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A B S T R A C T

We study effective elastic properties of 3D bicontinuous random composites (such as, e.g., nanoporous gold filled
with polymer) considering linear and infinitesimal elasticity and using asymptotic homogenization along with
the finite element method. For the generation of the microstructures, a leveled-wave model based on the works
of Cahn (1965) and Soyarslan et al. (2018) is used. The influences of volume element size, phase contrast,
relative volume fraction of phases and applied boundary conditions on computed apparent elastic moduli are
investigated. The nanocomposite behaves distinctly different from its nanoporous counterpart as determined by
scrutinized macroscopic responses of gold-epoxy nanocomposites of various phase volume fractions. This is due
to the fact that, in space-filling nanocomposites the force transmission is possible in all directions whereas in the
nanoporous gold the load is transmitted along ligaments, which hinges upon the phase topology through net-
work connectivity. As a consequence, we observe a distinct elastic scaling law for bicontinuous metal-polymer
composites. A comparison of our findings with the Hashin-Shtrikman, the three-point Beran-Molyneux and the
Milton-Phan-Tien analytical bounds show that computational homogenization using periodic boundary condi-
tions is justified to be the only tool in accurate and efficient determination of the effective properties of 3D
bicontinuous random composites with high contrast and volume fraction bias towards the weaker phase.

1. Introduction

Heterogeneous materials composed of domains of different phases
with highly contrasting mechanical properties abound in synthetic
products and nature. Nanoporous bicontinuous metal-polymer compo-
sites manufactured based on dealloying are heterogeneous materials
with low metallic phase volume content (usually < 0.30). The main
load carrying metallic phase reveals an open-cell morphology formed of
interconnected ligaments. Due to strong size effects emerging at this
scale length (e.g., excess surface elasticity and surface tension), these
ligaments behave as ultra high-strength nanowires (Biener et al., 2006;
Elsner et al., 2017). Their unique properties such as high yield strength
despite high porosity, large specific surface area and electrocatalytic
performance make these highly functional materials popular in appli-
cations of optical-active materials, catalysts, sensors, mechanical ac-
tuators, fuel cells and microbalance electrodes, and as a coating for
medical devices (Weissmüller et al., 2003; Erlebacher et al., 2001;
Chen et al., 2010). Even though considerable work has been done

towards understanding the kinetics of phase separation during deal-
loying, a full comprehension of the mechanical properties of nano-
porous metals and their composites still eludes us (Biener et al., 2005;
2006; Rösner et al., 2007; Hodge et al., 2007; Zinchenko et al., 2013;
Saane et al., 2014; Carolan et al., 2015; McCue et al., 2016; Lührs et al.,
2016; Soyarslan et al., 2018b; Jiao and Huber, 2017; Griffiths et al.,
2017; Soyarslan et al., 2018a; Yang et al., 2018; Leitner et al., 2018;
Griffiths et al., 2017; Bargmann et al., 2016; Wang et al., 2011; Wang
and Weissmüller, 2013; Wang, 2015; Weissmüller et al., 2009; Volkert
et al., 2006; Mameka et al., 2016; Hu et al., 2016; Hu, 2017; Huber
et al., 2014). Computer simulation proves to be powerful for this
aim (Xia et al., 2015), but still one grand difficulty in this context is
making the highly complicated microstructure of the material acces-
sible (Bargmann et al., 2018; Soyarslan et al. 2018b).

In this work, we study the effective elastic properties of 3D bi-
continuous random composites considering linear and infinitesimal
elasticity making use of asymptotic homogenization along with a finite
element method.1 For the generation of the 3D bicontinuous random
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microstructures, a leveled-wave model is devised. Leveled-wave models
for random morphologies, as was conceived by Cahn (1965) as a
modeling tool for material systems involving phase separation (and
hence bicontinuous morphologies) have the following advantages: (i) it
warrants an efficient, yet sufficiently representative, generation of
spinodal-like microstructures in short times (Soyarslan et al., 2018b),
especially as compared to phase field methodologies that model spi-
nodal decomposition (Sun et al., 2013); and (ii) it allows analytical
computation of certain topological and morphological properties for the
generated microstructures, e.g., average Gaussian curvature and mean
curvature, surface-to-bulk volume ratio and genus (Teubner, 1991;
Berk, 1991; Soyarslan et al., 2018b). Especially the Gaussian random
field property of the truncated Fourier series allows an a priori de-
termination of the level of a desired solid volume fraction which is one
of the most important morphological descriptors of heterogeneous
materials (Torquato, 2002).

We investigate the influence of the volume element size, phase
contrast, relative volume fraction of phases and applied boundary
conditions on apparent elastic moduli and anisotropy index. As antici-
pated, with increasing volume element size, the apparent properties
converge to effective ones and the bicontinuos composite tends to ex-
hibit elastic isotropy. Our results conform excellently with the elastic
scaling law proposed for spinodal decomposition-based bicontinuous
microstructures (Carolan et al., 2015). Only under periodic boundary
conditions, effective properties can be determined at a reasonably small
volume element size, hereby referred to as the representative volume
element (RVE) size. At this size, the overestimating property of kine-
matic uniform boundary conditions is shown where the prediction gap
is observed to increase with increasing phase contrast and volume
fraction bias towards the weaker phase. Nevertheless, the estimations
by analytical bounds of Hashin-Shtrikman, three-point Beran-Molyneux
and Milton-Phan-Tien on elastic moduli are observed to be much less
accurate as compared to the results of both boundary conditions. Thus,
computational homogenization using periodic boundary conditions is
observed to be a seamlessly accurate and efficient tool in determination
of the effective properties of 3D bicontinuous random composites with
high contrast and volume fraction bias towards the weaker phase and
even for nonperiodic structures lacking translational symmetry by
homogenization convergence since the random media at hand is sta-
tistically homogeneous and ergodic (Sab and Nedjar, 2005; Terada
et al., 2000).

2. Elastostatics of bicontinuous random composites

2.1. Continuum with microstructure and its numerical generation

We start by introducing the notions of a continuum with micro-
structure and the computational micro-to-macro transition (Miehe and
Koch, 2002; McBride et al., 2012) as shown in Fig. 1. Let 3 denote
the homogenized macrocontinuum, a typical point xM of which

encapsulates a microstructure, represented by the unit cell domain
3 consisting of two constituent material domains 1 and

2 . More precisely, the coordinate Mx represents the macroscale
position vector which is also referred to as the global or slow variable.
Then, we denote the microscale position vector which is also referred to
as the local or fast variable by x. Both variables are related through =x
Mx/ϵ where 0 < ϵ ≪ 1 controls the fineness (scale separation) of the
volume element structure. Thus, if ϵ is small, then the microstructure is
fine and the property functions show rapid oscillations. We consider
random microstructural morphologies formed through spinodal de-
composition - a process where a solution of n≥2 components rapidly
decomposes into distinct coexisting phases. In the Cahn–Hilliard
formulation (Cahn and Hilliard, 1959), the Helmholtz free energy of a
small volume of a two-component inhomogeneous solution is given by

= +g c c V[ ( ) [ /2] | | ]d ,x
2 2 where g(c) denotes the free energy den-

sity of a homogeneous material of composition c, and the square gra-
dient term represents the additional free energy density due to the in-
homogeneous composition. Hence, this ensures the existence of a well-
defined interface between both phases whose spatial extension is gov-
erned by the parameter κ. Here, ∇x and divx respectively denote the
gradient and the divergence with respect to the microscopic coordinate
x. The dynamics of the concentration is then given by a generalized
diffusion equation

= =c
t

M µ M g c cdiv ( ) div [ ( ) div ] ,x x x x x xc
2

(1)

where M > 0 denotes the mobility and =µ c/c is the chemical
potential. The solution of the above equation in the early stages of
spinodal decomposition can be described in terms of a superposition of
standing sinusoidal waves of fixed wavelength but random in ampli-
tude, direction and phase (Cahn, 1965), see also
Soyarslan et al. (2018b), represented by a truncated Fourier series:

= +
=

x q xf
N

a( ) 1 cos( · ) .
i

N

i i i
1 (2)

Here, =x xf c c c( ) [ ( ) ]/ s0 with x denoting the position vector, c0 is the
average composition and cs is the scaling parameter.

