen 1973). For this reason it is 

recommended to leave a stubble height of at least ten cm when grazing riparian areas (Clary et 

al. 1996; Schwarte et al. 2011b) 

Riparian vegetation promotes infiltration, which in return stores and recharges water in 

the groundwater system, and replenishes aquifers during peak flows (Gardiner and Miller 2008; 

Hudak 2005; Stringham and Repp 2010). This lessens the impacts of spring floods and releases 

water back into the stream in the form of recharge, minimizing fluctuations in streamflow 

(Beschta et al. 1987; Svejcar 1997). Improper management of riparian areas and their 

surroundings can have negative impacts on riparian areas and their ecological functions (Byers et 

al. 2005; Fitch and Adams 1998). Improperly managed areas may suffer from shallow rooting 

species and soil compaction, which decreases infiltration rates promoting increased flow. The 

increase in stream flow has potential to move a stream reach into an unstable state as a result of 

the increase in energy (Magner and Steffen 2000; Poff 2002; Poff and Allan 1995). 

The greenline is the plant community near the bankfull elevation that helps stabilize the 

streambanks. A floodplain with riparian species present will aid in bank stability as it lowers its 

risk of erosion by adding roughness to slow the flowing water’s velocity (Hunter 1991; Li and 

Shen 1973; Schumm and Meyer 1979). Beeson and Doyle (1995) found that un-vegetated 

streambanks were up to five times more likely to have noticeable erosion than vegetated banks. 
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The species occupying the greenline also need to have the appropriate rooting depth as shallow 

rooting species allow for erosion of the toe bank forming cut banks and causing bank failure 

(Micheli and Kirchner 2002a, b; Petersen 1986). Micheli and Kirchner (2002a) found that the 

presence of Carex and Juncus spp. can increase bank stability up to ten times more than a 

streambank consisting of upland and facultative upland species. Micheli and Kirchner (2002b) 

found that rushes are better suited for stabilizing streambanks consisting of courser textures; 

whereas, sedges were more efficient at stabilizing fine textured materials. 

The greenline and floodplain plant communities need to be adapted to a variety of 

moisture regimes as periods of extended drought or flooding could lead to plant mortality (Capon 

2003). When hydric species become stressed from drought they have decreased vigor, potentially 

decreasing their root strength (Lytle and Poff 2004; Vivian et al. 2014). Contrarily, during long 

durations of inundation flood intolerant species can be lost (Lytle and Poff 2004). Stromberg 

(2005) found that when the flow of a stream was altered from perennial to intermittent that many 

obligate wetland species were reduced and/or lost and facultative wet species increased. In 

streams that are actively incising the hydrologic disconnectivity could also replace the greenline 

vegetation with dry and mesic species as the water table lowers making it difficult for 

recolonization (Chambers et al. 2004). Oftentimes when a stream incises the greenline vegetation 

is lost as a result of the lowered water table leading to stream widening (Chaves et al. 2002; 

Meehan et al. 2014; Meehan et al. 2015).  

Plants that naturally occur within greenline communities are hydrophilic, meaning they 

are usually found in areas of wet soil conditions. There are two primary types of plants that occur 

within riparian areas, herbaceous and woody plants (Lyons et al. 2000). Woody vegetation such 

as trees and shrubs are late successional plants in comparison to herbaceous vegetation that range 
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from early to late successional species. Historically on the Great Plains, wooded riparian areas 

were uncommon as fire naturally occurred. After European settlement, fire was all but removed 

from the plains allowing for forested riparian areas to develop. Furthermore, in the Great Plains 

grassland streams, particularly intermittent streams, are typically dominated by warm season 

grasses (Dodds et al. 2004). Both woody and herbaceous vegetation have similar functions in 

riparian areas; however, the benefits of one's presence over the other can contrast (Lyons et al. 

2000). 

Woody Vegetation 

Although canopy cover from woody vegetation is rare in headwater streams (Wiley et al. 

1990) woody vegetation can enhance streambank stability (Lyons et al. 2000). Willows (Salix 

spp.) are particularly good at preventing soil erosion as they have a bushy growth form that helps 

slow water velocity during floods allowing for sediment trapping to occur. In comparison, more 

erect trees, such as cottonwoods (Populus deltoides) and other members in the Populus genus, 

can induce turbulence during high water events causing erosion near their trunks (Lyons et al. 

2000). Furthermore, heavily wooded areas can shade out grasses leaving the soil surface exposed 

to flood water (Hunt 1979; Peterson 1993; White and Brynildson 1967). When larger trees die, 

they can increase the amount of erosion when they fall over as their roots leave a large portion of 

the ground damaged and vulnerable. Occasionally when taller trees fall they can sometimes 

damage the opposite streambank from impact (Shields and Gray 1992). Woody vegetation is 

recommended for tall steep banks as their deep rooting systems offer the most support for 

streambanks (Burckhardt and Todd 1998; Hupp 1992; Isenhart et al. 1997; Watson et al. 1997; 

Wynn et al. 2004). 
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Herbaceous Vegetation 

 Herbaceous vegetation increases streambank stability and reduces surface erosion by 

portioning their root density throughout the streambank (Wynn et al. 2004). Streambanks 

dominated by herbaceous vegetation oftentimes has a sod on the soil surface while having roots 

extend over a meter in depth (Wynn et al. 2004). Due to herbaceous vegetation in riparian areas 

leaving minimal areas of bare ground, erosion is minimal during heavy precipitation and 

flooding events (White and Brynildson 1967). Herbaceous vegetation’s dense growth adds 

roughness to moving water during floods dissipating energy (Hughes 1997; Li and Shen 1973; 

Naiman and Decamps 1997) and enabling sediment trapping and floodplain development to 

occur (Castelle et al. 1994; Osborne and Kovacic 1993; Parsons et al. 1994; Rosgen and Silvey 

1996).  

The silt capturing ability of grassy riparian zones can be reduced by idle land 

management in cases when trees become established and take over (Magner and Brooks 2007). 

When the trees are allowed to take over the trapped sediments from the herbaceous vegetation’s 

time of occupancy can be released back into the stream (Lyons et al. 2000). However, on steeper 

streambanks many of the benefits of herbaceous vegetation are reduced as the rooting depths is 

unable to reach the appropriate depth where flowing water is exerting the most stress (Medina 

1996; Petersen 1986). With the exception of high steep streambanks, herbaceous and woody 

vegetation are equally as useful in providing ecosystem services and bank stabilization (Davies-

Colley 1997; Trimble 1997).  

The Cyperaceae family is traditionally associated with increased stability as sedges 

(Carex spp.), rushes (Juncus spp.), spike rushes (Eleocharis spp.), and bulrushes 

(Schoenoplectus spp.) are within the family (Ball et al. 2003; Micheli and Kirchner 2002b). 
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Several hydrophytic grasses, such as those in the belonging to the Spartina genus may also 

increase bank stability as they are deep rooted and tolerant to flooding (Blom and Voesenek 

1996; Vande Kamp et al. 2013; Weaver 1960). Micheli and Kirchner (2002b) found that 

streambanks consisting of dry meadow, or upland species were more likely to fail than those 

consisting of riparian species. It was determined that Carex spp. can increase bank stability up to 

five times the amount of upland species (Micheli and Kirchner 2002b).  

Upland Vegetation 

 Upland vegetation, or dry meadow species are found away from riparian areas on the 

adjacent uplands. This vegetation is not depended on a high water table, and may not survive on 

a hydric soil. Reed (1988) broke upland vegetation into two groups, 1) upland and 2) facultative 

upland, as some species are rarely found if at all on hydric soils and some occasional are found 

within hydric soils. Upland plants are found less than one percent of the time on hydric soils; 

whereas, facultative upland species are found on a hydric soil 1-33 percent of the time (Lichvar 

et al. 2012; Reed 1988). Upland vegetation has potential to influence hydrology by influencing 

overland flow and sediment supply (Rosgen and Silvey 1996; Stringham et al. 2003). For this 

reason researchers attempt to include the entire catchment in order to determine the state of 

watersheds and streams when investigating water quality (Jarvie et al. 2002; Meynendonckx et 

al. 2006; Roberts et al. 2007; Tong and Chen 2002) and morphology (Allan 2004; Clary et al. 

2000; Covino 2017; Sheppard et al. 2017; Wiens 2002). 

 The state of upland vegetation that has been altered through disturbance or invasion 

(Westoby et al. 1989) has the potential to alter local hydrology which in turn can influence the 

stream (Stringham et al. 2003). In circumstances where the local hydrology is altered and there is 

increased overland flow streams may show rapid increases in the amount of flow in comparison 
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to proper functioning uplands capable of buffering high precipitation rates (Clary et al. 2000; 

Hudak 2005). Schilling and Libra (2003) and Schilling et al. (2008) found this to be true within 

grassland systems when native vegetation is converted to annual crops. The pulses of increased 

stream energy over time has potential to increase erosion on streambanks (Brooks et al. 2013). In 

circumstances when high amounts of sediment are being added from a lack of upland vegetation 

and erosion (Butler et al. 2006) point bars may form and concentrate flow into streambanks 

facilitating erosion (Howard and Knutson 1984).  

Exotic Vegetation  

Exotic or introduced vegetation can have a variety of effects on the landscape depending 

on their life history and phenology. Many exotic species are considered desirable for reasons 

such as rapid growth (D'Antonio and Vitousek 1992; Thompson and Harper 1988), aesthetic 

value (Pejchar and Mooney 2009), improved forage for livestock (Caldwell et al. 1981), and 

erosion control (Forman 2000; Huff and Bara 1993). Several exotic species are used as erosion 

control for road ditches, hill slopes, and other areas of concern as they grow rapidly, are 

competitive, and from thick sods (Forman 2000; Huff and Bara 1993; Larson 2003; Orr 1970). 

Unfortunately, due to their competitive nature native species can be displaced (Caldwell et al. 

1981; Dillemuth et al. 2009). Plant communities consisting of introduced species may not have 

the same ecological benefits as the native communities they displaced (Estes et al. 2011). 

Introduced cool season grasses, particularly smooth bromegrass and Kentucky bluegrass, 

have greatly reduced diversity within the Northern Great Plains (DeKeyser et al. 2013; Grant et 

al. 2009; Murphy and Grant 2005; Toledo et al. 2014). Cheatgrass (Bromus tectorum L.) is most 

known for its invasion and dominance within the Great Basin ecosystem, but it also occurs 

within the Great Plains ecosystem (Mack 2011). Kentucky bluegrass and smooth bromegrass are 
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perennial sod-forming grasses introduced from Europe; whereas, cheatgrass is a winter annual 

introduced from Eurasia (Stubbendieck et al. 2003). These three grasses have been documented 

to negatively alter plant communities (Harris 1967; Morrow and Stahlman 1984; Murphy and 

Grant 2005; Toledo et al. 2014), nutrient cycling (Printz et al. 2014), soil structure and biota 

(Angers and Caron 1998; Jordan et al. 2008; Printz et al. 2014), and infiltration (Boxell and 

Drohan 2009; Pierson et al. 2002; Taylor and Blake 1982). Cheatgrass may be an exception in 

regards to infiltration as Gasch et al. (2013) found cheatgrass to increase infiltration on certain 

soils. Furthermore, all three species are associated with increased litter amounts that aide in their 

success through increased fire intervals (Ogle et al. 2003; Whisenant 1990) or shading native 

species (DeKeyser et al. 2009; Facelli and Pickett 1991; Printz et al. 2014; Suding and Goldberg 

1999).  

Sinkins and Otfinowski (2012) investigated the ability of introduced species to remain on 

the landscape when disturbances are removed. They found that many exotic species densities 

decreased with the exception of Kentucky bluegrass and smooth bromegrass. It was determined 

that the only time Kentucky bluegrass’s density decreased was when smooth bromegrass invaded 

the same site (Sinkins and Otfinowski 2012). Kentucky bluegrass has been documented to 

increase across the landscape at all grazing intensities (DeKeyser et al. 2009; Sinkins and 

Otfinowski 2012; Uchytil 1993). Grazing has been more useful at reducing smooth bromegrass 

on prairies as it is highly palatable and has a high growing point (Briske 1991; Howard 1996; 

Milchunas and Vandever 2014). Grazing may be able to control cheatgrass infestations during a 

small window when native perennial vegetation is dormant (Vallentine and Stevens 1994). Often 

times a variety of different management practices are needed to effectively control aggressive 

exotic invaders (Travnicek et al. 2005).  
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Halophytic Vegetation 

 Plants that survive in saline soils are considered halophytic vegetation or halophytes 

(Jefferies 1981; Ungar 1974). Halophytic vegetation is important as their salt tolerance enables 

them to colonize land other vegetation cannot (Flowers and Colmer 2008). Soils that have salt 

crust formation are susceptible to overland flow and consequently rill erosion as their infiltration 

rate and aggregate stability is low (Bissonnais 1996; Mamedov et al. 2002). The ability of 

halophytes to survive and stabilize saline soils is crucial due to the poor hydrology and aggregate 

stability (Caravaca et al. 2005; Cooke et al. 1993). This is especially true for soils suffering from 

high sodium amounts as sodium facilitates dispersion (Schaetzl and Anderson 2005).  

  Soils may be influenced by salinity if a high water table is present leading to evaporation 

on the soil surface where the salt minerals are left behind (Timpson et al. 1986; Worcester and 

Seelig 1976). Observations of plant communities can be used to determine if a soil is influenced 

by salinity as not all plant species can tolerate saline soils (Worcester and Seelig 1976). As a 

result, the more saline a soil is the steeper the competition gradient favors halophytic vegetation 

(Ungar 1974). In some circumstances, soil salinity can lead to the death of all vegetation present 

as they are stressed osmotically and metabolically (Parida and Das 2005).  

Management 

Factors influencing riparian stability include land use, vegetation cover, topography, bank 

material, and watershed area (Hagerty et al. 1981; Hooke 1980). There is not much that can be 

done in regards to the geography and landscape of a watershed, but land use can be managed. 

Land management influences water quality, habitat, erosion rates, and sediment and nutrient 

transport (Allan et al. 1997; Smeck 1985). Intensive land use can lead to increased sediment 

loads (Brooks et al. 2013) as the adjacent land use is related to streambank erosion rates (Zaimes 
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et al. 2004). When land use is changed from native perennial vegetation there can be an increase 

in soil erosion (Hooke 2000; Ursic and Dendy 1965; Wolman 1967) and overland flow (Naef et 

al. 2002). Land use that reduces overland flow; therefore, reduces the potential of flood flows 

(Naef et al. 2002).  

The two broad categories of land utilization within grasslands include perennial 

vegetation and annual vegetation. Idle, grazed, and hay production management practices are all 

characterized by perennial vegetation; whereas, crop production is annual vegetation. There are 

many benefits to perennial vegetation, and the benefits are improved with diversity. Perennial 

vegetation provide services such as hydrologic regulation (Gerla 2007; McLaughlin and Walsh 

1998), water filtration (Duchemin and Hogue 2009), improved soil structure and quality (Entz et 

al. 2002; Johnson et al. 2005; McLaughlin and Walsh 1998; Moonen and Barberi 2008), canopy 

cover protection (Gardiner and Miller 2008; Hofmann and Ries 1991; Pearce et al. 1998), lower 

soil temperatures (Bremer et al. 1998), and decreased runoff and erosion (Gard et al. 1943; 

Power 2010). When the attributes of perennial vegetation are lost, or diminished water quality 

(Allan et al. 1997; Jaynes et al. 1999) and flood control are reduced (Group 1998; Knox 2001). 

Large vegetation conversions to annual crops have led to changes in hydrology such as decreased 

infiltration rates (Bharati et al. 2002; Duniway et al. 2010; McLaughlin and Walsh 1998) and 

higher runoff rates (McLaughlin and Walsh 1998), leading to increased baseflow (Schilling and 

Libra 2003) and sediment loads (Brooks et al. 2013; David et al. 2009) of streams. Stream 

erosion is a natural process (Henderson 1986), but if the sediment load is too high bed 

aggradation occurs and the stream can lose its equilibrium and transition to a less stable stream 

type (Schumm 1977). 
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The Northern Great Plains have been largely altered as grasslands have, and are currently 

being replaced by croplands (Claassen et al. 2011; Claassen 2011; Samson et al. 1998; Turner et 

al. 2014). Many of the conversions have taken place on marginal lands, or lands whose climate 

and soil characteristics are not highly suited for crop production (Wright and Wimberly 2013). 

This conversion leads to reduced soil qualities as the canopy cover and organic matter inputs are 

reduced (Gilley et al. 1997b; Gregorich et al. 1998; McLaughlin and Walsh 1998). These land 

use changes can affect the hydrology of a system and increase the peak flow of streams (Villarini 

et al. 2011). By replacing natural vegetation with annual crops and intensifying the land use 

increases in erosion and sediment transport rates can be observed (Abernethy 1990; Walling).  

Several authors showed concern as vast amounts of land are suffering from erosion 

(Kendall and Pimentel 1994; Lal 1994; Pimentel et al. 1995). This concern is due to large 

amounts of agricultural land being abandoned worldwide (Kendall and Pimentel 1994; Lal 1990, 

1994) as the productivity is lost with the eroded soils (Faeth 1994). Speth (1994) determined that 

roughly 90 percent of Earth’s land used for agriculture have deteriorated due to erosion with 80 

percent experiencing moderate to severe erosion and 10 percent experiencing slight to moderate 

erosion. Land use of the past and today can contribute to a legacy effect that inhibits future 

beneficial land management changes from achieving the full potential of their goals (Riley et al. 

2003). Management of land can vary based on region, common land uses include no use (idle), 

grazing, hay production, and crop production.  

Idle 

Idle land management is taking a passive approach without actively utilizing the land. 

