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ABSTRACT

Induction therapy with Campath-IH, a humanized anti-CD52 monoclonal antibody 

depleting T and B lymphocytes, has been used in organ transplantation with the final 

goal of resetting the immune system in order to promote a tolerance-permissive 

environment and, at the same time, to reduce the need for chronic maintenance 

immunosuppression. To explore whether thisO may result from the capability of 

Campath-IH, in association with different maintenance regimens, to promote regulatory 

T cells (Treg) expansion and to assess whether this may translate into better graft 

outcomes in the long-term, 21 renal transplant patients receiving Campath-IH induction 

were randomized to low-dose SRL (n= ll) or low-dose CsA (n=10), both in addition to 

low-dose mycophenolate mofetil (MMF) as maintenance immunosuppressive therapy 

and monitored for over 30 month follow-up.

SRL-treated patients showed an important expansion of circulating 

CD4+CD25hishFOXP3+ Treg that, at one and two years after transplant, were 

significantly more abundant than in the CsA group. T cells isolated from peripheral 

blood long-term post-transplant were hyporesponsive to donor alloantigens in both 

treatment arms. In SRL-, but not CsA-treated patients, hyporesponsiveness was reversed 

by Treg depletion. T cells from CsA-treated patients were anergic to donor antigens. 

Despite higher Treg counts, SRL-treated patients had a faster GFR and RPF decline, 

more clinical proteinuria, significantly higher tubular C4d staining score and a trend to 

higher chronic allograft damage index score, compared to CsA-treated patients. There 

was no significant correlation between Treg counts and any considered outcome 

variable in the study group as a whole and within each treatment group.
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These data suggest that, after Campath-IH induction, maintenance therapy with low- 

dose SRL and MMF promotes Treg expansion, but this is not paralleled by long-term 

improved graft outcomes. Conversely, maintenance immunosuppression with low-dose 

CsA and MMF is associated with better graft function and structure than low-dose SRL 

plus MMF, possibly through the induction of T cell anergy toward donor antigens.
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AIMS

Primary

1. To compare the effect of Campath-IH, low-dose sirolimus versus Campath-IH, low- 

dose CsA, both in addition to low-dose MMF on phenotypic and functional profiles of 

peripheral blood mononuclear cells (PBMCs) in kidney transplant recipients.

2. To assess whether the increased counts of circulating CD4+CD25hlgh Treg may 

translate into better graft outcomes in the long-term.

Secondary

To compare in the two groups of kidney transplant recipients:

- Incidence of acute allograft rejection

- Time course of graft function (as serum creatinine concentration)

Time course of glomerular filtration rate and renal plasma flow (measured by 

iohexol clearance and p-amminohippurate, respectively)

Systolic and diastolic blood pressure 

Lipid profile (cholesterol, triglycerides, HDL)

24 h urinary protein excretion rate 

Patient and graft survival

- Incidence of major adverse events.
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INTRODUCTION

1. Kidney transplantation: past, present, and a possible future

An historical perspective

December 23, 1954, represents a milestone date for organ transplantation. That day, a 

surgical team under the direction of Joseph Murray, removed a kidney from a healthy 

donor and transplanted it into his identical twin, who had chronic renal failure secondary 

to glomerulonephritis [1, 2]. The organ functioned immediately, and the recipient 

survived for nine years, when his allograft failed from recurrent glomerulonephritis. The 

donor has survived for 50 years [1,2].

As more transplantations were performed between identical twins [3], approaches to 

suppressing the recipient's immune system were pursued so that transplantation might 

be extended beyond procedures involving identical twins. The knowledge in 

immunology however was still rudimentary. The first attempt to suppressing the 

rejection process, taken in the early 1950s, involved the use of sublethal total-body 

irradiation combined with cortisone. These attempts failed in most of the cases, with the 

exception of some transplantations between nonidentical twins - first at Peter Bent 

Brigham and a few weeks later in Paris [1,4]-  which provided the impetus to search for 

more effective ways to prevent rejection.

A major contribution in the control of acute rejection was provided by Robert Schwartz 

and William Dameshek, hematologists at Tufts University School of Medicine, who 

reported that 6-mercaptopurine (6-MP), which was already in clinical use for the 

treatment of acute lymphocytic leukemia, suppressed the immune response in rabbits [5, 

6]. The Wellcome Research Laboratory then synthesized several variants of 6-MP for 

screening by Joseph Murray and Roy Caine in dog kidney transplantations. Only one
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candidate drug, azathioprine, resulted in long-term survival and in only a small number 

of animals. These observations prompted a rather anxious start to the first clinical trial, 

in 1962, of chemical immunosuppression involving azathioprine [7]. In patients in 

whom azathioprine was combined with a corticosteroid, one-year rates of allograft 

survival were in the range of 40 to 50 percent, an enormous improvement over previous 

results. These clinical breakthroughs were ultimately recognized by awarding of Nobel 

Prizes to Joseph Murray (and others), for the first clinical transplantation and the first 

use of immunosuppression, and to George Hitchings and Gertrude Elion of the 

Wellcome Laboratory, for the development of drugs, including azathioprine, that affect 

nucleotide pathways [1].

The rate of successful transplantation of kidneys from cadaveric donors and familial 

HLA-matched living donors slowly increased during the 1960s and early 1970s, 

following the introduction of azathioprine with corticosteroids. Although the initial 

effect was beneficial, prolonged use of corticosteroids resulted in a high mortality rate 

due to excessive immunosuppression. Overall mortality rates also fell as programs for 

long-term dialysis improved, which made it possible to discontinue immunosuppression 

and sustain life when grafts failed [1]. In the late 1970s, cyclosporine was introduced, 

which increased the rate of one-year graft survival from 70 percent to more than 80 

percent [8]. During last decades, results of kidney transplantation have been improved 

to the point that this procedure is now considered the ideal treatment for patients with 

end stage renal disease.

Three-Signal Model o f Alloimmune Responses
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In 1925, Emile Holman, a surgeon at Peter Bent Brigham Hospital who performed skin 

grafts in children with extensive bums, reported that repeated grafts from maternal 

donors were rejected more rapidly than the initial grafts, which indicated donor-specific 

sensitization to the "proteins" of the donors [1]. These proteins were in the following 

decades identified as HLA antigens and the immune reaction against these alloantigens 

was thereafter named as rejection.

Alloimmune responses involve both naive and memory lymphocytes [9], including 

lymphocytes previously stimulated by viral antigens cross-reacting with HLA 

antigens[10]. In the graft and the surrounding tissues, dendritic cells of donor and host 

origin become activated and move to T-cell areas of secondary lymphoid organs. There, 

antigen-bearing dendritic cells engage alloantigen-reactive naive T cells and central 

memory T cells that recirculate between lymphoid compartments but cannot enter 

peripheral tissues [11]. Naive T cells are optimally triggered by dendritic cells in 

secondary lymphoid organs [12, 13], but antigen-experienced cells may be also 

activated by other cell types, such as graft endothelium [14].

An antigen on the surface of dendritic cells that triggers T cells with cognate T cell 

receptors constitutes "signal 1," transduced through the CD3 complex. Dendritic cells 

provide costimulation, or "signal 2," delivered when CD80 and CD86 on the surface of 

dendritic cells engage CD28 on T cells. Signals 1 and 2 activate three signal 

transduction pathways: the calcium-calcineurin pathway, the RAS-mitogen-activated 

protein (MAP) kinase pathway, and the nuclear factor- «B pathway [15]. These pathways 

activate transcription factors that trigger the expression of many new molecules, 

including interleukin-2, CD 154, and CD25. Interleukin-2 and other cytokines (e.g., 

interleukin-15) activate the mammalian target of rapamycin (mTOR) pathway to
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provide "signal 3," the trigger for cell proliferation. Lymphocyte proliferation also 

requires nucleotide synthesis. Proliferation and differentiation lead to a large number of 

effector T cells [16]. B cells are activated when antigens engage their antigen receptors, 

usually in lymphoid follicles or in extrafollicular sites, such as red pulp of spleen[17], or 

possibly in the transplant [18], producing alloantibody against donor HLA antigens. 

Thus, within days the immune response generates the agents of allograft rejection, 

effector T cells and alloantibodies.

HLA antigen presentation: direct and indirect pathways

Alloreactive T cells recognise alloantigens via two distinct pathways: direct and 

indirect. Direct recognition occurs when recipient T cells recognise intact donor MHC 

molecules complexed with peptide on donor stimulator cells. In contrast, indirect 

recognition occurs when the recipient APC process the donor-MHC molecules prior to 

presentation to recipient T cells in a self-restricted manner [19].

The first clear evidence that T cells with exclusively direct allospecificity can effect 

transplant rejection was provided by a relatively recent study. Reconstitution of SCID or 

Ragl_/_ mice with syngeneic CD4+ T cells led to rejection of MHC class II-expressing 

cardiac allografts but not MHC class Il-deficient grafts [20]. Furthermore, Ragl_/_ mice 

that were also MHC class Il-deficient rejected allogeneic cardiac transplants when 

reconstituted with CD4+ T cells. Since these mice have no CD8+ cells and lack the 

capacity for MHC class Il-restricted indirect allorecognition, these results indicate that 

direct pathway CD4+ T cells were both necessary and sufficient to mediate allograft 

rejection [20].
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Anti-donor alloreactive T cells derived from the naive fraction of the recipients’ T cell 

repertoire must be primed in lymphoid tissue. Therefore, the priming of naive direct 

pathway alloreactive T cells is likely to only occur predominantly during the first few 

weeks after transplantation, while donor-derived dendritic cells are available. Once 

those dendritic cells have died, the naive T cell repertoire of the recipient is likely to be 

less important as far as direct anti-donor responses are concerned [19]. Intriguingly, 

Lechler and Batchelor showed that injection of donor-derived dendritic cells is able to 

restore immunogenicity of rat renal grafts depleted of incompatible passenger cells [21, 

22].

The hypothesis that also indirect pathway may play a role in transplant rejection was 

first proposed by De la Rosa and Talmage in early 1980s [23]. Ten years later, 

Auchincloss et al. clearly confirmed the importance of this pathway in allogeneic 

response by using MHC deficient mice [24]. Their most compelling evidence that the 

indirect pathway is sufficient to mediate transplant rejection was the observation that 

MHC class I knock out recipient mice could reject skin grafts from MHC class II knock 

out donor mice [24]. The recipient mice lacked CD8+ cytotoxic T cells capable of 

recognising donor MHC class I molecules directly, and the CD4+ T cells in the recipient 

animals could only be stimulated by recognising donor MHC class I molecules 

indirectly, presented in the context of recipient MHC class II molecules. These findings 

were supported using a murine skin allograft model, which demonstrated that the 

indirect pathway alone was sufficient to elicit allograft destruction in the absence of 

direct allorecognition [25]. Primed cells from mice previously immunised with 

allogeneic spleen cells or skin cells were shown to proliferate in response to peptides 

derived from donor-MHC in the context of self-MHC.
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Notably, many studies have suggested that the direct and indirect pathways of 

allorecognition engage in cross-talk, for example CD4+ T cells with indirect antidonor 

specificity can amplify direct pathway CD8+ T cell responses and direct pathway CD8+ 

T cells can also be regulated by tolerant indirect pathway CD4+ T cells [26]. Moreover, 

Lechler et al. recently described another mechanism by which alloreactive T cells are 

activated. Recipient DCs can acquire donor MHC through cell-to-cell contact and this 

acquired MHC can stimulate a T cell response, which has been called the semidirect 

pathway [27].

Effectors and Lesions o f Rejection

Effector T cells that emerge from lymphoid organs infiltrate the graft and orchestrate an 

inflammatory response, which recruit activated macrophages, B cells, and plasma cells 

that eventually induce parenchymal injury and deterioration of graft function [16]. The 

diagnostic lesions of T cell-mediated rejection reflect mononuclear cells invading the 

kidney tubules (tubulitis) and the intima of small arteries (arteritis). [28]. Injury is not 

simply lysis of target cells, since typical lesions develop in mice lacking cytotoxic T-cell 

lytic molecules, but may involve transdifferentiation of epithelial cells into 

mesenchymal cells— and cell senescence [28].

A humoral reactivity against donor antigens may also occur, eventually resulting in 

antibody-mediated acute rejection. This is diagnosed by clinical, immunologic, and 

histologic criteria, including a demonstration of complement factor C4d in peritubular 

capillaries. C4d is a fragment of the classical complement pathway component C4, 

which is activated by antigen-antibody complexes [29]. C4 is activated and 

proteolytically cleaved into C4a and C4b, exposing a reactive and short-lived thiolester
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group in C4b that binds to nearby molecules covalently. C4b is subsequently inactivated 

by cleavage into C4c and C4d, the latter fragment containing the covalent bond to the 

tissue that thereby can remain at the site of complement activation [29].

Humoral response may also be mild and not induce an acute injury. The presence of 

anti-HLA antibodies, however, has been associated with the development of chronic 

rejection [30]. Chronic rejection, clinically defined as progressive loss of renal function 

with hypertension and low-grade proteinuria, is the leading cause of late allograft 

dysfunction and accounts for renal failure in 50 to 80% of recipients who return to 

dialysis after transplantation [31]. The morphologic diagnosis can be difficult. The two 

most definitive features of chronic renal allograft rejection are the arterial intimal 

thickening with mononuclear cell infiltration and the duplication of the glomerular 

basement membrane (GBM). However, the arterial lesion preferentially affects the 

larger vessels, which are not always sampled in needle biopsies. The glomerulopathy 

can be mild or focal and by itself is not pathognomic of chronic rejection because it is 

also seen in thrombotic microangiopathy and certain chronic immune complex diseases. 

Interstitial fibrosis and tubular atrophy are similarly nonspecific findings that are 

compatible with a variety of causes, including post ischemic injury, hypertension, and 

chronic cyclosporine toxicity [31]. The inability to distinguish these conditions by 

histologic characteristics is reflected in the literature by the nonspecific term chronic 

allograft nephropathy, which has been used to encompass the end result of chronic 

injury resulting from immunologic reaction to donor alloantigens as well as from 

nonimmunologic mechanisms [32, 33]. More recently, an even more generic definition 

has been chosen for this condition by the Banff ’05 Meeting: Interstitial fibrosis and 

tubular atrophy, no evidence of any specific etiology [34].
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2. The hurdle of long-term immunosuppression and the importance of tolerance 

induction in organ transplantation

Newly developed immunosuppressive drugs have led to combination therapies that have 

significantly lowered the rates of acute rejection [16]. Moreover, induction protocols 

with various antilymphocyte antibodies also reduced the rate and intensity of acute 

rejection [35]. All immunosuppressive drugs have specific side effects and additively 

contribute to an overall state of immunosuppression, which leads to an increased risk of 

opportunistic infections and malignancies [16]. Calcineurin and mTOR inhibitors are 

also frequently associated with hypertension and impaired glucose and lipid 

metabolism, which eventually may contribute to increase the cardiovascular disease, 

which is the most common cause of premature death in transplant recipients [36]. In 

addition, the intrinsic nephrotoxic effect of immunosuppressive drugs such as 

calcineurin inhibitors promotes a progressive renal function deterioration [37]. Of note, 

also drugs previously considered devoid of any nephrotoxicity such as mammalian 

target of rapamycin (mTOR) inhibitors have been more recently demonstrated to 

negatively affect both glomerular and tubular cells [38].

This, together with the extension of donor and recipient criteria for transplantation [39, 

40], might explain why long-term graft outcomes did not change appreciably during last 

decade, in spite of a remarkable reduction of acute rejection rates in the short period. 

Indeed, results from the United Network for Organ Sharing (UNOS) database analyses 

showed that, at 1 year after transplantation, graft survival has reached levels higher than 

90% [41]. However, despite the significant decrease in overall acute rejection rates, the 

improvements in long-term graft survival in the last decade have been still limited [42].
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All these issues provide a strong rationale for developing strategies that promote 

transplantation tolerance.

Defining tolerance

There are many definitions of transplantation tolerance but, in general, it is thought as a 

condition of stable allograft function without immunosuppression. ‘True tolerance’ is 

defined as the absence of any detectable detrimental immune response in an 

immunocompetent host [43, 44]. The lack of an injurious pathogenic response to the 

alloantigen is specific, and the recipient is capable of responding to potentially 

pathogenic microorganisms and malignancies. Importantly, tolerance induction should 

not only protect the graft from acute rejection, but also from chronic low-grade immune 

response [44]. Nevertheless, the literature is revealing more and more cases of 

‘tolerated’ grafts actually displaying a histology of chronic rejection. Thus, the term 

‘operational tolerance’, based more on long term stable graft function and absence of 

exogenous immunosuppression, has been adopted: this less stringent term is often more 

applicable, particularly to the clinical setting [44].

Spontaneous tolerance in humans

Clinical cases have been reported of kidney transplant recipients whose graft function 

has been maintained indefinitely after the cessation of immunosuppression, 

demonstrating that operational tolerance can be achieved [43]. However, these 

spontaneous phenomena have typically occurred by way of drug nonadherence or 

withdrawal mandated by complications, and these conditions more commonly lead to
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rejection. Thus, transplantation tolerance in humans is a stochastic event under current 

treatment regimens, but is, in general, possible [43].

Acquired immune tolerance

Seminal studies by Billingham, Brent and Medawar, more than 50 years ago 

demonstrated that skin grafts from major histocompatibility complex disparate donor 

mice would be accepted indefinitely when recipient mice had been exposed to donor 

alloantigen in the neonatal period [45]. These findings provided the proof of the concept 

that induction of tolerance toward alloantigens is feasible and prompted research of 

tolerogenic strategies also in the adult animals and in the clinical setting.

Different strategies have been demonstrated effective for tolerance induction in rodent 

models of transplantation, as well as in pigs and in non-human primates [46-48]. 

However, tolerance can be more readily achieved in small, inbred animals compared 

with large, outbred animals, and even robust animal models seem less rigorous than 

adult humans.

The following paragraphs discuss those mechanisms which, on the basis of 

experimental studies and some preliminary clinical evidence, may contribute to the 

induction of transplant tolerance. Importantly, these mechanisms are not mutually 

exclusive and tolerance may be the result of several of these mechanisms operating 

simultaneously or sequentially.

Central tolerance

An important characteristic of alloimmune responses is the high frequency of T cells 

able to recognize and respond to alloantigens. This is at the basis of the common belief

18



that it is necessary to achieve large-scale deletion of alloreactive T cells in order to 

create transplantation tolerance [47].

Central tolerance refers to the use of strategies that promote deletion of newly 

developing T cell with potential anti-donor reactivity within the thymus following 

encounter with donor derived cells [47].

- Thymic manipulation

The thymus plays an essential role in the maintenance of self-tolerance. Indeed, in spite 

of its size reduction with age, evidence exists that it remains functional throughout the 

whole adult life [49]. Intrathymic deletion of self-reactive lymphocytes from the 

immune repertoire (clonal selection) represents the central mechanism for self-tolerance 

achievement. This mechanism can be exploited in transplantation by the delivery of 

donor antigens to the thymus of adult recipients. This may lead to the central 

elimination of detrimental alloreactive T cell clones, resulting in specific tolerance to 

donor tissues. Because deletion physically eliminates cells with a certain antigen, 

specificity, it should lead to a robust form of tolerance which, once established, would 

not be easily perturbed [47]. Hence, deletion would be a desirable tolerance mechanism 

in the clinical setting. This could either be performed by direct intrathymic injection of 

donor-derived allopeptides or by peripheral infusion of donor haematopoietic cells that 

may migrate into the thymus [50].

Many studies have confirmed that intrathymic injection of donor antigen or allopeptides 

along with peripheral leukocyte depletion may promote operational donor-specific 

tolerance in rodent models [51, 52]; however, the feasibility of this approach in larger 

species is still questionable. Furthermore, after the intrathymic delivery of allopeptides,
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donor antigen persists in the thymus for only a defined period. Therefore, intrathymic 

delivery of donor antigen, in contrast to establishment of a stable mixed chimera, 

provides a transient presence of donor derived antigen and stimulation of tolerant 

mechanisms, rather than generating persistent deletion of thymocytes. Therefore, 

additional strategies are needed to control alloreactive T cells, after the intrathymic 

delivery of alloantigen, to transplant a solid organ graft in the long-term. In animals, the 

thymus itself has been transplanted in different ways to induce tolerance: as 

nonvascularized allogeneic thymic tissue, in composite organs (“thymokidney”), and as 

vascularized thymic lobe transplants [53]. These thymus-dependent strategies might 

overcome the problem of limited survival of donor cells inside the recipient thymus.

- Chimerism

Peripheral infusion of bone marrow (BM) and adult lymphocytes after a conditioning 

regimen has been attempted to induce a more stable and clinically feasible state of 

immune tolerance in organ transplantation [54]. Indeed, once infused, donor cells were 

expected to migrate into the host thymus and mediate selection of alloreactive T cell 

clones. The conditioning regimen aimed at deleting pre-existing cross-reactive T cells 

that would reject the donor BM and grafted organ, thus creating ‘space’ for the 

engraftment of infused BM cells. However, the potential toxicities for the recipient of 

initially proposed conditioning protocols made their clinical applicability difficult [55]. 

Subsequently, the infusion of high-dose donor BM with costimulatory blockade but 

without prior massive lymphodepletion in the host succeeded in inducing persistent 

chimerism in mice [56-58]. The inoculus of a larger amount of BM cells allowed 

overcoming the need of space for donor cells engraftment without the need of
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myeloablation, while costimulatory blockade harnessed the peripheral T cell 

alloresponse.

These experimental evidences formed the basis for the recent successful approaches to 

induce tolerance in kidney transplant recipients through combined infusion of donor 

BM [59, 60].

Initial clinical success was reported by Strober using a conditioning regimen based on 

total lymphoid irradiation (TLI) [61] and has more recently been achieved in patients 

who require marrow replacement for multiple myeloma [60]. Pilot trials using 

haplodisparate donor-recipient pairs without underlying malignancy are now ongoing 

with cautiously optimistic preliminary results [43]. Thus, although practically complex, 

the induction of mixed chimerism seems to be a promising approach to tolerance.

Recently, two reports have been published on the successful induction of tolerance in 

patients receiving combined kidney and hematopoietic stem-cell transplantation. The 

recipient of a kidney from an HLA-matched brother received cyclosporine starting at the 

time of renal transplantation [59]. During the next 2 weeks, he underwent total 

lymphoid irradiation, and a course of antithymocyte globulin and prednisone and, 

therafter, he received an infusion of donor hematopoietic stem cells. Within 1 month 

after transplantation and consistently thereafter, the proportions of donor and recipient 

cells in the recipient's blood were about equal. Immunosuppressive therapy was 

discontinued 6 months after transplantation, with maintenance of good renal function 34 

months after transplantation [59]. In another report, Kawai et al. performed 

simultaneous kidney and stem-cell-enriched leukocyte transplantations from five HLA 

single-haplotype mismatched living related donors into recipients who had received a 

conditioning regimen with multiple agents [60]. One patient rejected the kidney. The
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other four patients had undefined spontaneously reversible or corticosteroid-responsive 

"capillary leak" phenomena, which presumably were rejection episodes; nevertheless, 

immunosuppressive therapy was discontinued in the four recipients 9 to 14 months after 

transplantation, without deterioration in the function of the grafts during 2.0 to 5.3 years 

of follow-up. There was no evidence of leukocyte chimerism in any patient for more 

than 21 days. Since only blood samples were studied, assessment of the presence of 

small numbers of donor leukocytes (microchimerism) outside the blood circulation was 

not possible.

These represent important results providing the proof of the concept that tolerance is a 

feasible goal also in the clinical setting. However, the complexity of the procedure and 

the important induction immunosuppression still represent major concerns about this 

strategy.

Peripheral tolerance

Not all self-antigens are expressed in the thymus, thus other mechanisms are required in 

the peripheral immune system to maintain a safe T cell repertoire in healthy individuals. 

Peripheral tolerance is the term applied to these naturally arising mechanisms that lead 

to anergy, deletion or suppression of self-reactive T cells which escaped from thymus 

deletional processes. Starting from this evidence, researchers have sought to promote 

these mechanisms to obtain peripheral tolerance to alloantigens.

Various strategies have been explored to achieve peripheral tolerance in experimental 

protocols including: 1. targeting all peripheral T cells independently from their 

specificity or activation state (depleting protocols), 2. inhibiting T cell activation by
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blocking or modifying costimulatory signals (costimulatory blockade, manipulation of 

dendritic cells), and 3. harnessing activated T cells by CD4+CD25+ antigen-specific 

regulatory T cells (Treg) [62].

- Lymphocyte depletion

The development of monoclonal antibodies (mAbs) has prompted studies with various 

lymphocyte-depleting protocols in rodents, non-human primate models, as well as in 

clinical transplantation, in order to prevent acute rejection and possibly to promote 

tolerance [63]. In various animal models, anti-T cell antibodies, given at the time of 

transplantation (induction therapy), were used either alone or in Combination with other 

strategies that aim to limit clonal expansion of effector T cells. Cell-depleting 

approaches result in a profound reduction of circulating leucocytes capable of mounting 

an alloresponse at the time when the allograft is already susceptible to inflammatory 

damage following the ischaemia/reperfusion injury [64, 65]. Thereafter, lymphocytes 

will gradually repopulate the host weeks to months later when the innate immune 

response has resumed and the allograft is more quiescent.

Depletion strategies have been extensively studied in non-human primate transplantation 

models. In these studies, encouraging results were obtained using anti-CD3- 

immunotoxin (monoclonal anti-Rhesus CD3 antibody with a modified diphtheria toxin) 

alone [66], or in combination with deoxyspergualin (a monocyte inhibitor) [67] or 

sirolimus [68]. However in these models, despite profound peritransplant T cell 

depletion, consistent transplantation tolerance was not achieved with monotherapy as 

most treated animals eventually lost their grafts through chronic rejection [69]. 

Notwithstanding, this formed the basis for clinical attempts to minimize maintenance
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immunosuppression after the induction of lymphocyte depletion in organ transplant 

recipients. This approach was attempted in 28 kidney transplant patients receiving TLI 

and anti-thymocyte globulin as induction and low-dose steroid as the sole maintenance 

immunosuppression. In three patients, immunosuppressive therapy was successfully 

withdrawn, suggesting that lymphocyte depletion might promote tolerance also in the 

clinical setting [61]. Notably, one of these patients was still off immunosuppression up to 

12 years after transplant. However, the potential complications of TLI are not acceptable 

for routine transplantations, thus polyclonal or monoclonal antibodies were thereafter 

advocated as safer tools to obtain T cell depletion. Paragraph 3 will discuss attempts to 

transfer lymphocyte depletion in the clinical setting.

- Costimulatory blockade

Costimulation signalling is required for full T cell activation and differentiation of naive 

T cells into polarized effector T cells. In the absence of an appropriate second 

costimulatory signal, partially activated T cells either become hyporesponsive to 

specific T cell receptor signals (donor-specific anergy) or die by apoptosis [70]. Overall, 

by inhibiting T cell activation rather than eliminating all T cells as in depleting 

protocols, this strategy might more selectively target effector T cells and thus spare 

other potentially beneficial T cell subpopulations, such as those with immune regulatory 

properties [71].

The CD154:CD40 pathway is of crucial importance in effective antigen presentation. 

CD 154 (CD40L) is expressed on T cells, B cells, eosinophils, natural killer (NK) cells, 

platelets and dendritic cells, whereas CD40 is mainly expressed on dendritic cells, 

macrophages and endothelial cells and its ligation upregulates the expression of CD80
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and MHC molecules [72]. Blockade of the CD154:CD40 pathway using MR1, an anti- 

CD40L mAh [73] which, besides blocking signal 2 may also have a cytotoxic activity 

towards activated T cells [74], was able to induce a condition of tolerance in a skin 

transplant model in the mouse. Various clones of the anti-CD 154 mAh have been used 

in monotherapy in non-human primate models, resulting in long-term acceptance of 

renal, heart and islet allografts. However, allogeneic response was not fully prevented in 

these experiments, resulting in cellular infiltrates in the biopsies of long-term surviving 

allografts and eventual graft loss [75-77].

