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Abstract

This study investigates the effect of organic nutrient perturbation on the 

dynamics of marine microbial communities, adopting three different approaches. A 

field study was conducted on the west coast of Scotland, in two contrasting locations, 

including a fish farm anticipated as a point source of organic nutrients. Data collected 

from the stations sampled revealed that the marine microbial communities were highly 

dynamic. The comparison of the physico-chemical and biological variables measured at 

each station indicated that the abundances, diversities and productions of planktonic 

micro-organisms varied in time and space. These marine microbes also demonstrated 

strong ecological interactions such as competition or predation. The dissolved organic 

matter (DOM) was revealed to originate from various sources with production by 

phytoplankton being dominant. Laboratory based experiments were conducted to 

complement field observations and test different hypotheses, such as the effect of 

substrate organic stoichiometry on the growth of bacteria and their grazers, the effect of 

DOM produced by nutrient-stressed phytoplankton on the bacterioplankton dynamics or 

the factors limiting the natural microbial communities. These experiments highlighted 

the key role of bacteria within the microbial loop, efficiently regenerating DOM into 

inorganic nutrients, the importance of the quality and stoichiometry of the DOM in 

controlling bacterial growth. Additionally in these experiments, the manipulation of 

size-fractionated microbial food webs revealed the importance of micro-grazers in 

controlling the bacterioplankton dynamics. Finally, mathematical modelling was used to 

synthesise the field and experimental observations and to simulate ecological 

interactions concurrent to organic nutrient variations. An existing model was modified 

to include the bacterioplankton component as well as a more adequate DOM pool 

representation.
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Chapter 1 General introduction

- CHAPTER 1 - 

General introduction

1.1 Marine microbial food web

1.1.1 Microbial ecology

Microbial ecology aims to study the interactions between organisms and with 

their surrounding environment. In the marine environment, microbial food webs are 

complex, dynamic networks of specifically and functionally interacting organisms. The 

evidence of the key role played by marine microbes, such as marine protists, 

heterotrophic bacteria and cyanobacteria, is now well supported by numerous studies. 

These microbes are a critical link in the “microbial loop”. This microbial loop starts 

with the production of dissolved organic matter (DOM) and, through heterotrophic 

bacteria and the processes they mediate, ends with more respiration, nutrient cycling, 

growth of bacteria and their grazers.

1.1.2 Diversity amongst microbial organisms

Marine microbes are single celled organisms grouped in three divisions of life: 

Bacteria, Archea and Eukarya (Fig. 1.01), based on the study of subunits (16S and 18S) 

of ribosomal ribonucleic acid (rRNA) (Woese et al. 1990). These microbes exhibit a 

wide range of cell lengths, this being used as a method of classification (Table 1.01) by 

Seiburth et al. (1978). These organisms comprise both prokaryotic (no nuclear 

membrane) and eukaryotic (distinct nucleus) cells and cover a wide range of trophic
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regimes from photoautotrophy (organisms using light as the source of energy) to 

heterotrophy (living on organic matter). Marine microbes also use a variety of energy 

sources, elements for biosynthesis and reducing equivalent (redox pairs e.g. H2O/O2, 

NADPH/NADP, HS', N 03').

Prymnesiophytes 
Dino flagellates ( (Haptophytes)

\
Ciliates \

Fungi

Chrysophytes

Diatoms

Bicosoecids

/ iy  /
/  Cryptomonads

/  /

Choano flagellates 
Chlorophytes

/ /  - 
, ! / /  
1/ / /

Amitochondrial
flagellates

, Euglenoids 

Kinetoplastids

Figure 1.01. Phylogenetic tree of eukaryotic microbes. Relationship based on SSU 
rRNA (from Rappe et al. 2000).

1.1.3 From the Classical view to the modern paradigm

The classical view of the marine pelagic food chain, i.e. inorganic nutrients 

taken up by phytoplankton which are in turn ingested by zooplankton which are 

ingested by fish (Steele 1970, Steele 1974), has changed significantly within the last 

three decades because of an appreciation of new “actors” in marine food webs. In his 

review, Fenchel (1988) drew a new scheme of marine plankton food chain (Fig. 1.02) 

by introducing the, so-called, microbial loop (Pomeroy 1974, Azam et al. 1983, Murray 

& Eldridge 1994).
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Although bacteria were already suggested as decomposers, the new picture o f 

plankton based on this microbial loop brought a “change in paradigm” by recognising 

that phototrophic and heterotrophic microorganisms (in particular bacteria and 

micro flagellate grazers) play a substantial or even sometimes dominating role in the 

cycling o f matter in the sea (LeB Williams 1981, Azam et al. 1983).

Ciliates•>COj
Diatoms

FlagellatesFlagellates

ibacteria Bacteria

CO,

Viruses

Figure 1.02. Conceptual diagram o f the microbial food web with autotrophic organisms 
(green frame) and heterotrophic organism (orange frame). Green arrows represents 
autotrotrophic processes o f inorganic nutrient uptake and DOM production by 
phytoplankton. Brown arrows represent heterotrophic processes with consumption o f 
DOM by bacteria, remineralisation into inorganic nutrient, and grazing o f  
phytoplankton. White arrows represent the existing trophic links between heterotrophic 
organisms (redrawn from Fenchel, 1988).

Bacteria can, under this new paradigm, both enter into competition with 

phytoplankton for inorganic resources and also act as a major pathway o f organic matter 

decomposition, both particulate and dissolved (Dugdale & Goering 1967, Ducklow 

1983, Andersen & Fenchel 1985, Biddanda 1985, Caron et al. 1985, Goldman et al.

3
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1985, Alldredge et al. 1986, Andersen & Sorensen 1986, Biddanda 1986, Ducklow et al.

1986, Biddanda 1988, Biddanda & Pomeroy 1988).

Nowadays, we know that, in most of the ocean, organic matter passes through 

the microbial loop. An average of 50 % of the primary production (PP) is consumed by 

bacteria, as photosynthesic exudates, the contents of dead-cells (released by bacterial 

and viral lyses, zooplankton sloppy-feeding) or zooplankton excretions (Fuhrman & 

Azam 1982, Azam et al. 1983, Ducklow et al. 1986, Azam 1998).

Table 1.01. General groups of pelagic maicrobes in the sea

Size category Microbial group Size range

Femtoplankton Viruses 0.01-0.2
Picoplankton Prokaryotes

Bacteria
Phototrophic 0.5-1.0

Prochlorophytes 0.5-2.0
Coccoids cyanobacteria 0.5-1.0
Filamentous cyanobacteria 7-10 wide x

<100s long
Chemoautrophic 0.3-1.0
Heterotrophic

Archea
Eukaryotes

0.3-1.0

Picoalgae, picoheterotrophic 
flagellates

1.0-2.0

Nanoplankton Nanoalgae, nanoheterotrophic 
protists (mainly flagellates)

2-20

Microplankton Microalagae
Microheterotrophic protists 

(mainly ciliates and heterotrophic 
dinoflagellates)

20-200

Microbial size categories proposed by Sieburth (1978), after Sherr et al. (2000).

In addition to bacteria, heterotrophic micro-flagellates are important in the 

microbial loop. Microflagellates, which graze on both phytoplankton and heterotrophic 

bacterioplankton, play a major role in marine food webs by removing the organic matter 

from the linear grazing model phytoplankton-zooplankton-flsh (LeB Williams 1981, 

Estep et al. 1986, Fenchel 1986). Furthermore, these micrograzers are able to convert

4
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organic matter into inorganic nutrients, hence enabling further production (LeB 

Williams 1981).

1.2 Marine heterotrophic bacteria

1.2.1 Diversity and molecular ecology

Studies in the early nineties (Giovannoni et al. 1990) that used rRNA small 

subunit (SSU rRNA) revealed the existence of several bacterial taxa, uncultured or 

unknown until then, amongst the prokaryote kingdom. SSU rRNA genes sequence 

comparison demonstrated that most (80 %) bacteria fall into nine phylogenetic groups 

(Giovannoni & Rappe 2000). Most of these marine bacteria fall into the y subclass of 

the proteobacteria, with lower numbers comprising in the Cytophaga-Flavobacterium- 

Bacteriodes group and the a  subclass of proteobacteria. Numerous studies have 

demonstrated a range of abilities of these different subclasses of marine bacteria. For 

example, the SAR 11 clade, belonging to the a  -proteobacteria, seems to dominate the 

upper layer of oligotrophic ocean (Field et al. 1997). The (3-proteobacteria subgroup, 

however, is reported to be located in coastal waters (Rappe et al. 1997). Moreover, there 

is molecular evidence of great diversity among the heterotrophic prokaryotes, only a 

very few (less than 1%) have been isolated and grown in cultures (Rappe & Giovannoni 

2003). With the vast majority of bacteria being in the uncultured fraction, one may 

expect that diversity and function will be found to increase even further.

5
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1.2.2 Role o f  bacteria in marine systems

Marine heterotrophic bacteria are the largest surface area of living organisms in 

the ocean (LeB Williams 1981). Because of their diversity and their key role in the 

processes they mediate in the oceans, marine heterotrophic bacteria have been of fast 

growing interest to marine microbial ecologists. Heterotrophic bacteria are closely 

related to DOM dynamics and they exhibit a wide range of interactions with the DOM 

pool (see section 1.3.2.4, this Chapter). Marine bacteria therefore appear to be a key 

player in terms of carbon (C) budget. Bacteria remineralise this DOM into inorganic 

form, hence potentially promoting further primary production and hence more OM (see 

section 1.3.2.4, this Chapter) and may paradoxaly enter in competition for these 

inorganic nutrients with the provider of their source of energy: phytoplankton (Bratbak 

& Thingstad 1985, Thingstad 1987). Therefore, it remains unclear whether or not 

marine heterotrophic bacteria are a net sink or source of C in the ocean (see section 

1.3.2.4, this Chapter and also Chapter 6). Clearly, they interact with other organisms, 

playing a central key role in microbial food webs, as noted above.

1.3 Nutrients in natural ecosystems, stoichiometry and nutrient transfer through 

the food chain

1.3.1 Inorganic nutrients

1.3.1.1 Composition and concentration

Seawater is composed of a number of major and minor inorganic (non-living) 

elements. Major elements (concentration > 1 mg/1) include the cations (Ca2+, K+, Na*) 

and elemental oxyanions: (Cf, SO4', HC03‘). Minor nutrients (concentration < lmg/1) 

include vitamins (e.g. vitamin B12), trace metals (including Fe, Mg, Zn, Cu), and
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nitrogen, phosphorous and silicon (as nitrate N 03', nitrite NO2', Ammonium NH4+, 

silicate Si(OH)4 and orthophosphate ions P 043'). The typical concentration of trace 

metals is ~ 10'8 pM and can also be limiting e.g. in high nutrient low chlorophyll 

(HNLC) regions. While minor elements, N, P and Si are (at least in coastal waters) the 

most important in seawater because one or other of these is most likely to be exhausted 

and hence limit primary production. The order of magnitude of the concentrations of 

nutrient concentration is about 10'6 M (Table 1.02).

Typically, nitrate, silicate and phosphate increase with depth. Occasionally 

marked changes occur with depth corresponding to the thermocline or chlorophyll 

maximum. Generally, the stratified surface layer is nutrient depleted because 

autotrophic organisms consume nutrients. Ammonium depth profiles show an opposite 

pattern with a decreasing concentration with depth. On an annual basis, nitrate and 

silicate concentrations are high during the winter and decrease as primary producers 

consume them during the spring bloom. Autumn and winter mixing supplied the surface 

waters with deep nutrient-enriched waters following breakdown of stratification. On the 

other hand, ammonium is released after nitrate consumption, mediated by heterotrophic 

remineralisation and this NH4+ is subsequently used to support a regenerated production 

during the summertime.

1.3.1.2 Nutrient ratio

Redfield (1963) demonstrated that elemental components are in balanced 

quantity in living marine organisms and defined the so called “Redfield ratio” of C:N:P 

to be 106:16:1. These molar ratios were reviewed by Brzezinski (1985) who added 

silicate and, while noting significant variability, suggested a C:N:P:Si ratio of 

106:16:1:16. When phytoplanktonic cells are in balanced growth their ratios are
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approximately those of Redfield but might respond differently under stressful 

conditions where nutrient concentrations change.

Phytoplankton cells in particular may exhibit large differences from this 

balanced C:N:P:Si ratio. As cells may continue to photosynthesise when N is limiting, it 

is common for cells to exhibit C:N ratios higher than Redfield. On the other hand lower 

than Redfield values are exhibited when light is limiting (Goldman et al. 1979, 

Falkowski et al. 1985, Smith et al. 1992b).

Table 1.02. Range of dissolved inorganic and organic nutrient concentrations in marine 
environments.

Nutrient

Inorganic
Nitrate NO3"

Nitrite NO2"

Ammonium N lV

Phosphate PO43' 
Silicate Si(OH)4

Organic
DON

DOC

DOP

System Concentration
pM References

Oceanic
Coastal 0-40

Oceanic 0-3
Oceanic 0-3 Lalli & Parson
Coastal (1993)
Oceanic 0-3

Oceanic 0-150

Oceanic-surface 5.8
Oceanic deep 4.3 Bronk, (1998)

Coastal 9.9
Estuarine 22.5

Ocean deep -4 0
Ocean surface -8 0 Hansell & Carlson

Coastal 150-300 (2002)
Estuarine/Rivers 100-800
Coastal/Estuarine 0.05-0.98 Karl & Bjorkman, 

(2002)Continental shelf 0.03-0.39
Open ocean 0.01-0.28

Similarly, diatoms grow with lower Si:N and Si:C ratios under Si limitation, 

higher Si:N ratios under N limitation, and higher Si:C ratios under light limitation 

(Martin-Jezequel et al. 2000). Another factor that alters the elemental composition of 

phytoplankton is the differential light dependence of photosynthesis and nutrient uptake. 

While photosynthetic C fixation requires light, NO3' can be taken up at low rates in the
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dark and uptake of both NH4+ and Si(OH)4 can continue through the night at rates 

undiminished from those in full daylight (McCarthy et al. 1996).

Bacteria have a C:N ratio lower than phytoplanktonic cells because of their high 

nucleic acid content. These ratios, based on bulk measurements, show a high variability 

(Bratbak 1985, Vadstein & Olsen 1989, Tezuka 1990, Fagerbakke et al. 1996) and 

range from 2.9 to 14.2 (Fukuda et al. 1998). Goldman et al. (1987) found a molar C:N:P 

ratio of 45:9:1 for bacteria, whereas the common molar Redfield ratio for algae is 

106:16:1.

1.3.2 Organic Matter.

1.3.2.1 What is organic matter? How is it defined?

The oceans are the greatest reservoir of reactive organic carbon on earth (Hedges

1992) and more than 97 % of organic carbon in seawater is found in the operationally 

dissolved pool (Benner et al. 2002). Operationally, organic matter (OM) is composed of 

dissolved and particulate pools that are separated by a 0.45 pm boundary, regarded as 

being a separation between living and dead OM. In practice, dissolved organic matter 

(DOM) and particulate organic matter (POM) pool are separated by filtration of water 

samples through 0.2 pm to 1 pm cut-off size filters. Glass fibre filters that have a 0.7 

pm nominal porosity are commonly used to separate DOM from POM, but small living 

bacteria (~ 0.2 to 0.7 pm diameter) are potentially neglected in the POM pool as living 

particles because they pass through glass fibre filters.

9
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1.3.2.2 Size distribution of DOM

Even though OM has been recognised as a continuum of size in seawater (Sharp 

1973), a size class distinction can be made based on physical separation by passage 

through membranes and filters of different pore sizes. Gustaffsson & Gshwend (1997), 

however, suggested that such a broad size-based definition is inadequate to understand 

the role of OM in marine systems (Fig. 1.03). Therefore, a size separation based on 

molecular weight is preferred for identifying DOM. These classes are described on 

passage through an ultrafiltration membrane with a 1 nm pore size (1000 Daltons (Da) 

cut-off).

0.001 fim

Colloidal fraction

DOM

LMWDOM
Polymers

POM
Particles

HMWDOM  
Polymers 

sirbp particles

Figure 1.03. Distribution of organic matter (POM and DOM) and size fractions of 
DOM.

10
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Size separation allows the distinction between High Molecular Weight DOM 

(HMW-DOM > 1000 Da) and Low Molecular Weight DOM (LMW-DOM < 1000 Da). 

Further, it is widely accepted that the majority (> 50%) of DOM is in the form of 

dissolved organic carbon (DOC). This DOC constitutes 60-75 % of the LMW pool in 

surface waters and 75-85 % of the LMW DOM pools in the deep ocean (Druffel et al. 

1992, Borch & Kirchmann 1997, Skoog & Benner 1997, Benner et al. 2002). Williams 

& Druffel (1987) linked size separation to the lability of the DOM. Hence, because of 

the difference in concentration and reactivity of this HMW and LMW material; the 

lkDa distinction becomes useful for understanding the cycling of DOM in seawater.

1.3.2.3 Bulk concentrations, stoichiometry and composition of DOM

Comparison between the surface and deep ocean gives a picture of the 

characteristics that influence DOM reactivity in oceans (Table 1.03). The major 

production of DOM occurs in the surface ocean, thus it is the main reservoir of fresh 

and reactive DOM, whilst deep waters carry old and refractory DOM (Amon et al. 

2001).

Based on concentrations of DOC, DON and DOP presented by Hansell and 

Carlson (2002) (Table 1.03), the stoichiometry of both surface (C:N:P = 300:22:1) and 

deep (C:N:P = 444:25:1) waters indicates that DOM is depleted in N and P (most 

markedly in deep waters). This is likely to be due to remineralisation of DON and DOP 

in the water column. In addition, analysis of HMW-DOM stoichiometry (C:N:P of 

HMW DOM is very similar to C:N:P of total DOM) shows that HMW compounds are 

the major constituents of DOM (Benner et al. 1997, Kolowith et al. 2001).

11
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The molecular composition of DOM is complex and Table 1.03 gives an 

overview of different components found (for more details see Benner, 2002 in Hansell 

& Carlson, 2002 and references therein).

Table 1.03. Bulk and molecular composition of DOC (0-100 m) and deep (100-1000 m) 
waters (Hansell & Carlson 2002).

Chemical characteristic Surface ocean Deep ocean

Bulk composition
DOC (pM) 60-90 35-45
DON (pM) 3.5-7.5 1.5-3.0
DOP (pM) 0.1-0.4 0.02-0.15
DOC/DON 9-18 9-18
DOC/DOP 180-570 300-600
Carbohydrates (pM C glucose equivalent) 10-25 5-10

Molecular composition
Total hydrolysable neutral sugars (nM) 200-800 20-170
Total hydrolysable amino-acids (nM) 200-500 80-160
Total hydrolysable amino-sugars (nM) 42-94 4-9
Lipids (nM) 0.2-0.7 nd
Total hydrolysable neutral sugars (% DOC) 2-6 0.5-2.0
Total hydrolysable amino-acids (% DOC) 1-3 0.8-1.8
Total hydrolysable amino-sugars (% DOC) 0.4-0.6 0.04-0.07
Solvent extractable lipids (% DOC) 0.3-0.9 nd
Total (% DOC) 3.7-10.5 1.3-3.9
Total hydrolysable amino-acids (% DON) 6-12 4-9
Total hydrolysable amino-sugars (% DON) 0.8-1.7 0.2-0.4
Total (% DON) 6.8-13.7 4.2-9.4

The major constituents of LMW DOM are free and combined amino acids, 

neutral sugars, amino sugars and lipids. Nevertheless, it is worth noting that the 

molecular composition of most of the DOM pool is unknown (an average of 80%) and 

resides in an Unresolved Complex Mixture (UCM), identified by gas chromatography 

and nuclear magnetic resonance (NMR) (McCarthy et al. 1998).

12
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1.3.2.4 Sources and sinks of DOM in marine systems

The major source of organic matter in the ocean is photosynthetic production by 

phytoplankton. Therefore, the amplitude of primary production controls production of 

DOM in the oceans. Several mechanisms are involved in DOM production including 

(Fig. 1.04): extra cellular release by phytoplankton (Fogg 1983, Baines & Pace 1991, 

Nagata 2000), sloppy feeding and excretion by grazers (Jumars et al. 1989, Caron et al. 

1991, Nagata & Kirchman 1992, Nagata & Kirchman 1996, Ducklow et al. 1999, 

Nagata 2000), cell-lysis (viral and bacterial) (Proctor & Fuhrman 1992, Fuhrman 1999), 

solubilisation of particles (Smith et al. 1992b, Hoppe et al. 1993) and bacterial 

(enzymatic) transformation and release (Decho 1990, Tanoue et al. 1995, McCarthy et 

al. 1998).

Photooxydation

lysis
Refractory

E xudates
lysisphytoplankton bacteria

S 1-DOC j-DOC

uptake

Sloppy-
feeding

grazing

detritus particles

zooplankton

Figure 1.04. Conceptual diagram of the main production and removal processes of 
DOM (frame) in the marine environment. DOM pool is composed here of refractory, 
semi-labile (S1-) and labile (1-) DOC.
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Despite a global primary production (PP) of 7 Gt C year'1 (Hedges 1992), DOC 

concentration remains in a narrow range of 40-80 pM C, in most of the oceans. This 

indicates that efficient DOC removal processes occur in the sea. The main removal 

processes are biotic mechanisms involving heterotrophic bacterioplankton that are able 

to remove up to 30 % of local PP (Cole et al. 1988, Amon & Benner 1996, Ducklow et 

al. 1999). Bacterioplankton are able to take up LMW compounds (500-1000 Da) 

through their membrane (Saunders 1976), hence converting DOM to POM. Part of this 

organic matter is subsequently either respired to CO2 or remineralised into its original 

inorganic form.

In order to assess the DOC flux going though bacterioplankton, the bacterial 

growth efficiency (BGE) is required. BGE can be expressed as the bacterial production 

(BP) divided by the sum of bacterial respiration BR and production:

Usually, BGE is low (<20 %) for oceanic systems (Carlson et al. 1996, del 

Giorgio & Cole 1998) but can be very high in some coastal systems, such as the Gulf of 

Mexico (BGE=61 %, Kroer 1993).

The gross flux of carbon to bacterioplankton is the amount of carbon needed to 

support BP and is called Bacterial Carbon Demand (BCD):

BGE = - ---------- -
(BR + BP)

equation 1.01

BGE can also be approximated by the ratio of DOC converted into bacterial biomass

divided by the change in extracellular DOC concentration (ADOC):

ADOC
equation 1.02
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BCD = ^  equation 1.03
BGE

Estimates of BP and BCD have to be used with caution because they are 

estimated with model compounds or precursors of nucleic acids or protein synthesis 

(leucine, thymidine) and require conversion factors to convert measurements into 

carbon units. Because of the differences in the value of conversion factors in different 

aquatic systems, estimation of BP, BGE or BCD leads to discrepancies between 

biological carbon production and consumption (Anderson & Ducklow 2001).

When DOC is not directly available, bacteria are able to break down more 

complex material into available compounds using exoenzymes (Decho 1990, Chrost 

1992, Smith et al. 1992a, Tanoue et al. 1995, McCarthy et al. 1998). A very important 

diversity in enzymes probably exits in the marine environments; but only a few are 

considered in studies, including peptidase, alpha and beta glucosidase, and lipase. These 

enzymes are involved in the breakdown of simple compounds. However, studies have 

demonstrated the increase in bacterial growth and enzymatic activities following the 

peak of the phytoplanktonic blooms in mesocosms (Fajon et al. 1999) or in natural 

waters (Zaccone et al. 2003, Zoppini et al. 2005). In a recent study, Kirchman et al. 

(2004) have highlighted the relationship between enzymatic activity and bacterial taxa 

in coastal waters, suggesting specialisation of the different sub groups of bacteria in the 

degradation of organic matter.

In addition to bacterioplankton, other marine organisms can play a significant 

role in DOM processes. Heterotrophic flagellates, such as choanoflagellates (Marchant 

and Scott, 1993), and mixotrophy (Rivkin 1987, Caron 2000) have been shown as a 

potential sinks for marine DOM. Sherr et al. (1988) reported an active uptake of 

colloidal DOM by heterotrophic flagellates. Regardless, these organisms or additional
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metabolic pathways, play only a modest role in heterotrophic processes on spatial and 

temporal scales (Carlson & Hansell 2002).

Finally, abiotic processes, such as photodegradation and/or phototransformation 

(Mopper et al. 1991) or absorption onto particles (Nagata & Kirchman 1996, Druffel et 

al. 1998) are also involved in DOM removal. Alternatively, accumulated DOM 

associated with particles may become entrained in interstitial water within marine 

aggregates (Alldredge 2000).

1.3.2.5 DOM in coastal areas

In coastal waters, an important part of the DOM comes from terrestrial sources 

and atmospheric deposition. Global riverine DOM inputs are estimated to be 0.25 Gt C 

y"1 (Cauwet et al. 2002). Hedges et al. (1997) showed that riverine DOM can be divided 

into a particulate (mostly detrital), a fine particle (colloids, N-rich) and a dissolved (N- 

depleted) fraction. In this dissolved pool, 70% of riverine DOM is HMW and the major 

constituents have a terrestrial origin (e.g. cellulose, lignin) and only a small fraction is 

labile enough to be degraded (Cauwet et al. 2002). In coastal areas, primary producers 

release C-rich DOM that accumulates in surface waters. It has been suggested that 

nutrient depletion does not allow heterotrophic bacterioplankton to mineralise this 

production (Pakulski et al. 1995, Cauwet et al. 2002), which is one of the pathways of 

coastal DOM export to the open ocean. Numerous studies (LeB Williams 1995, Zweifel 

et al. 1995, Borsheim 2000) have described a DOC accumulation in coastal areas that 

occurs mainly during the summer.
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1.4 Sources, forms and fates of fish farming loadings.

Fish farms have been suggested as an important nutrient source in Scottish 

coastal waters (MacGarvin 2000). Uneaten food, fish excretion and faeces are the main 

fish farm inputs to the marine ecosystem. Gowen & Bradbury (1987) estimated direct 

food wastage of 20 % and excretions by fish (mainly N H / and urea) accounted for up 

to 65 % of consumed-nitrogen. In general some 85 % of phosphorus, 80-88 % of carbon 

and 52-95 % of nitrogen input to a marine fish culture system as feed may be lost to the 

environment (Hall et al. 1990, Holby & Hall 1991, Hall et al. 1992, Holby & Hall 1994, 

Wu 1995). These elements appear as compounds, such as proteins (46% to 51%), 

carbohydrates (18%), lipids (14% to 17%), vitamins, therapeutants and pigments 

(Gowen & Bradbury 1987).

Tett & Edwards (2002) raised three hypotheses about the effect of fish farm 

discharges on the marine plankton community: i) “an increase in total phytoplankton 

due to the stimulating affect of fish farm nutrients”, ii) “a switch in the balance of 

organisms due to the perturbation of nutrient ratios by these nutrients”, iii) “an increase 

in the toxicity of harmful algae due to the effect of these nutrients”.

Numerous studies have pointed out the potential effects of fish farm inputs for 

the surrounding ecosystems either in vitro (Takahashi & Fukazawa 1982, Arzul et al. 

1996, Arzul et al. 2001) or following field studies (Jones et al. 1982, Graneli et al. 1993, 

Honjo 1993). As dissolved inorganic nitrogen is held to be the most important growth- 

limiting nutrient for phytoplankton in marine waters (Dugdale & Goering 1967) and 

excessive increase in dissolved nitrogen may cause hypemutrification of coastal waters, 

thus, dissolved nitrogen waste from fish farm might have the same effect. Dissolved 

inorganic compounds such as ammonium are directly released in the seawater 

surrounding cages via fish excreta. Inorganic phosphorus is also a feature of fish farm 

inputs but is likely to be more important in freshwater fish farms (Bergheim et al. 1984).
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Vadstein and Olsen (1989) suggested that marine bacteria might be also phosphorus 

limited, hence an increase of bacterial growth if phosphorus enrichment occurs.

The major impacts of fish farm waste occurs on the seabed underneath fish 

cages as most of the effluent is particulate matter that sinks rapidly in the vicinity of fish 

pens and the impact normally stays confined within 1 km radius in poorly flushing areas 

(Wu 1995). The impacts on the seabed of this material are anoxic conditions, an azoic 

zone beneath fish cages, gas production (e.g. sulphide, methane) and ammonium release 

from the sediment.

Dissolved organic wastages are not well documented and have been investigated 

more through their effects (Wu 1995, Arzul et al. 1996) rather than a bulk parameter. 

Organic waste compounds have been reported to stimulate growth of particular 

phytoplankton species, either harmless or toxic species such as Gyrodinium aureolum, 

Chrysochromulina polylepsis or Gymnodinium nagasakiense (Wu 1995, Arzul et al. 

1996, Arzul et al. 2001). Furthermore, fish excreta show variable stoichiometry and 

subsequently act as nutrient limiting factors for cell growth (Wu 1995, Arzul et al.

2001) and cell toxicity (John & Flynn 2002). The use of antibiotics in fish farms lead to 

the development of resistant bacterial population (Homer 1992). Finally, pigments and 

vitamins have been shown to stimulate phytoplankton species and are implicated in the 

toxicity of the dinoflagellate Gymnodinium aureolum (Gowen & Bradbury 1987).

In summary, it appears that fish farm impacts may have several effects, which 

depend mainly on species cultured, fish population density, feeding processes, the 

hydrography of exploited sites, and planktonic or benthic species, their trophic regime 

and sensitivity to fish farm wastes. However, very few studies have investigated the 

response of heterotrophic bacterioplankton or microbial community to nutrient 

enrichment coming from fish farms (Homer, 1992; Navarro et al. in press; Hart et al. 

unpublish).
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1.5 Modelling microbial food web in coastal waters

Mathematical models provide useful tools to investigate microbial food webs 

(Davidson 1996, Vallino 2000). Food web models are often formulated on a Nitrogen- 

Phytoplankton-Zooplankton-Detritus structure such as the NPZD-model of Fasham et 

al. (1990). Such models are useful to study the cycles of N and C in the marine 

environment. In addition, the recognition of the microbial loop as a major feature of 

marine food chains highlighted the importance of DOM cycling. “Mathematical” 

cycling of DOM is, however, poorly understood (Anderson & Williams 1998, Carlson 

& Hansell 2002), partly because bacteria are rarely included in these models (see 

introduction Chapter 7).

1.6 Phytoplankton in microbial food webs

1.6.1 The common plankton groups

The major common groups of marine phytoplankton are: the Bacillariophyceae 

(diatoms), the Dinophyceae (dinoflagellates), the Raphydophyceae-Cryptophyceae- 

Chlorophyceae (small flagellates), the Dyctiophyceae (silico-flagellates), the 

Prymnesophyceae (coccolithophores) and Choreotrichs (ciliates). These groups cover 

most of the plankton found in temperate coastal waters.

1.6.2 Plankton processes and annual succession.

Primary producers build their own biomass (e.g. organic matter) from light, 

carbon dioxide and inorganic nutrients via photosynthesis, and then this organic matter 

becomes available to higher trophic level. Depending on the plankton species, different

19



Chapter 1 General introduction

nutrients are required as building blocks, e.g diatoms specifically require silicate, in the 

form of orthosilicic acid (Si(OH)4), to build their cell walls. In turn, the growth of non­

diatom plankton depends more on the concentration of other nutrients such as nitrogen 

or phosphorus.

In temperate waters, plankton seasonality is driven by changes in light 

irradiance, vertical mixing of the water column, availability of nutrients and predation 

pressure. At the end of the winter, the water column is well mixed and contains high 

concentrations of inorganic nutrients. The increase of the irradiance, seawater 

temperature and the high availability of nutrients allow the onset of positive net 

photrophic production, or primary production (PP). Primary producer uptake of 

inorganic nutrients through permeases follows a Michaelis-Menten law that postulates 

that under a concentration corresponding to the constant of half-saturation of the 

permease, a nutrient is limiting. PP increases until one limiting nutrient is exhausted 

hence limiting production and/or phytoplanktonic biomass. Evolving toward summer- 

thermo haline stratification, the first phytoplankton bloom is replaced by other species 

adapted to particular nutrient levels, temperatures and light intensities.

During this time, bacteria play a key role in driving species succession by 

remineralising inorganic nutrients from organic matter produced and/or released during 

the spring event (senescent algae, exudates, particulate organic matter decomposition). 

These remineralised nutrients allow a second production increase that occurs in the late 

spring and summer. Dugdale & Goering (1967) introduced the concept of new and 

regenerated production according to the two types of phytoplankton growth appearing 

in marine ecosystems and described below. The first one, based on nutrients brought up 

during the winter is called “new” production and the second one supported by 

remineralised nutrients is the “regenerated” production.
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Life strategy is important to determine the dominant species in a considered 

ecosystem, “r” strategy-species are able to produce numerous organisms in a short time, 

supporting a high population-growth and comprise competitive species in colonising 

new habitats. By contrast,”k” strategy species have a low reproduction rate and are 

found in stable environments.

High silicate concentration in seawater, poor competition for substrate, “r” life 

strategy, growth efficiency and/or a competitive uptake rate of silicate are cell factors 

which might explain why the spring bloom is usually dominated by diatoms.

1.6.3 DOMproduced from phytoplankton

The quantity and quality of phytoplankton-produced DOM (see section 1.3.2.4 

in this Chapter) is variable and highly dependent on the nutrient composition of the 

medium in which the cells are growing, the nutrient status of the cells and species- 

specific differences (Myklestad 1995, Granum et al. 2002, Gilpin et al. 2004). If we are 

to better understand the aquatic cycling of C and N in microbial food webs it is 

necessary to determine the factors that govern the quality of phytoplankton DOM 

production and its subsequent bacterial utilisation.

Diatoms (Bacillariophyceae) are a particularly important component of the 

phytoplankton, contributing to 20 ~ 25 % of the global net primary production (Werner 

1977). Their requirement for silicon makes them most prevalent in coastal waters 

(Conley & Malone 1992), where a spring bloom of diatoms is often the major feature of 

the annual cycle of plankton succession. When nutrients are plentiful phytoplankton are 

characterised by nutrient replete balanced exponential growth and typically have 

stoichiometric nutrient compositions in line with the Redfield ratio (Falkowski & Davis

2004). However, reduced nutrient availability, and the particular nutrient that limits
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phytoplankton growth, is important in determining the cellular composition of 

phytoplankton in the post exponential phase. The form of the limiting nutrient is able to 

govern the stoichiometric balance of intracellular nutrients and the relative contribution 

of different organic compounds (Zingone et al. 2005). For example, phytoplankton 

limited by the lack of N may continue to photosynthesise and fix carbon for some time 

increasing the cellular carbonmitrogen ratio from a value of approximately seven that is 

characteristic of balanced growth to values of 10-20 that are common for N deplete cells 

(Flynn et al. 1993). For diatoms the ratio of available N and Si may be of particular 

importance as the N:Si ratio in coastal waters (Conley & Malone 1992) and the ratio of 

N:Si within nutrient replete diatom cells are both often close to 1 (Brzezinski 1985). 

