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ABSTRACT

Integration of gamma-retroviruses (RV) and lentiviruses (LV) follows different, non- 

random patterns in mammalian genomes. To obtain information about the viral and 

genomic determinants of integration preferences, I mapped > 2,500 integration sites 

of RV and LV vectors carrying wild type or modified LTRs in human CD34+ 

hematopoietic cells. Recurrent insertion sites (hot spots) account for > 20% of the 

RV integration events, while they are significantly less frequent for LV vectors. 

Genes controlling growth, differentiation and development of the hematopoietic and 

immune system are targeted at high frequency by RV vectors and further enriched in 

RV hot spots, suggesting that the cell gene expression program is instrumental in 

directing RV integration. To investigate the role of transcriptional regulatory 

networks in directing RV and LV integration, I evaluated the local abundance and 

arrangement of putative transcription factor binding sites (TFBSs) in the genomic 

regions flanking integrated proviruses. RV, but not LV integrations are flanked by 

specific subsets of TFBSs, independently of their location with respect to genes 

(within genes, outside, or around their transcription start sites). Hierarchical 

clustering and a Principal Components Analysis of TFBSs flanking integration sites 

of RV vectors carrying different LTRs, and LV vectors packaged with wild type or 

RV-LV hybrid integrase, showed that both the protein and the DNA component of 

the pre-integration complex (PIC) have a causal role in directing proviral integration 

in TFBS-rich regions of the genome. Chromatin immunoprecipitation analysis 

indicated that TFs are bound to unintegrated LTR enhancers into the nucleus, and 

might synergize with the viral integrase in tethering retroviral PICs to specific 

domains of transcriptionally active chromatin. The results of this project suggest
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substantial differences in the molecular mechanisms tethering RV and LV PICs to 

human chromatin, and predict a different insertional oncogenesis risk of RV vs. LV 

vectors for human gene therapy.

2



TABLE OF CONTENTS

1. Introduction....................................................................................................................... 1

2. A brief review of retroviruses and retroviral vectors................................................... 4

2.1 Retroviruses................................................................................................................ 4

2.1.1 Structure and classification...................................................................................4

2.1.2 Replication cycle....................................................................................................6

2.1.3 Integration reaction: products and kinetics.........................................................9

2.1.4 Preintegration complex composition................................................................. 12

2.1.5 Regulation of proviral transcription.................................................................. 14

2.1.5.1 Transcriptional regulation of Mo-MLV................................................. 16
2.1.5.2 Transcriptional regulation of HIV-1.......................................................20

2.2 Retroviral vectors and gene therapy....................................................................  24

3. Retroviral integration features and mechanisms: state of the a r t ..............................28

3.1 Insertional mutagenesis as a gene therapy adverse event.....................................28

3.2 Non-random integration pattern of retroviral vectors in mammalian genome 
...........................................................................................................................................32

3.2.1 Primary DNA sequence and integration site selection.....................................33

3.2.2 Retroviral integration and genes........................................................................34

3.2.3 Retroviral integration and gene activity........................................................... 35

3.2.4 Retroviral integration and transcription factor binding sites.......................... 36

3.3 Proposed mechanisms for integration site selection......................................... 38

3.3.1 Ty retrotransposons: a paradigm for tethered integration...............................38

3.3.2 Tethering models for retroviral integration.......................................................39

3.3.3 LEDGF/p75: a candidate for lentiviral integration tethering......................... 40

3.4 In vivo clonal expansion of MLV-transduced human and murine 
hematopoietic ce lls .........................................   43

4. Aim of the study.............................................................................................................48

5. Materials and methods...................................................................................................53

5.1 Retroviral vectors....................................................................................................53

5.2 Transduction of target cells.................................................................................... 54



5.3 Sequencing, mapping and annotation o f retroviral integration sites................ 56

5.4 Gene expression profiling...................................................................................... 58

5.5 Functional clustering analysis................................................................................59

5.6 Transcription factor binding site analysis................................................... 60

5.7 Southern and Western blot analysis..................................................................... 63

5.8 RNA extraction and RT-PCR analysis.................................................................64

5.9 Chromatin immunoprecipitation assay.................................................................65

6. Results.............................................................................................................................. 67

6.1 Integration preferences of Mo-MLV and HIV-1-based retroviral vectors in 
human CD34+ H SC s...................................................................................................... 67

6.1.1 Genome-wide analysis o f retroviral integration preferences in human CD34+ 
HSCs................................................................................................................................ 67

6.1.2 Genes regulating cell growth and proliferation are preferential targets of 
retroviral integration...................................................................................................... 75

6.1.3 RV but not LV vectors show a high frequency of integration hot spots......83

6.1.4 Proto-oncogenes and cancer-associated CISs are hot spots of RV but not LV 
integration....................................................................................................................... 88

6.2 Role of LTR and of LTR interactors in the integration site selection of 
retroviral vectors............................................................................................................. 90

6.2.1 Collection o f integration sites from human hematopoietic cells transduced 
with LTR-modified retroviral vectors.........................................................................91

6.2.2 Transcription factor binding sites are over-represented in sequences flanking 
RV integration sites....................................................................................................... 92

6.2.3 Retroviral integration sites are flanked by unique TFBS motifs................... 95

6.2.4 Evolutionarily conserved TFBSs are enriched in sequences flanking RV 
integrations.................................................................................................................... 100

6.2.5 Transcription factors bind retroviral PICs in the cell nucleus......................102

6.2.6 Patterns of TFBS motifs flanking retroviral integrations are cell-type 
specific........................................................................................................................... 106

6.2.7 MLV integrase has a crucial role in directing RV integration in TFBS-rich 
regions of the genome..................................................................................................109

7. Conclusions................................................................................................................... 114

7.1 Thesis conclusions................................................................................................. 115

7.2 Summary of contributions.................................................................................... 123



7.3 Future research................   127

Acronyms and abbreviations.......................    130

References.................................    132

Acknowledgements..............................................    148

APPENDICES........................................   149

Appendix 1...........................:...................................................................   150

Appendix 2 .............................................................................    157

Appendix 3......  160

Appendix 4 ........  162

Appendix 5..................................................................................................................... 178

Appendix 6..........................       180

Appendix 7..........................   184

Appendix 8..................................................................................................................... 193

iii



1. Introduction

The transfer of a therapeutic gene into somatic cells (gene therapy) is a promising 

medical approach for the management of many inherited and acquired diseases. 

Among others, blood disorders are of special interest for gene therapy interventions, 

thanks to the easy accessibility and hierarchical structure of the blood system, with a 

relatively limited number of hematopoietic stem cells (HSCs) giving origin to all 

lineages of differentiated blood cells. Moreover, modification of a small number of 

long-term repopulating stem cells is often sufficient to achieve therapeutic efficacy 

in the entire system. Among several strategies developed for gene delivery, 

replication-defective viral vectors derived from retroviruses, especially from gamma- 

retroviruses (RV) and lentiviruses (LV), are the most widely used. In fact, after 

entering the target cell, retroviral vectors deliver their genomic material directly to 

the cell nucleus, where it is stably inserted into the host cell genome by the virally 

encoded integrase protein. Gene-transfer vectors derived from murine RV, such as 

the Moloney murine leukemia virus (Mo-MLV), have been extensively used to 

transduce human HSCs in several gene therapy clinical trials, in some cases allowing 

correction of life-threatening blood disorders1"4. These vectors were considered 

relatively safe, until lymphoproliferative disorders were reported in five patients 

treated with MLV-transduced HSCs for X-linked severe combined

c o
immunodeficiency (X-SCID) ' . All adverse events were correlated with the 

insertional activation of T-cell proto-oncogenes operated by MLV long terminal 

repeats (LTRs). The oncogenic potential of murine RV has been known for decades, 

but the risk of insertional mutagenesis by retroviral vectors was estimated to be low, 

on the assumption of random proviral integration into the genome. The X-SCID
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adverse outcomes indicated the importance of understanding the molecular basis of 

retroviral integration and boosted a series of large-scale insertion studies aimed at 

evaluating genotoxic risks and general integration preferences of both RV and LV 

vectors. From these studies it became clear that RV and LV vectors integrate non- 

randomly in mammalian genomes, with a strong preference for active and gene- 

dense chromatin regions. In particular, RV, but not LV vectors preferentially target

0 19gene transcription start sites (TSSs) and CpG islands ' , where the insertion of viral 

enhancers contained in the LTRs has a high probability to interfere with gene 

regulation13. Moreover, analysis of RV integration patterns in natural or 

experimentally induced hematopoietic tumors showed the existence of insertion sites 

recurrently associated with a malignant phenotype. These common insertion sites 

(CISs) include proto-oncogenes and other genes controlling cell growth and 

proliferation, deregulation of which has a causal relationship with neoplastic 

transformation14. Some of these CISs have been also retrieved at high frequency in 

the nonmalignant progeny of transduced HSCs in mice15, non-human primates16, and 

humans4, suggesting that insertion into certain genes may cause clonal amplification 

of transduced progenitors in vivo. However, pretransplant, unselected HSCs were 

never rigorously analyzed short-term after RV transduction, leaving the possibility 

that the clonal dominance observed in vivo is favored by the existence of highly 

preferred regions of retroviral integration that make clonal amplification more likely 

to occur.

This thesis analyzes thoroughly a large collection of RV and LV integration 

sites retrieved from human CD34+ HSCs at an early time point after infection, when 

clonal selection in culture is very unlikely to have occurred. The general goal of the 

project was to describe the integration preferences of RV and LV vectors in the
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genome of clinically relevant cells, and possibly provide new insights into the 

molecular mechanisms responsible for their differential integration targeting. I found 

that a large proportion (21%) of RV insertion sites are clustered in hot spots, 

targeting genes involved in the control of growth, differentiation and development of 

hematopoietic cells, including several CISs. On the contrary, only 8% of LV 

integration sites formed hot spots, with no apparent bias for hematopoietic-specific 

genes. This suggested that the gene expression program of HSCs is somewhow 

involved in directing RV preintegration complexes (PICs) to preferred sites in the 

genome. To further investigate the link between transcription and RV integration, I 

evaluated the local abundance and arrangement of putative transcription factor 

binding sites (TFBSs) in the genomic regions flanking integrated RV and LV 

proviruses. Again RV, but not LV vectors favor genomic regions flanked by specific 

subsets of TFBSs, independently of their location with respect to genes or TSSs. 

Analysis of RV and LV mutants showed that the MLV LTR enhancer, together with 

the MLV integrase, has a causal role in directing proviral integration towards TFBS- 

rich regions of the genome. Chromatin immunoprecipitation assays indicated that 

cellular TFs binding unintegrated LTR enhancers in the nucleus might synergize 

with the integrase in tethering RV PICs to specific domains of transcriptionally 

active chromatin.

Providing evidence that RV vectors tend to target hot spots of integration in 

the proximity of regulatory regions and of genes controlling cell growth and 

proliferation, this thesis also predicts a higher genotoxic risk in using gamma- 

retroviral vs. lentiviral vectors for human gene therapy applications.
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2. A brief review of retroviruses and retroviral vectors

2.1 Retroviruses

2.1.1 Structure and classification

Retroviruses comprise a large and diverse family of enveloped RNA viruses, 

replicating through a DNA intermediate17. The virions (80-100 nm in diameter) 

consist of an outer lipid envelope and of an internal protein core, accommodating 

two identical copies of single-stranded viral RNA genome (Figure 1). The lipid 

bilayer derives from the plasma membrane of infected cells into which virally 

encoded envelope proteins are inserted (transmembrane and surface components, 

linked by disulphide bonds). The internal core is composed of non-glycosylated 

structural proteins (matrix, capsid and nucleocapsid) and contains the full-length 

viral genome and the virally encoded enzymes (reverse transcriptase, integrase and 

protease).

Figure 1. General structure of a retrovirus.

Envelope proteins, consisting of a 

transmembrane (TM) and a surface (SU) 

component, are inserted in a lipid bilayer, where 

they bind host cell receptors to promote viral 

entry. Each virion contains two copies of full- 

length RNA viral genome, embedded in the 

protein core encoded by gag  domain (NC, 

nucleocapsid; CA, capsid; MA, matrix). 

Functional proteins of viral origin indispensable 

for replication (reverse transcriptase, integrase 

and protease) are also encapsidated. Shapes are 

merely representative and do not necessarily reflect the real geometry.
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Depending on their genomic structure, retroviruses are broadly divided into two 

categories: simple and complex (Figure 2); both simple and complex genomes 

contain four elementary genes (gag, pro , pol, env) coding for the essential viral 

proteins, as follows:

gag: matrix, capsid, nucleocapsid 

pro : protease

pol: reverse transcriptase, integrase

env. surface and transmembrane components of the envelope protein 

In addition to the basic coding domains, complex retroviruses also encode several 

accessory genes, derived from multiple splicing (Figure 2B). Both ends of all viral 

genomes contain terminal noncoding sequences, composed of 5’ and 3’ unique 

sequences (U5 and U3 regions), and of two direct repeats (R) where the transcription 

start site and the polyadenylation signal are located.

A .

Mo-MLV

+1

5 ’ Id AAA 3'

RU5 gag pro pol U3 R
env

B .

HIV

+1

5' t }
R U 5

AAA 3 ’

gag vif | env U3 R

DvPr
pro pol tat

rev
f| | nef

[]vpu

Figure 2. Simple and complex retroviral genomes. (A) Moloney murine leukemia virus (Mo-MLV) 

genomic RNA is only made up o f four elementary coding regions, gag, pro, pol, and env. Terminal, 

noncoding R, U5 and U3 regions are depicted; transcription start site (+ l) and polyadenylation signal 

(AAA) are specified. (B) Human immunodeficiency virus (HIV) is a complex retrovirus, with six 

accessory, partially overlapping genes (v i f  vpr, tat, rev, vpu, and nef) in addition to the four basic 

coding domains.
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Based on evolutionary relatedness, retroviruses are further classified into seven 

genera (Figure 3). Moloney murine leukemia virus (Mo-MLV) and human 

immunodeficiency virus-type 1 (HIV-1), object of this thesis, belong to the genus of 

gamma-retroviruses (also known as oncoretroviruses) and of lentiviruses, 

respectively.

Epsilon-retroviruses Delta-retroviruses
(simple) (complex)

SnRV BLV

PERV

SFVcpz 
SFVagm

Spumaviruses
(complex)

FeLV

Gamma- 

retroviruses 
(simple) GALV

MLV

HERV-W WDSV

EIAVHTLV-I

HTLV-II Lentiviruses
(complex)

FIV,
HIV-2
SIVmac

MW

Alpha- 
ALV retroviruses 
RSV (simple)

JRSV

HERV-K
MMTV

Beta-retroviruses 
(simple)

Figure 3. Phylogeny of retroviruses. Classification of complex and simple retroviruses into seven 

genera. Moloney murine leukemia virus (MLV) and human immunodeficiency virus (HIV) position 

along the phylogenetic tree is highlighted.

2.1.2 Replication cycle

Fusion of virus and host cell plasma membrane occurs upon interaction between 

envelope glycoproteins and specific cellular receptors. RNA genome is released in 

the cytoplasm, where it remains associated with the core structural proteins and the
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viral reverse transcriptase to form the so-called reverse transcription complex (RTC). 

Each viral RNA molecule is then retrotranscribed into a blunt-ended DNA copy by 

two jumps of the reverse transcriptase from the 3’ to the 5’ terminus of the template 

strand; this results in the duplication of U3 and U5 sequences located at the 3’ and 5’ 

edges of the RNA molecule, and in the formation of two identical long terminal 

repeats (LTRs) at both DNA ends (Figure 4). After completion of reverse 

transcription, RTCs are reorganized into preintegration complexes (PICs), containing 

viral DNA, the integrase enzyme and other viral and cellular proteins (see section 

2.1.4). PICs are then translocated to the nucleus, where the viral DNA is 

permanently integrated into the host genome by viral integrase. Nuclear entry 

represents a critical step for gamma-retrovirus infectivity, since their PICs are not 

able to traverse nuclear membrane. Therefore MLV-related viruses can integrate 

exclusively in cells undergoing mitosis, when the nuclear envelope is disassembled. 

On the contrary, lentiviral PICs are translocated to the interphase nucleus through 

nuclear pores by an energy-dependent, nuclear localization signal-mediated import. 

The mechanism is at the basis of lentivirus capability o f infecting quiescent, 

nondividing cells.

Once stably integrated, the viral DNA (now called provirus) is transcribed by the
fi

RNA polymerase II-dependent transcription machinery to generate both full length 

(unspliced) and messenger (spliced) RNAs. Viral RNAs are next translocated from 

the nucleus to the cytoplasm, where the host translational machinery synthesizes and 

modifies viral proteins. The structural components of the viral inner core and 

replication enzymes (products of the gag and pol genes, respectively) are in fact 

translated, transported and assembled as polyprotein precursors (Gag and GagPol). 

Full-length viral RNAs and newly synthesized envelope and core proteins assemble
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together at the cell periphery and at the plasma membrane, where virions finally bud 

out of the cell. Maturation to infectious particles is completed soon after budding, 

when the viral protease cleaves Gag and GagPol polyproteins into individual 

domains.

Adsorption to specific receptor
Fusion of 

membranes and 
entry of the core

I Reverse transcnption

= a c
Nudear translocation

U3 RU5

L D 3’LTR5* LTR
|  Integration

 C IJ]
1  Transcnption

 CH -1
Splicing

V ------ C U

r D

dProgeny

'  Assembly of 
genomic RNA and 

virion proteins

R elease by budding

Proteolytic maturation

Figure 4. Retroviral life cycle. Envelope proteins interact with specific receptors on the surface of 

host cells, membrane fusion occurs and viral core is released in the cytoplasm. After reverse 

transcription, two identical long terminal repeats (LTRs), each one composed of U3, R and U5 

regions, form at both ends of viral DNA. Proviral DNA is then translocated to the nuclear 

compartment and stably integrated into host DNA. Cellular transcription, splicing and translation 

machineries orchestrate expression and maturation of viral proteins. Virions are assembled at the cell 

periphery and released from host cell membrane; maturation to infectious particles occurs soon after 

budding.
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2.1.3 Intesration reaction: products and kinetics

Integration is an essential step in the life cycle of most retroviruses. In fact, the 

permanent insertion of viral cDNA in the host cell genome ensures both stable 

expression of viral genes in the infected cells and perpetuation of the provirus to the 

host cell progeny. The integration process is a two-step reaction catalyzed by the 

viral integrase protein; substrate for integration is the double-stranded, blunt-ended 

linear DNA molecule originating from retrotranscription. The reaction takes place in 

the context of the preintegration complex (PIC), a nucleoprotein agglomerate 

consisting of viral DNA, integrase dimers or multimers, a subset of virion core 

proteins, and specific cellular proteins. Composition of PICs is variable among 

different retroviruses (section 2.1.4).

The integration reaction is a multistep process (Figure 5). Soon after completion 

of viral DNA synthesis, the integrase removes two nucleotides from the 3’ end of 

both strands of viral DNA, adjacent to a conserved CA dinucleotide, generating 

recessed 3’-hydroxyl groups; in the subsequent cleavage-ligation reaction, the 

processed 3’-hydroxyl ends are joined to protruding 5’ ends of the target DNA. 

Complete integration is achieved when cellular enzymes repair gaps at each host- 

virus DNA junction, resulting in a 4- to 6-base pair repeat in the host DNA flanking 

each pro viral end (bases +1 to +4/5/6 downstream of the insertion nucleotide).
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2 .

^  DNA repair

5.

6 |

‘ u n i   ,
integrated provirus

Figure 5. Two-step integration reaction. Gray ovals represent integrase monomers (IN), thick red 

lines represent viral DNA, black lines represent target DNA, and dots represent 5' ends. Linear blunt- 

ended viral cDNA is bound by integrase in the context o f the preintegration complex (1). In the first 

“processing” step (2), integrase removes two nucleotides from the 3' ends of the viral DNA, exposing 

recessed 3' hydroxyl groups (-OH). In the second “joining” step (3), IN binds the recessed 3' ends o f 

viral DNA to the target DNA, in a concerted cleavage-ligation reaction. Unpairing of the target DNA 

between the joined ends o f the viral DNA yields gaps in the target DNA (4). Integration is completed 

when host DNA repair enzymes fill in the gaps in host DNA flanking the provirus, remove the 

overhangs of two nucleotides at the 5' ends of the viral DNA, and perform covalent ligation between 

host and viral DNA (5-6).

Of the total linear cDNA coming from retrotranscription, only a certain fraction is 

actually integrated, resulting in a functional provirus. A significant proportion is 

instead degraded, while a certain amount is converted into by-products, detectable at 

considerable levels in the nucleus at late time-points after infection. These are dead­

end circular forms that stay as extrachromosomal viral DNA molecules until 

degraded. There are three classes of circular unintegrated DNA molecules (Figure 

6):

a) 1-LTR circles, originating from homologous recombination between the LTRs 

of the original linear DNA molecule;



b) 2-LTR circles, formed by non-homologous end joining o f the linear DNA 

extremities;

c) auto-integration products, resulting from a suicidal, intramolecular integration 

of the viral DNA.

Among the others, autointegration products are the sole requiring integrase 

catalytic activity for their formation. The cellular protein BAF (identified as, and

1 Rnamed after, the barrier-to-autointegration factor in Mo-MLV infection ) was 

demonstrated to participate in the regulation of autointegration product formation, as 

an inhibitor of suicide integration and a promoter of efficient intermolecular DNA 

recombination once a suitable chromosomal target is identified. The role and 

mechanism of BAF action are well-established for Mo-MLV19, but a similar strategy 

could be reasonably attributed to HIV, whose PICs have been confirmed to contain,

9D 99and depend on, BAF for integration activity ' .

Kinetics o f the integration reaction and by-product formation can be followed by 

^4/w-PCR technique, a quantitative Taqman PCR carried out with primers annealing 

to the retroviral LTR and to chromosomal Alu repeats. The strategy exploits the high 

frequency and random distribution of Alu elements in primate genomic DNA (5% of 

the mass of the human genome, distributed roughly 5,000 bp apart, randomly 

oriented). Since retroviral integration occurs at many locations in the human 

genome, each provirus will have a unique distance to the nearest Alu sequence, thus 

generating amplification products of different lengths. With such a technique it was 

possible to measure the relative amount of linear HIV cDNA product with respect to 

integrated pro virus and 2-LTR circles23'25. It came out that total HIV cDNA 

accumulates quickly after infection, reaching a maximum abundance after 12 hours, 

and then declining over the next 50-60 hours. The 2-LTR circles peak in abundance

11



24 hours post infection and decline thereafter; integrated proviruses become 

detectable by 24 hours, but reach a plateau only after 48 hours. The final number of 

proviruses per cell is typically considerably lower than the total number of cDNA 

copies measured at 12 hours (up to 20-fold), indicating that only a small fraction of 

retrotranscribed molecules is integrated in the host genome.

1-LTR circle

2-LTR circle//

))

Autointegration 
products

\ 
f

Figure 6. Unintegrated viral DNA products. Dead-end by-products deriving from viral cDNA 

molecules that are non-productively integrated in the host cell genome. (A) 1-LTR circle originating 

from homologous recombination o f LTRs. (B) 2-LTR circle form by non-homologous end joining 

between viral DNA ends. (C) Suicide intramolecular integration of viral cDNA results in a single 

circle containing 2 LTRs or in a pair of 1-LTR circles.

2.1.4 Preintesration complex composition

Retroviral integration is mediated by the preintegration complex (PIC), a large 

nucleoprotein structure containing the fully reverse transcribed viral DNA associated 

to proteins of both viral and cellular origin. Composition and organization of PICs

9A i n  ^ 1 ^9have been studied more extensively for HIV-R ' than for MLV' * , but in both

A. rv c m

B fl • m

\  \J

"v {

m i

....
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cases many aspects remain poorly understood. PICs isolated from both MLV- and 

HIV-1-infected cells contain reverse transcriptase (RT), integrase (IN) and the 

already described host protein BAF (see 2.1.3). Only MLV PICs retain capsid (CA) 

proteins, which are found only in traces in HIV-1 PICs that instead contain matrix 

(MA) and Vpr (viral protein R) proteins. No role in the integration process has been 

demonstrated so far for RT and CA proteins; MA, Vpr and IN proteins instead have 

been all proposed as karyophilic agents facilitating the nuclear import of HIV-1 

PICs33.

Several cellular proteins have been reported to bind HIV-1 PICs; for some of 

them the association occurs via direct interaction with viral IN. Among these are 

members of the DNA repair machinery, constitutive chromatin components, and 

chromatin remodelling complexes. hRadl8 (the human homolog of Saccharomyces 

cerevisiae Rad 18 protein) participates in the DNA post-replication/translesion repair 

and was shown to bind HIV-1 IN and protect it from accelerated degradation34. 

Other components of the DNA repair machinery, such as DNA-dependent protein 

kinase (DNA-PK)35 and poly(ADP-ribose) polymerase-1 (PARP-1)36, both activated 

upon DNA strand breaks, are also required for efficient HIV-1 integration, but no 

direct association with PICs was ever demonstrated for them.

"\nKalpana et al. used a two-hybrid system to isolate a previously unknown human 

protein interacting with HIV-1 IN, therefore called Ini-1 (for integrase interactor 1). 

Ini-1 is part of the SNF/SWI chromatin-remodelling complex, a global 

transcriptional co-activator; interaction with viral IN was shown to stimulate its 

DNA-joining activity.

Another chromatin remodelling protein, this time associated with gene silencing 

and transcriptional repression, has been identified as an HIV-1 IN interactor; this is

13



the human EED, member of the Polycomb group proteins, which showed an 

apparent positive effect on IN-mediated DNA integration reaction in vitro, in a dose-

38dependent manner .

HMG I(Y) (high mobility group) is a further example of a nonhistone chromatin- 

associated protein that is required for HIV-1 PIC function39,40. HMG I(Y) is involved 

in transcriptional control and chromosomal architecture and was able to restore 

intermolecular integration activity from salt-stripped PICs. Attempts to demonstrate 

binding between HMG I(Y) and purified IN have been unsuccessful, and it has been 

therefore proposed that the protein acts simply by binding to the HIV-1 cDNA via 

A/T-rich sequences. Like Ini-1, HMG I(Y) at least promotes the covalent strand 

transfer step of the integration reaction. A role for HMG I(Y) was also proposed in 

the MLV integration process41, even if  physical association with MLV PICs was 

never demonstrated.

LEDGF/p75 (lens epithelium-derived growth factor) is undoubtedly the best- 

characterized cellular cofactor of HIV-1 IN42'46. This transcriptional co-activator 

significantly stimulates IN enzymatic activity both in vitro and in vivo and might 

also function as a chromatin acceptor for HIV-1 PICs. In fact LEDGF/p75 is 

intimately associated with chromatin, through an N-terminal PWWP domain and 

AT-hook DNA-binding motifs and both structural features are required for HIV-1 

efficient infection. This suggests a “bridging” role for LEDGF/p75, which would 

favour harbouring of PICs to the host DNA by binding chromatin on one side and IN 

on the other (further discussed in section 3.3.3).

2.1.5 Resulation of proviral transcription

A productive integration event results in the formation of a provirus, a DNA viral 

intermediate stably inserted into the host-cell genome. At this stage the virus mimics
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a cellular gene and relies almost entirely on the host-cell machinery for gene 

expression. This strategy, unique among animal viruses, implies that the viral 

genome contains a large array of ds-acting control elements regulating 

transcriptional initiation from eukaryotic promoters. Most of these elements are 

transcription factor binding sites lying in the LTRs of the proviral DNA, particularly 

enriched in the U3 region upstream of the transcription start site (first nucleotide of 

the R region).

Retroviral transcription is operated by the host-cell RNA polymerase II, which 

synthesizes cellular messenger RNAs and some small nuclear RNAs. In eukaryotic 

cells, the minimum requirement for RNA polymerase II transcription initiation is the 

assembly of a basal transcription complex onto gene promoters. For most promoters, 

including retroviral ones, the TATA box is the core element that directs RNA 

polymerase II recruitment; this is achieved through binding of the TFIID 

multiprotein complex, composed of a TATA-binding protein (TBP) and several 

TBP-associated factors (TAFs). TFIID recruitment, in turn, promotes the association 

of other basal factors and, finally, of RNA polymerase II. Transcription is initiated 

when the carboxy-terminal tail of the large subunit of RNA polymerase II is 

phosphorylated and the enzyme is released from the core promoter. As the transcript 

is elongated, the basal transcription machinery is partly disassembled, while 

elongation proceeds under the control of specific elongation factors.

