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ABSTRACT 

Mechanical experimental tests including stress relaxation, simple monotonic 

ramps, and impact loads were performed on porcine brain tissues to investigate the 

response of the brain under different loading scenarios. Linear viscoelastic models were 

employed to determine the applicability and limitations of the linear mechanical models 

in tension. In addition the lowest and highest stress values, which can be possibly applied 

to the tissue due to change in the strain rates, were investigated using stress relaxation 

experiments to implicitly address the two levels of strain rates. Porcine brainstem 

samples were tested in six stress relaxation experimental settings at strain amplitudes 

ranging from 5% to 30% in compression. The lowest stress was directly measured from 

long-term responses of stress relaxation experiments when the stress values remained 

constant. The highest stress level was determined by using the quasi-linear viscoelasticity 

theory and estimating the instantaneous stress of the samples at six strain amplitudes. It 

was hypothesized that there is a correlation between the two pure elastic behaviors. The 

hypothesis was true as a strong linear correlation was found between the two elastic 

responses. The results showed that the instantaneous stress values were 11 times greater 

than the long-term stress values, practically similar across all strain amplitudes.  

In the second part of the thesis, a number of computational studies were 

conducted using a validated human head model. The head model included major 

components of human head and underwent different blast scenarios in open and confined 

spaces. The study investigated the effect of reflections from the walls. The results show 

that when the head was in the vicinity of the wall, the biomechanical parameters were 

dramatically increased, especially in the corners. Comparing brain biomechanical 
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parameters in confined, semi-confined, and open spaces under blast loads, the brain 

sustained greater stress and strain values, with larger duration of the loads, in confined 

spaces. Also, a primary blast injury (PBI) with a tertiary blast injury (TeBI) in a confined 

space was compared. The results indicated that the PBI due to the incident shock wave 

was much more injurious than TeBI due to blunt impact. 
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CHAPTER 1. INTRODUCTION 

1.1.  Motivation 

Brain injury is one of the leading causes of disability and death, occurring due to a 

wide range of incidents such as falls, sport injuries, traffic accidents, and war zone 

injuries (2). In battle fields, exposure to blast loads and bullet impacts are the main cause 

of traumatic brain injury (TBI). In blast scenarios, the mechanism of TBI is different, as 

there is no observable sign of skull fracture or external bleeding, and yet severe TBI 

occurs. Many civilians as well as military personnel undergo blast induced TBI. Due to 

the complexity of the situation, it is very difficult or impossible to determine the severity 

of TBI and take effective mitigation action. The situation is far more complicated if the 

blast occurs in enclosed spaces. Many reports show the rate of morbidity and mortality in 

such environments is much higher than in open spaces (3).  

Understanding the mechanism of injury and how brain tissue responds to such 

loading conditions are of paramount concern to researchers in their quest to both promote 

preventive actions and to attenuate the severity of the trauma. Unfortunately, the 

literature is not mature in biomechanics of brain injury and there is a need for further 

analyses. This research is a computational and an experimental study that investigates 

blast induced TBI. In the experimental part, brain tissue will be characterized by 

performing several experiments to find the mechanical properties of the tissue which are 

necessary for computational studies. As the response of the tissue is dictated by the 

employed constitutive equation, a three dimensional (3D) nonlinear mechanical model is 

proposed to explain the behavior of the brain. The second part of this research study 

determines the mechanism of blast induced TBI in different spaces with a focus on 
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confined spaces. The study investigates the effect of confinement and blast wave 

reflections on the injury-related biomechanical parameters such as intracranial pressure 

(ICP) and shear stress of a validated finite element head model. It captures an 

understandable image of what happens to the tissue in complex blast environments and 

computationally measures the severity of related injuries.  

1.2. Background 

On average, , about 1.7 million people sustain TBI each year in the US, of which 

52,000 result in death (4). Even in the presence of cerebrospinal fluid (CSF) which 

cushions movement of the brain inside the skull, sudden movement of the brain due to 

impact loading or head kinematical motion can cause TBI (5). Most often, the impact on 

the head or neck can cause elongation of the brainstem in axonal directions and create 

damage. Such injury may cause death because the brainstem is the pathway for most 

cranial nerves, and it plays a vital role in basic attention and consciousness.  

In the literature of the head injury biomechanics, computational studies, especially 

finite element analysis (FEA), are of great importance to help researchers determine 

various aspects of TBIs. Complex scenarios which are impossible to perform 

experimentally can be simulated, and if the models are well validated, a variety of 

significant results can be derived. FEA can accurately measure several injury-related 

biomechanical parameters at the tissue level including ICP, shear stress, and strain of 

brain tissue. In addition to macroscale analysis; modeling can be performed in smaller 

scales to determine the stresses on the axons and extra cellular matrix as well (6). 

However, the accuracy of the FEA depends on multiple parameters, one of which is the 

constitutive equation implemented for the material that dictates the estimated response of 
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the material. Except for brain tissue, all the elements of the head can be acceptably 

modeled as elastic materials (7). Brain tissue, on the other hand, is materially 

complicated, showing both elasticity and viscosity in its mechanical behaviors. The 

governing equation of brain tissue plays the most important role in the prediction of the 

brain biomechanical parameters. An extensive variety of constitutive laws have been 

proposed for brain tissue in the literature. However, the complexities in brain tissue 

material, as well as the loading scenarios, have made it impossible for the proposed 

constitutive laws to accurately predict brain response under a multiple loading conditions.        

1.3. Human Head Anatomy 

The human head is the most vulnerable part of the human body and consists of 

many complex components. Several of the major head components play important roles 

in transferring loads to the brain.  Of the major components, scalp is the outermost layer 

of the head. It is made of five different layers of soft tissues covering the bony structure. 

The skull, including 22 bones, houses the brain and plays the most protective role for the 

brain under head impact scenarios. The skull has a complicated geometry with the 

thickness ranging from 3.9 to 9.35 mm in men and from 3.4 to 8.2 mm in women. The 

occipital bone is the thickest bone found in the skull structure (8). The skull’s geometry 

gives it the ability to absorb impact energy for the brain’s protection. CSF is a fluid that 

occupies the space between the skull and the brain. Beside its important physiological 

functions, CSF has a vital influence on the reduction of transferred load to the brain and 

also prevents skull/brain contacts. The presence of fluid around the brain distributes 

pressure on the whole skull and brain. 
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The brain as a soft tissue is the most important and complicated part of the head. 

It weighs around 1.5 kg, almost one third of the head’s weight. The brain is totally 

covered by a strong layer of pia mater. The brain consists of cerebellum, cerebrum, and 

the brainstem. The brainstem, which sends messages to different parts of the body, 

contains the pons, midbrain and medulla oblongata. The brain, comprised of white and 

gray matters, is buoyant in the CSF. Figure 1 illustrates in more detail the parts of a 

human head in a sagittal view (9). From a biomechanical point of view, the major head 

components provide protection for brain tissue.  

 

Figure 1. A sagittal view of a human head showing different layers (9) 

1.4. Research Objectives and Scope 

1.4.1. Material Characterization of Brain Tissue 

The constitutive equations are of great importance in computational studies, as 

they may significantly influence the accuracy of the results. The primary objective of the 
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experiments was to characterize the mechanical properties of porcine brain tissue and to 

investigate its responses under different loading conditions. Initially a number of 

mechanical tests were performed to validate the sample preparations, and to test the 

protocol and repeatability of the experiments. Then, different loading conditions such as 

creep recovery, stress relaxation, monotonic ramp, and loading/unloading conditions 

were applied to the samples of brain tissue. Several linear mechanical models were used 

to predict the response of the brain tissue in the linear region. Linear viscoelastic as well 

as Quasi-linear viscoelastic (QLV) equations were also implemented to mimic the tissue 

behavior in the nonlinear region. All mechanical tests were performed on brain tissue and 

brainstem tissue in macroscale.  

1.4.2. Computational Analysis of Blast Induced TBI 

The main goal of the computational studies was to determine the response of the 

human brain, in terms of injury-related biomechanical parameters, under blast loads when 

the head experiences blast wave reflections from the walls of confinement. In the first 

stage of the computational studies, the finite element head model, the wave propagation 

in the air domain, and its reflections from the walls were verified against different 

experimental studies. Then, several numerical investigations were conducted to examine 

the effect of reflections on primary blast injury (PBI) when the head was placed in the 

vicinity of a wall. In addition, the effect of different spaces; confined, semi-confined, and 

open; were investigated and the severity of PBI in the three situations were discussed. 

The translational effect of blast wind was also modeled as an important issue. PBI due to 

a direct shockwave incident was compared with a tertiary blast injury (TeBI) due to the 

blunt impact of the head with a confronting wall.   



 
 

6 
 

CHAPTER 2. MATERIALS AND METHODS IN 

EXPERIMENTAL STUDIES 

2.1. Introduction 

A large number of experimental investigations have been carried out for the last 

few decades. Numerous tests have been performed on human brain tissue in macroscale 

(for example: Estes (10), Galford & McElhaney (11), Bilston & Lawrence (12), and 

Donnely & Medige (13)). The majority of the research, on the other hand, characterizes 

brain tissue of animals such as rat, porcine, and bovine (6,11,14-16), mainly due to 

availability and also to minimize post mortem time for testing purposes (15).  

Brain tissue, materially, is very complex to be treated as an engineered material in 

the determination of its characteristics. Different protocols and sample preparation 

techniques have been employed, due to a lack of standardization. Also, different sample 

shapes and sizes from several regions of the brain have been prepared for experimental 

purposes. There are also several differences between samples of one study to another 

such as animal sex, age, and breed. That is why a wide range of mechanical properties is 

found in the literature for any specific region of tissue (17). Therefore, to obtain 

consistent material properties of the brain, the literature of sample preparation needs to be 

thoroughly reviewed, and solid validations made in order to trust the results. 

2.2. Sample Preparation 

In this part of the experiments, several fresh porcine brains were acquired from 

the Animal Science Department facilities at North Dakota State University (NDSU) as by 

product. The animals were healthy, in the range of six months and older. The brains as 

well as their brainstems were removed from the head carefully. They were immediately 
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put in a physiological saline solution to prevent dehydration and were transported to the 

laboratory. To prevent any mechanical decay, they were kept cold at 3 to 5 °C but not 

frozen. In Figure 2, a typical swine brain, brainstem and its parts are shown.  

 

Figure 2. A hemisphere of the swine brain and the brainstem 

2.3. The Mechanical Testing Machine 

The test was performed at room temperature (∼22 ◦C) using an Electroforce 

machine 3220 (Bose Corp, Eden Prairie, MN, USA). The machine is an accurate tool for 

macroscale characterization and can perform various types of mechanical tests. The 

machine has been widely used for brain tissue mechanical testing (17). A 2.5 N and a 20 

N capacity high resolution load cell (Bose Corp, Eden Prairie, MN, USA) were utilized 

for the experimental purposes. All tests were conducted on the first day post mortem. The 

device can be easily switched to force or displacement control, which is necessary for 

different loading conditions. Care should be taken to correctly find the zero force and 

Brainstem 

Spinal cord 
Medulla 

Cerebellum 

Brain 
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displacement, without any unwanted tissue deformation before starting the experiments. 

The device gives the operator the ability to move the upper platen precisely before 

starting the experiments. 

2.4. Experimental Protocol 

For different testing purposes, the samples were prepared from different regions 

of the porcine brain, including the brain and the brainstem. The tissue was very soft and 

could adhere to the tools. Therefore, different sample preparation methods were used for 

different regions of the brain.  

2.4.1. Brain Tissue Samples 

All tests were conducted within 14 hours post mortem. The brain tissue samples 

were excised from the frontal and parietal lobes of each hemisphere. The procedure 

followed the test protocol by Miller and Chinzei (14) for uniaxial compression tests.
 
This 

made it difficult to cut small samples. In order to accurately cut the samples, a steel pipe 

with sharp edges was prepared to prepare samples, all in cylindrical geometry with the 

diameter of 25.4 mm. Also, surgical scalpels were used to cut the samples in 9 mm to 10 

mm height. In terms of size, the samples were similar, which made the comparison of the 

results possible. The samples from brain tissue were used only for compression 

experiments. Figure 3 shows a cylindrical sample prepared for compression tests. 
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Figure 3. Sample preparation and experimental setup (a) the Electroforce machine (b) a 

cylindrical brain tissue sample for a compression test 

2.4.2. Brainstem Tissue Samples 

A number of samples were prepared from brainstem tissue. The parts of the 

brainstem harvested for some of the experiments were from the medulla oblongata and 

the transitional area between the medulla and spinal cord. This part of the brain is 

populated by axons and can be acceptably assumed to be a unidirectional composite. As 

samples from the brainstem were smaller than from the brain, sample preparation was 

more challenging. The accuracy of cutting the samples is important, as inaccurate cutting 

may contribute to errors in the stress and strain rate of the samples. Sharp surgical 

scalpels were used to carefully cut the specimens perpendicular to the axonal direction.  

Brainstem samples were used for both tension and compression experiments. The 

ratio of length to width or diameter of the specimen was important, as an optimal ratio 

could guarantee the effect of stress concentration and stress triaxiality to be reduced. The 

lengths of the samples were based on the physical limitation of the specimens and the 

testing machine. As shown in Figure 4, the cross sectional areas of the samples had 

complex shapes and were difficult to measure. For accurate measurement, images of the 

cross sectional areas were provided before each individual test, and ImageJ software 

(a) (b) 
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version 1.48 (Wayne Rasband, National Institutes of Health, USA) was used to precisely 

calculate the size of the areas. 

    

Figure 4. Cross sectional brainstem tissue sample prepared for compression tests 

For tensile testing configurations, samples were prepared with the length of 

18.5±1.5 mm (mean ± SD) and cross sectional areas of 70 to 100 mm
2
. For compression 

tests, the samples were prepared with the length of about 5±0.7 mm (mean ± SD). The 

average cross sectional area was 93±30 mm
2
 (mean ± SD).  

