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ABSTRACT 

This study is designed to understand the ultra-violet (UV) degradation of polymeric 

backsheets used in PV modules. Commercial photovoltaic backsheets from four suppliers 

were UV-aged for up to 3000 hours. The aged samples were tested using optical microscopy, 

scanning electron microscopy (SEM), shrinkage rate test, color measurements, UV-Vis-NIR, 

Fourier transform infrared spectroscopy (FTIR), and dielectrical tests to study the 

microstructural, color, chemical and electrical properties. Yellowness Index (YI) and Delta E 

were used to quantify the color changes which were found in strong correlation with FTIR 

results. The characters of the surface cracks generated were found to be affected by degree of 

UV degradation and polymer chain alignment of the backsheets. Electrical properties were not 

significantly affected by UV irradiation. The results suggest insufficient UV aging time 

designated in current PV module test standard. A longer aging time is recommended for 

quality assurance.



iv 
  

 

ACKNOWLEDGEMENT 

I would like to thank my advisor Dr. Long Jiang for his great help, support, patience and 

guidance not only during the development and completion of this thesis project, but also 

through the entire journey of my graduate program. Dr. Shuying Yang, Senior Staff Engineer 

at MEMC/SunEdison, made a great contribution to this thesis. My supervisory committee 

members Dr. Chad Ulven, Dr. Dennis Wiesenborn and Dr. Dilpreet Bajwa also offered great 

help in the development of this thesis. I am also grateful to the help on the part of Scanning 

Electronic Microscopy provided by Scott Payne and Jayma Moore in NDSU Electron 

Microscopy Center. The help on the testing of color change and UV-vis-NIR from 

Instrumental Laboratory Manager, Heidi Docktor in NDSU's Department of Coatings and 

Polymeric Materials is deeply appreciated. Dr. Haagenson Darrin is sincerely appreciated for 

his instruction on Fourier Transform Infrared Spectroscopy. Last but not least, my group 

members of Xuezhu Xu, Yong Wang, David Gutschmidt are also deeply appreciated during 

the preparation of the thesis defense. 



v 
  

	  

TABLE OF CONTENTS 

ABSTRACT ........................................................................................................................ iii	  

ACKNOWLEDGEMENT .................................................................................................. iv	  

LIST OF TABLES ............................................................................................................. vii	  

LIST OF FIGURES .......................................................................................................... viii	  

CHAPTER 1.	   INTRODUCTION AND LITERATURE REVIEW .................................. 1	  

1.1. Solar Energy and Solar Panel (Structure, Materials, and Theory) ........................ 1	  

1.1.1. Terminology Definition ............................................................................. 1	  

1.1.2. Working Principle of PV ........................................................................... 2	  

1.1.3. Classification ............................................................................................. 3	  

1.1.4. Solar Module Structure .............................................................................. 4	  

1.2. Field Failures and Quality Testing ........................................................................ 7	  

1.2.1. Failures of Solar Panels ............................................................................. 7	  

1.2.2. Importance of Backsheets ........................................................................ 10	  

1.2.3. Certification Standards ............................................................................ 11	  

1.2.4. Current Testing Methods for Light Aging ............................................... 14	  

1.2.5. Yellowing and Yellowness Index (YI) .................................................... 16	  

1.2.6. Accelerated Tests on PV Module Parts ................................................... 17	  

1.3. UV Degradation of Low-Density Polyethylene (LDPE) .................................... 19	  

1.4. Degradation of Ethylene Vinyl Acetate (EVA) .................................................. 23	  



vi 
  

1.5. Fourier Transform Infrared Spectroscopy (FTIR) Theory and Applications ..... 26	  

CHAPTER 2.	   RESEARCH OBJECTIVES .................................................................... 28	  

CHAPTER 3.	   MATERIALS AND METHODS ............................................................. 29	  

3.1. Materials ............................................................................................................. 29	  

3.2. Ultraviolet Irradiation Aging Test ...................................................................... 30	  

3.3. Optical Microscopy ............................................................................................. 31	  

3.4. Shrinkage Rate Testing ....................................................................................... 32	  

3.5. Scanning Electron Microscope (SEM) ............................................................... 32	  

3.6. Color Change (Yellowness Index and Delta E) Analysis ................................... 32	  

3.7. UV-Vis-NIR Spectrum Analysis ........................................................................ 33	  

3.8. Fourier Transform Infrared Spectroscopy (FTIR) .............................................. 34	  

3.9. Dielectrical Test .................................................................................................. 34	  

CHAPTER 4.	   RESULTS AND DISCUSSION .............................................................. 35	  

4.1. Visual Inspection and Optical Microscopy ......................................................... 35	  

4.2. SEM .................................................................................................................... 39	  

4.3. YI (Yellowness Index) ........................................................................................ 43	  

4.4. Delta E ................................................................................................................ 46	  

4.5. UV-Vis-NIR Spectrum Analysis ........................................................................ 50	  

4.6. Fourier Transform Infrared Spectroscopy (FTIR) Analysis ............................... 54	  

4.7. Dielectric Properties ........................................................................................... 60	  

CHAPTER 5.	   CONCLUSIONS ...................................................................................... 62	  

REFERENCES .................................................................................................................. 64	  



vii 
 

 

LIST OF TABLES 

Table                      Page 

1.  Principal failure modes in PV modules.17 ....................................................................... 10	  

2.  Supplier origins of the four backsheet samples. ............................................................. 30	  

3.  Shrinkage rate (%) of the samples. ................................................................................. 39	  

4.  The UV dosage for different irradiation time. ................................................................ 44	  

5.  Parameters used in linear curve fitting. .......................................................................... 46	  

 



viii 
 

 

LIST OF FIGURES 

Figure                                Page 

1.  Photo of an actual PV cell. The horizontal lines are the fingers and the two        
vertical ones are the busbars.7 ......................................................................................... 2 

 
2.  Illustration of the working principal of a solar panel.8 ................................................... 3 

3.  Efficiency improvements of various types of PV cells.9 ................................................ 4	  

4.  Typical laminate structure of a PV module. Polymers other than EVA can also be  
used as encapsulants in PV modules.10 ........................................................................... 5 

 
5.  Illustration of the structure of a PV panel/module.11 ...................................................... 5	  

6.  Significant browning of the front encapsulant of PV modules, where most likely      
the polymeric encapsulant has insufficient UV stability.12 ............................................ 8 

 
7.   Typical backsheet yellowing after short period of field installation.15 ......................... 8	  

8.  Delamination of the backsheet of a PV module.12 ......................................................... 9	  

9.  Junction box failures.16 ................................................................................................... 9	  

10.  Flow chart of IEC 61215 testing process.19 ................................................................ 12	  

11.  Spectrum of a typical metal halide arc lamp.28 .......................................................... 15	  

12.  Spectrum from a portable UVA (long wave UV) fluorescent lamp.29 ....................... 16	  

13.  Spectrum comparison between a xenon lamp and natural daylight.30 ....................... 16	  

14.  A typical backsheet structure.34 .................................................................................. 19	  

15.  Illustration of Norrish II mechanism .......................................................................... 21	  

16.  Autoxidation mechanism for almost all polymers (R = polymer chain, H = labile 
hydrogen, X• = any radical, ki = reaction rate).54 ...................................................... 22 

 



ix 
 

17.  Illustration of thermal aging mechanism of EVA by allylic scission of the     
backbone chain.64 ........................................................................................................ 24 

 
18.  Illustration of further degradation of EVA: diradicals.64 ........................................... 25	  

19.  Illustration of aging mechanisms of EVA, yielding carbonyl compounds and   
gases.65 ........................................................................................................................ 25 

 
20.  Illustration of aging mechanisms of EVA, yielding unsaturated carbonyls.65 ........... 26	  

21.  Photos of the four backsheet samples after 1000 h UV irradiation. ........................... 30	  

22.  QUV-SE Accelerated Weathering Tester (Q-Lab).70 ................................................. 31	  

23.  Photo of virgin Sample C, K, M2, and T and the four samples after 1500 h UV 
irradiation and 3000 h UV irradiation. 3000 h Samples are partially enlarged in        
the rectangles with black borders for a better view of the cracks. .............................. 36 