Hence relatively small changes in inorganic nutrient availability, perhaps driven by the 

availability of allochtonous sources of inorganic N (Aure et al. 1998, Jickells et al.

2005), may result in a change in the nutrient limiting phytoplankton growth.

For diatoms, Myklestad (1974) Myklestad et al. (1989) demonstrated that 

glucans (polymers of glucose) are common storage products. These glucans provide a 

suite of bioavailable compounds (Hama et al. 2004). However, glucan only accumulates 

in quantity within diatoms when growth is suboptimal. Myklestad (1974) demonstrated 

that this was particularly evident under conditions of N stress, reaching up to 81% of 

dry organic matter in one stationary phase culture of Skeletonema costatum. Similarly, 

Gilpin et al. (2004) established that the form of nutrient limitation (N or Si) governed 

the magnitude of glucan production by a Skeletonema bloom. In contrast when Si 

limitation of Skeletonema occurs, the protein synthesis pathway is not switched off 

because nitrogen remains available. Si limitation can potentially influence quantity 

(biomass) and quality (species composition) of a diatom population (Graneli et al. 1993, 

Davidson & Gurney 1999). However, silicification processes within diatom cells 

become incomplete because of the lack of silicic acid supplied to the cell. Therefore the
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cell wall, or more precisely the “organic casing” containing silicon, is not sufficiently 

silicified and this leads to weaker cell walls and leaking cells (Martin-Jezequel et al. 

2000). DOM release can appear as a consequence of cell leakage (Maestrini & Graneli 

1991) and become available to bacterial uptake.

1.6.4 The appearance o f harmful species.

Of the three thousand phytoplankton recorded species, about 40 are known to 

have harmful properties (Sournia et al. 1991, Hallegraeff 1993). Toxic algal species 

sometimes dominate blooms, reaching large biomasses and leading to events called 

harmful algal blooms (HABs). Not all of HABs are toxic to humans but at the minimum 

may cause a nuisance. In Scotland, HAB events raised a general concern when they 

were linked to the loss of fish production in the early eighties (a red tide of Gyrodinium 

aureolum, Jones et al. 1982) and shellfish poisoning. It is recognised that changes in 

species succession have the potential, in theory, to allow HABs events (Tett & Edwards

2002). These authors mentioned a number of proximate causes of HAB events, 

including “a general and widespread change in the floristic composition of 

phytoplankton”, which may be related to the nutrient composition of their seawater 

habitat.

1.7 The current situation in Scottish coastal waters

1.7.1 Scottish Coastal Succession.

In Scottish coastal waters and sea lochs, plankton food webs follow, in general, 

the same picture as drawn by Fenchel (1988). Plankton succession has been described in
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numerous studies from the west coast of Scotland (Wood et al. 1973, Lewis 1985, 

Fehling 2004). All these studies agree that Scottish coastal waters and lochs seem to 

experience numerous plankton blooms within the same year rather than the usual view 

of two annual blooms. Tett et al. (1986) recorded three blooms in Loch Striven in 1980. 

Fehling (2004) found six different blooms occurring throughout the year over the period 

2001-2003 at a station (LY1) in the Firth of Lome. However, Jones (1979) found only a 

spring and late summer autumnal bloom in Loch Creran.

Phytoplankton blooms are dominated by different species according to the 

particular loch or water body studied; but nevertheless some species are likely to appear 

recurrently in Scottish coastal waters and Scottish sea lochs. Common species found 

from the Scottish west coast (Table 1.04) are Skeletonema costatum, Pseudo-Nitzschia 

seriata group, Thalassiosira sp. (bacillariophyceae), Scrippsiella sp., Gonyaulax sp. 

(Dinophyceae), Mesodinium rubrum (ciliates).

1.7.2 Phytoplankton production and organic C pool in Scottish coastal water and sea 

lochs

Very few studies exist on the stock and dynamics of organic C in Scottish 

coastal waters. Jones (1979) described the seasonal phytoplankton biomass of Loch 

Creran as typical of coastal waters, including a nutrient limited spring bloom and a 

smaller summer bloom. The late summer and autumn bloom was not a regular feature of 

phytoplankton seasonality in Loch Creran. These observations were confirmed recently 

by studies of Fehling (2004). Tyler (1984), who described a C budget for Loch Creran, 

determined that organic C concentrations were mainly driven by phytoplankton 

production and river inputs in Loch Creran. This author also pointed out the highly
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dynamic character of the organic C pool in Loch Creran, calculating that the entire pool 

would be replaced every two to three weeks.

1.7.3 Heterotrophic bacteria in Scottish coastal waters and Scottish sea lochs

Only a hand full of studies exists for Scottish coastal waters and most of these 

have been undertaken in relation to fish farming (Navarro et al. in press; Leakey et al. 

unpublished; Hart et al. unpublished; Rogerson, 1992; Laybourn-Parry, 1992). These 

studies highlighted an increase in abundance and biomass of heterotrophic bacteria in 

the vicinity of fish cages, related to fish farm effects, through nutrients loading.

Navarrro et al. (in press) also found bacterial abundance to be significantly 

higher at the surface (5m) than at depth (15m and 25-30m). Free living and attached 

heterotrophic bacterial population are mainly composed of a  -proteobacteria, y- 

proteobacteria and Bacteriodetes (M. Hart, personal communication) with an overall 

dominance of free living bacteria. However, it remains unclear whether or not 

taxonomic compositions of bacterial consortia are affected by fish farm nutrient 

enrichment. Leakey and Hart (personal communication) did not find differences in 

bacterial taxonomy between the fish farm and their control site.

1.8 Aims of this study

Marine microbial communities are clearly complex networks of interacting

organisms Phototrophic organisms build their own biomass from light, carbon dioxide

and micronutrients. This potentially leads to competition for resources between

phototrophic organisms, which drive the succession of different species throughout the

year as resource concentrations change. In turn, higher trophic levels feed on this

organic biomass that has been built by the process of photosynthesis. In addition,
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photosynthetic exudates, dead cells and zooplankton excretions are used by bacteria that 

remineralise the organic matter, providing a source of recycled inorganic nutrients.

The dynamics of these communities (growth, succession of species, competition, 

grazing) are fundamental to the transfer of nutrients and energy within the whole marine 

environment. Nutrients available to microbial communities appear in two general forms 

in marine waters, organic and inorganic. Autotrophic phytoplankton uses the latter for 

their growth but heterotrophic organisms such as bacteria are able to assimilate both of 

these forms. Hence, a study of the response of microbial communities to changes in 

their nutrient resources is important for a better understanding of microbial food web 

functioning.

Many temperate coastal waters are experiencing increased anthropogenic 

nutrient inputs (Allen et al. 1998). Along the North and West coasts of Scotland, fish 

farms may be the most important source of additional nutrients in most lochs and voes. 

The potential exists for nutrient additions from aquaculture to modify the 

quality/quantity of the nutrient sources and hence the response of microbial 

communities within these waters. These inputs may alter the inorganic or organic 

nutrient stoichiometry and hence the microbial communities present.

This project seeks to address the link between organic nutrient and microbial 

community dynamics by:

• investigating in detail the annual changes in marine microbial communities 

(abundances and species) related to nutrient, on the Scottish West coast and sea lochs: 

What is the importance of the different sources of organic nutrients in Scottish 

coastal waters and fjordic sea loch?

Is the dynamics of microbial communities different between open coastal water 

station and restricted exchange fjordic system?
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How do microbial communities respond to these different sources of nutrients?

• conducting perturbation microcosm experiments to study the influence of changes in 

inorganic and organic nutrients on microbial community productivity and composition:

Does the stoichiomerty of organic nutrients influence the metabolism of 

bacterioplankton and the subsequent transfer of these nutrients to higher trophic 

level?

Can inorganic nutrient have indirect effects on the DOM pool and the 

bacterioplankton?

What is the limiting factor of heterotrophic productivity in Scottish coastal water?

Do bacteria really compete with phytoplankton for inorganic resources?

• using the data collected, to parameterise and test existing mathematical models to 

simulate the influence of changes in organic nutrient concentrations on microbial 

community dynamics.
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- CHAPTER 2 -

Materials and methods

2.1 Sampling

Sampling was carried out on board o f the R/V Seol Mara (SAMS research 

vessel) on the west coast o f Scotland (Fig. 2.01) at three stations (Table 2.01), LY1, FF 

(Fish farm) and C5 (Barcaldine). Each station was sampled at three depths (3, 10, 15m) 

from 12/03/2004 to 21/2/2005; then only two depths (3, 10 m) were sampled from 

7/3/2005 to 16/9/2005. There were 32 sampling occasions in total.

Loch Creran
•  FF

Lismore Island

LYJ

5'34'0'W S320"W 5-30'GTW 5 260'W 5 26'0W 5-24 O'W 5 ZTffW 5\2CTCrW 5 18'ffW 5 160Y/ 5 14'0’W  5 1 Z V W

Figure 2 .0 1. Map o f the location o f Loch Creran (stations FF and C5) and the Firth o f

Lome (station L Y l).
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From each depth, two times one litre water sample was collected using one litre 

NIO bottles, launched from RV Seol Mara. Seawater was then transferred into cleaned 

thermos flasks. These allowed transport of the samples in the dark, at ambient 

temperature, to the laboratory, where samples were processed for chemical and 

biological analyses within 3 to 4 hours after collection.

Table 2.01. Names, position, average depth of stations sampled.

Station Position Average depth (m) Depth sampled (m)

LY1 56° 28.9 N, 05° 30.1 W 52 3,10,15

Loch Creran:

Fish farm 56° 31.5 N, 05° 20.9 W 22 3,10,15

Barcaldine
56° 32.1 N, 05° 19.4 W 25 3, 10, 15

(Station C5)

2.2 Physical variables.

Conductivity, temperature and depth (CTD) profiles of the upper 20 m of the 

water column were recorded with a Seabird CTD probe (model Seabird 19, Sea-Bird 

Electronics, USA). Contour plots of time series were constructed using the Sigmaplot 9 

software (Systat software Inc.).

Secchi disk depths were recorded at each site using a Secchi disk and converted 

into irradiance according to Holmes (1970). The coefficient of light extinction, K d ,  was 

estimated with the formula:

1 44K d = ——  equation 2.01
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where 1 .44 was the coefficient attributed to turbid coastal water and Z sd  the Secchi disk

depth measured. 1 0  % irradiance depth was derived from the second formula:

equation 2 .0 2

where X  was the percentage of the light attenuated at the depth Z, (fixed at 10 % here), 

Z, the depth of 10% irradiance and Kd were replaced from the first equation. Tyler 

(1968) showed that the sum of Kd and a (beam transmittance) could be estimated with a 

Secchi disk.

2.3. Chemical variables.

2.3.1 Inorganic nutrient concentrations.

Inorganic nutrients were analysed by colorimetric analysis according to 

Grasshof (1970) using an autoanalyser (Lachat Quick Chem 8000, Hach Lange, 

Colorado, USA) and using a standard flow injection method. Sub-samples (30 to 60 ml) 

for inorganic nutrients (ammonium, nitrate, nitrite, phosphate and silicate) were 

collected from filtrate (A/E glass fibre filters, Pall Gelman) and stored frozen at -  20° C 

in polycarbonate bottles. Samples were defrosted overnight prior to analysis and 

transferred into cleaned plastic (polycarbonate) tubes designed for the analyser.

Standard stock solutions of nutrients were prepared in deionised water on the 

day of each batch analysis. A mixed working solution of ammonium, nitrate, phosphate 

and silicate standards was used. Nitrite standards were made separately because they 

would otherwise interfere with nitrate analyses. Each calibration (mix and nitrite) was 

conducted with five dilutions at 20, 34, 50, 100 and 250 times and a blank run with
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deionised water (ELGA system). The chosen range of concentrations of standard 

depended on the type of samples analysed (experiments with additions of inorganic 

nutrient or natural samples). Calibration factors were obtained using first or second 

order polynomial regression (Omnion software, Lachat Instruments, USA). Prior to 

calibration and batch analysis, a dye test (green dye) was performed to set up flow and 

valves timing.

Duplicated aliquots (8  ml) from sub-samples (filtrates) were used for analysis. A 

drift correction was applied using times 50 dilution standards run in triplicate at the 

beginning and the end of each batch. Incremental drift correction, using the average 

difference of the drifts, was then applied to samples. A salt correction was also applied 

to each batch following sample analysis and subtracted from each value. Salt correction 

was performed by removing critical reagents for ammonium, nitrate, phosphate and 

silicate reactions (nitroprusside, sulphanilamide alone, molybdate and stannous chloride 

respectively). These reagents were replaced with deionised water, which prevented 

coloured-complex formation. Salt correction for nitrite analysis followed exactly the 

same protocol.

2.3.2 Organic nutrient concentrations.

2.3.2.1 Dissolved organic nutrient concentrations.

Dissolved organic nutrient were analysed by high temperature catalytic

oxidation (HTCO) (Sugimura & Suzuki 1988) reviewed by Cauwet (1994). Calibrations

were performed at the beginning of the day with a mix of glycine (C2H5NO2, VWR,

stock concentration 80 mM C, 12.25 mM N) and potassium hydrogen phthalate

(C8H5PO4, Nacalai Tesc, stock concentration 20 mM) giving a stock solution of 100

mM C and 12.25 mM N. Four-point calibrations including a blank of deionised water
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(ELGA system), were performed on the Shimadzu TOC 5000A. Three dilutions from 

stock solution were calculated in order to cover the likely range of concentrations of the 

samples analysed. Dilutions were made in 100ml volumetric flasks with deionised water 

and using a very clean glass syringe to measure stock solution volumes. Calibrations 

give an average of r2 of 0.99 for both C and N (n = 24).

Duplicated sub-samples (10 ml) were filtered through precombusted (24 h, 450 

°C) glass fibre filters (Whatman GF/F 25 mm, 0.7 pm effective cut-off), with a glass 

syringe and filter cartridge, and using polyethylene gloves. Each filtered sub-samples 

was collected in a precombusted glass ampoules, preserved with orthophosphoric acid 

(35 pi Analar 85 % H3PO4 per 10 ml sample), sealed with a flame and refrigerated (4-6 

°C) in the dark, until analysis. DOC was analysed on a Total Organic Carbon analyzer 

(Shimadzu TOC-5000A) with platinium catalyst (0.5% on alumina), carrier gas as O2 

(N5 grade, 150 ml/min), coupled to an NDIR (Non-Dispersive infra-Red) detector. 

Total Dissolved Nitrogen (TDN) was analysed with a nitric oxide Analyser (Sievers 

280i NOA) using high temperature oxidation to nitric oxide (NO) and detection by 

chemiluminescence (Walsh 1989, Hansell et al. 1993, Sharp et al. 2004). Dissolved 

organic nitrogen (DON) was obtained by subtraction of total inorganic nitrogen (see 

section 2.3.1 above) from TDN.

2.3.2.2 Liquid chromatography analysis of DOM

The carbohydrate from the DOM produced by Skeletonema costatum (see 

Chapter 5) were extracted from cell free spent medium of algal culture. This was 

performed by adding two volumes of cold ethanol to the medium collected, followed by 

subsequent recovery, extensive dialysis with ELGA water and freeze drying of the 

precipitated material. To characterise the carbohydrate molecular weight profiles in
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precipitated material. To characterise the carbohydrate molecular weight profiles in 

these extracts, high-performance liquid chromatography (HPLC) was performed with an 

Agilent 1100 chromatograph (Agilent Technologies) equipped with a refractometer and 

diode-array UV detector. A PL gel filtration chromatography column (Polymer 

Laboratories; 7.5 x 300 mm) was used at 30°C to identify the high molecular weight 

(>50 kDa) content in the extracts. The mobile phase used was 0.1M NaNCb and the 

flow rate 0.6 ml min'1. Dextran standards of Mr range 50-1,400 kDa (Sigma) were used 

to calibrate the column for molecular weight estimation. Additionally, in order to 

determine for the presence of free mono- and di-saccharides in the S: costatum extracts, 

samples were run through a Polyamine II column (YMC-Pack; 4.6 x 250 mm) at 30°C, 

with acetonitrile:water (70:30) as the mobile phase and flow rate at 0.8 ml min"1.

23.2.2 Particulate organic carbon and nitrogen concentrations.

Seawater samples (100 ml) were filtered onto a glass fibre filter (Whatman 

GF/F, diameter: 13 mm, precombusted for 24 hours at 450°C) and stored frozen at -20° 

C. Prior to analysis, filters were oven dried at 60 °C overnight and folded into tin disks. 

Samples were analysed with an ANCA NT prep system coupled with a 20-20 Stable 

Isotope Analyser (PDZ Europa Scientific Instruments, Northwich, UK). Calibration was 

performed using a solution of isoleucine (L- Isoleucine, Europa STD) at concentrations 

of 1 pg N and 6  pg C. Standards were placed in tin caps (with Chromosorb W, PDZ 

Europa ltd) and oven dried at 60°C overnight. Calibrations were performed with series 

of standards from 5 to 200 pg N (25- 1029 pg C) run at the beginning of each batch. 

Calibration curves give a r2 of 0.99 for both C and N (n=15).
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2.3.3 Chlorophyll a concentrations

Chlorophyll a (chi a) concentrations was measured by fluorometry (Jeffrey & 

Humphrey 1975). Immediately after returning to the laboratory, 500 ml sub-samples 

were filtered in duplicate on a 25 mm glass fibre filter (type A/E, Pall Corporation, 

Portsmouth, UK) and stored frozen at -  20° C in ependorff tubes. Prior to analysis filters 

were thawed in 15 ml centrifuge tubes and pigments were extracted over night in the 

dark at 4°C with 8  ml of 90% acetone (VWR). Filters were sonicated for 1 minute and 

after subsequent centrifugation (3000 rpm for 5 min) chi a. was measured with a Turner 

TD-700 fluorometer (Turner Design, Sunnyvale, CA, USA). The fluorometer was 

calibrated using chi a concentrations extract from spinach (Sigma, stock concentration 

3.19 mg L'1). Prior to this, chi a concentration was first verified using a scanning 

spectrophotometer (Nicolet evolution 300, Thermo Electron Corporation, Cambridge, 

UK). Absorbance at 663-750 nm was measured for unacidified and acidified (50 pL 

HCL, BDH, AnalaR) and concentration was calculated as follows:

[C/z/a.] = A x K  x (Abs0 -  Absa ) equation 2.03

where A is the inverse coefficient in 90 % acetone (using the value of Jeffrey and 

Humphrey, 1975) and K is the standardised acid factor (R) of the chi a extinction 

coefficient (87.7 g.cm'1) over pheophytin extinction coefficient (51.2 g.cm'1). The 

Turner fluorometer was then calibrated using a 0.1 and 0.2 dilution of stock chi a 

standard. Three readings of unacidified and acidified subsamples of both dilutions were 

made. Blanks were measured with 90% acetone only and HIGH and LOW solid 

standard (SST) measurements were taken to account for drift. SST was a fixed standard 

from which readings (high “H” and Low “L”) are taken during calibration. It was,
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therefore, used as reference to correct drifts related to the fluorometer. A series of ten 

samples were measured including a 90% acetone blank and High SST at the beginning 

and end of these ten samples. Chi a concentrations in samples were calculated according 

to:

where K is the calibration constant, Fb is the fluorescence before acidification, Fa is the 

fluorescence after acidification, F m is the max acid ratio (Fb/Fa) of pure chi a, V extracted is 

the extraction volume and Vfiitered is the volume filtered.

Similarly to ch i«, pheopigment concentrations were calculated according to:

An average value for the 90% acetone blank (before and after 10 samples run) 

was subtracted from each value and an incremental drift correction was applied to each 

series of 10 samples using HIGH SST values, chi a concentrations were averaged from 

duplicate values for each sample.

2.3.4 Primary production and extracellular organic carbon (EOC)

The following method is specific to Chapter 6 and describes the method as used 

for the experiment. Primary production (PP) was measured using the 14C radioisotope 

method. Measurements of remaining radioactivity within the filtrate from the PP

extracted

y filtered y

equation 2.04

[ P h e o ] = K x  x(Fmx Fb - F a)x
V V^m v y

extracted equation 2.05v
filtered  y
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measurments allowed estimation of extracellular releases of dissolved organic C (EOC) 

by phytoplankton cells (Larsson & Hagstrom 1979).

For each experimental replicate, seven 50 ml sub-samples were transfered in 60 

ml polycarbonate bottles as follows: four sub-samples for incubations in the light (two 

duplicates stopped at t24 and two duplicates stopped at t4g), two sub-samples for 

incubations in the dark (one stopped at t24, one stopped at t48, wrapped with tin foil) and 

one sub-sample as a blank; of which two replicates and one dark bottle were stopped by 

filtration at 24 and 48 hours. 2 pCi of 14C labelled bicarbonate (NaH[14C]C>3) were 

added to all bottles except blanks. Aliquots of 200 pi were taken from 12 random bottles 

for initial radioactivity check and these were placed in scintillation vials with 10 ml of 

scintillation cocktail (supermix:carbosorb:mQ water, v:v:v). Simultaneously, blanks 

were filtered through a 0.2 pm polycarbonate filter and were later processed as 

incubated samples (see below). All the bottles were incubated under exactly the same 

conditions of temperature and light (see section 6.2.2, this Chapter).

After incubation (24 and 48 hours), all sub-samples were filtered through a 0.22 

pm polycarbonate membrane (Whatmann, 47 mm) and acidified in a dessicator for at 

least 12 hours with 12 N HC1 fumes to remove inorganic radiolabelled C. Filters were 

then placed in scintillation vials with 4.5 ml of scintillation liquid (Optiphase II). 

Filtrates were collected and an aliquot of 5 ml was then placed in a scintillation vial 

with 1 ml of 6 M HC1; this was then agitated on a planetary shaker for at least 48 hours. 

5 ml of filtrate were transferred into scintillation vials and they received 15 ml of 

Supermix scintillation liquid.

Radioactivity was measured using a Wallac LKB Rackbeta 1219 Spectral liquid 

scintillation counter. Total C 02 concentrations were estimated from salinity 

measurements (Sorokin 1987). Net C uptake rates were corrected for dark and initial
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fixation (blank). There were no PP and EOC values available at tzero because these are 

determined over a period of 24 and 48 hours.

2.4 Biological variables.

2.4.1 Planktonic community composition.

2.4.1.1 Phvtoplankton composition and abundance:

Approximately 200 ml seawater sub-samples were preserved with Lugols Iodine 

(1% final concentration) and stored in the dark in 250 ml amber glass bottles. 

Phytoplankton cells from all samples were counted by inverted microscopy using the 

Utermohl method (Utermohl 1931). 10 or 50 ml of lugol-fixed aliquots were settled in 

10 or 50 ml Utermohl chambers respectively for 24 hours prior to the counts. The area 

of at least half a chamber, or 100 cells of the most abundant species, were counted at 

200-400 magnification using an Axiovert SI00 inverted microscope (Zeiss, Jena, 

Germany). Counting the whole chamber fixed the limit of detection at 20 individuals L" 

\  Phytoplankton analyses were carried out by Ms E. Mitchell.

2.4.1.2 Pico- and nano-plankton abundance:

Pico- and nano-plankton were determined by epifluorescence microscopy 

according to Porter & Feig (1980) and Sherr et al. (1993). Seawater sub-samples (100 

ml) were fixed with glutaraldehyde (final concentration 1%) and stored in brown plastic 

bottles in a cold room (4-6 °C). Enumeration of phototrophic and heterotrophic 

nanoplankton (PNAN & HNAN), cyanobacteria and bacterioplankton (heterotrophic 

bacteria and archea) was performed using a Zeiss Axioskop2 mounted with 02 (UV 

excitation), 09 (blue excitation) and 20 (green excitation) filter blocks.
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HNAN and PNAN were counted using 15 ml of glutaraldehyde fixed aliquots 

stained with DAPI (4'-6-Diamidino-2-phenylindole, Spg.ml'1) for a period of 5 to 10 

minutes and filtered onto a white polycarbonate filter (Whatman, 25 mm, 0.8 pm 

porosity). The filtration funnel was rinsed twice with 0.2 pm filtered deionised water 

(ELGA system). Filters were stored on slides and frozen at -20° C until counting. 

Enumeration was performed by epifluorescence microscopy (Sherr et al. 1993) using a 

Zeiss Axioskop2 at xlOOO magnification and 25 to 50 fields of view (FOV) were 

counted. Nanoplankton was identified by their blue fluorescence under UV light, and 

HNAN were distinguished from PNAN by the absence of chlorophyll-a 

autofluorescence and red fluorescence of chlorophyll under green illumination.

2.4.1.3 Cyanobacteria

Cyanobacteria abundance was determined according to Porter & Feig (1980). 

Aliquots (5 ml) of gluteraldehyde fixed seawater (1% final concentration) were filtered 

onto a white polycarbonate filter (Whatman, 25 mm, 0.2 pm porosity) and stored on 

slides and frozen at -20 °C. Cyanobacteria were enumerated by epifluorescence 

microscopy (Zeiss, Axioskop2) and identified by their orange fluorescence under blue 

light illumination. 30 FOV were enumerated for each filter.

2.4.1.4 Bacterionlankton abundance

Bacterioplanknton was determined according to Porter & Feig (1980). Aliquots 

(5ml) were stained with DAPI for 5 to 10 minutes and filtered onto black polycarbonate 

filters (Whatman, 25 mm, 0.2 pm porosity). Filters were stored on slides, frozen at -20°
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C and observed at xlOOO magnification under fluorescence illumination using a Zeiss 

Axioskop2. 30 FOV were enumerated for each filter.

2.4.2 Bacterioplankton taxonomic composition

Bacterial community structure was analyzed by fluorescence in situ 

hybridization (FISH). Bacteria from fixed samples (molecular grade paraformaldehyde, 

4% final concentration) were collected onto 0.2 pm white polycarbonate membranes 

(25 mm diameter, Nucleopore) by filtering 5 ml under gentle vacuum and washing with 

0.2 pm filtered ELGA water. Until further processing, the filters were stored in 

parafilm-sealed Petri dishes at -20°C. FISH analysis was performed according to the 

protocol of Pemthaler (2001). Each filter was cut into six sections and hybridized for 90 

minutes at 46°C in individual (for each probe) equilibrated chambers. The 

oligonucleotide probes specific of Eubacterial groups used are summarized in Table 

5.03. All probes were commercially synthesized (TAG, Newcastle, UK) and labelled 

with CY3. Unlabelled competitors probes were used with GAM42a and BET42a to 

prevent mis-annealing of non-target organism.

The probe EUB338 was used to maximally target the Eubacteria, and nonsense 

probe NON338 was used to assess background fluorescence counts. After hybridization 

the filter sections were rinsed with a washing buffer at 48 °C for 15 minutes and rinsed 

in ice-cold deionised ELGA water. Filter sections were mounted on microscope slides 

in Vectashield-DAPI medium and stored at -20°C until enumeration.
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The relative abundance of hybridized cells was estimated as a ratio of hybridized 

cell counts to counts of DAPI-stained cells using epifluorescence microscopy. Cell 

enumeration was performed at xlOOO magnification with an Axioskop2 epifluorescence 

microscope (Zeiss) under fluorescence illumination and equipped with a 20 filter block 

(green excitation). Hybridised bacterial cells were identified by their orange 

fluorescence under green light and enumerated from 20 FOV for each filter section.

2.4.3 Bacterial production

Bacterial production was determined from [wer/i>’/-3H]thymidine incorporation 

(Fuhrman & Azam 1982). Working solutions (100 nM thymidine) were prepared 

periodically from [methyl-3HJthymidine stck solution (Amersham Biosciences TRK 

418, specific activity 50 Ci.mmol'1, isotopic concentration 0.5 pCi.ml'1). Clean sterile 

Falcon tubes were weighted empty and after addition of 0.5 ml of radiolabelled 

thymidine. The stock solution of radiolabelled thymidine was sampled with a sterile 

syringe through a plastic cap. This procedure prevented the microbial contamination of 

the whole stock solution. The sampled volume was weight corrected and sterile 

deionised water (ELGA system) was added to achieve an accurate concentration of the 

working solution (100 nM thymidine). All working solutions used for this work were 

checked by mixing triplicate 100 pi aliquots of working solution with 10 ml scintillation 

cocktail for counting by scintillation counter.

Three aliquots (9.9 ml) of seawater were incubated in triplicate with 100 pL of a 

working solution of j>wer/zy/-3H]thymidine (Amersham Biosciences TRK 418, specific 

activity 50 Ci.mmol'1, isotopic concentration 0.5 pCi.ml'1). One additional aliquot was 

killed with 10ml of ice-cold 10% trichloracetic acid (TCA) and was used as Tzer0. After 

one hour of incubation, the remaining three sub-samples were stopped with ice cold
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10% TCA and filtered onto white polycarbonate filters (Whatman, 25 mm, 0.2 pm 

porosity) mounted onto a glass fibre filter (type GF/A, Whatman, 25 mm, 1.1 pm 

nominal cut-off). Both polycarbonate and glass fibre filters were soaked in a petri dish 

containing a solution of non-radioactive thymidine (SIGMA, 1 mM concentration) 

before filtration. Filtration funnels were rinsed three times with 5 ml of ELGA water 

and 5 ml of 95% ethanol for each sample. Filters were dried over night in 10 ml plastic 

scintillation vials, prior to the addition of 10 ml of scintillation liquid (Ultima Gold, 

Packard). Scintillation was counted using a LKB Wallac liquid scintillation counter 

(LKB Wallac, 1219 RACKBETA). Efficiency of counting was determined by the 

external standard channel ratio method. [me//zy/-3H]thymidine incorporation was 

calculated from counts (corrected for quenching) using isotope specific activity 

corrected for decay (Bell 1993). Carbon equivalents were calculated using the value of

30.2 fgC cell'1 (Fukuda et al. 1998).

2.4.4 Thymidine conversion factor: dilution experiment

Dilution experiments were used to estimate empirical thymidine conversion 

factors to convert isotope incorporation into cell growth (Kirchman & Ducklow 1993). 

These experiments were carried out at three different times of the year; spring, summer 

and winter. Seawater samples were collected with 1 L Niskin bottles at LY1 and the fish 

farm site during routine sampling and stored in thermos flasks from 10 m depth. One 

part of seawater was diluted (1:9 dilution) with nine parts of 0.2 pm filtered seawater 

(Vacucap, PAL company, 47 mm, 0.2 pm; under gentle vacuum). Triplicated sub­

samples were incubated over 24 hours in the dark at ambient temperature, and bacterial 

abundance and production was assayed every 6 hours. Aliquots from each triplicate (5 

ml) were fixed with glutaraldehyde (1% final concentration) for bacterial abundance by
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DAPI staining (see section 2.4.1.4, this Chapter) and, simultaneously, aliquots from 

each triplicate (9.9 ml) were used to determine radio-labelled thymidine incorporation 

method over one hour (see section 2.4.2, this Chapter).

2.5 Statistical analysis

Data sets, from field studies or experimental work, were analysed statistically in 

order to verify trends, observations and patterns. Most of the analyses used were 

multivariate. Multidimensional analysis (MDS) was used to illustrate population 

assemblages in different samples, Principal Component Analysis (PCA) was utilised to 

highlight similarities between stations and environmental factors, and Redundancy 

Analysis (RDA) was performed in order to determine relationships between biological 

parameters and physical and chemical factors measured at each station.

Student’s t-test, normality test, ANOVA and PCA were performed with the free 

software R (Genuine Licence) using appropriate statistical packages. MDS was 

performed with the software PRIMER™ (Plymouth Routine in Multivariate Ecological 

Research, Plymouth, UK). RDA was carried out using the CANOCO software (Leps & 

Smilauer 2003).

2.5.1 Error propagations:

Propagation of standard errors (a) or standard deviation (a2) were calculated 

according to:

• If additions or substractions: 0"A+B — +  equation 2.06

If multipications or divisions: a AxB = A x B x equation 2.07
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2.5.2 Normal distribution

In order to test the distribution of variables, a Shapiro-Wilk test was used (Shapiro 

& Wilk 1965). In statistics, the Shapiro-Wilk test tests the null hypothesis that a sample 

x l, ..., xn came from a normally distributed population. Alternatively, if a normal 

distribution of the variable was rejected by the Shapiro-Wilk test, a non parametric test 

was applied, such as Mann-Whitney U.

2.5.3 Student test

A student t-test tests the null hypothesis that the means of two normally 

distributed populations are equal. Given two data sets, each characterized by its mean, 

standard deviation and number of data points; it is possible to use the t-test to determine 

whether the means are distinct, provided that the underlying distributions can be 

assumed to be normal. The assumptions of such a test are that the data are normally 

distributed, homosedastic, the equal of variance, and that the samples may be dependent 

or independent. Variables were tested for null hypothesis of no difference between sites 

(LY1, FF or C5) or depth (3 and 10 m) using a Student’s t-test.

2.5.4 Multidimensional scaling analysis (MDS)

MDS is used to construct a map of configuration of samples, in a specified 

number of dimensions, which attempts to satisfy all the conditions imposed by a rank 

(dis)similarity matrix (Clarke & Warwick 2001). On the ordination the placement of 

samples reflects the similarity of their biological communities. The distances between 

samples on the ordination attempts to match the corresponding dissimilarities in
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community structure. Hence, close points have similar communities, while samples that 

are far apart have few species in common or different abundance of the same species 

(Clarke & Warwick 2001).

2.5.5 Principal Component Analysis (PCA)

The method of principal component analysis (PCA) was first introduced by 

Pearson (Pearson 1901). PCA is a technique to approximate high-dimensional 

information in a low-dimensional plot. Data from a dissimilarity matrix of the 

environmental data sampled at different stations are used to define the positions of 

samples in relation to axes representing the full set of measured environmental 

parameters (Clarke & Warwick 2001). The distance between two stations in the plot is a 

measure of their dissimilarity and the further two points are apart, the more the 

environmental parameters at each station differ from each other.

2.5.6 Redundancy Analysis (RDA)

Redundancy analysis (Rao 1964) can be described as a series of multiple linear

regressions, using linear model of relationships among environmental parameters and

between biological and environmental variables. RDA may also be considered as a

constrained form of PCA, which identifies trends in the scatter of data points that are

maximally and linearly related to a set of constraining (explanatory) variables

(Makarenkov & Legendre 2002). RDA is used to investigate the strength of relationship

between measured environmental factors and individual species within a multivariate

data set. Similarly to PCA, RDA uses Euclidean distances. A Monte Carlo test is

performed to test the significance between environmental variables and the biotic
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composition. RDA was carried out at LY1 and FF for phytoplankton data in order to 

investigate environmental variables affecting significantly the abundance of species 

present at both stations.