To prepare for compressive loads to the tissues, the surface of each of the platen 

was humidified with a surgical lubricant (Surgilube, Fougera Pharmaceuticals Inc.) in 

order to approximate unconfined tissue compression. Samples were then carefully located 

on the lower platen and the upper platen was precisely moved downward until it touched 

the sample. A very small amount of load was applied to the tissue in order to guarantee a 

perfect attachment of the sample with platens.  

To test in tension, cyanoacrylate, an instant type of glue, was used to connect the 

samples between the platens. Figure 5 shows the testing machine with a sample glued to 

the two platens for a stress relaxation experiment  
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Figure 5. Sample preparation procedure and test protocol for the stress relaxation tests: 

(a) the brainstem cut from the porcine brain, (b) gluing the cylindrical sample of the 

brainstem between two platens, (c) Electroforce machine ready for the test with a high 

speed camera to record sample deformation  

The procedure of testing was similar to that of Miller’s work (18) in which the 

tissue was subjected to an applied load in tension. To assure appropriate attachment, the 

upper platen was moved downward in such a way that the sample contacted the lower 

platen that was already glued. The testing device gives the operator the ability to move 

the upper platen precisely before performing the experiments. All tests were performed 

30 seconds after attachment for assurance that the tissue was strongly attached to the 

a b 

c 
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platens. During the tests, observations were made to ensure a uniform attachment and 

homogeneous deformation, which guarantees an accurate macroscale characterization. 

2.5. Mechanical Testing on Tissue Samples 

Simple monotonic ramps, creep recovery, and stress relaxations in both tension 

and compression were performed on brain tissue samples. As expected, the behavior of 

the viscoelastic materials changes with time, and that the strain rate plays a major role on 

the response of the samples. Simple tensile or compressive tests might not be suitable for 

viscoelastic material characterization as the samples behave differently under various 

rates. Stress relaxation tests, on the other hand, can be conducted by the convenient 

method of applying a sudden strain and keeping it constant over a period of time. The 

stress decays and the deflection can be measured and monitored over time. As the test is 

applied to the substances under a constant strain, the effect of strain rate would be 

eliminated. More importantly, the response of the substance in the linear region is a scale 

of relaxation modulus and can be simply derived. Creep recovery is also similar to a 

stress relaxation test where a sudden force is applied to the sample and kept constant over 

time. Creep recovery, however, is technically difficult to perform by mechanical testing 

machines when the amounts of applied loads are very small. In case of soft tissue 

samples, the machines cannot follow a high force rate.  

2.5.1. Mechanical Testing in Tension 

Stress relaxation tests were conducted in tension on brainstem samples to 

determine the viscoelastic parameters of the substance at 3% strain level under small 

deformation analysis. The initial strain rates in the relaxation tests were about 5.55/sec 

for all samples, taking about 6 milliseconds to reach a 3% strain level. In Figure 6, the 
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averaged value of the stress function with time is depicted for 10 specimens, including 

their standard deviations. The tests were performed on samples at the mentioned strain 

level (3%) in which the tissue behaved linearly (19). The error bars show the variation 

and limitation in the results for different tests conducted on specimens due to variation in 

samples, errors in data acquisition, as well as errors in locating the zero stress and strain 

in the onset of the loading. A major part of the error comes from the initial part of the 

test, i.e., calculating the instantaneous response of the tissue. It should be mentioned that 

the results of the stress relaxation at 3% strain level were used to derive material 

properties of axons and extra cellular matrix in microscale level (6). 

 

Figure 6. The averaged stress relaxation test results in tension on the swine brainstem at 

3% strain including the error bars 

Also simple tensile monotonic ramps were performed at two strain rates including 

5×10
-4

/s as a slow loading rate and 5×10
-1

/s as a high loading rate (Figure 7). Due to 

increase in strain rate, the nominal stress increased up to about four times, showing rate 
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dependency of the tissue. Additionally, loading-unloading scenarios were performed on 

brainstem tissue at strain rates of 0.3/s and 0.003/s (Figure 7).    

 

 

Figure 7. Tensile monotonic ramps and loading/unloading conditions in tension on 

brainstem tissue at different strain rates  

2.5.2. Mechanical Testing in Compression 

For brainstem tissue samples from the medulla oblangata, stress relaxation tests 

were conducted at 6 nominal strain amplitudes of 5% (n=4), 10% (n=3), 15% (n=4), 20% 

(n=4), 25% (n=4), and 30% (n=3) in compression. The ramp part of the test was set to 20 

mm/s, at which noises and vibrations from the machine did not significantly affect the 

response of the tissue. The results of nominal stresses on the brainstem samples were 

averaged at each strain level as shown in Figure 8. The initial maximum stresses from 
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stress relaxation tests varied from about 400 kPa at 5% strain value to 3600 kPa at 30% 

strain value.  

   

   

   

Figure 8. Six stress relaxation results of brainstem samples at strains from 5% to 30% 

with SDs 
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The implementation of mathematical equations was done by Matlab R2010a (The 

Mathworks, Natick, Massachusetts) and Mathematica Wolfram 8 (Wolfram Research 

Inc., Champaign, Illinois). The JMP version 10.0.0 (SAS Institute Inc., NC, USA) was 

also used for all the statistical analyses in this study. 

2.5.3. Experimental Validations 

Unlike many engineered materials, no standard protocol is available for testing 

soft biological tissues such as brain. However, the results of the study can be compared 

with similar published data from literature. For porcine tissue, we could not find any 

studies on similar regions of the brainstem to compare with our results. However, for 

other regions of brain tissue, we found several studies and compared their results with our 

results of monotonic ramps and stress relaxation experiments. For the porcine brain tissue 

samples, stress relaxation experiments were performed at 50% initial strain (n=2) and 

simple monotonic ramp compression tests at strain rates of 0.64/s (n=2) and 0.1/s (n=3). 

Figure 9 shows the results from stress relaxation and simple ramp experiments in 

compression on porcine brain tissue samples in this study along with similar results from 

two previous studies by Miller and Chinzei (14) and Prevost et al. (17). As shown, the 

results are very similar among studies with the largest difference found in stress 

relaxation comparisons when the difference in stress varied from about 330 Pa to 540 Pa 

(Figure 9c). All the stresses and strains were nominal. The initial maximum stresses from 

stress relaxation tests varied from about 400 kPa at 5% strain value to 3600 kPa at 30% 

strain value.  
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Figure 9. Results of the experimental data compared with previous studies; simple 

monotonic compression tests (a) at the rate of 0.64/s; (b) at the rate of 0.1/s; and (c) stress 

relaxation at 50% strain level  

With regard to experimental setting, the testing protocol for brain tissue was 
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more accurate and sensitive load cell for the smaller brainstem specimens for which 

smaller amounts of force were needed. Good agreement was found between our results 

and the results from previous studies. The largest difference was found between the 

results of our stress relaxation study and those of Prevost et al. (17). This difference was 

likely due to the fact that the samples in the research of Prevost et al. (17) were preloaded 

by about 30 Pa which may possibly have affected the estimated stress values. 
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CHAPTER 3. BRAIN TISSUE LINEAR CONSTITUTIVE 

EQUATIONS  

3.1. Introduction 

Compared to other parts of the brain, there is little data available on the 

mechanical properties of the brainstem. In an experimental computational study, 

brainstem tissue was used under stress relaxation testing to estimate the material 

characteristics of brain tissue constituents in microscale (6). They found the viscoelastic 

characteristics of axons and extra cellular matrix using an optimization method in the 

linear region of the tissue. Experimental tests were conducted in the study of Arbogast et 

al. (20) on porcine brain tissue from the pons, as part of the brainstem, to estimate its 

shear relaxation function based on a quasi-linear viscoelasticity constitutive behavior 

assumption. Three levels of peak strain (2.5%, 5%, and 7.5%), with the strain rate of 

greater than 1/sec, have been considered to investigate the directional dependence of the 

material characteristics. In another study, Arbogast and Margulies (19) performed 

oscillatory shear tests on adult swine brainstem in three perpendicular directions, with 

samples taken from the middle to the upper parts of the brainstem. They calculated 

complex shear moduli with a range of frequencies between 20-200 Hz, for three different 

strain levels, in which the substances may have been assumed to behave quasi-linearly. 

They showed that the brainstem exhibits considerable transversely isotropic behavior. 

They also performed a similar experiment on cerebral tissue and concluded that the 

brainstem shows a stiffer response. Ning et al. (21) have introduced a constitutive 

response formula for the brainstem under large shear deformations. They considered the 

brainstem as a transversely isotropic viscoelastic material and characterized it in three 
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mutual directions. They used a combined method of a genetic algorithm optimization as 

well as finite elements to determine the mechanical properties of the brainstem.  

For constitutive characterization of human or animal body tissues, linear 

viscoelastic models have been widely used. Although such models are approximate, they 

are systematic, simple, and easily understandable. In this respect, it is proved that 

viscoelastic resemblance provides a good modeling of the tissue behavior. A series of 

creep and stress relaxation experimental data on brain, dura, and scalp of human and 

monkey tissue has been reported by Galford and McElhaney (11), in which the behavior 

of the tissue was represented by a four-element viscoelastic model. They determined the 

parameters of the model, showing a close creep compliance curve with the experimental 

data. Estes (10) has conducted an investigation on the human brain and interpreted its 

mechanical properties in terms of a standard-solid viscoelastic model, a combination of a 

Kelvin model and a linear spring in series, and determined the mechanical parameters of 

the tissue model as R1 = 27.58 kPa, R2 = 13.03 kPa and η2 = 2.17 kPa-s
 
where R1, R2 and 

η2 are springs and dashpot constants, respectively. Bilston and Lawrence (12) have 

performed a series of tensile experiments on human cervical spinal cord at different strain 

rates and interpolated the data by parameters of a four-element viscoelastic model. They 

determined their viscoelastic model parameters of the springs and dashpots as R1 = 0.65 ± 

0.36 and R2 = 10.6 ± 8.2 MPa, η1 = 119 ± 49 MPa-s, and η2 = 15.0 ± 13.1 MPa-s. In 

another effort, Donnely and Medige (13) have used a standard-solid model to 

characterize the shear properties of human brain tissue. They obtained the following data 

for brain tissue; R1= 550 Pa, R2=291 Pa and η2 = 9.4 Pa-s. 
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It is acknowledged that brain tissue inherently has a nonlinear viscoelastic 

behavior (13,14,22). However, the tissue similar to the majority of viscoelastic materials 

behaves linearly under small deformation and the employment of linear viscoelastic 

constitutive models under such conditions is reasonable. In this regard, several research 

characterizing schemes have been introduced to measure the linear viscoelastic 

characteristics of human brain tissue (23-26). Such models have been widely 

implemented in commercial software packages such as Ls-Dyna (Livermore Software 

Technology Corp., Livermore, CA, US) and Abaqus (Abaqus Inc., Providence, RI, US). 

The purpose of these studies has been to determine the level of stresses/strains on linear 

viscoelastic brain tissue under a wide range of conditions from low velocity impacts to 

complex blast load scenarios (27-30).
 
However, it must be emphasized that the precise 

degrees of accuracy and approximation in simulation of such nonlinear behavior with 

these linear models are still unknown.  

The overall objective of this chapter was to show the credibility and to examine 

the accuracy of various types of linear mechanical viscoelastic models to properly 

simulate the characteristics of porcine brainstem. The predictions by standard-solid, 

Zener, four-element, and three-term Prony series models, as representatives of linear 

viscoelastic behavior, were to be examined against the experimental brainstem response 

with tensile stress relaxation at 3% strain. The unknown coefficients of the constitutive 

equations for all the models were estimated and then the ability of each model to predict 

the behavior of tissue samples was determined. Also, the tissue behavior under tensile 

ramps as well as impact strains was examined to verify the applicability of the models.  
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3.2. Linear Viscoelastic Models 

Since the simplest forms of viscoelastic mechanical models, Voigt and Maxwell, 

which include only one spring and one dashpot, cannot predict reasonably the response of 

viscoelastic materials, various combinations of these two models, with addition and 

assemblage of different mechanical elements, have been widely introduced (Figure 10) 

(10-13).  



Figure 10. Four groups of mechanical models which are the basic three-element or four-

element mechanical models or combinations of them 
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Among the models shown in Figure 10, group 1 shows a solid-like behavior with 

instantaneous and delayed elastic deformation. Models 1b and 1c in this group are known 

as the “standard-solid”. Model 1c, is also referred to as the Zener model. Group 2 exhibits 

liquid-like characteristics with viscous flow and a delayed elasticity property. Also, 

Group 3 has an instantaneous elastic response followed by viscous flow and a delayed 

elastic behavior. In group 3, model 3a is known as “four-element” or Burger model, 

which consists of simple Voigt and Maxwell models in series. Finally, group 4 represents 

delayed elasticity behavior with two retardation times (31). 

The Zener, standard-solid, and four-element models were considered in this study, 

as they have been examined by a number of researchers to materially model the human 

brain under impact conditions (11-13).  

Having digitized the behavior of the brainstem experimentally, the linear and 

nonlinear viscoelastic models and the Prony series was used to simulate the tissue 

behavior. The experimental data was thus fitted to the assumed constitutive simulation 

model equation. An optimization procedure was employed to find the parameters of the 

assumed constitutive model. The technique for the fitting procedure was a nonlinear 

least-square method to search the best fit for the measured data (Mathematica, Wolfram). 

The parameters of the springs and dashpots and the parameters of the Prony series were 

estimated. Tensile ramps as well as triangular loads were also applied to samples with 

different loading speeds, to verify the solutions and to examine the effect of strain rates 

on the tissue response and, most importantly, to determine the performance and reliability 

of the models under such conditions. Once the mechanical properties of the tissues are 
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correctly obtained, it is possible to predict the behavior of the substance under different 

tensile scenarios. 

