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ABSTRACT

The most common quorum sensing (QS) system in Gram-negative bacteria employs 

A-acyl homoserine lactones (AHLs) as signal molecule. AHLs allow bacteria to 

monitor their cell density being commonly used to synchronize/coordinate the 

expression of virulence-associated factors in a community. An AHL QS system is 

most commonly mediated by two proteins belonging to the LuxI-AHL synthase and to 

LuxR-AHL response regulator protein families. AHLs interact directly at quorum 

concentration with the cognate LuxR-type protein which then binds at QS target gene 

promoters affecting their transcription. The purpose of this thesis was to investigate 

the QS systems based on AHL signal molecules in two important bacterial rice 

pathogens: Xanthomonas oryzae pv. oryzae {Xoo) and Pseudomonas fuscovaginae. 

Studies revealed that Xoo does not produce AHLs and does not possess a luxl AHL 

synthase gene; it does have however an unpaired /wxR-homolog gene closely related 

to QS luxR family genes which was designated oryR. OryR was demonstrated to be 

involved in inter-kingdom signalling by binding an unknown rice signal molecule 

(RSM) and affecting bacterial gene expression. The concentration of the RSM 

increases in rice when it is infected with Xoo possibly meaning that it is involved in a 

response to pathogen attack. RSM does not bind canonical LuxR-family proteins and 

is not related to AHLs. It was concluded that OryR is not involved in bacterial QS but 

in inter-kingdom signalling by recognizing and responding to a molecule present in 

rice. Studies in P. fuscovaginae revealed that it possesses a typical AHL QS system, 

designated Pfvl/R, highly conserved within the species and highly similar to the 

Lasl/R and Ppul/R QS systems present in Pseudomonas aeruginosa and



Pseudomonas putida respectively. The Pfvl/R QS system was shown to be involved in 

virulence, to be important for the hypersensitivity response in non-host plants and for 

bacterial motility.
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CHAPTER 1 Introduction

1. INTRODUCTION

1.1 General information on rice

The worldwide transformation of agriculture during the 1960s and 1970s, generally 

referred to as “Green Revolution”, led to significant increases in agricultural 

production, improving crop genotypes, farm technology, better irrigation and 

chemical fertilizers. This transformation has occurred as the result of programs of 

agricultural research that resulted in the development of modem or high yielding crop 

varieties (Evenson and Gollin, 2003). Revolution in agriculture helped food 

production to keep pace with worldwide population growth. Despite its success at 

increasing aggregate food supply, the Green Revolution as a development approach 

has not necessarily translated into benefits for the lower strata of the rural poor in 

terms of greater food security or greater economic opportunity and well-being. How 

the Green Revolution affects rural people depends on whether they are wage earners, 

cultivators or consumers, whether they come from landed or landless, rich or poor, 

male- or female-headed households. Undemutrition and poverty are still prevalent and 

the distribution of food remains skewed with families in landless, small-scale farming 

households and general labourers as high-risk groups.

Rice is one of the most important crops in the world, providing staple food for more 

than half of the world population. Rice is in fact the most economically important 

food crop in many developing countries but has also become a major crop in many 

developed countries (IRRI - www.irri.org). Rice provides two thirds of the calorie

2
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CHAPTER 1 Introduction

needs of more than 3 billion people in Asia and one third of the calorie needs of 

nearly 1.5 billion people in Africa and Latin America.

World production of rice has risen steadily from about 200 million tons of paddy rice 

in 1960 to about 650 million tons in 2007 (FAO -  www.fao.org). Rice production 

represents 30% of the world cereal production today. It has doubled in the last 30 

years, in part due to the introduction of new genetically improved varieties, but its 

present growth barely follows consumption: in 2025 there will be 4.6 billion people 

that depend on rice for their daily nourishment, compared with three billion today. A 

new leap in production is therefore expected. At the same time, small producers will 

have to use land which is less favourable for cultivation, such as brackish or briny 

soils, and the availability of water resources will become more and more problematic. 

Ninety percent of the world crop is grown and consumed in Asia. Rice is the only 

major cereal crop that is primarily consumed by humans directly as harvested, and 

only wheat and com are produced in comparable quantity (FAO -  www.fao.org; IRRI 

- www.irri.org ).

1,2 Classification of rice

Rice is a kind of grass, member of the family Poaceae, subfamily Oryzoideae. Of the

21 known species of rice, only two are cultivated: the widely grown Asian rice, Oryza

sativa, and the hardier African rice, Oryza glaberrima (Sweeney and McCouch,

2007). About 50,000 varieties exist within these two species, but only a few hundred

of them are cultivated. Asian rice, if managed with modem techniques such as

fertilizers, irrigation, and chemical pesticides, produces significantly more grain per

plant than African rice, and for this reason is the preferred type in the majority of rice-

3
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CHAPTER 1 Introduction

growing countries. African rice, however, is more productive than Asian rice in 

traditional farming systems where modem techniques are not used or poor growing 

conditions are present. Rice should not be confused with 'wild rice' (Figure 1-D) 

which is produced by the North American Zizania aquatica, also in the grass family 

but not closely related.

O. sativa is differentiated into three subspecies based on geographic conditions and 

amylose content: indica, javanica, and japonica (Sweeney and McCouch, 2007). 

Indica (Figure 1-A) refers to the tropical and subtropical varieties, grown throughout 

South and Southeast Asia and southern China, with long grains and high in amylose, 

cooking to fluffy grains to be eaten with the fingers. Javanica (Figure 1-B), designates 

the bulu (awned) and gundil (awnless) rice with long panicles and bold grains, 

growing in Indonesia, intermediate in amylose content and stickiness. Japonica 

(Figure 1-C) refers to the short and roundish grained varieties of the temperate zones 

of Japan, China, and Korea, low in amylase and cooking to sticky masses suitable for 

eating as clumps with chopsticks. Moreover rice is further divided into long, medium 

and short-grained varieties. Rice is also classified as white or brown, not on the basis 

of the variety, but according to how it is processed.

Figure 1: Rice grain varieties. Indica, with long grains (A), Javanica, with bold grains (B), 
Japonica, with short and roundish grains (C) and the North American wild-rice (D).
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CHAPTER 1 Introduction

White rice undergoes a number of processes to eliminate all the external layers, while 

the first phase for brown rice is to remove the husk without touching the other layers. 

Brown rice contains the highest nutritional and mineral value. Oryza sativa is much 

more commonly used to produce rice and is cultivated from 53° N to 40° S latitude 

where it is adapted to a wide range of environmental conditions, from uplands to 

waterlogged lowlands. Rice is grown in more than 100 countries, and is particularly 

productive in tropical regions with abundant moisture, but it also grows successfully 

under widely different climates. Today, rice is grown in four different ecosystems: 

irrigated, rainfed lowland, upland, and flood-prone.

Figure 2: The four rice ecosystems characterized by different water regimes. (A) Irrigated 
ecosystem, in bounded field with regular water supply. (B) Rainfed lowland ecosystem, in 
bounded fields with irregular water supply. (C) Upland ecosystem, in unbounded well-drained 
fields. (D) Flood-prone ecosystem, in deeply flooded fields.
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Irrigated rice is grown in levelled fields with water control, producing paddy rice that 

is the preferable method for commercial rice production (Figure 2-A). Rainfed 

lowland rice is cultivated in bounded fields non-continuously flooded with water 

(Figure 2-B). In the upland ecosystem rice is often grown in hilly areas with natural 

rainfall, upland rice produces significantly lower yields than paddy rice and requires 

abundant moisture at frequent intervals (Figure 2-C). Rice in flood-prone ecosystem is 

grown in fields subjected to temporary or long periods of submergence in floodwater. 

Flooding is used to control some weeds and insect pests, but may lead to waterborne 

disease spread, some water weeds and some water insect pests (Figure 2-D).

1.3 Structure of the rice plant

Rice is an annual plant with several jointed culms or stems, the lower part floating in 

water or prostrate, with roots at the nodes, and the rest erect. Cultivated species of rice 

are considered to be semi-aquatic. The height of the plant can range from 0.4 m to 

more than 5 m in some deepwater rice types. It has round, hollow, jointed stems, rather 

flat, sessile leaf blades and a terminal panicle. The rice plants develop new shoots 

(tillers) with the number of shoots depending on spacing and soil fertility. A single 

shoot appears first, followed by one, two and more offshoots. Each stalk has five, six 

or more hollow joints and a leaf is located at each joint. The leaf blades are long, 

pointed, flat and rather stiff. The highest joint on the plant grows a branched head 

called panicle (Figure 3). Each head bears from 50 to 300 flowers (spikelets) from 

which the grains develop. When the grain has developed, the panicle droops under the 

weight of the ripened kernels (Cottyn, 2003).
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CHAPTER 1 Introduction

The growth duration of the rice plant ranges from 3 to 6 months from germination to 

maturity, depending on the cultivar and the environment under which it is grown. Rice 

passes through the following 10 stages during its growth cycle: (1) germination and 

emergence, (2) seedling, (3) tillering, (4) stem elongation, (5) panicle initiation, (6) 

panicle development, (7) flowering, (8) milk grain, (9) dough grain, and (10) mature 

grain stage. These stages can be summarized basically in three sequential growth 

periods: vegetative, reproductive and ripening.

Panicle
Leaf flag

Tillers

Roots

Figure 3: Structure of the rice plant (Cottyn, 2003).

The vegetative stage refers to a period from germination to the initiation of panicle

primordial, and is characterized by active tillering and gradual increase in plant

height. Active tillering refers to a stage when the increase in tiller number is high. A

single plant can have from 16 to 25 tillers at the maximum tillering stage depending
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on the cultivar, light, spacing, nutrient supply, and cultural practice. The tillers remain 

attached to the plant at maturity even as the individual tillers produce their own roots. 

The reproductive stage spans the period from panicle primordial initiation to 

flowering, and is characterized by culm elongation, emergence of the flag leaf (the 

last leaf), booting, heading (panicle emergence), and flowering. The ripening stage 

refers to the period from flowering to maturity, and is characterized by leaf 

senescence and grain growth, which may be subdivided based on grain texture and 

colour into milky, dough, yellow-ripe, and maturity stages (Cottyn, 2003).

Germination

Seedling Active
tillering

Maxmum
tiller number

Boating

Headng/Flcwenng

Vegetative stage Reproductive stage Ripening stage
iDuration d iffers with r ice cultivar) (35 days) (30  daysi

Figure 4: Growth stages of the rice plant (Cottyn, 2003).