Excellent outcomes were observed first in small animal models using CTLA-4 Ig, a 

fusion protein with specificity for CD80/86 expressed on antigen presenting cells (APC)

[78]. CTLA-4 Ig was also used and was described to prolong pancreatic islet survival

[79] in non-human primates and, when used in combination with anti-CD 154, to induce 

indefinite acceptance of renal and heart allografts, while allowing prolonged skin graft 

survival [66, 80].

Blocking the CD28 ligands CD80 (B7-1) and CD86 (B7-2) has been also attemped. 

Monoclonal antibodies targeting these costimulatory molecules, when used in 

monotherapy failed to significantly prolong renal allograft survival in non-human 

primate models. However, combined blockade of CD80 and CD86 led to prolonged 

survival in models of renal transplant in non-human primates, though this did not result 

in tolerance, as rejection occurred after therapy withdrawal [74, 81]. Two fusion 

proteins, abatacept and belatacept, have been recently developed to bind the ligands for 

CD28, the B7 molecules CD80 and CD86 [82]. A recent randomized clinical trial tested 

belatacept in renal transplantation showing promising results for its use as an 

immunosuppressive agent [83]. Although designed to study its efficacy in preventing
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rejection compared with cyclosporine and not to address tolerance, this early study 

suggests that co-stimulation blockade will have a major role in future tolerance 

strategies [43].

- Regulatory T cells

In the past decade, it has been become increasingly clear that T cells capable of actively 

suppressing immune responses are at least in part responsible for the maintenance of 

peripheral tolerance toward self antigens [84]. Moreover, in both rodents and humans, 

there is an emerging consensus that immunoregulatory activity of these cells may be 

instrumental also for the induction and maintenance of tolerance toward alloantigens in 

the transplant setting [85].

The phenomenon of T cell-mediated regulation in transplantation tolerance is not new, 

but during the last years a number of interesting findings have brought it back into the 

limelight. Harnessing the capability of these suppressor cells to regulate immune 

responses to not only self molecules but also to foreign antigens may have an impact in 

the transplant setting. Indeed, the ability of these regulatory T cells (Treg) to induce 

unresponsiveness to alloantigens in vivo, in the absence of chronic immunosuppression, 

may inhibit the immune-mediated processes that lead to long-term graft failure [86]. 

Several subsets of Treg with distinct phenotypes and mechanisms of action have now 

been identified. They constitute a network of heterogeneous CD4+ [87, 88] or CD8+ [89, 

90] T cell subsets and other minor T cell populations such as nonpolymorphic CD ld- 

responsive natural killer T cells [91, 92].

In both humans and rodents the best characterized population of Treg is the subset 

coexpressing CD4 and CD25 (IL-2R a  chain) antigens. CD4+CD25+ Treg are defined as
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‘naturally occurring’ or ‘innate’ since they arise during thymic ontogeny, selected as a 

result of relatively high-affinity interactions with self-peptide/MHC complexes [93]. In 

non-autoimmune-prone mice, elimination of CD4+CD25+ Treg, by a thymectomy 

carried out at day 3 of age, induced the onset of a polyautoimmune syndrome [87]. 

Importantly, adoptive transfer of CD4+CD25+ T cells from normal mice to 

thymectomized animals protected from autoimmunity [87].

In addition to their role in maintaining self-tolerance and preventing autoimmune 

diseases [87], CD4+CD25+ Treg play a role in preventing allograft rejection, as 

demonstrated in many animal models of transplant tolerance induction [94]. In a model 

of renal transplant tolerance by donor PBMC infusion in the rat, CD4+CD25+ Treg 

accumulating in tolerized kidney grafts were instrumental to the prevention of acute 

rejection [95].

Moreover, it has been demonstrated that CD4+CD25+ Treg with the capacity to prevent 

skin allograft rejection can be generated in mice by pre-treatment with donor alloantigen 

under the cover of non-depleting anti-CD4 therapy [96]. CD4+CD25+ Treg isolated , 

from the spleens of these tolerant mice are donor-specific and can transfer tolerance to a 

naive recipient [97]. Of great interest, evidence recently came out showing that such 

Treg are generated in the periphery from CD4+CD25' precursors in a pathway distinct to 

that by which naturally occurring CD4+CD25+ Treg develop [98].

The main mechanism of suppression by CD4+CD25+ Treg seems to be the inhibition of 

IL-2 production by responder T cells [99]. Interestingly, CD4+CD25+ Treg have been 

shown to constitutively express CTLA4 (CD 152) in both mice and humans. Fallarino et 

al. have attributed a key role to CTLA4, providing evidence that mouse CD4+CD25+ 

Treg can deactivate immunostimulatory function of APCs through CTLA4 engagement
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of B7 molecule [100]. Thus, CD4+CD25+ Treg can exert their suppressive activity either 

by a direct contact with T cells or indirectly through modulation of APC function.

Since activated effector CD4+ T cells also transiently express CD25, researchers looked 

for other phenotypic markers for identifying CD4+CD25+ Treg. That mice carrying the 

X-linked scurfy mutation in FOXP3 gene display multi-organ autoimmune disease and 

lack conventional CD4+CD25+ Treg [101, 102] have focused the attention on FOXP3 as

a. specific marker of Treg in mice. In mice, FOXP3 has been shown to be expressed 

exclusively in CD4+CD25+ Treg and is not induced upon activation of CD25‘ T cells. In 

addition, transfection with FOXP3 converts naive CD4+CD25' T cells into Treg [103]. 

Of particular interest, Walker et al. have shown that in humans activation of 

CD4+CD25' T cells results in the generation of two populations of cells, effector 

CD4+CD25+ and regulatory CD4+CD25+ T cells, with expression of FOXP3 confined to 

the regulatory cell subpopulation [104].

CD4+CD25+ T cells expressing FOXP3 are therefore a well characterized Treg 

population, whose activity may play a crucial role also in tolerance induction in clinical 

transplantation.

Other cells with immune regulatory properties have been described. Among them, a 

population expressing the CD8+CD28~ phenotype has been reported to be associated to 

lower rates of rejection and an increased likelihood of being weaned effectively from 

immunosuppression in kidney and liver transplant recipients [105]. This suggests that 

mechanisms of peripheral tolerance are redundant and that our knowledge of them is 

still extremely limited.
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3. Tolerance induction through lymphocyte depletion in the clinical setting

Despite the huge number of available strategies to induce tolerance in rodent models of 

transplantation, only few of them have been successfully transferred to nonhuman 

primates and, even fewer, to transplant patients. As discussed above, two recent reports 

showed that induction of chimerism through combined bone marrow transplantation 

may promote tolerance in humans [59, 60]. However, potential toxicity of the induction 

protocol and the complexity of the technique still make this approach hardly transferred 

to the clinical practice, at least not to significant numbers of patients.

So far, the pro-tolerogenic strategy that provided the most reproducible results in kidney 

transplant patients is lymphocyte depletion at the time of engraftment. Although this 

approach promotes true tolerance in only a minority of patients, it effectively allows the 

prevention of rejection with lower than standard amounts of chronic

immunosuppression in most of the cases [ 106].

Theoretically, lymphocyte depletion removes effector T lymphocytes from the 

circulation at the time of ischemia-reperfusion injury and allows the graft to heal, 

preventing a detrimental inflammatory response. During immune reconstitution, 

emergence of T cells with memory phenotype has been described (homeostatic 

proliferation), which might potentially represent a hurdle to the establishment of 

tolerance, due to their low threshold for activation [106]. However, use of compounds 

promoting Treg expansion during this phase might overcome this effect, thus allowing 

peripheral tolerance mechanisms to prevail.
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Homeostatic proliferation

The peripheral T cell pool is composed of a large and heterogeneous repertoire of naive 

and memory T cells capable of recognizing both foreign- and self-antigens [107]. This 

pool of lymphocytes is tightly regulated by homeostatic mechanisms that serve to 

control the numbers of T lymphocytes in circulation and the different subpopulations 

{i.e. CD4+ versus CD8+, naive versus memory). This is instrumental in ensuring that the 

organism has continued diversity of naive T cells able to respond to random antigenic 

challenges while preserving immunological memory to microbial pathogens formerly 

encountered [107].

Recent evidence suggests that the set point for homeostatic equilibrium involves an 

external mechanism of quorum sensing, which the T cell 'interprets' as a measure of 

available or free 'space'. Indeed, T cells seem to be under severe pressure to fill this 

space as evidenced by their robust expansion even in the absence of antigen soon after 

adoptive transfer into T cell-deficient syngeneic recipients: this is what is meant by 

homeostatic proliferation [108]. The same thing also happens after the induction of 

lymphocyte depletion.

The key hallmark of homeostatic proliferation is the induction of naive T cells to 

express conventional memory T cell markers and to differentiate into a memory-like 

state [109, 110]. In particular, L-selectin (CD62L) which is preferentially expressed on 

naive T cells, as it is necessary for entry into lymph nodes, is progressively lost as cells 

undergo homeostatic proliferation. In parallel with the loss in CD62L is the 

upregulation of CD44, a molecule whose expression is required for adhesion and 

entrance into peripheral tissues. Functionally, these cells are similar to memory cells as 

their requirement for CD28 costimulation is diminished, thus they have a lower
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activation threshold [111]. Furthermore, the rapidity and magnitude of effector 

responses following activation, such as cytokine production, cytolytic activity and 

proliferative capacity and kinetics, are also greatly enhanced [109, 110]. Thus, the 

emergence of these cells after lymphocyte depletion might also represent a hurdle to the 

establishment of tolerance [112].

However, during immune reconstitution in individuals with cancer who did or did not 

receive IL-2 therapy, CD4+CD25hlgh cells also underwent homeostatic peripheral 

expansion during immune reconstitution, and in lymphopenic individuals receiving IL- 

2, the Treg cell compartment was similarly markedly increased. Along this line, mouse 

studies showed that IL-2 therapy induced expansion of existent Treg cells in normal 

hosts, and IL-2-induced Treg cell expansion was further augmented by lymphopenia 

[112]. Thus, the success of tolerogenic strategies with lymphocyte depletion is closely 

related to the equilibrium between memory and regulatory T cells.

Looking fo r  the ideal maintenance immunosuppression after lymphocyte depletion: 

the effect o f  different drugs on Treg activity

Regulatory T cells have long been implicated in transplant tolerance. Thus, to promote 

tolerance after lymphocyte depletion, it would be an obvious benefit to promote the 

'outgrowth' of Tregs compared to non-regulatory T cells after T cell depletion. 

Intriguingly, recently evidence came out showing that different immunosuppressive 

compounds may exert different promoting or inhibiting effect on Tregs [113]. Finding 

the right combinations of immunosuppression after lymphocyte depletion might 

therefore identify the best maintenance regimens to use after induction with depleting 

agents.
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Of note, evidence has been provided that sirolimus and cyclosporine, the two most 

widely used immunosuppressants in organ transplantation, may exert opposite effects 

on Treg number and function. Indeed, sirolimus seems to promote the expansion of 

functional Treg, whereas cyclosporine might have an inhibitory effect [114].

In particular, cyclosporin A (CsA) is a potent inhibitor of the phosphatase, calcineurin, 

which is essential for T-cell activation. By inhibiting calcineurin, it suppresses the 

production of IL-2 and related cytokines through the prevention of downstream 

activation of the transcription factor, nuclear factor of activated T cells (NFAT) [113]. 

Few in vitro studies described the effect of CsA on Treg. Baan et al. showed that in a 

mixed leukocyte reaction, the induction of FOXP3 mRNA was inhibited by CsA [115]. 

This was confirmed by authors of other studies, who observed decreased FOXP3 

mRNA and protein [114] and a loss of the highly suppressive CD27+ Treg subset in 

cultures containing CsA [116]. The authors of these later studies report contradicting 

effects of CsA on the suppressive function of Treg, one observing no effect with human 

Treg and the other finding less suppression with mouse Treg [113].

There are now recent in vivo data that show a negative effect of CsA on Treg. Treatment 

of mice with CsA compromised not only the thymic generation of Treg but also resulted 

in a sharp reduction of Treg in peripheral immune compartments [117]. In a mouse bone 

marrow transplantation model, CsA administration inhibited Treg mediated suppression 

which was associated with reduced IL-2 production [118]. Together these data suggest 

that CsA is not beneficial for Treg, but is rather detrimental to their generation, survival 

and function.

Sirolimus exerts its effect at the level of mammalian target of rapamycin (mTOR), 

thereby preventing the progression from G l- to S-phase. There is in vitro and in vivo
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evidence that sirolimus treatment has favourable effects on Treg. In a study with mice 

by Battaglia et al., CD4+CD25+FOXP3+ Treg expanded ex vivo in the presence of 

sirolimus and prevented rejection of beta-islet transplants in vivo [119]. Sirolimus also 

induces de novo expression of FOXP3 in murine alloantigen-specific T cells dose 

dependently, which appeared to be TGF-pl dependent [120]. Because sirolimus can 

induce the expression of TGF-pl, it may be an important mechanism contributing to the 

development of antigen-specific Treg [113]. Interestingly, a recent study suggests that 

sirolimus can induce regulatory functions in conventional CD4+ T cells in culture [120]. 

Furthermore, evidence suggests that sirolimus -conditioned dendritic cells are poor 

stimulators of allogenic T cells but enrich for antigen-specific Treg, which can prolong 

cardiac graft survival in mice [121].

Altogether, the above evidence suggest that the choice of the maintenance 

immunosuppressive regimen after lymphocyte depletion may be crucial for the success 

of this pro-tolerogenic strategy.

Different strategies to induce lymphocyte depletion in kidney transplant patients

Lymphocyte depletion using polyclonal antibody therapy has long been a part of the 

transplant immunosuppressive armamentarium and is reserved for immunologically 

high-risk recipients. More recently, the use of both polyclonal and monoclonal depletion 

has been adopted to allow immunosuppression minimization or even to achieve donor- 

specific tolerance [122]. The long-term aim of this therapy is to minimize the toxicities 

we have come to expect with standard immunosuppression, which may be limiting 

long-term outcomes. This positive effect is offset by the potential toxicity of the global 

depletion of the recipient’s lymphocytes and, in some cases, monocytes and neutrophils.

33



Efforts aimed at identifying effective and well-tolerated induction protocols may 

maximize the long-term success of kidney transplantation.

Seminal studies in nonhuman primate transplantation models showed that lymphocyte 

depletion by total lymphoid irradiation (TLI) prolonged graft survival and promoted 

donor-specific hyporesponsiveness [123]. On the basis of this background, 28 kidney 

transplant patients received TLI and anti-thymocyte globulin as induction therapy and 

low-dose steroid as the sole maintenance immunosuppression. Immunosuppressive 

therapy was successfully withdrawn in three patients, which suggests that lymphocyte 

depletion might also promote tolerance in the clinical setting [61]. Of note, one of these 

patients was free of any imunosuppression for more than 12 years [61]. The potential 

complications of TLI are not acceptable for routine transplantation, however, and 

polyclonal or monoclonal antibodies were therefore advocated as safer tools for 

obtaining T-cell depletion.

In the 1970s, the polyclonal antibody Minnesota antilymphoblast globulin was 

introduced in the immunosuppressive treatment of organ transplant recipients and were 

used for more than twenty years, together with azathioprine and steroids (and, from 

1978, cyclosporine), to prevent and treat acute rejection. In spite of the increased risks 

of anaphylactic reactions and opportunistic infections, this experience highlighted the 

importance of lymphocyte depletion to improve patient and graft outcomes [123].

More recently, new formulations of polyclonal rabbit anti-thymocyte globulin have 

become available and have been progressively introduced in the induction protocols of 

most transplant centers. However, some concerns still persist in the extensive use of 

polyclonal antibodies, as they have been associated with a significant increased risk of 

opportunistic infection and lymphomas. Of note, potential immunization against non
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human immunoglobulin, might induce anaphylactic reactions and prevent repeated 

administrations. Thus, during last decade, research has been focused on humanized 

monoclonal antibodies [123].

4. Campath-IH

Campath-IH is a humanized rat monoclonal antibody (rat immunoglobulin IgG2b) 

directed against the CD52 antigen, which is expressed on all blood mononuclear cells 

and also on cells lining the male reproductive tract [124]. It is a powerful cytolytic agent 

and has been used therapeutically in bone marrow and organ transplantation, and in 

several autoimmune diseases [124]. It was first used by Sir Roy Caine [125] as 

induction therapy for renal transplantation in 1998 and it efficiently prevented acute 

rejection in 13 patients who received low-dose CsA as the sole immunosuppressant. 

Since then, many other trials employed this antibody to induce a pro-tolerogenic state 

that may allow reducing doses of maintenance immunosuppression [126].

A brief historical perspective

The first Campath-IH antibodies were created from rat hybridomas in an attempt to 

produce antibodies that would lyse lymphocytes in the presence of human complement 

[124]. All these antibodies were directed against the same antigen, now known as 

CD52. The first antibody was a rat IgM (Campath-IM) that resulted in only a transient 

lymphopenia in patients with leukaemia. Thereafter, an IgG antibody (Campath-IG) 

was developed, which was an IgG2b antibody, produced as a switch variant of IgG2a 

[124]. This antibody was profoundly lytic in the presence of human complement but 

also produced direct lysis by antibody-dependent cellular cytotoxicity. Finally, to
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prevent the development of rat globulin antibody responses in patients, the rat antibody 

was humanized (Campath-IH), the first such successful humanization of a clinically 

used monoclonal antibody [127]. Campath-IH and Campath-IG have very similar lytic 

activities, but Campath-IH has gradually replaced Campath-IG in clinical practice over 

the past 10 years. In addition, in two studies of Campath-IH antibodies used to treat 

acute rejection, 15 of 17 patients given the rat antibody Campath-IG exhibited a rat 

antiglobulin response, in contrast to none of 12 patients given the humanized antibody 

Campath-IH [128]. No anti-idiotype antibodies were detected, but it should be noted 

that repeat courses of the antibody were not given and that the patients were all 

receiving concurrent immunosuppression. In contrast, three of four patients with 

rheumatoid arthritis who received a repeat course of the antibody in the absence of other 

immunosuppression developed an anti-idiotype response [126].

The function of CD52 is currently unknown. It is a short glycoprotein consisting of a 

sequence of only 12 amino acids. It is attached to the outer layer of the cell membrane 

by a glycosyl phosphatidylinositol lipid anchor. The CD52 antigen is one of the most 

abundant antigens on the surface of lymphocytes, accounting for approximately 5% of 

the surface antigens [124]. This probably explains in part the profound and long-lasting 

lymphopenia produced after the administration of one or two doses of the antibody.

Campath-IH as induction agent in kidney transplantation

Campath-IH was first used as an induction agent by Caine et al. [125] in 1998 in 13 

renal transplant recipients who received low-dose cyclosporine alone as maintenance 

therapy. At the time of publication, patient and graft survival rates were 100% and there 

were two episodes of acute rejection, with a follow-up of 6-12 months. Azathioprine
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and prednisolone were added to one patient's immunosuppressive regimen to treat 

rejection. The 5-year results of the initial series were published along with those of 

another 20 patients who were subsequently entered in this pilot trial (total of 33 

patients) [129]. They found no significant difference in graft or patient survival or acute 

rejection rates in a retrospective contemporaneously controlled comparison with the 

findings in 66 patients who underwent kidney transplantation in the same unit during 

the same period and were treated with triple therapy (cyclosporine, azathioprine, and 

prednisolone). This led to hypothesize that Campath-IH, by reducing the need of 

maintenance immunosuppression (and related toxicity) to prevent acute rejection, might 

actually provide better outcomes in the longer term. However, seven patients in the 

control group were in a highly sensitized condition and received induction therapy with 

thymoglobulin. Thus, the higher immunological risk of patients in the control group 

might have lead to overestimate the beneficial effects of patients who received 

Campath-IH induction.

In light of the limitations of this study, Caine et al recently coordinated a randomized, 

controlled, prospective trial comparing the 12 month outcomes of 65 patients who 

received Campath-IH induction and delayed tacrolimus monotherapy versus those of 66 

patients on tacrolimus, MMF and steroids without induction. Results were very similar 

in the two groups, apart for an higher incidence of CMV infections in Campath-IH 

treated patients [ 129].

Ciancio et al. [130] designed a well planned three-arm trial with 30 patients in each arm 

in which compared induction with Thymoglobulin, Campath-IH, and daclizumab (an 

anti IL-2 receptor antagonist). All patients received maintenance immunosuppression 

with tacrolimus, mycophenolate mofetil (MMF), and steroids, but the Campath-IH
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group received half the dose of tacrolimus and no steroids after the first week. After a 

median follow-up of 15 months, there was no difference in patient or graft survival, 

acute rejection rates, or renal function, nor was there any difference in infections or 

incidence of diabetes or hyperlipidemia among the three groups. However, 80% of the 

Campath-IH patients remained steroid-free. Intriguingly, patients in the Campath-IH 

arm showed an higher expansion of Treg.

A number of nonrandomized retrospective studies with large numbers of patients have 

been reported in which Campath-IH was compared with other induction therapies in 

renal transplant recipients [126]. Knechtle et al. [131] compared induction with 

Campath-IH (n=126) to historical control groups treated with anti-CD25 antibody 

(basiliximab; n=799), Thymoglobulin (n=160), and other induction therapies, such as 

OKT3 or .antithymocyte globulin (n=156). For maintenance immunosuppression, all 

groups received a calcineurin inhibitor and MMF. Prednisone was used in all groups 

except the group that received Campath-IH. There was a marginal reduction in the 

incidence of biopsy-proven acute rejection (P=0.037) and a better graft survival 

(P=0.0159) in the Campath-IH group. Also, when looking at the subgroup of patients 

who experienced delayed graft function, there was significantly less acute rejection 

(P=0.0096) and a significant improvement in graft survival (P=.0119) in the Campath- 

IH group. There was no significant difference in patient survival nor in the incidence of 

infection and malignancy among the three groups.

Before this study, the same group [132] performed a pilot trial with Campath-IH 

induction and sirolimus monotherapy in 29 patients. Thirteen patients had an acute 

rejection, which in six cases was of the humoral type. However, the 3-year results 

showed graft and patient survival rates of 96% and 100%, respectively, with an

38



excellent graft function. In another pilot study of Campath-IH induction with MMF and 

sirolimus in 22 kidney transplant recipients [133], there were eight acute rejections 

(36%) with leukopenia and possible pulmonary toxicity, leading the authors to suggest 

that initial use of a calcineurin inhibitor might be necessary with Campath-IH 

induction.

Shapiro et al. [134] compared Campath-IH induction (n=90) versus historic control 

patients treated with Thymoglobulin induction (n=101) and a non-induction therapy 

group (n=152). In the control group without induction therapy, the maintenance 

immunosuppression was tacrolimus, prednisolone, and usually a third agent (MMF or 

sirolimus). Both induction therapy groups received tacrolimus as maintenance 

monotherapy. After 3-4 months, spaced weaning of the tacrolimus was attempted in the 

induction therapy groups. There was no significant difference in overall graft or patient 

survival, but when looking at the subgroup of living-donor grafts, graft survival was 

significantly better for Campath-IH and Thymoglobulin compared with the control 

group without induction therapy (P=0.037). The acute rejection rate was similar in the 

Campath-IH and control groups, which was better than that in the Thymoglobulin 

group.

In an attempt to induce donor allograft tolerance, Campath-IH was also used as 

induction therapy alone with no maintenance therapy in seven nonsensitized recipients 

of living-donor transplant kidneys at the NIH Renal Transplant Center [135]. All seven 

patients developed early rejection within the first month, requiring initiation of 

maintenance immunosuppression, but all rejection episodes were successfully treated. 

More recently, the same authors [135] treated a further five recipients of a living-donor 

kidney with Campath-IH and a brief course of deoxyspergualin, which was added to the
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treatment regimen with the aim of preventing the early macrophage and monocyte 

infiltration observed in the patients treated earlier [136]. However, all patients exhibited 

a reversible rejection similar to the aforementioned group and rejection was preceded by 

or associated with marked increases in several chemokine transcripts. Therefore, used in 

this protocol, Campath-IH was unable to produce tolerance.

Recently, an analysis of Organ Procurement and Transplantation Network/United 

Network for Organ Sharing database compared the outcomes at 2 years of deceased 

donor kidney recipients treated with Campath-IH (n=690), thymoglobulin (n=4,930), 

interleukin-2 receptor antagonist (n=4,378), or without induction [137]. Patients on 

Campath-IH therapy experienced less acute rejection during the initial hospitalization 

comparing to the other groups, but this finding was not sustained 6 and 12 months after 

transplant, when the rejection-free survival of Campath-IH patients was significantly 

lower than the one of patients who received other induction agents or without induction. 

Despite this increased acute rejection risk, graft survival did not significantly differ 

among various patients groups. The increased incidence of late rejections in Campath- 

lH-treated patients might reflect the attempts to reduce immunosuppressive therapy 

among patients in this group. Importantly, among recipients of Campath-IH induction, 

rejection-free survival and graft survival were significantly higher when maintenance 

immunosuppression included calcineurin inhibitors.

Campath-IH safety profile in kidney transplantation
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The profound and long-lasting lymphocyte depletion induced by Campath-IH raised 

concerns about its safety profile, especially in the long-term. Notwithstanding, it is in 

general well tolerated and the severity of potential side effects is mild.

- Cytokine release syndrome

As with all antibody treatments, Campath-IH infusion may induce a cytokine release 

syndrome characterized by fever and hypotension. It is generally modest and normally 

controlled with an intravenous bolus injection of 1 g of methylprednisolone before 

administration of the antibody. Recently, however, a study showed that, in kidney- 

pancreas transplantation, subcutaneous administration of Campath-IH avoids this first- 

dose reaction while achieving a similar lymphocyte depletion to intravenous- 

administration [138]. Prevention of infusion-associated hypotension is particularly 

important in pancreas transplantation where venous thrombosis is a major problem.

- Infection

Despite the profound and long-lasting CD4 T cell depletion for 2-3 years produced by 

one or two doses of Campath-IH, there has been a surprising lack of serious infection in 

nearly all studies reported. Silveira and colleagues [139] examined a cohort of 449 

consecutive transplant recipients who received Campath-IH to determine the incidence 

of bloodstream infections, which might be expected to have an increased incidence in 

patients in a CD4-depleted state, as seen in patients with AIDS, for example. No 

increased risk was noted. Similarly, a low incidence of infection was noted in another 

small study in comparison with a historical control group [140], and indeed this has 

been a feature of all the reports described earlier.
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- Autoimmune disease

An interesting observation made in the long-term study of Watson et al. [129] was the 

occurrence of an autoimmune disorder in two patients who had received Campath-IH, 

one with autoimmune hypothyroidism and one with autoimmune hemolytic anemia. 

This is relevant bearing in mind that, of 27 patients with multiple sclerosis treated with 

Campath-IH, nine developed autoimmune hyperthyroidism [141]. Recently, also the 

case of a kidney transplant recipient who developed autoimmune thyroiditis four years 

after Campath-IH induction has been reported [142]. Thus, although rare in the setting 

of organ transplantation, increased risk of autoimmune disease should be considered 

when facing transplant patients receiving Campath-IH induction. This risk might be 

even higher considering that, in transplant patients, this adverse event might have been 

underreported.

- Coagulopathy

Campath-IH administration has been also associated both with disseminated 

intravascular coagulation (DIC) in a patient with bone marrow transplantation and with 

massive bleeding in a kidney transplant recipient. In both cases, the adverse event 

followed the first Campath-IH administration. No clear mechanism has been advocated 

to explain how CD52 antibody may affect coagulation.