Transcription rates are finely tuned by regulatory ds-acting sequences. These 

regions are still considered promoter elements when located in the immediate 

vicinity of the basal promoter. However, they are often situated at considerable 

distance from the promoter they modulate; in this case, they are regarded as distinct 

elements and termed enhancers or silencers, depending on their mediating a positive
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or negative effect on basal promoter activity. In retroviral LTRs, the spacing 

between the transcription start site and the enhancer/silencer motifs is reduced, 

usually less than 1 kb. Transcription factors bind these control elements in a 

sequence-specific manner and act as transcriptional activators as well as repressors. 

This is often achieved in collaboration with coactivators or corepressors, recruited to 

the transcription site by protein-protein interactions. Transcription factors are 

grouped into structural families defined by common DNA-binding motifs, implying 

that related proteins can bind similar or even identical binding sites. Determining 

which member of a given family functions on a particular element becomes therefore 

a challenge, and cannot be assessed but experimentally. This is also the case when 

looking at retroviral LTRs, where regulatory transcription factor families are readily 

inferred by the presence of their consensus sequence, but experimental data 

supporting the involvement of specific members are often lacking or controversial.

Although different retroviruses share many essential features in their gene 

regulation, each retrovirus has evolved unique solutions to replicate in specific cell 

types. Complex retroviruses also employ virally encoded fnms'-activators that act in 

conjunction with cellular proteins to control viral gene expression.

In the next paragraphs the two examples o f Mo-MLV and HIV-1 regulation are 

presented as prototypes for transcriptional regulation strategies employed by simple 

and complex retroviruses.

2.1.5.1 Transcriptional regulation o f Mo-MLV

The LTR of Mo-MLV is a paradigm for the transcriptional control machinery of 

simple retroviruses. The vast majority o f cis-acting elements are located in the LTR 

U3 region, which includes a basal promoter and an upstream enhancer (Figure 7). 

The core promoter contains a TATA box and a CCAAT box motif; the latter is
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bound by the C/EBPs (CCAAT/enhancer binding proteins), a six-member family of 

transcription factors sharing a highly conserved, basic-leucine zipper domain 

involved in dimerization and DNA binding. C/EBP family members have pivotal 

roles in the control of cellular proliferation and differentiation, metabolism and 

inflammation, particularly in hepatocytes, adipocytes and hematopoietic cells47, the 

natural target of Mo-MLV.

C_ YY1 „  
YY1

AAT GAAAGACCCCACCT GTAGGTTT GGCAAGCTAGCTTAAGTAACGCCATTTT
NFAT; ELP
NFAT ELP

GCAAGGCAT GGAAAAATAATAACT GAGAATAGAGAAGTTCAGATCAAGGT CAG
C LVt

MCREF-1
MCREF-1

NF-1 ~~<r Els ") C  CBFB

T CCT GCCCCGGCT CAGGGCCAAAGAACAGATGGT

direct repeats

bHLH C,BF 
NF-1 \  Ets / Ets bHLH C/EBP PBX1

TATA

U3 NFAT MCREF

Enhancer Promoter

Figure 7. Structural organization of the Mo-MLV LTR. The scheme shows transcriptional 

control elements o f Mo-MLV LTRs specifying which cellular factors recognize them. U3 sequence 

up to the first 75-bp direct repeat is also shown in detail, with transcription factor binding sites 

highlighted by colored boxes and nuclear factors known to bind them in ovals. The basal promoter 

includes a CAAT box (recruiting C/EBP factors) and a TATA box. UCR: upstream conserved region, 

containing YY1, NFAT and ELP motifs. PBX1 consensus element is the only regulatory motif 

identified within the U5 region up to date.

The enhancer structure has been extensively characterized and is composed of a 

set of 5’ unique motifs, the so-called upstream conserved region (UCR), followed by
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two direct repeats of approximately 75 bp each, containing binding sites for multiple 

nuclear proteins, closely packed and partially overlapping. The UCR is a particularly 

well-conserved region shared among different gamma-retroviruses48 (Moloney 

MLV, spleen focus forming virus, myeloproliferative sarcoma virus and Friend 

MLV); the region was initially identified as a negative control region in Mo-MLV 

LTR, since it contains two potentially inhibitory motifs. One is a target for the 

embryonal long terminal repeat-binding protein (ELP), a mammalian homolog of the 

Drosophila Fushi-Tarazu transcriptional repressor that binds to, and suppresses 

transcription of, the MLV LTR in undifferentiated murine embryonal carcinoma 

cells49. The second inhibitory sequence is recognized by the bifunctional Ying Yang 

1 (YY1) protein, originally described as the UCR binding protein-I (UCRBP-I)50. 

YY1 is a ubiquitously expressed factor and can act either as a transcriptional 

repressor or as an activator, in both cellular and viral enhancers. Despite YY1 being 

identified at first as a negative regulator of Mo-MLV LTR50, subsequent analysis in 

cells of hematopoietic and non-hematopoietic origin revealed that deletion of the

48 •UCR results in a significant reduction of enhancer activity . The decrease in 

expression levels was accounted for partly by the YY1 motif deletion and partly by 

deletion of a third binding site within the UCR, identified as an NFAT (nuclear 

factor in activated T cells) motif. The NFAT family comprises five members 

expressed in most immune-system cells, where they play a substantial role in the 

transcription of cytokine genes and other genes critical for the immune response51.

At least eight sites for protein binding have been mapped to each copy of the 75 

bp direct repeats. The glucocorticoid responsive element (GRE) was demonstrated in 

rat fibroblastoma cell lines to bind the glucocorticoid receptor in the context of

S9 ST •Moloney murine sarcoma virus (Mo-MSV) ’ LTR, a virus strictly related to Mo-
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MLV. However, in vivo footprinting of Mo-MLV LTR in murine fibroblasts and T 

cells failed to show occupancy of the GRE sites54, suggesting that glucocorticoid 

responsiveness of Mo-MLV LTR could be cell-context dependent.

Overlapping to the GRE is the LVa (leukemia virus factor a) motif55, an Ephrussi 

box (E-box) element recognized by several transcription factors from the basic helix- 

loop-helix (bHLX) structural family.

NF-1 (nuclear factor I/X) is a CCAAT-binding transcription factor which binds to 

two sites in each enhancer repeat56. Like GRE motif, the occupation of NF-1 sites 

varies among cell types; in vivo footprinting experiments revealed binding of NF-1 

in Mo-MLV-infected fibroblasts but not in lymphoid cells54.

The LVb (leukemia virus factor b) site has been shown to bind many proteins of 

the Ets transcription family, including Ets-1 and Ets-257, LVt58, GABP and Fli-1. Ets 

proteins are a family of helix-loop-helix transcription factors regulating the 

expression of a myriad of genes involved in the development and differentiation of a 

variety of tissues and cell types. This functional versatility emerges from their 

interactions with other structurally unrelated transcription factors59.

The CORE motif is recognized by the core binding factor (CBF)60, a 

heterodimeric protein whose alpha subunit (AML1, acute myeloid leukemia 1) 

interacts directly with DNA, while the beta' subunit (CBFB) increases the stability of 

CBF-DNA complex. The complex plays a major role as a transcriptional activator in 

hematopoiesis. There are evidences that Ets and CBF cooperate in vivo to regulate 

transcription from the Mo-MLV enhancer by concerted binding to the LVb and 

CORE sites61.
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Overlapping to the LVb and CORE sites is the binding motif recognized by 

MCREF-1 (mammalian type-C retrovirus enhancer factor-1), a nuclear protein only 

partially characterized58,62.

Recent work identified an additional regulatory sequence in the U5 region of Mo- 

MLV LTR, perfectly conserved in 14 other murine retroviruses. This is the PBX 

consensus element (PCE) recognized by heterodimers of the homeodomain proteins 

PBX1 (pre-B-cell leukaemia transcription factor 1) and PREP1 (PBX regulating 

protein l)63. Both mutations of the PCE and inhibition of PBX1 protein synthesis by 

antisense oligonucleotides and siRNA strategies significantly diminish viral 

transcription, whereas PBX1 and PREP1 over-expression enhances MLV 

transcriptional levels.

Although the exact identity of each cellular protein functioning at a specific site is 

still under investigation, mutagenesis studies of the enhancers and promoter indicate 

that all identified binding sites correspond to positive-acting elements within Mo- 

MLV LTR and are therefore necessary for high-level LTR transcriptional activity. 

Indeed, such a promiscuous array of binding sites for tissue-specific as well as 

ubiquitously expressed transcription factors allows sustained Mo-MLV expression in 

most mammalian cell types, of hematopoietic as well as non-hematopoietic origin 

(e.g. deriving from neural, epithelial and muscular tissues).

2.1.5.2 Transcriptional regulation o f  HIV-1

HIV-1 transcription is regulated by ds-acting elements spread over U3 and R 

regions of the LTRs (Figure 8). A TATA box defines the basal promoter; 

immediately upstream is a strong enhancer element, composed of two NF-kB and 

three Spl consensus sites. NF-kB proteins are transcriptional activators encoded by 

the NF-kB/Rel gene family, functioning in a variety of homo and heterodimeric
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configurations. Activation of Nf-kB proteins is induced upon T-eell and monocyte 

activating signals but also in response to cytokine stimulation. NF-kB proteins were 

shown to be important for HIV-1 transcription in a series of independent studies64'66. 

Individual tests of different family members have shown that the various NF-kB 

homo and heterodimers may exert differential effects on HIV gene expression, the 

most common always being a potent activation of LTR transcription. This is 

apparently achieved in cooperation with the constitutive Spl transcription factor, 

whose interaction with NF-kB family member RelA was demonstrated to augment 

binding to and transactivation of the HIV LTR . Consistently with this observation, 

mutation of both the NF-kB and the adjacent Spl sites is necessary to severely 

reduce viral replication, entailing that the highly conserved arrangement of the two 

motifs enhance the efficiency of these factors in activating HIV transcription.

Upstream the NF-kB and Spl positively acting motifs is the so-called negative 

response element (NRE), exhibiting both negative and positive regulatory properties. 

Among repressor proteins binding the NRE are COUP-TFs (chicken ovalbumine 

upstream promoter transcription factors), members of the steroid/thyroid hormone 

receptor superfamily; mutation of COUP site resulted in an increase of LTR-directed 

transcriptional activation68. The negative effect on HIV transcription mediated by 

NFAT-1 (nuclear factor in activated T cells 1) binding site is much more 

controversial; while deletion of NFAT-1 consensus from the HIV LTR resulted in 

the production of viruses replicating more rapidly than parental ones in T cell 

cultures, the same motif was not able to modulate the expression levels of an HIV 

LTR-driven heterologous gene, neither positively nor negatively69,70.

Similarly unclear is the role of TCF-1 sites, recognized by a T-cell-specific 

transcription factor that activates the T-cell receptor C alpha enhancer71.
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The NRE also contains ds-elements with a stimulatory effect on HIV 

transcription; these are two immediately adjacent E-box and Ets binding sites located 

-130 to -166 bp upstream of the transcription start site. Cooperative DNA binding of 

the helix-loop-helix protein USF-1 (upstream stimulatory factor-1) and of Ets-1 

protein was demonstrated on these motifs in T cells. The two proteins were also 

shown to interact directly, forming a transactivation complex required for full 

transcriptional activity of the HIV-1 LTR72. Beside the E-box located in the distal 

enhancer, USF-1 can also bind to two initiator-type elements near the transcription 

start site of the HIV-LTR (-3 to +20; +35 to +60), again with a stimulatory effect. 

The upstream initiator site partially overlap with a -17 to +27 region recognized by 

three other factors (YY-173 in cooperation with LBP-174, and TDP-4375), all acting as 

transcriptional repressors. LBP-1 (also known as upstream binding protein-1, UBP- 

1) recognizes three sites within this region and has an additional low-affinity binding 

site overlapping the TATA-box; when interacting with this element, LBP-1 

specifically represses HIV-1 transcription by preventing the recruitment of the 

general initiator factor TFIID to the core promoter76.

Like other complex retroviruses, HIV-1 has evolved a regulatory mechanism 

relying upon a virally encoded transcriptional activator, the product of the tat gene. 

Tat protein alone is able to enhance LTR-directed transcription by hundreds to 

thousands of fold, and mutations of the tat gene result in complete abolishment of 

HIV replication77,78. The Tat-responsive region (TAR) is located at the 5’ end of 

viral RNAs (+1 to +59); as soon as it is transcribed, TAR forms a stable stem-loop 

secondary structure that is recognized and bound by Tat protein. Once bound, Tat is 

able to increase the processivity of RNA polymerase II by recruiting various 

transcription factors such as the TBP, the general transcription factor TFIIB and the
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positive transcription elongation factor B (P-TEFB). This leads to the formation of 

very active elongating transcription complexes that hyperphosphorylate RNA 

polymerase II C-terminal domain79, thus ensuring continuous and rapid reinitiation 

of transcription to the benefit of the viral promoter strength. This scenario favors the 

notion that Tat acts by interacting with multiple viral and cellular partners at a time.

In accordance with the view that Tat is multi-functional it has been shown that Tat

• 80  81also regulates cotranscriptional mRNA capping and splicing .

TDP-43

NFkBNFAT-1
COUPTF/AP1

--------- a

U3 Ets TCF1 USF1 R U5
NRE (+/-) enhancer (+)

Figure 8. Structural organization of the HIV-1 LTR. Schematic representation of cA-acting 

regulatory elements in HIV-1 LTR; transcription factors known to bind transcriptional control 

elements are specified. HIV-1 LTR includes a distal negative response element (NRE), exhibiting 

both positive and negative regulatory properties, and a proximal enhancer, promoting proviral 

transcription. TAR: Tat response element, localized within the R region of nascent RNA transcripts.
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2.2 Retroviral vectors and gene therapy

In the last decade it has been clearly established that the transfer of a therapeutic 

gene into somatic cells (gene therapy) has an enormous potential for the 

management of many diseases, both inherited and acquired. The ability of 

retroviruses to integrate efficiently into the genomic DNA of animal cells and be 

stably replicated and transmitted to all their progeny was a strong incentive for the 

development of retroviral gene transfer vectors. From many studies it was clear that 

retroviral genomes could accommodate extensive alterations, and, even though these 

changes often resulted in replication defects, altered viruses could be propagated in 

the presence of a replication-competent, “helper” virus82,83. Such vector preparations 

were necessarily contaminated by the helper virus, spreading after infection of target 

cells, which rendered the procedure unacceptable for human gene therapy purposes. 

A major advance in retroviral vector design for gene therapy applications came with 

the development of retroviral packaging cells that provide all of the retroviral

o 4  o c

proteins in trans but did not produce replication-competent virus ’ . Many 

packaging cells of the first generation still produced helper virus as a result of 

recombination events, but evolution in design has enormously reduced this 

frequency. In the last generation retroviral vectors only the minimal viral elements 

required for high efficiency transfer are retained, while the remaining viral coding 

regions are either eliminated or supplied in trans. This is possible because the early 

steps of the retroviral replication cycle, from viral entry to integration, are 

completely independent of viral protein synthesis, but instead rely on viral proteins 

packaged within the virions (RT, IN, protease) and on cA-acting elements included 

in the viral genome. These are a promoter and a polyadenylation signal for viral 

genome production in the packaging cell, a packaging signal for incorporation of
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vector RNA into virions, signals required for reverse transcription and short repeats 

at the termini of viral LTRs necessary for integration. All the intervening genomic 

material can be replaced with the sequence of interest, to accommodate up to 1 0  kb 

o f heterologous DNA. To further reduce the risk of replication-competent 

recombinants, gamma-retroviral and lentiviral vectors are often engineered to 

become self-inactivating (SIN), meaning that they lose the transcriptional capacity of

O/'  o o

their LTR once transferred to target cells ' . This is achieved by deleting the 

transcriptional enhancers or the enhancers and promoter in the U3 region of the 3’ 

LTR from the DNA used to produce the vector RNA. During the first cycle of 

reverse transcription, occurring upon target cell infection, this deletion is transferred 

to the 5’ LTR, generating a transcriptionally inactive provirus (Figure 9). However, 

any promoter internal to the LTRs in such vectors will still be active. Besides 

minimizing the frequency of replication-competent recombinants, this strategy also 

reduces transcriptional interference between LTRs and internal promoter/s, and 

eventually transactivation effects on adjacent cellular genes once the pro virus is 

integrated in the host genome.

Packaging systems also allow production o f transfer vectors with 

heterologous envelope proteins, so that the viral tropism can be modified or extended 

at wish. For instance, pseudotyping vectors with the surface protein of the vesicular 

stomatitis virus (VSV-G) expands viral host range to include insect, mammalian, fish 

and amphibian cells; moreover, being VSV-G mechanically more stable than other 

envelope proteins, it is possible to concentrate VSV-G-pseudotyped particles by 

ultracentrifugation, collect high-titer vector stocks, and store them for long-term 

periods89,90.
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Figure 9. Construction of self-inactivating vectors. The U3 region o f the 3’ LTR is partially deleted 

(A ) to remove enhancers and/or promoter from the DNA used to produce vector RNA. Deletion is 

transferred to 5’ LTR upon target cell infection and reverse transcription. Black arrows indicate 

promoter transcriptional activity; long red arrows represent transcripts from the internal expression 

cassette. P, internal promoter; X, gene o f interest.

Due to these features, retroviral vectors are among the most widely used tools 

for gene delivery in general and for human gene therapy in particular (Figure 10). 

As a matter of fact, for some problematic but extremely valuable therapeutic targets, 

such as human stem cells, retroviral vectors represent the only available strategy to 

transfer therapeutic genes with efficiency compatible with clinical applications. 

Indeed, the transplantation of autologous, genetically modified stem cells is a 

promising therapeutic approach for a variety o f genetic disorders of hematopoietic, 

epithelial or neural cells. These include severe combined immunodeficiencies 

(SCIDs)91, thalassemias92, lysosomal storage disorders93'95, skin adhesion defects96

• . Q7 QO
and hemophilia ’ . Gamma-retroviral vectors derived from murine leukemia viruses 

(RV) have been used in hundreds of gene therapy trials since 1991. However, for a 

number of clinical applications RV vectors are highly likely to be replaced by
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lentiviral vectors (LV) derived from human or animal immunodeficiency viruses. In 

fact, LV vectors transduce a wide variety of human cells ex vivo and in vivo, 

achieving high-level and long-term expression o f transgene(s). Most importantly, 

due to the active nuclear transport o f the PICs, LV vectors can transduce both 

dividing and non-dividing cells, a clear advantage when targeting quiescent or rarely 

dividing stem cells. Several years of research have improved the efficacy and safety 

of the LV vector technology to such an extent that the first clinical trials using HIV- 

1-derived vectors have been recently approved and started99*101.

Adenovirus 24  8% {n—342)
$  Retrovirus 2 2 .3%  (n=307}
$  N aked/P lasm id D NA  17,8% (n=246)
#  Lipofection 7,4% {n= 102}
#  Vaccinia virus 6 4% (n=93)
#  Poxvirus 6 .4%  {n=88}
#  A deno-associated  virus 3.9%  (n=54)
$  H erpes simplex virus 3 1% (n = 43)
$  RNA transfer 1 4% (n= 19}
$  O ther categories 3.2%  (n=44)

Unknown 3% (n = 4 l)

Figure 10. Vector used in gene therapy clinical trials. The chart shows in what proportion different 

gene delivery systems are used in all the approved, ongoing or completed human gene therapy clinical 

trials worldwide, n indicates the number of trials conducted with each vector type. Data are obtained 

from The Journal o f Gene Medicine clinical trial site102.
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3. Retroviral integration features and mechanisms: state of 

the art

3.1 Insertional mutagenesis as a gene therapy adverse event

Replication-defective retroviral vectors are excellent gene therapy tools, 

efficiently delivering therapeutic genes to a variety of cell types. Thanks to the 

integration reaction, retroviral DNA is stably inserted into the host cell chromatin, 

providing long-lasting transgene expression and permanent transmission to the host 

cell progeny.

Due to its easy accessibility, blood is one of the organs in the human body 

that is of special interest for gene therapy interventions. The blood system reveals a 

hierarchical structure, with a relatively limited number of hematopoietic stem cells 

(HSCs) being the origin of any mature blood cell. Thus, modification of a small 

number of long-term repopulating stem cells might be sufficient to achieve 

therapeutic efficacy in the entire blood system.

Because they reach high expression levels in the hematopoietic system, Mo- 

MLV-based vectors (RV) carrying wild type LTRs have been largely, and in some 

cases successfully, used in gene therapy for blood disorders since .1991. These 

vectors were considered relatively safe, because the integration events were believed 

to be random, and the chance of accidentally disrupting or activating a gene remote. 

In vitro integration models had identified some factors enhancing or reducing 

insertion efficiency, such as nucleosomal assembly, presence or absence of DNA- 

binding proteins103, and DNA physical structure104; however, these observations 

could not even hint at a risk related to vector insertion in the human genome.
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Nevertheless, the oncogenic potential of murine RV has been known for decades and 

even largely exploited to identify genes involved in murine and possibly in human 

cancers (in the so-called “retroviral tagging” approach105). In fact, administration of 

replication-competent RV to susceptible mouse strains often lead to tumor 

development, as a result of insertional deregulation of growth-controlling genes 

followed by clonal expansion of cells hosting such integrations. Replication- 

defective RV vectors were also reported to cause insertional oncogenesis in mice106, 

but the risk of mutagenesis of cellular genes promoting a malignant phenotype was 

estimated to be low ( 1 0 " 7 per insertion), again assuming that retroviral integration 

occurs randomly over the genome. Such assumption was readily reconsidered when 

a lymphoproliferative disorder was reported in one patient treated for X-linked 

severe combined immunodeficiency (X-SCID) with MLV-transduced HSCs5. 

Mapping of RV integrations in the predominant T-cell clone revealed a single 

proviral insertion within the LMO-2 locus, associated with upregulation of transcript 

and protein levels. Aberrant expression of the LMO-2 protein had been already 

reported in spontaneous cases of acute lymphoblastic leukemia, resulting from the 

chromosomal translocations t( 11:14) and t(7:11). These observations lead to the 

conclusion that the leukemia-like disease was a consequence of an insertional 

mutagenesis event, and that a reassessment of the potential risk of retrovirally 

mediated gene therapy was necessary. This became obvious as a similar 

complication was reported in three more patients enrolled in the same clinical 

study6 , 8  and also in one patient recruited in an independent X-SCID trial2,7. The five 

adverse events have remarkable features in common: all but one malignant clones 

hosted at least one RV insertion nearby the proto-oncogene LM 02, always resulting 

in LM 02 protein over-expression, and all leukemias developed 2 to 5 years after
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gene therapy treatment. These facts suggest that the leukemogenesis mechanism is 

likely to be the same. The product of LM 02 gene (LIM-only protein 2) acts as a 

bridging molecule in transcription factor complexes, thanks to several zinc-binding 

finger-like motifs; the protein is expressed early in hematopoiesis, and it is down- 

regulated during commitment in all except the erythroid lineage107. In T cells, down- 

regulation of the protein appears to be crucial, since mice constitutively expressing 

Lmo2 in the thymus develop T-cell leukemia, preceded by an accumulation of 

immature T cells108,109. This indicates that LM 02 deregulation could increase 

susceptibility to leukemia by blocking T cell differentiation. It was also suggested 

that an additional role in the X-SCID adverse events was played by the transgene 

delivered to HSCs, the IL2Ryc gene. The gene encodes a signaling subunit common 

to several interleukin receptors, all of which promote T-cell proliferation upon ligand 

binding. If LTR-driven LM 02 over-expression blocks T cell development at a stage 

in which one of IL2Ryc partners is present, a complete interleukin receptor may 

assemble, rendering the cells hypersensitive to growth factors and inducing their 

proliferation. According to this model, cooperation between LM 02 and IL2Ryc, 

together with secondary mutations, would give rise to the observed clonal T cell 

leukemia110. In fact, IL2Ryc role as cooperative oncogene in the human gene therapy 

setting is still controversial; recent reports using murine models have suggested that 

the IL2Ryc itself could contribute to leukemic transformation111,112, whereas 

functional assays performed in human CD34+ HSCs showed no effects of IL2Ryc

• • 1 1 3over-expression on T cell development and proliferation . As a matter of fact, no 

clonal lymphoproliferation has been reported to date in patients treated for ADA 

deficiency1, despite the observation of a high frequency of integration near LM 02 

and other T-cell proto-oncogenes114, indicating that either the therapeutic transgene
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or the X-SCID background115, or both, might have been critical factors for tumor 

onset.

Whatever the mechanism of leukemia development, the striking outcome of 

gene therapy of X-SCID is that 5 out of 19 patients successfully treated in two 

independent clinical trials developed a malignancy due to insertional mutagenesis, 4 

of which even at the same genomic locus. This observation led the scientific 

community to necessarily reconsider both the assumption of random distribution of 

retroviral integration in the genome and the risks associated to retroviral gene 

transfer in human beings.
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3.2 Non-random integration pattern o f retroviral vectors in 

mammalian genomes

Since a concrete risk of developing tumors by insertional mutagenesis was 

assessed in the X-SCID trial7’8, understanding the mechanisms that dictate retroviral 

target-site selection in the human genome has become a major safety issue in the 

field of gene therapy. A deeper investigation of retroviral insertion preferences was 

also necessary to explain the basic virology underlying the integration process, 

which is still far from being completely understood.

Before completion of genome sequencing projects, it was impossible to 

obtain an accurate global picture of retroviral integration events. Early studies using 

in vitro integration models identified several factors relevant to integration site 

selection, such as DNA bending induced by nucleosomal assembly, steric hindrance 

to target DNA due to DNA binding proteins103, and DNA intrinsic structure104. 

However, target site selection in vivo remained poorly understood. Pioneering in vivo 

studies on Mo-MLV and ASLV (avian sarcoma leukosis virus) integration pattern 

produced conflicting results, with some reporting that transcriptionally active regions 

favor retroviral integration1 1 6 , 1 1 7  and others suggesting the opposite118.

As soon as almost complete sequences were available for several vertebrate 

genomes, genome-wide approaches were used to analyze integration targeting in a 

statistically rigorous manner. Large-scale, high-throughput methods were designed 

to clone and sequence the junctions between proviral and host-cell DNA. The 

position of integration sites in the genome was then correlated with other annotated 

features, such as presence of genes, transcriptional activity, centromeric regions119, 

fragile sites120, CpG islands, hypersensitive sites121 and, very recently, epigenetic
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modifications122. This was done in a variety of cell types derived from different 

species (bird, human, non-human primate, murine primary cells and/or cell lines) 

after acute infection with different retroviruses or retroviral vectors (among others 

HIV-1, SIV, Mo-MLV, ASLV, extensively reviewed by Bushman et al. 123).

Considering the common assumption of random distribution of retroviral 

integrations in the genome, the results of these large-scale surveys were almost 

astonishing. Not only did they uncover genomic features systematically and 

specifically associated with retroviral insertions, but they also pointed out that each 

retrovirus has a unique, characteristic pattern of integration within the human 

genome.

3.2.1 Primary DNA sequence and integration site selection

One of the first genomic features to be investigated for a role in target site 

selection was the primary DNA sequence at the target site. In fact, while integrase 

has strict sequence requirements for the viral DNA ends (the dinucleotide CA, 

invariably located 2  bp from both ends of the viral termini, and sequences up to 15 

bp upstream of the CA), target site sequences are very diverse. A recent study re­

analyzing integration sites from HIV-1, Mo-MLV, ASLV and SIV-infected cells 

found a weak statistical palindromic consensus, centered on the virus-specific 

duplicated target site sequence124. The consensus was weakly conserved but 

distinguishable between different retroviruses, as later confirmed by other larger 

surveys122,125. The same consensus was also found around integration sites in naked 

genomic DNA catalyzed in vitro by PICs, suggesting that the observed preferences 

are due to the integration machinery itself and not to host factors. Apart from the 

primary sequence, DNA structural properties such as A-philicity, DNA bendability, 

protein-induced deformability, and hydrogen bond potential patterns were also
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investigated for a positive or negative correlation with target site selection. All of 

these structural properties were found favored at the integration sites of one or 

another retrovirus. By the author’s own admission, it is difficult to think of the 

consensus as the most favorite sequence at each base, but instead it might be better 

to consider certain bases being excluded at certain positions to meet the spatial or 

energy requirements of the integration complex.

Given that target site selection is only weakly sequence specific, other 

genomic features were explored.

