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ABSTRACT

This study investigated whether IL-lp and TNF-a have a role in the pathophysiology 

of seizures by altering neuronal excitability and cell survival and also probed new targets to 

achieve an effective anticonvulsive action.

The first set of experiments evaluated if acute and spontaneous seizures can be effectively 

inhibited by blocking the brain production of IL-1 p using a selective inhibitor of caspase-1, 

the key enzyme specifically involved in the production of the releasable and biologically 

active form of IL-lp. Caspase-1 inhibition significantly reduced the number and the total 

time spent in seizures, indicating that this treatment represents an effective and novel 

anticonvulsive strategy.

The second set of experiments investigated the intracellular pathway involved in the IL-ip 

proconvulsant actions which appear to occur via a novel non-transcriptional pathway: 

namely, the IL-ip-mediated activation of neutral-sphingomyelinase, the production of 

ceramide and the subsequent phosphorylation of Src-family of tyrosine kinases and the 

target receptor protein NR2B subunit of the NMDA receptor, resulting in the potentiation of 

NMDA function. This fast post-translational effect of IL-lp represents a novel and non- 

conventional pathway by which inflammatory molecules produced in epileptic tissue can 

affect neurotransmission.

Then, this work demonstrated that a brief pro-inflammatory stimulus, characterized by the 

activation of microglia and subsequent lasting release of critical concentrations of IL-lp, 

primes neuronal vulnerability to a subsequent excitotoxic insult, highlighting one
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mechanism by which a pre-existent pro-inflammatory state may increase hippocampal 

neuronal susceptibility to the excitotoxic damage associated with seizures.

Thus, pharmacological approaches specifically targeted to block the overproduction of IL- 

ip  and its functions in diseased conditions may represent new, nonconventional strategies 

for the treatment of seizure disorders, which are refractory to classical anticonvulsant 

treatments.

The second part of this thesis demonstrated that TNF-a significantly decreases epileptic 

activity by specifically acting on neuronal p75 receptors. The actions of TNF-a on neuronal 

excitability strictly depend on whether p55 or p75 receptors are preferentially involved and 

appear to be mediated also by changes in the assembly of glutamate receptor subunits.

These novel functional glia-neuronal interactions add important insights into the mechanism 

of ictogenesis and seizure-associated neuronal cell death, highlighting innovative 

pharmacological strategies to block the activation of cytokine-mediated signalling in 

diseased conditions.
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1.1 Epilepsy: definition and classification

Epilepsy is one of the most common neurological disorders that occurs in about 1% 

o f the population worldwide, with an incidence of 50 per 100.000 people per year in 

developed countries. It can occur at all ages, from neonates to elderly people and has 

different etiologies.

In the past it was known as the “Sacred disease” because it was often associated with 

religious experiences and even considered as a manifestation of demonic possession 

because of its peculiar behaviour caused by epileptic seizures. Hippocrates was the first to 

dissociate epilepsy from religion and magic, defining it as a disease of the brain that must 

be treated by diet and drugs.

The International League against Epilepsy (ILAE) has recently defined epilepsy as “a 

chronic condition of the brain characterized by an enduring propensity to generate epileptic 

seizures, and by neurobiological, cognitive, psychological and social consequences of this 

condition. The definition of epilepsy requires the occurrence of more than one unprovoked 

seizures” (Fisher et al., 2005). This definition indicates that the diagnosis of epilepsy 

requires not only the occurrence of at least one seizure, but also the presence of an intrinsic 

chronic epileptogenic tissue that generates seizures. The process that turns a normal 

neuronal network into a permanent state of hyperexcitabilty and hypersynchrony (i.e., an 

epileptic tissue), is called epileptogenesis. The mechanisms that lead to an epileptogenic 

network are complex and not yet fully elucidated (Pitkanen and Sutula, 2002).

The term “epilepsy” indicates clusters of disorders that are characterized by different 

symptoms but all capable of generating recurrent seizures which are the hallmark of
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epilepsy. Seizures result from a “transient alteration of the EEG and/or behavior due to 

abnormal excessive neuronal activity in the brain” (Fisher et al., 2005). Therefore, to 

generate seizures, two concurrent events are required:

1) hyperexcitabilty of neurons that is necessary to exceed a certain level of excitability 

(seizure threshold); 2) synchronization of neural networks; i.e. a population of neurons 

firing at the same time at a similar rate (Stafstrom, 2006). At the level of single neurons, 

there is a sustained neuronal depolarization resulting in a burst of action potentials, 

followed by a rapid repolarization and then hyperpolarization. This sequence is called the 

paroxysmal depolarizing shift (PDS). When a large population of neurons is recruited and 

fires PDSs in a synchronous manner, then a seizure is triggered. The clinical manifestations 

of seizures depend on which brain area is involved. In 1981 ILAE developed an 

international classification of epileptic seizures dividing seizures into two major classes: 

partial (focal) and generalized.

Partial seizures arise in one hemisphere and are divided in simple partial seizures when the 

consciousness is unaffected or complex partial seizure when there is loss of consciousness. 

A partial seizure may spread within the brain and generate a secondarily generalized 

seizure, which often begins with an aura (a simple partial seizure) that evolves into complex 

and then into generalized tonic-clonic seizure.

Generalized seizures arise in both hemispheres and include absence (petit mal), myoclonic, 

and tonic-clonic seizures (grand mal).

Status epilepticus consists of a very prolonged seizure or seizures occurring so frequently 

that they do not allow for full recovery of normal brain function. From a clinical perspective 

(Engel, 1996), epilepsy is divided into: Idiopathic epilepsies which are not associated with
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identifiable brain pathologies and include all genetically-determined forms; Cryptogenic 

epilepsies when their etiology can not be determined; Symptomatic epilepsies, disorders due 

to a specific epileptogenic lesion which may be genetic (e.g. tuberous sclerosis or 

malformations of cortical development) or acquired (e.g head trauma, status epilepticus, 

stroke, infection, febrile seizures). These initial insults may trigger molecular, cellular and 

network changes which possibly lead to the occurrence of spontaneous seizures; this 

process called epileptogenesis is schematically depicted in Fig. 1.1. Symptomatic epilepsies 

are divided into generalized (generalized seizures) and localization-related disorders (partial 

or secondarily generalized seizures). Of particular relevance among symptomatic 

localization-related epilepsies are those of temporal lobe origin, called Temporal Lobe 

Epilepsy (TLE) which represents the most common form of human epilepsy. The most 

frequent epileptic syndrome of temporal-lobe origin is Mesial Temporal-Lobe Epilepsy 

(MTLE), characterized by hippocampal sclerosis.

The new ILAE definition of epilepsy also considered that the chronic and repeated seizures 

can lead to psychological, social and intellectual impairments. Indeed, patients with 

epilepsy often exhibit memory impairments, live in fear waiting for the next seizure and 

may be unable to drive or work. So it is important to achieve seizure remission to permit 

good quality of life; this task can be obtained in about 70% of patients using the current 

antiepileptic drugs (AEDs), which reduce or abolish the occurrence of seizures. However, 

approximately one-third of patients still has uncontrolled seizures, and others suffer from 

severe side effects of AEDs. When three anticonvulsant drugs used at maximal therapeutic 

doses do not control seizures, the patient is defined pharmacoresistant (Duncan et al., 2006; 

Perucca et al., 2007). In about 10% of instances, pharmacoresistant patients are eligible for
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surgery consisting in the resection o f the epileptogenic zone. The current AEDs are 

symptomatic drugs, thus they can suppress the symptoms (seizures) but do not arrest, or 

interfere with, the epileptogenic process (Perucca et al., 2007; Loscher and Schmidt, 2004).

Epileptogenic lesion
• Head trauma
• Stroke
• Infection
■ Status epilepticus

Reorganisation during 
epileptogenesis
• Neuronal loss (acute, delayed)
• Neurogenesis
• Gliosis
• Plasticity (axonal, dendritic)
• Inflammation
■ Molecular reorganisation

Brain injury

Latency period 
(epileptogenesis)

Cognitive
decline

Epilepsy
(spontaneous

seizuresi

Reorganisation continues o '̂ing to 
recurrent seizures
• Neuronal loss (acute, delayed)
• Neurogenesis
• Gliosis
• Plasticity (axonal, dendritic)
• Molecular reorganisation

Recurrent Good seizure
seizures control

Worsening 
of cognitive 

decline

Drug refractory 
temporal-lobe 

epilepsy
progression

Figure 1.1. Epileptic process in symptomatic temporal-lobe epilepsy
An epileptogenic lesion can occur after a primary brain injury. This lesion leads to epileptogenesis 
that is characterized by cellular and molecular alterations including cell death, gliosis, axonal and 
dendritic plasticity, inflammation and angiogenesis. This period can last from weeks to years and 
induces a permanent hyperexcitability leading to the occurrence o f spontaneous seizures (epilepsy). 
70% ofpatients treated with AEDs have a good seizure control; however, -30% o f patients continue 
to have recurrent seizures that may contribute to the progression o f the disorder, inducing a 
worsening of cognitive decline and contributing to drug refractoriess (Pitkanen and Sutula, 2002).
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1.2 Inflammation in the Central Nervous System

The CNS has been commonly considered as an immune-privileged organ because of 

the blood-brain barrier (BBB) that reduces the exposure of the brain to 

immune/inflammatory events and the lack of lymphatic drainage (Glezer et al., 2007). 

However, various studies published during the past ten years have shown that an innate 

immune response and the subsequent recruitment of adaptive immunity cells from the blood 

(Nguyen et al., 2002) can occur in the CNS following various injuries suggesting that the 

brain is indeed an immunologically specialized site.

The innate immune system provides immediate defense against infections by recognizing 

and responding to pathogens in a non-specific manner; the innate immune cells can kill the 

invaders directly or activate phagocytic cells to ingest and remove them (Rivest, 2003). A 

key component of the innate immune response is the induction of inflammation which is 

characterized by the presence of inflammatory mediators such as cytokines and their 

receptors, chemokines, proteins of the complement system and prostaglandins (Glezer et al., 

2007; Gosselin and Rivest, 2007; Rivest, 2003). These molecules are produced by brain 

parenchymal cells such as resident microglia (Garden and Moller, 2006; Hanisch and 

Kettenmann, 2007), astrocytes (Farina et al., 2007; Seifert et al., 2006) neurons (Friedman, 

2001; Sairanen et al., 2001) and also by cell components of the BBB (Webb and Muir, 

2000). Cytokines produced during the innate immune response have an important role in 

shaping the subsequent development of the adaptive immunity and can determine whether 

the response is predominantly T-cell mediated or humoral. Indeed, the adaptive immune 

system is triggered when a pathogen evades the innate immune system and is considered a
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specific response that can recognize and remember specific pathogens. The cells of the 

adaptive immune systems are the lymphocytes, manly B and T cells. The first play a large 

role in the humoral immune response inducing the production of the antibodies; the second 

are intimately involved in cell-mediated immune responses and comprise the cytotoxic T- 

cells and helper T-cells.

A rapid and robust inflammatory reaction in the brain in response to systemic infection can 

be mimicked in rodents by the administration of lypopolisaccharide (LPS), the major 

component of the outer membranes of Gram-negative bacteria (Laflamme and Rivest, 2001; 

Nguyen et al., 2002; Rivest, 2003). LPS is an element of pathogen-associated molecular 

patterns that are recognized by phagocitic cells such as microglia and macrophages throught 

the Toll-like receptors (TLRs), RIG-1 and NOD-like receptors (Rietdijk et al., 2008). These 

belong to a group of pattern recognition receptors that detect the presence of infectious 

agents by recognizing specific and highly conserved structures produced by these pathogens 

which are not expressed by eukaryotic organisms (Glezer et al., 2007; Rivest, 2003). 

Increasing evidence indicates an important role of TLRs in several inflammatory CNS 

pathologies such as Alzheimer’s disease, Streptococcus pneumoniae meningitis and Herpex 

simplex virus encephalitis (Farina et al., 2007).

LPS induces downstream signaling events by interacting with TLR-4 (Akira et al., 2001). 

Recent data show that TLR-4 receptors are expressed by microglia and macrophages, in the 

circumventricular organs (CVOs), choroid plexus, the micro vasculature and in the 

ependymal cells of the ventricules (Chakravarty and Herkenham, 2005). Thus, circulating 

LPS targets its TLR-4 expressed on macrophages and microglia in CVOs leading to the 

activation of mitogen-activated protein kinase (MAPK) pathways and nuclear factor kB
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(NFkB), which can induce various proinflammatory genes (Glezer et al., 2007; Nguyen et 

al., 2002). Initially, these events involve the CVOs and thereafter the brain parenchyma 

(Laflamme and Rivest., 2001; Nguyen et al., 2002; Rivest, 2003). An increase in CD14, 

tumor necrosis factor (TNF)-a and TLR-2 mRNA was found in the brain in response to 

systemic administration of LPS (Nguyen et al., 2002; Rivest, 2003). It is likely that TNF-a 

produced in the CVOs by LPS can mediate the spread of LPS-induced inflammation in the 

brain by activating receptors on parenchymal microglial cells both in autocrine and 

paracrine manners (Bette et al., 2003; Nguyen et al., 2002). These data indicate that the 

activation of microglia by endotoxemia appears to be a crucial step in the CNS 

inflammatory response to systemic infection.

The innate immune response and related inflammatory reactions can occur not only during 

infection (Glezer et al., 2007) but also after neurotrauma, ischemia (Allan and Rothwell, 

2001; Lucas et al., 2006), autoimmune and neurodegenerative disorders such as 

Alzheimer’s disease, Parkinson’s disease, Hungtington’s disease, multiple sclerosis, 

amyotrophic lateral sclerosis and also epilepsy (Aarli, 2000; Bauer et al., 2001; Billiau et 

al., 2005; Nguyen et al., 2002). Indeed, endogenous ligands such as signals from damaged 

cells (e.g. heat shock proteins, components of degradated extracellular matrix, mRNA 

released from necrotic cells) or molecules entering into the brain because of BBB damage 

can trigger an immune response in the CNS by stimulating the TLRs expressed both on 

microglia and astrocytes (Akira et al., 2001; Farina et al., 2007) and inducing the activation 

of these resident glial cells.
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1.2.1 Microglia function and activation

Microglia form 10-20% of the total glia population and are considered the resident 

immune cells of the CNS. Microglia are always vigilant for changes in the 

microenvironment and prepared to respond to brain injuries (Lucas et al., 2006; Schwartz et 

al., 2006). In vivo two-photon microscopic studies in transgenic mice expressing enhanced 

green fluorescent protein in microglia demonstrate that microglial processes are highly 

mobile, continually rebuilt and appear to monitor the neuronal microenviroment 

(Nimmerjahn et al., 2005; Davalos et al., 2005). The presence of non-physiological factors 

such as proteins that occur in abnormal format, damaged cells and debris, transform the 

ramified and resting microglia into activated cells characterized by round-shape 

morphology with thickened and short processes (Kreutzberg, 1996). Thus, numerous 

signals that compromise the structural and functional integrity of the CNS can activate 

microglia, rapidly changing their functional phenotype into a reactive profile (Hanisch and 

Kettenmann, 2007; Lucas et al., 2006). In particular ATP which is released by damaged 

neurons following brain insults, is considered the main mediator of these early microglial 

morphological changes through actions on its P2 receptors (Garden and Moller, 2006). 

Neurotransmitters such as glutamate and GABA also can modulate the microglial response 

to CNS injury (Hanisch and Kettenmann, 2007) since microglial cells express various 

neurotransmitter receptors (Pocock and Kettenmann, 2007). Microglia can detect various 

microenvironmental changes because they express membrane receptors that play a critical 

role in initiating and regulating the immune response. These receptors recognize cytokines, 

chemokines, bacterial products, complement, misfolded proteins and immunglobulins 

(Garden and Moller, 2006). Activated microglia immediately migrate to the inflammatory
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site moving along a gradient of soluble factors such as chemokines or ATP (Davalos et al., 

2005). At the injury site microglia can release inflammatory molecules such as cytokines 

(Bianco et al., 2005) and prostaglandins. These released mediators have multiple paracrine 

and autocrine effects. They can recruit more microglia to the site of activation and activate 

neighboring astrocytes, which amplify the inflammatory response resulting in the 

accumulation of neurotoxic factors (Garden and Moller, 2006). Microglia can acquire 

varying phenotypes resulting in different functional properties. This versatility strictly 

depends on the stimulus and its intensity (Lai and Todd, 2008). In this respect, in response 

to LPS, p-amyloid aggregates or high doses of IFN-y, microglia acquire a phagocyte and 

cytotoxic phenotype and release proinflammatory mediators. On the other hand, after IL-4 

or low doses of IFN-y, microglia can support neurogenesis and offer neuroprotection by 

releasing anti-inflammatory factors or removing extracellular glutamate (Hanisch and 

Kettenmann, 2007; Schwartz et al., 2006). When the activating stimuli fade, activated 

microglia can down-regulate the immune response secreting anti-inflammatory molecules 

such as IL-13 and IL-4 that induce the apoptosis of the same microglia (Garden and Moller, 

2006; Yang et al., 2002).

The available evidence therefore suggests that the transient and focal activation of microglia 

could be beneficial by limiting and repairing the damaged tissue. However, excessive 

response of microglia may lead to sustained inflammatory reactions that progress toward a 

pathological process (Hanisch and Kettenmann, 2007; Schwartz et al., 2006).
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1.2.2 Astrocytic function and activation

The inflammatory response also rapidly activates astrocytes, which are the most 

abundant glial cells of the CNS (Raivich et al., 1999; Chen and Swanson, 2003). In mouse 

hippocampus, at least two astrocytic populations have been identified: Glutamate 

transporter (GluT) expressing astrocytes are enriched in glial fibrillary acidic protein 

(GFAP, a cytoskeletal protein) with irregular cell bodies and branched processes, prominent 

glutamate uptake and gap-junctional coupling; glutamate receptor expressing (GluR) 

astrocytes are characterized by low GFAP expression, a-amino-3-hydroxy-5-methyl-4- 

isoxazolepropionic acid receptors (AMPARs), low glutamate uptake and not coupled with 

gap-junction (Matthias et al., 2003).

Astrocytes give a physical and metabolic support to neurons, meninges and vasculature. 

They are implicated in the maintenance of K+ and H2O homeostasis through K+ and water 

channels that are co-localized on astrocytic processes near synapses and capillaries (Jabs et 

al., 2008). Astrocytes are interconnected via gap junctions to form a large intercellular 

network. This connection allows dissipating ion and metabolites that could be detrimental if 

accumulated in the extracellular space (Pekny and Nilsson, 2005). It has also been reported 

that neuronal stimulation induces Ca2+ increases in astrocytes which can spread to 

neighbouring astrocytes indicating the presence of a functional astrocyte network (Bezzi et 

al., 2001b; Jabs et al., 2008; Volterra and Meldolesi, 2005). Other important functions of 

astrocytes are the removal of neurotransmitters such as glutamate, which is considered the 

main mediator of neuronal excitability and excitotoxicity, and the protection of neurons 

from oxidative stress via a glutathione dependent mechanism (Pekny and Nilsson, 2005; 

Dringen et al., 2000). Astrocytes can release also gliotransmitters that activate neuronal
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receptors and modulate the strength of inhibitory or excitatory synaptic transmission 

suggesting that glial cells are integral and active components of the functional brain 

network (Bezzi et al., 2001b; Volterra and Meldolesi, 2005; Haydon, 2001). Three 

dimensional reconstruction of astrocyte-neuron structural relations in hippocampus 

(Ventura and Harris, 1999) or electronic microscopy studies (Volterra and Meldolesi, 2005) 

have demonstrated that astrocytic processes are intimately apposed to synapses and are rich 

in docked vesicles with high probability of neurotransmitter release (Bezzi et al., 2004). 

Following injury, astrocytes become activated and proliferate with hypertrophy of cellular 

processes (astrogliosis) and up-regulatation of GFAP protein (Chen and Swanson, 2003; 

John et al., 2005). Astrogliosis can create a physical barrier, termed the glial scar, which 

isolates the damaged tissue from healthy cells (Raivich et al., 1999). This scar can be 

beneficial favouring the repair and neuronal survival as shown in mice in which reactive 

astrocytes were ablated. In these mice, astrocyte loss was associated with a significant 

neuronal cell death and a failure of BBB repair following brain injury. However, astroglial 

scar functions as an impediment to axonal regeneration, restricting the neuronal outgrowth 

at the brain injury site (Bush et al., 1999; John et al., 2005; Pekny and Nilsson, 2005). 

Astrocytic neuroprotective effects can be related to their ability to release neurotrophic 

factors and anti-inflammatory cytokines such as ciliary neurotrophic factor, insulin-like 

growth factor-1, nerve growth factor, IL-10 and IL-1 receptor antagonist (IL-lra) promoting 

the CNS repair (Allan and Rothwell, 2001). On the other hand, during sustained 

inflammation the potentially protective functions of astrocytes such as glutamate uptake, K+ 

buffering, eliminations of free radicals are reduced and the astrocytes can release molecules
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contributing to neuronal cell damage and dysfunction (John et al., 2005; Pekny and Nilsson, 

2005).

Microglial and astrocytic response is versatile and can vary with the nature of the stimulus 

and its intensity and duration, and the microenvironment in which these cells are activated 

(Hanisch and Kettenmann, 2007; Pekny and Nilsson, 2005).

1.2.3 Adaptive immunity mechanisms

The innate immune response may be not sufficient to eliminate the pathogens and cell 

debris from the damage tissue. Thus, inflammatory cytokines, chemokines, adhesion 

molecules released by glial cells and neurons following TLRs/PAMPs interaction stimulate 

the traffic of adaptive immune cells such as T and B lymphocytes to the sites of lesion in 

the brain. For this reason, TLRs as well as inflammatory mediators are considered the 

critical proteins linking innate and acquired immunity (Akira et al., 2001) that are not 

separate entities, but sequential, complementary and functionally interconnected by cell-to- 

cell contact and by soluble inflammatory mediators (Abreu and Arditi, 2004; Olson and 

Miller, 2004; Medzhitov and Janeway, 1997).

In healthy brain, only few activated T lymphocytes can pass the BBB (Engelhardt, 2006; 

Ransohoff et al., 2003). However, in pathological conditions characterized by inflammatory 

reactions, T cells, primed in peripheral lymphoid organs, infiltrate brain parenchyma and 

accumulate at injury sites (Engelhardt, 2006; Man et al., 2006). The release of cytokines 

facilitates leukocyte migration across the BBB inducing the catabolism of arachidonic acid 

and subsequent production of prostaglandins and the upregulation of selectins and
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adhesions molecules (ICAM-1, VCAM-1, PECAM-1, E-selectin) in the brain 

microvasculature (Webb and Muir, 2000).

Trafficking of leukocytes into the CNS may occur through at least three routes (Ransohoff 

et al., 2003): 1-leukocytes pass through the fenestrated endothelium in the choriod plexus 

stroma, cross the epithelium of the choroid plexus and reach the cerebral spinal fluid;

2 -leukocytes can extravasate across postcapillary venules at the pial surface of the brain 

into subarachnoid space or across the Virchow-Robin perivascular space which is in direct 

communication with the cerebral spinal fluid; 3-leukocytes can enter the brain parenchyma 

by extravasation across the BBB non-fenestrated endothelium and basal lamina.

In the CNS leukocytes can be restimulated by antigen presenting cells (APCs), a specific 

group of highly specialized immune cells that include microglia, macrophages, dendritic 

cells, perivascular cells and epithelial cells of the choroid plexus (Aloisi et al., 2000; 

Williams et al., 2001). During inflammation, APCs express the major histocompatibility 

complex (MHC) and co-stimulatory molecules that promote the activation of T cells. 

Restimulated T cells can exibit either a Thl phenotype characterized by the secretion of 

IL-2, IFN-y and TNF-P and are implicated in the clearance of virus and in the regulation of 

the cellular immunity exacerbating CNS inflammation or a Th2 phenotype that produces 

IL-4, IL-10 and IL-13 and promotes the humoral immunity decreasing CNS inflammation 

(Aloisi et al., 2000). The regulation of T cell phenotype is affected by immunoregulatory 

mediators such as chemokines, cytokines, colony-stimulating factors, prostaglandins-E2 

that are released by APCs during inflammation.

The activation of immune cells and the release of immune molecules also support 

neurogenesis from neural stem and progenitor cells and this non-classical immune activity
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takes place constantly under normal physiological conditions in the adult brain (Ziv and 

Schwartz, 2008). Indeed, neurogenesis in neurogenic niches such as the subventricular zone 

of the lateral ventricles and the subgranular zone of the hippocampal dentate gyrus is 

significantly decreased in the T-cell-deficient mice, suggesting that T cells facilitate 

neurogenesis affecting in particular the proliferative capacity of neural precursor cells (Ziv 

et al., 2006). In particular, T cell-induced modulation of the activity of the local microglia 

and macrophages seems to have a role in the adult neurogenic niches. The activation of 

microglia by Thl cytokine IFN-y or Th2 cytokine IL-4 induces neuronal and 

oligodendroglial differentiation from adult neural precursor cells (Butovsky et al., 2006). 

Thus, the activation of the immune system can constitute a beneficial endogenous response 

as occurring during the classic immune response to infection, or consolidate inflammation 

in the brain inducing an excessive and long-lasting release of inflammatory mediators, that 

promote neuronal degeneration and dysfunctions. An important role in the regulation of 

immune response is covered by the BBB, which strictly regulates the entry of molecules 

and immune cells into the brain and responds rapidly to circulating endotoxins, bacteria or 

viruses.

1.2.4 Blood brain barrier

The BBB is formed by nonfenestrated endothelial cells connected by tight junctions 

and surrounded by end-feet processes of astrocytes (Abbott et al., 2006; Ballabh et al., 

2004; Pachter et al., 2003). It is a physical and metabolic barrier which serves to regulate 

and protect the microenvironment of the brain limiting the entry of molecules and cells. 

However, a variety of CNS injuries including infections, ischemia, trauma and seizures can
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change the functionality and the integrity of BBB (Oby and Janigro, 2006; Ballabh et al.,

2004). This could be caused by increased local blood pressure, free radical formation, 

inflammatory responses including the release of cytokines and leukocyte recruitment. 

Inflammatory mediators can induce the activation of metalloproteinases that damage the 

basal lamina of vessels, enhance the intracellular Ca2+ concentration that mediates the loss 

of the tight junction molecules, events that lead to an increase of endothelial permeability 

(Ballabh et al., 2004; Oby and Janigro, 2006; Webb and Muir, 2006). One of the 

consequences of increased BBB permeability is the accumulation of serum protein into the 

brain, which may contribute to increased excitability. Recent data have shown that BBB 

opening in the rat results in serum albumin extravasation into the brain and this is sufficient 

to induce epileptiform activity. These data suggest that neurons tend to fire abnormally 

when exposed to molecules that extravasate through a leaky BBB and this may contribute to 

the pathogenesis of focal epilepsies (Seiffert et al., 2004). Moreover, BBB permeability 

positively correlates with seizure frequency in chronic epileptic rats indicating that BBB 

leakage could contribute both to the increased excitability and to the maintenance of 

epileptic activity (van Vliet et al., 2007). The mechanisms that alter neuronal excitability
 ̂ I

after BBB opening are still unknown; the activation of astrocytes, the development of Ca 

waves in astrocytes and the decrease of K+ buffering appear to be involved (Nadal et al., 

1997; Seiffert et al., 2004). An impairment of BBB integrity and an inflammatory state are 

common features of several neurological conditions associated with the late onset of 

epilepsy (Vezzani and Granata, 2005).
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1.3 IL-1 and TNF-a: brief overview on related molecules, 

receptors and signal transduction pathways

This study focused on two pro-inflammatory cytokines, namely IL-1 P and TNF-a. For 

a quicker and better comprehension of the incoming dissertations, a brief overview on IL-1 

and TNF-a as well as their related molecules, receptors and signal transduction pathways is 

provided.

1.3.1 IL-1 system

IL-1 is considered the prototypic inflammatory cytokine (Dinarello, 1996); the IL-1 

gene family comprises three members: IL-1 a and IL-1 (3, which are agonists, and IL-1 

receptor antagonist (IL-lra) that is the natural occurring competitive receptor antagonist of 

IL-1 type 1 receptor (IL-1R1). Both IL-la and IL-ip are synthesized as 31-kDa precursor 

proteins and are cleaved by specific cellular proteases to constitute the 17 kDa mature 

forms. Pro-IL-la is biologically active and remains mostly intracellular; it has been shown 

that intracellular proIL-la exerts its effects after binding to an intracellular pool of IL-1R1 and 

subsequent formation of a ligand-receptor complex which translocates to the nucleus where it 

binds DNA (Weitzmann and Savage, 1992). Pro-IL-la can also be released in the 

extracellular space by dying cells where specific Ca2+-activated cytoplasmic proteases 

(calpain) cleave pro-IL-la to generate the mature protein.

Pro-IL-lp is biologically inactive and it is localized in the cytoplasm until its cleavage by 

IL-ip converting enzyme (ICE/Caspase-1) that produces the 17 kDa mature and active 

protein which is secreted in the extracellular space (Dinarello, 2005; Fantuzzi and
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Dinarello, 1999). It has been observed that cleavage of proIL-lp can be also accomplished 

by other enzymes in proximity of residues asp (116)-ala (117) where the ICE/Caspase-1 

usually acts. Thus, trypsin (Kobayashi et al., 1991), elastase (Fantuzzi and Dinarello, 1999), 

chymotrypsin (Mizutani et al., 1991a), a mast cell chymase (Mizutani et al., 1991b) and a 

variety of proteases (Hazuda et al., 1991), metalloprotease 9 (Schonbeck et al., 1998) 

commonly found in inflammatory fluids have been shown to cleave proIL-1 p to 

biologically active IL-lp species.

Both IL-1 a and IL-1 (3 exert their biological effects by binding the membrane 80 kDa IL-1 

receptor type-1 (IL-1R1), which requires the recruitment of IL-1R accessory protein (IL- 

lR-AcP) to induce signal transduction (Rothwell and Luheshi, 2000). IL-lR-AcP does not 

bind IL-lp but appears to increase the affinity of IL-1R1 for IL-lp. The IL-1R signal 

transduction system is quite efficient since it is known that fewer than 1 0  ligand-bound 

receptors are enough to trigger a sustained response (Dinarello, 1996), whereas for the 

majority of receptor systems 1 0  to 1 0 0  fold higher receptor occupancy is usually required. 

This feature could be explained considering that IL-lp can activate a complex cascade 

resulting in signal amplification (O'Neill and Dinarello, 2000). There is also a type 2 IL-1 

receptor (IL-1R2). The extracellular domains of the two receptors, responsible for ligand 

binding, are made of three immunoglobulin G-like domains and share a significant 

homology with each others (Greenfeder et al., 1995; Sims et al., 1988).

IL-1R1 possesses a single transmembrane segment with a long cytoplasmic domain, while 

IL-1R2 has a short amino acid sequence (29 residues) linked to its transmembrane domain. 

The lack of this transducing cytoplasmic signal domain makes the IL-1R2 unable to induce an 

intracellular signal and thus acts as a competitive decoy receptor to reduce the IL-1 activity
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(Colotta et al., 1993; Sims et al., 1993). IL-1R1, IL-1R2 and IL-lR-AcP exist also in soluble 

forms that can function as inhibitors of IL-1 P mediated signal transduction (Allan et al.,

2005).

IL-IRa is produced as pro-IL-IRa and there are at least three intracellular isoforms and one 

secreted isoform. The last can bind the IL-1R1 with the same affinity as IL-ip, but without 

inducing the signal transduction. IL-Ra prevents the formation of the complex between IL- 

1R1 and IL-lR-AcP that is essential for a fully functional intracellular signal (Rothwell and 

Luheshi, 2000).

