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SUMMARY

FACT (facilitates chromatin transcription) is an evolu-
tionarily conserved histone chaperone thatwas initially
identified as an activity capable of promoting RNA po-
lymerase II (Pol II) transcription through nucleosomes
in vitro. In this report, we describe a global analysis of
FACT function in Pol II transcription in Drosophila.
We present evidence that loss of FACT has a dramatic
impact on Pol II elongation-coupled processes
includinghistoneH3 lysine4 (H3K4)andH3K36methyl-
ation, consistent with a role for FACT in coordinating
histonemodificationandchromatinarchitectureduring
Pol II transcription. Importantly, we identify a role for
FACT in the maintenance of promoter-proximal Pol II
pausing, a key step in transcription activation in higher
eukaryotes. These findings bring to light a broader role
for FACT in the regulation of Pol II transcription.

INTRODUCTION

FACT (facilitates chromatin transcription) was originally identified

in human cell extracts as an activity capable of promoting RNA

polymerase II (Pol II) transcription through nucleosomes (Orpha-

nides et al., 1998). FACT is an evolutionarily conserved, heterodi-

meric protein (Formosa, 2008; Orphanides et al., 1999). It func-

tions much like a histone chaperone to promote Pol II

transcription of chromatin in vitro, by aiding in the disassembly

and reassembly of nucleosomes encountered by transcribing

polymerase (Belotserkovskaya et al., 2003). Subsequent genetic

studies defined a broader role for FACT in maintaining chromatin

architecture. Loss of FACT function can lead to a variety of

chromatin abnormalities, including (1) loss or disorganization of

nucleosomes and mislocalization of the yeast histone H2A.Z in

transcribed regions (Feng et al., 2016; Jamai et al., 2009; Jeronimo

et al., 2015; Schwabish and Struhl, 2004; Voth et al., 2014; Xin

et al., 2009); (2) reduced levels of bulk trimethylation of histone

H3 at lysine 36 (H3K36me3) in yeast (Chu et al., 2006); and (3)

aberrant transcription-coupled histone H3 lysine 4 trimethylation

(H3K4me3) at immunoglobulin switch regions (Stanlie et al.,

2010). Notably, mammalian FACT is most highly expressed in un-

differentiated and stem-like cells. Elevated expression of the

FACT subunit SSRP1 is associated with poor clinical outcome in

many cancers, and interfering with FACT activity has been re-

ported to block growth of tumor cells in vitro and in vivo (Carter

et al., 2015; Dermawan et al., 2016; Ding et al., 2016; Garcia

et al., 2011, 2013; Gasparian et al., 2011; Hossan et al., 2016).

Although FACTwas originally identified in human cells, its func-

tion is best understood in yeast. To shed light on the function(s) of

FACT in higher eukaryotes, we investigated the consequences of

decreasing FACT expression in Drosophila S2 cells. We observe

that decreased FACT expression leads to a dramatic redistribu-

tion of the transcription-associated histone marks H3K4me3

andH3K36me3.Most notably, we identify a role for FACT inmain-

taining promoter-proximal Pol II pausing, a process that is appar-

ently absent from budding yeast but plays an important role in

transcription activation at most higher eukaryotic genes (Jonkers

and Lis, 2015; Liu et al., 2015). Promoter-proximal pausing occurs

when Pol II initiates transcription at a promoter, synthesizes a

short transcript of�20–60 nucleotides, and then enters a paused

state until it either terminates (Brannan and Bentley, 2012;

Brannan et al., 2012;Wagschal et al., 2012) or is released into pro-

ductive elongation. Release from promoter-proximal pausing is a

key step in gene activation in response to many signaling path-

ways. Our identification of a role for FACT in Pol II promoter-prox-

imal pausing expands the function of FACT in transcription.

RESULTS

FACT Enrichment in Gene 50 Ends
Results of previous studies led to the model that FACT pro-

motes Pol II transcription by traveling with elongating Pol II.
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FACT co-localizes closely with transcribing Pol II in yeast

(Mason and Struhl, 2003) and on Drosophila polytene

chromosomes (Saunders et al., 2003). To explore further the

relationship of FACT and Pol II in Drosophila S2 cells, we

compared their localizations in chromatin immunoprecipitation

sequencing (ChIP-seq) experiments.

To localize FACT, we performed ChIP-seq using antibodies

against Drosophila FACT subunits SSRP1 and Spt16. The peak

finding algorithm MACS2 was used to identify loci occupied by

SSRP1 or Spt16, using as controls SSRP1 or Spt16 ChIP-seq

datasets from cells depleted of SSRP1 or Spt16, respectively.

SSRP1 or Spt16 was each depleted using two non-overlapping

double-stranded RNAs (dsRNAs); EGFP double-stranded RNA

was used as a non-targeting control. After knockdown of either

FACT subunit, expression of SSRP1 and Spt16 was reduced

to about 20%–30% of that seen in cells treated with EGFP

dsRNA (Figure 1A). Knocking down SSRP1 or Spt16 reduced

the expression of both proteins, consistent with prior evidence

that depletion of one FACT subunit leads to reduced stability

of the other in human cells (Safina et al., 2013). Examples of

FACT-occupied regions in control and SSRP1- or Spt16-knock-

down cells are shown in Figure 1C.

The D. melanogaster genome was partitioned into promoter

and early transcribed region (200 bp upstream to 1 kb down-

stream of the transcription start site [TSS]), gene body (+1 kb

to polyadenylation site), and intergenic regions lacking
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Figure 1. FACT Is Enriched in the Promoter and Early Transcribed Regions of Pol II-Occupied Genes

(A) Western blot of Spt16 and SSRP1 in Drosophila S2 cells treated with EGFP, SSRP1, and Spt16 double-stranded RNAs (dsRNAs). Tubulin was used as a

loading control.

(B) Pie chart showing enrichment in gene 50 ends of high-confidence FACT peaks (MACS2 fold change [FC] > 1.5 over knockdown, FDR% 10�2). N, total number

of SSRP1 or Spt16 peaks; promoter and early transcribed regions, �200 bp to +1,000 bp relative to TSS; gene body (+1,000 bp to the polyadenylation site);

intergenic region (peaks between genes).

(C) Integrated genome viewer (IGV) browser track examples of SSRP1 (blue), Spt16 (green), and Rpb3 (red) ChIP-seq signals at three group III genes fromS2 cells

treated with EGFP, SSRP1, and Spt16 dsRNAs. Rep1, replica 1; Rep2, replica 2. The red horizontal bars indicate positions of FACT peaks identified by MACS2.

(D) Metagene plots showing SSRP1 and Spt16 ChIP signals at 876 genes that are longer than 1.5 kb and have high-confidence SSRP1 or Spt16 peaks in cells

treated with EGFP, SSRP1, or Spt16 dsRNAs.

(E) Boxplot showing correlation of Pol II enrichment with FACT occupancy in promoters and early transcribed regions. p values were calculated using Wilcoxon

rank sum test of pairwise comparisons.

Also see Figure S1.
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annotated transcripts. We observed that 86% of the SSRP1

peaks and 80% of the Spt16 peaks (MACS2, fold change >

1.5 over knockdown, false discovery rate [FDR] % 10�2) fell

within promoter and transcribed regions of annotated genes,

with a bias toward the 50 ends (Figure 1B). Regions exhibiting

the highest SSRP1 and Spt16 enrichment were dominated by

stress response genes, including Hsp22, Hsp23, Hsp26,

Hsp27, and Hsp70, consistent with previous evidence for high

FACT occupancy at heat shock genes (Saunders et al., 2003).

SSRP1 and Spt16 occupancy was highly correlated as ex-

pected since they function together as subunits of the heterodi-

meric FACT complex (Figure S1B).