Do patients with Campath-IH induction reject their grafts in spite o f the absence of  

circulating T lymphocytes?
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Unexpectedly, the aforementioned clinical experiences showed that acute rejection does 

occur in renal transplant recipients who undergo induction therapy with Campath-IH, 

despite the profound lymphocyte depletion. However, the histologic pattern may be 

different than the one observed with conventional immunosuppression. Comparing 

biopsies of renal transplant recipients with acute rejection who did or did not receive 

Campath-IH induction, Zhang et al. showed that Campath-IH induction was associated 

with acute rejections with a majority of the cells (up to 95%) being monocytes and a 

minority T lymphocytes [143]. Conversely, in renal specimens from patients who did 

not receive Campath-IH induction, monocytes were mixed with many other 

inflammatory cells including T lymphocytes, eosinophils and neutrophils [143]. This is 

consistent with the fact that Campath-IH can severely deplete peripheral T lymphocytes 

to minimal levels, whereas its effect on monocytes is much milder. These findings 

confirm those previously observed by Kirk et a l who tried to use Campath-IH alone 

[135] or followed by a deoxyspergualin [136] in two small series of kidney transplant 

recipients . All patients treated with these protocols experienced an acute rejection 

episode that required the introduction of maintenance immunosuppression. Intriguingly, 

all the rejection episodes were mainly mediated by infiltrating monocytes. The authors 

suggested that monocyte and macrophage lineage cells resistant to Campath-IH release 

cytokines in the graft, perhaps in an attempt to recruit effector T cells and, in doing so, 

they induce renal dysfunction. Importantly, all the acute rejections responded to typical 

rescue therapy. After reversal of acute rejection, the clinical scenario is most consistent 

with immunologic indifference rather than tolerance. That is to say that the healed 

allograft does not induce sufficient chemotactic signals to attract a significant
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inflammatory infiltrate, thus acute rejection can be prevented also with small amounts 

of maintenance immunosuppression.

When Campath-IH induction was followed by maintenance monotherapy with 

sirolimus, an increased incidence of acute rejections of the humoral type was observed. 

In a small prospective study, five out of 29 patients treated with this 

immunosuppressive strategy experienced an acute humoral rejection that in one case 

resulted in loss of the graft [132]. However, in the trial by Kaufman et al. [144] of 

tacrolimus and MMF, there were no episodes of acute rejection that were humoral in 

origin or macrophage-mediated. In a number of other studies, no histologic details were 

given other than a statement that rejection was graded based on Banff criteria. This 

suggests that, in the presence of a calcineurin inhibitor after induction with Campath- 

IH, humoral rejection is uncommon.

Recently, Gallon et al. [145] compared kidney graft biopsies during an acute rejection 

episode of 12 patients who received Campath-IH induction and MMF and tacrolimus as 

maintenance therapy with those of a control group of transplant patients who did not 

receive induction therapy. They confirmed previous data showing that monocyte 

infiltration is higher among patients who received Campath-IH induction, but they also 

pointed out that T cells in the rejecting grafts displayed more frequently a memory 

phenotype. As previously discussed, these cells might indeed be more resistant to 

Campath-IH, thus potentially representing a hurdle to the induction of tolerance.

5. Tools to monitor the immune response in organ transplant recipients

Monitoring immune reactivity of transplant patients is instrumental for understanding 

the mechanisms underlying tolerance and may aid in the design of strategies for the 

induction of tolerance in transplantation. Moreover, identification of immunological
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tolerance would allow the partial or complete cessation of immunosuppressants in 

selected patients, a highly attractive goal, given the morbidity and mortality associated 

with long-term administration of such therapy. However, despite the pressing need to 

develop tolerance assays, to date, no one has been shown to predict accurately the 

development or presence of donor-specific tolerance after transplantation. Many 

promising candidate assays measure the presence of anti-donor responses or 

proinflammatory responses ex vivo, usually in peripheral blood lymphocytes.

Immune monitoring assays that currently are in development can be divided broadly 

into two major categories: donor antigen specific and antigen non-specific. Donor 

antigen-specific assays measure the response of T and B cells to specific donor 

antigens, whereas antigen-nonspecific assays for the most part determine the phenotype 

of surface markers or functional state of cells with the goal of identifying a pattern that 

is associated with a particular clinical status [146].

Antigen-specific assays fo r  monitoring transplantation immunity and tolerance

Strict definitions of transplantation tolerance include impaired responses to donor 

antigens with maintenance of immune responsiveness to third-party and non-donor 

antigens. Therefore, assays that evaluate donor-specific responses of recipient 

lymphocytes are likely to be informative in transplantation. Assays of T cell reactivity 

that reflect antigen-specific responses include the mixed leukocyte reaction (MLR), the 

limiting dilution (LDA), the enzyme-linked immunospot (ELISPOT) and the trans vivo 

delayed-type hypersensitivity (DTH) assays [146].

Mixed Lymphocyte Reaction (MLR)
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Mixed lymphocyte reaction (MLR) represents one of the first assays developed to 

measure proliferative response of lymphocytes towards HLA mismatched cells. In its 

classical form, peripheral blood lymphocytes from two individuals are mixed together 

in tissue culture for several days; lymphocytes from incompatible individuals will 

stimulate each other to proliferate significantly (measured by tritiated thymidine uptake) 

whereas those from compatible individuals will not; in the one-way MLR test, the 

lymphocytes from one of the individuals are inactivated thereby allowing only the 

untreated remaining population of cells to proliferate in response to foreign 

histocompatibility antigens [147].

In kidney transplant recipients, donor-specific hyporesponsiveness assessed by MLR at 

3 and 6 months after transplantation was associated with better graft outcome at 1 year 

[148]. A recent study in pediatric kidney transplant recipients showed that donor- 

specific hyporesponsiveness was associated with improved graft survival also at 3 years 

and with lower incidente of CAN [149]. Moreover, these data suggest that although 

downregulation of donor-specific reactivity might not be a prerequisite for stable graft 

function it could help identifying recipients who require less immunosuppression [149].

Limiting dilution assays

Limiting dilution analysis (LDA) is a method for determining the frequency of defined 

clones of lymphocytes responding to a specific antigen or with a particular effector 

function [150]. The technique consists of setting up multiple replicates of graded 

dilutions of responder cells (usually patients' unselected peripheral blood lymphocytes 

or purified populations of CD4+ or CD8+ cells) in wells containing a non-limiting 

stimulus (e.g. donor stimulator cells). The readout from a particular well is only
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considered positive if the measure chosen exceeds the mean of controls (cultures 

lacking responder cells) by a factor of three or more. The number of 'negative' wells at 

each dilution of responder cells is determined. As the concentration of the responder 

cells increases, the proportion of 'negative' wells will tend to be less; the relation 

between the number of negative cultures and the mean number of precursors can be 

plotted and a frequency obtained [151].

LDA has been effectively used to predict graft-versus-host disease (GVHD) and 

survival of bone marrow transplantation [152, 153]. In solid organ transplants, the data 

is less abundant, and conflicting data have been reported in the ability of CTLp 

measurement to predict rejection [154-156].

Enzyme-linked immunospot (ELISPOT)

ELISPOT assay is a hybrid that combines features of a MLR and an ELISA assay in 

that responder/recipient T cells are cultured with inactivated stimulator/donor or third- 

party cells in tissue culture plates that are coated with an antibody that is specific for the 

cytokine of interest (many cytokines have been studied, including IFN-y, IL-2, IL-4, IL- 

5, and IL-10). After a fairly brief culture period, the cells are washed away and the 

bound cytokine is detected, using labeled secondary antibodies and an automated plate 

reader. Each spot that is detected represents a cell that had been primed to the 

stimulating antigen(s) in vivo (effector or memory T cells). Thus, this assay measures 

the frequency of previously activated or memory T cells that respond to donor antigens 

by producing a selected cytokine rather than the total amount of cytokine that is 

produced and secreted into supernatants (as measured using an ELISA). This is an 

important advantage because cytokines are captured immediately upon secretion from
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cells, whereas cytokines that are secreted in supernatants may be subject to breakdown 

or dilution or may be used up by other cells [146].

The frequency of IFNy-producing cells detected by ELISPOT has been shown to be low 

in stable recipients of renal allografts and significantly increased in those recipients who 

experienced rejection [157]. In a follow-up study, the mean frequency of T cells primed 

to donor antigens at 6 months was shown to correlate with serum creatinine at 6 and 12 

months independently of acute cellular rejection, delayed graft function, or the 

recipient's panel-reactive antibody [158]. The frequency of donor-reactive cells, primed 

through the direct or indirect pathway, was also shown to be increased in kidney 

transplant recipients with chronic allograft nephropathy [159].

Transvivo delayed-type hypersensitivity (DTH) assay

In this assay, human peripheral blood mononuclear cells are injected with specific 

antigens into either the footpad or the pinna of immunodeficient mice, and the 

magnitude of the resultant swelling after 24 h is taken as an index of the reactivity of 

these cells to that antigen [31]. VanBuskirk AM, et al. described four transplant 

recipients in whom all immunosuppression had been discontinued [160]. Three of these 

patients, who had prolonged drug-free graft survival, were shown to have alloantigen- 

specific hyporesponsiveness in the trans vivo DTH assay. By contrast, the fourth 

patient, who had previously displayed, but lost, operational tolerance, had a strong 

alloantigen-specific trans vivo DTH response [160].

Theoretically, the trans vivo DTH may be useful as a tool for identifying tolerant 

transplant recipients. However, because of the need for mice and that the assay is 

relatively cumbersome, the utility of this assay for routine clinical immune monitoring
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is uncertain. Nevertheless, this assay also is being evaluated in larger, multicenter trials 

and may be helpful mainly as a research tool.

Non antigen-specific assays for monitoring transplantation immunity and tolerance

A number of non-antigen-specific assays that may be useful for post-transplantation 

monitoring of the recipient immune response have been described. Such assays include 

phenotyping of recipient cells, quantifying the response of recipient T cells to 

polyclonal stimulation in vitro and quantification of gene expression.

Phenotyping o f recipient immune cells

Regulatory cells have been shown to be important for controlling immune responses in 

a number of pathogenic disease processes as well as after transplantation. A clear 

relationship between the presence and activity of Treg and clinical transplant outcomes 

has not yet been clearly shown. However, the presence of Treg might theoretically 

represent a marker of immunoregulation in stable transplant patients and phenotypical 

analysis of lymphocytes isolated from transplant recipients could help to identify 

patients who may be given a lower immunosuppression.

Other markers of leukocyte activation might be useful in defining the level of immune 

reactivity, thus helping in shaping immunosuppressive therapy.

T cell responses to polyclonal, non-antigen-specific stimulation

Beside assays evaluating T cell activation in response to allogeneic donor MHC 

molecules, it is possible to quantify T cell aspecific response toward a polyclonal 

stimulus. To this purpose, different assays have been developed. One of the most
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common consists of stimulating blood lymphocytes with phytohemagglutinin in 

ELISPOT plates. The number of spots specific for a target cytokine (usually IFN-y) 

after a short culture are a measure of lymphocyte reactivity [146].

Assays to quantify gene expression

Extensive studies that have been conducted using animal transplant models have used 

PCR analysis of gene expression to show associations between the expression of certain 

genes and the nature of the recipient anti-donor immune response. Recently, the 

measurement of FOXP3 mRNA in urine was reported to correlate with the outcome of 

acute rejection after renal transplantation, with increased expression of FOXP3 

associated with a greater likelihood of reversal and improved graft survival [161].

6. In vitro alloreactivity of transplant patients

Evaluating in vitro alloreactivity of transplant patients represents a major tool for 

understanding mechanisms at the basis of alio immune response and for identifying 

potential ways to promote tolerance. To this purpose, patients with stable graft function 

focused transplant immunologists’ interest the most.

Interestingly, a large fraction of these patients show a low in vitro alloreactivity. 

Different, yet not mutually exclusive, mechanisms of donor-specific 

hyporesponsiveness have been proposed, including regulation and anergy.

The first clinical efforts to study the role and the relevance of CD4+CD25+ Treg in the 

regulation of alloimmune responses in transplant patients has only recently emerged 

[162, 163]. The frequency and functional profile of circulating CD4+CD25+ T cells have 

been evaluated in 10 lung transplant recipients with stable clinical condition and in 11
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with chronic rejection [164]. The frequency of CD4+CD25+ T cells were significantly 

higher in stable transplant patients as compared with that found in patients with chronic 

rejection. In addition, functional evaluation of these cells demonstrated their regulatory 

profile: they were hyporesponsive to conventional T cell stimuli and suppressed the 

proliferation of CD4+CD25‘ T cells [164].

To better clarify the function of CD4+CD25+ Treg in clinical transplantation, their role 

in regulating both the direct and indirect pathway has been evaluated. Salama et al. 

[162] reported on twenty-three renal transplant patients, grouped into two cohorts with 

or without an history of acute rejection. These patients were chosen on the basis of their 

low reactivity to the mismatched donor-derived HLA-DR antigen. By employing 

ELISPOT assay, the authors were able to detect significant increase in the frequency of 

IFN-y-producing cells stimulated by donor-derived mismatched HLA-DR peptides, after 

depletion of the CD25+ subset. This increase was alloantigen-specific, as the response to 

recall mumps antigen was unaffected by CD25 depletion. Notably, this frequency 

increase was associated with the history of graft rejection, and the initial status of: 

alloresponses toward the mismatched alloantigen in vitro. Conversely, Game et al. 

[165] failed to detect any changes in the direct alloreactivitiy specific to donor-type 

alloantigens after CD25 depletion. By screening twelve stable renal transplant patients, 

the authors measured the effects of CD4+CD25+ T cell depletion on alloresponses in the 

direct pathway by a Limiting Dilution Assay (LDA), as well as by ELISPOT for IFN-y. 

In 11 out of 12 patients, no significant increases were detected in the frequency of 

donor-specific T cells after depletion of the CD25+ subset. In one case, the increase 

occurred in both donor- and third party-reactive T cells. Thus, they concluded that 

CD4+CD25+ T cells are not the major regulators responsible for donor-specific direct T
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cell hyporesponsiveness. This conclusion is supportive of their previous experimental 

results showing anergy as one of the mechanisms of hyporesponsiveness of anti-donor 

T cells in the direct pathway [162]. Subsequent data confirmed that hyporesponsiveness 

toward donor antigens in organ transplant patients with stable function is, at least in 

part, sustained by Treg immune regulation of the indirect pathway [166, 167]. Still, the 

role of Treg has subsequently been reported also in the control of direct recognition 

pathway of alloantibodies [168]. Indeed, CD4+CD25+Foxp3+ T cells harvested from 

renal transplant patients are able to suppress both indirect and direct alloproliferation in 

vitro. However, a functional analysis of circulating Treg (by depleting/reconstituting 

experiments) harvested from renal transplant recipients maintained on different 

immunosuppressive regimens showed that these cells mediate donor hyporesponse only 

in a subset of patients [169].

Intriguing data are also emerging about different promoting or inhibiting effects of 

various immunosuppressive agents on Treg number and function. Indeed, chronic 

immunosuppression with CsA in renal transplant patients has been associated with 

lower levels of circulating Treg as compared with SRL immunosuppression, possibly 

due to the inhibitory effect of calcineurin inhibitors on IL-2 pathways, that are required 

for Treg proliferation [114, 170].

Another population of T cells with regulatory effects expressing the CD8+CD28~ 

phenotype was associated with lower rates of rejection and an increased likelihood of 

being weaned effectively from immunosuppression in kidney and liver transplant 

recipients [105]. FOXP3 positive CD8+CD28~ T suppressor (Ts) cells are antigen 

specific, MHC class I-restricted, and interact directly with antigen-presenting cells 

(APC). Ts render antigen presenting cells tolerogenic, inducing the downregulation of
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costimulatory molecules and upregulation of the inhibitory receptors, immunoglobulin

like transcripts (ILT)3 and ILT4. ILT3 and ILT4 display long cytoplasmic tails 

containing immunoreceptor tyrosine-based inhibitory motifs (ITIM), which mediate 

inhibition of cell activation by recruiting tyrosine phoshatase SHP-1. The interaction 

between allospecific CD8+CD28“ cells and epithelial cells is bi-directional since 

tolerogenic ILT3+ILT4+ epithelial cells induce the in vitro differentiation of CD8+ into 

CD8+CD28“ T cells [171, 172]. So far, however, only few groups have focused on their 

role.

Beside Treg, a study by Lechler et al. in human renal transplant recipients indicated that 

T anergy plays an important role in maintaining hyporesponsiveness toward donor 

antigens [165]. They demonstrated that donor-specific hyporesponsiveness can be 

specifically reversed by ex vivo treatment of recipient CD4+ T cells with IL-2 in stable 

renal transplant patients, consistent with the hypothesis that anergy may contribute to 

the decrease in anti-donor frequencies. Conversely, the third-party frequencies were 

unaffected by IL-2 stimulation, also indicating that the increase in anti-donor frequency 

after IL-2 is unlikely to be due to nonspecific stimulatory effect of IL-2 [165].

The finding that IL-2-driven cell division can reverse hyporesponsiveness in direct 

pathway T cells may have relevance to the link between systemic infections such as 

CMV or local infections of the urinary tract and acute rejection episodes. Conceivably, 

infection of the urinary tract can result in production of IL-2 locally or in the draining 

lymph nodes, leading to reversal of the anergic state of the allospecific T cells and 

consequent acute rejection.

Effect of Campath-IH induction on alloreactivity o f transplant patients
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Lymphocyte depletion has long been pursued as a therapeutic strategy to induce 

tolerance since the earliest days of transplantation. Indeed, after depletion, the emerging 

graft-specific T cells were thought to encounter donor antigens in a healed state and to 

be purportedly reinforced to become anergic. Thus, the availability of a relatively safe 

lymphocyte depleting antibody such as Campath-IH offered the opportunity to test this 

hypothesis in the clinical setting. The clinical experience accumulated so far actually 

confirms these pro-tolerogenic properties of peri-operative lymphocyte depletion, as it 

allows prevention of acute rejection with doses of maintenance immunosuppression 

significantly lower than the ones used in conventional regimens. However, studies 

aimed at evaluating the mechanisms at the basis of these immunemodulating effects are 

still few.

It is now clear that sensitivity of various CD52 positive cells to Campath-IH depletion 

is variable, with antigen-experienced memory T cells being less susceptible to depletion 

than naive cells [173]. Consequently, differences in recipient’s allospecific immune 

repertoire at transplantation can cause relative resistance or sensitivity to depletion. 

Recently, Trzonkowski et al. found that after Campath-IH induction the recovery of 

CD8+ T cells was much faster than that of CD4+ T cells [174]. Of note, repopulating 

CD8+ T cells were mainly of immunosenescent CD28'CD8+ phenotype and were able to 

suppress CD4+ T cell proliferation. Intriguingly, the authors hypothesize that expanded 

CD28'CD8+ T cells might compete for 'immune space' with CD4+ T cells suppressing 

their proliferation and therefore delaying CD4+ T-cells recovery [174]. This delay might 

be associated with the clinical outcome as CD4+ T cells, notably CD4+ T effector 

memory cells, were shown to be associated with rejection. These findings, combined 

with those indicating that lymphopenia induces some degree of general homeostatic
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activation, suggest that the specific immune capabilities and requirements for T cell 

immunosuppression during repopulation after Campath-IH induction may vary among 

individuals as a function of their T cell repertoire maturity.

As for the functional profile of repopulating lymphocytes, Bloom et al. [175] compared 

anti-donor and third party responses of T cells isolated from patients receiving 

Campath-IH induction and sirolimus as maintenance monotherapy with those from 

patients treated with basiliximab induction and on maintenance therapy with CsA, 

MMF and steroids. Interestingly, they found that proliferative responses to donor 

antigens were equal between Campath-IH and control group, but T cells from Campath- 

IH patients displayed a greater response to third-party antigens suggesting that 

Campath-IH induction combined with sirolimus monotherapy may promote donor- 

specific hyporesponsiveness. As stated above, however, this immunosuppressive 

approach is burdened by a too high incidence of acute humoral rejections, thus the real 

meaning of donor-specific immunosuppression may in fact vary greatly among different 

patients [132].

7. Campath-IH: still unanswered questions

Most of the experience with Campath-IH in kidney transplantation comes from small, 

non randomized studies. However, the collective experience accumulated so far suggest 

that Campath-IH infusion at the time of transplantation is able to modulate the immune 

system response to the point that acute rejection can be prevented with lower than 

conventional doses of maintenance immunosuppression. Early experiences also 

demonstrated that Campath-IH induction alone is however not sufficient to prevent 

rejection without minimal doses of maintenance immunosuppression.
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The best maintenance therapy after Campath-IH induction still needs to be identified. 

Seminal experience by Caine [125] showed that maintenance immunosuppression with 

low doses of cyclosporine monotherapy are effective in preventing acute rejection and 

similar findings were subsequently reported also with tacrolimus [144]. Conversely, 

sirolimus monotherapy was associated with too high an incidence of acute rejection of 

the humoral type [132]. When mycopheonalate mofetil was associated to sirolimus, the 

incidence of acute humoral rejections dramatically declined [133]. So far, however, 

randomized prospective studies comparing different maintenance immunosuppressive 

regimens after Campath-IH induction are lacking. Moreover, it would be important to 

investigate long-term graft histology changes in patients who received Campath-IH 

induction and different low-dose maintenance immunosuppressive regimens.

Importantly, different maintenance immunosuppressive agents might also exert different 

effects on lymphocyte phenotype and function. Indeed, data suggest that cyclosporine, 

by affecting IL-2 signalling, might impair the proliferative capabilities of Treg [176], 

whereas sirolimus seems to promote their expansion [177]. On the other hand, only 

cyclosporine seems to provide enough immunosuppression to inhibit memory T 

lymphocytes, those cells that are largely spared by Campath-IH [173].

Thus, comparing the effect of different maintenance immunosuppressive regimens after 

Campath-IH induction both on the phenotypic and functional characteristics of 

peripheral lymphocytes and on clinical outcomes might be of utmost importance.
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METHODS

Patients and study design

Twenty-one patients (13 men and 8 women) with end-stage renal disease who 

underwent primary kidney transplant were enrolled under an Ethics Committee- 

approved protocol at the Ospedali Riuniti Bergamo, Italy, following written informed 

consent. Primary cadaver (n=19) and living-related (n=2) donor renal transplant 

recipients were selected based on the following criteria: age 18-70 years, current PRA 

<10%, non-HLA identical to the donor. A negative CDC crossmatch test was required 

prior to transplantation. Eligible patients were allocated to one of the following two 

study groups according to a randomization design: Group 1 (n= 11) was assigned to 

Campath-IH, low-dose sirolimus (SRL) and low dose Mycophenolate mofetil (MMF); 

group 2 (n=10) entered to a regimen with Campath-IH, low-dose Cyclosporine (CsA) 

and low-dose MMF (Figure 1). Randomization was performed at the Laboratory of 

Biostatistics of the Clinical Research Center for Rare Diseases “Aldo e Cele Dacco” o f 

the Mario Negri Institute. Patients consented to serial monitoring of their blood 

leukocyte population phenotype and function. At one year after transplantation, mean 

circulating Treg count was four-fold higher in SRL than CsA-treated cohort. Thus, we 

designed an extension phase of the study. All patients of both cohorts were maintained 

on their original treatment arm and were followed for additional 18 months (up to 

month 30 after transplantation). At 24 months after transplantation, consenting patients 

underwent a per-protocol biopsy. The final goal of this extension phase of the study was 

to assess whether patients on SRL compared to those on CsA, in addition to express 

more Treg cells, were also more effectively protected from the late structural and
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functional changes (as assessed by kidney biopsy evaluation and serial GFR 

measurements) characteristic of chronic allograft injury. All the investigators involved 

in patient care, evaluation of study outcomes - such as histology scores and kidney 

functional parameters and data handling and analyses were blinded to Treg counts.

As a further post hoc analysis, we stratified patients on the basis of Treg counts at 1 

year: those with Treg counts above (Treg+, n=10) or below (Treg’, n= ll) the median 

value. Again, we compared the outcomes in the two groups, in order to evaluate 

whether patients with higher Treg might exert a beneficial effect independently from the 

immunosuppressive therapy employed.
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Schematic representation of study design.
Twenty-one primary kidney transplant Caucasian recipients were enrolled Patients were randomly allocated 
on a 1:1 basis to either low-dose sirolimus (SRL group, n = ll)  or low-dose CsA (CsA group, n=10) added on 
to low-dose MMF and induction therapy with Campath-IEL Immunosuppressive treatments are indicated by 
arrows. At surgery, patients received 500 mg methylpredmsolone, followed by a 30 mg infusion of 
Campath-IH. Methylpredmsolone was also infused on day 1 (250 mg) and 2 (125 mg) post-transplant. Low- 
dose Sirolimus (Low SRL) was started on post-transplant day 1 (4 mg/day p.o., then adjusted to target 
trough levels o f  5-10 ngfml). Intravenous CsA (low CsA) was started soon after surgery (1-2 mg/kg^iay), on 
day 1 post-transplant tv . CsA was shifted to oral CsA (2 mg/kgftwice daily) and then adjusted to achieve 
trough blood concentrations o f 120 to 220 ng/ml in the first month post-surgery, and o f 70 to 120 ng/ml 
thereafter. In both groups, patients were also given MMF at the oral dose o f 500 mg twice daily starting on 
day 1 postoperatively (target M PA concentration: 0.5-1.5 mg/ml).
Phenotypic and functional assessments are outlined on the left. Timing o f each evaluation is marked with a 
cross.

Figure 1
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Immunosuppressive protocol

Campath-IH (Alemtuzumab, Schering Plough, Milano, Italy) was given as a single 

intravenous infusion (30 mg, over 2 hours) intraoperatively on the day of transplant 

(day 0). Thirty minutes prior to the Campath-IH infusion, the patients were 

administered 500 mg methylpredmsolone. Corticosteroids were also administered on 

day 1 (250 mg) and 2 (125 mg) post transplant. Thereafter, patients were free of 

steroids. Patients randomized to sirolimus (Rapamune, Wyeth, Rome, Italy) received 

the drug at the oral dose of 4 mg/day in a single morning administration starting on the 

day 1 after transplant. Sirolimus dosing was adjusted to target trough level of 5-10 

ng/ml range. In the CsA-based group, the drug was started i.v. (at the dose of 1-2 

mg/kg/day) just after surgery and shifted to the oral formulation (Neoral, Novartis 

Pharma, Basel, CH) on day 1 post transplant. CsA doses were adjusted to achieve 

trough blood concentration of 120 to 220 ng/ml in the first month post-surgery, and of 

70 to 120 thereafter. Patients of both groups were also given MMF (Cell Cept, Roche, 

Milan, Italy) at the oral low dose of 250 to 750 mg twice a day starting on day 1 

postoperatively according to total blood leukocyte count.

Postoperative monitoring

After kidney transplantation all patients were managed according to the standard 

protocol in use at our center. Serum creatinine levels, electrolytes, blood cell counts and 

other routine laboratory tests were monitored daily during hospital stay and up to 15 

days after discharge. These parameters were then evaluated twice a week up to 1 month 

post transplant; then every one or two weeks up to 3 months post surgery and thereafter 

at monthly intervals. These evaluations were performed by the central laboratory of the
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Azienda Ospedaliera 0 0 .  RR. Bergamo, Bergamo, Italy. Glomerular filtration rate 

(GFR) as an index of graft function, was estimated at monthly intervals by Walser 

formula [178]. Trough levels of mycophenolic acid were performed every week in the 

first month post-surgery, every 2 weeks during month 2-4, and every month thereafter. 