In rat and mouse brain, in situ hybridization and autoradiographic studies have shown high 

density of IL-1 receptors in the granule cell layer of dentate gyrus of the hippocampus and a 

moderate signal was obtained in the pyramidal cell layer of the hylus and CA3 subfield 

(Ban, 1994; Takao et al., 1990). Immunohistochemistry studies have shown receptor protein 

expression on glial cells (astrocytes and microglia), neurons and cerebral blood vessels 

following a CNS injury while barely detectable staining is observed in physiological 

conditions. The same holds true for IL-ip and IL-IRa.

The presence of multiple regulator mechanisms such as IL-1R2, IL-IRa, the soluble forms 

of IL-1 R l, IL-1 R2 and IL-lR-AcP, suggest that the biological activity of IL-lp requires a 

tight control mechanism.

1.3.1.1 Interleukin-lp converting enzyme (ICE/Caspase-1)

ICE is the enzyme responsible for cleavage of proIL-ip to mature IL-ip specifically. 

This enzyme is synthesized as inactive 45-kDa precursor (Cerretti et al., 1992; Thomberry 

et al., 1992) that requires two internal cleavages in order to be enzymatically active. Its
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active tetramer conformation is made of two chains of 10- and 20-kDa respectively, with 

the cysteine-active site located on the 20-kDa chain. ICE itself can contribute to processing 

of the ICE precursor (Wilson et al., 1994).

ICE/caspase-1 is a cytoplasmatic cysteine protease that cleaves the precursor of IL-1 p at the 

aspartic acid residue located at position 116 and alanine residue at position 117 genereting 

the active form of this proinflammatory cytokine (Lindberg et al., 2004). Thus ICE is called 

also caspase- 1  for this enzimatic activity and it is not directly involved in apoptotic 

processes.

ICE/caspase-1 can also cleave proIL-18 (after the aspartic acid 19) thus yielding the mature 

IL-18 protein (Gu et al., 1997).

In health tissue, ICE/caspase-1 mostly exists as inactive precursor indicating that the levels 

of active caspase- 1  are usually low, but they can be induced in neurons and glia in response 

to various brain injury such as ischemia, endotoxin, excitotoxic damage (Lindberg et al.,

2004).

1.3.1.2 IL -lp  synthesis and secretion

The synthesis of the inactive IL-lp precursor is induced by various proinflammatory 

stimuli including several brain injuries and infections (Allan et al., 2005). These events 

induce the production of transcriptional factors including nuclear factor-kB, activator 

protein-1 or the activation of mitogen activated protein kinase (MAPK) pathway that are 

involved in the transcriptional activation of IL-1 p gene (Simi et al., 2007). Other 

proinflammatory signals, such as complement components and PGE2, can increase the rate 

of the transcription of IL-lp gene (Allan et al., 2005).
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Most of synthesized proIL-ip remains in the cytosol while a fraction moves into secretory 

lysosomes where pro-ILlp colocalizes with the procaspase-1. The next step is the 

processing of pro-IL-ip in the mature active form that depends on cleavage by caspase-1 

which is present in resting cells as procaspase- 1  and binds to a large inhibitor molecule 

preventing its activation (Dinarello, 2005). The conversion of the inactive pro-caspase-1 to 

the active one depends on the recruitment of adaptor molecules complex termed 

inflammasome (Martinon et al, 2002; Ogura et al., 2006). The IL-1 p processing and release 

are closely linked, although cellular release of this cytokine is still poorly understood and 

several mechanisms have been proposed. At least two stimuli seem to be required to induce 

the processing and secretion of IL-1 p. For example, microglial cells synthesize proIL-ip in 

response to proinflammatory stimuli, subsequent activation of P2 X7 receptors by ATP 

triggers the efflux of K+ and influx of Ca2+ which activates both phospholipase A2 (required 

for caspase-1 processing in lysosome) and phospholipase C which favors the lysosomal 

excitotosis and IL-1 p release (Andrei et al., 2004).

Other possible mechanism involved in the IL-lp release is the shedding of microvescicles 

containing IL-lp from the plasma membrane (Bianco et al., 2005). There is also the 

possibility the IL-ip is secreted directly across the plasma membrane even if a transport 

protein has not been identified (Brough and Rothwell, 2007) or that proIL-ip could be 

cleaved in the extracellular milieu at sites of tissue injury (Simi et al., 2007).

Figure 1.2. represents the processing and secretion of IL-1 p.
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Figure 1.2. Schematic representation of processing and secretion of IL-lp
Various stimuli including TLR ligands and seizures trigger gene expression and synthesis o f the IL- 
Ifi precursor, which remains in the cytosol. In the same cell, inactive procaspase-1 is bound to 
components o f the IL-1 ft inflammasome, that is kept in an inactive state by binding to a large 
molecular weight putative inhibitor (A). After brain stimuli, most o f synthesized proIL-1 ft remains 
in the cytosol, while a fraction moves into secretory lysosomes where pro-ILlfi colocalizes with the 
procaspase-1 (B). Activation o f the P2X7 receptor by ATP initiates the efflux ofpotassium from the 
cell via a potassium channel. The efflux o f potassium activates the autocatalytic processing o f  
procaspase-1. Active caspase-1 cleaves the IL-1 ft precursor in an active cytokine (C). The efflux o f  
potassium ions results in the influx o f calcium ion, which in turn activate phospholipases. 
Phosphatidylcholine-specific phospholipase C (PC-PLA-2) facilitates lysosomal exocytosis and 
secretion o f  IL-1 (Dinarello, 2005).

1.3.1.3 IL-1 signal transduction pathways

When IL -ip  binds IL-1R1, IL-lR-AcP associates to the receptor constituting an 

active heterodimer that results in the formation o f  a signaling complex responsible for the 

activation o f NFkB and MAPK pathways (Brikos et al., 2007; Dinarello, 1996; Wesche et 

al., 1997). The cytoplasmic domains of IL-1R1 and IL-lR-AcP are known as Toll/IL-IR

Active
casp ase -1 JEM
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(TIR) domains since they are also found in the cytoplasmic tail of TLRs. The formation of 

IL-1R1 and IL-lR-AcP complex recruits the myeloid differentiation factor 8 8  (MyD8 8 ) an 

adaptor protein that possesses a C-terminal TIR domain which interacts with TIR domain of 

IL-1RI and N-terminal death domain (DD) (Bums et al., 1998). MyD8 8  activates the IL-1R- 

associated kinases (IRAKs), serine-threonine kinases whose recruitment is mediated by Toll- 

interacting protein (Tollip), a scaffolding protein that normally inhibits IL-1R1 signalling 

blocking the phosphorilation of IRAK (Bums et al., 2000; Zhang and Ghosh, 2002). After 

activation, IRAK interacting with MyD8 8  is hyperphosphorilated and can dissociate from 

TOLLIP complex inducing a TOLLIP phosphotylation (Bums et al., 2000; Cao et al., 1996). 

Thus, IRAK can interact with TNF receptor-associated factor (TRAF)6 , another adaptor 

protein that becomes ubiquinated and forms a complex with TRAF-associated kinase (TAK)- 

1 (Cao et al., 1996). TAK-1 activated by phopshorylation is involved in the activation of 

NFkB and MAPK pathways.

1- NFkB-mediated pathway

The pathway leading to NF-kB activation starts with the phosphorylation of the NF-kB- 

inducing kinase (NIK) by TAK-1 (Stancovski and Baltimore, 1997). NIK, in turn, 

phosphorylates and activates the Inhibitor of NF-kB (IkB) kinase complex (IKK) that is 

formed by the catalytic subunits a and p and one regulatory subunit NEMO/DCKy. Finally, 

the activated kinase IKK phosphorylates IkB which is subsequently ubiquitinated and then 

degraded by proteosome. The released NF-kB translocates to the nucleus where it exerts its 

action as transcription factor (Mattson and Camandola, 2001). Following its degradation IkB 

is resynthesized and acts as NFkB endogenous inhibitor (Ghosh and Karin, 2002).
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2- MAP kinase-mediated pathway

Mitogen-activated kinases (MAP kinases) are enzymes that require phosphorylation on 

threonine and tyrosine subunits in order to become activated. In particular, MKK3 and 

MKK4 are responsible for p38 phosphorylation that activates the MAPK-activated protein 

kinases (MAPKAP-Ks) 2 and 3, which in turn contribute to phosphorylation of CREB and 

SRF.

MKK4 and MKK7 are involved in JNK phosphorylation that activates transcription factors 

such as c-jun and AP-1 (Derijard et al., 1994; Kyriakis et al., 1994).

3- Sphingomyelinase-mediated pathway

The activation of IL-lRl/IL-lR-AcP/MyD8 8  complex by IL-113 results also in the 

stimulation of the sphingomyelin signaling pathway (Bankers-Fulbright et al., 1996). 

Sphingomyelin is present in the outer leaflet of the plasma membrane and can be 

hydrolyzed by sphingomyelinase to ceramide, a second messenger that diffuses readily 

through the lipid bilayer. Ceramide has been reported to activate both kinase and 

phosphatase, suggesting a critical role in regulation of phosphorylation state of a cell 

following IL-1 stimulation (Kolesnick and Golde, 1994). Two kinds of sphingomyelinase 

exist. The acidic one is localized to the lysosomal compartment and requires DAG for 

activation. The neutral sphingomyelinase colocalized with sphingomyelin at the plasma 

membrane and this particular position makes this enzyme involved in receptor signal 

transduction (Bankers-Fulbright et al., 1996). Recently, IL-lp-induced sphingomyelin 

signaling pathway has been described in hypothalamic neurons where IL-lp induces the 

production of ceramide and the subsequent tyrosine phosporylation of NR2B subunit via the
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activation of Src kinases (Sanchez-Alavez et al., 2006). This pathway is activated within 

minutes by IL -lp  application and mediates the IL-lp-induced rapid phase o f fever onset in 

mice (Sanchez-Alavez et al., 2006).

The specific intracellular pathway activated by IL-1 P may differ in distinct cell types and 

may mediate its diverse biological effects (Srinivasan et al., 2004).

A schematic representation o f IL-1 R1 signal transduction pathways is depicted in Fig. 1.3.
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Figure 1.3. Simplified representation of IL-1R1 signalling pathway
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1.3.2 TNF-a system

TNF-a is expressed as 26-kDa transmembrane precursor protein that is cleaved by 

metalloproteinase TNF-a converting enzyme (TACE) to constitute the 17-kDa mature form 

which is subsequently released (Vandenabeele et al., 1995) and is the responsible for the 

majority of the biological effects of this cytokine. Mature TNF-a is trimeric and the 

formation of this structure appears to be essential for TNF-a biologic activity.

TNF-a is active either as a membrane-bound or as a soluble form and although it is usually 

produced in very low amounts in resting cells, it quickly becomes one of the major secreted 

factors upon cell stimulation and brain injury (Shohami et al., 1999). Indeed, the TNF-a 

gene is one of the immediate early genes induced by a variety of stimuli, including TNF-a 

itself and IL-1, and it is known that the activation of p38-MAPK triggered by IL-1 and 

TNF-a signaling enhances the translational efficiency of TNF-a mRNA (Kotlyarov et al., 

1999; Neininger et al., 2002).

Post-translational regulation of TNF-a is accomplished by TACE which has been identified 

as a metalloproteinase (MMP)-like enzyme (Black et al., 1997; Moss et al., 1997) whose 

activity can be blocked by MMP inhibitors (Mohler et al., 1994).

TNF-a exerts its biological effects via interaction with two receptors named TNF receptor 

type I  (TNFR1) or p55 and TNF receptor type 2 (TNFR2) or p75 (Vandenabeele et al., 

1995). Both receptors are single transmembrane glycoproteins with 28% of homology in 

their extracellular domain that contains four repeated cysteine rich motifs (MacEwan, 

2002a). The intracellular domains of the two receptors, however, are completely distinct 

indicating that they can lead to different signaling pathway (Vandenabeele et al., 1995). 

TNFR1 and TNFR2 exist also in soluble forms obtained by the cleavage of their
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extracellular domain via metalloproteinases, still preserving the capability to bind, and 

possibly neutralize, TNF-a (Crowe et al., 1995; Mullberg et al., 1995).

Controversial experimental results have been reported about TNF-a affinity for its receptors 

(Grell et al., 1998; Tartaglia et al., 1993). Murine TNF activates mouse TNFR1 and TNFR2 

equally, whereas human TNF acts on mouse TNFR1 but does not bind mouse TNFR2 

(Lewis etal., 1991).

In rodent brain, TNFR1 mRNA was detected mainly in the circumventricular organ, 

choroids plexus, leptomeninges, ependymal cells, blood vessels (Nadeau and Rivest, 1999), 

frontal cortex and hippocampus (Bette et al., 2003). TNFR2 mRNA showed a moderate in 

situ hybridization signal in the hippocampus (Nadeau and Rivest, 1999) and in numerous 

cells within the brain with microglial-like morphology (Bette et al., 2003). Both receptors 

can be rapidly upregulated following LPS or TNF-a stimulation.

TNF-a-induced signaling starts with the preassembling of TNFRs on the cell membrane 

which stabilize in a trimeric structure upon activation by TNF-a binding. The formation of 

this receptor precomplex is mediated by the extracellular pre-ligand-binding assembly 

domain (PLAD) that is distinct from ligand binding regions and is present in both receptors 

(Chan, 2000).

1.3.2.1 TNFR1 signal transduction pathway

Similarly to IL-1R1, the intracellular tail of TNFR1 contains a DD that, in the absence 

of ligand binding, is bound to a protein known as silencer o f death domain (SODD) which 

prevents cytoplasmic DD-containing proteins to interact with TNFR1. SODD is then
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removed upon ligand binding, allowing the access to DD receptor module (MacEwan, 

2002a; MacEwan, 2002b).

Indeed, the activation of TNFR1 upon TNF-a binding induces the receptor trimerization 

and the recruitment of an adaptor protein called TNFR1-associated death domain (TRADD) 

to its cytoplasmic domain. TRADD serves as a platform to recruit three additional 

signalling proteins, Fas-associated death domain protein (FADD), receptor-interacting 

protein-1 (RIP-1) and TNFR-associated factor 2 (TRAF2) (Baud and Karin, 2001).

FADD is the major adaptor protein involved in the TNFR-1 pro-apoptotic pathway since it 

contains a death effector domain (DED) that allows the interaction and activation of 

caspase- 8  followed by activation of caspase-3 and - 6  (Chen and Goeddel, 2002). The 

TRADD/FADD/caspase- 8  protein assembly is known as a death-inducing signaling 

complex (DISC) and is dependent on the internalization of activated TNFR1 complex (TNF 

receptosomes) that regulates the TNFR1 activation and inhibits its long-term action 

(Schneider-Brachert et al., 2004).

The RIP-1 protein appears to mediate anti-apoptotic activity since it has been shown to be a 

key effector in the activation of NF-kB by TNFR1 (Liu et al., 1996; Ting et al., 1996) while 

it does not affect MAPK activation (Kelliher et al., 1998).

TRAF2 is important in order to trigger the activation of NFkB and the MAP kinase 

cascades which result in both INK and p38 induction (Baud and Karin, 2001; Devin et al., 

2000; Tada et al., 2001). The pathways leading to NF-kB activation can be induced by the 

recruitment of NIK that associates with TRAF2 and mediates the activation of NF-kB 

through IKK (Malinin et al., 1997). Moreover, it has been also shown that MEEK1 induces 

the phosphorylation and degradation of hcBa, resulting in the activation of NF-kB (Hirano

49



et al., 1996; Lee et al., 1997; Nakano et al., 1998) thus also this enzyme could mediate the 

TRADD-TRAF2 activation of NF-kB. Other kinases such as apoptosis-stimulating kinase 

(ASK1), germinal centre kinase (GCK) and MEEK1 are associated with TRAF2 and are 

implicated in the activation of p38MAPK and c-JNK (MacEwan, 2002a).

Besides the DD domain, TNFR1 has also another functional intracellular region named 

neutral sphingomielinase activation domain (NSD) (Kolesnick and Kronke, 1998) that 

recruits the factor associated with neutral sphingomielinase (FAN). FAN activates the 

neutral sphingomielinase that triggers the degradation of sphingomyelin into ceramide. This 

second messenger can further activate ceramide-activated protein kinase (CAPK) which 

then phosphorylates cytoplasmic raf-1 inducing the activation of MAPK activity 

(MacEwan, 2002a; Shohami et al., 1999). Ceramide has also been found to bind the protein 

kinase c(PKC)-^ which can activate raf, MEK, MAPK and NFkB transcription (MacEwan, 

2 0 0 2 a).

Also acidic sphingomyelinase (A-Smase) can be induced upon TNFR1 activation through 

the induction of phosphatidylcholine-specific phospholipase C (PC-PLC) that yields to 

cleavage of phosphatidylcholine into choline and diacylglycerol (DAG). The last is 

involved in the activation of acidic sphingomyelinase that can in turn induce the ceramide- 

mediated stress-activated kinase, JNK and p38 and seems to contribute to apoptosis 

(Shohami et al., 1999).

The activation of p38 induces also the phosphorylation of PLA2 that results in the 

generation of the arachidonic acid metabolites, leukotrienes and prostaglandins, which are 

known to contribute to TNF proinflammatory activities (MacEwan, 2002a).

50



1.3.2.2 TNFR2 signal transduction pathway

The role of TNFR2 in cellular responses is not fully understood since its activation 

has been shown to be proliferative and cell protective but it is also known to have a function 

in regulating TNF-induced apoptosis. TNFR2 contains a so-called TRAF-interacting motif 

(TIM) in its cytoplasmic domain. Upon TNF-a activation, TNFR2 recruits the TRAF- 

family members (TRAF2 and TRAF1) that are involved in the activation of signaling 

pathways such as NFkB, JNK, ERK1/2, p38 and phosphoinositide 3-kinase (Hehlgans and 

Mannel, 2002). This can result in cytokine production, but also in the expression of anti- 

apoptotic activity and cell protective effects activating the antioxidant enzyme Mn- 

superoxide dismutase, the calbindin and anti-inflammatory cytokines (Shohami et al., 1999; 

Wang et al., 1998).

TNFR2 does not contain the DD as TNFR1, but can induce apoptosis through a so-called 

ligand-passing mechanism. Thus, TNFR2 binds TNF-alpha, increases its local 

concentration close to TNFR1 which by accepting TNF ligand by TNFR2 becomes 

activated and induces the TNFR1 apoptotic machinery (MacEwan, 2002b). TNFR2 is able 

to signal apoptosis also directly since RIP and FADD are bound to TNFR2 via TRAF2, 

resulting in the activation of caspase cascade (MacEwan, 2002b). Thus, several factors such 

as different signaling pathway activated by each receptor (MacEwan, 2002a; Thommesen 

and Laegreid, 2005), the pattern of TNF-a receptor expression on neurons and glia 

(Akassoglou et al., 2003; Fontaine et al., 2002), changes in TNFR1/TNFR2 ratio at the 

plasma membrane (Grell et al., 1995), the regional differences in TNF-a cellular expression 

across brain regions play a critical role in determining the final outcome on neuronal 

functions (Sriram and O'Callaghan, 2007).
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A schematic representation o f TNFR1 and TNFR2 signal transduction pathways is depicted 

in Fig. 1.4.
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1.4 Epilepsy and brain inflammation

1.4.1 Experimental models of epilepsy

Experimental models of epilepsy are necessary to study the pathophysiology of the 

disease and to find new targets for developing drugs. These aims can be addressed using 

two distinct animal models of seizures, namely acute and chronic models.

Acute models are represented by seizures induced either chemically or electrically that 

elapse within minutes (MES, pentylentetrazol) to hours (kainic acid, pilocarpine) from their 

induction. Seizures can be induced by intrahippocampal application of chemoconvulsant 

agents such as kainate or bicuculline (Vezzani et al., 1999). The epileptic activity is 

characterized by discrete ictal episodes followed by spiking activity recurring for about 2  

hours from their onset. Epileptic activity in these models is highly reproducible and can be 

quantified by measuring the onset time to the first ictal event, number and duration of ictal 

events and interictal activity. These acute models are widely used to study the effect of 

various pharmacological treatments on the onset and maintenance of ictal activity, and to 

understand the molecular mechanisms underlying ictogenesis (Jefferys, 2003).

Chronic models are represented by recurrent spontaneous seizures induced by an initial 

precipitating event. Among the various injuries, status epilepticus is the most widely used 

experimental stimulus to induce epilepsy and it is responsible for 1 0 % of all acquired 

human epilepsies (Loscher and Schmidt, 2004; Loscher, 2002). Status epilepticus can be 

induced by sustained electrical stimulation of hippocampus or amygdala or by 

administration of chemical convulsants such as pilocarpine or kainate (Buckmaster, 2004; 

Loscher, 2002). Status epilepticus is followed by a latent period corresponding to 

epileptogenesis that last few days to weeks depending on the severity of initial insult
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(Williams et al., 2007). After this period, spontaneous recurrent seizures can be observed. A 

pattern of hippocampal sclerosis similar to that found in MTLE, characterized by neuronal 

cell loss and astrogliosis, is induced in these models.

Chronic models of epilepsy are useful for studying the epileptogenic process including the 

acute stage of the disease, i.e. status epilepticus, the period of epileptogenesis and the 

spontaneous recurrent seizures.

1.4.2 Kainic acid-induced seizures

Kainic-acid (KA), isolated from a red alga found in tropical water, is a potent agonist 

of the ionotropic glutamate AMPA/Kainate subtype receptors. The local or systemic 

injection of KA was found to induce seizures followed by neuronal cell death in forebrain 

areas, particularly in the hippocampal subregions CA1, CA3 and in the hilus of dentate 

gyrus (Ben-Ari and Cossart, 2000; Leite et al., 2002; Oprica et al., 2003; Wang et al., 2005). 

Induction of seizures by kainate, and the subsequent neurodegenerative pattern, is triggered 

by activation of high-affinity kainate receptors present in CA3 pyramidal neurons and 

mossy fiber synapses (Vincent and Mulle, 2008). In particular, the postsynaptic kainate 

receptors containing GluR6  subunits seem to have an important role in kainite-induced 

seizure generation since mice deficient in GluR6  subunits did not show the synaptic 

currents generated in CA3 by the stimulation of mossy fibers, and these mice are less 

susceptible to systemic administration of kainate than control mice (Ben-Ari and Cossart, 

2000). Because of the dense network of recurrent glutamatergic collaterals, the firing of 

CA3 pyramidal neurons is able to generate synchronized activities that can propagate to 

other limbic structures (Ben-Ari and Cossart, 2000). The activation of CA3 pyramidal
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neurons is followed by release of the endogenous excitatory aminoacids glutamate and 

aspartate (Ferkany et al., 1982) which in turn activate all subtypes of glutamate receptors 

favouring the propagation of seizures.

These events are followed by neurodegeneration which appears prominent in hippocampus, 

entorhinal and piriform cortex, thalamus and amygdala (Sperk et al., 1985). In particular, 

cell loss mostly affects CA3 pyramidal cells and intemeurons in the dentate gyrus (Ben-Ari, 

1985) followed by CA1 neurons (Phelps et al., 1991; Sperk et al., 1985). Cell death appears 

to occur through both necrotic and apoptotic mechanisms (Ferrer et al., 1995; Popescu et al., 

2002; Simonian et al., 1996). CA2 pyramidal neurons as well as granule cells are the most 

resistant to neurodegeneration. This different susceptibility to kainate-induced damage can 

be related to a different expression of kainate receptors (Malva et al., 1998; Wang et al.,

2005). The ability of kainic acid to induce neurotoxicity varies depending on the route of 

administration, the dose and the animal species and strains (Schauwecker, 2002).

1.4.3 Inflammation in experimental models of epilepsy

Activation of inflammatory pathways resulting in the production of cytokines and 

related inflammatory mediators have been described in the brain after seizures in various 

experimental models (De Simoni et al., 2000; Jankowsky and Patterson, 2001; Lehtimaki et 

al., 2003; Plata-Salaman et al., 2000). This indicates that epileptic activity can stimulate an 

innate immune response inducing a pattern of inflammatory mediators which in part 

overlaps with those induced by systemic administration of LPS. However, notable 

differences between the activation of immune system by endotoxemia or seizures include 

the time-course of these events and the brain regions and cell populations involved (Rivest,
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2003; Turrin and Rivest, 2004). Proinflammatory cytokines are induced transiently by LPS 

in CVOs and along microvessels and the involvement of parenchymal microglia cells is 

delayed of several hours and regionally restricted. Neurons do not typically express 

inflammatory markers after LPS administration (Laflamme and Rivest, 2001). On the other 

hand, seizure activity rapidly increases proinflammatory cytokines (IL-10, TNF-a, IL-6 ) 

and markers of innate immunity, such as NFkB system, cyclooxygenase-2, prostaglandins, 

TLRs, complement system, and this induction can be long-lasting and widespread as shown 

in different experimental models of seizures including status epilepticus, kainic acid, 

kindling, audiogenic seizures (Gorter et al., 2006; Jankowsky and Patterson, 2001; Turrin 

and Rivest, 2004). The main source of these proinflammatory mediators in the brain 

following seizures are microglia and astrocytes. Neurons can also produce cytokines and 

their related molecules (De Simoni et al., 2000; Ravizza et al., 2008a; Turrin and Rivest, 

2004). These inflammatory events involve brain structures such as cortex, amygdala, 

thalamus, hypothalamus, and hippocampus (Turrin and Rivest, 2004) recruited in the 

generation and propagation of seizures (Oprica et al., 2003; Ravizza et al., 2008a).

The lasting stimulation of the innate immune response and related inflammatory reactions 

observed after seizures may eventually promote infiltration of lymphocytes and the 

establishment of acquired immunity in the CNS. However, it has been reported that markers 

of adaptive immunity, such as production of IL-12 and IFN-y by activated T-cells, are 

undetectable across the brain of pilocarpine-treated mice, at least up to 72 h after seizure 

induction (Turrin and Rivest, 2004). Accordingly, immunostaining for T-cells, B-cells and 

NK-cells were rarely found in the brain parenchyma after electrical status epilepticus 

induction (Ravizza et al., 2008a). Thus, the innate immune response does not appear to be
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necessarily associated with adaptive immune and B- or T-cells infiltration in experimental 

models of TLE.

The role of inflammation in epilepsy raises several questions:

1- whether the inflammatory reactions are only a consequence of seizures and cell damage 

or contribute to the etiopathogenesis of seizures.

2- whether inflammation mediates structural and molecular changes during the 

epileptogenic process that can influence the progression of the disease.

The current hypothesis is that an exagerated and lasting immune response, as occurs after 

seizures, can be detrimental to CNS because of sustained production of cytokines in specific 

brain areas. This may contribute to establish a pathological substrate (cell death, neuronal 

hyperexcitability, BBB damage) playing a role in epileptogenesis and in the recurrence of 

seizures (Vezzani and Granata, 2005).

1.4.4 Expression studies of DL-|3, TNF-a and their receptors in experimental models of 

seizures

After the characterization of the time-course profile of specific proinflammatory 

events occurring in rodent brain following the induction of seizures, preclinical 

investigations have focused on the brain regional distribution and cell-specific expression of 

proinflammatory molecules and their signaling. This experimental approach allows an 

understanding of which cells are involved in the production of, or are targeted by these 

proinflammatory molecules. We focused on IL-1 (3 and TNF-a that are rapidly upregulated 

following the induction of seizures in rodents.
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1.4.4.1 IL -lp  and its receptor

In physiological condition, IL-1 system is expressed at low levels and seems to implicate in 

modulation of synaptic plasticity. It has been reported that IL-1 (3 can contribute to long 

term potentiation (Schneider et al., 1998), a process considered to underlie certain forms of 

learning and memory. Indeed, IL-lra inhibited the maintenance phase of long term 

potentiation suggesting that endogenous IL-1 is involved in this phenomenon (Schneider et 

al., 1998). There is also evidence that endogenous IL-1 (3 influences sleep patterns, because 

IL-lra reduces slow-wave sleep even in the absence of injury (Opp et al., 1991) and IL- 

1R1 receptor knockout mice have been reported to sleep less compared with their 

corresponding wild-type controls (Kruger et al., 1998).

The increase in mRNA and protein levels of IL-lp is very rapid (<30min) and long-lasting 

reaching the maximal increase within 6h after the induction of electrically-induced status 

epilepticus (De Simoni et al., 2000). IL-lp is still upregulated 60 days after the induction of 

status epilepticus in rats with spontaneous seizures (De Simoni et al., 2000). Recent 

immunohistochemical studies confirmed that IL-lp is rapidly upregulated after the 

induction of SE and this increase persists also during epileptogenesis and in chronic 

epileptic tissue (Ravizza et al., 2008a). In particular, during the acute phase of status 

epilepticus, IL-lp is produced by both microglia and astrocytes whereas only astrocytes 

showed enhanced immunostaining during epileptogenesis, suggesting that astrocytes are the 

main source of IL-lp during the latent phase. In the epileptic tissue, the cell expression of 

the cytokine correlates with the frequency of seizures: rats previously treated with 

pilocarpine which developed chronic epilepsy with a relatively low seizure frequency
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(lseizures/3days) showed an enhanced IL-1(3 staining only in astrocytes while rats with 

higher frequency of seizures (1 seizure/1 day) produced IL-ip in astrocytes, microglia and 

scattered neurons. This evidence suggests that the severity of epileptic activity can 

influence the extent of inflammation (Ravizza et al., 2008a).

IL-1R1, which mediates the biological responses to IL-ip, is barely detectable in control 

brain, but is rapidly upregulated in hippocampal neurons within 2h from status epilepticus, 

and a late wave of expression is observed during epileptogenesis also in astrocytes. This 

pattern of neuronal and astrocytic IL-R1 expression persists in chronic epileptic tissue 

(Ravizza et al., 2008a; Ravizza and Vezzani, 2006). Thus, IL-ip, produced and released by 

glial cells during the initial injury, may interact with its neuronal IL-1R1 (Vezzani et al., 

1999; Vezzani et al., 2002). IL-1R1 expression in astrocytes indicates that IL-lp has 

autocrine and paracrine effects establishing functional communication between glia and 

neurons. Recent findings support that cytokines released by glia have a neuromodulatory 

action on neurons by affecting ionic conductance (Viviani et al., 2003) and synaptic 

plasticity (Bezzi et al., 2001b).

Strong IL-lp and IL-1R1 immunoreactivity was found during epileptogenesis in 

perivascular astrocytic endfeet impinging on blood vessels and in endothelial cells of 

microvasculature. This increased expression is associated with enhanced BBB permeability 

to serum albumin (Ravizza et al., 2008a; van Vliet et al., 2007) that can contribute to 

neuronal hyperexcitability (Oby and Janigro, 2006; Seiffert et al., 2004).

The production of pro-inflammatory cytokines is accompanied by the concomitant synthesis 

of anti-inflammatory mediators apt to modulate the inflammatory response and to prevent 

the occurrence of deleterious effects. In particular, IL-lra, an endogenous competitive
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antagonist of IL-lp receptor type 1, is released after seizures to a similar extent of IL-lp 

and with a delayed time-course (De Simoni et al., 2000). This pattern of induction differs 

from the peripheral immune response where IL-lra is produced 100-1000 fold in excess and 

together with IL-ip (Dinarello, 1996), suggesting that the brain is less effective to induce a 

crucial mechanism that inhibits the deleterious effects of IL-lp.

1.4.4.2 TNF-a and its receptors

Pilocarpine-induced seizures in mice increase mRNA levels of TNF-a in the cerebral 

cortex, amygdala, thalamus and hippocampus within 6h from status epilepticus induction 

(Turrin and Rivest, 2004). TNF-a mRNA and protein can be induced in the brain as early 

as 2h following electrically-induced seizures (De Simoni et al., 2000; Godlevsky et al., 

2002; Plata-Salaman et al., 2000) and also in blood serum (Shandra et al., 2002). Evidence 

of increased production of TNF-a in hippocampus has been also reported after kainic-acid 

induced seizures (de Bock et al., 1996; Lehtimaki et al., 2003). The increase of TNF-a level 

is reversible since it returns to control levels after 3 days (De Simoni et al., 2000; Vezzani 

et al., 2002; Lehtimaki et al., 2003)) suggesting that the upregulation of TNF-a is time- 

locked to ongoing epileptic activity.