3.2.1. Zener Model 

This model is a combination of the Maxwell and an elastic spring in parallel 

(Figure 11a) and is more realistic than the simple Maxwell and Voigt models in 

predicting the response of the tissue material under stress and strain. The governing 

equation of the Zener model can be written as: 

 
(1) 

The Zener model yields the following time-dependent stress relaxation function under a 

displacement ramp: 
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(2) 

In the above equation, ε0 denotes the sudden strain on the samples. The parameters of this 

constitutive equation can be found through the optimization procedure, once it was fitted 

to the experimental stress relaxation data of tissue. The values for the parameters were 

found R1 = 6.14 kPa, R2 =2.31 kPa,  = 0.53 kPa-s. 

 

Figure 11. The three most well-known mechanical models; (a) Zener, (b) standard-solid, 

(c) four-element 
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3.2.2. Standard-solid Model 

This model is a combination of simple Voigt with an elastic spring in series 

(Figure 11b). This model can realistically predict the response of the tissue material under 

stress and strain. The governing equation of the model can be written as: 

 
(3) 

If a sudden constant strain, ε0, is applied to the standard-solid model, its constitutive law 

yields the time-dependent stress as: 

 

(4) 

Using the optimized solution procedure, this equation yields the following 

numeric values when fitted to the tissue experimental data: R1 = 3.17 kPa, R2 = 8.45 kPa, 

1 =1.00 kPa-s. Figure 12 shows the response of the tissue and the predicted values 

obtained from application of different mechanical models. While the constitutive 

equations of the Zener and the standard-solid are different, the responses of both models 

coincide. This can be explained by the fact that both are comprised of two springs and 

one dashpot with different layouts leading to the same constitutive equations. Apparently 

the locations of the components have no major impact on the outcome. As shown in 

Figure 12, both of these three-element mechanical models correlate well with the 

experimental data. However, the predicted stress decays earlier than experimental data. 

This indicates the incapability of the model in precise prediction of the viscous response 

of the brain tissue.  
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Figure 12. Tensile stress relaxation experimental data at 3% strain along with the 

responses mechanical models and three-term Prony series  

3.2.3. Four-element Model 

As depicted in Figure 11c, this model is a combination of Maxwell and Voigt 

models in series. The four-element model has been used with fair success in predicting 

linear behavior of brain tissue (11) and is rather an accurate predictor for stress relaxation 

and creep-recovery tests. The constitutive law of the model is a second order differential 

equation as follows: 

 
(5) 

The four-element model predicts the stress relaxation under a displacement ramp as 

follows: 
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and 

 

By fitting this equation to the experimental stress relaxation data of the brainstem, 

the constitutive parameters of this model were extracted. Considering the similar 

properties of these models as shown in Figure 12, the four-element model behavior is 

relatively acceptable. The four-element model behavior also deviates from the 

experimental data in a longer duration and thus is not a good predictor for the long-term 

characteristics of the substance. The constitutive coefficients were derived through 

optimization by fitting the experimental data and the results obtained are: R1 =8.7, R2 

=4.64 kPa, 1 =5.58 and 2 = 0.84 kPa-s.  

3.2.4. Prony Series Models 

In examining the mechanical properties of a linear viscoelastic material under an 

arbitrary loading condition, deformation history plays an important role. The constitutive 

equation of a solid viscoelastic material is time dependent and includes the history of 

deformation. A common form for these constitutive laws can be represented by the Prony 

series form. Also, among many curve-fitting techniques, the Prony series, as a response 

to generalized Maxwell model, are repeatedly adopted because of the precise fitness to 

the data, and their simplicities and capabilities in mathematical manipulations. To present 

the constitutive law in the form of the Prony series, the stress function of the tissue in 

linear region can be expressed as follows (32):  
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(7) 

Where E(t) is the relaxation function, NE the number of components, E0 the short-term 

modulus,  the relaxation time of each Prony series component. Also  and  are the 

relative moduli. Eq. (7) is valid when the duration of the initial ramp in the stress 

relaxation test is very small compared with the smallest relaxation time of the tissue. In 

this situation, the tissue reacts as an elastic substance for the instantaneous ramp. 

Otherwise, quasi-linear viscoelasticity must be implemented. E0, the short-term modulus 

is the modulus at the fast load limit. The long-term modulus, E∞ in tension can be derived 

as follows: 

   
 

(8) 

Three-term Prony series were fitted to the experimental data and the coefficients 

were found through the optimization procedure. The data computed from the sample data 

for the relaxation times τi
E are 0.044, 0.519, and 4.17 sec and the relative moduli αi

Eare 

0.54, 0.136, and 0.12, respectively. In Figure 12, the Prony series predictions are 

compared with the experimental data for 3% strain level. It can be concluded that three-

term Prony series illustrates a very good agreement with the experimental data. Based on 

the stress functions, the relaxation functions decaying moduli are calculated and are 

shown in Table 1.  
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Table 1. Relaxation function, E(t), for the models 

Models Relaxation functions (kPa) 

Standard-solid and 

Zener  
2306.95 + 6138.27𝑒−𝑡/0.0865 

Four-element  5706.83𝑒−𝑡/0.0629 + 2994.74𝑒−𝑡/21.786 

Three-term Prony 

1802.43 + 4773.66𝑒−𝑡/0.044 + 1064.11𝑒−𝑡/0.52

+ 1201.82𝑒−𝑡/4.177 

 

Short-term and long-term moduli can be derived from to the results listed in Table 

1. The short-term modulus is equal to the relaxation modulus at time zero, while the long-

term modulus is the modulus when time goes to infinity. The values for these parameters 

are presented in Table 2. 

Table 2. Short-term and long-term moduli (Pa) of the brainstem for different models 

Models Short-term Modulus Long-term Modulus 

Standard-solid and Zener  8445 2306.95 

Four-Element  8701.57 0 

Three-term Prony series 8824 1802.43 

 

3.3. Efficiency of the Models 

The Mechanical behavior of the tissue can be predicted under different 

circumstances such as tensile ramps after characterization of its mechanical properties. 

For this purpose, some experiments were performed on the brainstem under tensile loads 

at two different strain rates. Using the relaxation function of the models, E(t), one can 



 
 

30 
 

theoretically apply a simple tensile ramp similar to the experiments on the samples using 

a convolution integral stress function as follows (31):  

𝑆 = ∫ 𝐸(𝑡 − 𝜏)
𝜕𝜀

𝜕𝜏

𝑡

0

𝑑𝜏 
(9) 

Figure 13 shows the response of the samples and all of the models under tensile 

tests at two different strain rates of 5×10
-4 

and 5×10
-1

 sec
-1

, respectively.  

 

 

Figure 13. Tensile tests on the brainstem together with the responses from mechanical 

models and Prony series at the rate of (a) 5×10
-4

, (b) 5×10
-1

 sec
-1
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As can be seen in Figure 13a, all linear models, with the exception of four-

element, can nearly predict the response in small deformation (stains up to 6%) with the 

three-term Prony series showing better performance. These linear models however fail at 

higher strains. At the strain rate of 5×10
-1

/sec, linear models follow the tissue behavior 

similarly (Figure 13b). The models correlate well with the tissue behavior under 6% 

strain, but their predictions further than that deviate very much from the true tissue 

behavior. This can be explained that linear mechanical models can follow the brainstem 

tissue in small deformation (up to 6%), regardless of the strain rate. The independency 

from strain rate in this region can be verified in Figure 14 where the samples are 

subjected to tensile impact strains (about 1.5%) with two different frequencies (0.1 and 

40 Hz).  

The linear models follow the tissue behavior accurately under both mentioned 

strain rates. Interestingly, at the high strain rate, all of the models show similar 

performance, regardless of the number of dashpots or springs in the model, due to the fact 

that only springs are responsible for bearing the load and the dashpots lock up at such 

rates. 
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Figure 14. Two different impact strains on the samples in small deformation (1.5% of 

strain): (a) low strain rate; (b) high strain rate. For the sake of simplicity, only the positive 

parts of the models’ response are calculated, and the time history behaviors after 

The tensile stress-strain curve of the brainstem can be divided into the three 

regions as shown in Figure 13; the first region is a small nonlinear region in the very 

beginning of the tissue response, followed by a second region of almost linear behavior 

up to 6% strain. The third region, which is fully nonlinear, shows the slope of the stress-

strain curve is increasing. In this region, depending on the strain rate, a small increase in 

strain may contribute to a notable increase in stress. The linear models can only predict 

the response of the tissue in the first and second regions approximately, and they 

essentially fail to predict the behavior in the third region. 

Three-term Prony series and standard-solid models show maximum and minimum 

correlations, that is, 0.998 and 0.974, respectively. These results show an acceptable 
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correlation with the tissue behavior. As the number of elements in the rest of the 

mechanical models increases, the resemblance improves, as shown by their correlation 

factors. The Prony series with three terms aptly describes the behavior of the brainstem 

under stress relaxation. The correlation for the tensile ramp with lower strain rate 

indicates that the four-element model does not work properly in such situations. The 

reason is that the long-term modulus of the model goes to zero (Table 2), and as the 

duration of the tensile ramp is far more than the relaxation times of the model, the level 

of stress remains constant after the duration goes beyond the largest relaxation time. 

3.4. Conclusion 

In this chapter, the experimental as well as the predicted results were presented by 

linear viscoelastic constitutive models for the response of the porcine brainstem under 

stress relaxation, tensile ramp, and impact strain loadings. Different loading scenarios 

were applied to the tissue and compared with the models to address the validity and 

applicability of different linear models. The models’ predicted constitutive equations 

were interpolated by the experimental data and their parameters were extracted by 

optimization. Under a stress relaxation scenario, the standard-solid and Zener models 

illustrated identical behavior with a fairly good resemblance to the tissue response, as 

they have the same form of equation. The four-element model was found to have a good 

trend with the tissue, but still cannot predict the long-term behavior. Three-term Prony 

series, on the other hand, were found to appropriately fit the experimental data and can 

accurately simulate the behavior of the brainstem under stress relaxation. It indicates that 

increase in number of terms results in the more accurate simulation. The tensile tests, on 

the other hand, illustrated that the performance of linear models were acceptable only up 
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to about 6% of strain (small deformation), regardless of the loading rate. The impact 

strain applied to the tissue verified the independency of the performance of the linear 

models on the strain rate in small deformation. For larger deformation, the linear models 

kept deviating from the response of the real tissue. Consequently, the extent of their 

application is not advised in larger deformation, as such linear models may 

overestimate/underestimate the response of the tissue under such conditions. 
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CHAPTER 4. BRAIN TISSUE NONLINEAR CONSTITUTIVE 

EQUATIONS 

4.1. Introduction 

Upon an impact load, brain tissue experiences diverse mechanical stresses. TBI 

may occur when induced stresses exceed the physiologic limits which currently are not 

fully understood. Thus, to predict injuries, accurate measurement of generated stresses in 

brain tissue would be very beneficial. It is known that the brain shows both elastic and 

viscous behavior (33). A great deal of effort has been devoted to describing brain tissue 

material properties using linear viscoelastic behavior assumptions (6,34). Quasilinear and 

nonlinear viscoelastic theories have also been developed for large deformations 

(14,35,36). The majority of these studies characterized the tissue in simple compression 

or tension experiments. In some of these studies, the brain was characterized by 

simultaneously measuring the elastic and viscous responses (17,37), while in some other 

studies, only the elastic characteristics were addressed to identify the tissue response 

(14,22,38). Pure elastic responses are obtainable only at extremely low and extremely 

high strain rates, which cannot be achieved using commercial testing machines for simple 

monotonic ramp experiments. The presence of viscosity, however, makes complete 

characterization of the brain material difficult. 

The main aim of the current chapter was to estimate the instantaneous and long 

term elastic stresses in the brainstem. To this end, 6 sets of stress relaxation experiments 

were used at 6 different strain amplitudes in compression. Long-term responses of the 

tissue were measured directly from the experiments. Also initial instantaneous (short-
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term) stresses were defined as the highest induced stresses in the tissue by implementing 

a QLV constitutive model.  

4.2. Quasi-linear Viscoelastic Model 

In order to describe the response of soft biological tissues, such as the brain, in the 

nonlinear region, the QLV theory has been vastly employed. The QLV theory was first 

formulated by Guth et al. (39) for natural and synthetic rubbers and then introduced by 

Fung (40) for soft biological tissue. This theory has been used for explaining the behavior 

of ligaments and tendons (41,42). It has also been utilized to characterize the mechanical 

properties of brain tissue in nonlinear regions at different high strain rates (35,43). By 

implementing the QLV formulation, the nonlinearity, as well as the time and history 

dependency of the tissue can be well addressed. According to the QLV theory, the stress 

relaxation function of tissue is expressed as: 

𝜎(𝑡) = ∫ 𝐺(𝑡 − 𝜏)
𝜕𝜎𝑐(𝜀)

𝜕𝜀

𝑡

−∞

𝑑𝜀(𝜏) 
(10) 

Where σc(ε) is the response of the substance to an instantaneous applied strain, ε. 𝐺(𝑡), 

representing the time-dependency of the material, is the reduced relaxation function 

which is normalized by the stress at t = 0+ as follows: 

𝐺(𝑡) =
𝜎(𝑡)

𝜎(0+)
  and     𝐺(0+) = 1  (11) 

Equation (10) for the case of stress relaxation function of the tissue is simply expressed 

as: 

𝜎(𝑡) = 𝐺(𝑡) × 𝜎𝑐(𝜀) (12) 

The instantaneous response of the tissue, σc(ε), is assumed as an exponential function as: 

𝜎𝑐(𝜀) = 𝐴(𝑒𝐵𝜀 − 1) (13) 
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where A and B are tissue constants. This function considers the initial ramp step as a 

function of strain. For the relaxation function, G(t), the following expression is used: 

𝐺(𝑡) = 𝑎𝑒−𝑏𝑡 + 𝑐𝑒−𝑑𝑡 + 𝑔𝑒−ℎ𝑡 + 𝑘  (14) 

In this equation a, b, c, d, g, h, and k are material constants that must be derived. The first 

three terms on the right hand side of the Equation (5) were used by Toms et al.(41). The 

problem with the first three terms is that when time goes to infinity, the long-term 

response of the model goes to zero, which does not accurately reflect the true behavior of 

the tissue in the long time. In the QLV modeling utilized in the research presented here, 

constant k was added to calculate the long-term behavior of the tissue. To address the 

instantaneous elastic behavior of the tissue more accurately, the QLV theory was 

implemented on stress relaxation experiments at strain levels from 5% to 30%, and 

parameters of the QLV equation were obtained. 