 
24.  Optical microscopic photos of the four samples under different dosages of UV 

irradiation. ................................................................................................................... 38 
 
25.  Sample C after 3000 h UV irradiation. ....................................................................... 40	  

26.  Sample K in pristine state (a and b) and after 3000 h UV irradiation (c and d). ........ 41	  

27.  Sample M2 after 3000 hour irradiation. ..................................................................... 42	  

28.  Sample T after 3000 hour irradiation. ........................................................................ 43	  

29.  YI vs. UV dosage of the four samples.  Dotted lines are linear fittings of each     
group of data. .............................................................................................................. 45 

 
30.  Delta E as a function of irradiation dosage of all the four samples. ........................... 48	  

31.  Delta E as a function of irradiation dosage of Samples K, M2, and T. ...................... 48	  

32.  YI vs. Delta E of Sample C ........................................................................................ 49	  

33.  YI vs. Delta E of Sample M2 ..................................................................................... 49	  

34.  YI vs. Delta E of Sample K ........................................................................................ 50	  

35.  YI vs. Delta E of Sample T ........................................................................................ 50	  

36.  UV-Vis-NIR Spectra of Sample C. ............................................................................ 52	  



x 
  

37.  UV-Vis-NIR Spectra of Sample K. ............................................................................ 52	  

38.  UV-Vis-NIR Spectra of Sample M2. ......................................................................... 53	  

39.  UV-Vis-NIR Spectra of Sample T. ............................................................................ 53	  

40.  FTIR spectra of Sample C after different lengths of UV irradiation. ......................... 55	  

41.  FTIR spectra of Sample M2 after different lengths of UV irradiation ....................... 56	  

42.  FTIR spectra of Sample T after different lengths of UV irradiation .......................... 57	  

43.  FTIR spectra of Sample K after different lengths of UV irradiation ......................... 58	  

44.  Resistivity and permittivity of the samples at a frequency of 1000 Hz ..................... 61	  

 



1 
 

CHAPTER 1. INTRODUCTION AND LITERATURE 

REVIEW	  

1.1.   Solar Energy and Solar Panel (Structure, Materials, and 

Theory) 

Renewable energy has attracted intensive research interest over the past decade. Solar 

energy is one of the most competitive forms of renewable energy resources. On average, 

1.2×1017 W of solar irradiation is received by the Earth1. This abundant and environment-

friendly energy can be converted directly into electricity using solar photovoltaic (PV) 

technology, which has experienced dramatic technological advancement and market growth in 

recent years.2 

Since the invention of the silicon PV cells in Bell Laboratories,3 PV system (single-

junction) has reached a theoretical efficiency of about 25%, though the practical efficiency 

being much lower (about 15%).4 Although the operation of a PV system requires no or 

minimum energy consumption and low maintenance, the initial investment is high. This 

feature demands long service life of the PV system to lower its life cycle cost. Current 

standard warranty of PV modules typically ranges from 25 to 30 years. Thus, a thorough 

understanding of the aging/durability of the PV modules and their subcomponents is of 

critical importance to achieve their long term stable performance. 

1.1.1.   Terminology Definition 

The conversion of solar light into electricity by photovoltaic effect of semiconductors is 

called solar photovoltaics. A single PV convertor cell is called a solar cell or a PV cell (Fig.  
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1); a combination of such cells designed to increase the electronic power output is a solar 

module/panel.5 Electrical contacts are on the front and back side of a PV cell, bridging the 

semiconductor material and the external electrical load. The back contact simply consists of a 

layer of aluminum or molybdenum, while the front contact is a grid of metal strips or 

“fingers”. Busbars are used to collect the electrons from the fingers.6 

 

Fig.  1.  Photo of an actual PV cell. The horizontal lines are the fingers and the two 
vertical ones are the busbars.7 

1.1.2.   Working Principle of PV 

A PV process is based on the ability of semiconductors to convert solar energy into 

electricity. Generally, when light is shone onto the surface of a semiconductor material, the 

energy of photons would be absorbed and transferred to electrons. When the energy absorbed 

passes a threshold, it is sufficient to liberate the electrons from the constraint of the atoms. 

Then, electron-hole pairs are created and free to move along circuits to generate electrical 

current (Fig.  2). 
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Fig.  2.  Illustration of the working principal of a solar panel.8  

1.1.3.   Classification 

PV cells can be made from different semiconducting materials, including crystalline 

silicon (single-crystal silicon, polycrystalline/multicrystalline silicon, etc.), amorphous silicon 

(a-Si), gallium arsenide (GaAs), and copper indium diselenide (CuInSe2, or CIS), etc. 

Depending on how solar irradiation is collected, PV systems can be classified into two major 

categories: flat plate photovoltaic (FPV) system, in which the solar cells receive solar 

irradiation directly; and concentrating photovoltaic (CPV) system, in which solar irradiation is 

collected and concentrated to the solar cells.  

NREL (National Renewable Energy Lab) keeps track of the efficiency of the different PV 

cells. Fig.  3 presents the developments of PV technologies over the past 4 decades. 
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Fig.  3.  Efficiency improvements of various types of PV cells.9 

1.1.4.   Solar Module Structure 

To ensure a PV module’s long service life, PV cells have to be encapsulated and sealed in 

a package to protect them from rapid environmental degradation caused by oxidation from the 

contacts of metals, ultraviolet light, temperature, moisture and mechanical stresses. In 

addition to the encapsulants in direct contact with the PV cells, polymeric backsheet materials 

are also commonly used in PV modules for physical protection, enhanced encapsulation, light 

reflection, electrical insulation and aesthetic purposes. 

Typical structures of a crystalline silicon solar cell are shown in Fig.  4 and Fig.  5. 

Generally, the laminate structure consists of five layers: front glass, front EVA encapsulant, 

PV cells, back EVA encapsulant, and backsheet (or backfoil).  
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Fig.  4.  Typical laminate structure of a PV module. Polymers other than EVA can also 
be used as encapsulants in PV modules.10 

 

Fig.  5.  Illustration of the structure of a PV panel/module.11  

Materials other than EVA, including thermoplastic polyurethane (TPU), polyvinyl butyral 

(PVB), silicones, silicone/PU hybrid, ionomer, UV-curable resin, and other new polymers, 

can also be used as the encapsulants for PV modules. EVA is the most widely used material 

due to its low cost and long service history.   
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For the front glass (or the superstrate), low-iron, tempered, plain or textured, UV filtering 

Ce-glass, SiO2, or antireflection coating glass can be used. Transparent fluoropolymers, such 

as Tefzel® and Tedlar®, have also been applied as alternatives to glass.  

For the backsheets, a variety of materials and substructures are used, including Tedlar® 

based polymers and polyethylene terephthalate (PET) or polyethylene naphthalate (PEN) 

based polymers. The Tedkar® based backsheets include: Tedlar®/PET/Tedlar® (TPT), 

Tedlar®/PET/EVA (TPE), Tedlar®/Al foil/EVA (TAT), Tedlar®/PET/Al foil/Tedlar® (TPAT), 

Tedlar®/PET/Oxide/Tedlar® (TPOT), and PEN/Al foil/PET (PAP). PET or PEN based 

backsheets provide less expensive alternatives to Tedlar®. Among this type of materials are 

Protekt® and Teijin Teonex ®. Sometimes glass is also used to replace polymer backsheets.12 

The main factors influencing the aging of PV modules include:  

l Corrosion of metal materials 

l Delamination of encapsulant polymers 

l Physical damage from environmental weather elements, such as wind, sand, rain, 

snow, and hail 

l Damage from shipping and installation 

l Deterioration of external components, such as wiring and frames 

l Erosion from permeated water vapor 

l Thermal process 

l Ultraviolet (UV) irradiation.13 

Among these factors the last three are the most important ones which cause severe PV 

module degradation. The polymers in a PV module, including EVA encapsulants, backsheet 
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and junction boxes, are known to have inadequate weatherabilities.14 Thus their durability is 

critical to the long term performance of solar panels. 