N represents the number of waves considered in the truncated
series. Moreover, ai, qi and φi denote the wave amplitude, wave di-
rection and wave phase of the ith wave, respectively. We consider a
constant value for the amplitude, namely =a 2 ,i and a fixed wave
number with = =qq q| |i i 0. The wave phases are uniformly distributed
on [0, 2π) and the wave directions are uniformly distributed over the
solid angle 4π.

Under these conditions f(x) is a Gaussian random function with
=f 0, =f 1,2 where brackets denote ensemble averages over rea-

lizations. For N sufficiently large, the value of the random function f(x)
follows a Gaussian distribution with =P f e( ) / 2f /22 . Given the
random function (2) the different phases of the system are then defined
via a selected level cut ξ:

Fig. 1. Considered continuum with microstructure. 3 denotes the domain of the homogenized macrocontinuum. A typical point xM encapsulates a unit cell
(representative volume) domain ,3 composed of two constituent domains 1 and 2 of different materials, at the microscale. Domain coordinates Mx
and x are related through =x Mx/ϵ where 0 < ϵ ≪ 1 controls the fineness of the volume element structure. The superscript M stands for macroscale.
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where ι denotes the interface of phases 1 and 2. A priori determi-
nation of ξ for a desired phase volume fraction for phase 1, denoted by
ϕ1, can be realized exploiting the Gaussian property of the random field
and using

=( ) 2 inverf(2 1) ,1 1 (4)

where inverf(x) represents the inverse error function. Examples of
generated microstructures for different values of ξ are depicted in
Fig. 2.

As discussed in detail in Bargmann et al. (2018), besides being
random, bicontinuous composite microstructures can also be ordered.
Triply periodically architected polymer composites with inter-
penetrating phases constitute examples of ordered structures obtained
through manufacturing (Al-Ketan et al., 2017). In nature, e.g., skeletons
of sea urchin (Lai et al., 2007), butterfly wings (Michielsen and
Stavenga, 2008) and certain self-assembled block copolymers
(Bates et al., 1994) have ordered bicontinuous structures in which the
phase interface geometrical features resemble triply periodic minimal
surfaces (Lai et al., 2007). Bicontinuous microstructures studied in this
work are generally neither ordered nor periodic. It is possible to attain
periodicity while keeping the stochastic nature of the phase distribution
(Soyarslan et al., 2018b). One way to obtain f with translational peri-
odicity with lattice vectors of magnitude a with

= + + +r r e e ef f ma na oa( ) ( )1 2 3 for arbitrary integers m, n, o is to
select a finite number of waves qi with integer wave number in all di-
rections and constant modulus. To this end, letting the integers h, k, l
denote Miller indices, a a constant and e1, e2, e3 unit vectors of an
orthonormal basis in real space, qi should have the form

=q a h k l[2 / ] ( , , ).

2.2. Homogenization theory

The asymptotic homogenization method used here is similar to that
described in Lukkassen et al. (1995), Eidel and Fischer (2018) and
Fish (2014). We assume that the system is composed of two different
periodically distributed2 linear elastic materials, in which a unit re-
ference cell of volume is periodically repeated covering the macro-
scopic domain. Let =F x F x x( ) ( , )M M denote a generic tensor-valued
function which is periodic in x over the unit cell and which
features slow (with Mx) and fast (with x) variations. Hence, we have

= +F x F x x F x x( ) ( , ) 1 ( , ) ,x x x
M M MM M (5)

= +F x F x x F x xdiv ( ) div ( , ) 1 div ( , ) .x x x
M M MM M (6)

In a heterogeneous body under applied loads, examples of such multi-
scale functions are the displacements uϵ, strains εϵ and stresses σϵ,
which we write as

=u x u x x( ) ( , ) ,M M (7)

=x x x( ) ( , ) ,M M (8)

=x x x( ) ( , ) .M M (9)

For convenience, a third domain, , which is referred to as the com-
posite domain, is introduced (Fish, 2014). Here, ϵ reflects the presence
of fine-scale features, e.g., unlike the macroscale domain boundary ,
the composite domain boundary may be rough at the fine-scale.
The equilibrium equation of elastomechanics at the composite domain,
assuming vanishing body forces, is given by

=0 div in .xM (10)

On the other hand, by assuming infinitesimal and linear elasticity we
have the following stress description

= : in . (11)

In general = x x( , )M where the constitutive tensor is periodic
in x over the unit cell and it shows slow as well as fast variations. For
simplicity, we disregard its slow variation and directional dependence
and assume that = x( ) with = +K G3 2i i i

vol dev where
= 1 11/3 ,vol and =dev vol with = +1 1 1 11/2[ ].

Here, Ki and Gi are bulk and shear moduli associated with phase i, re-
spectively, and 1 is the second-order identity tensor. The periodic
compliance tensor is defined as = 1. The following definition is
valid for strain εϵ

= ( )usym in .xM (12)

Finally, Eqs. (10)–(12) are subject to the prescribed boundary dis-
placements and tractions with =u u on u and =n t· on ,t
respectively. nϵ is the unit normal to the surface at which the traction is
computed. Here, considering that is the boundary of the composite
domain , u and t respectively denote the boundary parts sub-
jected to prescribed displacements and tractions with =u t
and =u t .

We now apply a two-scale asymptotic expansion of the solution
uϵ(Mx) in terms of the fast and slow coordinates

= + + +u x u x x u x x u x x( ) ( , ) ( , ) ( , ) ( ) ,M (0) M (1) M 2 (2) M 3 (13)

where u(i) are periodic functions in x. The leading order u(0)

Fig. 2. Examples of bicontinuous microstuctures generated with the level cut method Soyarslan et al. (2018b) for phase 1 (red) / phase 2 (grey - transparent) volume
fractions of (a) = 0.20,1 (b) = 0.30,1 (c) = 0.40,1 (d) = 0.501 ; volume element size of 12 wavelengths. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

2 Even if the microstructure is not periodic, the response functions and the
solutions are assumed to be so.
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corresponds to the homogenized displacement field, and as is shown
below, it only depends on the macroscopic coordinates Mx, i.e., it is
constant over the unit cell domain. Putting the above ansatz into
Eqs. (11)–(13) we obtain the following expansions for εϵ and σϵ

= + + +

+

x x x x x x x x x( ) 1 ( , ) ( , ) ( , ) ( , )

( ) ,

M ( 1) M (0) M (1) M 2 (2) M

3 (14)

= + + +

+

x x x x x x x x x( ) 1 ( , ) ( , ) ( , ) ( , )

( ) ,

M ( 1) M (0) M (1) M 2 (2) M

3 (15)

where we have defined the quantities

= = + +u ksym( ) and for 0x x x
k k k( 1) (0) ( ) ( ) ( 1)

M (16)

with

= =( )u usym and sym( ) .
x x x x

k k k k( ) ( ) ( ) ( )
M M (17)

Using Eq. (11) the quantities σ(k) and ε(k) are then related by the fol-
lowing elastic constitutive relation

= k: for 1 .k k( ) ( ) (18)

We substitute now the asymptotic expansion for the stress tensor,
Eq. (15), into the equilibrium Eq. (10), and comparing coefficients of
different powers in ϵ we obtain

=0( ): div ,x
2 ( 1) (19)

= +0( ): div div ,x x
1 ( 1) (0)M (20)

= +0( ): div div .x x
0 (0) (1)M (21)

Since depends only on the microscopic variables, and rewriting
Eq. (19) as

=u 0div [ : sym( )] ,x x
(0) (22)

we can conclude that =u u x( ),(0) (0) M that is, u(0) is expressed only in
terms of macroscopic coordinates, as mentioned above, and so is

x( )
x

(0) M
M . In addition, and considering Eqs. (16) and (18), we have

= = 0( 1) ( 1) . This shows that the leading orders of the stress and
strain tensors are ε(0) and σ(0), respectively. The goal now is to find a
homogenised (macroscopic) equation for u(0) that is written in terms of
the homogenised (macroscopic) strain tensor

x
(0)
M .

Since = 0,( 1) Eq. (20) becomes = 0div ,x
(0) which, using

Eq. (16), can be rewritten as

= ( )div ( : ) div : .x x x x
(1) (0)

M (23)

The right-hand side of the above equation is the product between a
function that depends on the microscopic variables only ( ) and a
function that the depends on the macroscopic variables only (

x
(0)
M ).