4.3. Instantaneous and Long-term Stresses 

Depending on the strain rate, the tissue may experience different stress levels at a 

specific applied strain that should be described in the model. It should be noted that both 

responses are elastic and bound the stress domain on the substance. Figure 15 shows a 

typical range of viscoelastic tissue responses under different loading conditions. Accurate 

determination of both elastic responses is essential because it directly relates to the 

determination of the constants of the springs and the dashpot. 



 
 

38 
 

 

Figure 15. Possible range of stress-strain curve for viscoelastic brain material 

The methods used in this study minimized the effect of viscosity to determine the 

two elastic responses that have not been previously addressed. The long-term responses 

of each stress relaxation test were directly recorded from the experiments. Thus the tissue 

stress values were estimated from 30 to 50 s after the measured force remained constant, 

times after which the estimated stress levels did not change significantly with time. This 

procedure was used for all initial strain values to find the lower bound response of the 

material. For instantaneous stresses, the QLV mathematical model was fitted to the 

results of stress relaxation experiments. Then the global optimization toolbox in Matlab 

(Version R20102a, MathWork, MA, USA) was used to find the optimal constants of the 

QLV model. The method provided the global minimum solution by starting from several 

initial values in the search domain. JMP software (Version 10.0.0, SAS Institute Inc., NC, 

USA) was used for statistical analyses and the significance level was set to 0.05. Table 3 

indicates all the constants of the tissue in terms of the QLV explanation at different strain 

levels. A significant and negative association was noted between constant B and strain 

values (P=0.005). The association for constant A was insignificant (P=0.25). The 
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association between constant k and strain values was significant (P=0.046). The 

remaining constants did not show any associations with strain. 

Table 3. Results of QLV theory for brainstem tissue  

QLV Nominal strain (%) 

constants 5 10 15 20 25 30 

A 421.148 317.926 294.548 169.177 510.577 773.359 

B 14.636 14.791 11.507 12.475 9.047 7.383 

a 0.485 0.224 0.543 0.576 0.662 0.102 

b 11.484 3.438 11.438 10.154 16.179 0.093 

c 0.172 0.483 0.182 0.150 0.138 0.633 

d 0.509 31.957 1.201 1.160 1.120 18.660 

g 0.208 0.156 0.140 0.139 0.098 0.160 

h 0.024 0.258 0.118 0.180 0.100 1.445 

k 0.135 0.137 0.136 0.135 0.102 0.105 

 

Then, the instantaneous stress of the brainstem was calculated at each strain level 

from Eq. (3) when t = 0
+
. As the strain increased, the instant response also increased as 

illustrated in Figure 16. Table 4 indicates the variation of the long-term and instantaneous 

stress responses of the tissue using the QLV theory.  

Table 4. Short-term or instantaneous stress values of the tissue from QLV theory 

Strain level (%) 5 10 15 20 25 30 

Long-term Stress (Pa) 110 140 185 245 450 635 

Short-term Stress (Pa) 454 1078 1361 1882 4391 6310 
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Figure 16 shows both instantaneous and equilibrium elastic behaviors of the tissue 

with strain.   

 

Figure 16. Instantaneous and long-term of the tissue over strain  

The two elastic responses were addressed differently to propose brain tissue 

constitutive equations in prior studies (38). Mendis et al. (22) assumed a strain rate of 

0.08/s as quasi-static and neglected the effect of viscosity. The respective strain rate in 

the study by Miller and Chinzei (14) was performed at a very small value of 0.64×10
-5

/s. 

In addition, Miller and Chinzei (14) assumed that the strain rate of 0.64/s was high 

enough to ignore the effects of the time-dependent relaxation parameters in their 

proposed model. Pervin and Chen (44), however, were able to increase the strain rates on 

brain tissue up to 3000/s, using a modified split Hopkinson pressure bar. They observed 

an increase in stress values, showing the effect of viscosity even at such high strain rates. 

In fact, the presence of viscosity makes it difficult to identify the long term and 

instantaneous responses of the tissue at very low and very high strain rates by applying 

monotonic ramps. In contrast, in this study several individual stress relaxation 
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experiments were conducted at different strain amplitudes on tissue samples to address 

both elastic responses. Our results showed that under initial strain levels of larger than 

20%, the rate of change in both stresses increased. This may hint to the nature of tissue 

nonlinearity, which unfortunately cannot be well addressed with simple monotonic ramps 

on the tissue. The application of QLV gives a better estimation of the short term response 

as the highest possible stress experienced by the tissue.  

Based on a linear regression analysis, a strong linear correlation was found 

between the two elastic responses (P<0.001). The relation was captured by the linear 

equation y=ax–b where y and x are instantaneous and long-term stresses, respectively. 

The constants were estimated along with 95% confidence interval (CI) as follows: a = 

11.0 (10.2, 11.9) and b = 666.36 (365.1, 967.6). Also both elastic stress values for bovine 

brain tissue were derived from the data published in the study figure of Laksari et al. 

(2012) and a similar regression analysis was performed. Similar to the porcine brainstem 

tissue, the resulting relation between the two elastic responses was linear with 

instantaneous stresses. The corresponding constants were however different at a = 6.4 

and b = 274.27. Figure 17 compares the results of linear regression analyses for the 

current study and the study by Laksari et al. (2012).  
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Figure 17. Correlation between short-term and long-term stresses of the brainstem, 

starting at 5% strain level for each graph and show the CI for our porcine brainstem; 

similar regression lines for bovine data derived from previous studies are also presented 

It is known that instantaneous stress cannot be directly obtained from 

experiments, due to technical issues such as overshoot, vibrations, and testing machine 

limitations (42). However, a strong correlation between the instantaneous and long term 

responses (R
2
=0.99) suggested that the instantaneous response could be estimated from 

the long term response of the tissue. This result is noteworthy because the long-term 

response can be easily measured directly from experiments. Independent of initial strain 

amplitude, the strong relation between the two behaviors also showed that the actual 

stress varied about 11 fold. From literature, a similar strong linear correlation was found 

between the two elastic responses for the bovine brain tissue (16). This similarity in the 

linear relations between the two elastic responses for both porcine and bovine suggests 

that a linear correlation might also hold between the two elastic responses for other types 

of brain tissues, including possibly human brain tissue. However, the slope for the 

regression line of the bovine brain tissue was found to be smaller than that of the porcine 

brain tissue, which underscores the need to perform experiments with each particular 
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brain tissue. This difference in slopes may explain the difference in the stiffness of the 

two different brain tissue materials. 

4.4. Relaxation Modulus of the Tissue 

The reduced relaxation moduli of the brainstem were measured at different 

strains. Figure 18 shows the results for the initial second of the test time interval, during 

which the responses varied considerably. As illustrated, the relaxation modulus varied 

from one strain level to another. However, the moduli derived at 25% and 30% strain 

values were very similar. The moduli at 15% and 20% were also similar to one another, 

but dissimilar from the results obtained at the other strain levels. 

 

Figure 18. Reduced relaxation moduli at different strain levels for porcine brainstem 

  Surprisingly, while the moduli should be independent of strain values, our 

experiments showed that they varied considerably with strain. This strain dependency of 

the relaxation modulus may be due to model truncation, as the viscous part of the tissue is 

considered linear.  In reality, the viscous part of the tissue might be nonlinear (15), thus 

the application of the QLV theory may not be capable to represent the complexity of 
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tissue behavior in the nonlinear viscoelastic regions. This finding suggests that the 

characterization of brain tissue using the QLV theory at only one strain amplitude may 

not be applicable for the whole range of tissue deformations, and multiple strain 

amplitude experiments must be performed to calculate a reasonable set of constants. 

4.5. Hyperelastic Model for Elastic Responses 

Hyperelastic models have been employed for soft biological tissues in several 

studies (15,17,22,38). The developed models were based on SEDF which can be 

expressed in terms of the invariants (Ii) of the left Cauchy Green strain tensor (Finger 

tensor), B = F . FT, where F is the deformation tensor. In the research presented here, the 

brain tissue material was considered as incompressible homogeneous isotropic material. 

For an incompressible material, the SDEF can then be written in the following form: 





n

0q,p

q

2

p

1pq )3I()3I(CW  
(15) 

                         𝐼1 = Trace [𝐁],     𝐼2 =
𝐼1−Trace[𝐁𝟐]

2
 

The stress function can be obtained by taking the derivative of SEDF with respect 

to the extension ratio as follows: 

𝐒 =
𝜕𝑊

𝜕𝜆
,   𝛔 =

1

𝐽
𝐅 ∙ 𝐒 ∙ 𝐅𝑇,  𝐽 = det (𝐅)          (16) 

where S and 𝛔 are 2
nd

 Piola-Kirchhoff and Cauchy stress, respectively. Employing the 

Cayley-Hamilton theorem, the stress function can be expressed in terms of invariants as 

follows: 

𝛔 = 2
𝜕𝑊

𝜕𝐼1
𝐁 − 2

𝜕𝑊

𝜕𝐼2
𝐁−1 

(17) 

In terms of the Finger tensor, the Mooney-Rivlin model is expressed as follows: 
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𝛔 = 𝐶01𝐁 − 𝐶10𝐁−1 − 𝑝𝐈   (18) 

where I is the unit matrix and p is a hydrostatic pressure which is added to satisfy the 

boundary conditions. C01 and C10 are constants of the material that should be measured.  

Then Mooney-Rivlin model was employed to describe the stress functions in the 

equilibrium and instantaneous states. The hyperelastic constants were found to be 

C01=16222 and C10=-16947 for instantaneous response, and C01=1084.5 and C10=-995.5 

for long-term response. Then from the generalized form of Equation (15), we kept 

constants C01, C10, and C11, which is the Mooney-Rivlin equation with addition of the 

constant C11. The hyperelastic constants resulted in C01=-30173.54, C10=27040.41, and 

C11=-22795 Pa for the instantaneous; and C01=-4361.16, C10=3837.78, and C11=-2557.45 

Pa for the long-term stress function of the material. Figure 19a and 19b  show how short-

term and long-term stresses were fitted to the hyperelastic model. Strong correlation of 

99% was found between the generalized hyperelastic models and the results of the study 

presented here (P<0.0001). The possible stress on the tissues ranged between these two 

elastic stress functions as demonstrated in Figure 19c. This figure illustrates an important 

characteristic of the tissue in which the two binding curves are elastic with no evidence of 

influence from the dashpot. More importantly, the response of the tissue, under every 

circumstance, remained bound between the curves, regardless of the strain rate.  
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Figure 19. The Mooney-Rivlin and generalized models explaining the (a) instantaneous 

and (b) equilibrium stress states; (c) both responses, including experimental data and 

generalized model, limit the possible range of stress that the brainstem may experience at 

a specific stain value   

4.6. Conclusion 

In this chapter, the QLV was employed independently at each strain value to 

estimate the corresponding instantaneous stress value, and the long-term stress values 

were measured from the experimental data. The two elastic responses can potentially be 

employed for high velocity impacts such as blast loading scenarios, under which the 
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tissue behaves close to its instantaneous response. A strong linear correlation was found 

between the short-term and long-term behaviors of porcine brainstem tissue. The linear 

trend was found on bovine brain tissue from previous studies. The short-term stress for 

our porcine brainstem was found to be 11 times larger than the long-term stress, similar 

for all initial strain levels. The reduced relaxation modulus was found to vary with strain, 

suggesting multiple strain experiments are needed to better investigate the range of 

applicability of the QLV theory. Also a generalized hyperelastic model was found to 

explain well both the short-term and long-term responses of porcine brainstem tissue in 

compression.  
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CHAPTER 5. TRAUMATIC BRAIN INJURY UNDER BLAST 

5.1. Introduction 

Annually, TBI is responsible for 50,000 deaths and 235,000 hospitalizations 

nationwide (4). From a biomechanical point of view, an assault to the head creates 

mechanical forces and motions (translation and rotation), and results in an elevation of 

ICP (45). An increase in the relative displacement and shear stress/strain on the brain 

tissue also damages the structure of the brain, including the axons and extracellular 

matrix (26,46). Acceleration and deceleration of brain tissue may lead to skull/brain 

contact resulting in contusion, observed in different parts of brain tissue. Relative 

motions between the skull and brain may cause several types of injuries such as 

intracerebral hematomas and cerebral contusions (26). Brain injury results when the 

injury related biomechanical parameters increase beyond the tolerated normal values. 

Threshold values have been defined for each of these biomechanical parameters for TeBI 

(47,48). To discuss the severity of an injury, one can compare these threshold values to 

the values obtained from a biomechanical head, brain, and tissue response analysis.   

Blast is a predominant cause of TBI. This is a major threat to soldiers in 

battlefronts. Explosions generate powerful travelling shock waves that interact with the 

human head, resulting in severe damage to brain tissue or death.,  Zuckerman (49) 

classified brain injuries due to blasts  into primary, secondary, or tertiary injuries, based 

on physical outcomes to the body. A primary blast injury (PBI) occurs when there is 

direct exposure of the human body to blast waves. PBI is frequently undiagnosed and 

underestimated, because it can cause severe internal damage without any external signs. 

A secondary blast injury (SBI) also results from a blast and is defined as trauma caused 
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by objects propelled by a blast that impacts the body. With tertiary blast injury (TeBI) 

explosions create blast winds that propel the body to hit enclosing walls, or other 

obstructing objects. Kluger et al. (50) discussed what they called quaternary brain injury, 

in which blast causes thermal burning effects. They also introduced the quinary blast 

injury, which is produced by delayed effects from blast exposure such as toxic effects by 

chemicals.  