1.2.   Field Failures and Quality Testing 

Accelerated tests are often used to identify potential failure mechanisms in PV modules 

and to estimate the rate of their occurrences in the real systems. 

1.2.1.   Failures of Solar Panels 

Under continuous environmental stresses the components of solar panels are prone to 

malfunctions and failures after long term service. Typical field failures of a PV module 

include: 

l Cracks in the glass or within the cells/films 

l Significant visual changes on either the active side or back side of a module such as 

cracking, color changes (Fig.  6 and Fig.  7), or delamination (Fig.  8) 

l Electrical short circuits or burned spots  

l Obvious corrosion of lead or cell interconnections 

l Significant distortions in the module shape, including frame distortion and flatness 

l Power lead failures, including separation from junction box or connectors and 

cracking of insulation 

l Junction box changes, including separation from the module, and movement along the 

backsheet. (Fig.  9) 
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Fig.  6.  Significant browning of the front encapsulant of PV modules, where most likely 
the polymeric encapsulant has insufficient UV stability.12  

 

Fig.  7.   Typical backsheet yellowing after short period of field installation.15 
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Fig.  8.  Delamination of the backsheet of a PV module.12 

 

Fig.  9.  Junction box failures.16 

 A summary of PV module failures is given in Table 1. Almost all the failures in the table 

lead to safety risks and reduced performance. Therefore, their mechanisms need to be 

thoroughly studied and the methods for improvement need to be developed.  
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Table 1.  Principal failure modes in PV modules.17 

Defects and failure Component Seriousness for 
performance 

Seriousness for 
safety Stresses 

Delamination 

Glass and 
Encapsulant H 

 

UV, T, H, Ion 

Encapsulant and 
cells H 

Encapsulant and 
backsheet  

M 

Inter-layer of 
backsheet M 

Discoloration Encapsulant M  UV, T, H, 
Material design Backsheet 

Backsheet cracking, 
decomposition Backsheet M M UV, T, H 

1.2.2.   Importance of Backsheets 

PV modules are supposed to be a reliable source of power for at least 25 years, so the 

components need to work in concert to ensure the panel continues to perform. Backsheets 

help do that – they insulate the electrical components of the module to ensure they can operate 

safely and protect them over their service life to help modules produce power efficiently. The 

functions of backsheets include: 

l Physical protection 

l Moisture protection 

l Durability 

l Electrical insulation 

l Color that helps modules blend into their surroundings 

l Efficiency to help modules generate more power 

PV module manufacturers use different components and constructions. Selecting the right 

backsheet for a specific module design is often complex, and time-consuming.18  
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1.2.3.   Certification Standards  

To ensure long term service of solar panels in the field, the International Electrotechnical 

Commission (IEC) has established qualification test standard (IEC 61215 for crystalline 

silicon flat PV modules). The flow chart of the IEC 61215 standard is shown in Fig.  10. The 

standard regulates the testing in diagnostic, electrical, performance, thermal, irradiance, 

environmental, and mechanical areas. For outdoor exposure test, the required irradiation is 60 

kWh/m2, which is far short compared to the irradiation received by a module within its 25 to 

30 years of service.  

The International PV Module Quality Assurance (QA) Task Force19 led by NREL is 

working to address the quality assurance issues of the PV modules through interdisciplinary 

studies and collaborative projects among a wide range of stakeholders (PV manufacturers, test 

labs, standards organizations, customers, investors, etc.). The goal of the PV QA Task Force 

is to create standards that allow the stakeholders to quickly assess a module's ability to 

withstand regional stresses, thereby reducing risk and adding confidence for those developing 

products, designing incentive programs, and determining investments and bankability 

assessment. 
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Fig.  10.  Flow chart of IEC 61215 testing process.20 

The PV QA Task Force includes the following Task Groups: 

l Group 1: Guideline for manufacturing consistency 
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l Group 2: Testing for thermal and mechanical fatigue including vibration 

l Group 3: Testing for humidity, temperature, and voltage 

l Group 4: Testing for diodes, shading and reverse bias 

l Group 5: Testing for UV, temperature and humidity 

l Group 6: Communication of PV QA ratings to the community 

l Group 7: Testing for wind loading 

l Group 8: Testing for thin-film PV 

l Group 9: Testing for CPV 

This research is part of a bigger project of Task Group 5. Basically, the responsibilities of 

this group include testing and understanding the aging behavior of PV packaging materials 

under UV, sunlight, temperature, moisture level, etc.  

Current qualification test standards of PV modules lay down IEC requirements for the 

design qualification and type approval20, describe the fundamental construction 

requirements21 for general PV modules, and cover requirements for flat-plate PV modules and 

panels22 and concentrator photovoltaic (CPV) modules and assemblies23. IEC 6121520 and 

IEC 6164624 specify a short-term UV preconditioning test, with a UV dosage of 15 kWh/m2 

for indoor exposure testing, and 60 kWh/m2 for outdoor exposure testing, comparing to in-

field annual dosage on the order of 100 kWh/m2 and lifetime (25 years) dosage of 3000 

kWh/m2.25 This preconditioning test is carried out in order to identify materials that are 

susceptible to UV degradation before the thermal cycle and humidity freeze tests are 

performed. However, the PV module qualification test standards do not provide information 

about simulation of outdoor exposure under UV irradiation for the lifetime of PV modules. 
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Accelerated tests under field conditions are difficult to carry out because parameters that 

can be accelerated are limited. Accelerated lifetime tests require enhanced UV power than 

sunlight, higher temperature than practical situation, and the neglecting of dark periods 

without sunlight irradiation that cannot be avoided in practical applications. Their 

combination with humidity as a potential reagent in the module degradation processes makes 

the tests even more challenging.  

The tests used in this thesis falls between qualification testing and accelerated testing. 

Qualification testing applies indoor tests to acquire quick information of the quality, while 

accelerated testing simulates field conditions to obtain data for the service life time. The test-

to-failure protocol extends the artificial indoor stresses by perform the testing until the failures 

of modules. The time lengths of the tests do not indicate the service life time of a module. 

However, they can be compared quantitatively to indicate the stability of modules.  

1.2.4.   Current Testing Methods for Light Aging 

Current methods for light aging include indoor/chamber testing and outdoor testing. In 

indoor/chamber testing three light sources26, including metal halide arc, UV fluorescence and 

Xenon arc, are commonly used to age the specimens. Typical spectra of the three light sources 

are provided in Fig.  11, Fig.  12 and Fig.  13. Metal halide light contains a wide range of 

spectrum and causes fast material aging. However, it may introduce artificial degradation. 

Fluorescence UV light produces a fairly good match to the UV from natural sunlight. 

Commercial fluorescence UV equipment is easy to operate. However, it does not contain 

visible light spectrum. Xenon arc generates light that closely matches the full spectrum of 

natural sunlight. However, only 1X sun intensity is available from commercial equipment. 

The intensity of the light can be elevated to different multiples of that of the natural sunlight 
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to perform accelerated aging tests. In outdoor testing, samples are mounted in fields and are 

exposed to 1X intensity of sunlight. In Equatorial Mount with Mirrors for Acceleration with 

Water (EMMAQUA) testing, sunlight is concentrated by mirrors and samples are exposed to 

4X to 5X concentrated sunlight. It provides an excellent match to sunlight in subtropical areas 

and desert environment, such as Arizona.27 

 

Fig.  11.  Spectrum of a typical metal halide arc lamp.28 
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Fig.  12.  Spectrum from a portable UVA (long wave UV) fluorescent lamp.29 

 

Fig.  13.  Spectrum comparison between a xenon lamp and natural daylight.30 

1.2.5.   Yellowing and Yellowness Index (YI) 

Yellowing is one of the serious failures of PV backsheets after long-term irradiation. The 

yellow color is usually caused by the formation of chromophores (sections of macromolecular 
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chains that selectively absorb different frequencies of visible light, lending colors to the 

molecules). Serious backsheet yellowing has resulted in customer claims to some solar 

module products.31 

Yellowness Index is a critical parameter for monitoring degradation of the encapsulant 

materials and backsheets because higher yellowness leads to higher absorption of irradiation 

and thus higher operating temperature (which in return accelerates the degradation process) 

and lower energy absorption by the PV cells (which results in lower electricity production). 