Immunohistochemistry and in situ hybridization analysis of TNF-a mRNA demonstrated 

that both parenchymal and perivascular microglia are the main cellular source of this 

molecule in the brain of pilocarpine treated mice (Turrin and Rivest, 2004). Bruce at al. 

(1996) has demonstrated that mice lacking TNF receptors show fa reduced microglial 

activation following kainate injection indicating that TNF-a signaling plays an important
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role in microglial response to injury (Bruce et al., 1996). TNF-a immunoreactivity was 

found in glia in the hippocampus 18-48h after electrically-induced seizures (De Simoni et 

al., 2000; Vezzani et al., 2002). Immunostaining was also elevated in neuronal cells, 

especially in CA1 and CA3 regions 4h after seizures induced by application of kainic acid 

in mouse hippocampus (Bruce et al., 1996).

TNF-a can bind two different receptors, p55 and p75 and little is known about the 

regulation of TNF-a receptors during epileptic activity: TNF-a receptors are barely 

detecteble in normal brain tissue but they are rapidly upregulated in neurons and astrocytes 

during seizures (Vezzani and Granata, 2005). These data indicate that TNF-a, as IL-lp, can 

act as a soluble mediator of functional glio-neuronal communication (Beattie et al., 2002; 

Bezzi et al., 2001b; Stellwagen et al., 2005). TNF-a can induce the upregulation of its own 

receptors as demonstrated after LPS administration (Bette et al., 2003; Nadeau and Rivest, 

1999).

1.4.5 Effect of IL-lp and TNF-a on seizures

Two main experimental approaches were used to investigate the role of inflammation 

in epilepsy: 1- proinflammatory cytokines were injected in the rodent brain before 

convulsive stimuli to mimic a pro-inflammatory state 2- a chronic inflammation was 

induced using transgenic mice overexpressing cytokines in glia.

61



1.4.5.1 IL-1 (3and seizures

Experimental models of seizures have shown that IL-lp significantly exacerbates 

seizures. The pre-application of IL-1 p in rodent brain, using concentrations endogenously 

produced during seizures, increases the duration of electrographic and behavioural seizures 

induced by intracerebral application of kainic acid or bicuculline methiodide (Vezzani et al., 

1999; Vezzani et al., 2000). Furthermore the intracerebroventricular (icv) injection of IL- 

lra has powerful anticonvulsant activity (Vezzani et al., 2002) and transgenic mice 

overexpressing IL-lra in astrocytes show a reduced susceptibility in seizures (Vezzani et 

al., 2000). The impairment of endogenous production of IL-1 P in mice with a deletion of 

the caspase-1 gene significantly reduces seizures (Ravizza et al., 2006b). These findings 

suggest that an endogenous increase of IL-lp has proconvulsive effects and contributes to 

the maintenance of seizures.

Recent studies have also addressed the possibility of the IL-ip involvement in fever-related 

seizures. Icv injection of IL-lp reduces the seizure threshold in 14-day old mice subjected 

to hyperthermia while IL-ip receptor-deficient mice were resistant to these seizures (Dube 

et al., 2005). Moreover, in another experimental model of febrile seizures induced in 14-old 

rats by LPS followed by subconvulsant dose of kainic acid, icv injection of IL-lp increased 

the number of seizing animals while IL-lra administration had anticonvulsant properties 

(Heida and Pittman, 2005). These data indicate that IL-lp system may play an important 

role in fever-induced hyperexcitability inducing febrile seizures (Vezzani and Baram, 2007; 

Vezzani and Granata, 2005).
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However, one report showed that IL-1 (3 retarded the acquisition of amygdala kindling in 

rats but this study used daily icv injections of IL-lp at doses 100 times lower than those 

used to exacerbate seizures (Sayyah et al., 2005). Thus, the concentration of IL-lp in brain 

tissue is a crucial factor to determine the consequences on neuronal excitability. In 

particular, high doses of IL-ip such as those produced during epileptic activity seem to 

mediate the proconvulsant and deleterious effects of this cytokine.

1.4.5.2 TNF-a and seizures

Little is known about the functional role of TNF-a and its receptors on seizures. The 

available data are apparently controversial and indicate that TNF-a effects likely depend on 

its brain levels and the activated receptor subtypes. In experimental models of seizures with 

focal onset it is reported that intraperitoneal injection of human TNF-a, which selectively 

activates the p55 receptor, prolonges behavioural seizures in amygdala-kindled rats 

(Shandra et al., 2002). However, a protective role of TNF-a on seizures has been recently 

proposed using mice with a genetic deletion of the p55 receptor, since these mice were 

more susceptible to kainic acid-induced seizures and displayed enhanced neurodegeneration 

and glial activation compared to wild-type mice (Lu et al., 2008).

The effect of TNF-a on seizures was also studied in experimental models of infection- 

related seizures. Blockade of TNF-a converting enzyme, which reduces the soluble form of 

TNF-a, attenuated seizure activity and cortical brain damage in a rat model of bacterial 

meningitis (Meli et al., 2004). Yuhas and colleagues (2003) have shown bidirectional 

concentration-dependent effects of TNF-a in pentylentetrazole-induced seizures related to
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Shigella dysenteriae. In particular, high concentrations of TNF-a prevent enhanced seizure 

susceptibility caused by Shigella infection while lower concentrations were proconvulsive 

(Yuhas et al., 2003).

High expression of TNF-a in transgenic mice induces neurodegenerative changes and 

sporadic spontaneous seizures in an age-dependent manner, suggesting that chronic high 

levels of TNF-a may be deleterious on brain functions (Akassoglou et al., 1997; Probert et 

al., 1995; Stalder et al., 1998).

These data indicate that chronic inflammation can enhance the predisposition of brain tissue 

to develop seizures and neuronal cell loss. This concept was also demonstrated by the 

systemic administration of LPS to mice that reduced the threshold to pentylentetrazole- 

induced seizures and this effect was blocked by anti-inflammatory drugs (Sayyah et al., 

2003). Repetitive LPS administration in a genetically epileptic rat strain increased the 

number of spike-wave discharges (Kovacs et al., 2006). Moreover, a first exposure to 

seizures in 15-old rats was associated with chronic glial cells activation and the 

development of a lower threshold for seizure induction in adulthood (Somera-Molina et al., 

2007). Proinflammation state induced by LPS administration can increase also seizure- 

related neuronal damage (Auvin et al., 2007).

1.4.6 Anti-inflammatory drugs in experimental models of seizures

Experimental models of seizures have also been used to evaluate the effects of anti

inflammatory drugs on epileptic activity. Various pharmacological studies reported 

inhibition of penicillin-induced seizures using nonsteroidal anti-inflammatory drugs such as 

ibuprofen, paracetamol and indomethacin (Wallenstein, 1987), and an anticonvulsant effect
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was achieved by injection of nimesulide or rofecoxib in mice treated with bicuculline or 

picrotoxin (Dhir et al., 2006). Chronic administration of celecoxib, a cyclooxygenase-2 

inhibitor, reduced the frequency and the duration of spontaneous recurrent seizures induced 

by pilocarpine in rats. This treatment prevents neuronal cell death, microglia activation and 

abnormal neurogenesis during the latent period (Jung et al., 2006) suggesting that COX-2 

induction may have an important role during the epileptogenesis.

Aspirin protected mice from maximal electroshock test and pentylenetetrazole-induced 

seizures and potentiated the anticonvulsant action of diazepam and sodium valproate 

(Srivastava and Gupta, 2001). On the other hand, pretreatment of rats with indomethacin, 

aspirin, nimesulide enhanced kainic-acid induced seizures (Baik et al., 1999; Kunz and 

Oliw, 2001). These conflicting data on the effect of COX-1 and 2 inhibitors on seizures can 

be explained by considering that prostaglandins can either reduce or increase seizures. The 

final outcome on neuronal excitability and excitotoxicity may depend on the types of 

prostaglandins that are produced during seizures and which kind of prostaglandins receptor 

is activated (Vezzani and Granata, 2005).

It is interesting to consider that sodium valproate (VPA) and carbamazepine (CBZ) have 

also anti-inflammatory actions. VPA inhibits the LPS-induced activation of NFkB and the 

production of TNF-a and IL-6 in monocytes and glioma cells; CBZ inhibits the LPS- 

induced production of PG in rat glial cells (Ichiyama et al., 2000; Matoth et al., 2000). 

Glucocorticoids have potent antiinflammatory effects inhibiting the transcription of genes 

encoding for proinflammatory molecules. The inhibition of glucocorticoid signaling 

increased the inflammatory reactions induced by LPS in the brain because the inhibition of 

cytokines production by glucocorticoids was lost (Nadeau and Rivest, 2003). However
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prolonged exposure of the tissue to glucocorticoids can have detrimental effects on neuronal 

survival and enhance kainic acid induced seizures (Lee et al., 1989), likely due to the ability 

of glucocorticoids to induce a catabolically vulnerable state to neurons by inhibiting glucose 

uptake and glycogen and protein synthesis (Dinkel et al., 2003).

Immunoglobulins injection protected cats against generalized seizures induced by electrical 

stimulation of amygdala (Hirayama et al., 1986). This effect can be in part due to their 

antiinflamamtory effects (Ichiyama et al., 2004).

1.4.7 Pro-inflammatory cytokines and seizure-associated neuronal cell death

Neurodegeneration within the hippocampus is a hallmark of MTLE, a condition 

linked to neurological dysfunctions such as memory impairment in adult patients and a risk 

for developing learning disorders in children.

The activation of microglia and astrocytes with subsequent release of cytokines and other 

potential neurotoxic compounds such as nitric oxide, reactive oxygen species and glutamate 

are common features of both acute and chronic neurodegenerative diseases, suggesting a 

potential role for proinflammatory cytokines in the occurrence of neuronal cell death (Allan 

and Rothwell, 2001; Allan et al., 2005).

A role of inflammation in seizure-induced cell damage is supported by experimental 

findings showing that proinflammatory molecules produced during epileptic activity are 

present in the same brain regions involved in neurodegeneration and their increased 

expression precedes the occurrence of neuronal degeneration (Oprica et al., 2003; Ravizza 

and Vezzani, 2006; Rizzi et al., 2003; Schultzberg et al., 2007; Vezzani et al., 1999). 

Sustained inflammation induced in immature rat brain by LPS affects neuronal damage

66



induced by convulsant, but non neurotoxic, doses of kainate or pilocarpine (Lee et al., 2000; 

Sankar et al., 2007). Moreover, hippocampal injection of a nonlesional convulsant dose of 

bicuculline induced inflammation to a lesser extent than in kainic acid-treated rats where 

seizures are associated with CA3 pyramidal cell loss (Vezzani et al., 1999). This evidence 

suggests that the extent of inflammatory reactions is an important factor for determining 

cell survival or death. In this respect, the extent of damage in the hippocampus after kainic 

acid-induced seizures correlates significantly with the antecedent inflammatory cell 

infiltration (granulocytes and macrophages) and activation of microglia, indicating that 

these cells, which are the main source of cytokines, may be a cause rather than a 

consequence of neuronal cell loss (Choi and Koh, 2008; Dinkel et al., 2003).

It has been proposed that kainic acid-induced seizures promote the formation of a molecular 

scaffolding complex that includes TNFR1 receptors, TNFR-associated death domains and 

apoptosis signal-regulating kinase-1. This complex can promote cell death suggesting that 

the TNF-a-induced activation of TNFR1 may be a crucial event in neuronal cell death 

associated with seizures (Henshall et al., 2003; Shinoda et al., 2003). In contrast, the 

stimulation of TNFR2 induced a persistent NF-kB activation that increased the expression 

of neuronal apoptosis inhibitor protein (NAIP); systemic administration of kainic acid 

enhanced the expression of NAIP in hippocampus and this increase did not occur in mice 

lacking both TNF receptors which show increased susceptibility to kainic acid-induced 

brain injury compared to wild type mice (Thompson et al., 2004).

Cytokines acting on glial receptors can induce the production and release of either cytotoxic 

or neurotrophic molecules which may contribute to determine whether cells survive or 

degenerate in hostile conditions. In this respect, IL-lp or TNF-a can exacerbate or reduce
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the excitotoxic neuronal damage induced by AMPA in organotypic slice cultures depending 

on their extracellular concentrations, the period of tissue exposure to these cytokines during 

injury and which receptor types are activated (Bernardino et al., 2005).

1.4.8 Mechanisms of hyperexcitability and seizure-associated neuronal cell death

It has been shown that the effects of IL-lp and TNF-a on neuronal excitability are 

related to at least three phenomena, namely an increase of glutamatergic neurotransmission; 

an enhancement of extracellular glutamate concentration; a reduction of GABAergic 

neurotransmission.

In particular, recent data have demonstrated that IL-ip produced by glial cells enhances 

NMDA-mediated inward Ca2+ currents in rat hippocampal pyramidal neurons (Viviani et 

al., 2003; Viviani et al., 2006). This effect is mediated by IL-1R1 that colocalizes with 

NMDA receptors on dendrites of pyramidal neurons in the post-synaptic density (Viviani et 

al., 2006), and it is mediated by tyrosine phosporylation of NR2B subunit via the activation 

of Src kinases (Viviani et al., 2003). The increase of NMDA receptor-mediated Ca2+ influx 

into neurons may play a role in promoting seizure generation and the maintenance of 

epileptic activity (Vezzani and Baram, 2007). This hypothesis is supported by data 

indicating that the proconvulsant actions of IL-ip can be inhibited by CPP or ifenprodil, 

selective NMDA antagonists (Vezzani et al., 1999; Balosso et al., 2008).

IL-ip can also increase the extracellular glutamate concentration by reducing the astroglial 

glutamate reuptake by a mechanism involving nitric oxide production (Hu et al., 2000; Ye 

and Sontheimer, 1996) and by inhibiting the astroglial glutamine synthetase, the enzyme 

that transforms glutamate to glutamine (Huang and O'Banion, 1998). Moreover, IL-ip can
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increase the release of glutamate from microglia and astrocyte through the induction of 

iNOS (Casamenti et al., 1999; Hewett et al., 1994). The increase in glutamate level can 

facilitate the activation of both ionotropic and metabotropic glutamate receptors, thus 

playing a role in the generation and spread of epileptic activity. In this respect, it has been 

recently reported that the astrocytic glutamate release has a role in the genesis or strength of 

seizure-like events (Fellin et al., 2006; Tian et al., 2005).

IL-ip functionally interacts with GABAergic transmission since at pathophysiological 

concentrations this cytokine decreases GABA-mediated Cf fluxes reducing inhibitory 

transmission and possibly contributing to hyperexcitability (Wang et al., 2000; Zeise et al., 

1997).

TNF-a can also affect glutamate neurotransmission by interacting with AMPA receptors. 

Beattie et al. (2002) has shown that astrocytic TNF-a, interacting with p55 receptor, 

induces a rapid increase in neuronal synaptic surface expression of AMPA receptors. This 

effect leads to a significant increase in the mean frequency of AMPA-induced miniature 

excitatory postsynaptic currents indicating an enhancement in synaptic efficacy (Beattie et 

al., 2002). The newly expressed AMPA receptors lack the GluR2 subunit, thus they have a 

molecular conformation which favors Ca2+ influx into neurons. Additionally, TNF-a 

simultaneously induced endocytosis of GABAa receptors reducing the inhibitory synaptic 

strength (Stellwagen et al., 2005). TNF-a-mediated upregulation of surface Ca2+-permeable 

AMPARs and the decrease of inhibitory neurotransmission may play a role in increasing 

neuronal excitability (Hermann et al., 2001; Leonoudakis et al., 2004; Yu et al., 2002) and 

promoting seizure generation.
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TNF-a increases the extracellullar glutamate concentration by inhibiting the astroglial 

glutamate reuptake (Hu et al., 2000; Zou and Crews, 2005) and induces glutamate release 

from both activated astrocytes (Bezzi et al., 2001a) and microglia (Takeuchi et al., 2006). 

The increased Ca2+ influx into neurons, mediated by the functional interaction between 

cytokines and glutamate receptors, and the enhancement of extracellular glutamate 

concentration induced by the cytokines may explain the potentiation of seizures and the 

neuronal cell damage during a proinflammatory state (Auvin et al., 2007; Choi and Koh, 

2008; Dinkel et al., 2003; Lee et al., 2000; Sankar et al., 2007; Somera-Molina et al., 2007). 

Other mechanisms by which TNF-a and IL-1 P participate to seizure-induced brain 

dysfunction may involve the transcription of proinflammatory mediators such as 

prostanoids, reactive oxygen species and iNOS with the subsequent production of reactive 

nitrogen species (Gosselin and Rivest, 2007).

1.4.9 Clinical evidence of brain inflammation in human epilepsy

Clinical evidence supports an activation of the cytokine system and downstream 

inflammatory events, in the brain, blood and CSF in pediatric and adult patients with 

epilepsy of various etiologies (Choi and Koh, 2008; Vezzani et al., 1999).

IL-6 is the cytokine consistently found to be significantly enhanced in plasma and CSF of 

epilepsy sufferers with recent tonic-clonic seizures (Peltola et al., 2000) as well as in 

children with febrile seizures (Ichiyama et al., 1998; Ichiyama et al., 2008). The increased 

production of IL-6 plasma levels correlates with the severity of epileptic activity (Lehtimaki 

et al., 2007).
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Contrasting results are reported for IL-lp in CSF of children with febrile seizures where 

either no increase or significant elevation was measured (Haspolat et al., 2002; Ichiyama et 

al., 1998). These opposite findings can be explained by differences in time elapsed from the 

sample collection and the last seizure or by different sensitivity of the assay used for 

cytokine measurements (Peltola et al., 2000).

Clinical studies carried out on adult patients did not detect any changes of IL-lp in CSF, 

while increased IL-lra concentration as well as enhanced IL-6 production were measured 

(Peltola et al., 2000). The upregulation of IL-lra and IL-6 levels in CSF can be considered 

as an indirect evidence of the activation of IL-1 system in human epilepsy because IL-lp 

can induce the production of both IL-lra and IL-6 (Dinarello, 1996).

In specimens of focal cortical dysplasia and glioneuronal tumor that are recognized causes 

of intractable epilepsy, IL-lp and its receptor are highly expressed by glia (astrocytes and 

microglia) and neurons, while IL-1 receptor type 2 and IL-lra are expressed to a lesser 

extent in the same cells suggesting that the human brain does not activate efficiently the 

mechanisms apt to block the IL-1 p actions as previously shown in experimental studies. 

The number of neurons expressing IL-lp and IL-1R1 positively correlates with the 

frequency of seizures prior to surgery while the number of IL-IRa positive neurons and 

astrocytes negatively correlated with the duration of epilepsy, suggesting that this system 

contributes to the intrinsic and epileptogenicity of these developmental lesions (Ravizza et 

al., 2006a). Moreover, hippocampi obtained from patients affected by medically intractable 

MTLE showed overexpression of IL-lp and IL-1R1 in astrocytes, microglia and neurons. 

Increased immunoreactivity of IL-lp and related molecules was found also in perivascular 

astrocytic endfeet impinging on blood vessels and in endothelial cells in brain areas
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associated with BBB damage (Ravizza et al., 2008a) suggesting that IL-ip induces an 

impairment in BBB integrity. These changes can result in chronic neuronal 

hyperexcitability as demonstrated previously in rodents (Seiffert et al., 2004; van Vliet et 

al., 2007).

Hippocampi from patients with MTLE showed also an overexpression of NFkB in reactive 

astrocytes, surviving pyramidal neurons and dentate granule cells (Crespel et al., 2002). 

Reactive gliosis, characterized by activation and proliferation of both microglia and 

astrocytes, has been demonstrated in surgically resected epileptogenic lesions from patients 

with intractable epilepsy (Choi and Koh, 2008). The duration of epilepsy and frequency of 

seizures prior to surgical resection significantly correlate with the density of activated 

microglia as shown in focal cortical dysplasia and glioneuronal tumor associated with 

epilepsy (Aronica et al., 2005; Boer et al., 2006).

Increased serum or brain levels of proinflammatory cytokines and markers of immune 

system activation have been described in patients with West syndrome (Liu et al., 2001) and 

tuberous sclerosis (Maldonado et al., 2003), two neurologic disorders associated with 

epilepsy. In particular, molecules related to cytokine signaling such as ICAM-1, NFkB and 

TNF-a are increased in astrocytes, dysplastic neurons and giant cells in tubers (Maldonado 

et al., 2003).

Finally, one of the best indications of an involvement of inflammatory and immune 

reactions in the pathogenesis of human CNS disorders associated with epilepsy comes from 

studies on Rasmussen’s encephalitis. Neuropathological examinations of brain specimens 

from patients affected by Rasmussen’s encephalitis and active seizures revealed an increase 

in the expression of inflammation-related genes such as IL-lp and TNF-a and the presence

72



of microglia nodules in close apposition to neurons (Baranzini et al., 2002). Cells of the 

adaptive immune system such as lymphocytes have been described in the lesional tissue 

(Baranzini et al., 2002). These data suggest that the inflammation associated to 

Rasmussen’s encephalitis differs from that activated in TLE patients. Cells of adaptive 

immunity such as T and B cells and NK cells were not found in brain specimens resected 

from patients affected by medically intractable MTLE (Ravizza et al., 2008a).

A role of inflammation in epilepsy is also demonstrated by the antiepileptic activity of 

immunomodulatory drugs with anti-inflammatory and immunosuppressor actions such as 

steroids and adrenocorticotropic hormone (Vezzani and Granata, 2005).

These clinical findings suggest that inflammatory processes that might be chronically active 

or transiently re-induced by recurrent seizures, or both, can take place in human epilepsy. In 

particular the induction of inflammation in epilepsy disorders that have not an inflammatory 

pathophysiology such as TLE and tuberous sclerosis suggest that inflammation is a 

common factor contributing and/or predisposing to the occurrence of seizures and cell death 

in various forms of epilepsy of different etiologies (Vezzani and Granata, 2005).

Table 1.1 summarizes the data available on inflammatory markers and anti-inflammatory 

treatments in human epileptic disorders.
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Table 1.1. Inflammation in human epilepsies and convulsive disorders

Inflammatory markers

Epileptic syndrome 
Convulsive disorder

Rasmussen encephalitis

West syndrome 
Lennox-Gastaut syndrome 
Landau Kleffiier syndrome 
Febrile seizures

TLE
Tonic-clonic seizures 
Tuberous Sclerosis

Focal Cortical Dysplasia

Plasma or CSF

GluR3 Ab, Munc-18 Ab

IFN-a, TNF-a, IL2
n.d.
n.d.

IL-ip, IL-IRa, IL-6, 
IL-10, TNF-a 
IL-6, IL-lp, IL-IRa, 
IL-6, IL l-a, EL-ip n.d. 
n.d.

Brain tissue

Glur3 Ab
CD-8+ lymphocytes
GrB; MAC; cytokines
n.d.
n.d.
n.d.
n.d.

IL-l,NFkB*
n.d.
CD-68 macrophages 
ICAM-1, TNF-a, 
NFkB, MAPK 
IL-lp, IL-IRa

Antinflammatory
treatments

ACTH, steroids, IVIg 
PEX,PAI,
immunosuppressant 
ACTH, steroids, IVIg 
ACTH, steroids, IVIg 
ACTH, steroids, IVIg 
n.d.

n.d.
n.d.
n.d.

n.d.

*Only in patients with MTLE, n.d, not determined; PEX; plasma exchange; PAI; protein 
A immunoabsortion; IVIg, intravenous immunoglobulin; MAPK, mitogen activated protein 
kinase. Adaptedfrom Vezzani and Granata, 2005



2.1 Aim of the thesis

The identification of brain inflammatory reactions in epileptic tissue raises the 

possibility that inflammation may contribute to the establishment of a pathological substrate 

(i.e. neurodegeneration, neuronal hyperexcitability, blood-brain barrier damage, etc) 

playing a role in epileptogenesis and in the acute manifestation or reinforcement of seizures. 

In this study, we investigated whether IL-lp and TNF-a, which are rapidly upregulated 

following epileptic activity, have a role in the pathophysiology of seizures, altering 

neuronal excitability and cell survival.

In particular, we first studied whether seizures can be effectively inhibited by 

blocking the brain production of IL-ip, using selective inhibitors of interleukin converting 

enzyme (ICE/caspase-1). We used pharmacological approaches to study the ictal activity in 

models of acute and chronic seizures.

Then, we investigated the molecular mechanisms involved in the proconvulsant 

actions of IL-lp. We tested the hypothesis that the proconvulsive effects of IL-ip were 

mediated by the activation of a novel non-transcription dependent pathway that leads to ion 

channel modifications. We specifically studied the involvement of a sphingomyelinase- 

dependent pathway, the consequent ceramide-induced Src-dependent phosphorylation of 

NR2B subunit of the NMDA receptor.

We also evalueted whether an inflammatory state may affect the excitotoxic neuronal 

damage associated with seizures. We set up an in vitro model of brain inflammation 

characterized by the release of IL-ip from activated microglia after transient exposure to
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inflammatory stimuli, and we studied the consequences of microglia activation and cytokine 

release on neuronal susceptibility to a subsequent excitotoxic insult.

Finally, we studied whether molecular and functional interactions between TNF-a 

receptors and ionotropic glutamate receptors could contribute to the changes in seizure 

susceptibility mediated by this cytokine.
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CHAPTER 3

Materials and methods - general procedures
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3.1 Experimental animals

Animals were housed at constant temperature (23°C) and relative humidity (60%) 

with a fixed 12 h light-dark cycle and free access to food and water.

Procedures involving animals and their care were conducted in accordance with the 

ethically approved institutional guidelines that are in compliance with national and 

international laws and policies (EEC Council Directive 86/609, OJ L 358, 1, Dec.12, 1987; 

Guide for the Care and Use of Laboratory Animals, U.S. National Research Council, 1996). 

Animals were purchased from Charles River (Calco, Italy).

3.2 Justification o f the choice o f in vivo models

We have used two models of provoked seizures, namely a model of acute seizures 

and a model of spontaneous recurrent seizures.

In particular, the acute model induced by intrahippocampal administration of kaininc acid in 

mice and rats has been widely used to study the effect of various pharmacological 

treatments on the onset and duration of ictal activity (Balosso et al., 2005; El Bahh et al., 

2005; Moneta et al., 2002; Vezzani et al., 1999), and it is sensitive to modulation by 

inflammatory mediators (Vezzani et al., 1999; Vezzani et al., 2002). Intrahippocampal 

application of low doses of kainate in mice (7 ng in 0.5 pi) and rats (40 ng in 0.5 pi) 

induces hippocampal and cortical EEG seizure activity which is highly reproducible and 

can be quantified by measuring well established parameters such as the onset time to the 

first ictal event, the number of ictal events and their duration, and interictal activity. These 

doses of kainate have been titrated in previous experiments to produce a pattern of seizure
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activity that can be either reduced or enhanced by pharmacological treatments or genetic 

manipulations (El Bahh et al., 2005; Moneta et al., 2002; Vezzani et al., 1999). Both in 

mice and rats, kainic acid induces degeneration of CA3 pyramidal neurons in the injected 

hippocampus, as assessed one week after seizure generation.

The chronic model of spontaneous seizures has been extensively described by Bouilleret et 

al (1999) and Riban et al (2002) (Bouilleret et al., 1999; Riban et al., 2002). Spontaneous 

chronic seizures develop in mice after an average latency of 2 weeks following non- 

convulsive status epilepticus induced by unilateral intrahippocampal application of a high 

amount of kainate (200 ng in 50 nl). Spontaneous seizures recur for up to 8 months. 

Importantly, the baseline of spontaneous seizures in each mouse is stable and reproducible, 

as assessed by measuring the frequency and duration of ictal events 8 weeks after induction 

of status epilepticus. This feature is instrumental to carry out reliable pharmacological 

studies on the effect of the treatments on spontaneous seizure events.

Spontaneous seizures are refractory to various antiepileptic drugs thus providing a valuable 

model for “drug resistant epilepsies” (Riban et al., 2002). Histopathological changes in the 

hippocampus are similar to those observed in human MTLE including neuronal loss, 

granule cell dispersion and sprouting (Bouilleret et al., 1999; Kralic et al., 2005; Riban et 

al., 2002; Suzuki et al., 2005).

80



3.3 EEG-related techniques

3.3.1 Placement of cannula and electrodes for EEG recordings

Mice and rats were surgically implanted with an injection guide cannula and 

recording electrodes under deep Equithesin anestesia (1% phenobarbital and 4% chloral 

hydrate; 3ml/kg, intraperitoneally, i.p) using stereotaxic guidance (El Bahh et al., 2005; 

Vezzani et al., 1999; Vezzani et al., 2000).

In mice and rats: a ground lead was positioned over the nasal sinus and two screw 

electrodes were placed bilaterally over the parietal cortex. Bipolar nichrome wire insulated 

electrodes (60pm) were implanted bilaterally into the dorsal hippocampus (septal pole) at 

the following coordinates from bregma: rats; mm, nose bar -2.5, AP -3.5, L ±2.4 and 3.0 

below dura mater (Paxinos and Watson, 1986); mice; nose bar 0; anteroposterior -1.9, 

lateral 1.5 and 2.0 below dura mater (Franklin and Paxinos, 1997). A guide cannula was 

unilaterally positioned on top of the dura and glued to one of the depth electrodes for 

intrahippocampal injection of kainic acid or drugs. An additional guide cannula was 

unilaterally positioned on top of the dura mater for intracerebroventricular (icv) injection of 

drugs (in mm from bregma, rats; nose bar -2.5; AP -1; L +1.5; mice: nose bar 0; 

anteroposterior 0.0, lateral 1.0 and 3.0 below dura mater).

The electrodes were connected to a multipin socket and, together with the injection of 

cannula, secured to the skull by acrylic dental cement (Fig. 3.1).
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Figure 3.1. A schematic represention of the cannula and recording electrodes implant 
in rats using stereotaxic guidance

3.3.2 Model of acute seizures

The procedures for intracerebral injection of drugs in freely-moving rats or mice have 

been previously described (El Bahh et al., 2005; Moneta et al., 2002; Vezzani et al., 1999; 

Vezzani et al., 2000). Drugs were injected during 60 sec unilaterally through an injection 

needle connected to a 10 pi Hamilton microsyringhe via PE20 tubing.

Kainic acid (Sigma-Aldrich, St Louis, USA) was dissolved in 0.5 pi phosphate-buffered 

saline (PBS, pH 7.4) and injected in the mouse (7 ng) or rat (40 ng) dorsal hippocampus 

unilaterally (0.5 pl/min), using a needle protruding 2.0 or 3.0 mm respectively from the 

guide cannula.
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This dose of kainic acid was chosen in order to induce recurrent EEG epileptic activity 

composed of ictal episodes (EEG seizures) and spiking activity in 100% of animals without 

mortality.

The correct positioning of the injection needle and electrodes was verified by Nissl staining 

of 40 pm cryostat coronal brain sections in all the animals, 24 h after kainic acid injection. 

The unspecific damage restricted to the insertion of injection needle and the electrode tracks 

was similar in control and experimental animals.

All pharmacological experiments were carried out between 9.00 am and 1.00 pm.

3.3.3 EEG recordings: assessment and quantification of acute seizures

Recording of EEG seizures induced by intrahippocampal injection of kainic acid in 

freely-moving mice or rats respectively has been previously described (El Bahh et al., 2005; 

Moneta et al., 2002; Vezzani et al., 1999).

A 30 min recording was done before kainic acid injection to assess the basal EEG pattern. 