Therefore, to solve u(1) up to a constant, we apply separation of vari-
ables and consider solutions of the form =u x x x( , ) ( )

x
mn

mn
(1) M

,
(0)
M .

Thus, we have

= sym( ) .x x x
mn

mn
(1)

,
(0)
M (24)

Here, χmn(x) is a periodic C0 continuous, vector-valued first-order
displacement influence function, also known as a corrector function,
with symmetry =x x( ) ( )mn nm for =m n, 1, 2, 3. Moreover,

periodicity of χmn(x) renders the following integration over the unit
cell

= =0V m nd for , 1, 2, 3 .x
mn

(25)

Putting the ansatz for x
(1) given in Eq. (24) into Eq. (23) and con-

sidering the validity of Eq. (23) for arbitrary macroscopic strains
x

(0)
M

along with using the minor symmetry of which provides
= = =ijkl ijlk jikl jilk with = e e e e[ ] : : [ ]ijkl i j k l we obtain

the following cell problem

= =
x

x x x
( )

in .
j

ijkl
k
mn

l

ijmn

j
1 2

(26)

Together with locally periodic boundary conditions, Eq. (26) is a linear
boundary value problem for χnm(x) up to a constant. The function
χlm(x), which is a solution of the cell problem (26), provides informa-
tion of the microscopic details of the system, and as such, it is a key
quantity of the homogenised problem.

We can write the leading order (fine scale) strain tensor
= +x x( , )

x x
(0) M (0) (1)

M in the following separated form

=

= + +

x x

x x
x x

( ) with ( )

1
2

( ) ( )
,

xkl kl
mn

mn kl
mn

klmn
k
mn

l

l
mn

k

(0)
,

(0)
M

(27)

where x( )kl
mn is the strain influence function.

= +1/2 [ ]klmn km kn lmln for =k l m n, , , 1, 2, 3 are the components
of the fourth-order symmetric identity tensor. This shows, in view of
Eqs. (18) and (27), that the leading order (fine scale) stress tensor
σ(0)(Mx, x) depends only on the corrector function χlm(x) and the
macroscopic strain tensor

x
(0)
M with

=

= = +

x

x x x
x

x

( )

with ( ) ( ) ( )
( )

,

xij ij
mn

mn

ij
mn

ijkl kl
mn

ijmn ijkl
k
mn

l

(0)
,

(0)
M

(28)

where x( )ij
mn is the stress influence function. Making use of the di-

vergence theorem and the fact that σ(1) is periodic in , we have
= =n 0V Adiv d · dx

(1) (1) . Thus, integrating Eq. (21) over the
unit cell, we obtain

+ =

= =

[ ]

0

V V1
| |

div div d div 1
| |

d

div .

x x x

x

(0) (1) (0)

M

M M

M (29)

This is the (macroscopic) homogenized equilibrium equation where the
volume averaged stress tensor Mσ reads

= V1
| |

d .M (0)
(30)

Analogously to Eq. (30), volume averaged strain tensor Mε can be
computed through an averaging of ε(0) over the unit cell

= V1
| |

d .M (0)
(31)

In view of Eqs. (25) and (27), one computes =
x

M (0)
M . Substituting

Eq. (28) into the right-hand side of Eq. (30) yields the following mac-
roscale constitutive equation

= : ,M M (32)

where is the macroscopic elastic stiffness tensor with

= x V1
| |

( )d .ijmn ij
mn

(33)

possesses both major and minor symmetries as does . For deriva-
tion of the components of the macroscopic elasticity tensor , we
represent the unit cell problem given in Eq. (26) in terms of the so-
called total displacement influence function = +mn mn mn where

= xk
mn

n km which gives

= =
x

x x
( )

0 in .
j

ijkl
k
mn

l
1 2

(34)

Analogous to Eq. (26), together with locally periodic boundary condi-
tions, Eq. (34) is a linear boundary value problem for ψnm(x) up to a
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constant. To provide uniqueness, a common approach used is to set
=x x( ) ( ),nm nm i.e., =x 0( ) ,nm on the vertices of the unit cell,

which constitute control nodes used to impose macroscropic strains.
Substituting the representation =mn mn mn into the strain

influence function given in Eq. (27) with the definition = xk
mn

n km we
reach

= + +

= + +

= +

x
x x x x

x x

x x

x x

x x

x x

( ) 1
2

[ ( ) ( )] [ ( ) ( )]
,

1
2

( ) ( )
,

1
2

( ) ( )
.

kl
mn

klmn
k
mn

k
mn

l

l
mn

l
mn

k

klmn klmn
k
mn

l

l
mn

k

k
mn

l

l
mn

k (35)

Considering the unitary character macroscopic strain due to total dis-
placement influence function ψmn for each mn-pair, we may define

x( )kl
mn as the microscopic strain components due to total displacement

influence function ψmn with =x( ) ( )kl
mn

kl
mn(0) . Similarly, in view of

Eq. (28), x( )kl
mn is interpreted as the microscopic stress components

due to the total displacement influence function ψmn with
=x( ) ( )kl

mn
kl

mn(0) . Substituting this into Eq. (33), we find

= V1
| |

( )d .ijmn kl
mn(0)

(36)

In words, the component of the macroscopic elasticity tensor with
the indices ijmn corresponds to the homogenized stress tensor compo-
nent Mσij for due to total displacement influence function ψmn computed
for the imposed macroscropic strains at unit cell vertices with k

mn.
Thus, computation of the 36 macroscopic constitutive constants making
up ijmn requires computation of the homogenized stress Mσ for six load
cases with =mn 11, 22, 33, 23, 13, 12, see Fig. 3. For convenience, in
the following pages we denote ε(0) and σ(0) with ε and σ, respectively.
The results listed above for periodic microstructures, are valid even if
the material is random and not periodic as in the current case.3

For completeness, we close this part by presenting the boundary
value problem at the macroscale domain . For vanishing body forces,
this aims at finding the macroscale displacement field =u u x( )M (0) M on
such that

=0 div in .x
MM (37)

Eq. (37) with Mσ computed in view of Eq. (32) are subject to the pre-
scribed boundary displacements and tractions with =u uM M on u
and =n t·M M M on ,t respectively. Mn is the unit normal to the
surface at which the traction is computed. Here, considering that is
the boundary of the domain , u and t respectively denote the
boundary parts subjected to prescribed displacements and tractions

with =u t and =u t .

2.3. Boundary conditions

During the application of the different load cases, we subject the
representative volume boundaries to two different boundary conditions
each of which results in a periodic deformation of the unit cell, in ac-
cordance with the outlined asymptotic homogenization based macro-
scopic property definition scheme. These are periodic boundary con-
ditions (PBC) and kinematic uniform boundary conditions (KUBC), both
of which are applied under displacement control and for which the
equivalence of average microscopic stress power to the macroscopic
stress power (Hill, 1972) is a priori satisfied (Miehe and Koch, 2002).
We consider periodic boundary conditions by taking both periodic de-
formations and antiperiodic tractions as

=
+ =

+ +

+
u x u x d x x

t x t x 0
t t t
t t

( , ) ( , ) ( )·[ ] ,
( , ) ( , ) .

M

(38)

Here, Md is the macroscopic displacement gradient yielding
= dsym( )M M . Moreover, + +x and x correspond to two

material points periodically located at the representative volume
boundary with outward normals +n and n , respectively, which satisfy

=+n n . On the other hand, considering that corresponds to the
representative volume boundary, kinematic uniform boundary condi-
tions are defined by taking displacements that comply with the assigned
macroscopic strains on

=u x d x xt t( , ) ( )· ,M (39)

Thus, kinematic uniform boundary conditions correspond to a special
case of periodic boundary conditions where the perturbation field
vanishes on .

A third type of boundary condition, referred to as uniform traction
condition (UTBC), is defined via tractions that comply with the assigned
macroscopic stresses =t x nt t( , ) ( )·M . This boundary condition is
applied under force control to yield the apparent compliance tensor.
Denoting elastic stiffness tensors obtained by using periodic, kinematic
uniform and uniform traction boundary conditions by ,PBC KUBC and

,UTBC respectively, the homogenization results derived by
Suquet (1987) yield the following universal inequality

: : : : : : .M
UTBC

M M
PBC

M M
KUBC

M (40)

Thus, the macroscopic elastic stiffness predictions of kinematic uniform
and uniform traction boundary conditions respectively correspond to an
upper and lower bound on the macroscoic stiffness. Therefore, the use
of periodic boundary conditions for the computations of the elastic
properties is a more reasonable approach.