The space in which an explosion occurs plays a major role in the severity of 

human injuries. In an open space, the blast creates a sudden increase in air pressure at the 

front of the shock wave. This is due to the expansion of the blast waves that is followed 

by a rapid decreasing pressure during the positive phase, as well as part of the sub-

atmospheric phase, which is called the rarefaction phase (51). There are several studies 

on the blast-head interaction in open spaces having been conducted on PBIs; Moss et al. 

(52) studied the interaction of a blast wave and the human head. They showed that direct 

action of a blast wave on a human head model leads to skull flexure that causes brain 

injury even at the low pressure of 1 bar. Chafi et al. (53) theoretically determined the 

response of the human brain under a blast using a finite element approach. They 

estimated the variation of ICPs in coup and contrecoup sites, and measured the maximum 

principal strain and maximum shear stress in different areas of the brain. Taylor and Ford 

(28) evaluated brain injuries when the head was exposed to a blast overpressure of 1.3 

MPa. They also measured the ICP, the volumetric tension, and the deviatoric shear stress 

of the brain. They proposed that the stress generated in local areas may cause different 

axonal injuries. In another study, Ganpule et al. (54) studied the interaction of a surrogate 

human head and blast wave in a shock tube both experimentally and computationally. 
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They showed that the skull deforms in a complex way, oscillating around the brain. They 

also showed that the deformation of brain tissue is governed by the pressure wave. 

In a confined space, however, the blast wave reflecting off walls contributes to 

creating additional irregular and complex shockwaves. In most cases with a longer 

duration, the shockwaves are capable of transferring higher amounts of energy to the 

human body (3,55). It has been proven that for shorter durations, a larger amount of 

overpressure can be tolerated, but a longer duration of loading makes the injury situation 

more severe and harmful (56). This is the reason that the severity of injuries and the rate 

of mortality are lower in open spaces than in confined spaces (3,55). The pressure 

increase is higher at the corners and near the walls due to reflections. The literature of 

blast-head interaction in confined spaces is not mature. There are only a few studies 

related to the effect of confinement. In this regard, Zhang and Sharma (57) examined the 

exposure of a three-dimensional (3-D) idealized human head to a blast of trinitrotoluene 

(TNT). Different scenarios of blasts were considered to examine the effects of the 

reflections; in open space, on the ground, and with the head placed near a concrete wall. 

They showed that the effect of reflecting walls is considerable only on the region of the 

brain closest to the wall. More recently, Sevagan et al. (58) computationally studied the 

effect of several parameters in an infantry vehicle such as boundary conditions, impact 

velocity, and seat arrangement by employing a dummy/vehicle model. They concluded 

that the effect of blast impact is more pronounced than blunt impact. In general, most of 

the studies on blast-related injuries are only focused on the interaction of the head with 

the incident shock wave. In such studies, the reaction of the brain is measured for a short 

period of time (less than 10 milliseconds) after the blast. Usually, movement of the head 



 
 

51 
 

and the consequences of the reflected waves from the enclosing walls are neglected. No 

computational study has been reported on tertiary injury, particularly as a consequence of 

exposure to a blast. When complex wave environments (confined space) are analyzed, 

several complicated and nonlinear phenomena interact that must be simulated 

concurrently.  

From chapter 5 to 8 of the thesis, the computational investigations focus on blast 

induced TBI, mainly in confined spaces. The studies presented here have been published 

previously (59-61), investigating the biomechanical responses of the brain of a head 

model during exposure to the shock front of a blast wave (which might cause PBI). The 

effects of reflections off the walls of confinement are assessed while the head is located 

in the vicinity of the wall. To this end, confined, semi-confined, and open spaces are 

modeled and compared. Additionally, the study addresses a blunt impact of the human 

head as a result of translation from the blast wind (which might cause TeBI) in both open 

space and a complex wave environment. Then the results of PBI and TeBI are compared. 

Different injury related biomechanical parameters are computationally estimated and 

compared. The study provides insight into the severity and modes of injuries in confined 

space explosions. In the case of TeBI investigations, the data are collected for about 40 

milliseconds, until the head motion stabilizes.   

5.2. Materials and Methods 

5.2.1. The Finite Element Head Model 

The size and geometry of the 50
th

 percentile deformable human head model used 

in the research presented here was derived from a 3-D head structure using a Magnetic 
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Resonance Tomography (MRT) method adapted from Horgan and Gilchrist (27). This 

head model included different head layers as shown in Figure 20.  

 

Figure 20. Finite element human head model and its essential components (59) 

The skull was modeled with an open foramen magnum to show a more realistic 

ICP variation (62). The scalp, skull, dura, pia, falx, and tentorium were assumed to have a 

linear elastic response (63-65). The mathematical model that explained the response of 

CSF was based on the Hugoniot pressure 𝑝̇ = 𝐾𝜀̇, where 𝑝̇ is the pressure rate and K is 

the bulk modulus (66). Also 𝜀̇ denotes the volumetric strain rate. Constitutive relations 

for the brain material were assumed in a wide range, from linear elastic to nonlinear 

hyper-viscoelastic (11,22,67). In simulations of the current research, the brain was 

assumed to have viscoelastic properties and its material constants were derived from 

Ruan et al. (63) who used human data from the research of Galford and McElhaney (11).  

Table 5 shows the material properties and the element types of the head 

components. The membranes were modeled as four-node shell elements. The brain, CSF, 

skull, and scalp, however, were modeled using eight-node constant stress formulation 

solid elements. 
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Table 5. Material properties of human head components and their element types 

Tissue 
Constitutive 

model 

Element types 

and thickness 

Mechanical Properties 

Density 

(Kg/mm
3
) 

Elastic 

Modulus  

(MPa) 

Poisson’s 

ratio 

Scalp Linear elastic Solid, 6mm 1.2×10
-6

 16.7 0.42 

Skull Linear elastic Solid, variable  1.8×10
-6

 15,000 0.21 

Dura, falx, 

tentorium 
Linear elastic Shell, 1mm   1.13×10

-6
 31.5 0.45 

Pia mater Linear elastic Shell, 1mm  1.13×10
-6

 11.5 0.45 

CSF Fluid-Type elastic  Solid, 1.3mm  1.04×10
-6

 
Incompressible 

K=2,190 
- 

Brain 

Viscoelastic 
Density 

(Kg/mm
3
) 

Bulk Modulus 

(MPa) 

Short-term 

Modulus (kPa) 

Long-term 

Modulus (kPa) 

Decay 

Factor (ms
–1) 

Solid element 1.0410
-6

 128 528 168 35 

 

In order to properly and accurately model the interactions of the various parts 

when the head experienced different types of loading conditions, appropriate contact 

conditions were defined between each element of the head and brain. Contacts between 

the membranes and the brain were considered as tied node-to-surface. The remaining 

contacts were considered tied surface-to-surface type (53).  

In all computational studies, the head was assumed to be free-floating, assuming 

that for the first few milliseconds, the neck and body have little influence on the head 

response under the sudden applied load on the head. This assumption has been shown to 

be logical in previous studies (68). In addition, the effects of the trunk on the head due to 
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the relative velocity were assumed to be negligible because the blast wind is applied not 

only to the head but also to the trunk. While the projection areas and the densities of the 

head and the rest of the body are different, the head and the body move with nearly 

identical velocity for the duration of several milliseconds. This fact has been 

demonstrated in research work by Fletcher and Bowen (69), studying the translational 

effect of the blast wind. In our computational modeling, the effect of gravitational force 

was ignored. 

5.2.2. Blast Wave Propagation 

Detonation is the result of a sudden release of energy that produces a sudden rise 

in pressure, heat, sound, and light. The rapid exothermic oxidation of the substance into 

the form of gas creates the blast. To determine the behavior of the explosive gas, its 

equation of state (EOS) must be defined based on its state variables. This EOS explains 

pressure-volume-energy relationships of the gaseous form of detonation. Jones-Wilkins-

Lee (JWL) is the most well-known EOS which has been verified by hydrodynamic 

experiments (70). JWL EOS is expressed as:  

1 2

1 2

1 1
R V R V E

p A e B e
RV R V V

     
       

   
 (19) 

where 1 2, , ,  and A B R R are the constant parameters that are defined by the user; V is the 

relative volume; and E is the internal energy per initial volume. All are derived from the 

explosive handbook by Dobratz and Crawford (71). The JWL equation is simple, fairly 

accurate, and widely used in detonation analysis. Most importantly, it is possible to 

employ a gradual increase in size of the medium elements to decrease the computational 

cost (72), but it is essential to have a fine and uniform FE mesh for detonation to gain 
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rational results (70,72). In this thesis, air is assumed to be an ideal gas. The linear 

polynomial EOS for air can be simply written as:  
0

1p E





  with =1.4, E=0.25 

MPa, and 0 = 1.2910
-3

 g/cm3. In this chapter, p is air pressure, E internal energy per 

initial volume, 0 initial density, and  air density. Also,  is the polytropic ratio of 

specific heats. The cut-off pressure is set to zero to stop the creation of negative pressure.  

 The detonation and air domain were created in Altair Hyper Work 11.0 (Altair 

Engineering, Troy, Michigan). As the processor and postprocessor, LS-Dyna software 

971 (Livermore Software Technology Corp., Livermore, California) was employed for 

the simulations in this research. Also the penalty method was implemented to simulate 

fluid structure interactions. Shear stresses, pressures, and strains at different areas of the 

brain were monitored and determined in all scenarios. 

In order to model the blast propagation in FE analysis, the ALE formulation, 

which is a combination of the Lagrangian and Eulerian approach, is used, benefiting the 

advantages and minimizing the disadvantages of the two methods (73). ALE maintains 

the element shape inside the domain and allows the use of a purely Lagrangian 

description at the boundaries. The ALE approach is explained by the fundamental 

principles in physics explaining the behavior of any continuous medium; conservation of 

mass, momentum, and energy. The ALE form of the Navier-Stokes equations including 

conservation of mass and balance of momentum equations is explained by the following 

equations (74): 

i

i

i

i

x
w

x

v

t 











 



 (20) 
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where σij is the Cauchy stress tensor and bi is the external body force per unit mass. The 

velocity of the material is denoted by vi, the velocity of the mesh by ui, and the relative 

velocity wi = vi – ui. The Cauchy stress tensor is explained as: 

)( ,, ijjiijij vvp    (22) 

where p is the pressure,  is the dynamic viscosity, and ij is Kronecker's delta.  

The balance of energy:  

j

jjijiij
x

E
wvbv

t

E









 ,  (23) 

where E is the specific total energy per unit volume. The multi-material ALE formulation 

allows the FE mesh to move independently of the material flow. Upon impact of the head 

with blast waves, the transferred load to the head can be calculated through a penalty-

based FSI technique. In this method, a coupling resistance force is calculated based on 

the penetration depth (70). 

5.3. Validations of the Computational Results  

5.3.1. Blast Simulation  

Validation of blast-head simulation interaction remains a challenge. In the 

literature, several cadaver tests have been used to validate computational modeling of 

blunt impact. In recent studies, shock tube tests have been employed in blast scenarios, to 

examine the interaction of surrogate head models with the blast waves (54,74). In most of 

these experiments, only the kinematical responses of the dummy heads were measured 

and used for the validation of computational simulations. Robert et al. (74) developed a 
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human head model and a physical human head surrogate with the identical dimensions of 

their head model. For brain tissue matter, they employed Sylgard gel 527. They measured 

and compared the pressure inside the brain for the head model and for the surrogate. This 

work is regarded as a big step. However, in reality, the finite element models of real 

human heads used in computational studies are far different from the surrogates, because 

the surrogates do not include the complications of the human head. This question still 

remains for full validation of any head model in use. Perhaps parametric studies by such 

models can provide a base for analysis and at some stage can become a platform for 

validation.  

The accuracy of simulating blast wave propagation in a closed field and the wave 

reflections from wall(s) were validated against experimentally measured pressure 

published by Edri et al. (1). Several experimental blast scenarios in the published study 

were reproduced in a semi-confined space with an opening on the top. The reflected 

pressure values were measured at specific locations inside the space (Figure 21). In the 

computational study, 1.5 kg TNT was used for explosion. In multiple experiments, the 

pressures at the equivalent coordinates were monitored. Due to symmetry of the space, 

one fourth of the environment was used for the modeling purposes, which considerably 

reduced computational cost and running time of the study. Also, to ensure accuracy, 

several mesh sizes were considered for the air domain, as well as for the TNT material, 

leading to an optimum mesh size for the analyses.    
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Figure 21. 3-D view of one quarter of the cubicle, the instrumented wall, gauge locations 

and HE detonation position (L1=156×L2=134× L3=52 mm
3
) (59) 

Close agreement can be seen by comparing the pressure values produced in the 

computational analyses against the experimental data (Table 6).  

Table 6. Comparison of the reflected pressure from the explosion; experimental data  

from the study of Edri et al. (1) vs. the numerical simulation  

Gauge No. 

Pressure (kPa) Error% 

Experimental FE Simulation  

1 2125.2 2412 13.5  

2 1117.0 1037 7.1  

3 990.47 877 11.45  

4 1469.8 1370 6.8  

 

 

 

L1 
L2 

L3 

Explosive material 

One forth of cubicle 

1 

2 3 
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Pressure gauge 

locations 

According to study by Edri et al. (1) 
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5.3.2. Head Impact Simulation 

The human head model in the thesis presented here has been validated under 

impact load several times. Originally, Horgan and Gilchrist (27) verified it against 

different commonly referenced cadaveric experiments (67,75,76). This head model has 

also been previously employed under different blast scenarios as well as blunt impact 

with acceptable results (29,53,77,78).  