3.2.2 Retroviral intesration and senes

Having in mind the transactivation effect of Mo-MLV LTRs on the LM 02

gene in the X-SCID patients, the correlation between integration sites and

transcriptional units was promptly investigated. Different retroviruses show distinct

target site preferences. Considering the well-characterized RefSeq genes as the

126reference category, around 30% of the human genome consists of genes . HIV-1 

and SIV integrations are found inside genes with frequencies ranging from 60 to 

85%, depending on the cell type, while the frequency for Mo-MLV and ASLV is 

between 40 and 60% 11,12,121’127' 131. Transcription units are therefore preferential 

targets for retroviral and especially for lentiviral integration, this also entailing an 

insertion bias towards gene-rich regions on chromosomes.

The next step was to investigate whether there were any preferences in the 

location of integration sites along the transcription unit. Remarkably, no biases were 

found for HIV-1, SIV or ASLV, while a strong preference for promoter-proximal 

regions was reproducibly observed for Mo-MLV. Indeed, up to 20% Of Mo-MLV 

integrations landed within 5 kb upstream or downstream of a transcription start site 

(TSS). Accordingly, a strong association was found between Mo-MLV insertion
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sites and CpG islands within 1 kb. CpG islands are chromosomal regions enriched in 

the rare CpG dinucleotide that often correspond to gene-regulatory regions, and 

therefore promoters, containing clusters of transcription factor binding sites. ASLV 

integrations are only slightly biased towards CpG islands, while HIV-1 integration is 

even disfavored. The main determinant of MLV promoter preference is the viral 

integrase, presumably through a direct tethering interaction with transcription factors 

and/or other proteins bound at TSSs. This was elegantly demonstrated in HeLa cells 

using a chimeric HIV virus packaged with a Mo-MLV integrase (HIVmlN)121. Such 

a vector recapitulated most of the Mo-MLV integration biases, showing the typical 

clustering of insertion sites around the TSS and the well-documented MLV 

preferences for CpG islands and DNasel hypersensitive sites.

These findings imply a profoundly different integration mechanism for MLV 

with respect to other retroviruses, which cannot but affect its application as a gene 

therapy vector. Preferential integration near the TSS of host genes, where LTR 

transactivation can be more effective, undoubtedly confers to RV vectors an 

increased genotoxic potential compared to other vectors.

3.2.3 Retroviral intesration and 2ene activity

Once the preference for genes was established, transcriptional profiling 

analyses were performed on host cells to assess the influence of transcriptional 

activity on integration site selection. The median expression level of genes targeted 

by HIV-1 and Mo-MLV integration events was consistently higher than the median 

expression level of all genes assayed in the microarray9,11,13,114,127. Only a weak bias 

in favor of active genes was instead observed for ASLV11.

Since transcriptional activity favors integration of Mo-MLV and HIV-1 and 

that different cell types show unique transcriptional profiles, the effects of cell-type-
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specific transcription on integration pattern was assessed, at least for HIV-111. As 

largely expected, genes that were relatively more active in a given cell type were 

more likely to be targeted by HIV integration. However, the bias was quantitatively 

modest, probably because most of the cellular program of gene activity is 

overlapping among many cell types.

3.2.4 Retroviral integration and transcription factor bindins sites

Given the MLV propensity to integrate nearby promoters of active genes, one 

would expect to observe an enrichment of transcription-factor binding sites (TFBSs) 

near the integration sites o f this virus. By now the idea has been pursued by a single 

group of researchers, and results were reported in the same paper describing the role

191of MLV integrase in directing PICs to TSSs . A collection of 531 positional weight 

matrices (representing a collection of transcription factor binding sites) was used to 

annotate ± 1 kb-regions surrounding the integration sites of wild type MLV and HIV 

vectors, and of chimeric HIV vectors packaged with an MLV integrase (HIVmlN) 

and/or an MLV Gag protein (HIVmGagmlN and HIVmGAG, respectively). The 

results were then compared to matched random control sites to assess statistically 

significant enrichments. wt-MLV, HIVmlN, and HIVmGag-mlN data sets showed 

the highest numbers of significantly enriched TFBSs, many of which were in 

common to all groups or shared between two out of three groups. wt-HIV and 

HIVmGag returned far fewer TFBSs, with no motifs in common at all. However, 

few of the sites associated to MLV integration were still found enriched when 

promoter sequences were used as controls instead of randomly chosen genomic sites. 

This suggested that some general features of promoters attract MLV integration, 

more than specific interactions with TFs. Nevertheless, a regression analysis 

indicated that the presence of a nearby promoter could not fully account for the
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favorable effect of TFBSs on MLV integration frequency, leading the authors to 

admit a possible effect of TFBSs on MLV integration targeting beyond just marking 

promoters.
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3.3 Proposed mechanisms fo r integration site selection

The genus-specific integration patterns of HIV-1, Mo-MLV and ASLV imply 

a distinct molecular mechanism directing integration site selection for each 

retrovirus. Target DNA accessibility can explain some common characteristics, like 

preference for active genes and avoidance of centromeric heterochromatin, but other 

peculiar features, like MLV preference for promoter-proximal regions, require a 

different, more complex model.

3.3.1 Tv retrotransvosons: a paradism for tethered integration

Studies of retrotransposons in yeast provide an interesting candidate 

mechanism. Ty elements are well-studied yeast retrotransposons that replicate by 

cycles of transcription, reverse transcription and integration similar to retroviruses, 

except for the fact that all the steps occur inside a single cell. This life-style poses 

special problems. Yeast genome is 60 to 70% coding and a randomly integrating 

element is at high risk of committing suicide by insertional inactivation of host gene. 

Probably for this reason, Ty elements evolved strategies to actively select targets 

where insertion would not compromise host fitness. There appear to be at least three 

distinct mechanisms to avoid host genes, exemplified by the Tyl, Ty3 and Ty5 

elements. Both Tyl and Ty3 integrate at the 5’ ends of RNA polymerase Ill- 

transcribed genes, in regions that can tolerate insertions with no adverse events, 

while Ty5 favours integration at telomeres. Ty3 element targets tRNA genes with 

extraordinary precision, inserting within few base pairs of the TSS. This is probably 

mediated by local tethering of PIC to the TFIIIB component of the basal 

transcription machinery132. The Tyl element integrates with less selectivity, in a 

window of about 750 bp upstream of RNA polymerase III TSSs; the histone
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deacetylase, Hos2, and the Trithorax-group protein, Set3, both components of the 

Set3 complex, have been recently proposed to tether Tyl to tRNA genes133. The Ty5 

element shows a further integration specificity, with 95% of insertions found either 

at telomeres or at silent mating loci; in this case, the heterochromatin protein silent 

information regulator 4 (Sirp4) is involved in specifying integration sites, through 

direct interaction with the Ty5 encoded integrase134,135.

In each of these cases, there is evidence that Ty integration complexes are 

tethered to their preferred sites by interaction with specific cellular proteins, 

mediating local integration. It is reasonable to suppose that such a tethering 

mechanism might also operate for retroviruses, with a targeting strategy opportunely 

suited to promote their evolutionary persistence. As discussed above, intracellular Ty 

retrotransposons evolved to direct their integration outside transcription units, thus 

minimizing the risk of host gene perturbation. On the contrary, acutely infecting 

retroviruses need to maximize the production of progeny virions by producing the 

largest number possible in the shortest time, and integration in transcriptionally 

active regions may facilitate high-level transcription. The retroviral integration 

machinery probably evolved accordingly, allowing interactions with host nuclear 

proteins enriched in active chromatin regions.

3.3.2 Tetherins models for retroviral intesration

A proof of principle that retroviral PICs can be tethered to integration sites by 

cellular interactors is provided by several in vitro studies performed with engineered 

integrases fused to sequence-specific DNA binding domains. Such hybrid integrases 

are capable of targeted integration in vitro, demonstrating that tethering of integrase 

protein to target sites can constrain integration site selection. Different combinations 

were tested, all with encouraging results. HIV-1 integrase (IN) was fused to the
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DNA-binding domain of the phage lambda repressor protein XR136, of the

i 0 7  l i f t

Escherichia coli LexA repressor , and o f the zinc finger proteins E2C and 

zif26 8 139; ASLV integrase was also linked to E. coli LexA protein DNA-binding 

domain140. All these engineered integrases programmed integration near the binding 

site specified by the fused DNA-binding domain in vitro. A certain level of 

efficiency was also observed in vivo, where the HIV IN/E2C fusion protein was 

demonstrated to re-direct integration into a unique E2C-binding site within the 5' 

untranslated region of erbB-2 gene on human chromosome 17, with seven to tenfold 

higher preference when compared to a wild type IN (from 0,15% to 1-1.5% of the 

total integrated proviruses)141. Off-target integration was still largely predominant, 

but the study represented the proof of concept that tethering can affect integration 

targeting, and that IN-DNA interactions might be engineered to constrain integration 

site selection.

If tethering is indeed involved in retroviral integration site selection, the main 

challenge becomes the identification of chromosomal ligands for the retroviral 

integration machinery and of their counterparts within the PICs. In principle, any 

viral or cellular component of the PIC could act as a binding partner in a tethering 

interaction. Several cellular proteins have been isolated as physically bound to viral 

PICs (hRadl8 , Ini-1, EED, HMGI(Y), LEDGF/p75, described in section 2.1.4); for 

some of them a direct interaction with viral IN was also demonstrated. Among these, 

the best characterized and deeply studied by now is the lentiviral integrase interactor 

PSIPl/LEDGF/p75.

3.3.3 LEDGF/y75: a candidate for lentiviral intesration tetherins

Despite its name, the lens epithelium-derived growth factor (LEDGF/p75) is 

a ubiquitously expressed nuclear protein, tightly associated with chromatin
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throughout the cell cycle142. The protein came to the attention of retrovirologists 

when it was identified in affinity-based screens for its tight binding to HIV-1 IN and 

it was observed that it was capable of stimulating IN catalytic function in 

vzYro42,143,144. LEDGF/p75 is a member of the hepatoma-derived growth factor 

(HDGF) related protein (HRP) family, characterized by a conserved N-terminal 

PWWP domain, found in a variety of nuclear proteins145,146. Of the six described 

HRP family members147,148, only LEDGF/p75 and its highly homologous HRP2 

contain a second conserved domain at the C-terminus, thereafter termed IBD 

(integrase binding domain), that allows their interaction with different lentiviral 

INs149. The PWWP domain, together with a nuclear localization signal and a double 

copy of an AT-hook DNA-binding domain mediate LEDGF/p75 association with 

chromatin, with no apparent sequence specificity150,151. The cellular functions of 

LEDGF/p75 remain largely unknown, although a role in transcriptional activation 

has been proposed right after the protein was identified152,153. Nevertheless, the role 

played by LEDGF/p75 in HIV infectivity was deeply investigated. The most robust 

results came from studies on human cells with RNA interference knockdowns of 

LEDGF/p754 3 , 4 4 , 1 5 4 ' 1 5 6  and on murine cells with homozygous gene-trap mutations in 

the LEDGF/p75 locus156,157. When LEDGF/p75 protein is depleted, the first effect is 

a re-localization of the IN enzyme to the cell cytoplasm, with loss of chromosomal 

association and even an increased proteosomal degradation of the viral protein. A 

second, important consequence is an overall reduction of HIV-1 infectivity, due to a 

severe impairment in the integration process. Residual integration sites were 

analyzed, to find a decrease in the HIV typical preference for transcription units, and 

an increase in insertion nearby CpG islands and promoter regions, classical targets of 

other retroviruses. Integration did not become random, however, and transcription
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units were still favored. Therefore it is still plausible that cell factors other than 

LEDGF/p75 participate in PIC tethering to chromosomes, although LEDGF/p75 

remains the dominant cellular binding partner of HIV-1 IN, required for efficient 

integration and replication of the virus.

Overall, these observations suggest a model where one domain of 

LEDGF/p75 binds chromatin at active transcription units and the other acts as a 

receptor for incoming PICs; enhancing IN DNA strand transfer activity, 

LEDGF7p75 would then direct integration to a nearby genomic locus. Such a 

tethering model predicts that LEDGF/p75 should accumulate on active transcription 

units, but this has not been experimentally demonstrated so far. It is not even known 

how LEDGF/p75 might recognize active transcription units. A recent genome-wide 

study found a positive correlation between HIV-1 insertion sites and certain post- 

translational histone modifications122; accordingly, one possible model for 

LEDGF/p75 recognition of active transcription units would be via the histone 

modifications specifically marking them.
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3.4 In vivo clonal expansion of MLV-transduced human and murine 

hematopoietic cells

When the first case of leukemia was observed in the X-SCID gene therapy 

trial, all former experience in animal models and human gene therapy studies was 

thoroughly reviewed to determine the incidence, if any, of neoplastic transformation 

in transduced cells158,159. At that time there had been only one additional report of 

malignancy arising from transduced cells after insertional activation of a proto­

oncogene in an animal model106. Using a replication-defective Mo-MLV-based 

vector, these authors introduced a clinically used reporter gene (ALNGFR, a 

truncated form of the nerve growth factor receptor) into murine bone marrow cells 

and transplanted them into irradiated mice. Hematopoietic disorders were observed 

only after secondary and tertiary transplants, arising within 2 2  and 16 weeks, 

respectively. All diseased mice carried the same leukemic clone, with a single vector 

copy integrated into and transactivating the murine gene Evil (ecotropic viral 

integration site-1) from both LTRs. The authors speculated that the insertional 

activation of the Evil transcription factor could have induced a preleukemic state, 

followed by a second cooperating event common to all subclones, and suggested a 

role for the reporter transgene in the leukemogenesis. Such role, however, was never 

confirmed in the clinical setting160. Except for this report, no other evidence of clonal 

dominance or neoplasia was uncovered at that time, probably due to a lack of 

systematic long-term follow-up in the murine studies and in low or non-persistent 

levels of gene transfer in the human clinical trials.

The X-SCID adverse event boosted a series of studies to evaluate Mo-MLV 

vector genotoxicity, both in the murine and in the human setting.
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Systematic analysis of Mo-MLV integration pattern in natural or

experimentally induced leukemias/lymphomas identified insertion sites recurrently

associated with a malignant phenotype, i.e., loci that are targets of retroviral

integration in more than one tumor161. These were called “common retroviral

integration sites” (CISs) and occurred in the vicinity of proto-oncogenes or other

genes associated with cell growth and proliferation, the activation or deregulation of

which is likely involved in the establishment and/or progression of neoplasia. To

manage all data coming from multiple high-throughput insertional mutagenesis

screening projects, a comprehensive Retroviral Tagged Cancer Gene Database

(RTCGD) was created, containing the genomic position of each retroviral integration

site cloned from a mouse tumor, the distance between it and the nearest candidate

1disease gene(s) and its orientation with respect to the candidate gene(s) . The 

database became soon the standard reference in the field, allowing users to search 

both for CIS genes and unique viral integration sites or to compare the integration 

sites cloned by different laboratories using different models.

Some of the CISs included in the RTCGD have been also identified at 

relatively high frequency in the progeny of MLV-transduced hematopoietic cells in 

mice, nonhuman primates and humans. In most cases the CISs marked few dominant 

clones, more often with a non-malignant phenotype, which mainly contributed to the 

hematopoietic reconstitution. This suggests a “clonal dominance” model, where 

retroviral insertion into certain genes confers some growth and/or survival advantage 

to transduced progenitors, resulting in their in vivo amplification; such induced 

clonal expansion does not necessarily lead to malignant transformation of the 

affected cell clones.
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The first suggestion of clonal dominance of hematopoietic stem cells 

triggered by retroviral gene marking was observed in cohorts of healthy mice in 

which a single or very few clones dominated hematopoiesis after serial bone marrow 

transplantation15. In both primary and secondary transplant recipients, dominating 

clones hosted insertions nearby CISs, proto-oncogenes or other signaling genes. 

Transcriptional deregulation by retroviral LTR was observed in all insertion sites 

analyzed. M dsl/Evil locus was recovered several times both in primary and 

secondary recipients. The authors conclude suggesting a selection process by which 

preferential survival of long-term repopulating clones is triggered by insertional 

deregulation of genes that enhance their “fitness”, without necessarily resulting in 

malignant transformation.

A high frequency of integrations within the M dsl/Evil locus was also 

retrieved from non-human primate hematopoietic cells16. The authors analyzed 702 

integration sites in Rhesus Macaques that underwent transplantation with autologous 

CD34+ HSCs transduced with amphotropic Mo-MLV-derived retroviral vectors. 

Insertion in M dsl/Evil region was detected 14 times in 9 animals, primarily in 

circulating granulocytes. All 9 animals had normal blood counts, with no evidence of 

leukemia, and a polyclonal hematopoiesis. The findings suggested again that, 

although insertion into the M dsl/Evil locus as a single event impacted on 

engraftment or survival of primitive progenitors, it did not result in abnormal 

proliferation or differentiation.

Shortly thereafter, the first case of retroviral vector-associated neoplasia in a 

non-human primate was reported163. A Rhesus Macaque transplanted with MLV- 

transduced CD34+ cells to express a reporter gene and a drug-resistant variant of the 

dihydropholate reductase gene developed an acute myeloid leukemia, five years after
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treatment. Tumor cells contained two vector insertions, one of which located in the 

first intron of the anti-apoptotic gene BCL2A1. The same two integrations were 

previously identified as dominant during the first year after transplantation, before 

becoming undetectable for the subsequent four years, and then re-emerging in the 

dominant clone contributing to myeloid hematopoiesis and to the fatal myeloid 

sarcoma. Out of 82 large animals treated and followed long-term, this was the only 

documented case of malignancy, but still it raised a note of caution that the vector- 

mediated insertional mutagenesis contribution to a neoplastic process may not be 

limited to the context of X-SCID gene therapy.

In vivo expansion of cell clones containing insertionally activated growth- 

promoting genes was also observed in the clinics, in two adults infused with 

genetically modified cells for the treatment of X-linked chronic granulomatous 

disease (CGD). The risk of insertional mutagenesis in this trial was estimated to be 

low, because the therapeutic gene (gp91phox) was not expected to provide a survival 

or growth advantage to transduced cells, unlike the IL2Ryc gene delivered in the X- 

SCID trial. The distribution of gene-modified cells in the two subjects was studied 

over time, and became increasingly non-random in both subjects; the myeloid 

compartment was mainly affected. Integrations in three genetic loci emerged as 

predominant after 5 months, and increased up to > 80% of insertions retrieved from 

circulating transduced cells; these were the well-known MDS1/EVI1 locus, hosting 

91 integrations, the related gene PRMD16 (36 insertions) and SETBP1 (7 hits). Both 

PRMD16 and SETBP1 were first identified as involved in leukemogenesis. 

PRMD16 (also known as MEL1, for MDS1/EVI1-like gene 1) is a PR domain- 

containing transcription factor highly related to EVI1; it was found in 

t(l ;3)(p36;q21)-positive acute myeloid leukemia as a transcriptionally activated gene
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near the chromosomal breakpoint164. SETBP1 (SET binding protein) was identified 

as a novel protein binding to the acute undifferentiated leukemia-associated protein 

SET; SETBP1 could play a role in the mechanism of SET-related leukemogenesis 

and tumorigenesis, perhaps by suppressing SET function165. Over-expression of 

MDS1-EVI1 transcript was revealed in both patients, while PRMD16 and SETBP1 

mRNAs were deregulated in one or the other subject. Notably, myeloid cell 

proliferation and differentiation was normal, suggesting that the expanded cells 

retained nearly physiological properties.

Genome-wide analysis of integration sites retrieved from ADA-SCID 1 1 4 and 

X-SCID 1 6 6 , 1 6 7  patients in three independent gene therapy trials revealed a 

substantially different scenario. Despite a clustering of integrations was observed in 

the proximity of CISs or near potentially oncogenic loci (among the others LM 02, 

RUNX1, BCL2, CCND2), no clonal outgrowth was detected in vivo. Likewise, there 

was no sign of clonal dominance in > 45 patients cumulatively treated with >10u 

retroviral vector-transduced T cells, although one fifth of the retroviral insertions 

affected the expression of neighboring genes13.

Pursuing the idea that clonal dominance arises in vivo by amplification of 

those cells that host retroviral integrations conferring them a growth/survival

advantage, Kustikova et al. have recently compiled an insertion dominance database

168(IDDb) . Summarizing data from several laboratories, they developed a database of 

retroviral insertion sites detected in dominant clones contributing to phenotypically 

intact, mildly dysplastic and overtly malignant hematopoiesis of serially bone 

marrow transplanted mice. As reasonably expected, genes belonging to the IDDb 

were involved in proliferation, apoptosis and transcription regulatory networks, and 

some of them were already implicated in HSC biology .
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4. Aim of the study

The aim of this thesis project is to characterize the integration patterns of 

gamma-retroviral and lentiviral vectors in the genome of human hematopoietic cells, 

and investigate the viral and cellular determinants of their target site selection. In this 

context, I first compared the integration patterns of Mo-MLV- and HIV-1-based 

vectors, and then I evaluated the role of viral LTRs, and of the transcriptional 

complexes binding to them, in targeting viral PICs to the cell chromatin. I chose an 

experimental setting strictly resembling the clinical standards for the gene therapy of 

monogenic blood disorders, i.e., acute infection of CD34+ hematopoietic 

stem/progenitor cells with Mo-MLV- and HIV-1-based vectors. The use of clinically 

relevant target cells transduced with the same vectors employed in ongoing trials is 

mandatory to transfer knowledge from the bench to the clinical practice, with the 

specific aim of assessing risks associated to gene transfer technologies and 

improving accordingly their safety and efficacy.

As reviewed in the previous sections, the occurrence of leukemia-like 

diseases in gene therapy patients treated with Mo-MLV-based retroviral vectors has 

raised safety concerns for the genotoxic risk associated to retroviral insertion into the 

human genome, especially in the context of long-living, self-renewing stem cells. 

Therefore several groups performed large-scale studies aimed firstly at describing 

the integration characteristics of different retroviruses in mammalian genomes and 

then possibly at understanding the molecular mechanisms underlying them. 

However, the most comprehensive studies, analyzing hundreds of integration sites at 

once, were mainly performed with lentiviral vectors, both in cell lines (SupT l127, 

HeLa12,121, H 912, IMR-90130, CEM124, Jurkat169) and primary cells (peripheral blood
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mononuclear cells, PBMCs11) natural targets of HIV infection. Until recently, a 

single in vitro study collected a large number of insertions from HeLa cells infected 

with a Mo-MLV-derived vector12. In most other cases, MLV integration sites were 

retrieved ex-vivo, from the peripheral blood of human4 , 1 1 4 , 1 6 6 , 1 6 7  and non-human 

primates9 , 1 0 , 1 6 , 1 2 9  or from the bone marrow of mice10,15,168, several weeks after 

transplantation of transduced hematopoietic stem cells. Aim of these studies was to 

evaluate the contribution of retrovirally-marked stem cells in the bone marrow 

repopulating dynamics and to assess the genotoxic risk associated to the gene 

therapy approach. Indeed, many of these studies showed the existence of MLV 

recurrent insertion sites near proto-oncogenes or other genes associated with cell 

growth and proliferation, deregulation of which may cause clonal amplification 

and/or malignant transformation of transduced progenitors in vivo. However, pre­

transplant, MLV-infected hematopoietic cells were analyzed neither in mice nor in 

nonhuman primates and poorly characterized in humans (100 to 250 insertion sites 

analyzed). Hence, from these studies it was not possible to establish whether clonal 

dominance was entirely the result of in vivo selection, or if it was favored by the 

existence of highly preferred regions of retroviral integration that make clonal 

amplification more likely to occur. To answer this question, large numbers of 

integration sites must be retrieved from MLV-infected CD34+ stem/progenitor cells 

after short-term culture periods, when clonal dominance induced by retroviral 

insertion cannot appear. The same can be tested for HIV vectors, whose integration 

pattern in the specific setting of human hematopoietic cells has not been deeply 

investigated so far. Given that lentiviral vectors are likely to replace gamma- 

retroviral vectors for a number of clinical applications, an assessment of their 

integration characteristics in the relevant cell context appears highly desiderable.
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Apart from comparing the distribution of Mo-MLV and HIV-1 integrations 

in unselected human hematopoietic cells, a second question addressed in this thesis 

is whether transcriptional regulatory elements contained in viral LTRs exert any role 

in the integration site selection of both gamma-retroviral and lentiviral vectors. The 

rationale of such a question is that transcription and integration are intimately linked 

aspects of retroviral life cycle, and that each viral family has evolved a molecular 

strategy to target its integration in order to maximize the likelihood of survival and 

propagation to target cells. In case of acutely infectious gamma-retroviruses, this 

somehow involves integration in the proximity of gene regulatory elements and 

promoters, a strategy that probably ensures a productive interaction of the viral 

transcription unit with actively transcribed chromatin regions. In the case of 

lentiviruses, integration into active genes, but at a higher distance from transcription 

start sites, may be more permissive for the latent phase of the viral life cycle8. 

Following this idea, I have investigated whether viral PICs bind host transcription 

factors through their enhancers and regulatory elements, and whether these factors 

play a role in tethering PICs to active chromatin regions. The hypothesis was 

explored from both sides, by analyzing viral genetic determinants as well as the 

arrangement of transcription factor binding sites in the genomic regions flanking the 

retrieved integration sites. To my knowledge, there is no evidence so far rigorously 

documenting a role for viral LTRs and LTR interactors in the integration process.

8 Such interpretation of lentiviral integration preferences implies that lentiviruses 
deliberately use latency as a survival strategy; the work by Siliciano seems to 
suggest that latency is rather an accident of infecting a CD4+ T cell that is returning 
to a resting state 170. Persaud D, Zhou Y, Siliciano JM, Siliciano RF. Latency in 
human immunodeficiency virus type 1 infection: no easy answers. J Virol. 
2003;77:1659-1665.. Indeed, the persistence of HIV-1 is not dependent on latency, 
since the virus replicates continuously, and relentlessly evolves to escape from 
immune response. At present it remains controversial whether latency is a strategy 
for survival or whether it is not, and thereafter if the reactivation from latency is 
deliberate or if it is just a failure of cell silencing of invading genetic elements.
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A single study (reviewed in section 3.2.4) has suggested a function for 

cellular transcription factors in the integration targeting of MLV-based retroviral 

vectors121. A significant enrichment of TFBSs was observed in the proximity of 

MLV insertion sites but not nearby HIV integrations when they where compared to 

matched random controls. However, the number of over-represented TFBSs was 

strongly reduced in MLV data sets when promoter sequences were used as controls 

instead of randomly generated genomic sites. The author concluded that general 

features of promoter regions, rather than specific TFs, act as tethering factors for 

MLV PICs, even though they do not exclude a possible effect of TFBSs beyond just 

marking promoters. In fact, the issue was not investigated deeply enough in this 

study to ascertain a role for transcription factors independently of promoters.

In most other cases, classical proteomic approaches, based on biochemical 

assays or genetic screenings, have been extensively used to identify host factors 

associated to viral PICs. These studies led to the identification of several proteins 

potentially affecting retroviral integration reaction, but only for one of them an 

unequivocal role was established; the ubiquitous co-activator LEDGF/p75 was 

demonstrated to act as a tethering factor for HIV-1 PICs to active chromatin regions, 

via direct binding of lentiviral integrase (see section 3.3.3 for details). For other 

cellular components of PICs, like hR adl8 , Ini-1, EED, BAF and HMGI(Y) (see 

section 2.1.4), such a tethering activity was not established. Most importantly, 

LEDGF/p75 activity is restricted solely to lentiviruses, while much less is known for 

the integrase of murine gamma-retroviruses, and the genetic and/or epigenetic 

determinants of their target site selection remain poorly understood. Recurrent MLV 

integration sites found in clones dominating the hematopoiesis of humans4,
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primates16 and mice1 5 , 1 6 8  identify “sternness” pathways158, further suggesting a link 

between integration site selection and transcription.

A deeper understanding of the mechanisms underlying target site selection by 

PICs would contribute both to the basic virology and to the gene therapy clinical 

practice, where the main interest is to develop viral vectors with the safest 

integration profiles.
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5. Materials and methods

5.1 Retroviral vectors

MLV-derived gamma-retroviral vectors containing a green fluorescent 

protein (GFP) gene, an adenosine deaminase (ADA) cDNA or an IL2 receptor y 

chain cDNA under the control of a wild type MLV LTR were the previously 

described LGSAN171, GIADA1, and MFG-yc 2  vectors, respectively (designated in 

Figure 11, Section 6.1.1, as MLVa, MLVb, and MLVc). LGSAN and GIADA 

vectors also contained a simian virus-40 (SV-40) internal promoter, driving the 

expression of a truncated nerve growth factor receptor (ALNGFR) or a neomycin 

resistance gene, respectively. The AU3 vector carried a GFP gene under the control 

of an U3-deleted (-413 to -62) LTR, and the same internal cassette of the LGSAN 

vector, and was previously described as LGSAN-ACAAT171. The SFFV-MLV vector 

expressed the GFP marker under the control of the spleen focus forming virus 

(SFFV) LTR, in the previously described pSF91 MLV vector backbone (a gift from 

C. Baum, Hannover)172. HIV vectors with wild type LTRs were the pHR2pptCMV- 

GFPwpre and the pHR2pptGSAN LV vectors, retaining HIV-1 wild-type LTRs and 

driving the expression of GFP or ALNGFR under internal CMV or SV40 promoters. 