The Conservation Reserve Program (CRP) is a commonly enrolled in for landowners operating 

on highly erodible lands (Hanson and Schmidt 2017). CRP is generally used on uplands; 
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however, other practices exist with the purpose of enhancing wildlife, pollinators, and water 

quality (Agapoff et al. 2016). These initiatives include upland bird habitat and nesting, prairie 

pothole duck habitat, bottomland hardwood, non-floodplain wetland restoration, floodplain 

wetland restoration, state acres for wildlife enhancement, longleaf pine, highly erodible lands 

initiative, and the pollinator habitat initiative (Agapoff et al. 2016).  

The CRP is effective at reducing soil erosion on highly erodible lands (Davie and Lant 

1994). By maintaining perennial forage raindrops are intercepted by plants before making impact 

with the soil (Pearce et al. 1998) and improved soil traits such as porosity (Angers et al. 1987; 

Duley and Domingo 1949), air permeability (Jarrett and Hoover 1985), organic C, and aggregate 

stability occur (Angers 1992; Perfect et al. 1990). However, CRP has also been effective in the 

past at introducing species that can become invasive as the majority of CRP plantings in North 

Dakota utilized smooth bromegrass (Bromus inermis Leyss.), alfalfa (Medicago sativa L.), and 

sweet clover (Melilotus spp.) in the past (Asbjornsen et al. 2014; Reynolds et al. 1994). 

Kentucky bluegrass (Poa pratensis L.) often invades idle land and co-dominates with smooth 

bromegrass making land management difficult (Murphy and Grant 2005). These shallow-rooted 

upland species’ root systems are not sufficient to maintain the streambanks when they are 

present, and as a result there is decreased bank stability and accelerated erosion (Winward 1994).  

Another option to idle management is resting grazed land or livestock exclusion. 

Numerous authors have documented livestock exclusion being beneficial to riparian health as it 

functions as passive restoration (Belsky et al. 1999; Coles-Ritchie et al. 2007; Green and 

Kauffman 1995). Researchers have found grazing tolerant plant communities switch back to 

hydrophytic communities as time passes following livestock exclusion within the riparian areas 

within the Great Basin (Batchelor et al. 2015; Martin and Chambers 2001) and Great Plains 
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(Vande Kamp et al. 2013). Livestock exclusion has been successful as cattle (Bos taurus) seek 

riparian areas for a source of forage during summer months as most of the upland cool-season 

vegetation goes dormant (Vande Kamp et al. 2013). By removing grazing, soil compaction 

(Brooks et al. 2013; Magner et al. 2008) is reduced; whereas, water holding capacity and 

infiltration rates are increased (Severson and Boldt 1978). This change in soil function in return 

benefits the hydrophytic plants as they are adapted to hydric soil conditions (Dwire et al. 2006).  

Grazing 

Riparian areas attract livestock as they offer water, shade, thermal cover and high forage 

quality (Ames 1977; Reid and Pickford 1946; Severson and Boldt 1978), making them 

vulnerable to overutilization by livestock, particularly cattle (Fleischner 1994). Overuse is more 

of an issue in the summer months when there are warmer temperatures as C3 upland species 

begin to senesce while riparian vegetation is maintained or gaining biomass (Vande Kamp et al. 

2013). Livestock, particularly cattle, are also attracted to riparian areas as they are largely 

dependent on streams and water bodies to reduce their body temperature to avoid heat stress 

(McArthur and Clark 1988). When the riparian area is over utilized by livestock they have a 

deleterious effect as they can change plant composition and/or reduce, or eliminate the 

vegetation that borders the stream (Ames 1977; Behnke and Raleigh 1979; Belsky et al. 1999; 

Kolvalchik 1987; Platts 1979).  

Livestock can trample the protective vegetation reducing the streambanks stability 

(Belsky et al. 1999; Meehan and Platts 1978) while compacting the soil (Kleinfelder et al. 1992; 

Winward 1994). When the vegetative canopy protection is removed from utilization the soil is 

exposed, and soil temperatures increase leading to higher evapotranspiration and reduced 

moisture content (Bremer et al. 1998; Burke et al. 1998; Savadogo et al. 2007; Severson and 



 

22 

 

Boldt 1978; Winward 1994). While the vegetation communities are being altered overhanging 

banks can begin to slump, eventually breaking off and get washed away by the stream (Duff 

1979). Overutilization by cattle can then cause increased sedimentation, nutrient loading, and 

possible pathogen introduction into streams (Grudzinski et al. 2016; Schwarte et al. 2011a). As 

streambanks become further altered the stream may widen and/or incise as the vegetative 

community and soil degrade (Platts 1991; Rosgen and Silvey 1996).  

Due to livestock exclusion not always being a feasible solution for land managers, 

changes in management has shown to be an effective solution. Development of off-stream water 

sources and salt placement can reduce the amount of time livestock spend in a riparian area and 

increase livestock gains (Miner et al. 1992; Porath et al. 2002; Stillings et al. 2003). Salt can be 

placed in locations within the paddock that are receiving little to no utilization as livestock are 

attracted to it (Williams 1954). Cross fencing and specialized grazing systems have also been 

developed to improve grazing distribution and improve riparian conditions (Kauffman and 

Krueger 1984). The grazing systems generally use a rotation scheme to move livestock from one 

paddock to the next throughout the growing season (Kauffman and Krueger 1984; Sampson 

1913). Sovell et al. (2000) found rotational systems in the Midwest to offer benefits to stream 

restoration in comparison to season-long grazing. Haan et al. (2010) found reducing the number 

of stream crossings and implementing a rotational grazing system was effective at lowering 

sediment and phosphorus in loads in streams.  

Hay Production 

Perennial cover also allows grasslands to add carbon to the soil, but harvesting hay can 

prevent, or greatly reduce grasslands from acting as a carbon sink (Skinner 2008). When high 

amounts of litter and biomass are removed the temperature of the soil is increased and the soil 
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moisture becomes reduced leading to an increase in the decomposition of soil organic matter 

(Bremer et al. 1998; Burke and Nol 1998; Savadogo et al. 2007). Mechanically harvested forage 

can significantly increase runoff and erosion (Alderfer and Robinson 1947; Converse et al. 1976; 

Gallagher et al. 1996; Gilley et al. 1996; Knoll and Hopkins 1959; Thomas et al. 1992; Van 

Doren et al. 1940; Young and Mutchler 1976), as the canopy cover is no longer sufficient, and 

during rain events raindrops can dislodge soil particles (Gardiner and Miller 2008; Hofmann and 

Ries 1991; Pearce et al. 1998; Speth 1994; Thurow et al. 1986) that eventually get deposited in 

surface pores and cracks by overland flow forming a seal that reduces infiltration (Brooks et al. 

2013; Ela et al. 1992; Zemenchik et al. 1996). Rills, or small channels that form from overland 

flow, can then form during intense rainstorms and snowmelts as the soil is left vulnerable to 

overland flow (Converse et al. 1976; Hensler et al. 1970; Young and Mutchler 1976). 

Crop Production 

Crop production is essential for food stability; however, tillage practice used on land has 

great implications for soil stability. No-till, or reduced tillage has similar erosion rates of CRP 

(Gilley et al. 1997a; Gilley et al. 1997b). Whereas, conventional tillage can result in large 

amounts of soil loss (Gilley et al. 1997a; Gilley et al. 1997b; Johnston 2013), up to 200 times 

greater than grasslands (Browning 1973) during intense wind, precipitation, and snowmelt events 

(Blanco-Canqui et al. 2009; Browning 1973; Low 1972). Tillage destroys soil structure (Gilley et 

al. 1997b), decreases aggregate stability (Kasper et al. 2009; Low 1972), eliminates surface 

residue (Zheng et al. 2004), and depletes the soils organic carbon (Blanco-Canqui et al. 2010; 

Franzluebbers 2005; Gilley et al. 1997b; Peterson et al. 1998; Sherrod et al. 2003), which 

degrades the health of the soil (Pagliai et al. 2004).  
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The loss of soil is not only detrimental to crop yields (Pimentel et al. 1995) and soil 

stability (Low 1972; Speth 1994; Zheng et al. 2004). When high amounts of soil are eroded in 

the uplands the riparian area’s filtration ability can be overwhelmed (Clary et al. 1996) allowing 

for the soil to be added to the sediment load of streams (Allan et al. 1997; Dissmeyer 2000). The 

increased sediment load has the potential to alter stream morphology, as the stream may be 

unable to transport the excess sediment (Bridge 2009; Byers et al. 2005; Church 2006; Fitch and 

Adams 1998; Rosgen and Silvey 1996; Schumm 2005; Stringham and Repp 2010). The 

increased sediment load and nutrient input also reduces water quality, reduce dissolved oxygen 

(Carpenter et al. 1998; Miltner 1998) degrading aquatic life, increases turbidity, and increases the 

risk of flooding (Group 1998).  

Assessments and Monitoring 

Interpreting Indicators of Rangeland Health 

The IIRH protocol allows an investigator to evaluate ecological sites using qualitative 

assessments described by Pellant et al. (2005) to evaluate soil/site stability, hydrologic function, 

and biotic integrity at the ecological level. This protocol is effective at determining the state of a 

site; however, it is not used to identify and determine the cause of degradation (Pellant et al. 

2005). IIRH utilizes 17 indicators that assess and determine the functional status of three 

attributes: 1) soil and site stability, 2) hydrologic function, and 3) biotic integrity (Table 1.1). 

IIRH is focused on assessing and evaluating the soil and vegetation condition of a site as its 

evaluation is based on ecological site concepts and expert knowledge of soil and vegetation in 

order to determine departures in accordance of the 17 indicators in comparison to a reference 

state of the site. Each of the 17 indicators is evaluated and scored on a scale of departures of 

none-to-slight, slight-to-moderate, moderate, moderate-to-extreme, and extreme-to-total. The 
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three attributes are then rated in accordance with the indicators that influence them (Pellant et al. 

2005). IIRH gives researchers insight on how an ecological site is functioning in relation to what 

is believed to be the site’s full potential (Carter et al. 2017; Toledo et al. 2016). 
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Table 1.1. Rangeland Health Indicators and Associated Attributes 

Indicator Description 
Soil & Site 

Stability 

Hydrologic 

Function 

Biotic 

Integrity 

1 Number and extent of rills X X  

2 Presence of water flow patterns X X  

3 
Number and height of erosional 

pedestals or terracettes 
X X  

4 Bare ground X X  

5 
Number of gullies and erosion 

associated with gullies 
X X  

6 
Extent of wind scour, blowouts, 

and/or depositional areas 
X   

7 Amount of litter movement X   

8 
Soil surface (top few mm) 

resistance to erosion 
X X X 

9 
Soil surface structure and soil 

organic matter content  
X X X 

10 

Effect of plant community 

composition and spatial 

distribution on infiltration and 

runoff 

 X  

11 
Presence and thickness of 

compaction layer 
X X X 

12 Functional/structural groups   X 

13 
Amount of plant mortality and 

decadence 
  X 

14 Average percent litter cover  X X 

15 Expected annual production   X 

16 

Potential invasive (including 

noxious) species (native and non-

native) 

  X 

17 
Perennial plant reproductive 

capability 
  X 

 

 The 17 indicators allow researchers and land managers to observe changes within an 

ecological site that would not be expected from its reference condition. The indicators allow for 

monitoring of soil and site stability (rills, water flow patterns, terracettes, bare ground, gullies, 
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wind-scourers, blowout, and or depositional areas, litter movement, soil surface resistance to 

erosion, soil surface loss or degradation, and compaction layer), hydrologic function (rills, water 

flow patterns, terracettes, gullies, bare ground, soil surface resistance to erosion, soil surface loss 

or degradation, relative infiltration and runoff based on vegetation, soil compaction, and litter 

amount), and plant community alterations (soil surface resistance to erosion, soil surface loss or 

degradation, compaction layer, relative infiltration and runoff based on vegetation, 

functional/structural groups, plant mortality and/or decadence, litter amount, annual biomass 

production, presence of invasive plants, and reproductive capabilities of perennial plants) 

(Pellant et al. 2005; Pyke et al. 2002).  

Soil and Site Stability 

Pellant et al. (2005) described soil and site stability as “the capacity of an area to limit 

redistribution and loss of soil resources by wind and water.” Based on this definition and its 

associated indicators the soil and site stability attribute is strongly related to erosional processes. 

The presence of rills, water flow patterns, pedestals and/or terracettes, increased amounts of bare 

ground, and blowouts can influence riparian areas through increased sediment loads from active 

erosion in the uplands (Hunter 1991). Presence of rills indicate small amounts of soil loss; 

whereas, the presence of a gully indicate large amounts of soil loss and low opportunity for the 

site to recover (DeBano and Schmidt 1989; Langdale et al. 1992; Pellant et al. 2005; Shainberg 

et al. 1992). Presence of water flow patterns on a site indicate past erosion and lack of vegetation 

establishment and cover (Pellant et al. 2005). Over time, or during an extreme precipitation event 

a water flow pattern on the landscape could transition into numerous rills or a gully (Gardiner 

and Miller 2008). The soil surface resistance to erosion is an important indicator as soils with 

high aggregate stability are less likely to be dispersed and eroded away (Gardiner and Miller 
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2008; Schaetzl and Anderson 2005). Soil surface loss or degradation has implications on the 

productivity of the site as a degraded A horizon will influence the biotic community of the site 

(Pimentel et al. 1995). The final indicator of the soil and site stability attribute is the compaction 

layer. The compaction layer has potential to increase soil erosion, runoff, and limit plant rooting 

depth (Pellant et al. 2005; Rosgen and Silvey 1996; Unger and Kaspar 1994).  

Hydrologic Function 

Pellant et al. (2005) described hydrologic function as “the capacity of an area to capture, 

store, and safely release water from rainfall, run-on, and snowmelt (where relevant), to resist a 

reduction in this capacity, and to recover this capacity when a reduction does occur.” Essentially, 

hydrologic function is the ability of an ecological site to handle snowmelt, precipitation, and 

runoff events without degradation occurring. The presence of rills, water flow patterns, and 

gullies indicate overland flow is occurring and becoming concentrated within natural drainage 

areas (DeBano and Schmidt 1989). This occurrence may be the result of reduced infiltration rates 

(Gardiner and Miller 2008); however, during high-intensity precipitation events the amount of 

rainfall can exceed the infiltration rate of the soil (Huggett 1975, 1976). The presence of 

pedestals and/or terracettes indicate that wind and water have eroded soil away from areas 

unprotected by vegetation or rocks (Anderson 1974). The interspaces of pedestals may function 

as a water flow pattern increasing erosion and potentially erasing evidence of pedestals as they 

are eroded away from their sides (Anderson 1974). The soil surface resistance to erosion is an 

important indicator as soils with high aggregate stability are less likely to be dispersed and 

eroded away (Gardiner and Miller 2008; Schaetzl and Anderson 2005). Areas of bare ground, 

particularly those with low aggregate stability, are susceptible to splash erosion (Printz et al. 

2014; Thurow et al. 1986). Splash erosion has the potential to plug soil pores reducing 
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infiltration and increasing overland flow which increases the opportunity of soil loss (Ela et al. 

1992). Litter on the soil surface not only reduces the amount of bare ground (Pearce et al. 1998), 

but it also acts as a buffer holding water in place longer allowing for increased infiltration 

(Brooks et al. 2013; Naeth et al. 1991a). The presence of a compaction layer impedes vertical 

water movement forcing it to move laterally in the soil profile increasing flow in streams (Haigh 

and Sansom 1999).  

Biotic Integrity 

Pellant et al. (2005) described biotic integrity as “the capacity of the biotic community to 

support ecological processes within the normal range of variability expected for the site, to resist 

a loss in the capacity to support these processes, and to recover this capacity when losses do 

occur.” The biotic integrity of a site indicates its resilience to disturbance and its potential to 

recover. Soils covered by vegetation generally have increased aggregate stability, as the 

vegetation roots bind to soil particles and add organic matter to the soil (Brady and Weil 2002; 

Tufekcioglu et al. 1998). Soils with high aggregate stability require more energy to disperse soil 

particles making them resistant to erosion (Wischmeier and Mannering 1969). In situations 

where the A horizon is degraded or lost establishing vegetation becomes difficult as the A 

horizon has the highest amounts of nutrients and soil organic matter (Brady and Weil 2002; 

Follett and Reed 2010). The presence of a compaction layer, an area of high bulk density, at a 

site has the potential to impede root penetration of plants limiting which species may occur (Orr 

1960; Unger and Kaspar 1994).  

The functional/structural group indicator provides insight into what the historical plant 

composition was based on the morphology and dominance of the species present in the reference 

condition (Pellant et al. 2005; Tilman et al. 1997). When groups are removed or a change in 



 

30 

 

dominance occurs the ecologic function of the site may be altered into comparison of the loss of 

one species (Estes et al. 2011; Tilman et al. 1997). Invasive species result in a loss of 

biodiversity (DeKeyser et al. 2009), functional structural groups (Tilman et al. 1997), and 

ecological services and functions (Estes et al. 2011) as they tend to form monocultures over time. 

Annual production of an ecological site allows for interpreting if the site is producing at 

its potential (Pellant et al. 2005). Invasion by an introduced species, or a species composition 

change can alter the annual production of an ecological site (Pellant et al. 2005). Sites consisting 

of low diversity often times have reduced annual production when a year has unusual climate or 

the site is exposed to hail and/or fire as species adapted to the various disturbances may have 

been removed (Tilman and Downing 1994). For this reason, diverse plant communities can have 

higher biomass production as they may have positive interactions with each other, and the 

mixture of cool and warm season plants allows for the entire growing season to be utilized 

(Fornara and Tilman 2008).  

The amount of litter can have various effects on the biotic integrity of an ecological site. 

