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Abstract

Abstract

Inherited retinal disorders are characterized by a remarkable genetic 

heterogeneity; so far, over 160 genes have been identified as responsible for 

this kind of diseases. Nevertheless, it is believed that the total number of retinal 

disease genes is much higher then what is currently known. Central to the first 

part of this PhD thesis was to identify new candidate genes for retinal disorders. 

The approach used to achieve this goal was based on in silico prediction of 

genes with exclusive or predominant retinal expression in human retina, 

followed by experimental verification of their predicted expression by both RT- 

PCR and RNA in situ hybridization. The work carried out for this part of the 

thesis provided a list of new candidate disease genes for inherited retinal 

disorders.

The second part of this PhD project aimed at the generation of a high 

resolution gene expression atlas of retinitis pigmentosa (RP) genes in human 

and murine retina. RP is one of the leading causes of visual handicap in the 

world population. The study of the disease mechanisms and the development of 

efficient therapeutic approaches have mostly relied on the availability of animal 

models for this condition, so far. Nevertheless, little information is available 

about the RNA expression profiles of RP genes in the human retina. To 

overcome this lack of information, I generated the first gene expression atlas of 

34 known RP genes in human and murine retinas. Differences observed in the 

expression patterns of some genes in human and mouse will open new 

perspectives on the function of these genes and on their putative roles in 

disease pathogenesis.
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Introduction

1.1 THE EYE AND THE RETINA

The eye is perhaps the most important sensory organ for humans and vision is 

by far the most complex of the senses. This is due to the fact that vision must 

handle demands such as: transduction of light stimuli to neural impulses, 

binocular and more distant depth perception, and color discrimination.

The structure of the human eye (Figure 1) can be divided into three main 

layers or tunics whose names reflect their basic functions: the fibrous tunic, the 

vascular tunic, and the nervous tunic. The fibrous tunic, also known as the 

tunica fibrosa oculi, is the outer layer of the eyeball consisting of the cornea and 

sclera. It consists of dense connective tissue filled with collagen to both protect 

the inner components of the eye and maintain its shape. The vascular tunic, 

also known as the tunica vasculosa oculi, is the middle vascularized layer, 

which includes the iris, ciliary body, and choroids. The iris sits between the 

anterior chamber and the posterior chamber in the front part of the eye. These 

chambers contain the aqueous humour, which is important for nourishing the 

lens and the cornea. The lens is a clear, flexible structure responsible for 

sharpening of the image at the retina and is connected to the ciliary body that 

contains the ciliary muscles. Functions of the ciliary body are represented by 

the production of aqueous humor and by an important contribution in the control 

of the accommodation by changing the shape of the lens. The vitreous humour 

is a jelly-like substance that fills the back portion of the eye behind the lens. 

Besides helping the eye to keep its shape, this clear gel transmits light to the 

back of the eye. The choroid contains blood vessels that supply the retinal cells 

with necessary oxygen and remove the waste products of respiration. The 

nervous tunic, also known as the tunica nervosa oculi, is the inner sensory 

structure, which includes the retina.
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Figure 1. Schematic view o f the human eye anatomy.

Retina is a highly organized eye compartment where light transduction 

into neural impulses takes place. Due to the complexity of this process, retinal 

cells give rise to a variety of neuronal cell types that are involved in the 

transmission of the nervous stimuli to the brain. Retina is composed of seven 

classes of cells: photoreceptor cells (rods and cones), bipolar cells, horizontal 

cells, amacrine cells, Muller glia cells and retinal ganglion cells and they are 

organized in six layers each of which is responsible for a certain function 

(Figure 2). The outermost layer is the retinal pigment epithelium (RPE), which is 

situated between the choroid and the photoreceptors. RPE is involved in the 

phagocytosis of the outer segment of photoreceptor cells and in the 

chromophore regeneration (see below). RPE cells are pigmented and therefore 

play a function in preventing light scattering.
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Figure 2. 3-D block portion o f human retina (from

http://webvision.med.utah.edu). Diagram depicting retinal cell types organized in 

layers either composed by cell bodies or by cell processes.

The second layer, the photoreceptor layer, comprises the photoreceptors,

where the photoreceptor cell bodies form the outer nuclear layer (ONL). At the

synaptic terminals of photoreceptors, in a region called the outer plexiform layer

(OPL), light-induced signals are transferred from rods and cones to bipolar and

horizontal cells. Cell bodies of these neurons together with Muller glia and

amacrine cells form the structure called the inner nuclear layer (INL). Horizontal

cells provide lateral interaction in the OPL and aid in signal processing. One

type of rod bipolar cells and at least 10 different types of cone bipolar cells

transfer light-induced signals to the ganglion cells at the inner plexiform layer

(IPL), which also comprises dendrites of amacrine cells and ganglion cells.

Amacrine cells are inhibitory interneurons, and about 40 different morphological

types are described even though the function of the majority of subtypes is still

not clear. Muller cells are the main glial cells of the retina. They form

architectural support structures stretching radially across the entire thickness of

the retina and set the limits of the retina at the outer and inner limiting

membranes, respectively. The ganglion cell layer (GCL) forms the innermost

4
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retinal layer. Ganglion cell dendrites collect the signals of bipolar and amacrine 

cells and transmit these signals through their axons to the visual centers of the 

brain1. Axons of the different ganglion cells of the retina converge at the level of 

the optic disc and exit the eye bulb to form the optic nerve.

1.2 THE PHOTORECEPTORS

Perception of light initiates in the highly specialized retinal cells called 

photoreceptors. Photoreceptors are polarized retinal neurons with the unique 

property of transforming physical signals (photons o f light) first into biochemical 

messages and then into action potentials “perceived” by specialized brain 

structures (visual cortex). Photoreceptors contain four distinct compartments: a) 

the outer segment (OS), b) a thin cilium, which connects the outer to the c) 

inner segment (IS), a cell body containing the nuclei and the cytoplasm and d) a 

short axon connecting the photoreceptor cell to interneurons (Figure 3). The OS 

consists of an array of flat membranous disks, in which the phototransduction 

cascade occurs, Whereas the IS contains most of the photoreceptor metabolic 

machinery, including the endoplasmic reticulum, the Golgi apparatus, and the 

mitochondria. Cellular components and metabolites are exchanged and/or 

transported between the IS and OS through the narrow connecting cilium2. The 

connecting cilium of photoreceptor ceils is the only intercellular link between the 

morphologically, functionally and biochemically different compartments of the 

inner and outer segment. The cilium plays an important role in the organization 

and the function of photoreceptor cells, namely in delivery and turnover of 

enzymes and substrates of the visual transduction cascade, and the 

photosensitive membranes of the outer segment. The protein components of 

the cilium participate in the intracellular transport through the cilium, in the outer
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segment disk morphogenesis and in the maintenance of discrete membrane 

domains3.
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Figure 3. Schematic diagram o f rod and cone photoreceptor cells.

There are two types of photoreceptor cells in the human retina: rods and 

cones. Rods represent about 95% of photoreceptor cells in the human retina 

and are responsible for sensing contrast, brightness and motion, while fine 

resolution, spatial resolution and color vision are perceived by cones. Humans 

have three types of cones that contain different visual pigments and are referred 

as blue, green, and red, or, respectively, short, medium and long wavelength 

sensitive cones. In the human retina, the majority of cones are concentrated in 

the central part of the macula (called fovea), which is the retinal structure 

characterized by the highest density of cone photoreceptors.
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1.2.1 Phototransduction

As already mentioned, transduction of absorbed light into electrical signal that is 

eventually perceived as sight, takes place within photoreceptor cells via a 

complex molecular process called phototransduction. Within rod cells, 

phototransduction initiates with the absorption of light by rhodopsin. Rhodopsin 

is the photopigment that accounts for 85% of the total amount of rod outer 

segment proteins4. It is composed of a protein backbone, termed rod-specific 

opsin, a seven transmembrane G-protein-coupled receptor, bound to the light- 

sensitive chromophore 11-c/s-retinal5. The absorption of a single photon by the 

chromophore (11 -c/'s-retinal) induces a rhodopsin conformational change. The 

chromophore undergoes photoisomerization to all-trans retinal, inducing a 

correspondent change in the opsin from its inactive to its active conformation5. 

The active form, known as Metarhodopsin II, subsequently catalyzes the 

activation of the G-protein transducin6. Transducin is a multisubunit peripheral 

membrane protein consisting of three subunits: a, (3 and y- The a subunit 

contains a binding site for GTP or GDP and a catalytic site for the hydrolysis o f 

bound GTP. The a subunit is associated with (3, and y subunits when GDP is 

bound (the inactive dark state), whereas they are separate when GTP is bound 

(the light-activated state). In the dark, nearly all of the transducin molecules are 

in the inactive state, bound to GDP. Following illumination inactive transducin 

encounters Metarhodopsin 11 within disc membranes. Metarhodopsin II induces 

the release of GDP from transducin and allows GTP to enter. Metarhodopsin II- 

transducin-GTP then dissociates into transducin a subunit-GTP, transducin (3 

and y subunits, and Metarhodopsin II. GTP bound to a subunit carries the 

excitation signal to PDE (see below), and Metarhodopsin II is free again to 

catalyze another round of GTP-GDP exchange7. During this stage, the signal is
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amplified by the activation of hundreds of transducin molecules by a single 

activated rhodopsin. The free alpha subunit of transducin, stimulates cyclic 

guanosine monophosphate phosphodiesterase (PDE). Similarly to transducin, 

the phosphodiesterase consists of a, P and two y subunits. The a and p 

catalytic subunits of PDE are kept inhibited in the dark by the y subunits. Upon 

activation of PDE, y subunits dissociate thus enabling the activation of the 

catalytic subunits to hydrolyze cyclic guanosine monophosphate (cGMP)8. The 

resulting decrease in cGMP concentration closes the cGMP-gated cation 

channels (CNG) in the photoreceptor plasma membrane9. In the dark, these 

channels actively transport sodium and calcium ions into the cell, while other 

channels maintain a continuous efflux of sodium maintaining a depolarized 

status. Closure of the channels, in response to light, disrupts the influx, while 

the efflux of sodium and calcium continues undisturbed. The decline in sodium 

concentration leads to hyperpolarization of the entire cell membrane, which 

results in decreased release of the neurotransmitter (glutamate) at the synaptic 

terminal10. The processes involved are schematically shown in Figure 4.
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Figure 4. Details o f phototransduction in rod photoreceptors (from Purves 

et al., Neuroscience, 2001).

The decline in calcium concentration mediates the recovery of the 

photoreceptor cell after a bleach of light. This is as important for maintaining 

sensitivity in vision as the cell’s ability to respond to a single photon. 

Deactivation of rhodopsin starts with its phosphorylation by rhodopsin kinase 

and is followed by the capture of rhodopsin by the protein arrestin9. The 

arrestin-binding prevents further activation of transducin and releases the all- 

trans-retinal from rhodopsin. The concentration of cGMP within the cell is 

restored by the increased synthesis of cGMP by a retinal guanylate cyclase 

(.RetGC). These pathways are triggered by the decline in the intracellular 

calcium concentration and mediated by a family of calcium-binding proteins, 

including recoverin and guanylyl cyclase activating protein (GCAP). The 

calcium-bound recoverin inhibits the activity of rhodopsin kinase11. Sustained 

phototransduction depends on replenishing the 11 -c/s retinal lost as a result of 

light activation of the visual pigments. Recycling of the vitamin A analogs (11-c/s

9
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retinal) takes place between the photoreceptor cells and the RPE, in a process 

called visual cycle12.

1.2.2 The visual cycle pathway

Absorption of a photon of light by rhodopsin causes isomerisation of the 

chromophore from 11-c/s-retinal to all-fra/is-retinal. In order to restore light 

sensitivity of rhodopsin, all-frans-retinal must be converted back to 11-c/'s-retinal 

through a multistep pathway called visual cycle (Figure 5). Visual cycle initiates 

in the photoreceptor cells, precisely in the inner surface of the rod disks 

membrane, with the release of all-frans-retinal which is subsequently 

transferred to the cytoplasmic surface of the disks by the retina-specific ATP- 

binding cassette transporter (ABC/44)13,14.

11 cRI

CRBP

IRBP IRBP

atRDH
ABCR

Figure 5. Diagram showing all the proteins involved in the visual cycle in 

rod photoreceptors and RPE (from Thompson and Gal, Progress in retinal 

and eye research, 2001).

In the photoreceptor cytoplasm, all-trans retinal is reduced by an all-trans retinol 

dehydrogenase (RDH) from the family of short chain acyl-CoA 

dehydrogenase/reductase(s) and the resulting all-trans retinol is transported

10
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across the subretinal space to the RPE15. All-trans retinol is also supplied to the 

RPE by the choroidal vasculature, entering the RPE in a receptor-mediated 

process involving recognition of a serum retinol-binding protein/transthyretin 

(RBP/TTR) complex16. Within the RPE, all-trans retinol is bound to the cellular 

retinal binding protein (CRBP)17. The conversion of vitamin A to 11-c/s retinal 

requires at least three enzymes associated with the RPE smooth endoplasmic 

reticulum, as well as RPE65, a unique RPE-specific protein. The first enzyme, 

lecithin retinol acyltransferase (LRAT), esterifies all-trans retinol to 

phosphatidlycholine in the lipid bilayer to form all-trans retinyl esters18. The 

second enzyme, retinoid isomerase, generates the 11-c/s double bond in the 

aliphatic side chain. This enzyme is also referred to as isomerohydrolase, as it 

has been proposed to catalyze the concerted hydrolysis of all-trans retinyl ester 

and the isomerization to 11-c/s retinol19. RPE65 is also required for the 

isomerization reaction20, but it has not been shown to have intrinsic isomerase 

activity. The third enzyme, 11-c/s retinol dehydrogenase ( HcisRDH), encoded 

by the RDH5 gene, converts 11-c/s retinol to the final product 11-c/s retinal21 in 

a reaction that is accelerated by the presence of the cellular retinaldehyde- 

binding protein (CRALBP)22. Alternatively, 11-c/s retinol can be esterified and 

stored in the RPE as 11-c/s retinyl esters. The 11-c/s retinal exits the RPE, 

traverses the subretinal space, and enters the photoreceptor outer segments 

where it combines with the opsin protein to form the visual pigments. 

Alternatively, 11-c/s-retinal could be produced by direct photoisomerization of 

all-frans-retinal with the help of retinal G-protein-coupled receptor protein (RGR) 

in RPE and Mullercells11,20,21.

11
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1.3 INHERITED RETINAL DISEASES

The complex retinal structure, and signaling network which includes numerous 

neurotransmitters, neuromodulators, phototransduction proteins, transcription 

factors, etc., lead to a wide range of targets for potential events that may cause 

pathogenic changes in its function. According to some estimates23 the eye is the 

fourth most common system affected by genetic diseases in man. At the same 

time, genetic eye diseases, both monogenic and genetically complex, comprise 

the commonest causes of blindness in children and adults in the developed 

world24. Among all the different eye diseases, retinal disorders are especially 

relevant. In the industrialized world, the most common diseases involving the 

retina are diabetic retinopathy, glaucoma, and age-related macular 

degeneration (AMD), which together affect a high percentage of the 

population25. Each of these diseases has both genetic and non-genetic 

components but they can be overall considered as multifactorial disorders. 

Compared to complex diseases, simple monogenic retinal diseases, i.e., 

diseases in which mutations in a single gene are responsible for the observed 

phenotype, are less frequent, tend to have an earlier onset and a more severe 

clinical course and are generally untreatable. Due to these characteristics, 

together with the possibility of exploiting genetic approaches to understand 

disease mechanisms that can be transferred to the more complex disorders, the 

scientific community devoted considerable research efforts in the past twenty 

years to the study of the molecular basis of retinal monogenic disorders, in spite 

of their relative lower frequencies versus complex diseases. Overall, there are 

more then 100 different forms of inherited retinal dystrophies, either isolated or 

syndromic, as listed in the online database of human genetic diseases (Online 

Mendelian Inheritance in Man-OMIM). Retinitis pigmentosa is by far the most
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studied inherited retinal disease and represents an example of the remarkable 

genetic heterogeneity connected with retinal dystrophies.

1.3.1 Retinitis pigmentosa

1.3.1.1 Clinical aspects

Retinitis pigmentosa (RP) is one of the leading causes of inherited visual 

handicap in the working population with a prevalence of 1:350026, while a 

congenital form of retinal dystrophy, Leber congenital amaurosis (LCA), is the 

most prevalent cause of hereditary visual handicap in children27. The term 

retinitis pigmentosa is used to describe a set of hereditary retinal diseases that 

feature degeneration of primarily rod and subsequently cone photoreceptors. 

From a clinical point of view, it is a highly variable disorder starting from the age 

of onset, with some patients developing symptomatic visual loss in childhood 

and others remaining asymptomatic until mid-late adulthood. The most 

frequently observed clinical pattern is represented by, initially, difficulties in dark 

adaptation and night blindness (usually in the adolescence) and loss of mid

peripheral visual field in young adulthood. As the disease advances, RP 

patients lose far peripheral vision, subsequently develop tunnel vision (Figure 

6), and finally lose also the central vision, usually by the age of sixty years28.

13
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Retinitis Pigmentosa

Figure 6. Visual field o f a healthy person compared to that of a retinitis 

pigmentosa patient (from http://webvision.med.utah.edu/).

Clinically, RP patients are diagnosed based on three main abnormalities: 

atrophy and pigmentary changes of the retina and the RPE, abnormal 

electroretinogram (ERG) and attenuation of the retinal vasculature and changes 

to the optic nerve head29. The pigmentary changes remain a common factor in 

RP diagnoses. Typically, these result from the release of pigment by 

degenerating cells in the retinal pigment epithelium. The pigment granules 

accumulate in perivascular clusters, known as “bone-spicule formations” due to 

their morphological appearance, in the neural retina. Consequently, early in the 

disease, the pigmented posterior pole of the eye, the fundus, develops a 

granular appearance. This is followed by the development of bone-spicule 

pigmentary deposits overlying the depigmented fundus30 (as shown in Figure 7).

14
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Figure 7. Ophthalmoscopic findings observed in RP. Fundus oculi 

examination o f a healthy individual (left) and of a patient with retinitis 

pigmentosa (right).

In the image of the diseased eye, optic-disc pallor, attenuated retinal arterioles, 

and peripheral intraretinal pigment deposits in a bone-spicule configuration are 

seen (from Hartong, D.T. et al., 2006).

Electroretinogram is the main tool for diagnosis and classification of 

retinitis pigmentosa. In this procedure, photoreceptor cells are either dark 

adapted (scotopic ERG) or adapted to a specific level of light (photopic ERG), 

and then stimulated with a brief flash of light. The summed electrical response 

of the retina is recorded extraocularly with a contact lens electrode. The 

scotopic ERG selectively measures the response of the rod photoreceptor cells, 

while the photopic ERG measures that of the cones. In typical RP, the rod loss 

manifests initially as alterations (decreased amplitude) of the scotopic ERG and 

shows a proportional loss of the photoreceptor cell and post-photoreceptor 

components of the ERG29 (Figure 8).

15
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Figure 8. Electroretinogram measurements.

ERG measurements of rod-isolated, combined rod and cone responses in dark 

adapted state and cone response in light-adapted state from normal individual 

(A), a patient with moderately advanced RP (B) and a patient with advanced RP 

(C) (from Farrar J. et al., 2002).

1.3.1.2 Genetics of RP

Retinitis pigmentosa can be inherited in all the main modes of inheritance, i.e., 

autosomal dominant (about 15-25% of cases), autosomal recessive (5-20%), X- 

linked (5-15%) and mitochondrial29,31. However, the majority of patients (50%) 

are apparently sporadic. Schematic classification of all the RP genes divided by 

the mode of inheritance with annotated approximate contribution to the disease 

is shown in Figure 9. In most cases, patients with retinitis pigmentosa have no 

associated systemic or extraocular abnormalities. Nevertheless, there are 

multisystem diseases, such as Usher and Bardet-Biedl syndromes, in which RP 

is accompanied by symptoms in other tissues and organs. Usher’s syndrome, in 

which retinitis pigmentosa is associated with hearing impairment, is the most 

frequent syndromic form of RP32, while in Bardet-Biedl syndrome, retinitis 

pigmentosa is associated with obesity, cognitive impairment, polydactyly, 

hypogenitalism, and renal disease33. As mentioned previously, a remarkable
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feature of retinitis pigmentosa is its high genetic heterogeneity: so far, more 

than 50 genes responsible for non-syndromic forms have been mapped 

(RetNet: http://www.soh.uth.tmc.edu/Retnet/). And what is even more

astonishing is the functional diversity of the types of gene that have been 

implicated in retinal degeneration.
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Figure 9. Mutation prevalence o f RP genes.

Diagrams listing all currently known RP genes, including those responsible for 

Usher and Bardet-Biedl syndromes, divided by their patterns of inheritance and 

showing their relative contribution to retinitis pigmentosa in the human 

population (from Hartong D et al., 2006.).
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The currently known RP genes can be classified based on their predicted 

functional activities, in the following groups: members of the phototransduction 

cascade, members of the visual cycle pathway, transcription factors, splicing 

factors, photoreceptor structural proteins, genes involved in protein folding or 

trafficking and pH balance (as schematically depicted in Figure 10).