To generate the pHR2pptCMVGFPwpre construct, a pptCMVGFPwpre fragment 

from the pRRLsin-18.ppt.CMV-GFPwpre173 vector was cloned into Clal-EcoRl sites 

of pHR2MD-NGFR174. To obtain the pHR2pptGSAN LV construct, the 

pHR2pptCMVGFPwpre vector was digested with BamHl/EcoKL and ligated to a 

GFP-SV40ALNGFR cassette. The AU3-HIV[CMV] vector carried -418 to -18 

deletion in the U3 region and an internal GFP expression cassette driven by the 

cytomegalovirus (CMV) immediate-early promoter, and was previously described as
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pRRLsin-18.ppt.CMV-GFPwpre173. The AU3-HIV[MLV] vector carried a -418 to - 

40 U3 deletion and was constructed by inserting an internal ALNGFR expression 

cassette driven by the full MLV-LTR into the pRRL.sin-40.GFP vector174. The 

MLV-HIV vector was built by inserting the PCR-amplified -413 to -62 fragment of 

the MLV U3 region at position -40 in the HIV LTR of the pRRL.sin-40.GFP 

vector174, and adding an internal SV40-driven ALNGFR expression cassette.

RV vector supernatants were produced by transient transfection of the 

amphotropic Phoenix packaging cell line. Infectious particle titer was determined on 

K562 cells. The SFFV-MLV vector was VSV.G pseudotyped by transient co­

transfection o f 293T cells with an MLV gag/pol expression plasmid (a gift from C. 

Baum) and a VSV-G expression plasmid. Infectious particle titer was determined on 

293T cells. The ADA yc receptor RV vectors were produced as amphotropic or 

GaLV envelope-pseudotyped particles from stable packaging cell lines, and titered

1 9as previously described ’ . VSV-G pseudotyped LV particles were prepared by 

transient co-transfection of 293T cells, collected and concentrated as described175, 

and titrated on 293T cells or SupTl cells.

5.2 Transduction of target cells

CB CD34+ HSCs were purified from umbilical cord blood by magnetic 

sorting. Blood was harvested from the umbilical artery with heparised syringes, 

diluted 1:3 to 1:4 in phosphate-buffered saline (PBS), layered in 50 ml conical tubes 

above 15 ml of Ficoll (LymphoprepTM; Axis-Shield PoC, Oslo, Norway), and 

centrifuged (1,800 rpm, 30’ at 4°C, brake off). Buffy coats containing mono-nuclear 

cells were collected and washed twice in cold PBS-BSA-EDTA buffer (PBS, 0,5% 

bovine serum albumin, 2mM EDTA, degassed). Red blood cells were lysed 10’ in 

ice in ACK solution (NH4 CI 0.15M, KHCO 3 ImM, Na2 EDTA 0.1 mM), and lysis is
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blocked by addition of medium containing fetal bovine serum (FBS). Cells were then 

incubated with an anti-CD34 antibody conjugated with magnetic beads and 

separated by positive selection with the CD34-MiniMACS cell separation kit 

(Milthenyi, Auburn, CA), following the manifacturer instructions. The phenotype of 

isolated cells was checked by flow cytometry analysis after staining with an RPE- 

conjugated anti-human CD34 antibody (Beckton Dickinson).

Before transduction with retroviral vectors, CD34+ cells were stimulated for 

24-48 hours at a density of 1 x 106  cells/ml in serum-free Iscove’s modified 

Dulbecco’s medium (IMDM) supplemented with 20% BIT serum substitute (Stem 

Cell Technologies; Vancouver, BC), 20 ng/ml human thrombopoietin, 100 ng/ml 

Flt-3 ligand (PeproTech; Rocky Hill, NJ), 20 ng/ml interleukin-6 , and 100 ng/ml 

stem cell factor (R&D Systems; Minneapolis, MN). Cytokines are required to induce 

proliferation of HSCs and maintain their “sternness” throughout the infection period. 

Transduction with RV vectors was performed by spinoculation (3 rounds at 1,500 

rpm for 45 min) in the presence of retroviral supernatants and 4-pg/ml polybrene. 

Transduction with LV vectors was performed by over-night incubation of CD34+ 

cells with vector stocks at a multiplicity of infection (MOI) of 200 in the presence of 

4-pg/ml polybrene. Transduction efficiency was evaluated by analysis of EGFP 

and/or ALNGFR expression by flow cytometry using a mouse anti-human NGFR 

antibody (Beckton Dickinson). Transduced cells were collected 5-12 days after 

infection.

BM- or PB-derived CD34+ cells were purified from normal donors or SCID 

patients again by magnetic sorting, pre-stimulated for 24 hours in IMDM containing 

human serum, or serum-free X-Vivo 10 medium, and a cytokine cocktail (FLT3-
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ligand, SCF, TPO, IL-3), and transduced by three cycle-exposure to the GIADA 1 or 

the yc receptor RV vector supernatant as previously described1,2.

SupTl cells were grown in RPMI 1640 (BioWhittaker) supplemented with 

10% fetal bovine serum, and transduced with MLV-HIV viral stocks at an MOI of 

25, in the presence of 8 -pg/ml polybrene. After virus addition, cells were 

spinoculated for 1 hour (1,800 rpm, 4°C) and left at 4°C for another hour to ensure a 

synchronous infection. Cells were then transferred to a 37°C incubator and collected 

after 4 to 10 hours to analyze pre-integration complexes, or left in culture for 2 

additional weeks for the analyses on integrated proviruses.

5.3 Sequencing, mapping and annotation of retroviral intesration sites

Integration sites were cloned by linker-mediated PCR (LM-PCR) or linear 

amplification-mediated PCR (LAM-PCR), as described12,176,177. Briefly, genomic 

DNA was extracted from 0.5-5 x 106  infected cells and digested with MseI and a 

second enzyme to prevent amplification of internal 5’ LTR fragments (Pstl for RV 

vectors and Sacl/Narl for LV vectors). An Mse I double-stranded linker was then 

ligated and LM-PCR performed with the following nested primers specific for the 

linker and the 3 ’ LTR:

MLV: 5 ’ -GACTTGTGGTCTCGCTGTTCCTTGG-3 ’

MLV nested: 5 ’ -GGT CT CCT CT G AGT GATT G ACT ACC-3 ’

HIV: 5 ’ - AGT GCTT C A AGT AGT GT GT GCC-3 ’

HIV nested: 5 ’ -GTCT GTT GT GT G ACT CT GGT A AC-3 ’.

PCR products were shotgun-cloned into the pCR2.1 TOPO vector (TOPO 

TA cloning kit, Invitrogen; Carlsbad, CA) and transformed into TOP 10 competent 

cells, to generate bacterial libraries of integration junctions. Single white colonies 

were picked, inoculated into Luria Broth (LB) medium and grown at 37°C over­
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night. DNA was then extracted (NucleoSpin Plasmid kit, Macherey-Nagel; Diiren, 

Germany) and sequenced using the M13rev primer (5’- 

CAGGAAACAGCTATGACC-3’; Primm srl DNA sequencing service, Milan, 

Italy). A valid integration contained the MLV or HIV nested primer, the entire MLV 

or HIV genome up to a CA dinucleotide and the linker nested primer. Sequences 

between the 3’ LTR and the linker primers were mapped onto the human genome 

(UCSC Human Genome Project Working Draft, hgl7) using Blat sequence

1 78alignment tool , requiring a > 95% identity over the entire sequence length and 

selecting the best hit. The absolute genomic coordinates of the integration sites 

where defined as a result of the combination of genomic alignment and vector 

relative orientation data. Random genomic sequences originated by LM-PCR 

(genomic Msel-Msel, Psti-MseI, Narl-Msel or Sacl-Msel fragments) were mapped 

by the same criteria, and used as experimental controls.

Insertion sites and experimental control sequences were annotated according 

to two different criteria. In the first annotation criteria (used for the entire section 

6 . 1 ), sequences were classified as intergenic when occurring at an arbitrarily chosen 

distance of > 30 kb from any Known Gene (UCSC definition), perigenic when < 30  

kb upstream or downstream of a Known Gene, and intragenic when within the 

transcribed portion of at least one Known Gene. According to the second annotation 

criteria (used for the entire TFBS analysis, section 6.2), insertion sites were 

classified as “TSS-proximal” when occurring at a distance of ±5 kb from the TSS of 

any Known Gene, “intragenic” when occurring within the transcribed portion of at 

least one Known Gene > 5 kb from the TSS, and “intergenic” in all other cases. In 

both annotation criteria, whenever multiple transcript variants exist, the most 

represented and/or the longest isoform was chosen. Integration sites retrieved from
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12 121published data sets ’ were re-mapped and annotated according to the same 

criteria.

Gene density analysis was performed using the Table Browser tool of the 

UCSC genome browser. For each integration, the number of Known Genes (a single 

isoform in case of multiple variants) contained in a range of 1 Megabase (Mb) 

around the insertion site was scored. For comparison, I also calculated the gene 

density of the entire genome, virtually dividing each chromosome in 1 Mb 

consecutive segments and computing the number of Known Genes contained in each 

fragment.

A genomic region was defined as an “hot spot” for retroviral integration 

according to criteria developed for defining cancer-related common insertion sites 

(CIS), with minor modifications14,161. To include borderline integrations, cutoff 

values were set at 36 kb for 2 insertions, 56 kb for 3 insertions and 104 kb for 4 or 

more insertions.

For all pairwise comparisons, I applied a two-sample test for equality of 

proportions with continuity correction (Rweb 1.03).

5.4 Gene expression profilins

The expression profile of CD34+ cells was determined by microarray 

analysis. RNA was isolated from 1 to 2 x 106 CB- and BM-derived CD34+ cells 

stimulated with cytokines according to the same protocols used for RV (CB- and 

BM-derived cells) or LV (CB-derived cells) vector transduction, transcribed into 

biotinylated cRNA, hybridized to Affymetrix HG-U133A Gene Chip arrays (Santa 

Clara, CA) and analyzed as previously described13. To correlate retroviral integration 

and gene activity, expression values from the CD34+ cell microarrays were divided 

into 4 classes (i.e., absent, low, below the 25th percentile in a normalized
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distribution, intermediate between the 25th and the 75th percentiles, and high above 

the 75th percentile).

5.5 Functional clusterins analysis

Functional cluster analysis of genes targeted by retroviral integrations and 

from control sequences was performed using the DAVID 2.1 Functional Annotation

170 1RO » «Tool ’ (http.7/david.abcc.ncifcrf. gov) . In the DAVID annotation system, a Fisher

exact test corrected for multiple comparisons (DAVID’s EASE score) is adopted to 

measure the level of gene-enrichment in Gene Ontology (GO) annotation terms with 

respect to a background population, and GO categories considered over-represented 

when yielding an EASE score < 0.05. A list of 417 cancer-associated CIS was 

obtained from the Mouse Retrovirus Tagged Cancer Gene Database181, where 

murine genes were replaced with human homologs. Genes were also analyzed by the 

network-based Ingenuity Pathways Analysis tool (Ingenuity® Systems, 

www.ingenuitv.comI. to search for the most relevant molecular interactions, 

functions and pathways linking them. Gene identifiers were uploaded into the 

application, and mapped to their corresponding Focus Gene in the Ingenuity 

Pathways Knowledge Base, a structured and context-rich knowledge base manually 

compiled from scientific literature. Gene networks were algorithmically generated 

based on the direct or indirect interaction between Focus Genes. The Functional 

Analysis of each network identified the biological functions and/or diseases that 

were most significant to the genes in the network (Fischer’s exact test).

A list of 417 cancer-associated CISs was obtained from the Mouse Retrovirus 

Tagged Cancer Gene Database181, where murine genes were replaced with human 

homologs. Two different sources were used to define a list o f 596 human proto­

oncogenes; the UNSW Embryology DNA-Tumor Suppressor and Oncogene
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Database1 8 2  contains genes that are classified as tumor suppressors or oncogenes in 

the Online Mendelian Inheritance in Man (OMIM) database; the Tumor Gene 

Database1 8 3 is a broad directory of genes mutated in cancers, proto-oncogenes and 

tumor suppressor genes.

5.6 Transcription factor binding site analysis

TFBS analysis was carried out on genomic sequences encompassing each 

integration site with ±1.0 kb of sequence, length. Based on the TSS- 

proximal/intragenic/intergenic annotation of each integration site, we grouped data 

sets that did not significantly differ from each other (two-sided test on equal 

proportion) into seven groups of integration preferences, and generated the same 

number of random weighted control groups o f sequences reproducing, in proportion, 

the specific integration preference of each vector. Each fitted background was 

composed of 1 0 , 0 0 0  sequences of 2 . 0  kb in length derived from 1 0 0 , 0 0 0  randomly 

generated integration sites throughout the genome (Table 5). TFBS enrichment 

analysis was performed with Clover184, with dinucleotide randomization and motifp- 

value threshold set to 0.05. Clover program is able to screen a set of DNA sequences 

against a precompiled library of motifs and assess which, if any, of the motifs are 

statistically over- or under-represented in your data sets when compared to a 

background group of sequences. A precompiled library o f 123 TFBSs, described as 

positional-weight matrices, were here obtained from the Jaspar Core 2005 database 

of experimentally validated motifs185. The appropriate weighted background was 

paired with each sequence set. TFBSs having a global p-value < 0.05 were 

considered as significantly enriched in the test sequences and selected for analysis. 

Motif likelihood ratio was used for cluster analysis and PCA. The number of over­

represented TFBSs per sequence was plotted as a boxplot to display differences
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between the data sets without making any assumptions of the underlying statistical 

distribution. The spacings between the different parts of the box indicate the degree 

of dispersion and skewness in the data, and identify outliers (these were omitted in 

Figures 23 and 29 for better graphical visualization). Each box is built starting from 

five numbers: the minimum (smallest observation), the first quartile (which cuts off 

the lowest 25% of the data), the median (middle value), the third quartile (which cuts 

off the highest 25% of the data), and the maximum (largest observation).

Pattern discovery among and within different groups was performed with a 

two-way hierachical cluster analysis on motif likelihood values, using the Euclidean 

distance as a similarity measure between clusters. Before analysis data were scaled 

on motif columns. To add robustness to the dendrogram analysis and reduce test 

bias, we applied an approximately unbiased (AU) test on column dendrograms,

1 OiT
sampling them with 10,000 multiscale bootstrap replicates . Nodes having an 

Approximately Unbiased (AU) p-value > 0.95 were scored as significant and stable 

nodes.

As an additional tool to find patterns of TFBSs within our data sets we 

performed a Principal Components Analysis (PCA). Data were again scaled on motif 

columns, i.e., Jaspar enriched motifs were considered as vectors, assuming a given 

likelihood value for each sequence (the analysis was unsupervised, i.e., motifs 

coming from different data sets were not distinguished). A correlation matrix was 

built calculating the covariance between all possible pairs of motifs, and 

eigenvectors and eigenvalues8 for this matrix were calculated. Eigenvectors were

8In mathematics, given a squared matrix, an eigenvector of that matrix is a nonzero 
vector which, when multiplied by the matrix, changes in length, but not in direction. 
The amount by which the original vector is scaled after the multiplication represents 
the eigenvalue for that eigenvector. Eigenvectors can only be found for square 
matrices, in a number equal to the number of rows and columns of that matrix. All
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then ordered by eigenvalue, highest to lowest, obtaining the components in order of 

significance (the component with the highest eigenvalue explaining the greatest 

percentage o f variance in the system). The principal components were then used as 

new spatial coordinates to plot the original data sets, to obtain the plots of Figures 

25, 31 and 34. For each bidimensional plane considered, only motif vectors having a 

projection on it longer than cos (7i/4 ) ~ 0.707 were considered as relevant. Having all 

vectors a length = 1 in poly-dimensional space, if their projection is longer than 

0.707, the angle between the motif vector and the plane is less than 7i/ 4  (45 degrees), 

meaning strong correlation between the motif and the plane of that principal 

component. Relevant motifs were also plotted (loadings plots of Figures 25, 31 and 

34).

Analysis of conserved TFBSs was performed using the TFBS Conserved 

Track at UCSC Genome Browser, which includes binding sites conserved between 

the human and mouse or rat genome alignment (188 human matrices from the 

TRANSFAC Matrix Database v 7.0). After determination of the total count of 

matrices that match in each 2 . 0  kb test sequence, random and matched fitted 

backgrounds, a Fisher exact test (two-sided, confidence level = 0.95) was used to 

determine statistical significance. The STAMP tool-kit1 8 8 was used to match 

JASPAR and TRANSFAC matrices using default parameters.

All statistical analyses were performed using the R language and 

environment for statistical computing and graphics version 2.6.2 (http://www.R- 

proiect.org) and several contributed packages. Hierarchical clustering used the

pvclust package; PCA analysis used ade4; parallel processing was implemented
%

using the snow package. Stats package was used for the other analyses.

the eigenvectors of a matrix are perpendicular, i. e., at right angles to each others, no 
matter how many dimensions you have.
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5.7 Southern and Western blot analysis

Southern Blot analysis was performed on cytoplasmic and nuclear DNA 

extracted from MLV-HIV infected SupTl cells 4-7-10 hours, and 14 days after 

transduction. For each time point, 1 x 106 cells were lysed 10 minutes on ice in 200 

pi of 5 mM Pipes, pH 8.0, 85 mM KC1, and 0.5% Nonidet P-40 (ChIP cell lysis 

buffer). Lysates were centrifuged 10’ at 13,000 rpm, 4°C, and supernatants were 

saved as “cytoplasmic fractions”. Pelletted nuclei were washed once in ice-cold PBS 

and resuspended in 200 pi PBS. DNA was then extracted from cytoplasmic fractions 

and nuclei by the QIAamp DNA Blood Mini Kit (QIAGEN), eluted in 60 pi of 

DNase-free water and loaded, undigested, on a 0.8% agarose gel. After an over-night 

run, the gel was transferred to a nylon membrane (Hybond-N, Amersham) by 

Southern capillary transfer, probed over-night with 2 x 107 dpm of a 3 2 P-labeled GFP 

probe, and exposed for 72 hours at -80°C to X-ray film.

For Western Blot analysis, SupTl cells were lysed in buffer I (10 mM Hepes 

pH 7.9, 10 mM KC1, 0.1 mM EDTA, 1 mM DTT, and protease inhibitors) on ice, at 

a concentration of 100 x 106  cells/ml. After 15’ incubation, Nonidet P-40 was added 

to a final concentration of 0.5%. Lysates were vortexed for 10” , kept on ice for other 

10’, and centrifuged 30”  at 13,000 rpm, 4°C. Supernatants were saved as 

cytoplasmic protein extracts. Pelletted nuclei were resuspended in the same volume 

of buffer II (10 mM Hepes pH 7.9, 0.6 M NaCl, 1.5 mM MgCl2, 0.1 mM EDTA, 0.5 

mM DTT, 5% glycerol and protease inhibitors), incubated on ice 30’ and vortexed 

several times. Nuclear lysates were cleared by centrifugation at 13,000 rpm, 30’, 

4°C. Proteins from cytoplasmic and nuclear fractions were diluted in Bradford 

reagent and quantified by spectrophotometer analy sis. 50 pg of proteins were run on 

8 % SDS-polyacrylamide gel and transferred to a nitrocellulose membrane (Hybond-
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ECL, Amersham). Aspecific sites on the membrane were blocked by 1-hour 

incubation at room temperature in 5% milk-TBST (0.1 M Tris pH 8.0, 150 mM 

NaCl, 0.1% Tween-20) and incubated for 2 hours at room temperature with the 

primary antibody, diluted in 5% milk-TBST (from 1:100 to 1:2000, depending, on 

the antibody). After several washes in TBST, the appropriate peroxidase-labeled 

secondary antibody was added, again diluted in 5% milk-TBST, and incubated at 

room temperature for 45’. Following 2 ’ of ECL detection (Hyperfilm, Amersham), 

membranes were exposed to films for 1 to 15 minutes, depending on the primary 

antibody. Primary antibodies used were rabbit or goat polyclonal IgGs directed 

against AML-1 (sc-286799), CBFB (sc-10779), C/EBPa (sc-9314), C/EBP|3 (sc- 

150), C/EBP5 (sc-636), Ets-l/Ets-2 (c-112), NF-1 (sc-870), and YY-1 (sc-281); 

secondary antibodies were donkey anti-rabbit (sc-2077) or anti-goat (sc-2020) HRP- 

conjugated IgGs, all from Santa Cruz Biotechnology.

5.8 RNA extraction and RT-PCR analysis

Total cellular RNA was extracted from 5 x 1 0 6  SupTl cells, 10 hours after 

infection with the MLV-HIV vector, using the QIAamp, RNA Blood Mini Kit 

(QIAGEN). 500 ng of extracted RNA were loaded on a denaturing 1% agarose gel to 

check for RNA integrity. As a positive control for RT-PCR analysis, MLV-HIV 

genomic RNA was isolated from ~107  virions using the NucleoSpin RNA Virus kit 

(Macherey-Nagel). Both cell- and virion-isolated RNAs were then digested with 20 

pg/ml DNasel (bovine pancreatic deoxyribonuclease I, SIGMA), in the presence of 

0.1 mM DTT and 20 mM MgCE, 1 hour at 37°C. The enzyme was heat-inactivated 

at 65°C, 5’, and the RNA samples used to set up the retrotranscription reaction 

(Superscript III kit, Invitrogen). A specific oligo annealing on the 3’ end of the GFP 

mRNA was used to prime retrotranscription instead of the classical random
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examers/oligo-dTs, to reduce aspecific amplifications in the following PCR. Samples 

with no RT enzyme were processed in parallel with real samples to control for 

residual DNA contamination. One tenth of the RT reactions were then subjected to 

PCR, with GFP for and rev primers internal to the oligo used for the RT reaction. 

PCR products were finally run on a 1% agarose gel and stained with ethidium 

bromide for visualization.

GFP RT-oligo: 5 ’ -GTT ACTT GT AC AGCTCGT CC AT GCC-3 ’

GFP for: 5 ’ -C AC AT G A AGC AGC ACG ACTT-3 ’

GFP rev: 5’-TGCTCAGGTAGTGGTTGTCG-3 ’

5.9 Chromatin immunoprecipitation assay

1 SOChIP assays were performed essentially as already described . Chromatin 

was prepared from 30-50 x 106  SupTl cells transduced with the MLV-HIV vector 

(MOI = 25) 10 hours or 14 days after infection. Cells were cross-linked with 1% 

formaldehyde-containing medium, 10 minutes at room temperature. Cross-linking 

was blocked by addition of PBS-glycine to a final concentration of 0.125 M. Cells 

were washed twice with ice-cold PBS, centrifuged at 4500 rpm for 10 minutes at 4 

°C, and resuspended in cell lysis buffer (5 mM Pipes, pH 8.0, 85 mM KC1, and 0.5% 

Nonidet P-40) containing protease inhibitors (10 pg/ml aprotinin, 10 pg/ml 

leupeptin, and 1 mM PMSF) and kept on ice for 15’. Lysates were then 

homogenized several times with a Dounce homogenizer (tight pestle), and the 

resultant homogenates were centrifuged at 4500 rpm for 10’ at 4 °C to pellet the 

nuclei. Nuclear pellets were resuspended in sonication buffer (50 mM Tris-HCl, pH 

8.1, 10 mM EDTA, 0.1% SDS) containing protease inhibitors and PMSF and kept 

on ice for 20 min. Nuclear extracts were sonicated to obtain DNA fragments ranging 

from 200 to 1,500 bp in length and centrifuged at 13,000 rpm for 10 min at 4 °C.
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The equivalent of 1-2 x 106 cells was immunoprecipitated over-night with 4 ug of 

rabbit anti-AMLl, anti CBF-B, anti-Etsl/2, and anti YY1 antibodies (sc-28679, sc- 

10779, sc-636, and sc-281, respectively, from Santa Cruz Biotechnology) in RJPA 

buffer (10 mM Tris-HCl pH 8 , 1 mM EDTA pH 8 , 0.5 mM EGTA, 1% Triton X- 

100, 0.1% SDS, 0.1% Na-deoxicholate, 140 mM NaCl). Immunoprecipitations with 

rabbit anti-HA-probe (Y -ll)  (sc-805, Santa Cruz Biotechnology) and with no 

antibody were included as controls. Supernatant from the no-antibody sample was 

saved as the total input chromatin. Immunoprecipitated DNA was analyzed by PCR 

with primers amplifying the entire U3 region of the MLV-HIV LTR (for: 5’- 

CTGGAAGGGCTAATTCACTCC-3 ’; rev: 5 ’ -CCC AGT ACAAGCAAAAAGCA- 

3’). A 0.1% dilution of the total input was amplified to evaluate the relative 

enrichment of a specific antibody with respect to the control antibody and the no­

antibody samples.
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6. Results

6.1 Integration preferences o f Mo-MLV and HIV-l-based retroviral 

vectors in human CD34+ HSCs

The first part of my PhD project was designed to investigate the general 

integration properties of those retroviral vectors that are used for the gene therapy of 

human hematopoietic disorders. These are classical Mo-MLV-based vectors, 

expressing the gene of interest under an intact LTR, or the new generation of self- 

inactivating vectors, both with Mo-MLV- and HIV-1-derived backbones, where U3 

regulatory elements have been deleted to abolish transcription initiation from 

proviral LTRs. The latter are likely to replace the wild type LTR vectors to reduce 

the genotoxic risks associated to insertional deregulation of tumor-related genes. 

With the specific intent to compare the integration patterns of MLV-based and HIV- 

based vectors in hematopoietic cells on a genome-wide scale, no distinction was 

made in this first part between vectors with wild type and deleted LTRs, and their 

integration sites were unified and analyzed as a whole. This allowed me to collect 

sufficiently large numbers of insertion sites and perform a series of otherwise 

impossible and/or statistically unreliable analyses, such as the characterization of 

integration hot spots.

6.1.1 Genome-wide analysis of retroviral intesration preferences in human CD34+ 

HSCs

Human CD34+ HSCs were isolated from umbilical cord blood (CB) pools, 

bone marrow (BM) from patients with ADA-SCID and X-SCID, or peripheral blood 

(PB) from a healthy donor. After 24 to 48-hour pre-activation with cytokines, CB
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CD34+ cells were transduced with Mo-MLV-derived gamma-retroviral (RV) or 

HIV-1-derived lentiviral (LV) vectors carrying a green fluorescent protein (GFP) 

reporter gene and either a wild type or an U3-deleted (AU3) LTR. BM CD34+ cells 

were transduced with RV therapeutic vectors expressing either the adenosine 

deaminase (ADA) enzyme1 or the IL-2 receptor y chain2 under the control of a wild 

type LTR. PB CD34+ cells were again transduced with the, IL2Ryc therapeutic 

vector. Transduction efficiency ranged from 15% (AU3-MLV) to more than 90% 

(AU3-HIV), depending on the vector and target cell type, and remained stable 

throughout the culture period, as assessed by flow citometry analysis. DNA was 

extracted 1 to 12 days after infection, from cells that underwent 1 (BM and PB 

samples) to 5-6 (CB samples) cell doublings in culture. The short-term culture period 

was a fundamental requirement to exclude clonal outgrowth and selection of cells 

harboring insertions activating growth-promoting genes. Vector-genome junctions 

were amplified by linker-mediated (LM-) or linear amplification-mediated (LAM-) 

PCR approaches adapted to different vector types, and cloned into bacterial libraries 

that were then sequenced to saturation. Sequences between the 3 ’ LTR and the linker 

primers were mapped onto the human genome (UCSC Human Genome Project

1 7ftWorking Draft, hgl 7) using Blat , requiring a > 95% identity over the entire 

sequence length and selecting the best hit. Cumulatively, I mapped 1,030 RV and 

849 LV integrations in CB- PB- or BM-derived CD34+ cells. A total of 595 RV 

integrations were retrieved from CB cells transduced with wild type (395) or AU3 

(200) LTR vectors, both expressing the GFP from viral LTRs and a truncated form 

of the nerve growth factor receptor (ALNGFR) reporter gene under the control of an 

internal simian virus 40 (SV40) promoter (MLVa and AU3-MLV vectors in Figure 

11). GFP expression from the AU3-MLV LTR was in fact barely detectable, due to a
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very low residual activity of the TATA box, which is retained in the vector 

configuration. 435 RV integrations were obtained from BM cells transduced with 

wild-type LTR vectors expressing ADA or IL2Ryc (MLVb and MLVc vectors, 

respectively, in Figure 11) therapeutic genes.
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Figure 11. Schematic representation of RV and LV vectors with wild type or modified LTRs.