Trough morning blood sirolimus levels were monitored every 4-5 days in the first 

month post surgery, every 2 weeks during month 2-4, and every month thereafter by 

high-performance liquid chromatography (HPLC). Similarly, trough blood CsA levels 

were measured daily during hospitalization and then every week up to the first month 

post-transplant, every 2 weeks during month 2-4, and every month thereafter. Direct 

measurement of GFR and renal plasma flow (RPF) was performed by the plasma 

clearance of iohexol and of p-aminohippurate (PAH), respectively, every 6 months post

transplantation. At the same time intervals, the pharmacokinetic profile of SRL and CsA 

was also evaluated by high-performance liquid chromatography (HPLC). Trough levels 

of immunosuppressive drug and GFR and RPF were evaluated at the Clinical Research 

Center Villa Camozzi, Ranica (BG), Italy.

CMV antigenemia was monitored serially [179] and intravenous gancyclovir was 

administered when positive peripheral blood leukocyte count was > 20 cells/mm3, and 

continued for at least 1 week after the count had decreased to 0 cells/mm3. In CMV 

antibody negative recipients of graft from CMV antibody positive donors, intravenous 

gancyclovir was started on day 4 post-transplant regardless of CMV antigenemia and 

continued for 14 days. All patients were given standard anti-microbial prophylaxis, 

including trimethoprim-sulfamethoxazole or inhaled pentamidine (monthly) against 

Pneumocystis carinii for 6 months post-transplant.
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At 2 years after transplantation, the two groups of patients underwent per-protocol graft 

biopsy unless medically contraindicated or if the patient refused consent. Rejection 

episodes were, diagnosed on the basis of clinical judgement by the following criteria: 

25% increase in serum creatinine concentration over the previous evaluation in the 

presence of expected drug blood/plasma trough levels, associated with renal ultrasound 

findings excluding urinary tract obstruction or other surgical complications. If clinical 

and/or laboratory signs indicated the occurrence of a rejection episode, renal biopsy was 

performed, unless medically contraindicated. If acute graft rejection was diagnosed, 

methylpredmsolone i.v. pulses were administered. With positive response to treatment, 

the patients remained on the study, but oral steroid was resumed up to a maintenance 

daily dose of 8 mg. If graft rejection was steroid-resistant or a second acute rejection 

episode did occur, the patients were withdrawn from the study and treated with other 

more conventional immunosuppressive regimens.

Graft loss was determined as the time of re-establishment of long-term dialysis therapy 

or death. Delayed graft function was defined as the requirement of at least one dialysis 

session during the first 7 days after transplantation. All patients were followed after 

renal transplant for the incidence of acute rejection, graft loss, graft function, adverse 

events that required treatment or hospitalization, death, and drug blood levels.

Graft function measurement

Serum creatinine concentration was measured using a standard laboratory technique 

(Synchron CX9 ALX Pro, Beckman-Coulter, Milan, Italy).
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Determination o f glomerular filtration rate (GFR) and renal plasma flow (RPF) by 

plasma clearance of iohexol andpara-aminohippuric acid

Plasma concentrations of iohexol and PAH were determined by high performance liquid

chromatography (HPLC) as previously reported [180] with minor modification. Plasma

samples were added 50 pi of 1 ,3 -d im eth y lu ric  acid (200 pg/ml in phosphate buffer, pH

7.4) and deproteinized by adding 750 pi 5% perchloric acid and centrifuging. Twenty

microliters of the supernatant was chromatographed using a System Karat HPLC

equipped with variable wavelength detector (Beckman, Fullerton, CA, USA) and a 250

x 4 mm column packed with Lichrosorb C-18 (Merck, Darmstadt, Germany). Iohexol

and PAH are eluted by a mixture of deionized water/acetonitrile (96:4 by volume,

adjusted to pH 2.5 with phosphoric acid), pumped at a rate of 1.5 ml/min. Internal,

calibration curves of iohexol and PAH are prepared for each set of samples.

The iohexol plasma profile determined for each patient is analyzed by a one-

compartment open model system. All data were fitted by a non-linear regression

2
iterative pharmacokinetic program (data are weighted by 1/y , where y is the observed

value) on a personal computer. The clearance of iohexol was determined using the 

measurements from the timed period 120 minutes after the injection to the last sampling

point, according to a one-compartment model (CLj) by the formula:

CLi= Dose/AUC

(where AUC is the area under the plasma concentration-time curve) and then the value 

was corrected according to Brochner-Mortensen [181], in order to estimate GFR 

(plasma clearance) by using the formula:

CL= 0.990778 x CL] - 0.001218 x CL!2.
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2
GFR value was then normalized by the body surface area (GFR/ 1.73 m ).

PAH clearance was calculated according to the formula:

RPF=Ro/CSSP AH

where Ro is the infusion rate; CSSPAH is the PAH plasma concentration at the steady 

state (i.e. mean of PAH plasma concentrations measured at 150, 160, 170, 180 minutes 

from iohexol injection)

Renal plasma flow, estimated by plasma clearance of PAH, was then normalized by

2
body surface area, and expressed as ml/min/1.73 m .

The plasma profiles were analyzed by one-compartment open model system, and 

calculated clearance of iohexol corrected according to the Brochner-Mortensen formula 

[181]. With the same HPLC analytical run, the plasma concentration of PAH was also 

measured. GFR and RPF values were expressed per 1.73 m of body surface area. 

Further details about the procedure are described in Appendix A.

Phenotypic and functional analyses of peripheral lymphocytes 

Peripheral leukocyte count and lymphocyte phenotype

Peripheral blood cells were monitored serially by flow cytometry. The absolute count of 

each leukocyte population was determined using a single platform method. Twenty pi 

of MultiTEST four-color antibodies (BD Bioscience, San Jose, CA) and 50 pi of 

peripheral blood on K3EDTA were added to bead-containing TruCount tubes. The 

following MultiTest antibodies were used: CD3/CD4/CD8/CD45 and
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CD19/CD16+56/CD3/CD45 (BD Bioscience) to determine the percentages and absolute 

counts of total T (CD3+) CD4+ (CD3+CD4+), CD8+ (CD3+CD8+), natural killer (NK) 

(CD3~CD16+CD56+), and B (CD3“CD19+) lymphocytes. Four hundred and fifty pi of 

FACS Lysing Solution was added and tubes were incubated for 20 minutes at room 

temperature. Samples were analysed using FACSCalibur cytometer and CELLQUEST 

software (BD Bioscience).

T lymphocyte subset immunophenotyping

For T lymphocyte subset immunophenotyping, frozen peripheral blood mononuclear 

cells (PBMC) obtained by Ficoll-Paque gradient centrifugation were used; PBMC were 

incubated with 20 pi of different fluorochrome conjugated murine monoclonal 

antibodies against human CD3, CD4, CD8, CD25, CD28, CD69, CD45RO antigens 

(BD Bioscience). In selected experiments labelling for CD3, CD4, CD25 and Ki-67 (BD 

Bioscience), a nuclear cell proliferation-associated antigen expressed in all active stages 

of the cells cycle, was performed. Thereafter, 200-300 pi of 1% paraformaldehyde was 

added to the cells, which were acquired immediately or stored at 4 °C in the dark for 

acquisition within 24 hours.

The labelling procedures were carried over as BD Bioscience technical data sheets. The 

samples were analyzed by four colour FACScan flow cytometer using the 

CELLQUEST Software (BD Bioscience). For each marker, blank samples with isotype 

matched control antibodies were analyzed.

FOXP3 expression
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After gating for the CD3+ cell population, CD4', CD4+CD25’, CD4+CD25low, 

CD4+CD25hlgh, CD8+CD28' T cells were isolated by cell sorting (FACSAria, BD). The 

purity of sorted cells was >99%. Total RNA was extracted from either PBMC or FACS 

sorted cells by PicoPure RNA isolation kit (Arcturus, Mountain View, CA, USA). Total 

RNA was reverse transcribed to cDNA using Superscript II Reverse Transcriptase 

(Invitrogen, Carlsbad, CA, USA). Quantitative real-time PCR was performed on a 

TaqMan ABI Prism 5700 Sequence Detection System (Applied Biosystems, Foster 

City, CA, USA) with SYBR Green PCR Core reagents. PCR reactions were performed 

in triplicate, with 1 pi c-DNA and SYBR Green PCR Core reagents in a final volume of 

25 pi. Primers were designed with Primer Express 2.0 Software (Applied Biosystems) 

and purchased from Sigma-Aldrich. To amplify human FOXP3 transcript the following 

primers were used, based on Genbank sequence AF277993: for (300nM) 5'-AGC CAT 

GGA AAC AGC ACA TTC -3'; rev (300nM) 5'- GAG CGT GGC GTA GGT GAA A- 

3'. Beta 2-microglobulin served as a housekeeping gene to assess the overall cDNA 

content. Beta 2-microglobulin primers were as follows: for (300nM) 5'-AAG TGG GAT 

CGA GAC ATG TAA GC -3'; rev (300nM) 5’-TCA TCC AAT CCA AAT GCG G - 3\ 

After an initial holding step of 2 minutes at 50°C and 10 minutes at 95°C, samples were 

cycled 40 times at 95°C for 15 seconds and 60°C for 60 seconds. Melting curve analysis 

showed a single dissociation pick either for FOXP3 or beta 2-microglobulin PCR 

products, confirming the specificity of the reactions. No amplification was found in 

control reactions without c-DNA.

Similar amplification efficiencies were demonstrated for both the target and the 

housekeeping gene by analyzing serial cDNA dilutions, showing an absolute value of 

the slope of log input cDNA amount versus A threshold cycle (Ct) (Ct target- Ct
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housekeeping gene) of <0.1. Then the AACt equation was used to compare the FOXP3 

gene expression in each sample with the expression in CD3+CD4+ cells from a pool of 

healthy subjects taken as reference (calibrator). Results were expressed as arbitrary units 

(AU) taking the expression in the calibrator as 1.

Measurement of lymphocyte alloreactivity

Peripheral blood mononuclear cell (PBMC) and spleen cell sampling

Either recipient or living donor PBMCs were isolated from heparin-treated blood. The 

blood was diluted with an equal volume of balanced salt solution and layered carefully 

over Ficoll-Paque PLUS (Pharmacia, Uppsala, Sweden) in a centrifuge tube. After 

centrifugation at room temperature (2400 rpm for 20 min, without brake), the following 

layers will be visible in the column, from top to bottom: plasma and other constituents, 

PBMC, Ficoll-Paque, and erythrocytes and granulocytes which should be present in 

pellet form. This separation allows easy harvest of PBMC using a sterile transfer pipet. 

The cells were then washed with Phosphate Buffer Saline solution (PBS) to remove the 

platelets and centrifuged (1800 rpm for 8 min). PBMC were thereafter resuspended in 

complete RPMI supplemented with L-glutamine and penicillin/streptomycin and 20 % 

heat inactivated pooled human serum type AB (Sigma, St Lous, MO). The cells were 

counted using a hemocytometer, then aliquoted and frozen in the presence of 10% 

DMSO. Subsequently, PBMC were placed in liquid nitrogen vapor.

Deceased donor spleens were cut into small fragments and filtered through a stainless 

steel screen to obtain a total spleen cell suspension. Cell suspension was then filtered 

through a 40 pm cell filter. For erythrocyte lysis, cells were treated with ACK (0.15 M 

NH4CI, lOmM KHCO3, 0.1 mM EDTA, pH 7.4) on ice for 8 minutes, then washed whit
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PBS. Splenocytes were thereafter resuspended in complete RPMI supplemented with L- 

glutamine and penicillin/streptomycin and 20 % heat inactivated pooled human serum 

type AB. The cells were counted using hemocytometer, then aliquoted and frozen in the 

presence of 10% DMSO. Subsequently, splenocytes were placed in liquid nitrogen 

vapor.

Before using in MLR and ELISPOT experiments, spleen cells were depleted of CD2+ 

cells by immunomagnetic cell isolation using Dynabeads CD2 kit (Dynal Biotech, Oslo, 

Norway).

Cryopreservation o f PBMC and splenocytes

Freshly isolated PBMC and splenocytes were resuspended at 1 x 107 viable cells/ml in 

RPMI + 20% serum AB. In each 1.5 ml cryovial were placed 750 pi of this suspension 

and then were added drop by drop other 750 pi of a solution with RPMI + 20% serum 

AB + 20% DMSO.

Cryovials were placed in a Mr. Frosty-style freezing container that has been filled with 

100% isopropanol according to the manufacturer’s instructions. The freezing container 

was thereafter put at -80°C overnight and then cryovials were transferred into liquid 

nitrogen vapor.

Thawing of PBMC and splenocytes

Cryovials were transferred from liquid nitrogen vapor to a 37°C water bath. Then, 

suspension was diluted into warm media and centrifuged at 1800 rpm for 8 minutes. 

The supernatant was decanted, and the tube was gently flicked with a finger to break up 

the pellet. Then, cell were resuspended in 3-5 ml of RPMI + 20% human serum. Cell
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number and viability by Trypan blue staining were assessed thereafter.

Mixed lymphocyte reaction (MLR)

For MLR, lxlO5 recipient PBMC (in 100 pL) were added in triplicate wells in a round- 

bottomed 96-well plate. Irradiated (4000 RAD) stimulator cells (100,000) isolated from 

the donors (either PBMC from living donors or CD2-depleted spleen cells from 

cadaveric donors), from third-party subjects (either PBMC or CD2-depleted spleen 

cells) or from the recipient (PBMC, self control combination) were added to the wells. 

Third-party controls were chosen, to the extent possible, so that the number of 

mismatches for HLA was the same as that between the donor and recipient. Aliquots of 

responder PBMC were also incubated with medium alone (negative controls). The 

plates were then incubated for 6 days at 37°C, 5% CO2 and were pulsed with 1 pCi [3H] 

thymidine during the last 16 h. Thereafter, cells were harvested using an automated 

harvester. [3H] thymidine incorporation by T cells was used as a parameter of cell 

proliferation and measured by a beta-counter. The mean counts per minute (cpm) were 

determined and the stimulation index (SI) was calculated by the ratio of the cpm 

obtained in the presence of allogeneic combinations (donor or third party) to the cpm in 

the control wells (self combination).

Enzyme-linked immunosorbent spot (ELISPOT) assays

ELISPOT assays were performed using BD ELISPOT Human IFNy reagents. 

Responder PBMCs from the recipient were placed in 96-well ELISPOT plates 

(Millipore, Billerica, MA) pre-coated with capture anti-IFN-y at the concentration of 

300,000 per well. Irradiated (4000 RAD) stimulator cells (300,000) from the donors
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(either PBMC from living donors or CD2-depleted spleen cells from cadaver donors), 

from third-party subjects (either PBMC or CD2-depleted spleen cells) or from the 

recipient (PBMC, self control combination) were added to the wells and the plates were 

incubated overnight at 37°C, 5% CO2. Aliquots of responder PBMC were also 

incubated with medium alone (negative controls) or in the presence of 10 pg/mL 

phytohemagglutinin (PHA, positive controls). Each combination was run in triplicate 

wells. The assays were then carried out according to the manufacturer’s instructions. 

The resulting spots were counted on a computer-assisted Immunospot image analyzer 

(Aelvis Elispot Scanner system). Results are the mean value of IFN-y spots/300,000 

recipient PBMC stimulated with donor or third party cells after subtracting IFN- y spots 

in negative controls (usually 2 or less).

Renal transplant per-protocol biopsy 

Renal biopsy procedure

Patients were admitted to our Transplant Center the day before the procedure. Those on 

antiplatelet or anticoagulant therapy were asked to interrupt this therapy one week 

before the day planned for the procedure. Coagulation profiles and platelet counts were 

evaluated at the admittance and those patients showing abnormalities did not undergo 

the biopsy. Also patients with bleeding time higher than 10 minutes did not underwent 

the procedure. All patients were informed about the potential risks of the procedure and 

signed an informed consent approved by the Ethical Committee of our Hospital.

The biopsies were all performed by the staff radiologists with automated biopsy gun 

under sonographic guide. The Biopty gun, a sterilized spring-loaded instrument, was 

fitted with an 18-gauge needle, and the tip of the needle was placed just inside the renal
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capsule of the lower pole of the transplanted kidney. Real-time sonographic guidance 

was used to determine placement. The needle excursion of 2.3 cm after firing was taken 

into account during needle positioning. After the biopsy, the tissue cylinder was 

inspected under the reflected light microscope. The biopsy was repeated if this check 

failed to reveal glomeruli in the tissue cylinder. Generally, a single biopsy was enough.

Kidney biopsy processing

The kidney samples of patients were left in Dubosq-Brazil fixative for four hours. After 

the fixation step, the samples were dehydrated in growing concentrations of ethanol (50, 

70, 90, 100 % for five minutes each). Then, after one hour in toluene, the samples were 

collected into the small stainless steel base molds (Electron Microscopy Sciences, 

Rome, Italy), completely immersed into the paraffin and left for two hours at 60 °C. At 

this temperature the paraffin is in the liquid state and it can infiltrate the tissue. After the 

two hours, the samples were embedded in paraffin using special plastic rings and left at 

room temperature to permit the solidification of the paraffin. Finally, the kidney, 

samples included into the blocks of paraffin were cut by microtome (LKB, Bromma, 

Historange Microtome) or stored at room temperature.

Staining protocol

Dubosq-Brazil fixed, paraffin embedded kidney sections (3 pm) were deparaffmized, 

rehydrated and incubated for 30 minutes with 0.3% H2O2 in methanol to quench 

endogenous peroxidase. Tissues were treated with proteinase-K (20 pg/ml, Sigma- 

Aldrich, Milan, Italy) for 10 minutes at 37°C, followed by microwave (twice for 5 min 

in citrate buffer 10 mM, pH 6 at operating frequency of 2450 MHz and 600-W power
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output) and citrate buffer (15 min) incubations for antigen retrieval. A polyclonal 

antibody against human C4d (C4dpAb, Biomedica, Vienna, Austria) was diluted 1:50 

and added overnight at 4°C. Subsequent steps included incubations with the secondary 

antibody (biotinylated goat anti-rabbit IgG, Vector Laboratories), avidin-biotin 

peroxidase complex (ABC) solution, and finally the development with 

diaminobenzidine. The sections were then counterstained with Harris hematoxylin 

(Biooptica, Milan, Italy). A set of biopsies comprising samples from each patient group 

was processed and developed simultaneously. Negative controls were obtained by 

omitting the primary antibody on a second section present on all the slides.

Histology injury scoring

Chronic allograft injury was diagnosed where diffuse tubular atrophy or diffuse 

interstitial fibrosis were documented alone or in association with interstitial 

inflammation, arteriosclerotic lesions, or glomerulopathy [34, 182, 183].

Semiquantitative analysis of changes was performed according to chronic allograft 

damage index (CADI) [184], by an investigator who was blinded to the clinical status of 

the patients. The CADI score is the sum score of six histology parameters, including (a) 

interstitial inflammation and (b) fibrosis, (c) tubular atrophy, (d) mesangial matrix 

increase and (e) sclerosis of the glomeruli, and (f) intimal proliferation of the blood 

vessels. Each individual parameter was scored from 0 to 3. Evaluation and scoring of 

C4d expression was also done. The signal intensity at glomerular and tubulo-interstitial 

level was graded on a scale of 0 to 3 (0, no staining; 1, weak staining; 2, staining of 

moderate intensity; 3, strong staining).
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For quantification of histology changes in each biopsy, at least three stained slides were 

used: one with hematoxylin-eosin, one with Masson’s trichrome, and one with periodic 

acid-Schiff staining.

Monitoring of immunosuppressive drug levels 

Mycophenolate mofetil

Trough levels of mycophenolic acid were assayed every week in the first month post

surgery, every 2 weeks during month 2-4, and every month thereafter.

Total and free MPA plasma concentrations were measured by HPLC, introducing some 

modifications to already published methods [185]. MPAG was estimated as MPA after 

hydrolysis mediated by p-glucuronidase.

Sirolimus

Sirolimus levels were monitored every 4-5 days in the first month post surgery, every 2 

weeks during month 2-4, and every month thereafter by high-performance liquid 

chromatography (HPLC). For the preparation of in-house QCs and calibration 

standards, different pools of whole blood samples from 15 healthy volunteers was used. 

In addition, subsequent to signing of an informed consent form, EDTA anticoagulated 

whole blood samples were obtained from 30 kidney, heart and liver transplant recipients 

not given SRL.

Standard samples of SRL (purity ranging from 97 to 98%, according to different 

batches) and 32-O-desmethoxyrapamycin (internal standard, IS) were generous gifts 

from Wyeth-Ayerst Research Laboratories (Princeton, NJ) and furnished with adequate 

information on drug source, lot number, expiration date and certificate of analysis.
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Cyclosporine

Trough blood CsA levels were measured daily during hospitalization and then every 

weeks up to the first month post-transplant, every 2 weeks during month 2-4, and every 

month thereafter. CsA was measured by HPLC with UV detection, using the method 

from Kahn et al [186], with some modifications, as described in the “Solution and 

Instruments” section.

Sample size and statistical analyses 

Sample size

This is mainly an immunological, clinical research project, so no assumption was made 

on the power of our present study to detect differences in PBMC phenotypic and 

functional characteristics and in clinical outcome variables between the two groups of 

transplant patients who received, after Campath-IH induction, maintenance therapy 

with either low-dose SRL or CsA both combined with low-dose MMF. The rationale for 

this approach was that this was a pilot, explorative study and that outcome data might 

have provided the background for designing future adequately powered trials to 

definitely assess the role of different immunosuppressive strategies on the number and 

in vitro function of Treg and the impact of these cells on clinical outcomes of kidney 

transplant patients.

Statistical analyses

Baseline characteristics of patients were compared by % test or by t test as appropriate. 

SRL and CsA groups were compared for factors that might affect the outcome, 

including recipient gender, age at transplant, cold ischemia time, DGF and the degree of
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Human Leukocyte Antigen (HLA) mismatch. Biopsy data were analyzed by the 

nonparametric Kruskal-Wallis test for multiple comparisons.

Clinical and biochemical parameters at different time points post transplantation were 

compared by means of analysis of covariance (ANCOVA) including the corresponding 

value at 6 months in the model. Patient and graft survival were compared by the log 

rank test. The GFR and RPF slopes were calculated on the basis of values measured at 

6, 12, and 18 months after transplant. The statistical significance level was defined as p 

<0.05. Calculations were performed using SAS v.9 and MedCalc (Gent, Belgium) 

software.
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SOLUTIONS AND INSTRUMENTS

PBMC isolation and storage 

Ficoll

Ficoll-Paque™ PLUS is a sterile, ready to use density gradient medium for purifying 

lymphocytes in high yield and purity from small or large volumes of human peripheral 

blood, using a simple and rapid centrifugation procedure.

Ficoll-Paque PLUS is an aqueous solution of density 1.077 + 0.001 g/ml containing 5.7 

g Ficoll 400 and 9 g sodium diatrizoate with 0.0231 g calcium disodium 

ethylenediamintetraacetic acid in every 100 ml. Ficoll 400 is a synthetic high molecular 

weight (Mw 400 000) polymer of sucrose and epichlorohydrin which is readily soluble 

in water. The molecules of Ficoll 400 are highly branched, approximately spherical and 

compactly coiled with a Stokes’ radius of a about 10 nm. Ficoll 400 has a low intrinsic 

viscosity (17 ml/g) compared with linear polysaccharides of the same molecular weight 

(cf. dextran Mw 400 000: /h/ 49 ml/g) and solutions of Ficoll 400 have low osmotic 

pressures.

Phosphate buffered saline (PBS)

Phosphate buffer saline (PBS) is a buffer solution containing sodium chloride, sodium 

phosphate and potassium phosphate that helps to maintain a constant pH. It is isotonic 

and non-toxic to cells. We started from a 10X Concentrate without Ca and Mg (GIBCO) 

that, when diluted to a IX concentration, yielded a phosphate buffered saline solution 

with a phosphate buffer concentration of 0.01 M and a sodium chloride concentration of 

0.154 M. The solution pH was 7.4.
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RPMI medium

RPMI medium with L-glutamine (Sigma-Aldricht) plus 20% human serum was used as 

cell medium.

Human serum

For PBMC and splenocyte cultures, human serum (Sigma Aldricht) from a pool of AB 

males was used instead of fetal calf serum to minimize the potential ractivity of the 

cells. Serum was obtained by a pool of healthy donors. Each donor was tested for and 

found non-reactive for Hepatitis B& C and non-reactive for Human Immunodeficiency 

Virus (HIV) antibody by ELISA. Serum was added at a 20% concentration into RPMI 

solution. Before use, the complement serum was inactivated by heating for 56°C for 30 

minutes.

Dynabeads CD2 kit

The Dynabeads CD2 kit (Dynal Biotech, Oslo, Norway) is intended for magnetic 

isolation or depletion of CD2+ cells. Dynabeads are mixed with the sample in a tube. 

The Dynabeads will bind to the target cells during a short incubation, and then the bead- 

bound cells are separated by a magnet. Dynabeads CD2 are provided in phosphate 

buffer saline (PBS), pH 7.4, containing 0.1% bovine serum (BSA) and 0.02% sodium
o

azide. Dynabead concentration is 4 x 10 /ml.
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Dimethyl sulfoxide (DMSO)

DMSO is a solvent used as a cryoprotectant. Added to cell media, it prevents the cells 

dying as they are frozen. Cells were suspended in standard media plus serum and 10% 

DMSO, put in a Freezing container to -80°C and then, 24 hours later, placed into liquid 

nitrogen vapor.

5100 Cryo 1°C Freezing Container, "Mr. Frosty ”

This device provides the critical, repeatable -l°C/minute cooling rate required for 

successful cell cryopreservation and recovery. It requires 100% isopropyl alcohol and 

mechanical freezer. Cells were frozen with this freezing container to -80°C and then 

were placed into liquid nitrogen vapor.

PBMC phenotyping 

TruCount Tubes

Each TruCOUNTTube contains a lyophilized pellet that dissolves during sample 

preparation, releasing a known number of counts of lymphocyte subsets. By gating the 

bead population during analysis, it is possible to calculate subset absolute counts.

FACS Lysing Solution

FACS Lysing Solution (Becton Dickinson), 10X concentrate, is provided as 100 mL of 

a proprietary buffered solution containing <15% formaldehyde and <50% diethylene 

glycol. Before use, the solution is diluted 1:10 with deionized water. The prepared 

solution is stable for 1 month when stored at room temperature.
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Monoclonal antibodies

Murine monoclonal antibodies against human antigens were used. For leukocyte subset 

counting the Multitest antibodies (BD Bioscience) CD3/CD4/CD8/CD45 and 

CD 19/CD 16+56/CD3/CD45 were used. The following florochromes were used for 

different T cell subset antigens: CD3 PerCP, CD4 FITC (or APC-Cy7, according to the 

different combinations of the other antibodies), CD8 PE (or APC-Cy7), CD25 PE, 

CD28PE, CD69 FITC, CD45RO PE, Ki-67 FITC (used after cell permeabilization). 

Isotype mouse IgGi,1c (FITC, APC-Cy7, PerCP, or PE) and IgG2aPE were used as 

controls.

All the antibodies were purchased from BD Bioscience.

BD FACS Aria

The BD FACSAria flow cytometer is an automated multicolor flow cytometry system 

that performs both cell phenotype analysis and sorting.

BD CellQuest software

BD CellQuest software allows to acquire and analyze data from flow cytometer on a 

Macintosh® computer. Working in the CellQuest Experiment window, it is possible to 

create several types of plots, including multicolor contour plots and overlaid histograms, 

and generate statistics for dot plots, histograms, density plots, and contour plots. We 

used this software both for analyzing data on the phenotypic profile of PBMC and to 

sort them.
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FOXP3 expression 

PicoPure RNA isolation kit

The PicoPure RNA Isolation Kit (Arcturus, Mountain View, CA, USA) was developed 

to efficiently isolate total RNA from a small number of cells. The isolation protocol 

consists of extracting cellular RNA, then loading the extract onto the MiraCol™ 

Purification Column to bind the RNA. After washing away impurities, the RNA elutes 

in only 10 pi of buffer, ready for use.