We also performed a ChIP of total Pol II using an antibody tar-

geting the Pol II subunit Rpb3. Regions of highest FACT enrich-

ment peaked within the first few hundred base pairs downstream

of the TSS, downstream of promoter-proximally paused Pol II

(Figures 1D and S1C). We then compared Rpb3 enrichment in

the 50 end of genes (200 bp upstream to 1 kb downstream of

the TSS). Genes without detectable FACT enrichment (group I,

n = 13,313) had lower Pol II occupancy, while the 1,015 genes

with the greatest FACT enrichment (MACS2 fold change > 1.5

and FDR % 10�2; group III) exhibited the highest Pol II occu-

pancy (Figure 1E). An additional 2,683 genes with lower confi-

dence FACT peaks (group II, FDR % 10�1, excluding group III

genes) also showed increased Pol II occupancy relative to group

I genes. Thus, FACT is most highly enriched at genes with higher

levels of Pol II. In addition, we note that Pol II overlaps with a frac-

tion of the FACT peaks that mapped to intergenic regions, as

exemplified in the browser shots shown in Figure S1A. However,

not all genes containing discernable Pol II have detectable FACT

peaks, suggesting either that FACT is only present at a subset of

Pol II transcribed genes or, perhaps more likely, that our anti-

bodies are not sensitive enough to detect FACT at loci with rela-

tively low levels of Pol II.

FACT Knockdown Alters Global Patterns of
Transcription-Coupled Histone Marks
The N-terminal tails of histones are subject to extensive post-

translational modifications. Among these are H3K4me3 and

H3K36me3, both of which are closely linked to transcription.

H3K4 trimethylation by a complex of proteins associated with

Set1 (COMPASS)-like histone methyltransferases is targeted to

the 50 ends of genes via Pol II that has been phosphorylated on

Ser5 of its carboxy-terminal domain (CTD) during or shortly after

initiation, while H3K36me3 by Set2 is targeted to gene bodies

through interaction with elongating Pol II phosphorylated on

Ser2 of its CTD by the pause-release kinase positive transcrip-

tion elongation factor b (P-TEFb) (Shilatifard, 2012; Venkatesh

and Workman, 2013; Woo et al., 2017).

Previous studies have linked FACT to both of these transcrip-

tion-coupled histone modifications. Loss of FACT in a mouse

B cell lymphoma cell line leads to loss of H3K4me3 in Sm and

Sa immunoglobulin class switch regions and interferes with tran-

scription-dependent class switch recombination (Stanlie et al.,

2010). In addition, levels of bulk H3K36me3 were shown to be

reduced in a yeast spt16 mutant (Chu et al., 2006); however,

the genomic distribution of the H3K36me3 mark was not

examined in this study.

For these reasons and because of FACT’s enrichment at tran-

scriptionally active loci, we wished to explore the consequences

of FACT depletion on the distribution of transcription-associated

histone modifications. To do so, we treated S2 cells with control

EGFP dsRNA or dsRNAs targeting SSRP1 or Spt16 and per-

formed H3K4me3 and H3K36me3 ChIP-seq. Because our

FACT knockdowns only partially deplete FACT subunits, it is

likely that our experiments will only reveal consequences of

FACT depletion in processes that are most sensitive to FACT

concentration. In addition, because it takes several days to

achieve dsRNA-mediated knockdown of SSRP1 and Spt16,

some phenotypes associated with FACT depletion could be

indirect.

Average gene plots were generated for transcribed genes that

are longer than 1.5 kb and, to reduce signals associated with

overlapping or nearby genes, are separated from all other genes

by at least 200 bp. As expected, control cells showed a strong

enrichment of H3K4me3 at gene 50 ends as observed in average

gene plots (Figure 2A) and at individual genes, exemplified in Fig-

ure 2B by Inos and 18w. After SSRP1 or Spt16 knockdown,

H3K4me3 signals were broadened, with reduced H3K4me3 in

gene 50 ends and a modest increase in H3K4me3 across tran-

scribed regions. The effect of FACT depletion on H3K4me3

was evident on the majority of transcribed genes included in

our analysis, including group I, II, and III genes (Figure 2C).

H3K36me3 distribution was also aberrant after FACT knock-

down (Figures 2D and 2E). H3K36me3 was reduced across a

large portion of transcription units but showed little or no change

in the last few hundred bp before polyadenylation sites, resulting

in an overall 50 to 30 shift in the distribution of this mark. As with

H3K4me3, the effect of FACT depletion on H3K36me3 was

broadly distributed (Figure 2F).

In yeast spt16 mutants, substantial transcription-dependent

nucleosome loss was detected by ChIP of core histones,

including H3, within the transcribed regions of genes (Jamai

et al., 2009; Jeronimo et al., 2015; Schwabish and Struhl,

2004; Voth et al., 2014; Xin et al., 2009). To address the possibil-

ity that changes in H3K4me3 and H3K36me3marks could be ex-

plained by changes in histone H3 occupancy rather than

changes in the distribution of these histone modifications per

se, we performed a histone H3 ChIP-seq experiment. Average

gene plots of H3 occupancy (Figure 2G) revealed only subtle

changes in histone H3 distribution and perhaps a slight decrease

in average H3 occupancy over the bodies of transcribed genes

after either SSRP1 or Spt16 knockdown. The differences, if

any, in H3 occupancy within the first 500 bp or throughout the

entire gene body were much less than those observed for the

H3K4me3 and H3K36me3 marks, respectively (Figures 2C and

2F). We also investigated the effect of FACT knockdown on his-

tone H3 occupancy at several FACT-occupied group III genes

using ChIP-qPCR (Figure S2). These assays showed little or no

difference in H3 occupancy at either the promoter or gene

body regions of the genes analyzed. The apparent difference be-

tween the effects of mutating Spt16 in yeast and knocking down

Spt16 or SSRP1 in Drosophila S2 cells may be because (1) FACT

is only partially depleted after dsRNA-mediated knockdown

and (2) the residual FACT is sufficient for all but the most sensi-

tive FACT-dependent effects. Alternatively, FACT-dependent
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Figure 2. Effect of FACT Depletion on Histone Occupancy and Transcription-Associated Histone Marks

(A, D, G, and I) Average H3K4me3 (A), H3K36me3 (D), H3 (G), and H2Av (I) enrichment over 1,556 non-overlapping active genes that are longer than 1.5 kb

and have no neighboring genes within 200 bp in S2 cells treated with EGFP, SSRP1, or Spt16 dsRNAs. Shaded areas in this and all other metaplots represent

95% confidence interval predicted from a generalized additive model.

(B, E, and H) IGV genome browser tracks showing H3K4me3 (B), H3K36me3 (E), and H3 (H) ChIPs.

(C) Normalized read counts of H3K4me3 and H3 signals from TSS to +500 bp at groups I (n = 1,137), II (n = 565), and III (n = 321) genes longer than 1 kb with no

neighboring genes within 200 bp following treatment with EGFP (red), SSRP1 (blue) and Spt16 (green) dsRNA.

(F) Normalized read counts of H3K36me3 andH3 signals from TSS to TES at group I, II, and III genes following treatment with EGFP (red), SSRP1 (blue), and Spt16

(green) dsRNA.

p values in (C) and (F) were calculated using Wilcoxon rank sum test of pairwise comparisons. Here and in subsequent figures, red dots show average values.

*p % 0.05; **p % 0.01; ***p % 0.001; n.s., not significant. Also see Figures S2 and S3.
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changes in nucleosome occupancy could be obscured by

compensatory mechanisms in S2 cells. Regardless of why

FACT knockdown has only minimal effects on H3 occupancy

in S2 cells, these observations argue that changes in the distribu-

tion of H3K4me3 and H3K36me3 cannot be explained by

changes in H3 distribution. Thus, our findings support the model

that FACT is needed for proper localization of transcription-

associated chromatin marks in Drosophila.

We also investigated the effect of depleting FACT on the dis-

tribution of the histone H2A variant H2A.Z in Drosophila S2 cells.