For each of the vectors used for CD3T HSCs transduction, the LTR composition and the internal 

structure are depicted. RV LTRs are indicated by white boxes, LV LTRs by grey boxes. U3, R and 

U5 regions are specified for each LTR. A stands for partial deletion of the U3 element. U 3 Sf f v  and 

U 3 MLv  are the U3 elements of the spleen focus-forming virus and of the Mo-MLV respectively. 

Internal expression cassettes, when present, are also schematized, consisting of an internal promoter 

(CMV: cytomegalovirus immediate-early promoter; SV40: simian virus 40 promoter; MLV LTR: 

internal Mo-MLV complete LTR) driving the expression o f a marker gene (GFP: green fluorescent 

protein; ALNGFR: truncated nerve growth factor receptor; neo: neomycin resistance gene). The three 

RV vectors cumulatively called kMLV’ (a, b and c) differ in terms of transgene and internal structure 

but possess identical, Mo-MLV wild type LTRs, and were therefore considered as a single vector 

when performing integration site analysis. MLVb and MLVc vectors are the therapeutic vectors used 

for the gene therapy o f ADA1 and X-SCID2, respectively. Similarly, the two LV vectors cumulatively 

called kHIV’ (a and b) carry a different internal cassette but have identical, HIV-1 wild type LTRs, 

and were again considered as a single vector for integration analysis. Some characterizing elements of 

lentiviral vectors are also depicted (RRE: Rev-responsive element; cPPT: central polypurine tract). 

The woodchuck hepatitis virus post-transcriptional regulatory element (wpre) was inserted in some 

vectors to augment viral titers.
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All LV integrations were obtained from CB cells transduced with wild type 

(404) or AU3 (445) LTR vectors, expressing GFP and/or ALNGFR from internal 

SV40 or cytomegalovirus (CMV) promoters (HIVa-b and AU3-HIV[CMV] vectors 

in Figure 11).

Of the 1,030 RV integrations, 16.7% were found in an intergenic position, 

55.0% within the transcribed portion o f at least one gene and 28.3% at a distance of 

30 kb or less upstream or downstream of one or more genes (Table 1; the complete 

list o f sequences has been deposited at GenBank, with the accession numbers 

ER916114 to ER918350). Among LV integrations, 148 (17.4%) were in an 

intergenic position, up to 609 (71.7%) in an intragenic position and 92 (10.9%) in a 

perigenic position. Conversely, a collection of 798 control sequences randomly 

cloned by LM-PCR contained 369 (46.2%) intergenic, 308 (38.6%) intragenic, and 

121 (15.2%) perigenic sequences. Compared to controls, RV vectors showed a 

preference for intragenic and perigenic integration, while LV vectors showed a much 

higher preference for intragenic positions. All differences were statistically 

significant (p < 0 .0 0 1 , 2 -sample test for equality of proportions with continuity 

correction). RV general integration preferences were similar in CD34+ and HeLa 

cells, as indicated by the re-analysis of 869 insertions retrieved from a previous 

published collection12 (Table 1).

I then assessed the position of integrated proviruses with respect to all genes 

(UCSC track of Known Genes) found in an interval of 30 kb around each insertion 

site (“vector-gene interactions” in Figure 12). Compared with randomly cloned 

control sequences, a significant clustering around transcription start sites (TSSs) was 

observed for RV but not for LV vectors. The validity o f the experimentally 

generated control sequences was confirmed comparing their distribution with that of
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65,000 computer-generated random sequences9; the two distributions resulted almost 

indistinguishable. Overall, approximately 30% of the total RV vector-gene 

interactions were within 10 kb from the TSS of Known Genes, compared with 16.1% 

for LV vectors (p < 0.001; Table 1; Figure 12). The RV general integration 

preferences were similar in CD34 and HeLa cells, as indicated by parallel analysis 

of 869 insertions from a previously published collection12 (Table 1).

Table 1. Retroviral integration site distribution in human CD34+ HSCs

Intergenic
(% )

Intragenic
(% )

Perigenic
(% )

Total
hits

±10 kb from
TSS (%)

Vector/gene
interactions*

CD34+cells

RV all 16.7 55.0 28.3 1,030 29.3 1,517

LV all 17.4 71.7 10.9 849 16.1 1,241

Controls 46.2 38.6 15.2 798 9.1 902

RV hot spots 16.0 56.6 27.4 219 22.2 302

LV hot spots 8.6 81.4 10.0 70 13.2 114

Control hot spots 36.4 59.1 4.5 22 13.0 23

HeLa cells

RV 18.8 48.1 25.5 869 26.1 1,219

RV hot spots 16.5 53.2 30.3 109 27.3 165

Distribution of RV and LV integration sites unambiguously mapped in unselected CB- and BM- 

derived CD34 HSCs, and RV integrations in HeLa cells from a previously published collection12. 

Integrations (total hits) were distributed as inside (intragenic), outside (intergenic), or at a distance of 

<30 kb upstream or dowstream (perigenic) from Known Genes (UCSC annotation). Insertions at a 

distance o f ±10 kb from transcription start sites (TSS) are indicated as percentage of the total 

vector/gene interactions. Control sequences were obtained from a randomly cloned library of 

SacI/Narl/Pstl/Msel-restricted, LM-PCR-amplified human CD34" cell DNA.

*Total number of genes within 30 kb from individual hits + intergenic hits.

In CD34+ cells, RV integrations showed a significant preference for gene- 

dense regions: more than 60% of proviruses were found in genomic regions 

containing 6 to 20 Known Genes per megabase (Mb) with a peak of 35% at a density
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of 6 to 10 genes/Mb. Conversely, more than 60% of control sequences mapped to 

regions with a gene density of less than 5 genes/Mb (p < 0.001, Figure 13A). On the 

contrary, LV integrations followed a distribution within regions of different gene 

density more similar to that of the control sequences and of the human genome, and 

different from that of RV (p < 0.001, Figure 13B).
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Figure 12. Retroviral integration and transcription start sites. Distribution of RV (A) and LV (B)

integration sites in human CD3A HSCs within an interval o f 30 kb upstream or downstream of the 

transcription start site (TSS) of Known Genes (UCSC track, considering only 1 isoform/gene). The 

bars show the percentage of distribution in each 5-kb interval o f retroviral insertions, insertion hot 

spots, and control sequences. The line shows the distribution of 65,000 in s///co-generated random 

insertion sites9, n values indicate vector-gene interactions, i.e., the total number of genes within 30 kb 

from individual insertions plus intergenic insertions.
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Figure 13. Retroviral integration and gene density. Integration sites and integration hot spots of 

RV (A) and LV (B) vectors in CD34 cells are plotted according to the number o f Known Genes 

contained in a range of 1 Mb around each insertion site, in intervals o f 5 genes/Mb. Grey bars indicate 

the distribution o f control sequences. Red bars represent the frequency o f 1-Mb segments in the 

human genome for each gene density interval, n values indicate the number of independent hits in 

each group.

To confirm also in hematopoietic cells the elsewhere observed correlation

• •  • • • * 1 1 1 2 7between gene activity and integration site selection ’ , I used the results of

Affymetrix HG-U133A gene expression arrays already available in my laboratory. 

These were performed on both CB- and BM-derived CD34" samples activated in 

culture with cytokines, the same conditions used for my RV and LV transductions,
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and therefore virtually represent the transcription profile of CD34+ cells at the 

moment of PIC entry into the cell nucleus. Figure 14 shows that approximately 60% 

out o f 1,571 probesets representing 8 6 6  genes hit by a RV vector detected a 

transcript in activated CD34+ cells; among them, 13% were classified as lowly 

abundant, 30% as intermediately abundant, and 17% as highly abundant. This was 

significantly different from what observed in the whole microarrays, where 45-47% 

of all the probesets had a “present” call (percentages were slightly different between 

CB- and BM-derived cells), with a 11-12%, 23%, and 11-12% breakdown in the 3 

abundance classes. With the exception of the lowest expression class, all differences 

were statistically significant (p < 0.001), indicating that RV vectors integrate 

preferentially into genes active in CD34+ cells at the time of transduction, and 

particularly in the fraction of genes expressed at higher levels. A similar correlation 

with gene activity was also observed for genes targeted by LV vectors (Figure 14B); 

56% of 1,346 probesets associated to 757 hit genes detected a transcript in activated 

CD34+ cells, with a 13%, 31% and 12% breakdown in the 3 abundance classes. 

Compared with the whole microarray, the fraction of probesets with a present call 

was significantly higher (56% vs. 46%; p  < 0.001), but the difference was accounted 

for essentially by the intermediately abundant transcripts (31% vs. 23%, p  < 0.001). 

This indicates that LV vectors tend to integrate into active genes in CD34+ cells but 

have no specific preference for genes expressed at high levels when compared with 

RV vectors (p < 0.001).
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Figure 14. Retroviral integration and gene activity. The bars show the distribution of expression 

values from Affymetrix HG-U133A microarrays of cytokine-stimulated CD34 cells. The correlation 

between retroviral integration and gene activity was performed dividing probeset expression values 

from the microarray into 4 abundance classes: absent (black), low (below the 25th percentile in a 

normalized distribution, blue), intermediate (between the 25th and the 75th percentile, yellow), and 

high (above the 75th percentile, red). (A) The first 2 bars (all genes) show the distribution of more 

than 16,000 genes on the whole microarray of CB- or BM-isolated CD34 cells activated in the same 

conditions used for RV transduction; the other 2 bars represent the expression values of the sole genes 

targeted by RV integrations (all) or by integration hot spots (RV hot spots), obtained from a weighted 

mean of the CB and BM microarray values. (B) The first bar (all genes) shows the distribution of the 

more than 16,000 genes on the microarray of CB-derived CD34^ cells activated as for LV 

transduction; the other 2 bars represent the expression values of the sole genes targeted by LV 

integrations (all) or by integration hot spots (LV hot spots), n values indicate the number of probesets 

associated to each group o f genes.

6.1.2 Genes regulating celI srowtlt and proliferation are preferential tarsets o f  

retroviral integration

To understand which functions were associated to genes hit by retroviral 

integrations, I performed a classification of target genes following Gene Ontology 

(GO) criteria. The GO project provides vocabularies and classifications that cover
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several domains of molecular and cellular biology, freely available for community 

use in the annotation of genes, gene products and sequences190. The functional 

classification of genes hit by RV and LV vectors in CD34+ cells showed statistically 

significant biases towards several gene categories (Figure 15). In particular, genes 

involved in the establishment and/or maintenance of chromatin architecture, signal 

transduction, and cell cycle were significantly more represented in the collection of 

genes hit by RV integrations compared with their expected frequency in the human 

genome (EASE score < 0.005). Genes involved in chromatin remodeling and 

phosphorylation were hit at a higher-than-expected frequency also by LV vectors 

(EASE score < 0.0005 and < 0.005, respectively), particularly those with 

serine/threonine kinase and GTPase activity (EASE score < 0.0005). Two additional 

categories (transcription and apoptosis) were over-represented in genes hit by RV 

and/or LV vectors, but at less significant levels (EASE score < 0.05).

Similar results were obtained performing a functional annotation of target 

genes by the network-based Ingenuity pathways analysis (IPA) tool (Figure 16). 

IPA annotation software is based on the Ingenuity Pathways Knowledge Base 

(IPKB), a database that models functional interactions between genes/gene products, 

manually compiled from the full text of articles published in peer-reviewed journals. 

IPA analysis indicated that genes involved in cell signaling, cell 

growth/proliferation, cell death, cancer, and hematopoietic system development were 

significantly over-represented in the collection of RV and/or LV integrations with 

respect to genes annotated in the IPKB software (0.005 <P < o .05). I chose therefore 

these categories to carry out a direct frequency comparison between RV and LV 

target genes and our control gene list (the complete lists of genes used for the GO 

and the IPA analyses are contained in Appendix 1). Genes involved in cell
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signaling, growth/proliferation, and death were over-represented in both RV and LV

integrations with respect to control sequences (p < 0.001, Figure 16), while genes 

involved in hematopoietic and immune system development, immune response and 

cancer were specifically over-represented in RV but not LV integrations (p < 0.001, 

Figure 16).
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Figure 15. Retroviral integration preferentially targets genes regulating cell growth and 

proliferation. GO analysis o f genes targeted by retroviral integration in CD34^ cells. Genes identified 

as targets of RV and LV integration were analyzed for significant functional clusters with the DAVID 

2.1 software. Functional categories derive from the GO-Biological Process (establishment and/or 

maintenance of chromatin architecture, phosphorylation, transcription, signal transduction, apoptosis, 

cell cycle) and the GO-Molecular Function (GTPase regulator activity, serine/threonine kinase 

activity) classifications. Bars indicate the number of integration target genes annotated within the 

given category out o f n genes eligible for each analysis. Asterisks denote the significance level of 

over-representation o f any given category with respect to the human genome, used as background 

population (***EASE score < 0.0005, **EASE score < 0.005, *EASE score < 0.05). The number of 

gene identifiers annotated within each functional category is indicated in the bars.

77



Diseases and Physiological System Development

C a n cer

Im m une
r e s p o n s e

H em a to p o ie tic
sy s te m

Im m une/lym phatic
s y s te m 28

—r~ 
10

□  Control (n = 268)

■  RV all (n= 637)

□  RV hot sp ots (n = 76)

□  LV all (n = 514)

□  LV hot spots (n = 31)

1 22 |
37 |
4 1

12 1____________
| ***

| 20 |* * *

—I-
15

— r ~

20
—i-
25

—r~
30

—i
35

C ellu lar and M olecu lar Function

Tsi □  Control (n = 268)

■  RV all (n= 637)

□  RV hot spots (n = 76)

□  LV all (n = 514)

□  LV hot spots (n = 31)

Cell sign a lin g

C ell grow th  and  
proliferation

C ell d ea th

0 5 10 15 20  25

eligible genes (%)

Figure 16. RV vectors preferentially target genes regulating hematopoietic cell growth and 

differentiation. Functional clustering analysis comparing integration target and control gene lists. 

Function/disease categories were those significantly over-represented in at least one integration target 

gene list (0.005 < p  < 0.05) using the Ingenuity Pathway Knowledge base as background population 

and the Ingenuity analysis software. Bars represent the percentage of integration target genes 

belonging to each category among n genes eligible for the analysis. Asterisks denote the probability 

that differences observed between the integration data sets (RV, LV, RV and LV hot spots) and the 

control data set are due to chance alone (***p < 0.001, ** p  < 0.005, * p  < 0.05, 2 sample test for 

equality of proportions with continuity correction). The number of genes annotated within each 

category is indicated in the bars.
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Given the observed preference for RV proviruses to land nearby cancer- 

associated genes, I performed a further analysis of retroviral-targeted genes using 

cancer-related databases (see Materials and Methods, section 5.5). RV integrations 

hit 77 proto-oncogenes and 64 cancer-associated murine common insertion sites 

(CISs), corresponding to 7.5 and 6.2%, respectively, of the 1,030 integrations 

(Figure 17). Both categories were significantly over-represented (p < 0.001) when 

compared to control sequences (27 proto-oncogenes and 17 CISs out of 798 

sequences). On the other hand, LV integrations hit 49 proto-oncogenes and 32 CISs 

out of 849 integrations, a borderline significant difference in comparison with 

controls (p = 0.03 and 0.07, respectively).

•kick

k k k

□  Control (798)
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□  RV hot spo ts (219)

□  LV all (849)

□  LV hot spots (70)
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Figure 17. CISs and proto-oncogenes are over-represented in CD34+ RV integrations and 

integration hot spots. Comparative analysis o f the frequency o f genes annotated in the CIS and 

cancer-related gene databases (see Materials and methods, section 7.5, for definitions and data source) 

between integration target and control gene lists. Bars represent the percentage of RV and LV 

integrations, RV and LV integration hot spots, and control sequences, targeting at least one proto­

oncogene or CIS. The n values indicate the number of independent hits in each group. Asterisks 

denote the level o f enrichment with respect to control data set (*** p  < 0.001, * p  < 0.05, 2-sample 

test for equality o f proportions with continuity correction).

Overall, these analyses show that both RV and LV vectors have a general 

tendency to integrate near genes involved in the regulation of cell growth and 

proliferation, and that RV integration have a specific bias for genes associated with
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hematopoietic functions and oncogenic transformation. These biases were confirmed 

when I explored the molecular interactions between integration target genes, using 

the IPA network generating tool. Ingenuity dynamically computes a large “global” 

molecular network based on the thousands of direct and indirect physical and 

functional interactions between orthologous mammalian genes that are annotated in 

the IPKB. A d hoc algorithms are then applied to select sub-parts of this global 

network (referred to as “local networks”) that are relevant to the gene list of interest. 

Performing the IPA network analysis on the list of genes targeted by RV and LV 

integrations (specified in Appendix 1), a significant number of those genes resulted 

functionally linked in molecular networks involved in apoptosis, cell 

growth/proliferation, signal transduction, transcriptional regulation, and cancer 

(Figure 18 and Appendix 2 for the complete list of networks). Central nodes to both 

RV and LV networks are genes specifically controlling blood cell proliferation and 

differentiation, whose deregulation has been related to hematopoietic disorders

(among the others EV I1 , RUNX1, CBFB, SPP1, ETS1, NOTCH1, CSF1R, FAS191'

1 08). This became particularly evident for RV integration target genes when I merged 

the 5 top RV networks (see Appendix 2) into a single, large network, looking for 

overlapping genes and/or additional relevant functions (Figure 19). 59 out of the 155 

(38%) genes with an annotated biological function within this network were shared 

between 2  or more single networks, meaning that local networks are strictly inter­

related. The most significant functions associated to the merged network (10' 'U <P <

o
1 0 ' ) were those involved in the hematopoietic system development and function, 

and in the activation, proliferation and differentiation of blood cells, again pointing 

out a preferential integration of RV vectors in the vicinity of hematopoietic-specific 

genes.
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Figure 18. Genes hit by retroviral integration are functionally linked in gene networks.

Representative networks originated by Ingenuity analysis of RV (A and B) and LV (C and D) target 

genes (see Appendix 2 for a complete list). All networks are made of 35 target genes, with an 

Ingenuity score of 42 or higher. The color code highlights the most significant biological functions 

associated to each network (p < 0.001). Asterisks denote genes hit by at least 2 independent 

integrations. Shapes and line styles are explained in Appendix 2, containing the legend o f all symbols 

used by Ingenuity tool. (A) RV network 1; (B) RV network 4; (C) LV network 1; (D) LV network 2 

(networks are identified in Appendix 2).
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Figure 19. RV networks are functionally inter-related in hematopoietic specific pathways. The

network was obtained by combining the 5 RV local networks of Appendix 2 with the Ingenuity 

“Merge networks” tool. The orange color highlights direct (continuous lines) and indirect (dotted 

lines) interactions between genes that are shared among 2 or more local networks. Top functions 

associated with the merged network are specified, each with the number of genes accounting for that 

function and the level o f over-representation with respect to genes annotated in the IPKB.

Merging of the 4 LV networks showed a good level of overlap between local 

networks (49 out of 127 genes in common, 38.6%) but no evident biases towards 

hematopoietic specific functions. The same Ingenuity network analysis performed on
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the list of genes found nearby control sequences retrieved a single network, therefore 

impossible to merge (Appendix 2).

6.1.3 RV but not LV vectors show a hish frequency of intesration hotspots

The large number of data I collected, together with the experimental setting I 

chose, i.e., hematopoietic HSCs analyzed short-term after infection, allowed me to 

investigate the existence of recurrent sites of RV and LV integration before 

retrovirally-induced clonal dominance could arise in culture. To visualize how 

independent integrations clustered together in the genome of CD34+ cells, I started 

plotting the distribution of the distance between consecutive insertion sites for RV, 

LV and control sequences (Figure 20). Distances between consecutive integrations 

were plotted individually (upper panels) or grouped into 8  distance intervals (lower 

panel), for easier comparison between the three data sets (Appendix 4 for numbers 

and complete statistics). For up to 16.6% of RV integration sites, the nearest 

upstream and/or downstream insertions were within 100 kb, while only 4.4% of 

control sequences and 8.9% of LV insertions were less than 100 kb apart 

(cumulative frequencies calculated on the first 5 distance intervals, from 1 to

100,000 bp). The same analysis performed with MLV integrations in HeLa cells 

showed a distribution similar to that of RV vectors in CD34+ cells, even if less 

accentuated (11.2% of HeLa insertion sites were less than 100 kb apart, compared 

with 16.6% of RV insertions in CD34+ cells). This was the first, rough indication 

that RV integration sites were more clustered than LV and control sequences. I then 

performed a subtler analysis to score for the presence of “true” integration hot spots; 

I used essentially the same criteria previously applied to the definition of cancer- 

associated CISs, again based on the distance between two consecutive integrations.
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A genomic region was statistically defined a hot spot for integration when containing 

at least 2 independent insertions in less than 30 kb, 3 in less than 50 kb, and 4 or 

more in less than 100 kb14,161. Overall, 219 (21.3%) of 1,030 RV insertion sites met 

these criteria, identifying 97 hot spots in the genome of CD34+ cells. A total of 109 

(12.5%) of 869 integrations met the same criteria in HeLa cells, defining 52 hot 

spots. LV vectors showed a significantly lower propensity to integrate at recurrent 

sites, with only 70 (8.2%) out of 849 integrations meeting the definition criteria, and 

identifying 33 hot spots (see Appendix 4 for a complete list of integrations 

originating hot spots and genes targeted by them). Comparing the 3 collections, a 

single hot spot region was found in common between RV (4 hits) and LV (3 hits) 

integrations (chromosome 17 q23.2: 55188652-55285672), while 3 hot spots 

appeared to be a recurrent insertion site for RV vectors both in CD34+ and in HeLa 

cells (chromosome 10 q21.2: 63178757-63189469; chromosome 17 q ll.2 : 

22880336-22924624; chromosome X p22.11: 23863173-23925096). Importantly, 22 

out of 798 control sequences (2.8%) also met the hot spot definition criteria, defining 

a background level of false positivity in the LM-PCR analysis. The different 

subgroups of RV integrations contributed to the hot spot list proportionally to their 

size, with no apparent bias related to the source of CD34+ cells (CB-, BM- or PB- 

derived samples), the vectors used for transduction (U3-deleted or wild type LTR 

vector), or the number of cell doublings undergone in culture before harvesting 

(Table 2). In particular, non-expanded cell populations (those of BM and PB origin), 

collectively contributing to less than half of the 1,030 total RV integrations, 

contributed with at least 1 integration to 56 of the 97 (58%) RV hot spots. Such 

observation confirms that the high percentage of hot spots scored for RV integrations
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is not due to a clonal selection in culture, but instead it is an intrinsic property of 

Mo-MLV integration mechanism.
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Figure 20. RV integrations are clustered in hot spots. The dot plots on the top represent the 

distance between pairs o f consecutive integrations, plotted along the x-axis on a logarithmic scale, 

computed for RV, LV and control sequence data sets. For a better visualization, dots have been 

arbitrarily scattered along a virtual v-axis, applying a modulo function on the distance value (see 

Appendix 3 for a detailed description). A quantification of the dot plots is given in the histogram at 

the bottom, where distances between 2 consecutive integrations are sorted into 8 logarithmic classes 

(10°-10‘ bp; lO'-lO2 bp; 102-103 bp; 103-104 bp; 104-105 bp; 106- l0 7 bp; 107-108 bp). The frequency of 

RV, LV and control sequence consecutive integrations in each distance interval is compared. 

Asterisks denote statistically significant differences between RV and LV distribution (* p  < 0.05, ** p  

< 0.005, *** p < 0.0005, complete statistics in Appendix 3). The n values indicate the number of 

consecutive integration sites for each data set whose distance was plotted.
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The position of RV hot spot integrations with respect to Known Genes 

reflected the RV general integration preferences, with intergenic, perigenic, and 

gene-dense regions over-represented to the same extent observed in the entire 

collection of RV integrations, and only a slightly reduced clustering around TSSs (p 

= 0.015; T a b le  1, F ig u r e s  12A  and 1 3 A ). Conversely, LV hot spots showed a higher 

frequency of integration in intragenic (81.4% vs. 71.7%) and gene-dense regions 

(65.7% vs. 35.6% in the “more than 11 genes/Mb“ density interval) (T a b le  1, F ig u r e  

13B ). Similarly, RV hot spots occurred in the same proportion of expressed genes as 

all RV integrations (F ig u r e  14 A ), while LV hot spots contained a significant higher 

proportion of expressed genes (73.2% vv. 55.9%,/? = 0.003, F ig u r e  14B ).

Table 2. Contribution of different groups of RV insertions to the integrations generating the RV 

hot spots.

D a ta  se t* In te g r a t io n s
%  o f  to ta l

(1 ,0 3 0 )
In te g r a t io n s  c o n tr ib u t in g  

to  h o t sp o ts
% o f  to ta l  

(2 1 9 )

CB-RV 395 38.3 93 42.5
CB-ARV 200 19.4 52 23.7
BM-ADA 190 18.4 33 15.1
BM-X-SCID 120 11.6 18 8.2
PB-ND 125 12.1 23 10.5

* CB-RV: cord blood-derived CD3A cells transduced with wt-LTR RV 

CB-ARV: cord blood-derived CD34 cells transduced with AU3-LTR RV

BM-ADA: bone marrow-derived CD34 cells from ADA-SC1D patients transduced with wt-LTR RV 

BM-X-SC1D: bone marrow-derived CD34 cells from X-SCID patients transduced with wt-LTR RV 

PB-ND: peripheral blood-derived CD34 cells from normal donor transduced with wt-LTR RV.

Interestingly, the maximum distance between independent integrations 

defining a hot spot was significantly lower for RV vectors compared with LV 

vectors and control sequences with hot spot characteristics. Overall, 52% and 67% of 

the RV hot spots in CD34^ and HeLa cells span less than 10 kb, including those
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containing 3 or 4 independent hits, compared with 36% and 27% for LV and control 

sequences, respectively (F ig u r e  2 1 ). More strikingly, one-fourth (26%) of RV hot 

spots in CD34+ cells and almost one-half (40%) of those in HeLa cells contained 2 

independent integrations in less than 2 kb, compared with only 3% of the LV hot 

spots. This strengthens what already shown in F ig u r e  2 0 , where, comparing the 

general distribution of all RV and LV integrations, significant clusters of insertion 

sites were mainly observed for RV but not LV integrations.

♦  2 hits 0 3 hits ♦  4  hits
2 kb

He La RV — ------ ♦------• •  ♦ ♦  T  •  M H  ----------------------
40% |

CD3 4  R V  f - M  »  » ♦ » •  • * — ♦--------
26%  i

CD3 4  LV ------------------------------------ ♦--------- f - m  < H HH  — O+CO-------------------
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C ontrols --------- ♦-----------------------------------f  ♦-------- ♦— M * ---------------------------
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Figure 21. Distribution of the maximum distance between individual hits within RV and LV hot 

spots. Diamonds represent single hot spots originated from 2 (black), 3 (grey), or 4 (red) hits in the 

genome o f CD34 HSCs (1,030 RV and 849 LV integrations) and Hela cells (869 RV integrations), 

plotted according to the maximum distance between individual integrations (in base pairs, on a 

logarithmic scale). Also shown are “false positive” hot spots generated by applying the definition 

criteria to a library of LM-amplified random sequences of human CD34 DNA (798 sequences). A 

total o f 26% of the 97 RV hot spots in CD34 cells and almost one-half (40.4%) of the 52 RV hot 

spots in HeLa cells contained 2 independent integrations in less than 2 kb, compared with only 1 of 

the 33 LV hot spots.
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6.1.4 Proto-oncosenes and cancer-associated CISs are hot spots o f RV but not LV

integration

The list of RV integration hot spots in CD34+ cells included proto- 

oncogenes, such as LYL1 (lymphoblastic leukemia derived sequence 1) and MYB 

(v-myb myeloblastosis viral oncogene homolog), cancer-associated CISs, like FLU 

(Friend leukemia virus integration 1), EVI2A (ecotropic viral integration site 2A), 

EVI2B and NF1 (neurofibromin 1), and genes involved in chromosomal 

translocations in hematopoietic malignancies, such as the well-known LM 02, MKL1 

(megakaryoblastic leukemia translocation 1) and ETV6 (Ets variant gene 6 - TEL 

oncogene) (Table 3 for the complete list). All of these genes occured at frequencies 

significantly higher than expected (p < 0.001) and higher than in the overall list of 

RV integrations (Figure 17, red bars). Interestingly, non-expanded cell populations 

contributed with at least one integration to 9 (53%) of the 17 hot spots targeting a 

proto-oncogene or a cancer associated CIS, again indicating the absence of any bias 

related to the number o f cell doublings in culture. On the contrary, LV hot spots 

showed little enrichment for proto-oncogenes or CISs, although in this case low 

numbers make comparisons poorly significant (Figure 17). Moreover, RV but not 

LV hot spots included a high proportion of genes belonging to the intracellular 

signaling cascade category (25.3%), which were very significantly over-represented 

using either the human genome or the total RV integrations as a background 

population in a GO analysis (EASE score 1.2 e-6 and 2.2 e-4, respectively), despite 

their relative small number (22). An Ingenuity pathways analysis carried out with the 

list of genes targeted by RV hot spots showed that genes involved in hematopoietic 

and immune system development and function and in immune response are further



and significantly enriched in RV hot spots with respect to the entire list of RV 

integrations (F ig u r e  16).