1.4 Cultivation and harvesting

Methods of growing differ greatly in different localities, but in most Asian countries 

the traditional hand methods of cultivating and harvesting rice are still practiced. The



CHAPTER 1 Introduction

fields are prepared by plowing, fertilizing, and smoothing. The seedlings are started in 

seedling beds and, after 30 to 50 days, are transplanted by hand to the fields, which 

have been flooded by rain or river water. During the growing season, irrigation is 

maintained by dike-controlled canals or by hand watering. The fields are allowed to 

drain before cutting. Depending on the rice variety and the climate, rice grains are 

ready for harvest in three to six months. Rice when it is still covered by the brown 

hull is known as paddy; rice fields are also called paddy fields or rice paddies. A 

paddy is a complete seed of rice and one grain of paddy contains one rice kernel. Each 

paddy has many layers, the outermost layer is the husk. The husk consists of 2 

interlocked half shells, each protects one half of the paddy. The next layers are bran 

layers. Each layer is a very thin film of bran. The fibrous bran of brown rice is rich in 

oil; protein; the B vitamins: thiamin, riboflavin, and niacin; and the minerals: iron, 

phosphorus, and potassium.

Awn

Lemma

BRAN
ENDOSPERM 
Aleurone layer 

Endosperm cells

Nucellar tissue 
Testa

PericarpEMBRYO
Plumule

Scutellum
Radicle

Figure 5: Structure of the rice seed (http://www.bernas.com.my/process.htm).
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To make white rice, the bran is removed. White rice is less nutritious than brown rice 

and, when feasible, is enriched with the addition of vitamins and minerals to increase 

its nutritive value. At the base of each grain is an embryo, which will grow into a new 

plant if planted (Figure 5). The inner part of the grain is the rice kernel, which is 

composed of mainly starch. Rice starch is composed of mainly 2 types of starches, 

amylose and amylopectin. The exact mixture of these determines the cooking texture 

of the rice.

1.5 Diseases affecting rice

Rice is susceptible to a range of diseases and pests, which annually destroy about 55% 

of rice crops. The most common fungal diseases are sheath blight and rice blast, and 

the stalk borer is a common insect pest. Weeds compete with rice for nutrients and 

water and are a serious problem, especially in upland rice farming. Weeds are 

controlled by integrating cultural practices and herbicides. Field preparation includes 

complete weed removal through disking. Immediately after planting, an herbicide is 

applied that inhibits weed seed germination or kills growing weeds. Rodents and birds 

also feed on rice grains before they are harvested. Rice diseases are influenced by 

factors such as fertilization rate, soil type, environmental conditions and variety 

susceptibility. Depending upon the severity, diseases can cause substantial losses in 

yields as well as decreased grain quality. Growers control certain diseases by using 

seed treatment, resistant varieties and fungicides along with cultural and management 

practices.

The rice seed provides a habitat for a rich diversity of microorganisms consisting of

bacteria, fungi, microscopic algae, as well as members of the microfauna such as plant

10
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nematodes. Seed is therefore a potential vehicle for transmitting plant pathogens, but, 

on the other hand, beneficial microorganisms can be applied onto seeds to deliver the 

organisms using the seed as vehicle. The term “seedbome pathogens” includes all 

plant pathogenic bacteria, fungi, nematodes and viruses that can be carried out in, on 

or with seeds (Agarwal and Sinclair, 1997).

Considering the upper part of the plant, bacterial blight, blast, sheath blight, and 

sheath brown rot, are among the economically most important rice diseases 

worldwide.

1.5.1 Bacterial Blight (bacterium - Xanthomonas oryzae pv. oryzae)

The disease is one of the most important diseases of rice. Symptoms usually develop 

in the field at the tillering stage and the disease incidence increases with plant 

growth, peaking at the flowering stage. Lesions on the leaf blade are initially water- 

soaked and typically associated with the leaf tips and edges. The lesions gradually 

expand and turn yellowish and eventually greyish-white. High rainfall with strong 

winds are thought to provide conditions for the bacteria to multiply and enter the 

leaf through injured tissue (Figure 6-A).

1.5.2 Blast (fungus - Magnaporthe grisea)

This disease is one of the most devastating diseases occurring to rice, is particularly 

destructive in the temperate irrigated lowland and tropical upland environments. 

The fungus produces spots or lesions on leaves, nodes, panicles, and collar of the 

flag leaves. The centre of the spot is usually grey and the margin brown or reddish- 

brown. Both the shape and colour of the spots may vary and resemble those of the
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brown leaf spot disease. Spores of the fungus are produced in great abundance on 

blast lesions and can become airborne, disseminating the fungus a considerable 

distance. Control measures include early planting, avoiding excessive or high levels of 

nitrogen, proper flood management, resistant varieties, and fungicides (Figure 6-B).

1.5.3 Sheath Blight (fungus - Rhizoctonia solan!)

Initial symptoms usually develop as lesions on sheaths of lower leaves near the 

water line when plants are in the late tillering or early intemode elongation stage of 

growth. The disease causes lesion on the leaf sheaths and the leaf blades. These 

lesions usually develop just below the leaf collar as oval-to-elliptical, green-grey, 

water-soaked spots. With age, the lesions expand and the centre of the lesions 

typically turns greyish-white with a brown margin. Disease development progresses 

very rapidly in the early heading and grain filling growth stages during periods of 

frequent rainfall and overcast skies (Figure 6-C).

1.5.4 Sheath Brown Rot (bacterium - Pseudomonas fuscovaginae)

Symptoms include brown necrotic lesions ranging from small specks to large brown 

blotches on the flag leaf sheath or extensive necrosis of the sheath, poor panicle 

emergence, grain discoloration and sterility of spikelets (Figure 6-D).

More than 100 pathogens among bacteria, fungi, nematodes and viruses, have been 

reported to attack rice, however not all of them are economically significant. The most 

important ones are presented in Table 1.

12
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Figure 6 ; Disease symptoms produced on rice plants by Xanthomonas oryzae pv. oryzae, causal 
organism of bacterial blight (A) (http://seedcenterl7.doae.go.th/farmer/pest/rice_xx2-
05_newDisease009.html)i  Magnaporthe grisea, causal organism of blast (B)
(http://beaumont.tamu.edu/Research/Agroecosystems/Rice/RiceBlast.htm), Rhizoctonia solani, 
causal organism of sheath blight (C) (http://www.ricethailand.go.th/rkb/data_005/rice_xx2- 
05_newDisease005.html) and Pseudomonas fuscovaginae, causal organism of sheath brown rot 
(D) (http://narc.naro.affrc.go.jp/byogai/saikin/subpage/gallery/diseases/youshoukappen.htm).

Xanthomonas oryzae pv. oryzae and Pseudomonas fuscovaginae, the causal of 

bacterial blight and sheath brown rot respectively, are the subject of separate studies 

presented further in this work.
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Table 1: Main bacteria, fungi, viruses and nematodes rice pathogens.

Pathogens Disease

Bacteria
Acidovorax avenae Bacterial Brown Stripe
Burkholderia glumae Grain Rot / Seedling Rot
Burkholderia plantarii Seedling Blight
Erwinia chrysanthemi Foot Rot
Pantoea agglomerans Palea Browning
Pseudomonas fuscovaginae Sheath Brown Rot
Pseudomonas syringae pv. syringae Sheath Rot
Pseudomonas syringae pv. oryzae Bacterial Halo Blight
Xanthomonas oryzae pv. oryzae Bacterial Blight

=Xanthomonas campestris pv. oryzae
Xanthomonas oryzae pv oryzicola Bacterial Leaf Streak

Fungi
Alternaria padwickii Stackbum (Altemaria Leaf Spot)
Achlya conspicua Seed Rot / Seedling Disease
Achlya klebsiana Seed Rot / Seedling Disease
Bipolaris oryae Brown Spot / Kernel Spotting /

= Cochliobolus miyabeanus (teleomorph) Seedling Blight
Cercospora jansena = C. oryzae Narrow Brown Leaf Spot

= Sphaerulina oryzina (teleomorph)
Curvularia lunata Black Kernel

= Cochiobolus lunatus (teleomorph)
Curvularia spp. Kernel Spotting / Seedling Blight
Drechslera gigantea Eye Spot
Entyloma oryzae Leaf Smut
Fusarium spp. Kernel Spotting / Root Rots / 

Seedling Blight
Gaeumannomyces graminis Crown sheath rot
Microdochium oryzae Leaf scald / Kernel Spotting

= Rhynchosporium oryzae
Magnaporthe salvinii Stem Rot
Pythium spp. Root Rots / Seed Rot / 

Seedling Disease
Pyricularia grisea = P. oryzae Blast

=Magnaporthe grisea (teleomorph)
Rhizoctonia oryzae-sativae Aggregate sheath spot / Sheath spot

= Ceratobasidium oryzae-sativae (teleomorph)
Rhizoctonia solani Seedling Blight / Sheath Blight

= Thanatephorus cucumeris (teleomorph)
Sarocladium oryzae Kernel Spotting / Sheath Rot
Sclerophthora macrospora Downy Mildew

Viruses
Barley Yellow Dwarf Giallume
Rice Black Streak Dwarf (RGSDV) Rice Black Streak Dwarf
Rice Dwarf (RDV) Rice Dwarf
Rice Grassy Stunt (RGSV) Rice Grassy Stunt
Rice Hoja Blanca (RHBV) Rice Hoja Blanca
Rice Necrotic Mosaic (RNMV) Rice Necrotic Mosaic
Rice Rugged Stunt (RRSV) Rice Rugged Stunt
Rice Stripe (RStV) Rice Stripe
Rice Transitory Yellowing (RTYV) Rice Transitory Yellowing
MLO Rice Yellow Dwarf
Rice Yellow Mottle (RYMV) Rice Yellow Mottle
Rice Tungro Spherical (RTSV) Tungro (Rice Tungro Disease - RTD)
Rice Tungro Bacilliform (RTBV) Tungro (Rice Tungro Disease - RTD)

Nematodes
Aphelenchoides besseyi Crimp Nematode
Ditylenchus angustus Stem Nematode
Hirschmaniella oryzae Root Nematode
Meloidogyne spp. Root-Knot
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1.6 Xanthomonas oryzae pv. oryzae

The present taxonomic status of Xanthomonas oryzae pv. oryzae (ex Ishiyama 1922) 

is the result of integrated phenotypic and genotypic analyses (Swings et al., 1990). 

Earlier classifications were “Pseudomonas oryzae” Uyeda and Ishiyama 1926,

“Xanthomonas oryzae” (Uyeda and Ishiyama 1926) Dowson 1943, and 

“Xanthomonas campestris pv. oryzae” (Ishiyama 1922) Dye 1978.

The species X  oryzae includes two pathovars: X  oryzae pv. oryzae and X. oryzae pv. 

oryzicola, the latter being the causal agent of bacterial leaf streak of rice (Fang et al., 

1957).

Traditionally, X  oryzae pv. oryzae (Xoo) populations have been characterized by 

virulence typing on a set of differential cultivars carrying resistance genes, thus 

establishing races or pathotypes (Mew, 1987). In the Philippines, ten races of Xoo 

have been defined based on a set of near-rice-isogenic lines (called IRBB lines) 

carrying 1 2  individual bacterial blight resistance genes in the common genetic 

background of IR24. Xoo is a vascular pathogen that infects rice plants through 

hydathodes or wounds (Mew et a l, 1984). Upon entering the leaf, the pathogen 

multiplies in the mesophyll intercellular spaces and gains access to the xylem vessels. 