The procedures to measure YI are specified in ASTM E313.32 Generally, YI is calculated by 

using this equation: 

YI=100(CXX-CZZ)/Y     (1) 

where X, Y, and Z are the International Commission on Illumination (CIE) tristimulus values 

of the sample and can be obtained using color measuring instruments. Cx and Cz are two 

coefficients that can be selected from ASTM E31332 based on the operating standard of the 

color measuring instruments. YI test is intended to provide values correlated with visual 

estimates under specified observing conditions32. Due to the subjectivity of visual estimates 

and the variety of visual observing condition, spectrophotometers need to be used to produce 

accurate YI results.  

1.2.6.   Accelerated Tests on PV Module Parts 

Two major concerns about PV module quality assurance are: How long will a PV module 

remain operational? And can accelerated tests provide answers to this question within 

relatively short period of experiment time? Many studies have been performed to develop 

standard testing methods to address these two concerns. In a typical accelerated test, samples 
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undergo aging process under elevated UV irradiation, temperature and humidity stresses in 

weathering chambers for 3–4 months. This type of tests has been widely used in PV product 

development.  

Focusing on UV degradation, a typical accelerated UV irradiation test is performed 

continuously without night intervals. As high as 42 times the intensity of sunlight can be 

applied and simulation data for as long as decades can be calculated from only thousands of 

hours of tests.33  

However, C. R. Osterwald et al.13 reviewed the literature about accelerated stress testing 

of PV modules from 1975 to 2008 and deemed that the standard tests and procedures that had 

been established so far were not rigorous enough to determine the service life of PV cells 

because they did not apply all the failure mechanisms.  
Backsheets are critical components in a PV module and their UV aging behavior plays a 

pivotal role in long-term PV module function and performance. A typical backsheet structure 

includes three layers of polymer films laminated together, with or without adhesives in 

between. The common inner layer material is EVA or LDPE. The middle layer is often made 

of PET for mechanical strength and electrical insulation and the outer layer (the air facing 

layer) is fluoro-containing polymers for strong weatherability performance. Fig.  14 presents a 

typical cross section of a commercial backsheet structure. 
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Fig.  14.  A typical backsheet structure.34 

The aging behavior of PV backsheets has not been fully understood to date. The role of 

UV irradiation, which is a major driving factor of PV module aging, still needs further 

investigation. In this research, the aging behavior of PV backsheets under UV irradiation will 

be mainly studied to augment the knowledge base in this area. 

1.3.   UV Degradation of Low-Density Polyethylene (LDPE)  

Research on UV degradation mechanisms of solar panel backsheets is scarce in the 

literature. Most of the research is focused on either other polymer components of PV modules 

or degradation under conditions other than UV irradiation (e.g. thermal degradation). Only 

one paper has been found to be on the exact topic.35 The backsheet materials that were 

investigated in this paper include PET, polyvinyl fluoride (PVF) and polyvinylidene fluoride 

(PVDF). Infrared spectroscopy, differential scanning calorimetry (DSC), and tensile tests 

were carried out to characterize chemical, thermal and mechanical properties of the 

backsheets before and after UV irradiation.  

Since the backsheet materials that we studied in this project contains mainly low-density 

polyethylene (LDPE) and ethylene vinyl acetate (EVA), research on the degradation of these 
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two materials is briefly discussed here. Polyethylene (PE) is widely used as a backsheet for its 

good dielectric properties, thermal stability, and low cost. As mentioned before, the backsheet 

in a PV system is exposed to a series of aggressive ambient factors, including UV irradiation, 

thermal changes, and humidity. As a result, oxidation, crosslinking and degradation occur, 

and external cracking and internal stresses develop. This behavior, in turn, allows deeper 

penetration of oxygen and other aggressive ambient factors into the sample and therefore 

promote aging.36 

Calorimetric, spectroscopic, and microscopic methods are frequently used, and usually 

combined with each other to study the aging processes of materials. Oxidation is one of the 

most important mechanisms in the aging processes. FTIR has been used to characterize and 

quantify the oxidation products in LDPE,37 high density PE (HDPE),38 linear low density PE 

(LLDPE),39 metallocene,39 crosslinked polyethylene,37,40,41 ultra-high molecular weight 

polyethylene (UHMWPE),42 and PE containing various additives43. 

A significant number of papers related to the degradation behavior of PE have been 

published. The mechanical and kinetic aspects of the PE aging behavior have been 

exhaustedly discussed by Gugumus44–50 in a series of papers. PE aging in molten and solid 

states was both studied. The decomposition of the hydroperoxide group formed in PE 

processing, which creates free radicals and leads to most of the degradation products, has 

been rigorously studied in these papers. 

The effects of weathering under simulated sunlight on the molecular structures of LDPE 

and crosslinked polyethylene (XLPE) were identified and quantified with the ATR-FTIR 

technique by Gulmine et al.41 Lorentzian fitting and Lambert-Beer law were used to develop a 

reliable methodology to detect and quantify the degradation products of PE. The products, 
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including cumyl alcohol and acetophenone, and new groups, including carbonyl, vinyl and 

hydroxyl in the polymer chain, were detected during the degradation of XLPE. The major 

chemical modification to the tested materials was the formation of different carbonyls, such as 

ketones, esters, and γ-lactones.  

The mechanisms of the formation of carbonyl groups have been investigated in the work 

of Khabbaz51 (γ-lactone), Gugumus52 (ester), and Lacoste53 (ketone). γ-lactones were formed 

from reactions between carboxylic acid and hydroxyl group in the 1,4 position or the 

decomposition of 1,4-dihydroperoxide.51 The formation of esters was mainly attributed to the 

condensation reaction between carboxylic acids and alcohols from oxidized LDPE (other 

polymers can also take this pathway). No mineral acids were necessary as catalysts in this 

process, and the only requirement was that sufficient amount of carboxylic acids and alcohols 

were formed from the oxidation process.52 Vinyl and ketones were both yielded from a chain 

scission through Norrish II mechanism44,53, as shown in Fig.  15. 

 

Fig.  15.  Illustration of Norrish II mechanism 



22 
 

UV-degradation is a combination of photolysis and oxidative reactions.54 Which one 

dominates the process depends on the composition of the atmosphere and the types of 

polymers. In the presence of air, most polymers undergo photooxidative degradation, which is 

faster than pure photolysis degradation. Photooxidative degradation is a radical-based 

autooxidative process (see Fig.  16), which can be divided into four stages: initiation, which 

includes direct initiation and initiation from oxidative impurities; chain branching and 

propagation, which are both repeating process whose position depends on the most labile 

carbon-hydrogen bond on the polymer; and termination, which is the reaction between two 

peroxy radicals and in which several different byproduct can be created, including 

dialkylperoxides (from tertiary peroxy radicals, as in polypropylene), alcohol and ketone 

(from secondary peroxy radicals, as in PE and polyamide 6).54 

 

Fig.  16.  Autoxidation mechanism for almost all polymers (R = polymer chain, H = 
labile hydrogen, X•  = any radical, ki = reaction rate).54 
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1.4.   Degradation of Ethylene Vinyl Acetate (EVA)  

In the 1980s, researchers from Flat-Plate Solar Array Project (FSA) in the Jet Propulsion 

Laboratory (JPL) tested a series of candidate encapsulation materials and developed EVA as 

an inexpensive alternative to PVB and silicone encapsulants, which undergo delamination 

during outdoor exposure.55–58 Since then, EVA has been used as the dominant encapsulation 

material in PV cells for electrical isolation, mechanical support, optical coupling, and 

protection against environmental exposure.  