Table 3. RV and LV hot spots containing at least one proto-oncogene and/or cancer-related CIS

Chr Range
(bp)

Hits Gene symbol Origin*

RV hot spots 14q24.3 13882 4 C14orf43, PNMA1 CB-RV (2) 
CB-ARV (2)

11 p 13 48661 3 A F116668, LM 02 BM-ADA (1) 
CB-RV (1) 
CB-ARV (1)

17ql 1.2 7827 3 EVI2A, EVI2B. NF1,
OMG

BM-X-SClD(l) 
CB-RV (2)

10q25.2 1920 2 ADD3 BM-ADA (1) 
CB-ARV (1)

11 q23.2 22851 2 ZBTB16 BM-ADA (1) 
CB-RV (1)

1 lq24.3 14147 2 FLI1 BM-ADA (1) 
CB-RV (1)

12p 13.2 7360 2 ETV6 CB-RV (2)

16p 13.11 18559 2 ABCC1 BM-ADA (1)

19p 13.13 137 2 BTBD14B, LYL1, 
NF1X, TRMT1

BM-X-SClD(l) 
CB-RV (1)

20pl2.3 136 2 PLCB1 CB-ARV (2)

20q 13.12 19100 2 C20orfl21, PKIG, 
SERINC3

CB-RV (2)

22ql3.1 29588 2 AB051446, MKL1, 
RUTBC3

BM-X-SCID (1) 
CB-ARV (1)

2pl 1.2 779 2 CAPG, LOC284948, 
RBED1

PB-ND (2)

2p21 975 2 AK025445, 
MGC40574, THADA, 
ZFP36L2

CB-RV (2)

4pl4 11999 2 N4BP2, RHOH CB-RV (2)

6q23.3 9422 2 MYB CB-RV (2)

6p24.3 1991 2 RREB1 CB-RV (1) 
CB-ARV (1)

LV hot spots 9q34.3 31043 3 A K 130247, C9orfl63, 
INPP5E, NOTCH1, 
PMPCA, DCCAG3

CB-ALV (2) 
C B -L V (l)

2p21 22106 2 THADA CB-ALV (1) 
C B -L V (l)

20p 12.3 24132 2 PLCB1 CB-LV (2)

17pl 3.3 25818 2 RUTBC1, SMG6, 
SRR, TSR1

CB-LV (2)

Control hot 
spots

6q25.1 4561 2 ESR1

Range indicates the maximum distance between hits contained in each hot spot. Proto-oncogenes or 
CISs are shown in bold. For the complete list o f hot spot regions see Appendix 4. The number in 
parentheses indicates the number o f hits for each category. * Refer to the legend of Table 2.
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6.2 Role o f  LTR and o f LTR inter actors in the integration site selection 

of retroviral vectors

The analysis of RV and LV integration sites in human HSCs described herein 

showed that there is an RV-specific propensity to integrate into hot spots and to 

target genes involved in the control of growth, differentiation and function of 

hematopoietic cells. This suggested that the gene expression program of the target 

cell might be instrumental in directing RV integration, and set the basis for a deeper 

investigation of the molecular mechanism connecting retroviral integration and 

transcription. The second part of this thesis was therefore specifically aimed at 

evaluating the role of transcriptional regulatory networks in directing RV and LV 

integration. As thoroughly discussed (section 2.1.5), viral LTRs, and in particular the 

U3 region, contain a large array of c/s-acting control elements that bind cellular 

transcription factors (TFs) and regulate transcriptional initiation from eukaryotic 

promoters. An intriguing hypothesis linking integration and transcription is that 

cellular TFs sitting on the U3 viral enhancer could cooperate with viral integrase in 

directing PICs towards regulatory regions actively engaged by the transcriptional 

machinery. To test such hypothesis, I worked both on the viral and the cellular side, 

using LTR-modified retroviral vectors and investigating the genomic features 

surrounding their insertion sites. I designed wild type and LTR-modified (U3-deleted 

or replaced) RV and LV vectors to infect human HSCs and I collected 200 to 800 

integration sites per vector. I then analyzed the effect of LTR modification on RV 

and LV integration properties by evaluating the arrangement of putative TF binding 

sites in the genomic regions flanking the retrieved integration sites. Such analysis 

required specialized skills and deep knowledge of statistics and bioinformatics that I
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did not possess; therefore I started a close collaboration with the Bioinformatics 

Core at IFOM-IEO campus (Milan); working together, we defined experimental 

groups, designed appropriate controls and chose the best approaches to answer our 

research question.

\
6.2.1 Collection o f intesration sites from human hematopoietic cells transduced 

with LTR-modified retroviral vectors

Human CD34+ HSCs of cord blood, bone marrow or peripheral blood origin 

were transduced under cytokine stimulation with the Mo-MLV-derived (RV) or 

HIV-1-derived (LV) vectors schematized in Figure 11, carrying wild-type or 

modified LTRs. RV vectors carried a wild type LTR (MLVa-c), an enhancer-less 

(AU3) LTR, or an LTR from the spleen focus forming RV (SFFV), driving the 

expression of reporter or therapeutic genes, with or without an internal SV40 

promoter-reporter cassette. LV vectors carried a wild type LTR (HIVa-b), a AU3 

LTR or an LTR containing the Mo-MLV U3 enhancer, and an internal expression 

cassette driven by different promoters (CMV, SV40 or the entire Mo-MLV LTR). 

For each vector, 200 to 800 vector-genome junctions were amplified by LM- or 

LAM-PCR, cloned into bacterial libraries, sequenced and finally mapped onto the 

human genome. A collection of 795 sequences randomly cloned by LM-PCR was 

again used as a control group, together with 100,000 computer generated random 

insertion sites. Integration sites were annotated as TSS-proximal when occurring 5 

kb upstream or downstream of the TSS of any Known Gene (UCSC definition), as 

intragenic when landing into a gene but at a distance > 5 kb from its TSS, and 

intergenic in all other cases (Figure 22). As largely expected, all RV vectors showed 

a preference for integration around the TSSs, while LV vectors integrated 

preferentially within genes, as compared to the control sequence set (Table 4). Over­



representation of TSS-proximal insertions was reduced in the AU3-MLV vector data 

set (12.5% vs. 16.6% of MLV), with a concomitant, statistically significant increase 

in intergenic integrations (47.5% vs. 37.0% of MLV, p  < 0.01, 2-sample test for 

proportions with continuity correction). LTR modification had no apparent effect on 

the LV integration preferences in terms of intragenic, intergenic and TSS-proximal 

distribution.

-5 kb +1 +5 kb end
' - -....  ■■■■ mmmm s s s wmm

intergenic T SS-proxim al intragenic intergenic

Figure 22. Annotation parameters. Integration sites were annotated as “TSS-proximal” when 

occurring within a distance of ±5 kb from the TSS o f any Known Gene (UCSC definition), as 

“intragenic” when occurring into a gene at a distance o f >5 kb from the TSS, and as “ intergenic” in all 

other cases.

6.2.2 Transcription factor binding sites are over-represented in sequences flan k ins  

R V  integration sites

To investigate the role of transcription in mediating retroviral target site 

selection, we evaluated the abundance of transcription factor binding sites (TFBSs) 

in a ± 1,000-bp interval from the integration sites of all RV and LV vectors in human 

HSCs. To remove from the analysis the possible bias introduced by RV preference 

for promoter regions, which are enriched in TFBSs by definition, we generated 

seven weighted control groups of random sequences. These sequences reproduced, 

in proportion, the integration preferences of each vector set, based on the annotation 

reported in F ig u r e  2 2  (T a b le  5 ). Such random sequences were then used as pair- 

weighted background for a TFBS analysis by the Clover program184, using Jaspar
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Core 2005,8;' as a database of experimentally validated TFBS motifs. Clover 

program screens a set of DNA sequences against a precompiled library of motifs and 

assesses which, if any, of the motifs are statistically over- or under-represented in the 

sequences when compared to a background set of sequences. Jaspar is an open- 

access database of annotated, high-quality, matrix-based TFBS profiles for 

multicellular eukaryotes. The profiles are non-redundant and were derived 

exclusively from sets of nucleotide sequences experimentally demonstrated to bind 

TFs, two characteristics that render Jaspar preferable to other more extensive 

libraries, such as TRANSFAC.

Table 4. Integration distribution of wild type and LTR-modified retroviral vectors in human 

CD34+ HSCs.

I n te r g e n ic

(% )
T S S  p r o x im a l

(% )
I n tr a g e n ic

(% )
T o ta l h its IN

C D 3 4 + ce lls

MLV 37.0 16.6 46.4 829 MLV
AU3-MLV 47.5 12.5 40.0 200 MLV
SFFV-MLV 42.0 19.0 39.0 195 MLV
HIV 28.1 8.4 63.5 403 HIV
AU3-HIV[CMV] 26.5 7.4 66.1 445 HIV
AU3-HIV[MLV] 24.5 9.5 66.0 200 HIV
MLV-HIV 26.0 10.0 64.0 400 HIV
Controls 59.8 4.5 35.7 795

H ela  ce lls

MLV12 45.0 14.4 40.6 864 MLV
HIV121 17.3 5.6 77.1 532 HIV
HIVmlN121 50.8 15.7 33.5 325 MLV

Distribution of integration sites o f different RV and LV vectors identified by LM- and LAM-PCR in 

the genome of human CD34 HSCs and HeLa cells. Control sequences were randomly cloned by LM- 

PCR from CD34 DNA samples. See Figure 11 for the structure of each vector and for the definitions 

o f the annotation parameters. The origin of the integrase (IN) packaged with each vector is indicated 

in the rightmost column. Insertion sites from HeLa cells were re-analyzed from previously published 

collections.
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Table 5. Definition o f  w eighted  backgrounds.

B a c k g r o u n d
g r o u p

In te r g e n ic
(% )

T S S  p r o x im a l
(% )

In tr a g e n ic

(% )

C o r r e sp o n d in g
e x p e r im e n ta l

g r o u p
BG1 59.8 4.5 35.7 Controls

BG2 37.0 16.5 46.4 MLV (CD34+)

BG3 28.0 8.4 63.5 HIV (CD34+) 
AU3-HIV[CMV] 
AU3-HIV[MLV] 
MLV-HIV

BG4 41.6 19.9 38.5 SFFV-MLV

BG5 46.3 13.4 40.3 MLV (Hela) 
AU3-MLV

BG6 17.3 5.6 77.1 HIV (Hela)

BG7 50.8 15.7 33.5 HIVmlN

We randomly generated seven groups of sequences (BG1-7) reproducing, in proportion, the 

integration preferences o f each vector set and we used them as pair-weighted backgrounds for 

transcription factor binding site analysis by the Clover program. For each background group, the 

corresponding experimental group/s is/are specified.

F ig u r e  2 3  shows the number of TFBS motifs that were found enriched by 

Clover analysis in each group of vectors with respect to its fitted background. The 

box plots indicate that RV but not LV vectors integrate in genomic regions highly 

enriched in TFBSs (86.8 and 90.3 average TFBS counts per sequence for MLV and 

SFFV-MLV respectively vs. 27.2 for control sequences,/? < 2.2e-16, Wilcoxon rank 

sum test; for complete statistics refer to A p p e n d ix  5 ). The observed enrichment is 

independent o f the position of integration sites with respect to genes and TSSs, since 

it is present in intergenic as well as in intragenic integrations, with only a slight 

increase around TSS-proximal insertion sites noticeable in MLV and SFFV-MLV 

data sets. The RV LTR enhancer appears to play an essential role in this selection, 

since deletion of the U3 region, but not its replacement with the SFFV enhancer, 

causes a significant drop in the frequency of TFBSs around the insertion sites (35.4
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for AU3-MLV vs. 86.8 for MLV, p  < 2.2e-16). Conversely, sequences around LV 

vector integration sites show a significantly lower TFBS content compared to control 

sequences. Interestingly, replacement of the HIV U3 by the MLV U3 enhancer in the 

HIV LTR (MLV-HIV vector) appears to bias LV integration towards regions with an 

increased content of TFBSs (from 12.6 TFBSs/sequence of HIV to 29.1 of MLV- 

HIV). The MLV U3 enhancer plays this role only when placed inside an LTR, since 

it had no apparent effect in an internal position within the LV vector (compare AU3- 

HIV[MLV] distribution with that of HIV in F ig u r e  2 3 ).
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Figure 23. Abundance of TFBSs in genomic sequences flanking retroviral integration sites in 

human HSCs. Box plot o f the frequency of TFBSs (motif count per sequence) in genomic sequences 

flanking integration sites (±1,000 bp) o f different RV and LV vectors, in human HSCs. The plot is 

broken down into the three annotation categories of intergenic (grey), TSS-proximal (yellow), and 

intragenic (green) integrations. Statistical significance o f differences in TFBS counts among and 

within groups is reported in Appendix 5.

6.2.3 Retroviral integration sites are flanked by unique TFBS motifs.

Given the remarkably different abundance of TFBSs around RV and LV 

vector integrations, we then moved to the question of which TF motifs were 

specifically over- or under-represented in each vector when compared to its pair- 

weighted background. This was visualized by a two-way hierarchical clustering of



the likelihood ratio values coming out from the Clover analysis (Figure 24). The 

heatmap shows that each experimental group of sequences is uniquely defined by 

specific subsets of TFBS motifs, the color code being suggestive of the significance 

level reached for each motif (blue to red for increasing likelihood values). The row 

dendrogram on the right of the heatmap shows that RV, control and LV sequences 

identify three main nodes, from which other branches originate, dictated by the 

vector LTR configuration. The bootstrapped column dendrogram on the top, instead, 

splits the data set into two major branches, defining LV and RV vector profiles. The 

bootstrapping procedure, a resampling technique used to obtain estimates of 

summary statistics, was here applied to add robustness to the analysis. Only nodes 

having an Approximately Unbiased (AU) probability value > 0.95 were scored as 

significant and stable nodes (represented as red branches on the tree of Figure 24; 

the complete analysis is reported in Appendix 6.1). A core of four motifs (MA0056, 

MA0081, MA0026, MA0098, all motifs are listed in Appendix 7) is strongly 

associated (AU = 100) to all RV vectors, independently of their LTR structure. 

Three of these motifs (MA0081, MA0026, MA0098) are bound by TFs belonging to 

the ETS family, and one (MA0056) by TFs of the Zn-finger C2 H2 family. 

Interestingly, sequences flanking the integration sites of the enhancer-less LTR 

vector (AU3-MLV) lack a set of 12 motifs common to MLV and SFFV sequences, 

and 5 motifs shared among MLV sequences only. These motifs are therefore 

associated to an RV or specifically to the MLV U3 enhancer.

The hierarchical cluster analysis shows a strong under-representation of 

TFBSs in all LV sequences, which shared only one characterizing forkhead motif 

(MA0032). Although the insertion of the MLV U3 enhancer in the HIV LTR 

increased the absolute TFBS motif count around integration sites (Figure 23), it was
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not sufficient to change the segregation of the MLV-HIV vector sequences in the 

cluster analysis. Figure 24 shows that the MLV-HIV sequences share most of their 

motif profile with LV sequences, with the notable exception of one Zn-finger motif 

(MA0021) that is instead in common with the MLV and SFFV-MLV vectors.

AU3-HIV[CMV]

r f n T n m ^
AU3-HIV[MLV]

rhf T V  nVn rfnTn

MLV-HIV

HIV

Controls

SFFV-MLV
AU3-MLV

MLV

Figure 24. Hierarchical cluster analysis of TFBS motifs around retroviral integration sites in 

human HSCs. The heatmap defines a specific TFBS motif pattern for each group o f sequences 

(specified on the left). The color code (from blue to red) indicates increasing levels o f likelihood 

values (from under- to over-representation). The row dendrogram on the right shows that RV, control 

and LV sequences identify three main nodes, from which other branches originate, dictated by the 

vector LTR configuration. The bootstrapped column dendrogram (top) splits the data set into two 

main branches, defining LV and RV vector profiles. Red branches on the tree identify stable nodes 

with an AU /7-value > 0.95 (detailed dendrogram is in Appendix 6.1; Clover analysis results with a 

complete list o f motifs in Appendix 7).

To reduce our multivariate data sets to a lower dimension for analysis, while 

minimizing the loss of information, we chose a Principal Components Analysis

187(PCA) approach . PCA transforms a number of possibly correlated variables 

(TFBS motifs, in this case) into a smaller number of uncorrelated variables called 

pricipal components (PCs). The first PC accounts for as much of the variability in 

the system as possible, and each succeeding component accounts for as much of the
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remaining variability as possible. In fact, PCA technique identifies simultaneously j 

all the existing correlations between samples and variables in huge multivariate data, 

and orders them according to their contribution to the total variance of the system. ; 

The most significant relationships between the data dimensions identify major : 

patterns in the data, highlighting the principal similarities and differences among , 

them. Indeed, PCA operations can be thought of as revealing the internal structure of 

the data in a way which best explains the variance in those data.

When applied to our Jaspar motifs, the PCA confirmed the results of the 

cluster analysis. A scatter plot of the first two components, accounting together for 

31.6% of the total variability, clearly discriminates three main groups: RV sequences 

(MLV, SFFV-MLV and AU3-MLV), LV sequences (HIV, AU3-HIV[CMV], AU3- 

HIV[MLV], and the hybrid MLV-HIV), and control sequences (Figure 25). The first 

component differentiates RV from all other sequences, the second one discriminates 

between LV and control sequences. MLV and HIV groups are oriented along the 

first component axis but in opposite directions (left panel); the angle between the 

two is nearly orthogonal, implying an independent behavior. The control group is 

also independent of RV sequences, and oriented in opposite direction with respect to 

LV sequences along the second component axis.

The variability within MLV and SFFV-MLV data is higher than in any other 

group, possibly because of the high number of TFBSs contained in these sequences. 

Indeed, AU3-MLV sequences, which contain a lower number of TFBSs, show a 

lower variability, although they result still oriented towards the RV group along the 

axis of the first component. The loadings plot on the right panel shows a high 

number of TFBSs contributing to the RV group loadings. Among the 19 motif 

vectors having a length higher than the chosen cutoff (see Materials and methods,
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section 5.6), one (MA0032) is oriented with the LV group, two (MA0117, MA0089) 

with the control group, and the remaining ones with the first principal component. 

Twelve of these vectors are exclusively oriented with the RV group, and belong to 

different TFBS families; four motifs are recognized by Zn-finger C2H2 , three by 

ETS, two by homeodomain-containing, and one by Zn-finger-DOF, HMG, and AP2 

transcription factors. The four motifs strongly associated with RV sequences in the 

cluster analysis (MA0056, MA0081, MA0026, MA0098 of Figure 24) are contained 

in this group.
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Figure 25. Principal Components Analysis of TFBS motifs enriched around retroviral insertions 

in human HSCs. The PCA was performed with the likelihood ratio values of the 57 Jaspar matrices 

that resulted enriched by the Clover program. A scatter plot o f the two principal components (PC), 

accounting together for 31.6% o f the total variability (left panel), identifies three main groups: RV 

sequences (MLV, SFFV-MLV and AU3-MLV), LV sequences (HIV, AU3-HIV[CMV], AU3- 

HIV[MLV], and the hybrid MLV-HIV), and control sequences. The first component (x-axis) 

discriminates RV from all other sequences, while the second component differentiates LV from 

control sequences. AU3-MLV sequences, containing a lower number o f TFBSs, show less variability 

than the MLV and SFFV-MLV sequences, but are still oriented towards the RV group, along the first 

component axis. A plot o f 19 m otif vectors having a length higher than the chosen cutoff (right panel) 

shows one vector (corresponding to the Jaspar motif MA0032) oriented with the LV group, two 

(M A0117, MA0089) with the control group, and all the remaining ones with the RV group. The four 

motifs MA0056, MA0081, MA0026, and MA0098, which were strongly associated with RV 

sequences (AU /?-value = 100) in the cluster analysis, are contained within this group.
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6.2.4 Evolutionarily conserved TFBSs are enriched in sequences flankins RV

intesrations.

We next investigated whether an over-representation of TFBSs was still 

observed around RV integrations when applying more stringent parameters, i.e., '■ 

considering only evolutionary conserved binding sites. For this analysis, we 

extracted from the HMR Conserved TFBS table at UCSC 188 motifs belonging to ; 

the TRANSFAC Matrix Database (version 7.0) conserved in a human-mouse and/or 

human-rat alignment. 35.7% and 26.7% of the sequences flanking MLV and SFFV- 

MLV insertion sites, respectively, contained at least one conserved TFBS (range: 2- 

30 sites/sequence), a significant difference with respect to their weighted 

backgrounds and to a random computational control set of 100,000 sequences 

(17.9%, 18.5% and 14.7%, respectively). Sequences flanking the AU3-MLV and all 

LV integration sites showed no significant enrichment, again with the exception of 

the MLV-HIV hybrid vector (Figure 26 upper panel, complete statistics in 

Appendix 8.1).

The same analysis performed on integrations broken down into the three 

annotation categories of Figure 22 showed no significant bias towards any of them 

(Figure 26 lower panel), meaning that intragenic intergenic and TSS-proximal 

sequences contributed proportionally to the conserved TFBS over-representation in 

all samples. A complete list o f conserved motifs and their distribution over the 

different data sets is reported in Appendix 8.2. Given the tight constrains in the 

definition, conserved TFBSs were scored in much smaller numbers than in the 

Clover analysis.
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Figure 26. Evolutionarily conserved TFBSs around retroviral integration sites in human HSCs.

Analysis o f the frequency of evolutionary conserved TFBSs in genomic sequences flanking RV and 

LV insertion sites in human CD34+ cells, performed on 188 TRANSFAC matrices conserved in a 

human-mouse and/or -rat alignment (HMR Conserved TFBSs table at UCSC) as a motif database. In 

the upper panel, data are plotted as percentage o f sequences containing at least one conserved TFBS. 

Each experimental group (light blue bars) is compared to its paired-weighted background (‘BG’, red 

bars) and to a random computational control sequence set (blue bars). Asterisks highlight 

experimental groups that showed a statistical significant enrichment of conserved TFBSs with respect 

to BG and random sets (one-sided Fisher’s exact test, complete statistics in Appendix 8.1). In the 

lower panel, the same frequency data are broken down into three subgroups, according to the 

integration site annotation (intergenic, TSS-proximal and intragenic). A complete list of conserved 

motifs and their distribution in each data set are reported in Appendix 8.2.

To identify motifs associated with MLV integration by both analyses, we 

used the STAMP alignment platform and we identified the matrices listed in Table 

6 . Jaspar and TRANSFAC shared motifs are predicted to bind homeodomain, ETS,

101



bZIP, forkhead and Zn-finger proteins, including the cell-type specific growth 

regulators AML1/RUNX1, F0X 03 and LM02.

Table 6. Jaspar and TRANSFAC motifs found over-represented around MLV insertion sites.

JASPAR TRANSFAC (conserved)
Matrix Factor Total Counts/seq Counts/seq Matrix Factor Total

ID counts (average) (range) accession # counts
MAO 109 Rush la 530 0.63 0-3 M00278 LM02 18
MA0046 TCF1 871 1.05 0-5 MOO 132 HNF1 12
MA0002 RUNX1 1,146 1.38 0-4 M00454 MRF2 16
MA0050 1RF-1 1,463 1.76 0-6 M00062 IRF-1 20
MA0012 broad

1,531
1.84 0-12 M00474 FOXOl 30

complex_3
MAO 123 ABM 1,726 2.08 0-10 M00515 PPARG 6
MA0026 E74A 1,940 2.34 0-7 M00025 ELK1 4
MA0064 PBF 2,028 2.44 0-9 M00062 IRF-1 20
MA0042 FOXI1 2,217 2.67 0-11 M00289 FOX 11 8
MA0053 MNB1-A 2,246 2.70 0-9 M00062 IRF-1 20
MA0013 broad

2,297
2.77 0-20 M00477 FOX03 30

complex 4
MAO 120 Idl 2,553 3.07 0-21 M00258 ISGF3 20
MA0079 Spl 2,648 3.19 0-10 M00257 RREB1 6
MA0021 dof3 2,902 3.50 0-10 M00062 IRF-1 20
MA0020 dof2 3,201 3.86 0-10 M00062 IRF-1 20

TFBS motifs found significantly enriched in sequences flanking (±1,000 bp) the integration sites of 

the MLV vector in human HSCs using both the Jaspar and the TRANSFAC conserved motif 

databases. Frequencies are listed as total counts in the 829 MLV sequences and/or average counts per 

sequence and range of counts/sequence. Jaspar and TRANSFAC motifs were matched by STAMP188.

6.2.5 Transcription factors bind retroviral PICs in the celt nucleus.

The association between the MLV U3 enhancer and the over-representation 

of TFBSs suggested a role for U3-binding proteins in RV target site selection. An 

intriguing hypothesis is that specific TFs bind the MLV U3 enhancer in the context 

of nuclear PICs and tether them to genomic regions engaged by the transcriptional 

machinery. A suggestive observation in this direction is the fact that retroviral LTRs 

are transcriptionally active prior to integration in acutely infected cells, implying a 

direct interaction of cellular TFs with viral enhancers and promoter. Transcription 

from unintegrated MLV LTRs was investigated in the SupTl human T cell line, after
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short-term infection with the hybrid MLV-HIV lentiviral vector. In this vector, GFP 

reporter gene is under the transcriptional control of a hybrid MLV-HIV LTR, 

containing MLV U3 enhancer elements (Figure 11 and 26). Integration kinetics was 

roughly established by Southern Blot analysis of cytoplasmic and nuclear DNA 

extracts at different time points after infection (4 hours to 14 days, Figure 27A). 

Nuclear PICs, visible as a -5,000 bp-band of linear DNA, were barely detectable 4 

hours after infection, both in the cytoplasmic and in the nuclear fractions, and peaked 

at 10 hours, when integrated proviruses were still virtually undetectable. Circular, 

unintegrated forms were instead already visible 4 hours after infection in the nuclear 

fraction, but remained at stable levels over time. 14 days after infection integration 

was complete, with no trace of viral linear or circular cDNA. 10 hours after 

infection, when linear DNA was the prevalent viral DNA species in the nucleus with 

no sign of integrated proviruses, was therefore chosen as a reasonable time point to 

study PIC properties. Transcriptional activity of viral LTRs was measured by GFP 

expression, evaluating both protein and RNA levels 10 hrs after viral infection 

(cytofluorimetric and reverse-transcriptase PCR analyses in Figure 27B and C, 

respectively). GFP mRNA and protein were readily detectable, demonstrating full 

LTR activity before proviral integration. Cellular transcription factors responsible 

for GFP expression from unintegrated LTRs were then investigated by chromatin 

immunoprecipitation. Several TFs known to interact with the MLV U3 enhancer 

(schematically represented in Figure 28A) were first tested for their expression in 

SupTl nuclear and cytoplasmic extracts by Western Blot analysis (Figure 28B). 

YY1 protein, CBF heterodimer (AML1/RUNX1 and CBFB), NF-1 factor, several 

members of the C/EBP family (a , |3, 6), and at least two members of the Ets family
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(Etsl and Ets2), resulted all expressed in SupTl cells, mainly confined to the nuclear 

compartment.