The pathogen multiplies rapidly and drops of bacterial ooze on the lesion surface can 

infect other plants by contact or via water during irrigation. Secondary spread of Xoo 

in tropical region is often associated with occurrence of typhoons, that promote the 

infection dispersing bacteria and causing wounds (EPPO, 2007).
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1.7 Pseudomonas fuscovaginae

Pseudomonas fuscovaginae, a Gram-negative fluorescent pseudomonad, was first 

reported in Japan (Miyajima et a l, 1983; Tanii et a l, 1976). Subsequently the 

pathogen has been isolated from rice in Central America, Latin America and 

Madagascar (Duveiller et a l, 1988; Rott and Notteghem, 1989; Zeigler and Alvarez, 

1987). P. fuscovaginae was also reported to be pathogenic to other cereals, such as 

wheat (Triticum aestivum), sorghum {Sorghum bicolor) and maize {Zea mays) 

(Duveiller et a l, 1989; Duveiller, 1990), as well as a broad range among wild grasses 

(Miyajima et a l, 1983). Isolation and identification of the pathogen is not often easy 

because various fluorescent pseudomonads, most of them saprophytes, can be isolated 

from rice sheath rot. The combination of biochemical tests, serological technique and 

pathogenicity tests are necessary for identification (Rott, 1991). P. fuscovaginae favors 

cool temperatures (15-23°C) and high humidity for disease development at the booting 

stage (Miyajima et a l, 1983). The cool night temperatures and high rainfall in humid 

tropical highlands might favor the infection. The pathogen is seedbome and considered 

seed-transmitted. One measure to control the infection is seed treatment by heat 

therapy at 65 °C for six days (Zeigler and Alvarez, 1987). Symptoms commonly 

include brown necrotic lesions on the flag leaf sheath or extensive necrosis of the 

sheath, with grain discoloration and sterility in severe cases (Duveiller et a l, 1989; 

Miyajima et a l, 1983; Zeigler and Alvarez, 1987). Disease development and 

symptoms progression are believed to be associated with the production of several 

phytotoxins (Gross and Cody, 1985; Gross, 1991).
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Despite the importance of P. fuscovaginae as an opportunistic pathogen on several 

plant hosts around the world, no molecular studies of virulence have thus far been 

reported.

1.8 Signalling in plant-microbe interactions

For many years the purpose of microbiology was to understand the behaviour of model 

microbes under laboratory conditions. The challenge for the future is to understand the 

behaviour of model microbes in their natural habitats. Based on where they live, 

microbes interacting with plants can be found in the rhizosphere, surrounding the roots, 

or in the phyllosphere (the total above-ground surfaces of a plant). Based on their 

effect on the plant, microbes can be classified as pathogenic, saprophytic and 

beneficial. Pathogens can infect leaves, stems and roots; saprophytes live on dead plant 

material; beneficial microbes help the plant to obtain water and nutrients and protect 

the plant from pests and pathogens (Lugtenberg et a l , 2002).

More than 100 genes are required for bacterial pathogenicity, they can be classified

into three groups: pathogenicity genes, virulence genes, and host range genes.

Pathogenicity genes are bacterial genes needed for growth on or in plants. One

example are the hrp genes (hypersensitive response and pathogenicity), involved in the

production of signal molecules, which elicit defence responses associated with

hypersensitivity in non-host plants (Lugtenberg et a l, 2002). Virulence genes

contribute to the aggressiveness of the pathogen and are necessary for symptom

production in the host plant. General virulence factors include toxins, extracellular

polysaccharides (EPS), plant growth hormones and enzymes (e.g. proteases, cellulases,

pectic enzymes, cell-wall degrading enzymes). Host range genes determine the plant
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species and the cultivars that can be infected by factors that act positively (specific 

virulence factors) or negatively (avirulence genes - Avr) (Lugtenberg et al., 2002).

The interaction between pathogenic bacteria and the host plant can be classified into 

two general categories: compatible interaction and incompatible interaction. 

Compatible interaction occurs between virulent pathogens and susceptible host plants, 

resulting in the development of disease symptoms. Incompatible interaction results in 

little or no disease symptoms since the bacterium induces a defence response in the 

plant (Kim et al., 2008). Usually incompatible reactions are characterized by a 

hypersensitive response (HR) of the resistant plant, which refers to localized cell death 

that occurs rapidly at the site of bacterial invasion (Lugtenberg et al., 2002).

1.8.1 Plant recognition by microbes

Successful infection of a plant by pathogens requires mechanisms of attachment, 

invasion and inactivation of plant defence. Plants have developed a sophisticated 

immune system to defend themselves. However, unlike animals, that have an 

adaptive immune system, plants have to rely to their innate immunity to react against 

most potential pathogens.

Recognition is considered the first event to trigger the plant immune response. It can 

occur either through the detection of many common pathogen- or microbe-associated 

molecular patterns (PAMPs/MAMPs) found in the host cells (He et al., 2007), or 

through the cultivar-specific resistance, involving effector molecules from the 

pathogen and the corresponding resistance (R) proteins in the plant (Ingle et al., 

2006).
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In the first case, the perception of different PAMPs/MAMPs occurs through specific 

pattem-recognition receptors (PRRs) that induce the defence response in the host 

plant, activating plant immunity (He et al., 2007; Jones and Dangl, 2006). In the 

second case, it occurs using the polymorphic NB-LRR protein products, encoded by 

the R genes, having the characteristic nucleotide binding (NB) and leucine rich 

repeat (LRR) domains (Jones and Dangl, 2006).

Examples of PAMPs, identified in Gram-negative bacteria plant pathogens, are 

flagellin, cold-shock protein, lipopolysaccharide (LPS) and elongation factor Tu (EF- 

Tu) (He et al., 2007; Jones and Dangl, 2006). These molecules typically contain a 

short (10-25) amino acid epitope that elicit a stronger defence response than the 

complete protein (Ingle et a l, 2006). In Arabidopsis thaliana, the flagellin receptor 

FSL2 recognizes fgl22, a 22 amino acid conserved peptide of bacterial flagellin, 

sufficient to trigger the plant innate immune response (He et a l, 2007; Ingle et a l, 

2006; Jones and Dangl, 2006; Kim et a l, 2008).

Lipopolysaccharide (LPS), the principal component of the outer membrane of Gram- 

negative bacteria, contains a long-chain polysaccharide, highly variable, termed O- 

antigen and a highly conserved part constitute by the oligosaccharide core and the 

lipid A. This invariable part of the outer membrane is the most potent stimulator of 

innate immunity and is considered as a prototypic model of PAMP (Zipfel and Felix, 

2005). The first 18 amino acids of the elongation factor EF-Tu, termed elfl8 , from E. 

coli and other bacteria, has been found to function as a MAMP in Arabidopsis 

thaliana, binding the EF-Tu receptor (EFR) (Kim et a l, 2008; Zipfel and Felix, 

2005).
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In mammals, PAMPs/MAMPs are recognized by several structurally different PRRs, 

the most prominent group comprises the Toll-like receptors (TLRs), a family of 

transmenbrane proteins containing leucine-rich repeat (LRR) domains that sense 

bacteria, fungi, protozoa and viruses. Plants appear not to have clear homologs of 

TLRs, but they have large gene-families that encode receptor-like kinases (RLKs) 

and receptor-like proteins (RLPs) (Zipfel and Felix, 2005).

Typically RLKs contain a signal sequence, a transmembrane region, and a C- 

terminal domain. The plant RLKs likely are transmembrane proteins that perceive 

signals through their extracellular domains and propagate the signals via their 

intracellular kinase domains (van der Geer et a l , 1994). The kinase domains of plant 

RLKs belong to the same gene family as those of Drosophila melanogaster Pelle and 

mammalian interleukin receptor-associated kinases (Shiu and Bleecker, 2001). The 

biological functions of plant RLK/Pelle family members can be classified into two 

broad categories (Shiu and Bleecker, 2003). The first category includes RLKs that 

control plant growth and development (Becraft, 2002). The second category includes 

RLKs involved in plant-microbe interactions and defence responses. In this category, 

some RLKs are involved in plant-pathogen interactions, such as rice (Oryza sativa) 

Xa21 in resistance to bacterial pathogen (Song et a l , 1995).

The early immune response downstream MAMP recognition involve the activation 

of conserved mitogen-activated protein kinase (MAPK) signalling cascade. A MAPK 

cascade usually involves a MAPKKK(MTK)-MAPKK(MKK)-MAPK(MPK) 

module that transduces extracellular signals through the receptors into the cell (He et 

a l , 2007; Ingle et a l , 2006).
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In plants, different PAMPs/MAMPs activate defence responses such as changes in
^  l

cytoplasmatic Ca levels, activaton of MAPK cascades, induction of defence-related 

genes, reactive oxygen species (ROS) and nitric oxide (NO) (He et a l , 2007; Ingle et 

al.,2006).

Type III secretion system (TTSS), present in both animal and plant pathogenic 

bacteria, is a key virulence determinant used by bacteria to deliver effector proteins 

directly into the host cell cytoplasm (Galan and Collmer, 1999). It is like a molecular 

syringe through which a bacterium can inject proteins into eukaryotic cells. Made up 

of more than 20 proteins, TTSS has three distinguishing features: the absence in the 

secreted proteins of a cleavable signal peptide, the requirement for customized 

accessory proteins (chaperones) for many of the secreted proteins, and a widespread 

requirement for host cell contact for full activation of the secretory pathway (Galan 

and Collmer, 1999). Bacterial effectors contribute to pathogen virulence by 

mimicking or inhibiting eukaryotic cellular functions (Jones and Dangl, 2006).

The type III secretion system (TTSS) in Xanthomonas campestris pv. vesicatoria is 

necessary for bacterial pathogenicity in susceptible hosts. In addition this pathogen 

produces filamentous structures, Hrp pili, that are in close contact with the TTSS 

during the delivery of type III effector proteins to the host plant (Weber et a l , 2005). 

Agrobacterium tumefaciens can genetically transform numerous plant and fungal 

species by injecting a single stranded T-DNA (transferred DNA) into the host cell 

using a type IV secretion system (T4SS). The T4SS of Agrobacterium is encoded by 

11 virB genes and virD4, in the virulence (vir) region of the Ti-plasmid (tumor- 

inducing plasmid), that form two functional components: a filamentous pilus and
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a membrane-associated transporter complex (McCullen and Binns, 2006). Rhizobia 

are able to invade roots, leading to the formation of nodules, in a complex process 

that require a continuous signal exchange between plant and bacteria. Flavonoids 

activate the expression of the bacterial nodulation (nod) genes involved in the 

synthesis and secretions of Nod-factors (NF) recognized by the plant. These factors 

together with additional microbial signal molecules, such as polysaccharides and 

secreted proteins, allow bacteria attached to root hairs to penetrate the roots (Soto et 

al., 2006). This section highlights some of the very complex interactions between 

plants and bacteria; this is probably a result of co-evolution for a very long period of 

time.