Fig. 3. Considering that the problem is a linear one, and in order to provide stress and strain distributions over the unit cell with reasonable magnitudes, we apply small
macroscopic strains with six homogeneous deformation fields corresponding to k

mn for =mn 11, 22, 33, 23, 13, 12. These yield macroscopic strains of
=( ) ( )k

mn
k
mnM M where = e e( ) ,M 11

1 1 = e e( ) ,M 22
2 2 = e e( ) ,M 33

3 3 = +e e e e( ) 1/2 [ ],M 23
2 3 3 2 = +e e e e( ) 1/2 [ ],M 13

1 3 3 1
= +e e e e( ) 1/2 [ ]M 12

1 2 2 1 and = 0.001. The periodic fluctuation field χmn, which is not displayed above, has no influence on the emergent macroscopic
strains. The grey box represents the undeformed volume element contours whereas the dashed curves convect with the deformation. For visibility purposes the
displacements are amplified.

3 At the expense of doubling the size of the volume element, periodization of
the microstructure is possible using a mirroring operation (Pahr and
Zysset, 2008).
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3. Results and discussions

3.1. Determination of the RVE size

Effective properties inherently assume the existence of an RVE, a
concept on which continuum mechanics relies (Ostoja-Starzewski et al.,
2016). Unit cells making up periodic media and volume elements of
very large sizes (mathematically tending to infinity), which encapsulate
sufficient microstructural information and that feature statistical
homogeneous ergodic properties, qualify as RVEs (Ostoja-Starzewski,
2007; Torquato, 2002). In the current paper, we apply homogenization
by systematically increasing the generated volume element size and
investigate the convergence of homogenized apparent elastic proper-
ties. To this end, we consider periodic boundary conditions.

For the elastic moduli of polycrystals, i.e. aggregate of single crys-
tals, randomly distributed orientations of single crystals lead to mac-
roscopically isotropic properties. For polycrystalline materials, con-
sidering that the aggregate of crystals occupy the whole volume, the
Voigt and Reuss averages correspond to directional averages con-
sidering all possible lattice orientations, with

=

=

1
4

( , ) sin d d and

1
4

( , ) sin d d ,

V 0

2

0

R 0

2

0 (41)

which are fourth-order stiffness and compliance tensors, respectively.
Since both V and R are isotropic we can describe them in terms of K ,V
GV and K ,R G ,R respectively.

Similar to the case of polycrystals, the generated bicontinuous sto-
chastic composite microstructures feature macroscopically isotropic
elastic properties only for sufficiently large volume element sizes,
otherwise a strong directional dependence may be observed in the
macroscopic elasticity tensor. Due to the randomness in the generation
of the microstructures, computation of elastic properties for only one
selected direction may be misleading. Therefore, we treat the macro-
scopic elasticity tensor of each volume element as that of a single
crystal making up a crystalline aggregate by using the substitution of
the macroscopic elasticity and compliance tensors, and , re-
spectively, in the integrands of Eq. (41). This allows demonstrating
macroscopic elastic properties with a single parameter, namely Hill’s
aggregate elastic properties, = +K K K[ ]/2HVR V R and

= +G G G[ ]/2,HVR V R (Hill, 1952). Moreover, this allows quantifying
the level of anisotropy in the material using the macroscopic universal
anisotropy index AU (Ranganathan and Ostoja-Starzewski, 2008), with

= +A K K G G/ 5 / 6 0U V R V R . AU increases with increasing level of
anisotropy. As the medium converges to an isotropic one, the gap in-
between Voigt and Reuss bounds vanishes with K KV R and
G GV R . This amounts to =A 0U . Corresponding Young’s moduli and
Poisson’s ratios are computed with = +E K G K G9 /[3 ]HVR HVR HVR HVR HVR
and = +K G K G[1/2] [3 2 ]/[3 ],HVR HVR HVR HVR HVR respectively. Once
the effective properties are concerned, the subscript HVR is dropped.

In the definition of the RVE size, model generations for various
volume element sizes are considered as demonstrated in Fig. 4. A two-
phase elastic nanocomposite, with constituent phase contrast corre-
sponding to =E E/ 1,2 1 is homogeneous and any material volume, no
matter how small its size is, encapsulates the macroscopic properties.
Thus, one deduces that a phase contrast of =E E/ 02 1 constitutes the
most stringent condition for a minimum RVE size which is computa-
tionally detected. With this motivation, in this part of our work, we
consider single phase gold with phase contrast of =E E/ 0,2 1 where E1
and E2, respectively denote Young’s modulus of gold and pore. Taking
into account the experimentally observed phase volume fraction in-
terval in nanoporous gold, phase volume fractions of = 0.201 and 0.50
are studied. For the single gold phase, we assume isotropic elasticity
and use =E 791 GPa and = 0.441 . All of the reported results on the
subsequent pages constitute averages of those corresponding to five

stochastic realizations using the leveled-wave model, as defined by
Eq. (2). As shown in the subsequent results, for the determined RVE size
the standard deviation in the computed effective properties from the
five stochastic realizations is sufficiently small. In each realization,

=N 10, 000 waves are used which is sufficient to guarantee Gaussian
statistical properties of the random field f(x). We use 3D full integration
first order trilinear finite elements carried out of voxelization of the
generated domain where the voxels are dimensionless and unit-sized. In
absence of consideration of any size dependent constitutive phe-
nomena, the computed mechanical properties are equally valid for any
microstructural size.

The volume element size dependence of the computed apparent
elastic properties, more specifically bulk modulus K⋆, shear modulus G⋆

and Poisson’s ratio ν⋆ are given in Fig. 5 for the solid phase volume
fractions of 0.20 and 0.50. Results are also tabulated in Tables B.1 and
B.2. As anticipated, a fast convergence of the mean elastic properties
with increased volume element size is observed with the use of periodic
boundary conditions. During this convergence of mean values, corre-
sponding error bars get smaller. The mean anisotropy index AU of both
volume fractions decrease swiftly with increasing volume element size,
which signals isotropicization. Depending on the computed relative
errors (cf. Tables B.1 and B.2) and considering the computational re-
sources, the minimum RVE size is judged to be 12 wavelengths and it is
used in all of the subsequent investigations. At this size, for 0.20 of
phase volume fraction, K⋆, G⋆ and ν⋆ are computed as 32.92 ± 7.72
MPa, 27.49 ± 6.88 MPa and 0.1654 ± 0.0180, respectively. More-
over, the effective anisotropy index is computed to be

= ×A 2.27 10U
1. For 0.50 of phase volume fraction, on the other

hand, K⋆, G⋆ and ν⋆ are computed as 10915.24 ± 176.32 MPa,
5588.84 ± 66.48 MPa and 0.2813 ± 0.0009. Also, the effective ani-
sotropy index is computed to be = ×A 2.21 10 ,U

2 cf. (Soyarslan et al.,
2018b). As the effective bulk and shear moduli are concerned, these
predictions are much below the upper bounds computed by Ha-
shin–Shtrikman, three-point Beran-Molyneux and Milton-Phan-Tien
bounds. The bounds for 0.20 gold volume fraction are =K 7567.05U,HS
MPa, =G 3428.82U,HS MPa, + =K K[ ]/2 1935.43U,BM,I U,BM,II MPa, and

+ =G G[ ]/2 1484.50U,MPT,I U,MPT,II MPa. The bounds for 0.50 gold vo-
lume fraction are =K 27430.56U,HS MPa, =G 9974.75U,HS MPa,

+ =K K[ ]/2 15647.72U,BM,I U,BM,II MPa, and +G[ U,MPT,I
=G ]/2 7831.89U,MPT,II MPa (cf. Tables B.1 and B.2). The bounds get

closer to the computed values with increasing solid volume fraction.

3.2. The influence of material property contrast

Based on the determined RVE size, we demonstrate the influences of
phase contrast on the effective elastic properties of the composite. To
this end, fixing E1 to the elasticity modulus of gold with =E 791 GPa,
four phase contrast values, in terms of elasticity moduli ratio

=E E/ {10 , 10 , 10 , 10 }2 1
4 3 2 1 are considered. =E E/ 12 1 corresponds to

the trivial case of a homogeneous material and does not require any
computations. =E E/ 02 1 corresponds to a porous solid for which the
results are reported in the previous section.