1 ) Phototransduction Cascade:

As mentioned earlier, the signal transduction pathway in the eye transforming 

light into an electrical signal is known as phototransduction cascade. It is a 

highly complex process involving a number of genes, which are well 

characterized, although the possibility exists that additional regulatory proteins 

remain to be discovered. Almost all of the proteins participating in 

phototransduction have been shown to be associated with different kinds of 

inherited retinal degeneration diseases. The first gene to be discovered was 

rhodopsin (RHO) which was cloned and mapped in 198434. Since then, more 

than 100 different mutations in RHO have been identified, accounting for 

approximately 30% of all autosomal dominant retinitis pigmentosa24. In addition 

to RHO, other phototransduction genes have been shown to be responsible for 

different human retinal diseases, including alpha and beta subunits of 

phosphodiesterase (PDE6A, PDE6B)35' 36, cyclic nucleotide gated cation 

channel (CA/G)37 and arrestin (SAG)38. Besides these genes directly involved in 

phototransduction cascade, two other genes which are indirectly involved in the 

process are also shown to be mutated in the RP, guanylate cyclase activating 

protein 1B (GUCA1B)39 and inosine monophophate dehydrogenase 1 

(IMPDH1)40. GUCA1B activates guanylate cyclase in the low Ca2+ concentration 

after photobleaching in order to increase cGMP concentration41, while IMPDH1
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is responsible for the production of guanine nucleotides within photoreceptor

cells42.

'Members of the phototrasductio 
cascade

RHO, CNGA1, CNGB1, PDE6A, 
PDE6B,SAG,

GUCA1B, IMPDH1

Photoreceptor stuctural protein
RDS , ROM1, FSCN2,RPGRIP

Viability of neuronal cells
CERKL

Retinoids catabolism in the R P^\
LRAT, RPE65, RLBP1, RGR, J

BCA4, RDH12, MERT

pH balance
CA4

Transcription factor
NRL, CRX, NR2E3

Cell polarity

Proteins implicated in splicing
PRPF3, PRPF8, PRPF31 

  PAP1 ____ _

Protein folding/trafficking
RPGR, AIPL1, USH2A, RP1,RP2,TULP1

Figure 10. Schematic view o f rod photoreceptor cell with annotated 

functions of the genes known to cause isolated form of RP.

RPE-retinal pigment epithelium, OS-rod outer segment, IS-rod inner segment,

CB-cell body, ST-synaptic terminus.

2.) Visual cycle:

The second common group of genes mutated in RP comprises those encoding 

proteins of the visual cycle. It has been shown that the following members of the 

visual cycle pathway are mutated in RP:

-ABCA443,44, which accounts for about 5-6% of recessive RP;

-RLBP145, RPE6546 47, RGR48 and LRAT49 all involved in recessive forms 

of RP or Leber congenital amaurosis, with RLBP1 and LRAT accounting for 1% 

of cases, RGR for 0,5 % and RPE65 for 2%28 (see Figure 9).
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Another gene indirectly involved in the visual cycle pathway is the c-mer 

protooncogene receptor tyrosine kinase (MERTK), which is responsible for 

phagocytosis of the shed photoreceptor outer segments and was also shown to 

cause recessive RP50.

3.) Photoreceptor Structure:

Three genes important for maintenance of the highly organized photoreceptor 

structure were found to be mutated in RP, so far: RDS, RPGRIP, and FSCN2. 

Peripherin (RDS) is a membrane glycoprotein in the disc rim region of the rod 

and cone outer segment with an important function in discs assembly, 

orientation and stability51 and when mutated causes dominant RP. The RPGR- 

interacting protein (RPGRIP), responsible for Leber congenital amaurosis52 is a 

structural component of the ciliary axoneme with a suggested role in disk 

morphogenesis53. In 2001 Wada et al. identified a mutation in the retinal fascin 

homolog 2 (FSCN2) in all fourteen patients from four Japanese families with 

autosomal recessive RP54. Fascin is an actin-bundling protein with a putative 

function in regulation of outer segment disk morphogenesis and photoreceptor 

shortening55. Nevertheless, Zhang et al. subsequently showed that the same 

FSCN2 mutation is not associated with hereditary retinal degeneration in 

Chinese individuals putting into question whether or not FSCN2 is indeed an RP 

causing gene .

4.) Transcription factors:

Several transcription regulatory proteins are essential for ocular development23, 

57 but few of them are expressed specifically in the retina. So far, only three 

transcription factor genes, CRX, NRL and NR2E3, have been found to cause
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retinal diseases in humans. NRL and CRX, which synergistically control 

expression of photoreceptor cell-specific genes58, are known to be mutated in 

Rp59, 60 y he mutatjons appear both to interfere with photoreceptor cell 

development and, much later in life, with photoreceptor survival58'64. Recently, 

also NR2E3 was shown to be mutated in autosomal dominant RP65. It was 

suggested that NR2E3 may be involved in regulating the expression of rod 

photoreceptor-specific genes and may play a role in transcriptional regulatory 

network(s) during rod differentiation66.

5.) Splicing factors:

Interestingly, some genes for retinitis pigmentosa encode proteins that are 

essential for life. Recently it has been found that the ubiquitously expressed 

pre-mRNA splicing factors PRPF3, PRPF31, PRPF8, and PAP1 are involved in 

the pathogenesis of RP67'70. These genes encode components of the 

spliceosome, a vital complex that excises introns from primary RNA transcripts. 

These proteins are highly conserved in eukaryotes ranging from mammals to 

yeast, so the fact that mutations in these factors are detrimental only for rods 

leading to RP without apparently affecting the function of other tissues and 

organs in patients is particularly intriguing. While for PRPF31 haploinsufficiency 

appears to be the cause of the disease71, mutations in PRPF3 shows a 

photoreceptor specific dominant effect72.

6.) Genes involved in protein folding/trafficking:

The retina is an actively metabolic organ and undergoes a significant extent of 

intracellular trafficking, therefore it is reasonable to speculate that mutations in 

genes involved in protein trafficking or protein folding may be harmful. So far,

21



Introduction

five genes involved in such functions were found to be mutated in RP (AIPL1, 

RPGR, USH2A, RP1 and RP2). The aryl-hydrocarbon interacting protein-like 1 

(AIPL1) is probably involved in protein maturation or translocation of 

multiprotein complexes in the retina73,74 and, similarly, the putative function of 

the retinitis pigmentosa guanosine triphosphatase (GTPase) regulator (RPGR) 

is in protein trafficking regulation75,76. Usherin 2A (USH2A) is an extracellular 

matrix type protein and is involved in protein-protein interaction77. The RP1 

gene is responsible for morphogenesis of photoreceptors outer segment and 

protein transport78, while the suggested role of RP2 is in cell signaling or 

vesicular transport79.

Several other genes with functions different from the ones mentioned so 

far can cause retinitis pigmentosa. Ceramide kinase-like protein (CERKL) plays 

an essential role in cell survival and apoptosis80, while the crumbs homolog 1 

(CRB1) is believed to be responsible for cell polarity81. The tubby-like proteinl 

(TULP1) is responsible for recessive RP, but its function is still unknown, 

although there are suggestions that it may be involved in actin cytoskeletal 

functions such as protein trafficking82. Another gene with apparently no retina 

specific role, i.e., the carbonic anhydrase 4 (CA4) was found to be mutated in 

patients with RP. CA4 is important for the pH balance maintenance, and 

therefore mutations in CA4 may lead to photoreceptor malfunctioning since the 

phototransduction cascade is modulated by pH changes83.
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1.4 NEW APPROACHES TO IDENTIFY ADDITIONAL RETINAL DISEASE 

GENES

The remarkable genetic heterogeneity of inherited retinal disorders such as 

retinitis pigmentosa underscores the complexity inherent to the identification of 

all its genetic causes. As already mentioned, in the past couple of decades, 

great effort has been put into the determination of the causes that lead to retinal 

dysfunction, and nowadays there are over 190 genes identified as responsible 

for different inherited retinal disorders84. However out of 190 mapped genes 

only 130 have been identified so far (RetNet: 

http://www.sph.uth.tmc.edu/Retnet/). Additionally, it is widely believed that the 

total number of retinal disease genes is higher than what is currently known85. 

In order to have more chances of devising successfully therapeutic treatments 

for retinal diseases, it is necessary to have a comprehensive knowledge of all 

the genetic causes responsible for these diseases. Until a few years ago, the 

most successful strategy for retinal disease gene identification was represented 

by positional cloning. Positional cloning identifies a disease gene based on no 

other information about the gene except its chromosomal location. The 

procedure is based on mapping the disease as closely as possible in affected 

families by linkage analysis, followed by identification of candidate genes 

localized in the critical region and mutation analysis in patients. The completion 

of the Human Genome Project and all the related achievements, such as a) the 

complete sequencing of the human genome as well as of the genomes of 

several model organisms (the mouse above all) and the b) selective sequencing 

of transcribed sequences mainly represented by the Expressed Sequence Tag 

(EST) effort, to cite only a few, has completely revolutionized the approaches 

aimed at disease gene identification. The era of high-throughput cDNA

http://www.sph.uth.tmc.edu/Retnet/
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sequencing was initiated in 199186. The basic strategy involved random 

selection of cDNA clones and single, automated, sequencing reads from one or 

both ends of their inserts87. The term EST was introduced to refer to this new 

class of sequence, which is characterized by being short (typically about 400- 

600 bases) and relatively inaccurate (around 2% sequencing error). The use of 

single-pass sequencing was an important aspect of making the approach cost 

effective. In most cases, there was no initial attempt to identify or characterize 

the clones. Instead, they were identified using only the small bit of sequence 

data obtained, comparing it to the sequences of known genes and other ESTs. 

However, as a consequence of such a low specific approach, many clones were 

redundant with others already sampled and a smaller number represented 

various sorts of contaminants or cloning artifacts. Despite their fragmentary and 

inaccurate nature, ESTs have so far represented an invaluable resource for the 

discovery of new genes, particularly those involved in human disease 

processes88.

One of the novel approaches to identify candidate genes for retinal 

diseases is to pinpoint genes with exclusive or predominant retinal expression. 

The rationale behind this approach lays in the fact that in the absence of 

biological clues, disease gene candidacy is often assessed by expression 

profiling, whereby genes expressed specifically or preferentially in the tissue(s) 

affected by the disorder are prioritized for screening. Expression profiling has 

been particularly successful in ophthalmic genetics, in part because more then 

half of the cloned genes associated with retinal phenotypes are specifically or 

preferentially expressed in the retina89 (RetNet: 

http://www.sph.uth.tmc.edu/Retnet/). So high is this correlation between tissue 

specificity and clinical phenotype that the mining of genes with exclusive or

http://www.sph.uth.tmc.edu/Retnet/
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predominant expression profiles is considered to be an important tool for 

identification of retinal disease genes. Indeed, different research groups have 

used both bioinformatics tools and molecular methods for the identification of 

genes with enriched expression in photoreceptors and RPE89'95. For example, 

Lord-Grignon et al.90 took advantage of the Digital Differential Display (DDD) 

approach to compare the abundance of EST transcripts from whole-eye and 

retinal libraries with non-neuronal libraries, selecting the transcripts enriched in 

eye-derived libraries. DDD is a computational method that allows comparative 

analysis of the frequency of individual ESTs among pools of cDNA libraries. By 

this approach, the authors identified twenty-seven potentially novel highly 

represented ESTs in the retina. Retinal expression of the selected ESTs was 

confirmed by RT-PCR comparing the presence of the cDNAs in embryonic optic 

vesicle and adult retina to an entire embryo minus optic vesicle and adult liver. 

Cellular expression of the EST shown to be predominantly expressed in retina 

was assessed by RNA in situ hybridization on mouse retina. This analysis 

revealed that out of twenty uncharacterized ESTs, thirteen turned out to have a 

cell-specific mRNA distribution within the retina, with eight showing predominant 

expression in photoreceptors and/or RPE. Human orthologues for four 

photoreceptors/RPE enriched ESTs mapped within distinct cytogenetic intervals 

containing uncloned retinal disease genes. On the other hand, Blackshaw et 

al.95 used serial analysis of gene expression (SAGE) to generate retinal 

libraries, followed by Northern blotting and RNA in situ hybridization on mouse 

retina to verify retina enriched transcripts. SAGE is a method for comprehensive 

analysis of gene expression patterns. Three principles underlie the SAGE 

methodology: a) a short sequence tag (10-14bp) contains sufficient information 

to uniquely identify a transcript provided that the tag is obtained from a unique
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position within each transcript, b) sequence tags can be linked together to form 

long serial molecules that can be cloned and sequenced, c) quantitation of the 

number of times a particular tag is observed provides the expression level of the 

corresponding transcript. This approach enabled the authors to identify 264 

uncharacterized genes that were specific to or highly enriched in rods. In silico 

mapping of the human orthologs of genes identified revealed that 86 of them 

mapped within intervals containing uncloned retinal disease genes, 

representing 37 different loci. The two above described approaches for the 

identification of novel retinal disease genes were performed on mouse retina. 

Similarly, combination of in silico and experimental analysis was also used to 

identify ESTs predominantly expressed in the human retina89, 92, 94. For 

example, Sohocki at al.92 have identified novel retina/pineal-expressed EST 

clusters by exploiting the TIGR Human Gene Index database. The TIGR Human 

Gene Index database lists assembled clusters of ESTs, arising from the same 

transcript, and organizes these clusters according to tissue expression. The 

rationale behind the identification of pineal/retinal ESTs lays in the fact that the 

retina and pineal gland both originate embryologically from the most anterior 

region of the neural plate, the diencephalon. Development and differentiation of 

these organs are also related as many developmental genes, such as the 

homeobox genes XRX1 and CRX, have expression patterns limited to the 

developing retina and pineal gland. Furthermore, mammalian pinealocytes are 

evolutionarily related to photoreceptor cells and express a selective group of 

“retinal proteins” that are involved in the phototransduction cascade. The 

pineal/retinal specifically expressed ESTs identified by Sohocki at al.92 were 

experimentally confirmed by PCR on an adult retina cDNA library. Using the
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described approach, the authors identified seven novel candidate genes for 

known retinal diseases.

Despite the fact that many retinal dystrophy disease genes have been 

identified so far using the approaches described above, there is almost no 

information about the cellular expression of novel candidate disease genes in 

the human retina since most of the high resolution expression studies so far 

were carried out in the mouse retina95.

1.5 FUNCTIONAL CHARACTERIZATION OF RETINAL DISEASE GENES

In order to better understand the genetic basis and molecular mechanisms of 

retinal degeneration and to develop therapeutic strategies, numerous animal 

models have been generated96. Animal models do represent a very powerful 

tool in modern biology to study human diseases. Typically, these models are 

generated by knocking out or by overexpressing, in the selected organism, the 

gene to analyze, depending on the mutation mechanism. The majority of the 

animal models used in eye research are murine models, mainly due to the fact 

that mice are easily handled from an experimental point of view, have relatively 

short life span and their genes usually share high percentage of sequence 

identity with the corresponding human genes. Nonetheless, some notable 

differences between the human and the murine retina may hamper the transfer 

of the knowledge gained from mouse models to patients. For example, mice, 

like most nocturnal animals, do not have cone-rich areas for visual acuity such 

as the fovea97. Due to this, macular disorders, such as age related macular 

degeneration, which is a major cause of blindness in elderly98, cannot be 

studied in murine models. Thus, differences in distribution of rods and cones in 

human and mouse retina may be an obstacle in transferring observations
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derived from mouse models to humans. In addition, only two types of cones are 

present in the murine retina, short and middle wavelength cones, while the 

human retina contains also long wavelength cones. More importantly, not all 

mouse models show the same phenotype as patients with the same gene 

lesion. For example human patients with dominant RP or Leber congenital 

amaurosis caused by mutation in the IMPDH1 gene show a more severe 

disorder than a mouse model with a mutation in the orthologous murine gene42. 

Hence, to design efficient therapeutic approaches for RP and other eye 

diseases, it is essential to have detailed information about the expression of RP 

genes in the human retina. This is especially important in the cases when gene 

therapy may be applicable. The eye has a combination of features that make it 

ideally suited as a target organ for gene therapy.

Gene therapy is a technique for correcting defective genes responsible 

for disease development by several approaches: a) a normal gene may be 

inserted into a nonspecific location within the genome to replace a nonfunctional 

gene in recessive diseases99,10°; b) an abnormal gene could be swapped for a 

normal gene through homologous recombination, a technique not developed yet 

for in vivo therapy; c) wild type and mutant alleles of the affected genes can be 

silenced and a wild type allele, not sensitive to the silencing method, can be 

supplied101 in dominant diseases and also d) a therapeutic/trophic factor can be 

delivered in the affected tissue (bFGF, CNTF in the retina). A carrier system, 

such as viruses, must be used to deliver the therapeutic gene to the patient's 

target cells. The highly compartmentalized anatomy of the eye facilitates 

accurate delivery of viral particles to specific tissues under direct visualization 

using microsurgical techniques. This enables precise targeting of the 

therapeutic gene at target sites within the eye bulb while minimizing systemic
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dissemination and the unwanted systemic effects. Additionally, due to the ocular 

anatomical barriers and a unique immune environment, the eye presents a 

degree of protection from immune responses directed against vector antigens 

that might cause inflammation and limit transgene expression102. Since efficient 

vector-mediated retinal gene therapy is largely dependent on the site of 

expression of the therapeutic gene, detailed knowledge on the precise 

localization of the mutated gene is absolutely required. Unfortunately, to date, 

little information is available about the expression patterns of RP genes at the 

cellular level in the human retina and all the current knowledge is inferred 

through studies in the mouse. When using only the mouse models to study 

pathogenesis of human retinal disorders, some problems may arise when 

therapeutic strategies will be transferred to the man due to the already 

mentioned notable differences between the human and murine retina. Due to 

the above mentioned differences between murine and human retina, having the 

information about the expression profiles of both known retinal disease genes 

and putative new candidate genes in human retina is crucial for future progress 

of eye disease treatment. The general importance of providing information 

regarding the expression patterns of retinal genes is even more emphasized by 

the fact that the previously reported generation of RNA ISH gene expression 

atlases was very beneficial also for a better understanding of non-retinal 

diseases. For example, the generation of a human chromosome 21 gene 

expression atlas103 was an important step towards the understanding of gene 

function and of the pathogenetic mechanisms involved in Down’s syndrome. 

Similarly, an expression atlas of connexin genes104 provided an valuable source 

of information concerning this group of genes involved in several different 

diseases such as hearing, dermatological and peripheral nerve disorders.
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1.6 AIMS OF THE THESIS

The main goal of the research described in this thesis was to perform 

systematic gene expression studies in the human retina. Two main aims have 

been the focus of these studies: the first was the identification of new 

candidates for human retinal disorders, and the second was to provide 

information about the expression profiles in the human retina of known genes 

underlying retinal disorders. To this purpose, I undertook three steps:

1. I screened the publicly available human EST databases to identify novel 

transcripts specifically or preferentially expressed in the human retina;

2. I determined the expression profiles of novel or poorly characterized 

genes identified in step 1 in order to use this information to ascribe a 

possible role in the retina and define whether they may represent candidates 

for eye inherited disorders and

3. / performed expression studies in the human and murine retina of already 

known genes responsible for retinal inherited disorders (retinitis 

pigmentosa).

The research performed in the first part of the thesis was driven by the 

evidence that about 50% of RP patients do not have mutations in known retinal 

dystrophy genes. Therefore there is a need to identify new candidate genes to 

be screened for mutation in these cases. In order to define a gene as candidate 

for retinal disorder, I chose to look for genes preferentially expressed in the 

retina because most of the genes linked to these diseases show such a 

characteristic. For this reason, I focused on cellular localization in human retina 

of the genes selected by the combination of in silico prediction of exclusive or 

predominant retinal expression followed by experimental validation of their
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expression profiles. In order to identify new candidate genes for retinal 

disorders, new human transcripts with predominant retinal expression were 

identified by in silico approaches. The newly-identified transcripts underwent 

experimental validation of their in silico predicted retinal expression. As a first 

step, reverse transcriptase-polymerase chain reaction (RT-PCR) on human 

retina RNA as well as on RNA derived from other tissues was performed. This 

type of analysis was essential to validate the in silico prediction of identified 

genes with exclusive or predominant retinal expression, i.e. only genes 

confirmed by RT-PCR were considered for expression studies by RNA in situ 

hybridization (RNA ISH). These studies were followed by RNA ISH experiments 

to obtain expression profile at the cellular level to pinpoint the most interesting 

genes for further characterization. Finally, mutation analysis on a collection of 

Italian LCA and RP patients was performed for one selected candidate gene.

The second part of my PhD project focused on the determination of the 

expression profiles for genes known to cause retinitis pigmentosa. To overcome 

the lack of high-resolution expression data of genes mutated in RP in the 

human retina, I carried out a systematic analysis of the expression patterns of 

RP genes by RNA in situ hybridization both in human and mouse eye sections. 

Generation of an RNA expression atlas of RP genes in both species provides a 

comparative analysis of a given RP gene of interest or of a group of RP genes 

thus facilitating a more efficient translation of the knowledge gained from mouse 

models to patients. To this purpose, I undertook the following steps: selection of 

all known RP genes to be studied; design and preparation of the appropriate 

gene templates to perform RNA in situ hybridization studies on human and 

murine adult eyes; careful optimization of the handling procedure for the human 

eye in order to obtain a well preserved histology and reliable hybridization
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results; RNA in situ hybridization analysis of RP genes both in human and 

mouse retina; additional experimental validation of some expression profiles 

and finally, collection of the results in the form of an atlas. This study generated 

a publicly available RP gene expression atlas database and revealed interesting 

differences in the expression profiles of some of the analyzed RP genes in 

human compared to mouse retina and with respect to previously published 

data.
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2.1 BIOINFORMA TIC ANAL YSIS

2.1.1 In silico identification of human EST clusters predominantly 

expressed in retina

Clusters of Expressed Sequence Tags and/or other cDNAs showing 

predominant expression in the eye when compared to other tissues were 

retrieved from the Unigene database

(http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=unigene). This database 

enables to perform searches for cDNA clusters, from a particular organism, that 

are enriched for ESTs derived from libraries constructed from a particular 

tissue. Therefore, in order to identify human cDNAs that, based on their EST 

representation, are predicted to have a predominant expression in the eye, I 

queried the database using the following combination of query terms: 

9606[taxid] AND Eye[restricted] where “9606” is the identifier for Homo sapiens. 