1.8.2 Plant colonization by microbes

Colonization of the plant tissue is a crucial step in pathogenesis as well as for

beneficial effects of microbes on the plant. Microbial success depends critically on

the ability to perceive and respond rapidly to changes in the environment. The plant

surface contains many microbes which are not homogeneously distributed; such

microcolonies are ideal places for bacteria to communicate with each other. In

complex ecosystems they must simultaneously exchange signals with members of

their own species as well as members of other species of microorganisms and

eukaryotes. In this context, a small molecule generated by one organism is sensed by

another, leading to a response that usually involves a change in gene expression. The

ability to regulate gene expression in response to changes in population density is a

process known as quorum sensing (QS) (Bassler, 1999). QS is mediated by small,

diffusible signal molecule often called autoinducers which accumulate as the
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bacterial population increases. Several chemical classes of microbially-derived 

signalling molecules have been identified; these can be generally divided in two main 

categories: amino acids and short peptides are commonly used by Gram-positive 

bacteria, whereas fatty acid derivatives are most often utilized by Gram-negative 

bacteria (Miller and Bassler, 2001).

1.9 Quorum Sensing in Gram-negative bacteria

Quorum Sensing and autoinduction was first described in two luminous marine 

bacterial symbionts: Vibrio fischeri and Vibrio harveyi (Nealson et al., 1970). V 

fischeri colonizes the light organ of marine fishes and squids, reaching high cell 

densities (1010cells/ml) and producing bioluminescence. The enzymes responsible for 

light emission are encoded by the luciferase structural operon IwcCDABE only at high 

cell density in response to the accumulation of secreted signal molecules (Nealson and 

Markovitz, 1970). These secreted molecules were shown to be 3 -oxo-7V-(tetrahydro-2- 

oxo-3 -furanyl)-hexanamide, commonly known as TV -3-(oxohexanoyl)-homoserine 

lactone (3-oxo-C6-AHL) (Eberhard et al., 1981).

In V. fischeri 3-oxo-C6-AHL is synthesized via the LuxI protein, an AHL synthase, 

that catalyzes the formation of an amide bond between S-adenosylmethionine (SAM) 

and an acylated acyl carrier protein (ACP) and then catalyzes the formation of the acyl 

homoserine lactone from the acyl-SAM intermediate (Figure 7) (Schaefer et a l, 1996). 

TV-AHL signal molecules reach a threshold or “quorum” level at high cell density and 

are recognized by the cognate LuxR protein, forming an active complex for regulation 

of target genes. The LuxR protein consists of two functional domains: the amino-
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terminal domain, involved in AHL binding, and the carboxyl-terminal domain, 

required for DNA binding and transcriptional regulation (Slock et a l, 1990).

ACP

Acyl-ACP

O '

SAM

OH OH
O.

N-3-(oxohexanoyl)-homoserine lactone

Figure 7: Luxl-directed biosynthesis o f jV-3-(oxohexanoyl)-homoserine lactone by the amide 
linkage between S-adenosylmethionine (SAM) and an acylated acyl carrier protein (ACP) in V. 

fischeri (Miller and Bassler, 2001).

One target promoter is upstream of the gene encoding the synthase luxl gene, thus 

creating a positive feedback circuit in the quorum system. Each eukaryotic host uses 

the light provided by the bacteria for a specific purpose: illumination enable squid to 

avoid predators during clear nights, when moonlight penetrates the seawater and they 

would produce shadows; in contrast the knight-fish Monocentris japonicus uses 

bacterial light to attract a mate. Even if purposes are different, the regulation of light 

production in the specialized light organs is identical; light emission is tightly
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correlated with the cell-population density of the bacterial culture in the organ (Miller 

and Bassler, 2001). The structure of AHLs produced by different bacteria is highly 

conserved, consisting of a homoserine lactone ring connected to a fatty acyl chain. 

Many AHL signal molecules have been characterized so far, differing in acyl chain 

length (usually 4-12 carbons) and substitution at the third carbon of the chain (Figure 

8 ). Most AHLs are believed to freely diffuse across the cell wall, with the exception of 

long-chain AHLs that utilize an efflux pump for translocation across the cell 

membrane (Pearson et al.9 1999).

In Gram-negative bacteria, AHL-mediated cell-cell signalling plays a role in regulating 

important bacterial functions such as antibiotic biosynthesis, production of virulence 

factors, exopolysaccharide formation, biofilm development, bacterial motility and 

plasmid conjugal transfer (Miller and Bassler, 2001).

Figure 8 : General structure o f a TV-Acyl homoserine lactone (AHL) molecule. RT can be: -H , = 0  
or -O H , generating an unsubstituted, an oxo- or an hydroxy-AHL respectively, while R2 can be: -  
CH3, -  (CH2)2 -i4 CH3 or -(C H 2)5 CH=CH(CH2)5CH3, generating differences in acyl chain length 
(Soto et a l , 2006).

1.10 Purification and characterization of AHL QS signal molecules

Normally QS molecules are efficiently extracted from cell-free supernatant using 

dichloromethane, chloroform or ethyl acetate in acidified media; the last method is

O

O
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usually applied to extract AHLs. Autoinducers can be subsequently separated by 

HPLC (High Performance Liquid Chromatography), using a methanol or an 

acetonitrile gradient, or by a Ci8 reversed-phase TLC (Thin-Layer Chromatography) 

and developed with a methanol/water (60:40 vol/vol) mobile phase. The TLC plate is 

loaded with the sample to test and with different synthetic AHLs as standards and, 

after chromatography, is overlaid with a soft agar suspension containing the most 

suitable bacterial biosensor (Shaw et al., 1997). Many biosensors have been developed 

so far; they do not produce AHLs and contain a functional LuxR-family protein cloned 

with the cognate Iwcl target promoter, that positively regulates the transcription of a 

reporter gene (e.g. bioluminescence, p-galactosidase, green-fluorescent protein and 

violacein pigment production) (Steindler and Venturi, 2007). Depending on the LuxR- 

family protein, each biosensor is able to specifically recognize only a few AHL 

molecules, therefore sometimes more than one biosensor is required to detect all AHLs 

produced by the strains tested. TLC is not a technique which can tentatively assign 

structures; these can only be unequivocally determined on the basis of spectroscopic 

properties, such as mass spectrometry (MS) and nuclear magnetic resonance 

spectroscopy (NMR).

1.11 QS in plant pathogenic bacteria

Many studies have demonstrated that QS has an important role in plant-pathogen

interaction, controlling secondary metabolite production and virulence gene

expression. A. tumefaciens is a plant pathogen able to induce crown gall tumors in

plants by transferring oncogenic DNA from its tumor-inducing Ti plasmid into the

chromosome of the plant cells. Conjugation is regulated by two different signalling
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mechanisms: one involving conjugal opines, produced by the crown gall tumor, that 

regulate the expression of the tra genes. Tral synthesises 3-oxo-Cg-AHL to stimulate 

conjugation; TraR/3-oxo-Cg-AHL regulates expression of the tra regulon as well as the 

tral promoter, creating a positive feedback loop (Hwang et a l, 1994). The A. 

tumefaciens opine and QS signal pathways are linked to one another in a hierarchical 

fashion, with opines being the dominant regulator.

Many species of Erwinia have been found to produce AHLs. The pathogenicity of 

Erwinia carotovora, the causative agent of plant soft rots and the potato disease 

blackleg, is related to the production of various plant tissue-degrading enzymes that are 

involved in the maceration of the plant tissue for microbial colonization of the host. E. 

carotovora employs the ExpI/ExpR QS system, based on the 3-oxo-C6-AHL signal 

molecule, to ensure that exoenzymes production does not occur until sufficient 

bacterial numbers have been achieved (Pirhonen et a l, 1993). A second QS system 

exists in the E. carotovora genome, the Carl/CarR circuit, that acts using the same 

AHL molecule and regulates the production of a carbapenem antibiotic (McGowan et 

al, 1995). It appears that E. carotovora has developed a sophisticated strategy to 

counteract the competing microflora by coordinating the production of the carbapenem 

with the tissue-macerating enzymes. In the closely related Erwinia chrysanthemi, the 

ExpI/ExpR QS system produces and responds to 3-oxo-C6-AHL and C6 -AHL and is 

involved in the regulation of pectinase synthesis (Nasser et a l, 1998; Reverchon et a l, 

1998).

The plant-pathogenic bacterium Erwinia stewartii (Pantoea stewartii subsp. stewartii) 

is the causative agent of Stewart’s wilt in sweetcom and leaf blight in maize. The QS
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system of this microorganism consists of the Esal/EsaR, which are LuxI/LuxR 

homologues respectively, and 3-oxo-C6-AHL is required for the cell density-dependent 

production of an extracellular heteropolysaccharide (EPS) capsule which plays several 

roles in disease development (Beck von Bodman and Farrand, 1995).

Pseudomonas aeruginosa can be both, an animal and a plant pathogen: in humans it is 

responsible for infection in immune-compromised individuals or in cystic fibrosis 

patients, whereas in many plants it is an opportunistic pathogen that causes soft rot. P. 

aeruginosa has two AHL QS systems, the LasI/LasR and the Rhll/RhlR. The first one 

is responsible for production and regulation via 3 -oxo-Ci2 -AHL, while Rhll catalyzes 

the synthesis of C4 -AHL, afterwards recognized by RhlR (Pearson et a l , 1995). Both 

LasR and RhlR, along with their cognate AHLs, affect the expression of extracellular 

virulence factors and secondary metabolites that contribute to the growth of bacteria in 

planta (Miller and Bassler, 2001; Rahme et a l , 2000).

R. solanacearum causes a vascular wilt disease in more than 200 plant species, 

including tobacco, tomato, potato, peanut and bananas. This pathogen causes wilt 

mainly through the production of a high-molecular-mass acidic extracellular 

polysaccharide (EPS I) which can occlude vascular tissue and prevent water flow 

(Flavier et a l, 1997b).

Virulence in R. solanacearum is controlled by the 3-OH-PAME signal molecule that 

regulates virulence factors through the LysR-type transcriptional regulator PhcA (see 

also paragraph 1.13). A classical QS system, SolI/SolR, has been found in R. 

solanacearum producing C6 - and Cg-AHLs, although it was not directly involved in 

virulence, but was found to be controlled by PhcA (Flavier et a l , 1997a).
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Burkholderia glumae causes rice grain rot and seedling rot in rice producing a broad- 

host range phytotoxin called toxoflavin. Two QS protein, Tofl/TofR, were found to be 

responsible for the production and the detection of the two AHL signal molecules, 

identified as Ce- and Cg-AHL. The to flmutant failed to produce toxoflavin (Kim et al, 

2004) and the Cg-AHL-TofR complex was found to regulate a lipase involved in rice 

pathogenicity (Devescovi et al., 2007), indicating that QS plays a pivotal role in B. 

glumae virulence.