Low amounts of litter may result in increased soil loss (Clary and Leininger 2000), higher soil 

temperatures (Bremer et al. 1998; Savadogo et al. 2007), and higher evaporation rates (Savadogo 

et al. 2007). High amounts of litter can increase infiltration rates (Brooks et al. 2013; Naeth et al. 

1991a), harm warm season grasses (Printz et al. 2014), and give a competitive advantage to 

exotic species (Suding and Goldberg 1999). For this reason a moderate amount of litter may be 

ideal as it will not harm warm season plants or give advantages to undesirable species (Suding 

and Goldberg 1999), retain soil moisture (Naeth et al. 1991a), and improve plant vigor (Naeth et 

al. 1991b).  
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Plant mortality/decadence allows for management decisions based on the age class 

distribution and vigor of native perennial reproducing plant species (Pyke 1995). The 

reproductive capability of perennial plants is important for species dispersion and establishment 

of new age classes (Pellant et al. 2005; Pyke 1995). Investigation of perennial plant health and 

their reproductive capabilities give managers insight into how resilient an ecological site is to 

disturbances (Printz et al. 2014). 

Riparian Assessments  

Classification of Natural Rivers 

Stream types can be determined using Rosgen’s classification method (NRCS 2007; 

Rosgen 1985, 1994; Rosgen and Silvey 1996). Rosgen’s classification methods involves 

assessing a cross-section, longitudinal profile, and planform features on each streams sampling 

site. Important features such as water’s edge, bankfull discharge, floodplain edge, and terraces 

should be noted while recording elevations for accurate classifications. The longitudinal data is 

collected with a survey rod and laser level by determining the water’s surface elevation at the 

cross-section, and a minimal of ten bankfull widths up and downstream of the cross-section 

(Rosgen 1994; Rosgen and Silvey 1996). The cross-sectional and profile data can be analyzed 

using software programs such as RiverMorph (RiverMorph 2011) or version 4.3L of the 

Reference Reach Spreadsheet (Mecklenburg 2006). This data is used to determine channel form, 

entrenchment ratio, width to depth ratio, and slope of the water’s surface of the reaches surveyed. 

Channel sinuosity is determined using ArcMap by dividing the stream length of the meander by 

the valley length (Rosgen and Silvey 1996).  
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Bank Erosion Hazard Index 

The bank erosion hazard index (BEHI) was developed by Rosgen (2001; 2006) to model 

the amount of sediment introduced from streambanks as a result of erosion. Rosgen’s (2006) 

BEHI is useful for determining the susceptibility of erosion of a streambank by interpreting five 

variables associated with increased streambank erosion. BEHI evaluates seven erosional 

processes to determine the erosion risk or BEHI rating. The seven variables used to calculate the 

BEHI are 1) study bank height divided by bankfull height, 2) root depth divided by study bank 

height, 3) weighted root density, 4) Bank angle (measured in degrees), 5) surface protection 

(canopy cover), 6) bank material adjustment, and 7) stratification of bank material adjustment. 

The first five indicators are assessed by doing field measurements and finding the relationship on 

a graph to get their rating or score (Figures 1.1 and 1.2). The bank material adjustments can then 

increase or decrease the score depending on the dominant particle size of the bank. The seven 

scores are then added p to determine if the BEHI is rated very low (5-9.5), low (10-19.5), 

moderate (20-29.5), high (30-39.5) very high (40-45), or extreme (46-50) (Rosgen 2006).  
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Figure 1.1. Bank Erosion Hazard Index (BEHI) Worksheet (1st page) (Rosgen 2006) 
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Figure 1.2. Bank Erosion Hazard Index (BEHI) Worksheet (2nd page) (Rosgen 2006) 
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Bank Height Ratio 

Bank height ratio is a measurement used to determine the degree of incision, or the 

streams ability to access its floodplain (Rosgen 2006). The bank height ratio is found by the 

lowest bank height of the cross section divided by the maximum bankfull depth (Rosgen 2001). 

However, bank height ratio is not used for delineation criteria as it is similar to the entrenchment 

ratio. The bank height ratio is useful for determining the bank's stability as the ratios are 

categorized as stable (1.0), moderately unstable (1.1-1.3), unstable (1.3-1.5) and highly unstable 

(≥1.5).  
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CHAPTER 2. PLANT COMMUNITY INFLUENCES ON INTERMITTENT 

STREAMBANK STABILITY 

Abstract 

The composition of the greenline plant community is linked to the stability of riparian 

ecosystems. Cool season exotic grasses are invading native plant communities across the 

northern Great Plains, potentially compromising streambank stability and increasing the risk of 

erosion within riparian ecosystems. To determine how the species composition of the greenline 

community impacts stream type and the risk of streambank erosion, thirty five reaches across 

five watersheds were sampled to determine the dominant greenline vegetation. At each reach 

sampled, a cross-section was conducted to determine stream type, greenline vegetation, and risk 

of streambank erosion. The stream types were delineated using Rosgen’s classification of natural 

rivers. Canopy cover and composition was assessed using the line point intercept method along a 

30.5 m transect in the greenline community. Plants recorded were grouped by their wetland 

indicator status for the central Great Plains. The Bank Erosion Hazard Index (BEHI) was used to 

assess the streams risk of erosion by calculating the difference between the bank height and bank 

full height, average plant rooting depth and density, bank angle degree, and the dominant texture 

of the bank material. Bank height ratio (BHR) was assessed as it is a measure of streambank 

stability and floodplain connectivity. A Nonmetric Multidimensional Scaling ordination was 

performed to analyze plant community influences. Analysis of the data determined that the most 

stable stream types (E and C channels), lower BEHI scores, and stable bank height ratios were 

associated with high amounts of litter and facultative wet species. In comparison, unstable F 

channels were associated with early successional species and bare ground. Sites with the higher 

BEHI scores were influenced by upland and facultative upland species and saline soils. Late 
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successional facultative wetland species therefore offer the most protection to intermittent 

streambanks.  

Keywords: greenline, intermittent stream, riparian, plant species composition 

Introduction 

It is well documented that plants play a crucial role in the amount of soil erosion 

occurring on the landscape (Bilbro, 1991; Trimble, 1994; Unger and Vigil, 1998; Clary and 

Leininger, 2000; Butler et al., 2006). Areas of reduced plant cover function differently than those 

with high amounts of cover; as plants influence nutrient cycling, infiltration, and soil retention 

(Rook and Tallowin, 2003; Printz et al., 2014; Russell and Bisinger, 2015). For example, un-

vegetated riparian areas have an increased risk of streambank failure due to absence of plant 

roots, which can lead to a large loss of soil (Marcuson, 1977; Meehan et al., 1977; Beeson and 

Doyle, 1995). However, streambanks may also fail if the plant community occupying the banks 

are comprised of shallow rooted species, as their roots may not reach the boundary where water 

is eroding at the streambank (Petersen, 1986; Winward, 1994, 2000).  

Within riparian areas plants that naturally occur in the greenline communities tend to 

have strong, deep roots that enhance bank stability (Winward, 2000). The greenline is the 

vegetation that occurs closest to the water’s edge on a streambank. The deep rooting structure is 

important as streambanks naturally erode throughout the year at varying intensities based on 

local climate conditions (Hagerty et al., 1981; Henderson, 1986; Medina, 1996). The greatest 

erosional force acting on streambanks occurs at their sides from flowing water in the stream 

channel where they have limited protection (Toledo and Kauffman, 2001). These characteristics 

of greenline vegetation maintain streambanks and buffer the erosive forces of flowing water 

(Winward, 2000).  
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Plants that naturally occur within greenline communities are hydrophytic, meaning they 

are usually found in areas of wet soil conditions. Two primary types of plants that occur within 

riparian areas are herbaceous and woody plants (Lyons et al., 2000). Woody vegetation such as 

trees and shrubs are late successional plants in comparison to herbaceous vegetation that range 

from early to late successional species. Both woody and herbaceous vegetation have similar 

functions in riparian areas; however, the function of ones presence over the other can contrast 

(Lyons et al., 2000). Historically in the Great Plains wooded riparian areas were uncommon as 

they are generally dominated by warm season grasses (Dodds et al., 2004). While woody 

vegetation was documented to occur along some perennial streams in the Great Plains, it was 

rarely associated with headwater streams (Wiley et al., 1990).  

Herbaceous Vegetation  

Herbaceous riparian vegetation enhances bank stability by portioning their roots 

throughout the soil profile. By portioning their roots these native herbaceous species form a sod 

near the surface while reaching deep into the soil profile supplying support to the stream bank up 

to a meter in depth (Wynn et al., 2004). In non-forested areas, herbaceous vegetation is able to 

thrive, as it is not shaded out by the forest canopy, reducing the amount of bare ground (White 

and Brynildson, 1967). When herbaceous vegetation is dominant, the low amount of bare ground 

reduces the risk of erosion on the top of the bank during floods (White and Brynildson, 1967). 

Herbaceous vegetation can be better at trapping sediments from overland flow than woody plants 

(Osborne and Kovacic, 1993; Castelle et al., 1994; Parsons et al., 1994), growing in dense 

communities that reduce the water’s energy allowing for the suspended sediment to settle out of 

the water and be deposited (Li and Shen, 1973; Hughes, 1997; Naiman and Decamps, 1997). It is 

recommended that managing for herbaceous vegetation on gentle sloping banks over woody 
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vegetation, as herbaceous vegetation offers greater support for the bank surface (Davies‐Colley, 

1997; Trimble, 1997).  

Plant Communities 

Native greenline plant communities typically consist of obligate and facultative wetland 

species. Native greenline plant species most commonly found in the northern Great Plains 

include sedges (Carex spp.), rushes (Juncus spp.), spikerushes (Eleocharis spp.), bulrush 

(Schonopelectus spp.), and hydrophytic grasses such as prairie cordgrass (Spartina pectinata 

Bosc ex link) (Weaver, 1960; Micheli and Kirchner, 2002b; Ball et al., 2003). These native plant 

species typically thrive in saturated to moist soils, preventing invasion from introduced species 

that are not adapted to anaerobic soil conditions (Blom and Voesenek, 1996). Maintenance of 

native greenline plant communities provides several ecological services such as nutrient 

filtration, sediment trapping, and flood damage reduction (Platts, 1979; Winward, 1994, 2000). 

Retaining native greenline plant communities dominated by hydric deep rooted plants helps 

ensure bank stability, avoiding mass wasting of soil (Platts, 1979; Winward, 1994, 2000).  

The retention of native riparian species has been complicated as the northern Great Plains 

are currently undergoing an invasion as introduced cool season grasses are expanding at a high 

rate, reducing plant diversity (Sinkins and Otfinowski, 2012; DeKeyser et al., 2013). With this 

transition, there is the potential to compromise streambank stability (Winward, 2000). The two 

primary species, Kentucky bluegrass (Poa pratensis L.) and smooth bromegrass (Bromus inermis 

L.), are wide spread across the northern Great Plains (Murphy and Grant, 2005; Travnicek et al., 

2005; Sinkins and Otfinowski, 2012; DeKeyser et al., 2013; Toledo et al., 2014). When these 

species are able to invade and replace native plants that occur within the greenline, many of the 
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functions discussed previously are compromised as a result of differing rooting structures (Estes 

et al., 2011).  

These introduced species, particularly smooth bromegrass, are often used for seeding 

road ditches and other areas at risk of erosion (Huff and Bara, 1993). The introduction of 

introduced species puts native plant communities at risk of invasion, which could lead to 

streambank failure (Winward, 1994, 2000). The main ecological reason these competitive 

introduced grasses do not perform the same on streambanks as native greenline plant species is 

due to their shallow rooting structure (Winward, 1994). Both Kentucky bluegrass and smooth 

bromegrass grow the majority of their root mass in the top eight cm of the soil profile, becoming 

dense and sod forming (Uchytil, 1993; Howard, 1996). This shallow rooting depth compromises 

the toe slope, or the bottom, of the bank, leaving the soils unprotected and vulnerable to erosion 

(Wynn et al., 2004). When the toe slope is unprotected, the force of the flowing water erodes 

away at the sides increasing the risk of bank failure and slumping (Kauffman and Krueger, 1984; 

Rosgen and Silvey, 1996; Wynn et al., 2004).  

It is recognized by many authors that hydrophytic plant species offer the most protection 

to perennial streambanks from water’s erosive forces (Marcuson, 1977; Meehan et al., 1977; 

Kleinfelder et al., 1992; Hughes, 1997; Naiman and Decamps, 1997; Winward, 2000; Micheli 

and Kirchner, 2002b). However, little research has been conducted on intermittent streams 

within prairie systems (Matthews, 1988). Streams that exhibit intermittent stream flow typically 

have flow for only a portion of the year during the wet season. As the dry season progresses the 

water table lowers below the streambed and flow stops (Meinzer, 1923; Brooks et al., 2013). The 

objective is this project was to determine what plant communities are best at supporting 

intermittent streambanks? We hypothesize that streams with greenline communities consisting 
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deep-rooted obligate hydrophytic plants will be more stable and at a lower risk of bank erosion 

than streams with greenline communities consisting of shallow-rooted upland plants. 

Materials and Methods  

Watersheds and Soils 

This study was conducted near the western boundary of the northern mixed grass prairie 

in southwest Bowman County, ND, USA (46° 3'45.08"N, 103°46'16.42"W). Five watersheds 

characterized by intermittent stream flow were assessed including: Spring, Skull, Horse, 

Sevenmile, and Fivemile Creeks (Figure 2.1). Each of these streams are found within Valley 

Type VIII, which are wide alluvial valleys that allow the streams space to meander (Rosgen and 

Silvey, 1996). These alluvial valleys formed from water erosion and deposition of soils derived 

from sandstone and limestone (Bluemle, 1980, 2000). Alfisols, Entisols, Inceptisols, and 

Mollisols (NRCS, 2006) are common soil orders in this region.  
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Figure 2.1. Study area and watershed locations in Bowman County, North Dakota. 

The five watersheds contain 155 km of stream length with a cumulative drainage area of 

390.5 hectares (USGS, 2014). Within the study area livestock production is the dominant land 

use, with perennial grasslands accounting for 65% of the cover (NRCS, 2006; USGS, 2010). 

Riparian areas within the study area comprise approximately 2.6 percent of the landscape (Table 

2.1). Because the majority of the landscape has been retained in perennial cover, much of the 

native vegetation has been preserved. However, several introduced species such as Kentucky 

bluegrass, smooth bromegrass, and annual brome species (Bromus arvensis L. and Bromus 

tectorum L.) are common.  
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Table 2.1. Summary of land use of Bowman County, North Dakota within the study area derived 

from USGS Gap Analysis Program (USGS, 2010). 

Watershed Land Use Total Acres Percent 

Human Developed 567.55 0.59 

Cropland 7623.98 7.92 

Pasture/Hay 497.72 0.52 

Open Water 250.01 0.26 

Badlands/Barren 3949.34 4.10 

Forest/Woodland 2132.98 2.22 

Shrubland 14926.56 15.50 

Grassland 63287.81 65.72 

Disturbed-Introduced Vegetation 569.57 0.59 

Disturbed, Other 10.50 0.01 

Riparian/Wetland 2470.43 2.57 

Total 96296.45  
 

Hydrologic Measurements 

Prior to fieldwork, a watershed reconnaissance was conducted on each of the streams. 

The stream reconnaissance consisted of a complete foot survey to evaluate stream morphology, 

land use, dominant vegetation, and disturbances. These observations were recorded with a 

Trimble Geo 7X geographic positioning system (GPS). The gathered information was used to 

identify sampling locations across each watershed. A minimum of five sites were sampled per 

watershed using Rosgen’s delineative criteria (Rosgen, 1985, 1994).  

Rosgen’s classification method was used to evaluate cross-section, longitudinal profile, 

and planform features at each sampling site (Rosgen, 1985, 1994). Streams were sampled at low 

flow in order to avoid false bankfull heights. Rosgen’s classification system takes into account 

channel dimensions such as entrenchment ratio, width to depth ratio, sinuosity, slope, and 

channel material (Rosgen, 1985, 1994). Each site sampled consisted of a complete meander in 

order to determine the longitudinal profile and planform patterns. Longitudinal data such as 

water’s slope was determined using a survey rod and laser level. Channel sinuosity was 
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determined using ArcMap by dividing the stream length of the meander by the valley length. The 

cross-section profile data was obtained by using a laser level and survey rod for determining 

channel elevations. The data collected was input into Mecklenburg’s (2006) version 4.3L of the 

Reference Reach Spreadsheet to determine channel type.  

The bank erosion hazard index (BEHI) was used to determine the risk of bank erosion at 

each cross-section (Rosgen, 2006). This method was conducted on the streambank most 

susceptible to erosion. For example, the streambank on the outside of the curve would be 

sampled because it is exposed to faster flowing water. Eight variables were collected for the 

BEHI as described by Rosgen (2006). These variables are then used to evaluate five metrics that 

help explain erosional processes. The metrics are 1) ratio of bank height to bankfull height, 2) 

ratio of root depth to bank height, 3) root density percent, 4) bank angle degree, and 5) percent 

surface protection. The scores of the erosional processes are added up resulting in a BEHI score. 

The score ranges are very low (5-9.5), low (10-19.5), moderate (20-29.5), high (30-39.5) very 

high (40-45), or extreme (46-50) (Rosgen, 2006).  

Bank height ratio (BHR) was assessed to determine the floodplain connectivity and 

stability of the channel. BHR was determined by assessing the degree of channel incision by 

dividing the lowest bank height by the maximum bankfull depth (Rosgen, 2001; Rosgen, 2006). 