The retrieved cDNA sequences of each cluster were assembled using the CAP 

server (http://www.infobiogen.fr/services/analyseq/cgi-bin/cap_in.pl) to obtain 

consensus sequences. In order to determine the genomic locations as well as 

the relation of these clusters to already known genes, each cluster-specific 

consensus sequence(s) was mapped to the human genome using the BLAT 

algorithm available at the Human Genome Browser server 

(http://genome.ucsc.edu/cgi-bin/hgBlat).

2.1.2 Identification and annotation of protein domains

The identification and annotation of protein domains and the analysis of protein 

domain architectures was performed by using the web-based tool Simple 

Modular Architecture Research Toll-SMART (http://smart.embl-heidelberg.de/).
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2.2 SAMPLE PREPARATION

2.2.1 Genomic DNA extraction

Mouse tail tips and human blood were incubated over night at 55°C in lysis 

buffer (50mM Tris.HCI pH7.5, 100mM EDTA pH8, 100mM NaCI, 1%SDS with

1.0 mg/ml Proteinase K). The following day, the genomic DNA was purified by 

Phenol-chloroform extraction and precipitated in 95% ethanol. After washing 

with 70% ethanol, the DNA pellet was dried at room temperature and 

resuspended in 300 pi milliQ H2O.

2.2.2 RNA extraction

Dissected mouse tissues (100mg) were placed in 1 ml of TRIZOL reagent 

(Invitrogen), homogenized and RNA extraction was performed. Tissue samples 

were homogenized in 1 ml of TRIZOL® reagent per 50-100 mg of tissue using 

power homogenizer. Homogenized samples were incubated for 5 minutes at 

room temperature (RT) to permit the complete dissociation of nucleoprotein 

complexes. After homogenization, 0.2 ml of chloroform per 1 ml of TRIZOL 

initially used were added followed by vigorous shaking for 15 seconds and 2 to 

3 minutes incubation at RT. Samples were then centrifuged at 12,000 x g for 15 

minutes at 4°C. Following centrifugation, the mixture separates into a lower red, 

phenol-chloroform phase, an interphase, and a colorless upper aqueous phase. 

RNA remains exclusively in the aqueous phase. The aqueous phase was 

transferred to a clean tube, and precipitation of the RNA from the aqueous 

phase was performed by mixing with 0.5 ml of isopropyl alcohol per 1 ml of 

TRIZOL. Samples were incubated at RT for 10 minutes and centrifuged at

12.000 x g for 10 minutes at 4°C. After removal of the supernatant, the RNA 

pellet was washed once with 1 ml of 75% ethanol per 1 ml of TRIZOL reagent
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used for the initial homogenization. The samples were mixed by vortexing and 

centrifuged at 7,500 x g for 5 minutes at 4°C. The RNA pellet was briefly air- 

dried and the RNA was dissolved in RNase-free water followed by 10 minutes 

incubation at 65°C, cooled in the ice for 10 minutes and stored at -80°C. Total 

RNA samples from human tissues were purchased from Clontech.

2.2.3 Synthesis of cDNA

Total RNA was reverse transcribed into cDNA by using the Superscript™ First 

Strand Synthesis System (Invitrogen). RNA/primer mixtures were prepared in 

sterile 0.2 tubes as follows:

Component Sample No RT Control Control RNA

1 pg total RNA n pi n pi —

Control RNA (50 ng/pl) — — 1 pi

10 mM dNTP mix 1 pi 1 pi 1 pi

Oligo(dT)i2-i8 (0.5 pg/pl) 1 pi 1 pi 1 pi

DEPC-treated water to 10 pi to 10 pi to 10 pi

Each sample was incubated at 65° C for 5 min, and then placed on ice for at 

least 1 min. To each RNA/primer mixture 9 pi of following reaction mixture was 

added, mixed gently, and collected by brief centrifugation.

Reaction mixture Sample Final concentration

10XRT buffer* 2 pi 1X

*(200mM Tris-HCI pH 8.4, 500mM KCI)

25 mM MgCb 4 pi 5mM

0.1M D TT 2 pi 0.01 M

RNaseOUT™ Recombinant

RNase Inhibitor 1 pi 40 units

36



Materials and methods

Each sample was incubated at 42°C for 2 min. Following incubation 50 units of 

Superscript™ II RT was added to each tube except the no RT control, mixed, 

and incubated at 42°C for 50 min. The reactions were terminated by incubation 

at 70°C for 15 min, chilled on ice and collected by brief centrifugation. Finally 2 

units of RNase H was added to each tube and incubated for 20 min at 37°C 

before proceeding to PCR.

2.2.4 Treatment of human and mouse eye bulbs

Human eye bulbs were obtained from cornea donors (Table 1) collected by the 

Italian Eye bank (Fondazione Banca degli Occhi del Veneto, Venice, Italy).

Table 1. Information about eye donors

INDIVIDUAL AGE CAUSE OF 
DEATH

POSTMORTEM 
TIME before eye 
removal
(HOURS:MINUTES)

43427/43428 30 Trauma 19:45
50608/50609 48 Tumor 6:45

52493 37 Trauma 5:45

53041 48 Cardiovascular 5:45

60933 48 Tumor 5:10

60935 41 Cardiovascular 8:45

62135 58 Cardiovascular 22:15

62658/62659 56 Tumor 19:40

Eye bulbs were dipped in 4% paraformaldehyde (PFA) right after cornea 

removal. Then, after removal of the lens, eye bulbs were fixed for an extra 48 

hours at 4°C with 4% PFA in phosphate-buffered saline (PBS), followed by 

cryoprotective treatment with 30% sucrose in PBS and embedded in 7.5%

gelatin. Mouse CD1 adult eyes were fixed only 24 hours and then treated in the
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same way. Twenty-micrometer cryosections were collected on Superfrost Plus 

slides, air dried and stored at -80°C.

2.2.5 Hematoxylin/Eosin Staining

Cryosections were thawed at RT, followed by 10 minutes fixation in 4%PFA and 

extensive washes with water 3 times for 5 minutes. Hematoxylin staining was 

performed for 1 minute at RT, followed by washes with tap water. Eosin staining 

was performed for 30 second. Sections were washed extensively with tap 

water, dehydrated with ethanol series for 1 minute each (30%-50%-70%-95%- 

100% ethanol), immersed twice in xylene for 1 minute, air dried and mounted 

with Eokitt.

2.3 EXPRESSION STUDIES

2.3.1 Reverse Transcriptase Polymerase Chain Reaction RT-PCR

The PCR reactions were set up as follow:

Final concentration in PCR mix:

milliQ H20

1XPCR buffer

I .SmMMgCh

300 pM dNTPs

0.4 pM forward primer

0.4 pM reverse primer

1U AmpliTaq Gold (Roche)

100-500 ng cDNA

Sequences of oligonucleotide primers used and annealing temperatures are 

listed in Table 2.
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Table 2. List of the primers used for RT-PCR analysis, annealing
temperatures for each primer pair and size of the obtained products.

Forward primer Reverse primer Annealing
temperature°C

Product 
size bp

1. Hs.40814 AT CACACCAGGCAGGAGTTT AGGCACATTTT CTT GGCAGA 58 250
2. Hs.441592 T GAACCCAGGT GACTT GACT C CCAAACT CT GT CTTT CCCT GA 58 240
3. Hs.532691 GAT GT GT ACAGCCGT GAGGAG AGAGCCT GT GCAT GTT CCTT 58 374
4. Hs.354243 TT CCT CAGGAGGACAGCTT CT GGACACTT GGCT GT CACACTT 60 372
5. Hs.131130 CTGCCTGCTGCT CTT CAT C CGTT GAGAAT GAT CCCAAAAG 57 221
6. Hs.433492 CAACT ACT AT GT GGGCCT GGA GT AGT GCTGGCT AAGCT GCTC 60 223
7. Hs.154140 AT CAGACCAAGCCAAACACAC CAGGCAGAT GCCT CTTTT AT G 57 213
8. Hs.433493 CAGGGGACGAAGT GTAT GT G CT GGAT GAAAGGAGGAGGAG 58 388
9. Hs.473495 T GCCT AGGAAGAGGAAT GGA CATTT CACCAAGCACCTTTTT 55 228
10. Hs.493589 CAAGGGAAGAT AGCTT CAAGT CA CCAAGGAGT CGT CCT GGT AG 61 360
11. Hs.69749 CCAAATT CTT CCCC ATACCA CCT AAGCAGCCCAGAGAAT G 61 357
12. Hs.21162 GT CCT CT CGGCCTT CT GT AA CTGGCGT ACCCCCAAT AG 56 222
13. Hs.247888 CAAAT GCACCATCCT GT GAG AT GGT CTT GGACGCCAT CT 61 263
14. Hs.124010 T CT CGGAGGT CCT AGACT CG GT CCTT GGCCACTT GCAT 56 232
15. Hs.171485 GACCCAGGT GT GGAAAACTT CTT ACCCGGTCT CCGCT CT 58 213
16. Hs.240053 GGT GGCCCACAT GAT GT ATT CAGTT CGGGTTTT CCTT GAA 55 222
17. Hs.386402 T CGCAT GAAAAAT GGAGCTT CCAT CCAAT GT GTCTGGGTA 56 215
18. Hs.295015 AGGT CT CAT CGCCAT AGCAGT CCCCCAT GCCACACTT AT C 57 362
19. Hs.221513 CT GGCT CCT CACCAAACT CT AACCT GGGCT CCTTTT CAAC 58 210
20. Hs.32766 CGCAGT CT CCAAAGGGT AAG GCT CAGAACAGGCCT CAGT C 55 209
21. Hs.527819 CT GGT GT CTTT CCCGAGT GT ACCACAGGCCT CTT CCTT CT 58 258
22. Hs.444181 CCCGACACAT CT CATT AGGG ACAT GCTGTCGGT CCT CAG 58 600
23. Hs.503113 GATTTT GTT GGGAGGCAAGA AGGAGT GGGCAT CT GT AGGA 58 210
24. Hs.148427 GCAGT ATTT CCGCAAC AT GA CAT GCT CCAGGGAGAAGTT G 57 218
25. Hs.131342 AACCT GAGAAGGGCCT GATT AAGCGT CCT CGGAT GAAAAT 58 340
26. Hs.549054 TTT GCCACAT ACGACGAGAG CGGGGGAAGAGAAGAAAGT C 58 230
27. Hs.185777 T GACCAAGGAGACAGT GGT G T GGCCT CATT CTT CT CAT CC 58 315
28. Hs.40808 CGGCCAT CAAGT ACCACTTT AACCAT GTT CCACAT CAGCA 56 350
29. Hs.33102 GGAGATCTTTGCGAGAAAGG GT GCGT GAT GAGGCT GAAGT 58 370
30. Hs.149585 C GCCT CC AGTTT GT ACGATT GCCCATGGCAAAACTCTAAA 56 236
31. Hs.449884 GGCAT GCCT CAGAGTT CAT C CGCT GT CT GCTT GATTT CAG 58 250

PCRs were performed under the following cycling parameters: denaturation 

95°C/1 min, annealing (temperatures listed in Table 2)/1 min and extension 

72°C/1 min for 35 cycles. The PCR products were analyzed by electrophoresis 

in 1% agarose gel (0.5pg/ml ethidium bromide) in TAE buffer (40mM Tris- 

Acetate pH7.5, 1mM EDTA).

2.3.2 RNA in situ hybridization

2.3.2.1 Synthesis of cRNA probes

Antisense and sense cDNA templates were obtained using a variety of 

approaches including the use of public Expressed Sequence Tag (ESTs) 

clones, PCR amplification of human/mouse genomic DNA or cDNA prepared
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from human/mouse total retina RNA with the specific primers tailed by 

sequences recognized by the RNA polymerases (T3, T7 or SP6). Finally, some 

of them were generous gifts of external investigators, as listed in Table 3.

Table 3. Information about the source used to obtain cDNA templates, 
template size and RNA ISH hybridization temperature used for each 

analyzed gene.
Probe Source Restriction 

enzymes for 
plasmid 
iinearization

Product 
size (bp)

Hybridization 
temperature °C

Hs.354243 PCR on genomic DNA 
T7 CGAGGAGAGCCCTAAGAAGG 
T3 ATTGATTTCGACTCCAGCAGA

1251 60

Hs.131130 PCR on genomic DNA 
T7 CGAAGACGGCGAGGAGGAGG 
T3 ACGCCAGCTTGAGGATGCGGA

1000 60

Hs.433492 PCR on genomic DNA 
1 7 ACCTGACAGCAGTGGACCCT 
T3 GAATACACTGTAGAGTATGCTCTG

985 60

Hs.69749 PCR on genomic DNA 
17 GGCT CCAAT GT AT CCAGGT C 
T3 ACAGTAT CATAAGC ATT CAGT GT

1050 60

Hs.21162 EST clone (IMAGE:397588) 1145 60
Hs.240053 PCR on genomic DNA

17 CGAACTGCCTACCACATCAC
T3 AGGTACATTTCTCAGAAGGGATGA

989 60

Hs.295015 EST clone (IMAGE:5182276) EcoRI
Notl

529 60

Hs.444181 EST clone (IMAGE:753760) 758 60
Hs.148427 RT-PCR

17 GGCAACTTCTCCCTGGAGCA 
T3 AAGAAGGGGCGCCAGGCATTT

994 60

Hs.171485 EST clone (IMAGE:40963) 1574 60
Hs.221513 EST clone (IMAGE:5296173 EcoRI 

Bam HI
1728 60

Hs.131342 EST clone (IMAGE:2010188) 1500 60
Hs.33102 EST clone (IMAGE:4745989) Notl

EcoRI
2033 60

Hs.449884 PCR on genomic DNA
17 1GAAGAT CT CCGGAAAAT GG
T3 AATGGGAAGGGACAGGAGAAG

1095 60

hABCA4 EST clone (IMAGE ID:2504257) 2000 65
mABCA4 EST clone (IMAGE ID:5400135) 781 65
hAIPLI PCR on genomic DNA 

17 GGCCAAGGCGGACCTCCAGA 
T3 CTTTCCTGGGGGAGGCCAAG

860 65

mAIPLI EST clone (IMAGE ID:6489895) 732 65

hCA4 EST clone kindly provided by William S. 
Sly

558 60

mCA4 EST clone (IMAGE ID:H3095H12) 736 60
hCERKL RT-PCR

17 AGGAAGCATGGAAGAAATGA 
T3 TTACATTTGGTTCTTTCCTA

962 60

mCERKL PCR on genomic DNA
1 7 1  GT GTTAAAT CT CCAT CCCA
T3 AGCTAGGTGGGGTGTTCTTAA

814 60

hCNGAI EST clone (IMAGE ID:357046) 1000 65
mCNGAI PCR on genomic DNA 

17 GGCAGAATTTCAATCAAGAG
1041 65
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T3 ATCCCAGGAGAAGATGATACT

hCNGBI PCR on genomic DNA
1 7 CTCCGCCGCCCCAGACCAGC
T3 CGGCTTCCCAAAGCACTGGG

753 65

mCNGB'l PCR on genomic DNA 
17 GGAGGGCTCTGGGGCCACAG 
T3 GTGGCTTCTGGTGGGGACCC

570 65

hCRB1 EST clone kindly provided by Anneke 
den Hollander

1000 60

mCRB1 PCR on genomic DNA
T7 ACT GCACCCTT GCCTAAAT G
T3 AGGCCTGTCACATTCACACTG

898 60

hCRX EST clone kindly provided by Rod 
Mclnnes

1600 60

mCRX RT-PCR
T7AT CCAGGAGAGT CCCCATTT 
T3 GACAGCCTGGTGCATCAGG

1284 60

hFSCN2 PCR on genomic DNA 
T7 CCCGGCCAGCCTGAAGATGC 
T3 GTGACTCTCCTCCAGATCAA

790 65

mFSCN2 EST clone kindly provided by Pierre D. 
McCrea

751 65

hGUCA1B PCR on genomic DNA 
T7 GAGGGGCGTTCATGGGGAGG 
T3 GTGACCCAGGGCACTGGTTT

630 65

mGUCA1B PCR on genomic DNA 
T7 GGGTAATGAAGATGCTACAA 
T3ATGTGACACTGGTCCTACTT A

961 65

hIMPDHI PCR on genomic DNA
17  ATGCACCCCAGTGTCCACTT
T3 AACT GT GAT CCCAAGT GT GC

641 65

mIMPDHI PCR on genomic DNA
1 7 TCTAGGAACAGCCTCCCTCC
T3 AACACAATTGTGACCCCAAAG

666 65

hLRAT
hLRAT-1

EST clone kindly provided by Dean Bok 
EST clone kindly provided by Dean Bok

700
728

65
65

mLRAT EST clone kindly provided by Dean Bok 2500 60
hMERTK EST clone kindly provided by Douglas 

Vollrath
796 60

mMERTK PCR on genomic DNA
17 1  ACT CTT GCT GG AGT GCT G A
T3 ATTT CACCT GGT GCT GT CCGG

979 60

hNR2E3 EST clone kindly provided by Anand 
Swaroop

742 65

mNR2E3 EST clone kindly provided by Jeremy 
Nathans

1188 65

hNRL PCR on genomic DNA 
17  CAGAGCGG1 1 1 ICCGACGCG 
T3 CAACCCCCAGAGCTCACTCT

910 65

mNRL PCR on genomic DNA
17  CG ACCACACACACCT CTT CC
T3 AGGGGGCCACTTAGGCAGTAC

921 65

hPAP1 EST clone kindly provided by Chris 
Inglehearn

592 60

mPAP1 EST clone kindly provided by Hiroyoshi 
Ariga

1108 60

hPDE6A PCR on genomic DNA 
1 7 TGCAGACAAGACCCAGAGAA 
T3 GTGTTGGGGACGTTAGCAAT

578 65

mPDE6A PCR on genomic DNA 
17  CAGGGGGT GCACCT GCAT CT 
T3 ATTTCCCCTTGAGGTTTGGTC

1041 65

hPDE6B EST clone kindly provided by Jean 
Bennett

1000 65

mPDE6B EST clone kindly provided by Jean 
Bennett

1061 65

hPRPF3 EST clone kindly provided by Shomi 1016 60
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Bhattacharya
mPRPF3 EST clone (IMAGE ID:5344086) 821 60
hPRPF31 EST clone kindly provided by Shomi 

Bhattacharya
970 60

mPRPF31 EST clone (IMAGE 10:5347609) 1800 60
hPRPF8 EST clone (IMAGE ID:341060) 678 60
mPRPF8 EST clone (IMAGE ID:5353944) 712 60
hRDH12 PCR on genomic DNA 

17  AAGAGGACCT GGGT GT CT CC 
T3 ATTGAAAGGCAAACGGAACTC

667 60

mRDH12 PCR on genomic DNA 
17  ATCCTCAAGGGCCCGGAACA 
T3 ATTTGGGGAGGGGGGAAATCT

613 60

hRDS EST clone (IMAGE ID:2299889) 700 65
mRDS EST clone kindly provided by Muna 

Naash
858 65

hRGR EST done (IMAGE ID:2110323) 876 65
hRGR-1 RT-PCR

T7 CAGCCTCAATACCCTGACCA 
T3 CCTTCTCCCTCTTCTGCGGT

765 65

mRGR PCR on genomic DNA
17  CATGCCCACAATCAACGCCA
T3 ATGGTCAGGGGACACCTAACC

731 65

hRHO EST clone (IMAGE ID:212541) 1000 65
mRHO EST clone (IMAGE ID:212541) 1000 65
hRLBPI PCR on genomic DNA

17  CTTTGTCCACGGGGATGACC
520 65

hRLBP1-1 T3 TTTAACCCGGGCTCCTTGCC 
RT-PCR
T7ATCT CACAGCCT GCAAGT GG 
T3 TT CT CAAT GAT GCAGAAGCC

808 65

mRLBPI PCR on genomic DNA
17 GAGATGACCTGGATGGCTTC
T3 ACCCAGCACCAAGGATCACAT

715 65

hRP1 PCR on genomic DNA 
17  CAGTT GAG AT GAAAGTT CG A 
T3 TTTTGCTGGCAACAGATGAC

1020 60

mRP1 PCR on genomic DNA
17 ACT CTTT GGATAAACT CT AT
T3 AGTTTAAAGTTACATTTACCC

1081 60

hRP2 PCR on genomic DNA
17  CTGGAGATGTAGACAGCTTC
T3 TACTTGCCAAGCTGGTTATC

653 60

mRP2 PCR on genomic DNA
17  GAT GTT GATAGCTT CT ATAA
T3 ACT GG AAGTT ACTATTAT C AA

1317 60

hRPE65 EST clone kindly provided by Enrico 
Surace

846 65

hRPE65-1 EST clone kindly provided by Enrico 
Surace

710 65

mRPE65 PCR on genomic DNA
17  CT AT CACCT GTTT GAT GGAC
T3 AGTT GTAT GGGGCAGT GT GA

992 65

hRPGR PCR on genomic DNA
17 1  GTT CAAAAGAGT CCCCT CA
T3 AAAT AT GTT CATT AT AAACA

630 60

hRPGR-
ORF15

PCR on genomic DNA 
17 AAAGG AT CT GT GAAAT ATGG 
T3 AAATTAAI 1 1 1AAAGTGTAA

1080 60

mRPGR PCR on genomic DNA
17  GAT GT CATT GACAGGT CAGA
T3 AACAGCAGAACCAACCAGACA

641 60

mRPGR-
ORF15

EST clone kindly provided by Alan Wright 1484 60

hRPGRIP EST clone kindly provided by Alan Wright 3000 60
mRPGRIP PCR on genomic DNA 

17 GCCCTAGAAACCAGGCCATC 
T3 ATAGAGGGAGGCTTAAAGGAG

711 60

hSAG EST clone (IMAGE ID:360579) 700 65
mSAG EST clone (IMAGE ID:5401150) 1200 65
hTULPI EST clone (IMAGE ID:221670) 758 65
mTULPI EST clone (IMAGE ID:1533494) 535 65

hUSH2A PCR on genomic DNA 
17 AGGATTTCAGCTCAGTGACT

1040 60
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T3 GGTATAGT CTT GT CT CT ACA
mUSH2A PCR on genomic DNA

T7 T CCAGT CT GT GGGGCCCACC
T3 ACAAGACACTGCCCCGGCTGT

1071 60

2.3.2.2 Transformation of E.coli with plasmid DNA

E.coli DH5a cells were prepared for transformation as follows: cells were grown 

to mid-log phase ( A 6o o = 0 .6 )  in Luria Broth (LB: 1% bactotryptone, 1% NaCI and 

0.5% Bacto-yeast extract) at 37°C with shaking. Cells were harvested by 

centrifugation at 2000 x g at 4°C, resuspended into 100ml (for each 100ml of 

culture) of ice cold 10% glycerol solution. This suspension was then centrifuged 

at 5000 x g for 15 min at 4°C. The resulting pellet was resuspended into 100ml 

(for each 100ml of culture) of ice cold 10% glycerol solution and centrifuged 

again. The pellet was resuspended in 2.5 ml (for each 100 ml of culture) of ice 

cold 10% glycerol solution and centrifuged again as above. The cells were 

resuspended in 3 ml of ice cold 10% glycerol solution, aliquoted and stored at - 

80°C. For each transformation, DNA was added to 50 pi of competent cells, and 

incubated in ice for 20 min; then cells were subjected to heat shock at 42°C for 

2 min and successively incubated on ice for 10 min. Cells were recovered in 1 

ml of LB and incubated for 40 min at 37°C, before plating on LB-agar containing 

appropriate antibiotics. Plates were incubated at 37°C overnight to allow 

bacterial colonies to grow.