Table 2 : Summary o f quorum sensing systems in plant pathogenic bacteria.

Organism Major signal 
molecule

Regulatory
proteins Phenotype Reference

Agrobacterium
tumefaciens

3-oxo-Cg-AHL Tral/TraR Ti plasmid conjugation (Hwang etal., 1994)

Burkholderia
glumae

Cg-AHL
Cfi-AHL

Tofl/TofR Toxoflavin regulation 
Lipase

(Kim et al., 2004) 
(Devescovi et al., 2007)

Erwinia carotovora 3-oxo-Ce-AHL ExpI/ExpR
Carl/CarR

Exoenzymes production 
Carbapenem production

(Pirhonen et al., 1993) 
(McGowan et al., 1995)

Erwinia chrysantemi 3-oxo-C6-AHL
Cg-AHL

ExpI/ExpR Pectate lyases (Nasser et al., 1998) 
(Reverchon et al., 1998)

Erwinia stewartii 3-oxo-Cfi-AHL Esal/EsaR Capsular polysaccharide 
Virulence factors

(Beck von Bodman and 
Farrand, 1995)

Pseudomonas
aeruginosa

3-oxo-Ci2-AHL
C4-AHL

LasI/LasR

Rhll/RhlR

Exoprotease virulence 
factors
Biofilm formation

(Miller and Bassler, 2001 
and references therein)

Ralstonia
solanacearum

Cg-AHL
Cg-AHL

SolI/SolR Unknown (Flavier et a l ,  1997b)

1.12 Non-AHL QS molecules in plant-microbe interaction

Several bacterial species that interact with plants have been shown to produce AHLs or 

other signalling compounds. A further signalling molecule, apart from 3 -oxo-Ci2 -AHL 

and C4 -AHL, has been identified in P. aeruginosa, a 2-heptyl-3-hydroxy-4-quinolone,
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designated as the Pseudomonas guinolone signal (PQS) (Figure 9), dependent on the 

QS system for its production and bioactivity (Pesci et al., 1999). In addition two cyclic 

dipeptides in the cell-free supernatant of P. aeruginosa culture were found to be able to 

activate an AHL biosensor. The molecules were identified as diketopiperazines 

(DKPs): cyclo(AAla-L-Val) and cyclo(L-Pro-L-Tyr) (Figure 9). These two DKPs and a 

third cyclic dipeptide, a cyclo(L-Phe-L-Pro), isolated and characterized from 

Pseudomonas fluorescens and Pseudomonas alcaligenes, can activate the QS system 

and can compete for the same LuxR-binding site (Holden et al., 1999).

In Bradyrhizobium japonicum, a symbiotic microorganism, a novel cell density factor 

(CDF) was found to mediate the repression of the nodulation genes in an iron- 

dependent manner. This molecule has been characterized as 2-{ -[ [ 4-(3-aminooxetan-

2-yl) phenyl]-(imino) methyl] phenyl} oxetan-3- ylamine, named in a simple manner 

bradyoxetin (Loh et al., 2002). A volatile extracellular factor (VEF) produced by R. 

solanacearum, involved in regulation of virulence genes, was purified from spent 

culture supernatant and identified as 3-hydroxypalmitic acid methyl ester (3-OH 

PAME) (Figure 9) (Flavier et al., 1997a). PhcB is essential for the production of 3-OH 

PAME that acts as an exponential-phase signal that regulates, through the PhcS/PhcR 

two component system, PhcA, a LysR-type transcriptional regulator. PchA then 

regulates exopolysaccharides (EPS) and plant cell wall degrading enzymes which are 

important factors for colonization of host tissues (Clough et al., 1997). Two diffusible 

signalling molecules are related to pathogenicity in Xanbthomonas campestris pv. 

campestris (Xcc): the diffusible signal factor (DSF) and the diffusible factor (DF) 

(Figure 9).
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Xcc is a vascular pathogen of cruciferous plants, it multiplies in the xylem eventually 

blocking the vessel with bacterial cells and xanthan gum, which is the major EPS 

produced by xanthomonads. Most of the pathogenicity genes, including the gum 

genes, are coordinately regulated by the Rpf (Regulation of Pathogenicity Factors) 

system which carries nine rpf genes (rpfA-I). Among them, rpfB and rpfF are 

involved in DSF production, a fatty acid derivative that regulates extracellular 

enzymes, EPS and cyclic glucans (Barber et a l , 1997; Vojnov et a l, 2001). DF is a 

butyrolactone, the locus implicated in the synthesis of DF in Xcc strain B-24 is pigB, 

mutations in which cause a reduction in levels of EPS and xanthomonadin pigment 

production (Poplawsky and Chun, 1997).

A second QS system, termed LuxS/LuxPQ, has been identified in Vibrio harveyi. LuxS 

synthesizes the signal molecule AI-2, which has been characterized as a furanosyl 

borate diester (Figure 9). LuxP is a periplasmic-binding protein that binds AI-2. The 

complex is afterwards detected by LuxQ, an inner membrane sensor kinase. At high 

cell density, upon ligand binding, LuxQ switches from kinase to phosphatase, 

removing the phosphate from the response regulator LuxO, via the intermediate protein 

LuxU. Unphosphorylated LuxO is inactivate and cannot promote the expression of 

sRNAs (small regulatory RNAs), required for destabilization of mRNA encoding the 

activator protein LuxR, that is so expressed and can bind the luxCDABE operon, 

producing bioluminescence. LuxS homologues have been found in numerous Gram- 

negative and Gram-positive organisms, producing compounds capable of activating 

AI-2 biosensors (Henke and Bassler, 2004; Xavier and Bassler, 2003).

31



CHAPTER 1 Introduction

Cyclo(L-Phe-L-Pro)Cyclo(AAIa-L-Val) Cyclo(L-Pro-L-Tyr)

H O IH IK

Bradyoxetin

3-OH-PAME

Figure 9: Non-AHL signal molecules: cyclic dipeptides in P. aeruginosa and P.fluorescens, 
cyclo(AAla-L-Val) and cyclo(L-Pro-L-Tyr) and cyclo(L-Phe-L-Pro); bradyoxetin in Bradyrhizobium 
japonicum , PQS in P. aeruginosa; AI-2 in Vibrio harveyi; 3-OH-PAME in Ralstonia solanacearum; 
DSF and DF in Xathomonas campestris pv. campestris (Holden et a l , 1999; Soto et a l , 2006; Xavier 
and Bassler, 2003).

1.13 LuxR-family orphans

In some bacterial species a quorum sensing-like LuxR-homologue has been found and

termed a LuxR-family orphan due to the absence of the cognate Luxl-homologue. The

presence of LuxR-family orphans has been reported for species having a functional

AHL QS system, as well as species in which no AHL QS system has been found.

The wild-type Sinorhizobium meliloti, strain Rml021, possesses at least two QS

systems: the Mell/R system, that controls the synthesis of short-chain AHLs, involved
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in nodulation and invasion; and the Sinl/R system, responsible for the synthesis of 

long-chain AHLs, that activates the expression of exp genes for exopolysaccharide 

production. The expression of the exp genes also requires the presence of an additional 

regulator, ExpR, an orphan LuxR-homologue. ExpR plays a role in activation of EPSII 

production, motility, nitrogen fixation and transport of small molecules together with 

the Sin QS-system (Hoang et a l, 2004).

A similar scenario has been described in P. aeruginosa, in which a third LuxR- 

homologue is present in addition to the Lasl/R and Rhll/R QS systems. This LuxR 

homologue is an orphan since it is devoid of the cognate Luxl-family protein and has 

been designated QscR (quorum-sensing-control repressor). QscR is immediately 

upstream of the phz operon (phzA2-G2) responsible for phenazine pigment production. 

Null mutants in qscR have an hypervirulence phenotype and form blue-pigmented 

colonies, indicative of phenazine overproduction. Moreover Iasi and rhll are both 

prematurely transcribed also resulting in the premature production of the AHL signals,

3 -oxo-Ci2 -AHL and C4-AHL, indicating that QscR acts as a repressor (Chugani et al., 

2001).

An orphan LuxR-homologue, SdiA, has also been described in Escherichia, 

Salmonella and Klebsiella spp.; these bacteria do not produce AHLs. In S. enterica 

serovar Typhimurium the putative AHL receptor SdiA, can respond to 3-oxo-C6-AHL 

and 3-oxo-C8-AHL exogenously provided in a semisolid medium, leading to the 

hypothesis that SdiA is used to detect signals produced by other bacteria species 

(Michael et al., 2001).
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1,14 Plant signal molecules involved in bacterial regulation

Among higher plants AHL mimic molecules have been identified demonstrating that 

plants can secrete compounds that affect bacterial QS signalling and regulation.

In the marine red alga Delisea pulchra, halogenated furanones, which are structurally 

similar to AHL molecules (Figure 10), have many biological activities, including 

antimicrobial properties. Swarming motility in Serratia liquefaciens, regulated by QS, 

was affected by the presence of D. pulchra furanones reducing the velocity of 

spreading over the surface, while swimming motility, a QS independent process, was 

not affected (Givskov et al., 1996). Further studies demonstrated that furanones can 

control marine bacterial colonization by binding competitively to the LuxR homologue 

protein (Manefield et a l , 1999).

By contrast to the D. pulchra furanones, which have an inhibitory function, in the 

unicellular green alga Chlamydomonas reinhardtii AHL mimics can stimulate gene 

expression of specific AHL receptors (Teplitski et a l , 2004). Also higher plants, such 

as pea, rice, soybean, tomato were shown to produce molecules that appear to be 

recognized by LuxR homologue proteins, and have specific effects on QS-regulated 

behaviours in bacteria (Daniels et a l , 2002; Teplitski et a l , 2000). Many different 

biosensors, based on different signal molecule specificity, have been used to study 

methanol and ethyl acetate extracts from the legume Medicago truncatula, indicating 

the presence of more than a dozen of active molecules having both stimulatory or 

inhibitory effects on the sensor protein (Gao et a l , 2003).
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Figure 10: Structural similarity between the typical AHL molecule and the halogenated furanone 
molecule from Delisea pulchra (Bauer and Mathesius, 2004).

Similarly, ethyl acetate extract from rice plants was able to positively stimulate 

specific AHL biosensors and was found to be very sensitive to AHL AiiA-lactonase 

degradation activity (Degrassi et al., 2007). All this data indicates that plants 

synthesize signal molecules able to interact and interfere with the bacterial QS system. 

On the other hand, are plants able to perceive and react to the bacterial signals?

In a proteomic study performed on M truncatula it has been demonstrated that 

nanomolar concentrations of AHLs can affect the accumulation of more than 6% of the 

proteins recovered from roots (Mathesius et a l , 2003).