BHR is considered an important value in regards to stream condition as it is used to determine if 

a stream is going to change from a stable state to an unstable state (Meehan et al., 2016). BHR 

ratios of 1.0-1.05 are considered stable, 1.06-1.30 are moderately unstable, 1.31-1.50 are 

unstable, and ratios greater than 1.51 are highly unstable (Rosgen, 2001; Rosgen, 2006).  
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Vegetative Measurements  

Vegetation attributes of greenline plant communities was determined using the line point 

intercept method (LPI). LPI was used to determine species composition, vertical and basal cover 

by plant species, and quantify bare ground and litter amounts (Coulloudon et al., 1999; Herrick 

et al., 2005). LPI was collected along a 30.5 meter transect using the protocol described by 

Herrick et al. (2005) and placed parallel to the stream within the greenline plant community. A 

pin flag was dropped at one hundred evenly spaced locations along the transect and any plant 

that intercepted or made contact with the pin recorded. Hits on the soil surface were recorded as 

plant species, rock, litter, organic litter, moss, lichen, or soil to determine basal cover. Plant 

species were then grouped by their wetland indicator status, as defined by Reed (1988) and 

Lichvar (2012). Reed (1988) developed five categories: 1) obligate (OBL), 2) facultative wetland 

(FACW), 3) facultative (FAC), facultative upland (FACU), 5) upland (UPL) in attempt to use 

plants to recognize hydric soils. OBL species are found in hydric soils 99 percent of the time 

(Reed, 1988; Lichvar et al., 2012). FACW species are found in wetlands approximately 67-99 

percent of the time. FAC species are found in wetlands 34-66 percent of the time. FACU species 

are found in hydric soils 1-33 percent of the time, and UPL species are found in hydric soils less 

than one percent of the time (Reed, 1988; Lichvar et al., 2012).  

An additional grouping was created for plant species known to thrive in saline soils in 

attempt to interpret if salinity had an impact on streambank stability (Ungar, 1974). Worcester 

and Seelig (1976) found that use of known halophytes could be used to find saline seeps in North 

Dakota. Seelig (2000) stated that species such as inland saltgrass (Distichlis spicata (L.) Greene), 

alkali cordgrass (Spartina gracilis Trin.), and Nuttall’s alkali grass (Puccinellia nuttalliana 

(Schult.) Hitchc.) can be used as indicators of high saline soils.  
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Statistical Analysis  

The PC-ORD ® (version 6.0) multivariate statistical software program was used to 

conduct a Nonmetric Multidimensional Scaling (NMS) ordination (McCune et al., 2002; Peck, 

2010) to interpret plant community effects on hydrologic measurements. The NMS was 

performed using the Sorenson (Bray-Curtis) distance measure. Final solutions met these 

conditions were sought: 1) stress less than 10 (based on Clark’s rules of thumb), 2) a 

randomization test of P≤0.05, 3) dimensions that reduce stress more by at least 5, and 4) final 

instability (less than 0.0001) (Clarke, 1993; McCune et al., 2002). Variable groups possessing a 

Pearson correlation coefficient (r) of 0.40 (absolute value) or greater with the selected 

dimensions were deemed interpretable (McCune et al., 2002).  

Permutation MANOVA (PERMANOVA) analysis was used to test for a difference 

between groups using the Sorenson (Bray-Curtis) distance measure (P ≤ 0.05) (Anderson et al., 

2008). Groupings tested included channel type, BEHI, and BHR. PERMANOVA was chosen as 

it is a multivariate test and it does not need to meet linear assumptions (Anderson et al., 2008). A 

pairwise comparison test was conducted in order to determine similar and dissimilar groups 

(Biondini et al., 1988; Anderson et al., 2008). No adjustments were made to the pairwise P 

values, such as the Bonferroni adjustment (McArdle and Anderson, 2001; Moran, 2003). The 

PERMANOVA analysis was done using PRIMER version 7 software with the PERMANOVA + 

add-on (Anderson et al., 2008). 

Pearson correlation coefficients were calculated between wetland indicator cover and 

these factors: entrenchment ratio (ER), BEHI, and BHR. The entrenchment ratio acts as a 

substitute continuous measurement for the Rosgen’s stream classification where high values are 

associated with stability and low values are considered unstable (Rosgen, 1985, 1994).  
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Results 

Hydrologic Measurements 

Thirty-five stream reaches were sampled across the study area. These stream reaches 

were diverse ranging from near reference E channels to actively eroding F and G channels. Of 

the 35 cross-sections sampled, 14 E channels, seven C channels, nine B channels, three F 

channels, and two G channels were documented. The average entrenchment ratio was 5.93 for E 

channels, 5.26 for C channels, 1.73 for B channels, 1.23 for F channels, and 1.15 for G channels.  

The bank assessments had similar results as the BEHI resulted in four very low, 11 low, 

13 moderate, six high, and one very high rating. High streambank height and bank angle degrees 

supplemented with low surface protection and sandy bank material was responsible for the 

majority of the high risk BEHI scores. Bank height ratios of the cross sections resulted in eight 

stable, eight moderately unstable streambanks, six unstable, and 13 highly unstable streambanks. 

Sites with unstable stream channels and high/very high BEHI ratings also had highly unstable 

BHR. Four E channels and four B channels were also considered highly unstable.  

Vegetation Measurements 

Sixty-three different plant species were documented within the greenline communities 

associated with the 35 reaches (Appendix A). Hydrophytes, OBL and FACW species (Tiner, 

1991) were the most abundant species within the greenline plant communities on all sites but 

one. Of the 63 species, the most common were woolly sedge (Carex pellita Muhl. ex Willd.), 

common spikerush (Eleocharis palustris (L.) Roem. & Schult. var. palustris), common 

threesquare (Schoenoplectus pungens (Vahl) Palla), alkali cordgrass, and prairie cordgrass (Table 

2.2). The primary FACW species were prairie cordgrass and alkali cordgrass; whereas, common 

threesquare and common spikerush were the most common OBL species on the study.  
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Table 2.2 Important plant species and cover. The cover provided was determined from 35 sites 

where a line point intersect transect consisting of 100 points was conducted.  

Common Name Scientific Name 

Native or 

Introduced 

Average 

Cover (%) 

Cover 

Range (%) 

Litter - - 49 1-93 

Bare Ground - - 4 0-22 

Smooth Bromegrass Bromus inermis Introduced 4 0-36 

Wooly Sedge Carex pellita Native  11 0-55 

Inland saltgrass Distichlis spicata Native 1 0-19 

Common Spike 

Rush 
Eleocharis palustris  Native 19 0-75 

Kentucky Bluegrass Poa pratensis  Introduced 3 0-25 

Common 

Threesquare 

Schoenoplectus 

pungens 
Native 

35 0-99 

Alkali Cordgrass Spartina gracilis  Native 12 0-98 

Prairie Cordgrass Spartina pectinata Native 41 0-100 

Invasion from introduced species was minimal within the greenline as only 5 sites had 

20% or more of exotic species present at the time of the study. FACW and OBL species were the 

most common on all stream channels as they accounted for 45% and 40% of canopy cover 

respectively. FACW species were the most abundant on E, B, and G channels. OBL wet species 

were the most common on C and F channels. G channels had the most FACU and UPL species. 

F and G channels had higher amounts of bare ground (4-6%) in comparison to the other stream 

channels (<3%). Saline tolerant vegetation was most abundant on F channels, accounting for 

22% of the canopy cover. Common saline species were inland saltgrass, alkali cordgrass, and 

Nuttall’s alkali grass.  

Facultative upland species, saline soils, and bare ground had weak relationships with low 

ER; whereas, obligate species and high litter amounts had weak relationships with high ER 

(Table 2.3). Facultative wet species and litter were moderately and strongly correlated with low 

BEHI values; whereas, bare ground and upland species were moderately and weakly associated 
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with high BEHI values, respectively. BHR had a weak negative relationship with facultative wet 

species and litter, and moderate relationship with bare ground.  

Table 2.3. Pearson correlation coefficients between wetland indicator cover and Entrenchment 

Ratio (ER), Bank Erosion Hazard Index (BEHI), and Bank Height Ratio (BHR).  

    Category 

Wetland Indicator 
 

ER 
 

BEHI 
 

BHR 

Facultative Wet 
 

0.16 
 

-0.50 
 

-0.27 

Obligate 
 

0.27 
 

-0.01 
 

-0.09 

Facultative 
 

-0.15 
 

0.04 
 

0.15 

Facultative Upland 
 

-0.26 
 

0.19 
 

0.09 

Upland 
 

-0.13 
 

0.27 
 

0.07 

Saline Soil 
 

-0.20 
 

0.13 
 

-0.01 

Bare Ground 
 

-0.35 
 

0.40 
 

0.51 

Litter   0.34   -0.62   -0.25 

NMS analysis of the greenline produced a final solution with three dimensions and a final 

stress of 9.9, which indicates a good ordination with minimal risk of being falsely interpreted 

(Clarke, 1993). The final solution had a final instabilities of <0.0001. Together axis one and two 

accounted for 72% of the variation (axis one was 43% and axis two was 29%) within the dataset 

(Figures 2.2, 2.4, and 2.6). Axis three accounted for 19% of the variation (Figures 2.3, 2.5, and 

2.7).  

The indicator group that was positively correlated with axis one was FACW species and 

high amounts of litter (Figures 2.2, 2.4, and 2.6). The indicator group negatively correlated with 

axis one was OBL species and bare ground. Saline tolerant plant communities were positively 

related to axis two; whereas, the following parameters were negatively related to axis two: 

FACU species, UPL species, and litter. Axis three was positively correlated with bare ground 

and negatively associated with OBL species and litter (Figures 2.3, 2.5, and 2.7).  
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Channel Type 

When interpreting the ordinations, Figure 2.2 shows that most of the E and C channel 

sites are associated with high amounts of litter and FACW species. F channels were 

characterized by a combination of saline tolerant species as well as OBL species, and increased 

amounts of bare ground. One of the two G channels was associated with FACU, UPL, and OBL 

species; whereas, the other G channel was located near the center of the graph as it was not 

associated with low or large values of the different factors. Low entrenchment ratios were 

positively associated with channels that had high amounts of bare ground (Table 2.3). High 

entrenchment ratios were characterized by a mixture of FACW species and OBL species (Table 

2.3).  

The PERMANOVA analysis showed that an overall test of stream channel types was at P 

= 0.09 level, but when comparing the pairwise tests it was determined that C and B channels 

differed (P = 0.04). These differences can be seen in the ordination figures (Figures 2.2 and 2.3) 

where C and B channels have minimal overlap.  
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Figure 2.2. Non-metric multidimensional scaling ordination (NMS) displaying wetland indicator 

categories, saline sites, litter, and bare ground’s relationship with Rosgen’s stream classification 

on axis 1 and 2 across thirty-five cross-sections in Bowman County, North Dakota. The different 

colored polygons represent individual stream channels based on Rosgen’s (1994) stream 

classification system. The wetland indicator abbreviations are FACU (facultative upland) and 

FACW (facultative wetland). The correlation coefficient is stated behind the wetland indicator 

variable. Significant differences (P < 0.05) between channel types is denoted by the lowercase 

letters following the channel type. Categories that do not share a lower case letter are consired 

significantly different from each other. The ordination had a final stress of 9.96 for a 3-

dimensional solution and explained 72% of the variation. This ordination has a low risk of false 

interpretation. 
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Figure 2.3. Non-metric multidimensional scaling ordination (NMS) displaying wetland indicator 

categories, saline tolerant plants, litter, and bare ground’s relationship with Rosgen’s stream 

classification on axis 1 and 3 across thirty-five cross-sections in Bowman County, North Dakota. 

The different colored polygons represent individual stream channels based on Rosgen’s (1994) 

stream classification system. The wetland indicator abbreviations are FACU (facultative upland) 

and FACW (facultative wetland). The correlation coefficient is stated behind the wetland 

indicator variable. Significant differences (P < 0.05) between channel types is denoted by the 

lowercase letters following the channel type. Categories that do not share a lower case letter are 

considered significantly different from each other.The ordination had a final stress of 9.96 for a 

3-dimensional solution and explained 62% of the variation. This ordination has a low risk of 

false interpretation. 
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plant communities. Very low and low BEHI sites were negatively correlated with high amounts 

of FACW species and high litter amounts (Table 2.3). Stream banks with high and very high 

BEHI scores were associated with plant communities comprised of high amounts of FACU and 

UPL species as well as bare ground and saline plant communities (Table 2.3).  

The PERMANOVA analysis showed that the BEHI groupings were not significantly 

different (P = 0.12). Results from a pairwise test determined that very low and high/very high 

risk streambanks differed (P = 0.006), as well as low risk streambanks and high/very high banks 

(P = 0.014). This can be seen in the figures 2.4 and 2.5 very low and low were associated with 

the positive end of axis 1 and had little overlap with the high/very high BEHI that were located at 

the negative end of the axis. 
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Figure 2.4. Non-metric multidimensional scaling ordination (NMS) displaying wetland indicator 

categories, saline tolerant plants, litter, and bare ground’s relationship with the bank erosion 

hazard index (BEHI) on axis 1 and 2 across thirty-five cross-sections in Bowman County, North 

Dakota. The different colored polygons represent the BEHI categories of each cross-section. The 

wetland indicator abbreviations are FACU (facultative upland) and FACW (facultative wetland). 

The correlation coefficient is stated behind the wetland indicator variable. Significant differences 

(P < 0.05) between BEHI categories is denoted by the lowercase letters following the channel 

type. Categories that do not share a lower case letter are considered significantly different from 

each other. The ordination had a final stress of 9.96 for a 3-dimensional solution and explained 

72% of the variation. This ordination has a low risk of false interpretation. 
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Figure 2.5. Non-metric multidimensional scaling ordination (NMS) displaying wetland indicator 

categories, saline tolerant plants, litter, and bare ground’s relationship with the bank erosion 

hazard index (BEHI) on axis 1 and 3 across thirty-five cross-sections in Bowman County, North 

Dakota. The different colored polygons represent the BEHI categories of each cross-section. The 

wetland indicator abbreviations are FACU (facultative upland) and FACW (facultative wetland). 

The correlation coefficient is stated behind the wetland indicator variable. Significant differences 

(P < 0.05) between BEHI categories is denoted by the lowercase letters following the channel 

type. Categories that do not share a lower case letter are considered significantly different from 

each other. The ordination had a final stress of 9.96 for a 3-dimensional solution and explained 

62% of the variation. This ordination has a low risk of false interpretation. 
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were positively correlated with high amounts of bare ground; whereas, low BHR were correlated 

with FACW and litter (Table 2.3).  

PERMANOVA analysis indicated that BHR was not significantly influenced (P = 0.15) 

by wetland indicator categories. Results from a pairwise test determined that stable and highly 

unstable streambanks differed (P = 0.02). 

 
Figure 2.6. Non-metric multidimensional scaling ordination (NMS) displaying wetland indicator 

categories, saline tolerant plants, litter, and bare ground’s relationship with the bank height ratio 

(BHR) on axis 1 and 2 across thirty-five cross-sections in Bowman County, North Dakota. The 

different colored polygons represent the BHR categories of each cross-section. The wetland 

indicator abbreviations are FACU (facultative upland) and FACW (facultative wetland). The 

correlation coefficient is stated behind the wetland indicator variable. Significant differences (P 

< 0.05) between BHR categories is denoted by the lowercase letters following the channel type. 

Categories that do not share a lower case letter are considered significantly different from each 

other. The ordination had a final stress of 9.96 for a 3-dimensional solution and explained 72% 

of the variation. This ordination has a low risk of false interpretation. 
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Figure 2.7. Non-metric multidimensional scaling ordination (NMS) displaying wetland indicator 

categories, saline tolerant plants, litter, and bare ground’s relationship with the bank height ratio 

(BHR) on axis 1 and 2 across thirty-five cross-sections in Bowman County, North Dakota. The 

different colored polygons represent the BHR categories of each cross-section. The wetland 

indicator abbreviations are FACU (facultative upland) and FACW (facultative wetland). The 

correlation coefficient is stated behind the wetland indicator variable. Significant differences (P 

< 0.05) between BHR categories is denoted by the lowercase letters following the channel type. 

Categories that do not share a lower case letter are considered significantly different from each 

other. The ordination had a final stress of 9.96 for a 3-dimensional solution and explained 62% 

of the variation. This ordination has a low risk of false interpretation. 

Discussion  

Our findings showed that FACW plant communities offer the greatest protection to 

intermittent streams. Sites with high amounts of FACW species generally had lower BEHI scores 

and lower BHR values. FACW plants can thrive when the soil is inundated and survive when 

flow has ceased (Lichvar et al., 2012; Brooks et al., 2013), common attributes of intermittent 

streams. Sites that were dominated by FACW species, in particular prairie cordgrass (56% of 
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FACW canopy cover), belonged to more stable stream reaches and were at a lower risk of 

erosion. Vande Kamp et al. (2013) conducted a study on a South Dakota stream where they also 

found prairie cordgrass was a common late successional species colonizing streambanks that 

were stabilizing. Prairie cordgrass is an efficient species for stabilizing intermittent streambanks 

as it is tolerant to a variety of different soil characteristics and moisture regimes (Weaver, 1960; 

Stubbendieck et al., 1992).  

We found OBL species to be associated with a mixture of stable and unstable stream 

channel types. F channel and high/very high BEHI reaches were associated with the abundance 

of common threesquare and higher bare ground. Deep rooted OBL plants are typically associated 

with increased streambank stability (Micheli and Kirchner, 2002a); however, OBL plants may 

stop growing or senesce during the dry season, leaving the soil susceptible to erosion during 

precipitation events (Capon, 2003; Stromberg et al., 2005). Furthermore, during times of drought 

OBL species will have reduced vigor potentially decreasing their root strength until moisture 

patterns return to their favor (Chaves et al., 2002; Vivian et al., 2014). Bulrushes may not 

enhance streambanks in the same way true rushes (Juncus spp.), as they are not as well adapted 

to environments with flowing water (Larson, 1993; Micheli and Kirchner, 2002b).  