Figs. 6 and 7 demonstrate deformed shapes of the volume elements
as well as strain and stress contours for =E E/ 102 1

4 and =E E/ 10 ,2 1
1

respectively, considering ϕ1 ≃ 0.20. Here, the six independent loading
scenarios applied in determination of the effective elastic properties are
considered and the plotted stress and strain contours display the com-
ponents corresponding to the nonzero macroscopic strain component in
each case. For =E E/ 10 ,2 1

4 due to high level of phase contrast, the
applied macroscopic strain is mainly accommodated by the softer phase
at which significant strain localization occurs. With the use of periodic
boundary conditions, a significant waviness occurs in the volume ele-
ment face. Once the phase contrast is decreased from =E E/ 102 1

4 to
=E E/ 10 ,2 1

1 the periodic oscillations at the volume element face sig-
nificantly dissipate and the deformed volume element shapes resemble
those of the kinematic uniform loading case in which the volume
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element faces remain flat. As compared to the results for =E E/ 10 ,2 1
4 a

relatively more balanced distribution of deformation between both
phases is observed for =E E/ 102 1

1. Similar comments apply for the
demonstrated results in Figs. 8 and 9 where ϕ1 ≃ 0.50 is considered.
This time, however, these localizations are less severe and the oscilla-
tions in the volume element face is reduced. Considering the stress
development, with the improved force transmission along dense and
continuous network of the stiff phase much larger stresses are observed
for ϕ1 ≃ 0.50.

The results for intermediate phase contrast values are demonstrated
in Fig. 10 and tabulated in Tables B.3 and B.4. Corresponding analytical
bounds are listed in Tables B.5–B.8. In agreement with our observations
on the strain and stress contours for different phase volume fraction
ratios, for ϕ1 ≃ 0.20, there is a monotonically decreasing trend in the
composite elastic stiffness with increasing phase contrast. This shows
that the relative significance of the compliant phase in overall com-
posite stiffness for ϕ1 ≃ 0.20 is higher than that for ϕ1 ≃ 0.50 in which

we observe a saturating composite macroscopic stiffness behavior to-
wards E2/E1→ 0. This signals a dominant contribution of the stiffer
phase. At the other end, that is for =E E/ 1,2 1 single phase elastic
properties are recovered. The observed Poisson’s ratios decrease from
0.44 to 0.17 and to 0.28 approximately as phase contrast is changed
from =E E/ 12 1 to =E E/ 02 1 for ϕ1 ≃ 0.20 and ϕ1 ≃ 0.50, respectively.
Similar to the composite bulk and shear modulus, the Poisson’s ratio for
the latter case also saturates towards E2/E1→ 0.

Plots for the Hashin-Shtrikman (HS) and the three-point Beran-
Molyneux (BM) (for the bulk modulus) and the Milton-Phan-Tien (MPT)
(for the shear modulus) bounds are also shown in Fig. 10. As required,
none of the computational results violate the analytical bounds. As
anticipated, the three-point Beran-Molyneux bounds (for the bulk
modulus) and the Milton-Phan-Tien bounds (for the shear modulus) are
much more stringent than the Hashin-Shtrikman bounds. To evaluate
the three-point bounds we need to know the parameters ηi and ζi (see
Eq. (A.2) in Appendix A), which depend on the underlying Gaussian

Fig. 4. Volume elements with side lengths of (left to right) 3, 6, 9, 12, 15 and 18 wavelengths. In these generations, phase 1 (red) / phase 2 (grey) volume fraction of
= 0.401 is considered. In the corresponding finite element models, with constant voxel size for normalized RVE sizes, 0.6, 1.2, 1.8, 2.4, 3.0 and 3.6, 32× 32×32,

64×64×64, 96× 96×96, 128× 128×128, 160× 160×160 and 192×192×192 discretizations are used, respectively. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 5. Convergence of elastic properties with increasing volume element size for (a) ϕ1 ≃ 0.20 and (b) ϕ1 ≃ 0.50 and phase contrast of =E E/ 02 1 as input. The mean
values converge to the desired effective values with corresponding error bars getting smaller as the volume element size increases. Periodic boundary conditions are
used in the simulations. Based on the results, the minimum RVE size is selected to be 12 wavelengths. Detailed numerical values are listed in Tables B.1 and B.2. Data
is presented as mean value μ (dots) and standard deviation σ from analysis of 5 random realizations. Lines merge mean values.
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random field used to generate the microstructure. The curves shown in
Fig. 10 were obtained by using the values that were tabulated in
Roberts and Teubner (1995) and Roberts and Garboczi (2002) corre-
sponding to different Gaussian random fields. Both curves are almost
indistinguishable, hence indicating that the analytical three-points
bounds are insensitive to the fine details of the underlying random field,
something that was already mentioned in Roberts and
Knackstedt (1996). Therefore, even though the random function used in
our work, Eq. (2), to generate the microstructures has slightly different
statistics to the functions used in Refs. Roberts and Teubner (1995) and

Roberts and Garboczi (2002) (see Appendix A for more details), the
three-point bounds shown in Fig. 10 are valid for the microstructures
studied in this work.

As Fig. 10 shows, for the material contrast range of <E E/ 10 ,2 1
1

analytical bounds give a sufficiently narrow prediction. For
>E E/ 102 1

4 and for ϕ1 ≃ 0.20 the computed effective bulk and shear
moduli tend to be closer to the lower bounds whereas for the same
region for ϕ1 ≃ 0.50 computations tend to be closer to the upper
bounds. Nevertheless, in general, for the selected cases the effective
composite properties cannot be accurately predicted by the analytical

Fig. 6. Strain (row 2) and stress (row 3) plots over the volume elements for ϕ1 ≃ 0.20 and =E E/ 102 1
4 for six independent loading cases: (a) ε11/σ11, (b) ε22/σ22, (c)

ε33/σ33, (d) ɛ23/σ23, (e) ɛ13/σ13, (f) ε12/σ12. For strain resp. stress, legend max is 0.001 [ ] resp. 2.5 [MPa] and legend min is 0.0025 [ ] resp. 7.5 [MPa]. In top
row, phase 1 resp. 2 is displayed in red resp. grey. A uniform deformation scaling of 100 is applied. The results are given for one of the stochastically realized
microstructures. Periodic boundary conditions are applied. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

Fig. 7. Strain (row 2) and stress (row 3) plots over the volume elements for ϕ1 ≃ 0.20 and =E E/ 102 1
1 for six independent loading cases: (a) ε11/σ11, (b) ε22/σ22, (c)

ε33/σ33, (d) ɛ23/σ23, (e) ɛ13/σ13, (f) ε12/σ12. For strain resp. stress, legend max is 0 resp. 0 and legend min is 0.0025 [ ] resp. 50 [MPa]. In top row, phase 1 resp. 2
is displayed in red resp. grey. A uniform deformation scaling of 100 is applied. The results are given for one of the stochastically realized microstructures. Periodic
boundary conditions are applied. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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bounds. This is the case especially for lower metal volume fractions.