Figure 27. Viral LTRs are 

transcriptionally competent prior 

to integration. SupTl human 

hematopoietic cells were transduced 

with MLH-H1V lentiviral vector at an 

MOI of 25, and samples for DNA, 

RNA and cytofluorimetric analysis 

were collected 4 hours to 14 days 

after infection. Vector structure is 

schematized on the top, with MLV- 

HIV hybrid LTR driving the 

expression of the GFP reporter gene.

(A) Southern Blot analysis o f nuclear 

and cytoplasmic DNA extracts from 

MLV-HIV-transduced SupTl cells 4, 

7, 10 hours, and 14 days after 

infection. For each time-point, DNA 

was extracted from lx l0 6 cells and 

run, undigested, on an agarose gel, 

blotted to a nylon membrane and 

hybridized to a GFP radiolabeled 

probe (asterisked line on the vector scheme). Molecular marker sizes are specified on the left (in kb). 

PIC DNA is the linear molecule o f ~5 kb whose levels increase over time, peaking at 10 hrs after 

infection (proviral DNA, see vector scheme at the top); upper bands are circular, unintegrated viral 

DNA forms. Signal from integrated proviruses is visible in the last lane as high-molecular weight, 

undigested genomic DNA. (B) GFP expression from MLV-U3 enhancer of unintegrated proviruses. 

Protein levels were analyzed by cytofluorimetric analysis o f MLV-HIV-transduced SupTl cells (light 

green) against mock-transduced cells (dark green) 10 hrs post-infection. RNA levels were analyzed 

by reverse transcriptase-PCR analysis. Total RNA was extracted from MLV-HIV infected SupTl 

cells, 10 hours after transduction, and treated with DNasel. Full-length viral RNAs were specifically 

retrotranscribed with a GFP-reverse oligo (black arrow on the vector scheme) and cDNAs were 

amplified by internal GFP forward and reverse primers (red arrows on the vector scheme). Viral RNA 

genome extracted from pelletted virions ( ‘virus’) was used as a positive control for the RT reaction. 

Negative control reactions containing no reverse transcriptase (RT‘) were set up to check for DNA 

contaminants o f RNA samples. RT-PCR products were run on an agarose gel and stained with 

ethidium bromide for visualization. A GFP transcript was only recovered from RT samples.
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Figure 28. Immunoprecipitation 

analysis of TFs binding to PICs 

and integrated proviruses in 

human hematopoietic cells. (A)

Schematic representation o f the 

MLV LTR. Colored bars indicate 

binding sites for YY1 (black), ETS 

family members (green), the CBF 

complex (heterodimer of 

AML1/RUNX1 and CBFB proteins, 

red), NF-1 (yellow), and C-EBP 

proteins (brown) in the U3 enhancer 

(grey box). +1 indicates the TSS.

(B) Western Blot analysis o f the 

expression of transcription factors 

potentially binding MLV U3 

enhancer in SupTl hematopoietic 

cells. Cytoplasmic and nuclear extracts (50 pg/lane) were run on SDS-polyacrilamide gels and 

immunostained with anti-YYl, anti-CBFB, anti-AM Ll, anti-C/EBPa, anti-C/EBP(3, antic/EBP6, and 

anti-Etsl/2 polyclonal antibodies. All tested TFs were expressed in SupTl cells, and, with the 

exception of NF-1 and AML-1, they were mainly detectable in the nuclear fraction. (C) Recruitment 

o f AML1, CBFB, Etsl/2 and YY1 transcription factors on the PICs or the integrated proviruses of the 

MLV-HIV vector in human SupTl T-cell line in vivo. Cells were cross-linked 10 hours (PIC) or 14 

days (integrated provirus) after infection, immunoprecipitated without antibody (no Ab), with a 

control anti-HA antibody (cAb) or with anti-AM Ll/'RUNXl, anti-CBFB, anti-Etsl/2, and anti-YYl 

antibodies, and analyzed by PCR with primers specific for the U3 enhancer (arrows in panel A). 

Amplified fragments were run on agarose gel and stained with ethidium bromide. The first lane 

corresponds to 0.1% of the total input (t.i.) DNA.

Specific antibodies against these TFs were then used to immunoprecipitate 

cross-linked DNA isolated from MLV-HIV-infected SupTl cells 10 hours after 

transduction. Among all TFs tested, only Ets-1/2 and YY1 showed significant 

binding within the MLV U3 enhancer in PICs (F ig u r e  2 8 C ). Interestingly, 

immunoprecipitation of chromatin from stably transduced cells 14 days after
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infection showed that the integrated, transcriptionally active U3 enhancer binds Ets- 

1/2 and YY1, although with different relative intensity, as well as the CBFB 

component of the CBF heterodimer; binding of the AML1/RUNX1 component was 

barely detectable (a poor performance of the antibody used for the 

immunoprecipitation cannot be excluded). These data indicate that specific TFs bind 

retroviral PICs into the nucleus before integration, although not necessarily in the 

same configuration required to transcribe the integrated provirus.

6.2.6 Patterns o f TFBS motifs flankin2 retroviral intesrations are cell-type 

specific.

To understand whether the cell context has a role in retroviral integration 

targeting, we performed a comparative TFBS analysis between sequences flanking 

MLV and HIV insertion sites in CD34+ cells and sequences retrieved from published 

collections of retroviral integration sites in the human epithelial cell line HeLa12,121 

(Table 4). Also in this cell line, MLV vector integrates in TFBS-rich regions, 

differently from HIV vector (83.9 vs. 29.1 average Jaspar matrices/sequence, Figure 

29, MLV and HIV box plots).

A two-way hierarchical cluster analysis with both CD34+- and HeLa-derived 

sequences showed cell-type specific as well as common sets of over-represented 

motifs (Figure 30). The row dendrogram on the right of the heatmap splits the data 

sets in two branches (MLV and HIV), within which CD34+ and HeLa sequences are 

clearly separated. The bootstrapped column dendrogram on the top again identifies 

two main nodes, defining RV and LV distinct patterns (the detailed dendrogram with 

AU values for each node is reported in Appendix 6.2).
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Figure 29. Abundance of TFBSs in genomic sequences flanking retroviral integrations in 

human HeLa cells. Box plot o f the frequency o f TFBSs (motif counts/sequence) found ±1,000 bp 

around intergenic, TSS-proximal, and intragenic insertion sites of an MLV vector, an HIV vector, and 

an HIV vector with an MLV integrase (HIVmlN) in HeLa cells. Statistical significance of differences 

in TFBS counts among and within groups is reported in Appendix 5.

The cluster analysis shows that three Zn-fmger (MA0021, MA0020, 

MA0053), four ETS (MA0081, M0026, MA0080, MA0098) and two forkhead 

(MA0041, MA0042) motifs are strongly associated (AU p -value > 0.95) with MLV 

sequences in both cell types. On the other hand, two bHLH-ZIP motifs (MA0058, 

MA0059) are associated only with HeLa cells and two Zn-flnger GATA motifs 

(MA0075, MA0109) with CD34+ HSCs. Among HIV sequences, three motifs are 

associated with HSCs (MA0095, MA0027, MA0032), and two (MA0103, MA0117) 

with HeLa cells.

107



CD34 HIV

C D34 MLV

-1.5 -0.5 0.0 0.5 1.0 1.5

Figure 30. Comparative hierarchical cluster analysis of TFBS motifs around retroviral 

integrations in human HSCs and HeLa cells. The row dendrogram on the right o f the heatmap 

splits the data set in two braches (MLV and HIV), within which HSC and HeLa sequences are clearly 

separated. The bootstrapped column dendrogram on the top identifies two main nodes, mainly related 

to the HIV and the MLV profile (see Appendix 6.2 for a detailed dendrogram and Appendix 7 for 

the complete list o f motifs).

A Principal Components Analysis confirmed the results obtained by the 

cluster analysis. A scatter plot o f the first three principal components, accounting 

together for 41.4% of the total variability, confirms the vector type as the first source 

of variability (Figure 31). The corresponding loadings plots show that motifs that 

better explain the variability are the same identified in the hierarchical cluster 

analysis.
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Figure 29. Comparative PCA of TFBS motifs enriched around retroviral insertions in human 

HSCs and HeLa cells. Principal Components Analysis of likelihood ratio values from the Clover 

TFBS enrichment analysis. The figure combines the scatter plots (upper -right, colored squares) of the 

first three principal components, accounting for 41.4% of the total variability, and the corresponding 

loadings plots (lower-left, black and white squares). On the scatter plots, the first source of variability 

is the vector type: MLV and HIV sequences distribute in opposite directions along the first 

component axis. The second and third sources o f variability are the cell context within MLV and HIV 

sequences, respectively. The loadings plots shows that motifs that better explain this specific behavior 

are the same identified in the hierarchical cluster analysis (refer to Figure 28 and Appendix 6.2).

6.2.7 M L V  intesrase has a crucial role in directing R V  integration in TFBS-rich 

resions o f  the senome.

A recent study indicated that the MLV integrase has a crucial role in 

determining the RV characteristic preference for TSS-proximal regions121. To 

investigate whether the MLV integrase has also a role in directing integration to
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TFBS-rich regions, we carried out a comparative analysis of the sequences flanking

the insertion sites of an MLV vector12, an HIV vector, and an HIV vector packaged

121with an MLV integrase , in Hela cells. Sequences were retrieved and re-annotated 

according to the criteria indicated in Figure 22, and analyzed for their Jaspar TFBS 

content by the Clover program against appropriate pair-weighted backgrounds 

(Table 5). The box plots in Figure 29 show that MLV sequences are highly enriched 

in TFBSs when compared to HIV sequences (83.9 vs. 29.1, p  < 2.2e-16, Wilcoxon 

rank sum test, complete statistics in Appendix 5). Interestingly, the MLV integrase 

re-directs the integration of an HIV vector (HIVmlN) towards regions significantly 

enriched in TFBSs, independently of the intergenic, intragenic or TSS-proximal 

location of the insertion site {p < 2.2e-16). Analysis of evolutionary conserved 

TFBSs indicated a similar, statistically significant trend (Figure 32).

A two-way hierarchical cluster analysis showed that MLV and HIV 

sequences are defined by substantially different patterns of over-represented motifs. 

Both the row (right) and the bootstrapped (top) dendrograms clearly discriminate 

MLV and HIV sequences. Most importantly, HIVmlN sequences are associated to 

MLV sequences in the bootstrapped dendrogram, and share most of their 

characteristic TFBS motifs with them. These include a 7-motif branch (MA0099, 

MA0003, MA0063, MA0021, MA0026, MA0084, MA0012) that is significantly 

under-represented in HIV sequences in the column dendrogram (Figure 33 and 

Appendix 6.3).
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Figure 32. Evolutionarily conserved TFBSs around retroviral integration sites in human HeLa 

cells. Analysis o f the frequency o f evolutionarily conserved TFBSs in genomic sequences flanking 

integration sites of an MLV vector, an HIV vector and an HIV vector packaged with an MLV 

integrase (HIVmlN) in HeLa cells, using 188 matrices conserved in a human-mouse and/or -ra t 

alignment (HMR Conserved Transcription Factor Binding Sites table at UCSC) as a motif database. 

In the upper panel, data are plotted as percentage of sequences containing at least one conserved 

TFBS. Each group of sequences (light blue bars) is compared to a weighted (red bars) and a random 

(blue bars) computational control sequence set. Asterisks highlight experimental groups that show a 

significant enrichment o f frequency compared to their control sets (one-sided Fisher test, complete 

statistics in Appendix 8.1). In the lower panel, frequency data are broken down in three subgroups 

according to the integration site annotation, i.e., intergenic (grey bars), TSS-proximal (yellow bars) 

and intragenic (green bars). The complete list o f conserved motifs and their distribution over the 

different data sets are reported in Appendix 8.2.
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Figure 33. Two-way hierarchical cluster analysis of TFBS motifs around retroviral integrations 

in human HeLa cells: role of MLV integrase. The row dendrogram on the right o f the heatmap 

clearly distinguishes MLV and HIV sequences. TFBSs are under-represented in HIV sequences 

compared to MLV, while sequences from the HIVmlN vector share a 7-motif branch with MLV 

vector in the column dendrogram (detailed dendrogram in Appendix 6.3; complete list o f over­

represented Jaspar motifs in Appendix 7).

A PCA (Figure 34) confirmed the cluster analysis. The scatter plot o f the 

first two components (accounting for 33.8% of the total variability) reveals three 

main groups, corresponding to the vector type. The first component (23.1% of total 

variability) discriminates between MLV and HIV sequences. The second component 

(10.7% of total variability) differentiates HIV from HIVmlN sequences but does not 

distinguish MLV from HIVmlN group. The corresponding loadings plot shows a 

peculiar set of 8 motifs associated to MLV sequences, mostly belonging to the ETS 

family (MA0056, MA0098, MA0081, MA0080, MA0053, MA0020, MA0038,
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MA0087). A second group of seven motifs, mostly belonging to the Zn-finger C2 H2 

family, is in common between HIVmlN and MLV sequences (MA0084, MA0063, 

MA0021, MA0012, MA0013, MA0049). Most of these motifs were identified also 

by the hierarchical cluster analysis (F ig u r e  3 3 ).
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Figure 32. PCA of TFBS motifs enriched around retroviral insertions in human HeLa cells: 

effect of MLV integrase. Principal Components Analysis o f likelihood ratio values from the Clover 

analysis o f the 49 Jaspar motifs enriched ±1,000 bp around insertion sites o f an MLV vector, an HIV 

vector, and an HIV vector packaged with an MLV integrase (HIVmlN) in HeLa cells. The scatter plot 

o f the first two PCs (together accounting for 33.8% of the total variability) reveals three main 

independent groups, corresponding to each vector type. The first component discriminates MLV from 

HIV sequences; the second PC discriminates HIV from HIVmlN sequences, but not HIVmlN from 

MLV. The corresponding loadings plot shows a set o f MLV-specific motifs (MA0056, MA0098, 

MA0081, MA000, MA0053, MA0020, MA0038, MA0087), and a second group of motifs in common 

between HIVmlN and MLV sequences (MA0084, MA0063, MA0021, MAO 120, MA0013, 

MA0049).
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7. Conclusions

Retroviral vectors, like their parental viruses, are characterized by strong 

biases and preferences in their integration into target cell genome, which differ 

significantly among different retroviral families. Gamma-retroviruses (RV) favor 

integration nearby TSSs and CpG islands, lentiviruses (LV) integrate preferentially 

within active transcription units, while alpha-retroviruses, such as ASLV, are 

relatively indifferent to genes or active regions in their integration site selection 

(section 3.2). Such differential preferences have a significant impact in predicting the 

risk of insertional gene activation by retroviral gene-transfer vectors. The recent 

adverse events following gene therapy for a blood monogenic disorder with MLV- 

transduced hematopoietic stem/progenitor cells (HSCs)5'7 further accentuated the 

importance o f understanding the molecular basis underlying retroviral integration 

targeting, with a particular attention to the relevant cell context. The probability of 

dominant activation of potentially cancer-causing genes (those involved in the 

control of stem-cell self-renewal, growth, and differentiation in the case of HSCs) 

could in fact differ significantly between RV and LV vectors, simply because of a 

different frequency by which they may target those genes. It has recently been 

suggested that LV vectors, due to their different integration preferences and LTR 

enhancer-free design, could be associated with a lower genotoxic risk compared to 

conventional RV vectors199'201. However, the current poor knowledge of the 

molecular mechanisms at the basis of target site selection represents a serious 

obstacle in the rational design of safer and more efficient gene transfer technology. 

Understanding in more detail the interactions between retroviral PICs and the human 

genome, the viral and cellular determinants of target site selection, and the role of
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functional vector components (enhancers, promoters, splicing and polyadenylation 

signals) in influencing integration as well as gene expression after integration, is 

crucial to assess the genotoxic characteristics of different vector families and 

designs.

7.1 Thesis conclusions

I have here reported a detailed analysis of large numbers of RV and LV 

integration sites in human CD34+ HSCs tranduced in the same conditions used in 

clinical applications and analyzed short-term after infection, in the absence of 

selection. The general integration preferences of the two vector families were similar 

to those previously described for other mammalian hematopoietic and non- 

hematopoietic cells, and showed on average a 2-fold higher probability for RV 

vectors to target gene-dense regions, highly active genes, and promoter-proximal 

regions. More interestingly, RV, but not LV integration, occurred at high frequency 

(> 20%) at genomic locations (hot spots) significantly enriched in proto-oncogenes 

and genes involved in the control of cell proliferation and hematopoietic-specific 

functions.

A high frequency of hot spots, defined by statistical criteria previously 

applied to the definition of CISs161, appears to be a hallmark of RV integrations in 

human CD34+ HSCs. More than one-fifth of the RV integrations met the definition 

criteria, a frequency more than 7-fold higher than expected from the analysis of a 

randomly cloned collection of human DNA sequences, and almost 3-fold higher than 

that found in a collection of LV integrations of comparable size. The average 

extension of RV hot spots {i.e., the maximum distance between all insertions within 

each hot spot) was well within the definition criteria, and significantly smaller than 

that of LV hot spots, spanning less than 10 kb in half of the cases and less than 2 kb



in one-fourth of the cases. RV integration appears therefore to have high preference 

for restricted genomic locations, which may exhibit specific chromatin 

conformations or features that favor tethering of the preintegration complexes with 

higher probability. These features do not include gene density, proximity to 

promoters, or gene expression per se, since hot spot integrations show exactly the 

same preferences observed in the entire collection of RV integrations. The situation 

was completely different in the case of LV hot spots, which showed strikingly 

different characteristics with respect to the general LV integration preferences, being 

greatly enriched in gene-dense regions and expressed genes. These data suggest that 

LV integration may happen in a much wider portion of the HSC genome, and that 

hot spots are generated at low frequency by locations that are more favorable than 

others to PIC interaction, apparently those with a high density of expressed genes. 

Such explanation is consistent with the available evidence that LV PICs are tethered 

to the human genome by the widely distributed chromatin component LEDGF, and 

possibly by other chromatin remodeling or DNA-repair complexes (section 3.3).

Previous studies carried out in patients as well as in animal models have 

indicated that integrations in cancer-associated CISs and growth-controlling genes 

are enriched in the progeny of RV-transduced, repopulating HSCs (section 3.4). The 

major conclusion of these studies was that certain viral insertions lead to clonal 

selection of stem/ progenitor cells in vivo. However, the pretransplantation frequency 

of these insertion events was never accurately measured in the relevant cell 

population. Indeed, the results of this thesis indicate that a bias toward integration 

into or around certain categories of genes (i. e., those involved in signal transduction, 

cell cycle, chromatin remodeling, and transcription), is already present in 

nontransplanted, unselected hematopoietic progenitors, and is augmented in
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integration hot spots. In particular, proto-oncogenes and cancer-related CISs are 

enriched at 3- to 5-fold the expected frequency in RV hot spots, indicating a specific 

preference for genomic locations containing these categories of genes. These include 

proto-oncogenes specifically expressed in hematopoietic progenitors and involved in 

hematopoietic cell neoplasia, such as LM 02 and EVI2-NF1, targeted at frequency of 

approximately 1:350, LYL1 and MYB (1:500), and others. Importantly, there was no 

difference in the number of integrations contributing to oncogene-containing hot 

spots between non-expanded (BM- and PB-derived) or moderately expanded (CB- 

derived) cell populations, arguing against the likelihood of clonal outgrowth 

generatedJn culture by insertional activation of growth-promoting genes.

A network-based pathway analysis indicated that a significant number of 

genes targeted by retroviral integration are functionally linked in transcription-, 

signal transduction-, apoptosis-, and tumorigenesis-related networks. Interestingly, 

genes involved in hematopoietic and system development and function were targeted 

at uniquely high frequency by RV integrations, and further enriched in RV hot spots, 

suggesting that the gene expression program of a cycling hematopoietic cell is, at 

least in part, instrumental in directing RV PICs to certain regions of the genome. 

Consistently, almost none of the genes targeted by CD34+ hot spots were found in 

hot spots from HeLa cells, which most likely operate different regulatory networks. 

Kustikova et al reached similar conclusions.15 in compiling their “insertional 

dominance database” (section 3.4) from the clonal progeny of serially transplanted 

HSCs in mice. The authors interpreted the observed over-representation of certain 

gene categories as the result of in vivo selection, rather than of intrinsic properties of 

the RV integration machinery. Indeed, 18% to 34% of the genes present in their 

IDDb (depending on the stringency of the comparative analysis) are also present
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among RV target gene list in this thesis, arguing against an exclusive role for in vivo 

selection in determining most of the frequency biases. A notable exception is the 

EVI1-MDS1 locus, which I found only once in non-transplanted cells, although it 

was retrieved at exceedingly high frequency in vivo from mice, non-human primates 

and humans (section 3.4). Insertional activation of such locus should therefore be 

considered a factor favoring clonal amplification and/or selection in vivo 

independently of the frequency by which it is targeted by RV integration before 

transplantation. It is worth noticing, however, that my data come from a population 

of hematopoietic progenitors in which the proportion of repopulating stem cells is 

admittedly low, leaving the possibility that stem cell-specific hot spots went 

undetected. Unfortunately, no integration analysis is currently possible in 

pretransplant, long-term repopulating stem cells, and it is therefore difficult to come 

to definitive conclusions as to what proportion of the biases detected in the stem cell 

progeny in vivo is due to vector preferences, and what proportion is due to in vivo 

selection.

Pursuing the idea that cell-specific transcriptional profiles are instrumental in 

directing RV PICs to favorable sites in the human genome, I proceeded further and 

investigated a possible interplay between retroviral integration and cell transcription. 

In strict collaboration with a bioinformatics group at IFOM-IEO campus, in Milan, I 

analyzed the abundance and arrangement of putative transcription factor binding 

sites (TFBSs) around RV and LV insertion sites. We were able to identify a 

previously disregarded feature of the regions targeted by RV PICs, i.e., an elevated 

content of TFBSs. By analyzing the sequences flanking the insertion sites o f RV and 

LV vectors in human HSCs, and of mutants carrying deletions or replacements of the 

LTR U3 enhancers, we showed that integration in TFBS-rich regions of the genome
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is peculiar to RV vectors with an entire RV LTR (either Mo-MLV- or SFFV- 

derived). Deletion o f the U3 element strongly reduced the TFBS over-representation 

around the integration sites and, in turn, the relative frequency of TSS-proximal 

integrations. This indicated that U3 enhancer is an important determinant of RV 

target site selection. Statistical analyses pointed out that TFBS enrichment is only 

slightly dependent on the relative position or distance of the integration sites with 

respect to transcription units, with a modest increase in TFBS content around MLV 

and SFFV-MLV TSS-proximal integrations. This would suggest that selection of 

TFBS-rich regions may in fact underlie all known RV integration preferences, in 

particular those for TSSs, CpG islands and DNasel hypersensitive sites (section 3.2), 

where TFBS-rich regulatory regions are highly represented.

On the other hand, TFBSs are significantly under-represented nearby LV 

integrations, independently of the presence of HIV U3 element in the LTR. 

Replacement of the HIV with an MLV U3 element in an LV vector removed this 

negative bias, but was not sufficient alone to introduce a positive one like that of RV 

vectors. No effect at all was seen, instead, when a single-copy MLV LTR was placed 

internally of a AU3-LV vector. Interestingly, performing the same analysis with a 

previously published collection of integration sites of MLV, HIV, and an HIV vector 

packaged with an MLV integrase (HIVmlN) in HeLa cells121, we found that the 

MLV integrase re-directs the integration of an LV vector towards regions 

significantly enriched in TFBSs. Such observation, together with the effect of MLV 

U3 deletion, identifies MLV integrase and the LTR U3 region as the major viral 

determinants of the RV-specific selection of TFBS-rich target sites into the genome. 

Chromatin immunoprecipitation studies performed in hematopoietic cells transduced 

with an LV vector containing an MLV U3 enhancer showed that TFs belonging to
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the ETS family and YY1 are bound to PICs into the nucleus prior to integration. 

Indeed, unintegrated viral LTRs are transcriptionally active already 10 hours after 

infection, as demonstrated by cytofluorimetric analysis and RT-PCR on full-length 

viral mRNAs. Bound TFs are likely the cellular mediators of the LTR-associated 

component o f the RV integration preferences. The resulting hypothesis is that 

cellular TFs binding MLV U3 enhancer cooperate with the integrase in directing 

PICs towards regulatory regions actively engaged by the transcriptional machinery! 

Such cooperation may be interpreted as an evolution of the mechanisms by which 

retrotransposons target their integration to specific genomic regions, tethered by host 

cell proteins (section 3.3.1). The specific domain of the retrotransposase direct 

tethering is lacking in the RV integrases, and may have been functionally replaced 

by the association with LTR-bound TFs. As a result, RV PICs are able to target a 

large collection of Pol Il-specific regulatory elements throughout the genome, rather 

than few Pol Ill-specific elements. A mechanism coupling target site selection to 

gene regulation may have evolved to maximize the probability for gamma- 

retroviruses to be transcribed in the target cell genome, and possibly to induce 

expansion of infected cells by insertional deregulation of cell-specific growth 

regulators. HIV has evidently evolved a different strategy to target open chromatin 

regions while minimizing interference with the cell transcriptional machinery. 

Consistently, recent data emerging from large-scale studies associate HIV insertion 

sites with histone modifications specifically associated to transcribed chromatin 

rather than to enhancers, promoters and other regulatory regions122.

Additional hints of a connection between cell-specific transcription programs 

and integration targeting came from the comparison between the TFBS motifs 

associated to RV insertions in HSCs and in the non-hematopoietic HeLa cell line.
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We showed the existence of both cell-type specific, as well as common TFBS 

clusters between hematopoietic and epithelial cells. This suggests an indirect 

tethering model in which ubiquitous TFs bound within RV PICs interact with 

general components of the enhancer-binding complexes, such as co-regulators, 

chromatin remodeling or mediator complexes, rather than with specific TFs or TF 

families. Tethering o f PICs to transcription factories, where promoters and 

regulatory regions are relocated by cell-specific mechanisms, may in turn be the 

cause of the RV-specific, high frequency of integration hot spots and preferred 

targeting of genes associated to cell-specific regulatory networks described above. 

Indeed, TFBS specifically associated with RV integration in HSCs include binding 

sites for hematopoietic regulators of cell proliferation, differentiation or quiescence, 

like LM 02, AML1/RUNX1, and F0X 03.

The different propensity of RV and LV vectors to target regulatory regions, 

and the frequency and characteristics of their integration hot spots herein described 

have an obvious impact on the design of safer gene transfer vectors for clinical 

applications. Although self-inactivating (AU3) design is predicted, also by the TFBS 

analysis, to improve the safety profile of MLV-based vectors, the MLV integrase 

remains an undesirable protagonist of RV vector tendency to target potentially 

dangerous regions o f the genome. This thesis also shows the importance of the cell 

context in determining the frequency of integration into certain genomic regions, and 

predicts that targeting of dominantly acting proto-oncogenes may have a different 

likelihood in different cells. As an example, the LM 02 locus is targeted at very high 

frequency in HSCs, but not in T-cells, where it is not expressed, as was observed in 

our laboratory in the context of other integration studies. On the contrary, the use of 

HIV-derived vectors would minimize insertional gene activation by generally
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reducing integration in the proximity of regulatory enhancers and promoters. 