We found communities with a combination of FACW species and OBL species were 

associated with stable stream channel types, very low and low BEHI, and stable BHRs. The 

mixture of OBL and FACW species were associated with stable stream reaches as these 

hydrophytic species rooting structures can promote streambank stability and the diversity allows 

for resilience to varying soil moistures (Capon, 2003). This combination of vegetation also 

supplies more protection to the toe slopes of streambanks as some Schoenoplectus spp. and 

Eleocharis spp. are emergent, allowing them to colonize parts of the bank that are otherwise 
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unvegetated while the FACW species colonize the higher portions of streambanks (Larson, 1993; 

Abernethy and Rutherfurd, 2001). Dwire et al. (2006) found that areas which are flooded for 

short periods of time are often composed of a mixture of OBL and FACW species. Our findings 

reflect a similar species composition as FACW species were dominant while OBL species were 

common within the greenlines of the stable intermittent stream reaches sampled.  

Stream reaches sampled that were incised (F and G channels) were correlated with FACU 

and UPL species. When a stream incises a lowering of the water table occurs (Daniels et al., 

1971; Winward, 1994; Rosgen, 1997). A change in water table depth results in hydraulic 

disconnectivity as the FACW and OBL species can no longer reach the water table resulting in a 

plant community shift (Schumm et al., 1984; Winward, 2000; Chambers et al., 2004; Rosgen, 

2006; Stringham and Repp, 2010). While most plant communities on incised streams had an 

increase in abundance of FACU and UPL species, one of the G channels greenlines was 

dominated by FACU species.  

Sites that had FACU and UPL species in their greenline were associated with G channels 

and channels with high/very high BEHI scores. This pattern was also consistent with the BHR as 

most of the highly unstable banks were composed of FACU and UPL species. These results are 

similar to Micheli and Kirchner’s (2002a) findings that streambanks comprised of dry meadow 

species can be up to ten times more likely to fail than streambanks with hydric species. High 

BHR and a greenline comprised of shallow rooting species can lead to rapid erosion of 

streambanks as their roots are unlikely to reach depths enabling them to buffer flowing water’s 

energy (Petersen, 1986; Medina, 1996).  

Within the sites of high UPL and FACW species composition, nine sites had greenline 

plant communities, which were invaded by Kentucky bluegrass (≤ 25%; FACU) and smooth 



 

83 

 

bromegrass (≤ 36%; UPL). This invasion aided in the high BEHI scores as a result of shallow 

rooting structure (Uchytil, 1993; Howard, 1996). Due to their roots being unable to reach the 

water boundary on the streambank, they offer minimal to no protection from streambank erosion 

(Petersen, 1986; Winward, 2000). Although both grasses were uncommon within the greenlines 

sampled, their presence could lead to future streambank instability as they are highly competitive 

with native plant species (Martin and Chambers, 2001; Toledo et al., 2014). This poses a 

potential management conflict as leaving riparian areas idle has been shown to restore hydric 

vegetation (Kauffman et al., 1995); however, both smooth bromegrass and Kentucky bluegrass 

thrive in idle management (Grant et al., 2009).  

Reaches of decreased canopy protection were associated with unstable F and G stream 

channels and high BEHI ratings (Beeson and Doyle, 1995). Our study showed areas with high 

amounts of bare ground were strongly correlated with G channels. This relationship of bare 

ground and associated “gully” channel may be the product of a lack of riparian vegetation and 

increased runoff (DeBano and Schmidt, 1989; Clary et al., 1996). With low amounts of 

vegetation, rain events are able to facilitate splash erosion destroying soil aggregates on the 

surface (Pearce et al., 1998). The dislodged soil particles are then subject to be eroded away by 

sheet flow, increasing the nutrient and sediment load of the stream (Butler et al., 2006) and 

eventually forming water flow patterns such as rills and gullies (Gardiner and Miller, 2008). 

Micheli and Kirchner (2002b) found a linear relationship between root density and bank stability. 

As the amount of root mass decreases in the soil there is a reduction in shear strength of the bank 

as well as decreased organic matter inputs reducing the aggregate stability of the soil.  

Our results showed a relationship with OBL species, bare ground, and saline plant 

communities being associated with F channels and high risk BEHI ratings. Part of this 
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relationship may likely be the result of common threesquare; a single stemmed plant, early 

successional OBL species that provides low canopy cover (Jefferson, 1974). Nuttall's alkali grass 

roots typically reach a depth of 25 cm (NRCS, 2017); however, in entrenched stream channels 

much deeper rooting depths are required for bank stabilization. Alkali cordgrass and inland 

saltgrass, FACW species, typically have rooting lengths greater than 70 cm (Cooke et al., 1993) 

enabling them to stabilize low banks. However, as a result of the saline conditions, the soil has 

reduced aggregate stability in these reaches putting them at higher risk of erosion (Mamedov et 

al., 2002).  

 Due to a low number of F and G channels observed more data should be collected in the 

future to increase the strength of the statistical results. However, F and G channels are sensitive 

to management in the Great Plains and as a result they are more transient making it difficult to 

make observations on the conditions in which they exist resulting in a low sample size (Rosgen 

and Silvey 1996). We observed a wide spread of site plotting in the ordinations within groups. 

This spread indicates that certain groups can be influenced by opposite ends of the relationships 

of the parameters tested and still exist.  

As predicted with the hypothesis, the streambanks consisting of shallow rooted upland 

vegetation were at a greater risk of eroding. Greenlines consisting of upland vegetation were also 

more likely to be associated with an unstable channel type (Winward, 2000; Micheli and 

Kirchner, 2002b). Plant species whose rooting systems are unable to reach deeper portions of the 

streambank provide minimal protection from the stress of flowing water in the streambank. As a 

result, large amounts of soil can be lost enabling stream morphology changes (Micheli and 

Kirchner, 2002a).  
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Conclusion 

Our findings indicate that greenline composition based on wetland indicator status can 

aid in determining the stability of a stream reach. This is confirmed as the Rosgen stream 

classification and bank erosion hazard index had similar results in regards to plant composition 

and stability. FACW plant communities offered the greatest protection to intermittent 

streambanks as they can tolerate periods of low and high soil moisture. Conversely, greenlines 

composed of upland species and/or areas with patches of bare ground are at a higher risk of 

increased bank erosion and having an unstable stream channel.  
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CHAPTER 3: WATERSHED ASSESSMENT: EVALUATING THE 

RELATIONSHIP BETWEEN RANGELAND HEALTH AND 

INTERMITTENT STREAM STABILITY 

Abstract 

It is widely recognized that riparian health is inherently linked to watershed condition and 

the health of the adjacent ecological sites. Land management has the potential to impact riparian 

stability as different uses may alter the ecological function(s) of ecological sites. To assess the 

relationship between the health of upland ecological sites and stream stability (stream type and 

risk of streambank erosion), thirty-five reaches across five watersheds were sampled in Bowman 

County, ND. The major land use in the study area is grassland as livestock production is the 

primary use. The stream types were classified using Rosgen’s classification of natural rivers 

which separates stream channels based on their dimensions. The Bank Erosion Hazard Index 

(BEHI) was used to determine streambank’s risk of erosion. Bank Height Ratio (BHR) was used 

to assess the risk of streambank failure. The 17 Indicators of Rangeland Health (IIRH) protocol 

was used to assess the ecological sites associated with each reach. IIRH evaluates the ecological 

functions of an ecological site by using 17 indicators to measure departure of soil and site 

stability, hydrologic function, and biotic integrity from the reference state. A Nonmetric 

Multidimensional Scaling ordination was performed to analyze the data. Analysis indicated that 

IIRH had the strongest relationship with BEHI and BHR. Streams with greater instability and 

high risk of erosion, F and G stream and those with a high BEHI ratings, were correlated with 

soils with increased compaction and decreased aggregate stability. Reaches with greater stability, 

E and C streams with low BEHI and BHR ratings, were associated with increased amounts of 
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litter and minimal IIRH departure. Based on these findings IIRH can be useful tool to determine 

if a stream reach is at risk of transiting to an unstable state. 

Keywords: Rangeland Health, Intermittent Stream, Land Use, Riparian, Watershed Management 

Introduction 

The ecological function of the upland plant community has an impact on riparian 

stability. Past research; however, has found varying results within stream reaches of the same 

watershed under similar upland management indicating differences in plant communities 

(Shandas and Alberti 2009). Currently there is no method available to assess the relationship an 

upland plant community, and its associated management, has on the riparian community 

(Shandas and Alberti 2009). Rivers and streams are influenced and controlled by their catchment 

and valley; specifically, the valley regulates channel migration, slope, and provides the 

longitudinal profile for the stream (Dunne and Leopold 1978; Montgomery and MacDonald 

2002; Rosgen 1994). However, research connecting the ecological status of the upland to stream 

condition at the catchment scale has been difficult to quantify. Recently, intensive agricultural 

watersheds have been investigated to determine the effects on water chemistry and biology of the 

streams (Jarvie et al. 2002; Meynendonckx et al. 2006; Roberts et al. 2007; Tong and Chen 

2002). The majority of this research has focused solely on management within riparian areas 

(Batchelor et al. 2015; Gregory et al. 1991; Haan et al. 2010; Magner et al. 2008; Miner et al. 

1992; Stillings et al. 2003; Vande Kamp et al. 2013). There has been little work conducted at a 

landscape scale on how upland management influences stream morphology (Allan 2004; Clary et 

al. 2000; Covino 2017; Sheppard et al. 2017; Wiens 2002).  

Fluvial landscapes are complex as they are influenced by climate, geology, vegetation 

patterns, watershed area, and land use (Hagerty et al. 1981; Hooke 1980; Kovalchik and 
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Chitwood 1990; Rosgen and Silvey 1996). These landscapes have formed over geologic time 

from wind and water erosion constructing drainage patterns (Kovalchik and Chitwood 1990). 

Within the drainage pattern of a stream different features such as flood plains and terraces may 

be observed (Gregory et al. 1991). Geomorphology plays a critical role in upland function as it 

dictates soil characteristics and vegetation found within both riparian and upland ecological sites 

(Rosgen and Silvey 1996; Stringham and Repp 2010).  

Riparian ecological sites are a function of hydrology compared to upland ecological sites 

which are a function of soil and geomorphology (Stringham and Repp 2010). State and transition 

models (STM) for riparian ecological sites are influenced by hydrological connectivity and 

fluvial surfaces. Plant species occur in different plant community bands based on water 

requirements (Stringham and Repp 2010; Winward 2000). A riparian ecological site may be 

altered by hydrological events, such as floods, that create bank failure or incision (Rosgen 2006). 

As a stream changes its morphology the water table adjusts, forcing the plant community 

components to change position within the riparian complex (Stringham and Repp 2010). Similar 

to upland ecological sites, riparian sites are influenced by land management practices, 

influencing plant composition and hydrology (Stringham and Repp 2010).  

Uplands can, and often do, contain a complex of ecological sites, each with their own 

physical characteristics, creating a mosaic pattern across the landscape (Wiens 2002). The 

functions of each ecological site are based on the soil and plant community conditions, which in 

return influences local hydrology (Stringham et al. 2003). Upland ecological sites functioning 

near reference condition should have minimal soil erosion and high water infiltration rates during 

precipitation events in relation to the same ecological site in a degraded state (NRCS 2017). 

Therefore, the state of an upland ecological has potential to influence the state of riparian 



 

96 

 

ecological sites found within the landscape. Upland sites in a degraded or altered state can be 

subject to increased overland flow and soil loss (Stringham et al. 2003).  

Upland ecological sites that are not functioning properly can have negative impacts on 

the functions of adjacent ecological sites. Improperly functioning uplands suffer from altered 

hydrology and soil loss erosion (Pellant et al. 2005). In situations where overland flow is 

common due to low infiltration rates, soil can be lost through the formation of rills and gullies 

(DeBano and Schmidt 1989). As time progresses under a degraded state, soil stability will 

decrease as the A horizon is depleted leading to increased erosion rates (Brady and Weil 2002; 

Follett and Reed 2010). Portions of the landscape that are actively eroding are subject to splash 

erosion as they are unprotected by vegetation allowing sediment to be moved towards the stream 

by overland flow. Overland flow is one of the main contributors to stream sediment loads on 

landscapes suffering from rill and raindrop splash erosion (Leopold 1994). Increased flow 

resulting from runoff adds stress and increases erosion of streambanks (Magner and Steffen 

2000; Rosgen and Silvey 1996). The high sediment load as a result of upland erosion and 

streambank failure can alter the morphology of a stream as the sediment transport capacity is 

overwhelmed allowing for channel widening and point bar formation (Howard and Knutson 

1984; Poff 2002; Simon and Hupp 1986).  

Water has several fates when it reaches the soil surface during precipitation or snowmelt 

events. Water will either move as runoff or infiltrate the soil surface. Overland flow and rill 

erosion can occur depending on the intensity of the precipitation event and surface slope 

(Gardiner and Miller 2008). Rill erosion may cause gully formation over time, resulting in mass 

soil loss (DeBano and Schmidt 1989). When water infiltrates the soil there is a lower risk of 

erosion during high magnitude stormflow events (Clary et al. 2000). The infiltration rate of soil 
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is influenced by slope, vegetation, soil moisture content, water holding capacity, soil texture, 

shrink-swell clays, connectivity and size of soil pores, and soil organic matter (Bagarello et al. 

2004; Brooks et al. 2013; Chowdary et al. 2006; Schaetzl and Anderson 2005). During 

precipitation events, areas with large amounts of bare ground tend to have low infiltration rates 

as splash erosion plugs soil pores with dislodged soil particles (Ela et al. 1992).  

Vegetation plays a large role in watershed catchments in both upland and riparian areas. 

Vegetation protects and stabilizing soils (Clary and Leininger 2000). Vegetative structure and 

litter provide canopy cover and protect the soil surface from splash erosion (Pearce et al. 1998). 

Plant roots stabilize soil by binding to soil particles, preventing wind and water erosion. 

Perennial herbaceous vegetation is particularly effective at preventing soil erosion due to the 

high density of fine and very fine roots (Tufekcioglu et al. 1998). Exudates from plant roots add 

organic matter to the soil increasing the aggregate stability, infiltration rates, and water-holding 

capacity of the soil (Tufekcioglu et al. 1998). When soil organic matter is increased more energy 

is required to disperse soil particles (Wischmeier and Mannering 1969).  

We cannot alter the geomorphology of a watershed (valley type), but land management 

decisions can impact stream morphology. Retention of diverse plant communities helps ensure 

hydrologic regulation (Gerla 2007; McLaughlin and Walsh 1998), water filtration (Duchemin 

and Hogue 2009), and decreased runoff and erosion (Power 2010). When plant communities are 

invaded by exotic species ecosystem services and functions can be lost or diminished, such as 

hydrologic regulation resulting in more runoff (Estes et al. 2011). Areas of the landscape that are 

altered from perennial to annual vegetation, such as row crop or small grain production, suffer 

from high amounts of soil erosion and overland flow (Johnston 2013; Zaimes et al. 2004). By 

changing the landscape from perennial vegetation to one dominated by annual vegetation the 
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hydrology can be altered, increasing peak flows of streams (Villarini et al. 2011). Flood control 

is reduced (Group 1998; Knox 2001) and sediment loads of streams increased (Brooks et al. 

2013; David et al. 2009) with this type of extreme vegetation change. If the sediment load is too 

high the stream can lose its equilibrium, resulting in a change of stream channel type (Schumm 

1977). 

Quantifying the effects uplands can have on the catchment conditions at the watershed 

scale is complex. There are many variables to consider when assessing the upland ecological site 

from soil conditions, slope, vegetation, and different land use practices. The task of addressing 

all of these variables becomes problematic when collecting data, as access to all areas within a 

watershed may be difficult. Additionally, researchers rarely have knowledge of watershed 

function before humans modified the hydrology of the landscape. These situations make it 

difficult to assess the effects upland degradation has on riparian systems and stream morphology 

(Clary et al. 2000). The use of ecological sites STMs gives researchers an idea of the reference 

state condition of uplands and riparian ecological sites (Stringham et al. 2003; Stringham and 

Repp 2010; Westoby et al. 1989). 

Pellant et al. (2005) developed a protocol (Interpreting Indicators of Rangeland Health) to 

standardize comparisons of current ecological states to the reference condition. The Interpreting 

Indicators of Rangeland Health Protocol (IIRH) gives researches and land managers a tool to 

determine how far an ecological site’s functions has departed from its potential (Carter et al. 

2017; Toledo et al. 2016). Upland degradation has the potential to influence a stream’s 

morphology (Clary et al. 2000). Healthy soils and plant communities in the uplands increase 

infiltration and decrease overland flow (Pyke et al. 2002). High overland flow results in more 



 

99 

 

water traveling through the stream channel at higher velocities, leading to channel entrenchment 

and widening (Poff 2002; Rosgen and Silvey 1996). 

Ecologists recognize watershed land use influences riparian areas, but anthropogenic 

effects at the landscape scale are poorly understood (Allan et al. 1997). However, Allan et al. 

(1997) concluded best plan management at a local scale may provide benefits. For this reason we 

conducted a study assessing the relationships between stream state and condition of upland 

ecological sites. There were two primary objectives: 1) evaluate the relationship between the 

current state of the stream and the condition of the adjacent upland ecological site(s), and 2) 

determine if the IIRH Protocol can be used to assess riparian and watershed health (Pellant et al. 

2005). We hypothesized that stable streams will be positively correlated to sites that have low 

departures of the 17 indicators of rangeland health from their reference state. 