Recent studies have implicated yeast FACT in restricting H2A.Z

to promoter regions (Jeronimo et al., 2015). Loss of yeast FACT

leads to a loss of H2A.Z from promoter-proximal nucleosomes

coupled with an increase in H2A.Z in gene bodies. These

changes were attributed to mislocalization of SWR complex

(SWR-C), which is responsible for the exchange of H2A.Z/H2B

dimers into nucleosomes. To determine whether depletion of

Drosophila FACT also leads to changes in H2A.Z localization,

we compared the occupancy of H2Av (the Drosophila ortholog

of H2A.Z) before and after FACT knockdown. As expected

(Bruce et al., 2005; Guillemette et al., 2005; Raisner et al.,

2005; Zhang et al., 2005), H2A.v marks the 50 ends of genes in

both control cells and cells depleted of FACT subunits (Figure 2I).

Consistent with evidence that FACT is needed to retain H2A.v at

promoter regions in yeast (Jeronimo et al., 2015), we observed a

widespread reduction of H2A.v at gene 50 ends after FACT

knockdown (Figures 2I and S3A). We also observed an increase

in H2A.v in the bodies of some genes (Figure S3B); however,

these changes were neither widespread nor evident in average

gene plots. We note that we readily observed increases in

H3K4me3 occupancy in gene bodies accompanying a decrease

in promoter-proximal peaks. Hence, we expect that if there are

widespread increases in H2Av occupancy in gene bodies after

partial FACT depletion, they are less substantial than the

H3K4me3 increases.

FACT Knockdown Leads to a Decrease in Promoter-
Proximally Paused Pol II
Wenext explored the effect of FACT depletion on Pol II transcrip-

tion inDrosophila cells. Previous studies have provided evidence

that in yeast the loss of FACT can give rise to multiple transcrip-

tion defects, including alterations in promoter usage and defec-

tive elongation (Biswas et al., 2005; Kaplan et al., 2003; Mason

and Struhl, 2003; Schwabish and Struhl, 2004). Initially, we as-

sessed the effect of FACT depletion on steady-state transcript

levels using poly(A)-selected libraries from control or FACT-

knockdown S2 cells, with human 293T cells as spike-in controls.

Although we observed widespread changes in transcription-

associated histone marks after FACT knockdown, changes in

steady-state RNA levels were more limited; out of �7,800 ex-

pressed genes we identified only 878 differentially expressed

genes, about two-thirds of which were upregulated after

SSRP1 or Spt16 knockdown (Figure S4A).

To investigate further the effect of FACT depletion on Pol II

transcription, we used precision nuclear run-on coupled to

deep sequencing (PRO-seq) (Kwak et al., 2013; Mahat et al.,

2016) to measure Pol II occupancy genome wide in S2 cells

treated with control and SSRP1 dsRNAs. We used PRO-seq

rather than Pol II ChIP-seq for these experiments because (1) it

generates strand-specific information, hence, one can distin-

guish between Pol II transcribing in the sense- and anti-sense di-

rection on each gene, and (2) it measures only transcriptionally

engaged polymerases.

Depletion of SSRP1 led to a widespread decrease in PRO-seq

reads just downstream of the TSS, in the position of promoter-

proximally paused Pol II, suggesting that FACT depletion de-

creases the amount of paused Pol II at many genes (Figure 3A).

To explore the effect of FACT depletion on Pol II distribution

further, we determined a pause index (PI), defined as the ratio

of Pol II occupancy (based on PRO-seq reads) in the pro-

moter-proximal region to Pol II occupancy in the gene body, a

widely used metric to assess promoter-proximal Pol II pausing

(Core et al., 2008; Muse et al., 2007; Zeitlinger et al., 2007).

Based on their PIs, we subdivided our group of non-overlapping,

transcribed genes into three equal groups (Figure 3B), desig-

nated highly paused, moderately paused, and lowly paused,

and calculated the change in PI upon SSRP1 knockdown for

all genes in each group. As shown in Figure 3C, loss of SSRP1

led to a decrease in PI at both highly and moderately paused

genes; however, the effect was greatest at genes that are highly

paused. Not surprisingly, there was little change in PI at lowly

paused genes after SSRP1 knockdown.

Changes in PI can result from changes in the PRO-seq signal

at the TSS, within the gene body, or both. In average gene plots

of highly, moderately, and lowly paused genes, we observe little

difference in PRO-seq reads in gene bodies, suggesting the ma-

jority of PI changes are due to changes in PRO-seq reads at

the TSS region (Figure 3B). We also determined the change in

PRO-seq reads over TSS and gene bodies in each pausing

group. As shown in Figure S4B, the PRO-seq signal at the TSS

is reduced at the majority of genes, and this reduction is most

substantial at highly paused genes. On average, there are rela-

tively small changes in the PRO-seq signal within gene bodies.

However, the decrease in PRO-seq reads in the promoter-prox-

imal region was associated with an increase in reads across the

gene body in some cases, including Hsp22, Hsp26, and 18w

(Figures 3D, 3E, and S4B). As shown in Figure S4C, we found

that genes that were upregulated in our RNA-seq dataset tended

to exhibit this pattern, raising the possibility that in at least some

cases the loss of FACT results in premature release of paused

Pol II into productive elongation.

FACT Knockdown Leads to a Decrease in Pol II Pause
Half-Life
A decrease in the amount of promoter-proximally paused Pol II

can be due to a decrease in the duration of Pol II pausing, a

decrease in initiation rate without a change in pause duration,

or some combination of the two. To measure directly the effect

of FACT depletion on the duration of promoter-proximal pausing,

we used ChIP-nexus, a powerful method for high-resolution

mapping of promoter-proximally paused Pol II using chromatin

immunoprecipitation coupled to exonuclease footprinting

(Shao and Zeitlinger, 2017).

In these experiments, we incubated cells that had been

treated with EGFP control or SSRP1 dsRNAs with triptolide, a

drug that blocks Pol II transcription initiation by inhibiting the
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transcription factor IIH (TFIIH)-associated XPB helicase, but

does not interfere with subsequent steps of transcription,

including pause release (Jonkers et al., 2014; Titov et al., 2011;

Vispé et al., 2009). Cells were harvested at various times after

triptolide addition and subjected to Rpb3 ChIP-nexus; spike-in

controls were included to account for the loss of total ChIP signal

over time.

From the genes used above, we selected the 998 genes that

had a promoter-proximal ChIP-nexus Pol II signal at an identifi-

able pausing position (Shao and Zeitlinger, 2017). For each of

these genes, Pol II measurements from the time course were

fitted into an exponential decay model (Figure 4A shows 18w

as an example). We observed a striking decrease in the half-

life of paused Pol II at the majority of genes (Figures 4B) after

SSRP1 depletion; this decrease was not limited to genes

showing the greatest FACT enrichment (Figure S4D). A heatmap

showing the promoter-proximal ChIP-nexus signal across all

promoters, ranked by decreasing pause half-life, also shows

the global difference between control and SSRP1-depleted cells

(Figure 4C); at each time after triptolide addition, the number of

genes showing paused Pol II was substantially decreased in cells

depleted of SSRP1.

If FACT-dependent changes in PI measured by PRO-seq are

due at least in part to a decrease in Pol II pause half-life, we

would predict that highly paused genes, which showed the

greatest decrease in PI, would also show the greatest decrease

in pause half-life. To address this possibility, we compared

changes in pause half-life following SSRP1 knockdown in highly,

moderately, and lowly paused genes (Figure 4D). Although

pause half-life was reduced in all three groups, highly paused

genes indeed showed the greatest decrease in pause half-life.

Taken together, these findings argue that FACT helps tomaintain

stable Pol II pausing across the genome.