The ability of plants to detect bacterial signal molecules and elicit systemic responses 

could be a sophisticated part of the long-evolved adaptations of eukaryotic hosts to 

interaction with bacteria.
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1,15 Aim of the thesis

Quorum sensing in bacteria is often involved in many important processes such as the 

regulation of virulence factors, the biosynthesis of lytic enzymes or exopolysaccharide 

production. Bacteria that use QS to regulate gene expression usually produce and 

secrete small signal molecules which can then be recognized by other bacteria of the 

same species and possibly by bacteria of different species, thus creating a complex 

communication network. In addition, some bacteria possess more than one QS system 

or may possess orphan LuxR-family regulatory proteins able to detect a signal 

molecule(s).

In this study we analysed the QS system of two important rice pathogens, 

Xanthomonas oryzae pv. oryzae and Pseudomonas fuscovaginae, both responsible for 

important losses in rice harvesting and both able to enter the plant through the leaves. 

Despite their importance, very few molecular studies on QS in these pathogens have 

been performed. Many strains of both species, isolated from different countries world­

wide, have been studied for their AHLs production, presence and role of the QS 

system in rice virulence and colonization.
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A LuxR homologue of Xanthomonas oryzae pv. oryzae 

is required for optimal rice virulence
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CHAPTER 2 Summary

2.1 SUMMARY

In Gram-negative bacteria a typical quorum sensing (QS) system usually involves the 

production and response to acylated homoserine lactones (AHLs). An AHL QS 

system is most commonly mediated by a LuxI family AHL synthase and a LuxR 

family AHL response regulator. This study reports for the first time the presence of a 

LuxR family type regulator in Xanthomonas oryzae pv. oryzae (Xoo) which has been 

designated as OryR. The primary structure of OryR contains the typical signature 

domains of AHL QS LuxR family response regulators; an AHL-binding and a HTH 

DNA binding motif. The oryR gene is conserved among 26 Xoo strains and is also 

present in the genomes of close relatives X  campestris pv. campestris and X. 

axonopodis pv. citri. Disrupting oryR in three Xoo strains resulted in a significant 

reduction of rice virulence. The wild-type Xoo strains do not seem to produce AHLs 

and analysis of the Xoo sequenced genomes did not reveal the presence of a Luxl- 

family AHL synthase. The OryR protein was shown to be induced by macerated rice 

and affected the production of two secreted proteins: a cell-wall degrading 

cellobiosidase and a 20 kDa protein of unknown function. By expressing and 

purifying OryR it was then observed that it was solubilized when grown in the 

presence of rice extract indicating that there could be a molecule(s) in rice which 

binds OryR. The role of OryR as a possible in planta induced LuxR family regulator 

is discussed.
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2.2 INTRODUCTION

Bacteria which belong to the genus Xanthomonas are Gram-negative y-Proteobacteria 

and are significant pathogens for a large number of plants worldwide (Vandamme et 

al., 1996). One member of the genus is Xanthomonas oryzae pv. oryzae {Xoo) which 

is the causal agent of a serious disease in rice called bacterial leaf blight (Swings et 

al., 1990). This disease causes severe losses and is most predominantly found in 

tropical Asian countries. It is a vascular disease whereby Xoo continues to grow until 

the xylem vessels are clogged with bacterial cells and extracellular polysaccharides. In 

the last 15 years several studies have improved our understanding of the molecular 

determinants of ricq /X o o  interaction with the cloning of several rice resistance (Xa) 

genes, Xoo avirulence (avr) genes and the hypersensitive response and pathogenicity 

Qirp) genes (Leach and White, 1996; Leach et a l, 2001; Shen and Ronald, 2002). 

Importantly, Xoo consists of a diversity of races which exhibit different virulence thus 

making the breeding of durable resistant rice cultivars a major challenge. Recently, 

the genomes of two Xoo strains have been completely sequenced, annotated and 

published (Lee et a l, 2005; Ochiai et a l, 2005).

In most bacteria a major level of regulation involves intercellular communication via 

the biosynthesis and response to signal molecules (Camilli and Bassler, 2006). It is a 

cell-density dependent regulation of gene expression which has been termed quorum 

sensing (QS) (Fuqua et a l, 1994). QS provides significant advantages to a community 

of bacteria including improving access to environmental niches, enhancing defence 

capabilities against other microorganisms or eukaryotic host-defence mechanisms and
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facilitating the adaptation to changing environmental conditions [for reviews see: 

(Camara et al., 2002; Fuqua and Greenberg, 2002; Waters and Bassler, 2005)]. In fact, 

it is probable that in natural ecosystems bacteria are often aiming at establishing 

communities rather than choosing to exist as solitary cells. In Gram-negative bacteria, 

a typical QS system usually involves the production and response to an acylated 

homoserine lactone (AHL). The AHL-dependent QS system is commonly mediated 

by two proteins belonging to the LuxI-LuxR families (Fuqua and Greenberg, 2002). 

Luxl-type proteins are responsible for synthesizing AHLs from S-adenosyl 

methionine and particular fatty acyl carrier proteins. AHLs then interact directly, at 

quorum concentration, with the cognate LuxR-type protein and this protein-AHL 

complex can then bind at specific gene promoter sequences called /mr-boxes affecting 

expression of QS target genes. AHL QS has been the subject of extensive 

investigation in recent years and has become a paradigm for bacterial intercellular 

signalling. Other QS signalling molecules have been discovered which are produced 

by Gram-negative bacteria including a quinolone signal molecule produced by 

Pseudomonas aeruginosa and a molecule designated AI-2 (4,5-dihydroxy-2,3- 

pentanedione, DPD) which is produced by a wide range of bacteria (Camilli and 

Bassler, 2006; Waters and Bassler, 2005). In addition, it is also becoming evident that 

bacteria can produce and respond to more than one QS signalling molecule (Camilli 

and Bassler, 2006).

In the genus Xanthomonas to our knowledge there are no reports of the presence of 

AHL QS systems. On the other hand, QS has been reported in Xanthomonas 

campestris pv. campestris and Xoo to occur via a signalling molecule designated DSF
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(diffusible signal factor) (Chatteijee and Sonti, 2002; Dow et al., 2003; He et al., 

2006). DSF has been characterized as m-ll-methyl-2-dodecenoic acid (Wang et al., 

2004) synthesized by the RpfF protein (Barber et al., 1997); DSF signalling is 

involved in the regulation of biofilm dispersal and production of virulence factors. 

Current studies support the role of a two-component regulatory system designated 

RpfC/RpfG in the perception and transduction of the DSF signal to target genes (Dow 

et al., 2003; He et al., 2006). In this study we investigated whether Xoo produces and 

responds to AHLs and present evidence (i) that a set of Xoo isolates do not produce 

AHLs, (ii) of the existence of a conserved LuxR QS regulator in Xoo which we 

designated OryR, (iii) that OryR is important for rice virulence (iv) that OryR is 

induced by macerated rice and (v) that OryR likely interacts with a plant signal.

2.3 RESULTS AND DISCUSSION

2.3.1 Rice pathogenicity tests on Xanthomonas oryzae pv. oryzae isolates

The pathogenicity of the 23 Xoo isolates from India was tested on the susceptible rice 

line IR24 and 3 near-isogenic lines with known resistance genes IRBB5 (Xa5), 

IRBB7 (Xa7) and IRBB21 (Xa21). IR24 and IRBB7 were the most susceptible lines. 

They were resistant only to 1 of the 23 tested isolates, while IRBB5 and IRBB21 were 

resistant to 7 and 10 Xoo isolates, respectively (Table 1).

Even though the number of tested isolates was relatively low, our results suggested

that the resistance gene Xa7 is less efficient than Xa5 and Xa21 in the relevant sites of

India. However, the adult resistance earlier demonstrated in rice-Xoo interaction (Qi

and Mew, 1985; Sidhu and Khush, 1978) could have influenced our results and this
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resistance gene was possibly not expressed in 45 day-old rice plants. We believe that 

the group of 23 isolates tested is a good representation of Xoo strains which can be 

used for analysis of AHL production (see below).

Table 1: Xanthomonas oryzae pv. oryzae strains used. Bacteria strains was provided by M. Hofte 
laboratory. Pathogenicity tests on four different rice varieties was performed by J. Bigirimana.

Isolate
name State in India Site Year of 

isolation
Host

Cultivar

Pathogenicity tests* 

IR24 IRBB5 IRBB7 IRBB21 Reference

XAPT.43 Andhra Pradesh Tada 1.2003 Unknown S s S 1 This study

XAPC.5 Andhra Pradesh Cudappah 1.2003 Unknown S s S R This study

XAPC.10 Andhra Pradesh Cudappah 1.2003 Unknown S I S R This study

XAPC.11 Andhra Pradesh Cudappah 1.2003 Unknown S s S R This study

XAPC.12 Andhra Pradesh Cudappah 1.2003 Unknown s I S 1 This study

XAPC.13 Andhra Pradesh Cudappah 1.2003 Unknown s s S R This study

XAPC.14 Andhra Pradesh Cudappah 1.2003 Unknown s R S R This study

XAPC.19 Andhra Pradesh Cudappah 1.2003 Unknown s s S 1 This study

XAPC.20 Andhra Pradesh Cudappah 1.2003 Unknown s R S R This study

XAPC.23 Andhra Pradesh Cudappah 1.2003 Unknown s s S R This study

XKK.3 Kerala Kannanur 1.2003 Jyothi s s S 1 This study

XKK.4 Kerala Kannanur 1.2003 Jyothi s s S S This study

XKK.12 Kerala Kannanur 1.2003 Jyothi s s S S This study
XKK.16 Kerala Kannanur 1.2003 Jyothi s s S R This study
XKPt.4 Kerala Palghat 1.2003 ADT.46 s I S S This study
XKPt.8 Kerala Palghat 1.2003 ADT.46 s 1 S S This study
XKP2.2 Kerala Parali 1.2002 Matta Tiruvani s R 1 R This study
XP4.2 Kerala Pattambi 9.1999 Jyothi s 1 S S This study
XKV.5 Kerala Valancheri 1.2003 Thiruveni s R S S This study
XKV.9 Kerala Valancheri 1.2003 Thiruveni s R S S This study

XKV.15 Kerala Valancheri 1.2003 Thiruveni R R R R This study
XTNAi.18 Tamilnadu Adthurai 1.2003 ADT.46 s R 1 S This study
XTNP.4 Tamilnadu Podi 10.2002 ADT.46 s S S S This study

LMG5047 Unknown Unknown 1965 Unknown s N/A N/A N/A N/A
BX043 Unknown Unknown Unknown Unknown s N/A N/A N/A (Goel, 2002)

KACC10331 Korea® Unknown Unknown Unknown s N/A N/A N/A (Lee 2005)

* R; resistant, I; intermediate, S; susceptible. See text for details
§ This strain has been isolated in Korea (Lee et a l , 2005) and not in India (see text for details).