Chapter 3 Field Study

-  CHAPTER 3 -

Organic nutrient and microbial community dynamics

- Field Study -

3.1 Rationale

It is now recognised that tight coupling between phytoplankton and bacteria can 

exist in coastal waters, as well as in the open ocean (Fuhrman et al. 1980). In coastal 

areas, extra sources of available organic nutrients may alter this relationship. Further, 

phytoplankton and bacteria may compete for N resources, as both are able to take up 

inorganic (Dugdale & Goering 1967, Wheeler & Kirchman 1986, Kirchman 2000) and 

organic nitrogen (Fuhrman & Azam 1982, Antia et al. 1991).

Dissolved organic carbon and nitrogen (DOC and DON) may be of major 

importance to microbial dynamics in coastal waters but their concentrations, sources 

and sinks remain poorly quantified in comparison to inorganic nutrients. DON can be a 

significant fraction of total dissolved nitrogen (TDN) and may represent 13% to 18% of 

nitrogen in coastal and estuarine waters (Berman & Bronk 2003) of which 12 to 72% is 

considered to be bioavailable (Allen et al. 2002). Similarly, DOC may provide a labile 

C source to coastal microbial communities and hence, both forms of organic nutrients 

(C and N) are important for driving bacterial abundance (BA) and production (BP) 

(Ducklow 2000).

In comparison to phytoplankton abundance and production, time series estimates 

of bacterial abundance and particularly production are relatively rare in coastal waters 

(see review by Ducklow 2000). Uptake of radio-labelled thymidine is the common
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method of choice for obtaining the productivity estimates that are particularly important 

for inter-comparison between ecosystems. However, productivity determinations are 

potentially compromised by the use of literature rather than in situ conversion factors 

(Ducklow 2000). An assessment of the calculations used to determine bacterial 

productivity is therefore required.

In addition to autochtonous (e.g planktonic) production of DOM, the coastal 

marine environment receives various extra inputs of organic nutrients from sources such 

as rivers or through anthropogenic activities. Despite its recognised refractory character, 

DOM from riverine inputs is partly degraded in coastal waters with turn over time of 

days to years (Cauwet et al. 2002); this indicates its (at least partial) availability to 

bacteria. Additionally, in Scottish coastal waters aquaculture, in particular fish farming, 

often provides a point source of both inorganic and organic nutrient (Arzul et al. 1996) 

which may perturb microbial community dynamics.

Finally, the manner in which bacterial communities respond to the quality and 

quantity of dissolved organic nutrients may influence trophic transfer within microbial 

communities. Heterotrophic nanoflagellates (HNAN) and ciliates are the main grazers 

of bacteria in marine environments (Sherr et al. 1986, Sherr & Sherr 1991, Strom 2000) 

and hence remove a significant proportion of bacterial production. Grazers of bacteria 

make this organic matter available to higher trophic levels (e.g larger grazers), which 

might not otherwise have access to this source of energy (Strom 2000). However, it 

remains unclear whether or not this grazing link is efficient in the transfer of energy 

through microbial food webs (Thingstad et al. 1997) and how this transfer may vary 

between locations.
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3.2 Objectives

The aims of this part of the study were:

1) to assess the concentrations of dissolved organic nutrients (DOC and DON) 

throughout a full annual cycle at three contrasting locations in Scottish coastal 

waters,

2) to concurrently determine bacterial abundance (BA) and production (BP) at 

these sites and how these relate to dissolved organic matter (DOM),

3) to assess the influence of different, direct and literature based, methods of 

calculating bacterial production,

4) to determine the role of grazers in controlling bacterial population and trophic 

transfer of energy in microbial food webs.

To achieve these goals, a comprehensive set of biological state (chi a, bacterial 

abundance, heterotrophic and phototrophic nanoflagellates abundance, dinoflagellates 

and diatoms abundance) and rate (bacterial production) variables were determined over 

a two year period at each site, along with physical (temperature, salinity, density, 

currents) and chemical (inorganic and organic nutrients, particulate organic matter) 

variables.

3.3 Description of the sampling site

Three contrasting locations were sampled to allow the comparison of annual

trends in microbial community composition in relation to DOM concentrations as well

as other nutrients and water column properties (see Fig. 2.1, in chapter 2). Sites were

chosen in order to investigate an a priori hypothesis of the stimulation of bacterial

activity by the point source nutrient input from a fish farm within a sea loch. One site

was therefore located near to a fish farm so that comparison could be made with a non
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anthropogenically impacted site in the same loch (but which would be expected to 

receive significant riverine nutrient loading) and a further open water site outside the 

loch.

Sampling was conducted within Loch Creran and the Firth of Lome (see 

Chapter 2 for details). Loch Creran was chosen because it is, in its dimensions, 

freshwater input and tides, close to the “unrealised” typical Scottish sea-loch (Landless 

& Edwards 1976). It experiences anthropogenic inorganic and organic nutrient input 

from a fish farm located approximately in the middle of the main basin of the loch. 

Finally, Loch Creran is also readily accessible by boat from the SAMS laboratory.

Two sites were sampled within Loch Creran, a station close to a fish farm (FF) 

and station C5, described in previous studies (eg. Tett & Wallis 1978, Jones 1979, 

Grantham 1983a) and used in this study as a non-anthropogenically impacted site within 

the loch. Most of the historical data discussed below comes from this C5 station.

Open water station LY1 in the Firth of Lome was chosen to provide a 

contrasting station to those with Loch Creran, a priori less influenced by organic inputs 

and because previous intensive studies (eg. Tett & Wallis 1978, Jones 1979, Grantham 

1983a, Fehling 2004) have provided considerable background data regarding inorganic 

nutrients and phytoplankton abundance at this station.

3.3.1 LY1 and Loch Creran: historical comparison.

3.3.1.1 LY1

Station LY1 is located near the Greag Isles, Firth of Lome, lat. 56°28’.9 N, long.

5°30’.l W, with a depth of 52m. LY1 station has previously been studied and used as a

control site for studies in Loch Eil and Loch Creran. It is directly influenced by the

outflow from Loch Etive and Loch Creran. However analysis of CTD and
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phytoplankton data from a transect from Loch Spelve to Loch Creran suggested that it is 

typical of open coastal waters (Fehling et al. 2006). Monthly inorganic and organic 

nutrient concentrations, salinity, and temperature data from 1979 to 1981 (Grantham 

1983a, b), and from 2001 to 2003 (Fehling 2004) exist for this station. Organic nutrients 

were also analysed in the Firth of Lome by Solorzano & Ehrlich (1979). Tett et al. 

(1981) provided, from this station, one of the few studies of the annual cycle of 

phytoplankton in Scottish coastal waters. This was complemented by a study carried out 

by Fehling (2004) that generated data on inorganic nutrient concentrations, temperature, 

salinity and species-specific phytoplankton abundance with a high temporal sampling 

resolution from 2001 to 2003.

3.3.1.2 Loch Creran.

Loch Creran is 14 km long by 1 km wide (Table 3.01). It is a well flushed, two 

basin fjord, with shallow sill (7 m depth) at its entrance. This loch is separated into a 

small upper basin and a main basin, the latter with mean depth of 13 m and greatest 

depth of 50 metres. For further details see Tett & Wallis (1978) and Tyler (1984).

The water in Loch Creran has a typical residence time, which has been estimated 

to be from 7 (Tett et al. 1986) to 12 days (Tyler 1984). Salinity distributions suggest 

that during most of the year the loch has a two-layer estuarine circulation driven by 

freshwater inflow (Table 3.01). It was a site of detailed nutrient and phytoplankton 

study between 1972 and 1982 (Tett & Wallis 1978) but also for inorganic (Jones 1979) 

and organic nutrients (Tyler 1984).

In conclusion, it appears that historical data exist before the fish farm was 

installed in the nineties, particularly for inorganic nutrients and sometimes for
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chlorophyll. However, organic nutrient data and phytoplankton data are poorly 

furnished.

Table 3.01. Physical characteristics of Loch Creran (after Edwards & Sharpies 1991).

Parameter Loch Creran

Volume 183 x 106 m3

Sill depth 7m

Mean depth 13 m

Greatest depth 50 m

Catchment 179 km

Relative catchment 13

Main rainfall on catchment l^ m .yr '1

Runoff from rain 0.78 Mt.day'1

Freshwater flushing 0.0043 day'1

Typical tide prism 31 x 106 m3

Maximum tidal exchange:

Neap tide 0.17 day'1

Mean tide 0.30 day'1

Spring tide 0.43 day'1

Exchange from salinitiy 0.16 day'1

Bacterial variables (abundance and production) presented in this study are the 

first recorded for Loch Creran and LY1 and is one of the very few studies carried out on 

seasonal dynamics of bacterioplankton in temperate coastal waters (Rogerson & 

Layboum Parry 1992, McManus et al. 2004, Mary et al. 2006).

3.4 Physical variables

3.4.1 Salinity, Temperature, Density.

Water temperatures ranged from 7.1 to 15.2 °C for all three stations (Fig. 3.01). 

Temperature reached a minimum during February and March and was warmest in 

August and September. There were no significant differences in water temperature
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Â tutibs
( u i )  t f l d a a  

A j i s u s q

54



Chapter 3 Field Study

between LY1 and the two stations within the Loch (FF and C5) or between FF and C5 

inside the Loch.

Salinity profiles (Fig. 3.01) showed that strong haline stratification occurred 

during winter months. Salinity values ranged on average from 30 to 34 at LY1 station 

with exceptionally low salinity events recorded at the surface on the 4th of October 2004 

and 13th of January 2005 (salinities of 25 and 26, respectively).

FF and C5 exhibited a wider range of salinity (from 25.6 to 33.4) than LY1, with 

low salinity recorded in loch in winter between October and February. On an annual 

basis, salinity at 10 meters was significantly lower within the Loch (Kruskal-Wallis, p 

value < 0.001) than outside. Station C5 also exhibited statistically lower salinity than 

LY1 at 3m (Kruskal-Wallis, p value < 0.05). However, no statistical differences were 

found between stations within Loch Creran.

Density followed salinity profiles and ranged from 20.2 to 26.5 kg m'3 for all 

three stations (Fig. 3.01). Lowest densities were found from early October to February. 

LY1 exhibited significantly higher densities (Kruskal-Wallis, p value < 0.05) at 3 and 

10 m than Loch Creran stations. However, no statistical differences were observed 

between C5 and FF.

3.4.2 Irradiance

Light penetration in the water column is shown in Fig. 3.02, as a three points 

running average of depth of 10% irradiance. Depth of 10% irradiance was taken as an 

indication of the depth under which photosynthesis may become light limited. LY1 

exhibited a significantly (Kruskal-Wallis, p value < 0.01) smaller attenuation of light, 

with depth of 10% irradiance being, on average, 10.5 m. In contrast, FF and C5 

demonstrated a similar pattern and were not statistically different from each other, had
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mean depths of 8.85 m and 8.95 m respectively. Seasonal variations were difficult to 

detect as light attenuation may be influenced by multiple parameters such as turbidity, 

suspended matter or phytoplankton itself. Four noticeable events can be, however, 

described here: (1) low Secchi depth values in August 2004, preceded by heavy rain on 

the 8th, 9th and 10th, (2) low Secchi depth value in March 2005, (3) low rainfall in 

February 2005 and early March 2005, followed by heavy rainfall that brought the depth 

of 10% of light irradiance up (6 m), i.e. April 2005, and finally, (4) August 2005, which 

was preceded with a long period of low rainfall and weak winds.

0

2

3Q
v v

14 ••

Figure 3.02. (a) Depth of 10% irradiance at LY1 (circle), FF (triangle) and C5 (square). 
Lines represent 3 points moving average at LY1 (solid), FF (dotted) and C5 (dashed), 
(b) Depth at which 50 pmoles m'2 s'1 light were available to photosynthesis.
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3.4.3 Meteorological data at LY1 and Creran.

Meteorological data (average air temperature, rainfall, wind speed, and 

irradiance) were obtained from the Dunstaffnage weather station (56°45’ N, 5°44’ W) 

close (about 15km) to the sampling sites.

Monthly average rain between April 2004 and September 2005 ranged from 1 to 

8 mm day'1. Highest rainfalls were recorded in December 2004 and January 2005 and 

the lowest rainfalls were recorded between April and July. On a daily basis, rainfall 

ranged from 0 to 50 mm day'1, with greater rainfall events sporadically distributed over 

the year. Highest rainfall events occurred on 08/08/2004, 19/09/2004 09/01/2005 and 

17/08/2005 with 48.4, 40.4, 42.0 and 45.4 mm day'1 respectively. The longest high 

rainfall event was recorded in January 2005 with six consecutive day of rainfall greater 

than 10 mm day'1. Monthly average of wind speed varied between 5.9 and 13 knots with 

the strongest wind found in December 2004 and January 2005 (9.8 and 13 knots 

respectively). Monthly average air temperature oscillated between 5.1 °C and 15.8 °C. 

These temperatures varied with the season, with warmest temperatures were found in 

August and coldest during February 2005.

3.4.4 Inputs into Loch Creran

6 3 1The contribution of fresh water to Loch Creran is on average 286.3 xlO m yr" 

(Edwards & Sharpies 1991, Austin & Inall 2002). The river Creran passes through Glen 

Creran and is the largest single source of fresh water into the Loch Creran system. 

Although there are few other minor streams, river Creran and Alt Duibhe are the major 

freshwater contributors to Loch Creran (Fig. 3.03). When ranked against other sea
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lochs, Loch Creran has the second greatest mixing depth and the third greatest ratio of 

mixing depth to maximum depth.

Riverine inputs of nutrients to Loch Creran were monitored during 2005. 

Monthly samples were taken from river Creran and from river Alt Duibhe (Fig. 3.03), 

both running into the upper basin of Loch Creran. Samples were analysed for inorganic, 

organic nutrient concentrations and particulate organic matter concentrations, using the 

methods described in Chapter 2.

3.4.4.1 River flow of Creran river

River flow data were obtained from a study carried out by the HRPB/SEPA 

North from 1978 to 1981 and were kindly made available by SEPA Aberdeen (Fig. 

3.04). The gauge was place at the mouth of the river Creran (coordinates: 56 34.17° N,

600
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O 300 H 
oQ
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« is i  river flow  - river Creran 
•  Month vs River Creran
A Month vs River Alt Duihbe -  10
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^E
o53
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>■c
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Figure 3.04. Monthly average river flow of river Creran (data average from 1978 to 
1980) are represented with histograms. DOC concentrations measured during this study 
are represented for river Creran (dot) and river Alt Duibhe (triangle). Error bars are ± 
S.E.
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5 13.26° W) and daily measurements of river flow were averaged to give monthly data 

(Fig. 3.04). Highest flow rates (6 -  8 m3 sec'1) were found between October to March 

and lowest flow rates (2 m3 sec'1) were observed between May and July.

3.4.4.2 Nutrients from rivers.

Riverine inorganic nutrients entering Loch Creran are summarised in Table 3.02. 

Inorganic phosphorus and ammonia concentrations in both rivers ranged from 0.01 to 

0.3 pM P and from 0.06 to 2.9 pM NH4+. However, concentrations of silicate and 

nitrate covered a wider range (0.01 to 27 pM). The concentrations of nitrate in river

Table 3.02 Inorganic nutrient concentrations (pM) at the mouth of river Creran and river 

Alt Duibhe from April 2005 to December 2005.

River Crerran River Alt Duibhe

n h 4+ P 043' Si(OH)4 NO3' n h 4+ P 043' Si(OH)4 NO3'

25/04/05 2,4 0,3 10,0 9,4 0,6 0,1 27,7 3,3

10/05/05 0,5 0 ,1 0,4 6,0 0,0 0,0 17,9 2,1
26/05/05 0,4 0 ,1 0,0 7,4 0,3 0,0 3,5 1 ,0

16/06/05 0,8 0,2 0.01 2,8 0 ,1 0,0 3,9 0,8

21/07/05 0,4 0 ,1 0 ,1 4,0 0 ,1 0,1 11,4 1 ,0

04/08/05 3,0 0,2 2,7 5,3 0 ,1 0,0 6,5 0,9

19/08/05 2,4 0,3 0,0 3,6 0,8 0,2 11,9 0,9

01/09/05 0,6 0 ,1 0,0 2,8 0 ,1 0,0 5,9 0,8

15/09/05 1,7 0 ,1 0,1 3,7 0,2 0,0 8,7 0,7

31/10/05 0,8 0 ,1 0,0 3,6 1,1 0,1 11,7 1,8

06/12/05 0,6 0,0 5,8 10,8 0 ,1 0,0 14,2 6,2
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Creran was significantly higher than the Alt Duibhe river, in all samples (average 5.4 

and 1.8 pM NO3' for Creran and Alt Duibhe respectively). Silicates followed 

completely opposite trends and concentrations were greater in the Alt Duibhe river 

(mean 11.2 pM and 5.4 pM for Alt Duibhe and Creran respectively).

Concentrations of organic nutrients from the river (Fig. 3.04) followed an 

opposite trend to river flow with maximum concentrations found during June, July and 

September for both rivers. Maximum DOC concentrations measured in river Creran 

were between 350 and 420 pM, making it a potentially important contributor to organic 

carbon stocks in Loch Creran.

3.6 Water chemistry at the three stations

3.6.1 Inorganic nutrients concentrations

Ammonium concentrations ranged from 0 to 3 pM (Fig. 3.05) with the highest 

values found in September 2004, and June 2005 at all stations. Stations within Loch 

Creran exhibited a pronounced increase of ammonium concentrations in September 

2005 that did not occur in 2004. The lowest concentrations were observed in May 2004 

and 2005 and no N H / was present at all stations on three occasions (27/04/2004, 

6/09/2004 and 4/10/2004). There were no significant differences between the two 

depths (3 and 10 m), however NFL^ was found to be higher at FF than C5 and LY1 

(Kruskal-Wallis, p-value < 0.05).

Inorganic phosphorus exhibited values ranging from 0 to 0.57 pM with 

maximum attained generally in autumn-winter and decrease to its lowest concentrations 

during spring and summer months (Fig. 3.06). No significant differences in inorganic 

phosphorus concentrations were found between stations or depths.
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Figure 3.05. Ammonium concentrations (pM) recorded at LY1 (a), FF (b) and C5 (c) at 
3 m (circle) and 10 m (triangle). Error bars are ± S.E.
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Figure 3.07. Dissolved silicate concentrations (pM) measured at LY1 (a), FF (b) and C5
(c) at 3 m (circle) and 10 m (triangle). Error bars are ± S.E.
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Silicate concentrations ranged from 0 to 10 pM and followed a similar seasonal 

pattern (Fig. 3.07). There were no significant differences between sites or depth at a 

location.

Similar to silicate, nitrate concentration varied between 0 and 10 pM. Nitrate 

followed the same seasonal trend as inorganic phosphorus, reaching its maximum 

concentrations during the autumn and winter but decreased during the spring and 

remained low through the summer months (Fig. 3.08). No significant differences were 

found between locations or depth at a location.

In this study, N to Si ratios (Fig. 3.09) calculated as total dissolved inorganic N 

over Si concentrations, varied with season with values above 1 found from February to 

May and from end of June to August. High values found during these periods suggested 

a potential relative lack of silicate supply to the diatom community (see Chapter 5, 

section 5.1).
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Figure 3.09. N:Si ratio calculated at LY1 (circle), FF (triangle) and C5 (square). Lines
represent three points moving average at LY1 (solid), FF (dotted) and C5 (dashed).
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3.6.2 Dissolved Organic Carbon and Nitrogen concentrations

DOC concentrations varied between 69 and 291 pM (Fig. 3.10). No significant 

differences were found either between depths or stations. However, seasonal trends 

were observed over the two years of the study. A marked increase in DOC 

concentration was observed during July and August 2004 and in 2005 between June and 

September.

Furthermore, increases were noticeable during the spring 2004 at stations FF and C5 

and were evident for all 3 stations in spring 2005. All of these increases in DOC 

concentration, ranging between 100-150 pM, were followed rapidly by a decrease of 

similar magnitude. Finally, a winter build up of DOC was observed at the three stations, 

extending from late September 2004 to the end of February 2005. In addition, DOC 

concentrations were inversely correlated to salinity (Pearson correlation, P < 0.01), 

suggesting inputs of DOC through runoff or freshwater inputs.

DON varied from 2.2 to 41.2 pM at LY1 and from 5.7 to 30.7 pM at FF and C5 

(Fig. 3.11). DON data, as calculated by subtraction of inorganic N to total dissolved N 

(TDN), were consequently slightly more erratic than DOC data but a few trends were 

still noticeable between sites. A late May/early June increase in DON concentration (20- 

35 pM) was observed and was greater in 2004 than in 2005. DON concentrations 

increased during wintertime to reach concentrations around 22 pM in January for the 

stations within Loch Creran, although, no significant differences were found between 

station or depth.
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Figure 3.10. Dissolved organic carbon concentrations (jjM) measured at LY1 (a), FF (b)
and C5 (c) at 3 m (circle) and 10 m (triangle). Error bars are ± S.E.
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Figure 3.11. Dissolved organic nitrogen concentrations (fxM) measured at LY1 (a), FF
(b) and C5 (c) at 3 m (circle) and 10 m (triangle). Error bars are ± S.E.
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3.6.3 Particulate Organic Carbon and Nitrogen

POC and PON exhibited similar patterns throughout the period of the study (Fig. 

3.12), with increased concentration during May and late summer (August and 

September). These increases were greater in 2005 than 2004, with values ranging from 

0.02 to 0.92 pgC L '1 and 0.01 to 0.12 pgN L '1. A noticeable peak was observed at three 

m depth at station C5 in August-September 2004 and was greater than POC or PON 

peaks found in 2005 (0.93 vs. 0.6 pgC L_1 and 0.13 vs 0.09 pgN L*1, for C and N 

respectively). No differences between depths were found either for POC or PON. 

However, POC and PON were significantly greater at C5 (Kruskal-Wallis, p-value < 

0.05 and p-value <0.01 for POC and PON respectively) than at LY1 but no differences 

were found between stations C5 and FF.

3.6.4 Chlorophyll a and Pheopigments concentrations

Chlorophyll a (chi a) and its degradation products, pheopigments (pheo) ranged 

from 0.08 to 10.9 mg m'3 chi a and from 0 to 0.7 mg m'3 pheo respectively (Fig. 3.13). 

Chi a concentrations increased between March and May and between late June to 

August. Spring and summer increases were more pronounced within Loch Creran in 

2005. Statistical analysis demonstrated that the concentration of chi a was greater within 

the loch than at LY1 (Kruskal-Wallis, p-value < 0.05). However, no significant 

differences were observed between FF and C5 or between depths at these sites.
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Figure 3.12. Particulate organic carbon (a, b, c) and nitrogen (d, e, f) concentrations 
(|xM) measured at LY1 (a, d), FF (b, e) and C5 (c, f) at 3 m (circle) and 10 m (triangle). 
Error bars are ± S.E.
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Chapter 3 Field Study

3.7 Biological variables

3.7.1 Marine Heterotrophic Bacteria

3.7.1.1 Bacterial Abundance

BA exhibited seasonal variations (Fig. 3.14) with values ranging from 4.4 x 108 

cell L '1 to 37.5 x 108 cell L '1. Maxima of BA were found, at all sites, between May and 

September with a first increase in May - June followed by a second peak in abundance 

around late August - September. From late September to April, the level of BA 

remained low, around 1 x 109 cell L '1, at all sites. The main pattern observed was lower 

BA (Kruskal-Wallis, p value < 0.05) at LY1 than Loch Creran. However, statistical 

analysis did not reveal differences between FF and C5 and no statistical difference were 

found at all stations over the period of the study.

3.7.1.2 Bacterial Production

BP was measured from the 12/08/2004 to the 16/9/2005. BP ranged from 0.08 to 53.2 

pg C L"1 d'1 with peaks of BP recorded in September 2004, March 2005, May 2005 and 

August 2005 (Fig. 3.15). BP exhibited very high values in September 2004 at 3 m, 

especially at FF and C5 (46.5 and 53.2 pg C L'1 d'1, respectively). Comparison of BP 

between stations revealed that BP at LY1 was, on average, lower than FF and C5 

stations (Kruskal-Wallis, p-value < 0.01). A significant difference between depths (BP 

greater at 3m than 10m) was, however, found only at C5 station over the period of the 

study (Kruskal-Wallis, p value < 0.05).
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Figure 3.14. Bacterial abundance (BA) in x 108 cell L'1 measured at LY1 (a), FF (b) and
C5 (c) at 3 m (circle) and 10 m (triangle). Error bars are ± S.E.
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literature conversion factor (cf. text).
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BA and BP were positively and significantly correlated (Pearson correlation 

matrix, p-value < 0.01) as shown in Figure 3.16 and, when plotted against each other, 

BA and BP showed a linear relationship (equation of the linear regression is given in the 

legend of Figure 3.16).
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0 10 20 30 40

BA x108cell I'1

Figure 3.16. Plot of BA versus BP computed with data from LY1 (red circle), FF (blue 
triangle) and C5 (green diamond). Lines represent linear regressions for LY1 (solid line, 
BP = 0.59 x BA -  0.08, n = 60, p-value < 0.01), FF (dashed line, BP = 0.72 x BA +3.5, 
n = 60, p-value < 0.01) and C5 (dotted lines, BP = 0.48 x BA + 8.4, n = 60, p-value > 
0.05).

3.7.1.3 Bacterial Production and Conversion Factor

An empirically determined conversion factor to relate the incorporation of 

thymidine to the number of cell produced from this incorporation was critical to this 

study to achieve its aim of comparing stations and seasonal patterns. Many studies use a 

literature derived conversion factors because of the logistical problems associated with 

determining empirical values. As conversion may be, however, time and location 

specific, the use of literature derived values may give erroneous results. These literature
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based conversion factor, therefore, are not always relevant to the comparison of BP in 

different time and space scales.

3.7.1.3.1 Empirical determination of Thymidine Conversion Factor (TCF)

The results of empirical determination of TCF (experimental design described in 

Chapter 2, section 1.4.3) are plotted in Figure 3.17. The conversion factor experiments 

carried out in winter demonstrated that the increase in thymidine incorporation over 

time was only accompanied with a small increase in cell number. This, therefore, 

demonstrated little coupling between incorporation of thymidine and increase in 

bacterial cell number. However, it is worth noting that at this time of the year 

incorporation of thymidine was almost 10 times higher at FF (Fig. 3.17-d) than LY1 

(Fig. 3.17-a). This trend was opposite in spring where LY1 exhibited higher thymidine 

incorporation rate (2 times higher than FF), while cell numbers remained in the same 

range at both stations. In summer, both cell numbers and thymidine incorporation rate 

increased exponentially. Cell numbers reached similar values (~ 60 xlO9 cell L '1) 

whereas incorporation of thymidine was 4 times faster at LY1 than FF (Fig. 3.17-c and

f).

3.7.1.3.2 Calculations of thymidine conversion factor.

Calculations of thymidine conversion factor (CF) were carried out in three 

different ways using derivative, cumulative and integrative approaches, in order to 

assess the best usable conversion factor.
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Figure 3.17. Bar chart of thymidine incorporation (gray) and BA (white) over the time 
course incubation (0 — 24 hours). Experiments carried out for LY1 station (a, b, c) and 
FF station (d, e, f) during the winter (a, d), spring (b, e) and summer (c, f). Error bars 
are S.E.
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The modified derivative method assumes that cell numbers and rate of [<methyl-

gives an estimate of p, the specific growth rate, and therefore that the slope of 

thymidine incorporation equals p; the slope of cell increase:

with p: growth rate from change in abundance overtime, B: intercept of In (cells) 

against time and b: intercept of In (thymidine incorporation) against time.

This correspondence between cell increase and thymidine incorporation however 

is not always true and the slope of thymidine incorporation often exceeds specific 

growth rate (Ducklow & Hill 1985, Ducklow & Carlson 1992) (Fig. 3.17).

The integrative method is based on the relation between the total number of cells 

produced and the total amount of thymidine incorporated over time. Cell production is 

estimated by difference between initial and final cell counts. Total [methyl- H]- 

thymidine incorporation is calculated by integration of thymidine uptake over time 

(using a quadratic fitted curve):

3H]-thymidine incorporation increase similarly, that the incorporation of thymidine

equation 3.01

CF equation 3.02

with Nf: final bacterial abundance, No: initial bacterial abundance and J (Tdr dt): rate of 

thymidine incorporation integrated over the duration of the experiment. This method 

may lead to underestimation of TCF because the incorporation rate of thymidine (on the
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denominator) may increase faster than cell production (Ducklow & Carlson 1992) (Fig. 

3.17).

The cumulative method is similar to the integrative method but use the slope of 

the regression of cell abundance and the cumulative [methyl-3}!]-thymidine 

incorporation, producing a time-weighted ratio of cells produced to [methy\-3H\- 

thymidine incorporated:

Z w - a w  ,
CF = ------------, equation 3.03

j(Tdr)dt

Although, this method offers the best mathematical approach to TCF 

determination because it accounts for all the data, it is also sensitive to the lack of

coupling between thymidine incorporation and cell numbers in incubated samples
(

(Ducklow & Carlson 1992) (Fig. 3.17). These different methods provided the TCF 

values summarised in Table 3.03.

Table 3.03. TCF values calculated according to the three different mathematical 
methods.

LY1 FF

Winter Spring Summer Winter Spring Summer

Integrative 160.02 8.43 7.72 2.31 30.47 7.45

Derivative 134>o3 6.66 39.05 5.59 16.94 26.18

Cumulative nd 0.80 L30 8.50 13.30 6.30

all values are x 10 cell.mole' of thymidine incorporated 
nd: non determined
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TCF exhibited large differences (up to 200 times) according to the mathematical 

method used. On average, the derivative method generated the largest TCF whereas the 

cumulative method delivered the lowest values. It is also important to note here the 

discrepancy in TCF calculated for winter with the three methods that demonstrate the 

effect of a lack of coupling between thymidine incorporation and cell numbers. No 

seasonal variation of TCF was obvious. However, TCF doubled from spring to summer 

at FF site, whereas TCF was two times greater in the spring compared to the summer at 

LY1.

Comparing BP calculated with literature (2 x 1018 mole thymidine incorporated 

cell"1, Bell 1993) or empirically derived TCF (Fig. 3.18) demonstrated the importance of 

directly determined parameters when describing microbial processes, and to larger 

extent C fluxes from local to global scale. The cumulative method was preferred in this 

study because it accounts for all the data points of the TCF experiments and therefore 

gives more accurate calculation of TCF.

Visual inspection allows separating of seasons as follows:

• Summer: July, August, September and October

• Winter: November, December, Januay and February

• Spring: March, April May and June

This demonstrated that with a commonly used TCF (2 xlO18 cells per moles of 

thymidine incorporated; Bell 1993), BP at LY1 was overestimated (annual average of 

empirical TCF = 0.7 xlO18 cells per moles of thymidine incorporated) for each season, 

whereas BP at FF was always underestimated (annual average: 9.4 xlO18 cells per moles 

of thymidine incorporated).
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Figure 3.18. BP calculated with TCF from literature (circle) and empirically determined 
TCF (with cumulative method, see section 3.7.1.3.2) for this study (triangle) at LY1 (a) 
and FF (b).

3.7.2 Marine Nanoflagellates

Marine nanoflagellates were grouped as choanoflagellates, other heterotrophic 

nanoflagellates, phototrophic nanoflagellates and small heterotrophic dinoflagellates 

(size < 20 pm) and taxa identified (as the most common in temperate waters) are 

summarised in table 3.04. Although several genera were identified in each of the four 

groups, the results in the following figures are displayed by group in order to simplify 

the description of the marine nanoflagellates community.

The abundance of each of these groups varied with the season and year (Fig. 

3.19). Choanoflagellates abundance peaked in May 2004, March -  April 2005 and July 

2005 for all three stations. In 2004, FF station exhibited a late September peak reaching 

3 xlO5 cells L'1. Station C5 displayed the highest abundance (4 xlO5 cells L’1) in March 

2005. Small heterotrophic dinoflagellates peaked in May-June 2004 and from May to 

September in 2005 at the three locations (Fig. 3.19, d, e and f). Maximal abundances
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Table 3.04. Genera identified within the four groups of nanoflagellates.

Choanoflagellates other HNAN PNAN Small heterotrophic
°  Hmnt orro qtao

Bicosta spinifera Small Nitzchia sp Gymnodinium sp

Calliacantha natans Large Navicula sp Gyrodinium sp

Calliacantha simplex Small + flag Other Diatom -

Cosmoeca sp. Large + flag Phaeocystis sp -

Diaphanoeca sp. Pear shape Chrysochromulina sp -

Parvicorbicula 
social is - Cryptophyte sp -

Other Other Other Other

“other” was used when identification to genus level was impossible

were around 1 xlO6 cells L '1 and were attained in July-August 2005. Other HNAN 

abundance was greater in 2004 than 2005 and was maximal during August 2004 and 

September 2004 (Fig. 3.20, a, b and c). It is at this time that they reached their 

maximum abundance of 211 -  315 xlO5 cells L '1. A smaller increase in abundance (20 -  

50 x 105 cell L '1) was recorded in 2005 around March to May.

PNAN abundances (Fig. 3.20, d, e and f) peaked in September 2004, March 

2005 and September 2005 and exhibited similar abundance during both years (130 - 200 

xlO5 cells L '1). In 2005, an early March (7/3/2005) peak was pronounced and reached an 

abundance of 121, 162 and 322 xlO5 cell L'1 for LY1, FF and C5 respectively. The 

PNAN, choanoflagellates and small dinoflagellates were significantly more abundant in 

2005 than in 2004 (Kruskal-Wallis, p-value < 0.01). However, HNAN were 

significantly more abundant in 2004 (Kruskal-Wallis, p < 0.01). It is important to note 

here that data are not available before May 2004. It is therefore difficult to gain 

conclusive differences between years when elevated abundance of cells may have
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Figure 3.19 Choanoflagellates (a, b, c) and small dinoflagellates (d, e, f) abundances (x 
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Figure 3.20. HNAN (a, b, c) and small PNAN (d, e, f) abundances (x 105 cell L '1) 
measured at LY1 (a, d), FF (b, e) and C5 (c, f) at 3 m (circle) and 10 m (triangle). Error 
bars are ± S.E.
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occurred before spring 2004, such as for PNAN (Fig. 3.20). An alternative is to run 

analysis between May and September for both years, although only 2 years of data are 

insufficient to draw conclusions on inter-annual variability. When this is done, however, 

none of these four groups exhibited a significant difference either between depths at a 

station or between stations.