DISCUSSION

In this report, we investigated roles of FACT during elongation by

Pol II in Drosophila S2 cells. In addition to uncovering prominent

roles for FACT in coordinating transcription-coupled chromatin

alterations, we identified a role for FACT in promoter-proximal

pausing, a key step in transcription activation in higher eukaryotes

(Jonkers and Lis, 2015). FACT depletion results in the loss of tran-

scriptionally engaged Pol II frompause sites atmost genes, corre-

lating with a marked decrease in the duration of Pol II pausing.
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Figure 3. Altered Distribution of Transcriptionally Engaged Polymerase following FACT Depletion

(A) Average PRO-seq profile over transcribed regions in cells treated with EGFP or SSRP1 dsRNAs. Included in the profile are 1,556 non-overlapping, active

genes that are longer than 1.5 kb and have no neighboring genes within 200 bp.

(B) Average PRO-seq coverage of highly, moderately, and lowly paused genes.

(C) PI change following SSRP1 knockdown across genes with varying degrees of pausing. p values were calculated using Wilcoxon rank sum test of pairwise

comparisons.

(D and E) IGV genome browser tracks showing PRO-seq signals at 18w (D), Hsp22 (E), and Hsp26 (E). In (D), panel on the right shows a rescaled version to

emphasize changes in signal in the body of 18w.

Also see Figure S4.
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Together, these findings argue that FACT plays an important role

in maintaining Pol II at promoter-proximal pause sites.

Paused Pol II can undergo multiple fates: it can enter produc-

tive elongation to complete synthesis of mature transcripts or it

can terminate and leave the gene (Chiu et al., 2018; Erickson

et al., 2018; Jonkers and Lis, 2015). At some genes, loss of

PRO-seq reads at pause sites correlates with an increase in

reads in the gene body, consistent with the possibility that at

least some Pol II is prematurely released from its pause into pro-

ductive elongation. At other genes, loss of PRO-seq reads at

pause sites is not accompanied by an increase in gene body

reads, raising the possibility that some paused Pol II at these

genes terminates and fails to synthesize mature mRNA.

How FACT decreases Pol II pausing is presently not known;

however, it is not difficult to imagine that its histone chaperone

activity could play a role. Although FACT depletion in Drosophila

S2 cells does not lead to the same substantial loss of nucleo-

somes at transcribed genes as in yeast, it is noteworthy that

SSRP1 or Spt16 knockdown in S2 cells leads to transcription-

dependent alterations in the +1 nucleosome consistent with par-

tial unwrapping of the nucleosome or loss of one H2A-H2B dimer

(Ramachandran et al., 2017). Thus, it is tempting to speculate

that FACT helps to maintain an intact promoter-proximal nucle-

osome that acts as a barrier to slow pause release (Figure 4E).

Alternatively, FACT’s effect on pausing could be independent

of histone chaperone activity. Indeed, FACT was reported to
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(A–D) Chromatin from cells that had been treated with control dsRNA targeting EGFP or dsRNA targeting SSRP1 were incubated with 500-mM triptolide for 5, 10,

15, or 30min or with 2%DMSOas control and subjected to ChIP-nexus using anti-Rpb3 antibodies. For each promoter where a typical Pol II ChIP-nexus footprint

was observed (distance between positive and negative strand peak < 50 bp, position of Pol II footprint < 150 bp downstreamof the TSS), spike-in normalized Pol II

signal in a 51-bp window centered on the midpoint between paused Pol II positive and negative summits was determined, and the half-life of paused Pol II was

calculated based on an exponential decay model.

(A) Pol II in the pausing window at 18w as a function of time after addition of triptolide, in cells treated with EGFP (red) or SSRP1 (blue) dsRNAs.

(B) Boxplot showing decreased paused Pol II half-life following SSRP1 depletion. p value was calculated with a two-sample Wilcoxon test, n = 998.

(C) Heatmaps of Pol II ChIP-nexus data at various times after triptolide addition in EGFP and SSRP1 dsRNA-treated cells.

(D) Boxplot showing fold change in pause half-life across highly paused (n = 411), moderately paused (n = 358), and lowly paused (n = 229) genes. p values were

calculated using Wilcoxon rank sum test of pairwise comparisons.

(E) A model for FACT function in promoter-proximal pausing and transcription-coupled histone modifications. In control cells (top panel), the +1 nucleosome is

stabilized by FACT (Ramachandran et al., 2017). The +1 nucleosome in turn helps to maintain Pol II in the vicinity of the promoter-proximal pause, and tran-

scription-coupled histonemodifications H3K4me3 andH3K36me3 are normally deposited. Upon depletion of FACT, the +1 nucleosome is destabilized, and Pol II

spends less time at the promoter-proximal pause. Hence, methyltransferases associated with elongating Pol II are allowed less time to place marks, leading to a

broadening of H3K4me3 and relative depletion of H3K36me3 from more 50 portions of genes.
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influence transcription of naked DNA templates in vitro through

functional interactions with factors that regulate pausing (Wada

et al., 2000). In this case, however, FACTwas found to cooperate

with P-TEFb to overcome the activities of the pause-inducing

factors DRB sensitivity-inducing factor (DSIF) and negative

elongation factor (NELF), predicting that FACT depletion would

increase, rather than decrease, pause duration.

FACT-dependent changes inelongation-coupledhistonemarks

and promoter-proximal pausing could reflect independent activ-

ities of FACT or they could be causally related. Although future

experimentswill be required todistinguishbetween thesepossibil-

ities, we favor the latter. Evidence suggests that changes in elon-

gation rate,andhence the lengthof timePol II spends inaparticular

region of the transcription unit, can affect the distribution of tran-

scription-coupled modifications. H3K36me3 was shifted toward

gene 50 ends in human cells expressing a slowly elongating Pol II

mutant (Fong et al., 2017). In addition, a comparison of elongation

rate and H3K36me3 in mouse ES cells found that at genes where

Pol II elongatesmore rapidly, H3K36me3 exhibits a relative deple-

tion towardgene50 endsand a 50 to 30 shift in distributionmuch like

that observed after FACT knockdown (Jonkers et al., 2014). Pat-

terns ofH3K4methylation are also sensitive to elongation rate, be-

ing shifted in a 50 direction in yeast expressing slowly elongating

Pol II mutants, and in a 30 direction in yeast expressing fast Pol II

mutants (Soares et al., 2017). Further, in human cells, genes with

broad peaks of H3K4me3, in which H3K4me3 is reduced at

promoters and increased across transcribed regions, exhibit less

promoter-proximal pausing. Blocking release from pausing with

flavopiridol, an inhibitor of the P-TEFb kinase, resulted in narrower

H3K4me3 peaks, suggesting that broadening of the H3K4me3

mark results frommore rapid releaseofPol II fromthepause region

(Chen et al., 2015). Notably, the broader H3K4me3 peaks seen in

this study resemble those we observe after FACT knockdown. In

light of these observations, the altered distribution of H3K36me3

and broadening of the H3K4me3 marks seen in FACT-depleted

cells could be at least in part a consequence of decreased pro-

moter-proximal pausing (Figure 4E).
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STAR+METHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Rabbit polyclonal anti-Spt16 This paper N/A

Rabbit polyclonal anti-SSRP1 This paper N/A

Rabbit polyclonal anti-H2Av serum Leach et al., 2000 N/A

Rabbit polyclonal anti-H3 Abcam Cat# ab1791; RRID:AB_302613

Rabbit polyclonal anti-H3K4me3 Abcam Cat# ab8580; RRID:AB_306649

Rabbit polyclonal anti-H3K36me3 Abcam Cat# ab9050; RRID:AB_306966

Rabbit polyclonal anti-Rpb3 (Drosophila) Julia Zeitlinger Lab

(Shao and Zeitlinger, 2017)

Zeitlinger Lab #163185-50

Rabbit polyclonal anti-Rpb1 N-20 Santa Cruz Cat# sc-899X; RRID:AB_632359

Rabbit IgG Santa Cruz Cat# sc-2027; RRID:AB_737197

Mouse monoclonal anti-a-tubulin DM1A Sigma Cat# T9026; RRID:AB_477593

Alexa Fluor� 680 goat anti-rabbit IgG (H+L) Life Technologies (Invitrogen) Cat# A-21076; RRID:AB_141386