The EEG recordings were made continuously for 180 min after kainic acid injection. At 

least a 30 min EEG recording similar to baseline was required before stopping the 

recording. Ictal episodes are characterized by high-frequency and/or multispike complexes 

and/or high-voltage synchronized spikes simultaneously occurring in the injected and 

contralateral hippocampi. Spiking activity is typically observed after seizures subside. The 

EEG recording of each animal was analyzed visually by two independent investigators to 

detect any activity different from baseline. Seizure activity was quantified by reckoning the 

time elapsed from kainic acid injection to the occurrence of the first EEG seizure (onset) 

and the total number and total duration of seizures (reckoned by summing up the duration
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of every ictal episode during the EEG recording period). Interictal activity was reckoned by

summing up the time spent in EEG spiking. Seizures occurred with an average latency of

about 10 min from kainic acid injection, and then recurred for about 90 min (mice) or 150

min (rats) from their onset. In rats, kainic acid induced stereotyped behaviors such as

sniffing and gnawing. “Wet dog shakes” were often observed shortly after kainate injection

and during seizures.

Representative EEG tracings of freely moving rats (Fig. 3.2 A) or mice (Fig. 3.2 B) injected

unilaterally in the left dorsal hippocampus with kainic acid are depidted below. 

A a D I O  min
rctx — ---------------------    ■1
L C T X   -------------------- _ —

RHp
LHP ■>' »*!'<*

C 40 min d  120 min

RCTX 
LCTX 

RHP 
LHP

Figure 3.2. EEG seizures induced by intrahippocampal injection of kainic acid in rats 
(A) or mice (B)
(a) Baseline recording before kainic acid injection; arrowheads in (b) and (c) include 
representative ictal episodes recorded in the EEG after kainic acid; tracings in (d) depict spiking 
activity in the EEG after termination o f seizures. RCTX and LCTX are right and left cortex, 
respectively; RHP and LHP are right and left (injected) hippocampus, respectively.
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3.3.4 Mouse model of spontaneous seizures

Male C57BL6 mice (-60 days old, 25g) were stereotaxically injected under deep 

Equithesin anestesia with kainic acid (200 ng in 50 nl) unilaterally into the left septal 

hippocampus at the following coordinates from bregma: mm, nose bar 0; AP -1.8, L 1.7 

and 1.9 below dura (Franklin and Paxinos, 1997). Kainate was injected over 1 min using a 

thin injection needle connected to a 0.5 pi Hamilton microsyringhe via PE20 tubing trough 

a CMA/100 pump. At the end of the injection, the needle was mantained in situ for an 

additional 2 min to limit back flow along the injection track.

Immediately after intrahippocampal injection, mice were implanted with EEG electrodes as 

described above. After surgery, mice treated with kainate were continuously EEG recorded 

for up to 10 hours to monitor the occurrence of non-convulsive status epilepticus. In 

accordance with previous studies (Riban et al., 2002), 24 h after kainate application status 

epilepticus elapses and mice do not show ictal events in their EEG for about 2 weeks 

(epileptogenesis) after which time they develop chronic spontaneous EEG seizures 

localized in the hippocampi.

For pharmacological experiments, we used only mice developing chronic spontaneous 

recurrent seizures starting 8 weeks after the induction status epilepticus as assessed by 

continuous EEG monitoring (Nervous EEG Recording System connected with a Nervus 

magnus 32/8 Amplifier, Taugagreining, Iceland) from 9 am to 11 am and from 4 pm to 6 

pm for at least three days. These recordings provide the average number of ictal events and 

their duration occurring in each mouse within the time interval of our pharmacological 

experiments, thus allowing us to establish if a stable baseline of spontaneous seizures was 

reached before starting the treatments. Table 3.1 shows the number of spontaneous seizures
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and their total duration in 2-h observation period in different epileptic mice, 8 weeks after 

induction of status epilepticus. Spontaneous seizure quantification clearly shows that the 

baseline of spontaneous seizures in each mouse is stable. In this model, spontaneous EEG 

seizures do not occur in clusters; this is the advantage to use the present model rather than 

systemic kainate or pilocarpine-induced spontaneous seizures in rats where clustering of 

seizures indeed occurs. Only mice showing a stable baseline of spontaneous seizures (90 %) 

has been included in the study protocol for pharmacological testing.

Table 3.1. Baseline recordings in spontaneous epileptic mice

9 am-11 am

I.D. mouse 

number
Number of seizures Time in seizures 

(min)

1 50.0 ± 3.0 36.0 ±5.7

5 48.0 ± 10.0 25.5 ± 7.0

7 53.0 ±5.0 33.8 ± 1.4

9 55.0 ±3.0 34.7 ±3.5

11 30.0 ± 3.0 15.3 ±2.4

8 99.0 ± 8.0 34.7 ± 1.4

12 80.0 ±3.0 35.5 ±3.5

6 107.0 ±4.0 35.3 ±3.0

4 56.0 ±5.0 63.2 ± 1.7

13 36.0 ±1.0 12.5 ± 1.3

86



4 pm-6 pm

I.D. mouse 

number
Number of seizures

Time in seizures 

(min)

1 48.0 ± 5.0 35.0 ±2.1

5 48.0 ± 4.0 23.6 ± 2.2

7 58.0 ±5.0 36.3 ± 2.7

9 57.0 ± 6.0 31.7 ±4.0

11 32.0 ± 5.0 15.0 ±2.5

8 92.0 ± 8.0 36.1 ±2.0

12 69.0 ± 6.0 28.4 ±1.9

6 108.0 ±7.0 39.5 ± 5.8

4 61.0 ±5.0 62.2 ± 1.3

13 37.0 ± 2.0 14.3 ± 1.5

3.4 Immunohistochemistry

3.4.1 Immunohistochemical studies from in vivo preparation

Mice were deeply anaesthetized using Equithesin and perfused via ascending aorta 

with 50 mM cold PBS, pH 7.4 followed by chilled 4% paraformaldehyde (Merck, 

Darmstadt, Germany) in PBS. The brains were post-fixed for 90 min at 4°C, and then 

transferred to 20% sucrose in PBS for 24 h at 4°C. The brains were immersed in -50°C 

isopentane for 3 min and stored at -80°C until assayed. Serial cryostat coronal sections (40 

pm) were cut from all brains throughout the septo-temporal extension of the hippocampus

87



(Franklin and Paxinos, 1997) and collected in 100 mM PBS for IL-lp, IL-1R1, p55 and p75 

receptors immunohistochemistry.

3.4.2 IL-lp

Slices were incubated at 4°C for 10 min in 70% methanol and 2% H2O2 in Tris-HCl- 

buffered saline (TBS, pH 7.4), followed by 30 min incubation in 10% fetal calf serum 

(FCS) in 1% Triton X-100 in TBS. Then, the slices were incubated overnight with the 

primary antibody against IL-ip (1:200, Santa Cruz Bio., CA, USA) at 4°C in 10% FCS in 

1% Triton X-100 in TBS. Immunoreactivity was tested by the avidin-biotin-peroxidase 

technique (Vector Labs, USA). The sections were reacted using diaminobenzydine (DAB), 

and the signal was amplified by nickel ammonium. No immunostaining was observed by 

incubating the slices with the primary antibody preabsorbed with the corresponding peptide 

(lpM, 24h at 4°C) or without the primary antibody (negative control) as previously 

described (Vezzani et al., 1999).

3.4.3 IL-1R1

IL-1R1 immunostaining was carried out as previously described (Ravizza and 

Vezzani, 2006). Briefly, sections were incubated at 4°C for 10 min in 0.3% H2O2 in 0.3% 

Triton X-100 in PBS. After three 5 min washes in 0.3% Triton X-100 in PBS, slices were 

incubated at 4°C for 60 min in 10% FCS in 0.3% Triton X-100 in PBS. Then the slices 

were incubated with the primary antibody against IL-1RI (6 pg/ml, R&D System, 

Minneapolis, USA) for 72 h at 4°C in 4% FCS in 0.3% Triton X-100 in PBS. 

Immunorectivity was tested as described for IL-lp (see before).
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No immunostaining was observed by incubating the slices with the primary antibody 

preabsorbed with the corresponding peptide (30fig/ml, 24h at 4°C) or without the primary 

antibody (negative control) as previously described (Ravizza and Vezzani, 2006).

After DAB incubation, three 5-minute washes were done with Tris-HCl-buffered saline, 

then sections were mounted onto gelatin-coated slides and dried overnight at room 

temperature. They were dehydrated and coverslipped the next day.

The primary antibodies and experimental procedures have been previously demonstrated to 

determine a specific immunohistochemical signal of the protein of interest in rodent brain 

slices (Ravizza and Vezzani, 2006; Ravizza et al., 2008a; Vezzani et al., 1999).

3.4.4 p55 and p75 receptors

Free-floating sections were rinsed for 10 minutes in 0.3% H2O2 in 0.3% Triton X- 

100 (Sigma Labs, St. Louis, MO) in 100 mM PBS at 4°C (Triton was omitted in the whole 

procedure when assessing p75 receptors), followed by three 5-minute washes in 0.3% 

Triton X-100 PBS. The slices then were incubated at 4°C for 60 minutes in 10% fetal calf 

serum diluted in 0.3% Triton X-100 PBS. The primary antiserum was diluted in 0.3% 

Triton X-100 PBS containing 4% fetal calf serum, and slices were incubated at 4°C for 72 

hours with biotinylated monoclonal antibody to human p55 or p75 (1:30; Hbt, Uden, The 

Netherlands). After three 5-minute washes in PBS, immunoreactivity was tested by the 

avidin-biotin-peroxidase technique (Vectastain ABC kit, Vector Laboratories, Burlingame, 

CA). The sections then were reacted by incubation with 0.4mM 3,3-diaminobenzidine 

(DAB; Sigma) in 50mM Tris-HCl-buffered saline, pH 7.4, and 0.01% H202, and the 

signal was amplified using nickel ammonium. After DAB incubation, three 5-minute
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washes were done with Tris-HCl-buffered saline, then sections were mounted onto 

gelatin-coated slides and dried overnight at room temperature. They were dehydrated and 

coverslipped the next day. Control slices were prepared omitting the primary antibody. 

The specificity of the p55 or p75 antibodies was also confirmed by the lack of staining 

obtained in slices from p55 or p75 knock-out mice, respectively.

3.4.5 Double-immunostaining

Two brain slices in each mouse for each cell type marker were randomly chosen to 

identify the cells expressing IL-ip, IL-1R1, p55 and p75 receptors. After incubation with 

the primary antibodies, slices were incubated in biotinylated secondary anti-goat (for IL-lp) 

and anti-hamster antibodies (I1-1R1) (1:200, Vector Labs), then in streptavidin-horseradish 

peroxidase and the signal was revealed with tyramide conjugated to Fluorescein using TSA 

amplification kit (NEN Life Science Products, Boston, MA, USA). Sections were 

subsequently incubated with the following primary antibodies: mouse anti-GFAP 

(Chemicon, Temecula, Ca, USA; 1:2500), or rat anti-mouse CD llb (Serotec, Oxford,UK; 

1:1000), or mouse anti-NeuN (Chemicon; 1:1000).

Fluorescence was detected using anti-mouse or anti-rat secondary antibody conjugated with 

Alexa546 (Molecular Probes, Leiden, The Netherlands). Slide-mounted sections were 

examined with an Olympus Fluorview laser scanning confocal microscope (microscope 

BX61 and confocal system FV500; Hamburg, Germany) using dual excitation of 488 nm 

(Laser Ar) and 546 nm (Laser He-Ne green) for Fluorescein and Alexa546, respectively. 

The emission of fluorescent probes was collected on separate detectors. To eliminate the
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possibility of bleed-through between channels, the sections were scanned in a sequential 

mode.

3.4.6 Immunohistochemical studies from in vitro preparation

Organotypic hippocampal slices were fixed by immersion in 4% paraformaldehyde 

(Merck, Darmstadt, Germany) for 30 min, cryoprotected in 30% sucrose and stored at -  

20°C until staining. For immunohistochemical studies, 20 pm coronal slices were sectioned 

in a cryostat.

After thawing at room temperature (RT), sections were rinsed in 0.15 M phosphate-buffered 

saline solution (PBS, pH 7.4) containing 0.3% Triton X-100. Slices were subsequently 

incubated for 30 min with 10% foetal bovine serum (FBS), to reduce unspecific labelling, 

followed by 24 h incubation at 4°C with primary rat anti-mouse CD l ib  antibody (CD lib ; 

1:1000; Serotec, United Kingdom), rabbit polyclonal anti-active caspase-3 antibody (1:250; 

Santa Cruz Biotechnology, Santa Cruz, CA, USA), rabbit monoclonal anti-GFAP antibody 

(1:100; Sigma) or rabbit polyclonal anti-MAP2 antibody (1:200; Santa Cruz). Thereafter, 

sections were rinsed in PBS and incubated for 1 h at RT with a secondary anti-rat or anti

rabbit Alexa Fluor 488 antibody (1:200; Molecular Probes, Oregon, USA), respectively. 

After rinsing with PBS, slices were incubated with a Hoechst 33342 solution (15pg/ml in 

PBS containing 0.25% BSA) for 5 min at RT to visualize nuclei. Finally, sections were 

mounted using Dakocytomation fluorescent medium (Dakocytomation Inc., California, 

USA) and fluorescent images were examined with an Olympus Fluorview laser scanning 

confocal microscope (microscope BX61 and confocal system FV500; Hamburg, Germany).
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3.5 Western blot

The hippocampi were dissected out at 4° C and homogenized in 20 mM Tris-HCl 

buffer (pH 7.4), containing 1 mM EDTA, 5 mM EGTA, 1 mM Na-vanadate, 2 pg/pl 

aprotinin, 1 pg/pl pepstatin, 2 pg/pl leupeptin (30 mg tissue/150 pi homogenization buffer). 

Total proteins (150 pg per lane for rats and 70 pg per lane for mice; Bio-Rad Protein Assay, 

Bio-Rad Labs, Munchen, Germany) were separated using SDS-PAGE, 10% acrylamide and 

each sample was run in duplicate. Proteins were transferred to Hybond nitrocellulose 

membranes by electroblotting. For immunoblotting, we used specific antibodies that 

recognize the analyzed protein. Densitometric analysis of immunoblots was done to 

quantify the changes in protein levels (AIS image analyzer, Imaging Research Inc., Ontario, 

Canada) using film exposures with maximal signals below the photographic saturation 

point. Optical density values in each sample were normalized using the corresponding 

amount of actin.

3.6 In vivo microdialysis

Vertical dialysis probes were prepared with a copolymer of acrylonitrile-sodium 

methallyl sulphonate (AN 69, Hospal SpA, Italy; 0.31 mm outer diameter, with more than 

44,000 Da M.W. cutoff), essentially as described by Robinson and Whishaw (1988) 

(Robinson and Whishaw, 1988). The length of the exposed membrane was 2.5mm. Mice 

were anesthetized with Equithesin, placed on a stereotaxic frame and dialysis probe was 

implanted in the ventral hippocampus. The stereotaxic coordinates were: bar nose 0.0; AP -
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2.6; L + 2.6; V -3.4 from bregma and dura surface, according to Franklin and Paxinos 

(1997). About 20 h after surgery, the probes were perfused with artificial cerebrospinal 

fluid (aCSF composition in mM: NaCl 140, CaCb 1.26, KC1 3, MgCk 1, Na2HP0 4  1.2, 

glucose 7.2, pH 7.4 with 0.6 M NaH2P0 4 ) at 1 pL/min with a CMA/100 pump 

(CMA/Microdialysis, Stockholm, Sweden). Samples of dialysate were collected every 20 

min and stored at 4°C.

During the phase of stable glutamate (GLU) and GABA output, defined as three 

consecutive baseline samples not differing by more than 20%, 60 mM of KC1 (prepared as 

follow: NaCl 87; KC1 60; CaCh 1.26; MgCl2 1, in ultra pure water, buffered at pH 7.4 with 

2 mM sodium phosphate buffer) was perfused through the probe for 20 min to stimulate the 

exocytotic release of GABA and GLU.

3.6.1 HPLC detection of GABA and GLU into dialysate samples

The concentrations of GABA and GLU in dialysate samples were determined by 

high-performance liquid chromatography (HPLC) with fluorometric detection after pre

column derivatization with o-phthalaldehyde/p-mercaptoethanol (Sigma-Aldrich, Milan, 

Italy) reagent according to Donzanti and Yamamoto (1988) (Donzanti and Yamamoto, 

1988). Stock derivatizing reagent was prepared by dissolving 27 mg OPA in 1 mL 

methanol, followed by 5 pL P-mercaptoethanol and 9 mL 0.1 M sodium tetraborate buffer 

(pH 9.3) prepared by dissolving 0.62 g boric acid in about 80 mL ultrapure water (MilliQ, 

Millipore, USA). pH was adjusted to 9.3 with 2-3 mL 5 M NaOH and the final volume 

brought to 100 mL with water. Stock reagent solution was maintained at room temperature 

in a darkened bottle for one week. Derivatizing reagent was prepared by diluiting stock
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solution 1:4 with 0.1 M borate buffer, 24 h before use. 5 pL of derivatizing reagent were 

added to 5 pL sample to measure GLU or to 15 pL to measure GABA, thoroughly mixed 

and immediately injected into the HPLC.

GABA and GLU were separated through a 4.6 x 80 mm C l8 reverse-phase column (HR-80, 

ESA, Chelmsford, MA). New Guard RP-18 guard column (3.2 x 15 mm; Perkin-Elmer, 

USA) was used to protect the analytical column. The mobile phase for GABA was as 

follows: 0.05 M Na2HP0 4 , 35% methanol, pH 6.25 with 85% phosphoric acid, pumped at

1.2 mL/min with a LClO-Advp HPLC pump (Shimadzu, Milan, Italy).

The mobile phase for GLU separation contained 0.05 M Na2HPC>4 , 28% methanol, pH 6.4 

with 85% phosphoric acid at a flow rate of 1 mL/min with a LClO-Advp HPLC pump 

(Shimadzu, Milan, Italy).

Another mobile phase consisting of methanol :water (80:20), was used to wash out late 

eluting peaks. This was connected to HPLC pumps through a three-way valve (Biggs et al., 

1995; Piepponen and Skujins, 2001). Immediately after the GABA or GLU peak was 

recorded (Rt 10.5 min and 3.8 min, respectively), the valve was manually switched for 2 

min (wash-out step). The whole step-gradient run (from injection to injection) took less than 

15 min in total for GABA and 8 min for GLU.

GABA and GLU were measured by a fluorescence detector (F-1080; Merck-Hitachi, 

Germany). Excitation and emission wavelengths were 335 and 450 nm for both aminoacids. 

Assays were calibrated daily by injecting 0.4 pmol/20 pL GABA or 5 pmol/5 pL GLU, 

made up freshly in aCSF. Detection limits were 0.025 pmol/20 pL for GABA and 0.1 

pmol/5 pL for GLU (signal-to-noise ratio = 2). Extracellular levels of GABA and GLU,
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uncorrected for in vitro recovery of the probe, were expressed as pmol/20 pL and 

pmol/5 pL, respectively.

3.7 Organotypic hippocampal slice cultures

Hippocampal slice cultures were prepared from 6-8-day-old C57BL/6 mice, 

according to the interface culture method (Stoppini et al., 1991), previously described in 

detail (Bernardino et al., 2005). Mice were killed by decapitation, their brains removed 

under sterile conditions and the two hippocampi isolated and cut in 350 pm coronal 

sections using a Mcllwain tissue chopper. Individual slices were placed in ice cold 

Gey’s balanced salt solution (Biological Industries, Israel) supplemented with 25 mM 

D-glucose (Merck, Germany), before being placed on porous insert membranes 

(Millipore Corp., Bedford, Ma, U.S.A.). Six slices were put onto each membrane and 

the inserts were transferred to a 6 well culture trays (Coming Costar, Coming, N.Y., 

U.S.A.). Each well contained 1 ml culture medium, composed of 50% Opti-MEM, 25% 

heat-inactivated horse serum and 25% Hank’s Balanced Salt Solution (all from Gibco 

B.R.L., Life Technologies Ltd., Scotland) supplemented with 25 mM D-glucose. The 

culture trays were placed in an incubator with 5% CO2 and 95% atmospheric air at 33°C 

and the medium was changed twice a week for 2 weeks. At the start of the experiment, 

the culture medium was replaced with 1 ml of serum-free Neurobasal medium 

containing 1 mM L-glutamine and 20 pi B27 supplement (Gibco BRL). No antibiotics 

or antimitotics were used throughout these procedures.
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3.7.1 Determination of cell death by propidium iodide

Spontaneous and induced cell death in slice cultures was assessed by monitoring the 

cellular uptake of the fluorescent dye propidium iodide (PI; 3,8-diamino-5-(3- 

(diethylmethylamino) propyl)-6-phenyl phenanthridinium diiodide; Sigma, St. Louis, MO). 

PI is a stable fluorescent dye adsorbing blue-green light (493 nm) and emetting red 

fluorescence (630nm). As a polar substance, PI enters only dead or dying cells with a 

damaged or leaky cell membrane, and interacts with DNA to yield a bright red 

fluorescence. PI is not toxic to cells and has been used widely as an indicator of neuronal 

membrane integrity and cell damage (Kristensen et al., 2001; Noraberg et al., 2005). Three 

hours before exposure to drugs, 2 pM PI was added to the medium for determination of 

basal cellular uptake, and the same concentration of PI was added during all subsequent 

medium changes. Cellular uptake of PI was recorded by fluorescence microscopy 

(microscope Olympus BX61; Hamburg, Germany) using a rhodamine filter and digital 

camera (F-View 2, Olympus) with 100 ms exposure time. Digital fluorescent micrographs 

were taken before drug exposure (basal PI uptake) and at fixed time points after drug 

exposure.

For quantitative assessment of neuronal damage, the region of interest was delineated using 

NIH Image 1.62 analysis software (NIH, Bethesda, MD, USA) and used for densitometric 

measurements of the PI uptake. The effect of treatments was assessed by subtracting the 

basal Pl-uptake value measured at 0 d from the value recorded at the end of the treatment 

(in the same slice).
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3.7.2 In vitro model of inflammation

Hippocampal slice cultures were exposed to inflammatory-like stimuli using two 

distinct experimental protocols. Hippocampal slice cultures were exposed to LPS alone (10 

ng/ml; Escherichia coli serotype 055:B5, Sigma, St Louis, MO, USA) for 6 h or to LPS 

alone for 3h followed by 3h co-incubation with 1 mM ATP (Sigma, St Louis, MO, USA). 

This protocol was previously used to study post-translational processing of murine IL-lp in 

monocytes/macrophages (Laliberte et al., 1999; Verhoef et al., 2003) or cultured microglial 

cells (Bianco et al., 2005; Brough et al., 2002; Sanz and Di Virgilio, 2000).

We used hippocampal slice cultures since, as compared to dispersed cell cultures, they 

reproduce the complex in vivo organization of cell network including neurons, astrocytes 

and microglia (Noraberg et al., 2005). This network is instrumental for studying the 

consequences of inflammation which are known to depend not only on the type of 

inflammatory stimulus and the phenotype characterizing microglia reaction but also on the 

concurrence of several factors related to the brain microenvironment (Lai and Todd, 2008; 

Minghetti et al., 2005; Schwartz et al., 2006).

3.7.3 ELISA

Hippocampal slices were homogenized in 0.5 ml ice-cold PBS (pH 7.4) containing a 

complete protease inhibitor cocktail tablet (Roche Biochemical, Indianapolis, IL, USA), and 

2% ofNP-40 (Sigma). IL-lp was measured in tissue and medium by ELISA (R&D System, 

Minneapolis, MN, US), accordingly to manufacture’s suggested protocol. An affinity 

polyclonal antibody specific for mouse IL-ip was pre-coated on the ELISA 96-well
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polystyrene microplates. After washing with RD1-14 assay diluent, the plates were 

incubated with the samples and the standards (standards ranging from 500 pg/ml to 7.8 

pg/ml) for 2h at RT, washed again four times with wash buffer solution, and a polyclonal 

anti-mouse IL-lp antibody conjugated to the horseradish peroxidase was applied for 

further 2h at RT. After a wash to remove any unbound antibody-enzyme reagent, a mixture 

of stabilized hydrogen peroxide and chromogen (tetramethylbenzidine) was added for 30 

min at RT. The colour reaction was stopped by 1M HC1 and the absorbance was readed at 

450nm (ELISA reader, Infinite M200, Tecan, Italy). The detection limit was <3 pg/ml.
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CHAPTER 4

Inactivation of caspase-1 in rodent brain: 

a novel anticonvulsive strategy
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4.1 Summary

We investigated whether acute and chronic seizures can be effectively inhibited by 

blocking the brain production of IL-10, using pralnacasan or VX-765, two selective 

inhibitors of interleukin converting enzyme (ICE/caspase-1).

Caspase-1 inhibitors reduced the release of IL-10 in organotypic slices exposed to 

inflammatory conditions.

Intracerebroventricular injection of 50 pg pralnacasan or intraperitoneal administration of 

VX-765 (25-200 mg/kg) to rats decreased by up to 50% the number and the time spent in 

seizures and significantly delayed by -2-fold the seizure onset time. These effects were 

associated with blockade of seizure-induced production of IL-10 in the hippocampus. 

Intraperitoneal administration of VX-765 (200 mg/kg) to mice reduced up to 75% the 

number and the time spent in spontaneous recurrent seizures.

These data indicate that the inhibition of caspase-1 represents an effective and novel 

anticonvulsive strategy which acts by selectively reducing the brain availability of IL-10.
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4.2 Experimental procedures

4.2.1 Pharmacological treatments

Acute and chronic kainic acid-induced seizures were induced and quantified as 

previously described in “Materials and methods - general procedures” section (p. 81-85).

Pralnacasan and VX-765. Pralnacasan is a prodrug of the potent, selective, non

peptide competitive inhibitor RU36384, and was the first caspase-1 inhibitor to enter 

clinical development. VX-765 is a prodrug with improved oral bioavailability and more 

active than pralnacasan (Braddock and Quinn, 2004; Wannamaker et al., 2007).

Pralnacasan (Vertex Pharmaceuticals, Inc., Cambridge, MA, US) was dissolved in 20% 

cremophor (25 pg in 4 pi, the maximal concentration soluble in the injected volume) and 

injected icv in rats (n=8), 45 min and 10 min before intrahippocampal injection of kainic 

acid. In preliminary experiments, pralnacasan was also administered in a single dose (12.5 

or 25 pg in 4 pi), 45 min before kainic acid.

VX-765 (25, 50, 200 mg/kg; Vertex Pharmaceuticals, Inc) was dissolved in 20% cremophor 

and injected ip in rats (n=8) once a day for 3 consecutive days. On the fourth day, rats 

received VX-765 45 min and 10 min before intrahippocampal injection of kainic acid. This 

dosing schedule was shown to reduce disease severity and the expression of inflammatory 

mediators in models of rheumatoid arthritis and skin inflammation (Braddock and Quinn, 

2004; Wannamaker et al., 2007). Respective controls were similarly injected with vehicle 

before kainic acid.

VX-765 (200 mg/kg) was injected ip in mice (n=10) with spontaneous recurrent seizures 

twice a day (9 am and 4 pm) for 4 consecutive days followed by 3 days wash-out period
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starting from the last drug administration. Controls are mice injected with PBS (50 nl) and 

chronically implanted with EEG electrodes.

4.2.2 Western blot analysis

Different groups of rats (n = 3 in each treatment group) were treated icv with 

pralnacasan or its vehicle given alone, or before intrahippocampal application of kainic acid 

(see above). Ninety min after the onset of EEG seizures, when pralnacasan effect on 

seizures was evident (see Results), experimental rats and their controls were decapitated. 

The injected hippocampi were dissected out at 4° C and homogenates as described in 

“Materials and methods - general procedures” section (p. 92).

For immunoblotting, we used anti-rat IL-ip (0.2 pg/ml, Abeam Limit., Cambridgeshire, 

UK) or anti-mouse IL-18 (1:250, kindly provided by Dr Dinarello) rabbit polyclonal 

antibodies. Immunoreactivity was visualized with enhanced chemiluminescence (ECL, 

Amersham, UK) using peroxydase-conjugated goat anti-rabbit IgG (1:2000; Sigma, St 

Louis, MO, USA) as secondary antibodies.

4.2.3 Immunohistochemistry

Two months after kainic acid administration, spontaneously epileptic mice and their 

controls (n=5) were perfused as previously described (see “Materials and methods - general 

procedures” section (p. 87)). Serial cryostat coronal sections were used for IL-lp and IL- 

1R1 immunohistochemestry following the protocol previously described (p. 88).
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4.2.4 Organotypic hippocampal slice cultures

Technical details related to organotypic hippocampal slice cultures and ELISA have 

already been reported in “Materials and methods - general procedures” section (p.95; 97).

To investigate the effect of caspase-1 inhibitors on IL-ip production and subsequent 

release, slice cultures were preexposed to 0.1-10 pM pralnacasan or VX-765 for 2h 

followed by coexposure with LPS for 3 h and LPS+ATP for further 3 h (protocol is 

depicted below). These doses of pralnacasan and VX-765 were shown to inhibit the LPS- 

induced IL-lp release from peripheral blood mononuclear cells (Braddock and Quinn, 

2004; Stack et al., 2005).

Start o f organotypic
slice culture ELISA

l  l

2 weeks in 
vitro

pralnacasan +LPS +ATP
or VX-765

4.2.5 Statistical analysis of data

Data are represented as the means ± SE (n= number of individual samples). The 

effects of treatments were analyzed by two-way ANOVA followed by Fisher’s test (for 

western blot data), or by one-way ANOVA followed by Bonferroni’s test (for organotypic 

cultures), or by one-way ANOVA followed by Tukey’s test (for seizure analysis).
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4.3 Results

4.3.1 Effects of caspase-1 inhibition on hippocampal IL-ip

In vitro evidence. Fig. 4.1 A shows that ATP is required for inducing a massive IL-lp 

release in the presence of LPS in organotypic hippocampal slice cultures, as previously 

shown in human monocytes (Mehta et al., 2001). Thus, LPS alone increased IL-ip by -20- 

fold (p<0.01), while addition of ATP increased IL-ip release into the culture medium by 

60-fold compared to control untreated slices (p<0.01 vs LPS alone). Two hours pre

incubation with pralnacasan or VX-765 reduced in a dose-dependent manner the LPS+ATP 

mediated release of IL-lp in the medium, reaching the levels observed when slices were 

incubated with LPS alone (Fig.4.1A). Maximal 70% inhibition was reached at 1 pM 

pralnacasan or VX-765. In the corresponding tissue extracts, LPS or the co-exposure to 

LPS+ATP induced similar increases in IL-lp levels (p<0.01 vs control slices; Fig. 4.IB) 

and pralnacasan or VX-765 did not affect LPS+ATP induced increase (Fig. 4. IB). The 

basal levels of IL-lp in the medium and in the tissue of control slices were barely or not 

detectable and did not differ from those measured in the presence of ATP, pralnacasan or 

VX-765 alone. Although the ELISA method used to measure IL-ip in the tissue and in the 

medium does not permit to distinguish between pro-IL-lp and the mature 17 kDa cytokine, 

it is well established that more than 90% of the releasable form of IL-ip consists of the 17 

KDa mature form, whereas the tissue content is mostly represented by pro-IL-ip (Dinarello, 

1991).
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In vivo evidence. Fig. 4.1C-D show the effect of pralnacasan on IL-lp levels induced 

in the rat hippocampus by seizures. Western blot analysis allowed to distinguish between 

the immature (pro-IL-ip, 30 kD) and the mature and releasable form of IL-lp (17kD). 

Seizures increased pro-IL-ip by 84% and the mature and releasable form of IL-ip by 20%. 