Total Reagents and Supplies in kit:

- Conditioning Buffer

- Extraction Buffer

- 70% Ethanol

- Wash Buffer

- RNA purification columns with collection tubes

- Microcentrifuge tubes

Superscript II Reverse Transcriptase

Superscript II Reverse Transcriptase (Invitrogen, Carlsbad, CA, USA) is an engineered 

version of M-MLV RT with reduced RNase H activity and increased thermal stability. 

The enzyme is purified to near homogeneity from E. coli containing the modified pol 

gene of Moloney Murine Leukemia Virus. The enzyme can be used to synthesize first- 

strand cDNA at higher temperatures than conventional M-MLV RT, providing 

increased specificity, higher yields of cDNA, and more full-length product. It can 

generate cDNA up to 12.3 kb.

Components of the kit:
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- Superscript™ II RT

- 5X First-Strand Buffer (250 mM Tris-HCl, pH 8.3 at room temperature, 375 mM

KC1; 15 mM MgCl2)

- 0.1 MDTT

SYBR® Green PCR Core Reagents kit

Includes AmpliTaq Gold® DNA Polymerase, AmpErase® UNG, dNTP Mix with 

dUTP, SYBR® Green PCR Buffer and mM MgC12 Solution to perform real time PCR 

analysis. Direct detection of PCR product is monitored by measuring the increase in 

fluorescence caused by the binding of SYBR Green dye to double-stranded (ds) DNA.

TaqMan ABI Prism 5700 Sequence Detection System

TaqMan ABI Prism 5700 Sequence Detection System (Applied Biosystems, Foster 

City, CA, USA) is a real-time PCR machine which enables detection and quantification 

of PCR products in real-time using either SYBR green reagents or Taqman probes. It is 

possible to monitor PCR reactions cycle by cycle enabling quantification and rapid 

analysis of many different targets.
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PBMC functional assays

MLR

Tritiated thymidine

One jiCi titriated thymidine (Amersham) was added to the MLR cultures 16 h before 

harvesting. It was used under the standard safety rules for work with radioactive 

compounds.

ELISPOT

ELISPOT kit

The enzyme-linked immunospot (ELISPOT) assay is a powerful tool for detecting and 

enumerating individual cells that secrete a particular protein in vitro. Based on the 

sandwich enzyme-linked immunosorbent assay (ELISA), the ELISPOT assay derives its 

specificity and sensitivity by employing high affinity capture and detection antibodies 

and enzyme-amplification. The sensitivity of the assay lends itself to measurement of 

even very low frequencies of analyte-producing cells (eg, 1/300,000).

The ELISPOT kit (BD) included:

- 2 Pre-coated ELISPOT plates

- Biotinylated Detection Antibody

- Enzyme Conjugate (Streptavidin-HRP)

- Assay Diluent

- Wash Concentrate (20x)

- P B S ( l O x )

- AECSubstrate Buffer
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- AECChromogen

Aelvis Elispot Scanner system

The A.EL.VIS (Automated ELispot Video-analysis System) ELISPOT analyser is an 

automated instrument for the analysis of ELSPOT data. When scanning a 96 well 

membrane or foil the plate image is transferred to the connected PC using intelligent 

image analysis algorithms to separate the single wells. The extracted well images are 

individually stored and subsequently analysed by EliAnalyse software. The software is 

theoretically divided in two parts. Firstly the acquisition mode enables definition of data 

storage, secondly the analysis mode.

Processing of biopsy samples 

Fixative for light microscopy

The fixative used for light microscopy, Dubosq-Brazil, was prepared adding 150 ml of 

ethanol at 80 % (diluted in water) to 60 ml of formaldehyde at 40 % (commercially 

available at this percentage by Carlo Erba Reagenti) and to 15 ml of acetic acid glacial 

(Carlo Erba Reagenti). Finally, 1 g of picric acid (Carlo Erba Reagenti, Milan, Italy) 

was added to the solution.

Solutions for Hematoxylin-eosin staining

Haematoxylin:

- Haematoxylin 6.0 g

- Alluminium Sulphate 4.2 g

- Citric Acid 1.4 g
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Sodium Iodate 0.6 g

- Ethylene Glycol 269 ml

- Distilled Water 680ml 

Eosin:

- Eosin Yellowish 1.0 g 

Distilled Water 100 ml

Scott's tap water:

In a beaker containing 1L distilled water, 20g sodium bicarbonate and 3.5g 

magnesium sulphate were added and mixed thoroughly to dissolve the salts. 

Using a filter funnel, the solution was transferred into a labelled bottle.

Solutions for Masson’s trichrome staining

Bourn’s Solution:

- Picric Acid, saturated aqueous solution 75.0 ml

- Formaldehyde, 37-40% 25.0 ml

- Glacial acetic acid 5.0 ml 

Weigert’s Iron Hematoxylin:

Solution A

- Hematoxylin 10.0 g

- Alcohol, 95% 1,000.0 ml 

Solution B

- Ferric chloride, 29% aqueous solution 20.0 ml

- Distilled water 475.0 ml

- Glacial acetic acid 5.0 ml
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Working Solution

- A mix of equal parts of solutions A and B 

Biebrich Scarlet-Acid Fuchsin Solution

- Biebrich scarlet, 1% aqueous solution 360.0 ml

- Acid fuchsin, 1% aqueous solution 40.0 ml

- Glacial acetic acid 4.0 ml 

Phosphomolybdic-Phosphotungstic Acid Solution

- Phosphomolybdic acid 25.0 g

- Phosphotungstic acid 25.0 g

- Distilled water 2,000.0 ml 

Aniline Blue Solution

- Aniline Blue 25.0 g

- Glacial acetic acid 20.0 ml 

1% Acetic Acid Solution

- Glacial acetic acid 1.0 ml

- Distilled water 99.0 ml

Solutions for periodic acid-Schiff staining

0.5% Periodic Acid Solution:

Periodic acid 0.5 g 

Distilled water 100 ml 

Schiff Reagent

Mayer’s Hematoxylin Solution
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Monitoring of immunosuppressive drug levels 

Mycophenolic acid (MPA)

Human plasma, chemicals and materials

Calibration standards and QCs were prepared using pools of plasma samples from 15 

healthy volunteers and from 20 kidney and liver transplant recipients not given MMF or 

EC-MPS (used to test potential concomitant medications).

Standards of MPA and MPAG were initially donated by Roche Pharmaceuticals (Palo 

Alto, CA). After 2002, MPA was bought from Sigma (St Louis, MO), together with p- 

toluic acid (PTA, used as internal standard). All the batches of MPA have a purity > 

98% and were provided with the certificate of analysis. Acetonitrile, methanol were 

HPLC grade and were purchased by BDH (UK), all other chemicals were from Sigma. 

HPLC quality deionized water was prepared using Milli Q50 (Millipore, Bedford, MA). 

Bond-Elut C l8, 200 mg, 3 ml cartridges were obtained from Varian (Leini, Italy).

Stock solutions, calibrators, and quality control standards

Stock solutions, containing 10, 100 mg/L of MPA and 50 mg/L PTA were prepared in 

methanol and stored at 4°C until use. Aliquots of the stock MPA solutions were diluted 

with drug free plasma to give 6 calibrators (0.1, 1, 5, 10, 20 and 40 MPA mg/L). Two 

in-house QCs were prepared in drug-free plasma with a final concentration of 2 and 20 

mg/L MPA. Calibrators and QCs were stored at -20°C until use.
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Sample preparation

Over 95% of MPA is bound to albumin, whereas only a limited amount of the drug is 

distributed within blood cells [187]. Therefore, plasma is the matrix of choice for the 

assessment of MPA levels in the blood.

Five hundred microliters of plasma was mixed with 1.5 mL of water, 50 pL of internal 

standard and 750 pL of 0.1 N HC1. The mixture was applied to a C l8 solid phase 

extraction column pre-conditioned with 2 mL of methanol followed by 2 mL of water. 

The column was dried and then eluted with 1 mL of methanol/0.1 N acetate buffer 

(80:20 v/v) pH 4. Samples were collected in HPLC vials.

HPLC apparatus and conditions

A System Gold HPLC equipped with a model 166 UV detector set at 254 nm and a 

model 507 autosampler (Beckman, Fullerton, CA) were used. The autosampler was kept 

at room temperature, and a 50 pL aliquot sample was injected. The separation was 

carried out at room temperature using a C l8 column, 250 x 4.6 mm, 5 pm (Hypersil 

BDS, Hewelett Packard, Ge). A guard column (LiChrosper 100 RP-18, 5 pm) was 

placed just before the column. The mobile phase for elution of the column was 45% 

acetonitrile and 55% aqueous phosphoric acid (0.05%), at flow rate of 0.8 mL/min. Data 

were collected and processed using a 32 Karact software for HPLC system (Beckman, 

Fullerton, CA).

Assay validation

Method performance was determined in accordance with the FDA Guidance for 

Bioanalytical Methods Validation for Human Studies.
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Sirolimus

Stock solutions, calibrators and quality control standards

Stock solutions containing 50 and 100 pg/mL were appropriately prepared in methanol 

for SRL and IS, respectively. SRL working solutions of 100, 500, and 2000 ng/mL were 

prepared in 50/50 methanol/water, and for IS a working solution of 1000 ng/mL was 

prepared in methanol. All the solutions were stored at -20 °C.

Taking into account the therapeutic range of SRL trough levels, calibrator samples were 

prepared mixing appropriate volumes of SRL from stock working solutions to EDTA 

anticoagulated human whole blood from healthy volunteers to achieve different 

concentrations from 2.5 to 60 ng/mL (2.5, 5, 10, 15, 20, 40, and 60 ng/mL). Calibrators 

were prepared by diluting each spiking solution to 10 ml with K3EDTA control human 

whole blood in 10 ml volumetric flasks. The flasks were stopper and shaken to mix. 

Pools are measured into 1 mL aliquots in polypropylene tubes and frozen at -20°C until 

use. Three in-house QCs, representing the low, medium and high concentrations, were 

prepared in drug-free whole blood with a final concentration of 3, 10 and 30 ng/mL 

SRL. Calibration, QCs and reference standards were aliquoted and stored at -20°C until 

use.

Sample preparation

SRL is extensively distributed in red blood cells, independently of concentration and 

temperature [188], so we decided to use whole blood as the preferred matrix for method 

validation.
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One millilitre volume of whole blood sample was pipetted into disposable 

polypropylene tubes and supplemented with 50 pL of IS solution (1000 ng/mL). The 

tubes were vortex-mixed for 40 seconds; 1.5 mL of zinc sulphate solution was first 

added followed by a 1.5 mL acetone. The tubes were vortex-mixed for a further 50-60 

seconds and centrifuged at 3000 g for 5 minutes at room temperature. The clear 

supernatant was poured into another polypropylene tube, diluted with 2 mL distilled 

water, mixed and loaded onto a Bond-Elut cartridge (preconditioned with 1 mL 

acetonitrile followed by 1 mL methanol and finally by 1 mL distilled water) placed on a 

Vac Elut 20 Manifold (Varian). The Bond-Elut cartridges were washed with 1.5 mL of 

70% methanol/30% water. In each step the solvent was allowed to drop out from the 

cartridge. Then 500 pL hexane was added and the column was allowed to go dry under 

vacuum. SRL and IS were eluted in polypropylene tubes with 1 mL acetonitrile. In all 

steps the flow rate did not exceed 1 mL/min. The eluate was taken to dryness either 

under a gentle nitrogen stream in a water bath at 37 °C or in a model RC 10.09 

centrifugal evaporator (Jouan, Saint-Herblain, France) and the residue was dissolved in 

0.15 mL of water-methanol-acetonitrile (40/30/30) and transferred in a polypropylene 

vial. Internal calibration curves for SRL were prepared for each set of samples. At least 

60 samples (including controls and calibration curve) can be extracted in 4 h and 

processed by HPLC in less than 20 h.

HPLC apparatus and conditions

A System Gold HPLC equipped with a model 166 UV detector set at 278 nm and a 

model 508 autosampler (Beckman, Fullerton, CA) with the sample tray kept at 4 °C, 

were used. A 90 pL aliquot of sample was injected onto reversed-phase C l8, 5 pm,
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guard column (Alltima, 7.5 x 4.6 mm, Alltech, Sedriano, Milan, Italy) connected to a 75 

x 4.6 mm column packed with Ultrasphere C8, 3 pm (Beckman) heated at 50 °C by a 

Model 880 oven (Spark-Holland, Emmen, The Netherlands) and was eluted by a 

mixture of distilled water/methanol/acetonitrile (34/30/36) pumped at a rate of 1 

ml/min. Due to the high percentage of the organic phase that may dry off, resulting in 

increased retention time, the mobile phase was prepared every one or two days before 

analysis, filtered and degassed under vacuum using a polycarbonate 0.4-pm membrane. 

An in-line filter (0.5 pm) was placed between the autosampler and the column. Data 

were collected and processed using a 32 Karat software (Beckman, Fullerton, CA).

Method Validation

Method performance was determined in accordance with the FDA Guidance for 

Bioanalytical Methods Validation for Human Studies, as described above.

For the Proficiency Test initially 78 blinded samples, packaged as 5 batches of samples 

each, were analyzed. In addition, ongoing proficiency was tested by analyzing 3 blinded 

samples from the Reference Laboratory every month.

Cyclosporine

Human whole blood, chemicals and materials

Calibration standards, QCs and blanks were prepared using pools of whole blood 

samples from healthy volunteers (n=15) and from kidney (n=10) and liver (n=10) 

transplant recipients not given CsA.

CsA and cyclosporine D (IS) were kindly supplied by Novartis Pharma (Basel, CH), 

with a declared purity of 100%. Methanol and acetonitrile (BDH, UK) were of HPLC
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grade. All other solvents were of analytical grade (Sigma, St Louis, MO). Deionized 

water was prepared using a Milli Q50 system (Millipore, Bedford, MA).

Stock solutions, calibrators and QCs

Stock solutions containing 100 mg/L of CsA and IS, as well as working solutions (10 

mg/L for CsA and 20 mg/L for IS) were prepared in methanol. For calibration of the 

analytical system appropriate volumes of CsA from stocked working solutions were 

added to 1 mL EDTA anticoagulated human whole blood to achieve 7 different CsA 

concentrations (20, 50, 100, 200, 500, 1000 and 2000 ng/mL). QCs were prepared 

spiking known volumes of CsA from working solutions to drug free whole blood in 

order to obtain three concentrations (30, 300, 900 ng/mL CsA). CsA solutions, 

calibrators and QCs were stored at -20°C.

Sample preparation

To one mL of peripheral vein blood samples we added IS (50 pL), hydrochloric acid

0.2N (1 mL), and heptane (1 mL). The mixture was vortexed for 10 sec to lyse the 

blood cells. Subsequently we added diethyl ether (8 mL) and each tube was tightly 

capped. Extraction of CsA was effected on a reciprocal shaker. The organic phase was 

clarified by centrifugation for 15 min at 3000 RPM. The ether layer was decanted into a 

clear glass tube and washed with sodium hydroxide 0.1 N (lmL). Following a second 

centrifugation for 10 min, the ether layer was transferred into a clean glass tube and 

evaporated to dryness under a gentle nitrogen stream in a water bath at 37°C. The 

residue was redissolved in 200 pL of the mobile phase and washed by vortexing for 30
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sec with heptane (1 mL). The sample was finally centrifuged (10 min at 3000 RPM) and 

the lower aqueous layer transferred in a polypropylene vial.

HPLC apparatus and conditions

A system Gold HPLC with a UV detector set at 214 nm and a model 580 autosampler 

(Beckman, Fullerton, CA) was used. A 50 pL of aqueous layer was injected into a C-8 

HPLC column (150 x 4.6 mm, 5 pm, Beckman) heated at 72°C by a LC oven 101 

(Perkin Helmer, Milan). Isocratic liquid chromatography separation was carried out 

using a mobile phase of water/methanol/acetonitrile (27/32/41) at a flow rate of 1 

mL/min. Data were collected and processed using a 32 Karact software (Beckman).

Method Validation

Method performance was determined in accordance with the FDA Guidance for 

Bioanalytical Methods Validation for Human Studies, as described above.

Since July 2003, this method is enrolled in the Cyclosporine international Proficiency 

Testing Scheme. Ongoing proficiency is tested by analyzing 3 blinded samples from the 

Reference Laboratory every month.
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RESULTS (I Part)

1. Phenotypic and functional profiles of peripheral blood mononuclear cells 

(PBMCs) in kidney transplant patients who received Campath-IH induction and 

low-dose SRL or low-dose CsA, both in addition to low-dose MMF in a steroid-free 

regimen.

Introduction

The best maintenance therapy to combine with Campath-IH induction is unknown and 

the immune regulatory mechanisms that allow prevention of acute rejection with lower 

than conventional doses of maintenance immunosuppression after Campath-IH 

induction are still unclear. Notably, different maintenance immunosuppressive regimens 

might differently affect phenotype and function of peripheral lymphocytes.

Thus, in the first part of the study, we aimed to define the phenotypic and functional 

profile of peripheral lymphocytes from kidney transplant patients given Campath-IH;; 

induction and low doses of SRL or CsA, both combined with low doses of 

mycophenolate mofetil as maintenance immunosuppression.

Specific aims

Specific aims of the first part of the project were:

i) To assess the depleting effect of a single 30 mg dose of campath-lH on 

peripheral leukocytes in kidney transplant recipients;
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ii) to study the impact of SRL and CsA, each combined with MMF on the

recovery of different leukocyte subsets in kidney transplant patients after 

Campath-IH induction;

iii) to evaluate whether the two immunosuppressive regimens differently

affected Treg number and function after Campath-IH induction;

iv) to measure T cells alloreactivity in kidney transplant patients who received

Campath-IH induction and maintenance immunosuppression with low-dose 

MMF and low-dose SRL or CsA;

v) to evaluate whether potentially reduced alloreactivity against donor antigens

depends on the presence of Treg or on anergy.

Results

Demographic and baseline clinical characteristics o f patients included in the study

Table 1 shows donors’ and recipients’ baseline characteristics, cold and warm ischemia 

time, and HLA -A, B and DR mismatches of patients included in the study and 

randomized to maintenance therapy with SRL or CsA therapy. All patients received 

kidney transplant from deceased donors, except for two of those on CsA whose donors 

were living-related. Donors’ age, weight, and gender distribution were very similar 

between the two groups. Cold ischemia time for grafts from deceased donors ranged 

from 14 to 18 hours, whereas warm ischemia time was around 30 minutes in both 

groups. Recipients’ age, weight, and gender distribution were similar as well between 

the two groups and between donors and recipients of the same randomization arm. The 

number of donor-recipient HLA mismatches was virtually identical between SRL 

(4.0±1.4) and CsA patients (4.0±1.2), ranging from 1 to 5. Major causes of renal failure
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were IgA nephropathy (n = 6), pyelonephritis (n = 3), and polycystic kidney disease (n 

= 3). For 6 patients the diagnosis of end-stage renal disease was unknown. None of the 

patient in either group was diabetic (Table 1).

Effect o f Campath-IH induction on peripheral leukocytes: extent o f depletion and 

time-course o f recovery in the two groups o f kidney transplant recipients

Depletion o f  circulating leukocytes after Campath-IH induction 

We first studied the effect of Campath-IH depletion on leukocyte subset counts and 

phenotype in the two cohorts of patients. Using flow cytometry analysis, absolute 

numbers of total CD3CD19+ B cells, CD3'CD16+CD56+ NK cells, monocytes (figure 

2a), of total CD3+ T cells and of CD3+CD4+ (CD4+) and CD3+CD8+ (CD8+) subsets 

(figure 2b) were calculated for healthy subjects and patients at baseline and at 14 days 

after Campath-IH induction. For the same subjects absolute numbers of monocytes 

were obtained from a complete blood count done on the same day (figure 2a). Baseline 

values of total B cells, NK cells, monocytes and T cells and CD4+ and CD8+ T cell 

subsets of patients in the two groups were not different from those observed in healthy 

control subjects (n= ll; mean age 36 years; range: 32-55), suggesting that the uremic 

milieu does not alter the composition of circulating PBMC. All the patients included in 

the study were indeed on chronic hemodialysis from at least 6 months. After Campath- 

IH induction, B, NK, and T cells in kidney transplant patients were almost completely 

depleted, consistently with data showing that CD52 is expressed by all these cell 

populations. On the contrary, depleting effect of Campath-IH on monocytes was much 

less evident. This phenomenon has been already reported by other authors, and may be 

due to the reduced expression of CD52 by these cells. (Fig. 2a-b).
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When we evaluated more in detail the phenotype of CD4+ T cells spared by Campath- 

IH induction, we found that the proportion of CD45RO+ cells 14 days after transplant 

was significantly higher than the one observed in the study patients at baseline, as well 

as in healthy individuals. CD45RO is the main hallmark of memory T cells and finding 

that the relative number of cells expressing this marker increased after Campath-IH 

induction suggests that these cells were more resistant than naive ones (expressing 

CD45RA) to its depleting effect (Fig. 2c). Of note, Campath-IH depletion was not 

affected by the type of maintenance immunosuppressive therapy. The number of 

circulating lymphocytes at 7 and 14 days after induction was indeed virtually identical 

in the two groups.

Time-course o f repopulating lymphocytes after Campath-IH induction in the two 

treatment groups

Absolute numbers of repopulating total leukocytes, CD3-CD19+ B cells, CD3- 

CD16+CD56+ NK cells, monocytes, CD3+ T cells and CD3+CD4+ and CD3+CD8+ T 

cell subsets in the peripheral blood of patients from baseline to 24 months after 

transplantation were obtained by FACS analysis.

The number of total circulating leukocytes declined remarkably during the first two 

weeks after Campath-IH induction, and remained persistently lower than basal levels in 

both groups of patients up to 2 years after transplant (Fig 3a). At around 6 months after 

Campath-IH infusion, B cells returned to pre-transplant values (Fig. 3b). Recovery was 

faster for NK cells that reached baseline values in 2-3 months after transplant (Fig 3c). 

Depleting effect of Campath-IH on monocytes was transient, as at one month after 

transplant these cells returned to values recorded at baseline (Fig 3d). Maintenance
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therapy with SRL or CsA had no effect on the time of B cell, NK cell and monocyte 

recovery, although monocytes in SRL patients tended to repopulate more slowly than in 

patients on CsA (Fig. 3b-d).

Differently from other leukocyte subpopulations, recovery of total T cells was very 

slow, so that in the SRL group their levels at 24 months after transplant were about one 

third of the baseline values (Fig 4a). T cells in CsA patients recovered faster, but they 

required about one year to reach baseline values. In both SRL and CsA-treated patients, 

the rate of recovery of CD4+ T cells over time was low, to the point that, at month 24 

post-transplantation, these cells were approximately one-third of baseline values (Fig. 

4b). On the contrary, CD8+ T cells had a significantly different time-course in the two 

treatment groups. In the SRL patients, at two years after transplant, the number of 

circulating CD8+ T cells was still only a half of the baseline value. Conversely, CD8+ T 

cells in CsA patients fully recovered at month 4 and, at one and two years post 

transplant, their values were twice the baseline ones (Fig. 4c). This resulted into a 

reduced CD4+/CD8+ T cell ratio in the CsA group that was significantly lower than, 

preoperatively up to month 24 after transplant (Fig. 4d).

Effect o f Campath-IH induction and different maintenance immunosuppression 

regimens on circulating Treg

Campath-IH depleting effect on circulating Treg

Among CD4+ T cells, those exerting immune regulatory effects are mainly confined in 

the CD25+ population. However, as CD4+CD25+ T cells include also effector/memory 

T cells (Tef), additional markers are needed for the identification of Treg. Recently, 

evidence came out that the levels of CD25 expression by CD4 Treg and
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effector/memory CD4+ T cells is actually different and may be used to discriminate 

these two cell populations. In particular, CD4+ T cells showing high levels of CD25 

have regulatory properties, whereas those whose CD25 expression is low display the 

characteristics of effector/memory T cells. Resting CD4+ T lymphocytes are CD25 

negative [189]. On the basis of this evidence, we used the levels of CD25 marker 

expression to differentiate CD4+CD25hlgh Treg, CD4+CD25low effector/memory T cells, 

and CD4+CD25‘ resting T cells. Using flow-based frequency enumeration and absolute 

CD3+CD4+ cell counts obtained on the same day, absolute numbers of 

CD3+CD4+CD25\ CD3+CD4+CD25low and CD3+CD4+CD25high cells were calculated in 

healthy subjects, and in patients at baseline and at 14 days after Campath-IH infusion. 

The percentage of all these CD4+ T cell subpopulations were similar between healthy 

subjects and patients at baseline, which further confirms that chronic renal failure does 

not significantly affect the phenotypic profile of peripheral lymphocytes. Importantly, 

early after Campath-IH infusion, there was a profound and unselective depletion of 

CD4+CD25hlgh, CD4+CD25low, and CD4+CD25’subsets in all transplant patients, as 

shown in figure 5a. Within the CD4+ T cell compartment, the percentage of CD25hlgh at 

14 days post transplant was comparable to baseline values, confirming that Campath-IH 

did not spare this cell subset (Fig. 5b). No difference was recorded between the SRL 

and the CsA groups in the days immediately after Campath-IH infusion.
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SRL- but not CsA-based maintenance immunosuppression is associated with in vivo 

expansion o f  CD4+CD25hlgh cells following Campath-IH

As a further step, we aimed to assess whether different maintenance immunouppression 

might have affected recovery of different CD4+ T cell subpopulations after Campath-IH 

induction. Among the CD4+ T cell pool, the percentages of CD25* and CD25low 

remained relatively stable during the whole follow-up period in both treatment groups. 

Notably, in patients on SRL, we found a transient decrease in CD4+CD25' percentages 

and a significant mirror increase in CD4+CD25low cell percentages at 1 month after 

transplant (Fig. 6a-b), which returned to baseline thereafter. When we looked at the 

absolute numbers of CD4+CD25' and CD4+CD25low, however, both SRL and CsA 

patients showed a marked depletion of these cell populations after Campath-IH 

induction that only recovered at two years after transplant. Indeed, at this time point * 

after transplant, CD4+CD25’ cells were less than one fifth and less than one third of 

baseline values in SRL and CsA patients, respectively, whereas CD4+CD25low were still 

lower than one fourth in the SRL group and around the average of values recorded- 

before Campath-IH administration in the CsA group (Fig. 6e).

From month 1 post-transplant, the percentage of CD25hlgh cell subset within total 

CD3+CD4+ T cells progressively increased over baseline in SRL-treated patients (Fig. 

6c), reaching values significantly higher than pre-transplant from month 4 to 24 

postoperatively. Conversely, in the CsA group, the trend of CD4+CD25hlgh cell 

percentage to increase was milder, so that values significantly higher than pre-transplant 

were recorded only at month 6 (Fig. 6c). From month 2 up to month 24 after transplant, 

the percentage of CD4+CD25hlgh cells was significantly higher in the SRL group than in 

the CsA group. The same picture was found when we evaluated the absolute numbers of
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circulating of CD4+CD25hlgh cells. Indeed, although the total absolute number of CD4+ 

T cells was significantly lower at two years after transplant than before in both 

treatment groups, circulating CD4+CD25hlgh cells tended to increase, especially in SRL 

patients (Fig. 6e).

The Treg/Tef ratios were significantly higher (P<0.05) in the SRL than in the CsA 

group from months 2 to 24 (Fig. 6d).