2.3.2.3 Isolation of plasmid DNA from E.coli

Mini-preps plasmid DNA preparations were carried out using the QIAGEN MINI 

prep kits. Procedure is based on the alkaline lysis method105, but using a 

support column to purify isolated plasmid DNA. One aliquot of plasmid DNA
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was diluted in 1:200 in milliQ water, and the concentration was determined 

according to the following formula: absorbance of one A260 unit indicates a DNA 

concentration of 50 pg/ml.

2.3.2.4 Linearization of the plasmids

10|jg of plasmid DNA were linearized using 20 units of the appropriate 

restriction enzyme (New England Biolabs) in 50pl of buffer provided by the 

manufacturer with the enzyme. The reaction was incubated for 1 hour at 37°C. 

Enzyme digestion was then controlled by agarose gel analysis. The reaction 

product was then purified by extraction with phenol/chlorophorm and 

precipitated with 70% ethanol. The linearized plasmid was then resuspended at 

the concentration of 0.2pg/pl in DEPC H2O to be used as template for cRNA 

transcription.

2.Z.2.4 In vitro cRNA transcription

To synthesise cRNA probes the reaction mix was set up as follow:

5 pi of linearized plasmid/PCR product (1pg)

2 pi of 10X transcription buffer (Roche)

2 pi of DIG-labelling mix (Roche)

2 pi of appropriate RNA polymerase (T3, T7, SP6)-40 Units (Roche)

0.5 pi of RNase inhibitor

8.5 pi DEPC H20

The reaction mix was incubated for two hours at 37°C, after which 2 pi (20 

Units) of DNase-RNase free was added to the reaction mix and incubated for 15 

minutes at 37°C to degrade template DNA. 80 pi of H2O were added to the 

reaction followed by precipitation with 0.1 volume 4M LiCI and 3x volume
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absolute ethanol at -20°C for two hours. The probe was then centrifuged at 

2000 x g for 30 minutes at 4°C, washed with 70% ethanol, air-dried, dissolved in 

40 pi of DEPC H20  and stored at -20°C.

2.3.2.5 RNA in situ hybridization on cryostat sections

Sections were thawed after removal from -80°C, fixed with 4% PFA in PBS for 

15 minutes at room temperature. The slides were washed twice in PBT (1X 

PBS+0.1% Tween-20), followed by bleaching with 6% H2O2 in PBT for 5 min at 

room temperature. The sections were washed 3 times for 5 min in PBT, and the 

tissue was treated with either 1 pg/ml (mouse tissue) or 10 pg/ml (human 

tissue) proteinase K for 15 min to permeabilise the tissue. Proteinase K activity 

was blocked by incubation with 2 mg/ml glycine solution in PBT for 10 min, 

followed by extensive washes with PBT. Post-fixation was performed with 0.2% 

glutaraldehyde / 4% PFA solution for 15 min at room temperature. After 3 

washes with PBT for 5 minutes sections were prehybridized with pre warmed 

hybridization buffer (50% formamide, 5X SSC pH4.5, 50 pg/ml Yeast RNA, 1% 

SDS, 50 pg/ml Heparin) in humidified chamber (5X SSC, 50% formamide) for at 

least one hour at the appropriate hybridization temperature. The slides were 

overlaid with 200 pi of hybridization solution containing 200-400 ng/ml of DIG 

labelled cRNA probe, heated to 65°C for 10 minutes and then kept on ice to 

prevent re-naturation. The individual slides were covered with parafilm, placed 

into a humidified chamber and incubated over night at hybridization temperature 

as indicated in Table 3. Post-hybridization washes were performed 3 times for 

15 minutes with prewarmed post-hybridization solution 1 (50% formamide, 4X 

SSC, 1% SDS) at hybridization temperature; 3 times for 15 min with prewarmed 

post-hybridization solution 2 (50% formamide, 2X SSC) at temperature 5°C
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lower then the hybridization temperature and finally 3 washes for 10 minutes 

with TBST (1X TBS, 2mM Levamisole, 0.1% Tween-20) at room temperature. 

The sections were incubated for 1 hour at room temperature with blocking 

solution (10% sheep serum in 100mM Maleic acid, 150mM NaCI, 0.1% Tween- 

20). Alkaline phosphatase conjugated anti-DIG antibody was diluted 1:2000 in 

blocking solution and 200 pi were used to overlay each slide. Incubation was 

performed at 4°C over night in a humidified chamber. The following day sections 

were washed 4 times for 15 minutes with TBST followed by 3 washes for 10 min 

with NTMT (100mM NaCI, 100mM TrisCI pH 9.5, 50mM MgC^, 0.1% Tween-20, 

2mM Levamisole). After extensive washes sections were exposed to the 

substrate for alkaline phosphatase, nitroblue tetrazolium and 5-bromo-4-chloro- 

3-indoyl phosphate (NBT-BCIP; Sigma). Reaction was blocked by washes with 

PBS, pH 5.5, followed by postfixation in 4% PFA for 20 min. Slides were 

coverslipped with 70% glycerol in PBS or dehydrated and mounted with Eokitt.

2.3.3 Immunofluorescence

The slides were fixed with 2% PFA, washed briefly in PBS and blocked for one- 

two hours in blocking solution (10% Goat serum, NGS in PBT) at room 

temperature in a humidified chamber. The primary antibodies were diluted in 

blocking solution (3% NGS in PBT) at the appropriate concentration: 

rabbit anti-RGR antibody (kindly provided by Henry Fong106) 1:200 

mouse anti-RLBP1 antibody (Abeam) 1:200.

The sections were overlaid with 200 pi antibodies solution, covered with 

parafilm, placed into a humidified chamber and incubated over night at 4°C. The 

slides were washed three times with PBT at room temperature for 10 minutes. 

Florescent secondary antibodies (Alexafluor anti-rabbit and anti-mouse,
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Molecular probes) were diluted 1:1000 in blocking solution together with 

Fluorescein labelled peanut agglutinin-PNA (Vector) diluted 1:100. Incubation 

was performed for one hour at room temperature. Slides were extensively 

washed and mounted in Vectashield mounting medium (Vector).

2.4 MUTATION ANALYSIS

2.4.1 Sample preparation for DHPLC analysis

Genomic DNA amplifications of all the exons as well as exon-intron junctions 

were performed by polymerase chain reaction (PCR) using the specific 

oligonucleotide primer pairs listed below (Table 4). In order to obtain PCR 

products of the appropriate size (<500bp) for DHPLC analysis, the first exon of 

the analyzed gene (KCNV2) was divided into four overlapping segments. PCR 

reaction was performed under the conditions described in Chapter 2.3.1. 

Mutation analysis was performed on a collection of 120 Italian Leber congenital 

amaurosis (LCA), 96 retinitis pigmentosa (RP) and 4 cone dystrophies (CD) 

patient samples obtained in collaboration with the Ophthalmology department at 

the Seconda Universita’ di Napoli, Naples, Italy.

Table 4. List of the oligonucleotide primer pairs for the KCNV2 mutation 

analysis.
Forward primer Reverse primer Annealing

temperature°C

KCNV2 first-1 CCCTACCACAGCCAGGAGGA TCTGTCTGCT CCT CGTAGT C 58
KCNV2 first-2 AGCT AAGCCT GT GCGACGAC GAGT GCT GCT GCAT CTCCTC 58
KCNV2 first-3 T CCGT GGT GGCGCT GGCGCT GCGTT GGT GGCCCT CGCCCG 58
KCNV2 first-4 CCT GGT GGCCAT CCT GCCGC GGGCT GGGGAAGAGGAT GGG 58
KCNV2 second GT GCTAACAATT CCAT CCT G AT CT ACCAGCC ACAT GT CCT 50
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2.4.2 DHPLC analysis

In order to detect both homozygous and heterozygous changes, the PCR 

product obtained from each patient was mixed in a 1:1 ratio with the 

corresponding amplified sequence of healthy individuals. Amplified and mixed 

products underwent denaturing high performance liquid chromatography 

(DHPLC) analysis. DHPLC profiles from patients were compared to matching 

healthy individual profiles. Samples showing abnormal DHPLC profiles were re

analyzed by direct sequencing to identify putative mutations.

2.4.3 DNA sequence analysis

For DNA sequence analysis PCR products were processed using the ABI- 

PRISM 3100 genetic analyzer (Applied Biosystems, Foster City, California, 

USA).
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3.1 IDENTIFICATION OF PUTATIVE NOVEL HUMAN GENES WITH 

PREDOMINANT RETINAL EXPRESSION

My PhD project started with the identification of novel human retinal expressed 

genes. The rationale behind this part of the project was based on consideration 

that a high percentage of genes underlying RP have a specific expression in the 

retina. Therefore, identification of new genes transcribed either uniquely or 

prevalently in the retinal tissue will provide candidates to be tested for mutations 

in patients for which previous mutation analyses did not reveal the presence of 

mutations in already known retinal dystrophy genes. I would like to emphasize 

again, at this point, the importance of identifying genes involved in retinal 

diseases since the elucidation of the molecular events leading to the failure of 

retinal function is the first step towards the development of effective therapeutic 

interventions. A schematic outline of the strategy I applied to identify novel 

retinal-expressed genes is shown in Figure 11.

3.1.1 In sllico Identification of human EST clusters predominantly 

expressed in retina

Gene expression data already available in public databases were utilized to 

identify a list of putative eye-expressed transcripts for which no or little 

information is available regarding their precise expression profiles in the human 

retina. In silico prediction was based on the analysis of the Unigene database of 

Expressed Sequence Tags (ESTs). ESTs are sequences obtained by 

performing single, automated sequencing reads from one or both ends of cDNA 

clones inserts87.
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In silico identification o f the cDN/

Experimental verifi
prevalent expression by RT-PCF

'Characterization of expression at i 
cellular level by RNA ISH

Mutation analysis
genes

Figure 11. Schematic outline of the strategy undertaken to identify new 

candidate genes for human retinal dystrophies.

They represented, in the past fifteen years, an invaluable resource for both the 

discovery of new genes, including those involved in human disease processes88 

and for a better definition of the general features of mammalian transcriptomes. 

The Unigene database

(http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=unigene) represents one of 

the most valuable resources to analyze EST data in order to identify genes and 

to determine their predicted expression patterns. Currently, over 7,000,000 high 

quality human and 4,000,000 mouse ESTs are annotated in this database. By 

means of multiple sequence alignment analysis, Unigene groups the ESTs of a 

given organism in cDNA clusters, which are obtained by establishing relations 

between overlapping ESTs. The assignment of ESTs to cDNA clusters allows 

the database users to obtain in silico expression data for each given cluster 

through the analysis of the tissue origin of the ESTs belonging to it. For
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example, by comparing the number of ESTs derived from eye libraries in a 

particular cluster with the number of ESTs from libraries derived from non-eye 

tissues, it is possible to select, using statistical analysis, Unigene clusters with a 

predicted eye-predominant expression. The Unigene database provides a very 

user friendly interface to perform such kind of queries. By using this interface, I 

retrieved 104 human cDNA clusters of Expressed Sequence Tags predicted to 

have predominant expression in the eye when compared to other tissues. The 

selection of transcripts with exclusive or predominant expression in the eye was 

performed using the database option to select for clusters enriched in ESTs 

derived from a given tissue of interest (see chapter Materials and methods and 

Figure 12), and subsequently download (in FASTA format) all the sequences 

belonging to the selected clusters.

> NCBI UniGene
ORGANIZED V IE W  OF THE TRANSCfUPTO 'tE

My NCBI O

Search UniGene

UniGene
Homepage
News
FAQs
Query Tips
Library Browser
ODD
Download UniGene

Related
Databases
Gene
HomoioGene 
dbEST 
Trace Archive

NIH CDNA Projects
MGC ZOO XGC 
Finding cDNAs

for 9606[taxid] AND eye[restricted]

I \ Limits Preview/index i History | Clipboard ]  Details

Display Summary v  Show 20 v  Sort by

All: 103 Fungi 0 insects 0 Mammals: 103 Plants x  

Items 1 -  20 of 103

□  1: Hs-700881

'  Sendti

| Page [ 1

20 sequences

of 6 Next 

Links

Transcribed locus, moderately similar to X P_001108532.1 similar to Zinc finger protein 593 (Zinc 
finger protein T86) isoform 2 [Macaca mulatta]

□  2:

□  3:

□  4:

Hs.700312 

Transcribed locus 

Hs 695289

Family with sequence similarity 57, member B

Hs. 694925

CDNA clone IMAGE:5296173

FAM57B

12 sequences

52 sequences

14 sequences

Figure 12. Example of a Unigene query for EST clusters with restricted 

expression in human eye cDNA libraries.
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Even though the Unigene database identifies the ESTs that should belong to 

the same transcript and groups them together in a single cluster, it does not 

provide a consensus sequence for each cluster but only the sequences of all 

the ESTs belonging to it. Therefore, to obtain the consensus sequences of a 

given Unigene cluster, the EST sequences must be independently assembled. 

This was achieved by using the CAP software, which performs multiple 

sequence alignment of nucleotide sequences

(http://www.infobioqen.fr/services/analvseq/cqi-bin/cap in.pl). Once the 

candidate clusters were identified, it was necessary to carry out sequence 

analysis on all of them to define their identity. To this purpose, I first mapped 

each cluster-specific consensus on the human genome using the May 2004 

release of the Human Genome Browser at University of California Santa Cruz 

(UCSC) at http://qenome.ucsc.edu/cqi-bin/hqBlat. By BLAT analysis, I could 

determine the genomic locations of all clusters and their possible 

correspondence to already known genes. This analysis revealed that 60 out of 

the starting 104 cDNAs corresponded to either known genes with an already 

well-documented retinal expression profile or with an already reported functional 

role in eye development. All these clusters were therefore excluded from further 

analysis. Examples of the discarded clusters (see also Table 5) are represented 

by cluster Hs.517978, which maps to chromosome 3 and corresponds to the 

well studied GNAT1 gene, already known to cause congenital stationary night 

blindness, and cluster Hs.162754, mapping to chromosome 19 and 

corresponding to the LIM2 gene, which is an already known lens intrinsic 

membrane protein. The remaining 44 cDNAs did not correspond to well 

characterize genes and no information was available in terms of their 

expression profile at the time of this analysis (spring 2005.) Due to the constant

http://www.infobioqen.fr/services/analvseq/cqi-bin/cap
http://qenome.ucsc.edu/cqi-bin/hqBlat


Results

update of the databases used in this study, a revised analysis, performed in 

2007, showed slight differences in the current status of the selected EST 

clusters (see Table 5, column Notes).

Table 5. List of all the EST clusters retrieved from the Unigene database.
EST
cluster

Corresponding
gene

In silico 
expression 
(number of 
ESTs for each 
tissue)

Function Notes

1. Hs.117694 CABP5 Eye(13)
Muscle(1)

The product of this 
gene belongs to a 
subfamily of calcium 
binding proteins, 
which share similarity 
to calmodulin. 
Calcium binding 
proteins are an 
important component 
of calcium mediated 
cellular signal 
transduction.

2. Hs.31746 SCRT Eye(8)
Brain(12)
Pancreas(1)
Testis(1)

It codes for a neural- 
specific 
transcriptional 
repressor that binds 
to E-box motifs. The 
protein may promote 
neural differentiation 
and may be involved 
in cancers with 
neuroendocrine 
features.

3. Hs.288655 OTX2 Eye(44)
Brain(6)

Plays a role in the 
development of the 
brain and the sense 
organs.

4. Hs.114762 IRBP Eye(64)
Brain(10)
Blood(1)
Muscle(1)

IRBP shuttles 11-cis 
and all trans retinoids 
between the retinol 
isomerase in the 
pigment
epithelium and the 
visual pigments in 
the photoreceptor 
cells of the retina.

5. Hs.309958 GUCY2D Eye(4)
Lung(2)
Prostate(2)

Plays a key role in 
the
phototransduction 
cascade by 
controlling 
intracellular calcium 
concentration via the 
influence on cation 
channels of its
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enzymatic product, 
guanosine 3', 5'- 
cyclic
monophosphate
(cGMP).

6. Hs.307096 LACRT Eye(82)
Mammary
gland(1)

Function in 
augmenting 
lachrymal cell 
secretion.

7. Hs.194756 SIX6 Eye(11) Involved in eye 
development.

8. Hs.139263 CACNA1F Eye(16)
Lung(3)
Muscle(2)

Voltage-sensitive 
calcium channel 
mediate the entry of 
calcium ions into 
excitable cells.

9. Hs.118555 FSCN2 Eye(11) 
Ovary(1) 
Lymph 
node(1)

Acts as an actin 
bundling protein.
May play a pivotal 
role in photoreceptor 
cell-specific events, 
such as disk 
morphogenesis.

10. Hs.60843 KCNA1 Eye(4)
Brain(2)
Lung(5)

Mediates voltage- 
dependent 
potassium ion 
permeability of 
excitable
membranes; causes 
episodic ataxia 
without myokymia.

11. Hs.33538 RP1L1 Eye(21) Retinal-specific; 
expressed in 
photoreceptor.

12. Hs.2133 RPE65 Eye(18)
Brain(7)

Plays important roles 
in the production of 
11-cis retinal and in 
visual pigment 
regeneration.

13. Hs.546247 CRYGD Eye(17)
Ovary(2)

Crystallins are the 
dominant structural 
components of the 
vertebrate eye lens.

14. Hs.534315 GNB3 Eye(106)
Brain(9)
Muscle(4)
Pituitary
gland(11)

Guanine nucleotide- 
binding proteins (G 
proteins) are 
involved as a 
modulator or 
transducer in various 
transmembrane 
signaling systems.

15. Hs.533022 CRYBB3 Eye(18) Crystallins are the 
dominant structural 
components of the 
vertebrate eye lens

16. Hs.530311 LCN1 Eye(220) Member of human 
tear prealbumin.

17. Hs.517978 GNAT1 Eye(109)
Brain(10)

Transducin is a 3- 
subunit guanine 
nucleotide-binding 
protein (G protein)
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which stimulates the 
coupling of rhodopsin 
and cGMP- 
phoshodiesterase 
during visual 
impulses. The 
transducin alpha 
subunits in rods and 
cones are encoded 
by separate genes. 
This gene encodes 
the alpha subunit in 
rods.

18. Hs.479905 PRL1 Eye (114) This gene encodes a 
member of the 
proline-rich protein 
family. The protein 
may provide a 
protective function at 
the eye surface

19. Hs.467538 OPTC Eye(55)
Brain(11)

Opticin is present in 
significant quantities 
in the vitreous of the 
eye and also 
localizes to the 
cornea, iris, ciliary 
body, optic nerve, 
choroid, retina, and 
fetal liver. Opticin 
may noncovalently 
bind collagen fibrils 
and regulate fibril 
morphology, spacing, 
and organization.

20. Hs.449771 CHX10 Eye(14)
Brain(2)

CHX10 may control 
retinal bipolar cell 
specification or 
differentiation by 
repressing genes 
required for the 
development of other 
cell types.

21. Hs.435845 ESRRB Eye(14)
Colon(1)
Kidney(2)
Liver(2)
Lung(1)
Muscle(2)
Pancreas(1)

This gene encodes a 
protein with similarity 
to the estrogen 
receptor. Its function 
is unknown; 
however, a similar 
protein in mouse 
plays an essential 
role in placental 
development.

22. Hs.416707 ABCA4 Eye(16)
Lung(1)
Muscle(1)
Placenta(2)

Retinoids, and most 
likely retinal, are the 
natural substrates for 
transport by ABCA4 
in rod outer 
segments.

23. Hs.415790 CRYBA2 Eye(88)
Pancreas(19)
Placenta(3)

Crystallins are the 
dominant structural 
components of the
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vertebrate eye lens.
24. Hs.410397 KRT3 Eye(25) This type II 

cytokeratin is 
specifically 
expressed in the 
corneal epithelium 
with family member 
KRT12 and 
mutations in these 
genes have been 
associated with 
Meesmanns Corneal 
Dystrophy.

25. Hs.376209 CRYGS Eye(183)
Brain(8)
Blood(2)

This gene encodes 
the most significant 
gamma-crystallin in 
adult eye lens tissue.

26. Hs.373074 CRYBB2 Eye(309) 
Lung (1)

This gene encodes 
crystallin in adult eye 
lens tissue.