Anticonvulsant doses of pralnacasan (see below) fully reversed the effect of kainic acid- 

induced seizures on the mature, releasable form of IL-ip (p<0.01 vs kainic acid) producing 

a total reduction of 50% below basal levels; consequently, pro-IL-lp was increased by 

~50% above the levels induced by seizures (p<0.01 vs kainic acid). In control hippocampi, 

pralnacasan alone did not significantly affect pro-IL-lp while reducing mature IL-lp levels 

by 30% below basal values.

IL-18 immunoreactivity was also assessed using western blot since this cytokine is a 

substrate of caspase-1 (Culhane et al., 1998). However, no signal was detected in 

hippocampal homogenates either in basal conditions or during seizure activity. The lack of 

signal was not due to failure of the Ab, since our Ab detected a specific band of 18kD when 

tested against 1 pg of human or rat recombinant IL-18.

These data demonstrate that both pralnacasan and VX-765 blocked the release of IL-lp 

induced by activation of caspase-1 in organotypic hippocampal slice cultures and by 

kainic acid-induced seizures; moreover, an anticonvulsant dose of pralnacasan led to a 

50% reduction in the hippocampal levels of the 17 kDa form of IL-ip.
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Figure 4.1. Effects of pralnacasan on hippocampal IL-lp levels
Panels A and B: Bar grams show IL-lfi levels (mean ±SE, n=6; two separate experiments) in mouse 
organotypic hippocampal slice culture media (A) and extracts (B), as assessed by ELISA. **p<0.01 
vs control; #p<0.01 vs LPS; °p<0.01 vs LPS+ATP by one-way ANOVA followed by Bonferroni’s 
test.
Panels C and D: Bargrams show the IL-1/3 levels (mean ±  SE, n= 3) measured in the rat 
hippocampus in the various experimental conditions, as assessed by western blot. Panel C shows 
the quantification o f the optical density (OD) o f the IL-lfi protein bands o f  30 kDa (pro-IL-1/3) and 
17 kDa (mature IL-1/3) normalized to the corresponding a-actin levels (depicted in panel D). Data 
are expressed as % o f  normalized OD values measured in vehicle-treated rats. *p<0.05; **p<0.01 
vs vehicle; #p<0.01 vs KA; proIL-1/3(30 kD): F (1,10)=53.8; IL-1/3(17 kD): F (1,10)=10.6 by two- 
way ANOVA followed by Fisher ’s test.
Panel D depicts representative western blots o f pro-IL-lp (30 kDa) and mature (17 kDa) IL-1/3 in 
the rat hippocampus in the various experimental conditions. Each sample was run in duplicate (150 
pg  protein).
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4.3.2 Effects of caspase-1 inhibition on kainic acid-induced acute seizures

Pralnacasan. Fig 4.2A shows the effect of two consecutive icv injections of 

pralnacasan on kainic acid-induced seizures in freely-moving rats (25 pg in 4 pi given 45 

and 10 min before kainic acid injection). Pralnacasan significantly delayed the time to 

seizure onset by 2-fold (p<0.01), reduced the number of seizures by 20% (p<0.01) and the 

total time spent in EEG seizures by 40% (p<0.01). The average duration of seizures was 

also significantly reduced by 25% by pralnacasan (Vehicle, min, 1.6 ± 0.09; Pralnacasan,

1.2 ± 0.07**, n= 8; **p<0.01 by Student’s t-test). Pralnacasan did not affect seizures when 

given in a single administration (12.5 or 25 pg in 4 pi given 45 min before kainic acid) or at 

doses lower than 25 pg (12.5 in 4 pi; data not shown). Pralnacasan inhibited seizure 

duration by 52% and 38% of control values during the first and second hour of EEG 

recordings respectively, while its effect faded away during the third hour of recording. 

Pralnacasan did not affect spiking activity (not shown).

VX-765. As described for pralnacasan (see Fig.4.1A), 2h pre-incubation with VX-765 

significantly reduced in a dose-dependent manner the LPS+ATP-mediated release of IL-lp 

in the slice culture medium (Fig. 4.1 A). Maximal inhibition of -70% was achieved with 1 

pM VX-765. In the corresponding tissue extracts, VX-765 did not affect LPS+ATP induced 

increase (Fig. 4.IB). VX-765 alone did not affect IL-ip concentrations.

Fig. 4.2B shows the effect of systemic administration of VX-765 on kainic acid-induced 

seizures. VX-765 at the doses of 25, 50 and 200 mg/kg significantly delayed the time to 

seizure onset by 1.5 to 2-fold (p<0.01), reduced the number of seizures by 40% (p<0.01)
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and the total time spent in EEG seizure activity by 30 to 50% (p<0.01). No differences in 

spiking activity were observed (not shown).

These findings demonstrate that caspase-1 inhibition using pralnacasan or VX-765 

significantly delayed seizure onset and reduced the time spent in seizures. This 

anticonvulsive effect was achieved either after intracerebral or systemic administration of 

selective caspase-1 blockers, and was associated with the ability of these drugs to prevent 

the seizure-induced increase of the biologically active form of IL-lp.
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Figure 4.2. Effects of caspase-1 inhibition on kainic acid-induced seizures in rats
Data represent the mean ± SE o f  the various seizure parameters expressed as % o f control values 
measured in vehicle-treated rats. Vehicles in pralnacsan or VX-765 treated rats were pooled in a 
unique control group since they did not differ significantly [Onset (min): 7.9 ± 0.7; Number o f 
seizures: 32 ± 1; Time in seizures (min): 44.0 ± 2.0, n -  22]. **p<0.01 vs vehicle by one-way 
ANOVA followed by Tukey's test; statistical analysis was done on absolute values.

4.3.3 IL-lp and IL-1R1 expression in the epileptic mouse hippocampus.

Immunohistochemical analysis of epileptic mouse hippocampus, 2 months after 

intrahippocampal injection of kainic acid, showed that IL-ip immunoreactivity was 

strongly enhanced in glial-like cells (Fig. 4.3B) while IL-1R1 was enhanced in neurons 

(Fig. 4.3D and inset). These data are in accordance with our previous findings showing the 

induction of IL-ip and IL-1R1 by chemically- or electrically-induced seizures (Ravizza et
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al., 2008a). IL-ip and IL-1R1 (Fig. 4.3A,C) were not detectable in control hippocampus, as 

previously shown (Ravizza et al., 2008a; Ravizza and Vezzani, 2006; Vezzani et al., 1999; 

Vezzani et al., 2000).

Control Spontaneous seizures

Figure 4.3. IL-lp and IL-1R1 expression in the epileptic mouse hippocampus
Representative photomicrographs o f IL-lft (A-B) and IL-1R1 (C-D) immunoreactivity in the CA3 
area o f the hippocampus, 2 months after seizures induced by intrahippocampal injection o f kainic 
acid (B,D) and in vehicle injected C57BL6 mice (A,C). IL-lft (A) and IL-1R1 (C) immunostaining 
was not detectable in control hippocampus. After chronic seizures, IL -lp  immunoreactivity was 
strongly enhanced in glial-like cells (B), while IL-1R1 was enhanced in neurons (D and inset). Scale 
bar: A-D 100 pm; inset 50 pm.
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4.3.4 Effects of caspase-1 inhibition on kainic acid-induced spontaneous recurrent 

seizures.

Figure 4.4 shows the effect of systemic administration of VX-765 on kainic acid- 

induced spontaneous recurrent seizures. From the second day of treatment, 200 mg/kg VX- 

765 significantly reduced the number of spontaneous seizures by 40% and the time spent in 

seizures by 50%. The maximum effect was reached at fourth day of treatment where VX- 

765 reduced the number and the total time spent in seizure activity up to 75%. This effect 

was maintained for 24 h after the drug withdrawal. After 3 days wash-out period starting 

from the last drug administration, the spontaneous seizures pattern recovered to baseline 

values.
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Figure 4.4. Effect of VX-765 on chronic spontaneous seizures
Data represent the mean ±  SE o f the various seizure parameters expressed as percentage o f  
baseline o f  spontaneous seizures measured in mice during 2 hour EEG recording before the first 
day o f  treatment. *p<0.05, **p<0.01 vs baseline by one-way ANOVA followed by Tukey’s test.
Panel A: baseline recording from a naive mouse; Panel B: spontaneous seizure activity recorded 2 
months after kainic acid administration; Panel C: effect o f VX-765 on spontaneous seizure activity 
as assessed by 2 hours EEG analysis starting at the time o f  treatment in the afternoon treatment 
session, (a) typical ictal episodes (b) spiking activity; RHP right hippocampi; LHP left hippocampi.
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(j
These findings demonstrate that IL-ip up-regulation is not only a transient consequence of 

acute seizures, but it persists in chronic epileptic tissue. VX-765 by inhibiting caspase-1
(

reduces up to 75% the frequency and duration of spontaneous seizures that are resistant to 

the treatment of classical antiepileptic drugs.

In summary, this study has shown that:

1. Caspase-1 inhibition reduces up to 70% the release of IL-ip induced by
y

proinflammatory stimuli.

2. Caspase-1 inhibition blocks the brain production and the release of the mature, 

biologically active form of IL-ip induced by seizures.

3. IL-lp and IL-1R1 are chronically expressed in epileptic tissue.

4. Caspase-1 inhibition by pralnacasan and VX-765 reduces the number and duration of 

acute and spontaneous seizures.

4.4 Discussion

The main finding of this work is that inhibition of caspase-1 in the brain provides 

significant protection from acute and spontaneous recurrent seizures induced by 

intrahippocampal kainic acid administration in rodents. This anticonvulsive effect was 

achieved either after intracerebral or systemic administration of selective caspase-1 

blockers, and was associated with the ability of these drugs to prevent the seizure-induced 

increase of the biologically active form of IL-lp.
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Caspase-1, the enzyme responsible for cleavage of proIL-ip to mature biological active 

form (Fantuzzi and Dinarello, 1999), is significant involved in seizures as demonstrated by 

experimental and clinical studies (Eriksson et al., 1999; Henshall et al., 2000; Ravizza et al., 

2008b). Caspase-1 activation and the subsequent brain production of IL-ip, seem to be 

involved in seizure generation and maintenance (Vezzani and Baram, 2007) since mice with 

a deletion of the caspase-1 gene exhibited a delay of the onset time to seizure and a drastic 

reduction in epileptic activity (Ravizza et al., 2006b). This possibility is also supported by 

the chronic expression of IL-ip and its receptor type 1 in epileptic mice in brain areas such 

as the hippocampus, involved in seizure generation and propagation suggesting that the 

recurrence of spontaneous seizures may contribute to the chronic activation of IL-lp / IL- 

1R1 system.

In this study, pharmacological inhibition of caspase-1 was achieved in rodent brain using 

pralnacasan or VX-765, representing a new class of protease inhibitors which specifically 

inhibit caspase-1. Pralnacasan is a prodrug of the potent, selective, non-peptide competitive 

inhibitor RU36384, and was the first caspase-1 inhibitor to enter clinical development. 

VX-765 is a prodrug with improved oral bioavailability and more active than pralnacasan 

(Braddock and Quinn, 2004; Wannamaker et al., 2007). These drugs show anti

inflammatory effects in patients with rheumatoid arthritis, without ensuing signs of toxicity, 

as reported to date (Braddock and Quinn, 2004; Randle et al., 2001; Stack et al., 2005).

Our biochemical evidence indicates that both pralnacasan and VX-765 blocked the release 

of IL-lp induced by activation of caspase-1 in organotypic hippocampal slice cultures, thus 

establishing a proof-of-concept that these drugs should block also the production and 

subsequent release of mature IL-ip in vivo. In our experimental model of seizures, we



indeed found that an anticonvulsant dose of pralnacasan led to a 50% reduction in the 

hippocampal levels of the 17 kDa mature form of IL-ip induced by seizures (De Simoni et 

al., 2000; Eriksson et al., 1999; Oprica et al., 2003; Vezzani et al., 1999) suggesting that this 

effect is responsible for the anticonvulsant effect of this drug. However, residual IL-ip still 

remained in the hippocampus in the absence of caspase-1 activity suggesting the existence 

of a pool with a slow turnover rate. Moreover, other enzymes such as matrix 

metalloproteinases, elastase, cathepsins, trypsin or chymotrypsin, are able to process to 

some extent pro-IL-lp, and this might also be the reason for the residual IL-ip levels in 

pralnacasan-treated rats (Fantuzzi and Dinarello, 1999; Schonbeck et al., 1998).

We cannot exclude that these caspase-1 inhibitors also reduced the production of IL-18 in 

the brain. However, we could not detect measurable levels of this cytokine in hippocampal 

homogenates either in control conditions or during the acute phases of seizures.

Pralnacasan or VX-765, by inhibiting caspase-1 activity, significantly reduced ictal activity 

without changing interictal spiking; this effect was observed also after intrahippocampal 

injection of IL-lra or in mice overexpressing IL-lra in astrocytes (Vezzani et al., 2000; 

Vezzani et al., 2002). It is possible that a reduction in IL-ip actions impairs the transition 

between interictal and ictal events, although some level of hippocampal hyperexcitability 

still persists. Similarly, classical antiepileptic drugs such as phenytoin and carbamazepine 

provide seizure control without modifying interictal epileptiform activity in limbic 

structures (Bazil and Pedley, 1995).

The most powerful anticonvulsant effect was achieved after peripheral administration of 

VX-765 in an experimental model of TLE. The inhibition of caspase-1 and, thus the 

reduction of IL-1(3 levels, induced a 70% reduction in the number and duration of
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spontaneous seizures that are refractory to the treatment with classical antiepileptic drugs 

(Riban et al., 2002).

These novel findings open the perspective of a clinical use of selective caspase-1 inhibitors 

for the treatment of seizure disorders, including the cases that are not responsive to the 

available antiepileptic drugs.
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CHAPTER 5

A novel non-transcriptional pathway mediates 

the proconvulsive effects of IL-1P
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5.1 Summary

We investigated the molecular mechanisms involved in the proconvulsant actions of 

IL-1 p. We show here that EEG seizures induced by intrahippocampal injection of kainic 

acid in C57BL6 adult mice were increased by 2-fold on average by pre-exposure to IL-1 (3 

and this effect was blocked by 3-O-methylsphingomyelin (3-O-MS), a selective inhibitor of 

the ceramide-producing enzyme sphingomyelinase. C2-ceramide, a cell permeable analog 

of ceramide, mimicked IL-ip action suggesting that ceramide may be the second messenger 

of the proconvulsive effect of IL-lp. The seizure exacerbating effects of either IL-lp or C2- 

ceramide were dependent on activation of the Src family of tyrosine kinases since they were 

prevented by CGP76030, an inhibitor of this enzyme family.

The proconvulsive IL-lp effect was associated with increased Tyr418 phosphorylation of 

Src-family of kinases indicative of its activation, and Tyr1472 phosphorylation of one of its 

substrate, the NR2B subunit of the NMDA receptor, which were prevented by 3-O-MS and 

CGP76030. Finally, the proconvulsive effect of IL-lp was blocked by ifenprodil, a 

selective NR2B receptor antagonist.

These results indicate that the proconvulsive actions of IL-1 P depend on the activation of a 

sphingomyelinase- and Src-family of kinases-dependent pathway in the hippocampus which 

leads to the phosphorylation of the NR2B subunit, thus highlighting a novel, non- 

transcriptional mechanism underlying seizure exacerbation in inflammatory conditions.
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5.2 Experimental procedures

5.2.1 Pharmacological treatments

Acute kainic acid-induced seizures were induced and quantified as previously 

described in “Materials and methods - general procedures” section (p. 81-83).

Human recombinant (hr)IL-lB (R&D system, Minneapolis, USA) was dissolved in 0.1 M 

PBS supplemented with 0.1% bovine serum albumin (BSA) and injected 

intrahippocampally (1 ng/0.5 pi) 10 min before kainic acid. This is the same dose causing 

proconvulsive effects in kainate-injected rats (Vezzani et al., 1999; Vezzani et al., 2002). 

C2-ceramide. a membrane-permeable ceramide analogue, and dihvdro-ceramide. the 

biologically inactive form of C2-ceramide (Sigma) (Obeid et al., 1993) were dissolved in 

10% dimethylsulfoxide (DMSO) in PBS and injected intrahippocampally (0.25-1.0-2.0 pg 

in 0.5 pi), 10 min before kainic acid.

3-0-Methvlsphingomvelin (3-O-MS. N-Smase inhibitor; BioMol Research Laboratories 

Inc., PA, USA) (Tsakiri et al., 2008; Zeng et al., 2005) was dissolved in 10% DMSO in 

PBS and injected intrahippocampally (3 pg/0.5 pi) or icv (15 pg/lpl), 20 min before kainic 

acid. These doses were shown to block the rapid phase of febrile response to IL-1 (3 after 

injection into the mouse preoptic area/anterior hypothalamus (pilot study; see Sanchez- 

Alavez et al., 2006).

CGP76030. a selective Src-family of tyrosine kinase inhibitor which binds to the catalytic 

SHI domain, thus preventing substrate phosphorylation (Rucci et al., 2006; Susa et al., 

2000; Susa et al. , 2005) was provided as a research tool by Novartis AG, Basel, 

Switzerland. It was dissolved in 2% DMSO in PBS and injected intrahippocampally (65
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ng/0.5 pi) or intracerebroventricularly (icv; 130 ng/lpl), 20 minutes before kainic acid. The 

dosage of CGP76030 corresponds to the one achieved in mouse brain after oral 

administration of 30 pmol/kg, as assessed measuring its brain/plasma ratio at 1 and 3h, 

reaching a highest ratio at 3 h. This dose blocked the electrophysiological effects of IL-1 P 

on the activity of warm-sensitive hypothalamic neurons in vivo (pilot study; see also 

(Sanchez-Alavez et al., 2006).

Ifenprodil, (NR2B-selective NMDA antagonist (Chenard and Menniti, 1999), Sigma) was 

dissolved in 5% DMSO with 9% Tween80 in PBS and injected intraperitoneally (lmg/kg), 

15 min before kainic acid. We choose this dose since it was shown to block NR2B receptors 

in vivo during tPA facilitation of ethanol withdrawal seizures, although not affecting 

seizures per se (Pawlak et al., 2005).

Control mice were injected with the corresponding volume of vehicles (10% DMSO in 

PBS; 2% DMSO in PBS; 5% DMSO with 9% Tween80 in PBS; PBS supplemented with

0.1% BSA) before kainic acid.

A schematic representation of experimental protocols is depicted in figure 5.1.
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Figure 5.1. Schematic representation of experimental protocols

5.2.2 Immunohistochemistry

At the end o f the EEG analysis, mice injected with kainic acid (n=5) and their 

controls (n= 5), were perfused as previously described (see “Materials and methods - 

general procedures” section (p. 87)). Serial cryostat coronal sections were used for IL -lp  

and IL-1R1 immunohistochemestry following the protocol previously described (p. 88).
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5.2.3 Double-immunostaining

Two brain slices in each mouse brain for each cell type marker were randomly chosen 

to identify the cells expressing IL-lp or IL-1R1. The procedures for double-immunostainig 

is described in “Materials and methods - general procedures” section (p. 90).

5.2.4 Western blot

Different groups of mice (n=T0-12 in each group) were implanted with electrodes and 

cannula and injected with hrIL-lp, kainic acid, or their combination ± 3-O-MS or 

CGP76030 (see before for injection protocol). Control mice (n=14) were implanted with 

electrodes and cannula and injected with the corresponding vehicles of the various 

treatments at the appropriate time interval. One hour after the onset of EEG seizures, 

experimental mice and their controls were decapitated. This time was chosen in order to 

provide sufficient EEG activity tracing to evaluate whether mice had the typical EEG 

pattern induced by kainic acid administration. The dorsal injected hippocampus was 

dissected out at 4°C and 2 hippocampi obtained from different mice within the same 

experimental group were pooled and homogenized as described in “Materials and methods - 

general procedures” section (p. 92).

For immunoblotting, we used an anti-pTyr418-Src which is located in the catalytic domain 

therefore indicative of Src-family of tyrosine kinases activation (1:750; Sigma) or anti- 

pTyr,472-NR2B (1:1000; Affinity Bioreagents Golden, CO, USA) rabbit polyclonal 

antibodies. Total NR2B levels were assessed using goat polyclonal anti-NR2B antibody 

(1:1000; Santa Cruz). Immunoreactivity was visualized with enhanced chemiluminescence
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(ECL, Amersham, UK) using peroxydase-conjugated goat anti-rabbit (1:2000; Sigma) or 

rabbit anti-goat (1:10000; Sigma) IgGs as secondary antibodies.

5.2.5 Statistical analysis of data

Data are the mean ± SEM (n = number of individual samples). The effects of 

treatments were analyzed by two-way ANOVA followed by Tukey or Kruskal-Wallis test, 

or by Student r-test.

Data depicted in Figs. 5.2 and 5.3 are expressed as % of vehicle-injected mice; however, 

statistical analysis was carried out using absolute values.
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5.3 Results

5.3.1 Seizure-mediated induction of IL-ip and IL-1R1 in the mouse hippocampus

Immunohistochemical analysis of hippocampal sections 3 h after intrahippocampal 

injection of kainic acid, showed increased IL-lp immunoreactivity in astrocytes (Fig. 5.2B) 

while IL-1R1 was enhanced both in neurons and astrocytes (Fig. 5.2D); this activation 

involved the dorsal and temporal poles of the hippocampus bilaterally. These data are in 

accordance with our previous findings showing the induction of IL-1 (3 and IL-1R1 by 

chemically- or electrically-induced seizures in rats (Ravizza et al., 2008a; Ravizza and 

Vezzani, 2006; Vezzani et al., 1999) or bicuculline-induced seizures in mice (Vezzani et al., 

2000). IL-lp and IL-1R1 (Fig. 5.2A,C) were not detectable in control hippocampus, as 

previously shown (Ravizza et al., 2008a; Ravizza and Vezzani, 2006; Vezzani et al., 1999; 

Vezzani et al., 2000).
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VEHICLE KAINIC ACID

Figure 5.2. IL-ip and IL-1R1 expression in the mouse hippocampus after kainic acid- 
induced seizures
Representative photomicrographs o f IL-1/3 (A-B) and IL-1R1 (C-D) immunoreactivity in the CA3 
area o f the hippocampus, 3 h after seizures induced by intrahippocampal injection o f kainic acid (B 
and D) and in vehicle-injected C57BL6 mice (A,C). I L - lf  (A) and IL-1R1 (C) immunostaining was 
not detectable in control hippocampus. After seizures, IL-1/3 immunoreactivity is strongly enhanced 
in GFAP-positive astrocytes (B, yellow signal in inset); IL-1R1 staining was enhanced both in 
neurons (D, yellow signal in d/) and astrocytes (D, yellow signal in d2). Scale bar: A-D 100 pm; 
insets, 25 pm.

5.3.2 N-Smase-Src kinase-NR2B pathway mediates the proconvulsive activity of IL-ip

3-O-MS

We established the role o f neutral-sphingomyelinase (N-Smase) in the proconvulsive effect 

of IL-lp. using the selective N-Smase inhibitor 3-O-MS (Tsakiri et al., 2008; Zeng et al., 

2005) (Table 5.1). The intrahippocampal injection o f hrIL-lp, 10 min before kainate, 

increased by ~1.8-fold the number o f seizures and by ~2.0-fold their duration as compared
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with vehicle-treated mice (p<0.01; Table 5.1). Three pg 3-O-MS blocked the proconvulsive 

effect of hrIL-lp when injected into the hippocampus, 10 min before the cytokine (i.e. 20 

min before kainate) since it abolished the increase in the number of seizures (F(i562)=2 .2 ; 

p<  0.05) and time spent in ictal activity CF(i,62)=5 .9 ; p<  0.01 by two-way ANOVA) induced 

by hrIL-lp. The latency to the first seizure and the time spent in interictal activity were not 

affected by these treatments. 3-O-MS injected intrahippocampally (3 pg/0.5 pi) (Table 5.1) 

or icv (15 pg/1 pi) (not shown) 20 min before kainic acid, did not affect seizure parameters; 

higher doses could not be used because of the limit of solubility of this compound in the 

volume of injection.

These data demonstrate that the inhibition of N-Smase blocks the increase in the frequency 

and duration of seizures induced by IL-lp suggesting that N-Smase activation mediates the 

proconvulsive actions of this cytokine.
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Table 5.1. Effect of inhibition of the N-Smase-Src-NR2B pathway on the
proconvulsive effects of IL-ip

Dose Onset (min)
Number of 

seizures
Time in ictal 
activity (min)

Time in 
spikes (min)

Vehicle - 8.7 ±0.5 9.0 ±1.0 5.6 ± 0.5 48.0 ±3.8

hrIL-lp 1 ng, i.h. 7.6 ±0.4 16.0 ±2.0 ** 11.8 ± 1.1** 50.0 ±3.7

3-O-MS 3 pg, i.h. 8.6 ±1.0 7.0 ±1.0 4.9 ± 0.6 43.9 ±6.6

3-O-MS + 
hrIL-lp

9.9 ±2.1 8.0 + 1 # 5.2 ± 0.6tf 48.5 ± 4.6

CGP076030 65 ng, i.h. 8.1 ±1.0 10.0 ±2.0 6.3 ±1.1 53.3 ± 7.5

CGP76030 
+ hrIL-lp

8.8 ±0.9 7.0 ± 1 # 3.8 ± 0.6n 47.4 ± 4.7

Ifenprodil 1 mg, i.p. 9.2 ±2.1 8.0 ±1.0 6.4 ±1.3 42.9 ± 6.6

Ifenprodil + 
hrIL-lp

8.9 ±1.7 ^ ± 1 # 5.0 ± 0.5ft 59.4 ± 4.2

Data are the mean ±  SE. Vehicle (n=23) represents control mice treated with the corresponding 
vehicles o f  the various treatments before kainic acid application; since these mice did not differ in 
seizure parameters they were pooled in a single control group, hr IL-1/3 (n=28) are mice injected 
with this cytokine after receiving the corresponding vehicles o f the various treatments, then they 
were treated 10 min later with kainic acid. Since these mice did not differ in seizure parameters, 
they were pooled in a single group. 3-O-MS, CGP76030 or ifenprodil (n=7-ll) were injected alone 
or with hrIL-1/3 before kanic acid injection (see Pharmacological treatments for details). **p<0.01 
vs vehicle; fp<0.05, ftp<0.01 vs hIL-ip by two-way ANOVA followed by Tukey test (F(DF)for each 
treatment group are reported in the Result section).
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C2-ceramide

Ceramide is produced by N-Smase acting on membrane sphingomyelin and this pathway is 

rapidly activated in mouse forebrain by IL-ip via IL-1R1 (Nalivaeva et al., 2000). 

Intrahippocampal injection of C2-ceramide, the cell-penetrating analog of ceramide, 10 min 

before kainic acid, dose-dependently enhanced the number of seizures and their duration 

(Fig. 5.3) without changing the time to onset of seizures and the spiking activity (see Table 

5.2). No effect on seizures was observed using 0.25 pg C2-ceramide, 1 pg significantly 

increased seizures duration by ~2-fold (p<0.05) while 2 pg significantly increased the 

number of seizures by 2.0-fold and their duration by 2.5-fold on average (p<0.01) vs mice 

injected with dihydroceramide, a membrane-impermeable ceramide analog (Fig. 5.3A; see 

Table 5.2). Thus, C2-ceramide mimics IL-lp proconvulsive effects inducing also a similar 

EEG pattern of seizures (Fig. 5.3B).

These findings demonstrate that C2-ceramide mimicked IL-lp action suggesting that 

ceramide may be the intracellular second messenger of the proconvulsive effect of the 

cytokine.
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Figure 5.3. Effect of C2-ceramide on seizures
Panel A. Bargrams represent the mean ± SE (n=12). Significant increases in seizure parameters 
were observed at 1 and 2 pg  C2-ceramide. *p<0.05; **p<0.01 vs dihydroceramide by one way 
ANOVA followed by Tukey’s test.
Panel B. Representative EEG tracings o f freely moving C57BL6 mice injected unilaterally in the 
hippocampus with kainic acid ±  IL-1 ft or C2-ceramide. Treatments or vehicles were given 10 min 
before kainic acid, (a) Baseline recording before kainic acid injection; arrowheads in (b) and (c) 
include representative ictal episodes recorded in the EEG during 90 min after kainic acid injection 
±  IL -ip  or C2-ceramide; tracings in (d) depict spiking activity in the EEG after termination of  
seizures. RHP and LHP are right and left (injected) hippocampus, respectively.
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CGP76030

Tables 5.1 and 5.2 show the effect of intrahippocampal injection of the selective inhibitor of 

Src-family of tyrosine kinase activity, CGP76030 (Rucci et al., 2006; Susa et al., 2000; 

Susa et al. , 2005) on the proconvulsant effect of hrIL-lp (Table 5.1) and C2-ceramide 

(Table 5.2). CGP76030 (65 ng/0.5pl) injected 20 min before kainate, significantly 

prevented the 2-fold increase in the number of seizures induced by IL-lp (F(i,63)=5.9; 

p<0.05) or C2-ceramide (F(i52g)=23,9; p<0.01) and in the time spent in ictal activity 

induced by IL-lp (7r(ij63)=13.3; p< 0.01) or C2-ceramide (F(i,28)=30.9, p<  0.01 by two-way 

ANOVA). Intrahippocampal CGP76030 did not affect seizures per se; however, when 130 

ng/lpl CGP76030 alone was injected icv 20 min before kainate, the number and the 

duration of seizures were decreased by ~1.8- and 2.0-fold, respectively, as compared with 

vehicle-treated mice (Number o f seizures: Vehicle, n=8, 16.0±2.0; CGP, n=8, 9.0±1; 

p<0.01; Time in ictal activity (min): Vehicle, 9.9±0.5; CGP, 4.8±0.4; p<0.01 by Student t- 

test).

These findings demonstrate that inhibition of Src kinase activity prevents the IL-ip and C2- 

ceramide proconvulsive effects, thus suggesting that Src kinase activation is a downstream 

event subsequent to IL-lp activation of N-Smase. Moreover, Src kinase inhibition per se 

reduced seizure number and duration in mice suggesting that Src-family of tyrosine kinases 

appear to contribute to seizures also in the absence of pro-inflammatory conditions.
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Table 5.2. Effect of inhibition of Src-family of tyrosine kinases on the proconvulsive
effects of C2-ceramide

Dose Onset
(min)

Number of 
seizures

Time in ictal 
activity (min)

Time in 
spikes (min)

Di-hydro-ceramide 2 (*g 8.6 ± 0.7 8.0 ±1.0 5.4 ± 0.5 44.0 ±3.4

C2-Ceramide 2 8.9 ±1.4 18.0 ±2.0** 13.4 ±1.0** 51.1 ±3.7

CGP076030 65 ng 8.1 ±1.0 10.0 ±2.0 6.3 ±1.1 53.3 ± 7.5

CGP076030 + 
C2-Ceramide

8.4 ±1.6 8.0 ± 1.0n 5.5 ± 0.4ft 45.0 ±3.3

Data are the mean ±  SE (n=7-9 mice in each experimental group). **p<0.01 vs the inactive analog 
dihydro-ceramide; ftp<0.01 vs C2-ceramide by two-way ANOVA followed by Tukey’s test (F(DF)for 
each treatment group are reported in the Result section).

Ifenprodil

Ifenprodil (1 mg/kg), a NR2B-specific NMDA antagonist, injected 5 min before hrIL-lp 

blocked the cytokine-mediated increase in the number (F(i>6i)=2.2; p<0.05) and total time in 

seizures (7r(ia6i)=9.0; p<0.01 vs hrIL-lp by two-way ANOVA) (Table 5.1). This dose of 

ifenprodil did not affect seizures per se, although higher doses are known to provide 

anticonvulsive effects (Kohl and Dannhardt, 2001; Yen et al., 2004).