48



CHAPTER 2 Results and discussion

2.3.2 Xanthomonas oryzae pv. oryzae rice pathogenic bacteria does not produce 

AHLs

Using bacterial biosensor AHL detector strains described in the Experimental 

Procedures section, all the Xanthomonas oryzae pv. oryzae (Xoo) isolates listed in 

Table 1 were used initially to test by growth in solid media in plate streak assay for 

AHL production (Hwang et a l, 1994).

The bacterial biosensor C. violaceum CV026 induces the production of violacein 

when certain AHL signal molecules are present, E. coli (pSB401) and E. coli 

(pSB1075) induce bioluminescence, A. tumefaciens NT1 (pZLR4) and P. fluorescens 

1855(pSF105)(pSF107) induce p-galactosidase production. These four AHL 

biosensor strains ensure that a wide range of AHLs can be detected as each displays 

specificity towards structurally different AHLs (Steindler and Venturi, 2007).

In addition to the 24 Xoo strains described above we also tested the well studied Xoo 

strain BX043 and strain KACC10331 of which the genome has been sequenced (all 

listed in Table 1). All 26 Xoo strains gave a negative result in solid media in plate 

streak assays. Although this may mean that these strains do not produce AHLs at all, 

we could not exclude that they did so in very low amounts. In order to test this, 100 

ml spent culture supernatant was extracted and analysed for AHLs by TLC followed 

by a bioassay. The detection of AHLs in TLC plates was visualized by making use of 

E. coli JM109 (pSB401), E. coli (pSB1075) and A. tumefaciens NT1 (pZLR4) 

detector strains. Again all 26 Xoo strains were tested for presence of AHLs of spent 

supernatant and all gave a negative result. It was concluded that Xoo most likely does 

not produce AHL molecules. It cannot be excluded that Xoo could be producing
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AHLs at extremely low amounts which cannot be detected or the AHL biosensors 

used here do not respond to the AHL molecules potentially produced by Xoo.

2,3.3 The genome of Xanthomonas oryzae pv. oryzae contains a potential 

quorum sensing orphan LuxR-family member

The genome sequences of two Xoo strains, designated as KACC10331 and 

MAFF311018, have been published (Lee et a l , 2005; Ochiai et a l , 2005) and very 

recently a third strain, PX099A, has also been sequenced (Salzberg et a l , 2008). 

Analysis of the genomes did not reveal any gene and/or protein which belongs to the 

Luxl-family of AHL synthases (Fuqua and Greenberg, 2002). A second distinct, 

although small, family of AHL synthases has been reported and is composed of the 

LuxM, AinS and VanM proteins from Vibrio harvey, Vibrio fischeri and Vibrio 

anguillarum respectively (Milton et a l , 2001). Analysing the genomes of Xoo again 

revealed that no LuxM homologue was found. These results are in accordance with 

our observation that no AHLs could be detected from 26 different Xoo isolates 

including strain KACC10331 of which the genome sequence was available.

Analysing the three Xoo genome sequences however revealed the presence of a shared 

identical LuxR family member (Xoo KACC10331; Q5H3E9, Xoo MAFF311018; 

Q2P6A5 and from Xoo PX086; Q6R756), which we designated here as OryR, having 

the characteristics signatures of an AHL-dependent response regulator. OryR is 254 

amino acids long and it contains an autoinducer binding domain (Pfam03472) from 

position 22-178 and HTH domain from 189-246 with the conserved region of LuxR 

family regulators (Figure 1).
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Interestingly, although its function is unknown, an ORF highly similar (over 90%) to 

OryR is also present in closely related Xanthomonas campestris pv. vesicatoria 

(Q3BQU7), Xanthomonas axonopodis pv. citri (Q8P1BO) and Xanthomonas 

campestris pv. campestris (Q4UX59). All oryR genes have been annotated as single 

transcriptional units and not part of operons.

Autoind bind
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B Consensus

OryR-Autoind_bind
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+ ++d+ + + 1  +dy + +p +++ N P
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OryR-Autoind_bind

deWverYlannYfaiDPwkhalssisPfsWs--------ddlfdaslsl
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Consensus
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lklalqmllilaherlsrc-*
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Consensus

OryR-HTH
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Figure 1: The OryR protein primary structure contains domains typical of quorum sensing LuxR 
family regulators. (A) Schematic representation of OryR, numbers refer to amino acid residues. 
Position of the AHL-binding and the HTH-DNA-binding domains are shown. (B) Alignment 
using the one-letter code between the consensus of the AHL binding domain (shown as consensus, 
Pfam03472). (C) HTH DNA binding domain of LuxR family regulators and the corresponding 
domain in OryR. Amino acid identities of less important residues in the domains are shown as 
small capitals, a + sign refers to conserved amino acid with similar properties 
(http://www.sanger.ac.uk/Sofftware/Pfam/).
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OryR displays approximately 50% similarity to several LuxR family proteins of 

various Pseudomonas syringae plant pathogenic species (Q48E34; QOEE63; 

Q87WK7 and Q4ZNM6) and to several LuxR proteins belonging to members of the 

Rhizobium genus (Q92M411 Q1M918 and Q2K5W3). Interestingly all these bacteria 

are closely associated with plants. OryR could therefore act as a LuxR ‘orphan’ (i.e. 

lacking a cognate LuxI AHL synthase) QS type protein possibly responding and 

regulating target genes to signals from neighbouring AHL-producing bacteria. Such 

examples have thus far not been commonly reported in bacteria; to our knowledge the 

only example being SdiA of E. coli and Salmonella enterica which enables these 

bacteria which do not synthesize AHLs, to nevertheless respond to exogenous AHLs 

produced by other bacterial species (Ahmer, 2004). Two other examples of orphan 

LuxR proteins have been reported which, in apparent contrast to OryR, respond to 

AHLs produced by the same cell. These proteins are QscR of P. aeruginosa and ExpR 

of Sinorhizobium meliloti. One proposed role of these proteins is to extend the AHL 

QS regulation in these bacteria to other gene targets. However, as QscR and ExpR 

possess a broader, more relaxed, response to a larger number of different AHLs, a 

second proposed role is to increase the range of AHLs to which these species respond 

(Hoang et a l, 2004; Lequette et al., 2006).

2.3.4 oryR is conserved in Xanthomonas oryzae pv. oryzae

As mentioned above, orthologues of oryR are present in X  campestris pv. campestris

and X. axonopodis pv. citri. In order to determine if oryR is conserved in other Xoo

isolates, we performed Southern blot analyses of Ncol restriction enzyme digested

chromosomal DNA of all 26 Xoo isolates reported in Table 1 with a DNA fragment
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containing the complete oryR gene. This probe gave a positive hybridization signal at 

high hybridization stringency conditions with 19 of the 26 Xoo isolates (Figure 2).

Of the 7 which did not give a signal, we analysed by Western analysis whether they 

contained an OryR-like protein; 5 of the 7 did respond to anti-OryR antibody having a 

protein band of the expected size (Figure 1 - Appendix). It was concluded that oryR is 

widely but not completely conserved within thq X o o  species.

1 2 3 4 5 6 7 8 9
mm m m

-1650 bp

10 11 12 13 14 15 16 17 18
- - -

hhrh»
-1650 bp

19 20 21 22 23 24 25 26

■mm mm-
-1650 bp

Figure 2: High stringency Southern analysis using oryR DNA as a probe against Ncol digested 
chromosomal DNA from 26 Xoo strains. The number correspond to the following Xoo strains (see 
Table 1 for further details): 1, XAPT.43; 2, XAPC.5; 3, XAPC.10; 4, XAPC.ll; 5, XAPC.12; 6, 
XAPC.I3; 7, XAPC.14; 8, XAPC.19; 9, XAPC.20; 10, XAPC.23; 11, XKK.3; 12, XKK.4; 13, 
XKK12; 14, XKK.16; 15, XKPt.4;16, XKPt.8; 17, XKP2.2; 18, XP4.2; 19, XKV.5; 20, XKV.9; 21, 
XKV.15; 22, XTNAi.18; 23, XTNP.4; 24, LMG5047; 25, BX043; 26, KACC10331.

2.3.5 OryR mutants of X. oryzae pv. oryzae are less virulent in rice

The oryR gene was mutated in three Xoo strains in order to understand its role in rice 

pathogenicity. The three Xoo strains were KACC10331 of which the genome has been 

sequenced, Xoo strain BX043 in which several molecular studies have been 

performed and Xoo strain XKK.12 which has been reported here and is very virulent 

to rice (Table 1). Rice virulence analysis was performed with the three oryR mutants 

as well as their respective wild-type parent strains.
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Figure 3: oryR mutations affect Xoo virulence. Presentations of the results of leaf lesion lengths 
caused by three Xoo and oryR mutant derivatives. The results are expressed as means ± STDEV; 
different letters are significantly different using the Mann-Whitney comparison test performed 
on lesion length data, see text for details (statistical analysis was performed by J. Bigirimana). (A) 
A 109 CFU/mL Xoo inoculum was used, (B) 108 CFU/mL, (C) 107CFU/mL. See text for details.
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The assays were performed on rice leaves at very high concentration of inoculum (109

O
cfu/ml) as well as in lower concentration (10 and 10 cfu/ml). As depicted in Figure 

3, the XKK.12 oryR mutants were less virulent when compared to the wild-type strain 

at all inoculum concentrations indicating that OryR was necessary for optimal Xoo 

rice pathogenicity. In strains BX043 and KACC10331 however oryR mutants 

displayed lower virulence only at high inoculum since under these conditions the wild 

type strains displayed strong virulence.

2,3.6 OryR is solubilized by macerated rice

The study of LuxR family quorum sensing proteins has shown that when over­

expressed they are insoluble. However, in the presence of their cognate AHL 

molecule, which they bind with high affinity, they become soluble. In fact, the 

cognate AHL is required for the proper folding of the nascent protein, for formation of 

homomultimers and for protection against proteases (Chai and Winans, 2004; Collins 

et al., 2005; Schuster et al., 2004; Urbanowski et al., 2004; Zhu and Winans, 2001).

In order to determine if the OryR protein did interact with AHLs we performed 

biochemical studies on the protein. By overexpressing and purifying OryR (see 

experimental procedures), it was established that, like other LuxR-homologue 

proteins, OryR was highly insoluble when overproduced in E. coli.

As OryR contains an Autoind bind domain (Pfam03472, see above) it was 

hypothesized that if OryR was able to bind to one or more AHLs this could possibly 

allow OryR to solubilize. His6-OryR was therefore expressed and purified in its 

native form in the presence of 20 pM of each of several non-substituted AHLs (i.e.