27. Hs.279887 AIPL1 Eye(133)
Brain(6)
Muscle(6)

The
photoreceptor/pineal 
-expressed gene, 
AIPL1, encoding 
aryl-hydrocarbon 
interacting protein
like 1, was mapped 
within the LCA4 
candidate region. 
The protein contains 
three
tetratricopeptide 
motifs, consistent 
with nuclear 
transport or 
chaperone activity.

28. Hs.251687 RP1 Eye(14)
Trachea(12)
Muscle(6)

Mutations in this 
gene cause 
autosomal dominant 
RP, and the encoded 
protein has an 
important but 
unknown role in 
photoreceptor 
biology.

29. Hs.249186 CRX Eye(66)
Muscle(2)

The protein encoded 
by this gene is a 
photoreceptor- 
specific transcription 
factor, which plays a 
role in the 
differentiation of 
photoreceptor cells. 
This homeodomain 
protein is necessary 
for the maintenance 
of normal cone and 
rod function.

30. Hs.247565 RHO Eye(439)
Brain(10)
Muscle(40)

This is the 
transmembrane 
protein which, when

1
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photoexcited, 
initiates the visual 
transduction 
cascade.

31. Hs.233363 GUCA1C Eye(15) This Ca(2+)- 
sensitive regulation 
of guanylyl cyclase 
(GC) is a key event 
in recovery of the 
dark state of rod 
photoreceptors 
following light 
exposure.

32. Hs.184085 CRYAA Eye(281) 
Kidney(23) 
Liver(1) 
Placenta(1) 
Thymus(1)

This gene encodes 
crystallin in adult eye 
lens tissue.

33. Hs.162754 LIM2 Eye(32) LIM2 functions in 
some way as a 
junctional
component, possibly 
involved with lens 
cell communication.

34. Hs.151710 PDE6A Eye(69)
Muscle(20)
Brain(6)

PDE6A encodes the 
cyclic-GMP (cGMP) 
specific
phosphodiesterase 
6A alpha subunit, 
expressed in cells of 
the retinal rod outer 
segment.

35. Hs.129702 BFSP1 Eye(92)
Liver(10)
Mammary
gland(2)
Skin(2)
Bone(2)

More than 99% of 
the vertebrate ocular 
lens is comprised of 
terminally 
differentiated lens 
fiber cells. Lens- 
specific intermediate 
filament-like protein 
BFSP1 is expressed 
only after fiber cell 
differentiation has 
begun.

36. Hs.125750 KERA Eye(30)
lntestine(2)

Important to the 
transparency of the 
cornea.

37. Hs.120090 C10RF36
(RD3)

Eye(21)
Brain(10)
Lung(1)

The retinopathy- 
associated RD3 
protein is part of 
subnuclear protein 
complexes involved 
in diverse processes, 
such as transcription 
and splicing.

38. Hs.104637 SLC1A7 Eye(25)
Brain(5)
Muscle(2)

Sodiurmdicarboxylat 
e sym porter activity.

39. Hs.92858 GUCA1A Eye(84)
Testis(38)
Brain(3)

Stimulates guanylyl 
cyclase 1 (GC1) 
when free calcium
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ions concentration is 
low and inhibits GC1 
when free calcium 
ions concentration is 
elevated. This 
Ca(2+)-sensitive 
regulation of GC is a 
key event in recovery 
of the dark state of 
rod photoreceptors 
following light 
exposure.

40. Hs.89606 NRL Eye(57)
Brain(8)

This gene encodes a 
basic motif-leucine 
zipper transcription 
factor of the Maf 
subfamily. The 
encoded protein is 
conserved among 
vertebrates and is a 
critical intrinsic 
regulator of 
photoceptors 
development and 
function.

41. Hs.80539 RCV1 Eye(134)
Brain(6)
Muscle(5)

This gene encodes a 
member of the 
recoverin family of 
neuronal calcium 
sensors. The 
encoded protein 
prolongs the 
termination of the 
phototransduction 
cascade in the retina 
by blocking the 
phosphorylation of 
photo-activated 
rhodopsin.

42. Hs.72981 NEUROD1 Eye(32)
Brain(10)
Lung(1)
Muscle(13)
Pancreas(33)

Differentiation factor 
required for dendrite 
morphogenesis and 
maintenance in the 
cerebellar cortex. 
Transcriptional 
activator.

43. Hs.66739 KRT12 Eye(325)
Brain(1)

KRT12 encodes the 
type I intermediate 
filament chain keratin 
12, expressed in 
corneal epithelia. 
Mutations in this 
gene lead to 
Meesmann corneal 
dystrophy.

44. Hs.63085 MPP4 Eye(31)
Brain(1)
Liver(1)
Muscle(9)

Play a role in retinal
photoreceptors
development.

45. Hs.57690 CRYBA4 Eye(201) This gene encodes 
crystallin in adult eye
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lens tissue.
46. Hs.54471 PDE6H Eye(13)

Brain(8)
PDE6H encodes the 
cyclic-GMP (cGMP) 
specific
phosphodiesterase 
6H expressed in cells 
of the retinal cone 
outer segment.

47. Hs.37135 CRYBB1 Eye(88)
Connective
tissue(33)
Lung(4)

This gene encodes 
crystallin in adult eye 
lens tissue.

48. Hs.32721 SAG Eye(117)
Muscle(20)
Brain(4)

S-arrestin, also 
known as S-antigen, 
is a major soluble 
photoreceptor protein 
that is involved in 
desensitization of the 
photoactivated 
transduction 
cascade.

49. Hs.1933 RLBP1 Eye(56)
Skin(16)

The protein encoded 
by this gene is a 36- 
kD water-soluble 
protein which carries 
11-cis-retinaldehyde 
or 11 -cis-retinal as 
physiologic ligands. It 
is a functional 
component of the 
visual cycle.

50. Hs.1892 PNMT Eye(5)
Brain(6)

The product of this 
gene catalyzes the 
last step of the 
catecholamine 
biosynthesis 
pathway, which 
m ethyl ates 
norepinephrine to 
form epinephrine 
(adrenaline). The 
enzyme also has 
beta-carboline 2N- 
methyltransferase 
activity. This gene is 
thought to play a key 
step in regulating 
epinephrine 
production.

51. Hs.1857 PDE6G Eye(224)
Connective
tissue(17)
Muscle(7)

PDE6G encodes the 
cyclic-GMP (cGMP) 
specific
phosphodiesterase 
6G gamma subunit, 
expressed in cells of 
the retinal rod outer 
segment.

52. Hs.1544 RGR Eye(24)
Brain(15)
Muscle(5)

The protein acts as a 
photoisomerase to 
catalyze the 
conversion of all-
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trans-retinal to 11 - 
cis-retinal. The 
reverse isomerization 
occurs with 
rhodopsin in retinal 
photoreceptor cells.

-

53. Hs.308 ARR3 Eye(24)
Lymph
node(1)
Muscle(2)

May play a role in an 
as yet undefined 
retina-specific signal 
transduction. Could 
bind to
photoactivated- 
phosphorylated 
red/green opsins.

54. Hs.278957 RAX Eye(14)
Hart(1)

The Rax homeobox 
gene (also known as 
Rx, with the human 
gene designated 
RAX or RX) is 
expressed very early 
in retinal
development and 
appears to direct the 
initial specification of 
retinal cell fate and 
the subsequent 
proliferation of retinal 
stem cells.

55. Hs.131010 NEUROD4 Eye(17)
Brain(1)
Testis(2)

Appears to mediate
neuronal
differentiation.

56. Hs.72910 CRYGC Eye(23)
Placenta(1)

This gene encodes 
crystallin in adult eye 
lens tissue.

57. Hs.46275 CRYBA1 Eye(123) This gene encodes 
crystallin in adult eye 
lens tissue.

58. Hs.209249 IMPG2 Eye(13)
Brain(6)

Interphotoreceptor 
matrix proteoglycan- 
2 is part of an 
extracellular complex 
occupying the 
interface between 
photoreceptors and 
the retinal pigment 
epithelium in the 
fundus of the eye.

59. Hs.290856 SSBP2 Brain(8)
Eye(7)
Lung(3)
Pancreas(3)

Single-stranded 
DNA-binding protein 
2 involved in 
regulation of 
transcription.

60. Hs.440417 GRIA4 Eye(23)
Brain(83)
Ear(1)
Testis(2)

lonotropic glutamate 
receptor. L-glutamate 
acts as an excitatory 
neurotransmitter at 
many synapses in 
the central nervous 
system.

61. Hs.185777 TMIE Eye(10)
Colon(1)

Transmembrane 
inner ear protein -
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Kidney(2) 
Muscle(1) 
Testis(1)

may play some role 
in a cellular 
membrane location. 
May reside within an 
internal membrane 
compartment and 
function in pathways 
such as those 
involved in protein 
and/or vesicle 
trafficking.

62. Hs.465612 none Brain(9)
Eye(5)
Lung(2)

unknown This cluster 
was retired 
in the 2007 
version of 
Unigene

63. Hs.444805 none Eye(28)
Brain(7)
Liver(1)
Muscle(1)

unknown This cluster 
was retired 
in the 2007 
version of 
Unigene

64. Hs.446662 none Eye(9)
Brain(2)
Kidney(1)
Placenta(1)

unknown This cluster 
was retired 
in the 2007 
version of 
Unigene

65. Hs.62813 INSM2 Brain(11)
Eye(4)

unknown

66. Hs.546732 none Eye(10)
Brain(5)
Muscled)

unknown

67. Hs.445613 none Eye(12) unknown
68. Hs.154140 OSAP Eye(16)

Mammary
gland(1)
Prostate(1)
Skin(2)
Uterus(4)

unknown

69. Hs.149585 GLULD1 Eye(10)
Tongue(1)

Glutamate-ammonia 
ligase (glutamine 
synthase) domain 
containing 1

70. Hs.131130 KCNV2 Eye(19)
Brain(2)
Muscle(1)
Testis(4)

Modulates channel 
activity by shifting the 
threshold and the 
half-maximal 
activation to more 
negative values

71. Hs.354243 none Eyed 8) 
Brain(1) 
Prostate(1)

unknown

72. Hs.240053 GSG1 Eye(64)
Brain(42)
Bone(1)
Muscle(1)
Ovary(4)
Placenta(1)
Testis(19)

unknown

73. Hs.40808 none Eye(26)
Brain(17)
Kidney(5)

unknown
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Placenta(6)
74. Hs.33102 TFAP2B Eye(147)

Brain(14)
Heart(11)
Kidney(23)
Lung(2)
Mammary
gland(45)
Muscle(9)
Skin(4)

AP-2 activate genes 
involved in a large 
spectrum of 
important biological 
functions including 
proper eye, face, 
body wall, limbs and 
neural tube 
development.

75. Hs.444181 ZNF536 Eye(12)
Colon(1)
Brain(9)
Lung(1)

unknown

76. Hs.21162 RTBDN Eye(35)
Brain(24)
Bone(1)
Liver(1)
Lung(3)
Skin(1)

C1q-domain 
containing protein.

77. Hs.503113 SIX30S Eye(5)
Lung(7)

unknown

78. Hs.441592 0TX20S Eye(12) unknown
79. Hs.386402 none Eye(10)

Colon(1)
Bone(1)

unknown

80. Hs.493589 C1orf32 Eye(9)
Brain(4)
Placenta(2)
Testis(3)

Transmembrane and 
immunoglobulin 
domain-containing 
protein.

81. Hs.295015 none Eye(6)
Brain(7)
Pancreas(11)

unknown

82. Hs.40814 none Eye(13) unknown
83. Hs.532691 none Eye(22) unknown Novel QRX 

transcript
84. Hs.433492 ANKRD33 Eye(8)

Placenta(7)
The function of 
ankyrin repeat 
domains is to 
mediate protein- 
protein interactions.

85. Hs.433493 C1QL2 Eye(3)
Brain(6)
Lung(1)

C1q-domain 
containing protein - 
subunit of the C1 
enzyme complex that 
activates the serum 
complement system.

86. Hs.473495 none Eye(5)
Brain(2)
Kidney(2)
Pancreas(2)
Stomach(1)
Testis(2)

unknown

87. Hs.69749 none Eye(13)
Brain(6)
Blood(1)
Kidney(1)
Prostate(2)

unknown

88. Hs.247888 GNG13 Eye(41) 
Brain(3)

Guanine nucleotide- 
binding proteins (G 
proteins) are
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involved as a 
modulator or 
transducer in various 
transmembrane 
signaling systems. 
The beta and gamma 
chains are required 
for the GTPase 
activity, for 
replacement of GDP 
by GTP, and for G 
protein-effector 
interaction.

89. Hs.124010 none Eye(9)
Brain(2)
Lung(1)
Mammary
gland(1)
Ovary(1)
Prostate(1)
Skin(1)
Testis(1)

unknown

90. Hs.171485 none Eye(4)
Brain(5)
Pancreas(5)
Uterus(1)

unknown

91. Hs.221513 none Eye(14)
Testis(1)

unknown

92. Hs.527819 none Eye(12)
Lung(1)
Muscle(1)

unknown

93. Hs.148427 LHX3 Eye(10)
Brain(4)

T ranscription factor 
that is required for 
pituitary development 
and motor neuron 
specification.

94. Hs.131342 CCL26 Eye(8)
Colon(2)
Hart(1)
Kidney(1)
Lung(2)

Chemokine (C-C 
motif) ligand 2)- may 
contribute to the 
eosinophil 
accumulation in 
atopic diseases.

95. Hs.549054 MIP Eye(13)
Brain(1)

Major intrinsic protein 
of lens fiber.

96. Hs.449884 CPLX4 Eye(129)
Brain(1)
Muscle(1)

Complexin IV - 
positively regulates a 
late step in synaptic 
vesicle exocytosis.

97. Hs.493947 none Eye(5)
Brain(5)
Uterus(1)

unknown

98. Hs.283661 none Eye(12)
Brain(6)
Lung(1)
Pancreas(3)

unknown

99. Hs.271783 none Eye(10)
Brain(2)
Spleen(1)

unknown This cluster 
was retired 
in the 2007 
version of 
Unigene

100. Hs.245886 none Eye(8) unknown This cluster
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Mammary
gland(2)

was retired 
in the 2007 
version of 
Unigene

101. Hs.193876 none Eye(7)
Lung(2)
Testis(1)

unknown

102. Hs.32766 none Eye(8)
Brain(3)
Lung(2)
Ovary(1)
Uterus(1)

unknown

103. Hs.130348 none Eye(27)
Brain(11)
Muscle(3)
Ovary(1)

unknown

104. Hs.435710 none Eye (52) unknown
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3.1.2 Expression studies of selected human cDNA clusters by RT-PCR

The newly-identified transcripts underwent experimental procedures aimed at 

validating their in silico predicted retinal expression. As a first step in this 

verification, reverse-transcriptase polymerase chain reaction (RT-PCR) was 

performed. This type of analysis was essential to validate the exclusive or 

predominant retinal expression of the in silico selected genes, i.e. only genes 

confirmed by RT-PCR were considered for further expression studies by RNA in 

situ hybridization. Out of forty-four cDNAs showing no correspondence with 

already characterized eye genes, thirty were selected for RT-PCR analysis 

(Table 6). The remaining fourteen clusters were excluded from the analysis as 

they were either mostly composed by repeated sequences (such as Alu, LINE 

and other kinds of repeats) or were present in more than one copy in the human 

genome, which prevented the design of specific oligonucleotide primers and a 

reliable RT-PCR analysis. The RT-PCR experiments were performed on RNA 

purified from six different adult human tissues (kidney, lung, liver, skeletal 

muscle, brain, and retina). Each RT-PCR experiment included several controls: 

no template control, genomic DNA and R T- control (sample treated in the same 

way as the others except that no reverse transcriptase enzyme was added). 

Amplification of the house keeping gene GAPDH was used to normalize cDNA 

amounts among the different samples. Out of the thirty analyzed cDNAs, six 

were expressed exclusively in the retina (an example is shown in Figure 13A), 

five were expressed in retina and brain (Figure 13B), and the remaining ones 

were expressed in retina but also in a few other tissues (Figure 13C). The RT- 

PCR results of all the clusters analyzed are summarized in Table 6. Two 

clusters failed to amplify even after several attempts with different 

oligonucleotide pairs.
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Hs. 441592

Hs. 240053

Hs. 295015

GAPDH

Figure 13. Examples of the RT-PCR analysis performed for the selected 

thirthy cDNA clusters.

A- example of a cDNA cluster showing the exclusive RT-PCR expression in the 

retina (Hs.441592), B- example of a cluster with expression in both retina and 

brain (Hs.295015), C- example of a cluster with expression in the retina and few 

other tissues, D- GAPDH amplification control

Concomitantly to the RT-PCR analysis, I performed additional, sequence 

analysis of all the selected clusters, which was aimed at the recognition of 

protein functional domains that could shed light on the possible function of 

these genes within the human retina. For this analysis, I exploited the web- 

based tool Simple Modular Architecture Research Toll-SMART 

(http://smart.embl-heidelberg.de/), which allows to identify and annotate protein 

domains and to reconstruct complex protein domain architectures. Results of 

this analysis are also reported in Table 6.
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Table 6. cDNAs selected for experimental validation of predominant retinal

expression by RT-PCR.
cDNA
cluster

Gene
symbol

Function Protein domains 
prediction by 
SMART

RT-PCR
expression

1. Hs.40814 none unknown Retina
Brain
Kidney

2. Hs.441592 0TX20S unknown Retina
3. Hs.532691 none unknown Retina
4. Hs.354243 none unknown Retina

Brain
Muscle

5. Hs.131130 KCNV2 Modulates channel 
activity by shifting 
the threshold and 
the half-maximal 
activation to more 
negative values

Signal peptide, K+ 
channel 
tetramerisation 
domain, coiled coil 
region,
transmembrane 
domain, ion 
transport protein 
domain

Retina
Kidney

6. Hs.433492 ANKRD23 The function of 
ankyrin repeat 
domains is to 
mediate protein- 
protein interactions

2 ankyrin repeat 
domains

Retina

7. Hs.154140 OSAP Corneal 
endothelium 
specific protein 1- 
unknown function

Retina
Kidney
Lung
Liver
Muscle
Brain

8. Hs.433493 C1QL2 C1q-domain 
containing protein - 
subunit of the C1 
enzyme complex 
that activates the 
serum complement 
system

Retina
Kidney
Lung
Liver
Muscle
Brain

9. Hs.473495 none unknown Retina
Kidney
Lung
Liver
Muscle
Brain

10. Hs.493589 C1orf32 Transmembrane
and
immunoglobulin
domain-containing
protein

Retina
Kidney
Lung
Liver
Muscle
Brain

11. Hs.69749 none unknown Retina
Brain

12. Hs.21162 RTBDN C1q-domain 
containing protein

Complement 
component C1q 
domain

Retina

13. Hs.247888 GNG13 Guanine nucleotide 
binding protein

Retina
Brain
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14. Hs.124010 none unknown No
amplification

15. Hs.171485 none unknown Retina
Brain
Muscle
Kidney
Liver

16. Hs.240053 GSG1 Germ cell specific 
gene 1-unknown 
function

GSG1-like protein Retina
Kidney
Brain

17. Hs.386402 none unknown Retina
Kidney
Lung
Liver
Muscle
Brain

18. Hs.295015 none unknown Retina
Brain

19. Hs.221513 none unknown Retina
Brain

20. Hs.527819 none unknown No
amplification

21. Hs.444181 ZNF536 May be involved in
transcriptional
regulation

ZnF C2H2 domain Retina
Brain

22. Hs.503113 SIX30S unknown Retina
23. Hs. 148427 LHX3 T ranscription factor 

that is required for 
pituitary
development and 
motor neuron 
specification

2 LIM domains 
and HOX 
homeodomain

Retina

24. Hs.131342 CCL26 Chemokine (C-C 
motif) ligand 2)- 
may contribute to 
the eosinophil 
accumulation in 
atopic diseases.

SCY- Intercrine 
alpha family (small 
cytokine C-X-G) 
(chemokine CXC)

Retina
Lung
Kidney

25. Hs.549054 MIP Major intrinsic 
protein of lens fiber

Retina
Kidney
Lung
Liver
Muscle
Brain

26. Hs. 185777 TMIE Transmembrane 
inner ear protein - 
may play some 
role in a cellular 
membrane 
location. May 
reside within an 
internal membrane 
compartment and 
function in 
pathways such as 
those involved in 
protein and/or 
vesicle trafficking.

Retina
Kidney
Lung
Liver
Muscle
Brain

27. Hs.40808 none unknown Retina
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Kidney
Lung
Liver
Muscle
Brain

28. Hs.33102 TFAP2B Transcription factor 
AP-2 beta- activate 
genes involved in a 
large spectrum of 
important biological 
functions including 
proper eye, face, 
body wall, limbs 
and neural tube 
development

Transcription 
factor AP-2

Kidney
Brain
Retina

29. Hs. 149585 GLULD1 Glutamate- 
ammonia ligase 
(glutamine 
synthase) domain 
containing 1

Kidney
Lung
Muscle
Retina

30. Hs.449884 CPLX4 Complexin IV - 
positively regulates 
a late step in 
synaptic vesicle 
exocytosis

2 LIM domains 
and HOX 
homeodomain

Retina
Kidney
Lung
Liver
Brain

This analysis was instrumental in identifying several interesting putative 

candidate genes for retinal disorders. For example, EST clusters Hs.21162 and 

Hs.433493 showed interesting RT-PCR expression patterns and predicted 

protein domains. Cluster Hs.21162 was expressed exclusively in retina (Figure 

15). On the other hand, cluster Hs.433493 showed weak expression in kidney, 

lung, liver, skeletal muscle and very strong expression in brain and retina. Both 

clusters, as assessed by SMART analysis, presented open reading frames 

(ORFs) that are predicted to contain complement component C1q domains. 