Methods 

Site Description 

This study was conducted near the transitional zone of the shortgrass and mixed grass 

prairie in southwest Bowman County, ND, USA (46° 3'45.08"N, 103°46'16.42"W). Five 

watersheds characterized by intermittent stream flow were assessed including: Spring, Skull, 

Horse, Sevenmile, and Fivemile Creeks (Figure 3.1). Within each watershed there are multiple 

drainage patterns that connect to the central stream valley. The stream valleys of southwestern 

North Dakota are well developed and formed by wind and water erosion of surface bedrock 

(Bluemle 2000). These well-developed valleys are characteristic of Rosgen’s Valley Type VIII 

which tend to contain “E”, “C”, “F”, and “G” Channels (Rosgen and Silvey 1996). Valley Type 

VIII is characterized as leaving adequate space for streams to meander within their alluvial 
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valley. The valleys in this region formed in alluvium from the processes of water eroding sand 

and limestone (Bluemle 1980, 2000).  

 
Figure 3.1. Study area and watershed locations in Bowman County, North Dakota. This study 

area lies adjacent to the Montana and South Dakota borders.  

This study area lies within three Major Land Resource Areas (MLRA) including 

MLRA54, MLRA 58C, and MLRA 58D (NRCS 2006). The vegetation is characteristic of mixed 

grass prairie species within all three MLRAs. MLRA 54, the rolling soft shale plain, receives 355 

to 455 mm of precipitation per year. The topography within MLRA 54 varies from rolling hills 

and buttes to badlands. Soils typically are loamy or clayey and found within the Mollisols and 

Entisols soil orders. MLRA 58C makes up the smallest component within the study area. MLRA 

58C, northern rolling high plains, receives 355-430 ml of precipitation and characterized by 

badland topography. Loamy soils belonging to Entisols, Inceptisols, and Mollisols soil orders are 
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common. MLRA 58D, northern rolling high plains, makes up the largest portion of the study 

area. MLRA 58D receives 355 to 430 ml of precipitation per year. MLRA 58D is generally flat 

with rolling hills and occasional buttes. The mixed minerology of MLRA 58D typically consists 

of loamy or clayey textures belonging to Alfisols, Entisols, Inceptisols, and Mollisol orders 

(NRCS 2006). 

 The watersheds in the region account for 155 km of stream length and a total drainage 

area of 390.5 hectares (USGS 2014). Agriculture, particularly livestock production, is the 

dominant land use with 65% of the area in perennial grasslands (NRCS 2006; USGS 2010). 

Riparian areas within the study area account for approximately 2.6% of the landscape (Table 

3.1). Rangeland is the dominate land type, with native vegetation common. Nevertheless, several 

introduced species including crested wheatgrass (Agropyron cristatum L.), (Kentucky bluegrass 

(Poa pratensis Leyss.), smooth bromegrass (Bromus inermis Leyss.), annual brome grasses 

(Bromus arvensis L. and Bromus tectorum L.), Canada thistle (Cirsium arvense L.), and leafy 

spurge (Euphorbia esula L.) are common.   
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Table 3.1. Summary of land use within the study area located in Bowman County, North Dakota. 

Derived from USGS Gap Analysis Program (USGS 2010). 

Watershed Land Use Total Acres Percent 

Human Developed 567.55 0.59 

Cropland 7623.98 7.92 

Pasture/Hay 497.72 0.52 

Open Water 250.01 0.26 

Badlands/Barren 3949.34 4.10 

Forest/Woodland 2132.98 2.22 

Shrubland 14926.56 15.50 

Grassland 63287.81 65.72 

Disturbed-Introduced Vegetation 569.57 0.59 

Disturbed, Other 10.50 0.01 

Riparian/Wetland 2470.43 2.57 

Total 96296.45  

 

Hydrologic Measurements 

A watershed reconnaissance was conducted on each stream using a complete foot survey 

before sampling. Recorded during the reconnaissance period was stream morphology, land use, 

upland vegetation, and disturbances on the landscape. Observations were recorded with a 

Trimble Geo 7X geographic positioning system (GPS). The reconnaissance information was 

used to select sampling sites that represented different management units within each watershed. 

A minimum of five sites were sampled within each watershed using Rosgen’s delineative criteria 

(Rosgen 1985, 1994).  

Rosgen’s classification of natural streams required the evaluation of a cross-section, 

longitudinal profile, and planform features (Rosgen 1985, 1994). Stream sampling was 

conducted during low flow as a preventive measure of recording false bankfull heights. Stream 

features recorded include entrenchment ratio, width to depth ratio, sinuosity, slope, bank height 

ratio (BHR) and channel materials (Rosgen 1985, 1994). Each site sampled consisted of a 

complete meander in order to describe the longitudinal profile and planform patterns. 
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Longitudinal data included water’s slope, which was determined using a laser level and survey 

rod. Channel sinuosity was determined using ArcMap and dividing the stream length of a full 

meander by the valley length. Cross-section data was obtained using a laser level and survey rod 

to determine channel elevations. Data was entered into version 4.3L of the Reference Reach 

Spreadsheet to determine stream channel types (Mecklenburg 2006).  

The bank erosion hazard index (BEHI) was used to determine the risk of bank erosion at 

each cross section (Rosgen 2006). Streams banks that were at greatest risk of failure or rapid 

erosion, such as the outside of the curve, were evaluated. The BEHI uses eight quantitative and 

qualitative variables described by Rosgen (2006). The variables were used to evaluate five 

metrics that influence the susceptibility of the bank to erosion. The metrics are 1) ratio of bank 

height to bankfull height, 2) ratio of root depth to bank height, 3) root density %, 4) bank angle 

degree, and 5) % surface protection. The scores of the erosional processes were totaled to create 

a BEHI score. The score ranges are very low (5-9.5), low (10-19.5), moderate (20-29.5), high 

(30-39.5) very high (40-45), or extreme (46-50; Rosgen 2006).  

The BHR was calculated for each site to determine floodplain connectivity and stability 

of the stream channel. BHR is calculated by dividing the low bank height by the bankfull 

discharge height (Rosgen 2006). A BHR of 1-1.05 indicates a stable channel with good 

connectivity to its floodplain, 1.06-1.30 is considered moderately unstable as the stream is 

somewhat incised, 1.31-1.50 is unstable as the river is incised, and > 1.51 is highly unstable as 

the stream channel is incised and the stream has lost access to its floodplain (Rosgen 2001b).  

Rangeland Health Assessment 

Uplands were assessed using the Interpreting Indicators of Rangeland Health (IIRH) 

protocol (Pellant et al. 2005). Rangeland health assessments were conducted on the dominant 
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ecological site(s) adjacent to the stream sampling points. The IIRH protocol uses qualitative 

assessments to evaluate soil/site stability, hydrologic function, and biotic integrity. The IIRH 

protocol uses 17 different indicators to evaluate the soil and vegetation conditions to determine if 

the ecological site has departed from its reference state. Ecological site reference sheets were 

obtained from the NRCS Field Office Technical Guide for each MLRA (NRCS 2017). As 

recommended in the IIRH protocol, a team was assembled consisting of a soil scientist and range 

ecologists to ensure consistency (Pellant et al. 2005).  

Statistical Analysis  

The PC-ORD ® (version 6.0) multivariate statistical software program was used to 

conduct a Nonmetric Multidimensional Scaling (NMS) ordination (McCune et al. 2002; Peck 

2010) to interpret plant community effects on hydrologic measurements. The NMS was 

performed using the Relative Euclidean distance measure. The Relative Euclidean distance 

measure was chosen as it eliminates differences in total abundance and standardizes the data 

(McCune et al. 2002). Indicators pertaining to each attribute were analyzed independently. Final 

solutions meeting these conditions were sought: 1) stress less than 10 (based on Clark’s rules of 

thumb), 2) a randomization test of P ≤ 0.05, 3) dimensions that reduce stress more by at least 5, 

and 4) final instability (less than 0.0001) (Clarke 1993; McCune et al. 2002). Indicators and 

attributes possessing a Pearson correlation coefficient (r) of 0.40 (absolute value) or greater were 

selected for discussion (McCune et al. 2002).  

Permutation MANOVA (PERMANOVA) analysis was used to test for a difference 

between groups in ordination space using Relative Euclidean distance measure (P ≤ 0.05) 

(Anderson et al. 2008). PERMANOVA allows for assessment of ecological processes and 

multivariate data that does not always meet linear assumptions (Anderson et al. 2008). Each 
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attribute and its associated indicators were analyzed with stream channel type, BEHI rating, and 

BHR rating. A pairwise test was conducted to determine which groups were similar and 

dissimilar (Biondini et al. 1988; Anderson et al. 2008). No adjustments were made to the 

pairwise P values, such as the Bonferroni adjustment (McArdle and Anderson 2001; Moran 

2003). The PERMANOVA analysis was done using PRIMER version 7 software with the 

PERMANOVA + add-on (Anderson et al. 2008). 

Results  

Hydrologic Measurements  

 Thirty-five stream reaches were evaluated during the duration of the study. The sampled 

stream reaches’ states varied as near reference E and C channels, degraded F and G channels, 

transitional B channels and confined E channels were all present. There was a total of 14 E 

channels, seven C channels, nine B channels, three F channels, and two G channels documented. 

The average entrenchment ratio was 5.93 for E channels, 5.2 for C channels, 1.73 for B channels, 

1.23 for F channels, and 1.15 for G channels.  

Rosgen’s classification of natural streams resulted in a low number of F (three channels) 

and G (two channels) channels, reducing the statistical strength of our analysis. Due to the low 

sample size the ordinations may show exaggerated relationships. However, as a result of multiple 

ecological sites per unstable stream channel there were five F and five G channels tested. Based 

on the results we observed a lot of spread between groups indicating that stable and unstable 

stream characteristics can have similar IIRH scores. For this reason, caution is recommended 

when interpreting “outliers,” or sites located away from the majority of the groupings in ordinal 

space.  



 

106 

 

 The BEHI resulted in four very low, 11 low, 13 moderate, six high, and one very high 

rating. Due to low a low sample size the high and very high sites were grouped together as 

high/very high for analysis. Bank height ratios of the cross sections resulted in eight stable, eight 

moderately unstable, six unstable and 13 highly unstable streambanks. Of the 13 sites that had 

high and very high BEHI ratings, ten had unstable to highly unstable BHRs.  

Rangeland Health  

Seventeen ecological sites were assessed, the most common being sandy terrace (15), 

loamy (9), loamy terrace (7), and Sandy (7). A total of sixty individual ecological sites were 

evaluated that ranged from extremely departed to near reference condition. IIRH ratings for soil 

and site stability resulted in 41 none to slight, 9 slight to moderate, 6 moderate, 4 moderate to 

extreme and 0 extreme to total ratings. IIRH ratings for hydrologic function resulted in 13 none 

to slight, 14 slight to moderate, 25 moderate, 8 moderate to extreme and 0 extreme to total. IIRH 

ratings for biotic integrity resulted in 4 none to slight, 11 slight to moderate, 19 moderate, 20 

moderate to extreme and 6 extreme to total.  

Soil and Site Stability  

Majority of the sites had minimal soil and site stability departures in regards to the 

relevant indicators (Table 3.2). No ecological sites sampled had an extreme to total departure for 

the soil and site stability indicator. A departure in gullies and wind erosion was only recorded on 

one site each. Bare ground, soil loss, compaction layer, and the soil and site stability attribute 

accounted for majority of the departures. Flow patterns and compaction layer were the only 

indicators to have sites with extreme to total departures.  
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Table 3.2. Summary of ecological sites sampled and their associated Soil and Site Stability 

Attribute ratings. The number of sites associated with none to slight (N-S), slight to moderate (S-

M), moderate (M), moderate to extereme (M-E), and extreme to total (E-T) can be observed.  
   Soil & Site Stability 

Ecological Site n  N-S  S-M  M  M-E  E-T 

Clayey 1  1  -  -  -  - 

Claypan 2  -  -  1  1  - 

Loamy 9  6  2  -  1  - 

Loamy 

Overflow 
2  2  -  -  -  - 

Loamy Terrace 7  4  2  1  -  - 

Saline 

Lowland 
5  2  3  -  -  - 

Sands 3  3  -  -  -  - 

Sandy 7  4  1  2  -  - 

Sandy Terrace 15  11  1  1  2  - 

Shallow 

Loamy 
1  1  -  -  -  - 

Sub Irrigated 3  3  -  -  -  - 

Thin Claypan 2  2  -  -  -  - 

Wet Meadow 2  1  -  1  -  - 

Wetland 1  1  -  -  -  - 

 

NMS analysis of soil and site stability and its related indicators, channel type, BEHI, and 

BHR produced final solutions with two dimensions and a final stress of 8.7, which indicates the 

ordination produced a picture with low risk of false conclusions (Figures 3.2-3.4) (Clarke 1993). 

These solutions were stable with final instabilities of 0. Axis one accounted for the most 

variation explaining 72%, whereas axes 2 accounted for a smaller amounts of variation 

explaining 21% (Figures 3.2-3.4). 

Channel Type 

Soil compaction, soil loss, and soil attribute were positively correlated with axis one. 

Flow patterns was negatively correlated with axis one. Axis two was positively influenced by 

bare ground and negatively correlated with the presence of rills. PERMANOVA analysis 
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indicated that stream type was not influenced (P = 0.16) by soil and site stability indicators. A 

pairwise comparison found differences may exist between E and G Channels (P = 0.04), C and G 

Channels (P = 0.03). Figure 3.2 displayed that bare ground and water erosion features were 

associated with G channels (Figure 3.2). F channels were influenced by soil compaction, soil 

loss, bare ground, and the overall site and stability attribute. C channels tended to have uplands 

with the least amount of departure. 

 
Figure 3.2. Non-metric multidimensional scaling ordination (NMS) displaying the soil attribute 

and related indicators’ relationship with Rosgen’s stream classification on axis 1 and 2 across 

thirty-five cross-sections in Bowman County, North Dakota. The different colored polygons 

represent individual stream channels based on Rosgen’s (1994) classification of natural streams. 

The variables and their correlation value are displayed on their associated side of the axis. 

Significant differences (P < 0.05) between channel type is denoted by the lowercase letters 

following the channel type. Categories that do not share a lower case letter are considered 

significantly different from each other. This 2-dimensional solution had a final stress of 8.7 and 

explained 93% of the variation. This ordination has a low risk of false interpretation. 
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Bank Erosion Hazard Index 

PERMANOVA analysis showed that BEHI was not influenced (P = 0.16) by soil and site 

stability indicators. When interpreting the relationship between soil and site stability and its 

corresponding indicators relationship with BEHI (Figure 3.3), streambanks with moderate to 

very high risk of erosion tended to have poor soil and site stability indicator scores. Sites rated 

moderate or higher were positively correlate with axes one and two. Whereas, streambanks at 

low risk of erosion were typically negatively correlated with axes 1 and 2, suggesting they had 

minimal departures in soil and site stability recorded during the IIRH assessment.  
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Figure 3.3. Non-metric multidimensional scaling ordination (NMS) displaying the soil attribute 

and related indicators’ relationship with the bank erosion hazard index (BEHI) on axis 1 and 2 

across thirty-five cross-sections in Bowman County, North Dakota. The different colored 

polygons represent the BEHI categories of each cross-section. The variables and their correlation 

value are displayed on their associated side of the axis. Significant differences (P < 0.05) 

between BEHI groupings is denoted by the lowercase letters following the BEHI group. 

Categories that do not share a lower case letter are considered significantly different from each 

other. This 2-dimensional solution had a final stress of 8.7 and explained 93% of the variation. 

This ordination has a usable picture. 

 

Bank Height Ratio 

PERMANOVA analysis showed BHR was not significantly influenced (P > 0.05) by soil 

and site stability. A pairwise test showed a stable BHR differed from highly unstable 

streambanks (P ≤ 0.04). When interpreting the relationship between soil and site stability and its 

corresponding indicators relationship with BHR (Figure 3.4), unstable and highly unstable 

streambanks were found to be associated with high departures in bare ground, soil loss, 

compaction, and the overall soil and site stability rating. 
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Figure 3.4. Non-metric multidimensional scaling ordination (NMS) displaying the soil attribute 

and related indicators’ relationship with bank height ratio (BHR) on axis 1 and 2 across thirty-

five cross-sections in Bowman County, North Dakota. The different colored polygons represent 

the BHR categories of each cross-section. The variables and their correlation value are displayed 

on their associated side of the axis. Significant differences (P < 0.05) between BHR groupings is 

denoted by the lowercase letters following the BHR type. Categories that do not share a lower 

case letter are considered significantly different from each other. This 2-dimensional solution 

had a final stress of 8.7 and explained 93% of the variation. This ordination has a low risk of 

false interpretation. 

Hydrologic Function 

The hydrologic function of the sites assessed varied in departure from none to slight to 

moderate to extreme; however, most sites were rated moderate (Table 3.3). Hydrologic 

indicators that had departures were flow patterns, bare ground, litter, compaction, infiltration and 

soil loss. Flow patterns, infiltration, compaction, and litter were the only indicators that had 

extreme to total departures.  
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Table 3.3. Summary of ecological sites sampled and their associated Hydrologic Function 

Attribute ratings. The number of sites associated with none to slight (N-S), slight to moderate (S-

M), moderate (M), moderate to extereme (M-E), and extreme to total (E-T) can be observed.  