Thereafter, we wondered whether Treg enrichment during lymphocyte recovery was 

due to an increased proliferation. To address this point, we evaluated the expression of 

Ki-67, a nuclear protein associated with cell proliferation, in CD4+CD25hlgh T cells at 

baseline and at 3-5 months post-transplant, the time of their maximal expansion. 

Baseline levels of CD4+CD25hlghKi-67+ T cell were similar between the two patient 

groups and between patients and healthy subjects, as well as CD4+CD25lowKi-67+ and 

CD4+CD25'Ki-67+ cell percentages (Fig 7). At 3-5 months after transplant, the 

percentages of CD4+CD25hlghKi-67+ T cell were significantly higher (P<0.05) than at 

baseline in both treatment groups, but in SRL patients they reached levels significantly 

higher (P<0.05) than in the CsA group. Of note, also CD4+CD25lowKi-67+ and 

CD4+CD25'Ki-67+ cells were found to increase after transplant, but their relative levels 

were remarkably lower than the ones found in Treg and their values were virtually 

identical between SRL and CsA patients (Fig 7).

The above findings are in line with an homeostatic expansion of all CD4+CD25+ T cell 

populations after Campath-IH induction and either maintenance immunosuppressive 

therapy. Intriguingly, however, SRL maintenance therapy selectively favoured the 

expansion of Treg.
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Expanding CD4+ CD25hlgh cells express the Treg hallmark FOXP3 

The previous results document that Campath-lH-induced T cell depletion favours the 

emergence of CD4+CD25hlgh T cells in subjects receiving SRL-maintenance therapy. 

However, CD25 can not be regarded as a specific hallmark of Treg since, as stated 

above, also effector/memory T cells express this molecule on their surface. To certainly 

exclude that our CD4+CD25hlgh Treg were not recently activated CD4+ T cells, we 

evaluated their expression levels of CD69, a marker of T cell activation. FACS analysis 

showed that the large majority (99.0%, range: 98.5-99.5%) of CD4+CD25hlgh cells from 

patients in both treatment groups at 2 baseline were CD69', excluding that they were 

activated cells.

To ascertain whether the high levels of CD25 expression in regenerating CD4+ cells 

upon Campath-IH induction reflected a regulatory phenotype, we evaluated the mRNA 

expression level of FOXP3, a gene that encodes a transcription factor required for Treg 

development and function and that is now considered the specific marker of Treg. 

FOXP3 expression was assessed by quantitative real time PCR in CD3+CD4* 

subpopulations of peripheral cells taken at 24 months post-transplant and data were 

compared with FOXP3 expression in cells from the patients at baseline and from 

healthy individuals. Using electronically sorted CD4+CD25hlgh, CD4+CD25low, and 

CD4+CD25' cell subsets, we found the highest levels of FOXP3 expression in the 

CD25hlgh subset both in patients and in healthy individuals, with intermediate and low 

levels of FOXP3 expression in the CD25low and CD25' subsets, respectively (Fig. 8a). 

No difference was observed between patients at baseline in the two randomization arms, 

nor between patients and healthy subjects, as a further proof that chronic renal failure 

does not alter the phenotypic profile of these cell populations, at least in the peripheral
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blood. At 24 months post-transplant, we found that CD4+CD25hlgh cells from SRL 

patients had significantly higher (PO.05) levels of FOXP3 expression as compared 

with baseline and with patients on GsA at the same time point after transplant (Fig. 8a). 

Moreover, in order to quantify Treg in the total CD3+CD4+ cell population, we further 

evaluated FOXP3 expression in positively selected CD3+CD4+ T cells. Again, FOXP3 

expression was virtually identical between healthy subjects and patients at baseline. 

Conversely, cells isolated 24 months post-transplant from SRL-treated patients had 

significantly higher (P<0.05) FOXP3 expression compared to CD3+CD4+ cells from the 

same patients at baseline or from healthy individuals (Fig. 8b), which is consistent with 

both CD4+CD25hlgh T cell expansion observed through flow cytometry and increased 

FOXP3 expression in this cell subset. Notably, in CD3+CD4+ T cells of SRL-treated 

patients, FOXP3 expression was higher than in the CsA group (P<0.05) at the same 

time after transplant (Fig 8b). We found no evidence in any group of significant FOXP3 

expression in CD4‘ cells (FOXP3 expression less than 0.01 AU).

Altogether these results indicate that, following lymphocyte depletion by Campath-IH 

induction, SRL but not CsA increased the pool of FOXP3 expressing CD4+CD25hlgh 

cells.

CsA- but not SRL-based maintenance immunosuppression is associated with in vivo 

expansion o f CD8+CD2S' cells following Campath-IH

Beside CD4+CD25hlgh cells, a distinct population of antigen-primed T cells, 

characterized by their CD8+CD28~FOXP3+ phenotype (Ts) and lack of cytotoxic 

activity, has been shown to display regulatory functions in human transplant recipients 

and in a murine autoimmune disease model.
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Importantly, the high levels of donor-specific Ts cells have been found in the circulation 

of organ transplant patients whose immunosuppressive therapy has been successfully 

reduced without an increased risk of acute rejection [105]. On the basis of this evidence, 

we evaluated whether Campath-IH induction might have promoted expansion of 

CD8+CD28“ cells and whether the two low-dose maintenance immunosuppressive 

regimens might have differently affected this phenomenon.

As shown in figure 9, the percentage of CD8+CD28" cells among CD8+ T cells slightly 

increased from baseline values in the SRL group but, at 2 years after transplant, they 

were not significantly different from pre-transplant. Conversely, patients on CsA 

showed a significant increase in the percentage of CD8+ cells negative for the CD28 

marker, to the point that at 2 years after transplant almost all CD8+ were also CD28\

Expanding CD8 CD28' T cells do not express the Treg hallmark FOXP3

As a further step, we wondered whether CD8+CD28' T cells isolated from our cohort of 

patients were also expressing the Treg hallmark FOXP3 gene, in line with the 

CD8+CD28' T suppressor cells described by Cortesini et al. [89, 105]. To this purpose, 

we evaluated FOXP3 gene expression levels in CD8+CD28' T cells from 3 patients 

randomized to CsA treatment at one year after transplant, using CD8+CD28' T cells 

from 3 healthy subjects as controls. CD8+CD28‘ T cells were electronically sorted from 

PBMC, and FOXP3 mRNA levels were evaluated thereafter by Real Time PCR. 

Unexpectedly, we did not find any expression of FOXP3 gene in CD8+CD28* T cell 

neither in patients nor in healthy subjects. Thus, we argued the CD8+CD28' T cells that 

we found expanded after Campath-IH induction in CsA treated patients was different
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from the ones described by Cortesini et al. [89, 105]. Thus, we focused subsequent 

experiments on the better characterized population of CD4+CD25+FOXP3+ Treg.

Functional evaluations of Treg cells

T cell alloreactivity in the two treatment groups

Treg are anergic T cells that respond poorly to allogeneic stimuli and are also capable of 

inhibiting the alloreactive response of effector T cells [87]. Thus, functional assays were 

performed to address whether the emergence of Treg, generated upon Campath-IH 

induced lymphopenia, was associated with host T cell hyporesponsiveness against 

donor antigens. To ascertain the proliferative response of T cells to donor and third- 

party alloantigens, we used the one way mixed lymphocyte reaction (MLR). In this 

assay, PBMC of patients were mixed with donor and third party irradiated splenocytes 

or PBMC (according to the deceased or living type of donor, respectively). The rate of 

T cell proliferation was assessed by uptake of tritiated thymidine. Moreover, to evaluate 

the frequency of previously activated/memory T cells, we employed the ELISPOT for 

IFN-y following overnight exposure to alloantigens. This test allows to determine the 

number of previously activated/memory T cell clones by visualization of the IFN-y 

product of individual cells.

Samples were taken pre-transplant and at two different time intervals after T cells had 

repopulated the peripheral blood at adequate amount, i.e. at month 12 and 24 post

transplant.

In SRL-treated patients, the anti-donor T-cell proliferative response and the frequencies 

of IFN-y producing donor-reactive cells were significantly (P<0.05) reduced at both 

post-transplant points as compared to pre-transplant values (Fig lOa-b). Post-transplant
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anti-third party alloreactivity was significantly lower than pre-transplant as well 

(P<0.05) (Fig lOa-b). These results could not be attributed to incomplete recovery of T 

cell count or to a state of general immunosuppression caused by maintenance therapy, 

since T cells isolated at the same time points responded normally to a polyclonal T-cell 

stimulus with phytohemagglutinin (PHA, Fig. 10b). In CsA-treated patients, T cells 

studied at the same time points showed donor-specific hyporesponsiveness assayed with 

MLR and ELISPOT compared to pre-transplant (Fig lOa-b) and T-cell response to PHA 

was normal (Fig 10b).

CD4+CD25hlgh T cells from SRL-treated patients suppress T cell alloreactivity ex vivo 

To clarify the role of Treg in suppressed anti-donor alloreactivity, ELISPOT assays i

were repeated on PBMC isolated at 24 months post-transplant following CD4+CD25hlgh t-

cell depletion by sorting. Indeed, in case the reduced immune response against b

alloantigens relied on active suppression by Treg, their depletion would result in an i

increased T cell activation. This was exactly what we found in PBMC from SRL -i

patients. Indeed, as shown in Fig 10a, depletion of CD4+CD25hlgh cells in this group of 

patients was associated with a statistically significant increase (P<0.05) in the frequency 

of IFN-y producing effector/memory cells to both donor and third-party antigens. The 

suppression ratios, defined as frequency after depletion minus frequency before 

depletion divided by frequency after depletion, were comparable for both anti-donor 

(0.43±0.06) and anti-third party (0.45±0.06) response. To further confirm that the 

CD4+CD25hlgh subset in SRL-treated patients had regulatory activity and to exclude any 

possible overlapping inhibitory effect of the concomitant immunosuppressive therapy 

on the function of effector T cells, CD4+CD25hlgh-depleted PBMC obtained from the
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SRL patients before surgery were mixed with CD4+CD25hlgh cells sorted from blood 

samples of the same patients at 24 months post-transplant. As expected, depletion of 

naturally occurring CD4+CD25hlgh Treg resulted in an increased response of baseline 

PBMC. However, addition of CD4+CD25hlgh Treg isolated from the same patients at 24 

months after transplant restore the pre-depletion levels of response against both donor 

and third-party antigens (Fig. 1 lc). Of note, the amount of added Treg did correspond to 

the percentage of circulating CD4+CD25hlgh cells in patients pre-transplant, which 

supports a potential clinical significance of the above findings.

On the other hand, in patients on maintenance CsA therapy, CD4+CD25hlgh cell 

depletion had no effect on the frequencies of anti-donor IFN-y producing T cells taken 

at 24 months post-transplant (Fig. lib ), suggesting that Treg did not play a significant 

role in the hyporesponsiveness to donor alloantigens in CsA-treated patients. Thus, we 

wondered whether the reduced response against donor antigens in the PBMC of these 

patients relied on an alternative mechanism, such as cell anergy. To address this 

hypothesis, we added progressively increasing concentrations of IL-2 to PMBC isolated 

from CsA patients at 24 months post transplant and exposed to donor or third-party 

alloantigens in the ELIPOT assay. Indeed, IL-2 is able to restore cell activity in anergic 

cells. As shown in figure lid , higher concentrations of IL-2 were indeed able to 

increase the IFN-y frequencies against donor antigens to reach anti-third party values 

(Fig. lid). Thus, anergy rather than regulation seemed to contribute to donor-specific 

hyporesponsiveness in CsA-treated patients.
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Tables and figures

Table 1. Baseline patients’ characteristics according to the randomization 
arm.

SRL
(n= 11)

CsA
(n=10)

Donors
Age (years) 47.5 ± 16.0 42.3 ± 13.2
Gender (M/F) 7/4 5/5
Weight (Kg) 79.5 ± 10.0 72.0 ±13.5
Type o f donor
Cadaveric 11 8
Living 0 2

Cold ischemia time (h) 16.7 ±2.3 14.6 ±3.7
Warm ischemia time (min) 31.3 ±7.7 27.1 ±5.3

Recipients
Age (years) 53.2 ±8.9 47.0 ±16.5
Gender (M/F) 6 /5 7 /3
Weight (Kg) 71.2 ± 10.1 74.3 ± 16.9

Mismatches
A 1.6 ±0.5 1.2 ± 0.6
B 1.6 ±0.7 1.4 ±0.7
DR 1.2 ± 0.6 1.0 ± 0.8

Cause o f  renal failure
Polycystic kidney disease 1 2
Membranous nephropathy 1 0
IgA nephropathy 3 3
Interstitial inflammation 1 0
Pyelonephritis 3 0
Glomerulonephritis 1 0
Unknown 1 5

Data are mean ± SD.
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Discussion

In this part of the project, we showed that Campath-IH induction was associated with a 

profound and long-lasting lymphocyte depletion in kidney transplant patients and that 

phenotypic and functional characteristics of repopulating cells were affected by 

different maintenance immunosuppressive regimens. In particular, SRL -  but not CsA - 

therapy was associated with the expansion of functionally active CD4+CD25hlghFOXP3+ 

Treg. Importantly, however, all Campath-IH treated patients displayed a reduced 

alloreactivity against donor antigens at 2 years after transplant independently from 

maintenance immunosuppressive regimen.

Effect o f Campath-IH induction on peripheral leukocytes: extent o f depletion and 

time-course o f recovery in kidney transplant recipients on low-dose SRL or CsA, both 

combined with low-dose MMF as maintenance immunosuppression

In our series of 21 kidney transplant recipients, a single 30 mg infusion of Campath-IH 

was well tolerated and induced a profound and long-lasting depletion of T lymphocytes 

and, to a lower extent, of B cells, NK, and monocytes. The milder depleting effect on 

the latter subsets was in line with other reports and possibly relies on the lower 

expression levels of the CD52 antigen by these cell populations.

The ideal dose of Campath-IH as induction therapy in renal transplantation has still not 

yet been identified. Previous studies used higher doses or repeated administrations of 

the antibody, with the attempt of inducing more sustained lymphocyte depletion [126]. 

However, here we clearly showed that a single 30 mg infusion of Campath-IH is 

enough to deplete lymphocytes for around 9-12 months in kidney transplant patients,
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suggesting that this regimen should be preferred to other ones employing higher doses, 

in order to reduce potential adverse events and saving costs.

Intriguingly, the depleting effect of Campath-IH on T cells was preferentially targeted 

toward the naive population, suggesting that the memory cell counterpart may have a 

higher resistance to the antibody. Indeed, at 14 days after treatment, the proportion of T 

cells showing the CD45RO memory marker was significantly higher than at baseline. 

The obvious reason why different leukocyte subsets were differentially susceptible to 

Campath-IH might rely on the expression levels of CD52 receptor. Indeed, it has been 

clearly shown a correlation between high levels of expression of CD52 on T cells, in 

particular naive T cells, and the intensity of depletion achieved when Campath-IH was 

administered [190].

This is consistent with Pearl’s data [173], who found that in renal transplant recipients 

who received induction with Campath-lH/deoxyspergualin and no maintenance 

immunosuppression, T cells repopulating after depletion were predominantly activated 

memory-like T cells, which expanded in the first month after transplantation. These 

memory-like T cells, which are prone to activate an immune response, were the 

prevalent T cell population in the blood and in the allograft during rejection episodes 

[173], that uniformly occurred in all five patients included in that study. Conversely, in 

our trial, maintenance immunosuppression with MMF combined with either SRL or 

CsA was probably instrumental to limit the immune response of memory T cells after 

Campath-IH induction. Indeed, MMF has been shown to inhibit memory cell 

proliferation both in vitro in human mixed lymphocyte cultures [191] and in vivo in F5 

TCR transgenic mice exposed to the TCR specific NP68 peptide [192].
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Maintenance immunosuppression with either SRL or CsA did not affect the 

repopulation of B, NK cells and monocytes after Campath-IH induction, which was 

completed within 6 months after transplant in both treatment groups. In both groups, 

CD4+ T lymphocytes had a slow and incomplete recovery, whereas CD8+ T cell 

reappearance in the periphery occurred significantly slower in SRL than in CsA 

patients. In SRL patients, indeed, CD8+ number at two years after transplant was still 

only a half of the baseline value. Conversely, CD8+ T cells in CsA patients fully 

recovered at month 4 and at one and two years post transplant their values were twice 

the baseline ones. This resulted in a prolonged inversion of the CD4+/CD8+ ratio, which 

remained significantly lower than at baseline up to two years after transplant in the CsA 

group.

The phenomenon of CD4+/CD8+ inversion has been already described in patients 

undergoing lymphocyte depletion with polyclonal [193, 194] antibodies followed by 

CNI-based therapies. Little is known about the process of T-cell regeneration and 

lymphocyte lifespan in vivo [195]. Apart from the persistent depletion of the CD4+ cells, 

a disproportionate regeneration in the CD8+ cell subset may occur. This is in line with 

findings showing that T-cell differentiation in the adult is primarily extrathymic and 

seems to be predominantly CD8+ [196]. Interestingly, a recent paper showed that, even 

after Campath-IH induction, recovery of CD8+ T cells was much faster than that of 

CD4+ T cells in patients given MMF and tacrolimus as maintenance 

immunosuppression [174]. Moreover, most of these cells were CD8+CD28‘, in line with 

our findings in CsA treated patients. Importantly, CD8+CD28' cells have been described 

as immunosenescent CD8+ T cells, i.e. terminally differentiated and non-proliferating 

cells, that, upon reaching the limit number of cell division, do not die but rather survive
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as expanded T clones. Expanded CD8+CD28' T cells may compete for the immune 

space with CD4+ T cells, suppressing their proliferation and therefore delaying CD4+ T 

cell-recovery after Campath-IH induction.

Effect of Campath-IH induction and different maintenance immunosuppressive 

regimens on circulating Treg

Polyclonal and monoclonal anti-T cell antibodies have been used as an integral part of 

tolerance induction in experimental transplantation and clinical trials [122]. Their 

immunosuppressive activity has been though to result primarily from profound T cell 

depletion from the circulating pool via complement-dependent lysis or Fas/Fas ligand- 

mediated apoptosis [197], although emerging evidence suggests that expansion of Treg 

may have a role [198]. Following ALS-induced lymphopenia in C57/BL6 mice [199], 

the reduction of CD4+CD25+ T cells number was smaller than that of CD4+CD25’ cell 

subset, which raised the idea that Treg may be resistant to ALS-mediated depletion. At 

variance with ALS, Campath-IH does not selectively spare Treg since it induced a . 

profound and unselective depletion of CD4+CD25-, CD4+CD25low and CD4+CD25hlgh 

subsets in all renal transplant patients included in the present study. These results are 

consistent with previous findings that all CD4+ T-cell subsets, including CD4+CD25+, 

express at similar densities on their cell surface the CD52 target antigen of Campath-IH 

and addition of Campath-IH to human blood in vitro caused depletion of CD4+CD25hlgh 

cells [200].

After Campath-IH induced depletion, however, Treg repopulation significantly differed 

between patients receiving SRL or CsA as maintenance immunosuppression. Indeed, 

the percentage of CD25hlgh cell subsets progressively increased over baseline in SRL-
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treated patients, reaching values significantly higher than pre-transplant from month 4 

to 24 postoperatively. Conversely, the percentage of CD25hlgh cells among CD4+ T cells 

in the CsA group had only a transient increase at 6 months post-transplant, and 

remained substantially unchanged thereafter compared with pre-transplant values. 

Intriguingly, CD4+CD25hlgh expansion in SRL patients was anticipated by a spike of 

CD4+CD25low activated T cells at month 1 after transplant. Theoretically, this immune 

activation might have created a favourable milieu to promote Treg expansion as a 

counterbalancing mechanism to turn off the inflammatory response. However, this is 

just a speculative hypothesis.

Our findings are in line with the already reported increase of CD4+CD25+ T cells in 

peripheral lymphoid organs from rats treated with SRL. Moreover, Battaglia et al. 

recently described that CD4+CD25+FOXP3+ Treg expanded ex vivo in the presence of 

SRL and prevented rejection of [beta]-islet transplants in vivo [177]. SRL also induces 

de novo expression of FOXP3 in murine alloantigen-specific T cells dose dependently, 

which appeared to be TGF-pi dependent [201]. Because SRL can induce the expression 

of TGF-pi, it may be an important mechanism contributing to the development of 

antigen-specific Treg [202]. Interestingly, a recent study suggests that SRL can induce 

regulatory functions in conventional CD4+ T cells in culture [113]. Furthermore, 

evidence suggests that SRL-conditioned dendritic cells are poor stimulators of allogenic 

T cells but enrich for antigen-specific Treg, which can prolong cardiac graft survival in 

mice [203].

CD4+CD25hlgh T cell expansion in our patients on SRL therapy may result from two 

mutually nonexclusive and possibly complementary mechanisms. First, Campath-IH- 

induced lymphopenia may promote the selective homeostatic proliferation of naturally
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occurring CD4+CD25hlgh cells. This phenomenon has been reported in IL-2-treated 

genetically lymphopenic Rag'A mice upon adoptive transfer of CD4+CD25+ cells, 

whereas exogenous CD4+CD25' cells proliferated poorly [204]. Second, Campath-IH- 

induced lymphopenia may stimulate the expansion of CD4+CD25‘ cells followed by 

their conversion into CD4+CD25hlgh cells, as observed in other studies in 

immunodeficient [205] mice. Interchange between CD4+CD25‘ and CD4+CD25+ 

phenotype has been also observed in immunocompetent wild type mice following T cell 

depletion with ALS [206] and in ALS-stimulated human PBMC in vitro [198]. Finding 

a selective increased expression of the proliferation marker Ki-67 in CD4+CD25hlgh cells 

from renal transplant patients after Campath-IH, would support the first hypothesis. 

However, on the basis of these data, we can not exclude that proliferating 

CD4+CD25hlgh cells derived from the conversion of CD4+CD25' into CD4+CD25+ cells. 

Moreover, other studies are needed to asses if an increase in number of naive Treg, i.e. 

an increase in thymic output, could have contributed to the observed accumulation of 

CD4+CD25high in SRL -treated patients.

According to our findings, a recent paper by Knechtle’s group [175] reported that 

CD4+CD25+FOXP3+ regulatory T cells increased in kidney transplant patients after 

immunodepletion with Campath-IH and maintenance therapy with SRL. Interestingly, 

these Authors suggested that peripheral expansion of Treg may not fully explain their 

increase, thus they argued that also de novo generation/expansion from CD4+CD25' T 

cells may be involved.

On the other hand, lack of development of CD4+CD25hlgh Treg with CsA could be 

explained by the fact that IL-2 - whose generation is inhibited by CsA - promotes 

acquisition of CD25 molecules [118] and is a surviving factor for Treg in vitro [118]
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and in vivo [207]. This interpretation is in line with data showing that IL-2 therapy 

given during immune reconstitution to pediatric patients with sarcoma increases the 

frequency and absolute numbers of Treg compared with patients who did not receive 

IL-2 [204]. Finding that CsA, by inhibiting calcineurin phosphatase-dependent NF-AT 

translocation into the nucleus [208], suppresses FOXP3 promoter activity, mRNA and 

protein expression in T cells [208], is also consistent with the present in vivo data.

Our data are in line with those of a recent study showing that kidney transplant patients 

receiving CNI maintenance treatment had a significantly lower percentage of peripheral 

CD4+CD25hlgh T cells compared with patients receiving SRL [114]. Recently, evidence 

has been provided that conversion of kidney transplant recipients from tacrolimus/MMF 

to SRL monotherapy, significantly increased the percentage and absolute number of 

circulating CD4+CD25hlghFOXP3+ Treg [113]. These data support the concept that SRL 

promotes Treg expansion, which in our cohort resulted into a significantly higher 

Treg/Teff ratios than in the CsA group during the whole follow-up period.

Importantly, we carefully characterized the phenotype of circulating Treg using all the 

most important markers. Indeed, they did not express the CD69 activation marker and 

expressed high levels of FOXP3. Notably, the expression levels of FOXP3 in 

CD4+CD25hlgh T cells from SRL treated patients were significantly higher than those 

found in the CsA group, and this might be associated with a higher immune regulatory 

effect. Moreover, as we will discuss in the next paragraph, these cells were capable to 

suppress the alloreactive immune response of autologous effector CD4+CD25'/low T 

cells against donor antigens in co-cultures.
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Functional evaluations o f circulating lymphocytes

As a final step, we evaluated the functional characteristics of circulating lymphocytes, 

with a particular attention to CD4+CD25hlghFOXP3+ Treg. In vitro assessment of 

lymphocyte alloreactivity has been claimed as a potential tool to shape 

immunosuppressive therapy and to predict the risk of acute rejection. Moreover, it 

might allow understanding how Campath-IH induction efficiently prevents acute 

rejection with lower than conventional doses of maintenance immunosuppression.

Our experiments on T cell alloreactivity focused on the direct pathway of 

allorecognition. Alloreactive T cells recognize HLA-mismatched tissue via two 

different pathways: in the direct pathway, responder T cells recognize intact foreign 

MHC-peptide complexes on the surface of donor antigen-presenting cells (APC), [26]. 

In the indirect pathway, T cells recognize donor allopeptides on self-MHC molecules 

after having been processed and presented by recipient APC. During the past few years, 

the relevance of both pathways of antigen allorecognition for long-term graft outcome 

has controversially been discussed. Priming by the direct pathway has classically; been 

associated with the early posttransplantation period and especially with acute rejection, 

because professional donor APC are present during the first months only. In contrast, 

priming by the indirect pathway was suggested to play a main role in the long term; 

therefore, indirectly primed T cells were considered key mediators for chronic immune- 

mediated graft injury [26]. However, recent studies suggest that both pathways may 

persist and be of relevance for interstitial fibrosis and tubular atrophy. Notably, Herrera 

et al. demonstrated how recipient dendritic cells, when co-cultured with allogeneic 

dendritic cells or endothelial cells, can acquire substantial levels of allogeneic MHC- 

peptide complexes and subsequently prime T cells by both allorecognition pathways
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[209]. Hence, early directly primed T cells could be maintained and reactivated by graft 

cell populations such as graft endothelial cells but also by recipient dendritic cells at 

later time points. A very recent study evaluating the impact of both direct and indirect 

reactivity against donor antigens has recently shown that direct hyporesponsiveness 

against donor antigens was the only variable significantly correlated with graft function 

at multivariate analysis [159]. Thus, our evaluation. of the direct alloreactivity was 

expected to provide a strong instrument to assess immune activation against HLA 

antigens.

In our trial, the post-transplant T cell proliferative response against donor antigens and 

the frequencies of IFN-y producing donor-reactive lymphocytes were significantly 

reduced as compared to pre-transplant values in both patient groups included. 

Importantly, this could not be attributed to incomplete recovery of T cell count, or to a 

state of general immunosuppression due to maintenance therapy, since T cells isolated 

at the same time points responded normally to a polyclonal T cell stimulus with 

phytohemagglutinin. A reduced immune reactivity against donor antigens, in the setting 

of an otherwise preserved immune response is a hallmark of tolerance [46]. Thus, the 

present finding provides the evidence that after Campath-IH induction, kidney 

transplant recipient may develop signs of tolerance. Although hyporesponsiveness 

toward donor antigens might have been affected by ongoing immunosuppression, it 

suggests that grafts from Campath-IH treated patients might be protected from chronic 

immune injury, which may improve their long-term outcomes.

We also evaluated reactivity of PBMC toward third party (TP) cells, harvested from 

subjects who had a number of mismatches for HLA similar to the one between the 

donor and recipient. Intriguingly, SRL patients showed a reduced response also against
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these cells, whereas those on CsA had a substantially unaltered reactivity as compared 

with baseline. This phenomenon might reflect the alloantigen cross-reactivity of TCR 

from expanding Treg in SRL patients [210], or alternatively, a phenomenon of 

bystander regulation [211].