3.3. Effective elastic properties of metal-polymer nanocomposites and
associated scaling law

In the final part of this section, we investigate the effective elastic
properties of metal-polymer nanocomposites. To this end, (stiff) phase 1
and (compliant) phase 2 are selected as gold and epoxy resin, respec-
tively, where the latter has a Young’s modulus of 1.038 GPa and a
Poisson’s ratio of 0.35 (Bargmann et al., 2016; Wang and Weissmüller,

2013).
Effective properties of the gold-polymer nanocomposites are com-

puted for volume elements of 12 wavelength size (see Section 3.1) and
under periodic boundary conditions. Results of the Young’s moduli and
the Poisson’s ratios for various phase volume distributions are demon-
strated in Fig. 11 and tabulated in Table B.9. A linear trend in log-log
scale is evident for the plotted Young’s moduli values with respect to
the gold phase’s volume fraction. This trend is quite different from what
is observed in nanoporous gold. Although in nanoporous gold, the load
is transmitted along gold ligaments which hinges upon the phase

Fig. 8. Strain (row 2) and stress (row 3) plots over the volume elements for ϕ1 ≃ 0.50 and =E E/ 102 1
4 for six independent loading cases: (a) ε11/σ11, (b) ε22/σ22, (c)

ε33/σ33, (d) ɛ23/σ23, (e) ɛ13/σ13, (f) ε12/σ12. For strain resp. stress, legend max is 0.001 [ ] resp. 0 and legend min is 0.0025 [ ] resp. 100 [MPa]. In top row, phase
1 resp. 2 is displayed in red resp. grey. A uniform deformation scaling of 100 is applied. The results are given for one of the stochastically realized microstructures.
Periodic boundary conditions are applied. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 9. Strain (row 2) and stress (row 3) plots over the volume elements for ϕ1 ≃ 0.50 and =E E/ 102 1
1 for six independent loading cases: (a) ε11/σ11, (b) ε22/σ22, (c)

ε33/σ33, (d) ɛ23/σ23, (e) ɛ13/σ13, (f) ε12/σ12. For strain/stress, legend max is 0 resp. 0 and legend min is 0.0025 [ ] resp. 100 [MPa]. In top row, phase 1 resp. 2 is
displayed in red/grey. A uniform deformation scaling of 100 is applied. The results are given for one of the stochastically realized microstructures. Periodic boundary
conditions are applied. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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topology through network connectivity, in the space filling composite,
force transmission is ensued in all directions without cease. Thus, in
metal-polymer composites, loss of metal percolation does not result in
structural collapse, as it does in nanoporous metals. For the current
gold-epoxy composite, the lost stiffness with greatly reduced con-
nectivity among load bearing ligaments is compensated by that of im-
pregnated epoxy despite of the relatively high phase contrast with

=E E E E/ / 0.01312 1 epoxy gold . The consequent linear behavior at this
scale well agrees with the composite scaling law proposed in
Carolan et al. (2015) as a simple adaptation of the Gibson and Ashby
law (Gibson and Ashby, 1997) which is largely used for cellular ma-
terials with invariant topological properties under relative density
changes

Fig. 10. Influence of phase contrast on the computed effective elastic properties for (a) ϕ1 ≃ 0.20 and (b) ϕ1 ≃ 0.50. Detailed numerical values of the computations are
listed in Tables B.3 and B.4 and of the bounds are listed in Tables B.6–B.8. Periodic boundary conditions are used in the simulations. Plots for the Hashin-Shtrikman
(HS) and the three-point Beran-Molyneux (BM) (for the bulk modulus) and the Milton-Phan-Tien (MPT) (for the shear modulus) bounds are also shown. As required,
none of the computational results violate the analytical bounds. As anticipated, the three-point Beran-Molyneux bounds (for the bulk modulus) and the Milton-Phan-
Tien bounds (for the shear modulus) are much stringent then the Hashin-Shtrikman bounds. The two curves given for each of the three-point bounds are created with
the tabulated ηi and ζi values (see Eq. (A.2)) corresponding to the Gaussian random fields studied in Roberts and Teubner (1995) and Roberts and Garboczi (2002).
Data is presented as mean value μ (dots) and standard deviation σ from analysis of 5 random realizations. Lines merge mean values.

Fig. 11. (a) Scaling law for the Young’s modulus for gold-epoxy composite as a function of the gold phase (denoted as phase 1) volume fraction. Considering that
epoxy is considerably compliant as compared to gold the results for the composite Young’s modulus are reported as a factor of the Young’s modulus gold. The scaling
law with n≃ 2.45 for bicontinuous gold-polymer composites generated by the leveled-wave model provides higher elastic modulus then a very limited number of
experimentally obtained effective elasticity moduli reported in Wang (2015) for gold volume fractions around 0.27 0.285. (b) For the selected volume fraction
range, the Poisson’s ratio of the composite varies around 0.3. Data is presented as mean value μ (dots) and standard deviation σ from analysis of 5 random
realizations.
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= +E E E E[ ] .n
1 2 1 2 (42)

Here, E2 represents the Young’s modulus of the compliant phase, which,
in the current case is epoxy resin. n≃ 2.45 is used in the depicted plot of
the scaling law in Fig. 11. With this scaling law =E E1 is recovered at

= 11 and =E E2 at = 01 . These computations result in a stiffer
response as compared to a very limited number of experimental results
with composite elasticity moduli of =E 2.78 and =E 2.74 GPa for
ligament diameters of 20 and 50 nm and gold volume fraction around
0.27 0.285 with epoxy elasticity modulus of =E 1.052 GPa
(Wang, 2015). For E2→ 0 Gibson and Ashby scaling law (Gibson and
Ashby, 1997) for open-cell foams is recovered which is shown to be
inaccurate for nanoporous gold Soyarslan et al. (2018b). Accuracy of
the scaling law given in Eq. (42) is expected to deteriorate for com-
posites with phase contrasts higher than that of gold-polymer compo-
sites such that at =E 0,2 nanoporous gold scaling law given in Fig. 11
should be satisfied.

As opposed to the monotonic and relatively sharp decrease of the
Poisson’s ratio with reducing gold phase volume fraction ϕ1 in nano-
porous gold, the Poisson’s ratio of the metal-polymer composite exhibits
a nonmonotonic trend with a minimum of ν⋆ ≃ 0.286 at ϕ1 ≃ 0.35 for
the observed gold phase volume fraction interval. Considering that the
bulk Poisson’s ratio’s of both gold and epoxy are larger than 0.3, this is
attributed to the mutual structural effects dominated by the stiffer gold
phase network rather than local bulk deformation effects of the phases
which considerably reduces the composite’s effective Poisson’s ratio.

4. Conclusions

In this work, based on a finite element-based asymptotic homo-
genization scheme and an efficient and robust method for generating
3D random and heterogeneous bicontinuous microstructures, the in-
fluence of the volume element size, phase contrast, relative volume
fraction of phases and applied boundary conditions on the estimated
macroscopic elastic properties is investigated. Using the determined

RVE size we computed the effective elastic properties of gold-epoxy
nanocomposites of various phase volume fractions which agree well
with the recorded literature. These results are also in agreement with
the composite scaling law proposed in Carolan et al. (2015) as an
adaptation of the Gibson and Ashby law (Gibson and Ashby, 1997)
which is largely used for cellular materials with invariant topological
properties under relative density changes.

The major outcomes of this work are:

• In bicontinuous metal-polymer composites, compliant phase im-
pregnation compensates for the stiffness loss due to topological
changes in the stiffer phase with corresponding volume fraction
reduction towards stiffer phase percolation threshold. This results in
a distinct scaling relation for the elastic stiffness of the composite.
• Considering a large interval of relative phase volume fractions and
high phase contrast only periodic boundary conditions provide ef-
fective elastic moduli at reasonably small volume element sizes. At
this size, only for bicontinuous composites with a phase contrast of

>E E/ 10 ,2 1
1 the boundary condition influence on the computed

apparent properties can be disregarded.4

• Even the third-order analytical bounds are not stringent enough to
serve determination of effective elastic properties of bicontinuous
metal-polymer composites. Thus, computational homogenization
devising periodic boundary conditions is an indispensable tool in
efficient and accurate determination of the effective properties of 3D
bicontinuous random composites with high contrast and volume
fraction bias towards the weaker phase.
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Appendix A. Analytical bounds for bicontinuous random composites

In this part, we summarize rigorous bounds on effective bulk and shear moduli of random materials. These bounds devise certain microstructural
informations, e.g., phase volume fraction and n point correlations functions. Defining the indicator function =x( ) 1 if x 1 and 0 otherwise, we
define the following quantities
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where S2 and S3 are the two- and three-point correlation function. Since the random field is statistically stationary and isotropic, these correlation
functions only depend on the distances = x xr | |,i j = x xs | |,j k and = x xt | |i k (Roberts and Garboczi, 2002).