These data demonstrate that ifenprodil prevented the proconvulsive effects of IL-lp, thus 

indicating that NR2B subunit is critically involved in IL-ip action on seizures.
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5.3.3 Effect of pharmacological treatments on Src-family of tyrosine kinases activation 

and NR2B phosphorylation

We assessed by western blot analysis of hippocampal homogenates, the level of 

tyrosine phosphorylated (p) forms of Src-family of kinases and the NR2B subunit of 

NMDA receptor, 60 min after seizures onset in kainate ± IL-lp injected mice, as well as in 

mice receiving IL-lp alone (Fig. 5.4). Densitometric analysis of the specific protein bands 

showed that either hrIL-lp alone (no seizures) or seizures per se increased phosphorylation 

(p) of Src-family of kinases on Tyr418 in the catalytic domain denoting their activation 

(Papp et al., 2008), by 40% on average as compared to vehicle-treated mice (p<0.05 and 

p<0.01, respectevely) while in the same hippocampi the Tyr1472 phosphorylation of the 

NR2B form, causing upregulation of channel gating properties (Salter and Kalia, 2004), 

was increased by 26% and 47% on average, respectively (p<0.01). When hrIL-ip was 

coinjected with kainic acid, thus producing proconvulsive effects, (p)Src and (p)NR2B 

levels were increased by 127% and 82% respectively as compared to vehicle-treated mice 

(p<0.01), denoting additive effects of the single treatments. We also evaluated whether 

inhibition of N-Smase or Src-family of kinases activity affects the increased (p)Src and 

(p)NR2B levels observed in proconvulsive conditions. 3-O-MS or CGP76030 at the doses 

which blocked the proconvulsive effects of IL-lp, reversed NR2B phosphorylation by 

reducing (p)NR2B to the levels of vehicle-injected mice (3-O-MS: F(i i7)=21.9; p<0.01; 

CGP76030: / r(i,i7)=10.7; p<0.01). In IL-ip+kainate-treated mice, inhibition of N-Smase by 

3-O-MS similarly reversed Src-family of kinases phosphorylation (̂ r(i,i7>=30.5; p<0.01), 

which was not affected by CGP76030 treatment. 3-O-MS or CGP76030 alone did not
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change the basal level of (p)Src and (p)NR2B. The total levels of NR2B were not changed

by the various treatments (not shown).

300 i

_0
j= 200
0>

100
Q
o

□  Vehicle 0  KA DO 3-O-MS + IL-10 + KA
■  IL-1p S  IL-1p+ KA B  CGP76030 +IL-1p+ KA

pNR2B

I
B

a i ^ a a 8 t f  •T n ..-s* w  i n w

pNR2B 'Ji;
■ '  .  /  i 4: . .  a!

Vehicle 
IL-1 (3 

KA 
3-O-MS 

CGP76030

Figure 5.4. IL-lp and seizure induced tyrosine phosphorylation of Src-family of 
kinases and the NR2B subunit of the NMDA receptor: effect of pharmacological 
treatments
Bargrams show densitometry analysis o f the Src kinase and NR2B bands corresponding to their 
phosphorylated (p) forms (Src-Tyr-418; NR2B-Tyr- 472) in the various experimental groups, 60 min 
after the onset o f  kainate-induced seizures (~70 min after kainate injection), as assessed by western 
blot analysis o f hippocampal homogenates. Data (means ±  SE, n=5-7) are optical density (O.D.) 
values o f  the relevant bands (as depicted in the representative western blot), divided by the 
corresponding fi-actin value (internal standard). Data are expressed as % o f values measured in 
corresponding vehicle treated mice. Statistical analysis o f  data was done on absolute values; 
*p<0.05; **p<0.01 vs vehicle; ##p<0.01 vs 3-O-MS+IL-l+KA (for pSrc and pNR2B) and vs 
CGP76030+IL-1+KA (for pNR2B only) by two-way ANOVA followed by Kruskal-Wallis test. 
Representative western blot bands corresponding to the specific proteins are depicted in B.
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These findings demonstrate that IL-lp or seizures enhanced the levels of the 

phosphorylated forms of Src-family of tyrosine kinases and the NR2B subunit in the 

hippocampus and these effects were additive when seizures were increased by IL-lp. 

Moreover, NR2B phosphorylation induced in proconvulsive conditions was reversed to 

baseline level in mice treated with N-Smase and Src kinase inhibitors, thus supporting the 

involvement of these enzymes in the activation of this receptor subunit.

In summary, this study has shown that:

1. The proconvulsant effect of IL-ip involves a non-transcription-dependent pathway that 

leads to the activation of N-Smase and the consequent ceramide-induced Src-dependent 

phosphorylation of NR2B subunit.

2. This intracellular signaling highlights a functional interaction between IL-1 P and 

NMDA receptors.

5.4 Discussion

The main finding of this study is that the proconvulsive actions of IL-lp depend on 

the activation of a sphingomyelinase- and Src-family of kinases-dependent pathway in the 

mouse hippocampus which leads to the phosphorylation of the NR2B subunit, thus 

highlighting a novel, non-transcriptional mechanism underlying seizure exacerbation in 

inflammatory conditions.
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The proconvulsant actions o f IL-1 (3 occur within a few minutes from the intracerabral 

application o f this cytokine (Vezzani et al., 1999); therefore, this time frame is not 

compatible with the classic signaling cascade involving activation of genomic 

transcriptional events (between 30-90 minutes). This consideration raises the hypothesis 

that the proconvulsant effects of IL -lp involve an alternative, rapid, non-transcriptional 

intracellular neuronal pathway leading to fast changes in ion channels (Fig. 5.5).

Figure 5.5. Simplified representation of IL-ip non-transcriptional neuronal pathway

Previous reports have shown effects of IL -lp  in hippocampal and hypothalamic neurons 

involving synaptic plasticity and thermoregulation which also appear to be independent of 

transcriptional events (Davis et al., 2006b; Pickering and O'Connor, 2007; Sanchez-Alavez 

et al., 2006; Viviani et al., 2007). In particular, the activation o f  the IL-1 ft -N-Smase-Src 

kinase pathway has been shown to mediate the fast actions o f  IL-1/3 on preoptical/anterior 

warm sensitive hypothalamic neurons underlying the rapid phase o f the febrile response to

conventional
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IL-lp (Sanchez-Alavez et al., 2006). These effects of IL-ip can be mimicked by C2- 

ceramide, and inhibitors of N-Smase in the brain lower or prevent the response to IL-ip 

(Sanchez-Alavez et al., 2006). Furthermore, the formed ceramide activates the Src-family 

of tyrosine kinases in hypothalamic neurons, but not in glia (Davis et al., 2006a; Davis et 

al., 2006b).

We show here, using a detailed pharmacological approach, that inhibition of N-Smase using 

3-O-MS blocks the increase in the frequency and duration of seizures induced by IL-lp, 

and that C2-ceramide faithfully mimics the IL-lp effect on seizures, thus suggesting that 

the activation of the N-Smase-ceramide pathway mediates the proconvulsive activity of this 

cytokine. To elucidate the downstream events which follow N-Smase activation, we 

addressed the possible involvement of the Src-family of kinases that is known to be 

activated by ceramide (Kolesnick and Golde, 1994; Saklatvala, 1995). Our data show that 

the inhibition of the Src-family of kinases activity prevents the IL-ip and C2-ceramide 

proconvulsive effects similarly, thus suggesting that Src-family of tyrosine kinases 

activation is a downstream event subsequent to IL-lp activation of N-Smase. This 

possibility is also supported by the reversal of IL-ip-induced tyrosine phosphorylation of 

Src-family of kinases during seizures using the N-Smase inhibitor.

Src-family of tyrosine kinases is abundantly expressed in neurons, and one main function of 

the activated forms of two members of this family, namely c-Src and Fyn, is to upregulate 

the activity of NMD A receptors via Tyr1472-phosphorylation of the NR2B subunit (Ali and 

Salter, 2001). We found that ifenprodil, a selective antagonist of NMDA receptors 

containing the NR2B subunit, prevented the proconvulsive effects of IL-1 P, thus indicating
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that this subunit is critically involved in IL-ip action on seizures. Our previous findings in 

primary cultures of hippocampal neurons showed that IL-lp induces the Tyr1472- 

phosphorylation of the NR2B subunit via Src-family of kinases activation (Viviani et al., 

2003), therefore we assessed whether these events occurred in vivo when seizures were 

potentiated by IL-ip. The levels of the phosphorylated forms of Src-family of kinases and 

the NR2B subunit in the hippocampus were indeed enhanced by IL-lp or seizures, and 

these effects were additive when seizures were increased by IL-lp. Moreover, NR2B 

Tyr1472-phosphorylation induced in proconvulsive conditions was reversed to baseline level 

in mice treated with N-Smase and Src-family of kinases inhibitors, thus supporting the 

involvement of these enzymes in the activation of this receptor subunit (Yu et al., 1997). 

Tyr1472-phosphorylation of the NR2B subunit promotes Ca2+ influx into neurons (Viviani et 

al., 2003; Yu et al., 1997), thus resulting in potentiation of NMD A function which is pivotal 

for evoking neuronal hyperexcitability (Meador, 2007). This molecular event may be the 

ultimate step of this novel IL-1 /3-N-Smase-Src kinase pathway responsible for the increased 

neuronal excitability and subsequent proconvulsive effects of this cytokine. Although 

CGP76030 selectively inhibits Src-family of tyrosine kinases activation, and it was shown 

to have higher affinity for c-Src vs other Src-family of tyrosine kinase members (Susa et al., 

2000; Susa et al. , 2005), no data about the inhibitor IC50 on Fyn activity are available, 

therefore both c-Src and Fyn may be involved in the IL-lp signaling underlying its 

proconvulsive effects. The possible specific involvement of c-Src vs Fyn should await the 

possibility to unequivocally distinguish the involvement of these two kinase activities using 

pharmacological approaches which are not yet available.
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Interestingly, Src-family of tyrosine kinases appears to contribute to seizures also in the 

absence of pro-inflammatory conditions since Src-family of kinases inhibition per se after 

icv, but not intrahippocampal injection of CGP76030, reduced seizures number and 

duration in mice. We could not affect seizures by inhibiting the activity of N-Smase using 

3-O-MS either intrahippocampally or icv injected. The lack of effect of intrahippocampal 

application of these drugs on kainate-induced seizures may be due to the local spread of the 

inhibitors around the injection site as opposed to seizures-induced IL-lp expression 

throughout the whole hippocampus. Moreover, we should also consider the possibility that 

the dose of 3-O-MS allowed to be injected by the limited solubility of this compound is not 

enough to protect from kainate seizures.

The relevance of our findings for the etiopathogenesis of seizures is based on clinical and 

experimental evidence showing that the IL-lp system is activated in chronic human 

epilepsy (Vezzani and Granata, 2005; Ravizza et al., 2006a; Ravizza et al., 2008a) and that 

anti-IL-ip pharmacological treatments result in powerful anticonvulsant effects (De Simoni 

et al., 2000; Vezzani et al., 2000; Vezzani et al., 2002; Ravizza et al., 2006b). Moreover, 

several brain injuries in humans are associated with brain inflammation, result in early 

occurrence of seizures and present a high risk of developing epilepsy (Pitkanen and Sutula, 

2002; Vezzani and Granata, 2005). Therefore, the elucidation of this novel IL-lp-activated 

pathway in the hippocampus adds important insights into the mechanisms of ictogenesis in 

inflammatory conditions and may allow the development of innovative strategies to block 

the activation of IL-lp signaling in disease conditions, thus highlighting potential new 

targets of therapeutic intervention.
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CHAPTER 6

Transient inflammatory-like events in 

hippocampal slice cultures prime neuronal 

susceptibility to excitotoxic injury: a crucial 

role of P2X7 receptor-mediated IL-ip release
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6.1 Summary

We investigated the consequences of transient application of inflammatory stimuli to 

hippocampal tissue on microglia activation and neuronal cell vulnerability to a subsequent 

excitotoxic insult.

Mouse organotypic hippocampal slice cultures were exposed for 3 h to lipopolysaccharide 

(LPS; 10 ng/ml) followed by 3 h co-incubation with 1 mM ATP, or 100 pM BzATP, a 

selective P2 X7 receptor agonist. This treatment induced a pronounced activation, and 

apoptotic-like death, of Mac-1 positive microglia associated with a massive release of IL- 

lp, exceeding that induced by LPS alone. Antagonists of P2X7 receptors prevented these 

effects.

Transient pre-exposure of slice cultures to a combination of LPS and P2X7 receptor 

agonists, but not either one or the other alone, significantly exacerbated CA3 pyramidal cell 

loss induced by subsequent 12 h exposure to 8 pM AMPA. Potentiation of AMPA toxicity 

was prevented by blocking IL-ip production or its receptor signaling. The same treatments 

did not prevent microglia apoptosis-like death.

These findings show that transient exposure to specific pro-inflammatory stimuli in brain 

tissue can prime neuronal susceptibility to a subsequent excitotoxic insult. P2X7 receptor 

stimulation, and the consequent IL-lp release, is mandatory for exacerbation of neuronal 

loss. These mechanisms may contribute to determine cell death in acute and chronic 

neurodegenerative conditions associated with inflammatory events.
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6.2 Experimental procedures

6.2.1 In vitro model of inflammation

Technical details related to organotypic hippocampal slice cultures, determination of 

cell damage by PI, ELISA and immunohistochemical staining have already been reported in 

“Materials and methods - general procedures” section (p. 91; 95-97).

Organotypic hippocampal slice cultures were maintained in incubator for 2 weeks and 

resembled the characteristic young/adult brain.

Hippocampal slice cultures were exposed to inflammatory-like stimuli following the 

protocol previously described (see “Materials and methods - general procedures” (p. 97). 

The various treatments were applied to the LPS+ATP protocol as depicted in Fig. 6.1 by 

pre-incubating slice cultures for 2h with the following drugs: 25 pM z-Val-Ala-DL-Asp 

(OMe)-fluoromethylketone (zVAD-fmk; Sigma, St Louis, MO, USA), a pro-apoptotic 

caspases inhibitor (Ferrari et al., 1999); 300 pM oxidized ATP (oATP; Sigma;) or 200 nM 

Brilliant Blue G (BBG; Sigma), purinergic P2 X7 receptor antagonists (Choi et al., 2007; 

Khakh et al., 2001; North, 2002); 1 pM IL-1 receptor antagonist (IL-lra), a competitive 

antagonist of IL-1 p receptor type 1 (Dinarello et al., 1996; Eisenberg et al., 1990); 100 pM 

VX-765, a selective ICE/Caspase-1 inhibitor (Ravizza et al., 2006b; Stack et al., 2005). In 

one set of experiments, incubation with 1 mM ATP was substituted by 100 pM 2’-3’-0-(4- 

Benzoyl-benzoyl) adenosine 5’-triphosphate triethylammonium salt (BzATP, Sigma), a 

P2X7 receptor agonist (Bianco et al., 2005; North, 2002). All drugs were dissolved in 

phosphate-buffered saline (PBS, pH 7.4) except for VX-765 and IL-lra, respectively 

dissolved in DMSO and PBS+0.1% BSA. All experiments included control cultures
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exposed to drug vehicles only. Each experimental group consisted of 12 to 30 well 

replicates (resulting from 8 separate experiments) containing 6 slices each well. At the end 

of the experiments, tissue was pooled from 6 slices per experimental group while the 

respective culture media were collected separately and samples were stored at -70° C until 

ELISA measurement.
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Figure 6.1. Schematic representation of experimental protocols
Digital fluorescent micrographs were taken before drug exposure (basal PI uptake) and at fixed 
time points after drug treatments. IL-1/3 protein was measured in hippocampal slice cultures (slices) 
and respective medium (medium) by ELISA at the end o f the LPS±P2X7 agonists/antagonists 
incubation period. To investigate the consequence o f  inflammatory-like events on excitotoxic 
neuronal cell death, hippocampal slice cultures pre-exposed to LPS or LPS+ATP protocols were 
incubatedfor 12 h, after medium wash-out, with 8 pM  AMPA alone.

6.2.2 AMPA-induced neuronal damage

To investigate the consequence of inflammatory-like events on excitotoxic neuronal 

cell death, an additional set of hippocampal slice cultures pre-exposed to LPS or LPS+ATP 

protocols were incubated for 12 h, after medium wash-out, with 8 pM AMPA alone 

(Tocris; United Kingdom) as depicted in Fig. 6.1. This AMPA concentration induced 50% 

of maximal Pl-uptake in CA1-CA3 pyramidal cell layers in organotypic hippocampal slice 

cultures as previously reported in detail (Bernardino et al., 2005). All experiments included
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series of control cultures exposed to drug vehicles or to each drug separately. Fluorescent 

micrographs of Pl-uptake were taken prior to LPS exposure (basal uptake) and 12 h after 

the exposure to AMPA (see Fig 6.1).

6.2.3 Statistical analysis of data

The data of densitometry analysis of Pl-uptake were expressed as means ± SE. The 

number of independent wells we used in each experimental condition was used for 

statistical analysis of data. When evaluating the effect of LPS and ATP on AMPA-induced 

neuronal cell death, the Pl-uptake values induced by 8  pM AMPA in control cultures were 

set to 100%. Statistical significance was determined by using one-way ANOVA followed 

by Bonferroni’s test for multiple comparisons, with p<0.05 considered to represent 

statistical significance.

6.3 Results

6.3.1 Cellular PI uptake induced by LPS plus ATP

To investigate the consequences of inflammation on cellular viability, we evaluated 

the PI uptake in organotypic slice cultures exposed to 10 ng/ml LPS ± 1 mM ATP at the end 

of incubation period (3h LPS + 3 h co-incubation with ATP).

Fig. 6.2 shows representative pictures of Pl-uptake in control untreated slices (n=18) and in 

slices exposed to LPS for 6  h (n=18), PBS (3h) + ATP for 3 h (n=12) or their combination 

(LPS for 3 h then LPS+ATP for additional 3 h; n=18). In control slices, basal PI uptake was 

very low and restricted to sparse granule and CA1 pyramidal cells likely reflecting



mechanical damage due to slice preparation procedures (Bernardino et al., 2005). Treatment 

of the slices with LPS or ATP alone did not affect Pl-uptake significantly when compared 

to control slices (Fig. 6.2, first row). Differently, Pl-uptake into cellular elements was 

highly increased in all slices treated with LPS+ATP (Fig. 6.2, second row).

Control LPS ATP

LPS+ATP oATP+LPS+BzATP BBG+LPS+BzATPLPS+BzATP

LPS+ATP
■  CTR
□ ATP
□  LPS
H LPS+ATP
■  LPS+BzATP
□  oATP+LPS+BzATP

450 M edium

Figure 6.2. Effects of LPS plus ATP on cellular Pl-uptake and concomitant production 
of IL-lp
Representative fluorescence photomicrographs depicting Pl-uptake in hippocampal slice cultures. 
First row: slice cultures were not exposed to drugs (control), or were exposed to LPS or ATP. Low 
PI uptake is similarly observed in these experimental conditions likely due to mechanical damage 
during slice preparation.
Second row: slice cultures were exposed to LPS followed by co-exposure to ATP (LPS+ATP) or to 
BzATP, a P2X7 receptor agonist (LPS+BzATP). Increased cellular PI uptake was observed in
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LPS+ATP and LPS+BzATP treated slices. The effect o f LPS+BzATP was prevented by 2 h pre- and 
6 h co-exposure to oATP (oATP+LPS+BzATP) or BBG (BBG+LPS+BzATP), two P2X7antagonists. 
Scale bar 500pm.
Third row: high magnification fluorescent photomicrographs show in panels a,b the co-localization 
o f  PI (red nucleus) in Mac-1-positive microglial cells (green cytoplasm). No co-localization was 
observed between propidium iodide (red nucleus) in GFAP-positive astrocytes (green signal in c) or 
MAP-2-positive neurons (green signal in d), although Pi-positive nuclei may be in proximity o f  
GFAP and MAP-2-positive cells. Please note that the few nuclei which do not appear to co-localize 
MAC-1 and PI signals are cells not surrounded by cytoplasm or plasma membrane, thus likely 
representing late apoptotic cells.
Bargrams show IL-lfi concentration in tissue and medium o f slice cultures (mean+SE, n=15-52) as 
assessed by ELISA at the end o f the pharmacological experiments. *p<0.01 vs control (untreated 
slices); °p<0.01 vs LPS alone; #p<0.01 vs LPS+ATP by one-way ANOVA followed by Bonferroni’s 
test for multiple comparison.

6.3.2 Involvement of P2 X7 receptors

Fig. 6.2 (second row) shows the effect of BzATP, a P2X7 receptor agonist, and 

oxidized (o)ATP or BBG, two P2X7 receptor antagonists, on PI uptake. BzATP (100 f i M )  

mimicked the effect of ATP whereas pre-exposure of the slices to 300 pM oATP or 200 nM 

BBG prevented the cellular Pl-uptake induced by LPS+BzATP (Fig. 6.2, second row) or by 

LPS+ATP (not shown). The P2X7 agonist or the antagonists alone did not modify basal PI 

uptake (data not shown).

Propidium iodide co-localized with Mac-1-signal in microglia (Fig. 6.2a,b) but was not 

found in GFAP-positive astrocytes (Fig. 6.2c) or MAP-2-positive neurons (Fig. 6.2d), in 

accordance with the evidence that P2X7 receptors are highly expressed by microglia (North, 

2002; Sanz and Di Virgilio, 2000).

6.3.3 IL-lp synthesis and release in LPS plus ATP or BzATP exposed slices

The basal levels of IL-lp in tissue and medium of control slices were barely or not 

detectable and they did not differ from those measured in the presence of ATP (Fig. 6.2) or
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BzATP alone (not shown). LPS alone, or co-incubated with ATP or BzATP, induced a 

prominent increase in tissue levels of IL-ip (p<0.01 vs control slices, n=15-39). IL-ip 

concentration in the culture medium was increased by -25-fold by LPS alone compared to 

control slices (p<0.01; n=18). This LPS-induced effect was enhanced by -2-fold in the 

presence of ATP or BzATP (p<0.01 vs LPS alone; n=52), likely reflecting P2X7 receptor- 

mediated activation of ICE/caspase-1 and consequent production of the mature and 

releasable form of IL-lp (Fantuzzi and Dinarello, 1999). Accordingly, oATP (Fig. 6.2) 

prevented the ATP- or BzATP-induced enhancement of LPS-dependent IL-ip release.

6.3.4 Cellular PI uptake reflects microglia activation and apoptotic-like cell death

Cellular PI uptake in slices co-exposed to LPS and ATP occurred in microglia as 

shown by the co-localization of PI fluorescent signal with the microglia marker Mac-1 (Fig. 

6.2a,b and Fig. 6.3, second row). Additionally, Mac-l/PI-positive microglia in LPS+ATP- 

exposed slices showed Hoechst/PI-positive condensed nuclei (Fig. 6.3, first and second 

rows; see also panel b) and co-localized with active caspase-3 (panel a) indicating that these 

cells were undergoing apoptotic-like death.

Sporadic Hoechst/PI-positive condensed nuclei were observed in slices exposed to LPS 

alone or in control slices (Fig. 6.3, first and second rows). In control slices, microglial cells 

were in their resting state (Fig. 6.3, second row) showing long and ramified processes; 

microglia was instead activated in LPS-treated slices as shown by their characteristic 

ameboid-like morphology (Fig. 6.3, second row). Slices exposed to LPS plus ATP
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displayed hyper-reactive microglia with short and thick processes; these cells were 

localized randomly over the whole slice (Fig. 6.3 first and third rows).

Microglial Pl-uptake in slices exposed to LPS+ATP, or to LPS+BzATP (not shown) was 

abolished by 2 h pre-treatment with 25 pM zVAD-fmk (Fig. 6.3, third row), a pan-caspase 

inhibitor widely used as an anti-apoptotic agent (Ferrari et al., 1999).

This set of data demonstrates that a transient application of inflammatory stimuli induced a 

marked activation and apoptotic death of microglia as indicated by typical changes in their 

morphology, presence of condensed nuclei and colocalization with caspase-3. These 

phenomena were associated with a massive release of IL-ip that is prevented by antagonists

of P2 X7  receptors suggesting the involvement of these receptors in the processing of IL- 

ip  release.
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Control LPS LPS+ATP

Control LPS+ATP zVAD+LPS+ATP

M B m

Figure 6.3. Exposure of hippocampal slice cultures to LPS plus ATP induces 
microglia apoptotic-like death
First row depicts representative fluorescence photomicrographs o f PI uptake (red nucleus) and 
Hoescht staining (blue nucleus) in CA3 pyramidal cell layer. High magnification images are framed 
within the panels denoting co-localization o f  the two fluorescent nuclear signals and nuclear 
condensation in LPS+ATP treated slices only. Scale bar 500 pm; 20 pm in inset.
Second row depicts high magnification fluorescent photomicrographs o f Mac-1-positive microglial 
cells (green cytoplasm), propidium iodide (red nucleus) and Hoescht staining (blue nucleus). Both 
LPS and LPS+ATP treatments induce changes in microglial cell morphology denoting shifting from 
resting (control) to activated states. Widespread PI uptake was induced in Mac-1-positive activated 
microglia by LPS+ATP while sporadic PI uptake was observed in microglial cells exposed to LPS 
alone. Panel a shows co-localization o f active caspase-3 signal (green) with PI signal (red); panel b 
shows co-localization o f Hoescht staining (blue signal) with PI (red signal) denoting condensed 
nuclei. Scale bar 20 pm; 10 pm in panels a and b.
Third row depicts prevention o f LPS+ATP induced PI uptake in microglia by zVAD, a pan caspase 
inhibitor with anti-apoptotic properties. Similar results were obtained when slice cultures were 
incubated with BzATP instead o f  ATP (not shown). Scale bar 500 pm.
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6.3.5 Microglia activation is associated with exacerbation of neuronal excitotoxicity: 

crucial involvement of P2 X7 receptors and IL-ip release

Control cultures (no treatment) showed no, or very low, cellular Pl-uptake (Fig. 6.4, 

first panel). Slices incubated for 12 h with 8  pM AMPA alone showed increased Pl-uptake 

in MAP-2 positive neurons in CA3 subfield, and this effect was significantly enhanced by 

~30% after transient pre-exposure to LPS+ATP (Fig. 6.4). Pi-positive cells were identified 

as neurons as demonstrated by co-localization with MAP-2 staining (see inset in Fig 6.4). 

Slices exposed to LPS+ATP only, showed very low cellular Pl-uptake in neurons similar to 

control slices (see bargram in Fig. 6.4).

In slices exposed to AMPA for 12 h following preincubation with LPS+ATP, Pi-positive 

MAC-1 microglia was still present with a pattern similar to that observed 6  h after 

LPS+ATP incubation (see fig. 6.2, first panel in second row and panels a,b for 

comparison).

Quantification of neuronal damage in CA3 area by densitometric analysis of neuronal PI 

uptake (bargram in Fig. 6.4A) showed that AMPA alone induced ~6 -fold increase in PI 

uptake in pyramidal cell layer (n=30) vs control untreated slices (n=20). When slices were 

transiently pre-incubated with LPS+ATP, PI uptake induced by AMPA was increased in 

CA3 by 8 -fold on average (n=20) vs control untreated slices (Fig. 6.4A). Thus, AMPA- 

mediated excitotoxicity in CA3 pyramidal neurons was enhanced by -30% when slices 

were transiently pre-exposed to specific inflammatory stimuli.

Exacerbation of AMPA-induced neuronal cell damage was totally abolished when IL-1 

receptor type 1-(R1) mediated signaling or pro-IL-ip cleavage, was blocked by 1 pM IL- 

lra or 100 pM VX-765 respectively, or when 200 nM BBG, a selective antagonist of P2 X7
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receptors, was added to the medium for 2 h of pretreatment and during the transient 

exposure to LPS+ATP (bargram in Fig. 6.4A). Co-incubation of BBG and IL-lra did not 

provide additive effects in reversing LPS+ATP induced increase in AMPA neurotoxicity 

(Fig. 6.4A). Treatment of slices with LPS, ATP, IL-lra, VX-765 or BBG alone did not 

affect AMPA-induced excitotoxicity (Fig. 6.4B).

IL-IRa or VX-765 did not affect LPS+ATP-mediated microglial cell death (Fig. 6.5). 

ELISA quantification of IL-ip concentrations in the tissue and medium after 12 h exposure 

to AMPA alone did not detect any measurable level of this cytokine similarly to control 

slices (data not shown); however, when slices were preincubated with LPS+ATP, then the 

medium was wash-out, and AMPA was added for 12 h, IL-ip concentration in the tissue 

and in the medium at the 12 h time point were 2.1 ± 0.1 ng/ml and 2.2 ± 0.2 ng/ml (n=30 

slices), respectively.

These findings demonstrate that transient inflammatory stimuli prime neuronal vulnerability 

to a subsequent excitotoxic insult. The chronic presence of critical concentrations of IL-lp 

is the crucial trigger of increased neuronal vulnerability to AMPA. Thus, the inhibition of 

IL-ip production or its receptor signaling fully prevented the exacerbation of AMPA- 

induced neuronal damage. Moreover, antagonism of P2 X7 receptors blocks both the release 

of IL-lp and the enhancement of AMPA-induced neuronal cell death induced by 

LPS+ATP, therefore demonstrating the crucial involvement of these receptors in the 

observed effects.
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Figure 6.4. Potentiation of AMPA-induced excitoxicity in CA3 pyramidal cells induced 
by LPS plus ATP is mediated by IL-ip release
First row depicts representative fluorescence photomicrographs o f  PI uptake (red nucleus) in 
control culture (no or low Pl-uptake) and in culture exposed to AMPA alone or preceded by 
transient incubation with LPS+ATP. Enhanced PI uptake was observed in CAS pyramidal cell layer 
in the presence o f  AMPA and this effect was significantly increased by pre-incubation with 
inflammatory stimuli (LPS+ATP). Scale bar 250 pm.
Second row depicts high magnification images o f  PI-positive CA3 pyramidal cell layer 
corresponding to panels shown in first row. Mac-1-positive microglia (green signal) with long and 
slender processes and several thin side-branches, denoting its resting state, was randomly 
distributed in the whole control slice. In slices exposed to AMPA, with or without pre-exposure to 
LPS+ATP, microglia with activated morphology was found intermixed to damaged Pi-positive 
neurons. Note that PI signal in AMPA-treated slices was enhanced by transient preincubation with 
LPS+ATP. Inset shows that P 1-positive cells were identified as neurons by co-localization o f  MAP-2 
(green signal) with PI (red) and Hoescht staining (blue). Scale bar 100 pm; 20 pm in last panel o f  
third row.
Bargram in panel A represents densitometry measurements o f  Pl-uptake (mean+SE, n= 15-30; eight 
separate experiments) in CA3 pyramidal cell layer neurons induced by AMPA alone or applied after 
pre-incubation with LPS+ATP, with or without addition o f  anti-IL-lfi treatments (IL-lra, selective 
antagonist o f  IL-1R1; VX-765, selective ICE inhibitor) or an antagonist o f  P2X7 receptors (BBG). 
Note that LPS+A TP alone did not induce Pl-uptake in neurons.
Bargram in panel B shows no potentiation o f  AMPA-induced damage when slice cultures were pre
incubated with LPS, ATP, IL-lra, VX-765 or BBG alone. *p<0.01 vs control slices (CTR); °p<0.05 
vs AMPA alone; #p<0.05 vs LPS+ATP+AMPA by one-way ANOVA followed by Bonferroni's test 
fo r  multiple comparison.
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Control LPS+ATP

IL-1 ra+LPS+ATP VX-765+LPS+ATP

Figure 6.5. Lack of effects of VX-765 or IL -lra on LPS plus ATP-induced cellular Pl- 
uptake
Representative fluorescence photomicrographs depicting Pl-uptake in hippocampal slice cultures. 
First row: slice cultures were not exposed to drugs (control), or were exposed to LPS+ATP. Second 
row: The effect of LPS+ATP was not prevented by 2 h pre- and 6 h co-exposure to 1 pM IL-lra or 
to 100 pM VX-765. These antagonists did not modify per se PI uptake as compared to control slices 
(not shown). Scale bar 500 pm.