The computational modeling was validated against experiment No. 37 of Nahum 

et al. (67) to assure the appropriate implementation of parameters such as boundary 

conditions and material properties. The Nahum et al. (67) experiment has been used as a 

de facto standard to validate several computational research projects in the biomechanics 

of head impact. In experiment No. 37, a cylindrical mass with a weight of 5.59 kg and a 

speed of 9.94 m/s impacts the head which is inclined 45 degrees from the brain Frankfort 

plane. To simulate the impact situation, a semi-sinusoidal input force with amplitude of 

7900 N was applied to the head in the research presented here. Figure 22 compares the 

ICP in the coup and contrecoup sites of the brain for the simulation to the corresponding 

measurements in the cadaver test. As depicted, the simulation accurately predicted the 

response of the brain. The close agreement of the results met the requirements for the 

simulation. 
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Figure 22. Validation of computational studies with the impact on the forehead of a 

human cadaver, performed by Nahum et al. (67) in which the brain ICP variations were 

compared (61) 
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CHAPTER 6. EFFECTS OF REFLECTIONS FROM WALLS 

ON THE HEAD 

6.1. The Confined Space and the Head Stand-off Positions 

Two cubic confined spaces were considered to simulate the effect of walls on the 

brain biomechanical parameters; the sides of the small space measured 1000 mm, and the 

sides of the large space were1450 mm. The mesh size varied from about 4 mm to 23 mm 

from the detonation location to the farthest location of the space, respectively. For a fair 

comparison, the size of the mesh in both spaces kept essentially the same. The mesh size 

and its variation are shown in Figure 23. 

 

Figure 23. The confined space (a), the FEM discretized space (b), and the explosive 

material used in the simulation (c); while the detonation mesh is fine and uniform, the 

space (air) has undergone a variation of size when it has been away from the detonation 

(59) 

In these experiments, the head model was placed at 3 stand-off positions away 

from the HE charge. The positions were devised to be either close to or away from walls 

of confinement (Figure 24). A total of 6 positions were assumed. The first three positions 

were in the large closed space indicated by A, B, and C. The heads were exposed to the 

(a) 
(b) 

(c) 
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incident shockwaves, since these positions were away from the neighboring wall. The 

remaining three positions were in the small closed space indicated by D, E and F, where 

the walls were close to the head models. Therefore, these heads experienced the incident 

shockwaves as well as the reflections off the neighboring wall(s). To be fairly compared 

with each other, paired positions A and D, B and E, as well as C and F were located at the 

same coordinates with the same orientation and distance of the head model with respect 

to the detonation. For the case studies presented in this chapter, the head was lifted up 

300 mm from the ground level. A cubic 57gr TNT was located in the top left corner of 

the two spaces.  

 

Figure 24. Positions and orientation of the human head model in the two environments 

(top view): Paired Positions A and D have the orientation of 0° and standoff of 860mm; 

Paired Positions B and E have the orientation of 30° and standoff of 1000mm; Paired 

Positions C and F have the orientation of 45° and standoff of 1200mm (59) 

 The data were collected from small regions of the brain and the skull. Then the 

averaged values of the biomechanical parameters of interest were calculated and 

compared for each paired position (for instance paired B and E) (59).  
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6.2. The Computational Results 

6.2.1. Pressure Wave Magnification due to Reflections from the Walls 

 To estimate the variation of blast wave propagation inside the two spaces, the 

head models were first absent from the spaces, and the blast scenarios were simulated. 

Then, the pressure at points of interest (points 1, 3, and 5 near the walls, and points 2, 4, 

and 6 far from the walls) were measured. The pressure waveforms at points in the small 

and large spaces with the same standoff positions were compared. The results of the 

comparison are illustrated in Figure 25, where large differences in pressure magnitude 

can be observed in the pressure amplitudes at the same standoff distance points.  

 

Figure 25. Blast wave overpressure at the coordinates where the heads would later be 

tested (59) 
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 The increased pressure difference for points 2, 4, and 6 resulted from the shock 

wave reflections created by the presence of neighboring wall(s). The differences between 

pressure values at point 1 and 2, as well as points 3 and 4 both showed about 2-fold 

increase when measured near the wall. The difference increased up to four times, when 

point 6 was compared with point 5. Here the cumulative reflected pressures from the two 

neighboring corner walls caused this increase. 

6.2.2.  The Reflected Shockwaves from Initiation to Reflection 

 The shockwave propagations in the small environment are shown in Figure 26. In 

this test, the human head model was located in the corner most distant from the 

detonation. A notable reflection was not realized from the walls or the ground which 

were immediately adjacent to the detonation (Figure 26b, Figure 26c, and Figure 26d). 

Figure 26f illustrates that reflections were initiated at the instant shockwaves hit the walls 

to either side of the head. Figure 26g through Figure 26k illustrate the reflections that 

propagated throughout the space. Figure 26i shows the time that reflections of the two 

walls hit the head. Reflections were continually generated until they hit the human head 

model in the corner. Due to symmetry in this domain, the reflections from the two walls 

hit the head simultaneously. This can be the worst scenario. 
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Figure 26. Blast overpressure wave propagation with the human head model placed in the 

corner at position F; the medium is cut for better observation of wave propagation around 

the head (59) 

6.2.3. Human Head Model Responses 

For all 6 given blast scenarios, several injury-related biomechanical parameters 

were collected and compared, including pressure on the human skull, ICPs, brain rigid 

body accelerations, brain strains and stresses, and brain maximum shear stresses.   

6.2.3.1. The skull pressure 

 The post-blast pressure on the skull of each of the six head models is shown in 

Figure 27. While pressures at points 1 and 2 (without head models in the spaces) showed 

a significant difference (Figure 25), pressures on the skull of the head models at positions 

A and D were not found to different to a similar degree. 
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Figure 27. Pressure applied on the skull at all positions; pressures at A, B and C are 

shown with dashed lines; pressures at D, E and F are shown with solid lines (59)  

The pressure on the skull at position D increased about 50% compared with that at 

position A. The pressure on the skull at position E was notably higher than that at 

position B (Figure 27). The difference between skull pressure at positions C and F were 

even higher (about 4 times) than the ones at the other paired positions. It was caused by 

the reflections from the two walls hitting the head model. 

6.2.3.2. Variations of ICP 

In all scenarios, the pressure on brain tissue was considerably less than that on the 

skull, due to the presence of CSF. The pressure values were collected from the areas 

showing maximum ICP variations. Compared with position A, the increase of nearly 25% 

in ICP was recorded on the brain at position D (see Figure 28). The increase at position E 
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was even higher. In the corner at position F, the ICP was considerably increased 

compared with its counterpart position at C.  

 

Figure 28. ICP variations in coup site for the given locations (59) 

The pattern of the ICP change was similar in the contrecoup site (Figure 29). The 

negative pressure on the head at position D was about 55% higher than that at position A. 

The difference between maximum pressures at positions E and B was even greater (about 

100 kPa at position B to 280 kPa at position E). Likewise, the difference in pressure at 

positions C and F became even higher as the head was located at the corner of the space.    
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Figure 29. ICP variations in countercoup site for the given positions (59) 

6.2.3.3. The head acceleration 

For all cases reported in this chapter, rapid acceleration and deceleration 

waveforms are shown in Figure 30. Similar observation to ICP changes can be reported 

for the variation of accelerations of the brain. The maximum acceleration and maximum 

ICP were seen at almost the same time. As a result of reflected blast waves, the head 

model located in the corner with the largest standoff position experienced a maximum 

acceleration of about 400g. 
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Figure 30. Rigid body acceleration of the brain at different positions (59) 

6.2.3.4. The brain shear stresses 

 Figure 31 depicts maximum shear stresses at different positions. The variation of 

shear stresses on the brain was measured similar to other biomechanical metrics. The 

difference in shear stress values on the brains at positions A and D was not significant. 

Similar to the changes in ICP and acceleration, shear values at position E showed larger 

increase than that at position E. The largest shear stress value found to be at position F in 

the brainstem (Figure 31).  
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Figure 31. Shear stress variations on brain tissue at the given positions; the incident 

pressures are shown in dashed lines and the effect of reflected pressure are shown in solid 

lines. Brainstem showed maximum shear stress in all cases (59) 

6.2.3.5. The brain principal strains and stresses 

Figure 32 shows principal stresses and strains at positions C and F (the results of 

other cases are not reported here). The data were collected from brainstem tissue that 

showed the maximum variations. With the head model positioned at F in the corner, both 

principal strain and stress values found to be the largest. The strain on the brainstem at F 

was found to be three fold greater than that at C. Similar discussion would be applicable 

for principal stress values. 
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Figure 32. The change in the principal strains (a) and stresses (b) in brainstem tissue (59) 
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6.3. Discussions   

This chapter presented the effect of walls and their reflections on the variation of 

biomechanical parameters. The head model was placed at different positions and different 

distances from HE locations. It was shown that the pressure on the skull was as large as 4 

to 6 MPa for different scenarios. The level of transferred pressure to the brain reduced to 

about 150 kPa to 250 kPa due to the presence of CSF (about a 25-fold reduction).  

As shown in Figure 25, the increase in pressure due to reflections from wall(s) of 

confinement was about two-fold. The pressure on the brain and skull, however, did not 

increase by two-fold. For instance, the skull at position D did not experience a significant 

increase in pressure compared to the skull placed at the same standoff distance but far 

from the wall. This may be due to the fact that in this specific location and orientation of 

the head the pattern of the blast wave was changed as soon as the waves hit the head. The 

change in the pattern of blast waves might change the direction of reflections not to hit 

the head or reduce their strength. In such a situation, the position of the head with respect 

to detonation played an important role.  

At positions B and E, the higher pressure rise may be explained in a similar way. 

Consequently, the overpressure due to the wall was reflected to the head and increased 

the pressure level on the skull as depicted in Figure 27. For positions C and F, the 

scenario was the most serious, as there were reflections from both walls to the head, and 

as expected, the head experienced more reflected shock wave overpressure. The skull and 

brain underwent a tremendous amount of increase in pressure. The acceleration of the 

brain and its rate of changes were also increased considerably. A similar scenario could 

explain the brain shear stresses. Table 7 shows different loading magnitudes in different 
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scenarios as well as the amount of magnification due to the vicinity of the wall. 

According to Table 7, magnification increased from case 1 to case 3. The maximum 

magnifications occurred in the corner, and the skull, for instance, underwent more than a 

300% magnification. 

Table 7. The skull pressure, ICPs, brain resultant acceleration and shear stress at different 

locations and the percentage of change when the head is near the wall as compared to the 

one away from the wall (59) 

 The head at different 

positions under blast 

Skull pressure  Positive ICP Negative ICP Acceleration Shear stress 

(MPa) (kPa) (kPa) (g) (kPa) 

Case 

1 

position A 3.41 126.61 -116.86 249.19 32.76 

position D 5.27 158.37 -181.68 268.77 58.01 

Magnification % 54.55 25.08 55.47 07.86 77.05 

Case 

2 

position B 2.19 80.13 -100.61 222.7 32.95 

position E 4.45 217.54 -278.09 345.3 66.04 

Magnification % 103.20 171.48 176.40 55.05 100.42 

Case 

3 

position C 1.46 69.60 -76.78 175.96 48.98 

position F 6.05 236.66 -249.48 398.78 115.46 

Magnification % 314.32 240.03 224.93 126.63 135.73 

 

Blast as a major cause of TBI was more injurious when it occurred near walls. In 

such circumstances, the biomechanical parameters on the head were increased 

significantly. In this research, six different blast scenarios were considered for which the 

brain ICP, acceleration, shear stress, principal stresses, and strains were determined and 

compared. The scenarios consisted of pairs of locations in which the head was near or 

away from the walls. The results showed that the blast wave overpressure was intensified 

near the walls, but the magnification might not be entirely transferred to the head.  In 

reality, the position of the head and the wall, with respect to the explosive material, could 

determine whether the reflected pressure waves were transferred entirely to the head. 

This study also explained that corners intensify the pressure more than other places, as 
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multiple summed reflections were expected from the neighboring walls. In the case 

studies presented in this chapter, the pressure on the head near a corner was magnified 

almost four times, and as such the brain could experience a higher level of injury. Similar 

explanations could be discussed regarding the level of accelerations and shear stresses on 

the brain tissue. 

Comparing the brain biomechanical parameters illustrated that when the head was 

located near a wall, especially near a corner, not only ICPs, acceleration, and shear 

stresses on brain tissue could be increased significantly, but they also remained for a 

longer period of time. According to De Candole (56), in short durations the brain can 

bear a large amount of overpressure, but if the duration of loading on the head is 

extended, the tolerance thresholds of the brain drop and injurious scenarios result. As a 

consequence, the reflected waves hitting the head could considerably increase the level of 

primary blast induced TBI.   
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CHAPTER 7. EFFECT OF BLAST IN CONFINED SPACES ON 

THE HEAD 

7.1. Open, Semi-Confined, and Confined Blast Spaces 

To examine the impact of the blast environment, the head model was placed in 

three different spaces (Figure 33a); a closed or confined space where the reflections of 

the walls were accounted for in the modeling procedure; a semi-closed or semi-confined 

space, where only the roof was open; and an open space where the roof and the walls 

across from the detonation were removed so no reflections were realized. The explosive 

material was inserted at the corner of the computational space on the ground (see Figure 

33). The dimensions of the computational space as well as the position and orientation of 

the head are illustrated in Figure 33b. Three detonation weights of 95, 145, and 215g 

TNT as HE material were considered for all of the three spaces examined. The stand-off 

position of the head was 950 mm from the explosive charge and the orientation of the 

head in all cases was kept constant, looking towards the explosive location. As an 

important part of the simulation, discretized domain is shown in Figure 33c, illustrating 

the fine mesh for the HE.  
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Figure 33. (a) The three blast spaces considered: closed or confined, semi-closed or semi-

confined, and open; (b) Geometry of the spaces, position and orientation of the head as 

well as the cubic detonation; (c) Discretized domain and HE material (60) 

7.2. Results 

7.2.1. The Shock Waves Pressure 

Figure 34 illustrates a comparison of the pressure at two identical locations in the 

confined space with the corresponding points in the open space. Figure 34a shows a point 
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at about 950 mm from the detonation position, which was located inside the space. The 

first sudden rises were the same, but in the confined space, there were a number of 

subsequent peaks due to the reflections which produced pressure gradients comparable 

with the first peak even after several milliseconds. In the open space, though, the first 

sudden rise was followed by a drop to a slightly negative value and then predictably 

converged to the atmospheric pressure.  