IRdye� 800CW Donkey anti-Mouse IgG(H+L) LI-COR Cat# 926-32212; RRID:AB_621847

Chemicals, Peptides, and Recombinant Proteins

Proteinase K Solution (20 mg/ml) Invitrogen Cat# 25530-049

Protease Inhibitor Cocktail Sigma Cat# P8849

RNaseA Sigma Cat# R6513

Protein A/G Magnetic Beads Invitrogen Cat# 88803

Phenol:Chloroform:Isoamyl Alcohol 25:24:1 Sigma Cat# P3803

Protein G Magnetic Beads Life Technologies Cat# REF 10004D

Amplitaq Roche Applied Science Cat# 11435094001

Triptolide TOCRIS Bioscience Cat# 3253

Quick T4 DNA ligase New England BioLabs Cat# M2200

Klenow fragment New England BioLabs Cat# M0212

T4 DNA polymerase New England BioLabs Cat# M0203

lambda exonuclease New England BioLabs Cat# M0262

RecJf exonuclease New England BioLabs Cat# M0264

CircLigase Epicenter Cat# CL4115K

SUPERaseIN Ambion Cat# AM2696

Biotin-11-ATP PerkinElmer Cat# NEL544001EA

Biotin-11-GTP PerkinElmer Cat# NEL545001EA

Biotin-11-CTP PerkinElmer Cat# NEL542001EA

Biotin-11-UTP PerkinElmer Cat# NEL543001EA

Trizol LS Invitrogen Cat# 10296-028

CNBr-Sepharose 4B GE Healthcare Cat# 17-0430-1

RNase inhibitor Ambion Cat# AM2696

Streptavidin M280 beads Life Technologies Cat# 11206D

Dynabeads Protein G ThermoFisher Scientific Cat# 10003D

Dynabeads Protein A ThermoFisher Scientific Cat# 10001D

Critical Commercial Assays

QiaQuick PCR purification kit QIAGEN Cat# 28104

RNeasy mini kit QIAGEN Cat# 74106

KAPA HTP library preparation kit Kapa Biosystems Cat# KK8234

SPRIselect double side size selection kit Beckman Coulter Cat# B23319

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

2% Agarose Gel Cassette, Dye-Free

(Cassette type: 2% DF Marker L)

Sage Science Cat# CDF2010

NEBNext End Repair Module New England BioLabs Cat# E6050

NEBNext dA-Tailing Module New England BioLabs Cat# E6053

TruSeq Standard mRNA LT Sample Prep Kit, 48; Set A Illumina Cat# RS-122-2101

NEBNext High-Fidelity 2X PCR Master Mix New England BioLabs Cat# M0541

Deposited Data

Raw and analyzed sequencing data This paper GEO: GSE129236

Raw data from Figures 1A and S2 This paper https://www.stowers.org/research/

publications/LIBPB-1282

Experimental Models: Cell Lines

Drosophila melanogaster Schneider 2 cells Drosophila Genomics Resource

Center (DGRC)

Cat# 6, RRID:CVCL_Z232

GM12878 EBV-immortalized lymphoblastoid cells Coriell Cat# GM12878

Oligonucleotides

30 RNA adaptor (RNase-free, HPLC purified): 50Phos/
rGrArU rCrGrU rCrGrG rArCrU rGrUrA rGrArA rCrUrC

rUrGrA rArC/30Inverted dT

Integrated DNA Technologies N/A

50 RNA adaptor (RNase-free, HPLC purified): rCrCrU

rUrGrG rCrArC rCrCrG rArGrA rArUrU rCrCrA

Integrated DNA Technologies N/A

Illumina RP1 primer (RNase-free, HPLC purified): AAT

GAT ACG GCG ACC ACC GAG ATC TAC ACG TTC

AGA GTT CTA CAG TCC GA

Integrated DNA Technologies N/A

Illumina RPI4 index primer (RNase-free, HPLC

purified): CAA GCA GAA GAC GGC ATA CGA GAT

TGG TCA GTG ACT GGA GTT CCT TGG CAC CCG

AGA ATT CCA

Integrated DNA Technologies N/A

Illumina RPI5 index primer (RNase-free, HPLC

purified): CAA GCA GAA GAC GGC ATA CGA GAT

CAC TGT GTG ACT GGA GTT CCT TGG CAC CCG

AGA ATT CCA

Integrated DNA Technologies N/A

Illumina RPI6 index primer (RNase-free, HPLC

purified): CAA GCA GAA GAC GGC ATA CGA GAT

ATT GGC GTG ACT GGA GTT CCT TGG CAC CCG

AGA ATT CCA

Integrated DNA Technologies N/A

Illumina RPI7 index primer (RNase-free, HPLC

purified): CAA GCA GAA GAC GGC ATA CGA GAT

GAT CTG GTG ACT GGA GTT CCT TGG CAC CCG

AGA ATT CCA

Integrated DNA Technologies N/A

Oligonucleotides for ChIP-nexus, see Table S1 This paper N/A

Primers for ChIP-qPCR, see Table S2 This paper N/A

Primers for dsRNA-mediated knockdown T7

templates, see Table S3

This paper N/A

Recombinant DNA

pDONR221-SSRP1 This paper N/A

pDONR221-Spt16 This paper N/A

pDONR221 ThermoFisher Scientific Cat# 12536017

Software and Algorithms

Illumina bcl2fastq2 v2.18 Illumina https://www.illumina.com/

SAMtools Li et al., 2009 http://samtools.sourceforge.net/

Bowtie2 version 2.2.9 Langmead and Salzberg, 2012 http://bowtie-bio.sourceforge.net/bowtie2/

index.shtml

(Continued on next page)
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LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact,

Joan Conaway (jlc@stowers.org).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Drosophila S2 cells (RRID:CVCL_Z232) were grown at 25�C in Schneider’s media (GIBCO #21720) supplemented with 10% heat-in-

activated fetal bovine serum (PAA Laboratories #A15-701).

METHOD DETAILS

Double-Stranded RNA (dsRNA) Mediated Knockdown of FACT
Double-stranded RNA-mediated knockdowns were performed in Drosophila embryonic S2 cells using either one of the two non-

overlapping double stranded RNAs targeting either SSRP1 or Spt16. Double stranded eGFP RNA was used as a non-targeting con-

trol to rule out off-target effects. DsRNAs were generated as follows: SSRP1 and Spt16 coding sequences were PCR-amplified from

S2 cell-derived cDNA using attB modified custom primers attB1-SSRP1.fwd / attB2-SSRP1.rev and attB1-Spt16.fwd / attB2-

Spt16.rev, respectively. PCR products were introduced into Gateway pDONR221 vectors to generate pDONR221-SSRP1 and

pDONR221-Spt16. To generate templates for dsRNA synthesis, 500 ml PCR reactionmixtures containing 25 units of Amplitaq (Roche

Applied Science), 1X Amplitaq buffer (Roche), 200 mMeach dNTP, 0.75 mMeach of the forward and reverse primers, and pDONR221-

SSRP1 or pDONR221-Spt16 were aliquoted into eight 0.25ml PCR tubes and amplified using an Eppendorf thermocycler using the

following conditions: initial denaturation at 94�C for3 min, followed by 35 cycles of 94�C for 30 s, 55�C for 30 s and 72�C for 1 min and

a 10min final extension at 72�C. Following PCR amplification, the eight reactions were pooled, and the amplicons were purified using

the QiaQuick PCR purification kit (QIAGEN). Amplicons were eluted from the column into 50 ml of TE (10 mM Tris HCl pH 7.5, 1 mM

EDTA). DNA concentration of the final products were measured using a NanoDrop2000c Spectrophotometer, and the quality of the

amplicons assessed by electrophoresis on a 2% agarose gel in 0.5 X TBE.