In summary, this study has shown that:

1. Transient exposure of hippocampal slices to LPS plus P2X7 receptor agonists induces 

microglia activation and apoptosis-like cell death, accompanied with a sustained release 

of IL-lp

2. The application of LPS plus ATP, but not either one or the other alone, induced an 

increase of CA3 pyramidal neuron susceptibility to AMPA-induced neurotoxicity.

3. Activation of microglia-expressing P2X7 receptors and subsequent IL-lp release are 

involved in the exacerbation of AMPA-induced neuronal cell loss.
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6.4 Discussion

The main finding of this study is that transient exposure of organotypic hippocampal 

slice cultures to specific stimuli mimicking inflammation primes neuronal vulnerability to a 

subsequent excitotoxic insult. Importantly, this priming effect fully depends on the 

activation of P2X7 receptors and the consequent IL-ip release. In particular, we found that 

co-stimulation with LPS and P2X7 receptor agonists induced a marked activation of 

microglia as indicated by typical changes in their morphology. Moreover, evidence of 

apoptosis was observed in MAC-1 activated microglia. These phenomena were associated 

with a massive release of IL-lp which was required for exacerbation of AMPA-induced 

neurotoxicity. Thus, the presence in the culture medium of VX-765, a specific caspase-1 

inhibitor, or IL-lra, a selective IL-ip receptor type 1 antagonist, during the transient 

application of LPS+ATP fully prevented the exacerbation of AMPA-induced neuronal 

damage. Our previous findings showed that VX-765 treatment reversed the LPS+ATP- 

mediated release of IL-1 P in the medium taking back this level to the one induced by LPS 

alone (Ravizza et al., 2006b). This evidence demonstrates that IL-ip release is the crucial 

trigger of increased neuronal vulnerability to AMPA, however other substances, induced or 

enhanced by IL-ip, such as cytokines, free radicals and prostanoids (Allan et al., 2005) 

may contribute to exacerbate AMPA-induced neuronal death. Notably, enhanced neuronal 

susceptibility to AMPA was associated with higher IL-lp concentration in the slice and in 

the medium, whereas slices incubated with AMPA alone did not produce or release any 

detectable amount of this cytokine. This evidence suggests that although slices were 

transiently incubated with LPS+ATP, the tissue was indeed chronically exposed to this
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cytokine. The concentrations of IL-lp measured at 6  h after LPS+ATP, and at 12 h after 

AMPA incubation after extensive LPS+ATP washout (0.4 ng/ml-2.2 ng/ml) are in the range 

of those previously found to exacerbate AMPA toxicity in organotypic slices after 

exogenous application of IL-ip (1 ng/ml) (Bernardino et al., 2005). Moreover, in 

accordance with our data, only slices pretreated for 24h with IL-ip and followed by a 

coincubation with AMPA (IL-ip+AMPA) for other 24h (thus a chronic exposure of tissue 

to exogenous IL-ip) was effective in exacerbating neuronal cell loss (Bernardino et al., 

2005). Although the exogenous application of IL-ip clearly differs from the endogenous 

production of this cytokine due to inflammatory conditions, these experiments are 

concordant to demonstrate that the chronic presence of critical concentrations of IL-lp can 

become detrimental for neuronal survival to a subsequent injury (Viviani et al., 2003).

An important finding is that LPS alone did not affect AMPA-induced neurotoxicity 

although it significantly activates microglia (while not inducing microglia-like apoptosis) 

and increases IL-lp release, albeit to a significantly lower extent than in the co-presence of 

ATP. It seems therefore important that IL-lp reaches a critical extracellular concentration 

above which this cytokine can become detrimental to neurons. This cytokine released in the 

extracellular milieu at “threatening” concentrations can induce long-lasting priming of 

neuronal vulnerability by direct effects mediated by IL-1R1 on hippocampal pyramidal 

neurons (Ravizza and Vezzani, 2006; Viviani et al., 2003) or indirectly by acting on 

astrocytes (Bezzi et al., 2001a; Hu et al., 2000; Ye and Sontheimer, 1996). A schematic 

representation of the sequelae of events underlying priming of neuronal vulnerability is 

depicted in Fig. 6 .6 .
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Figure 6.6. Schematic representation of the events underlying priming of neuronal 
vulnerability to excitotoxic damage

A large body of evidence demonstrates the presence of P2X7 receptors on microglia 

(Boucsein et al., 2003; Brough et al., 2002; Choi et al., 2007; Ferrari et al., 2006; Le Feuvre 

et al., 2002b; Sanz and Di Virgilio, 2000) and the activation of these receptors by LPS and 

ATP triggers microglia release of IL-lp (Brough et al., 2002; Ferrari et al., 2006; Le Feuvre 

et al., 2002b; Sanz and Di Virgilio, 2000). In accordance with this evidence, we show that 

antagonism of P2X7 receptors blocks both the release of IL-lp and the enhancement of 

AMPA-induced neuronal cell death induced by LPS+ATP, therefore demonstrating the 

crucial involvement of these receptors in the observed effects. Functional and 

pharmacological data have suggested that P2X7 receptors are also expressed by neurons 

(Anderson and Nedergaard, 2006), however our data do not support such involvement in
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the enhanced neuronal susceptibility to AMPA toxicity. Thus, we found no additivity in the 

ability of IL-lra or BBG, when added together, to block the LPS+ATP effect on AMPA 

neurotoxicity (i.e. the blocking effects of either one of these drugs was similar to the 

blocking effect observed when the drugs were co-incubated). These results indicate that 

BBG and IL-lra are acting along the same IL-ip-dependent pathway and not via 

independent mechanisms such as direct involvement of neuronal P2X7 receptors.

Our experimental conditions did not permit to elucidate whether IL-lp was specifically 

released by apoptotic-like microglia or if activated microglia (including both apoptotic and 

non-apoptotic cells) was the major source. However, apoptosis was not blocked by 

treatments which prevent neuronal priming to excitotoxicity, such as caspase- 1  inhibition or 

by IL-lra, indicating that apoptosis per se is not sufficient to enhance neuronal 

susceptibility to injury. This may be due to the fact that microglia apoptosis and neuronal 

susceptibility to injury are due to distinct causes: P2 X7 activation by ATP may induce 

microglia apoptosis in the presence of LPS while IL-lp. release either from apoptotic or 

non-apoptotic microglia, or both, is responsible for enhanced neuronal damage.

We found that the major consequences of microglia activation on neuronal survival to 

excitotoxic insult in our experimental conditions are deleterious. In this frame, microglia- 

apoptosis may either be part of a self-defensive mechanism by which these cells are 

impaired to prevent exacerbation or perpetuation of inflammation (Chao et al., 1995; 

Hanisch and Kettenmann, 2007) or result in the loss of microglia-mediated protective 

mechanisms (Minghetti, 2005; Schwartz et al., 2006).

Our findings also suggest that the mechanism underlying microglia apoptosis are 

independent on the intracellular production of IL-lp (or IL-18) by caspase-1 activation, in
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accordance with previous evidence in cultured macrophages (Brough et al., 2002; Le 

Feuvre et al., 2002b; Perregaux and Gabel, 1998). Other factors may therefore play a role in 

determining microglia death in the presence of LPS+ATP such as an altered surface 

distribution of P2 X7 receptors (Gu et al., 2000), their direct co-activation by LPS (Denlinger 

et al., 2001) or changes in intracellular ionic environment (Le Feuvre et al., 2002a).

In summary, our findings show that neurons can become more susceptible to an excitotoxic 

insult if brain tissue has been pre-exposed to a specific inflammatory environment, even if $ 

transiently. Critical extracellular IL-1 (3 concentrations are required for this phenomenon to 

occur. Although these findings await validation in appropriate in vivo models of 

inflammation and neurodegeneration, they shed light on the mechanisms by which 

inflammatory reactions, which are often associated or even precede the onset of 

neurodegeneration in vivo, can become detrimental to neurons (Allan et al., 2005; Block 

and Hong, 2005; Choi et al., 2007; Minghetti, 2005; Vezzani and Granata, 2005). Since 

activation of AMPA receptors is a common pathway involved in various acute and chronic 

CNS injuries (Lipton and Rosenberg, 1994), our findings suggest that pharmacological 

treatments blocking excessive IL-ip synthesis and release from microglia, such as caspase- 

1 inhibitors (Ravizza et al., 2006b), may improve neuronal survival in hostile conditions.
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CHAPTER 7

TNF-a inhibits seizures in mice 

via p75 receptors
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7.1 Summary

We studied the role of TNF-a and its p55 and p75 receptors in seizure modulation. 

We found that intrahippocampal injection of murine recombinant TNF-a potently inhibits 

seizure in mice while human recombinant TNF-a, which shows strong specificity for 

mouse p55 receptors, was ineffective. p75 receptors were detected in mouse hippocampal 

neurons, whereas p55 receptors were absent. Both receptors are upregulated in astrocytes 

following seizures. Transgenic mice with a perturbed TNF-a system showed profound 

alterations in seizure susceptibility: astrocytic overexpression of TNF-a was associated 

with reduced seizures, whereas mice lacking TNF-a p75 receptors showed prolonged 

seizures. Mice deficient in p55 receptors showed reduced seizures and both p75 and TNF 

receptor-associated factor 2 protein levels were upregulated in their hippocampi. Our 

findings show that increased brain levels of TNF-a result in significant inhibition of 

seizures in mice, and this action is mediated by neuronal p75 receptors. This evidence 

highlights a novel function of TNF-a in brain and indicates a new system for anticonvulsive 

intervention.
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7.2 Experimental procedures

7.2.1 Experimental animals

C57BL6 mice were used to generate homozygous p55 or p75 deficient mice. 

Generation and detailed characterization of these TNF receptor-deficient mice was reported 

previously (Peschon et al., 1998).

C57BL6xSJL mice were used for generating transgenic mice with astrocyte-specific 

expression of murine TNF-a (GT- 8  line) under control of the murine glial fibrillary acidic 

protein promoter (Stalder et al., 1998). This transgenic line is shown to produce TNF-a at 

levels that did not compromise normal development and breeding viability. These mice did 

not show overt phenotype and any detectable brain pathology until they were older than 6  

months (Stalder et al., 1998).

Control animals were wild-type mice (not genetically modified) of the corresponding 

genetic background of the TNF receptor knock-out mice, or of the glial fibrillary acidic 

protein TNF-a transgenic mice of the same age.

7.2.2 Pharmacological treatments

Acute kainic acid-induced seizures were induced and quantified as previously 

described in “Materials and methods - general procedures” section (p. 81-83).

Murine (m) recombinant TNF-a (specific activity, 1.2 X 108 IU/mg; kindly provided by Dr 

P. Vandenabeele, Gent, Belgium) or human (h) recombinant TNF-a (specific activity, 6 . 6  X 

107 IU/mg; R&D system, Minneapolis, USA) were dissolved in 100 mM phosphate- 

buffered saline (PBS; pH 7.4) devoid of Mg2+ and Ca2+ and supplemented with 1% fetal
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calf serum (vehicle). mTNF-a (1.5, 2.5, or 15 pmol in 0.5 pi) or hTNF-a (30 pmol in 0.5 

pi) was injected in the mouse dorsal hippocampus 5 minutes before 10 ng kainic acid 

dissolved in 0.5pl PBS (Sigma-Aldrich, St. Louis, MO). This mTNF-a dosing schedule was 

shown to attenuate NMDA-induced excitotoxic injury in the hippocampus (Liu et al., 

1999). Control mice were injected with the corresponding volume of vehicle before the 

convulsant.

7.2.3 Immunohistochemistry

Technical details related to p55 and p75 receptors immunohistochemical staining 

have already been reported in “Materials and methods - general procedures” section (p. 89).

7.2.4 Double-immunostaming

Two brain slices in each mouse brain for each cell type marker were randomly chosen 

to identify the cells expressing p55 or p75. The procedures for double-immunostainig is 

described in “Materials and methods - general procedures” section (p. 90).

7.2.5 Western Blot

Male p55 7' mice and their C57BL6 control mice (n=6 ) were decapitated. Both 

hippocampi were dissected out at 4°C and one hippocampus for each animal was 

homogenized as described in “Materials and methods - general procedures” section (p. 92). 

For immunoblotting, we used a monoclonal antibody against human TNF receptor 2 (1:500; 

Hbt), rabbit polyclonal antibody against mouse TNF receptor-associated factor 2 (TRAF-2; 

1:1000; Santa Cruz, Santa Cruz, CA), or rabbit polyclonal antibody against neurofilament
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M (l:1000;Chemicon). Immunoreactivity was visualized with enhanced chemiluminescent 

(ECL; Amersham, Buckinghamshire,United Kingdom), using peroxidase-conjugated goat 

anti-mouse IgG (for TNF receptor 2 detection, 1:2000; Sigma-Aldrich) or peroxidase- 

conjugated goat anti-rabbit IgG (for TRAF-2 and NF detection, 1:2000; Sigma-Aldrich) as 

secondary antibodies.

7.2.6 Statistical analysis of data

Data are the mean ± standard error (n = number of animals). The effects of treatments 

were analyzed by one-way ANOVA followed by Tukey’s or Fisher’s test or by Student’s t- 

test.

7.3 Results

7.3.1 Effect of exogenous acute application of TNF-a

Intrahippocampal injection of mouse mTNF-a in C57BL6 mice 5 minutes before a 

local application of kainic acid dose-dependently inhibited the number and the duration of 

seizures without changing their time of onset. No effect was observed using 1.25 pmol 

mTNF-a, whereas 2.5 and 15.0 pmol reduced by 37% the number of seizures ( p  < 0.05) 

and by 50%, on average, their duration compared with mice injected with vehicle + kainic 

acid. No effect of mTNF-a was observed on interictal spiking with any of the doses used 

(see Table 7.1; Fig. 7.1). Notably, the intrahippocampal application of up to 30 pmol 

hTNF-a in C57BL6 mice, which is known to have strong specificity for murine p55
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receptors (Lewis et al., 1991) did not modify kainic acid-induced seizures (see Table 7.1), 

suggesting that the anticonvulsant effect of mTNF-a was not mediated by p55 receptors.

Table 7.1. Effect of murine (m) or human (h) TNF-a on seizures

Dose
(pmol)

Onset
(min)

Number of 
seizures

Time in ictal 
activity (min)

Time in spikes 
(min)

Vehicle - 5.6 ±0.9 19.0 ±2.0 24.1 ±3.1 66.9 ± 5.9

mTNFa 1.25 5.5 ±1.6 15.0 ±3.0 19.2 ±3.2 64.9 ± 11.0

2.5 6 . 6  ± 0 . 8 1 2 . 0  ± 2 .0 * 13.7 ±2.7* 57.0 ±5.0

15.0 6 . 0  ± 0 . 6 1 2 . 0  ± 2 .0 * 10.6 ± 1.7** 50.0 ±5.0

hTNFa 30.0 6 . 6  ±1.7 15.0 ±2.0 19.2 ± 2.6 53.6 ±6.7

Data are the mean ±  SE (n=6-13 mice in each experimental group). *p <0.05; **p <0.01 versus 
vehicle by one-way ANOVA followed by Tukey’s test for multiple comparisons.

163



B
RHP
LHP

................
V W *

▲ *

l««i>**« •Mil ln t o H l H iH a n MliMi it atniit-
m»Hi*i»wi4* <Hm»mi|î li<>iMi' 1100 M V
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Figure 7.1. EEG seizures induced by intrahippocampal kainic acid in mice: effect of 
mTNF-a
Representative EEG tracings o f  freely moving C57BL6 mice injected in the left dorsal hippocampus 
with 10 ng in 0.5 pi kainic acid + vehicle (A) or kainic acid + 15 pmol mTNF-a (B). Baseline 
(region a); typical ictal episodes (regions b and c); spiking activity (region d). RHP and LHP 
indicate right and left hippocampus, respectively. Arrowheads delimit ictal episodes. Note that the 
duration o f  ictal events in B is shorter than in A.

7.3.2 Effect of endogenous chronic overexpression of TNF-a on seizures

Transgenic expression o f endogenous mTNF-a in astrocytes o f C57BL6/SJL mice 

(GT-8 line) mimicked the anticonvulsant effect o f exogenous application of mTNF-a. Thus, 

the number o f seizures and the time spent in seizures were both reduced by ~50% in GT-8 

versus wild-type mice ( p  < 0.01), whereas no changes were observed in interictal spiking 

(see Table 7.2).
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Table 7.2. Susceptibility to kainic acid-induced seizures in transgenic mice 
overexpressing mTNF-a in astrocytes (GT-8)

Onset Number of Time in ictal Time in spikes
(min) seizures activity (min) (min)

Wild-type 7.1±0.9 1 1 .0 ± 1 . 0 7.8±0.9 105.5±3.4

GT- 8 8 .0 ±0 . 8 6 .0 ± 1 .0 ** 4.4±0.6** 117.8±8.6

Data are the mean ±  SE (n=8-9). A significantly lower number o f seizures (ictal events) and a 
reduction in their duration were found in GT-8 mice compared with wild-type controls, 

p  <0.01 versus wild type by Student’s t test.

This set of data demonstrate that increased brain levels of TNF-a in hippocampus due to 

exogenous application or overexpression have a powerful inhibitory action on EEG seizures 

reducing their frequency and duration without changing the time to onset of seizures. These 

findings suggest that mTNF-a is not involved in the mechanisms by which the first seizure 

is triggered and it appers to affect seizure maintenance. hTNF-a, which selectively activates 

p55 receptor subtype in mice, did not affect seizures in wild-type mice suggesting that p55 

receptors are not involved in the anticonvulsant effect of mTNF-a.

7.3.3 Role of TNF-a receptor subtypes

To investigate the role of TNF-a receptor subtypes in seizure susceptibility, we used 

C57BL6 knock-out mice lacking either p75 or p55 receptors and their wild-type control 

animals. Table 7.3 shows that mice lacking p75 receptors displayed enhanced seizure 

activity. Thus, the duration of ictal activity was increased by 76% ( p  < 0.01). p55 A mice

165



were instead less susceptible to seizures, as indicated by a 38% reduction in the number of 

seizures and 47% shorter duration of seizures compared with control mice (p  < 0.05). 

Western blot analysis of hippocampal homogenates showed that p55'A mice had a twofold 

upregulation of p75 receptors ( p  < 0.01), which was associated with a concomitant 40% 

increase in TRAF-2 levels (Fig 7.2; p  < 0.01).

p55 receptors were not detected at measurable levels in wild-type or p75 knock-out mice 

(not shown).

Table 7.3. Susceptibility to seizures in CS7BL6 knock-out mice lacking either p75 
(p75'/_) or p55 (p55"/_) receptors

Onset
(min)

Number of 
seizures

Time in ictal 
activity (min)

Time in spikes 
(min)

Wild-type 5.9 ±0.8 13.0 ±1.0 17.4 ±2.5 45.9 ±4.3

p75'/_ 6.0 ± 0.7 20.0 ± 3.0 30.0 ±3.7** 47.6 ± 6.3

p55_/' 6.3 ±0.1 8 . 0  ± 1 .0 * 9.3 ±2.0* 34.2 ± 8 . 8

Data are the mean ± SE (n=9-20). Mice lacking p75 receptors were more susceptible to seizures, 
whereas mice lacking p55 receptor had a lower number and duration o f seizures. 
p <  0.05; p <  0.01 versus wild-type by one-way ANOVA followed by Tukey’s test for multiple 
comparisons.
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Figure 7.2. Western blot analysis of hippocampal p75 receptor and TRAF-2 protein 
levels in wild-type and p55'/_ mice
(A) Representative blot showing the increase in p75 receptors and in TRAF-2 protein in duplicate 
samples from hippocampi o f p55'A mice as compared with wild-type mice (n=6). (B) Bars depict the 
optical density values o f  the 75 or 52 kDa bands divided by that o f the corresponding neurofilament 
M  (NF;145kDa), which was used as an internal standard in each sample. **p <0.01 versus wild 
type by Fisher’s test.

These findings demonstrate that in the absence of p75 receptors, ictal activity is enhanced, 

clearly indicating a pronounced increase in neuronal excitability when p75 receptors are 

lacking. Mice deficient in p55 receptors displayed reduced seizure activity after kainate 

application and showed a marked upregulation of p75 receptors and in the related signaling
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pathway, suggesting that reduced seizure activity in p55'7' mice is a consequence of the 

adaptive increase in p75 receptors.

7.3.4 TNF-a receptor expression

In saline-injected hippocampus, a specific p75 signal was detected in neurons throughout 

the strata oriens, radiatum (Fig 7.3 A-C; G-I), and molecular layers of the hippocampus 

proper, as well as in the hilar region (not shown).

Ninety min after kainic acid-induced seizures, p75 was expressed both in neurons and 

astrocytes (Fig 7.3 D-F) as demonstrated by double immunostaining using a specific 

astrocytic marker (GFAP; Fig 7.3 J-L).

p55 staining was not detectable in control hippocampus (Fig. 7.4 A), but it is upregulated 

90 minutes after seizure onset in astrocytes as shown by the colocalization with GFAP (Fig.

7.4 B-E).
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Figure 7.3. p75 expression in the mouse hippocam pus after kainic acid-induced
seizures
Representative photomicrographs o f  p75 immunoreactivity in the hippocampus, 90 min after 
seizures (D-F) and in vehicle-injected C57BL6 mice (A-C). Immunopositive neurons were scattered 
in strata oriens, radiatum, and molecular layers o f  the hippocampus proper and in the hilus in 
vehicle-injected mouse (A-C; G-I). After seizures, p75 staining was enhanced both in neurons (D-F, 
as indicated by arrows) and astrocytes (D-F; J-L, as indicated by arrowheads and GFAP 
colocalization). Scale bar: 400 pm (A, D); 300 pm (B, E); 200 pm (C, F); 100 pm (G-I; J-L).
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Figure 7.4. p55 expression in the mouse hippocampus after kainic acid-induced 
seizures
Representative photomicrographs o f  p55 immunoreactivity in the hippocampus, 90 min after 
seizures (B) and in vehicle-injected C57BL6 mice (A). p55 immunostaining was not detectable in 
control hippocampus (A). After seizures, p55 immunoreactivity is strongly enhanced in GFAP- 
positive astrocytes (B) as demonstrated by double immunostaining using the specific astrocytic 
marker GFAP (C-E). Scale bar: 300 pm (A, B); 100 pm (C-E).

These findings demonstrate that p75 receptor is the only receptor subtype detected by 

immunohistochemistry and Western blot analysis in normal mouse hippocampus indicating 

that the anticonvulsant effect of mTNF-a in wild-type mice is mediated by neuronal p75 

receptors and not p55 receptors. p55 protein is not detectable in physiological conditions 

indicating that the transcription of its mRNA requires a tight control to prevent possible 

harmful effects o f TN F-a mediated by this receptor subtype. Seizures trigger the 

overexpression o f both receptors in astrocytes.

In summary, this study has shown that:

1. mTNF-a potently inhibits seizures in mice by stimulating neuronal p75 receptors

2. accordingly, mice overexpressing mTNF-a in astrocytes are less susceptible to seizures
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3. p55'A mice are less susceptible to seizures due to an up-regulation of p75 receptors and 

TRAF2

4. p75'/_ mice show increased seizure activity

5. overexpression of TNF-a receptors in neurons and/or astrocytes is induced by seizures

7.4 Discussion

The main finding of this study is that murine TNF-a has a powerful inhibitory action 

on EEG seizures induced in mice by intrahippocampal application of kainic acid. Murine 

TNF-a significantly reduced ictal activity without modifying the time to onset of seizures 

and the duration of interictal spiking. This evidence suggests that TNF-a is not involved in 

the mechanisms by which the first seizure is triggered, but it does affect seizure 

maintenance by impairing the transition between ictal and interictal events. Inhibitory 

effects of TNF-a on neuronal excitability have been reported previously; thus, TNF-a 

inhibits long-term potentiation in CA1 and dentate gyrus in hippocampal slices 

(Cunningham et al., 1996; Tancredi et al., 1992) and mediates long-term depression of 

synaptic transmission in CA1 (Albensi and Mattson, 2000). Modulation of intracellular 

concentrations of Ca2+ has been proposed as a crucial pathway mediating TNF-a actions on 

neuronal excitability (Bezzi et al., 2001a; McLamon et al., 2001; Stellwagen et al., 2005). 

Two lines of evidence indicate that the anticonvulsant effect of murine TNF-a in wild type 

mice is mediated by neuronal p75 receptors and not p55 receptors. First, p75 receptor is the 

only receptor subtype detected by immunohistochemistry and Western blot analysis in 

normal mouse hippocampus, although measurable levels of p55 transcript have been
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reported previously (Bette et al., 2003). The apparent absence of p55 protein implies a 

limited transcription of its messenger RNA in physiological conditions, which may 

represent a mechanism for limiting the potential harmful effects of TNF-a on neuronal 

survival that appear to be mediated by this receptor (MacEwan, 2002a). Second, hTNF-a, 

which is known to specifically interact with p55 receptor subtype in mice (Lewis et al., 

1991) did not affect seizures in wild type mice up to 30 pmol in 0.5pl, suggesting that p55 

receptors are not involved in the anticonvulsant effect of mTNF-a. Greater doses were not 

tested because of the limit of the solubility of this peptide in the injected volume.

Ninety minutes after the onset of seizures, both p55 and p75 receptors are expressed in 

astrocytes, suggesting that glial receptors are not involved in the acute effects of TNF-a on 

neuronal excitability. Delayed astrocytic expression of TNF-a receptors may play a role in 

long-term events consequent to seizure activity such as alterations of BBB (Albensi, 2002), 

neurogenesis (Monje et al., 2003), neuronal survival (Shinoda et al., 2003), which are all 

critically dependent on glia function.

We next used transgenic mice with a perturbated TNF-a system to investigate the 

functional consequences on seizures of the chronic brain overexpression of this cytokine. 

Seizure activity was drastically reduced in GT- 8  transgenic mice overexpressing TNF-a in 

astrocytes, and this effect was similar to that observed after exogenous cytokine application, 

suggesting that the presence of TNF-a pre-existing pool may contribute to decrease seizure 

activity. An early report has shown that transgenic mice overexpressing high amounts of 

TNF-a in astrocytes experience development of neurological deficits within 4 postnatal 

weeks and show brain damage and sporadic seizures (Akassoglou et al., 1997). The GT- 8
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mice we used in this study expose mild overexpression of TNF-a (Stalder et al., 1998), no 

pathological phenotype until they are older than 6  months, and decreased seizure 

susceptibility. These differences indicate that brain concentration of TNF-a is crucial for 

determining its effects on brain function (Bernardino et al., 2005; Sriram and O'Callaghan, 

2007). Using mice lacking p55 or p75 receptors, we elucidate the role of TNF-a receptor 

subtypes in seizure brain susceptibility. p75-deficient mice showed increased epileptic 

activity on kainate injection, indicating a pronounced increase in neuronal excitability when 

p75 receptors are lacking. p757' mice did not show adaptive changes in p55 receptors 

because these receptors were undetectable as in wild type mice (not shown). p55 knock-out 

mice displayed reduced seizure activity after kainate application. These mice showed a 

marked upregulation of p75 receptors and in the related signaling pathway (Wajant and 

Scheurich, 2001). Because p55 receptors do not mediate any effect on seizures in wild type 

mice after stimulation with a selective ligand and are not represented at measurable levels in 

normal mouse brain, we suggest that reduced seizures in p55_/" mice is a consequence of the 

adaptive increase in p75 receptors. The increased seizure activity observed in transgenic 

mice after deletion of the p75 receptor is in full agreement with the inhibitory role played 

by this receptor in wild type mice where p75 mediates the anticonvulsant effects of murine 

TNF-a exogenously applied in the hippocampus. In conclusion, our findings indicate that a 

TNF-a increase in the brain reduces seizure duration in mice via neuronal p75 receptor 

subtypes. We did not detect any role of p55 receptors in this model; however, this finding 

may be because of the scarce density of this receptor subtype in mouse hippocampus. 

Previous reports have shown that many of the detrimental effects of TNF-a on neurons are 

mediated by p55 receptors (Fontaine et al., 2002; Galasso et al., 2000; Liu et al., 1994).
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Therefore, we cannot exclude that p55 receptors may also be involved in seizures in their 

sequelae in brain regions other than the hippocampus or in conditions where they are 

upregulated (Nadeau and Rivest, 1999; Shinoda et al., 2003).

Our evidence suggests that the release of TNF-a by glia during seizures (de Bock et al., 

1996; Vezzani et al., 2002) or its pre-existence in brain because of chronic inflammation 

(Baranzini et al., 2002; Maldonado et al., 2003) can significantly affect the maintenance of 

epileptic activity.
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CHAPTER 8

Molecular and functional interactions 

between TNF-a, glutamate and GABA in 

the mouse hippocampus: 

implications for neuronal excitability and 

seizure susceptibility
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8.1 Summary

We investigated the molecular interactions between TNF-a system and ionotropic 

glutamate receptors subunits, and the receptor-mediated effects of TNF-a on glutamate and 

GABA release using mice lacking p55 (p55"/_) or p75 (p75“/_) receptors. 

p55'A mice showed a decreased susceptibility to kainic acid-induced seizures and displayed 

a decrease in GluR3 and NR1 glutamate receptor subunits in the hippocampus while GluRl, 

GluR2, GluR6/7 and NR2A/B were unchanged as compared to wild-type mice. In p75'A 

mice which are more susceptible to seizures, GluR2, GluR3, GluR6/7 and NR2A/B 

glutamate receptor subunits were increased in the hippocampus while GluRl and NR1 did 

not change. Spontaneous glutamate release measured by microdialysis in freely-moving 

mice was significantly decreased in p55 A, but not in p75'/_ mice. Spontaneous GABA 

release was significantly decreased in both p557' and p75'A mice. No changes were 

observed in KCl-induced glutamate and GABA release in mice lacking p55 or p75 

receptors vs wild-type mice.

Our evidence indicates that there are molecular and functional interactions between TNF-a 

system and glutamate and GABA neurotrasmission in the hippocampus. The actions of 

TNF-a on neuronal excitability strictly depend on whether p55 or p75 receptors are 

preferentially involved and appear to be mediated also by changes in the assembly of 

glutamate receptor subunits. These novel mechanisms of functional glia-neuronal 

interactions may be relevant for controlling neuronal excitability in physiological and in 

pathological conditions.
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8.2 Experimental procedures

Technical details related to microdialysis have already been reported in “Materials 

and methods - general procedures” section (p. 92-93).

8.2.1 Western blot

p75'A, p55'A and wild type mice (n=5) were decapitated and 2 hippocampi obtained 

from different mice within the same experimental group were pooled and homogenized as 

described in “Materials and methods - general procedures” section (p. 92).

To separate cytosol and membrane fractions, the homogenized hippocampi were centrifuged 

at 45000 rpm at 4°C for 1 h, as previously described (Bendotti et al., 2001).

For immunoblotting, we used an anti-GluR2 (1:750, Chemicon, Temecula USA) and anti- 

GluR3 mouse monoclonal antibody (1:500, Chemicon), anti-GluR6/7 (1:2000, Chemicon) 

rabbit monoclonal antibody, anti-GluRl (1:1000, Chemicon), anti-NRl (1:250,Chemicon) 

and anti-NR2A/B rabbit polyclonal antibody (1:750, Chemicon). Immunoreactivity was 

visualised with enhanced chemiluminescence (ECL) using peroxydase-conjugated goat 

anti-mouse (1:2000; Sigma) and goat anti-rabbit (1:2000; Sigma) IgGs as secondary 

antibodies.