EVA was chosen mainly because of its low cost.59 However, since the late 1980s, the 

discoloration of EVA encapsulants of outdoor PV modules has been observed.60–62 In addition 

to that, researchers also found that there are several other problems limiting the performance 

of EVA as an encapsulant. For example, under ultraviolet irradiation or atmosphere water, 

EVA tends to decompose to produce acetic acid at a very low rate, lowering the pH and 

causing corrosion and module deterioration. Another problem is that under temperatures 

lower than 15 °C, EVA undergoes glass transition and its modulus increases, which makes a 

PV module more vulnerable to physical stresses such as those applied by wind or snow. Other 

drawbacks of EVA include non-ideal thermal and mechanical properties, the need for vacuum 

lamination in production, and a high diffusivity of water.63 

Thermal degradation mechanism of EVA copolymer nanocomposites has been studied. In 

the initial stage of degradation at ~350 oC, EVA gives off acetic acid, yielding poly(ethylene-

co-acetylene) with C=C bonds along the backbone chain. At around 450 oC, EVA undergoes 

allylic scission reaction. The result from these reactions is the formation of allylic radicals and 
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diradicals, which can be rearranged into secondary allylic radicals, whose structure is more 

stable (Fig.  17).64 

 

Fig.  17.  Illustration of thermal aging mechanism of EVA by allylic scission of the 
backbone chain.64 

The diradicals can undergo either hydrogen abstraction by radical transfer with the 

original reactants, or hydrogen loss by disproportionation, yielding n-alkanes, α,ω-dienes and 

terminal olefins (Fig.  18).64 

The secondary allylic radicals can undergo radical transfer reactions with the initial 

reactants, where the new radicals can revert to the aging cycle, and undergo additional 

scission, etc.64 

Photodegradation of EVA undergoes a similar process. The mechanism is shown below in 

Fig.  19 and Fig.  20. The major reactions include Norrish I, yielding acetaldehyde, CO, CO2, 

and CH4, and Norrish II, producing acetic acid and polyenes.65 
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Fig.  18.  Illustration of further degradation of EVA: diradicals.64 

 

Fig.  19.  Illustration of aging mechanisms of EVA, yielding carbonyl compounds and 
gases.65 
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Fig.  20.  Illustration of aging mechanisms of EVA, yielding unsaturated carbonyls.65 

1.5.   Fourier Transform Infrared Spectroscopy (FTIR) Theory 

and Applications 

Fourier transform infrared spectroscopy (FTIR) is a special type of infrared spectroscopy, 

which is commonly used to identify chemicals based on their characteristic absorptions of IR 

spectrum. These absorptions occur at resonant frequencies, i.e. the frequencies of the 

absorbed irradiation match the transition energy of the vibrating bonds or groups. The 

absorbed energies are determined by the masses of the atoms, the bond types, and the modes 

of motion. A bond can have multiple motion modes. For example, in a CH2X2 group of an 

organic material (where X represents an element other than C and H), there are nine different 

vibration modes in total for the whole group, with six of them involving only CH2 and the 

other three involving the C-X bond. These vibration modes include symmetric and 

asymmetric stretching, scissoring, rocking, wagging, and twisting. 
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Infrared spectrometry has evolved remarkably over the past 50 years.66 In 1957, the 

Perkin-Elmer Infracord was produced as the first low-cost spectrophotometer which can 

record an infrared spectrum.67 FTIR is a technique to obtain an infrared spectrum of 

absorption, photoconductivity, emission, or Raman scattering of materials in any state (solid, 

liquid, or gas). It is developed based on the basic infrared spectrometry technique and has 

become a major approach to get chemical bond information from samples. Instead of shining 

a beam of monochromatic light at the sample at a time, recording the absorption of that beam 

by the sample, and repeating the process at a spread of wavelengths, like the dispersive 

(scanning) spectrometer, FTIR shines a beam consisting of a range of frequencies of light at 

once, and measures the absorption. Then, another beam containing a different combination of 

frequencies is shone, and a different absorption is recorded. After repeating the process 

several times, a computer converts the data into the spectrum using Fourier transform and 

gives the absorption at each wavelength.  
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CHAPTER 2. RESEARCH OBJECTIVES 

As briefly discussed in Chapter 1, the current flat PV module certification test standards of 

IEC61215, IEC61730-1 and 2, and UL1703, do not adequately address the UV/light stability 

of the PV module as well as the module subcomponents, especially the polymeric 

subcomponents such as encapsulant and backsheets. The objective of this study is to work 

with Task Force 5 in the International PV Module Quality Assurance (QA) to develop a 

method to perform accelerated UV aging tests for the evaluation of long term durability of 

polymeric backsheets. Chemical, electric, optical and morphological properties of the 

backsheets under different aging conditions will be studied. A practical modeling method to 

analyze the overall aging behavior and to predict the UV stability of the backsheets will be 

established.   
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CHAPTER 3. MATERIALS AND METHODS 

3.1.   Materials 

The solar panel backsheets studied in this research are all commercial products. All 

backsheets are typical three-layer laminates. The inner layers (sun facing layer) are made of 

either EVA or LDPE and the bottom layers are made of a fluoropolymer for improved 

weatherability. Four backsheets, labelled as C, K, M2 and T (Fig.  21), were studied in this 

project. Supplier origins of each sample are shown in Table 2. The detailed compositions of 

the backsheet materials are not available because of the confidentaillity of material 

information.  
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Fig.  21.  Photos of the four backsheet samples after 1000 h UV irradiation.  

Table 2.  Supplier origins of the four backsheet samples. 

Sample Code Suppliers 
C US supplier 
K Japanese supplier 

M2 US supplier 
T Japanese supplier 

3.2.   Ultraviolet Irradiation Aging Test 

The four samples were cut into rectangular pieces of 45 mm × 80 mm and loaded into a 

QUV-SE Accelerated Weathering Tester (Q-Lab) (Fig.  22), where the inner layer was 

exposed to the UV light source continuously. The QUV tester was chosen because it is easy 

and affordable to operate, and the fluorescent UVA-340 lamps of the tester give the best 

simulation of the effects of sunlight in the critical short wavelength region from 365 nm to 
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295 nm. Aging tests were performed at a UV light intensity of 0.35 W/m2 at 340 nm for 0 h, 

500 h, 1000 h, 1500 h, 2000 h, 2500 h, and 3000 h. The 0.35 W/m2 intensity was chosen 

because it is the most commonly used UV intensity for polymer/plastic material aging per 

UL746C and other standards.68,69 The temperature was held constant at 60 °C, following IEC 

61215 UV-precondition requirement20.  

 

Fig.  22.  QUV-SE Accelerated Weathering Tester (Q-Lab).70 

3.3.   Optical Microscopy 

In order to study the morphology of the aged and pristine sample surfaces, optical 

microscope observation was carried out using an Axiovert 40 MAT microscope equipped 

with a ProgRes C10 plus digital camera. Micrographs of the surfaces were analyzed using 

iSolution DT image analysis software. 
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3.4.   Shrinkage Rate Testing 

Shrinkage rate testing was carried out on the original backsheets to characterize the 

amount of residue stress in the materials. A sample pan with a layer of sand on its bottom was 

put in a Squaroid vacuum oven and the oven was preheated to 150 °C. The backsheets were 

cut into 10 cm × 10 cm samples with an accuracy of 0.1 mm. Three measurements on each 

direction were made to obtain average dimensions. The samples were then laid on the sand in 

the sample pan, heated for 3 min at 150 °C, removed from the oven and let cool naturally for 

2 h. The samples warped to a small degree after the heat treatment but were pressed flat when 

the dimensional measurements were conducted at the same positions taken before. The 

shrinkage rates in the machine direction and transverse direction were calculated using (Db - 

Da) / Db (Db: size before heat; Da: size after heat) based on the average dimensions.    