3.7.3 Relating Bacteria to HNAN grazing

HNAN was negatively correlated to BA abundance (Pearson, p-value < 0.01) 

and a linear relationship was found between the logarithm of their densities (Fig 3.21, 

see legend for equations).
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Figure 3.21. Logarithm of BA versus logarithm of HNAN abundance computed with 
data from LY1 (red circle), FF (blue triangle) and C5 (green diamond). Lines represent 
linear regressions for LY1 (solid line, Log (HNAN) = -0.38 x Log (BA) + 9.8, n = 60, 
p-value > 0.05), FF (dashed line, Log (HNAN) = -0.98 x Log (BA) + 15.5, n = 60, p- 
value <0.01) and C5 (dotted lines, Log (HNAN) = -1.24 x Log (BA) + 17.8, n = 60, p- 
value<0.01).
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This suggested a trophic relationship between these two populations. In order to 

assess the control of bacterial population and the role of HNAN as a trophic link, the 

logarithm of HNAN was plotted against the logarithm of BA (Fig. 3. 22), following the 

method of Gasol (1994). This empirical analysis allows the determination of whether 

bottom up (bacterial prey) or top down (grazing by higher trophic levels) controls 

HNAN abundance. Comparison was made with a mean realised abundance (MRA) 

estimated from the literature (Gasol 1994). This analysis revealed that 97% of the data 

fell above the MRA line (Fig. 3.22) with 7% of the data falling above the theoretical 

maximum (TM) of Gasol (1994). These data were therefore characteristic of HNAN 

control of bacterial population (or bottom up control of HNAN population).
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Figure 3.22. “Gasol” plot of logarithm of BA versus logarithm of HNAN abundance at 
LY1 (circles), FF (triangles) and C5 (diamonds) measured at 3 m (open symbols) and 
10 m (filled symbols). Colors indicate data from 2004 (blue) and 2005 (red). Solid line 
represents the theoritical maximum (TM) and dashed line is the mean realisable 
abundance (MRA) calculated from Gasol (1994)
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3.7.4 Phytoplankton

Phytoplankton abundance was determined monthly from April to September in 

2004 and 2005 for only two stations, LY1 and FF. Phytoplankton from station C5 was 

not counted as other environmental variables demonstrated very little differences 

between C5 and FF and the taxonomic analysis was very time consuming. Figures 3.23 

and 3.24 display the occurrence and relative abundance (Fig. 3.25) of each of the 

diatom, large dinoflagellate and ciliate taxa.

The first predominant taxa in 2004 at LY1 were Skeletonema sp., Chaetoceros 

sp., Leptocylindrus sp. and diatoms belonging to the Pseudo-nitszchia delicatissima 

group (Fig. 3.23-a). Subsequently, the diatom group of Pseudo-nitszchia seriata 

dominated the diatom community during the summer 2004, along with Leptocylindrus 

sp., the P. delicatissima group and Chaetoceros sp.

Similarly, 2005 started with the predominance of Skeletonema sp., but was 

accompanied with species of P. delicatissima group and Thalassiosira sp. During the 

summer of 2005, the P. seriata group again dominated the diatom community. In 

addition, Leptocylindrus danicus and species of the P. delicatissima group were 

common. Skeletonema sp and the P. delicatissima group persisted or even increased in 

number at the end of summer 2005.

In contrast, the diatom community at the FF site, within loch Creran, exhibited 

different predominance over the period of the study (Fig. 3.23-b). The first predominant 

taxa observed in 2004 were Thalassiosira sp. with Chaetoceros sp. and Leptocylindrus 

minimus. Species of the P. seriata group and then Chaetoceros sp. dominated the 

summer bloom in 2004. In 2005, Leptocylindrus minimus dominated the early summer 

diatom community, closely followed by the P. seriata then P. delicatissima groups. 

Finally, diatoms of the P. seriata group dominated the community in late summer.
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LYl - Diatoms
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Thallasiossira sp  -  

Cylindrotheca sp  -  
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Chaeotoceros sp (large >15um wide) -  

Dityliumsp  -

FF - Diatoms
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Figure 3.23. Bubble plot of diatom abundance during the period of the study at LYl (a) 
and FF (b). Cell numbers were log transformed and bubbles are proportional to the 
abundances. Bubble sizes are directly comparable between stations.
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LYl - Dinoflagellates & Ciliates 
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Figure 3.24. Bubble plot of large dinoflagellate and ciliate abundance during the period 
of the study at LYl (a) and FF (b). Cell numbers were log transformed and bubbles are 
proportional to the abundances. Bubble sizes are directly comparable between stations.
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Figure 3.25. Bar chart o f relative abundance to total community o f diatoms for LYl (a) 
and FF (b). Genus and species are given as, Pseudo-nitszchia delicatissima (P. del), 
Pseudo-nitszchia seriata (P. ser), Leptocylindricus minimus (L. min), Leptocylindricus 
danicus (L. dan), Skeletonema sp (Skel), Rhizosolenia sp (Rhiz), Thalassiosira sp 
(Thai), Cylindrotheca sp (Cyl), small (< 15 pm  wide) Chaetoceros sp (Chae small), 
large (> 15 pm wide) Chaetoceros sp (Chae large) and Ditylum sp (Dit).
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Dinoflagellates were prevalent in 2004 with Alexandrium sp. appearing first in 

April 2004 followed by Scrippsiella sp., Protoperidinium sp. and Gonyaulax sp. 

Protoperidinium sp. persisted during late summer 2004. In 2005, the dinoflagellates 

community was scarce with Protoperidinium sp., Dinophysis sp., and Scrippsiella sp. 

being the prevalent taxa.

RDA analysis carried out at LYl (Fig. 3.26) and at the FF site (Fig. 3.27) 

demonstrated that 94% and 89% (LYl and FF respectively) of the variance (planktonic 

community composition) was explained by environmental data. Only significant 

environmental variables (Monte Carlo test, p-value < 0.05) are shown in Figure 3.26 

and 3.27. These analyses confirmed previous observations that species occurring early 

in the year (Skeletonema sp., Chaetoceros sp., Thalassiosira sp., P. delicatissima group, 

Alexandrium sp.) were inversely correlated with nutrients (consumption of inorganic 

nutrient by phytoplankton) but not correlated with temperature (remaining low in 

spring). However, species developing in the summer month (P. seriata group, 

Leptocylindrus sp, Protoperidinium sp., Dinophysis sp., and Scrippsiella sp.) were 

correlated to temperature. It is important to note here the lack of influence of dissolved 

organic nutrients.

MDS ordination (Fig. 3.28), based on phytoplankton abundance and species 

composition (diatoms, dinoflagellates and ciliates), pointed out the seasonality of 

community composition at LYl and FF. A seasonal progression from spring (April, 

May) to summer (June, July) and late summer (August, September) was recognised 

with the highest dissimilarity (Bray-Curtis) found between April-May and July-August 

with June appearing as a transition period (Fig. 3.28).
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Figure 3.26. Bi-plot of RDA results for LYl. All phytoplankton species are plotted with 
significant (Monte Carlo test) environmental variables (TEMP: air temperature, DEN: 
density, WATEMP: water temperature, RAIN: rainfall, WIND: wind speed and DIP: 
dissolved inorganic phosphorus). Genus and species of diatoms are given as: Pseudo- 
nitszchia delicatissima (P. del), Pseudo-nitszchia seriata (P. ser), Leptocylindricus 
minimus (L. min), Leptocylindricus danicus (L. dan), Skeletonema sp (Skel), 
Rhizosolenia sp (Rhiz), Thalassiosira sp (Thai), Cylindrotheca sp (Cyl), small (<15 pm 
wide) Chaetoceros sp (ChaeS), large (> 15 pm wide) Chaetoceros sp (ChaeL) and 
Ditylum sp (Dit). Genus and species of dinoflagellates are given as, Alexandrium sp 
(Alex), Ceratium fusus (C.fus), Ceratium furca (C.fur), Dinophysis sp (Din), 
Prorocentrum sp (Pror), Gonyaulax sp (Gon), Protoperidinium sp (Prot), Scrippsiella sp 
(Seri), Peridinium sp (Peri), Gyrodinium sp (Gyr) and Gymnodinium sp (Gym).
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Figure 3.27. Bi-plot of RDA results for FF. All phytoplankton species are plotted with 
significant (Monte Carlo test) environmental variables (TEMP: air temperature, WIND: 
wind speed and DSI: dissolved inorganic silicate). Genus and species of diatoms are 
given as: Pseudo-nitszchia delicatissima (P. del), Pseudo-nitszchia seriata (P. ser), 
Leptocylindricus minimus (L. min), Leptocylindricus danicus (L. dan), Skeletonema sp 
(Skel), Rhizosolenia sp (Rhiz), Thalassiosira sp (Thai), Cylindrotheca sp (Cyl), small (< 
15 pm wide) Chaetoceros sp (ChaeS), large (>15 pm wide) Chaetoceros sp (ChaeL) 
and Ditylum sp (Dit). Genus and species of dinoflagellates are given as, Alexandrium sp 
(Alex), Ceratium fusus (C.fus), Ceratium furca  (C.fur), Dinophysis sp (Din), 
Prorocentrum sp (Pror), Gonyaulax sp (Gon), Protoperidinium sp (Prot), Scrippsiella sp 
(Seri), Peridinium sp (Peri), Gyrodinium sp (Gyr) and Gymnodinium sp (Gym).
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2D Stress: 0.21

A A

Figure 3.28. MDS ordination of phytoplankton composition. LYl and FF data were 
pooled and fourth root transformed. Symbols are April (triangle up), May (triangle 
down), June (square), July (diamond), August (circle) and September (cross).
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3.8 Summary of results

The major observations were:

• Mixing of the water column was predominant at all stations with no strong 

thermal stratification. However, strong sporadic freshwater input created marked 

haline stratification in winter, particularly within Loch Creran.

• Rivers entering Loch Creran brought significant amounts of inorganic and 

organic nutrients varying in form and/or concentration.

• DSi, DIP and DIN followed seasonal trends and were significantly and 

negatively correlated to salinity, POC, PON and Chi a.

• Concentrations of ammonia were significantly higher at FF than the two other 

sites. However, no differences in other environmental variables were found 

between FF and C5.

• Organic nutrient concentrations were not significantly higher at site FF than at 

the two other stations. However, DOC concentrations were inversely correlated 

with salinity, suggesting inputs of DOC through runoff or rivers.

• BA and BP were greater in Loch Creran than at LY1 but no differences were 

observed between C5 and FF.

• TCF varied significantly with season and site and highlighted important 

differences in BP. These differences were not highlighted when a single TCF 

value was used in calculations.

• BA was closely related to HNAN abundance, suggesting a tight control on 

bacterial population by HNAN grazing.

• Statistical analyses demonstrated that phytoplanktonic communities were 

seasonally different and the variability in phytoplankton assemblage 

composition could be partially explained by environmental parameters.

96



Chapter 3 Field Study

3.9 Discussion

3.9.1 Sources o f  nutrients

3.9.1.1 Nutrients from mixing

Physical parameters and inorganic nutrient concentrations measured at each site 

demonstrated a typical winter mixing of the water column (demonstrated by the 

negative correlation between water temperature and density, Peasron, p < 0.001) 

bringing up nutrient (demonstrated by the negative correlation between inorganic 

nutrient, N, P and Si and water temperature) and building nutrient stocks to be used by 

plankton during the spring bloom. These stations are characterised by a well-mixed 

water column with haline and/or thermo-haline stratification (Tett & Wallis 1978, 

Solorzano & Ehrlich 1979). Coldest waters occurred mostly in March and the warmest 

in August. Temperature increases from spring to summer and decreases during the 

winter as expected in coastal waters. These stations are characterised by a shallow layer 

of brackish waters at the surface (1 to 4 m depth) mainly occurring during autumn and 

winter when rainfall is greatest. Below this brackish layer salinity is higher but 

sometime strongly influenced by freshwater, as revealed by the abrupt diminution of 

salinity and density (Fig. 3.01). These observations were similar to those of Tett et al. 

(1978) for Loch Creran. Highest salinity was found usually between May and early June 

(Grantham 1983b, c, Fehling 2004). Due to flushing by water from the Firth of Lome 

driven by a fjordic estuarine circulation, Creran’s maximum nutrient levels would thus 

be expected to be close to those of the Firth (Jones 1979). This may explain the similar 

nutrient levels observed between the Firth of Lorn (LYl) and Loch Creran.

Both Loch Creran and LYl are influenced by freshwater inputs as witnessed by

the negative correlations (Pearson, p < 0.001) of inorganic nutrients (DSi, DIN and DIP)

with salinity at both depths. This observation is in agreement with previous studies
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(Grantham 1983b, c, Fehling 2004). High freshwater input events were highlighted by 

the density profiles that showed the extent to which the water column was affected. The 

fact that the salinity and density at LYl was not as much affected as in Loch Creran 

might be explained by a higher flushing of the water body at LYl (open coastal station) 

than in Loch Creran. This also confirmed the more exchange-restricted conditions 

within Loch Creran.

3.9.1.2 Nutrients from rivers

River Creran brings, on average, 160 x 106 m3 year'1 of freshwater to Loch 

Creran, which represents about half of total freshwater received by Loch Creran over a 

year and makes river Creran the main contributor of freshwater to Loch Creran. 

Therefore, nutrients brought by river Creran and, to a lesser extent, smaller rivers, such 

as the Alt Duibhe, may be considered as the major allochtonous nutrient sources to the 

microbial community in Loch Creran (see also section 3.9.1.3). In terms of organic 

carbon, the two rivers may supply about 3.2 g C m'3 year'1 (based on DOC measurement 

in g C m'3 multiplied by the annual average of freshwater input from river Creran) to the 

loch. Based on TDN measurements, N inputs from rivers reach 0.22 g N m'3 year'1. The 

riverine origin of DOC proposed here was confirmed by negative correlation (Pearson, 

P < 0.001) between DOC concentrations and both salinity and density.

In terms of inorganic nutrients, river Creran and Alt Duibhe contributed 

differently to the form of nutrient transported into Loch Creran. River Creran appeared 

to be a major N supplier whereas, Alt Duibhe, had higher concentrations of silicates. 

The type of land traversed by the rivers may explain these differences in the form of 

inorganic nutrients. The contributions of rivers to Loch Creran and, to a certain extent
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LYl, inorganic nutrient concentrations were highlighted by negative correlation 

between nutrient concentration and salinity (and density; see section, 3.9.1.1).

3.9.1.3 Nutrients from the Fish farm

One of the original objectives of this work was to determine whether a point 

source input of nutrients from the fish farm may result in enhanced concentrations of 

inorganic and/or organic nutrients close to the fish farm station compared to i) the 

further station C5 within Loch Creran or ii) the Firth of Lorn station, LYL One might 

hypothesise that these enhanced inputs of nutrient would be expected to provoke a 

subsequent increase in autotrophic and heterotrophic biomass and productivity.

Although there was no evidence that organic nutrient concentrations were 

elevated at FF, an estimation of the contribution of fish farm activities to the organic 

nutrient stock of Loch Creran is possible. Hall et al. (1990) estimated that 878 -  952 kg 

C t_1 of fish produced and 95 -  102 kg N f 1 fish produced were lost to the environment. 

The same authors estimated that, among these losses, about 49% of C and 48% N were 

lost as solute releases (e.g total environmental loss minus sedimentation). Assuming a 

consented production 1500 tonnes over a two years cycle for the fish farm in loch 

Creran, estimates of organic C and N contribution from the fish farm to the whole loch 

(total volume) are therefore 1.84 g C m'3 y'1 and 0.19 g N m'3 y '1, respectively. These 

estimates are approximately two orders of magnitude smaller than rivers contributions 

of dissolved organic material to loch Creran. It hence confirms the predominant role of 

rivers as sources of “new” DOM to Loch Creran.

Statistical analyses revealed that concentrations of both DOC and DON were not 

different (Kruskal-Wallis, p > 0.05) at FF compared to the two other stations. This, 

therefore, refutes the a priori ethos of enhanced concentrations of organic nutrients
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from FF and raises the question of what controls the level of dissolved organic nutrients 

in Loch Creran? (see section 3.9.1.4)

However, while DOM concentrations were not elevated, another important input 

of FF in terms of nutrients was the significant increase in the concentration of ammonia 

compared to C5 or LYl. This feature has been demonstrated in numerous studies (Hall 

et al. 1990, Wu 1995, Arzul et al. 1996) as NFL** is the main form of N released in fish 

excreta (see section 3.9.2.3, see also Chapter 4).

3.9.1.4 Nutrients generated by the microbial community

One cannot neglect the role played by the marine microbial community in the 

production of inorganic and organic nutrients. Because of the difficulties in assessing 

such processes, these were not directly measured in this field study. However, Chapters 

5 and 6 give indirect estimates of N uptake, N regeneration and DOM production by 

phytoplankton for samples from LYl and Loch Creran.

Primary producers are mainly consumers of inorganic nutrient (Dugdale & 

Goering 1967) and this was corroborated by the negative correlation (Pearson, p < 0.05) 

between inorganic N, P and Si with chi a, POC and PON, as indicators of biomass. In 

the open ocean, DOM is mainly produced by primary producers (Larsson & Hagstrom 

1979, Lancelot & Billen 1984). However, in coastal and estuarine environments, DOM 

sources are various and hence autochthonous sources might not be the predominant 

origin of DOC and DON (Cauwet et al. 2002).

It is important to note here that limitation of phytoplankton growth by nutrients 

(see Chapter 1 for details) was likely to occur at LYl and in Loch Creran as suggested 

by the N:Si ratio (Fig. 3.09). This inorganic nutrient limitation of either N or Si, 

depending on the season, provided the motivation to conduct the experiment described

100



Chapter 3 Field Study

in Chapter 5 and is further discussed in the same chapter. If we include the results on 

the production of organic C and N by phytoplankton from the experiment detailed in 

Chapter 5 we can summarised the contributions of the various sources of organic 

nutrients to Loch Creran (Table 3.05). This highlights the major contributions of 

phytoplankton in terms of organic nutrient supply to the loch, followed by rivers and 

finally the “theoretical” contribution of the fish farm. Assuming an annual average 

bacterial production of 10.1 mg C m'3 d'1 (data from C5 at 10m), that all sources supply 

biologically labile DOC and that the BGE in costal waters is 0.27 (del Giorgio & Cole 

2000), we can estimate the BCD of the bacterioplankton and hence the C turn-over time 

in Loch Creran (Table 3.05). These values gives insights into the contributions of the 

different sources, such as the very short turn-over time of the DOM originated by the 

fish farm, which could explain the absence of enhanced DOM concentrations (see 

section 3.9.1.3). This also highlights the overall short turn-over time of all these DOM 

sources, suggesting a highly dynamic environment in loch Creran.

Table 3.05. Various sources of organic C and N for Loch Creran and carbon turnover 
time for each of these sources.

DOC (mg C m'3) DON (mg N m‘3) BCDa C turnover 

Rivers 3.2 0.2 37.4 0.08 daysb

Fish farm 1.8 0.2 37.4 0.05 daysb

Phytoplankton 46.0 6.7 37.4 1.23 daysb

Total 51 7.1 37.4 1.36 days

aBCD (in mg C m d ) calculated from equation 1.03 with BGE and BP given in the text above. 
b tum-over time calculated assuming that the source was the unique source o f DOC.
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3.9.2 Microbial community dynamics

3.9.2.1 Bacterial production and dissolved organic matter

DOC concentrations range from 50 to 1500 jaM in coastal and estuarine 

environments (Hansell & Carlson 2002) and hence cover the range of values found in 

this work (73 -  291 pM). Similarly, DON concentrations (2.2 -  41.5 pM) fell in the 

range of values observed in comparable regions of the marine environment (9 -  54pM) 

(Bronk et al. 1998, Hansell & Carlson 2002).

In coastal waters, as in this study, the DOM pool is highly dynamic due to the 

variety of its sources, and the characteristically strong mixing regime and the elevated 

biological activity (Cauwet et al. 2002). BP values fell within the range found in other 

studies of coastal, estuarine or fjordic environments (Table 3.06). The data in Table 3.06 

show that BP is also highly variable, ranging from zero to almost 200 mg C m'3 d'1. In 

this study, BP varied with the season and with site (Fig. 3.15).

In addition, conversion factors involved in the determination of BP in aquatic 

systems have a major effect on calculated values of BP, as shown in this study. It is 

therefore important to take of variation in conversion factors in account. Overall TCF 

values range from O.lxlO18 to 60xl018 cell mole-1 of thymidine incorporated (Ducklow 

& Carlson 1992) and 0.2 -  2.3x1018 cell mole'1 in fjord and coastal area (Table 3.06)
1 O 1

with exceptional values reaching 52 xlO cell mole' . TCF found at LYl and within 

Loch Creran were within the range of values observed in similar ecosystems (Table 

3.06). Although a conversion factor might greatly affect the BP value, it is important to 

have standardised values that can be used in comparative studies (Ducklow & Carlson 

1992, Fukuda et al. 1998).
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3.9.2.2 Conversion factors

Incorporation rate of tracer is compared to bacterial biomass (or abundance) 

over time. The main advantage of this technique is that conversion factors are calculated 

with natural assemblages of bacteria. TCF is measured for the particular ecosystem 

studied and it allows a “correction” of theoretical factors. The critical assumption is that 

there is no difference in conversion factor (or rate of incorporation) compared to an 

undisturbed sample. A theoretical standard conversion factor of 0.4 -  0.5 xlO18 cells 

mole'1 of thymidine incorporated has been calculated assuming i) a 25 mol% of 

thymidine in DNA, ii) a bacterial DNA content of 2 -  4 fg cell"1, and iii) no de novo 

synthesis or exogenous dilution. Estimates derived from different methods vary in their 

principle (incorporation into DNA, protein, observation of cell division). Using a higher 

final concentration of 3H thymidine can reduce variability of conversion factors, as a 

lack of uptake saturation occurs at low concentrations of 3H-thymidine. Furthermore, 

Tuomi (1997) argued that an increase of incorporation of thymidine into other 

macromolecules (different to DNA) might result in an underestimation of TCF and 

therefore BP. This uncoupling between incorporation of thymidine and increase of BA 

was observed in this study during the winter and might have explained the reason of 

elevated or incalculable (infinite value) TCFs. Although 3H-thymidine incorporation is a 

controversial method (reviewed by Bell 1990, Robarts & Zohari 1993), over half of 

published bacterial production data are derived using this method (Ducklow, 2000).

3.9.2.3 Bottom-un control of bacterial population

Heterotrophic bacteria have been recognised as the major consumers and 

remineralisers of organic matter in the ocean (Pomeroy 1974, LeB Williams 1981, 

Fuhrman & Azam 1982). Although the coastal ocean is a highly productive region in
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terms of phytoplankton, it is difficult to draw the same conclusion regarding the 

productivity of heterotrophic bacteria and the DOM dynamics (Ducklow 2000).

This study suggested that available DOM was taken up rapidly in the loch to 

support the higher BP found at FF and C5 compared to LY1. In fact, there were no 

significant differences in DOC or DON concentrations between LY1 and Loch Creran. 

Furthermore, DOC and DON were not directly correlated to BA (p = 0.335 and p = 

0.941 for DOC and DON respectively) or BP (p = 0.087 and p = 0.105 for DOC and 

DON respectively).

Annual primary production (PP) was not assessed in this study; however, Tyler 

(1984) estimated the total gross annual PP of Loch Creran to be 54.7 g C m'2, based on 

14C incorporation. In this study, depth integrated average BP for loch Creran was 162 

mg C m"2 d"1, assuming a mean water column of 15 meters. This gives an annual BP of

49.4 g C m'2 over the period of the present work. Therefore, this calculation suggested 

that BP would represent approximately 90 % of Loch Creran PP. This further suggests 

that bacteria were tightly coupled to PP and could have removed a significant 

proportion of this PP. Numerous studies have highlighted the importance of 

extracellular releases as a source of DOM from phytoplankton (see Chapter 5, Nagata 

2000). The percentage of extracellular release (PER: percentage of PP released as DOC) 

might reached up to 80 % of PP in some cases, such as during the declining phase of 

phytoplankton bloom (Lancelot & Billen 1984), and high PER values have been 

attributed to the release of large amount of C-rich (e.g carbohydrates) DOM compounds 

(Myklestad 1995, Benner et al. 1997, Granum et al. 2002). These compounds might 

potentially support a significant part of the bacterial carbon demand (Amon & Benner 

1994, Norrman et al. 1995).

The relationship between bacteria and C stock was further corroborated by the 

positive correlation between BP and POC (Pearson correlation, p < 0.001). The
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correlation between BP and POC highlighted an important contribution of bacterial C to 

organic carbon (3.2 -  78.5 %), especially at low POC concentrations, which was, on 

average, 24 % of POC (Fig. 3.29). Results indicated that chi a, an indicator of 

phytoplankton biomass, was also correlated to BP (Pearson correlation, pO.OOl) and 

was higher within Loch Creran than at LY1 (see 3.6.4, this Chapter). This further 

corroborates the relationship between phytoplankton production and bacterial activity, 

suggesting that the DOM produced by phytoplankton in Loch Creran might have 

supported the higher BP observed within the loch. However, the calculated coupling 

between BP and PP (BP:PP = 90%) cannot only be explained by the sole presence of 

PER that supply energy for bacteria. This would thus suggest that bacteria may required 

more nutrient and therefore that the bacterial carbon demand (BCD) was supplemented 

by other sources of DOC in Loch Creran.

100 

80

c
g
8 60 
.5

R 40 -

20 - 

0 -

l I l I--------------  1-------------- 1
0.0 0.2 0.4 0.6 0.8 1.0

POC mg C L'1

Figure 3.29. Relationship between % of bacterial carbon and the POC concentration. 
Data pooled for the three stations over the time of the study period. Dashed line 
represents the calculated average contribution of bacterial carbon to total POC (i.e. 
24%).

o
o

o

oo

oT>- Oo'
o o

106



Chapter 3 Field Study

It was demonstrated above (section 3.9.1.2, this chapter) that rivers and small 

streams entering Loch Creran supply DOM. The availability of such DOM to biological 

utilisation (Rolff & Elmgren 2000), however, is still a matter of controversy (Hedges et 

al. 1997, Cauwet et al. 2002). Hedges et al. (1994) suggested that riverine DOM is 70 % 

HMW, while the HMW pool is only 30 % of surface ocean DOM, therefore indicating 

that it must be partly labile. Similarly, HMW DOM is often considered as biologically 

refractory, Ogawa (1999) reported that HMW DOM composition is close to biologically 

known molecules (e.g. proteins, lipids) whereas LMW is more complex and poorly 

determined and this would suggest a more bioavailable character of HMW DOM. The 

paradigm of greater bioavailability of HMW DOM has also been suggested (Amon & 

Benner 1996). More recently, Seitzinger et al. (2002) suggested that 23 to 30 % of TDN 

from terrigenous origins was available to biological consumption as DON. This 

characteristic of riverine DOM might have furnished an extra source of C and N and 

therefore, partly, complemented the BP in Loch Creran, however, the lability of such 

DOM was not directly assessed in this study.

Finally, this study demonstrated that a link exists between phytoplankton, the 

production of DOM and its consumption by heterotrophic bacteria (LeB Williams 2000) 

but this trophic link is more difficult to identify in coastal areas due to alternative, 

sometime dominant, sources of DOM, which may explain the absence of direct 

statistical correlation between the DOM and bacterial variables (BA and BP) in this 

work.

3.9.2.4 Top-down control of bacterial population and trophic transfer

Another major driver of bacterial activity in aquatic systems is the pressure 

exerted by microzooplankton grazers (Azam et al. 1983, Sherr & Sherr 1988, Strom
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2000). Sherr & Sherr (1991) demonstrated that most of bacterivorous activity occurs 

among the smallest size classes (<10 |Lim), with marine HNAN now thought to be the 

main grazers of bacteria (Strom 2000). The abundance of HNAN has been found to be 

highly correlated to bacterial abundance in freshwater (Berninger et al. 1991) and 

marine systems (Sanders et al. 1992). Similarly in this study, HNAN numbers and BA 

were correlated (Pearson, p < 0.001).

Gasol (1994) proposed a qualitative framework to assess the regulation of 

HNAN populations. He determined a theoretical maximum (TM) and a mean realisable 

abundance (MRA) of HNAN from the literature that allow the distinction between top- 

down (below MRA) and a bottom-up (between MRA and TM) controlled HNAN 

population. Results obtained in this study (Fig. 3.22) suggested that most of the time 

HNAN abundance was bottom up controlled in Loch Creran (i.e. HNAN abundances 

depended on bacterial numbers) and consequently that HNAN were regulating BA. 

Berninger et al. (1991) found similar results with most of their data falling close to, but 

below the TM.

Although the theoretical model of Gasol gave, in this case, interesting insights 

on the regulation flow of HNAN abundance and subsequently BA, it makes the critical 

assumptions that: 1) HNAN feed only on bacteria and 2) that the HNAN response is 

proportional to BA. First, these assumptions are flawed in three respect: HNAN have 

been reported to use a variety of sources of energy like picophytoplankton (Sherr & 

Sherr 1991), viruses (Gonzalez & Suttle 1993), or DOM (Tranvik et al. 1993). Although 

these food resources might not meet the sole energy requirement of the HNAN 

population, they might be responsible for the data points found above the TM (e.g. an 

HNAN abundance greater to what can be supported only by BA). Second, the bacterial 

population might be subjected to grazing pressure from other marine protists (e.g. small 

ciliates, choanoflagellates, small nonarmoured dinoflagellates or mixotrophic

108



Chapter 3 Field Study

dinoflagellates), which would remove part of the bacterial population. For example, 

small ciliates have been found to graze on bacteria at high rates in productive coastal 

regions (Sherr & Sherr 1987). Third, the HNAN population might also have 

experienced predatory control from higher trophic levels. In this study, a strong positive 

correlation was observed between BA and small dinoflagellates (Pearson, p < 0.001) in 

addition to a negative correlation between HNAN and small dinoflagellates (Pearson, p 

<0.01). These results suggested that small dinoflagellates had a positive effect on BA 

by releasing HNAN grazing pressure through predation of HNAN. Similar trends have 

been observed in several studies carried out in various environments (Sherr & Sherr 

1991, Strom 1991, Kuparinen & Bjomsen 1992) and these results illustrate the concept 

of a “trophic cascade”. Fundamentally, the importance of HNAN grazing on BA resides 

in the fact that it links the organic matter pool to higher trophic levels by making OM 

available into a form that would not be otherwise utilisable (Pomeroy 1974, Azam et al. 

1983) by larger micro organisms.

3.9.2.5 Phvtoplanktonic communities in Scottish coastal waters

The analysis of phytoplankton demonstrated a repeatable annual cycle of 

phytoplankton species succession (MDS analysis, Fig. 3.28). A succession pattern, 

related to inorganic nutrient availability typical of temperate waters was found at LY1 

and FF, with diatoms dominating the spring bloom followed by the occurrence of 

ciliates and large dinoflagellates in summer and early autumn. Redundancy analysis 

confirmed these trends associating species of the spring bloom with nutrient and 

mixing, whereas summer and early autumn phytoplankters were related to temperature 

changes. Relative abundance (Fig. 3.25) and correlation with environmental variables 

(Fig. 3.26 and 3.27) also confirmed the dominance of diatoms in the Firth of Lome
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phytoplankton bloom found in previous studies (Fehling 2004). Phytoplankton 

composition in Scottish coastal waters reported in this study was similar to observations 

reported in previous work (Jones 1979, Tett 1992, Fehling 2004). Although, it has been 

suggested that Chaetoceros species, as opposed to Skeletonema sp, dominate the 

phytoplankton spring bloom in Loch Creran (C. Laurent, personal communication), this 

study identified a possible alternation between Skeletonema sp and Chaetoceros sp as 

the dominant species during the spring bloom on the west coast of Scotland. In fact, 

Skeletonema sp was found to dominate the spring bloom mainly at LY1 station, 

whereas, the dominant species at this time in Loch Creran were Chaetoceros sp, 

Thallassiosira sp and Leptocylindricus sp (Fig. 3.24).

Annual variability was similar for the four groups of nanoflagellates studied 

with a short spring increase (March), followed by a late spring (May) and a longer 

summer bloom. No significant differences were observed between depths and sites. 

However, all the groups, except other HNAN, exhibited a higher abundance in 2005 

than 2004 (section 3.7.2, this Chapter). This smaller proportion of other HNAN in 2005, 

particularly during the summer, was accompanied by a greater abundance of small 

dinoflagellates (Fig. 3.19 and 3.20). This observation was confirmed with a negative 

correlation (Pearson, p < 0.01) between HNAN and small dinoflagellates. These 

observations might have been linked to bacterial grazing and are discussed in section

3.9.2.4 in this Chapter.

The Choanoflagellate, small dinoflagellate, phototrophic and heterotrophic 

nanoflagellate data collected for this thesis are one the few time series available to date 

in the west coast of Scotland, exceptions being Navarro et al. (in press) and in temperate 

coastal waters (Sherr et al. 1986, McManus & Fuhrman 1988, Murrell & Hollibaugh 

1998).
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In Loch Creran, the highest chi a concentrations ( 8 - 1 0  mg chi a m'3) were 

recorded in April and May 2005, when the phytoplankton community was dominated by 

Leptocylindricus minimus, Rhizosolenia sp and small Chaetoceros sp. The maximal chi 

a concentration recorded at LY1 occurred in June (~ 4 mg chi a m'3) when 

Leptocylindricus danicus and small Chaetoceros sp were dominating the community of 

large-celled autotrophs. This therefore corroborated the different dynamics of the 

phytoplankton community between Loch Creran and the Firth of Lome mentioned 

above.

3.10 Conclusion of field study

In conclusion, microbial communities observed on the west coast of Scotland 

demonstrated seasonality in term of biomass and phytoplankton species succession. 

Bacteria, within the microbial food web, were shown to be highly dynamic rapidly 

using autochthonous sources of nutrients (produced by phytoplankton) that were 

supplemented by external sources through river inputs and sea-loch outflow. These 

allochthonous sources (river, runoff) of organic nutrients were found significantly 

greater than potential Fish farm loadings and, although this work did not highlight 

increased inputs of organic nutrients from the fish farm, it provided insight on the 

contribution of the farm to DOM stocks in Loch Creran. This study, however, suggested 

that fish farm did not negatively perturb the pelagic microbial community of Loch 

Creran. The study of the dynamics of the bacterial population revealed a higher bacterial 

production in Loch Creran, probably a consequence of more abundant resources 

available for growth. It also pointed out the importance of accounting for top-down 

regulation of bacterial population. Thus, using the framework developed by Gasol 

(1994), the bacterial population was shown to be essentially controlled by grazing.
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- CHAPTER 4 -

Organic C and N  stoichiometry and trophic transfer within a 

bacteria microflagellate system

4.1 Introduction

The concept of the Redfield ratio (Redfield 1963) is one of the cornerstones of 

marine biogeochemistry. Analysis of microbial ecosystems is often based around 

Redfield dynamics by making the assumption that the atomic ratio of C, N, P is in the 

proportion of 106:16:1 (Redfield 1963, Brzezinski 1985). It has been postulated that 

these ratios represent balanced proportions in marine organisms; however, bacterial 

biomass is N- and P-rich, which results in low C:N and C:P ratios compared to 

phytoplankton (Bratbak 1985). Any departures from these ratios affect the metabolism 

of the organisms in terms of growth, nutrient uptake or competition for nutrients (Hecky 

et al. 1993, Sterner et al. 2002, Kuijper et al. 2004). The growth of phytoplankton 

(Brzezinski 1985) or bacteria (Fagerbakke et al. 1996), the regeneration of nutrients 

(Goldman et al. 1985) or the trophic transfer of energy via grazing (Thingstad & 

Pengerud 1985) are ultimately related to elemental stoichiometry, which, therefore, 

appears to be critical in microbial food web functioning.