To evaluate the three-point bounds, parameters ηi and ζi for =i 1, 2 have to be computed using (Torquato, 1991; Roberts and Knackstedt, 1996;
Roberts and Garboczi, 2002)
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Here, P2 and P4 denote second- and fourth-order Legendre polynomials, respectively. For a randomly inserted triangle in the sample, S r s t( , , )i
3
( ) is the

probability of finding phase i in the vertices of the triangle with edge lengths of r, s and t. For two-phase composites, + = 1,1 2 + = 11 2 and
+ = 11 2 . Tabulated values of these parameters have been reported in Roberts and Teubner (1995) and Roberts and Garboczi (2002) for different

Gaussian random fields, which are characterized by different field-field correlation functions. The field-field correlation function of the Gaussian
random function used in our work is =C r q r q r( ) sin( )/0 0 (see Soyarslan et al. (2018b) for details), which is different to that of any of the models used
in Roberts and Teubner (1995) and Roberts and Garboczi (2002). However, as was discussed in Roberts and Knackstedt (1996), parameters ζi and ηi
are found to be relatively insensitive to the fine details of the microstructure statistical properties. Therefore, to compute the analytical three-point

4 Currently studied gold-epoxy composite have higher phase contrasts with <E E/ 102 1
1. Bicontinuous composites of rubber-photopolymer (Al-Ketan et al., 2017),

bicontinuous binary polymers (Carolan et al., 2015) and composites of polymer-elastomer (Wang et al., 2011) exhibit relatively smaller phase contrast.
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bounds we directly use the numerical values tabulated in Roberts and Teubner (1995) and Roberts and Garboczi (2002)—we also note that an
additional justification for doing so is that for sufficiently small distances, all field-field correlation functions have in fact the same expression
C r ar( ) 1 ,2 where a is a constant (Roberts and Knackstedt, 1996).

Weighted arithmetic and harmonic averages of the constituent elastic moduli, which are referred to as Voigt and Reuss bounds constitute the
earliest rigorous bounds on the effective material properties of two-phase materials (Hill, 1952). A slightly more involved bound which is valid for
well-ordered random materials5, that is K K G G[ ][ ] 0,2 1 2 1 is the Hashin–Shtrikman bound (Hashin and Shtrikman, 1963). Using the notation

= + = +
= + = +

{•} {•} {•} and {•̃} {•} {•} ,
{•} {•} {•} and {•} {•} {•} ,

1 1 2 2 2 1 1 2

1 1 2 2 1 1 2 2 (A.3)

and for K1 < K2 and G1 < G2, it reads for K⋆ and G⋆

K K K G G Gand ,L,HS U,HS L,HS U,HS (A.4)

where

= +
+ +

= +
+ +

K K
K K K G

K K
K K K G

[ ] 3 [3 4 ]
,

[ ] 3 [3 4 ]
,

L,HS 1
2

2 1
1

1 1 1
1

U,HS 2
1

1 2
1

2 2 2
1 (A.5)

and

= +
+ + +

= +
+ + +

G G
G G K G G K G

G G
G G K G G K G

[ ] 6 [ 2 ][5 [3 4 ]]
,

[ ] 6 [ 2 ][5 [3 4 ]]
.

L,HS 1
2

2 1
1

1 1 1 1 1 1
1

U,HS 2
1

1 2
1

2 2 2 2 2 2
1 (A.6)

The simplified form of the three-point Beran and Molyneux (1966) bounds by Milton (1981) for the effective bulk modulus K⋆ reads

K K K ,L,BM U,BM (A.7)

where

=
+

=
+

K K
K K

K G

K K
K K

K G

4 [ ]
4 ˜ 3

,

3 [ ]
3 ˜ 4

.

L,BM
1 1 2 2

1
1

1 2

1 1

1

U,BM
1 2 2 1

2

(A.8)

Finally, the Milton-Phan-Thien three-point bounds (Milton and Phan-Thien, 1982) for G⋆ read

G G G ,L,MPT U,MPT (A.9)

where

=
+

=
+

G G
G G

G

G G
G G

G

[ ]
˜ 6

,

6 [ ]
6 ˜ ,

L,MPT
1 1 2 2

1
1

1 2

1
MPT

1

U,MPT
1 2 2 1

2

MPT (A.10)

with

=
+ +

+ +

=
+

+

G K G G K G
K G G

G K G G
K G G

5 6 2 21
128 99 45

,

3 6 7 5
2 5

.

MPT

1 1 1 1 1 1

1 1 1

MPT

2

(A.11)

For further bounds and details on derivations, the reader is referred to the original articles and works of Quintanilla (1999) and Torquato (1991).

Appendix B. Detailed numerical results

In this part, we tabulate some numerical results corresponding to the depicted plots.

5 A generalization of the Hashin–Shtrikman bounds to badly-ordered materials can be found in Walpole (1969).
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Table B3
Computed apparent (KUBC) and effective (PBC) elastic properties for various phase contrast values for ϕ1 ≃ 0.20 phase volume fraction at RVE size determined using
periodic boundary conditions. =E 791 GPa and = 0.441 which gives K1 ≃ 219444.44 MPa and G1 ≃ 27430.56 MPa.

Periodic BC Kinematically Uniform BC

E
E

[ ]2

1

K⋆ [MPa] G⋆ [MPa] [ ] A [ ]U K⋆ [MPa] G⋆ [MPa] [ ] A [ ]U

0 32.92 ± 7.72 27.49 ± 6.88 0.1741 ± 0.0145 2.27× 10 1 406.26 ± 29.68 287.99 ± 21.34 0.2133 ± 0.0021 1.41× 10 1

10 4 91.76 ± 11.47 54.89 ± 9.48 0.2517 ± 0.0115 8.32× 10 2 462.99 ± 32.20 313.05 ± 22.64 0.2241 ± 0.0028 1.04× 10 1

10 3 452.91 ± 18.97 164.08 ± 12.99 0.3386 ± 0.0056 3.34× 10 2 818.98 ± 34.98 418.16 ± 23.37 0.2819 ± 0.0030 3.91× 10 2

10 2 3388.35 ± 41.44 778.47 ± 22.43 0.3933 ± 0.0016 1.06× 10 2 3743.22 ± 51.18 1024.62 ± 29.19 0.3746 ± 0.0017 4.94× 10 3

10 1 28623.75 ± 134.29 4530.55 ± 39.13 0.4248 ± 0.0003 5.32× 10 4 28888.93 ± 138.69 4709.93 ± 41.95 0.4227 ± 0.0003 5.05× 10 4

1 219444.44 27430.56 0.44 0 219444.44 27430.56 0.44 0

Table B4
Computed apparent (KUBC) and effective (PBC) elastic properties for various phase contrast values for ϕ1 ≃ 0.50 phase volume fraction at RVE size determined using
periodic boundary conditions. =E 791 GPa and = 0.441 which gives K1 ≃ 219444.44 MPa and G1 ≃ 27430.56 MPa.

Periodic BC Kinematically Uniform BC

E
E

[ ]2

1

K⋆ [MPa] G⋆ [MPa] [ ] A [ ]U K⋆ [MPa] G⋆ [MPa] [ ] A [ ]U

0 10915.24 ± 176.32 5588.85 ± 66.48 0.2813 ± 0.0009 2.21× 10 2 12747.86 ± 182.21 6327.61 ± 60.19 0.2870 ± 0.0009 1.73× 10 2

10 4 10948.63 ± 98.51 5589.54 ± 34.10 0.2819 ± 0.0006 1.78× 10 2 12770.22 ± 92.37 6326.52 ± 28.89 0.2874 ± 0.0005 1.30× 10 2

10 3 11402.06 ± 96.39 5661.32 ± 33.54 0.2870 ± 0.0006 1.70× 10 2 13200.14 ± 91.37 6387.85 ± 28.59 0.2916 ± 0.0005 1.26× 10 2

10 2 15698.32 ± 83.63 6298.12 ± 29.26 0.3231 ± 0.0002 1.18× 10 2 17322.24 ± 83.94 6945.51 ± 25.98 0.3232 ± 0.0002 9.36× 10 3

10 1 50568.34 ± 63.56 10257.59 ± 15.99 0.4050 ± 0.0000 1.59× 10 3 51538.27 ± 66.80 10620.36 ± 15.32 0.4036 ± 0.0000 1.54× 10 3

1 219444.44 27430.56 0.44 0 219444.44 27430.56 0.44 0

Table B5
Analytical Hashin-Shtrikman and the three-point Beran-Molyneux bounds for the bulk modulus for phase contrast values for ϕ1 ≃ 0.20 phase volume fraction. The
two columns identified by I and II given for the three-point bounds are created with the tabulated ηi and ζi values (see Eq. A.2) corresponding to the Gaussian random
fields studied in the Refs. Roberts and Teubner (1995) and Roberts and Garboczi (2002), respectively. =E 791 GPa and = 0.441 which gives K1 ≃ 219444.44 MPa
and G1 ≃ 27430.56 MPa.