      Hydrologic Function 

Ecological Site n   N-S   S-M   M   M-E   E-T 

Clayey 1  1  -  -  -  - 

Claypan  2  -  -  -  2  - 

Loamy 9  3  2  2  2  - 

Loamy 

Overflow 2  -  -  2  -  - 

Loamy Terrace 7  0  2  4  1  - 

Saline 

Lowland 5  1  2  2  0  - 

Sands  3  1  1  1  -  - 

Sandy 7  1  1  5  0  - 

Sandy Terrace 15  2  5  5  3  - 

Shallow 

Loamy 1  1  -  -  -  - 

Sub Irrigated 3  1  -  2  -  - 

Thin Claypan 2  1  1  -  -  - 

Wet Meadow 2  1  -  1  -  - 

Wetland 1   1   -   -   -   - 

 

NMS analysis of hydrologic function and its related indicators, channel type, BEHI, and 

BHR produced final solutions with three dimensions and a final stress of 8.5, which indicates the 

ordination produced a picture with low risk of false conclusions (Clarke 1993). These solutions 

were stable with final instabilities of 0. Axis one and two accounted for most of variation 

explaining at 84% (axis 1 was 39% and axis two 45%); whereas, axes three accounted for 10% 

of the variation (Figures 3.5-3.10). 

Indicators positively correlated with axis one include soil compaction, soil loss, 

infiltration, and the hydrologic function attribute. Litter was negatively correlated with axis one. 

Axis two is positively correlated with bare ground and flow patterns, and negatively influenced 
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by infiltration, litter, and the hydrologic function attribute. Axis three is negatively correlated 

with soil compaction.  

Channel Type 

PERMANOVA analysis showed stream type was not influenced (P > 0.05) by hydrologic 

function. However, a pairwise test showed E channels differed from G channels (P = 0.03); as 

well as, C channels differed from G channels (P = 0.04). When interpreting the relationship 

between the hydrologic function and its corresponding indicators relationship with channel type 

(Figures 3.5 and 3.6), stable E and C channels were found to be associated with higher than 

average litter amounts. F channels were characterized by soil compaction and decreased 

infiltration rates. G channels were associated with increased bare ground and flow patterns.  
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Figure 3.5. Non-metric multidimensional scaling ordination (NMS) displays the hydrologic 

function attribute and related indicators’ relationship with Rosgen’s stream classification 

depicting axis 1 and 2 across thirty-five cross-sections in Bowman County, North Dakota. The 

different colored polygons represent individual stream channels based on Rosgen’s (1994) 

classification of natural streams. The variables and their correlation value are displayed on their 

associated side of the axis. Significant differences (P < 0.05) between channel type is denoted by 

the lowercase letters following the channel type. Categories that do not share a lower case letter 

are considered significantly different from each other. This 3-dimensional solution had a final 

stress of 8.5 and explained 84% of the variation. This ordination has a low risk of false 

interpretation. 
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Figure 3.6. Non-metric multidimensional scaling ordination (NMS) displays the hydrologic 

function attribute and related indicators’ relationship with Rosgen’s stream classification 

depicting axis 2 and 3 across thirty-five cross-sections in Bowman County, North Dakota. The 

different colored polygons represent individual stream channels based on Rosgen’s (1994) 

classification of natural streams. The variables and their correlation value are displayed on their 

associated side of the axis. Significant differences (P < 0.05) between channel type is denoted by 

the lowercase letters following the channel type. Categories that do not share a lower case letter 

are considered significantly different from each other. This 3-dimensional solution had a final 

stress of 8.5 and explained 55% of the variation. This ordination has a low risk of false 

interpretation.  

Bank Erosion Hazard Index 

The PERMANOVA analysis showed BEHI groupings were influenced (P = 0.015) by the 

hydrologic function and its associated indicators. A pairwise comparison showed very low risk 

streambanks differed from moderate risk streambanks (P = 0.003). The pairwise test also showed 

that low BEHI streambanks differed from moderate BEHI streambanks (P = 0.034). When 

interpreting the relationship between upland hydrology and BEHI, banks at low risk of erosion 

were associated with uplands with higher than average amounts of litter (Figure 3.7). High and 

very high risk streambanks were associated with ecological sites with departures in hydrologic 
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function, compaction, soil loss, and decreased infiltration. Figure 3.8 shows the relationship 

between high risk and moderate risk streambanks with flow patterns and bare ground.  

The difference between very low and moderate can best be seen in Figure 3.7, as there is 

minimal overlap between the two categories. Very low risk streambanks appeared to be largely 

influenced by the litter indicator. Similar to very low risk, low risk streambanks were influenced 

by litter; whereas, moderate risk streambanks were influenced by soil compaction. 
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Figure 3.7. Non-metric multidimensional scaling ordination (NMS) displays the hydrologic 

function attribute and related indicators’ relationship with the bank erosion hazard index (BEHI) 

depicting axis 1 and 2 across thirty-five cross-sections in Bowman County, North Dakota. The 

different colored polygons represent the BEHI categories of each cross-section. The variables 

and their correlation value are displayed on their associated side of the axis. Significant 

differences (P < 0.05) between BEHI groupings is denoted by the lowercase letters following the 

BEHI group. Categories that do not share a lower case letter are considered significantly 

different from each other. This 3-dimensional solution had a final stress of 8.5 and explained 

84% of the variation. This ordination has a low risk of false interpretation. 
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Figure 3.8. Non-metric multidimensional scaling ordination (NMS) displays the hydrologic 

function attribute and related indicators’ relationship with the bank erosion hazard index (BEHI) 

depicting axis 2 and 3 across thirty-five cross-sections in Bowman County, North Dakota. The 

different colored polygons represent the BEHI categories of each cross-section. The variables 

and their correlation value are displayed on their associated side of the axis. Significant 

differences (P < 0.05) between BEHI groupings is denoted by the lowercase letters following the 

BEHI group. Categories that do not share a lower case letter are considered significantly 

different from each other. This 3-dimensional solution had a final stress of 8.5 and explained 

55% of the variation. This ordination has a low risk of false interpretation. 

Bank Height Ratio  

PERMANOVA showed BHR was not influenced (P = 0.17) by hydrologic function 

indicators. However, a pairwise test determined that streams with stable BHRs and highly 

unstable BHRs differed (P = 0.029). This can be seen in the ordinations (Figures 3.9 and 3.10) as 

the stable sites and highly unstable sites have minimal overlap. Stable streambanks were 

positively influenced by higher than expected amounts of litter (Figure 3.9). Highly unstable 

streambanks were associated with departures in soil compaction, soil loss, and the infiltration 
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indicators as well as the hydrologic function attribute. Figure 3.10 shows that flow patterns and 

bare ground also influenced highly unstable streambanks.  

 
Figure 3.9. Non-metric multidimensional scaling ordination (NMS) displays the hydrologic 

function attribute and related indicators’ relationship with bank height ratio (BHR) depicting axis 

1 and 2 across thirty-five cross-sections in Bowman County, North Dakota. The different colored 

polygons represent the BHR categories of each cross-section. The variables and their correlation 

value are displayed on their associated side of the axis. Significant differences (P < 0.05) 

between BHR groupings is denoted by the lowercase letters following the BHR type. Categories 

that do not share a lower case letter are considered significantly different from each other. This 

3-dimensional solution had a final stress of 8.5 and explained 84% of the variation. This 

ordination has a low risk of false interpretation. 

 

 

 

 

 

 

 

Variable 

Litter (-0.495) 

Variable 

Compaction (0.722) 

Soil Loss (0.655) 

Infiltration (0.486) 

Hydrology (0.452) 

Variable  

Flow Patterns (0.591) 

Bare Ground (0.471) 

 

Variable 

Litter (-0.639) 

Infiltration (-0.648) 

 
-1.5 -0.5 0.5 1.5 

-1.0 

0.0 

1.0 

2.0 

Axis 1 (39%) 

A
x

is
 2

 (
4

5
%

) 

BHR 
Stable a 
Moderately Unstable a b 
Unstable a b  
Highly Unstable b 



 

120 

 

 
Figure 3.10. Non-metric multidimensional scaling ordination (NMS) displays the hydrologic 

function attribute and related indicators’ relationship with bank height ratio (BHR) depicting axis 

2 and 3 across thirty-five cross-sections in Bowman County, North Dakota. The different colored 

polygons represent the (BHR) categories of each cross-section. The variables and their 

correlation value are displayed on their associated side of the axis. Significant differences (P < 

0.05) between BHR groupings is denoted by the lowercase letters following the BHR type. 

Categories that do not share a lower case letter are considered significantly different from each 

other. This 3-dimensional solution had a final stress of 8.5 and explained 55% of the variation. 

This ordination has a low risk of false interpretation. 

Biotic Integrity 

Biotic Integrity had the most departures from the reference state of the three attributes as 

only four sites were rated none to slight (Table 3.4). The indicators with the most departure were 

functional/structural groups, litter amount, and invasive plants with 11, 2 and 9 sites reporting 

extreme to total departure, respectively. Invasive plants documented during the study included 

Kentucky bluegrass, cheatgrass, field brome, smooth bromegrass, and Canada thistle. Indicators 

with the least departure were soil resistance to erosion, annual production, and reproductive 

capability of perennial plants.  
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Table 3.4. Summary of ecological sites sampled and their associated Biotic Integriy Attribute 

ratings. The number of sites associated with none to slight (N-S), slight to moderate (S-M), 

moderate (M), moderate to extereme (M-E), and extreme to total (E-T) can be observed.  

      Biotic Integrity  

Ecological Site n    N-S   S-M   M   M-E   E-T 

Clayey 1  -  -  -  1  - 

Claypan  2  -  -  -  2  - 

Loamy 9  1  3  2  2  1 

Loamy 

Overflow 2  -  -  -  1  1 

Loamy Terrace 7  -  -  4  3  - 

Saline 

Lowland 5  -  1  4  -  - 

Sands  3  -  2  1  -  - 

Sandy 7  1  -  1  5  - 

Sandy Terrace 15  -  1  6  5  3 

Shallow 

Loamy 1  -  -  1  -  - 

Sub Irrigated 3  -  1  -  1  1 

Thin Claypan 2  -  2  -  -  - 

Wet Meadow 2  1  1  -  -  - 

Wetland 1   1   -   -   -   - 

 

NMS analysis of biotic integrity and its associated indicators, channel type, BEHI, and 

BHR produced final solutions with three dimensions and a final stress of 9.1, which indicates the 

ordination produced a picture with low risk of false conclusions (Clarke 1993). These solutions 

were stable with final instabilities of 0. Axis one and two accounted for most of variation 

explaining at 68% (axis 1 was 36% and axis two was 32%); whereas, axis three accounted for 

24% of the variation (Figures 3.11-3.16).  

The invasive plants indicator was positively correlated with axis one. There were no 

indicators negatively associated with axis one. Axis two was positively correlated with the litter 

amount indicator. Indicators negatively correlated with axis two are soil surface resistance to 
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erosion, soil surface loss or degradation, and compaction layer. Axis three was positively 

correlated with the functional structural group indicator and the biotic integrity attribute. 

Channel Type 

PERMANOVA analysis showed stream channel type was not influenced (P > 0.05) by 

biotic integrity indicators (Figures 3.11 and 3.12). Sites influenced by high amounts of litter and 

invasive species tended to be associated with unstable F and G channels. These unstable 

channels were also correlated with soil compaction, reduced resistance to erosion, and soil loss. 

When interpreting axes one and three (Figure 3.12), a relationship of altered functional/structure 

groups and invasive species was associated with F and G channels.  
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Figure 3.11. Non-metric multidimensional scaling ordination (NMS) displays the hydrologic 

function attribute and related indicators’ relationship with Rosgen’s stream classification 

depicting axis 1 and 2 across thirty-five cross-sections in Bowman County, North Dakota. The 

different colored polygons represent individual stream channels based on Rosgen’s (1994) 

classification of natural streams. The variables and their correlation value are displayed on their 

associated side of the axis. Significant differences (P < 0.05) between channel type is denoted by 

the lowercase letters following the channel type. Categories that do not share a lower case letter 

are considered significantly different from each other. This 3-dimensional solution had a final 

stress of 9.1 and explained 68% of the variation. This ordination has a low risk of false 

interpretation. 
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Figure 3.12. Non-metric multidimensional scaling ordination (NMS) displays the hydrologic 

function attribute and related indicators’ relationship with Rosgen’s stream classification 

depicting axis 1 and 3 across thirty-five cross-sections in Bowman County, North Dakota. The 

different colored polygons represent individual stream channels based on Rosgen’s (1994) 

classification of natural streams. The variables and their correlation value are displayed on their 

associated side of the axis. Significant differences (P < 0.05) between channel type is denoted by 

the lowercase letters following the channel type. Categories that do not share a lower case letter 

are considered significantly different from each other. This 3-dimensional solution had a final 

stress of 9.1 and explained 60% of the variation. This ordination has a low risk of false 

interpretation. 

Bank Erosion Hazard Index 

PERMANOVA analysis showed BEHI category was not influenced (P = 0.09) by biotic 

integrity indicators. However, the pairwise test showed streams with very low BEHI and 
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moderate BEHI differed (P = 0.015). The pairwise test indicated that low BEHI and moderate 

BEHI may be different (P = 0.055). 

Streambanks with very low and low BEHI ratings were associated with higher than 

expected amounts of litter (Figure 3.13). Departures in soil surface loss or degradation, soil 

compaction, and soil surface resistance to erosion were associated with streambanks having 

high/very high BEHI. Sites with both high amounts of litter and invasive species tended to have 

moderate to high/very high BEHI. Figure 3.13 displays that moderate and high/very high BEHI 

streambanks are associated with invasive species, altered function/structural groups, and 

departed biotic integrity.  

 
Figure 3.13. Non-metric multidimensional scaling ordination (NMS) displays the hydrologic 

function attribute and related indicators’ relationship with the bank erosion hazard index (BEHI) 

depicting axis 1 and 2 across thirty-five cross-sections in Bowman County, North Dakota. The 

different colored polygons represent the BEHI categories of each cross-section. The variables 

and their correlation value are displayed on their associated side of the axis. Significant 

differences (P < 0.05) between channel type is denoted by the lowercase letters following the 

channel type. Categories that do not share a lower case letter are considered significantly 

different from each other. This 3-dimensional solution had a final stress of 9.1 and explained 

68% of the variation. This ordination has a low risk of false interpretation. 
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Figure 3.14. Non-metric multidimensional scaling ordination (NMS) displays the hydrologic 

function attribute and related indicators’ relationship with the bank erosion hazard index (BEHI) 

depicting axis 1 and 3 across thirty-five cross-sections in Bowman County, North Dakota. The 

different colored polygons represent the BEHI categories of each cross-section. The variables 

and their correlation value are displayed on their associated side of the axis. Significant 

differences (P < 0.05) between channel type is denoted by the lowercase letters following the 

channel type. Categories that do not share a lower case letter are considered significantly 

different from each other. This 3-dimensional solution had a final stress of 9.1 and explained 

60% of the variation. This ordination has a low risk of false interpretation. 

Bank Height Ratio 

 PERMANOVA results showed the groupings were trending (P = 0.075) to have a 

difference between the BHR groupings. A pairwise test showed stable and highly unstable BHRs 

differed (P = 0.04). Stable sites were associated with departures in litter (Figure 3.15). Highly 

unstable sites were associated with invasive species and high litter amounts. Unstable, and some 

highly unstable sites were associated with invasive species, soil surface loss or degradation, and 

soil compaction. Figure 3.16 shows the relationship between highly unstable and unstable 

streambanks with alteration of functional/structural groups, presence of invasive species, and 

departed biotic integrity.  
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Figure 3.15. Non-metric multidimensional scaling ordination (NMS) displays the hydrologic 

function attribute and related indicators’ relationship with bank height ratio (BHR) depicting axis 

1 and 2 across thirty-five cross-sections in Bowman County, North Dakota. The different colored 

polygons represent the BHR categories of each cross-section. The variables and their correlation 

value are displayed on their associated side of the axis. Significant differences (P < 0.05) 

between channel type is denoted by the lowercase letters following the channel type. Categories 

that do not share a lower case letter are considered significantly different from each other. This 

3-dimensional solution had a final stress of 9.96 and explained 68% of the variation. This 

ordination has a low risk of false interpretation. 
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Figure 3.16. Non-metric multidimensional scaling ordination (NMS) displays the hydrologic 

function attribute and related indicators’ relationship with bank height ratio (BHR) depicting axis 

1 and 3 across thirty-five cross-sections in Bowman County, North Dakota. The different colored 

polygons represent the BHR categories of each cross-section. The variables and their correlation 

value are displayed on their associated side of the axis. Significant differences (P < 0.05) 

between channel type is denoted by the lowercase letters following the channel type. Categories 

that do not share a lower case letter are considered significantly different from each other. This 

3-dimensional solution had a final stress of 9.1 and explained 60% of the variation. This 

ordination has a low risk of false interpretation. 

Discussion 

Soil and Site Stability 

The soil and site stability indicators of IIRH showed departures from reference condition 

in soil characteristics of the adjacent uplands increased the chance of the associated riparian 

ecological site being in an unstable or at-risk state. We observed uplands with higher than 

expected bare ground amounts to be associated with highly unstable BHRs, and development of 

F and G channels. F and G channels showed a relationship with ecological sites with departures 

in soil compaction, resistance to erosion, soil surface loss or degradation, functional/structural 

groups, and invasive plants. The poor upland soil properties of F and G channels indicates the 
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soil structure and aggregate stability has been altered, facilitating excess runoff and sediment loss 

(Kasper et al. 2009; Kodešová et al. 2009; Printz et al. 2014). Other common relationships 

observed included soil compaction, soil surface loss or degradation, and an overall departed soil 

and site stability attribute being associated with unstable stream channels and high BEHI 

streambanks.  