It is still controversial whether or not the stoichiometry of available substrate 

affects the relative elemental composition of marine bacteria; although fixed specific 

elemental ratios are still widely utilised in ecological studies or modelling work 

(Fasham et al. 1990, Anderson & Williams 1998, Anderson & Ducklow 2001). Recent 

reviews (Doney 1999, Sterner et al. 2002) have further highlighted the need for a better
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understanding of this variable nutrient stoichiometry if we are to better understand 

biogeochemical cycling of elements and microbial food web interactions.

Bacteria compete with phytoplankton for inorganic nutrients but are also capable 

of utilising organic nutrients in the form of DOM. A significant component of marine 

DOM is likely to be refractory in nature (Hansell & Carlson 2002), whilst 

autochthonous DOM produced by phytoplankton (eg. By exudation or lysis of senescent 

phytoplankton) is likely to be labile and potentially of variable C:N ratio (see Chapter 5 

and references therein). Moreover, direct and indirect anthropogenic sources (such as 

organic matter waste and excess food from fish farm activities) have the potential to 

modify the concentrations of DOM in seawater and thereby affect organic nutrient 

availability to microbial communities.

It is often assumed that bacterial C:N stoichiometry is much less variable than 

that of phytoplankton (Bratbak 1985, Sanders et al. 1992, Fukuda et al. 1998). However, 

C:N ratios of bacteria in the laboratory have been shown to vary four fold from 3.8 to 

15 (Kirchman 2000). In field experiments, bacterial C:N ratios have been found to be 

less variable, at 3.8 to 9.9 (Fukuda et al. 1998) but still encompass a range that is both 

smaller and larger than the Redfield value. Hence, variable bacterial C:N has similar 

potential to that of phytoplankton to influence trophic energy transfer. For example, 

such variable cell nutrient composition has particular implications for trophic transfer in 

terms of variability of “food quality” for predators (Hecky et al. 1993, Nagata & 

Kirchman 1996, Mitra et al. 2003, Kuijper et al. 2004) as well as inorganic nutrient 

regeneration (Goldman & Dennett 1991, Vadstein et al. 2003). Therefore it appears that 

the effect of the relative availability of organic C and N on bacterial biomass remains 

unclear. For example, Goldman et al (1987) found no effect of substrate C:N ratio on 

bacterial biomass C:N. In contrast, Tezuka (1990) found bacterial C:N ratio to increase 

with substrate C:N ratio.
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Similarly to C:N stoichiometry discussed above, the determination gross growth 

efficiency (GGE) has been subject to debate (del Giorgio & Cole 1998, Ducklow 2000, 

Kirchman 2000) as it is affected by the productivity of the studied ecosystem. For 

example, organisms from oligotrophic regions (low nutrient) tend to exhibit lower GGE 

than those from more productive systems. This concept, however, has been widely 

challenged (Anderson & Williams 1998, Geider & La Roche 2002) and it remains 

unclear whether or not accurate measurements of GGE, and therefore an accurate 

understanding of C cycling in the Ocean, are achievable.

An important pathway of energy transfer within pelagic communities is the 

grazing on bacterial populations by protists (Sherr & Sherr 1988). Nano-zooplankton 

are the major grazers of bacteria, providing a crucial trophic link by ingesting an 

important part of the bacterial production (Lancelot & Billen 1984, Sherr & Sherr 1991, 

Strom 2000). However, the influence of a variable elemental composition of bacteria on 

trophic transfer to nanoflagellate grazers, and hence the efficiency of this trophic link in 

terms of C and N flux, remains poorly understood. In fact, nutritional quality has been 

highlighted as an important factor in determining the rate of ingestion of prey by 

protistan predators (Flynn et al. 1996) and also the rate at which nutrients are 

regenerated (Goldman et al. 1985, Goldman et al. 1987, Goldman & Dennett 1991). The 

work of Thingstad and Pengerud (1985) and Thingstad (1987) indicates that, should 

bacterial stoichiometry be variable, then nutrient cycling in predator/prey scenarios will 

be modified, leading, for example, to different nutrient regeneration scenarios (Goldman 

et al. 1987). Microflagellates grazers, such as Paraphysomonas sp, are thought to 

maintain a constant C:N stoichiometry and therefore, if bacterial stoichiometry is 

unbalanced, grazers retain the nutrient in the shortest supply.

This chapter presents a laboratory experiment to determine the influence of 

organic substrate C:N ratio on bacterial cellular C:N, and the subsequent trophic transfer
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of this organic material to nano-flagellate grazers. The experiment was designed to test 

two hypotheses, (1) that variable organic C:N ratios affect the bacterial biomass 

stoichiometry and the bacterial growth efficiency, and (2) that variable organic C:N 

ratios affect the subsequent transfer of nutrients to nano-zooplankters through grazing. 

To test these two hypotheses, the marine bacterium, Vibrio natriegens, was grown in the 

laboratory under a variety of organic C and N concentrations. This bacterial species was 

also grown in the same nutrient conditions but in the presence of a nano-flagellate 

grazer, Paraphysomonas vestita, to investigate the transfer of C and N through a simple 

trophic link.

4.2 Cultures and Experimental design

4.2.1 Experimental design

The first step of the experiment was the incubation of the bacterium Vibrio 

natriegens in a gradient of organic nutrient concentration. Subsequently, the same 

bacteria was incubated in identical media, but in the presence of a predator P. vestita 

(Stokes) De Saedeleer. V natrigens was chosen because it is a well known marine 

bacteria that has been previously used in study of bacterial metabolism, growth and 

biomass stoichiometry (Bratbak 1985, Goldman et al. 1985, Goldman et al. 1987), and 

in grazing experiments (Nagata & Kirchman 1992). Vibrionaceae are relatively large, 

rod-shaped, bacteria (0.8-1 pm) and are easily recognisable under a microscope after 

DNA staining. Paraphysomonas sp. has also been the organism of choice in previous 

laboratory grazing studies, ingesting either phytoplankton (John & Davidson 2001, 

Davidson et al. 2005) or bacterial (Nagata & Kirchman 1992) prey. Nutrient 

regeneration studies and investigations of nano-flagellate stoichiometry have also 

utilised the Paraphysomonas genera (Sin et al. 1998, Mitra et al. 2003). P. vestita is a
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spherical cell (7-10 pm diameter) therefore easy to identify and count. P. vestita also 

grows quickly in cultures with artificial media (John & Davidson 2001)

For each experiment, six duplicated (12 flasks in total) two-litres Erlenmeyer 

flasks were filled with 1 L of a sterile (autoclaved 15 min at 120°C), artificial standard 

seawater media “ESAW” (Harrison et al. 1980) and of these 12 flasks, ten received 

organic media (Table 4.01). The two remaining flasks were filled only with ESAW and 

were used as control. ESAW was used to avoid any detrimental organic nutrient 

background. Bacteria alone, and bacteria and predator, were added in each flask at a 

concentration of lx l0 6 cell ml"1 for V. natriegens and lx l0 4 cell ml"1 for P. vestita. The 

volumes of inoculums were determined the day before the experiment started based on 

cell counts from stock cultures. All experiments were conducted in duplicate. Simple 

organic compounds, arginine and glucose, were used to achieve a gradient of 

bioavailable organic substrate C  to N ratio ( C : N s )  that created potentially different 

limiting conditions (Table 4.01). Organic nitrogen concentration was kept constant, with 

the concentration of glucose varying to achieve the C : N s  ratio desired (1.5:1, 3:1, 6:1, 

9:1 and 15:1). Low C : N s  were carbon-deficient and therefore C-limiting conditions 

whereas high C : N s  lacked nitrogen and generated N-limiting conditions. In between 

these two conditions, a Redfield C : N s  of 6:1 was, a priori, used to represent balanced 

proportions between organic carbon and nitrogen.

4.2.2 Cultures o f  prey and predator

Vibrio natrigens (MMB) were concentrated from axenic stock culture (250 ml) 

in 50 ml sterile polypropylene centrifugation tubes and centrifuged at 4500 rpm for 8 

minutes. The supernatant was removed from each tube with a sterile 10 ml pipette, in 5 

ml aliquots, until 5 to 10 ml remained with the bacterial pellet. The first 5 ml were
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gently aspirated by pipette to break up the pellets, which were subsequently 

resuspended in 50 ml of sterile ESAW. The operation was repeated three times to 

obtained a dilution of 99.9 % of the initial bacterial media and prevent carry over of 

residual organic nutrients from the stock cultures.

Paraphysomonas vestita inoculums (CCAP 935/14) were prepared according to 

Davidson et al. (2005). Fifty ml sterile polypropylene centrifugation tubes were filled 

with P. vestita stock cultures and centrifuged at 1500 rpm for 10 minutes. The 

supernatant was carefully removed using 10 ml sterile pipette to leave a volume of five 

ml with the pellet. The pellet was aspirated as described above for bacteria and cells 

were resuspended in 50 ml sterile ESAW.

Experiments were carried out in the dark, at 15°C for a duration of 13 days. Both 

bacteria alone and bacteria + nano-flagellates flasks were sampled and analysed in 

identical manner. Inoculumms of both V. natriegens and P. vestita were prepared less 

than 24 hours before the start of the experiment and kept at experimental conditions.

4.2.3 Cell counts and chemical analysis

The abundance of P. vestita was determined by light microscopy using a 

Sedgewick Rafter cell (1ml). Replicated sub-samples for cell counts were taken 

everyday in sterile conditions under a laminar flow cabinet. Sub-sample (5ml) was fixed 

with lugol iodine (final concentration 1%) and stored in the dark at 5-6°C. Samples were 

counted on the day of collection to allow of cell growth to be monitored. At least 10 

squares (or 200 cells minimum) were counted.
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Vibrio natriegens was determined by epifluorescence microscopy as described 

in Chapter 2, section 2.4.1.4. Duplicated sub-samples (5ml) were taken each day in 

sterile conditions under a laminar flow cabinet and fixed with glutaraldehyde (final 

concentration 4%). Samples were stored in the dark at 5-6°C until DAPI staining.

Particulate organic Carbon (POC) and Nitrogen (PON), Dissolved organic 

carbon (DOC) and nitrogen (DON) and dissolved inorganic nitrogen (ammonium, 

nitrate and nitrite) were measured every two or three days. POC and PON samples (one 

per flask and per sampling occasion) (30ml) were analysed as described in section 

2.3.2.2 of Chapter 2. The filtrates (30ml, from POC and PON samples) were used for 

inorganic nutrient analysis (see section 2.3.1 in Chapter 2). DOC and DON were 

analysed by HTCO (see section 2.3.2.1 in Chapter 2). The filters (GF/F or A/E) used in 

this study were pre-combusted (650°C for 6 hours) to reduce the nominal porosity to ~ 

0.4 pm. Typical Vibrio cells have a diameter of about 0.8 to 1.0 pm, and around 3-8 

pm for P. vestita, therefore most of the bacteria and microflagellates were retained onto 

the filters (Nayar & Chou 2003).

4.3 Results

4.3.1 Vibrio natriegens Carbon and Nitrogen dynamics

In the initial experiment, bacteria were grown in the absence of the predator with 

a range of organic substrate C:N ratios. All substrate C:N ratios (C:Ns) supported 

bacterial growth. This bacterial growth was reflected in the decrease of DOC and DON 

(due to bacterial uptake) and the increase/assimilation in POC and PON (due to 

bacterial assimilation, see Fig. 4.01) with time. POC and PON attained a maximum 

between day six and 13, with a similar peak in N H / due to nutrient regeneration.

119



Chapter 4 Organic C and N  stoichiometry and trophic transfer

D O C  and D O N  concentration decreased rapidly until day nine then remained 

low towards the end of the experiment. Only three of the six treatments were measured 

for D O C  and D O N  concentrations due to instrument failure. For the highest C : N s  

(15:1), D O C  concentrations declined to around 8 mg C  L'1, whereas the two other 

treatments shown (1.5 and 6) had a lower final concentration around 2 mg C L '1. The 

amount of D O C  taken up increased with C : N s  from 2.9 to 7.4 mg C  L”1, whereas, for 

D O N ,  it remained in the same range (0.9 -  1.7 mg N  L'1) independent of substrate 

stoichiometry (Table 4.02).

P O C  variations with time ranged from 0.21 mg C  L'1 to 2.07 mg C  L'1, the 

smallest increase recorded being for the lowest C : N s  (Fig. 4.01-c). Flasks amended with 

C : N s  of 6, 9 and 15 exhibited a similar pattern, reached maximum values of P O C  at the 

same time and corresponded to similar maximal P O C  concentrations at day 6 ( ~ 2 mg 

C  L'1). P O N  reached a maximum (0.15-0.25 mg N  L '1) on day nine for all C : N s  except 

for C : N s  of 3:1 that reached a maximum on day 6. The highest P O N  values were 

observed for C : N s  of 6 and 9 (Fig. 4.01-d).

The average value of bacterial C : N  at inoculum was 4.49 ± 0.63. In all cultures, 

bacterial C : N  increased with time (Fig. 4.01-f) to reached a maximum around day four, 

then decreased toward the end of incubations. Bacterial C : N  ( C : N p )  also increased with 

increasing C : N s  (Fig. 4.01-f). Furthermore, C : N p  values were similar (at 4-6) for low 

C : N s  (1.5 and 3) or high (-10-12) C : N s  (9 and 15) with mid values (of -  8) displayed 

for a C : N s  close to Redfield ratio (-6). Bacterial cell density (not shown) peaked at day 

4 for all C : N s  with a maximum of 1.5 x 107 cell L '1 ( C : N s  = 15:1).
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Figure 4.01. D O C  (a), D O N  (b), P O C  (c), P O N  (d), particulate C : N  (e) and N H 4+ (f) for 
Vibrio natriegens incubations grown under different substrate C : N  ratio conditions. 
Symbols represent the different C : N s  ratios with 1.5:1 (black circle), 3:1 (triangle 
down), 6:1 (square), 9:1 (diamond) and 15:1 (triangle up). Error bars are ± S.E. from 
duplicates

121



Chapter 4 Organic C and N  stoichiometry and trophic transfer

4.3.2 V. natriegens and P. vestita: C and N  dynamics when heterotrophic predator 

present

In the second experiment, V natrigens were incubated in presence of a predator, 

P. vestita, with the same range of organic substrate C:N ratios as used in the first 

experiment. In contrast to the first experiment, DOG concentrations decreased to a 

minimum of approximately 2 mg C L'1 at the same time (day four) for the three 

treatments shown (1.5, 6, 15) and remained at this low concentration until the end of the 

experiment (Fig 4.02-a).

The quantity of DOC taken up (Table 4.02) exhibited the same pattern as for V. 

natrigens alone, in that it increased with increasing C : N s .  However, these quantities 

covered a greater range of values (1.9 -  13.5 mg C L '1).

D O N  decreased during the same period (Fig. 4.02-b), with a minimum value of 

0.0 -  0.2 mg-atoms N  L'1 reached at day six and with no major differences recognised 

between treatments. This response was concomitant to the uptake of D O N  (Table 4.02), 

of which values remained between 1.2 -  1.4 mg N  L'1 (similar to V. natrigens alone, 0.9 

-1 .5  mg-atoms N  L"1). D O N  uptake was independent of C : N s  . As for bacteria alone, 

P O C  attained maximal values (0.97 -  4.99 mg C  L'1) at day four (-cell peak) for all 

C : N s .  Similar to V. natrigens alone, media with low C : N s  (1.5 and 3) exhibited the 

smallest P O C  increase (Fig. 4.02-c), whereas, highest P O C  values were associated to 

high C : N s  (9 and 15). However, C : N s  of six fell in the middle of these P O C  values, 

which is different from the response with V natrigens alone where flasks with C : N s  of 

six, nine and 15 were close. A very similar pattern was recognised for P O N  (Fig. 4.02- 

d) with lowest values in flasks with C : N s  of 1.5 and 3, mid concentration for C : N s  of 6 

and highest N  biomass recorded for C : N s  of 9 and 15.
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The C : N  stoichiometry of the particulate pool (Fig. 4.02-f) varied with time with 

an initial increase to day four to six, then decreasing till day nine but not for C : N S  of

1.5 that carried on increasing till the end of the experiment. C : N p  ranged between 4.8 

and 8.6 with the highest values observed for the highest C : N s  (9 and 15).

Bacterial abundance was greatest (7.8 x 106 cell L’1, C : N s  = 15) at day five. 

However, bacterial abundance was on average approximately half of that obtained when 

V natrigens was alone. P. vestita abundance increased until day seven to nine, reaching

3.3 x 106 cell L '1 for the highest C : N s .

4.3.3 Maximum biomass, C:Np and N H f

In the prey only experiment (first experiment), the concentration of regenerated 

ammonium increased with time (Fig. 4.1-e), however the magnitude of this regeneration 

decreased with increasing C : N s .  A similar pattern was observed in the prey and predator 

experiment (second experiment), where NFLf1" concentrations peaked at day six for all 

treatments (Fig. 4.02-e) and remained approximately constant till the end of experiment 

(0.6 -  1.2 mg-atoms N L-1). The inverse correlation of N H / regeneration and increasing 

C : N s  was corroborated by the relation observed in Figure 4.03. This figure depicts the 

changes in maximum yield of P O C ,  P O N ,  N H / and maximum C : N p  with changing 

C:NS.

Maximum concentration of N H / decreased with increasing C : N s  (Fig. 4.03-a 

and b) for both experiments (V natriegens alone and V. natriegens + P. vestita). This 

trend was inversely correlated with P O N  concentration that increased with increasing 

C : N s .  P O C ,  at time of maximum biomass, also increased with C : N s .  C : N p  (of bacteria 

alone or bacteria + grazers) increased with C : N s  even if C : N p  were generally greater at 

cell peak than at the end of the experiment. However, the range of C : N  (5 to 12)
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Figure 4.02. DOC (a), DON (b), POC (c), PON (d) particulate C:N (e) and NH4+ (f) for 
Vibrio natriegens and Paraphysomonas vestita incubations. Symbols represent the 
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displayed by bacteria alone (Fig. 4.03-a) were higher than those (5 to 8) found with

bacteria associated with the predator (Fig. 4.03-b).

4.3.4 Carbon Gross Growth Efficiency and Nitrogen regeneration

Gross growth efficiency (GGE) was calculated as the amount of biomass ( P O C )  

produced divided by the amount of D O C  taken up over the same period of time (day 

zero to six when bacteria were alone and day zero to 4 when the predator was also 

present). GGE was low for both systems studied, with on average 25.1 % for V. 

natrigens alone and 26.8 % for V. natrgens + P. vestita (Table 4.03).

However, no variations of GGE with C : N s  was observed and therefore GGE was not 

significantly influenced by C : N s .

Biomass specific regeneration rate of nitrogen (in the form of NH4+) was 

estimated according to the C : N  mass balanced model of Goldman et al. (1987) who 

proposed thatN  regeneration is related to substrate, C : N s ,  and particulate, C : N p ,  ratio:

along with C t , the rate of carbon uptake (calculated as D O C  concentration decrease per 

unit of time) and GGE. En ranged between 1 and 17 pg N  (mg C )" 1 h'1 (Fig. 4.04-a). The 

major feature of N  regeneration rate (Fig. 4.04-a) was its decrease with increasing C : N s .  

More surprisingly, this N  regeneration rate was similar in both experiments, when one 

would expect the predator-prey system to be more efficient in terms of N  regeneration.

'  1 G G E N
^  , r  S-l -KT ? equation 4.01
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A-POC (Fig. 4.03-b) was calculated as the difference between POC at Tzer0 and 

POC at maximum biomass (day 4 for V. natriegens alone, day 5 for V. natriegens + P. 

vestita) and plotted for each C:Ns. Generally, A-POC increased sigmoidaly with 

increasing C:Ns. Below a balanced Redfield value of C:Ns(6:l), the variation of POC 

was similar in both V. natriegens alone and V natriegens + P. vestita. However, above 

a C:Ns of 6 :1, A-POC diverged in the two treatments, reaching value of 1.5 mg C L'1 

when V natriegens was grown alone whereas A-POC was higher (3.5 -  4.0 mg C L'1) 

when the predator was present.

Particulate C:N ratio at time of maximum biomass was always greater than five 

and increased with increasing C:Ns (Fig. 4.04-c). The slope of the linear regression was 

higher when bacteria were grown with predator than when bacteria grown alone 

(Regression line are: C:Np= 0.188 x C:Ns + 5.56, r2=0.71, p<0.01 and C:Np= 0.255 x 

C:Ns + 5.08, r2=0.93, p<0.01, for V natriegens and V. natriegens + P. vestita 

respectively).

4.4 Discussion

4.4.1 Variability o f C:N ratio in prey predator system

The first hypotheses investigated in this experiment was the effect of organic 

substrate carbon to nitrogen (C:Ns) ratios on bacterial carbon to nitrogen stoichiometry 

(C:Np). In aquatic systems, C:N stoichiometry may govern whether a system will be C 

limited (low C:Ns) or N limited (high C:Ns) (Redfield 1963). In this experiment, C:Ns 

of 6:1, 9:1 and 15:1 generated similar bacterial biomass (POC) of ~ 2 mg C.L-1. These 

C:Ns exceeded the bacterial C:Np of 4.5:1 proposed by Bratback (1985) and Fagerbakke
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(1996) as a metabolically stable cellular C:N for bacteria. Therefore, the supposedly 

balanced Redfield value of 6:1 produced a N-limited condition for bacteria hence the 

similarity in response at this C:Ns (6:1) with C:Ns of 9:1 and 15:1 (also N-limited

conditions). The results are consistent with Goldman (1980) who previously suggested
. )

that Redfield ratio of 106:16:1 does not offer nutritionally balanced conditions for 

bacteria (as compared to phytoplankton or other marine organisms).

The variation of cellular elemental composition (C and N) with varying nutrient 

ratios has been long debated and is still a matter of controversy (Bratbak 1985, 

Goldman et al. 1985, Goldman & Dennett 2000, Kirchman 2000). Furthermore, studies 

using organic C and N as substrate are rare (Tezuka 1990) and studies investigating the 

subsequent trophic transfer of produced biomass are required. Goldman et al. (1985) 

argued for an invariant bacterial C:N, regardless of substrate C:N. They found a low and 

invariant C:N of bacteria (5.1 ± 0.57) even with a 10-fold change in substrate C:N. 

Later, however, Goldman et al. (2000), revised their statements in favour of variable 

bacterial C:N, reporting values ranging from 4.5 to 7 in batch cultures and 4.5 -  11 in 

continuous cultures. Tezuka (1990), in a study that utilised both organic C and N, 

demonstrated that bacterial C:N increases with increasing substrate C:N. In accordance 

with Tezuka (1990), this work demonstrated bacterial C:N ratio to increase with 

increasing C:Ns (i.e. with increasing N limitation). This was confirmed by a significant 

linear relationship (r2=0.78 and p value < 0.05) found between bacterial C:N and 

substrate C:N. C:Np values observed (from 5.3 to 8.6) were in the range of value 

reported in previous studies (Kirchman et al. 1982a, Fukuda et al. 1998) and, hence, 

further question the assumed constancy of bacterial C:N.

When the grazer was present, a similar linear relationship was found between 

C:Np and C:Ns (r2=0.94 and p-value < 0.01), which was close to that obtained when
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Chapter 4 Organic C andN  stoichiometry and trophic transfer

V. natrigens were grown alone (Fig. 4.04-c). This indicates that the C : N  of the 

combined bacteria and grazer system increased with C : N s  and that the predator did not 

modulate the C : N  of the system to balance proportions but exhibited the stoichiometry 

of the food it received.

4.4.2 C:N stoichiometry and GGE

The GGE of the bacteria and microflagellate system may be governed either by 

the C : N  stoichiometry of the substrate, or by the limiting nutrient defined as that in the 

least relative nutrient supply in term of Redfield stoichiometry. Kroer (1993) reported 

that bacterial GGE decreases with increasing C : N s  in continuous cultures, however this 

decrease in GGE occurred over a very small range of C : N s  (6.6 -  7.4). Similarly, 

Goldman and Dennett (2000) found GGE of natural bacteria to be high when a single N  

source was used and they found that GGE was also high when C : N s  was low (<3:1). 

They concluded that GGE of 50% should be expected when both N  and C  sources are 

readily available to bacteria. However, this bacterial GGE (calculated when bacteria 

were alone) was independent (linear regression: GGE = 0.5 x C : N s  + 22.5, r2 = 0.22, p- 

value > 0.05) of C : N s  even at very low C N s  (1.5:1). Calculated GGE (19 to 32 %) fell 

in the lower range of commonly accepted values for this parameter (see Table 4.03) 

despite readily available sources of C (glucose) and N  (arginine).

GGE did not vary with substrate stoichiometry, it may vary with substrate 

complexity or availability (Benner et al. 1992, Goldman & Dennett 2000). Increasing 

substrate complexity may force bacterial cells to allocate energy differently to overcome 

costs of enzyme production or active nutrient transport. This might have been the case 

in our experiment as simple C and N sources were utilised hence bacterial cells directed 

energy to growth. Furthermore, the use of arginine as sole source of nitrogen in this
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experiment could explain the low GGE observed. This would be consistent with the 

results of Hollibaugh (1978) who found the uptake of arginine (C:N = 1.5:1) to lead to 

the lowest GGE (-30-32 %) of all substrates studied.

Along with C : N S and the form of available C and N ,  C : N B appears as a major 

determinant of GGE (del Giorgio & Cole 1998). Goldman et al. (1987) stipulated, 

based on their model (equation 4.1), that C : N s  governs GGE and therefore N  

regeneration efficiency. In the experiment with bacteria alone, C : N p  is not constant and 

encompass large variation (4 -  11). Hence, although Goldman’s model simulated our 

data (similar trend to Goldman’s data for E n  v . s . C : N s ) ,  this was because of increasing 

C : N p  over exponential growth duration (day 0 to day 6-9), and not because of 

decreasing GGE as suggested by those authors.

It is not impossible to think that GGE could be species specific therefore, as only 

V natriegens was used in this study, a constant GGE was observed and the regulation 

mechanism (in the model of Goldman) would be led by C:Np not GGE. The effects on 

GGE of phylogenetic composition have already been suggested but are very poorly 

understood (del Giorgio & Cole 1998, del Giorgio & Cole 2000).

The findings described in this Chapter are not, however, in disagreement with 

the concept of carbon conservation where C taken up is retained by the cell in 

proportion to C limitation and that only a stoichiometrically fixed quantity of N is 

utilised under such conditions. In fact, the rather constant and low GGE found in this 

experiment and the similarity in the C:N stoichiometry of bacteria or bacteria and grazer 

may have been hidden by fast regulation at cellular level as exhibited by the important 

variations (between 5 and 12) of particulate C:N with time (Fig. 4.01-f and 4.02-f).
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4.4.3 Coupling C:Ns and N  regeneration

Results from this experiment confirmed the relationship between C : N s  and En, 

as regeneration rates increase with decreasing C : N s .  This relationship is well described 

by the equation 4.1 (at least for exponential growth), and is in agreement with other 

studies (Hollibaugh 1978, Van Wambeke & Bianchi 1985, Goldman et al. 1987). One 

of the major findings of Goldman et al. (1987) was a threshold of C : N s  10:1 under 

which regeneration of N  by growing bacteria occurs. In this study, however, En was low 

but still finite for C : N s  of 15:1. In his work, Goldman stipulated that the C : N  ratio of the 

carbohydrate source of C  and the amino acid and protein source of N  will determine N  

regeneration of bacteria. However organic N  in nature cannot meet the N  requirements 

of bacterial growth that have to be supplemented by inorganic N  (Kirchman et al. 

1982b, Wheeler & Kirchman 1986). Hence, it may be possible that, when C : N s  is 

greater than 10 (e.g N  poor), N  excretion (in the form of ammonia) should not occur. 

However, this N  excretion occurred in this experiment with C : N s  greater than 10 (i.e. 

C : N s  = 15:1), which suggests that the C : N  ratio of 10 cannot be use as a threshold for N  

regeneration. Kirchman (2000) also identified similar strong coupling between C : N  and 

N  regeneration, along with C : N s  and C:Nb and defined “breakeven points”, where net 

excretion or uptake of ammonia occur, however he concluded that this C : N  mass 

balance model cannot explain N  fluxes in natural systems.

4.4.4 Grazers as a regulatory feedback mechanism

N regeneration was similar with or without grazers reaching values of 1.2 mg L '1 

for the lowest C : N s .  Nitrogen recovery (defined as the amount of N assimilated + 

regenerated divided by the amount of DON taken up), however, was enhanced when
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grazers were present. Davidson et al. (2005) described an increasing En with decreasing 

C : N  ratio of substrate (preys in his study). This was also found in this experiment with 

the increasing trend of particulate C : N  with increasing C : N s .

In these experiments, the GGE of the system was found to be poorly influenced 

by substrate C:N. The similarity in the average of GGE, whether or not grazers were 

present (24 vs 25 %, without and with grazer respectively), confirmed the fact that the 

growth of the system is ultimately governed by the “primary” resource of the system.

The variation of P O C  with increasing C : N s  (Fig. 4.04-c) did not differ between 

the first experiment (prey alone) and the second experiment (prey-predator system). 

This suggested that, under 6:1, the nutritional conditions did not support sufficient 

bacterial growth and the subsequent growth of the flagellate. However, C : N s  of 6:1 and 

above generated greater biomass in the prey predator system (Fig. 4.04-b). Similar 

patterns were found by Goldman et al. (1991) where A - P O C  increased with increasing 

C : N s  according to a linear relationship. Differences in C : N p  in the presence and absence 

of grazers (Fig. 4.01 and 4.02, f) demonstrated the key importance of the flagellate in 

regulating the stoichiometry of the prey-predator system by preventing excessive 

increase of C : N p  (maximum value of C : N p  of 12 and 8 without and with predator 

respectively).

The uptake of D O C  was greater when grazers were present (Fig. 4.01 and 4.02, 

a) as D O C  was exhausted at day 5  for all C : N s .  In this experiment, it seems likely that 

the difference in C  uptake was due to a faster turn over of bacterial population as 

bacterial biomass was cropped by heterotrophic grazers, hence, leading to further 

consumption of D O C  by bacteria, compared to when bacteria were grown alone. It has 

also been suggested that marine microflagellates are able to uptake directly organic 

compounds of the size of polysaccharides or proteins (Tranvik et al. 1993) which could 

account for some of this greater consumption of organic substrates.
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4.4.5 Effect o f  potential phosphorus limitation, implications for growth and N  

regeneration

Thingstad and Pengerud (1985) stated that bacterial growth is mainly driven by 

grazing and inorganic nutrients, such as phosphorus, not just by organic C resources. In 

this experiment, flasks were not amended with inorganic phosphorus and, therefore, the 

potential for phosphorus limitation cannot be neglected. However, the presence of P 

was revealed by subsequent measurements. Vrede et al. (2002) found P limitation to 

give the largest cells (5 to 10 times bigger than C limitation) with the highest C content 

(2 to 3 times) and the highest average C:N (9.5 ± 1 v.s 3.8 for C limited and 7.5 for N 

limited). The C:Np ratios observed here were in the range of values reported in other 

studies carried out in P replete conditions (Bratbak 1985, Goldman et al. 1987). 

Furthermore, C and N content (from POC and PON values) were closer to what has 

been found in non P-limited cultures (Nakano 1994, Fukuda et al. 1998). In addition, if 

the system was phosphorus limited, the uptake of N (and C) would have stopped with P 

exhaustion. Therefore it is unlikely that bacteria and grazers experienced P limitation in 

this experiment.

4.5 Conclusion

This set of experiments emphasize the importance of organic substrate C : N  ratio 

in microbial system. The C : N s  and C : N p  were closely linked for both bacteria alone and 

bacteria and grazer and the increase of C : N p  with increasing C : N s  demonstrated the 

influence of substrate upon the stoichiometry of organisms. No effects of C : N s  on GGE 

were found and the variation of particulate C : N  with time might have explained the low 

and constant GGE. This study highlighted the importance of predator in increasing the 

yield of the system (particularly at high C : N s )  and as a mechanism of regulation of the
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system. N regeneration was similar in both bacteria alone and bacteria and grazer 

experiments, suggesting that flagellates were inefficient in the transfer of N. However, 

P. vestita enhanced the bacterial utilisation of DOC by grazing on V natriegens. 

Finally, this experiment indicates that the common assumption, particularly in 

mathematical models, of constant C:Np (for example the C:N of bacteria) has to be 

taken with caution, along with the importance of the C:N ratio of the substrate.
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-  CHAPTER 5 -

The role o fN  or Si limitation on diatom DOMproduction and 

subsequent microbial community dynamics.

5.1 Introduction

Dissolved organic matter (DOM) is an important substrate for bacterial growth 

in aquatic ecosystems (Azam & Hodson 1977, Azam et al. 1994, Hedges et al. 1997). 

The breakdown of this matter supports bacterial biomass increase (which may in turn be 

grazed by heterotrophic predators) with a fraction being regenerated in inorganic form. 

DOM may result from riverine (Meybeck 1993, Hedges et al. 1997) or atmospheric 

(Buatmenard et al. 1989, Hedges & Keil 1995) input, from anthropogenic sources 

(Jickells 1998) or from micro- and meso-zooplanton grazing (Strom et al. 1997, Nagata 

2000). In addition to these various sources, extracellular release of DOM by 

phytoplankton contributes significantly to the DOM pool (Carlson & Hansell 2002).

Diatoms (Bacillariophyceae) are a particularly important component of the 

phytoplankton, contributing 20 ~ 25 % of the global net primary production (Werner 

1977). Their requirement for silicon makes them most prevalent in coastal waters 

(Conley & Malone 1992), where a spring bloom of diatoms is often the major feature of 

the annual cycle of plankton succession. The large magnitude of the spring diatom 

bloom suggests that factors governing the quantity and quality of the DOM produced in 

the nutrient limited senescent phase of this event are likely to be of critical importance 

to the subsequent abundance, composition and productivity of the bacterial communities 

of coastal waters.
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Nutrient stress has been shown to stimulate this DOM excretion by 

phytoplankton (Lancelot & Billen 1984). Moreover, as nutrient stress influences the 

chemical composition of phytoplankton (Droop 1968, Caperon & Meyer 1972, 

Sakshaug et al. 1983, Obemosterer & Herndl 1995), it may influence the quality and 

quantity of DOM released (Sondergaard et al. 2000, Puddu et al. 2003, Grossart & 

Simon 2007). For diatoms, Myklestad (1974) and Myklestad et al. (1977) demonstrated 

that glucans (polymers of glucose) are common storage products, which provide a suite 

of bioavailable compounds (Hama et al. 2004). Glucans only accumulate in diatoms 

when growth is suboptimal (Myklestad 1974), a result that may be influenced by the 

form of nutrient limitation (N-or Si-limited) experienced by the population (Gilpin et al. 