Our results are in line with the ones by Trzonkoski et al. [174] showing that, in 

Campath-IH treated patients receiving MMF and the tacrolimus as maintenance 

immunosuppression, the response to donor alloantigens was suppressed, whereas the 

one toward mismatched third-party alloantigens recovered partially with the time after 

transplantation.

As a final step, we asked which mechanisms were at the basis of the different in vitro 

immune responses in the two treatment groups. To this purpose, we depleted 

CD4+CD25hlgh taken at 24 months after surgery from total PBMC, to assess the impact 

of these cells in the overall immune response. In SRL patients, depletion of these cells 

resulted into a significant relapse of alloreactivity against both donor and third party 

antigens, suggesting that these cells were actually crucial in maintaining 

hyporesponsiveness toward donor alloantigens. Moreover, the addition of Treg taken at 

24 months after transplant to baseline PBMC resulted in a hyporesponse against donor 

antigens, further confirming the immune regulatory function of these cells.

Conversely, depletion of Treg did not affect response against donor or TP antigens from 

CsA patients. This was not an unexpected finding, as the proportion of Treg after 

transplantation did not significantly change as compared to baseline in the CsA group. 

On the other hand, increasing concentrations of IL-2 were associated with progressively 

higher proliferative responses of PBMC against both donors and TP antigens. 

Importantly, after IL-2 pulsing, the number of spot against donor cells equalled that
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observed against TP antigens. This is consistent with an anergic state of circulating 

leukocytes against donor antigens in CsA treated patients.

Anergy is another mechanism of immunological tolerance which, however, might be 

theoretically less powerful and stable than regulation [212]. Indeed, high levels of IL-2, 

such as those that may be associated with immune system activation during infections, 

may break this tolerance status. Importantly, in transplant patients receiving calcineurin 

inhibitors, maintenance of the anergic state seems directly dependent on IL-2 pathway 

inhibition [212]. Thus, restore of normal IL-2 levels after CsA tapering/withdrawal 

might eventually be associated with breakdown of the tolerance state.

A still unanswered question of our study is whether expansion of CD8+CD28' T cells in 

the CsA group might have played a role in the donor-specific hyporesponsiveness of 

PBMC isolated from these patients. CD8+CD28' T cells have been described as a 

population with regulatory properties, which directly interacts with antigen-presenting 

cells rendering them tolerogenic by inducing the downregulation of costimulatory 

molecules and upregulation of the inhibitory receptors immunoglobulin-like transcripts 

(ILT)3 and ILT4 [89]. Importantly, this population has been found positive for the 

FOXP3 regulation marker. According with this evidence, we tested whether the 

CD8+CD28' T cells isolated from our CsA treated patients showed an increased 

expression of this gene. As these cells showed no expression of FOXP3, we argued that 

they were not responsible for immune regulation. However, this cannot be definitely 

excluded and would require ad hoc experiments to formally assess this hypothesis. 

Indeed, a recent paper showed that in renal transplant recipients given Campath-IH as 

induction and MMF plus tacrolimus as maintenance immunosuppression, CD8+CD28- 

T cells were the main repopulating population [174], which displayed the capability to
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suppress the proliferation of CD4+ T cells. In this paper, however, no data on FOXP3 

expression in CD8+CD28- T cells have been provided.

Thus, the first part of the study clearly described the phenotype and functional 

characteristics of lymphocytes emerging after Campath-IH induction in renal transplant 

patients receiving maintenance immunosuppression with either SRL or CsA, both 

combined with MMF. In the second part, we aimed at assessing the clinical counterpart 

of the different lymphocytic phenotype and functional profile in the two treatment 

groups.
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RESULTS (II Part)

2. Long-term clinical outcomes in renal transplant patients receiving Campath-IH 

induction and low-dose SRL or CsA, both combined with low-dose MMF, as 

maintenance therapy: does the number of circulating Treg matter?

Introduction

In the previous part of the study we showed that the CD52 targeted monoclonal 

antibody Campath-IH, via lymphocyte depletion, allowed a subset of 

CD4+CD25hlghFOXP3+cells with regulatory activity to emerge, provided that 

maintenance immunosuppression with sirolimus (SRL), but not the calcineurin-inhibitor 

cyclosporine (CsA), added on to low-dose mycophenolate mofetil (MMF) is used as 

background steroid-free maintenance therapy. These findings indicate that Campath-IH 

and the combination of low-dose SRL and MMF would create the ideal environment for 

T-cell regulation to occur. Increased Treg would favor graft acceptance, and lowering 

the immune response of the host against the allograft might translate into a reduced 

incidence of acute rejection in the short-term and, possibly, of chronic rejection in the 

long period.

An immune modulatory role of CD4+CD25+ Treg in the setting of transplantation was 

first provided by in a rat bone marrow transplantation model involving the adoptive 

transfer of transplantation tolerance [213]. Since then, there has been a growing body of 

data in the literature indicating that CD4+CD25+ Treg maintain dominant transplantation 

tolerance, and CD4+CD25+ T cells from an animal tolerised to an allograft by many 

immunosuppressive regimens could transfer donor-specific transplant tolerance to a
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naive animal [78]. Importantly, CD4+CD25+ Treg could be found inside the tolerised 

graft, and these cells can have both direct and indirect allospecificity for donor antigens 

[78].

However, despite significant advances in understanding the development, function, and 

therapeutic efficacy of Treg in certain well-defined rodent models of organ 

transplantation, the relevance of Treg in the clinical setting remains unclear. Recent data 

showed that in kidney biopsies of transplant recipients with borderline acute changes 

the Treg/T cytotoxicity cell infiltrating ratio was higher than in biopsies with acute 

rejection [214]. Others have reported in patients with no history of acute rejection, ex 

vivo regulation of the host immune response toward the mismatched HLA-DR 

allopeptides by peripheral blood Treg [157]. Thus, although far from conclusive, these 

findings would suggest that Treg may limit episodes of acute rejection also in humans. 

Moreover, the presence of Treg in per protocol biopsies of renal transplant recipients 

has been reported to discriminate harmless from injurious infiltrates, evidenced by 

independently predicting better graft function 2 and 3 yr after transplantation [159].

On the other hand, a recent study in 83 renal transplant biopsies, found that Foxp3 

mRNA was higher in grafts with rejection than in grafts without signs of rejection [215] 

and Foxp3 did not correlate with favorable graft outcomes, even when the analysis was 

restricted to biopsies with rejection.

To assess whether Treg may indeed protect from the development and progression of 

chronic allograft injury, we compared long-term changes in graft structure and function 

- as assessed by serial GFR and proteinuria evaluations and per protocol graft biopsies - 

in the two cohorts of renal transplant recipients originally randomized to SRL or CsA- 

based therapy that eventually did or did not show an increase in circulating Treg cells.
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Specific aims

In the second part of the study, we aimed to assess whether the impact of diverse 

maintenance immunosuppressive regimens on peripheral lymphocyte phenotype and 

function and on Treg expansion translated into different clinical outcomes in kidney 

transplant recipients given Campath-IH as induction therapy.

More in detail, specific aims of this second part of the project were:

i) To compare graft survival and function (evaluated as serum creatinine, 

measured GFR and RPF, and 24h/proteinuria) during the follow-up period 

between kidney transplant patients who received induction therapy with 

Campath-IH and maintenance immunosuppression with low-dose SRL or 

CsA, both combined with low-dose MMF;

ii) to compare the histology score at the kidney graft per-protocol biopsy at 2 

years after transplant between patients in the two randomization arms;

iii) to compare blood pressure levels and metabolic parameters in the two 

treatment groups;

iv) to compare the incidence of acute rejection episodes in the two low-dose 

maintenance immunosuppression after Campath-IH induction;

v) to assess the safety profile of Campath-IH induction associated with low- 

dose SRL or CsA, both combined with low-dose MMF as maintenance 

immunosuppression;

vi) to evaluate whether a relationship exists between the levels of circulating 

Treg at 2 years and graft function or histology changes in the per-protocol 

biopsy performed at the same time after transplantation.
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Results

Graft survival and function

One patient in the SRL group died at 18 months due to sepsis and one additional 

patient, with post-DGF severe renal insufficiency, lost his graft 25 months post 

transplant. No patient on CsA died or lost the graft throughout the observation period. 

From the transplant day up to month 2 post-transplant, mean serum creatinine levels 

similarly decreased in both groups (Figure 12). Then, they progressively increased in 

SRL-treated patients, while remained relatively stable in those on CsA (Figure 12). 

Nevertheless, there was no significant difference in serum creatinine concentrations 

between the two cohorts at any time-point after transplant. Thereafter, we evaluated the 

slopes over time of both GFR and RFP that had been measured every 6 months. 

According with the trend of serum creatinine levels, GFR decline from month 6 post

transplant to study end tended to be faster on SRL than on CsA (SRL -2.92±0.33, CsA - 

0.28±0.44 ml/min/1.73 m per year) (Figure 13). Notably, the renal function decline for 

CsA patients was even lower than the one reported for healthy subjects after 40 years of 

age, i.e. -1 ml/min/1.73 m per year. Time dependent changes in RPF showed a similar 

trend (SRL -10.80±5.45, CsA -1.86±3.09 ml/min/1.73 m2 per year) (Figure 13). At 

month 6 post-transplant, SRL patients had a significantly higher GFR compared to CsA 

ones. However, differences in GFR values between cohorts at subsequent visits were 

never significant, as well as differences in RPF that never achieved the statistical 

significance at any considered time point after transplant (Table 2).

During the observation period, 6 of the 11 SRL patients compared to 4 of the 10 CsA 

patients developed proteinuria persistently higher than 0.5 g/24h. At 24 months post 

transplant, urinary protein excretion rate in SRL and CsA group was 0.93±1.03 and
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0.77±0.92 g/24 h, respectively. No significant difference in 24-h proteinuria was 

observed between the two cohorts at any considered follow-up evaluation (Figure 14).

Histology

Seven patients in the SRL and 6 in the CsA groups consented to per-protocol biopsy at 

2 years post-transplant.

All samples from SRL patients showed mild to moderate tubular atrophy, interstitial 

fibrosis with focal interstitial inflammation and arteriosclerosis consistent with chronic 

allograft injury (Figure 15 and Table 3). In five cases light microscopy also showed 

mild increase in mesangial cells and matrix (Figure 15) and in one additional sample, 

(V.G.) mild increases in mesangial cells and matrix, focal marginated glomerular 

intercapillary leukocytes, mild endothelial cell proliferation and incipient segmental 

sclerosis in one glomerulus were suggestive of a transplant glomerulitis. Since this 

pattern was associated with a high SRL trough level (14.6 ng/ml), significant renal 

function deterioration and proteinuria, a SRL-related glomerulopathy was diagnosed, 

and the patient was changed to CsA maintenance immunosuppression, though 

proteinuria remained persistently elevated.

Only 3 of the 6 samples from CsA-treated patients showed moderate to severe 

interstitial fibrosis. Mild to moderate glomerular abnormalities were also seen in 4 

patients, mainly characterized by mesangial hypercellularity (Figure 15) and, in one 

case, mild increase in mesangial matrix. In this patient, recurrent IgA nephropathy was 

diagnosed after immunofluorescence analysis of biopsy specimens.
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Thereafter, we scored histology lesions according with CADI grading and, as shown in 

Table 3, we found that mean CADI score was numerically, although not significantly, 

higher in SRL- than in CsA-treated patients.

C4d glomerular staining was similar between the two study groups, whereas tubular 

staining was significantly higher (P<0.01) in the SRL- than in the CsA- group (Table 3).

Other laboratory and clinical outcomes and safety profile

On follow-up, blood pressure control and lipid profile were similar in the two cohorts, 

although patients on SRL tended to have higher levels of triglycerides and total 

cholesterol (Table 4). Three patients, one on SRL and two on CsA had acute rejection 

episodes at 14, 9 and 210 days post-transplant, respectively, that fully recovered with 

intravenous methylprednisolone. Of note, in one rejecting patient CsA blood levels were 

below the recommended target (Table 5). Three SRL and two CsA patients developed 

DGF, defined as dialysis requirement within the first week after transplant.

Fever of unknown origin, potentially associated with lymphocytolysis after CampathrH 

induction, occurred in both treatment arms, but was significantly more frequent in CsA 

patients (3 vs. 7 patients in the SRL vs. CsA group, respectively. P<0.05). Four 

cytomegalovirus reactivations, without clinical disease, arose in 4 patients on CsA and 

recovered with gancyclovir therapy. Two herpes zoster virus reactivations were 

observed in two patients on SRL and recovered with acyclovir therapy. Four bacteria 

pneumonia were diagnosed in 3 SRL- and 1 CsA- treated patient. There were also 2 E. 

coli septic episodes per group (most likely originating from the urinary tract) and 1 

acute cholangitis in the SRL group. All the above bacteria infections recovered with
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antimicrobial therapy. One patient per group was hospitalized because of congestive 

heart failure and 1 on SRL because of an acute coronary event (Table 5).

Thus, after Campath-IH induction, the safety/efficacy profile of a maintenance regimen 

including either low-dose SRL or low-dose CsA, both combined with low-dose MMF 

was similar. Indeed, the increased Treg pool associated with SRL therapy did not 

significantly affect either the risk of rejection, or the risk of infections.

Immunosuppressive drug monitoring

As shown in Table 6, mean SRL and CsA trough levels were within the target range 

(trough blood concentrations of 5-10 ng/ml for SRL and from 120 to 220 ng/ml in the 

first month post-transplant, and from 70 to 120 ng/ml thereafter for CsA) throughout the 

whole follow-up period. The mean blood levels of SRL were very stable, whereas those 

of CsA tended to progressive decrease during the follow-up period. Indeed the CsA 

dosing was progressively lowered with the attempt to use the minimal dose required to 

prevent acute rejection. Of note, the areas under the time-concentration curves (AUC) at 

different time points show that exposure of these patients to study drugs was lower than 

the one usually followed in standard immunosuppressive regimens.

Three SRL- and 7 CsA- treated patients with fever attributed to alemtuzumab (n=7) or 

MMF dose reduction because of diarrhea or CMV-associated leukopenia (n = 3), 

transiently received low-dose corticosteroids in addition to their current maintenance 

immunosuppressive therapy.

Peripheral blood Treg cell counts
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As reported in the previous chapter of this thesis, pre-transplant T lymphocyte counts 

were similar in the two groups. From month 2 post-transplant, following the profound T 

cell depletion induced by alemtuzumab, CD3+CD4+ T cells slowly recovered in both 

cohorts but remained low over baseline up to 24 months after transplantation (Figure 

4b).

The proportion of circulating CD4+ cells that comprised CD25hlgh cells (Treg cells) were 

comparable in both groups pre-transplant (Figure 6c). From month 1 post 

transplantation, the percentage of CD25hlgh cell subset in total CD3+CD4+ T 

lymphocytes progressively increased in SRL group, whereas in CsA-treated patients the 

tendency of the CD4+CD25hlgh cell percentage to increase was milder. Thus, at month 

12 post transplant, the percentage of Treg in patients given SRL were approximately 

four-fold and, at 24 months, twice higher the values than in those on CsA (Figure 6c).

We evaluated the presence of any potential relationship between the percentage of 

circulating Treg at 1 year and clinical outcomes. There was no significant correlation 

between percentage of Treg in total CD3+CD4+ T lymphocytes at 24 months posL. 

transplant and CADI scores, GFR decline and 24-h proteinuria at last visit in the study 

group as a whole, as well as in each cohort considered independently.

Post hoc analysis o f  patient outcomes according to the levels o f circulating Treg

In a post-hoc analysis, we stratified patients according to the Treg counts at 2 years of 

follow-up above (n=10) or under (n=l 1) the median value. Among patients with higher 

Treg, 8 were on SRL and 2 on CsA therapy, whereas 3 patients on SRL and 8 on CsA 

therapy had lower Treg levels (Table 7). Gender distribution, donor and recipient age at 

transplant, cold and warm ischemia time, HLA -A , B and DR mismatches, and the total
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number of HLA mismatches (Treg+: 4.2±1.1; Treg': 3.9±1.6) were similar in the two 

cohorts.

No significant difference in serum creatinine levels was observed between the two 

cohorts at any considered follow up evaluation (Figure 16). As shown in Table 8, there 

was a not statistically significant trend toward higher histology injury among Treg+ 

patients. The incidence of adverse events between the two cohorts was similar (Table 

9). Three patients, 1 in the Treg+ and 2 in the Treg' had acute rejection episodes at 14, 9 

and 210 days post-transplant, respectively, that fully recovered with intravenous 

methylprednisolone.
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Tables and figures

Table 2. GFR and RPF throughout the follow-up period in the two treatment

Months 0 6 12 18 24 30

Measured GFR (ml/min/1.73 m2)
SRL 64.9±10.9* 65.6±16.1 59.8±17.1 61.8±17.0 58.6±15.2

CsA 49.6±14.4 53.5±13.4 52.7±17.2 56.3±18.7 49.1±16.7

RPF (ml/min/1.73 m2)

SRL 543.2±209.1 516.5±199.9 382.0±91.5 438.1 ±64.5 415.1±158.0

CsA 426.3±101.3 416.4±132.4 406.4±129.2 405.6±125.4 336.4±127.1

Data are mean+SD. *P<0.05
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Table 3. Histology score in the per-protocol biopsies at 2 years after transplant.

Patients CADI Tubular C4d Glomerular C4d

SRL

1. VG 5 1.5 1.0

2. FG 8 1.5 1.8

3. PC 2 2.0 1.8

4. ZB 5 1.0 0.5

5. GG 9 0.5 0.4 .

6. CR 6 0.5 0.5

7. TG 4 0.7 0.2

Mean 5.6 1.1* 0.9

Median 5.0 1.0 0.5

CsA

1. RS 5 0.5 0.3

2. TA 2 0 0.3

3. GM 1 0 0.5

4. NF 5 ■ 0.5 0.5

5. CM 9 0 0.7

6. GG 0 0 2.3

Mean 3.7 0.2 0.8

Median 3.5 0 0.5

*P<0.01 vs. CsA



Table 4. Arterial blood pressure and systemic biochemical parameters
throughout the follow-up period in the two treatment groups.

Months post- 0 6 12 18 24 30

SBP (mmHg)

SRL 136±17 142±17 146±8 136±15 146±9 150±16

CsA 143±20 132±16 145±18 154±18 147±17 152±11

DBP (mmHg)

SRL 77±12 78±10 85±11 79±17 85±8 85±11

CsA 86±9 79±6 94±11 92±4 92±9 91±13

Total cholesterol (mg/dL)

SRL 236±46 248±56 243±5 8 235±36 240±34 237±45

CsA 225±46 223±45 209±32 210.4±18 217±22 208±35

HDL cholesterol (mg/dL)

SRL 66±22 57±16 49±9 57±13 53±11 60±16

CsA 48±18 46±14 55±15 45±14 51±11 49±12

Triglycerides (mg/dL)

SRL 174±89 151±85 173±134 141±77 138±52 155±93

CsA 212±89 183±89 148±64 152±65 172±78 154±79

Data are mean+SD.
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Table 5. Patients with adverse events in the two treatment arms.

SRL
(n=ll)

CsA
(n=10)

Delayed graft function 3 2
Acute rejection 1 2
Viral infection

CMV 0 4
HZV 2 0

Bacterial infection
Pneumonia 3 1
Urinary T ract' 2 0
Sepsis 1 1
Acute colangitis 1 0

Congestive Heart Failure 1 1
Ischemic coronary disease 1 0
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Table 6. Immunosuppressive drug dosing, trough levels, and AUC throughout the 
studv neriod in the two treatment arms.

SRL

T im e S R L  d o s e S R L  tr o u g h S R L  A U C o-24
P o s t - T x (mg/day) (ng/mL) (ng*h/mL)

Month 1 4.3 ±1.3 7.8 ±3 .2

Month 3 4.4 ± 1.9 8.6 ± 2 .7

Month 6 3.9 ± 1.5 9.1 ±3 .7 3 0 7 ± 100

Month 12 4.0 ± 0 .9 9.3 ±2.3 332 ± 73

Month 18 3.6 ±1.1 10.9 ±5.3 306 ± 52

Month 24 3.4 ± 1 .0 11.0 ±4.1 318 ± 6 2

Month 30 3.7 ± 1 .7 8.5 ±1 .4 290 ± 78

CsA

T im e C s A  d o s e C s A  Co C s A  A U C o -12

P o s t - T x (mg/day) (ng/mL (ng*h/mL)

Month 1 308 ± 72 164 ± 6 9

Month 3 238 ± 60 102 ± 22

Month 6 225 ± 49 120 ± 3 2 3328 ± 757

Month 12 195 ± 6 2 87 ± 3 2 2817 ±570

Month 18 194 ± 7 9 92 ± 2 7 2712 ±626

Month 24 164 ± 6 4 79 ± 261,2 2404 ± 7 6 5 2,

Month 30 143 ± 611 75 ± 421,3 2169 ± 8 0 6 3

Data are mean+SD. 1p<0.01 vs month 1; 2p<0.05 vs month 6; 3p<0.01 vs month 6
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Table 7. Donor and recipient parameters according to Treg counts at one year 
after transplant. Treg+ and Treg' are patients with levels of Treg higher or lower 
than the median value, respectively.

Treg+
(n=10)

Treg' 
(n— 11)

Donors
Age (years) 50.7 ±11.4 . 39.8 ± 15.7
Gender (M/F) 5/5 7/4
Weight (Kg) 76.0 ± 11.8 76.3 ± 12.8
Type o f donor
Cadaveric 10 9
Living 0 2

Cold ischemia time (h) 16.8 ±2.4 15.0 ±3.8
Warm ischemia time (min) 30.1 ±6.0 28.1 ±7.8

Recipients
Age (years) 53.2 ±8.9 47.0 ±16.5
Gender (M/F) 6 /5 7 /3
Weight (Kg) 75.8 ± 12.4 69.8 ± 14.3
Therapy

SRL 8* 3
CsA 2* 8

Mismatches
A 1.5 ±0.5 1.4 ±0.7
B 1.5 ±0.7 1.5 ±0.7
DR 1.2 ±0.6 1.0 ±0.8

Data are mean ± SD or median (range). *p<0.01 vs Treg'
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Table 8. Histology score (CADI) and C4d expression in graft biopsies from 
renal transplant recipients according to Treg count.

Patients CADI Tubular C4d Glomerular C4d

Treg

1. VG 5 1.5 1.0

2. PC 2 2.0 1.8

3. ZB 5 1.0 0.5

4. GG 9 0.5 0.4

5. CR 6 0.5 0.5

6. TG 4 0.7 0.2

Mean 5.2 7.0 0.7

Median 5.0 0.9 0.5

Treg'

1. RS 5 0.5 0.3

2. TA 2 0 0.3

3. GM 1 0 0.5

4. NF 5 0.5 0.5

5. CM 9 0 0.7

6. GG 0 0 2.3

7. FG 8 1.5 1.8

Mean 4 J 0.4 0.9

Median 5.0 0 0.5
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Table 9. Patients with adverse events according to randomization to Treg 
counts.

Treg+
(n=10)

Treg 
(n= 11)

Delayed graft function 3 2
Acute rejection 1 2
Viral infection

CMV 0 4
HZV 2 0

Bacterial infection
Pneumonia 3 1
Urinary Tract 1 1
Sepsis 1 1
Acute colangitis 1 0

Congestive Heart Failure 1 1
Ischemic coronary disease 1 0

Data are number (%).
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Graft histology
Representative photomicrographs o f  renal histology (A  and C) and C4d staining (B and D) m biopsies taken 
2 years post-transplant from patients receiving SRL (A and B) or CsA (C and D). Original magnification, 
x200 (A-C), and x400 (B-D).

Figure 15
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Discussion

In the second part of the study, we found that increased number of circulating Treg after 

Campath-IH induction and SRL maintenance therapy did not confer appreciable 

protection against development and progression of chronic allograft injury in renal 

transplant recipients. Actually, patients on SRL - who had higher circulating Treg 

compared to those on CsA - tended to have more severe histology changes consistent 

with chronic allograft rejection, faster GFR decline and some excess of persistent 

proteinuria.

Serum creatinine levels were relatively stable in both treatment groups during the whole 

follow-up period, although patients on SRL therapy had a slight trend toward a 

progressive increase. The lack of any significant difference in serum creatinine levels 

between the two treatment groups at any time-point after transplant might be at least 

partially explained by the small number of patients included in the study and to the 

relatively poor specificity of serum creatinine as a parameter for graft function [216]. 

Thus, to better evaluate graft function and its changes over time, we performed repeated 

(every 6 months after transplant) direct measurements of GFR and RPF by iohexol and 

PAH clearance, respectively. These are gold standard techniques that allow a precise 

and accurate evaluation of renal function [217]. Slopes of GFR changes over time 

showed that SRL patients had a significantly faster renal function decline as compared 

with CsA patients. Of note, yearly reduction of GFR in the CsA group was even lower 

than the physiological decline in healthy subjects after 40 years of age, i.e. 1 

ml/min/1.73 m2 [218]. A similar picture was found evaluating the RPF slopes, whose 

decline was remarkably although not significantly faster in the SRL than in the CsA 

group. In line with the above results, proteinuria higher than 0.5 mg/24h was slightly
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more frequent among SRL than CsA patients. Importantly, these findings might 

translate into significantly different outcomes in the longer term. Indeed, both an high 

rate of GRF decline [219] and the onset of proteinuria [220] represent strong predictors 

of poor graft survival and function in the longer term.

The trend to worse renal function in the SRL group was associated with more severe 

histology changes at the per-protocol biopsies performed at 2 years after transplant. In 

particular, grafts from SRL patients showed more important tubulo-interstitial fibrosis, 

interstitial inflammation and arteriosclerosis than CsA treated ones. Also glomerular 

abnormalities were more severe in the SRL group. This translated into numerically 

higher CADI score for SRL as compared with CsA patients. Importantly, tubular 

staining for C4d was significantly more intense for SRL patients. C4d deposition in the 

peritubular capillaries of the graft has been correlated with the lesions of transplant 

glomerulopathy and with circulating alloantibodies [221]. As in our patients, the 

functional counterpart of these histology findings is often represented by the onset of 

proteinuria (generally of a low grade) and progressive renal dysfunction. In a: 

retrospective study on 80 patients with histological diagnosis of chronic allograft 

nephropathy, those who had Cd4 positive staining in peritubular capillaries developed 

more frequently anti-HLA antibodies and had a significantly lower death-censored graft 

survival at 4 years as compared with those with negative staining (50% vs. 87%, 

P=0.002) [221]. Whether Cd4+ staining was associated with anti-HLA antibodies and 

their potential impact on graft outcomes in our series of Campath-IH patients has not 

been evaluated. Notwithstanding, the present functional and histology data suggest that 

maintenance therapy with low-dose SRL and MMF may provide a less effective graft
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protection than low-dose CsA plus MMF in renal transplant patients receiving induction 

with Campath-IH.

Finding that graft function and structure were better preserved in CsA treated patients 

was however unexpected, especially considering the renal toxicity of calcineurin 

inhibitors. Indeed, renal biopsy studies among nonrenal organ recipients with chronic 

kidney disease have shown that calcineurin inhibitor-related injury is a common finding 

[222]. Histopathologic findings include interstitial fibrosis with a "striped" appearance, 

nodular arteriolar hyalinosis, and, later, tubular atrophy with glomerulosclerosis and 

arteriosclerosis [37]. Hence, calcineurin inhibitor avoidance has been claimed as a 

strategy to improve the outcomes of the graft [223]. In our series, however, per-protocol 

biopsies from CsA treated-patients showed no sign of calcineurin inhibitor toxicity, 

possibly as a consequence of the small used doses of calcineurin inhibitor. Notably, 

CsA doses slightly declined over time and this might at least partially account for the 

improved RPF and GFR. Indeed, CsA exerts a vasoconstrictor effect, which may impair 

renal function. Thus, a progressive reduction of CsA over time might have improved 

glomerular hemodynamics and function.