These observations are very intriguing considering the recent findings98,107 that 

in many cases age-related macular degeneration (AMD) is caused by a 

sequence variation in one of the members of the complement system- 

complement factor H, which is one of the inhibitors of the complement system. 

Due to the fact that the C1q domain triggers the complement pathway108,
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clusters Hs.21162 and Hs.433493, may represent new candidate genes for 

age-related macular degeneration.

Based on the results of the above described in silico and experimental 

integrated analysis, I was able to restrict my interest to a more confined number 

of genes to be further analyzed; namely fifteen cDNA clusters were selected for 

further expression analysis by RNA in situ hybridization in human retina. The 

fifteen clusters were selected based on their expression patterns assessed by 

RT-PCR analysis and protein domain prediction (see Table 6).

3.1.3 Expression studies of the seiected human cDNA clusters by RNA in 

situ hybridization

To test the expression of the selected retina-specific transcripts in different 

retinal cell types, I performed RNA in situ hybridization (RNA ISH) on human 

eye sections. RNA ISH is a powerful and sensitive technique that allows to 

define tissue expression patterns almost at a cellular level. Therefore, by using 

this technique, it is possible to determine the retinal cell layer and make 

assumptions on the retinal cell type expressing the gene under analysis. This is 

possible because the retina is characterized by a well-organized distribution of 

seven types of cells in histologically distinguishable layers (see Introduction). 

Determination of the precise cells expressing the genes of interest can be 

crucial in defining candidate genes for different eye diseases and therefore 

selecting the appropriate panel of patients to be screened for mutation in a 

given gene.

Eye bulbs used in this study were obtained from cornea donors (kindly 

provided by Italian Eye Bank in Venice), with different background in terms of 

age, sex, cause of death, postmortem time or possible therapeutic treatment, as
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reported in the Material and methods section. Unevenness in human samples 

from cornea donors can be seen as a positive variable since in this way I was 

able to assess expression of selected genes in different genetic and 

physiological background. In order to establish the best protocol for successful 

handling of human eye tissues for RNA in situ hybridization, I applied different 

conditions of tissue fixation and embedding. The priority was to achieve a 

balance between a good histological preservation and the prevention of mRNA 

degradation. Both features are fundamental for a successful RNA ISH 

experiment: abundant mRNA allows an efficient labeling and therefore 

detectable signal and a good histology permit a correct interpretation of the 

identity of positive cells.

Several human eye bulbs were treated differentially after cornea excision 

in order to set up the procedure. In the first pair of eye bulbs, the lens and part 

of the vitreous had been removed following cornea excision. After sectioning, a 

hematoxylin/eosin staining was performed to check the quality of the retina. 

Although the retina was histologically well-preserved, it appeared folded and 

completely detached from the retinal pigment epithelium (Figure 14A). To avoid 

the collapse of the retina, I used two different approaches. The first one was to 

keep the bulbs in fixative solution before dissecting the lens while the second 

consisted in making small excisions in the sclera to allow better fixative 

penetration. Both approaches allowed better histological preservation, however 

the retina was still partially detached from the retinal pigment epithelium (Figure 

14B). During the course of this study, I noticed that the status of the retina 

mainly depends on the postmortem time, i.e. shorter postmortem time 

guaranties better histological preservation of the retina.
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When the most appropriate protocol for histological preservation of the 

retina was established (see Material and methods), I optimized the RNA in situ 

hybridization experiment by assessment of one of the key steps in this 

procedure that is permeabilization of the tissue. I therefore tested different 

concentrations of Proteinase K (5, 10, 15 and 20 M9/M0 to establish the optimal 

concentration needed to permit probe accessibility while maintaining the 

integrity of the tissue. The concentration of 10 pg/pl turned out to give the best 

results. In order to test mRNA preservation after fixation and embedding, I 

performed RNA ISH with a specific cRNA antisense probe complementary to 

the highly abundant Rhodopsin gene mRNA. This experiment showed 

specificity of hybridization in the photoreceptor cell layer and demonstrated a 

good sensitivity of this technique both with histochemical or fluorescent 

substrates (as shown in Figure 14C and D).
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ONL

INL

GCL

Figure 14. Optimization o f the procedure for the handling of human eye 

sections for RNA in situ hybridization experiments.

A- hemotoxylin/eosin staining of the retina with the lens removed before fixation; 

B-hemotoxylin/eosin staining of the retina with the lens removed after fixation; 

RNA ISH on human retina using the digoxigenin-labeled RNA probe for human 

rhodopsin developed with histochemical (C) and fluorescence (D) substrate. 

ONL-outer nuclear layer, INL-inner nuclear layer, GCL-ganglion cell layer
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After establishing the appropriate experimental protocol for RNA ISH in 

the human eye, I carried on the expression analysis for the selected cDNA 

clusters. Out of the fifteen selected cDNA clusters, two, namely Hs.240053 and 

Hs.444181, analyzed with two independent cRNA probes, showed no 

detectable expression in the retina. The remaining thirteen clusters showed 

specific and distinct expression in retinal cells (Table 7).

Table 7. RT-PCR and RNA ISH expression analysis of the selected fifteen

cDNA clusters in human retina.

Cluster Corresponding
gene

RT-PCR RNA ISH EXPRESSION

Hs.131130 KCNV2 Retina
Kidney

PR

Hs.433492 ANKRD33 Retina PR
INL
GCL

Hs.21162 RTBDN Retina PR
INL
GCL

Hs.240053 GSG1 Retina
Kidney
Brain

no expression

Hs.148427 LHX3 Retina PR
INL
GCL

Hs.433493 C1QL2 Retina
Kidney
Lung
Liver
Muscle
Brain

PR
INL
GCL

Hs.131342 CCL26 Retina
Lung
Kidney

PR
INL
GCL

Hs.33102 TFAP2B Kidney
Brain
Retina

PR
INL
GCL

75



Results

Hs.354243 none Retina
Brain
Muscle

PR
INL
GCL

Hs.69749 none Retina PR
Brain INL

Hs.295015 none Retina PR
Brain INL

GCL
Hs.444181 ZNF536 Retina no expression

Brain
Hs.171485 none Retina PR

Brain INL
Muscle GCL
Kidney
Liver

Hs.221513 none Retina PR
Brain INL

GCL
Hs.449884 CPLX4 Retina PR

Brain INL
Kidney GCL

Abbreviations: PR-photoreceptors, INL-inner nuc ear layer, GCL-ganglion cel

layer
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The majority of the analyzed clusters showed mRNA transcription in all 

the layers of retina, as shown in Table 7. Cluster Hs.21162 (corresponding to 

the RTBDN gene) mapped to chromosome 19p13.13, was exclusively 

expressed in the retina, as shown by RT-PCR analysis, and sequence analysis 

suggested that the predicted protein product contains a domain similar to the 

complement component C1q. RNA in situ hybridization experiments were 

performed on four retinas derived from different individuals and this analysis 

confirmed, in all the different samples, the same expression throughout the 

entire retina, i.e. in photoreceptors, inner nuclear layer and ganglion cell layer 

(Figure 1'5). Cluster Hs.433492 mapped to chromosome 12q13.13, by RT-PCR 

analysis was expressed exclusively in retina, and highly transcribed in ganglion 

cells (GCL), in some cells of the inner nuclear layer (INL) and in the 

photoreceptors inner segment, while in other parts of the retina the signal was 

less intense (Figure 15).

Similarly, clusters Hs.449884 and Hs.33102 were expressed in all the 

layers of the retina, as defined by RNA ISH analysis, in different individuals 

(Figure 16). Hs.449884 corresponds to the complexin IV (CPLX4) gene and 

showed expression in retina, brain, kidney and liver, while cluster Hs.33102, 

which corresponds to the transcription factor AP-2 beta ( TFAP2B), showed 

expression exclusively in retina, brain and kidney.
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Figure 15. Expression analysis o f clusters Hs.21162 and Hs.433492.

Cluster Hs.21162 corresponds to the RTBDN gene while cluster Hs.433492 

corresponds to the ANKRD33 transcript, as assessed by BLAT analysis on the 

Human Genome Browser web server at UCSC; RT-PCR analysis showed that 

both Hs.21162 and Hs.433492 are expressed exclusively in the retina; RNA ISH 

analysis shows expression of both cDNA clusters in all the retinal layers. 

K-kidney, Lg-lung, L-liver, SM-skeletal muscle, Br-brain, R-retina, RT-RT- 

control, DNA-genomic DNA, B-no template control, M-100bp ladder, ONL-outer 

nuclear layer, INL-inner nuclear layer, GCL-ganglion cell layer.

78



Results

Hs.449884
H S . 4-4 983-4 -1  |

HS. 44-988 4 -2  | 
P r e d ic t io n s  Based on R efS eq, u n iP r o t ,  CenBank, 

CPLX4
con sen sus  CDSI------------ 1---- 1
R efSeq Genes

Hs.33102
Your Sequence from  B la t: Searc

.33162-0 * 1--------- 1.--------------
HS.33102-31 HS.33162-6 |

HS.33102-+ | HS.33102-5 |

MS.33 1 0 2 -7 | HS.33102-1 |
•' .3 31 02 -4 1  HS. 331 02-2 |

.3 31 02 -9 | 
Hs.331

.33102-10 H 

GeriB-ank.,

Consensus

RefSeq Genes
t — -H -  ■ , f t

Non-Human RefSeq Genes

Br R RT- DNA B J L  I  K Lg L SM Br R RT-DNA B

RT-PCR

ONL
ONL

RNA

INL
r * .

GCL
GCL

Figure 16. Expression analysis o f clusters Hs.449884 and Hs.33102.

Clusters Hs.449884 and Hs.33102 correspond to the Complexin IV and the 

transcription factor AP-2 beta genes, respectively, as assessed by BLAT 

analysis; RT-PCR analysis showed expression of the Hs.449884 in kidney, 

lung, liver, brain and retina while Hs.33102 was expressed in kidney, lung and 

retina; RNA ISH analysis of the Hs.449884 showed expression in few cells in 

the outer nuclear layer, inner nuclear layer and in some ganglion cells. 

Hs.33102 mRNA is more strongly expressed in photoreceptors, while less 

spread signal is detectable also in the inner nuclear layer and ganglion cell 

layer. K-kidney, Lg-lung, L-liver, SM-skeletal muscle, Br-brain, R-retina, RT-RT- 

control, DNA-DNA, B-no template control, M-100bp ladder, ONL-outer nuclear 

layer, INL-inner nuclear layer, GCL-ganglion cell layer.
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Even though the majority of the analyzed clusters were expressed 

throughout the retina, two clusters showed a more restricted expression. cDNA 

cluster Hs.131130, as assessed by RT-PCR analysis, was detected in retina 

and kidney, and RNA in situ hybridization, in four different individuals, revealed 

transcription of this gene exclusively in photoreceptors (Figure 17). Weak 

expression in the photoreceptor layer and in the inner nuclear layer was 

observed with the antisense cRNA probe for cluster Hs.69749. Interestingly, this 

cDNA cluster showed no sequence similarity to any annotated transcript in the 

genome and RNA was present only in retina and brain, as determined by RT- 

PCR (Figure 17).

Among the fifteen cDNA clusters selected for RNA in situ hybridization 

analysis, six did not present sequence similarity to known genes (see Table 7). 

Interestingly, RT-PCR analysis revealed that four of these clusters (Hs. 69749, 

Hs.295015, Hs.444181 and Hs.221513) have a restricted transcription in the 

nervous system, i.e. retina and brain. When I carried out the RNA ISH studies in 

the human eye, I found that clusters Hs.295015 and Hs.221513 did not show 

restricted expression profile at the cellular level, as in the case of Hs.69749, but 

cells in all the retinal layers transcribed the mRNA of these unknown transcripts 

(Figure 18). It would be very interesting to further investigate the function of 

these clusters in the retina, since exclusive expression in retina and brain 

suggests a specific role of these genes in neurons. Such preferential expression 

of Hs. 69749, Hs.295015, Hs.444181 and Hs.221513 in the retina makes these 

clusters good candidates for retinal disorders.
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Figure 17. Expression analysis of clusters Hs.131130 and Hs.69749.

Cluster Hs.131130 corresponds to the KCNV2 gene, while Hs.69749 does not 

share any sequence similarity to already known gene, as assessed by BLAT 

analysis; RT-PCR analysis showed restricted expression of KCNV2 in kidney 

and retina while Hs.69749 is expressed in brain and retina. RNA ISH analysis of 

the KCNV2 shows expression exclusively in the outer nuclear layer, while 

cluster Hs.69749 mRNA is weakly expressed in photoreceptors, and in the inner 

nuclear layer.

K-kidney, Lg-lung, L-liver, SM-skeletal muscle, Br-brain, R-retina, RT-RT- 

control, DNA-DNA, B-no template control, M-100bp ladder, ONL-outer nuclear 

layer, INL-inner nuclear layer, GCL-ganglion cell layer.

81



Results

It is worth mentioning that all the RNA in situ hybridization experiments 

were performed not only with antisense probes specifically detecting the 

endogenous mRNA but also with the corresponding sense probes, which acted 

as controls, for each selected cDNA cluster in four different individuals. 

Conclusions about the mRNA expression profile of each clusters was made 

only when no signal was observed with the sense probe and when the 

expression profile was highly similar in the different individuals analyzed. It is 

important to underline that out of the fifteen cDNAs selected as putative novel 

disease genes, only cluster Hs.148427, corresponding to the LHX3 gene, 

mapped within the critical region, defined by linkage analysis, of a human 

disease locus, namely the locus for a form of Joubert syndrome whose 

corresponding gene has not been identified yet. Joubert syndrome is an 

autosomal recessive disease, characterized by aplasia/hypoplasia of the 

cerebellar vermis, abnormal eye movements, ataxia, and mental retardation109.
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Figure 18. Expression analysis o f clusters Hs.295015 and Hs.221513.

Clusters Hs.295015 and Hs.221513 share no sequence similarity with any 

known gene, as assessed by BLAT analysis; RT-PCR analysis showed 

restricted expression of Hs.295015 and Hs.221513 in brain and retina; RNA ISH 

signal with cRNA probes for both clusters is detectable in all the layers of the 

retina.

K-kidney, Lg-lung, L-liver, SM-skeletal muscle, Br-brain, R-retina, RT-RT- 

control, DNA-DNA, B-no template control, M-100bp ladder, ONL-outer nuclear 

layer, INL-inner nuclear layer, GCL-ganglion cell layer.
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3.1.4 Mutation analysis of the cDNA cluster Hs.131130 (KCNV2)

Out of the fifteen cDNA clusters analyzed by RNA in situ hybridization only 

cluster Hs.131130 showed mRNA expression restricted to photoreceptors. Such 

an expression profile and the fact that the Hs.131130 cluster corresponds to the 

potassium channel, subfamily V, member 2 (KCNV2) gene known to control 

excitability in neuronal and various other tissues110 made this cluster a good 

candidate gene for retinal dystrophies. In order to test whether KCNV2 was 

involved in some retinal disorders, mutation analysis was performed on a 

collection of Italian Leber congenital amaurosis (LCA), retinitis pigmentosa (RP) 

and cone dystrophy (CD) patients. Screening of 120 LCA, 96 recessive RP and 

4 CD patients was performed using DHPLC analysis. All products displaying a 

DHPLC pattern different from controls were sequenced by direct sequencing. I 

did not detect any sequence variants in any of the patients available for this 

study. While this work was in progress, I learned that mutations in the KCNV2 

gene were found by another group in “cone dystrophy with supernormal rod 

electroretinogram” patients111,112.
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3.2 GENERATION OF AN RP GENE EXPRESSION ATLAS

The second part of my PhD project was to generate an expression atlas in 

human and mouse retinas of all the genes known to cause retinitis pigmentosa 

(RP). The motivation for this project lies in the fact that RP is one of the leading 

causes of blindness in world population and even though a number of genes 

causing RP have been identified there is a significant lack of information 

regarding the expression of RP genes in the human retina. This limitation may 

hamper development of proper therapeutic approaches that are normally based 

on the information gained by the analysis of murine models for this disease. To 

provide this important information I applied the RNA in situ hybridization 

technique to analyze the expression of all retinitis pigmentosa genes in the 

human retina and compared this pattern of expression to the localization of the 

transcripts of the homologous genes in the mouse.

In order to generate an expression atlas representing the RP genes, I 

performed RNA in situ hybridization for 34 known genes involved in the 

pathogenesis of non-syndromic forms of RP both in human and mouse retinas 

(Table 8).
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Table 8. Summary o f the RNA in situ hybridization expressions in human 

and mouse retinas.
G E N E RNA LO C A L IZ A T IO N  IN H U M A N RNA L O C A L IZA T IO N  IN  M O U S E

ABCA4 PR PR

AIPL1 PR PR

CA4 PR, INL, GCL nd

CERKL PR, INL, GCL PR, INL, GCL

CNGA1 PR PR

CNGB1 PR, INL, GCL PR, INL, GCL

CRB1 PR, INL PR, INL

CRX PR, INL PR, INL

FSCN2 PR, INL, GCL PR, INL, GCL

GUCA1B PR PR

IMPDH1 PR, INL, GCL PR, INL, GCL

LRAT RPE RPE

MERTK nd nd

NR2E3 PR PR

NRL PR, INL, GCL PR, INL, GCL

PAP1 PR, INL, GCL PR, INL, GCL

PDE6A PR PR

PDE6B PR PR

PRPF3 PR, INL, GCL PR, INL, GCL

PRPF31 PR, INL, GCL PR, INL, GCL

PRPF8 PR, INL, GCL PR, INL, GCL

RDH12 PR PR

RDS PR PR

RGR RPE, PR, INL RPE

RHO PR PR

RLBP1 RPE, PR, INL, GCL RPE, INL, GCL

RP1 PR PR

RP2 PR, INL, GCL PR, INL, GCL

RPE65 RPE RPE

RPGR PR, INL PR

RPGR-ORF15 PR PR, INL, GCL

RPGRIP PR PR

SAG PR PR

TULP1 PR, INL, GCL PR, INL, GCL

USH2A PR, INL, GCL PR, INL, GCL

Abbreviations: PR-photo receptors, INL-inner nuclear layer containing bipolar 

cells, horizontal cells, amacrine cells and Muller glia cells, GCL-ganglion cell 

layer, RPE-retinal pigment epithelium, nd-not detectable
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To retrieve appropriate human and murine templates for this study, a 

variety of approaches were used including the use of public Expressed 

Sequence Tag (ESTs) clones, PCR amplification of human/mouse genomic 

DNA or cDNA prepared from human/mouse total retina RNA with the specific 

oligonucleotide primers tailed by sequences recognized by the RNA 

polymerases (T3, T7 or SP6). Finally, some of templates were obtained through 

generous gifts of external investigators. For more detailed information about 

each template please refer to Chapter 2.3.2.1 in the Materials and methods 

section.

For the human transcripts, all the experiments were performed on eye 

sections obtained from more than one individual. As already mentioned in 

Chapter 3.1.2, eye bulbs were obtained from several individuals with different 

age, cause of death, post-mortem time before eye removal or possible 

therapeutic treatment. Information about eye donors is shown in Table 1 in 

section Materials and methods.

To understand if human samples heterogeneity may interfere with the 

detected expression patterns, I tested the majority of the genes in individuals 

53041 and 62659. Individual 53041 was selected as representative of the 

samples with short post-mortem time before eye bulbs were removed and fixed, 

while post-mortem time for the eye sample obtained from individual 62659 was 

considerably longer. Additionally, individual 62659 suffered from cancer so it is 

very likely that was under some therapeutic treatment. I confirmed that both 

samples were appropriate for RNA ISH analysis because, as shown in Figure 

19, most genes have highly similar expression profiles in these two individuals, 

suggesting that no significant differences between diverse eye samples could 

be observed.
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Figure 19. Evaluation o f the possible influence o f post-mortem time on 

RNA ISH findings in the human eye.

The PDE6A, SAG and CRB1 genes showed very similar RNA ISH expression 

patterns in both the 53041 and 62659 individuals, characterized by different 

post-mortem times (see the text for details). and SAG showed restricted

expression in photoreceptors (ONL) while CRB1 was expressed in ONL and 

INL.

ONL-outer nuclear layer, INL-inner nuclear layer, GCL-ganglion cell layer.

CRB1

ONL

INL
V

GCL
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Out of the 34 analyzed genes, only one gene (MERTK) failed to show a 

signal both in human and mouse eye sections, even though RT-PCR 

experiments confirmed the expression of MERTK in both human and mouse 

eyes (Figure 20). As expected, the majority of the analyzed genes (29 out of 34) 

showed identical expression patterns in human and mouse eyes (Table 8). 

Examples of similar expression patterns are shown in Figure 21.

A
MERTK

B
HPRT

Figure 20. RT-PCR analysis of MERTK expression.

MERTK expression is detected in human retinal pigment epithelium, retina and 

muscle RNAs, as well as in mouse retina RNA by RT-PCR (A). HPRT control is 

shown in (B).

RPE-retinal pigment epithelium, R-retina, M-muscle, DNA-genomic DNA, B- 

negative control, L-100bp ladder.

RPE R M DNA B L R  DNA B

HUMAN MOUSE
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IMPDH1 NR2E3 PRPF31 RDS

Figure 21. Examples of genes with similar RNA ISH expression patterns in 

human and murine eyes.

RNA expression patterns of the IMPDH1 (A, E), NR2E3 (B, F), PRPF31 (C, G) 

and RDS (D, H) genes in human (A-D) and mouse (E-H) adult retina sections. 

The strong signal in the inner segment of photoreceptors (IS) reflects the 

distribution of the cytoplasmatic space where RNA accumulates in 

photoreceptors.

ONL-outer nuclear layer, INL-inner nuclear layer, GCL-ganglion cell layer.