 

 

Figure 34. Pressure due to blast of 95gr HE material at two different locations in the 

confined space and their corresponding locations in the open space: (a) at location 1, 

inside the space; (b) at location 2, on the wall behind the head, and; (c) approximate 

locations of the two points in the space (60) 
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Figure 34b illustrates pressure in a location at about 1650 mm from the detonation 

position on the wall behind the head in the confined environment and compares it with its 

corresponding location in the open space. Due to the wall, the amount of pressure at this 

specific location was magnified about three times compared with that of open space. 

Also, the following reflected pressures on the wall were notably high and their effects 

could be seen after the first peak for the particular position. The peaks, created shortly 

after the initial peak, were reflected from the wall behind the head. But there were a 

number of considerable peaks such as the ones at about 7.6 ms in Figure 34a and 5.6 ms 

in Figure 34b that were even more powerful than the ones created before due to the 

cumulative effect of the blast waves at those locations.  

7.2.2. Brain Kinematics  

The resultant rigid body velocities of the brain and skull as well as the relative 

velocity of the brain with respect to the skull were studied under detonation of 215gr HE 

material for the three environmental spaces considered. As shown in Figure 35, larger 

differences in the relative velocities were seen at the initial stage once the waves hit the 

head. In the open space, the velocities converged to an almost constant value after 15 

milliseconds (Figure 35a).  

The final velocity of the head in the open space was the highest and markedly 

more than that of the confined and semi-confined spaces. In the semi-confined space, the 

indirect blast waves due to the reflections hit the head in such a way as to reduce its 

velocity (Figure 35b). This effect dissipated very soon, contributing to a steady state 

motion after about 15 milliseconds. In the fully confined space, on the other hand, the 

fluctuations due to the reflected waves were seen for a longer duration (Figure 35c).  
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Figure 35. The velocities of the brain and the skull and their relatives under a blast of 

215gr HE material in (a) open space, (b) semi-confined space, (c) confined space, and (d) 

the relative velocities of the brain and skull in all spaces compared (60) 
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The reflections also hit the head from different direction to reduce or increase the 

head motion. To compare the motion of the brain, Figure 35d shows the relative velocity 

of the brain with respect to the skull in different spaces. In Figure 36, the rigid body 

acceleration of the brain with time is plotted for all three spaces under the detonation of 

215gr HE. As seen, the brain initially underwent an acceleration of 1000 G for all cases, 

but it dropped to zero in the open and semi-confined spaces soon. In the confined space, 

however, several other peaks due to arrival of the reflected waves from the confined 

boundaries were shown. 

 

Figure 36. Variation of the brain rigid body acceleration at its center of gravity over time 

when imposed to blast shockwaves of 215gr HE material (60) 

7.2.3. Brain ICP 

Figure 37 shows the ICP contours of the brain when the head is subjected to blast 

waves in the open space. The pressure distributions in coup and contrecoup sites were 

presented at different times for the first few milliseconds of the blast wave incident. As 

depicted, different parts of the brain at different times experienced positive and negative 

pressures, with the temporal lobe bearing the most.  
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Figure 37. ICP (GPa) contours of the human head model in the open space at different 

times after exposure to blast waves of 95gr HE with the areas of brain bearing the 

maximum and minimum pressures at each time (60)  

Figure 38 shows the averaged values of ICP with time in the temporal lobe 

against different amounts of HE for all the environments. As expected, when increasing 

the charge weight, the ICP was increased accordingly in the brain. In order to evaluate 

the response of the brain in different spaces, ICPs due to blasts of 145gr HE were also 

compared (Figure 39). While the maximum ICP for all of the cases were nearly the same, 

it is clearly obvious that the brain experienced the most pressure variations with a longer 

duration in the confined space. 
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Figure 38. ICP variations in coup site of the brain (temporal lobe) under different blast 

intensities in: (a) open, (b) semi-confined, and (c) confined space (60) 
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Figure 39. ICP variations over time in coup site of the brain in all spaces for explosions 

of 145gr HE material (60) 

7.2.4. Brain Shear Stress 

The variation of shear stress distributions on the brain are shown in Figure 40in 

blast scenario. Unlike the ICP distribution, the shear stress distribution did not have a 

predictable pattern due to complexity in brain geometry and its material properties. 

Variations of shear stress over time on two different regions of the brain are also 

illustrated in Figure 40. Shear stress in a region on the temporal lobe presented a similar 

pattern and values in all three scenarios with only a slight difference in the open space 

(see Figure 40a). The observation however, showed that the highest shear stress happens 

in the brainstem region, and as shown in Figure 40b, there was a large discrepancy 

between the shear stress fluctuations in the confined space and the other two 
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Figure 40. (a) Average shear stress with time in temporal lobe (b) in brainstem, bearing 

maximum shear stress, under the blast of 145gr HE material (60) 
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investigated. Our current study investigated the effect of walls in the confined and semi-

confined spaces under different explosion intensities compared with that of the open 

space. Data was collected for about 40 milliseconds to follow the behavior of the walls 

until the reflections disappear. This chapter also examined the reasons for the harshness 

of the situations in confined spaces. 

The walls in semi-confined and confined environments produced reflections 

which might add to the biomechanical parameters already created by the direct shock 

waves. The impact of reflections was very difficult to evaluate or predict at any point and 

any time in such 3D physical domains. They could amplify the cumulative effects in one 

place/time or otherwise at another place/time. According to Figure 36, the brain rigid 

body acceleration in the open space included one peak followed by successive peaks, 

which were comparatively small and vanished in a matter of a few milliseconds. In the 

confined space, on the other hand, the reflections caused successive jumps at the later 

stages, producing motion and acceleration for a longer duration, and consequently, 

further peaks. The generated ICP in the open space gradually diminished with time, 

usually after about 10 milliseconds, regardless of the HE weight (Figure 38a). The 

highest amount of pressure was realized on the head after approximately 1 millisecond. 

The averaged ICP buildup with time in the semi-confined space was slightly harsher, but 

behaved similarly to that of the open space (Figure 38b), and the pressure dissipated after 

nearly 15 milliseconds. In the confined space scenario, however, the pressure lasted 

notably longer and lessened more slowly (Figure 38c) as the explosive material could not 

leave the space. The pattern of shear stress was also explained similarly in different 



 
 

86 
 

spaces. The brainstem in the open space suffered less and in the closed space experienced 

the most shear stress (Figure 40b).  

The level of severity cannot be evaluated according to different available criteria. 

For instance, head injury criterion (HIC) derived from acceleration-time history, is based 

on skull fracture and not brain injury. More importantly, they are mostly applicable for 

low-velocity impacts in which the duration is more than three milliseconds (79). There 

are also a number of thresholds that have been previously proposed such as an ICP 

threshold of 235 kPa by Ward et al. (80) or shear stress threshold of 8 to 16 kPa by 

Anderson (81). However, these thresholds have not considered the duration and time-

history characteristics, but it is acceptable to compare these injury-related parameters in 

the open space with the ones in the confined or semi-confined environments. 

Considering Figure 36, Figure 39, and Figure 40a, it was shown that the earliest 

peaks in all cases were identical, indicating that the head, at this point in time, suffered 

from the direct shockwave from detonation only. The impact of reflected waves was not 

realized yet. In the open space scenario, the shockwave overpressure passed quickly and 

diminished in a matter of few milliseconds. In the semi-confined space, the direct and 

reflected waves exited from the open-top surface, so their impacts diminished much 

faster than the fully confined space. The discrepancies in the parameters such as ICPs for 

the confined space in comparison with those of open and semi-confined space settings 

were notable. Many fluctuations in all of the parameters in this case were not predictable, 

because the pattern of the overpressure on the head changed due to the surrounding walls. 

Also, the durations for all scenarios showed that the blast waves could not exit quickly in 

confined spaces and it took much longer for the blast energy to be diminished. Thus, the 
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effects of environmental situations in confined spaces were much more severe as 

indicated by the number of sudden increase/decrease and the duration of the parameters.  

To form an appropriate picture of why the situation is more injurious to the brain 

in closed spaces, mechanical properties of the brain can be considered as a key factor. 

Brain, materially, is viscoelastic, having a time-dependent behavior and a phase lag 

between the input stress and output strain. While the first peaks, due to the direct shock 

waves in Figure 36 and Figure 39 were the highest levels of acceleration and ICP 

respectively, the rest of the peaks were markedly important for the brain. After the first 

peak, the deformed region of the brain tended to return to its original position once the 

overpressure was removed. In open and even semi-confined settings, this might happen, 

as the fluctuations after the first peaks were negligible. In the confined space, however, 

the brain experienced subsequent overpressure loads. For instance, note Figure 39 in 

which the magnitude of negative pressure after 5 milliseconds was similar to the earliest 

peak positive pressure in all scenarios from the impact of reflected waves on the posterior 

aspect of the head. In such situations, while the brain tissue was deformed by the first 

positive peak overpressure, it suffered a negative overpressure due to the reflections in 

the opposite direction shortly afterward. In such a case, the brain tolerated the strain even 

after the first peak vanished due to the phase lag and, at the same time, experienced more 

fluctuations. For brain tissue, these circumstances were catastrophic and could create 

additional damage to the cells and axons. Therefore, direct blast waves together with 

indirect waves in confined environments contributed to cumulative injuries, increasing 

the risks of PBI due to transferring more damaging energy to the head. The semi-

confined space, on the other hand, behaved similar to the open space in that the first 
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peaks of the biomechanical outputs were dominant, and one could neglect the remaining 

fluctuations. In light of the increased severity of injury which occurred from blast in 

closed environments, the study suggests adding feasible openings or pressure relief 

systems in structures or vehicles which may be potentially subject to explosive forces. 

This may improve survivability, as the particularly harmful aspects of blast in closed 

environments are minimized. 
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CHAPTER 8. BRAIN PRIMARY VS. TERTIARY BLAST 

INJURIES 

8.1. Modeling for the Assessments of Brain PBI and TeBI 

In the case of a blunt impact, an object hits only the head while the whole body 

stands still. In this case, after only a few milliseconds, the impact will be realized by the 

neck and then the rest of the body. Therefore, analyzing a human head model without 

torso for longer durations certainly invalidate the results. In a blast scenario, on the other 

hand, the blast wind hits both the head and the body and throws the whole body in the 

direction of the airflow (which is different from a blunt impact situation). However, the 

surface areas as well as the densities of the head and the body are not the same which 

makes them move very differently. Considering the fact that the head was close to the 

wall in chapter 6, the simplification of neglecting the body was logical, so it might be 

hypothesized that even the entire body traveled at nearly the same velocity until striking 

the wall. This fact could also be seen in the research of Fletcher and Bowen (69) on the 

translational effect of the blast wind. 

The focus of the literature has been mainly on PBI. Salimi Jazi et al. (68) also 

studied the effect of the attached body on the biomechanical responses of brain tissue in 

an open-space blast scenario. They showed similar ICP and shear stress for the cases of 

head-neck free floating and attached torso to the head. Sarvghad-Moghadam et al. (82) 

also studies the effect of face shield in the mitigation of blast primary TBI. This chapter 

is thus focusing on the additional mechanical stresses and strains due to physical impact 

of the head with an obstacle or wall on top of the PBI due to blast, contributing to brain 

blast-impact trauma.  
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8.2. Biomechanical Data for Assessment of TeBI 

Due to its complex architecture, the cross sectional geometry of the head varies, 

depending on the plane being considered. This results in different responses under insult 

from different directions. Frontal, occipital, and side impacts cause different ICP 

gradients, with occipital impacts having the highest ICP (63). Analysis under occipital 

impact is, therefore, a good scenario for the study of a tertiary blast injury (TeBI) 

assessment. Figure 41a shows an impact of the head with a rigid wall with data collected 

from an area of the occipital lobe. As the velocity of the head increased, the value of the 

ICP increased, but the duration of ICP elevation became shorter.  

 

 

Figure 41. (a) ICP variation in occipital lobe and (b) brain rigid body acceleration under 

occipital impact of the head with a rigid wall over time (61) 
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Figure 41b shows that the rigid body acceleration displayed similar 

characteristics. It should be noted that all of the biomechanical parameters plotted were 

averaged values from specifically mentioned areas of the brain. 

8.3. Methods of Modeling PBI and TeBI 

Figure 42a shows the order of events from the point of detonation of a 95 g HE 

charge, the generation of shockwaves, exposure of the head to the waves (PBI), the head 

striking the wall, and the contours of the brain ICP (TeBI). Figure 42b further illustrates 

the development of ICP with time created in such a scenario. 

During the interval between the dissipation of the blast overpressure and the onset 

of the impact of the head with the wall, brain stresses/strains were reduced to normal (the 

green region interval in Figure 42b). The analysis of PBI and TeBI can be performed 

separately. In the first analysis, PBI was considered, and kinematical and mechanical 

parameters were determined. In the second analysis, the final velocity of the head, due to 

the PBI, was used as the input parameter for the determination of the TeBI that occurred 

under head impact and it was assumed that there were no residual stresses/strains from 

the PBI analysis (61). 
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Figure 42. (a) Schematic representation of the setting for a combination of PBI and TeBI 

when the head was hit by blast load (95gr HE) and then struck the wall (b) ICP variation 

over time (61) 
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8.4. Results 

8.4.1. Biomechanical Data for Assessment of PBI 

8.4.1.1. Brain ICP and shear stress 

The averaged values of the ICP over an area of the temporal lobe are plotted vs. 

time in Figure 43a, following the explosion of 95g of HE in the two space settings. It is 

shown that in both environments, the first peak of ICP, due to the direct shockwave 

effect, was almost identical. Over time, however, the ICP in the confined space deviated 

from that in the open space because of the interactions of the blast waves with the walls 

of the confined space and the creation of reflected waves which subsequently hit the 

head.  