Conversely, blood levels of SRL remained substantially stable over the whole follow-up 

period. Though initially considered devoid of any nephrotoxic effect, recent reports 

have been published showing that SRL might actually have renal toxicity. Indeed, a 

considerable number of de novo kidney transplant recipients on SRL-based 

immunosuppression [117, 224, 225] and of patients converted from calcineurin 

inhibitors or azathioprine to SRL due to cutaneous squamous cell carcinoma or chronic 

allograft dysfunction [226, 227], have been reported to develop proteinuria and 

glomerulopathy, both of which may predict lower allograft survival [220]. SRL toxicity
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might therefore account for worse graft outcomes of patients in this treatment arm. This, 

however, seems extremely unlikely, since treatment was titrated to SRL blood levels (5 

to 10 ng/ml) that are consistently lower compared to those associated with chronic 

nephrotoxicity (10 to 18 ng/ml) [224, 226]. Thus, other factors must be taken into 

consideration.

Finding that more severe structural and functional changes were associated with a 

significantly more intense C4d staining of the graft tissue, lend support to the possibility 

that the worse outcome of SRL-treated patients could be explained also by immune 

mechanisms resulting in more severe chronic allograft rejection. This would imply that 

in SRL-treated patients increased Treg cell count did not confer appreciable protection 

from the development of chronic alloimmune response. At variance, a specific Treg 

independent, protective effect of low-dose CsA against graft injury could explain the 

good long-term outcome of CsA-treated patients [228].

Finding that the increased percentage of Treg in SRL patients did not translate into an 

improved renal function was however unpredicted. Indeed, a large body of evidence is 

available that CD4+CD25hlgh Treg cells have potent immune regulatory effect in vitro 

[229, 230] and studies in experimental models of organ transplantation convincingly 

showed a protective effect of these cells against acute rejection in vivo. Anecdotal ex 

vivo findings in two kidney transplant patients have also suggested that Treg may play a 

role in preventing alloantigen epitope shifting, which is implicated in the ongoing 

immune activation contributing to chronic rejection [162]. Moreover, data from kidney 

transplant patients showed that the presence of Treg was associated with better 

outcomes, including a reduced risk of acute rejection [231] and better renal function in 

the long-term [167]. However, most of these results were obtained from patients on
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different immunosuppressive regimens, at different time points after transplant, and not 

prospectically followed-up. In our series, the incidence of acute rejection was extremely 

low in both treatment groups, thus it does not allow to clearly state whether higher Treg 

levels might have played any role in the prevention of acute alloimmune response. 

However, progressive renal function worsening, combined with histology signs of 

humoral chronic rejection suggest that Treg did not provide any clear advantage in 

chronic graft protection.

The lack of any protective effect of Treg on the graft was confirmed by the absence of 

any significant correlation between the percentage of circulating Treg at 12 months and 

CADI histology score, GFR decline, and proteinuria levels at the last visit in the study 

group as a whole, as well as in each cohort considered independently. To further 

confirm this finding, we stratified patients according to the relative value of circulating 

Treg at one year after transplant above or under the median value. Again, outcomes of 

patients with higher circulating Treg levels were not better that the ones found in 

patients with lower levels.

Why SRL-treated patients were not protected from chronic allograft rejection despite 

the enhanced expression of Treg remains matter of speculation. One possibility is that 

the number of circulating Treg, although increased in the SRL group as compared to 

pre-transplant values, did not reach the threshold level to properly suppress the complex 

pathways of T effector cells, and thus to limit chronic graft injury. In murine models of 

spontaneous autoimmunity or genetically engineered mice, the Treg cells function 

normally but the T effector cells are resistant to Treg-mediated suppression when the 

phosphatidylinositol 3-kinase (PI3K)-Akt pathway is hyperactivated [232-234]. 

Costimulatory receptors and T cell receptor (TCR)-stimulation activate the PI3K-Akt

156



pathway in T lymphocytes which promote various cell responses associated with cell 

division including the inactivation of cell cycle inhibitors, and the induction of cyclin 

and cytokine gene expression [235]. These are early events in T cell activation that are 

not suppressed by SRL, which actually inhibits the downstream target protein kinase 

mammalian target of rapamycin (mTOR) [236]. A complementary explanation is that 

the local cytokine inflammatory milieu may inhibit the Treg immunomodulating 

activity in the graft. In support of this possibility is the evidence that in an experimental 

model of autoimmune encephalomyelitis, autoantigen-specific natural Treg accumulate 

in the central nervous system, but fail to effectively control the autoimmune reaction 

due to their exposure to locally released inflammatory cytokines, including IL-6 [237]. 

Notably, IL-6 renders naive T cells resistant to suppression and enables the initiation of 

an immune response also in the presence of Treg [238]. In the context of the graft, 

alloreactive T cells themselves may be the source of IL-6 [239]. Moreover, in an 

inflammatory milieu, Treg may release TGF-p which, combined with IL-6, might 

promote the expansion of Thl7 cells [240], a relatively new T cell subpopulation 

possibly involved in the rejection of the graft. This might explain why the potent in 

vitro activity of circulating Treg does not translate into an effective prevention the 

immune response inside the graft. Conversely, Treg activity might eventually result into 

an injurious effect through the induction of Thl7 expansion. Evidence is also available 

that cells capable of rejecting the graft definitely remain after Campath-IH therapy 

[145]. In particular, post-depletion T cells are predominantly effector/memory T cells 

that expand in the first month after renal transplantation [173]. As shown in the previous 

chapter of results, also in our patients most residual T cells after Campath-IH actually 

expressed the CD45RO+ memory-like marker. Like in the autoimmune experimental
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models, reactivity of these T effector/memory cells might overwhelm the beneficial 

immune regulation of Treg [94]. Thus, in SRL-treated transplanted patients T effector 

cells, continuously activated by alloantigens and by intragraft inflammatory cytokines, 

could be less sensitive to regulatory T cell suppression.

A critical step in the pathogenesis of interstitial fibrosis in chronic allograft injury is 

epithelial-to-mesenchymal transition (EMT), whereby renal tubular epithelial cells 

change phenotypically and functionally into myofibroblasts [241]. The factor most 

capable of inducing and completing EMT is transforming growth factor-P (TGF-p) 

[242]. A possible candidate for TGF-p production during persistent inflammation (as it 

occurs in kidney transplantation) is the Treg cell which expresses the aE(CD103)p7- 

integrin allowing adhesion to epithelial cell E-cadherin [212, 243]. Importantly, the 

expression of CD 103 is also associated with the presentation of membrane-bound TGF- 

P [244]. On this line is the recent evidence that CD103+ T cells are bound to biliary duct 

epithelium in patients with primary biliary cirrhosis [245]. Thus, as alternative but not 

exclusive explanation of the present findings, Treg recruited into the graft might indeed 

activate tubular epithelial cells to trans-differentiate into myofibroblasts and ultimately 

promote interstitial fibrosis.

Beside efficacy parameters, in our study we also evaluated the safety profile of the two 

maintenance immunosuppressive regimens. Importantly, Campath-IH infusion was 

very well tolerated in all the patients. Adverse events were relatively mild and similarly 

distributed between the two groups, suggesting that different Treg counts did not affect 

either the risk of acute rejection or the susceptibility to opportunistic infections.

Blood pressure control and lipid profile were similar in the two cohorts, although SRL 

patients tended to have higher levels of tryglicerides and total cholesterol. Negative
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effect of SRL on lipid metabolism is well known [246]. Indeed, SRL has been shown to 

increase apoB-100, apo C-II, apo C-III, and hepatic VLDL cholesterol production and 

to decrease heparin-induced LPL activity [247]. Thus, SRL appears to increase 

production of trygliceride-rich lipoproteins and prevents their breakdown.

Our present findings must be taken with caution since, because of the limited sample 

size and the reduced statistical power, the possibility of random effects cannot be 

definitely excluded. This may also explain why comparative analyses failed to detect 

significant differences in main functional and structural outcomes between the two 

treatment groups.

However, finding that all considered outcome parameters - histology score, GFR, 

proteinuria and C4d expression - consistently failed to show any trend to improved 

long-term outcome in SRL-treated patients with increased Treg count, provides a 

reasonable evidence of the robustness of our data.

Our data may have potentially important implications both for clinical management of 

kidney transplant patients receiving Campath-IH induction and for future research, on 

Treg in the clinical transplant setting. This was the first study formally comparing two 

different low-dose maintenance immunosuppressive regimens after Campath-IH 

induction. Although the number of patients included in the study was relatively small, 

our data suggest that low-dose CsA combined with MMF conferred a similar protection 

against acute rejection than low-dose SRL, but was associated with a trend toward 

better graft function and lower histology injury at the 2 year per-protocol biopsy. 

Importantly, the use of low doses of CsA was not associated with any sign of 

calcineurin inhibitor toxicity. Conversely, immunosuppressive therapy with SRL was 

associated with a trend toward faster renal function decline and worse graft hystology.
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Regardless of the mechanisms involved -  SRL nephrotoxicity and/or uncontrolled 

immune response our present results suggest that maintenance therapy with low-dose 

CsA and MMF might provide better outcomes than low-dose SRL and MMF in renal 

transplant patients receiving Campath-IH induction. Importantly, the presence of 

increased proportion of Treg among circulating lymphocytes in SRL patients did not 

provide any significant benefit on graft outcome, indicating that the role of these cells in 

the clinical transplant setting might be less evident than that suggested by experimental 

evidences in animal models.
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FINAL DISCUSSION AND CONCLUSIONS

In the present study, we showed that a single 30 mg infusion of Campath-IH was able 

to induce a profound and long-lasting depletion of peripheral lymphocytes in renal 

transplant recipients on maintenance immunosuppression with low-dose of SRL or CsA, 

both combined with low-dose MMF. The two low-dose immunosuppressive regimens 

provided an effective protection against acute rejection and a good safety profile. 

Importantly, SRL and CsA were associated with different phenotypic and functional 

patterns of circulating lymphocytes. In particular, SRL promoted the expansion of 

functionally active CD4+CD25+FOXP3+ Treg, whereas CsA therapy was associated 

with increased numbers of CD8+CD28’FOXP3' T cells, whose functional characteristics 

are however still unclear. In vitro functional evaluation of peripheral lymphocytes, 

harvested at 1 and 2 years from transplant, showed decreased reactivity against donor 

cells in both treatment groups. On the other hand, anti third party response was 

suppressed in SRL and almost intact in CsA patients as compared with pre-transplant 

levels.

In the long-term, higher percentage of circulating Treg among SRL patients did not 

translate into improved clinical outcomes. Conversely, patients on CsA tended to have 

better graft function and lower histology injury in the per protocol graft biopsies 

performed at 2 years after transplant.

At the best of our knowledge, this was the first randomized, controlled, prospective trial 

comparing the immune characteristics and clinical outcomes of two different low-dose 

maintenance regimens of kidney transplant patients undergoing lymphocyte depletion 

through Campath-IH induction.

161



Lymphocyte depletion has long been recognized as a mean of preventing allograft 

rejection and has been pursued as a therapeutic strategy since the earliest days of 

transplantation [197]. Initially used to control immune response in patients at increased 

risk of acute rejection, it was subsequently proposed as a tool to minimize maintenance 

immunosuppression in patients at standard risk [122, 248]. Indeed, experience in non

human primate models of transplantation suggested that it might promote tolerance 

toward alloantigens [106].

With this background in mind, Campath-IH has been used in different organ transplants 

[126]. So far, however, clinical experience with Campath-IH has been largely limited to 

uncontrolled pilot trials and single-center experiences [249]. At the time our study was 

designed, the presumed dominant mechanistic effect was a reduction in T-cell precursor 

frequency limiting T-cell activation during the period of recovery from ischemic injury 

[136]. More recently, evidence came out showing that the pro-tolerogenic effect of 

Campath-IH may at least partially depend on the promotion of Treg expansion [175]. 

However, different maintenance immunosuppressive regimens may differently affect 

lymphocyte number and function, thus inducing or inhibiting Treg expansion and/or 

immune activity [114]. This might account for different outcomes reported with 

different maintenance immunosuppressive regimens after Campath-IH.

Thus, comparing different outcomes and immune fingerprints associated with different 

maintenance immunosuppressive regimens after Campath-IH induction might be of 

major importance to define the best maintenance immunosuppressive strategy and 

understand immune mechanisms potentially useful to design new pro-tolerogenic 

clinical protocols.
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In the present study, we randomized recipients of a first single kidney transplant 

undergoing Campath-IH induction to maintenance therapy with low-dose SRL or CsA, 

both combined with low-dose of MMF.

Our working hypothesis was that SRL therapy would promote the expansion of 

CD4+CD25+FOXP3+ T cells [177] and, considering their potential effect in controlling 

the immune response [250], we supposed that they might improve graft outcomes by 

preventing alloimmune injury. The present results, however, challenged our initial 

assumption. Indeed, although SRL therapy was associated with Treg expansion, this did 

not translate into any clinical advantage. Though because of the small number of 

patients included, the study might have had insufficent power to detect all but a large 

effect, our results do not support the idea that higher numbers of circulating Treg 

improve graft outcomes. Indeed, in spite of increased Tregs, SRL patients had a trend to 

even worse renal function and structure at 2 year per-protocol biopsy.

Our present results suggest that in the clinical setting the role of Treg might in fact be 

less important than in animal models of transplantation. Indeed a large body of evidence 

consistently showed that Tregs can induce and maintain immune tolerance and have the 

capacity to facilitate antigen-specific long-term graft survival successfully in animals 

receiving allogeneic organ transplants [229, 251]. Thus, the development of approaches 

to generate alloantigen reactive Tregs has been thought as an effective tool to induce 

tolerance in the clinical setting. Early clinical observations of Treg in human 

transplantation include reports of positive correlation between graft survival and 

circulating Treg in lung [252], liver [253] and kidney [254] allograft patients. CD4+ 

Treg have also been reported in patients who developed spontaneous tolerance to liver 

[255] or kidney [256] allografts and in peripheral blood of human liver transplant
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recipients weaned from immunosuppression [257]. A clear relationship between the 

levels of circulating Treg and graft outcomes is however not a uniform finding. This 

might be at least partially explained by the fact that circulating cells may not reflect 

intragraft events. Moreover, the redundancy and complexity of mechanisms of rejection 

underlies the difficulty in identifying biomarkers for prediction of graft outcome, and 

the induction of tolerance [258]. Also, potential local control mechanisms within the 

graft include not only several population of lymphocytes [88], but also mast cells [259] 

and monocytes [135]. Given this complexity, it is not surprising that no definite 

correlation between circulating Treg number and graft outcomes could be identified in 

our series. Indeed, at 2 years follow-up, non-alloimmune and/or non-inflammatory 

processes may well supervene to influence outcome, making associations even more 

difficult to detect [260]. In addition, a variety of individual factors, including sex, age 

and a range of gene polymorphisms potentially affect graft function and structure [260]. 

Notwithstanding, our results raise a concern about pro-tolerogenic strategies aimed at 

inducing donor-specific hyporesponsiveness through the promotion of Treg. Indeed, 

finding no positive trend between the number of circulating Treg and improved graft 

function or structure suggests that the role of these cells might not be so crucial in graft 

immune protection as previously believed, at least in human kidney transplantation. 

Notably, we found that Campath-IH treated patients on low-dose CsA as maintenance 

immunosuppression showed donor-specific hyporesponsiveness and that anergy was the 

main mechanism at the basis of their low reactivity against donor antigens. Although 

recent years have seen a surge of interest around Treg, anergy might in fact represent an 

alternative important mechanism to promote tolerance [261, 262]. Indeed, in renal 

transplant patients with stable graft function, anergy has already been reported as a way
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to promote hyporesponsiveness toward the donor [262]. It should be however taken into 

consideration that lymphocyte alloreactivity of all our patients was tested on ongoing 

maintenance immunosuppression. As anergy can be easily reverted by IL-2 addition, 

hyporesponsiveness toward donor cells in CsA patients might rely on maintenance 

therapy with an immunosuppressant that blocks IL-2 pathways [263]. Thus, CsA dose 

reduction or occurrence of inflammatory conditions such as infections, may result into 

an increased IL-2 production and thus revert the anergic state of these cells, eliciting an 

immune response against the graft.

Our findings challenge the hypothesis that Campath-IH is an intrinsic generator of 

Treg, as only SRL maintenance therapy was associated with the expansion of these 

cells. However, an intriguing finding of the present study was that maintenance 

immunosuppression with CsA was associated with the expansion of CD8+CD28’ T 

cells. Their negative expression of FOXP3 let us exclude they represented the same cell 

population isolated by Cortesini et al., which act by inducing endothelial and dendritic 

cells to express ILT-3 and ILT-4 inhibitory signals, thus making them tolerogenic [89]. 

Interestingly, a recent work by Trzonkowski et al. showed that, in renal transplant 

patients treated with Campath-IH, repopulating CD8+ T cells were mainly of 

immunosenescent CD8+CD28' phenotype and were able to suppress proliferation of 

CD4+ T cells [174]. The Authors hypothesized that expanded CD8+CD28' T cells might 

compete for 'immune space' with CD4+ T cells, suppressing their proliferation and 

therefore delaying CD4+ T cells recovery. Although we did not test immune function of 

CD8+CD28‘ cells from CsA-treated patients, our results suggest that these cells might 

have played a role also in our cohort of patients. Further studies are however needed to 

clarify this point.
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Another major contribution of the present study was finding that, when used at lower 

than conventional doses, CsA displays a relatively safe profile. Indeed, at the dosage 

employed in our protocol, it might provide enough immunosuppression to efficiently 

control both cellular and humoral allogeneic response, while exposing the kidney to 

minimal toxicity. Notably, also other well known adverse effects of CsA, including 

hypertension and glucose and lipid metabolism impairment, were relatively modest. 

Conversely, low-dose of SRL may have not been enough to control immune response, 

in line with the positive C4d staining in peritubular capillaries from patients in this 

treatment arm, which can be taken as a marker of humoral alloreactivity. On the other 

hand, even low doses of chronic SRL therapy might have negatively affected graft 

function, possibly even more than chronic use of calcineurin inhibitors. A growing body 

of evidence has suggested that SRL might indeed exert a nephrotoxic effect. Studies are 

available showing that SRL therapy is associated with the occurrence of proteinuria and 

this might be due to a direct toxic effect on podocytes [264].

Although calcineurin avoidance has been extensively claimed as a tool to improve renal 

graft outcomes, the largest randomized prospective trial performed so far, the 

SYMPHONY study, actually showed that low-dose CsA maintenance therapy provided 

better graft outcomes than low-dose SRL in kidney transplantation [265]. In this trial, 

1,645 renal transplant recipients were randomly assigned to receive standard-dose 

cyclosporine, mycophenolate mofetil, and corticosteroids, or daclizumab induction, 

mycophenolate mofetil, and corticosteroids in combination with low-dose cyclosporine, 

low-dose tacrolimus, or low-dose sirolimus. Patients on low-dose calcineurin inhibitors 

had the lowest rate of acute rejection, and a trend toward better graft survival and 

function[265]. This finding highlights that calcineurin inhibitors represent crucial
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molecules for immune suppression in transplantation, at least when non-depleting 

agents are used as induction therapy.

The beneficial effect of calcineurin inhibitors might be even more relevant in regimens 

including lymphocyte depletion. Indeed, after initial removal, lymphocytes undergoing 

homeostatic proliferation express markers of memory T cells. These cells have a low 

activation threshold, thus they may increase the risk of acute rejection. Importantly, in 

vitro experiments showed that CsA exert an inhibitory effect on these cells, which has 

not been shown for SRL [173]. Thus, maintenance immunosuppressive therapy with 

CsA might control alloimmune response better than SRL, especially in transplant 

patients undergoing induction therapy with lymphocyte depleting agents. This is in line 

with a retrospective analysis of the Organ Procurement and Transplantation 

Network/United Network for Organ Sharing (OPTN/UNOS) database, showing that, 

among Campath-IH treated patients, maintenance immunosuppression with calcineurin 

inhibitor-based immunosuppression may improve graft and rejection-free survival 

compared to calcineurin inhibitor-free regimens [137].

In conclusion, our study showed that: 1. Campath-IH is a safe and effective tool to 

prevent acute rejection with minimal doses of maintenance immunosuppression, in 

kidney transplant recipients; 2. maintenance immunosuppression with low-dose SRL 

and MMF is associated with the emergence of CD4+CD25+FOXP3+ Treg, but this is not 

paralleled by improved graft function or structure; 3. maintenance immunosuppression 

with low-dose CsA and MMF is associated with donor-specific hyporesponsiveness of 

peripheral leukocytes, and this is at least in part due to T cell anergy. This is associated 

with a trend to better graft function and structure.
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Our present findings suggest that lymphocyte depletion with Campath-IH might 

represent a useful strategy to minimize chronic immunosuppression in kidney 

transplantation, especially when CsA and MMF are used as maintenance drugs. The 

present results suggest that circulating Treg per se might be less relevant in transplant 

outcomes that previously thought. Further studies are however needed to clarify their 

impact in the clinical setting.
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APPENDIX

GFR and RPF measurement by plasma clearance of non-radioactive iohexol and 

paraaminohippuric acid (PAH)

Procedures

On the morning of the study, a catheter is positioned in an antecubital vein for the 

injection of the marker substances, and another in the contralateral arm for subsequent 

blood sampling.

/

Catheter
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Catheter positioned in the antecubital vein

Catheters positioned in an antecubital vein for the injection o f the marker substances, and in the contralateral 

arm for blood sampling.
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After baseline blood sample collection for measurement of basal iohexol/PAH 

concentration (blank), 5 mL of Omnipaque containing 3.235 gr iohexol is slowly 

injected (2 minutes) into the injection catheter.

Drawing exactly 5 ml o f iohexol Syringe ready for 5 ml iohexol injection

Omnipaque solution (20 ml) can be used for more than one patient in the same day but 

not in different days.

The catheter is then washed with 10 mL normal saline solution.

171



Washing the catheter with 10 ml saline

Note the exact time of injection (time 0) and use the same clock for timing throughout 

the procedure.

110 minutes later, a priming load of PAH solution at the dose of 8 mg/kg, adjusted for 

body weight in 5 kg increments, is injected in 1-2 minutes into the injection catheter, 

immediately followed by a timed constant infusion of 12 mg/min PAH with no 

adjustment for body weight, through a syringe-pump calibrated for precision of 0.04 

mL/h. Again note the exact time of PAH injection. After the 180 min blood sampling 

the constant infusion of PAH is stopped and the catheter removed.
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Injection o f the priming load o f PAH solution (dose = 8 mg/kg, in 1-2 minutes) adjusted for body 

weight in 5 kg increments

Constant infusion of 12 mg/min PAH solution (with no adjustment for body weight) through a syringe- 

pump

173



For Iohexol and PAH determination, blood samples are collected at different timepoints 

according to the expected GFR (as creatinine clearance):

a) for GFR > 40 mL/min sampling at:

120.150.160.170.180, 210, 240 minutes;

b) for GFR < 40 mL/min sampling at:

120.150.160.170.180, 240, 300, 360, 420, and 480 minutes.

after iohexol injection.

Before any blood sampling, discharge a blood volume at least equivalent to the catheter 

volume (1.5 mL) in order to avoid blood dilution with saline.

Discharging a blood volume at least equivalent Blood sampling to the catheter volume before sampling
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Similarly, at the end of blood collection fill the entire catheter with saline solution.

4 ...:

Filling the catheter with saline solution at the end o f each blood collection
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Blood samples can remain at room temperature until the end of the procedure before 

plasma separation.

Blood samples (3 mL) are centrifuged at room temperature (3000 rpm for 10 minutes), 

the plasma collected and stored at -20 °C until assay.

Centrifuge 
at 3000 rpm 
for 10 min 
at room 
temperature

Collect
separated
plasma

jd
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Flow charts for GFR and RPF measurement

- for an expected GFR > 40 mL/min:

Iohexol

\

PAH constant infusion

PAH loading 
dose

i - - i — i - 1— i— i— i— i— i— i— i
Pre-dose 0 2

(blank
110 112 120 150 160 170 180 210 240 min

for an expected GFR < 4 0  mL/min:
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PAH constant 
infusion

Iohexol

PAH
loading
dose

0 2
Pre-dose 

(blank sample)

I I I I I I I I
110 112 120 150 160 170 180 240

min

300 360 420 480
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Critical points of the procedures

1. To inject the exact dose of iohexol and PAH.

2. To obtain a constant infusion of 12 mg/min PAH.

3. To ensure that all fluid is injected intravenously and that there is no subcutaneous 

leakage.

4. To note the exact times at which samples are taken.

5. To draw blood not diluted with saline.

Preparing samples for analysis of iohexol and PAH

1. Centrifuge each samples at 3000 rpm for 10 minutes.

2. Pipette plasma from each sample into a tube.

3. Label, freeze, and store at -20° C until shipment.

Note:

a) the model assumes exactly 3.235 g iohexol being injected. Should the injected dose 

be different from this, please report the dose actually injected in order to correct the 

formula used for calculating GFR.

b) the model assumes exactly 8 mg/kg PAH, (adjusted for body weight in 5 kg 

increments), being injected and a timed constant infusion of 12 mg/min PAH being 

infused. Should the injected dose and/or the infusion rate be different, please report
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the dose actually injected and/or the actual infusion speed in order to correct the 

formula used for calculating RPF.

c) the procedure implies all the markers are correctly injected, if subcutaneous leakage 

occurs, the procedure must be stopped and repeated a week apart.
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Methods to determine iohexol and PAH concentration in the plasma samples and 

calculation of GFR and RPF values

Iohexol plasma concentration is determined by high performance liquid 

chromatographic (HPLC) method. Iohexol clearance is first calculated according to a 

one-compartment model (CLi) by the formula:

CLi = injected dose of iohexol/AUC

where AUC is the area under the curve of the plasma concentration of iohexol. Then the 

value obtained is corrected according to Brochner-Mortensen, in order to estimate the 

corrected GFR (plasma clearance) by using the formula:

GFR=(0.990778x CLi)-(0.001218x CLi2)

GFR values is then normalized for body surface area and expressed as ml/min/1.73 sqm.

PAH concentration is measured by HPLC by using the same method for iohexol 

measurement. PAH clearance is calculated according to the formula:

RPF=Ro/CssP AH
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where Ro is the infusion rate; CssPAH is the PAH plasma concentration at the steady 

state (i.e. mean of PAH plasma concentrations measured at 150, 160, 170, 180 minutes 

from iohexol injection)

Renal plasma flow, estimated by plasma clearance of PAH, is then normalized by body 

surface area, and expressed as ml/min/1.73 sqm.
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LIST OF ABBREVIATIONS

6-MP: 6-mercaptopurine 

AUC: area under curve 

BM: bone marrow

CADI: chronic allograft damage index 

CAN: chronic allograft nephropathy 

CMV: cytomegalovirus 

CsA: cyclosporine

DIC: diffuse intravascular coagulation

DTH: delayed-type hypersensitivity

ELISPOT: enzyme-linked immunospot

GBM: glomerular basement membrane

GFR: glomerular filtration rate

GVDH: graft versus host disease

HLA: humal leukocyte antigen

HPLC: high-performance liquid chromatography

LDA: limiting dilution assay

MAP: mitogen activated protein

MHC: major histocompatibility complex

MLR: mixed lymphocyte reaction

MMF: mycophenolate mofetil

mTOR: mammalian target of rapamycine

NFAT: nuclear factor of activated cells

P AH :p-aminohippurate

RPF: renal plasma flow

SRL: sirolimus

TLI: total lymphoid irradiation

Treg: regulatory T cell

UNOS: United Network for Organ Sharing
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