Since the main aim of this part of my PhD project was to provide publicly 

available information on expression patterns of the retinitis pigmentosa genes, 

all the data generated during this work have been collected into an ad-hoc 

developed on-line database, the RP gene expression atlas database (available
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at http://www.tiqem.it/RPexp/). The database was designed to allow data mining 

in a user-friendly manner. For each analyzed RP gene, it contains all the 

expression data obtained on the eye samples from at least two different 

individuals and information regarding age, cause of death and postmortem time 

of all eye samples used. Additionally, the database also contains expression 

data obtained with the sense control probes for all the genes analyzed and 

expression profiles obtained with additional cRNA probes recognizing a specific 

gene, when applicable (Figure 22).

Human Mouse

Click on the picture to see a full view 
View expression in a second eye sample 
View Additional Template For This Gene 
View Additional Template 2 For This Gene 
View Additional Template 3 For This Gene

More Informations About This Gene 

View Sense Control 

Template Source:

genomic PCR product obtained by using:

Primer-F: CAGAGCGGTTTTCCGACGCG 
Primer-R: CAACCCCCAGAGCTCACTCT

Template Size (bp): 910 

View Template Sequence

Polymerase used to generate antisense riboprobe: T3

Polymerase used to generate sense riboprobe: T7 

Hybridization Temperature: 65

Click on the picture to see a full view

More Informations About This Gene 

View Sense Control 
Template Source

genomic PCR product obtained by using:

Primer-F: CGACCACACACACCTCTTCC 
Primer-R: AGGGGGCCACTTAGGCAGTAC

Template Size (bp): 921 

View Template Sequence

Polymerase used to generate antisense riboprobe: T3

Polymerase used to generate sense riboprobe: T7 

Hybridization Temperature: 65

Figure 22. Schematic view of the information accessible from the RP gene 

expression atlas database (http://www.tigem.it/RPexp/) for each analyzed 

gene.
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3.2.1 CNGB1, USH2A and FSCN2 are expressed across all retinal cell 

layers

Among the above mentioned 29 genes showing identical expression patterns in 

human and murine retinas, I observed interesting mRNA localization for the 

following genes: CNGB1, USH2A and FSCN2. The observed expression data 

for these genes are not concordant with previously reported findings. According 

to the literature, CNGB1, USH2A and FSCN2 are all exclusively expressed in 

photoreceptors55, 77' 113-115| whereas I obtained more widespread expression 

profiles. As shown in Figure 23A, the mRNA of the rod cGMP-gated channel 

beta subunit protein (CNGB1) is detectable in all retinal cell layers both in 

human and in mouse retinas (Figures 23A, 23D). A similar result was observed 

when Usherin-2A mRNA (USH2A) was analyzed, as shown in Figure 23B and 

23E. The USH2A is characterized by the presence of two main isoform, a 

shorter one spanning twenty-one exons and a longer one spanning seventy-two 

exons. In order to confirm this unusual expression pattern and to exclude the 

possibility that this pattern was due to differential expression of the two USH2A 

isoforms, I designed an additional RNA probe for USH2A. Since the first RNA 

ISH expression data for the USH2A were obtained with a template specific for 

the long form, I designed a template also for the short form of USH2A. By 

performing RNA ISH with these two probes, one spanning the last exon and the 

3 ’UTR (corresponding to the USH2A long isoform) and a second covering the 

5’-UTR and the first exon of the USH2A (recognizing both isoforms), the 

possibility of unspecific signal is likely to be avoided. Expression in all the retinal 

layers was confirmed also with the second probe suggesting that indeed 

USH2A is not expressed exclusively in photoreceptors (the results of the
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USH2A expression analysis with both probes are accessible in the on-line 

database).

CNGB1 USH2A FSCN2

Figure 23. Localization o f CNGB1, USH2A, and FSCN2 mRNA in human 

and mouse retinas.

Hybridization of human retinas (A-C) and murine retinas (D-F) with RNA probes 

for: CNGB1 (A and D), USH2A (B and E), FSCN2 (C and F). In the human and 

in the mouse retina they are widely transcribed in IS, ONL, INL and GCL.

OS, photoreceptors outer segment; IS, photoreceptors inner segment; ONL, 

outer nuclear layer; INL, inner nuclear layer; GCL, ganglion cell layer.
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Finally, homogeneous expression in human and mouse retinas with more 

intense staining in the ganglion cell layer was also detectable with RNA probes 

for the retinal fascin homolog 2 (FSCN2) gene (Figures 23C and 23F). 

Interestingly, also the Neural retina leucine zipper (A/RL) transcript was detected 

throughout all the layers both in human and mouse retina. These results were 

unexpected due to fact that NRL has been described as a photoreceptor- 

specific gene116"118. Similarly to the USH2A gene, I generated two highly 

specific riboprobes spanning the opposite sides of the both the mouse and 

human NRL transcript. I also generated two additional probes recognizing 

different NRL splice isoforms annotated in the UCSC Human Genome Browser 

in order to define whether the obtained widespread signal was due to the 

different expression profiles of different isoforms (Figure 24). Nevertheless, the 

four specific probes of the human NRL and the two specific probes for the 

mouse Nrl transcript showed identical expression patterns (data accessible at 

http://www.tiqem.it/RPexp/ and Figure 24). Additionally, the expression of the 

Nrl, Cngbl, Ush2A and Fscn2 mRNAs was also present in the INL and GCL of 

the AipH -/- mouse model, which lacks photoreceptors119 as assessed by the 

absence of Rhodopsin transcripts (Figures 24 and 25).
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Figure 24. NRL expression profile.

Four different and specific RNA probes (respectively, probes 1, 2, 3 and 4) 

recognizing different NRL isoforms, as shown by BLAT analysis (diagram on 

top), show strong expression of the NRL in all the layers in human retina (A-D). 

The same expression pattern can be observed also in the mouse wild type 

retina (E). RNA ISH with the Rhodopsin probe shows no staining in the AipH-/- 

mouse eye sections (F), while the Nrl probe labels INL and GCL (G). In the 

head section of wild type mouse postnatal day 1.5 Nrl is detectable in retina, 

telencephalon, olfactory epithelium, cerebellum and in developing tooth (H). RT- 

PCR analysis of wild type (WT) and AipH-/- mouse (MUT) showed the 

expression of Pde6A and A/r/only in wild type mouse. NRL-1 represents an RT- 

PCR product obtained with oligonucleotide primers spanning the first and 

second exons, while the NRL-2 product was obtained with oligonucleotide 

primers spanning the second and third exons of Nrl (I). GAPDH control is shown 

in (J).

ONL-outer nuclear layer, INL-inner nuclear layer, GCL-ganglion cell layer, T- 

telencephalon, OE-olfactory epithelium, R-retina, DT-developing tooth, WT-wild 

type mouse, MUT-A/p/7-/- mouse, M-100bp ladder.
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To test the specificity of the Nrl probes used on the mouse eye sections,

I also performed RNA ISH experiments on postnatal day 1.5 (P1.5) mouse head 

sections. As shown in Figure 24H, RNA ISH signal is present not only in the 

developing eye but also in Other parts of the head (olfactory epithelium, 

developing tooth and telecephalon). The detection of signal in non-eye tissues 

suggested that the observed signal might not be specific for the NRL transcript 

since there is no evidence whatsoever that this gene is transcribed anywhere 

outside the retina. For these reasons, I decided to investigate Nrl mRNA 

expression using a different method such as RT-PCR on RNA extracted from 

the same photoreceptor deficient mouse AipH-/- (Figure 24I). Nrl expression is 

detectable only in the wild type retina while no amplification can be observed in 

AipH-/- retina suggesting that indeed Nrl is a photoreceptor-specific gene and 

that RNA ISH is not a proper method for the analysis of the expression of this 

gene. Similarly, I wanted to test the specificity of the obtained RNA ISH data for 

all the genes whose expression pattern diverged from previously reported data. 

To this purpose, I performed RT-PCR analysis on RNA purified from three 

months-old Aipl1-/- and wild type retinas using oligonucleotide primers specific 

for Cngbl, Ush2A and Fscn2. To confirm the absence of photoreceptors in 3 

months old AipH-/- mice, I evaluated the expression of a photoreceptor-specific 

marker (PDE6A) and no expression could be detected, as shown in Figure 25G. 

On the other hand, Cngbl, Ush2A and Fscn2 amplification was observed both 

in the wild type and AipH-/- retinas, as assessed both by RT-PCR and RNA ISH 

experiments, confirming the expression of these genes also outside 

photoreceptor cells (Figure 25).
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CNGB1 FSCN2 USH2A

II
1
H

Figure 25. Expression profiles of Cngbl, Fscn2 and Ush2A genes in wild 

type and mutant mouse retinas.

Hybridization of wild type (A-C) and AipH-/- murine retinas (D-F) with RNA 

probes for: Cngbl (A and D), Ush2A (B and E), Fscn2 (C and F). In the wild 

type and in the mutant mouse retina, they are transcribed in IS, ONL, INL and 

GCL. RT-PCR analysis of wild type (WT) and AipH-/- mouse (MUT) showed 

expression of Cngbl, Fscn2 and Ush2A in both retinas (G).

WT-wild type mouse, MUT-AipH-/- mouse, M-100bp ladder, ONL-outer nuclear 

layer, INL-inner nuclear layer, GCL-ganglion cell layer.
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3.2.2 RNA in situ hybridization expression profiles o f the RGR, RLBP1 and 

CA4 genes

During the course of this study, I found some notable differences between the 

expression profiles in human and mouse adult eye sections for the RGR, 

RLBP1 and CA4 genes (Figure 26). RGR and RLBP1 are members of the 

visual cycle with a reported expression in the mouse retina in RPE, Muller cells 

and in the case of RLBP1 also in the ganglion cells106, 120'122. Regarding the 

RGR and RLBP1 mRNA expression in human retina, no data were available so 

far, while protein localization is similar to that reported in the murine retina. In 

agreement with previous reports, I observed that in the murine retina both Rgr 

and Rlbpl were expressed in the RPE and Rlbpl transcripts were also 

detectable in the INL and in the GCL (Figure 26D and E). Surprisingly, in the 

human retina, besides the expected expression in the RPE and INL106,120, the 

RGR transcript was detectable also in photoreceptors and RLBP1 was 

distributed in all the different cell types of the retina including the photoreceptors 

(Figure 26B). mRNA localization for each of these genes in human 

photoreceptors was confirmed with a second, non-overlapping probe on 

sections obtained from at least two individuals (see http://www.tiqem.it/RPexp/).
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Figure 26. Expression profiles of RGR, RLBP1 and CA4 genes.

RGR is expressed in RPE, photoreceptors and weak signal can also be 

observed in the INL of the human retina (A). In the mouse retina, signal is 

detectable only in the RPE (D). RLBP1 mRNA is ubiquitously detectable in the 

human retina and RPE (B) while in the mouse retina it is visible in the RPE, INL 

and weakly in the GCL (E). CA4 mRNA is present in photoreceptors, INL and 

GCL in the human retina (C). No staining can be observed in the mouse retina 

(F).

RPE-retinal pigment epithelium, IS-photoreceptors inner segment, ONL-outer 

nuclear layer, INL-inner nuclear layer, GCL-ganglion cell layer.
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I also detected major differences in the expression of the CA4 gene between 

the human and mouse retinas. CA4 is the only gene underlying RP that has not 

been reported to be expressed in the retina, as the CA4 protein was shown to 

be localized in the choriocapillaris surrounding the retina83, 123. My studies 

revealed an expression of CA4 in all the retinal cell layers. Similar to the 

previously described cases in which an unexpected expression pattern was 

observed, I designed an additional RNA probe for the CA4 gene to validate 

these results. The same expression profile was also observed with the second 

independent probe suggesting that CA4 was indeed expressed in all the retinal 

layers of the human retina (Figure 26C and on-line database). Conversely, by 

RNA ISH, I could not detect any signal in the mouse retina (Figure 26F).

In order to understand if RGR and RLBP1 proteins are indeed translated 

in the human photoreceptor cells as suggested by mRNA localization, I 

performed double immunofluorescence experiments on human eye sections 

using the RGR and RLBP1 antibodies followed by rods staining with RHO 

antibody or cones staining with FITC labeled peanut-agglutinin (PNA). No 

staining could be observed with the RGR antibody suggesting that the antibody 

used was not appropriate for the experiments in human retina. On the other 

hand, the RLBP1 protein was detected in photoreceptors, INL and GCL (Figure 

27k). Colocalization experiment with antibodies directed against RLBP1 and 

RHO showed partial co-localization suggesting that RLBP1 is probably 

expressed in rods (C), while no co-localization could be detected with the cone- 

specific marker PNA (D).
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RLBP1

mmSB||§fi
Figure 27. RLBP1 protein localization in human retina.

Confocal microscopy of human adult eye sections stained with antibody 

directed against RLBP1 in red (A). Staining with anti-RHO antibody (B) and with 

p-agglutinin (D). Merged staining of RLBP1 in red and RHO as a rod-specific 

marker in green (C) and RLBP1 red and p-agglutinin as a cone-specific marker 

in green (E).

IS-photoreceptors inner segment, ONL-outer nuclear layer, INL-inner nuclear 

layer, GCL-ganglion cell layer.
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3.2.3 RPGR and PAP1 genes show prevalent expression in human 

photoreceptors

Unlike the above-described genes, which display significant difference in 

expression between human and mouse eye sections, RPGR and PAP1 showed 

less evident discrepancy in the retinal expression patterns between these two 

species. The RPGR gene is characterized by the presence of 2 main isoforms, 

a “default variant” which consists of 19 exons and the so-called “ORF15 variant” 

with a terminal exon within intron 15 of the default variant75. So far, the RPGR 

protein was shown to be localized in the photoreceptor connecting cilia or 

photoreceptor outer segments depending on the species analyzed 75, 76, 124. 

However, there are no high-resolution expression data at the RNA level for this 

gene in either the human or mouse retinas and no comparative analysis of the 

expression pattern of the two main isoforms. I detected the RPGR “default 

variant” mRNA in human photoreceptors and in the INL, while in the mouse 

retina weak staining could be observed only in photoreceptors (Figure 28A, D). 

Interestingly, the RPGR-ORF15 splice variant is specifically transcribed in 

human photoreceptors, while two independent probes for mouse RPGR-ORF15 

showed mRNA localization in all retinal cells with a more intense staining in the 

GCL (Figure 28B, E).
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Figure 28. RPGR and PAP1 mRNA distribution.

The RPGR “default” variant is expressed in ONL and INL in the human retina 

(A), while in the mouse retina (D) a faint signal can be observed only in ONL. 

RPGR-ORF15 variant shows intense staining in photoreceptors of the human 

retina (B), whereas in the mouse retina the signal is present in ONL, INL and 

GCL (E). PAP1 in the human retina is strongly expressed in ONL while a 

weaker expression is also detectable in INL and GCL (C). On the other hand, in 

the mouse retina signal is prevalent in the GCL and INL, while staining of the 

ONL is at the limit of detection (F).

OS-outer segment, ONL-outer nuclear layer, INL-inner nuclear layer, GCL- 

ganglion cell layer.
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PAP1 (RP9) is one of the four splicing factors (PRPF3, PRPF31, PRPF8, 

PAP1) linked to autosomal dominant RP70, 125. There is almost no information 

available regarding the RNA expression of these splicing factors in the retina. 

RNA expression patterns for PRPF3, PRPF31 and PRPF8 obtained in this 

study suggest that these genes are ubiquitously expressed in all the layers of 

the retina but seem to present an expression gradient with a stronger level in 

GCL and a lower one in photoreceptors, similarly to what previously reported for 

the murine Prpf3 and the human protein72 (data available at 

http://www.tiqem.it/RPexp/). Similar expression was also observed for Pap1 in 

the mouse retina where signal intensity in ONL is much lower compared to INL 

and GCL (Figure 28F). On the other hand, in human retina, a specific 100bp- 

long cRNA probe showed a predominant transcription in the ONL when 

compared to INL and GCL (Figure 28C and http://www.tiqem.it/RPexp/). When 

a second riboprobe was used, the expression was detectable only in 

photoreceptors. It is worth noticing that the second RNA probe used may 

potentially cross-react also with a PAP1 pseudogene126.
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4.1 IDENTIFICATION OF HUMAN GENES WITH PREDOMINANT RETINAL 

EXPRESSION

Eye is the window of the brain and therefore eye diseases leading to blindness 

represent one of the most devastating conditions affecting the quality of life. The 

final goal of all the research efforts on eye diseases is to find an efficient 

treatment to restore vision. However, the obvious prerequisite for the treatment 

of any kind of disease is represented by the elucidation of molecular causes 

and pathogenetic events that lead to its onset. More specifically, a considerable 

effort has been devoted to the determination of all the genetic causes of 

inherited retinal disorders. In particular, an important step forward was made, 

during the last decades, in elucidating the molecular events of several diseases 

affecting retina functionality. As a result, over 160 genes have been identified to 

date as responsible for different forms of inherited retinal disorders. 

Nevertheless, it is widely believed that the total number of retinal disease genes 

is higher than what is currently known3. So far, the majority of retinal disease 

genes have been identified thanks to an efficient but laborious procedure, such 

as positional cloning, which relay on the establishment of the chromosomal 

mapping assignment of a genetic locus, usually by linkage analysis or by the 

recognition of cytogenetic abnormalities. This was followed by the isolation, 

mainly by experimental and time-consuming approaches, of genes localized 

within the genetic interval and these had to be tested by mutation analysis in 

patients127. However, the outcome of the Human Genome Project effort has 

revolutionized and largely facilitated the approaches aimed at disease gene 

identification not only by providing more easily the list of genes to be analyzed 

in positional cloning efforts but also by providing alternative avenues, for 

instance by improving the ab initio candidate gene approach127. It has already
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been recognized that the integration of genome sequence and gene expression 

data holds great promise for the identification of retinal disease genes89,90,94,95. 

Some functional genomic approaches aimed at the in silico identification of 

genes with a preferential expression in the murine retina have already been 

carried out in order to identify candidate genes for human inherited eye 

disorders. Animal models are highly beneficial for human disease studies: 

however, in some cases, the translation to humans of the knowledge gained 

from the use of animal models, and above all the mouse, requires additional 

information on the function of the same gene in the human tissue. Additionally, 

there are no reported examples of a strategy combining in silico identification of 

candidate genes for human eye inherited disorders and experimental 

determination of their cellular distribution in the human retina.

The rationale behind this part of my PhD project was to overcome such a 

lack of information by identifying new candidate genes for retinal disorders in 

humans. To this purpose, I carried out a combined approach, including the use 

of bioinformatics tools and of expression studies in the human retina. The 

human genome project provided a valuable source of information regarding the 

genomic sequence and enabled the identification of a complete set of genes. 

However, one of the ultimate goals of this effort was aimed at the understanding 

of when, where, and how a gene is expressed. To achieve this goal, the 

Expressed Sequence Tags (ESTs) project was used, which provides a quick 

and inexpensive route for discovering new genes, for obtaining data on gene 

expression and regulation, and for constructing transcript maps. By exploiting 

the ESTs database, I was able to retrieve a set of putative retina-specific or 

predominant transcripts. Briefly, in silico prediction was based on the analysis of 

the Unigene database in order to identify a set of cDNAs (Unigene clusters)
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that, based on EST counts, were predicted to show an exclusive or predominant 

retinal expression in humans. Mapping of each cluster-specific consensus 

sequence to the human genome enabled identification of cDNAs for which no 

connection to the pathogenesis of retinal disease or to a defined role in retina 

biology was previously established. To validate the in silico predicted retinal 

expression, I performed experimental studies. By RT-PCR validation of the 

exclusive or predominant expression in the retina of the selected EST clusters, I 

was able to restrict the number of transcripts to be further analyzed at the 

cellular level by RNA in situ hybridization. Confirmation of retinal expression by 

RT-PCR is not sufficient to reliably predict the type of disease in which a 

particular cDNA may be involved, if mutated. To that purpose, it is essential, for 

each selected cDNA, to have more precise information about which cell type 

within the retina expresses it and therefore to infer the cellular functionality that 

may be affected by mutations in that specific gene. This led me to perform RNA 

ISH experiments in order to determine the specific retinal cell types expressing 

the gene of interest. One of the major advantages of this study is in the fact that 

all the data are collected for the human retina, both as far as the in silico and 

the experimental analyses are concerned. Additionally, by performing RNA ISH 

experiments on the eye samples obtained from different individuals I was able 

to exclude inter-individual variations that could have been misleading. Out of 

fifteen selected cDNA clusters analyzed by RNA in situ hybridization, thirteen 

showed specific expression patterns, as assessed by lack of signal when RNA 

ISH experiments were performed with the control sense probes and by the fact 

that patterns were highly similar in different eye samples. This study allowed me 

to identify some interesting candidate genes for retinal disorders.
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Cluster Hs.21162, which corresponds to the Retbindin (RTBDN) gene, 

was exclusively expressed in the retina. A protein prediction analysis, by the 

SMART software, suggested that it contains a complement component C1q 

domain. I found that the RTBDN mRNA was present in all the layers of the 

retina as assessed by RNA in situ hybridization experiments. Wistow et al.128 in 

2002 described Retbindin as a highly abundant retinal transcript that matches 

(27% identity over 135 residues) with riboflavin binding proteins, and potentially 

binds a number of ligands, including retinoids and other carotenoids (such as 

lutein) or may exert a protective roles against the toxic free radicals generated 

by flavinoids. C1q is a member of the complement system and acts as a trigger 

of the system108 the key player of innate immunity by mediating immune control 

against infectious agents. Recent findings98,107,129 demonstrated that, in many 

cases, age-related macular degeneration (AMD) is associated to a sequence 

variation in one of the members of the complement system, complement factor 

H (CFH), which has an established role in complement system inhibition. AMD 

is a major cause of blindness in the elderly98. It is a highly complex disease 

probably caused by both genetic and environmental components and the 

pathologenetic mechanisms underlying development of the disease are still 

obscure130. A key feature of AMD is the formation of extracellular deposits 

called drusen concentrated in and around the macula behind the retina, 

between the retinal pigment epithelium (RPE) and the choroid130. Complement 

system components are present in the drusen, suggesting that AMD involves at 

least partially an aberrant inflammation process131,132. In light of the observation 

that a sequence variation in a complement system inhibitor, i.e., CFH, is 

associated with AMD, it is reasonable to assume that, similarly, changes in the 

function of other components of the complement system such as the activator
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C1q may contribute to the onset of AMD. Indeed, it has been demonstrated that 

variants in other activators of the complement system, such as complement 

factor B and complement C3 genes influence susceptibility to age-related 

macular degeneration133,134. Additionally, Hayward et al., showed that mutation 

in Complement 1q Tumor Necrosis Factor 5 gene (C1QTNF5) causes late- 

onset macular degeneration, disease similar to AMD135. Interestingly, C1QTNF5 

contains a C1q domain present also in RTBDN. Thus, I classified cluster 

Hs.21162 as a new candidate gene for age-related or late-onset macular 

degeneration.