Optical density values in each sample were normalized using the corresponding amount of 

neurofilament M (NF 1:1000, Chemicon) for total homogenized hippocampi and p tubulin 

(1:5000; Sigma) for the membrane fractions.
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8.2.2 Statistical analysis of data

Data are represented as the means ± standard error (n=number of animals). Statistical 

significance was determined by using one-way ANOVA followed by Fisher’s test (for 

Western blot data) and Dunnet’s test (for microdyalisis data).

8.3 Results

8.3.1 Spontaneous and depolarization-induced glutamate release

Fig. 8.1 A shows the basal glutamate release in mice lacking TNF-a p55 or p75 

receptors and wild type mice. Mice lacking TNF-a p55 receptors showed a -50% decrease 

(p<0.05) of spontaneous glutamate release compared to wild type mice (Fig.8.1A), and 

these mice were also less susceptible to kainic-acid induced seizures (Balosso et al., 2005). 

p75'/_ mice did not show significant changes in spontaneous glutamate release (Fig. 8.1 A). 

Fig. 8 .IB shows the effect of perfusion of 60 mM KC1 on extracellular glutamate 

concentrations. No significant differences in depolarization-induced glutamate release were 

observed in mice lacking p55 A or p75'A receptors (Fig. 8 .IB).
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Figure 8.1. Spontaneous and depolarization-induced glutamate release
Panel A: data represent the means ±  SE (n-7-8) o f the basal glutamate (GLU) in the ventral 
hippocampus o f wild type (WT), p55'A and p75'A mice and are expressed as percentage o f wild type. 
Panel B: data represent the effect o f 60 mMKCI on extracellular GLU concentrations in the ventral 
hippocampus ofWT, p55~A and p75'A mice and are expressed as percentage o f basal levels.
*p<0.05 versus WT by one-way ANOVA followed by Dunnet’s test.

These data demonstrate that p55 A mice display a decrease in spontaneous glutamate release 

suggesting that TNF-a, by interacting with p55 receptors, can affect the release of 

glutamate in physiological condition.

8.3.2 Spontaneous and depolarization-induced GABA release

Fig. 8.2A shows the basal GABA release in mice lacking TNF-a p55 or p75 

receptors and wild type mice. Both p55'7' and p75'/_ mice show a ~40% decrease (p<0.05) of 

spontaneous GABA release compared to wild type mice (Fig. 8.2A).

Fig 8.2B shows the effect of perfusion of 60 mM KCI on extracellular GABA 

concentrations. No significant differences in depolarization-induced GABA release were 

observed in TNF-a receptors deficient mice (Fig. 8.2B).
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Figure 8.2. Spontaneous and depolarization-induced GABA release
Panel A : data represent the means ±  SE (n=7-8) o f the basal GABA in the ventral hippocampus o f  
wild type (WT), p55'A and p75~/~ mice and are expressed as percentage o f  wild type.
Panel B: data represent the effect o f  60 mM KCI on extracellular GABA concentrations in the 
ventral hippocampus ofWT, p55w~ and p75'~ mice and are expressed as percentage o f basal levels. 
*p<0.05 versus WT by one-way ANOVA followed by Dunnet’s test.

These data demonstrate that TNF-a functionally interacts with GABA neurotransmission in 

physiological condition.

8.3.3 AMP A, KA and NMDA receptor subunits in the hippocampus of p55 7 or p757 

mice

Figure 8.3 shows the levels of AMPA, KA and NMDA receptor subunits in the 

hippocampus of mice lacking p55 or p75 receptors. p55‘A mice showed ~20% decrease of 

GluR3 (p<0.05) and ~30% decrease of NR1 (p<0.05) receptor subunits compared to wild 

type mice, while no differences were observed in the other glutamate receptor subunits (Fig. 

8.3). Conversely, p75'A mice had an up-regulation of glutamate receptor subunit levels; 

GluR2 and GluR3 subunits were enhanced by ~40% (p<0.05; p<0.01), GluR6/7 by ~50% 

(p<0.01) and NR2A/B subunits by 38% (p<0.05) compared to wild type mice (Fig. 8.3).
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Figure 8.3. AMPA, KA and NMDA receptor subunits in total hippocampus of p55'/_ or 
p75'/_ mice
Bargrams show densitometry analysis o f the bands corresponding to the AMPA, KA and NMDA 
receptor subunits as assessed by western blot analysis o f hippocampal homogenates o f wild type 
(WT), p55~A, p75'A mice (n=5). The optical density (O.D.) values o f the relevant bands (as depicted 
in the representative western blot), are divided by the corresponding neurofilament (NF) value, 
used as internal standard; they are expressed as % o f  corresponding values measured in WT mice. 
*p<0.05; **p<0.01 versus WT by one-way ANOVA followed by Fisher’s test.



The changes in glutamate receptor subunit composition in mice lacking p55 or p75 

receptors occur in the hippocampal membrane fraction. In particular, p55'/_ mice showed a 

-40% decrease of GluR3 (p<0.05) and NR1 (p<0.01) receptor subunits compared to wild 

type mice (Fig. 8.4A). In p75'A mice, GluR2 subunit was enhanced by -80% (p<0.01), 

GluR3 by -40% (p<0.05), GluR6/7 by -50% (p<0.05) and NR2A/B subunits by 40% 

(p<0.05) compared to wild type mice (Fig. 8.4B).

These findings suggest that TNF-a, by activating its receptors, regulate the trafficking of 

ionotropic glutamate receptor subunits from the cytoplasm to the membrane.
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Figure 8.4. AMPA, KA and NMDA receptor subunits in the membrane fraction of 
p55’~ or p75'/_ mice
Bargrams show densitometry analysis o f the bands corresponding to AMPA, KA and NMDA 
receptor subunits as assessed by western blot analysis o f hippocampal membrane fraction 
homogenates o f  wild type (WT), p55~/~ (panel A) and plS^ (panel B) (n=5).
The optical density (O.D.) values o f the relevant bands (as depicted in the representative western 
blots), are divided by the corresponding /3-tubulin value, used as internal standard; they are 
expressed as % o f  corresponding values measured in WT mice. *p< 0.05; **p< 0.01 versus WT by 
one-way ANOVA followed by Fisher’s test.
m/3-tubulin; /3-tubulin present in the membrane fraction; c/3-tubulin: /3-tubulin present in the 

cytosol fraction.
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In summary, this study has shown that:

1. p55'7" mice, that are less susceptible to seizures, show a reduction of spontaneous 

glutamate and GABA release and a decrease of GluR3 and NR1 receptor subunits.

2. p75'A mice, that are more susceptible to seizures, show a reduction of spontaneous 

GABA release and an increase of GluR2, GluR3, GluR6/7 and NR2A/B receptor 

subunits.

It appears therefore that TNF-a receptor-mediated signaling controls the expression of 

glutamate ionotropic receptors bound on the membrane.

8.4 Discussion

The main finding of this study is that TNF-a interacts with glutamate and GABA 

neurotransmission in the mouse hippocampus. In particular, using mice lacking p55 or p75 

receptors, we have found that, in physiological conditions, ambient concentrations of TNF- 

a  can affect the release of glutamate and GABA and regulate the trafficking of ionotropic 

glutamate receptor subunits from the cytoplasm to the membrane. The final effect of TNF-a 

on glutamate and GABA neurotransmission depend on which TNF-a receptor is activated. 

The use of TNF-alpha receptors knock-out mice is a valuable tool to study the role of p55 

and p75 receptor signalling in the physiopathological effects of this cytokine in CNS; thus, 

pharmacological tools that could distinguish unequivocally between these two receptors are 

lacking. Mice deficient in p55 and p75 are overtly normal indicates that neither p55 nor p75 

are grossly required for normal mouse development and homeostasis under basal conditions 

(Peschon et al., 1998). These evidences are also supported by the fact that mice specifically
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lacking TNF-a are viable and fertile, develop lymphnodes and show no apparent 

phenotypic abnormalities, indicating that TNF alpha is not required for normal mouse 

development (Pasparakis et al., 1996).

A reduced release of spontaneous GABA was observed in mice lacking p75 or p55 

receptors; the latter strain displayed also a decreased spontaneous glutamate release, 

suggesting that the activation of both receptors by physiological concentration of TNF-a 

plays a role in regulating excitatory and inhibitory transmission. This may contribute to 

affect several forms of synaptic plasticity in hippocampus such as long-term potentiation 

(Cunningham et al., 1996; Tancredi et al., 1992) and long-term depression (Albensi and 

Mattson, 2000), that have already been shown to involve the interaction between TNF-a 

and glutamate receptor. We speculate that the decrease in basal extracellular glutamate 

levels in p55'/_ mice is due to a reduction in astrocytic glutamate release for the following 

reasons: ( 1 ) the basal extracellular glutamate level measured by microdialysis likely reflects 

glutamate release from astrocytes since it is insensitive to TTX and has a low dependence 

on calcium (Del Arco et al., 2003; van der Zeyden et al., 2008); (2) TNF-alpha induces the 

astrocytic release of glutamate acting on p55 receptors (Bezzi et al., 2001), thus supporting 

our finding of a reduced glutamate release in the absence of p55 receptors.

In p75-/- mice, we found no significant changes in basal glutamate levels suggesting that 

this receptor subtype is not involved in the astrocytic glutamate release (Bezzi et al., 2001). 

Moreover, the lack of changes in high KCl-induced glutamate release in both receptor 

knock-out mice supports the view that TNF-alpha specifically affects astrocytic, but not 

neuronal, glutamate release (Bezzi et al., 2001; Del Arco et al., 2003). However, we can not 

exclude that the lack of changes in high KCl-induced glutamate release may be due to
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microdialysis that is an invasive technique since it attempts to monitor the release of 

neurotransmitter from nerve terminals by inserting into the brain a probe several orders of 

magnitude larger than the biological structure under study. The injury caused by the 

insertion of the probe is limited to a short period of time and after 24 h animals exhibited 

only slight alteration in glucose metabolism and blood-brain barrier permeability. Typically 

after an initial period during which neurotransmitter levels are very high, they decrease and 

remain stable for several hours or days. Moreover, the development of reactive gliosis, 

occurring few days after probe implantation, limits the use of microdialysis probe. Another 

important aspect to consider is that after release, neurotransmitters can be involved into 

processes of uptake and metabolism, which can limit the amount of neurotransmitters 

recovered in the dialysate.

Significant alterations in the membrane levels of specific ionotropic glutamate receptor 

subunits in the hippocampus of naive mice lacking either p55 or p75 TNF-alpha receptors 

were observed. The absence of TNF-alpha receptors determines modifications in different 

glutamate receptor subunits, namely a decrease in NR1 and GluR3 in p55"/_ mice and an 

upregulation of GluR2, GluR3, GLUR6/7 and NR2AB in p75'/'mice.

The glutamate receptor changes we have measured in naive p55 and p75 knock-out mice 

are compatible with their altered susceptibility to seizures, as reported in previous studies 

where these mice were intrahippocampally injected with kainic acid (Balosso et al., 2005). 

At the light of our present results, the increased seizure susceptibility in p75'/_ mice 

(Balosso et al., 2005) could be explained by at least two non-mutually exclusive 

mechanisms: ( 1 ) an enhanced response of mice to kainate upon its intrahippocampal 

injection, due to the intrinsic upregulation of kainate GluR6/7 subunit. Accordingly, the
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hippocampal overexpression of GluR6  predisposes to seizures (Telfeian et al., 2000) while 

GluR6  knock-out mice are resistant to kainate seizures (Mulle et al., 1998; Vincent and 

Mulle, 2008); (2) the intrinsic upregulation of NR2A/B and GluR3 subunits may amplify 

the neuronal responses to glutamate that is released during kainate-induced epileptic 

activity. In particular, the upregulation of NR2A/B protein level in p75'A mice suggests the 

presence of an NMDA heteromeric receptor favoring both neuronal Ca2+ influx in response 

to glutamate (Viviani et al., 2003) and neuronal synchronization because of the lowest 

deactivation kinetics of NR2A/B containing receptors (Cull-Candy and Leszkiewicz, 2004). 

GluR3 receptor subunit also appears to be prominently involved in ictogenesis since rodents 

developing GluR3 receptor-activating antibodies develop seizures (Rogers et al., 1994; 

Levite and Ganor, 2008). The upregulation of AMPA GluR2 subunit, that confers low 

calcium permeability (Isaac et al., 2007), in p75'/_ mice may represent a compensatory 

change to counteract the increased neuronal excitability.

We did not detect p55 receptor using immunohistochemistry and Western blot analysis in 

normal mouse hippocampus, although measurable levels of p55 transcript and protein have 

been reported previously (Bette et al., 2003). The apparent absence of p55 protein implies a 

limited transcription of its messenger RNA in physiological conditions, which may 

represent a mechanism for limiting the potential harmful effects of TNF-a on neuronal 

survival that appear to be mediated by this receptor (MacEwan, 2002a).

In p55‘A naive mice, both GluR3 and NR1 receptor subunits are reduced and these 

modifications may contribute to decrease p55"/_ mice susceptibility to kainate seizures. 

Indeed, as mentioned for GluR3 receptor subunit, NR1 subunit that is considered essential 

to form functional ion channels (Hollmann and Heinemann, 1994; Zukin and Bennett,
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1995) is important for seizure generation and propagation. Indeed, it has been shown that a 

down-regulation of NR1 subunit using an antisense probe protects against sound-induced 

seizures in audiogenic mice (Chapman et al., 1996) and increases the latency to NMDA- 

induced seizures in mice (Zapata et al., 1997).

Although our biochemical evidence suggests only that significant alterations in the 

membrane levels of specific ionotropic glutamate receptor subunits in the hippocampus are 

present in mice lacking p55 or p75 receptors, we can speculate that these changes reflect 

modifications in hippocampal AMPA, KA and NMDA receptor subunits composition 

which may alter the functional properties of assembled ionotropic glutamate receptors 

modifying the balance of excitation and inhibition.

These novel functional glio-neuronal interactions may be relevant for controlling neuronal 

excitability in physiological and in pathological conditions (see Fig. 8.5).
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Figure 8.5. Simplified representation of functional glia-neuronal interactions in 
physiological and pathological conditions
In physiological conditions, we detected p75 receptor expression in neurons by 
immunohistochemistry. Functional evidence provided by Stellwagen (Stellwagen et al., 2005) and 
Bezzi (Bezzi et al., 2001a) showedp55 receptors on neurons and astrocytes in in vitro preparation, 
although they were not detectable in vivo in our experimental setting. In physiological conditions, 
TNF-a is released by astrocytes (Beattie et al., 2002) and modulates astrocytic glutamate release 
(Bezzi et al., 200la).Our microdialysis study in mice lacking p55 receptors suggests that p55  
receptors are involved in regulating astrocytic glutamate release. Our western blot data indicate 
that TNF-a, possibly released by astrocytes, regulates glutamate ionotropic receptor (iGluR) 
expression on neuronal membrane acting on its receptor subtypes.
In pathological conditions, such as during seizures, we detected increased expression o f p55 and 
p75 receptors on astrocytes. Microglia is activated and release high amount o f TNF-a. This effect 
may enhance glutamate release from astrocytes (Bezzi et al., 2001a) and inhibit its re-uptake (Hu et 
al., 2000; Zou and Crews, 2005), leading to increase glutamate extracellular concentrations. 
Enhanced TNF-a concentrations in tissue may also exacerbate the effects o f  glutamate on its 
receptor subunits.
Thus, the activation o f p55 receptors may increase the extracellular glutamate concentrations and 
enhance neuronal excitability; the activation o f neuronal p75 mediates neuroprotective effects, 
increasing inhibition. The role o f p75 receptors on astrocytes needs further investigations. We 
speculate they may mediate the production o f neuroprotective agents (Kamiguchi et al., 1995; Kuno 
et al., 2006) to compensate for the detrimental actions due to p55-mediated signaling.
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9.1 General discussion

The observation that brain inflammatory reactions occur in various epileptic disorders 

with different etiologies raises the possibility that inflammation may be a common factor 

contributing to the onset of epilepsy. Among the inflammatory mediators identified in 

epileptogenic tissue, IL-lp and TNF-a have been the ones best characterized for their 

expression profile in seizure models and in human epileptic tissue. In this thesis, the role of 

these proinflammatory cytokines in experimental models of acute and chronic seizures has 

been investigated using different experimental strategies: 1 - elevated brain levels of the 

cytokine were attained by their intracerebral application; 2 - their brain production or their 

receptor-mediated signaling was blocked using selective inhibitors 3. seizure susceptibility 

was assessed in genetically-modified mice with a perturbed cytokine system. We also 

studied the role of IL-lp in the excitotoxic neuronal damage, often associated with seizures, 

using in vitro approaches.

We provide evidence that:

1. pharmacological intervention aimed at inhibiting the IL-ip system reduces acute and 

spontaneous seizures induced in experimental models.

2. the proconvulsant effects of IL-lp are mediated by a novel transcription-independent 

pathway characterized by the activation of neutral sphingomyelinase and Src-family of 

kinases in the hippocampus which leads to the phosphorylation of the NR2B subunit of the 

NMDA receptor.
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3. transient exposure of brain tissue to specific pro-inflammatory stimuli exacerbates 

neuronal susceptibility to a subsequent excitotoxic insult via induction of IL-lp release 

from activated microglia.

4. TNF-a reduces kainic acid-induced seizures by activating neuronal p75 receptors. The 

molecular and functional interactions between TNF-a receptors and ionotropic glutamate 

receptors contribute to the changes in seizure susceptibility mediated by this cytokine.

9.1.1 Inactivation of caspase-1 in rodent brain: a novel anticonvulsant strategy

Epilepsy in humans is associated with inflammatory processes in the brain involving 

the activation of the IL-lp/IL-lRI signaling (Ravizza et al., 2006a; Ravizza et al., 2008a). 

Experimental findings show that the activation of this signaling in neurons exacerbates 

acutely induced seizures (Vezzani et al., 1999) and lowers the threshold for seizure 

induction (Dube et al., 2005). In contrast, IL-lra, the naturally occurring receptor antagonist 

(Dinarello, 1996), mediates powerful anticonvulsant effects (De Simoni et al., 2000; 

Vezzani et al., 2000; Vezzani et al., 2002), and in mice overexpressing IL-lra in astrocytes, 

seizure onset is delayed and seizure spread is strongly attenuated (Vezzani et al, 2000). 

These data indicate that a pre-existing inflammatory state in the brain associated with 

elevated levels of IL-lp may significantly contribute to the mechanisms of ictogenesis.

This evidence prompted us to study whether seizures can be inhibited by blocking the brain 

production of IL-ip by using pralnacasan and VX-765, two selective inhibitors of caspase- 

1 , the key enzyme specifically involved in the production of the releasable and biologically 

active form of IL-1 p. Intracerebral or systemic administration of these drugs significantly 

reduced the number and the duration of acute and spontaneous seizures that are refractory to
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the treatment with various antiepileptic drugs (Riban et al., 2002). This powerful 

anticonvulsant effect was associated with the ability of these drugs to prevent seizure- 

induced increase of the biologically active form of IL-lp, as demonstrated by our 

biochemical data.

Thus, inhibition of caspase-1 may represent an effective and novel pharmacological strategy 

to control seizures which are refractory to classical anticonvulsant treatments.

9.1.2 A novel non-transcriptional pathway mediates the proconvulsant effects of IL-ip

The proconvulant effects of IL-lp in experimental models occur within minutes from 

the application of this cytokine; therefore, they cannot be explained by the classic signaling 

cascade involving activation of genomic transcriptional events. Using a detailed 

pharmacological approach, we demonstrated that the proconvulsant activity of this cytokine 

is mediated by the activation of the N-Smase-ceramide pathway since 3-O-MS, a selective 

N-Smase inhibitor, blocks the increase in the frequency and duration of seizures induced by 

IL-ip, and C2-ceramide faithfully mimics the IL-ip effect on seizures. Moreover, the 

proconvulsant effects of either IL-lp or C2-ceramide were dependent on activation of the 

Src family of tyrosine kinases since they were prevented by CGP76030, an inhibitor of this 

enzyme family. These results indicate that Src kinase activation is a downstream event 

subsequent to IL-ip activation of N-Smase. Finally, the proconvulsant effect of IL-lp was 

blocked by ifenprodil, a selective NR2B receptor antagonist, suggesting that this subunit is 

critically involved in IL-lp on seizures. These pharmacological results are supported by 

biochemical data showing that IL-lp or seizures enhanced the levels of the phosphorylated 

forms of Src-family of tyrosine kinases and the NR2B subunit in the hippocampus and
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these effects were additive when seizures were increased by IL-lp. The phosphorylation of 

the NR2B subunit were prevented by 3-O-MS and CGP76030, thus supporting the 

involvement of N-Smase and Src-family kinases in NMDA activation. Phosphorylation of 

the NR2B subunit promotes Ca2+ influx into neurons (Viviani et al., 2003; Yu et al., 1997), 

thus resulting in potentiation of NMDA function which contributes to neuronal 

hyperexcitability (Meador, 2007). A similar pathway has been recently described in 

hypothalamic warm sensitive neurons (Sanchez et al., 2006) and appears to mediate the fast 

actions of IL-ip underlying the rapid phase of the febrile response to this cytokine.

These results highlights a novel, non-transcriptional mechanism underlying seizure 

exacerbation in inflammatory conditions and may allow the development of innovative 

strategies to block the activation of IL-ip signaling in diseased conditions.

9.1.3 The consequence of transient inflammation and microglia activation on neuronal 

susceptibility to an excitotoxic insult

One major hallmark of brain inflammation is the activation of microglial cells. These 

resident brain immune cells migrate and proliferate at sites of neuronal injury where they 

can support regenerative functions in neurons and help functional recovery from CNS 

injuries (Schwartz et al, 2006) or contribute to neuronal damage via the release of 

neurotoxic agents and proinflammatory cytokines such as IL-lp. Therefore, we investigated 

the consequences of inflammatory processes characterized by microglia activation and 

release of IL-ip on the AMPA-mediated excitotoxicity in organotypic hippocampal slice 

cultures. We observed that transient exposure of hippocampal slices to LPS plus ATP 

induced microglia activation and apoptosis-like cell death, accompanied with a sustained
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EL-ip release. This effect was dependent on specific activation of P2X7 receptors. 

Moreover, exposure of hippocampal slices to LPS plus ATP, but not either one or the other 

alone, induced an exacerbation of neuronal death mediated by AMPA in CA3 subfield. This 

toxic effect requires a critical IL-lp extracellular concentration and the activation of 

microglia-expressing P2X7 receptors, but not microglia apoptosis-like cell death. Indeed, 

inhibitors of IL-lp production or its receptor signalling, prevented the potentiation of 

AMPA toxicity without altering microglial apoptosis.

This mechanism may contribute to determine neuronal cell death in acute and chronic 

neurodegenerative conditions associated with inflammatory events, such as in epilepsy.

9.1.4 Role of TNF-a and its receptors in seizures: interactions with glutamate and 

GABA neurotransmission

TNF-a is a pleiotropic cytokine rapidly upregulated in the CNS by seizures, but little 

is known about its role in epileptic activity. The biological actions of TNF-a are mediated 

through two distinct receptors, p55 and p75, that are present both in neurons and glia (Kuno 

et al., 2006; Sairanen et al., 2001). Each TNF-a receptor mediates different cellular 

responses, although partial overlap of their signaling has been reported (McEwan, 2002). 

We investigated the effect of TNF-a on seizures by using a dual approach: we produced 

increased cytokine levels in brain by applying the recombinant cytokine in mouse 

hippocampus immediately before the induction of seizures; we also studied seizure 

susceptibility in transgenic mice chronically overexpressing TNF-a in astrocytes or in mice 

lacking either p55 or p75 receptors. These experiments address whether acute or chronic
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brain expression of a proinflammatory molecule changes the brain susceptibility to the 

induction or maintenance of seizures and which role TNF-a receptor subtypes play in these 

phenomena.

Differently from IL-ip, TNF-a has predominant anticonvulsant effect specifically mediated 

by p75 receptor subtypes.

In particular, we found that increased brain levels of murine TNF-a in hippocampus, due to 

exogenous application or gene overexpression, have a powerful inhibitory action on EEG 

seizures reducing their frequency and duration. Human TNF-a, which selectively activates 

p55 receptor subtype in mice, did not affect seizures in wild-type mice suggesting that p55 

receptors are not involved in the anticonvulsant effect of mTNF-a.

Moreover, mice lacking p75 receptors exhibited prolonged seizures while mice deficient in 

p55 receptor, displayed reduced seizure activity. p55'7" showed also a marked upregulation 

of p75 receptors and in the related signaling pathway, suggesting that reduced seizure 

activity in p55‘A mice is a consequence of the adaptive increase in p75 receptors. p75 

receptor is also the only receptor subtype detected by immunocytochemistry in normal 

mouse hippocampus supporting that the anticonvulsant effect of murine TNF-a in wild-type 

mice is mediated by neuronal p75 receptors and not p55 receptors.

This evidence shows a novel TNF-a function linked to fast changes in neuronal excitability 

and highlights the possibility that TNF-a functionally interacts with glutamatergic 

neurotransmission. It has been reported that TNF-a released by glial cells induces an 

increase in the surface expression of GluR2-lacking AMPA receptors leading to increased 

neuronal calcium influx and enhanced synaptic efficacy (Beattie et al., 2002; Stellwagen et 

al., 2005). TNF-a can also affect the GABAergic synaptic transmission by inducing
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endocytosis of GABAa receptors, thus reducing the inhibitory synaptic strength 

(Stellwagen et al., 2005). We investigated the molecular interactions between TNF-a 

system and ionotropic glutamate receptor subunits and the receptor-mediated effects of 

TNF-a on glutamate and GABA release using mice lacking p75 or p55 receptors. We found 

that TNF-a receptor-mediated signaling controls the expression of glutamate ionotropic 

receptors. In particular, p55‘A mice that are less susceptible to seizures, showed a reduction 

of spontaneous glutamate (and GABA release) and a decrease of GluR3 and NR1 receptor 

subunits. On the other hand, p75‘A mice that are more susceptible to seizures, showed an 

increase of GluR2, GluR3, GluR6/7 and NR2A/B receptor subunits (and a reduction of 

spontaneous GABA release). The changes in hippocampal AMPA, KA and NMDA 

receptor subunit composition observed in the membrane fraction may alter the functional 

properties of ionotropic glutamate receptors modifying the balance between excitation and 

inhibition and contributing to the actions of TNF-a on neuronal excitability.

198



10.1 Summary and conclusions

The first part of this thesis has demonstrated that IL-ip and its receptor IL-1R1 

system are chronically overexpressed in mice epileptic tissue. The activation of IL-1(3 

system highlights the possibility that this phenomenon may have an active role in the 

pathophysiology of seizures, altering neuronal excitability and cell survival. Our findings 

from in vivo experiments support a role for IL-ip signalling in the mechanisms of 

ictogenesis because IL-ip exacerbates seizures in mice. In addition, seizures, that are 

refractory to the classical antiepileptic drugs, are drastically reduced by blocking the 

formation of the biologically active form of IL-lp, by selective inhibition of caspase-1, 

indicating that this treatment represent an effective and novel anticonvulsive strategy.

The mechanism underlying the proconvulsant actions of IL-lp appears to occur via a novel 

non-transcriptional IL-1 p-N-Smase-Src kinase pathway that results in the potentiation of 

NMDA function which is responsible for the increased neuronal excitability. This fast post- 

translational effect of IL-lp represents a novel and non-conventional pathway by which 

inflammatory molecules produced in epileptic tissue can affect neurotransmission.

We have also demonstrated that a brief proinflammatory stimulus, characterized by the 

activation of microglia and subsequent lasting release of critical concentrations of IL-1 P, 

primes neuronal vulnerability to a subsequent excitotoxic insult. These findings shed light 

on the mechanisms by which a pre-existent proinflammatory state increases hippocampal 

neuronal susceptibility to the excitotoxic damage associated with seizures (Auvin et al., 

2007; Somera-Molina et al., 2007).
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Because IL-lp exacerbates seizures (Vezzani et al., 1999), promotes neuronal loss 

(Bernardino et al., 2005; Viviani et al., 2003), inhibits neurogensis (Ekdahl et al., 2003; 

Monje et al., 2003), alters BBB permeability (Allan et al., 2005; Naldini and Carraro, 

2005), pharmacological approaches specifically targeted to block the overproduction of IL- 

1P and its functions in diseased conditions may represent new strategies for the treatment of 

seizure disorders, which are refractory to classical anticonvulsant treatments.

The second part of this thesis has shown that TNF-a can significantly decrease epileptic 

activity by acting on neuronal p75 receptors. Activation of p55 receptors by TNF-a or 

chronically elevated levels of this cytokine (Akassoglou et al., 1997; Stalder et al., 1998) 

may trigger neuropathology and promote seizures.

Thus, the actions of TNF-a on neuronal excitability strictly depend on whether p55 or p75 

receptors are preferentially involved and appear to be mediated also by changes in the 

assembly of glutamate receptor subunits.

These novel functional glia-neuronal interactions add important insights into the mechanism 

of ictogenesis and seizure-associated neuronal cell death, highlighting innovative 

pharmacological strategies to block the activation of cytokine-mediated signalling in 

diseased conditions.
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11.1 Future work

1- Studies underlying the role o f IL-lp system in the epileptogenesis 

A relevant but still unresolved issue in epileptic disorders is whether inflammation plays a 

role in epileptogenesis, the process that transforms a non-epileptic neuronal circuit into a 

seizure-generating one. We have recently demonstrated that IL-lp system is upregulated in 

the epileptogenesis phase which follows induction of status epilepticus, and is prodromic to 

the onset of epilepsy (Ravizza et al., 2008a). Moreover, the selective inhibition of caspase-1 

by VX-765 arrests kindling and impairs the development of generalized motor seizures 

(Ravizza et al., 2008b). These findings highlight the possibility that the activation of IL-1 P 

system contributes to epileptogenesis by increasing neuronal susceptibility to spontaneous 

seizure induction (Vezzani and Baram, 2007). To address this issue we will use a mouse 

model of TLE where spontaneous seizures occur after a latency period (Riban et al, 2002). 

After status epilepticus, mice will be treated by VX-765 for 2 weeks and the time to onset 

of the first seizure and the duration of the spontaneous seizures will be evaluated by EEG 

recordings. If IL-1 p plays a role in epileptogenesis, a significant delay in the time to onset 

of the first spontaneous seizure and a decrease in the time spent in epileptic activity will be 

observed.

Elucidation of the role of IL-lp in epileptogenesis may be very important to prevent 

epilepsy following brain injuries, such as neurotrauma and status epilepticus, which are two 

clinical conditions characterized by brain inflammation, elevated levels of IL-ip and 

associated with a high risk to developing epilepsy (Pitkanen and Sutula, 2002; Pitkanen et 

al., 2007).
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2- Studies underlying the mechanisms o f ictogenesis and epileptogenesis in inflammatory 

conditions

Inflammatory pathways activated by seizures share several common features with those 

activated by systemic or CNS infection. In this respect, the injection of LPS in rodents 

chronically lowers seizure threshold in immature and mature brain rodents and enhances 

seizure-induced cell loss (Sayyah et al., 2003; Auvin et al., 2007; Galic et al., 2008). LPS 

activates TLR4, which play a key role in the innate immune system during pathogen 

recognition; these receptors are up-regulated in neurons and glia by acute seizures and 

chronic epileptic tissue (our preliminary data). These results prompt us to explore whether 

TLR-signaling, activated by endogenous ligands released during tissue injury, contributes to 

neuronal hyperexcitability and to enduring alterations in gene expression programs that 

underlie the epileptogenic process.

The study of mechanistic aspects related to the pathways activated during brain 

inflammation, and their role in epileptogenesis, will be instrumental for envisaging novel 

therapeutic approaches.
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