Uplands with higher than expected amounts of bare ground often facilitate soil erosion 

from wind and precipitation events, creating sediment movement that may reach stream channels 

(Schwarte et al. 2011). Large areas of bare ground in combination with a compaction layer will 

increase the amount of runoff, adding more force to stream flow during precipitation events 

(Brooks et al. 2013; Rosgen and Silvey 1996; Unger and Kaspar 1994). The departure of soil 

surface loss or degradation was mostly a result of a decreased depth of the A horizon. The 

surface of the A horizon has the highest amount of organic matter which aids in infiltration and 

increases aggregate stability (Brady and Weil 2002; Follett and Reed 2010). When sites have 

one, or a combination of departures in soil compaction, soil surface loss, degradation, and bare 

ground the site and stability is often threatened as these indicators have the potential to increase 

runoff and erosion further (Pellant et al. 2005; Rosgen and Silvey 1996; Unger and Kaspar 

1994).  

We did not find a significant relationship between IIRH and BEHI rating. However, the 

BEHI has been shown to be an accurate predictor of increased sediment loads from bank erosion 

(Rosgen 2001a). Although sediment load was not measured during this study high amounts of 

soil erosion in the uplands can overwhelm riparian vegetation’s trapping capacity introducing 

increased sediment amounts into the stream channel (Clary et al. 1996). The increased sediment 

load from upland and streambank erosion has effects on chemical, physical and biotic 
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components of the stream influencing turbidity, dissolved oxygen, nutrient levels, and sediment 

transport (Allan et al. 1997; Brooks et al. 2013; Byers et al. 2005; Fitch and Adams 1998; 

Rosgen 2006; Rosgen and Silvey 1996; Wood and Armitage 1997). High sediment levels may 

overcome the sediment transport capabilities of a stream leading to changes in stream 

morphology as they are thrown out of equilibrium (Magner and Steffen 2000; Simon and Rinaldi 

2000). Streams with excessive sediment loads often times form point bars; which deflect flow 

into streambanks further facilitating erosion and channel widening (Howard and Knutson 1984; 

Simon and Rinaldi 2006). In extreme circumstances stream channels may become braided as the 

stream does not have enough power to move sediment through its channel (Leopold and Wolman 

1957; Simon and Rinaldi 2006). As a stream aggrades from high sediment loads the risk of 

flooding increases as the stream bed rises and water storage capacity decreases (Leopold 1994). 

Upland sites near reference condition for soil and site stability typically were associated 

with E and C channels, very low and low BEHI scores, and a stable BHR. When considering 

how each soil and site stability indicator is related to erosional features it helps explain the 

relationship of “healthy” streams and near reference uplands. When the soil site and stability of 

the upland ecological sites are functioning properly the amount of water infiltrating the soil is 

greater than that of degraded sites, lowering the amount of erosion and runoff (Pellant et al. 

2005), and ultimately lowering the amount of stormflow (Clary and Leininger 2000). Streams are 

more likely to be capable of buffering the additional energy obtained from precipitation events 

when reducing the amount of stormflow (Galay 1983).  

Hydrologic Function 

Thy hydrologic function attribute and BEHI had the strongest relationship. Unstable 

streambanks and streambanks at high risk of erosion were influenced by a combination of soil 
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compaction, soil surface loss or degradation, infiltration and presence of flow patterns. The 

hydrologic attribute was associated with the high BEHI streambanks and unstable streambanks 

indicating the hydrology of the area has been altered. Based on these results, lowered infiltration 

rates and increased runoff amounts are likely influencing the stream channels (Allan et al. 1997; 

Poff and Allan 1995). The hydrologic function results also showed high amounts of bare ground 

and flow patterns were associated with unstable G channels. The presence of flow patterns 

indicates water is often moving as overland flow at these sites and entering the streams as runoff. 

Debano and Schmidt (1989) found flow patterns on the uplands were responsible for increased 

surface runoff and peak flows. F channels were loosely correlated with the presence of a 

compaction layer and reduced infiltration due to altered plant community rooting depths. This 

combination of departure would increase lateral flow, facilitating runoff (Printz et al. 2014).  

The indicators associated with hydrologic function showed stable stream reaches, 

particularly C channels, were associated with higher than expected amounts of litter in the 

uplands than those with none to slight departures. This was true for channel type, BEHI, and 

BHR. Although high amounts of litter is a departure, the litter is adding canopy protection to the 

soil from splash erosion (Brooks et al. 2013; Clary and Leininger 2000). Furthermore, the litter is 

acting as a buffer during heavy precipitation and snowmelt events as it adds roughness to 

overland flow. By slowing the movement of overland flow the increased litter can increase the 

amount of precipitation that infiltrates the soil, thus reducing stormflow and sediment loads of 

the streams (Brooks et al. 2013; Naeth et al. 1991).  

Biotic Integrity 

Indicators associated with biotic integrity showed unstable stream channels and bank 

features were primarily associated with invasive plants, altered functional/structure groups, and 
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biotic integrity. The high BEHI streambanks and unstable streambanks were associated with 

uplands whose plant communities were altered from the reference state and invaded. Sites that 

had high amounts of invasive species had high departures in functional/structural groups as the 

invaders greatly reduce, and sometimes eliminate some of the expected groups. Depending on 

the scale of invasion, the invasive plants indicator has a ripple effect, as the invaders often times 

influence several other indicators (Pellant et al. 2005; Printz et al. 2014). As a result, sites with 

departed biotic integrity were associated with streambanks having high/very high BEHI and 

unstable/highly unstable BHRs.  

Common invasive and/or introduced species on the ecological sites assessed were 

Kentucky bluegrass, smooth bromegrass, annual bromegrasses, and crested wheatgrass.  

Kentucky bluegrass and smooth bromegrass are shallow rooting perennial rhizomatous grasses 

that form dense thatches on the soil surface, negatively influencing infiltration and runoff 

(Pierson et al. 2002; Taylor and Blake 1982).  Despite annual bromegrasses being shallow 

rooted, infiltration rates have had mixed results with decreased (Boxell and Drohan 2009) and 

increased infiltration rates being documented (Gasch et al. 2013).  Crested wheatgrass was not 

listed as invasive on the reference sheets; however, we found crested wheatgrass to be associated 

with altered structural functional groups as it often times was a dominant species when present.  

Henderson and Naeth (2005) also found crested wheatgrass to be competitive with native species 

in the northern Great Plains.  These invasive and introduced species are highly competitive with 

native species resulting in lowered diversity, and sometimes forming monocultures in invaded 

areas (Harris 1967; Henderson and Naeth 2005; Morrow and Stahlman 1984; Murphy and Grant 

2005; Toledo et al. 2014).  These species reduce erosion where they are present (Hull and 

Pechanec 1947; Orr 1970), but they may result in decreased infiltration and overland flow 
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(Boxell and Drohan 2009; Pierson et al. 2002; Taylor and Blake 1982), increased litter amounts 

(DeKeyser et al. 2009; Ogle et al. 2003), altered soil structure (Printz et al. 2014), and mortality 

of neighboring plants (Dillemuth et al. 2009; Melgoza et al. 1990), resulting in altered 

functioning of ecological sites (Pellant et al. 2005; Toledo et al. 2014).  

Conversely, stable stream types, low BEHI values, and stable BHRs were associated with 

increased amounts of litter, similar to hydrologic function. Contrary to hydrologic function, the 

NMS analysis showed increased amounts of litter can have a negative influence on stream 

morphology when the upland ecological sites are invaded. This occurred when ecological sites 

with plant invasion rated greater than or equal to moderate departure and/or litter amounts rated 

greater than or equal to moderate departure. The high litter and plant invasion relationship was 

observed when looking at BEHI. Although there is higher amounts of litter present, a shift in 

plant rooting structure from invasion may be altering the hydrology of the site (Pierson et al. 

2002; Taylor and Blake 1982). Pierson (2002) found that high amounts of litter may not facilitate 

increased infiltration in the presence of short and sod-forming grasses. 

Summary 

Stable streams, E, C, and B types with low BEHIs and BHRs tended to be associated with 

upland ecological sites with low IIRH departures and above average amounts of litter (< 

moderate departure). Unstable F and G channels tended to be associated with high amounts of 

bare ground (≥ slight to moderate departure); whereas, E, C, and B channels typically were near 

reference condition (≤ slight to moderate). The F channel sites that had compaction layers also 

had surface soil loss or degradation departures (≥ moderate). F channels also were associated 

with altered infiltration and runoff rates due to departures in biotic integrity caused by altered 

plant community structure. Ecological sites associated with F and G channels were altered the 
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most when comparing the three attributes, indicating stream morphology was influenced by 

upland state. Ecological sites with plant invasion (≥ moderate departure) and/or high litter 

amounts (≥ moderate departure) were associated with an increased risk of stream channel 

instability.  

When comparing all departures, the F and G channels, moderate and high/very high risk 

BEHI, and unstable and highly unstable BHRs had the highest average departures. Unstable 

channel types, unstable BHRs, and high BEHI had higher departures of the soil and site stability 

attribute and the biotic integrity attribute. The hydrologic function attribute had the greatest 

departure of the unstable and highly unstable BHR, indicating altered hydrology in the uplands 

puts stream channels at risk of transitioning states; however, hydrologic function did not have the 

greatest departure between channel type and BEHI group.  

Based on these findings indicators that provided the most insight were related to the 

hydrologic function attribute. This is appropriate given the hydrologic function attribute provide 

insight into how water moves across the landscape (Pellant et al. 2005). Sites associated with 

bare ground and soil compaction had unstable stream reaches, high BEHI values, and high BHR. 

This correlation between stream morphology and degradation in the uplands is likely 

contributing to increased storm flow capable of moving a stable reach out of equilibrium. 

Conversely, sites with no compaction and higher than expected amounts of litter (> slight to 

moderate departure) were associated with stable stream types, low BEHI, and low BHRs. By 

investigating the soil conditions managers can gain insight into previous disturbances of the soil 

which may have a legacy effect influencing reaches of a stream (Riley et al. 2003; Townsend et 

al. 2004).  
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Although the analysis did not find a significant relationship between stream stability and 

the soil and site stability attribute, this attribute and its related indicators are important as many 

of them are shared with hydrologic function (Pellant et al. 2005). Soil compaction and can lead 

to increased erosion rates and the development of rills, water flow patterns, and gullies (Pellant 

et al. 2005). Within our study, we found the soil and surface loss or degradation to be an 

important indicator from the NMS analysis. As an ecological site loses its A horizon depth it also 

loses its chance to return to its reference state. As the soil and site stability of a site becomes 

degraded the biotic integrity may be influenced as the nutrients and soil structure are altered 

(Pimentel et al. 1995).  

This does not mean the biotic indicators are unimportant in regards to watershed 

management. Having diverse vegetation in the uplands retains ecological services, which in 

return have a positive feedback to the other two attributes. This was observed on sites with plant 

invasion and high litter amounts as the increased litter amounts lost its benefit to the assessed 

stream parameter observed in soil and site stability and hydrologic function attribute analysis. 

Invasive species have the potential to alter hydrology by changing soil structure, plant 

community composition and distribution relative to infiltration, add excess litter to the surface, 

lead to soil surface loss or degradation departures, and potentially create rill erosion (Angers and 

Caron 1998; Jordan et al. 2008; Pellant et al. 2005; Pierson et al. 2002; Printz et al. 2014; Taylor 

and Blake 1982). When a species dominates a site the structural functional groups are altered, 

which was not significant in this study; however, an alteration of the structural functional groups 

directly influences the infiltration rate relative to the plant community. This is important as sites 

with infiltration rate departures were associated with high/very high BEHI categories, unstable 

BHRs, and highly unstable BHRs.  
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Our research showed IIRH is positively correlated with stream stability. Ecological sites 

near reference condition were associated with stable stream types and low risk of bank erosion, 

with the exception of litter amount. IIRH showed promise as a predictor of watershed health; 

however, additional research is needed to verify these findings. Particularly, more information 

should be collected following the same protocol in different regions and in watersheds with 

perennial streams to determine its accuracy to predict stream stability.  

Implications  

The BEHI and BHR should be focused on during watershed assessments. Rosgen’s 

(1994) classification of natural streams is useful for communication and STMs; however, 

PERMANOVA analysis found no relationship with channel type and rangeland health. The 

IIRH, BEHI, and BHR can be used to monitor long-term trends within a watershed. Managers 

who chose to partake in implementing a similar monitoring program should choose locations that 

are accessible and can be sampled periodically for an extended period of time. Implementation of 

this monitoring program allows managers to track the indicators linked to stream stability: bare 

ground, soil compaction, litter amounts, and plant community composition. Land managers 

should take caution if they chose to manage for high litter amounts as increased litter can harm 

native warm season grasses and increase chances of exotic invaders (Facelli and Pickett 1991; 

Printz et al. 2014; Suding and Goldberg 1999). Land managers should use adaptive management 

to make adjustments based on monitoring results of the upland ecological sites and stream 

morphology. 
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APPENDIX. LIST OF PLANT SPECIES AND THEIR ASSOCIATED 

WETLAND INDICATOR STATUS DOCUMENTED DURING LINE POINT 

INTERCEPT SAMPLING  

Common Name Scientific Name 

Indicator 

Status1 

Common Yarrow Achillea millefolium L. FACU 

Crested Wheatgrass Agropyron cristatum (L.) Gaertn.  UPL 

Western Ragweed Ambrosia psilostachya DC.  FACU 

Silver Sagebrush Artemisia cana Pursh FACU 

Cudweed Sagewort Artemisia ludoviciana Nutt. UPL 

Field Brome Bromus arvensis L.  FACU 

Smooth Bromegrass Bromus inermis Leyss. UPL 

Northern Reedgrass Calamagrostis stricta (Timm) Koeler  FACW 

Wooly Sedge Carex pellita Muhl. ex Willd.  OBL 

Clustered Field Sedge Carex praegracilis W. Boott  FACW 

Pitseed Lambsquarter Chenopodium berlandieri Moq.  UPL 

Floodman's Thistle Cirsium flodmanii (Rydb.) Arthur  FAC 

Wavy Leaf Thistle Cirsium undulatum (Nutt.) Spreng.  FACU 

Canadian Horseweed Conyza canadensis (L.) Cronquist FACUPL 

Giant Sumpweed Cyclachaena xanthifolia  FAC 

Inland Saltgrass Distichlis spicata (L.) Greene FACW 

Barnyardgrass Echinochloa crus-galli (L.) FAC 

Spikerush 
Eleocharis palustris (L.) Roem. & Schult. var 

palustris 
OBL 

Canada Wildrye Elymus canadensis L.  FACU 

Quackgrass Elymus repens (L.) Gould FACU 

Slender Wheatgrass Elymus trachycaulus (Link) Gould ex Shinners FACU 

Scouring Rush Equisetum laevigatum A. Braun  FAC 

American Licorice Glycyrrhiza lepidota Pursh FACU 

Curlycup Gumweed Grindelia squarrosa (Pursh) Dunal  UPL 

Annual Sunflower  Helianthus annuus L. FACU 

Maxamillian Sunflower Helianthus maximiliani Schrad. FACU 

                                                 
1 The common name, scientific name, and the species associated wetland indicator status is 

provided. Wetland Indicator status can be obligate (OBL), facultative wetland (FACW), 

facultative (FAC), facultative upland (FACU), or upland (UPL) Reed, P.B., 1988. National list of 

plant species that occur in wetlands: Central Plains (Region 5). Washington, DC: U.S. Fish and 

Wildlife Service Biological Report.  
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Common Name Scientific Name 

Indicator 

Status1 

Nuttall's Sunflower Helianthus nuttallii Torr. FACW 

Foxtail Barley  Hordeum jubatum L.  FACW 

Baltic Rush Juncus arcticus Willd. FACW 

A. Water Horehound Lycopus americanus Muhl.  OBL 

Rough Bugleweed Lycopus asper Greene OBL 

Black Medic Medicago lupulina L. FACU 

Alfalfa Medicago sativa L.  UPL 

White Sweetclover Melilotus officinalis (L.) Lam.  FACU 

Field Mint Mentha arvensis L.  FACW 

Scratchgrass Muhlenbergia asperifolia (Nees ex Trin.) FACW 

Stiff Goldenrod Oligoneuron rigidum (L.)  FACU 

Switchgrass  Panicum virgatum L. FAC 

Western Wheatgrass Pascopyrum smithii (Rydb.) Á. Löve FACU 

Fowl Bluegrass Poa palustris L.  FACW 

Kentucky Bluegrass Poa pratensis L. FACU 

Water Smartweed Polygonum amphibium  OBL 

Erect Knotweed Polygonum erectum L. FAC 

Norwegian Cinquefoil Potentilla norvegica L. FAC 

Nuttall's Alkaligrass Puccinellia nuttalliana (Schult.) Hitchc. OBL 

Short Buttercup Ranunculus cymbalaria Pursh OBL 

Prairie Rose Rosa arkansana (Porter) FACU 

Curly Dock  Rumex crispus L. FAC 

Sandbar Willow Salix interior Rowlee FACW 

Common Threesquare Schoenoplectus pungens (Vahl) Palla OBL 

Buffaloberry Shepherdia canadensis (L). FACU 

Canada Goldenrod  Solidago canadensis L. FACU 

Missouri Goldenrod Solidago missouriensis Nutt. UPL 

Small Bur Reed Sparganium natans L. OBL 

Alkali Cordgrass Spartina gracilis Trin FACW 

Prairie Cordgrass Spartina pectinata Bosc ex Link FACW 

Western Snowberry Symphoricarpos occidentalis Hook. UPL 

Heath Aster Symphyotrichum ericoides (L.) FACU 

White Panicle Aster Symphyotrichum lanceolatum (Willd.) FACW 

Common Dandelion Taraxacum officinale F.H. Wigg FACU 

Hybrid Cattail Typha ×glauca Godr. (pro sp.) [angustifolia] OBL 

Canada Violet Viola canadensis L. FACU 

Rough Cocklebur Xanthium strumarium L. FAC 

 