3.5.   Scanning Electron Microscope (SEM) 

A JEOL JSM-6490LV scanning electron microscope was used to study the microcracks 

on the sample surfaces created by UV irradiation. The four sets of virgin backsheets and the 

ones after 3000 hours UV irradiation were observed and compared. This serves as a 

qualitative way of characterizing the physical integrity of the backsheets 

3.6.   Color Change (Yellowness Index and Delta E) Analysis 

Color changes of the aged samples were measured using a Macbeth Color-Eye 7000 

Spectrophotometer with an aperture diameter of 2.54 cm. A flash was projected on sample 

surfaces and the reflected light was collected and analyzed. Calibrations using a zero 
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calibration standard (light trap) and a total reflection standard (white board) were performed 

before every measurement. Every measurement of a single sample was repeated three times 

by measuring at different locations of the sample. The reported YI was the average values 

calculated from the three measurements using Equation (1). The coefficients Cx and Cz in 

Equation (1) were to be 1.2985 and 1.1335, respectively, based on the standard illuminator 

and observer used in this instrument (D65, 1931).32  

3.7.   UV-Vis-NIR Spectrum Analysis 

Macbeth Color-Eye can only measure visual color changes, i.e., the changes of the 

reflection ranging from 390 nm to 700 nm. In this study, a Cary 5000 UV-Vis-NIR 

spectrophotometer was also used to observe sample color changes within a wider spectrum. 

The reflectance accessory (DRA-2500 from Varian) used in the spectrophotometer exhibited a 

sample port size of 16 mm in diameter. The range of the spectrum spreads from 250 nm to 

1200 nm, which is the major functional range71 of PV cells. The scan was taken in reflection 

mode with 0.1 s of scan time per point on average. The reflection is also another important 

factor when evaluating backsheet materials. Usually, for better energy harvesting, one will 

desire that the backsheets exhibit high level of reflection thus the light reaching the 

backsheets can be re-directed back to the active cell area to generate electricity. The 

contribution to the power output from the reflection of the backsheets can reach around 2%.31 
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3.8.   Fourier Transform Infrared Spectroscopy (FTIR)  

FTIR analysis was performed on a Nicolet 6700 FTIR Spectrometer (Thermo Scientific, 

Waltham, MA) operating on a resolution of 4 cm-1 and 32 repetitive scans. The FTIR 

spectrometer was equipped with a deuterated triglycine sulfate (DTGS) detector and the 

spectra were obtained using a Smart Performer ATR accessory equipped with a 45º ZnSe 

crystal. Spectrum analysis was carried out with the assistance of OMNIC 7.0 (Thermo 

Scientific, Waltham, MA). The analysis is used to examine the changes in chemical bondings 

of the inner EVA or LDPE layer due to the UV aging effect. 

3.9.   Dielectrical Test 

Electrical properties are important performance factors in evaluating backsheets. In 

addition to mechanical protection, another major function of backsheet is to provide electrical 

insulation. To study the effects of UV aging on the electrical properties of the backsheets, 

dielectrical tests were carried out using an Alpha-N High Resolution Dielectric Analyzer 

(Novocontrol Technologies). The samples were cut into disks with a diameter of 20 mm, and 

then sandwiched between two copper electrodes with the same size of the sample. Electrical 

properties such as conductivity, capacity, and resistance were collected under ambient 

conditions and processed using WinDETA software (Novocontrol Technologies). 



35 
 

	  

CHAPTER 4. RESULTS AND DISCUSSION 

The effects of UV irradiation on the optical, chemical, physical and electrical properties 

of the four commercial backsheets were characterized and are presented in this chapter.   

4.1.   Visual Inspection and Optical Microscopy 

Fig.  23 shows a photo of all four samples after 0, 1500, and 3000 hour UV irradiation. It 

is obvious that Sample C underwent significant yellowing and a closer look reveals a large 

number of parallel cracks on the sample surface. Sample M2 shows slight yellowing after 

3000-hour irradiation and a considerable amount of parallel cracks can also be noticed. On the 

other hand, Samples K and T show no sign of color change to the naked eye. Fine cracks are 

still discernable on Sample T, but only after 3000-hour UV irradiation, whereas no cracks 

show up at all on Sample K. The visual observation results imply that Sample K is the most 

UV-resistant backsheet material, followed by Sample T and M2. Sample C shows the lowest 

UV resistance.  

Optical micrographs of the four backsheets after different length of UV irradiation are 

compared in Fig. 24. First of all, micro-sized particles can be clearly seen on Samples C and 

M2. These particles are inorganic pigments added into the backsheet materials to give them 

white color. Similar particles do not appear on the photos of Samples K and T possibly 

because much smaller particle sizes (e.g. nanosized pigments) are used in these two samples.   
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 Virgin sample After 1500 hour After 3000 

C 

 

K 

M2 

T 

Fig.  23.  Photo of virgin Sample C, K, M2, and T and the four samples after 1500 h UV 
irradiation and 3000 h UV irradiation. 3000 h Samples are partially enlarged in the 

rectangles with black borders for a better view of the cracks. 



37 
 

Surface cracks develop on all the samples except Sample K. For Sample C, cracks can be 

seen as early as 500 h, which is the earliest among all the samples. The width of the cracks 

increases with irradiation time (1000 h) and more fine cracks develop with increasing time. 

Sample M2 shows a similar crack developing trend with the number and width of the cracks 

increasing with the irradiation time. Many of the cracks are parallel to each other and show 

similar width, which is a typical failure mode due to the orientation of polymer chains formed 

during film extrusion process. These microscopic results agree with those from direct visual 

observation. The cracks on Sample T appear to develop at a lower rate compared to Samples 

C and M2. They occur after longer irradiation (1000 h) and their density and width appear to 

be smaller. For Sample K, no surface crakes can be observed at all during the entire 

irradiation process. The cracks on the three samples are caused by irradiation induced 

polymer degradation and the resultant decreases in mechanical properties. The cracks 

propagate under the influence of the residue stress resulted from the orientation/stretching 

effect of the film extrusion.  

Shrinkage rate testing is a simple method to characterize how much residue stress is 

present in the samples. For the backsheet application, one would prefer a low shrinkage. In 

Table 3, Sample K shows relatively uniform shrinkage on both machine and transverse 

directions, indicating similar chain orientation and strength in both directions. For the other 

samples, the shrinkage rate in one direction is obviously higher than that in the other direction, 

implying a preferential crack growth. Usually the higher the stretching/orientation in one 

direction, the weaker the inter-molecular strength in the transverse direction, thus it is quite 

normal to observe crack lines parallel to the machine direction for the stretched samples. 
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Fig. 24.  Optical microscopic photos of the four samples under different dosages of UV 
irradiation. 
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Table 3.  Shrinkage rate (%) of the samples. 

 Machine direction Transverse direction 

C 0.8 0.5 

K 0.6 0.6 

M2 1 0.5 

T 1.2 0.1 

4.2.   SEM  

SEM was carried out to study the microstructures of the cracks caused by UV irradiation. 

SEM micrographs of the four samples are shown from Fig.  25 to Fig.  28.  Fig.  25 shows the 

microcracks on Sample C after 3000 h irradiation. Being a multilayer laminate, the backsheet 

shows irradiation induced cracks on both top and the second layers (Fig.  25a). The cracks on 

Sample C propagate in random directions and intersect with each other. Small cracks can be 

seen branching out from main cracks (Fig.  25b). The surfaces of Sample C are smooth and 

clean. The fracture surfaces of the cracks are also relatively clean, showing no sign of 

extensive plastic deformation (Fig.  25d). 
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 Fig.  25.  Sample C after 3000 h UV irradiation. 

The surfaces of Sample K are rougher than those of Sample C (Fig.  26). This can be 

attributed to different materials and processing parameters. Comparing pictures c - d to a - b, 

no obvious surface microstructure changes can be seen, indicating negligible UV degradation 

of the sample.   