All experiments were performed in duplicate. For RNA-seq, ChIP-seq, and ChIP-nexus experiments, about 2 3 106 cells were

seeded in each well of a 6-well dish (35 mm) for each replica. Cells were incubated at 25�C for 30 min to allow cells to attach to

the bottom of the plate, and 10 mg dsRNA was added to each well. For PRO-seq, about 12 3 106 cells were seeded in a 100 mm

dish for each replica and incubated at 25�C for 30 min. Cells were then treated by adding 60 mg dsRNA to each dish. After 48 hours

at 25�C, a second dose of 10 mg or 60 mg of dsRNAwas added to cells for RNA-seq andChIP-Seq or PRO-seq, respectively. 48 hours

Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

ggplot2 Wickham, 2009 https://ggplot2.tidyverse.org/

MACS2 version 2.1.1.20160309 Zhang et al., 2008 https://github.com/taoliu/MACS/

IGV 2.3 Robinson et al., 2011 http://software.broadinstitute.org/

software/igv/igv2.3

STAR version 2.5.2b Dobin et al., 2013 https://github.com/alexdobin/STAR

edgeR Robinson et al., 2010 http://bioconductor.org/packages/release/

bioc/html/edgeR.html

RUVSeq Risso et al., 2014 https://bioconductor.org/packages/

release/bioc/html/RUVSeq.html

Image Studio Version 5.2. LI-COR Biosciences N/A

Other

Odyssey Infrared Imaging System, Model 9120 LI-COR Biosciences N/A

Misonix S-3000 Sonicator QSonica, LLC N/A

HiSeq 2500-DNA Sequencer Illumina N/A

Pippen Prep Sage Science N/A

Agilent 2100 Bioanalyzer Agilent Technologies Cat# G2939BA

Mastercycler EP Gradient-Thermal Cycler Eppendorf North America N/A

NanoDrop-2000C Spectrophotometer Thermo Fisher Scientific Cat# ND-2000C

BioruptorⓇ Pico Sonicator Diagenode, Inc. Cat# B01060010

Thermomixer 5350 Eppendorf North America N/A
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later, the cells were harvested to study the loss of function phenotypes. For RNA-seq and ChIP-seq, cells were washed twice by re-

suspension in 1 mL phosphate buffered saline (PBS) followed by centrifugation at 1500 x g for 5 min at 4�C and then resuspended in

500 mLPBS. For PRO-seq, cells were washed twice by resuspension in 10mLPBS followed by centrifugation at 1000 x g for 5min in a

swinging bucket rotor. After the last wash, nuclei were prepared for PRO-seq as described below. For all experiments, SSRP1 and

Spt16 knockdown efficiency was confirmed by western blotting with anti-SSRP1 or anti-Spt16 primary antibodies and Alexa Fluor�
680 goat anti-rabbit IgG (H+L) secondary antibodies. Tubulin (loading control) was detected using anti-tubulin mouse monoclonal

primary and IRdye800 Donkey anti-Mouse IgG(H+L) secondary antibodies. Blots were visualized using a LI-COR Odyssey Imaging

System.

Antibodies
Custom antibodies against full length, bacterially expressed Spt16 and SSRP1 that had been purified from inclusion bodies were

raised in rabbits (YenZym Antibodies, LLC) and affinity purified from antisera using full length Spt16 and SSRP1 coupled to CNBr-

Sepharose 4B (GE Healthcare) according to the manufacturer’s instructions. Other antibodies included rabbit polyclonal antibodies

against the full-length Drosophila Pol II subunit Rpb3 (Zeitlinger lab; Shao and Zeitlinger, 2017), H3 (ab1791, Abcam), H3K36me3

(ab9050, Abcam), H3K4me3 (ab8580, Abcam), and H2Av anti-serum (Leach et al., 2000).

ChIP-Seq
Chromatin immunoprecipitation was performed essentially as described (Lee et al., 2006). Formaldehyde crosslinking was per-

formed by adding an equal volume of 2% formaldehyde solution (900 mL 16% formaldehyde in 7.3 mL 1 X PBS) to the resuspended

cells and incubated at room temperature for 20 min. The formaldehyde crosslinking was quenched by adding 1/20 volume of 2.5 M

glycine to the cells in suspension. The cells were then washed twice using ice-cold 0.125 M glycine in 1 X PBS. Next, the cell pellet

was resuspended in 500 mL buffer A2 (15 mM HEPES pH 7.5, 140 mM NaCl, 1 mM EDTA, 0.5 mM EGTA, 1% Triton X-100, 0.1%

Sodium deoxycholate, 1%SDS, 0.5%N-lauroylsarcosine, 1/200 volume protease inhibitor cocktail (Sigma). The nuclei were pelleted

by spinning at 3500 x g for 5min at 4�C. Nuclei were resuspended in 800 ml Buffer A2 and sonicated using aMisonix 3000 sonicator at

4�C using output power 3 (9 w power) for 10 cycles (where each cycle is a 10 s burst of sonication, followed by a 60 s pause) and spun

at 14000 rpm at 4�C for 10 min. A 30 ml aliquot of the sheared chromatin (supernatant) was saved as input sample to normalize the

eluate signals and to check the sonication efficiency.

Prior to the immunoprecipitation, Protein A/G (Invitrogen) or Protein G (Life Technologies) magnetic beads were washed twice

using BSA solution (0.5% BSA in 1X PBS). 10 mg anti- Rpb3, H3, and H2Av serum were coupled to Protein G beads, while anti-

H3K36me3, H3K4me3, normal Rabbit IgG (Santa Cruz), SSRP1 (This paper), and Spt16 (This paper), were coupled to Protein

A/G magnetic beads by incubating in BSA solution (0.5% BSA in 1X PBS) for 4 hours at 4�C on a rotator. The antibody-conjugated

beads were then washed twice using 0.5% BSA in 1X PBS. The sheared chromatin was then added to the antibody-conjugated

Protein A/G or Protein G beads and incubated overnight at 4�C. The beads-antibody-protein complexes were washed twice with

20 mM Tris-HCl, pH 8.0, 150 mM NaCl, 2 mM EDTA, 1% Triton X-100, once with 20 mM Tris-HCl, 500 mM NaCl, 2 mM EDTA, 1%

Triton X-100, and once with 20 mM Tris-HCl, pH 8.0, 250 mM LiCl, 1 mM, 1% Triton X-100, 0.1% NP-40, 0.5% sodium deoxycho-

late at 4�C. Washed bead-antibody-protein complexes were resuspended in 150 ml elution buffer (50 mM Tris-HCl pH 8.0, 10 mM

EDTA, 1% SDS), 150 mL TE (10 mM Tris-HCl, pH 8.0, 1 mM EDTA), and 4 mL of 10 mg/ml RNaseA (Sigma). In parallel, 120 mL elution

buffer, 150 mL TE, and 4 mL of 10 mg/ml RNaseA were added to 30 ml of each input sample. Input samples and bead-antibody-pro-

tein complexes were then incubated in a Thermomixer at 37�C with shaking for 30 min. In order to digest the proteins and reverse

the crosslinking, 2 mL of Proteinase K solution (Invitrogen) was added to the eluate and incubated overnight at 65�C while shaking

on the thermomixer. DNA was purified using Phenol:Chloroform:Isoamyl Alcohol 25:24:1 (Sigma), precipitated using ethanol, and

resuspended in nuclease free water. Libraries from the ChIPed DNA were prepared using the KAPA HTP kit (Kapa Biosystems),

size selected using the SPRIselect double side size selection kit (Beckman Coulter) and sequenced on the Illumina HiSeq 2500

platform.

The �30 million reads from each experiment were demultiplexed into Fastq format allowing up to one mismatch using Illumina

bcl2fastq2 v2.18. Reads were aligned to UCSC genome dm6with Bowtie2 version 2.2.9 (Langmead and Salzberg, 2012) with default

settings. Reads were extended to 150 bases toward the interior of the sequenced fragment and normalized to total reads aligned

(reads per million; RPM). FACT and Rpb3 peaks were called by MACS2, version 2.1.1.20160309 (Zhang et al., 2008), broad peak

at q < 0.1. Peaks were annotated to the nearest gene; peaks within 200 bp upstream to 1000 bp downstream of TSSswere annotated

as TSS and early transcribed regions.