To better visualize this, Figure 43b shows the brain ICP contours when the head 

was exposed to a 95g HE blast in the open space. As shown, different parts of the brain 

suffered from the variation of ICP in coup and contrecoup sites. The negative ICP in the 

contrecoup site was due to the dynamics of the head components, but it was amplified in 

the confined space due to the addition of reflected blast waves. In both the open and 

closed spaces, the ICP reached its maximum in the temporal lobe because of the fact that 

this part of the brain was the first part exposed to the blast. 

The average shear stress with time in an area of the temporal lobe is illustrated in 

Figure 43c. As shown, in the case of the confined space, the temporal lobe sustained 

higher shear stress with longer duration due to the addition of exposure to waves from 

wall reflections. After about 40 milliseconds, the blast wave overpressure strength 

diminished and, consequently, the entire load on the head was removed, although the 

head was still in motion. 
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Figure 43. (a) Comparison of averaged ICP in the temporal lobe; (b) ICP contours of the 

human brain in the open space; (c) Shear stress change in the temporal lobe; all from 95g 

HE charge (61) 
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8.4.1.2. The head motion in different blast space settings 

Figure 44 shows the velocity of the head in the two space settings with different 

amounts of HE. As expected, the brain was initially accelerated rapidly at the onset of the 

exposure to blast waves, followed by a sudden transient deceleration due to the negative 

ICP that was produced immediately after the shock front. In the open space environment, 

the brain then accelerated at a slower pace until reaching a constant speed. In all of the 

cases, the damping properties of the air were ignored so that the head traveled steadily 

after the waves’ strength diminished. In the open space scenario, the speed became steady 

after about 15 milliseconds. The situation in the confined space, however, was different 

and complicated with the reflections lasting longer and reducing the speed of the head 

when they acted opposite to the head’s direction of movement. 

As the weight of the HE charge increased, the magnitude of the overpressure 

increased and caused head motion of higher velocity (see Figure 44a-c). In the open 

space, the increase in velocity was clear and predictable, but in the confined space 

scenario it became difficult to predict. In Figure 44, many fluctuations in the velocity of 

the head model were seen in the confined environment, and the final speed of the head 

was clearly different from that in the open space. As depicted, the speeds of the skull and 

brain finally converged to an almost equal value after about 40 milliseconds. It should be 

mentioned that there might be slight changes in velocities in the confined space if the 

simulation continued, but they would have been insignificant as the energy of the blast 

waves and their reflections had kept dissipating over time. Using 40 milliseconds as the 

simulation time, therefore, seemed reasonable. 
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 Figure 44d shows the velocity of the brain and skull over time under different 

HE charge weights in the open space setting, helping to examine the effect of the 

intensity of the blast on the velocity of the head. Unlike the confined space, the velocity 

was proportional to the HE charge weight as expected. 

 

  

Figure 44. Velocity of the skull and brain in the two spaces under: (a) 95g, (b) 145g, and 

(c) 215g HE material; (d) Velocities of skull and brain in the open space (61) 
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8.4.2. Comparison of Biomechanics Data for the Two Space Settings 

8.4.2.1. Open space  

With no walls in an open space setting, the head continues in motion even after 

the blast wave passes. It is easier to understand the motion in an open space than in a 

confined space environment. Consider the case of a blast from 95 g of HE. The front of 

the head is exposed to blast waves and a confronting rigid surface is assumed to follow 

fairly close (400 mm) behind it (Figure 45a). As the head starts moving under the 

impulsive load of the shockwave, it impacts the rigid surface. In Figure 45, the ICP in the 

coup site of the brain, due to blast wave overpressure (red line) and occipital impact (blue 

line), are compared for the open space setting. While the ICP in the coup site of the brain 

(temporal lobe) reaches 424 kPa due to the blast, its maximum due to the blunt impact 

(occipital lobe) with the rigid surface is 267 kPa. The velocity of the head, due to the 

blast wind, approaches 8.5 m/s prior to impact with the rigid surface. Similar data for the 

ICP are shown in Figure 45b when the HE charge weight increases to 215 g. 
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Figure 45. ICP change with time in the open space under PBI and TeBI of: (a) 95g HE 

with head velocity of up to 8.5 m/s, (b) 215g HE with head velocity of up to 10.5 m/s at 

impact; ICPs from blast and impact collected from temporal and occipital lobes, 

respectively (61) 

8.4.2.2. Confined space 

According to Figure 44, in the open space setting, the maximum speed of the 

brain and skull was much higher than that in the confined space setting. This is due to the 

reflections from the enclosing walls working against the accelerating head model. Figure 

46a shows ICPs when the head was placed in the confined space and subject to the 

detonation of a 95g HE material. For the confined space, the ICP at the initial stage of 

exposure to the blast wave was greater than that resulting from impact with the rigid 

surface. In Figure 46b and c, the rigid body acceleration and the shear stress are plotted in 

the confined space setting and it is noted that, as with the ICP, the impact results were 
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much less than the blast results. In Figure 46c, the maximum shear stresses were 30 and 

15 kPa, due to shockwaves and impact, respectively. 

 

 

 

Figure 46. Brain under blast of 95g HE and corresponding wall impact (4.3 m/s) in 

confined space; (a) ICPs from temporal lobe under blast, and from occipital lobe under 

impact, (b) rigid body acceleration, and (c) shear stress from areas sustaining maximum 

ICPs (61) 
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8.5. Discussions and Conclusions 

PBI has been studied for several years while TeBI has barely been examined. 

Both PBI and TeBI have their origins in a blast, but the mechanisms of the two injuries 

are different, which makes their comparison interesting. In particular, PBI is a silent 

injury and, while the brain can be severely injured, there is no sign of external trauma. 

TeBI, however, can lead to skull fracture along with external signs of injury. In this 

chapter, analyses were carried out in two blast settings; open and confined spaces, to 

examine the effect of the blast environment on selected biomechanical parameters. 

Different weights of the HE charge were considered to show the influence of the blast 

intensities. The velocity of the head was a function of the blast intensity and has a major 

effect on the level of the blunt impact load on collision with the enclosing wall. 

As seen in Figure 45a, in the open space setting the brain initially experienced a 

sharp rise in ICP due to the blast. ICP values oscillated at a high frequency as they 

diminished. Under the blunt impact, an elevated ICP at a markedly lower frequency was 

recorded, but the initial peak value was nearly 40% less. Compared to the blast wave, 

after the first ICP peak due to the blunt impact, fewer fluctuations were observed. For 

both the blast-wave and impact-related ICPs in the open space setting, the fluctuations in 

this mechanical parameter were negligible compared to the initial peaks. When the HE 

weight in the open space environment increased from 95 to 215 g, a 36%, increase in the 

maximum ICP was found due to blast waves and a 23% increase due to the blunt impact 

with the obstacle. This demonstrated that increasing the HE charge weight in the open 

space setting had a more pronounced effect on the magnitude of the shockwave ICP than 

on the blunt impact ICP. If an ICP value of 235 kPa was used as a threshold for injury, as 
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proposed by Ward et al.(80), ICP values from both PBI and TeBI exceeded this threshold 

in the open space environment. PBI, however, was found to be more serious. 

Figure 46 shows the variation of mechanical parameters in the confined space 

under 95g HE, and, in contrast to the open space environment, the pattern of the ICP 

variations was very complex and unexpected. There were several sizeable peaks 

following the initial spike in ICP, which made the analysis more difficult. Also, the 

duration of different loads on the brain was markedly longer than in the open space 

environment, and this likely played an important role in causing different types of injury 

(55), due to transferring of more energy to the brain tissue. To compare the injury-related 

mechanical outputs, therefore, it is crucial to assess the whole response of the tissue. The 

waveform analysis gave a good image of what happen to the brain tissue, and 

demonstrated that the concern was not only the first peak, although it might be the 

highest. Since the brain was viscoelastic, having a phase lag between the input load and 

output response, the effect of these fluctuations on the tissue was cumulative, and this 

caused more severe injury. In this regard, the number of peaks and their duration were 

significant in interpreting the injury-related mechanical parameters. Figure 46a shows 

ICP fluctuations with variable frequencies and longer durations than in the open space 

environment shown in Figure 45a. Rigid body acceleration, as well as shear stress on the 

brain in the confined space, followed a similar trend to ICP. The injury-producing 

environment in the confined space was, therefore, even more severe. 

Comparison of the PBI and TeBI parameters in the closed space environment with 

the open space scenario revealed that the velocity of the head was decreased in the closed 

space due to blast wave reflections. The reduced head velocity produced a lower level of 
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impact trauma. The effect of the direct and indirect blast waves on the head, however, 

created an overall highly injurious situation. The data clearly showed that all the brain 

PBI mechanical outputs were dramatically higher than their TeBI counterparts. In the 

case of impact trauma, since the first peak was dominant, it would be possible to evaluate 

the severity of injury based on a comparison of this initial peak with different published 

thresholds. For instance, the maximum ICP value due to wall impact under the blast of 

95g of HE in the closed space environment (151.0 kPa, Figure 46a) was less than the ICP 

threshold (235 kPa), indicating a lower possibility of injury based on this parameter. The 

maximum shear stress for the wall impact in a closed space environment, however, was 

14 kPa (Figure 46c) and was, therefore, clearly in the range of the injury threshold for 

this parameter (8 to16 kPa) introduced by Anderson et al. (81). As noted previously, and 

in contrast to the impact trauma just discussed, the severity of the PBI in a confined space 

depended not only on the initial encounter with the shockwave, but also on the full 

evolution of reflected waves over a period of 15 ms or more. 

Although the conclusions in this chapter were based on a limited number of 

scenarios, the results were likely to be valid for any open, or closed space circumstances. 

The results showed that the severity of PBI was higher than TeBI in both spaces and that 

the seriousness of the PBI was dramatically increases in confined spaces. The findings 

were similar to the conclusions made in a previous whole-body PBI analysis of several 

blast victims in both open and confined spaces conducted by Leibovici (3). The results 

could be also compared with the conclusions of Sevagan et al. (58) in both blunt and blast 

impact scenarios. 
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CHAPTER 9. CONCLUSIONS AND FUTURE WORKS 

The first part of this thesis was dedicated to brain tissue characterization. Linear 

and QLV models were implemented to explain the response of brain tissue samples. 

Using the QLV theory, a strong linear correlation was found between the short-term and 

long-term behaviors of porcine brainstem tissue. The short-term stress for our porcine 

brainstem samples was 11 times larger than the long-term stress, similar for all initial 

strain levels. This finding is beneficial, as the short-term stress can be estimated by 

experimentally measured long-term stress on the tissue. Additionally, it was found that 

the reduced relaxation modulus varied with strain. This finding suggests that the 

characterization of brain tissue using the QLV theory at only one strain amplitude may 

not be applicable for a wide range of tissue deformations. Multiple strain amplitude 

experiments must be performed to calculate a reasonable set of constants. 

As a main limitation, the study did not show that the instantaneous and long-term 

stresses were purely elastic, especially for the instantaneous stresses measured indirectly 

using QLV. This deserves further investigation. Also, the irregular geometries of the 

brainstem samples, varying from sample to sample, may have affected the estimated 

constants of the QLV model. More experiments are needed on brain tissue with regular 

geometries to address the performance of the QLV model. Our stress relaxation 

experiments were conducted at only one initial strain rate. To find the limits of the QLV 

theory for a wide range of strain values, similar stress relaxation experiments needs to be 

performed at different test speed strain rates. An understanding of the role of the test 

speed may contribute to a better understanding of the theory. Perhaps using a unified 
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model to determine the relaxation constants on all six strain amplitudes simultaneously 

may lead to a more robust estimation of relaxation constants over a large range of strains. 

The second part of the thesis described computational investigation on the effect 

of blast loads on human brain with a focus on confined spaces where reflections off walls 

may intensify the level of transferred mechanical loads to the brain. It was found that the 

blast overpressure on the head was magnified by almost four times with the maximum at 

corners, and as such the brain could experience a higher level of injury. In terms of the 

severity of blast load transferred to the brain, head-blast interactions were compared in 

confined as well as open spaces. In the open space, the head experienced a simple 

pressure waveform that vanished after a few milliseconds. In the confined space, on the 

other hand, the head tolerated a complex pressure waveform with several peaks, some of 

which were larger than the single peak found in the open space. More importantly, the 

duration of the pressure wave remaining on the head was considerably larger than in the 

open space. The brain PBI and TeBI were compared in a case study and found that PBI 

was considerably more severe than TeBI in both open and confined spaces. 

 The main limitation of the computational studies was a lack of experimental data 

to validate our modeling. The study compared the results of pressure shockwaves with 

experimental data in a confined space, showing that the pressure, computationally 

generated in the air domain, was acceptable. However, the study was not able to verify 

whether the pressure generated on the skull and in the brain were accurate. There are 

several factors that may play an important role in the accuracy of the modeling, such as 

element type and size, the ratio of the element size in both the air domain and the 

structure at their interface, and material properties of the solid structure that is hit by blast 
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pressure waves. Further experimental studies on dummy head models should be 

conducted to verify the computational studies. Due to technical limitations in modeling a 

torso attached to the head, the effect of torso and reflections off the body were ignored. 

To add a torso to the computational modeling, the air domain should be several times 

larger, leading to generating millions of small elements that made it impossible to 

investigate the influence of the rest of the body. The effect of torso may be more 

pronounced while modeling the translational effect of the blast wind for TeBI. The effect 

of torso should be considered as a future work to more realistically address the blast-head 

interactions in confined spaces. Also, the walls of confined spaces were considered as 

rigid in this study. In reality, however, the reflections might be weaker than what were 

reported, because material properties of walls are not rigid, showing reflection 

attenuation. This suggests the use of appropriate material properties for walls to be able 

to absorb a portion of the pressure wave reflections. This also needs to be studied as a 

future work. 
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