Main crack 

Branch crack 
Top layer 

Crack on the 2nd layer 

a b 
 

c d 
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Fig.  26.  Sample K in pristine state (a and b) and after 3000 h UV irradiation (c and d). 

Similar to Sample C, Sample M2 exhibits many cracks and crack branches on its surfaces 

(Fig.  27). Crack surfaces are clean and show no sign of plastic deformation. Fig.  27c appears 

to show delamination of the multilayer sheet after UV irradiation because of the existence of 

the ligament-like structures (in the circle), which implies the detachment of the top layer from 

the layer beneath it.  

  

  

 

b a 

c d 
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Fig.  27.  Sample M2 after 3000 hour irradiation.   

Sample T shows smaller number of cracks (Fig.  28) compared to Samples C and M2. 

Major cracks are connected by propagating small cracks (Fig.  28a and d). The branch crack 

in Fig.  28b appears to be shallower than its root crack. Large number of ligaments can be 

seen at the bottom of the cracks (Fig.  28a, b and c), indicating delamination within the 

multilayer structure. 

a 

d c 

b 

  

  

 

a b 

c d 
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Fig.  28.  Sample T after 3000 hour irradiation. 

4.3.   YI (Yellowness Index) 

 Before we discuss about the quantitative effect of UV dosage to the YI change of the 

samples, let’s explain how to calculate the UV dosage. 

Per spectral power distribution of lamp UVA-34070, with lamp intensity setting of 0.35 

W/m2 at 340nm, the integrated total UV dose from 280nm to 400nm is about 20 W/m2. The 

total UV dosage (TUV) with different UV aging time can be simply expressed as: 

I = 20 W/m2 * aging time (in 1000 hours) (kWh/m2)       (2) 

where I is the UV irradiation dosage.  

  

  

 

a b 

c d 
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The UV dosage and different irradiation time were tabulated in Table 4. As a reference, 

the annual total UV dosages in Arizona (representative hot and dry region) and Florida 

(representative hot and humid region) are 93 kWh/m2 and 78 kWh/m2, respectively.72  

Table 4.  The UV dosage for different irradiation time.  

Irradiation time (hour) 0 500 1000 1500 2000 2500 3000 

UV dosage (kWh/m2) 0 10 20 30 40 50 60 

 

Fig.  29 shows the YI of the four samples as a function of UV dosage. The figure shows 

that for all the samples, their YIs increase with the dosage. Sample C exhibits the highest 

increase rate while the rates of the other three samples are similar and close to zero. In fact, 

the YI values of the three samples over the entire dosage range are all close to zero, indicating 

that the yellowing behavior of the three samples is negligible and the UV resistance of the 

sample is outstanding under the testing conditions. The great difference of the yellowing 

behavior between sample C and the other three samples showed the importance of 

engineering evaluation for the materials: all four samples are commercial products with 

similar laminate structures and are all claimed to be able to function in fields for 25 to 30 

years. However, from the YI results sample C will definitely not be able to behave as well as 

the other three competitors. Some negative YI values are shown in the figure, which can be 

attributed to initial greenish color of the samples (unnoticeable to human eyes because their 

YI are smaller than 5). The YI results agree well with the morphological results presented in 

the previous section, i.e. sample C exhibits the weakest UV resistance.     
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Fig.  29.  YI vs. UV dosage of the four samples.  Dotted lines are linear fittings of each 
group of data.   

In order to quantitatively estimate the yellowing processes of the backsheets, curve fitting 

was also attempted for each group of YI data. A linear fitting function was found to be able to 

properly fit all the data groups: 

     YI=a*I+b      (3) 

Where a and b are the two fitting coefficients which represent YI increase rate and initial YI 

values, respectively. a, b and R2 (which measures the goodness of the fitting) for each sample 

are given in Table 5. The linear relationship between YI (which is an indication of 

degradation degree) and the UV dosage is in agreement with the findings of Daro, who 

examined the chain scissions per molecule for the polyolefin and found that the number of 

chain scissions exhibited an linear relationship to the accumulated total solar radiant 

exposure.73 Table 5 clearly shows that sample C has the highest degradation rates (at least 8 

times higher than the other three samples) and sample K is the most UV resistant sample. 
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Table 5.  Parameters used in linear curve fitting. 

 C K M2 T 
a 0.4630 0.0098 0.0581 0.0104 
b 2.9438 2.0216 -0.3102 -0.5476 
R2 0.9739 0.6659 0.9355 0.8233 

 

Currently many UV aging standards for polymers recommend 0.35 W/m2 for 1000 hours 

as the aging standard. This is only equivalent to 20 kWh/m2 total UV dosage, which is about 

2.6 months of Arizona UV dosage. This requirement is too low for the outdoor applications of 

polymeric materials as demonstrated by the increasing YI values in Fig.  29. It is 

recommended that the hours or the irradiation strength can be increased in the standards so 

that the samples are tested through higher total dosages. 

4.4.   Delta E 

In addition to YI, Delta E is another commonly used parameter to characterize material 

color change. While YI can only indicate the color changes between green and yellow, Delta 

E provides a more comprehensive representation of color change in the visible light range. It 

can be calculated using the equation below74: 

   Delta E2= (L1-L2)2+(a1-a2)2+(b1-b2)2               (4) 

where L, a, and b are coordinate values in a nonlinearly compressed CIE XYZ color space. 

L is for lightness and a and b for the color-opponent dimensions.  
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As shown in the equation, Delta E represents the color difference between Color (L1, a1, 

b1) and Color (L2, a2, b2). The color difference can be identified by naked eyes when Delta E 

is over 2.3. In other words, the color difference reaches JND (Just Noticeable Difference).75  

The Delta Es between the original and UV-aged samples as a function of irradiation 

dosage are shown in Fig.  30 and Fig.  31. Sample C shows a remarkable color change, in 

agreement with the results from YI analysis. Delta E of the sample reaches 2.13 (slightly 

below JND), after 500 h UV irradiation, while Delta Es of all other samples are well below 

JND, meaning no discernible color changes by naked eyes. The curves show a trend similar to 

that of YI, i.e. the color changes of the samples increase with increasing irradiation dosage. 

Sample C exhibits the greatest color change in the four samples, indicating that it underwent 

the most severe degradation, which has already been shown by the YI results and the 

microscopic studies. The degree of the color change of Sample C is so much that it dwarfs the 

other three curves in Fig.  30. For a better comparison between the low Delta E samples, only 

the curves of K, M2 and T are plotted in Fig.  31. Among the three samples. Sample M2 

shows the highest degree of color change, corresponding to the results obtained from the 

optical microscopic study, where it shows the second highest number of cracks. The 

differences in the color change between Sample K and T are small. Since Sample K is the 

most UV-resistant sample and the surface layer of Samples K and T are both made of LDPE 

(see FTIR section), this result suggests that the color change and surface cracking may not be 

proportionally related to each other.  
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Fig.  30.  Delta E as a function of irradiation dosage of all the four samples. 

 

Fig.  31.  Delta E as a function of irradiation dosage of Samples K, M2, and T. 

Zero corrected YIs (i.e. shifting the lines in Fig.  29 upward or downward so that the 

initial YI is zero) as a function of Delta E are plotted in Fig.  32 to Fig.  35. It can be easily 

observed that the two parameters show a linear relationship: YI is about 1.0 to 1.7 times of 

Delta E. This is true not only for Sample C and M2, but also for Sample K and T, which show 
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very little color change. This result suggests that these two characterization methods are 

comparable to each other. This empirical relationship will allow researchers to cross compare 

samples with only Delta E or only YI. Engineers and researchers have the freedom to choose 

which is available for them to get the characterization done on the materials under study.  

 

Fig.  32.  YI vs. Delta E of Sample C 

 

Fig.  33.  YI vs. Delta E of Sample M2 
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Fig.  34.  YI vs. Delta E of Sample K 

 

Fig.  35.  YI vs. Delta E of Sample T 

4.5.   UV-Vis-NIR Spectrum Analysis 

One function of backsheet is to reflect (re-direct) the light reaching it back to the active 

PV cell area to generate more electricity. Thus, in general, the higher the reflection of the 
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backsheet have, the higher the electricity will be harvested, given the same module stack up. 