2004). For example, enhanced glucan concentrations are found under N-limitation. 

Under silicate limiting conditions, however, silicification processes within diatom cells 

are compromised leading to weaker cell walls and potentially “leaky” cells (Martin- 

Jezequel et al. 2000), with the potential for enhanced DOM release (Maestrini & 

Graneli 1991). Hence, the form of nutrient limitation is likely to influence both quantity 

and quality of DOM produced by diatoms and, hypothetically, the resultant growth and 

composition of the bacterial populations utilising the organic matter released.

In Scottish and other temperate waters, Skeletonema sp. are commonly the 

dominant diatoms within the spring bloom (Tett 1992, Fehling et al. 2006). Hence, the 

period marking their cessation and decline might be expected to introduce significant 

DOM loading within coastal waters. The inorganic N:Si ratio within these and other 

temperate waters is often close to one (Conley & Malone 1992, Fehling et al. 2006) 

with both nutrients having the potential to be the limiting factor that arrests the spring 

diatom bloom. The field study detailed in Chapter 3, highlighted that the N:Si ratio 

varied with time and hence could have an influence on the microbial, particularly the 

phytoplankton, dynamics. In addition, the field study of Scottish coastal water (Chapter
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3) indicated that the phytoplankton was the dominant source of organic carbon. This 

study, therefore, investigated the effect of N- and Si- limitation on the extracellular 

release of DOM by the important diatom Skeletonema costatum and the utilisation of 

this material by natural bacterial assemblages collected from coastal waters. Using time 

course incubations within laboratory microcosms we studied bacterial abundance, 

production and taxonomic composition. As grazing pressure from heterotrophic 

flagellates is also important in controlling bacterial populations (Caron 2000, Caron et 

al. 2000), DOM addition experiments were conducted in the presence (whole seawater) 

and absence (1 pm-screened seawater) of these grazers.

5.2 Experimental design and additional methods

The experiments were conducted in two stages (Fig. 5.01). Initially, cultures of 

Skeletonema costatum were grown to nutrient limited stationary phase under either N or 

Si limitation. The DOM produced was collected by ultra-filtration and then 

subsequently quantified and characterised by HTCO (high temperature catalytic 

oxidation) and HPLC (high performance liquid chromatography) respectively. Secondly 

this harvested DOM was added to freshly collected samples of natural seawater. The 

subsequent changes in bacterial abundance, production and community composition, 

produced in response to DOM generated by N- or Si-limited S. costatum, were 

measured. DOM addition experiments were conducted using natural seawater with or 

without screening for grazers, in order to generate conditions representing natural and 

reduced density of in situ grazing flagellates.
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5.2.1 Skeletonema costatum cultures: generation o f DOM.

Axenic cultures of Skeletonema costatum (Cleve 1897), previously isolated from 

the field work station (C5) of Loch Creran (CCAP, 1077/9), were grown in 10 litre 

polycarbonate carboys containing autoclaved filtered seawater (8 litre) with a slightly 

modified f/2 medium (Table 5.01). EDTA was excluded to avoid additional sources of 

DOC. Cells were maintained at 15°C under a 12/12 light/dark photo-cycle and a photon 

flux density of 160 pE m'2 s'1. All experimental equipment was both acid washed and 

steam-sterilised (121° C; 15 minutes) prior to use. All experiments were conducted in 

duplicate.

In order to generate DOM characteristic of N- and Si- limited phytoplankton, 

different initial concentrations of inorganic nitrate and silicate were used. To achieve N 

limitation, a N:Si ratio of 1:3 (40 pM and 120 pM, respectively, see Table 5.01) was 

used with silicate limited diatoms being produced through growth on a N:Si ratio of 3:1 

(120 pM and 40 pM, respectively). S. costatum growth was followed by the daily 

collection of samples for the determination of chlorophyll a (chi a). 30 ml of samples 

were analysed as described in section 2.1.3.3, in Chapter 2.

Table 5.01. Composition of experimental media for Skeletonema costatum cultures.

Concentration Volume added (ml) Final conc. (pM)
Si-lim. N-lim. Si-lim. N-lim.

n o 3 0.1 M 12 4 120 40
Si(OH)4 0.1 M 4 12 40 120
P 04 5.565 mg/L 10 10 37 37
Vitamins f/2 10 10 f/2 f/2
Trace metals f/2 1 1 f/2 f/2
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5.2.2 DOM harvest and ultrafiltration

DOM generated within the cultures was harvested during nutrient limited 

stationary phase (after 14 days growth in both nutrient regimes). Cultures were filtered 

by gravity through a pre-ashed GF/F filter (Whatman, 0.7 pm nominal porosity; Nayar 

& Chou 2003), and DOM containing filtrate was collected in acid cleaned conical 

flasks. DOM was subject to tangential filtration (Schleicher & Schuell, Germany), using 

a 1 kDa membrane, to enable determination of the DOC and DON content of the low 

molecular weigh (LMW < lkDa) and high molecular weigh (HMW > lkDa) extracts of 

the phytoplankton DOM (Saunders 1976).

5.2.3 DOM addition experiment

Seawater was collected from 10 m with a Niskin bottle from Loch Creran 

(station C5), then pre-screened with a 160-pm mesh net to remove macro-zooplankton 

and the screened sample stored in a Nalgene carboy during its rapid return to the 

laboratory (Fig. 5.01). Half of the seawater sample was then filtered by gravity through 

GF/F filters to reduce grazers (screened seawater) with the remaining half being used as 

collected (non-screened seawater).

DOM generated from both N- and Si-limited Skeletonema costatum cultures was 

added to duplicated one litre flasks containing the Loch Creran seawater, either 

screened or non screened (see Table 5.02). Inorganic nutrients as nitrate, silicate and 

phosphorus (lOpM, lOpM, 1 pM, respectively) were added with the DOM to prevent 

inadvertent inorganic nutrient limitation of bacterial growth. This enabled the results of 

this study to be related to the lability and influence of DOM in inorganic nutrient replete 

conditions only. To provide control comparisons, two additional treatments (using both
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screened and non-screened Creran seawater) received inorganic nutrients only (no 

DOM) or no nutrient addition (inorganic or organic). In the following section, 

treatments are referred as (1) “Si-DOM” for treatments receiving DOM from Si-limited 

phytoplankton cultures, (2) “N-DOM” for treatments receiving DOM from N-limited 

phytoplankton cultures, (3) “Inorganic” for inorganic nutrient additions alone and (4) 

“control” when no additions were made. All experimental and sampling equipment was 

acid cleaned and rinsed with milli-Q water to prevent any organic carbon or nitrogen 

contamination. Flasks were incubated for 72 hours at 15°C on a 12/12 hr light/dark 

cycle under a photon flux density of 160 pmoles.m^.s'1, and were sampled, after gentle 

shaking, every 24 hours.

Table 5.02. Experimental set up with additions of phytoplankton-produced DOM and 
inorganic nutrients.

Si-limited N-limited NO3* PO43' Si(OH)4
 produced DOM produced DOM (pM) (pM)_____(pM)

Screened l:9a - 10 1 10
l:9a 10 1 10

-  10 1 10

Non-screened l:9a - 10 1 10
l:9a 10 1 10

10 1 10

a volume:volume addition

5.2.4 Sample analyses

Inorganic nutrient concentrations in the cultures were monitored every two days

and were analysed according to section 2.1.3.1, in Chapter 2. DOC and DON samples

were collected every two days in the cultures and for each time point of the time course

incubation, and analysed according to section 2.1.3.2, Chapter 2. The extraction of the

carbohydrates from the DOM harvested and the subsequent liquid chromatography
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analyses are detailed in section 23.2.2 in Chapter 2. Enumeration of HNAN was 

performed according to section 2.1.4.1.2 in Chapter 2. Bacterial abundance (BA) and 

bacterial production (BP) were measured following the methods described in sections

2.1.4.1.4 and 2.1.4.2, Chapter 2, respectively. Finally, Bacterioplankton community 

structure was analysed by FISH following the method described in section 2.4.2 in 

Chapter 2.

5.3 Results

5.3.1 Phytoplankton generated DOM

Both Skeletonma costatum cultures reached maximum abundance between day 

seven and eight with chi a concentrations of 0.16 and 0.10 mg chi a equivalent m'3 for 

Si and N limitation respectively. In Si-limited cultures, diatom cells continued to take 

up nitrate when silicate was exhausted, whereas silicate uptake ceased with N 

exhaustion in N limited cultures (Fig. 5.02). When the S. costatum cultures were 

harvested, at day 14, DOC concentrations were 319 pM and 239 pM for Si- and N- 

limited cultures respectively. DON concentrations were 35 and 29 pM for Si- and N- 

limited cultures respectively.

5.3.2 Characterisation o f the DOM produced by S. costatum

Following tangential filtration, the relative proportion of LMW and HMW 

compounds were similar in the DOM generated in both nutrient regimes. The majority
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Figure 5.02. Chlorophyll a (♦) nitrate (•) and silicate (V) concentrations in both (a) N- 
limited (b) Si-limited cultures of Skeletonema costatum.

of DOC produced was composed of LMW compounds (Table 5.03), with 72% and 68% 

for Si- and N-limited cultures, respectively. A similar pattern was observed for DON 

with 59 and 69% of the organic matter being LMW compounds for Si- and N-limited 

cultures respectively.
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Table 5.03. Percentage of LMW and HMW in DOC and DON in inoculums, and C:N 
ratio for each molecular weight fraction.

________DOC___________  DON________________C^N________
____________ LMW HMW LMW HMW LMW HMW

N-DOM 68.5 31.5 69.3 30.7 6.9 7.2
Si-DOM 72.6 27.4 59.5 40.5_______ 5.0_______ 3.3

Notwithstanding the similarities in the bulk composition measurements above, 

chromatography of DOM extracts produced by Si- and N-limited phytoplankton 

revealed differences in their composition. During analysis of mono- and di-saccharides 

(sugar-like compounds) in the Si-limited DOM on a Polyamine II column, a distinct 

peak with an absorption maximum at 210 nm eluted at retention time 18.7 min (Fig.

5.03 a and b). In contrast, no signals were recorded in N-limited DOM under the 

chromatographic conditions used. Chromatography of these carbohydrate extracts on a 

PL-GFC column revealed differences in molecular weight composition. Figure 5.03-c 

indicates that the N-limited extracts were dominated by two high molecular-weight 

components, as demonstrated by the refractive index (RI) signals that eluted at 10.5 and 

13.6 min. Using a plot of log Mr of standards versus retention time, the relative 

molecular mass of these peaks were estimated to be >1,400,000 and 330,000 Da 

respectively. Since the first peak eluted in the void volume of this column, this peak 

could represent one or more high molecular weight species, the mass of which were 

unresolvable under the conditions used, yet dominating the composition of these 

extracts. DOM produced by Si-limited phytoplankton displayed a similar peak profile 

except for the distinctly reduced signal of the peak defining the void volume (Fig. 5.03-

d).
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Figure 5.03. HPLC chromatograms of extract from Si-limited S. costatum with 
Polyamine II column (a, b) or PL GFC column (d) and extract from N-limited S. 
costatum with PL GFC column (c).

5.3.3 DOM addition experiments: initial DOM concentrations

Seawater sampled from Loch Creran (station C5) had in situ DOC and DON 

concentrations of 120 pM and 13 pM, respectively, as can be observed from the tzero 

concentrations of the control and inorganic treatments (Fig. 5.04). DOM harvested from 

both Si- and N-limited S. costatum was added separately to the Loch Creran seawater to 

obtain similar concentrations of DOC and DON in the Si-DOM and the N-DOM 

incubations. These concentrations supplemented the background DOC and DON to give 

tzero concentrations of 200 -  230 pM C and 16-17 pM N (Fig. 5.04).
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Figure 5.04. Dissolved organic carbon (DOC) and nitrogen (DON) concentrations in 
screened (a, c) and non-screened (b, d) seawater subject to Si-DOM (•), N-DOM (V), 
Inorganic (■) and control (0) treatments. No error bars are shown as calculated standard 
error was smaller than analytical accuracy (C ± 11 jiM , N ± 0.9 joM).

5.3.4 Changes in dissolved organic C and N  during the addition experiments

Considerable variability in DOC concentrations was evident over the 

experimental time course. However, in the screened treatments, DOC concentrations 

generally increased from the beginning to end of the experiments (one-way ANOVA, p 

< 0.01), but with no significant differences between treatments (Fig. 5.04-a). In contrast, 

no significant differences in DOC concentration either with time or treatments were
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found in the non-screened incubations (Fig. 5.04-c). In contrast to DOC, DON 

concentrations decreased in screened seawater until 48h (t4s) in DOM addition bottles 

(1-way ANOVA, p < 0.05) then increased between 48 and 72 (t72) hours (Fig. 5.04-b). 

In unfiltered treatments, DON concentrations were not statistically different between 

treatments.

5.3.5 Bacterial abundance and production

Marked differences in BA were evident within and between screened treatments. 

BA more than doubled between tzero and t24 in all cases (one-way ANOVA, p < 0.01). 

However, only in the Si-DOM treatment did BA continue to increase subsequently (Fig.

5.05-a), with BA being significantly greater at tis and t72 in this treatment (one-way 

ANOVA, p < 0.01). BP in the screened Si-DOM treatment increased from an average of 

6.8 to 11.4 pgC L '1 d'1 (Fig. 5.05-c) and was significantly higher than in the other three 

treatments (one-way ANOVA, p < 0.01), in this case for the whole experiment 

including t24. In contrast, while BP remained finite in the N-DOM treatment, it 

decreased in a similar manner to the inorganic and control treatments (no statistical 

difference between treatments, one-way ANOVA, p > 0.05).

In the non-screened treatments a different pattern was observed. BA initially 

increased, but to a lower abundance (~15xl08 cf. 20x108 cells L'1) at t24 (Fig. 5.05-b). 

Then, although, BA in the Si-DOM treatment exceeded the others at time t4s and t72, no 

significant differences were evident between treatments. BP decreased from tzer0 to t72 

(Fig. 5.05-d) with time in all treatments (one-way ANOVA, p < 0.01) from 10.5 to ~ 4 

pg C L'1 d'1. While no significant differences were found between treatments, at t24 both 

BA and BP were lowest in the non-screened Si-DOM treatment.
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Figure 5.05. Bacterial abundance (BA) and production (BP) in screened (a, c) and non- 
screened (b, d) seawater subject to Si-DOM (•), N-DOM (V), Inorganic (■) and control
(0) treatments. Error bars are standard error.

5.3.6 Bacterial community composition

FISH and epifluorescence microscopy were conducted on screened treatments 

only and revealed bacterial community composition to be governed by substrate quality 

(Fig. 5.06). Unfortunately, analysis of the tzero samples was unsuccessful, however as all 

treatments came from the same water sample, we can hence assume that the tzero 

community composition was identical for all experiments. At t24, y-proteobacteria
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dominated the community in all four treatments (Fig. 5.06), comprising -60% (N-DOM 

treatment) to -40% (control) of the bacterial community as determined by DAPI. /?- 

proteobacteria were also present in Si-DOM and N-DOM treatments at t24 but not in 

inorganic and control treatments.
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Figure 5.06. Time course of bacteria taxonomic composition in screened seawater 
samples subject to (a) Si-DOM , (b) N-DOM, (c) Inorganic, and (d) control treatments. 
Legend refers to Eubacteria (EUB338), Cytophaga-Flavobacterium or CFB (CF319), /?- 
proteobacteria (BET42a), y-proteobacteria (GAM42a) and a-proteobacteria (ALF968).

As incubation continued, the dominance of y-proteobacteria increased markedly 

in the Si-DOM treatment at t4s reaching 68.4 % of the total community (Fig. 5.06-a). In 

contrast, this group remained approximately constant in the inorganic treatment (Fig.

5.06-c) and decreased in the N-DOM and control treatment at t4s (Fig. 5.06-b and -d, 

respectively), with an unlabelled group of bacteria showing a transient increase at this 

time. In addition, p-proteobacteria almost disappeared from the community at t4s- All
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four treatments also exhibited, relative to t24, a higher proportion of CFB like bacteria at 

both t48 and more markedly at tn, reaching 45 % in the N-DOM treatment, against 17-25 

% in other treatments, a-proteobacteria and J3-proteobacteria were also present in all 

treatments at this point with the N-DOM and control treatments exhibiting significant 

increase of the a-proteobacteria between t48 and tn  (23 % and 17 %, respectively). 

Hence, while y-Proteobacteria remained the dominant group, bacterial community 

compositions at tn  were different from those found at t24 changing from y- 

proteobacteria domination to a balance between y-proteobacteria, the CFB group and 

a-proteobacteria but with treatment specific differences in the proportions of each 

group.

5.3.7 HNANgrazer abundance

Due to the plasticity of nanoflagellate cells and their resultant ability to pass 

through membrane pores much smaller than their typical diameter, screening of the 

Loch Creran seawater reduced rather than eliminated HNAN grazers within the 

screened incubations. Hence, in screened water, HNAN abundance was initially 

approximately half that in the non-screened water (Fig 5.07).

Subsequently, in screened incubations, HNAN abundance increased until Ls in 

the Si-DOM, N-DOM and inorganic treatments (Fig. 5.07-a), with concentrations at that 

time ranging from lx l 06 to ~ 3x106 cells L'1. Abundance then decreased between t48 

and X’j2‘ In non screened treatments HNAN abundance also increased within the first 24 

hours, then ceased for Si-DOM, inorganic and control, but continued to increase up to 

t48 in the N-DOM treatment (Fig. 5.07-b).
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5.4 Discussion

S. costatum was chosen as the source of DOM for the study as it frequently 

dominates the phytoplankton biomass during the spring bloom in Loch Creran and 

hence may be the single most important source of autochthonous DOM in these and 

other coastal waters. The particular strain studied had previously been isolated from 

Loch Creran from where the bacterial population, to which the DOM was added, was 

obtained. While it would have been possible, through nutrient manipulation, to generate 

N or Si limitation of natural seawater samples rather than to generate this DOM from 

laboratory cultures, the subsequent characterisation, quantification and manipulation of 

DOM concentrations would have been extremely problematic.
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5.4.1 DOMproduction

DOM was harvested after the marked decrease in the S. costatum biomass 

subsequent to its Si-limited nutrient limited peak. Such a major decrease in diatom 

biomass under Si limitation is consistent with results from S. costatum dominated 

mesocosms (Gilpin et al. 2004) and is similar to a rapid decrease in abundance we 

observed previously in Si-limited (but not P-limited) cultures of the diatom Pseudo- 

nitzschia seriata which often dominates the summer diatom community in Scottish 

waters (Fehling 2004).

DOC concentrations were greater in DOM harvested from Si than in N-limited 

cultures (319 and 239 pM respectively). However, if the DOC and DON produced (by 

day 14) was normalised to peak chi a concentrations (160 vs. 100 pg chi a m'3), there 

was relatively more DOC (23.1 cf. 31.4 mg C (mg chi a)'1) and DON (2.9 cf 4.5 mg N 

(mg chi a)'1) generated per unit biomass under N rather than Si limitation.

Reduced silicification under Si-limitation (Brzezinski 1985, Martin-Jezequel et 

al. 2000) leading to weaker and leaky cell walls, would be expected to contribute to 

enhanced release of intracellular organic compounds. However, the N-limited S. 

costatum, population that maintained a high biomass in stationary phase still generated 

relatively more DOM, perhaps indicating that much of the Si-limited diatom biomass 

was converted to particulate rather than dissolved organic matter.

As nitrate was exhausted in both Si- and N-limited conditions we can calculate 

the percentage conversion of nitrate to DON by S. costatum; this gives 29% and 72% 

for Si- and N-limited cultures respectively, indicating an extremely efficient conversion 

of N from inorganic to organic form in N-limited conditions. Hence, while one might 

expect that further DOM production by N-limited S. costatum would occur with time, as
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the biomass declined, the capacity for further DON production at least would be quite 

limited.

Within the DOM, Si- and N-limitation generated similar proportions of LMW 

and HMW material. Within the DOC pool, both treatments exhibited -70% LMW and 

-30% HMW. For DON, the LMW fraction was again dominant although somewhat less 

so under Si than N limitation (-60% LMW cf. -  70% LMW). The relative proportion of 

LMW and HMW matter has been suggested to be an important index of biological 

availability of DOM, with LMW material being expected to be more labile (Saunders 

1976). Although this conceptual model is still widely accepted other authors have 

demonstrated that HMW compounds may also be rapidly utilised by bacteria (Tranvik 

1990, Amosti et al. 1994, Amon et al. 2001). For example, Amon et al. (1996) reported 

higher rates of bacterial growth and respiration in HMW incubations than those with 

LMW incubations and concluded that the traditional model of DOM degradation does 

not appear to apply to the bulk of natural DOM. As we added the same amount of total 

DOM (as a combination of LMW and HMW material) to our microcosm experiments 

we cannot comment on the relative bioavailability of the two fractions. However, as 

discussed below, the greater bacterial productivity observed in the treatments receiving 

Si-DOM suggests differences in bio-availability that cannot be related to size alone. As 

measuring the bulk concentration of the DOM and in each molecular weight fraction is 

not sufficient to describe the differences in biological activity observed, we investigated 

the qualitative aspect of the DOM used in our experiment.

Qualitative characterisation of the carbohydrate extracts from the DOM 

confirmed that the form of nutrient limitation influenced the form of both LMW and 

HMW DOM pools. Analysis indicated that S. costatum produced small, sugar-like, 

compounds when Si-limited. In contrast, larger (>1400 kDa) compounds were produced 

by N-limited S. costatum, consistent with the greater biomass specific production of
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DOM in this case. Silicate uptake stopped with N exhaustion in N-limited cultures. 

However, as it has been demonstrated elsewhere (Davidson & Gurney 1999) 

phytoplankton may continue to fix C for some time under N-limitation leading to the 

production of these large carbohydrates. As the total organic matter content of the LMW 

and HMW pools were similar in both Si- and N-limited treatments, other compounds, 

unidentified in this carbohydrate based analysis, such as lipids and proteins will have 

contributed to the organic matter pools.

Hence, organic matter composition, rather than size seems to be the key factor in 

governing the growth of the natural assemblage of bacteria. If labile organic matter 

favours the growth of bacteria, larger and more complex compounds can, in contrast, 

exert a limiting effect on bacterial growth by their inherent refractory nature. This 

feature is common and has been reported for exopolysaccharides produced by micro­

algae (Aluwihare & Repeta 1999) and bacteria (Anton et al. 1988, Bejar et al. 1996, 

Ogawa et al. 1999, Gutierrez et al. 2007).

5.4.2 Changes in bulk bacterial properties

The similarity in BA and BP between inorganic and control treatments in both 

screened and unscreened conditions indicates that the addition of inorganic nutrients did 

not enhance bacterial growth and hence that inorganic nutrients were not limiting the 

community. This is in agreement with the observations made in Chapter 3 and inorganic 

nutrient replete conditions in Loch Creran are discussed in Chapter 6. However, the 

most striking result of the study was the sustained elevation of BP and BA in the 

screened Si-DOM treatment in comparison to the values recorded at tzero and to all other 

treatments throughout the experiment. As both the Si- and N-DOM treatments were also 

supplemented with inorganic nutrients one may conclude that bacterial metabolism was
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limited by the availability of organic matter, but that only the Si-DOM was sufficiently 

labile to alleviate this limitation. This is consistent with the characterisation of the DOM 

above in indicating that there were sufficient quantities of biologically available 

compounds within the Si-DOM to support elevated bacterial abundance and 

productivity over at least 72 hours.

Somewhat, in contrast with these results, is the lack of a clear pattern of changes 

in DOM (and in particular DOC) concentrations in the experiments. As these 

experiments were conducted in carefully controlled laboratory conditions, albeit with 

natural seawater samples, this illustrates the difficulty in drawing conclusions on DOM- 

driven microbial dynamics simply from changes in concentrations of organic matter.

As noted above, the conceptual model of LMW DOM being more biologically 

labile is widely held. However, N-DOM contained relatively more LMW DON and 

similar proportions of LMW DOC than Si-DOM. Hence, at least for DOM production 

by S. costatum, the biochemical composition of the DOM is of much greater importance 

than its size spectrum in governing bacterial community response.

5.4.3 Effect on bacterial community composition

The bacterial community structure also demonstrated differences that were 

related to the form of nutrient addition. The failure of the t z ero  FISH samples means any 

analysis of the community shifts between tzero and was impossible. However, as 

noted above this community was identical for all experiments, and from our previous 

work on bacterial communities in Scottish and Norwegian coastal waters (Davidson et 

al. 2007, Hart et al. unpublished data) it is likely that the bacterial assemblage present at 

t z e r o  were dominated by the a- proteobacteria, the y-proteobacteria and the CFB group.
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At t24 dominance of the y-proteobacteria lineage in all our experiments is 

consistent with its ability to respond rapidly to inorganic nutrients (Ferguson & Sunda 

1984), thus out competing the a  -proteobacteria, which comprised only a comparatively 

small fraction of the t24 communities (ranging from 2.7% to 10.8% in the control and N- 

DOM treatments respectively). Puddu et al. (2003) observed a similar trend when a 

bacterial assemblage was amended with glucose or extracellular organic carbon (EOC) 

produced in balanced growth conditions by the diatom Cylindrotheca closterium 

(Ehrenberg).

However, the most significant finding between tzero and t24 was the increased BP 

in the Si-DOM treatment. Again this is almost certainly attributed to the dominant y- 

proteobacteria rapidly utilising the labile components of the Si-DOM, although a 

similar or greater percentage of y-proteobacteria was present in the N-limited treatment. 

This is consistent with the hypothesis of Fuchs et al. (2000) that the fast growing 

members of the y-proteobacteria fill the niche of typical r-strategists, which rapidly 

exploit extra nutrients when they become available.

As the incubations continued, between t24 and t48, the relative abundance (from 

46.1% to 68.4%) and absolute abundance (data not shown) of the y-proteobacteria 

increased significantly only in the Si-DOM treatment. In contrast, their contribution to 

the bacterial assemblages in the N-DOM reduced significantly, and both the inorganic 

and control treatments showed no significant change (Fig. 5). Again, these shifts in the 

bacterial assemblage are consistent with observed continued elevation in BP in the Si- 

DOM treatment. The lack of significant increase in BA suggests that C demand fulfilled 

an increase in cell activity (and biomass) rather than cell division.

At tj2 in the N-DOM treatment there was a significant increase in the relative 

and absolute abundances of the CFB group (up to 45.2% of the DAPI stained 

prokaryotic community) and to a lesser extent the a  -proteobacteria (up to 23.1%) but
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without a concomitant increase in BA or BP. The relative CFB group abundance also 

increased in the Si-DOM treatment, coinciding with a reduction in the absolute and 

relative abundances of the y-proteobacteria. Similar, but less pronounced, changes 

occurred in the inorganic and control treatments. Members of the CFB group and a- 

proteobacteria are adept at utilising exudates from algal productivity (Rooney-Varga et 

al. 2005) including DMSP, amino acids, and for the CFB group, more complex 

macromolecules. Members of the CFB group are also more abundant in media rich in 

particulate organic matter or complex macromolecules (Delong et al. 1993)(Delong et 

al. 1993) and probably figure as k-strategists (Kirchman 2000, Puddu et al. 2003). 

Hence, although the y-proteobacteria remained dominant within all the treatments, at t72 

the CFB group may also be active utilising HMW DOM unavailable to other groups.

In the case of the a  -proteobacteria their increased abundance at t72 may result 

from reduced competition from y-proteobacteria as its dominance declined as the labile 

components of the DOM available to this group were depleted. This was consistent with 

the minimal increase in a  -proteobacteria in the Si-DOM treatment, suggesting that they 

remain out-competed by the active y-proteobacteria.

These results therefore suggest that y-proteobacteria may have an initial 

competitive advantage when DOM exudates from Si-limited diatoms are available. 

However, competitive advantage for resources evolved rapidly with time, most 

probably through the depletion of labile organic C leading the bacterial consortia to 

adapt to the remaining source of less labile C, and hence leading to changes in bacterial 

community composition. Kirchman et al. (2004) described similar evolution of bacterial 

properties, such ectoenzymatic activities, with the modifications of the DOM, hence 

suggesting that DOM may modify the relative abundance of bacterial subgroups, which 

in turn, affect the DOM pool.
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5.4.4 Effect o f grazers in modulating the bacterial community response

Heterotrophic nano-flagellates had a strong effect on bacterial density markedly 

reducing the increase in BA at t24 and causing a decrease in net BP with time in all non 

screened treatments. While not statistically different, both the BA and BP at t24 in the 

Si-limited non screened treatments were the lowest recorded at that time. Considering 

that these quantities were statistically significantly higher in the screened Si-DOM 

treatments this suggests selective grazing on the actively growing y-proteobacteria in 

this treatment.

In all except the inorganic treatment the difference between tzero and peak 

HNAN density was markedly greater in the non screened treatments (Fig. 5.07), 

consistent with lower abundance of bacteria in this scenario. This is indicative of the 

major role played by heterotrophic grazers in controlling bacterial populations (Gasol 

1994, Strom 2000). However, as HNAN density in the Si-DOM non screened treatment 

was not significantly greater than the others these results may suggest that much of the 

extra productivity in these conditions is recycled within the microbial loop.

5.5 Conclusion

In conclusion, the results of this short-term incubation experiment indicate that 

DOM produced by N-limited S. costatum is less available to bacterial uptake than it is 

for exudates from Si-limited cultures. These two different forms of DOM also affect the 

taxonomic composition of the bacterioplankton community, promoting the subclass of 

y-proteobacteria. The comparison of screened and non-screened conditions highlighted 

the role of grazers in controlling the bacterial population and their indirect effect on C 

dynamic in the microbial food web. This is in agreement with the observations made in 

Chapter 3 and 4. If we carefully extrapolate these results to the natural ecosystem of
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Loch Creran, this experiment provides insightful information on the effect of a shift 

from N to Si limitation in coastal water. Indeed, as suggested in Chapter 3, 

phytoplankton is the main source of production of DOM in Loch Creran and the Firth of 

Lorn. The high value of the N:Si ratio observed during the spring suggested a relative 

lack of Si that would further indicate a non biologically available character of the DOM 

produced (as suggested in this Chapter with N-limitation). This also gives insights into 

DOC accumulation, which has been observed to occur in temperate coastal waters from 

the end of the spring bloom through the summer months (see also Chapter 3, Cauwet et 

al. 2002), as nutrient stress may lead to changes in bacterial consortia composition that 

are not able to degrade DOM present in the environment. The marked differences, for 

BP in particular, between treatments suggest that the role of inorganic nutrient 

limitation (further discussed in Chapter 6) and other factors governing phytoplankton 

physiology, and hence metabolic state, requires more detailed study of the role of 

autochthonous DOM as a driver for marine microbial community dynamics in the 

context of marine coastal systems.
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- CHAPTER 6 -

Factors limiting microbial communities from LY1 and Loch

Creran

6.1 Rational

The control of bacterial populations in marine system is often summarised as 

comprising bottom-up (nutrient resource) and/or top-down (grazing) mechanisms. It has 

long been recognised that bacterial growth depends on the availability of organic carbon 

as the source of energy (LeB Williams 1981). In marine systems, this organic carbon 

may come from phytoplankton or macroalgae exudation (LeB Williams 2000, Nagata 

2000), viral lysis (Proctor & Fuhrman 1992) or terrestrial sources (Cauwet et al. 2002). 

In addition, recent studies have highlighted the importance of inorganic nutrients as 

limiting factors of bacterial production (Caron 1994, Kirchman 1994) and that low 

inorganic N or P concentrations, as well as organic nutrients, may have a limiting effect 

on bacterial dynamics. The use of inorganic nutrients by bacteria also indicates that 

bacterioplankton compete with phytoplankton for these resources (Bratbak & Thingstad 

1985, Caron et al. 2000). In the light of the recognition of phytoplankton-bacteria 

competition for inorganic nutrient, studies of the form of nutrient limiting bacterial 

production in coastal waters are surprisingly rare.

Caron et al. (2000) investigated the degree of limitation of the bacterial and 

phytoplankton populations between the productive coastal region of George Bank 

(USA) and the oligotrophic system of the Sargasso Sea (south Bermuda). In order to 

determine the limiting factor of the bacteria and phytoplankton growth, these authors 

designed an experiment where they added inorganic (N and P) or organic nutrients
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(glucose) to samples from each location. These authors found that the factors limiting 

the productivity were different for the contrasting locations. At George Bank glucose 

provoked an increase in productivity, whereas in the Sargasso Sea, the addition of 

inorganic N and P did increase bacterial production and suggested that low inorganic 

nutrient concentrations were limiting the microbial community productivity.

The motivation for the experiment described in this Chapter, originated from 

observations made during summer 2004, where elevated BP and BA were noted during 

August but were not associated with elevated concentrations of DOC and DON. This 

experiment therefore investigated if the form of limitation (inorganic or organic) of the 

microbial community may explain these observations. The present experiment adopted 

a similar approach to that of Caron et al. (2000) using inorganic and organic nutrient 

additions to natural assemblages from LY1 and FF stations. In addition it includes the 

comparison of filtered and unfiltered samples allowing to assess the importance of the 

grazing pressure on bacterial population dynamics.

6.2 Experimental design and additional methods

6.2.1 Collection o f seawater

Water samples were collected from a depth of 10 m with a 10 L Niskin bottle, 

on the 22/08/05 and 26/08/05 from LY1 and FF respectively (see map, Fig. 2.01, 

Chapter 2). Water samples were immediately pre-screened through a 160 pm mesh net 

to remove large grazers and were kept in the dark at ambient temperature until further 

processing in the laboratory.
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6.2.2 Experimental set up

In the laboratory, water samples from LY1 and FF were filtered through GF/C 

filters (Whatman) to remove nano-planktonic grazers or used as unfiltered samples. 1.5 

L of media was placed in 2 L conical flasks supplemented with: (1) inorganic nitrogen 

(NaNCb) and phosphorus (NaHPC^), (2) organic C as glucose (C6H12O6) and (3) a 

control that received no additions (Table 6.01). All experimental flasks were duplicated 

and incubated in a controlled-temperature room at 13°C with a light intensity of 100 

pmoles m'2 on a 15-9 hours light-dark cycle. All treatments were sampled to determine 

bacterial abundance (BA) and production (BP), as well as HNAN and PNAN 

abundances. Sampling was conducted at the time of additions (tzero) then after 24 and 48 

hours of incubation. A sub-samples of each treatments was taken to determine the 

primary production (PP) and extra cellular organic carbon (EOC) after 24 and 48 hours.