The mRNAs of clusters Hs.433492, Hs.449884 and Hs.33102 were 

localized in all the layers of the human retina. Cluster Hs.433492 corresponds 

to the ankyrin repeat domain 33 (ANKRD33) and showed an exclusive 

expression in the retina. No information is available regarding the function of 

ANKRD33. In contrast, ankyrin repeats have been found in numerous proteins 

with very diverse functions that include cell-cell signaling, cytoskeleton integrity, 

transcription, cell-cycle regulation, inflammatory response, development, and 

various transport phenomena136. Even though a number of ankyrin repeat 

proteins have been linked to human diseases (such as cancer), the putative role 

of ANKRD33 in retinal pathology still needs to be determined. Contrary to the 

above mentioned ANKRD33, cDNA cluster Hs.449884 was connected with 

retinal function by an independent study137. Analysis performed during the 

course of this study revealed that Hs.449884 corresponds to the Complexin IV 

(CPLX4) gene. RT-PCR analysis revealed that this transcript does not have a 

retina-specific expression whereas RNA ISH showed that, in the retina, it was 

transcribed mostly by cells of the inner nuclear layer but also by few cells of the 

outer nuclear layer and some ganglion cells. Complexins are proteins involved
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in neurotransmitter release at the level of neuronal synapses. Two members of 

the complexin family (Complexin I and Complexin II) were previously linked to 

the onset of neurological phenotypes, including ataxia and seizures138. Two 

novel members (Complexin III and Complexin IV) were identified and 

characterized in 2005 by Reim et al.137 that demonstrated their role in the 

formation of retinal ribbon synapses. According to authors, Complexin IV is 

present only in the retina but not in conventional neuronal synapses and acts as 

a positive regulator of synaptic exocytosis. Considering the importance of signal 

transmission in the functionality of the retina, Complexin IV can be considered a 

candidate gene for retinal dystrophy. It has already been demonstrated that 

impairment of retinal synapses caused by mutations in some of the synaptic 

structural components (CACNA2D4)139 or in regulatory proteins of the 

synapses, such as RIM1, cause cone dystrophies140.

Cluster Hs.33102, which corresponds to the transcription factor AP-2 

beta, was also expressed in all the layers of retina. Transcription factors AP-2 

(TFAP-2 alfa and TFAP-2 beta) have important functions in retinoid-controlled 

morphogenesis and differentiation141. There are no data indicating that TFAP- 

2B is involved in pathogenesis of retinal disorders: however, it was reported that 

mutations in this gene cause Char syndrome, an autosomal dominant trait 

characterized by patent ductus arteriosus, facial dysmorphism and hand 

anomalies142. Data showing that AP proteins have dynamic spatial and temporal 

expression patterns during development of the murine eye143 as well as the 

expression data in the human retina, provided by my study, make the TFAP-2B 

an interesting candidate gene for retinal disorders particularly considering the 

fact that mutation in other transcription factors important for the retinal 

development cause retinal disorders like retinitis pigmentosa (e.g. NRL and
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NR2E3 transcription factors59, 60) or Leber congenital amaurosis that can be 

caused by CRX mutations64.

Unlike the majority of the clusters analyzed in this project which were 

expressed throughout the retina, cDNA clusters Hs.69749 and Hs. 131130 

showed a more restricted expression pattern. The Hs.69749 mRNA, only 

detected in retina and brain by RT-PCR, was transcribed mainly in 

photoreceptors and in a few cells within the inner nuclear layer. Hs.69749 is one 

of the five cDNA clusters selected for RNA in situ hybridization analysis that 

show no sequence similarity to any known gene. A restricted expression of 

Hs.69749 in brain and retina (mainly in photoreceptors, as assessed by RNA 

ISH) renders cluster Hs.69749 worth of further investigation, since this pattern 

of expression suggests a specific role in neuronal tissues. However, in order to 

define whether or not this cDNA may be responsible for any eye disorders more 

specific functional studies are required. The remaining clusters that show no 

correspondence with known genes, namely Hs. 171485, Hs.354243, Hs.295015 

and Hs.221513, were expressed exclusively in retina and brain but their mRNAs 

were distributed in all the layers of the retina (examples are shown in the 

Results section).

Cluster Hs.131130 displayed a photoreceptor-specific expression, as 

detected by RNA ISH. Sequence homology analysis defined that this cDNA 

corresponds to the potassium channel, subfamily V, member 2 (KCNV2), as 

assessed by sequence homology analyses. Voltage-gated potassium channels 

serve a wide range of functions including regulation of the resting membrane 

potential and control of the shape, duration, and frequency of action 

potentials110. Its photoreceptor-specific expression and the fact that KCNV2 

may play a function in excitability of neurons makes this cluster a good
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candidate gene for retinal disorder. In order to test whether mutations in the 

KCNV2 gene may play a pathogenetic role in retinal disorders, mutation 

analysis was performed on a collection of Italian patients affected by different 

retinal diseases. Screening for the presence of mutations was performed on 

one hundred and twenty Leber congenital amaurosis patients and ninety-six 

patients diagnosed with recessive retinitis pigmentosa. No sequence variants 

were detected in the analyzed patients. These data did not however exclude the 

possible involvement of this gene in other types of retinal dystrophies. In fact, 

while this study was in progress, Wu et al.111 published that KCNV2 mutations 

cause “cone dystrophy with supernormal rod electroretinogram”, an autosomal 

recessive disease of unknown etiology. The involvement of KCNV2 in “cone 

dystrophy with supernormal rod electroretinogram” was also confirmed by 

Thiagalingam et al.112. Based on these observations, I analyzed four cone 

dystrophy Italian patients with a phenotype compatible to the one described in 

the two above mentioned papers but again I did not find any mutation. These 

data indicate that there is evidence for additional genes responsible for the 

“cone dystrophy with supernormal rod electroretinogram”, at least in the Italian 

population.

The process of disentangling the causes behind inherited eye diseases is 

greatly dependent on the availability of large families of patients and the 

availability of genetic markers positioned closely enough to the disease 

chromosome region in order to define a small as possible critical region. 

However, in the majority of cases, many genes reside within the two flanking 

markers defining the borders of the critical region identified by linkage and the 

final identification of the disease gene requires extensive and laborious 

mutation analyses if no obvious candidate gene is present in the interval.
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Additionally, the importance of the identification of candidate genes is even 

more obvious in the sporadic cases of retinal disorders. Providing a list of genes 

that can be good candidate for retinal dystrophies can greatly facilitate this task. 

Indeed, there are several reports89'95 on the identification of novel candidate 

genes for retinal disorders using systematic approaches as already described in 

Chapter 1.4. I retrospectively compared my results with those of these previous 

studies to evaluate whether the candidate genes selected in this study had 

been previously identified. This analysis revealed that even though different 

approaches were used to retrieve novel retinal ESTs, the average number of 

the identified ESTs in different studies including this one is similar. However, 

only one gene (RTBDN) identified by this study was previously recognized as a 

novel retinal EST cluster, putatively involved in retinal disorders92. One of the 

explanations for the discrepancy in the identification of novel retinal ESTs 

between this and previous studies can be that, in the past few years, the 

number of human ESTs generated from eye and retina cDNA libraries has 

considerably increased, which allowed me to recognize additional cDNAs that 

were not present in previous Unigene releases. Furthermore, not only the 

numbers but also the annotation of Unigene clusters is very dynamic and prone 

to changes in the various releases. Indeed, as I already mentioned, I recently 

revised all the EST clusters that were first retrieved in 2005 for this study and I 

could verify that the status of some of them was changed (see column “Notes” 

Table 5). These considerations further stress the usefulness of periodically 

updating such kind of analysis in order to make it more effective.

The studies performed during the course of this part of my PhD project 

were aimed at providing a list of genes with a preferential expression in the 

human retina together with information on the specific cell types expressing
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them, in order to pinpoint candidate genes for retinal disorders. The 

effectiveness and the utility of this approach are confirmed by the fact that one 

of these genes (KCNV2) was shown by an independent study to cause a retinal 

disorder. It is reasonable to expect that making the list of these candidate genes 

publicly available may facilitate discovering of new retinal disease genes.

4.2 GENERATION OF THE RP GENE EXPRESSION ATLAS

Unraveling and understanding the genetic cause and the disease mechanism 

underlying retinitis pigmentosa is very important, because this will help in the 

identification of targets for therapeutic intervention. No effective approach to 

prevent, stabilize, or reverse the degenerative process exists for the majority of 

RP cases. Additionally, in spite of the characterization of a number of genes 

responsible for RP, the genetic causes for the majority of cases have yet to be 

discovered. A further limitation is the lack of information regarding the 

expression of already identified genes in the human retina. Ongoing research is 

putting most of its efforts towards two as yet elusive goals: the discovery of all 

the genes linked to RP in patients, and the development of therapeutic 

strategies to halt or reverse the loss of photoreceptor cells. Even though there 

are still many obstacles to be overcome in order to establish an effective 

treatment, there is an important progress in gene therapy treatment of retinal 

degeneration. The best example for this progress is the gene therapy approach 

for Leber congenital amaurosis, caused by mutations in the RPE65 gene. This 

study is in the first phase of clinical trials, confirming that the full understanding 

of the causes of a certain disease can ultimately lead to the design of an 

efficient therapy99, 102. The eye represents an ideal system for gene therapy 

because of its highly specialized and compartmentalized nature, which enables



Discussion

precise delivery of therapeutic agents with almost no systemic side effects. 

However, in order to obtain the highest benefits of such a treatment, it is 

necessary to deliver the therapeutic agents to specific target sites within the eye 

corresponding to the cells that normally express the affected gene. In order to 

achieve this, we need accurate and detailed information about the expression 

profiles of disease-causing genes in the human retina. To provide this vital 

information I generated a high-resolution expression atlas in the human retina of 

thirty-four genes responsible for RP and compared their expression to that of 

their mouse orthologs in the murine retina. The generation of this atlas provided 

novel expression data for this biologically relevant group of genes. In this study I 

report novel mRNA expression profiles of twenty human RP genes and of six 

corresponding murine orthologs, which have never been reported before. In 

addition, the systematic and comparative expression analysis of all known RP 

genes provides new insights into the putative functional activities of some of 

these genes.

As expected, the majority of the analyzed genes displayed identical 

expression patterns in the human and in the murine eye. It is important to point 

out that all the genes were analyzed on human eye sections obtained from at 

least two different individuals and these results can be retrieved from an ad-hoc 

generated on-line database (http://www.tigem.it/RPexp). I would like to 

emphasize again that comparison of data from two different individuals was 

crucial because eye bulbs used in this study were obtained from cornea donors 

with different background in terms of age, sex, cause of death, postmortem 

time. Analyzing all the genes in different individuals enabled me to verify 

whether differences in any of the above mentioned factors pertaining to the 

donor could interfere with the reliability of the results obtained. I verified a high
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similarity in the expression patterns on eye sections from different donors 

suggesting that the tissue handling procedure was optimal and that the data 

obtained were reliable.

Within the catalog of the genes with expression patterns conserved 

between mouse and human, I found three genes for which I observed RNA 

expression profiles that are not in agreement with previously published reports. 

This is the case of the CNGB1, USH2A and FSCN2 genes. All these three 

genes were previously reported to be expressed only in the photoreceptor 

layer55- 77> 113-115> while data obtained during the course of this study suggested 

that they have a more widespread distribution across all retinal cell layers, both 

in human and in mouse. The B subunit of rod cGMP-gated channel (CNGB1), 

together with subunit A, forms cyclic nucleotide gated channels that play a 

critical role in visual transduction113. These two subunits build heteromeric 

channels that localize in the outer segments of photoreceptors113, 114. In 

darkness, these channels are opened by cGMP, maintaining an inward current. 

Light induces hydrolysis of cGMP, thus resulting in closure of the channels and 

hyperpolarization of the cell as a final response144. The B1 subunit of the CNG 

channel has been previously detected not only in photoreceptor cells of the 

retina but also in olfactory channels145, sperm cells and other tissues146. In my 

study, both human and mouse specific probes show expression of CNGB1 in all 

the layers of the retina. Hence, it is possible that CNGB1 plays some role in 

channels assembling in the different neurons of the retina.

The USH2A gene is responsible for both non-syndromic RP and for 

Usher syndrome that is characterized by hearing loss and RP32. The USH2A is 

thought to be an extracellular matrix protein as it is composed of protein 

domains that are commonly seen in extracellular proteins or that are involved in
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protein-protein or protein-matrix interactions77. This led to the suggestion that 

this gene may play a role in nerve fiber guidance147. USH2A mRNA expression 

was previously reported exclusively in the retina outer segment in various 

species77, while subsequent studies indicated the presence of the USH2A 

protein in basement membranes and extracellular matrix in different tissues148, 

149. The USH2A gene encodes for two alternatively spliced isoforms, a short 

-170 kDa USH2A isoform a, previously termed usherin, and a much longer 

-580 kDa USH2A isoform b150. I used different probes to analyze these two 

different USH2A mRNA isoforms in order to exclude the possibility that the 

observed differences were related to different RNA expression patterns of the 

isoforms. These experiments confirmed a diffuse staining in the different retinal 

layers with both probes specific for the different isoforms. Similarly, I also 

observed ubiquitous expression in the retina of both the human and mouse 

FSCN2 genes, contrary to previously published photoreceptor-specific 

expression data55, 115. There is only one report showing that mutation in the 

FSCN2 gene cause retinitis pigmentosa54; however these findings were 

subsequently questioned because four independent studies showed no 

correlation between FSCN2 mutation and RP56, 151'153. Particularly interesting 

are the findings concerning the NRL gene. NRL (neural retina leucine zipper) 

causes both autosomal-recessive and autosomal-dominant RP60. Initially NRL 

was reported to be a retinal-specific transcription factor154. However, intensive 

studies in the past years suggest that NRL is a rod-specific transcription factor 

116-118,155 p r e c js e |y j the first reports on RNA and protein localization showed 

expression in all the retina layers at different developmental stages and in 

adults in different species118' 154,158 However, the NRL cRNA full length probe 

and antibody used in the mentioned studies were suggested to cross-react with
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sequences other than NRL and this led to the belief that NRL is rod specific 

based on the evidence that it regulates rod photoreceptor-specific gene 

expression118. In favor of this hypothesis was also the phenotype observed in 

Nrl knock out mice in which the inactivation of this gene causes functional 

transformation of rods into cones117. Furthermore, the A/r/-specific promoter 

drives gene expression specifically in rod photoreceptors in a transgenic 

mouse116. Nevertheless, data showing restricted expression of Nrl in 

photoreceptor (both at the transcript and at the protein levels) are not available 

in literature. NRL expression data obtained in my study are in agreement with 

the previously mentioned reports showing that NRL mRNA is apparently 

detectable in all retinal cells. In my experiments, I used four independent and 

highly specific human riboprobes, covering either the 3’-UTR or different 

alternative 5’ ends of different splice isoforms belonging to this gene and two 

independent mouse Nrl probes. All the analyzed probes gave highly similar 

expression patterns in human and mouse eye sections. Furthermore, I detected 

a widespread expression across all mouse retinal cell layers also in AipH-/- 

mouse retinas. However, RT-PCR assessment of Nrl expression revealed that 

the Nrl mRNA is detectable only in wild type mouse retina and not in AipH-/- 

retina that has lost its photoreceptors, suggesting that indeed this gene is 

exclusively expressed in photoreceptors116’118. These findings suggest that, 

contrary to all the genes that I have analyzed in this study, RNA ISH is not the 

appropriate method for NRL expression analysis. This consideration is 

supported also by the RT-PCR analysis of the other transcripts that showed a 

pattern diverging from previous reports, i.e. Cngbl, Ush2A and Fscn2 that 

confirmed a non-photoreceptor restricted expression demonstrated by the 

amplification of their transcripts in AipH-/- retina. Considering the recent findings
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that significant fractions of eukaryotic genomes give rise to some unannotated 

RNAs that may act as primary transcripts for the production of short RNAs157, 

the observed expression of NRL obtained by RNA ISH may be explained by the 

presence of as yet uncharacterized additional RNAs transcribed from the NRL 

genomic region.

I also detected significant differences in the expression pattern of the 

CA4 gene in the human retina with respect to previous reports. CA4 is an 

important regulator of pH balance because it catalyzes hydration of carbon 

dioxide83. Due to the fact that retina is a highly metabolic tissue with a high rate 

of acid production, mutations in a pH modulator, such as CA4, may lead to 

retinal cell apoptosis. Indeed, it has been shown that CA4, when mutated, 

causes retinitis pigmentosa83, 158 and interestingly, it is the only RP-causing 

gene shown to be expressed outside the neural retina or retinal pigment 

epithelium: more precisely, the CA4 protein was reported to be present in 

choriocapillaris83, 123. My expression analysis revealed that the human CA4 

mRNA is localized in all retina layers, as determined by using two different 

probes. On the other hand, I could not detect the CA4 transcripts in the murine 

retina. This may be due either to the low RNA levels of CA4 in mouse retina or 

indeed to a real difference in CA4 localization in the two species.

I also detected differences in the expression patterns between the 

human and murine retina for the following genes: RGR, RLBP1, RPGR and 

PAP1. RGR and RLBP1 genes are members of the visual cycle cascade, which 

is responsible for the regeneration of bleached visual pigments. In rods, the 

visual cycle initiates in the photoreceptor cells, but then it is completed in the 

RPE. These two genes encode enzymes very important for chromophore 

regeneration in the RPE106' 121,122 although both are also expressed in Muller
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cells while RLBP1 is additionally detectable in ganglion cells120,122. I confirmed 

the expected expression pattern in the RPE of the Rgr and Rlbpl genes and 

Rlbpl expression in INL and GCL in the mouse eye. However, in the human 

retina, I observed the RGR mRNA not only in the RPE and INL but also in 

photoreceptors. Similarly, RLBP1 is expressed in RPE and also in ONL, INL 

and GCL. Protein localization associated to specific markers for rods and cones 

showed that RLBP1 is probably expressed in rods, whereas no colocalization 

was detected with a cone-specific marker. We must bear in mind that the cone 

marker used in this study, i.e., PNA, marks only the cone outer and inner 

segments, while, on the other hand, the RLBP1 protein is not a membrane 

protein. Thus, we cannot definitely exclude that RLBP1 may also be present in 

cones. The function of the RGR and RLBP1 genes is well established in the 

R P E 1 0 6 ,121,122. h o w e v e r  ^eir exact role in cells other than RPE is still not clear. 

The newly reported RNA localizations of RGR and RLBP1 in photoreceptors in 

humans are worth of further investigation for a better understanding of their 

function outside the RPE.

The comparative RNA ISH analysis of RP genes in human and mouse 

retinas also revealed interesting expression patterns for the RPGR and PAP1 

genes. RPGR stands for Retinitis Pigmentosa GTPase regulator and is 

necessary for maintenance of photoreceptor viability75, probably by being 

associated with protein trafficking from inner to outer segments of 

photoreceptors76. Two splice-variants are present in the retina: the “default 

form” and the so-called “ORF15 form”, which harbors a mutation hot spot for 

retinitis pigmentosa76, 159. Both RPGR proteins were previously detected in 

connecting cilia or in photoreceptor outer segments depending on the species 

analyzed75. I performed RNA ISH analysis with probes specifically recognizing
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each of the two forms in human and murine retina and found different 

expression profiles. Interestingly, ORF15 shows a specific expression in human 

photoreceptors, i.e., the cells that are the main targets of RP while the “default 

form”, although predominantly expressed in photoreceptors, can be detected 

also in the INL. The photoreceptor-specific transcription of RPGR-ORF15 nicely 

correlates with the observation that the majority of RPGR mutations causing the 

RP phenotype fall within this particular splice variant. Likewise, PAP1 is also 

predominantly expressed in photoreceptors in the human retina compared to 

the mouse retina where it is expressed mainly in the GCL and INL. PAP1, 

together with PRPF3, PRPF31 and PRPF8, is a pre-mRNA splicing factor 

involved in assembling of spliceosome U4/U6.U5 tri-snRNP complex67'70. It is 

very challenging to understand why mutations in ubiquitously expressed splicing 

factors cause such a specific phenotype as RP. Expression analysis of PRPF3, 

PRPF31 and PRPF8 performed in this study did not show prevalent expression 

of these genes in photoreceptors. Only the PAP1 mRNA appears to be more 

abundant in human photoreceptors compared to other retinal cells. These 

observations may open new perspectives for the study of the link between pre- 

mRNA splicing factors and RP pathogenesis.

This study provides the first systematic comparative expression analysis 

in the human and in the mouse retina of all known genes responsible for RP 

(RP gene expression atlas, http://www.tiqem.it/RPexp/) providing important 

insights into the function of these genes through expression analysis in the 

human retina. The differences observed in the expression patterns of some of 

the analyzed genes in humans and mice will shed new light on the function of 

these genes and their role in the disease pathogenesis and will be a
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fundamental support towards the correct transfer of information obtained from 

animal models to human RP patients.
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