The effect of UV aging on the reflection of the backsheet was also characterized here, using 

UV-Vis-NIR technology. The reflection (R) of Sample C after different hours of irradiation 

are shown in Fig.  36. The most significant changes (i.e. decease in reflection with increasing 

irradiation time) occurs within 400 - 600 nm (visible light region). The decreases indicate that 

increasing amounts of irradiation are absorbed by the backsheets and used to initiate/sustain 

degradation reactions and to heat up the samples, in both cases promoting material aging. 

Decreasing reflection also means that PV cells receive less reflected irradiation from the 

backsheets and therefore generate lower amount of electricity. Sample K, as the most UV 

resistant sample, shows almost no changes over the entire spectrum (Fig.  37). The reflection 

decreases for Samples M2 and T (Fig.  38 and Fig.  39) are much smaller compared to C, in 

agreement with the results obtained before. It is worth noting that only Sample C shows a 

reflection in the UV (300 – 400 nm) region. This is due to a special UV blocking or absorbing 

agent used in the sample, which caused this characteristic reflection. The decrease of 

reflection in this UV range for backsheet C also means that more UV would be absorbed by 

the aged material, thus accelerating its UV degradation. 
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Fig.  36.  UV-Vis-NIR Spectra of Sample C. 

 

Fig.  37.  UV-Vis-NIR Spectra of Sample K. 

Increasing time 
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Fig.  38.  UV-Vis-NIR Spectra of Sample M2. 

 

Fig.  39.  UV-Vis-NIR Spectra of Sample T. 
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4.6.   Fourier Transform Infrared Spectroscopy (FTIR) Analysis 

The color and microstructure changes of the UV aged samples are due to molecular level 

chemical changes. FTIR is a handy technology for us to check the chemical changes of the 

four samples. The FTIR spectra of the four samples after baseline corrections are shown from 

Fig.  40 to Fig.  43. The spectra of Sample C and Sample M2 show the characteristic peaks of 

EVA, while the spectra of Sample K and Sample T feature the characteristics of LDPE.76 The 

peaks of all the samples feature –CH2− backbone structure: 2915 and 2847 cm-1 for -CH3 and 

-CH2 stretching absorptions, 1472, 1372, and 1461 cm-1 for -CH3 and -CH2 bending 

absorptions, and 729 and 718 cm-1 for -(CH2)n- rocking absorption with one exception – no 

729 cm-1 peak on Sample K, which is ascribed to its low n, the degree of polymerization.76 

Those peaks of all four series of samples didn’t change much in the process, because the 

backbone basically remained the same in the degradation.  
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Fig.  40.  FTIR spectra of Sample C after different lengths of UV irradiation. 
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Fig.  41.  FTIR spectra of Sample M2 after different lengths of UV irradiation 
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Fig.  42.  FTIR spectra of Sample T after different lengths of UV irradiation 
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Fig.  43.  FTIR spectra of Sample K after different lengths of UV irradiation 
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Samples C and M2 show peaks at 1740 cm-1 (C=O stretching of -COO-) and at 1239 and 

1019 cm-1 (C-O stretching of -COO-), which are characteristic peaks of EVA.76 The two 

samples share very similar trend of spectrum change. Peak 1740 cm-1 is strengthened and 

broadened with increasing irradiation time, suggesting the formation of more carbonyl bonds 

during EVA degradation. The occurrence and strengthening of 1710 cm-1 peak (C=O stretch 

in acids) is due to the increasing content of the degradation product of acetic acid.64 The Peaks 

at 1239 and 1019 cm-1 decrease in intensity, indicating the decreasing content of the original 

ester groups of EVA due to the release of acetic acid during degradation. The occurrence of 

the peak around 1163 cm-1 suggests the formation of oxidation induced new -COO- groups, 

which are different from the ones in original EVA.76 The peaks around 1412 cm-1 are 

attributed to carbon double bonds (-C=C-), which are also the products of oxidation.76 

The surface layer of samples T and sample K is made of low-density polyethylene 

(LDPE). Their FTIR spectra feature peaks of –CH2- backbone. For sample T, the increasing 

intensity of the 1734 and 1707 cm-1 peaks is attributed to C=O stretches from ester and ketone 

groups produced by LDPE oxidation.52,53 The peaks at 1610, 1411, and 908 cm-1 show that 

carbon double bonds (C=C) are formed in the aging process.44 The peak at 1168 cm-1 is 

attributed to C-O stretch in alcohols that are produced from LDPE photooxidation.54 For 

sample K, only weak peaks at 1731 (C=O) and 1610 (C=C) cm-1 can be noticed, suggesting 

minimal degradation of the sample. These results are in good agreement with those from 

visual, SEM, and color studies, i.e., sample K exhibits the best UV degradation performance. 
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4.7.   Dielectric Properties 

In addition to its mechanical protection and optical reflection functions, another major 

function of polymeric backsheets is electric insulation. Electrical resistivities and 

permittivities of the samples at 1000 Hz is shown in Fig.  44. The resistivities and 

permittivities of all the samples are close and remain relatively constant despite increasing 

irradiation time. These results do not show the trends that have been observed in YI, Delta E, 

microstructure, and FTIR studies. This is because the electrical test includes all the layers in 

the backsheets while only the top layer is tested in the previous tests. In general, the results 

show that all backsheets possess good electrical insulation property which is only slightly 

affected by UV aging. The safety risk of electric shock/leak due to UV aging can be largely 

eliminated.   
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Fig.  44.  Resistivity and permittivity of the samples at a frequency of 1000 Hz 
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CHAPTER 5. CONCLUSIONS 

UV aging tests on four different commercial PV polymeric backsheets were performed. 

Systematic optical, microstructural, chemical, and electrical analyses were conducted on the 

aged samples after different hours of UV aging. Optical microscopy and SEM studies showed 

that sample surface cracking and interlayer delamination developed with increasing 

irradiation dosage. Sample residual stresses played an important role in crack propagation. 

A linear relationship between YI and UV irradiation dosage was established, which can 

be used to predict longer term yellowing behavior of the materials. YI was found to be 

equivalent to Delta E in measuring sample color change after UV exposure. Different labs and 

researchers can compare their results even though they are using different parameters. Surface 

reflection of the backsheets decreased with increasing UV dosage, which was in agreement 

with the results from YI.   

Underlying degradation mechanisms were studied using FTIR and the degradation 

products were identified. The degree of degradation was related to the progress of yellowing. 

UV degradation of the backsheets did not influence their electrical properties within the tested 

irradiation time because degradation only occurred on the sample surfaces. The effects are 

expected to show under very large UV dosages. 

All the backsheets tested in this research are qualified commercial products. However, 

one of the four backsheets showed severe premature UV degradation and hence its use in 

commercial PV modules might cause PV quality issues after a certain period of time of UV 

exposure. This study highlighted the importance of material evaluation for the PV industry. 
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For 25 years of lifetime warranty, PV module manufacturers need to exercise due diligence to 

qualify the right material into their product.  

The results have also provided the PV QA task force much needed information to develop 

proper UV aging standards for the PV industry. Future work of this study is to continue the 

UV aging study on the same material under other three light/UV conditions: metal halide, 

Xenon arc, and EMMAQUA (~5X concentrated natural sunlight), and to correlate the results 

to establish systematic relationships between the aging conditions and the aging results for the 

materials under study. In addition, more work is needed to correlate the accelerated testing 

results to field failures. 

President Obama urged extensive use of renewable energy in his inaugural address in 

January 20th, 2009 - “We will harness the sun and the winds and the soil to fuel our cars and 

run our factories.”77 Reliable PV technology is crucial to the success of solar energy, which 

highlights the importance of the studies on the aging behaviors of PV backsheets.   
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