ChIP-qPCR
To assess the effect of SSRP1 or Spt16 knockdown on H3 occupancy at promoter regions and within the gene bodies of selected

genes, we performed anti-H3 ChIP as described above under ChIP-seq using chromatin from cells treated with eGFP, SSRP1, or

Spt16 dsRNAs. IP and input samples were analyzed by quantitative real-time PCR (qPCR) using PerfeCTa SYBR Green FastMix

Low ROX (Quanta bio) in a QantStudio 7 Flex-Thermal Cycler (Life Technologies-Applied Biosystems). Table S2 lists PCR primers

used to amplify regions at the transcription start sites and within the gene bodies of Inos, Droj2, and 18w and within the gene

body of Hsp22, as well as in two transcriptionally inactive genomic regions.
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PRO-Seq
The PRO-seq procedure and library preparation were performed as previously described (Kwak and Lis, 2013; Mahat et al., 2016).

Briefly, nuclei were isolated from the washed cells by resuspending gently in 5ml ice cold douncing buffer (10 mM Tris-HCl pH 7.4,

300 mM sucrose, 3 mM CaCl2, 2 mM MgCl2, 0.1% Triton X-100, 0.5 mM DTT, 1 tablet of protease inhibitors cocktail (Roche) per

50 ml, 4 u/ml RNase inhibitor (SUPERaseIN), incubated on ice for 5 min and dounced until 90% of cells were lysed (from 5-25) in

a 5 mL capacity Dounce homogenizer. Nuclei were then pelleted at 1000 x g for 4 min in a swinging bucket at 4�C, washed twice

using 10 mL douncing buffer and resuspended in storage buffer (10 mM Tris-HCl pH 8.0, 25% (vol/vol) glycerol, 5 mM magnesium

acetate, 0.1 mM EDTA, 5 mMDTT) at a concentration of 203 106 nuclei/100 ml. The isolated nuclei from the two biological replicates

for each condition were flash frozen in liquid nitrogen and stored at �80�C.
To perform the 4-biotin run-on assay, 203 106 nuclei in 100 ml storage buffer were mixed thoroughly with an equal volume of pre-

heated (30�C) 2 X Nuclear Run-Onmaster mix (10mM Tris HCl pH 8.0, 5mMMgCl2, 300mMKCl, 1 mMDTT, 0.8 u/ml RNase inhibitor

(Ambion), 1% Sarkosyl and 50 mM each of Biotin-11-ATP, Biotin-11-GTP, Biotin-11-CTP, Biotin-11-UTP, all from PerkinElmer, and

incubated for 3 min at 30�C in a heat block. The nascent RNA was extracted using Trizol LS (Invitrogen) and precipitated using 2.5

volumes of 100% ethanol. The purified RNA was fragmented by base hydrolysis in 0.2 N NaOH and enriched for biotinylated nascent

transcripts by purifying in streptavidin-coatedmagnetic beads (Life Technologies). After the 30 RNA adaptors were ligated to the frag-

mented RNAs, a second round of biotin-streptavidin purification was performed. ThemRNAcapwas then removed and the reverse 50

RNA adaptor ligated. A third biotin affinity purification was performed, and the cloned products were reverse transcribed using RP1

primer. Primers RPI4, RPI5, RPI6 and RPI7 were used to barcode cDNAs from eGFPdsRNA_rep1 (Non-targeting control, replicate 1),

eGFPdsRNA_rep2(Non-targeting control, replicate 2), SSRP1kda1 (SSRP1 dsRNA mediated knockdown, replicate 1), and

SSRP1kda2 (SSRP1 dsRNA mediated knockdown, replicate 2) respectively.

PCR amplicons of 140 bp to 350 bp were selected using the 2% Agarose Gel Cassette, Dye-Free (Sage Science, CDF2010,

Cassette type: 2% DF Marker L) on the Pippen Prep (Sage Science, Software: v.5.8) instrument. Equimolar concentrations of library

fractions were then pooled together and sequenced using a mid-output flow cell on the Illlumina NextSeq 500 platform.

Raw reads were demultiplexed into Fastq format allowing up to one mismatch using Illumina bcl2fastq2 v2.18. The adaptor

sequence 50-TGGAATTCTCGGGTGCCAAGG-30 was removed, and reads were trimmed to 36 bp. Reads with length less than

15 bp after trimming were removed. After reverse-complementing, reads were aligned to UCSC genome dm6 with Bowtie2 version

2.2.9 with default settings. Normalized coverage tracks were generated by applying a normalization factor calculated from reads

aligned to the previously characterized transcriptionally silent regions (Kharchenko et al., 2011). Normalized bigwig files were then

used for downstream analysis.

Pausing indices (the ratio of promoter coverage, defined as �50 to +150 around the TSS, versus the gene body, defined as +300

from the TSS to the end of the transcript) were calculated as described (Kwak et al., 2013). Genes were divided into three equal

groups designated highly paused (PI R 23.5), moderately paused, (3.3 < PI < 23.5), and lowly paused (PI % 3.3). Genes that were

less than 500 bp in length, overlapped other genes or were within 200 nt of nearby genes were excluded from the downstream anal-

ysis. For genes with more than one annotated TSS, the TSS with highest PRO-seq coverage was selected. We also excluded genes

with less than 1 RPKM PRO-seq signal in the promoter region in order to exclude non-active genes.

RNA-Seq
At the end of the 4-day knockdown,Drosophila S2 cells were harvested. Human HEK293T cells were added to the harvested S2 cells

(0.8x10e6 human cells / 15x10e6 S2 cells) as spike-in control. Each pool of S2 and HEK293T cells was washed twice using 1 X PBS.

Total RNAwas extracted using the QIAGEN RNeasy mini kit (QIAGEN) following the manufacturer’s protocol. The quantity and integ-

rity of the isolated RNA were assessed using the Agilent Bioanalyzer. PolyA+ RNA libraries were prepared following the Illumina

TruSeq Stranded mRNA sample preparation protocol (Illumina) using the TruSeq Standard mRNA LT Sample Prep Kit, 48; Set A

(Illumina). Libraries were sized-selected using dye-free 2% agarose gel cassettes with a Pippen Prep (Sage Science) and validated

using Agilent 2100 Bioanalyzer. Barcoded libraries were pooled together and subjected to sequencing on a HiSeq 2500-DNA

Sequencer to generate 50 bp single end reads.

Raw reads were demultiplexed into Fastq format allowing up to onemismatch using Illumina bcl2fastq2 v2.18. Reads were aligned

using default settings to a combined dm6-hg38 genome with STAR version 2.5.2b (Dobin et al., 2013), using Ensembl 84 gene

models. The RUVgmethod (Risso et al., 2014) was applied to remove unwanted variation in gene counts. Spike-in genes with at least

100 counts in all samples were used as negative control genes. RUVg yields factors of unwanted variation for each sample, which are

incorporated as a term in the edgeR negative binomial GLM (Robinson et al., 2010) to perform differential gene expression analysis.

Genes with reads of more than 1 count per million (CPM) in any two samples were included in downstream analyses.