Table 6.01. Nutrient additions

Whole 
seawater 
Screened 

water 
(<1 pm)

N: 15 
P: 1

N: 15 
P: 1

LY1 FF
Inorganic N n  . r  Inorganic N Organic C

and P rgamc Control and P pmoles L' Control
nmoles I / '  >m olesL  nmoles L '1

18.7

18.7

N: 15 
P: 1

N: 15 
P: 1

18.7

18.7

BA was determined using DAPI staining and epifluorescence microscopy (see 

section 2.4.1.4, chapter 2) and BP was measured by incorporation of radiolabelled 

thymidine (see section 2.4.2, chapter 2). PNAN and HNAN abundances were 

determined by DAPI staining and counted using epifluoresence microscopy as 

described in section 2.4.1.2, chapter 2. Primary production and extracellular organic 

carbon were determined according to section 2.3.4 in Chapter 2.
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6.3 Results

6.3.1 Water column characteristics at LY1 and FF on the day o f each experiment

The water column structure, chemical and biological variables indicated that 

LY1 and FF were under similar trophic regimes (Table 6.02); however some differences 

existed. Both stations exhibited similar salinity and temperature. All inorganic nutrients 

except DSi (dissolved inorganic silicate) and ammonium were present at higher 

concentrations at LY1. While POC, PON and chi a were similar in magnitude, 

concentrations were higher at FF than LY1. BP at FF was approximately twice that 

found at LY1 (25 v .s.ll fig C L '1 d '1 at FF and LY1, respectively). However, 

abundances of HNAN, PNAN and heterotrophic bacteria were similar at both sites.

Table 6.02. Environmental variables, and bacterial, HNAN and PNAN abundances in 
experimental water samples collected for the experiment

Parameters LY1 FF

HNAN xlO5 cell L'J 15.9 14.2
PNAN xlO5 cell L'1 163.5 160.1
POC fig CL'1 177.0 260.0
PON MS CL'1 27.0 40.0
Chi a Mg L'1 1.6 2.4
BA x l(f cell L'1 2.0 2.1
BP H g  C L'1 d 1 11.3 25.7

DOC nmoles L' 157.9 119.5
DON Unioles L' 6.3 9.6
DIN nmoles L' 0.5 0.1
DSi nmoles L' 4.7 5.3
DIP nmoles L~ 0.6 0.3

Ammonium nmoles L' 1.2 1.8
Temperature °C 13.5 13.9

Salinity 33.3 32.7

It is important to note that the parameters at tzero presented hereafter were determined for 

each of the three treatments (organic, inorganic and control) in both filtered and
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unflltered water but were averaged for the clarity of the data presentation. Although 

both sites demonstrated a balanced particulate C to N ratio (~ 6.5 at both sites) in terms 

of Redfield proportion (Redfield 1963), inorganic N:P ratios (0.8 and 0.3 for LY1 and 

FF, respectively) suggested a strong N depletion at both sites. This background data set 

provided useful information on the status of these two sites.

6.3.2 LY1 experiment

Primary production (PP) during time course incubations of the unscreened 

(containing phytoplankton) ranged from 40 to 52 pg C L '1 d’1 (Fig. 6.01-a). PP 

increased significantly (1-way ANOVA, p < 0.05) when glucose was added but both 

N+P and glucose additions exhibited lower PP than the control. EOC produced during 

the experiment increased with time and was greater when glucose was added (Fig. 6.01- 

b) with values reaching 3 pg L '1 d'1. However, EOC was not detected in the control due 

to high blank recorded at the start of the experiment.

BA ranged from 13 to 33 xlO8 cell L '1 with maximal values attained during the 

experiment supplemented with glucose (Fig. 6.02-a). In filtered water, BA increased in 

all treatments, with significantly higher (p < 0.05) BA for the glucose amendment 

treatment at t24 and t48. However, the N+P treatment was not statistically different from 

control. In unflltered water, BA increased at t24 in all treatments with highest 

abundances found following glucose additions. At t4g, BA decreased in N+P and the 

control, whereas glucose treatments produced similar levels to t24.

BP covered a range of values from 17 to 73 pg C L '1 d '1 and varied greatly for 

the different treatments (Fig. 6.03-a). Similarly to BA, BP increased significantly (1- 

way ANOVA, p-value <0.01) at t24 and t48 in filtered water, with the greatest increase 

observed when glucose was added (+ 22 pg C L*1 d'1 compared to N+P and the control
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at t4g). However, BP in the treatment with N+P additions was not significantly different 

from the control. In unflltered seawater, BP decreased in N+P and control during time

70

NtP Glucose Comroi N e? Glucose Control

:LiL
NtF Glucose Control Nr? Glucose CojkioI

Figure 6.01. Primary production (PP) and extracellular organic carbon (EOC) for the 
three treatments (indicated on the x axis) at LY1 (a, b) and FF (c, d) in non-screened 
water. Data presented at t24 (black) and t4s (gray). Error bars are s.e.

course incubations. (Fig. 6.03-b). Glucose amended treatments remained at similar levels 

of BP between 24 and 48 hours.

HNAN numbers ranged from 2 to 30 xlO5 cell L '1. In contrast to PNAN, 

filtration at 1 pm removed 30 to 75 % of HNAN. Abundances of HNAN in filtered 

water remained similar (N+P and glucose), or decreased between tzero and t4g (Fig. 6.04- 

a). For unfiltered treatments, only flasks amended with glucose increased significantly 

(1-way ANOVA, p < 0.05) during time course incubations (Fig. 6.04-b).

PNAN abundance varied from 10 to 135 xlO5 cell L '1 with highest values found in 

unfiltered water (Fig. 6.05-a). The screening process removed approximately 90 % of
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Figure 6.02. Bacterial abundance (BA) for the three treatments at LY1 (a,b) and FF (c, 
d) experiments in filtered (a, c) and unfiltered (b, d). Values presented for tzero (black), 
t24 (light gray) and t4s (dark gray). Error bars are s.e.

the PNAN, in all treatments. In filtered water, N+P additions stimulated the growth of 

PNAN with abundance increasing about four fold between tzero and t4g. However, PNAN 

abundance at t4g in glucose and control treatments did not differ significantly from tzer0. 

Similarly to filtered water, N+P additions for the unflltered experiment provoked an 

increase in PNAN abundance (Fig.6.05-b), whilst it decreased in glucose additions and 

remained approximately constant in the control.

6.3.3 FF experiment

PP in non-screened samples collected from the FF station ranged between 38
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Figure 6.03. Bacterial production (BP) for the three treatments at LY1 (a,b) and FF (c, 
d) experiments in filtered (a, c) and unfiltered (b, d). Values presented for tzero (black), 
t24 (light gray) and t4g (dark gray). Error bars are s.e.

and 57 pg C L'1 d'1. PP increased in N+P and control treatments but no changes were 

observed for the glucose addition. EOC also increased between t24 and t48 for the N+P 

addition but was not significantly different from controls. EOC were found in similar 

range in control and glucose addition treatment. Overall, treatments were not 

significantly different from each other (Fig. 6.01-c and 6.01-d).

BA ranged between 13 and 25 xlO8 cell L '1 (Fig. 6.02-c). In filtered water, BA 

had increased (1-way ANOVA, p < 0.05) by approximately 3 xlO8 cell L '1 in all 

treatments at t24. However, a further increase in BA (of 9.4 xlO8 cell L"1) was only 

noticeable for the glucose amended treatment between t24 and t4s (1-way ANOVA, p < 

0.05).
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Figure 6.04. HNAN abundance (xlO5 cell L'1) for the three treatments (indicated on the 
x axis) at LY1 (a,b) and FF (c, d) experiments in filtered (a, c) and unfiltered (b, d). 
Black bars are tzero and gray bars are t48. Error bars are s.e.

In unfiltered samples, BA was generally higher (1-way ANOVA, p < 0.05) than in 

filtered water (Fig. 6.02-d). BA increased for all treatments at t24, then decreased 

significantly (1-way ANOVA, p < 0.05) for N+P and the control. However, BA was 

maintained at the same level in the glucose-supplemented treatment.

Similarly to LY1, BP ranged from 17 to 73 pg C L '1 d '1 in incubations with 

water from FF. In filtered water, BP exhibited a significant decrease (p < 0.05) of 8-10 

pg C L '1 d'1 at t24 (Fig. 6.03-c). These increases in BP were concomitant to those 

observed with BA. Then, BP increased significantly (1-way ANOVA, p < 0.05) in N+P 

and glucose amended treatments (7 pg C L '1 d'1 and 68 pg C L"1 d'1, respectively). In 

unfiltered water, BP decreased at t24 in N+P and control treatment whereas it increased
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Figure 6.05. PNAN abundance (xlO5 cell L '1) for the three treatments (indicated on the 
x axis) at LY1 (a,b) and FF (c, d) experiments in filtered (a, c) and unfiltered (b, d). 
Black bars are tzero and gray bars are t48- Error bars are s.e.

significantly (1-way ANOVA, p < 0.05) on glucose addition treatment (Fig. 6.03- 

d).Subsequently, BP increased significantly only in glucose amended water, to reach 56 

pg C L"1 d'1 at t48.

HNAN abundances varied between 5 and 47 x 108 cell L '1, comparable to LY1. 

HNAN abundance increased (between tzero and t4g) when nutrients (N+P and glucose) 

were added to filtered water (Fig. 6.04-c), with significantly higher numbers (1-way 

ANOVA, p-value < 0.05) obtained when glucose was added (8 xlO5 cell L'1, as 

compared to 4 xlO5 cell L '1 in N+P treatment). A similar pattern was observed in 

unflltered samples (Fig. 6.04-d), with abundances of HNAN two to nine times higher 

than those found in filtered water.
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PNAN densities were comparable to those found for the LY1 experiments, 

ranging from 9 to 102 x 105 cell L '1. In filtered water, only N+P addition provoked an 

increase of PNAN abundances (Fig. 6.05-c). The control and glucose treatments 

remained unchanged between tzero and t4s (Fig. 6.05-c). However, PNAN numbers 

increased for all treatments when samples were unfiltered (Fig. 6.05-d). These increases 

were significant for N+P and glucose additions, but overall there were no significant 

differences between treatments.

6.4 Discussion

This set of experiments demonstrated the differences between LY1 and FF in 

terms of the response of their microbial communities to amendments of inorganic or 

organic nutrients. The factors controlling bacterial populations has been extensively 

studied in open oceans (Sherr et al. 1986, Sherr & Sherr 1987, Sherr et al. 1992, 

Kirchman 2000, Strom 2000, Davidson et al. 2007) in the detriment of the coastal 

regions. Understanding the dynamics of bacterioplankton on small time and space 

scales is still a challenge, as it represents a very active component of the whole 

microbial food web. Marine heterotrophic bacteria are known to utilise DOM for their 

growth (LeB Williams 1981, Azam et al. 1983), but also have the ability to take up 

inorganic nutrients at low concentrations (Kirchman 1994, Wheeler et al. 1996). The 

ecological significance of this latter behaviour resides in the fact that they can therefore 

enter into competition with phytoplankton for inorganic resources (Rivkin & Anderson 

1997, Cotner & Biddanda 2002).

Phytoplankton growth, as determined by the PP (Fig. 6.01), showed little 

difference between treatments and no difference between the two locations studied. 

Indeed, PP measured for N+P additions was similar to the control and organic 

supplemented samples (Fig. 6.01-a and 6.01-c). This might suggest that phytoplankton
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responded similarly in the two different environments and, that PP and phytoplankton 

biomass were nutrient replete in this experiment. In fact, when water samples were 

collected for this experiment (August 2005), the phytoplankton community was 

dominated by diatoms (see Chapter 3, section 3.7.4, including the Pseudo nitszchia 

seriata group, Leptocylindrus danicus, Chaetoceros sp and Rhizosolenia sp) and DSi 

concentrations were 4.7 and 5.3 pinole L '1 (Table 6.02) for LY1 and FF stations, 

respectively. These findings are in agreement with those of Egge and Aknes (1992) who 

found the dominance of diatom to occur when Si concentrations were greater than 2 

pmoles L '1.

In this experiment primary producers were exposed to the same constant light 

intensity (~ 100 pmoles m'2 s'1), regardless of the treatment. Light intensity is a crucial 

factor in photosynthetic processes (Rhee & Gotham 1981) and may have been limiting. 

Differences in light intensity between the laboratory and natural conditions could have 

triggered important photosynthetic activity therefore masking the potential effects of 

nutrient additions on PP. A combined effect of nutrients and light would have resulted 

in greater PP than other treatments (glucose and control); however, PP in the N+P 

amendment treatment was not statistically different from the control (no addition) for 

both LY1 and the FF experiments.

The healthy nutritional conditions of the phytoplankton community were in 

agreement with the EOC concentrations observed, which represented a very minor 

fraction of the PP (ranging between 0 to 7 %). These low levels of EOC reflected the 

good health of phytoplankton, in contrast to the high EOC concentrations produced 

from stressed phytoplankton (Myklestad 1995, Granum et al. 2002). In chapter 5, a 

marine diatom, Skeletonema costatum, was grown under nutrient limitation (N and Si) 

and produced labile DOC under Si limitation that stimulated the growth of bacteria. In 

the experiment detailed here, the Si-replete conditions are likely to be associated with
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low concentrations of DOC produced by the phytoplankton. Furthermore, this DOC did 

not enhance BP, which remained at its lowest level in control whereas PP was at similar 

levels in all other treatments. In addition, the concentration of EOC varied between 0 

and 0.25 pmoles L"1, which probably made an insignificant contribution to the DOC 

concentrations measured at t z e ro (Table 6.02); it was therefore probably not significant in 

accounting for the variation of BP observed.

The ratio of autotrophic production (PP) to bacterial production (BP) ranged 

from 1.25 to 5 for all non-screened treatments, suggesting that autotrophy was 

exceeding heterotrophy in these time course incubations. This further corroborated the 

replete nutritional conditions of phytoplankton and suggested that bacteria may have 

been already limited before the start of the experiment.

BP initially increased for all LY1 treatments, but with greater production 

observed at t48 for the glucose addition. These observations were concomitant with an 

increase in BA and implied the active growth of the bacterial population in the 

experimental conditions, showing uptake of C (BP) and cell division (BA) in all 

treatments.

In contrast, only FF experiments with filtered water exhibited a marked 

stimulation of BP (Fig. 6.03-c) and BA (Fig. 6.03-c) following glucose additions. These 

observations suggested different types of limitation of the bacterioplankton between 

LY1 and FF. First of all, the availability of organic carbon was clearly limiting for the 

FF experiments (potentially of more terrigenous origin; see chapter 3) as only a readily 

available C source triggered the growth of bacteria. In contrast, the results suggested 

that organic carbon was initially available in sufficient concentrations at LY1 for use by 

bacteria. Glucose addition then promoted further production at Us (approximately of 20 

pg C L '1 d '1 compare to N+P and control). As DOC concentrations were higher at LY1
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than FF (Table 6.02), this denoted that a part of the DOC pool at LY1 was potentially 

labile.

Nutrient resources were available in the filtrate of the control treatment at LY1, 

as evidenced by the increase in BA (Fig. 6.02-a and 6.02-c) and BP (Fig. 6.03-a and

6.03-c) observed in filtered water. However, it is unclear whether this substrate was 

present before the filtration processes, or if it is a consequence of it. Filtration of 

seawater samples might have had three types of effects:

(1) the removal of resources that come from phytoplankton or grazing leading to 

lower bacterial growth. This was unlikely here as even in the presence of phytoplankton 

cells the production of EOC would not have supported significant bacterial growth. 

Assuming a bacterial abundance to C conversion factor of 30.2 fg C cell'1 (Fukuda et al. 

1998) and a bacterial growth efficiency of 0.27 (Gasol & del Giorgio 2000), both 

typical of coastal water, the EOC produced would have supported the production of 

approximately 0.27 xlO8 cell L'1. This is 10 and 40 times less than the cell number 

increase that was observed in the non-screened control treatments at FF and LY1, 

respectively;

(2) the disruption of fragile cells leading to the nutrient enrichment in the 

experiment. This feature might have been possible at LY1 (where BP and BA increased 

in all filtered treatments) but as water samples were processed in the same way for FF 

and LY1, and phytoplankton biomass was greater at FF site, the same pattern (or an 

even greater increase) would have been expected in FF experiments;

(3) the removal of grazers. This is the most likely explanation to the response 

observed in the bacterioplankton as LY1 and FF might have experienced different 

grazing pressures leading to the differences observed. However, the filtration process 

probably removed some of the initial bacterial standing stock (diminished BA at tzero in 

filtered water compared to unflltered water). Glucose additions that promoted the
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growth of bacteria in LY1 and FF experiment, in filtered samples, may have occured in 

unfiltered water but the differences would have been minimised by the presence of 

grazers.

HNAN could have been, in fact, inefficient grazers, as they did not transform 

bacterial biomass ingested into HNAN biomass. The latter scenario was suggested by 

other authors (Goldman et al. 1987, Strom et al. 1997) and is also discussed in Chapter 

4. In the LY1 experiment, in unfiltered water, BP decreased for the N+P and the control 

treatment at t24 potentially due to active grazing concomitant to cell division, as shown 

by the increase of BA at t24. Although, this demonstrates an active grazing of bacteria, 

HNAN abundances remained unchanged during the LY1 experiment (Fig. 6.04-b). This, 

then, suggests that other grazers as well as HNAN may have been active. 

Dinoflagellates and ciliates were present at the time of the experiment (see Chapter 3) 

and are known to feed on bacteria (Sherr, 1991).

The release of grazing pressure through screening of the water might have 

helped the bacteria to freely utilise the organic resources available, which suggested that 

an active grazing of the bacterioplankton was occurring at LY1 before the start of the 

experiment. In contrast, grazing was not active at first at the FF station but was 

stimulated subsequent to bacterial growth, promoted by glucose additions. In fact, the 

increases in bacterial activity in unflltered water from station FF (Fig. 6.03-d) were 

concomitant with a significant increase of HNAN in the glucose additions. When 

glucose was added to the water from LY1 it promoted further production (compared to 

the N+P treatment and control) which was reflected in the maintained level of BP (Fig.

6.03-b) as well as number between t24 and t48 (Fig. 6.02-b).

Finally, in common with phytoplankton, inorganic nutrient limitation of the 

bacterial populations in LY1 and FF experiments was not observed, as the addition of 

inorganic N and P did not stimulate greater production or numbers compared to the
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controls. However, inorganic nutrient addition did stimulate the growth of PNAN in 

filtered samples for both LY1 and FF experiments.

Inorganic nutrients present in natural water at the time of the experiment (see 

Table 6.02 and Chapter 3) were greater at FF than LY1. In unfiltered samples, these 

inorganic nutrients might have been responsible for the increase in PNAN abundance 

observed, in all cases, for the FF experiment (Fig. 6.05-d). In comparison, in the LY1 

experiment, the decrease of PNAN for the glucose addition might suggest that they 

were out-competed by bacteria for the use of the low level of inorganic nutrient 

concentration, but when inorganic nutrients were added (N+P addition), PNAN did 

indeed increase.

6.5 Conclusion

In summary, this experiment revealed an existing difference in the nutritional 

status of the microbial population between LY1 and FF. The sufficient N and P at both 

stations similarly stimulated PP. Organic nutrient addition suggested that the bacterial 

population were C limited at the FF site. Although initial availability of organic 

resources to bacteria was possible at LY1, the bacterial growth became C limited. It 

appears that only a small fraction of DOC was available. In addition, the bacterial 

growth at LY1 was masked by an intense but potentially inefficient, grazing pressure. 

More broadly, it appears that the control of bacterial population is far more complex 

than bottom-up and top-down regulation. This experiment highlighted the fact that the 

metabolic state of the bacterioplankton, and their grazers, may influence the response to 

nutrient enrichment. This experiment also demonstrated that spatial variability of 

microbial dynamics exists in coastal waters and that this spatial variability may be 

linked to nutrients sources.
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-CHAPTER 7- 

Modelling microbial communities in Scottish sea lochs

7.1 Introduction

Mathematical models provide useful tools to investigate microbial food webs 

(Davidson 1996, Vallino 2000). These models cover a wide range of descriptive 

mechanism, from simple single organism models, such as the model of Monod for 

bacterial growth (1942), to the Cell quota models of Droop (1968) and Caperon and 

Meyer (1972), to simple interaction models such as the prey/predator model of Lokta- 

Voltera (1925).

The conceptual scheme developed by Steele (1974) summarised the basis of 

marine food chains: phytoplankton-zooplankton-fish. The microbial loop (Azam et al. 

1983) extended this picture to include marine heterotrophic bacteria and nanoflagellates 

and its incorporation in marine ecosystems models led to their consequent improvement 

(Pomeroy 1974, LeB Williams 1981). Food web models are often formulated on a 

Nitrogen-Phytoplankton-Zooplankton-Detritus structure, such as the NPZD-model of 

Fasham et al. (1990). Other formulations of this NPZD model includes C to N 

stoichiometry (Taylor & Joint 1990), nutrient cycling (Moloney et al. 1986), and size- 

based interactions (Moloney & Field 1991). However, only a few models have been 

developed that include bacteria (Anderson & Williams 1998, Bissett et al. 1999, Vallino 

2000).

The recognition of the microbial loop as a major feature of marine food chains 

highlights the importance of DOM cycling and its potential importance in models as a 

nutrient currency (C or N). However, “mathematical” cycling of DOM is poorly
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Chapter 7 Modelling microbial food web in a fjordic system

understood (Kirchman 1993, Azam 1998). If the C:N ratio has been found to be 

relatively constant for phytoplankton and zooplankton, less for bacteria (see Chapter 4), 

this is not true for DOM C:N ratio which is highly variable. Therefore, in models that 

seek to adequately represent microbial communities, it is necessary to balance N cycling 

(N being the usual nutrient currency in models) with C. This has been undertaken in 

models by either simulating DOC alone, without associated DON, or simulating both 

quantities as separate independent state variables (Goldman & Dennett 2000, Christian 

et al. 2002). A difficulty of DOM modelling comes from the fact that numerous 

processes govern DOM production, e.g. phytoplankton exudation, grazer associated 

production, viral and bacterial lyses, solubilisation of particles and DOM removal, such 

as turn over of DOM, bacterial uptake vs. DOM lability, and photodegradation 

(Bjomsen 1988, Strom et al. 1997, Vetter et al. 1998, Bissett et al. 1999, Thingstad 

2000). Although these processes are poorly understood and hence cannot be easily 

parameterised within models, some attempts of modelling DOM and bacterioplankton 

have given satisfactory simulations, such as Anderson et al. (1998), who simulated the 

seasonal cycle of DOC at the station El in the English Channel, or Polimene et al. 

(2006), who attempted to simulate complex interactions between DOM and bacteria.

In most modelling investigations of microbial food webs, the DOM pool that is 

available to uptake is assumed to be percentage of each pool and is based on DOC and 

DON concentration data (Anderson & Williams 1998). Due to the complexity of the 

DOM reservoir (due to lability and molecular weight) it is now recognised that 

simulating labile DOM, as a simple percentage of total DOM, does not allow proper 

characterisation of DOM cycling. The modelling study of Kelly-Gerreyn et al. (2004) is 

one of the few studies that discriminated labile, semi labile and refractory pools and the 

processes of formation and removal of each of these pools.
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Chapter 7 Modelling microbial food web in a fjordic system

In fjordic sea lochs few attempts have been made to specifically simulate 

microbial processes using models. An exception is the model of Ross et al. (1993) 

developed for a range of locations (Killary Harbour, Loch Lihnne), including Loch 

Creran. Their model did not include the bacterial cycling of T>OM, per se, but included 

DON that was excreted by phytoplankton and remineralised to inorganic N following a 

simple constant.

In this study, the existing Loch Creran model of Ross et al. (1993) was 

implemented and updated to include a fuller representation of microbial community 

dynamics. The main development in this work was the creation of a bacterial 

compartment in the model in order to investigate the potential to simulate 

bacterioplankton dynamics within such a model structure, the competition between 

phytoplankton and bacteria for inorganic resources and the associated dynamics of the 

fjordic microbial food web.

7.2 The model

7.2.1 Overview o f the model

The model used in this study was developed by Ross et al. (1993) and revised by 

Ross et al. (1994). It is an ecosystem simulation for fjordic (e.g. restricted exchange) 

systems and its schematic structure is shown in figures 7.01 to 7.03, with equations and 

parameters defined in tables 7.01 to 7.05. This model was chosen because it was first 

developed for the study site of interest in this thesis (Loch Creran) and has been 

parameterised with data collected from this location (Ross et al. 1993). In this work, this 

model was complemented with a bacterial compartment to examine the effect of 

bacteria on the functioning of a marine food web in a fjordic system. As bacterial
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growth is assumed to be based on organic carbon resources, a DOC compartment was 

also added.

Surface (S) layer
sea

Turbulent m ixing

T idal exchange

'sill
Intermediate (I) layer

Turbulent w f a f n e X

Bottom (J) layer

eabed

Irradiance

'hytoplankton, B acteria
Surface (S) layer DIN, D O N , D O C

DIN, DON, D O C  

Phyloplankton, B acteria  

Zoo. & C arn ivores
Intermediate (I) layer

'sill

I R em ineralisatio.

.Bottom (J) layer

seabed

S -D O N S-D IN

—T S -p h y to p lan k to nS -bactena

S -D O C

■j Z o o p la n k to n  C a m *v o re s

I-p h y to p lan k to n-bactena

I-D INI-D O N

Figure 7.01. Diagrammatic representations of the physics (a), the biology (b) and the 
nutrient cycling (c) of the model use in this study.
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7.2.2 The physical system

The vertical structure of the water column (Fig. 7.01) is separated into a surface 

(S) layer above the upper pycnocline, an intermediate (I) layer between the upper and 

lower pycnocline, and a bottom (J) layer between the lower pycnocline and the 

sediment. The physical modelling of these layers was simplified by assuming their 

respective thickness to be constant and that the three layers were well mixed vertically 

and horizontally.

The S and I layer are strongly coupled to the sea by tidal flushing (Fig. 7.01) and 

to each other by tidal upwelling (entrainment) and turbulent diffusion (simple diffusion 

law). The S layer received additional nutrient through runoff from land. Ross et al. 

(1993) demonstrated that the nutrient dynamics were close to that of a chemostat and 

were only weakly influenced by slow nutrient remineralisation through the sediment. 

Hence, these authors approximated the combined effects of the J layer and the sediment 

as a single nutrient compartment from which the nutrient is returned to the I layer by a 

first order rate process.

7.2.3 The biological system

The biota was originally composed of three functional groups: phytoplankton, 

zooplankton and carnivores (Fig. 7.02), to which a bacterial compartment in S and I 

layer was added in this study (see below). The phytoplankton of S and I layer were 

modelled separately but are coupled by sinking, upwelling and turbulent diffusion. Each 

phytoplankton assemblage takes up dissolved inorganic nitrogen (DIN) from its own 

layer and excretes dissolved organic nitrogen (DON) back into the same layer.
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Chapter 7 Modelling microbial food web in a fjordic system

Phytoplankton sinking through the pycnocline is assumed to be dead and returns its N 

into the storage layer (J).

In the model, primary production (fixation of C by phytoplankton) was assumed

phytoplankton growth (p) is described using the cell quota model of Droop (1968) that 

postulates a minimum N level below which C fixation cannot take place and makes p an 

hyperbolic function of the C:N ratio (“Q”, cell quota). Light limitation (Andersen et al. 

1987) and N uptake (Caperon & Meyer 1972) were approximated using Michaelis- 

Menten relationships. The cell quota equations were modified from Ross et al. (1994) 

and the uptake of N by phytoplankton was simulated as:

where Uf is the phytoplankton uptake of N, Cp is the phytoplankton C concentration, Sp 

is the temperature dependence of phytoplankton rate processes, Vs is the volume of the 

S layer, Rmn is the maximum growth rate for N limited phytoplankton, F is the 

concentration of dissolved inorganic N (DIN), Hpp is the half-saturation phytoplankton 

DIN concentration, Q max is the maximum cell N quota and Q  is the cell N quota.

This equation generates maximal uptake when the cell N quota (Q ) is minimal 

and stops when cellular N tends or equals to maximal N quota (Qmax) and is in 

accordance with the cell quota model of Droop (1968). The light limitation and 

attenuation of light equations were not modified from Ross et al. (1994), which takes in 

account the self-attenuation of light by phytoplankton (see Table 7.05, equations for ysl, 

ks,i and U cp).

to be limited either by irradiance or the availability of N. Nutrient limitation of

UF = Cp x S p x V s x equation 7.01
■max
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Chapter 7 Modelling microbial food web in a fjordic system

Zooplankton feed on phytoplankton and bacteria from both S and I layer (Fig. 

7.03) and excrete inorganic N into each layer in proportion to the ratio of time spend in 

each of the two layers.

Table 7.03. Physical parameters of the model from Ross et al. (1994).

Description Units Value
VB/Vs Volume of bottom (J) layer / Volume of surface (S) 

layer dimensionless 0.06

Vi/Vs Volume of intermediate (I) layer / Volume of surface 
(S) layer dimensionless 0.9

P Proportion of tide upwelling into (S) layer dimensionless 0.25
Te/V s Volume exchange rate for tide into I layer / Volume of 

S layer d'1 0.37

T is/V s Volume exchange rate for mixing between I layer and S 
layer / Volume of S layer d'1 0.05

Tr/V s Volume exchange rate for runoff into S layer / Volume 
of S layer a-1 0.01

K0 Background attenuation coefficient m-1 0.22

Ys Mean depth of surface layer m 8

Yi Mean depth of intermediate layer m 8

Fecal pellets and corpses from zooplankton are assumed to sink rapidly through 

the lower pycnocline and release N directly into the storage layer. Carnivores are treated 

in the same way except that they feed exclusively on zooplankton. Prey:predator 

relationships were represented by Michaelis-Menten functions but with C (C 

concentration of the prey) as the limiting currency. Ingested C, and associated N, is 

assimilated with a fixed rate (a z ,c ,p ,B , in Table 7.05) with unassimilated nutrient being 

rejected as fecal material or excreted as dissolved inorganic N.

Zooplankton and carnivores are capable of some mobility and therefore able to 

move between layers. This mobility especially affects the zooplankton grazing between 

S and I layers and also affects the layers receiving the waste products of this grazing 

activity. In the original version of the model, Ross et al. (1993) specified a fixed time 

spent by zooplankton in each layer (e.g independent of phytoplankton abundance) and
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Chapter 7 Modelling microbial food web in a fjordic system

Table 7.04. Biological and nutrient parameters o f the model, variables developed in this thesis are 
highlighted in green in the table. Parameters were taken from Ross et al. (1994) if  not otherwise 
specified (see bottom o f table).

Description________________________ Value________ Units
A Constant in function for zoo. egg production 100 d-1
T max Max. carnivore predation rate 15 d-1
n Phytoplankton and bacteria washout-retention factor 0.5 dimensionless
8c Carnivore death rate 0.05 d'1
Sp Phytoplankton death rate 0.1 d'1
8z Zooplankton death rate 0.05 d-1
8 b Bacterial death rate 0.03 d'1
7c Coefficient in carnivore temperature equation 1 dimensionless
7p Coefficient in phytoplankton temperature equation 1 dimensionless
7z Coefficient in zooplankton temperature equation 1 dimensionless
7 b Coefficient in bacteria temperature equation 1 dimensionless
he Fraction o f carnivore time spent in surface layer 0.5 dimensionless
9 b Bacterial C to N ratio 5.1 dimensionless
Vmax Max. bacterial C, F uptake 6.9 d'1
P Contribution o f phytoplankton to attenuation coefficient 0.012 m2 (mg C )*'
TC Coefficient in carnivore temperature equation 0.1 o C - l

TP Coefficient in phytoplankton temperature equation 0.1 ° C 1
Tz Coefficient in zooplankton temperature equation 0.1 o C - l

IB Coefficient in bacteria temperature equation 0.1 °C'1
CQa Constant in function for zoo. vertical migration 0.5 dimensionless
dc Fraction o f carnivore uptake defecated 0.5 dimensionless
dz Fraction o f zoo. uptake defecated 0.36 dimensionless
ebc Fraction o f camicore biomass excreted per day 0.75 d'1
ebz Fraction o f zoo. biomass excreted per day 0.05 d’1
ebp Fraction o f phytoplankton biomass excreted per day 0.34 d'1
ebB a Fraction of bacteria uptake excreted per day 0.15 dimensionless
BGE b Bacterial growth efficiency 0.27 mg C (mg C )''
Cue Fraction o f carnivore uptake excreted 0.2 dimensionless
Gup Fraction o f phytoplankton uptake excreted 0.05 dimensionless
euz Fraction o f zoo. uptake excreted 0.15 dimensionless
Gpmax Max. zooplankton grazing rate on phytoplankton 2 d'1
ClBmax Max. zooplankton grazing rate on bacteria 0.5 d'1
Hfp Half saturation phytoplankton DIN concentration 58.8 mg N m'3
Hl half saturation irradiance 60 umoles m'2 s'1
Hc half saturation phytoplankton C concentration 400 /-> -3mg C m
HZP half saturation zooplankton C (phytoplankton) concentration 150 mg C m‘3
Hzb half saturation zooplankton C (bacteria) concentration 75 mg C m°
Ho a Half saturation DOC concentration 13.4 mg C m°
Hfb a Half saturation bacteria DIN concentration 7 mg N m"3 

dkjR rate constant for sediment bottom remineralisation 0.01
koR rate constant for DON remineralisation 0.02 d'1
Qic N quota o f immigrant carnivores 0.15 m g N  (mg C^1
Qip N quota o f immigrant phytoplankton 0.15 m g N  (mg C)_1
Qiz N quota o f immigrant zooplankton 0.15 mg N  (mg C)_1
Qmax Maximum N phytoplankton quota 0.25 mg N (mg C)_1
Qmin Minimum N phytoplankton quota 0.05 mg N (mg C)_1
Qoff Storage switch transition width 0.01 m gN  (mg C)_1
Rml Max. phytoplankton growth rate (light limited) 1.2 d'1
Rmn Max. phytoplankton growth rate (N limited) 1.6 d'1
T z e Constant in function for zoo. egg production 100 °C'1
Umax Max. phyto. N uptake rate per unit biomass 2.4 mg N (mg C)'1 d'1
a from Anderson (1998); from del Giorgio (1998)

188



Chapter 7 Modelling microbial food web in a fjordic system

assumed the uptake of C by zooplankton depended on phytoplankton C concentration. 

In a later version of the model (Ross et al. 1994) this behaviour was modified in 

response to phytoplankton density to model a “refuge effect”, in which the aggregations 

of zooplankton occured in relation to high density of phytoplankton. In this PhD work, 

the original fixed fraction of time spent by zooplankton in each layer was preferred as a 

model of diel migration of zooplankton between I and S layers.

7.2.4 New additions to the model

The model was modified to include bacterial dynamics. Complementary to the 

bacterial component, a DOC compartment was created (Fig. 7.03). Similarly to DON, 

DOC is found in both S and I layer. DOC is exported into the I layer from the sea, then 

entrained or diffused into the S layer, which is also supplemented by DOC from runoff. 