Analysis of TFBSs close to the integration sites provides therefore an additional 

readout to study the potential genotoxicity of vectors containing different promoters, 

enhancers and regulatory elements in a specific cell context.
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7.2 Summary o f contributions

This thesis gives significant contributions both to the fields of gene therapy 

and basic virology, identifying previously unrecognized features of the integration 

properties of gamma-retroviral and lentiviral vectors in the clinically relevant 

context of human hematopoietic stem/progenitor cells, and defining new parameters 

to predict the genotoxic risk associated to different vector designs.

a) This project was the first to retrieve and thoroughly analyze large numbers 

of RV and LV vector integrations from pretransplant, human CD34+ HSCs. The 

short-term culture period guarantees that all the observed characteristics are not due 

to a clonal selection, but derive from retroviral specific preferences.

b) The already described general RV and LV integration preferences for 

active genes, gene-dense regions and, for the sole MLV, promoter proximal regions 

were here confirmed also in human HSCs.

c) A comparative analysis between RV and LV integration pattern revealed a 

2-fold higher probability for RV vectors to target gene-dense regions, highly active 

genes, and promoter-proximal regions. Both RV and LV vectors tend to integrate 

near genes involved in the regulation of cell growth and proliferation, but only RV 

vectors have a specific bias for genes belonging to hematopoietic-specific pathways 

and/or involved in oncogenic transformation of hematopoietic tissues.

d) A large proportion (20%) of RV, but not LV, insertion sites was highly 

clustered to form integration hot spots. The integrations forming these hot spots 

recapitulate the general preferences of RV vectors in terms of gene density, gene 

expression and gene organization of targeted genomic regions. Instead, the list of 

genes surrounding RV hot spots resulted particularly enriched in cancer-associated

123



CISs, proto-oncogenes and genes involved in hematopoietic-specific functions, with 

two major implications:

d l) the bias towards certain gene categories observed in the clonal 

progeny of transduced HSCs in vivo is already detectable in non-transplanted 

hematopoietic progenitors, and is therefore imputable, at least in part, to 

intrinsic properties of the RV integration machinery, rather than exclusively 

to in vivo selection;

d2) the host cell transcriptional program might be instrumental in 

directing PICs to favorable sites in the genome; a comparison between 

CD34+ RV hot spots and RV hot spots retrieved from a completely different 

cell type (i.e., epithelial HeLa cells) confirmed this idea, since very few 

genes were found in common between the two target gene lists.

e) LV integrations originated just few hot spots, but these mapped to genomic 

loci extremely dense of active genes, independently of their function. In other words, 

LV hot spots simply mark those regions where the features generally attracting LV 

vectors (active genes, gene dense regions) are particularly enriched.

f) In addition to RV propensity for hot spots, this thesis reveals another 

previously unrecognized feature or RV integration, i. e. , an extremely high content of 

transcription factor binding sites (TFBSs) in genomic sequences adjacent to the 

insertions. Conversely, genomic regions flanking LV insertion sites are depleted of 

TFBSs, again highlighting different targeting strategies for the two viral families.

g) Using LTR-modified RV and LV vectors, I here demonstrate that RV 

enrichment in TFBS motifs depends on the presence of an RV entire U3 region. U3 

deletion from both viral LTRs results in a strong reduction of the number of TFBSs, 

with some of them virtually “disappearing” from the integration surroundings.
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Consistently, replacement of the HIV U3 enhancer with the MLV U3 element skews 

LV integrations towards TFBS-richer regions.

h) Chromatin immunoprecipitation experiments performed on unintegrated 

viral LTRs suggest that cellular TFs actually bind viral PICs prior to integration in a 

trascriptionally active conformation, which is not necessarily the same required for 

proviral expression.

i) Re-analyzing previously published integrations from an HIV vector 

packaged with an MLV integrase, I demonstrate that the RV integrase plays a 

substantial role, in cooperation with MLV U3 enhancer, in directing PICs to TFBS- 

rich regions.

j) A comparative analysis of RV and HIV TFBS patterns in CD34+ and HeLa 

cells identified both cell-type specific and non-specific motifs, suggesting a targeting 

model in which viral PICs are tethered to chromatin by general components of 

enhancer-binding complexes, rather than specific TFs or TF families.

k) On the basis o f the results summarized above, I proposed a model for RV 

integration targeting in which TFs bound within RV U3 region may cooperate with 

viral integrase to contact general components of the host cell transcriptional 

machinery, which, in turn, would tether PICs to active transcription factories, where 

integration finally occurs.

1) The results of this thesis have also some implications in the choice of 

transfer vectors for gene therapy applications. The weak propensity of LV vectors to 

target regulatory regions predicts a better safety profile for them with respect to the 

recently promoted AU3 RV vectors retaining MLV integrase, which was here 

demonstrated to have a dominant role in tethering PICs to regulatory regions. 

Moreover, the analyses of integration hot spots and of TFBSs described within this
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thesis may represent alternative readouts to study the potential genotoxicity of 

vectors containing different promoters, enhancers and regulatory elements in a 

specific cell context.

m) The content of the first part of this thesis (section 5.1) has been published 

in 2007 in the journal Blood202, while the results of the second part (section 5.2) have 

been recently submitted to, and are at present under revision by, PLoS ONE journal.
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7.3 Future research

This thesis has provided some new insights into the mechanism of target site 

selection by retroviral vectors, and in particular by gamma-retroviral vectors. At the 

same time it has raised several questions that are worth answering to get a deeper 

understanding on the molecular basis of integration targeting in the human genome.

A first issue regards integration hot spots. During the study, I have noticed 

that the frequency of RV hot spots grew progressively, following the increase of the 

sample size in an almost linear fashion. The situation was completely different in the 

case of LV hot spots, the frequency of which increased only slightly with the 

increase of sample size and appeared to plateau. This may suggest that, by analyzing 

a much higher number of sequences, all RV integrations could be confined to a 

defined subset of genomic regions, all having the appropriate features recognized by 

the PICs, while LV proviruses would be still spread all along active transcription 

units, with no particular clustering. Recently developed sequencing strategies, such 

as large-scale pyrosequencing, allowed achieving an approximately 100-fold 

increase in throughput over the classical Sanger technology . Properly modified, 

such strategies have been successfully applied to sequence thousands of genomic

1 9 9  9 0 4integration sites at once ’ . Increasing my RV and LV integration numbers of 1 to

2 logs would be extremely useful to establish their trend of hot spot formation, and 

to collect sufficient events and add statistical robustness to the analyses described 

herein.

A second, extremely relevant issue is the experimental validation of the TF 

motifs that resulted enriched around RV and LV integrations by the TFBS analysis. 

This is anything but a trivial aspect, and requires a two-step effort. First of all, over­

represented TFBSs must be associated to their corresponding transcription factors.
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The Jaspar collection of experimentally validated matrices that we used to find 

enriched motifs includes in fact transcription factors from several multicellular 

eukaryotes, for which human orthologues must be identified. Even then, one has to 

keep in mind that several TFs can recognize the same binding site and, vice versa, 

two or more related motifs can be bound by a single TF. A good starting point could 

be the STAMP analysis we performed to merge Jaspar and UCSC Conserved results, 

which possibly returned the most promising factors. Once a list of putative TFs has 

been compiled, the second step is the demonstration that those factors actually bind 

genomic sequences flanking the integrations around which their binding sites were 

scored over-represented. A potent tool is represented by a large-scale chromatin 

immunoprecipitation procedure called ChIP on chip technology. In this technique, a 

classical ChIP is first performed, and the immunoprecipitated DNA is then amplified 

by LM-PCR, labeled with a fluorescent tag and hybridized to custom-designed 

microarrays. Specific “integrome” chips can be synthesized, spotting thousands of 

oligos to cover the integration surroundings, and used to reveal TF binding in 

proximity of the insertion sites. Single TFs can be validated one after the other in 

this way.

“Integrome” chips open another research chapter, i.e., the study of the

general chromatin status around retroviral insertion sites. At present, the issue has

been addressed from an entirely bioinformatics point of view by the Bushman 

122group , and has revealed some interesting connections between LV integration and 

histone post-translational modifications. The study was a clear indication that this is 

a worthwhile question to tackle. Dozens of histone modifications have been now 

described, often in conjunction with certain transcriptional control processes205,206; 

the identification of those histone acetylations or methylations specifically associated
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to insertion sites would logically link them to the related regulation processes and to 

cellular components participating in them.
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Acronyms and abbreviations

ADA: adenosine deaminase 

ASLV: avian sarcoma leucosis virus 

BM: bone marrow 

CA: capsid 

CB: cord blood

CGD: chronic granulomatous disease 

ChIP: chromatin immunoprecipitation 

CIS: common insertion site

DAVID: Database for Annotation, Visualization and Integrated Discovery

EASE: Expression Analysis Systematic Explorer

GO: Gene Ontology

HIV: human immunodeficiency virus

HSCs: hematopoietic stem/progenitor cells

IDDb: insertion dominance database

IN: integrase

IP A: Ingenuity Pathways Analysis

IPKB: Ingenuity Pathways Knowledge Base

LAM-PCR: linear amplification-mediated PCR

LM-PCR: linker-mediated PCR

LTR: long terminal repeat

LV: lentivirus

MA: matrix

MOI: multiplicity of infection
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Mo-MLV: Moloney murine leukemia virus

NRE: negative response element

PB: peripheral blood

PC: principal component

PC A: Principal Components Analysis

PCR: polymerase chain reaction

PIC: preintegration complex

PR: protease

RT: reverse transcriptase

RTC: reverse transcription complex

RV: gamma-retrovirus

SCID: severe combined immunodeficiency

SFFV: spleen focus forming virus

SIV: simian immunodeficiency virus

TF: transcription factor

TFBS: transcription factor binding site

TSS: transcription start site

UCR: upstream conserved region

VSV-G: vesicular stomatitis virus glycoprotein
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—) CU
X  00

£  ^  CQ v 1
m  X.
X  000

N

a  0
00 00

V  X  X  ~
CU in  
DQ *0' m 
r̂ r o

c/5 CO
-J O00 <*

1  X

O  cu .. x  <£>Cu
OQ

J S gz  u  .
fN  - J  fN
X  0-------3
U  ' <  
H  <  00o u <
Z  S  X

O °7 <
•«5 — OO 
n  X  <
§  H  x
Z  O  ~
— <  tu 
Z  Z  cu 
O O
J  X  Cu
Z  X  <

-  f—  X
tu -F- eu o

<  00
CU fN  P q
z  -J  ^. X X
£ Z u  
z  u  ^

- , Q
X  £  X
-J x  3
“  Q g

2 _ - £  
PQ QQ U- 
Z  cu cu

x  a
H H 
Cu Z
CU 00 
C/3 

.  (N
Q  CQ 
cn h-
<  Z  
S  ^  
cu x
00 ov 

s  cu< <

°  X
X zcu z
U  ro F- ^  ~
^  >  N. 
X  QQ ' t

F- <  tu
f  >  z
X n s- 
QQ a . £
F- %  r s

O  tu
X  nr ?1 
X  CQ „
-  [N m X  F- r -  
QQ O  ^
H. D . z
— QQ N
U  ^  -
U  cu 2  
<  CQ z  
F- D  >*

Ov
N

oz 00 DC rs)
F- CU 
fN  ^
cu >• 
0_ Pu
F- N

<  ^  — 00

5  s
In 

-T U  
X  —! 
QQ &  

in
2  <  X  Tf

.  'ft
N- U
O —!
Q_ CO
00 .

<  S

X  to

fN
u
X  
X

O  x  N  co  n
vp z  -

u

x 2
cn z  
F- P  
cu

X
u
u
N

cu 
QQ 
X  
F-
00
in _
Cu ^  ~  
CQ tu  Z  
X  so O  
F- X  <
00 2  N  

.  CU (N 3  —
P  F- <

OQ vo in  
U

X  cu 
F- ^
00

(N .  XX QQ O
s s sto  F- )>

oci 
_ r  X  
Z  Xu  z  u  a
fN fN 
C  00

Z
u  o
G oC 

■ 00 
>  fN 
X  fN

X  ^  2;
Z  $  X  <  <  tu

. U  .rn . i n

i s
s  £
<  x
U  tu

U

CQ

<  „ 
X  t u

vd L
X 2  
X
F- fN 
X  X

* 2
QQ ^
X  X  F- 0

X  cn 
fN U
-1 O
fN 
CU 
<
F-

.  o  
G <  
O o
z  G

QQ 00

S  X  
0- ^

X  h- 
X <

< s s
vo 
vo N3 
00 £N

cn

U

cn

r- _
fN O
— fN PUX U X 
^  rZ tN 
rom -
0® °  f~5«  00 U

X -
< S 5
M o <o 2  z
§  U. °
X  ^H  N  X
<  u <
00 °  Q
00
^  cj in  ^
—  °® n
X  ^  X
< !  o  C J

.  fN .  
0  X  fN 

C J  x

fN ' X << fN X  X
X  “S s
O  OJ 
fN ^  
2  Q
< ^  
< f N
X X

.  F- 
<  N  
X  X

fN
U  2  x  ■*£x  U 

^  po
cu _r 
^  Q

00

. C

f^ ■  CO
5  ^  Q
o  Ci F- X % U
<  fN 0 '

fN cj E;fN . ^  
f> n  Fm v o  cu 
fN In J  
o  o  .  
X  *n —

< 8 5
r- X  q  
5  o  G)

Z  N- X
X  i t  o  
Q 8

^ “ 8  00 —
G) £  Q U x  -  1B F Q
<  <  U

x  2C
X  X
vd CQ 
X  -U

F- v̂ -
~  fN

<  ' t
X ^  x  O
X  j

o '  
00 m  
fNn  00 
x  ?®
!± G>

2 3
X  .  
F- fN 
T  'ft ™ Vft

s g
S o
fN X<  . 
to r-
=  §
■v* 'ft

cn 
U  X 
vo <  
X 2  
0  X
fN X
t  X
Z  N

.  'O
<  O'

F-

fN 
X  
<  x

.  X  
00 o
fNOO t-~. 
X  Q/ 
X  -  

^  C“^  Xx  x
m

OO 02
a. 5

O x
X

CTi
to

O to
JS - p  «
2  ^  c£  op 5
c g QO -1—•

U  £  ^

d  00 ^  
£  w 0 s
«* y  50) C
i  2  o  
a . U VICO v_^o



SL
C9

A3
R1

, 
SM

CP
, 

SN
X8

, 
SP

RY
2, 

SY
TL

3, 
TA

F5
L,

 T
HR

B,
 T

PD
52

, T
RA

IP
, T

SP
AN

13
, 

US
P1

6, 
W

DF
Y1

, Z
NF

15
5, 

ZN
F1

6, 
ZN

F2
, Z

NF
23

0,
 

ZN
F2

94
, Z

NF
41

0, 
ZN

F5
09

, Z
NF

51
4, 

ZS
W

IM
5

2
u  £

- o  

E- v-

m 
CN-n-
<  
<
5
00

< ® §  
2 5  JO S  
-  H 3
2  - K
O m °  °  2 ; m ©

<  
< <ovo — ZC 

*- ov
—  ^  5u  O <

- x  d(N u  tu  , „ 
z  <  -
CQ fN  r -
- 5  u  

2 : u  q
J  Vft ^
02 a  d  
* P- >£- DCZ UJ 

u j nr

^  > °°
® &■
U  2o  “
2  d_r uj
C n C/3 
NO <  
CN 2  
ON
U  oC

3 d- oo
£  2  Cn DC

u  2  o a
- J  DC

coU
QDC
DC
<

<
u_

H
d
E—
<
CN
CL
<tuH
co
fNQ
U
OQH
!Z T̂‘l2  10t  u->“ Z
^  N

oo'

— . r co

2  -  
- j  zCO oj U-

00  ̂
—* CL

U-

2 n d

0 0
U ^

j 3 ? ° .  d  o  no 
- O SooUa; fN , rr 

O  M  U*7" *
c n  r  ^

5 z  < < u z
no QQ 
^  Z Z 
S  I  Q
Cn t j  J  
°  -CD ^  <N X
^  9
s 5 g
S f j °
ON

NSfCQ Z
2  x
< *3 z

a  «o -  C\]
0 0 £
© Z 
©  N
2  -4 oo r- 

- DC < Q
U  £  Z  "
oo (J

r<  - ^
*1 UrnI z

E-
O

Q o  
H S
cn cui .

CO

“ fe
f s
3*C fNJ 

- -J  
OO CL.

fN
CN
o
ZD
oo'H
OD

U o
.. o  iS

co pi 
< u NO

no'  ®? CC r- 
Jr fN  o rn

fN  3U u. a l

fN  UJ 
Z 
2  DC UJ 
0 0  CQ

X
E-

C l  r -
Z S2 
u j  >

< s
NO <  
U  CLUJ oo oo E-

on

£
•—-4—<cn3
o
Q

0 ) ^  
C -X 
a  o
S h on O
<U VIC/3 w'



Ap
pe

nd
ix

 
2.

3
c
<D
503
73
<L>

X )
<u

X

Xs-
o
£  

4—»
<L>

2
z
0/
us
V
3
cr
u
6/3

’o
La+*c
oCJ

■D
e
«

i* '
&

#o
X
«
l.60
o

>
J
■Os

OS
>d

"VSJ
V60
La
3

cat60

5/3

13s
«

La
O

3
3
0/60
&

<L>
c
V
50

o
o
<Lt

X

TJ
<Lt
c

X
o
73
cd
£

XLa
o
g
aj
c

j j
*50
C

<
d
?
oX
C/3

5>
c3
C/3
3

"•*->
cd
S-H
50
5)

>
J
5-i
O

>
K

X
T3
-*->
<u
50
Hcd+->
C/303
c
<L>
50

X
o

15>

o
x
<D
CD

T3
cd

X5
3
cd

73
s
o

X
Cat
e

<5
c .
o

H

%
4/
c
0/60
C/3
3
Cat
O

Ua

0/
S*
O
Cat

m

5/3
4/
3
at

CJ

XLa
O

£
0/

2

v
Q-

O
Q.
O
Q.<

CN
'd-

OO
x
C/3
<
U
UJ
dc
CQ

x
(N
-J
u
CQ
CN
- J
u
CQ

o
u
X
DC
x

dC 
a. Qc H <
A *c/3 o 

<  : 
tu - -

oo 
<  
CQ 
D  
£— 

d— ;

CQ 
>■ 

Q  S

X

-CL
H
r4
X
C/3
DC
X

Q  C/3 ~
< <
U 2

“ • QQ
ST DCl

a  qq
C/3 QQ
< D 
DC H

V
Cl

O o
v 7
X  a .

= co  at•—■ S_5C CJ C L  L Lat 
— _
" 2  o x
Cd C/3 l—l— c —
at 2  atU E- u

CN
■d-

X  '3- o
cd CL

CN ^

g  qq
E—

^  n  
uj h j

DC QQ
rd qq

c/3 =

H  2
c d  C/3
e -  a
CN
<  CN
£  CQ 
CQ X
u  a

'  (N

X g
°  X

E— c/3 
C/3
—  CN

s . 8  <yL tu X <
,  C/3 oo

tu cqDC QC 
“1  tn
CN '

< 1  a  J

a
0
1
DC X
x £
tu  >X .

o  C2
X  >  
<  <  X >

V
Cl

'c ©
. 2  7
cd Cl

£ 7U u £  . 2

X)
X

c/3 E—

QQ

CN■d"

^  Xid -<
°  d

4 2
Cd C/3

55 1  -
QQ cn ^  

- CQ 2  
"S —

—  ^  Q_U Ix  : x
g g i
^ CQ O
<  CN- X X
-  a  %X  QQ Z
w X  x  

X  x  
X  <

< « 5
cd 'x  Q 
X  QQa  ac
x  '
dc a< < _ 
S o  2  
§Z5'
x  <  
c* z  w< O (-

a
x
DC

rd

X
E-

i
x
E-
«n
cn
X
x
cn

K
O
X
X
<
O
X
X

QQ X

' E
CNm
a

X  QQ <
^  <  g  < a  x

OQ
u
g  tn 
Dl rd 
X  rd 

- X< z
c n  N  

X z
X  g  
x  X A

TP
2B

4,
 C

C
L1

8,
 C

D
C

27
, 

C
TB

P1
, 

C
X

X
C

5,
 E

2F
5,

 E
N

G
, 

EV
I1

, 
F0

L
R

2,
 

42 
35 

Tr
an

sc
rip

tio
n 

(p
<l

 0
1 ’

) 
FO

X
P1

, 
FR

A
T1

, 
H

H
EX

, 
JU

N
D

, 
K

L
F6

, K
LF

13
, 

M
A

P3
K

14
, 

N
R

1H
3,

 P
C

A
F,

 
Ce

ll 
Pr

ol
ife

ra
tio

n 
(p

<1
0 

4)
PP

P3
C

A
, 

R
A

R
G

, 
R

FX
1,

 R
FX

2,
 R

PL
30

, 
R

R
EB

1,
 R

U
N

X
1, 

R
X

R
B

, 
SM

A
D

3,
 

Tu
m

or
ig

en
es

is
 

(p
<l

O
'3)

SN
D

1,
 S

PP
1,

 S
U

R
B

7,
 T

A
D

A
2L

, 
TC

F7
L2

, 
TG

FB
R

1,
 T

N
IP

1, 
TO

B
1



A
TF

4,
 C

B
X

5,
 C

D
34

, 
C

D
38

, 
C

SK
, 

C
X

C
L6

, 
CY

P1
 B

l, 
ET

S2
, 

FD
PS

, 
G

LG
1,

 
42 

35 
Tr

an
sc

rip
tio

n 
(p

<l
O

'4)
H

K
2,

 I
ER

3,
 I

L1
R

L1
, 

JM
JD

1C
, 

JU
N

B
, 

M
BP

, 
N

R
5A

2,
 N

R
G

1,
 P

IK
3C

B
, 

Ce
ll 

pr
ol

ife
ra

tio
n 

(p
<l

O
'3)

 
PK

LR
, 

PR
K

A
C

B
, 

PR
K

A
C

G
, 

PS
M

C
5,

 P
SM

C
3I

P,
 P

SM
D

1,
 P

TP
N

18
, 

PT
PR

C
, 

Ce
ll 

di
ff

er
en

tia
tio

n 
(p

<1
0'

3)

v
/ - v  ° -

2  £  
V  £  
D .  . C

■S CL
£
? .£ 
&D "55 — c

13 .£P 
U  oo

° ?  V
©  CL ^

° - . 2  —
C  e3 y ,

. 2  te w 
a .- -  -22
o 2 O 
co C l
5 = o2 <u o. 
H U <

V

g? v
” 3  CLa ' ' c c so .o
’5  a. 
E X
3  u. 3  CO
O  C

U H

V
CL

<D
U

i r ,
co

SO■*T soof ©■O- 'O

<NJ
SOcoCl3
N

CL

DC
f—
'■tf-
CN

a£
i—
rf
C*
- J
t—
CQ
QC
I
H
co
Q
>■

<o
U-JGO
<
QC
X
OS

X  Q  
0- .  CQ
X  ~~ °- 
o  Q F-

- O X
SO < *  <  
CL 3  OL 
o o  2  C l

g t f f c
* 1 °
oo
U

Q
<

X CQ

Q  cl

QQ 3  <->* 
u_ X ^  
QQ - ^  
r >  « n  Q  
U  U  CL co Cl

- H 
U O

cC
X
c*
Z
a co 

X  
Cl  
<

—  CL

CN 
^  £  CQ O

CN
C/3o
C/3

co"
U
Cl

<
Zoo

3a
CO
X
C/3

co"
OQ
CNXoo

<
X
SOOOa.
3

CQ<

U < 
2: ^  
O X  

X
CL 
< 
2a

2  S
ooaDC
S  a  
>
CL

—
0C
E—
■'3'
Uo
X
H

ul  
<
X
H=>
£  a
Q -
u  e  

u pin U-
(N
U
Q
U
m
N<CQ
<of
9
DC
<
QQ X
so CN
—1 X
f- Z  
U  &< u
CQ ^
U  UJ
QQ X< u

u „ u
< *cn <
x  2
O  C/3X - 
c _

,  <  
U  U  
u l  qC

P  <  Q ^

X ^
<-> zE— £
o  ^
Z  o f  
cn" X  
-J Z  
- J  3  
^  X

C/3 '—  X1"
F- ^  m 
u j  u j  “

„ r -  CQ
-  z

s  <u U3  co 
=  flu 
Z  CL 

^ CL

J  -  ^5 : U l <

< 5 z

U - Z  c o— _  a.
X  C l  c/3

H ^
CN O

3  <p  O
00 ua  z

F™ f-
■*L S/ F“ 
U l 56 5
«  co" ^  
U  Qi —

r  C l 3  DC f— ou -  --J (N< oC o  
b u s

Z
:z
CL

C/3
<

3  -  <
«  n  2
< a  
2  ex 2
u. <
“  ^  ^  U O ^  X - cu
^ S  <  
< 8 2

X  co" x w ^
CQ - ro
£ 5  Q So <<  UJ

DC <  
CN 0^ 
QL X

a . u
^3 UJ 
^  f-

£  ^  >- 3
3  3
Z  C/3

XXz
<  U  ,u x cq" CQ
CO O ' Z
U  <  u  QS X z
5  $  x  
" xI z

j i—1 z  o  .
Ul  —

- Z
.. ^f P  — a  J  

CQ CL Z  
CN UJ » CL „ m 
<  QQ X

CL
<ax
DC<

s  Q<a<

3 2  
2  
<

0  <
—  Q  QQ 
< X O

< H >
s 5 <™ Q b

U fc

F™
00

X
H
Z
00

cn"<co
U
3
C/3

m
aC
<
cd
CQ
CN
X-
CL

-J C
on

tr
ol

 
1 

B
CL

2,
 B

LN
K

, 
C

C
N

A
2,

 C
D

C
2,

 C
R

SP
2,

 D
A

B
1,

 D
A

B
2,

 D
D

X
17

, 
EP

S1
5,

 
56 

35 
Ca

nc
er

 (
p<

lO
'8)

ER
B

B
4,

 E
SR

1,
 G

A
B

1, 
G

N
R

H
R

, 
G

SK
.3

B,
 L

C
O

R
, 

M
D

M
2,

 M
ST

1R
, 

M
TA

3,
 

A
po

pt
os

is
 

(p
<1

0'
6)

 
N

F2
, 

N
R

G
1,

 N
R

G
3,

 P
1K

3C
A

, 
R

A
N

B
P2

, 
R

A
PG

EF
1,

 R
BL

2,
 R

EL
N

, 
Tr

an
sc

rip
tio

n 
(p

<l
 O

'5)
 

SE
R

PI
N

E2
, 

SL
C

9A
3R

1,
 S

M
A

D
2,

 S
N

A
P9

1,
 S

R
PK

1,
 S

TO
N

2,
 S

U
R

B
7,



Le
ge

nd
 

of 
In

ge
nu

ity
 

ne
tw

or
k 

an
al

ys
is

 
sy

m
bo

ls
. 

Th
e 

leg
en

d 
pr

ov
id

es
 

a 
ke

y 
of 

the
 

ma
in 

fe
at

ur
es

 
of 

In
ge

nu
ity

 
ne

tw
or

k 
ex

pl
or

er
, 

in
cl

ud
in

g 
no

de



Appendix 3.

C o m p le te  s ta t is t ic s  o f  F ig u r e  2 0 . Comparison of the frequency of consecutive 

insertion sites having a certain distance one from each other, computed for 8 distance 

bins (1-10 bp; 10-100 bp; 100-1,000 bp; 1,000-10,000 bp; 10,000-100,000 bp; 

100,000-1,000,000 bp; 10,000,000-100,000,000 bp); all possible combinations of 

sample diversities within each bin were assessed by a 2-sample test for equality of 

proportions with continuity correction.

The sign ‘- ' i s  used when the statistical test was not reliable, i.e., numbers were too 

low for the c7n'-squared approximation to be considered valid.

C o n tr o ls R V L V H eL a
C o n tr o ls  
v .s . R V

C o n tr o ls  
v .s . L V

R V  
v .s . L V

b in  1 0 0 0 0 - - -

b in  2 3 2 0 4 - - -

b in  3 1 21 5 12 0.0005 - 0.0129
b in  4 2 50 15 24 1.07e-08 5.35e-03 4.15e-04
bin  5 28 93 54 55 4.29e-06 1.18e-02 0.03783
b in  6 168 287 229 220 0.001 0.007 0.6767
b in  7 521 492 473 479 1.85e-14 2.97e-05 7.57e-04
b in  8 51 58 53 52 0.5466 0.954 0.655

M o d u lo  fu n c t io n . The distance between two consecutive insertion sites is a mono­

dimensional value, to be plotted along a single axis. However, when hundreds of 

values have to be plotted together, it becomes hard to visualize them graphically. 

Hence I decided to apply a function to my data so that they would be arbitrarily 

scattered along a second, y, axis. I used a slightly modified modulo operation, which 

finds the remainder of division of one number by another. Given two numbers, a (the 

dividend) and n (the divisor), a modulo n (abbreviated as a mod n) is the remainder, 

on division o f a by n. For instance, the expression "7 mod 3" would evaluate to 1, 

while "9 mod 3" would evaluate to 0. Let x  be the distance between two consecutive

1 6 0



insertion sites, in base pairs. To associate a y  value to each x value, I applied the 

following function: 

y  (x) = (x mod 1 0 0 ) / 1 0 0

In this way x values were scattered along the y  axis on 99 virtual rows, assuming ; 

values ranging from 0 . 0 0  to 1 .0 0 , practically corresponding to the last 2  digits of the 

bp distance. For example: 

y  (13,367) = (13,367 mod 100) / 100 = 0.67

161
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