Lower bounds Upper bounds

E
E

[ ]2

1

KL,HS [MPa] KL,BM,I [MPa] KL,BM,II [MPa] KU,HS [MPa] KU,BM,I [MPa] KU,BM,II [MPa]

0 0.00 0.00 0.00 7567.05 2116.47 1754.38
10 4 28.34 28.64 28.57 7592.62 2144.00 1782.04

10 3 283.36 286.28 285.63 7822.71 2391.70 2030.97

10 2 2825.20 2853.34 2847.09 10118.91 4861.54 4512.95

10 1 27452.41 27641.10 27600.28 32620.12 28872.60 28628.26
1 219444.44 219444.44 219444.44 219444.44 219444.44 219444.44

Table B6
Analytical Hashin–Shtrikman and the three-point Beran-Molyneux bounds for the bulk modulus for phase contrast values for ϕ1 ≃ 0.50 phase volume fraction. The
two columns identified by I and II given for the three-point bounds are created with the tabulated ηi and ζi values (see Eq. A.2) corresponding to the Gaussian random
fields studied in the Refs. Roberts and Teubner (1995) and Roberts and Garboczi (2002), respectively. =E 791 GPa and = 0.441 which gives K1 ≃ 219444.44 MPa
and G1 ≃ 27430.56 MPa.

lower bounds upper bounds

E
E

[ ]2

1

KL,HS [MPa] KL,BM,I [MPa] KL,BM,II [MPa] KU,HS [MPa] KU,BM,I [MPa] KU,BM,II [MPa]

0 0.00 0.00 0.00 27430.56 15622.18 15673.26
10 4 47.54 51.17 51.19 27464.16 15661.38 15712.44

10 3 474.87 510.90 511.18 27766.33 16013.93 16064.76

10 2 4695.68 5034.14 5036.69 30765.78 19506.14 19554.73

10 1 42275.33 44105.35 44117.75 58688.63 51409.61 51440.39
1 219444.44 219444.44 219444.44 219444.44 219444.44 219444.44
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Appendix C. A summary of the influence of the selected boundary conditions on the macroscopic material response

Based on the determined RVE size, computed apparent (KUBC) and effective (PBC) elastic properties tabulated in Tables B.3 and B.4 show that
kinematically uniform boundary conditions overestimate the effective properties for the range of observed property contrast. The difference in

Table B7
Analytical Hashin–Shtrikman and the three-point Milton-Phan-Tien bounds for the shear modulus for phase contrast values for ϕ1 ≃ 0.20 phase volume fraction. The
two columns identified by I and II given for the three-point bounds are created with the tabulated ηi and ζi values (see Eq. A.2) corresponding to the Gaussian random
fields studied in the Refs. Roberts and Teubner (1995) and Roberts and Garboczi (2002), respectively. =E 791 GPa and = 0.441 which gives K1 ≃ 219444.44 MPa
and G1 ≃ 27430.56 MPa.

lower bounds upper bounds

E
E

[ ]2

1

GL,HS [MPa] GL,MPT,I [MPa] GL,MPT,II [MPa] GU,HS [MPa] GU,MPT,I [MPa] GU,MPT,II [MPa]

0 0.00 0.00 0.00 3428.82 1460.51 1508.48
10 4 4.34 4.60 4.61 3431.44 1463.97 1511.92

10 3 43.39 45.93 46.08 3455.07 1495.10 1542.83

10 2 429.74 453.49 454.94 3691.09 1804.70 1850.33

10 1 3951.53 4075.15 4082.30 6029.63 4754.32 4783.06
1 27430.56 27430.56 27430.56 27430.56 27430.56 27430.56

Table B8
Analytical Hashin–Shtrikman and the three-point Milton-Phan-Tien bounds for the shear modulus for phase contrast values for ϕ1 ≃ 0.50 phase volume fraction. The
two columns identified by I and II given for the three-point bounds are created with the tabulated ηi and ζi values (see Eq. A.2) corresponding to the Gaussian random
fields studied in the Refs. Roberts and Teubner (1995) and Roberts and Garboczi (2002), respectively. =E 791 GPa and = 0.441 which gives K1 ≃ 219444.44 MPa
and G1 ≃ 27430.56 MPa.

lower bounds upper bounds

E
E

[ ]2

1

GL,HS [MPa] GL,MPT,I [MPa] GL,MPT,II [MPa] GU,HS [MPa] GU,MPT,I [MPa] GU,MPT,II [MPa]

0 0.00 0.00 0.00 9974.75 7827.60 7836.18
10 4 9.14 12.77 12.79 9976.97 7830.74 7839.31

10 3 91.14 127.00 127.18 9996.96 7858.97 7867.51

10 2 885.54 1202.68 1204.24 10196.31 8139.23 8147.40

10 1 6957.99 8072.01 8076.48 12137.41 10752.63 10757.80
1 27430.56 27430.56 27430.56 27430.56 27430.56 27430.56

Table B9
Computed effective gold-epoxy composite properties for various volume fractions and boundary conditions. =E 791 GPa and = 0.441 which gives K1 ≃ 219444.44
MPa and G1 ≃ 27430.56 MPa.

Periodic BC Kinematically Uniform BC

[ ]gold K⋆ [MPa] G⋆ [MPa] [ ] A [ ]U K⋆ [MPa] G⋆ [MPa] [ ] A [ ]U

0.20 2161.21 ± 39.26 959.34 ± 23.51 0.3065 ± 0.0012 8.38× 10 3 2513.93 ± 48.75 1198.91 ± 29.83 0.2943 ± 0.0011 4.70× 10 3

0.25 2846.48 ± 62.44 1345.37 ± 36.02 0.2959 ± 0.0010 1.32× 10 2 3373.38 ± 70.12 1682.38 ± 40.77 0.2862 ± 0.0009 7.41× 10 3

0.30 3903.67 ± 106.24 1920.76 ± 55.74 0.2887 ± 0.0007 1.72× 10 2 4639.14 ± 112.33 2357.40 ± 57.51 0.2827 ± 0.0007 1.06× 10 2

0.35 5454.15 ± 127.60 2722.55 ± 63.21 0.2860 ± 0.0004 1.82× 10 2 6415.70 ± 132.64 3245.84 ± 62.78 0.2835 ± 0.0005 1.21× 10 2

0.40 7588.80 ± 145.66 3760.47 ± 65.27 0.2874 ± 0.0004 1.66× 10 2 8784.20 ± 155.91 4348.38 ± 63.96 0.2875 ± 0.0004 1.18× 10 2

0.45 10370.51 ± 116.74 5014.16 ± 47.53 0.2918 ± 0.0004 1.40× 10 2 11795.00 ± 125.61 5639.16 ± 44.85 0.2938 ± 0.0005 1.06× 10 2

0.50 13934.85 ± 83.85 6467.20 ± 28.88 0.2990 ± 0.0003 1.10× 10 2 15574.02 ± 84.15 7100.60 ± 25.65 0.3021 ± 0.0003 8.77× 10 3

Table C1
Ratio of computed apparent (KUBC) and effective (PBC) elastic properties for various phase contrast values for ϕ1 ≃ 0.20 and ϕ1 ≃ 0.50 phase volume
fraction at RVE size determined using periodic boundary conditions. =E 791 GPa and = 0.441 which gives K1 ≃ 219444.44 MPa and G1 ≃ 27430.56 MPa.

ϕ1 ≃ 0.20 ϕ1 ≃ 0.50

E
E

[ ]2

1
K
K

[ ]KUBC

PBC

G
G

[ ]KUBC

PBC

K
K

[ ]KUBC

PBC

G
G

[ ]KUBC

PBC

0 12.34 10.47 1.17 1.13
10 4 5.05 5.70 1.17 1.13

10 3 1.81 2.55 1.16 1.13

10 2 1.10 1.32 1.10 1.10

10 1 1.01 1.04 1.02 1.04
1 1 1 1 1
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between estimations reduces with decreasing phase contrast and finally vanishes for the case where both phases feature identical properties, see
Table C.10. We judge from the demonstrated results for ϕ1 ≃ 0.20 and ϕ1 ≃ 0.50 that, at this volume element size the boundary condition influence
can be disregarded only for the material contrast of >E E/ 102 1

1.
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