DOC in both layers is also excreted by phytoplankton (Table 7.01). The dynamics of 

DOC were driven by bacterial uptake and physical exchanges (Table 7.02 and 7.04).

Bacteria were included in both the S and I layers (Fig. 7.01) responding to DOC 

stocks of both layers. The bacteria were made to take up DOC (Ucb) following the 

model of Monod (1942):

JJ = ^max x ^  equation 7.02
CB H 0 + 0  4

where O is the organic C concentration and the associated DON is taken up in 

stoichiometric proportion to C:

u nb = u cb x Qb equation 7.03
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Chapter 7 Modelling microbial food web in a fjordic system

with Qb the N to C ratio of bacterial cell (see Table 7.05). The fixed remineralisation 

rate of DON to DIN of Ross et al. (1993) was therefore abandoned to the benefit of 

bacterial uptake of DON and excretion of N as a more realistic remineralisation 

pathway (see the model of Goldman et al. (1987), equation 4.01 in Chapter 4):

where O is the organic C concentration and D, the organic N concentration (see Table

7.04 for the definition of the parameters in equations 7.02, 7.03 and 7.04). Similarly to 

phytoplankton, bacteria released inorganic N into the S and I layers and are grazed by 

zooplankton. Bacteria were also able to take up inorganic N according to a Michaelis- 

Menten relationship (see equation 7.02) but with a different affinity compared to DON 

(Hfb and Hdb in Table 7.05).

Zooplankton grazing was based on a Michaelis-Menten relationship and depends 

on bacterial C concentration but with different parameters to zooplankton grazing on 

phytoplankton giving a zooplankton feeding preference for the latter type of prey (Table 

7.05). As for phytoplankton, this model simulated the transport of bacteria from the sea 

into the I layer, the upwelling of bacterial C to the S layer and the seaward flushing of 

bacteria from the S layer.

7.2.5 Driving function

The external environment of the system was modelled using driving functions 

(Fig. 7.02) for temperature, light irradiance, DIN, DON and DOC concentrations, and 

phytoplankton, immigration rates of zooplankton and carnivores.

X,= — BGEx Qb equation 7.04
y

190



Chapter 7 Modelling microbial food  web in a fjordic system

xcd
QQ

X

CqqqqV-OX)
X

xOX)
xOX)
xQQ
cd

QQS i

CL
o
"S
£S3

I
cd>

ONOn

c§
S
c§C+L
13S3O
QQX!
C++O

§
5"3o
'5 b

os
cn0
qq
1H

S3
O
OX)a

s3
£T OX)a a a a

'« t/J *

w  a1=1 'o ’ J n

N
£

NHI
'cl
<L><

a
■3

p
OX)

U u
OX) 13
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Chapter 7 Modelling microbial food  web in a fjordic system

Light irradiance data (Fig. 7.02-c) were modified from those of Ross et al. (1993, 1994) 

to use values collected from SAMS meteorological station during the study period. 

Light irradiance, sea temperature and DIN concentrations coming from the sea, runoff, 

zooplankton and carnivore immigration were approximated with sinusoidal functions 

following Ross et al. (1993, 1994).

Table 7.06. Driving functions of the model from Ross et al. (1994), functions used in 
this thesis are highlighted in green in the table.

Descriptions_________________________ Units
CpE(t) Phytoplankton C concentration in the sea

....  '"5
mg C m'

C B E (t) Bacterial C concentration in the sea mg C m'3
DE(t) DON concentration in the sea mg N m'3
D r © DON concentration in runoff mg N m'3
O e © DOC concentration in the sea j*~i “3mg C m
O r © DOC concentration in runoff mg C m°
F e © DIN concentration in the sea mg N m'3
F r © DIN concentration in runoff mg N m'3
Ic© Total immigration rate of carnivores C mg C d '1
Iz(t) Total immigration rate of zooplankton C mg C d'1
Lsffi Irradiance in surface layer pEinst m2 s’1
N p e © Phytoplankton N in the sea mg N m"3
N b e © Bacterial N in the sea mg N m‘J
0© Sea temperature °C

Phytoplankton C concentrations in the sea were estimated from chi a data 

collected at LY1 (see Chapter 3) following smoothing, using a three point moving 

average, and using a C to chi a ratio of one to 25.

DOC and DON concentration (Fig. 7.02-d and f) from the sea (LY1 station, 

Chapter 3) and from runoff measured for Loch Creran (see Chapter 3) were used to 

implement the driving functions of these quantities. It is worth noting here that DOC 

concentrations from runoff were higher than those in the sea (Fig. 7.02-d), making 

runoff the major contributor to DOC pool within the loch. However, DON 

concentration from runoff and the sea were comparable (Fig. 7.02-f). Similarly to 

phytoplankton, these data were smoothed using a three point moving average. A similar 

approach was used for bacteria where bacterial C from the sea was derived from
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Figure 7.02. Main driving function used in the model with temperature (a), DIN from 
run (b-solid line) and from the sea (b-dotted line), light irradiance (c), DOC from runoff 
(d-solid line) and from the sea (d-dotted line), immigration of zooplankton (e-dotted 
line) and carnivores (e-solid line), and DON from runoff (f-solid line) and from the sea 
(f-dotted line).
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Chapter 7 Modelling microbial food web in a fjordic system

bacterial abundance measurement at station LY1 (see Chapter 3), using the conversion 

factor of Fukuda (1998). Data for carnivores were kept as defined by Ross et al. (1993).

7.3 Implementation

The model was constructed with PowerS im (PowerS im Ltd, England), a 

mathematical simulation modelling software package. The set of differential equations 

was integrated with a 4th order Runge & Kutta algorithm, with variable time step, over a 

period of three cycles (3 years simulation). Simulations shown below are for the S layer 

as surface and intermediate layers demonstrated little difference. Observed data, against 

which the model was compared, were taken from station C5 in Loch Creran at 3 m 

depth (see Chapter 3).

160 -i
-  Bacteria
■■ Carnivores
-  Phytoplankton 
■ Zooplankton

140 -

120 -

100 -

e so -
o
6 60 -

40 -

20 -

60 120 180 240 300 3600

Time (days)

Figure 7.03. Annual cycle of bacteria (solid line), phytoplankton (dashed line), 
zooplankton (dash-dotted line) and carnivore (dotted line).
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Chapter 7 Modelling microbial food web in a fjordic system

The initial aim of this work was to get an adequate representation of the annual 

cycle of the variables for Loch Creran, in order to validate the model simulations. The 

model was parameterised with data from Ross et al. (1993) and completed with data 

from Anderson et al. (1998) for bacterial uptake of DIN.

7.3.1 Standard run

The outputs of the standard run of the model are shown in figure 7.03. The 

seasonal variation of the phytoplankton shows two main peaks in spring and summer 

with low phytoplankton C concentration in the winter. The phytoplankton C 

concentration first increases to reach a spring maximum between days 90 - 120. A 

second gradual increase occurs in late summer autumn (days 240 - 330). Bacteria 

followed a different seasonal pattern (Fig. 7.03). The bacterial C concentration 

increased to a maximum around day 200, followed by another maximum around day 

270. Bacterial C then decreased to lower levels in the winter time. Grazer, zooplankton 

and carnivore C concentration oscillated in response to prey growth. Zooplankton 

responds to phytoplankton and bacteria variations. Carnivores followed the pattern of 

zooplankton but with oscillations out of phase compared to those of zooplankton. These 

model outputs were then compared to the data collected from the field study (see 

Chapter 3). Comparisons between model output and data collected in Loch Creran are 

shown in figure 7.04.

The model predicted a peak in bacterial biomass in summer of similar 

magnitude to that observed. However, the observed peak of bacterial C occurred 

somewhat earlier in the year than the model prediction. The observation from station C5 

also indicated one major peak of bacterial C occurring from the end of May into June. 

This peak is followed by a smaller one, around the third of the main peak, which
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Chapter 7 Modelling microbial food web in a fjordic system

declines from September to reach its lowest values (during the winter). In comparison, 

the model predicted two peaks of bacterial C of similar magnitude within an annual 

cycle. These two peaks appear later in the annual cycle, which simulates bacterial C as 

remaining high at a season (from day 240) where it should be at its lowest level.

100
 m o d e l  o u t p u t

o observed

80 -

B
ube
B

O <0

0 60 120 180 240 300 360

160 -1
 model output

o observed140 -

120 -

100  -

O SO - 

60 -

40 - OOo

20  -

120 180 300 3600 60 240
T i m e  ( d a y s )

Figure 7.04. Comparison of model output (solid line) and data collected in Loch Creran 
(circle) for bacteria (a) and phytoplankton (b).

The annual integrated bacterial C of observed (11.7 g C m'3 y '1) was lower, at about 

54% (6.3 g C m'3 y"1), than that predicted (18 g C m'3 y"1) by the model.
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Chapter 7 Modelling microbial food web in a fjordic system

Phytoplankton C concentration predicted by the model (Figure 7.04-b) gives a 

good fit of the observed seasonal variation of phytoplankton C. The model predicted the 

first spring increase, in terms of both timing and magnitude, as well as its subsequent 

decrease. The second increase of phytoplankton starts at the same time in the observed 

and predicted data, although, the model predictions slightly underestimated the values 

observed in Loch Creran. However, the model predicted the phytoplankton bloom to 

continue into the autumn, whereas the observations show it to decline in late summer. 

As with integrated bacterial C concentration, the annual integrated phytoplankton C 

concentrations were found lower than those predicted by the model (12.4 and 28.2 g C 

m'3 y '1, for observed and predicted data respectively).

Dissolved inorganic (DIN) and organic (DOC, DON) nutrient data from the 

standard run are shown in figure 7.05. DIN concentrations predicted by the model 

present a good fit with the data collected at the C5 station, reproducing the main 

features (observed seasonal variations and range of values, Fig. 7.05-a). Concentrations 

decrease from day 1 to about day 120, remained close to 0 until day 300 and finally 

increase to high concentrations toward the end of the annual cycle. The predicted DON 

concentrations were in the range of values observed in Loch Creran. The predicted and 

observed seasonal variations of DON show two peaks (Fig. 7.05-b), the first of which 

was earlier than observed (around day 90 and 140, respectively); however, the second 

peak (day 330) predicted by the model was in agreement with the observations.

The predictions of the model always overestimated the concentrations of DOC 

compared to the observed values in Loch Creran (Fig. 7.05-c). However, the predicted 

and observed seasonal variations were similar but with the model output exhibiting 

greater amplitude. The DOC concentration values predicted by the model were close to 

those of the runoff formulated in the driving function. The model,
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Figure 7.05. Comparison of model output (solid line) and data collected in Loch Creran 
(circle) for DIN (a), DON (b) and DOC (c).
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therefore, satisfyingly predicted the major variations of nutrient concentrations and 

microbial dynamics observed in Loch Creran during this study. The simulated annual 

average bacterial and phytoplankton production were in the same range as observed 

values, although the model predicted slightly higher values. Seasonal cycles of 

phytoplankton, bacteria and nutrients were similar for observed and predicted data with 

occasional differences in timing.

7.3.2 Effect o f  grazing and DIN uptake by bacteria on the model behaviour

The model was used to investigate the role of bacteria in the fjordic ecosystem. 

In order to test the behaviour of the model to the addition of the bacterial compartment, 

two different scenarios were tested: (i) the standard run was compared with output 

obtained in the absence of grazers and (ii) the model was run with and without bacterial 

uptake of inorganic N (DIN). These two scenarios were investigated following 

observations made in Chapter 3, 5 and 6. In the first case, the model was used to support 

the hypothesis (presented in Chapter 3) that grazing controlled the bacterial population 

within the loch. In the second case the model was used to investigate the possible 

competition for inorganic nutrients between bacteria and phytoplankton as observed in 

Chapter 6.

The suppression of grazing on both phytoplankton and bacteria in the model 

provoked an increase of both phytoplankton and bacterial C concentration on an annual 

cycle (Fig. 7.06-a). In the absence of grazing, the integrated phytoplankton C 

concentration increased by 1.5 times compared to the value obtained during the standard 

run. Although the seasonal cycle was preserved, the peaks of phytoplankton C 

concentration were more prolonged which made the duration of elevated concentration
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longer. In this case, phytoplankton C concentrations were above 100 mg C m'3 over a 

period of 230 days (two third of the year).

200 n Bacterial C - No grazing 
Bacterial C 
Phyto C- No grazing 
PhytoC
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Figure 7.06. Scenario representing bacteria and phytoplankton (a) in absence of grazing 
(No grazing) and (b) in absence of DIN uptake by bacteria (No DIN).

Bacteria were less affected by the removal of grazing and less than a 6% 

difference in integrated values was observed between standard run and the run without
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grazing pressure. As with phytoplankton, the absence of grazers did not affect the 

seasonal cycle of bacteria in the model. The bacteria were not affected by the cessation 

of DIN uptake and both the standard run and the run without DIN uptake were identical 

for bacterial biomass (Fig. 7.06-b). However, the modelled phytoplankton was affected 

when modelled bacteria stopped taking up DIN, with phytoplankton C concentrations 

found to be higher when bacteria did not compete for DIN. This difference was mainly 

noticeable for maximum phytoplankton C concentration and accounted for an increase 

in annual production of about 11% compared to the standard run.

7.4 Sensitivity analysis

The sensitivity analysis was conducted to investigate which parameter had the 

largest influence on the state variables in the model. Parameter sensitivity analysis 

adopted in this work was similar to that used by Fasham et al. (1990) where the output 

of a standard run was compared with the output of a run in which a single parameter 

was altered, first to a low value, then to a high value. The values of the parameter were, 

where possible, based on the knowledge of the likely range of variation; where this was 

not possible they were simply chosen to be half and twice the standard value. For each 

parameter tested, the maximal value of phytoplankton and bacterial C was recorded. For 

consistency, when maxima occurred on a different day relative to a standard run, the 

value for the standard day was taken into account (no matter if it was not the maximal 

value observed). The effect of the tested parameter, p, was quantified by calculating a 

normalised sensitivity, S(p), defined as:
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rEp-E . \

S = J
p f  D _  „  ^ equation 7.05

■l r  s

. Ps J

where Es is the value of maximal C (phytoplankton or bacteria) attained for the standard 

case with the parameter value ps, and Ep is the value for the case when the parameter p 

was altered. This index measures the fractional change in the maximal C for a fractional 

change in the parameter. The higher, the index, the more sensitive the chosen output is 

to the variation of the parameter.

In total, 24 parameters (of 51 in the model) related to zooplankton, 

phytoplankton, bacteria and the physics of the model were tested in this sensitivity 

analysis (Fig. 7.07). The first output chosen was the maximum bacterial C  concentration 

( C b m a x )  attained within an annual cycle. C b m a x  was sensitive to bacterial growth 

efficiency (BGE) (Fig. 7.07-a), which defines the proportion of C  uptake assimilated by 

bacteria (the higher, the more C  is assimilated). The second important parameter 

affecting C b m a x  was omega (Q), which is related to the exchange-retention of bacteria 

(and phytoplankton) within the system. Surprisingly, Cbmax was less sensitive to D O C  

uptake parameters ( V m a x ,  the maximal bacterial growth rate and Ho, the half saturation 

of D O C  concentration) compared to BGE (Fig. 7.07-a).

The same set of parameters was also used to test the sensitivity of the model for 

the maximum phytoplankton C concentration (Cpmax) reached in an annual cycle (Fig. 

7.07-b). Cpmax was highly sensitive to Q (see Table 7.04), particularly when the value 

of this parameter was halved. Cpmax was also sensitive to grazing related parameters 

such as Gpmaxj Hzp (Table 7.04), but also related to excretion (eUp) and maximum
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growth rate (Rml and Rmq, Table 7.04). Finally, Cpmax was sensitive to variation of Beta 

((3), the proportion of tide upwelling into the S layer, which drives the entrainment of 

nutrients and organisms from the I layer to the S layer.

Figure 7.07. Normalized sensitivity carried out on 24 parameters (key for parameters is 
in Table 7.05) for Cbmax (a) and Cpmax (b).
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7.5 Discussion

In this study, the model of Ross et al. (1994) was modified to incorporate a 

bacterial compartment and an associated DOC compartment. The modifications of the 

model aimed to more realistically simulate the DIN and DON cycling by bacteria. This 

modified model was then used to investigate the dynamics of organic nutrients (DOC 

and DON) within a fjordic system, in relation to the dynamics of bacteria, and to test the 

effect of grazing and competition for DIN between phytoplankton and bacteria, these 

considerations having been identified to be of potential importance by experimental 

work in Chapters 4, 5 and 6. The model contained 60 parameters and 14 driving 

functions for 19 state variables.

7.5.1 Driving functions

The driving functions were continuous representations of the best available data 

and were generally smoothed using a 3 points moving average (sea and runoff 

parameters) or approximated with sinusoidal or cosinusoidal functions (temperature, 

light irradiance and immigration curves).

The driving functions were modified from Ross et al. (1994). Light irradiance, 

for example, was corrected with data collected in 2005 from the SAMS meteorological 

station, these new data being higher than those used by Ross et al. (1994). The resulting 

higher light irradiance could potentially enhance the primary production in the present 

model, as Ross et al. (1994) concluded that primary production was light limited most 

of the year (according to their model). Phytoplankton from the sea was approximated 

from data collected at LY1 station in the Firth of Lorn and these data were preferred to 

those used in Ross et al. (1994), providing a more realistic input of phytoplankton and 

therefore C to the model.
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7.5.2 Comparison o f model output with observations from Loch Creran

An important point in the comparison of model output and data collected at

station C5 station is that the later were transformed from either chi a concentration or

cell numbers, using conversion factors. These conversion factors have a limited validity

as they are not constant in nature and depend on many other conditions such as the

species involved, the metabolic state of the cells, light and temperature (Geider 1987,

Taylor et al. 1997). In this study, a C to chi a ratio of 1:25 was chosen, but the use of a

1:50 C to chi a ratio would have given closer results between modelled and observed
^ 1

annually integrated phytoplankton C concentration (2.6 and 2.8 g C m' y for

observed and modelled data respectively).

Phytoplankton C concentrations calculated by the model were in agreement with

the data collected at C5 station. However, the late summer early autumn bloom was of

longer duration than the one observed. This means that modelled phytoplankton is still

fixing C and taking up DIN whereas it should have naturally stopped. This suggests that

phytoplankton benefit from other DIN sources to keep the production at such levels.

DIN from the sea transported into the system (Fig. 7.02-b) is never exhausted and thus

can be transported into the loch (by simple diffusion) to supplement the DIN stock

available for phytoplankton uptake.

Bacterial increase started at the same time as the observations and increased to

similar values, but did not decrease at the same time as the observations (Fig. 7.04-a).

This suggested that there were sources of DOC in the model available to bacteria that

potentially did not exist in the natural system. In fact, the DOC compartment in the

model was considered as a single entity with no simulation of the different availability

of compounds with regard to bacterial metabolism. This simplistic view was reflected in

the equations used to model the C uptake by bacteria as data did not exist to

parameterise variable lability of different fractions within the DOM pool. Therefore the
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largest source of DOC (runoff in this model) would have the greatest influence on 

bacteria whereas, more realistically, some exudates from phytoplankton should be taken 

up preferentially (see Chapter 5) to DOC coming from runoff, much of which has 

potentially a terrigenous origin hence refractory character (see Chapter 3). It appears 

that modelled bacteria C concentrations follow the seasonality of runoff (Fig. 7.02-d) 

rather than phytoplankton, indicating that it was the source of organic C preferentially 

utilised by bacteria in the model. The availability of DOC from runoff could then be 

better parameterised by including a factor making available only a proportion of this 

DOC stock or including degradation steps via enzymatic reaction (Polimene et al. 

2006). The uptake of DOC by bacteria is also subject to discussion as, for example, a 

constant Vmax and Ho were used in the model and these are likely to vary with the 

season (Eichinger et al. 2006). This uptake may also vary with substrate C:N (see 

Chapter 4).

However, when the model was run with no DOC derived from run off (data not 

shown), the bacterial C concentration did not differ from that observed in the standard 

run. This suggested that the predicted prolonged bacterial C concentration peak was not 

due to DOC from run off entering Loch Creran and that other sources of DOC were 

responsible. The exchange of nutrients between the sea and the loch follow a simple 

diffusion law, including the rate of tidal exchange and the difference in concentration of 

the considered state variable between the sea and the loch; the concentration in the loch 

being weighted by a retention factor (O, fixed at 0.5, see Table 7.04). Consequently, 

nutrients were preferentially flushed into the loch and may have been responsible for the 

greater bacterial C concentrations predicted by the model.
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7.5.3 “What i f  ’ scenarios

Although this model is a simplistic view of the microbial food web in Loch 

Creran, it is still a useful tool to compare or highlight some of the characteristics of this 

food web.

The model was developed with only one heterotrophic grazer (zooplankton) 

feeding on both phytoplankton and bacteria but with different maximum grazing rates 

and affinity; this enables differenciating prey preference. Although the existence of only 

one grazer is unrealistic, there is insufficient data available to justify the inclusion of a 

second grazer class in the model. Removing the grazing pressure on phytoplankton and 

bacteria in the model demonstrated the importance of grazing on the different prey 

dynamics. In the absence of grazing, phytoplankton C concentrations were enhanced by

1.5 times compared to the standard run. Furthermore, phytoplankton C concentration 

remained above a 100 mg C m'3 for over 230 days (two third of the year). With all other 

conditions remaining unchanged, it seems unlikely that nutrient and light in Loch 

Creran could sustain such high production predicted by this model at that time in the 

year.

The second point that was tested with this model is the potential competition for 

DIN between bacteria and phytoplankton. The model allowed bacteria to take up DIN 

(along with DON) following a simple hyperbolic function (Table 7.04) and hence to 

compete with phytoplankton for this resource. There were no differences in terms of 

bacterial C yield whether or not bacteria were taking up DIN (Fig. 7.06-b). This 

suggests that bacteria were not N-limited and, therefore, that the uptake of DOC was 

sufficiently complemented by DON to stoichiometrically balance the elemental (C and 

N) composition of the cells.

Modelled phytoplankton C concentration (Cp) was only slightly higher when

bacteria were not competing for DIN. This is in agreement with the fact that, when
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bacteria were not competing with phytoplankton, more DIN was available for 

phytoplankton growth promoting the further phytoplankton growth observed. It also 

suggests that bacterial competition with phytoplankton is insufficient to perturb the 

normal cycle of phytoplankton or its productivity.

7.6 Conclusion

The revised model presented in this Chapter satisfyingly reproduced the 

seasonal patterns for phytoplankton and bacteria observed at C5 station. However, it did 

lack accurate timing in the appearance of the blooms of phytoplankton, bacteria and the 

nutrient dynamics. As with Ross et al. (1993), one of the conclusions here is that the 

system was ultimately driven by the balance between import and export of nutrients. 

This simplistic model did not take in account all the complexity of the studied 

ecosystem. For example, the DOM pool was not differentiated into several DOC 

reservoirs reflecting different bacterial affinities. Nevertheless, the DOC and bacterial 

dynamics in this model highlight the non biologically available nature of the DOC 

derived from terrestrial runoff. Grazing control of bacteria was not demonstrated by the 

model, which does not agree with observations made in chapter 3, 4, 5 and 6. This may 

have been due to the fact that grazing on bacteria was not adequately represented and 

parameterised in the model.
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- CHAPTER 8 - 

General conclusion and future research work

8.1 Background

The recognition of the microbial loop triggered new research in the domain of 

marine microbiology. This link between DOM and higher trophic levels, that involves 

many different marine micro-organisms and microbial mediated processes, remains the 

subject of substantial ongoing research. The development of molecular tools, along with 

traditional ecological approaches, has made marine microbiology a subject rich in 

concepts, paradigm, but also paradoxes.

8.2 This study

This work consisted of three different approaches:

Field investigations (Chapter 3)

Laboratory experiments (Chapters 4, 5 and 6)

Modelling analysis (Chapter 7)

8.3 Major results

This study investigated the influence of organic nutrients (C and N) on microbial 

dynamics (bacterioplankton but also phytoplankton and nanoplankton). A 

comprehensive set of data was collected from three contrasting locations on the west 

coast of Scotland and was complemented with laboratory based experiments and 

modelling studies. This thesis therefore: i) provides information on the sources of
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nutrients (inorganic and organic) affecting the locations studied, ii) examines the 

abundances of marine micro-organisms, their seasonal variations, their trophic 

relationships, and the ecological significance of the processes they mediate, iii) assesses 

the most likely factors driving the abundances and productivity of the studied 

ecosystems, and iv) investigates the different forms of organic nutrient perturbations 

likely to affect the microbial dynamics.

8.3.1 Sources o f  nutrients

Different sources of nutrients were investigated in this thesis. The concentrations 

of inorganic and organic nutrients in Loch Creran, River Creran and the Lynne of Lorn 

show seasonal variation (see Chapter 3), however, the relative influence or contribution 

of these different sources to the standing stocks measured at the three stations was more 

difficult to assess. If the fish farm does not seem to be a significant source of organic 

nutrients to Loch Creran (no statistical evidence of enhanced concentrations of DOC 

and DON in Loch Creran compared to LY1), especially compared to the influences of 

phytoplankton (see below), it was, however, a significant source of ammonium. This 

latter form of N, which is the most reduced, is known to be the preferred form of N to 

phyto- and bacterioplankton, however no direct evidence of increased biomass or 

production was found close to the FF station. Phytoplankton was found to be the major 

contributor to organic nutrient stocks in coastal waters (see Chapter 3, section 3.9.1.4), 

via the release of photosynthesis products (results from Chapter 5) but, due to the 

variety of sources, the fate of this DOM dynamics is not easily unravelled. However, the 

calculations presented in table 3.05 suggested a short turnover of the organic C 

compared to the accepted flushing time of Loch Creran suggesting an inadequate 

sampling strategy (see section 8.4 in this Chapter).
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8.3.2 Organic nutrient perturbations

This work demonstrated that organic nutrients in coastal waters are of different 

characters, such as variable concentrations, stoichiometry, size fractions or bio­

availability (Chapter 3, 4 and 5). Concentrations and stoichiometry of organic C and N 

appeared to govern bacterial metabolism (modification of bacterial C to N ratio, see 

Chapter 4). Furthermore, organic C:N stoichiometry may affects the C yield of a 

microbial system by creating limiting conditions (either C or N). However, C:N ratios 

do not seem to affect the growth efficiency of the system investigated (predator-prey) 

suggesting that the resources are optimally utilised (Chapter 4). Grazers efficiently 

removed bacterial production increasing C yield of the prey-predator system (Chapter 4) 

as more organic C was taken up. However, they seem rather inefficient in transferring N 

(regenerating the same amount of N as the bacteria alone) through the food chain and 

were found to preferentially regenerate N (Chapter 3 and 4).

Further investigations of the DOM produced by phytoplankton appeared to be 

affected by the N:Si ratio in terms of concentrations per unit of chi a (although chi a 

concentration may be affected by N availability, a DOC production relative to C per C 

would be preferred) and quality in term of carbohydrates (Chapter 5). N:Si ratios are 

likely to vary in coastal areas; as shown in Chapter 3, and therefore may greatly 

influence the fresh DOM produced by the dominating phytoplankton. The availability 

of the DOM produced under inorganic nutrient stress play a key role in controlling 

bacterial productivity and taxonomic composition (Chapter 5). This also suggests that 

bacteria were indirectly affected by inorganic nutrient disequilibrium, although 

inorganic nutrients are not thought to be the main bacterial energy resources (Chapter 3 

and 5). Although inorganic nutrients may have an indirect effect on bacterial 

metabolism and taxonomy, bacteria are capable of directly competing with
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phytoplankton for these nutrients. This hypothesis was tested using mathematical 

modelling and results revealed only a weak effect on phytoplankton production.

This work also revealed that, during the summer, the bacterial community 

seemed to be C limited, especially in Loch Creran. This C limitation would suggest that 

the DOM present at that time at LY1 and in Loch Creran was biologically non-available 

to bacteria or that bacterioplankton could be further limited by other conditions, such as 

trace metal.

8.3.3 Microbial dynamics

8.3.3.1 Phvtoplankton

Typical phytoplankton seasonality was demonstrated with a diatom dominated 

spring bloom, followed by dinoflagellates and ciliates in the late summer and autumn. 

The effect of the seasons on phytoplankton community composition was clearly 

revealed by the MDS analysis (Chapter 3). Statistical analyses confirmed the 

relationships between environmental conditions and the occurrence of the different 

plankton groups. The diatom dominated spring bloom was thus related to nutrient 

concentrations and the summer bloom coincided with increasing water temperature. 

Phytoplankton and nanoplankton abundances suggested a potential inter-annual 

variability, with variation of the dominant diatom taxa from year to year during the 

spring, and the alternation of nanoflagellates with large dinoflagellates and ciliates in 

the summer. Phytoplanktonic community compositions also varied between LY1 and 

Loch Creran stations (Chapter 3), where different diatom species (Skeletonema at LY1 

vs. Chaetoceros and Thalassosiara in Loch Creran) dominated the spring bloom at both 

stations. In the light of the specificity of phytoplankton DOM produced mentioned

above, this would suggest a potential variability in DOM available to bacterioplankton.
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8.3.3.2 Bacteria

In order to understand the dynamics of organic nutrients in Scottish coastal 

waters, an important part of this work as focused on bacterioplankton. Although there 

were no direct correlations between bacteria and DOM (C and N), the heterotrophic 

productivity was within the range of values previously reported in coastal environment 

(Chapter 3). The thymidine conversion factor was revealed to be a major source of 

variation in the calculations of bacterial production and should be more carefully 

considered in bacterial production studies (Chapter 3). These results demonstrated that 

between two stations (of about a mile apart of each other) BP at LY1 was overestimated 

when using literature based conversion factor. In contrast, BP was largely 

underestimated in Loch Creran using the same literature based conversion factor. 

Because BP at the fish farm was greater than LY1 when calculated using a concurrently 

derived TCF, it would suggest the presence of a more active bacterial community in 

Loch Creran (Chapter 3). The same conversion factor experiment could be carried out at 

C5 to test the applicability of these factors to the whole Loch Creran.

Although primary production was not directly assessed in this study, a tight 

coupling between primary production (using data obtained in earlier studies in Loch 

Creran) and bacterial production is possible (see Chapter 3, section 3.9.2.3) and may 

correlate with high production and fast turn-over of the organic matter mentioned above 

(Chapter 3 and 6). However, if this coupling is possible and has been observed in other 

coastal waters, bacterioplankton did not contribute to a constant fraction of the total 

particulate organic C, indicating the presence of effective removal processes (or control) 

of bacterial biomass and production (Chapter 3, 4,5 and 6). Bacteria were found to be 

controlled by heterotrophic nanoflagellates, but also by other heterotrophic grazers, as 

demonstrated by Gasol plots, which favoured the hypothesis of top-down control of the 

bacterioplankton. In additions, inter-annual variability in bacterial grazers was observed
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between summer 2004, dominated by heterotrophic nanoflagellates, and the summer 

2005, dominated by ciliates suggesting that HNAN were not solely responsible for this 

top-down control of bacterioplankton.

8.4 Future work recommended

This work demonstrated the necessity and the importance of considering the 

microbial community as a whole to characterise the dynamics of organic nutrient sin 

temperate coastal waters. It also appears obvious that more work is required to better 

characterise, the size fraction and bioavailability of DOC and DON. This work could be 

complemented by including another important organic nutrient of ecological relevance, 

dissolved organic phosphorus: this work has detailed different problems encountered 

regarding to the DOM cycling in coastal waters. Consequently, more DOM 

ultrafiltration based experiments in conjunction with measurements of bio-availability 

(cell numbers or production) of the different fractions may help to better understand the 

characteristic of DOM in coastal waters.

The use of known tracers for example, either natural or synthetic, could be 

utilised in order to depict the different origins of dissolved organic nutrient in restricted- 

exchange systems and coastal waters: the use of stable isotopes or the characterisation 

of the lipid fraction (as a natural biomarker) of the DOM may give useful information 

on the origin (terrigenous or marine) of the DOM.

The field study and experimental work demonstrated the quick response of 

bacterioplankton, in term of biomass and production, sometime noticeable within 24 

hours (see Chapter 5 and 6). This would further suggest that the sampling frequency 

should be adapted in studies investigating highly dynamic natural systems. In this work, 

the fortnight sampling regime may have resulted in incomplete understanding of the 

relationships between organic nutrients and microbial dynamics Scottish coastal waters.
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Laboratory based experimental work confirmed that observation made in natural 

conditions and subsequent emerging hypothesis can be tested in controlled conditions. 

However, it is obvious that more laboratory work is required and this laboratory work 

could be supplemented with mesocosm experiments that would allow manipulation to 

be undertaken in “close to natural” conditions. This work has also highlighted the 

benefit of combining ecological approaches (production, grazing) with molecular 

biology, providing insights on the functionality of the different organisms involved. 

This is a key point to develop because our understanding of element (C, N and P) 

cycling in coastal waters and in the oceans is increasingly being recognised to relate to 

the functions fulfilled by the different organisms constituting the microbial food web.

This work could be reinforced by investigation of the broader marine microbial 

community including, for example, particle-attached bacteria. In addition, a better 

knowledge of microbial variables, such as grazing or size fractionated primary 

production, may help to improve our understanding of the role played by the different 

components of marine microbial communities. These parameters could be further used 

in modelling work. Finally, a refinement of the modelling approach is needed to better 

characterise the different sources (autochthonous v.s. allochthonous), compartments 

(available vs. refractory) and fractions (low and high molecular weight) of the dissolved 

organic matter pool, in relation to more fine scale microbial processes, such as 

enzymatic hydrolysis of large organic compounds.

8.5 Conclusion

This work draw attention to the necessity of including different scientific 

approaches in defining a frame work for the complex study microbial food web 

dynamics and dissolved organic matter pool. Azam (1998) emphasised the 

heterogeneity of time and space scales in his “plot thickens” and hypothesised that
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“behavioural and metabolic responses of bacteria to the complex and heterogenous 

structure of the organic matter field at the micro-scale influence ocean basin-scale 

fluxes in all major pathways: microbial loop, sinking, grazing food chain, carbon 

storage, and carbon fixation itself’. The dynamics of the marine microbial communities 

observed at different scales of time and space (short time incubations to inter-annual 

variations or the contrast between coastal and fjordic systems) are an interesting point of 

the work detailed in this thesis. It demonstrates the importance of coastal biological 

systems, one of most productive, in the cycling of elements through very dynamic 

microbial food web. The concept of functional diversity (as opposed to specific 

diversity) that emerged from advances in genomic, phylogenetic or proteomic, gains 

increasing considerations in our understanding of marine microbial dynamics, although 

its use in ecological studies cannot be overstated (Pernthaler & Amann 2005). 

Therefore, the diversity, as species or function, has to be considered in the whole 

physico-chemical environment in relation with all the actors, competitors or predators, 

within the microbial food web.
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