Metaplots and Boxplots
Metaplots showing average gene profiles of SSRP1 and Spt16 occupancy include 876 genes that overlap SSRP1 or Spt16 high con-

fidence peaks (MACS2 FDR% 10�2; fold changeR 1.5); boxplots comparing FACT and Rpb3 occupancy show data from the same

set of genes. H3, H2A.v, H3K4me3, and PRO-seq metaplots show normalized average gene profiles of transcripts (n = 1556) that are

longer than 1500 bp and separated from other transcripts by at least 200 base pairs; only transcripts with PRO-seq coverage in con-

trol, eGFP dsRNA-treated cells of more than 1 RPKM in the region �50 to +150 relative to dm6 annotated TSSs were included. For
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genes with more than one annotated TSS, the TSS with highest PRO-Seq coverage was selected. The indicated regions upstream

and downstream of TSS and TES were plotted. The remainder of gene bodies were scaled to a length of 1000 bp, and data were

averaged using 10 bp bins. Boxplots in Figures 2, 3, S3, and S4 include data from transcripts (n = 2023) that are longer than

1000 bp, separated from other transcripts by at least 200 bp, and have PRO-seq coverage in control cells of more than 1 RPKM

in the �50 to +150 region. Plots were generated with R package ggplot2 (Wickham, 2009).

ChIP-Seq and PRO-Seq Normalization
To compare transcription-dependent changes in H3, H2A.v, H3K4me3, H3K36me3, and PRO-seq datasets from control and

FACT-depleted cells, we normalized datasets to ChIP or PRO-seq signals at regions of transcriptionally silent, intergenic euchro-

matin regions, where FACT depletion is expected to have minimal effect on chromatin architecture. These transcriptionally silent,

intergenic euchromatin regionswere lifted from dm3 to dm6 genome annotation. The scaling factor for each dataset (Table S4) was

based on the number of reads in 444 silent domains (state 9) (Kharchenko et al., 2011) that are longer than 1 kb and do not overlap

with annotated genes.

ChIP-Nexus and Measurement of Paused Pol II Half-Life
The ChIP-nexus procedure and library preparation were performed for each of the two biological replicates of each knockdown and

control conditions as previously described (Shao and Zeitlinger, 2017). Briefly, cells were treated with triptolide at room temperature

for 5, 10, 15, and 30 min and 2% DMSO as control. Each sample was then fixed with 1% formaldehyde at room temperature for

10 min, washed with cold PBS, incubated with Orlando and Paro’s Buffer A (0.25% Triton X-100, 10 mM EDTA, 0.5 mM EGTA,

10 mM Tris-HCl, pH 8.0) for 10 min at room temperature with rotation, and then centrifuged and re-suspended in S2-RIPA buffer

(10 mM Tris-HCl, pH 8.0; 140 mM NaCl; 0.1% SDS; 0.1% sodium deoxycholate; 0.5% sarkosyl; 1% Triton X-100). Sonication

was performed with a BioruptorⓇ Pico sonicator for five rounds of 30 s on and 30 s off.

For each ChIP-nexus experiment, chromatin extracts from 107 S2 cells were incubated with a 1:1 mixture of Dynabeads Protein A

(ThermoFisher Scientific) and Dynabeads Protein G (ThermoFisher Scientific) coupled to custom-made antibodies against

Drosophila Pol II Rpb3 subunit and washed with nexus washing buffer A to D (wash buffer A: 10 mM Tris-EDTA, 0.1% Triton

X-100, wash buffer B: 150mMNaCl, 20mMTris-HCl, pH 8.0, 5mMEDTA, 5.2% sucrose, 1.0% Triton X-100, 0.2%SDS, wash buffer

C: 250mMNaCl, 5mMTris-HCl, pH 8.0, 25mMHEPES, 0.5%Triton X-100, 0.05% sodium deoxycholate, 0.5mMEDTA, wash buffer

D: 250mM LiCl, 0.5% IGEPAL CA-630, 10 mM Tris-HCl, pH 8.0, 0.5% sodium deoxycholate, 10 mMEDTA). To control for the loss of

Pol II ChIP signal after triptolide treatment, a spike-in control was prepared by incubating human chromatin extracts from GM12878

cells with a 1:1 mixture of Dynabeads Protein A and Dynabeads Protein G coupled to antibodies against human Pol II (N20, Santa

Cruz) followed by washing with nexus washing buffers A to D. A fixed amount of Dynabeads and human Pol II ChIP mixture was

then spiked into each S2 ChIP-nexus experiment.

During the ChIP incubation, end repair and dA-tailing were performed using the NEBNext End Repair Module (NEB) and the

NEBNext dA-Tailing Module (NEB). ChIP-nexus adaptors with mixed fixed barcodes (CTGA, TGAC, GACT, ACTG) were ligated

with Quick T4 DNA ligase (NEB) and converted to blunt ends with Klenow fragment (NEB) and T4 DNA polymerase (NEB). The sam-

ples were treated with lambda exonuclease (NEB) and RecJf exonuclease (NEB) for generating Pol II footprints at high resolution.

After each enzymatic reaction, the chromatin was washed with the nexus washing buffers A to D and Tris buffer (10 mM Tris, pH

7.5, 8.0, or 9.5, depending on the next enzymatic step). After RecJf exonuclease digestion, the chromatin was eluted and subjected

to reverse crosslinking and ethanol precipitation. Purified single-stranded DNAwas then circularized with CircLigase (Epicenter), an-

nealed with oligonucleotides complementary to the BamHI restriction site and linearized by BamHI digestion. The linearized single-

stranded DNA was purified by ethanol precipitation and subjected to PCR amplification with NEBNext High-Fidelity 2X PCR Master

Mix (NEB) and ChIP-nexus primers. The ChIP-nexus libraries were then gel-purified before sequencing with Illumina NextSeq 500.

After sequencing, spiked-in samples were aligned to a dm6-hg38 combined genome. Only reads that uniquely aligned to each

genome were used for analysis, and PCR duplicates with the same ChIP-nexus barcode were removed. Each Drosophila sample

was then read-count normalized based on the ratio between human andDrosophila reads. Paused Pol II half-life calculation was per-

formed on PRO-seq-validated promoters selected from 2023 non-overlapping genes separated from neighboring genes by at least

200 bp if a typical Pol II ChIP-nexus footprint was observed (distance between positive and negative strand peak < 50 bp, position of

the Pol II footprint < 150 bp downstream of the TSS). 998 promoters fulfilled these criteria. For each promoter, the Pol II signal was

calculated in a 51 bp window centered on the pausing position (the midpoint between Pol II positive and negative summits) and the

Pol II time course measurements were fitted into an exponential decay model using non-linear regression. For display purposes

(see heatmap in Figure 4C), the Pol II measurements at each promoter were normalized to the maximum Pol II signal in samples

from cells not treated with triptolide.

QUANTIFICATION AND STATISTICAL ANALYSIS

Quantification of Western Blots
The intensities of bands corresponding to SSRP1, Spt16, and tubulin were measured using Image Studio Version 5.2.
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Quantification of H3 ChIP-qPCR Assays
Enrichment as a percent of the input was calculated for each ChIP sample using the formula: 100* 2̂ [CtInput – log2(800/30)-Ct IP],

where 800/30 is the input dilution factor. For each ChIP, H3 enrichments (ChIP/input) in promoter and gene body regions were

normalized to the average of the ChIP/input values from two transcriptionally inactive genomic regions. In this experiment, Ct values

of at least 2 technical replicates and 2 biological replicates were used for the analysis. Mean and standard deviation were calculated

using Excel.

Statistical Analysis
Statistical analyses were performed using R and Bioconductor packages. Metagene plots and boxplots show the average values

from replicates and were generated using ggplot2 (Wickham, 2009). P values were determined using the Wilcoxon rank sum test

of pairwise comparisons. Differences were considered significant if P values were % 0.05. In the figures, p % 0.05 is indicated by

*; p % 0.01 by **; p % 0.001 by ***. Sample size (N) for each analysis is indicated in the figure legends.

DATA AND CODE AVAILABILITY

PRO-seq, RNA-seq, ChIP-seq and ChIP-nexus data have been deposited in NCBI’s Gene Expression Omnibus (GEO) and are

accessible through accession code GSE129236.

Original data underlying Figures 1A and S2 can be accessed from the Stowers Original Data Repository at https://www.stowers.

org/research/publications/LIBPB-1282.
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