C4-, C6-, Cg-, C10-, and C1 2-AHL), several 3oxo-AHLs (i.e. C6-3oxo-, Cg-3oxo-, C1 0-
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Figure 4: Solubility studies of His6-OryR. (A) Affinity chromatography using LB as growth 
medium for E. coli harbouring pPQEORYR and pREP-4. Arrow indicates putative low amounts 
of OryR protein eluted at 50% of Buffer B, corresponding to 135 mM of imidazole (see 
Experimental Procedures section) or background due to E. coli His-rich proteins. (B) Affinity 
chromatography using LB supplemented with macerated tobacco as growth medium for E. coli 
harbouring pPQEORYR and pREP-4. Arrow indicates putative low amounts of OryR protein 
eluted at 50% of Buffer B, corresponding to 135 mM of imidazole. (C) Affinity chromatography 
using LB supplemented with macerated rice as growth medium for E. coli harbouring 
pPQEORYR and pREP-4. Arrow indicates increase of OryR protein eluted at 50% of Buffer B, 
corresponding to 135 mM of imidazole (See Experimental procedures section). (D) Western blot 
analysis of each elution peak from His6-OryR affinity chromatography (Figure 4-C) using anti- 
OryR antibody. (E) The same result was obtained using anti 6x-His monoclonal antibody. FT: 
flow through.

3oxo-, and Ci2 -3 oxo-AHLs) and several 3OH-AHLs molecules (i.e. CV30H-, Cg- 

30H-, Cio-30H-, and Ci2-30H-AHL). No OryR protein solubilization was observed 

when the protein was over-expressed in the presence of these molecules (data not 

shown).

Though the AHLs used here are the ones most commonly used in bacteria, the list is

not complete, as other structural AHLs have been reported to be produced by Gram-
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negative bacteria. OryR protein solubility was also studied in the presence of plant 

components in the growth medium.

Ten grams of rice plants (leaves and stems) were frozen with liquid nitrogen and 

macerated, the resulted rice powder was added to LB medium (see experimental 

procedures). After nickel affinity chromatography, pure His-tagged OryR in native 

form was eluted at 135mM of imidazole (Figure 4C). The presence of OryR in the 

elution peak was confirmed by Western blot analysis using both, anti-OryR antibody 

(Figure 4D) and anti 6 x-His antibody (Figure 4E). As control, no OryR solubilization 

peak was observed in the presence of LB medium alone (Figure 4A) or LB medium 

supplemented tobacco (Xoo non-host plant) macerated powder (Figure 4B). This 

result raises the hypothesis that a molecule(s) specifically present in rice may possibly 

bind and solubilize some OryR. This could also be an indication that OryR might be 

active and performing gene regulation functions in planta (see below).

2.3.7 OryR is induced by macerated rice

In order to determine if OryR is expressed when Xoo KACC10331 was grown in

laboratory media, we determined OryR levels using anti-OryR antibodies. When Xoo

KACC10331 was grown in M9-casamino acids medium (see experimental

procedures), no OryR protein was detected with Western analysis (Figure 5A),

whereas when grown in M9-casamino acids medium supplemented with macerated

rice, OryR levels increased significantly and could be clearly detected (Figure 5A).

These results indicate that oryR is probably induced in planta thus most likely

affecting target gene expression when Xoo is in rice. OryR was not detected when Xoo

KACC10331 was grown in M9-casamino acids medium in the presence of a cocktail
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of exogenously provided AHLs (Figure 5A) indicating that they do not affect the 

expression of oryR. It cannot be excluded however that some component(s) of extracts 

from macerated rice are involved in stabilizing OryR from proteolytic degradation 

thus increasing protein levels rather than affecting its transcriptional status.

In order to identify possible OryR target genes, we analysed the profile of secreted 

proteins of the wild-type Xoo KACC10331 strain versus the profile of the oryR 

mutant KACC10331 ORYR to determine if any secreted proteins were regulated by 

OryR.

B kDa M

M9

AHLs

M9-RICE

AHLs

_  25 kDa

175_

83_

62_
47.5_

32.5.

16.5_

Figure 5: (A) OryR levels in Xoo grown in different conditions. Similar amounts of stationary 
phase Xoo cells grown in (1) M9-casamino acids medium alone or with a cocktail of AHLs (C4-, 
C6-, C8-, CIO- C12-AHLs, same for 3-oxo-AHLs and for 3-OH-AHLs all added at 1 pM) and (2) 
M9-casamino acids medium in the presence of macerated rice and with a cocktail of AHLs (see 
above). Proteins were then examined by Western analysis with anti-OryR antiserum. See text for 
details. (B) SDS PAGE analysis of total secreted proteins of Xoo KACC10331 grown in M9- 
casamino acids medium (lane 1), Xoo KACC10331ORYR grown in M9-casamino acids medium 
(lane 2), Xoo KACC10331 grown in minimal M9-casamino acids medium supplemented with 
macerated rice (lane 3) and Xoo KACC10331ORYR grown in M9-casamino acids medium 
supplemented macerated rice (lane 4). The arrows indicated the two proteins only seen to be 
produced by the wild type KACC10331 strain grown in the presence of macerated rice and not 
by the oryR mutant derivative.
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As depicted in Figure 5B, in KACC 10331 ORYR two secreted proteins of 

approximately 60 kDa and 20 kDa were present at lower levels when compared to the 

parent strain indicating that OryR as well as rice extract was important for their 

production. The approximately 60 kDa protein was digested with trypsin and analysed 

by mass spectrometry resulting in the determination of the following peptides 

MGNGIDAVR, SYPTYVWLDSIDAIYGGSR, QAGLQR,

TEYIDVIASTLANPKYK and FLIDTGR. Performing a BLAST analysis the peptides 

were 100% identical to parts of secreted enzyme 1,4-beta-cellobiosidase of Xoo 

KACC10331 (NC_006834.1).

A

B

GAAAGGGATGCCGACGCGCAGCGCAGATGCTGAAGGG
■142_________________________________________-128

|a c c t g a a c g c c c g t t c t g c g )c tg c a g t c a t g t g a c c g

GCATTGTGCCGATAATGTGGCCCACACACCCATCCAT

TGGCAAAAGTGCTAGGTTTTCCCTGCTGGTTGTCGCT

TGTGGGCAACCACCGGTACCGAGGAATCACCATGTTC
R B S

CGTmCHG

CGTSSCHG

oryR Xanthomonas oryzae pv. oryzae 

luxl Vibrio fischeri

cepl Burkholderia cepacia

soil Ralstonia solanacearum

rhll Pseudomonas aeruginosa

Figure 6: Putative lux box in the oryR promoter region. (A) Nucleotide sequence of the promoter 
region of the oryR gene; underlined is the RBS (putative Shine Delgarno sequence) and the ATG 
of the translational start codon. Boxed is the putative lux box and the numbers indicate the 
distance relative to the start codon. (B) Alignment of the oryR putative lux box with lux boxes in 
the promoter of the AHL synthases of several bacteria. Shaded are the conserved nucleotides.

This secreted enzyme designated CbsA is a cell-wall degrading enzyme which was

recently determined to be very important for Xoo virulence (Jha et al., 2007). The 20

KDa protein band was identified in a similar way with the following peptides:
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ADASSPINLLSPAARK, FVESLRFNASGVTSFR, IRVDSEEDR and VDSEEDR 

and corresponded to a Xoo 20 kDa hypothetical protein of unknown function 

(YP 452683).

2.4 CONCLUDING REMARKS

This study reports for the first time the presence of a LuxR family type regulator in 

Xoo which has been designated as OryR. The primary structure of OryR is very 

similar to that of domains found in AHL-responsive quorum sensing LuxR family 

response regulators: an AHL-binding and a HTH DNA binding motif. We have tested 

26 Xoo strains for production of AHLs and found that none produce these signal 

molecules.

The oryR gene is conserved among Xoo strains and is also present in close relatives X. 

campestris pv. campestris and X  axonopodis pv. citri. Our results show that OryR is 

involved in rice virulence since three Xoo oryR mutant strains showed reduced 

pathogenicity. As OryR does not have a typical cognate AHL LuxI family synthase it 

could be defined as an orphan quorum sensing LuxR-type response regulator (Ahmer, 

2004; Fuqua, 2006; Hoang et al, 2004; Lequette et al., 2006; Walters and Sperandio, 

2006). Our working model is therefore centred on the possibility that OryR responds 

to AHL compounds produced by other bacteria or by AHL mimic compounds derived 

from rice (Degrassi et al., 2007). While attempts to solubilize recombinant OryR 

using several different AHL compounds failed, OryR solubilization was achieved in 

the presence of rice extract. This suggested that OryR could respond to some 

molecule(s) present in rice indicating that this regulator could be involved in inter­
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kingdom signalling (Shiner et a l, 2005). As OryR contains an AHL-binding motif it 

is reasonable to speculate that the molecule could be closely related to AHLs. 

Interestingly, OryR was present only when Xoo was grown in the presence of 

macerated rice and affected the production of two secreted proteins: a cell-wall 

degrading enzyme and a protein of unknown function. AHL QS is the paradigm of 

intercellular signalling in Gram-negative bacteria and OryR could possibly extend 

these systems to having roles in communication with eukaryotes. Future studies will 

focus on identifying further Xoo targets of OryR and the molecule(s) to which it 

responds.

2.5 EXPERIMENTAL PROCEDURES

2.5.1 Bacterial strains media and plasmids

Xanthomonas oryzae pv. oryzae (Xoo) strains used are listed in Table 1. Detection of 

AHL signal molecules was performed using the following bacterial biosensors; 

Chromobacterium violaceum CV026, Escherichia coli JM109 (pSB401), E. coli 

JM109 (pSB1075), Agrobacterium tumefaciens NT1 (pZLR4), and Pseudomonas 

jluorescens 1855 (pSF105)(pSF107) [all reviewed by (Steindler and Venturi, 2007)]. 

Xoo strains were routinely grown at 28°C grown either in PYS (per liter; 8  g peptone, 

2 g yeast extract, 2 g K2HP04, 0.5 g KH2 P04, 0.25 g MgSO4 .7H2 0, 0.5% glucose 

w/v), PS medium (Tsuchiya et al., 1982) or in M9 minimal medium with the addition 

of casamino acids 0,3% w/v (Sambrook et a l , 1989) and, if necessary, macerated rice 

plants 2,5% w/v (cv. Baldo). Forty five day-old rice plants were frozen at -80 and 

macerated with pestle and mortar, rice powder was then added to the liquid medium
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and filtered after sterilization. Kanamycin 100 jig/ml was used for Xoo mutants 

growth. E. coli was routinely grown in LB medium at 37 °C and antibiotics were 

added when necessary at the following concentrations: ampicillin 1 0 0  pg/ml, 

kanamycin 100 pg/ml, tetracycline 15 pg/ml.

2.5.2 Recombinant DNA techniques

Digestion with restriction enzymes, agarose gel electrophoresis, purification of DNA 

fragments, ligation with T4 DNA ligase, end filling with Klenow fragment of DNA 

polymerase, Southern hybridization, and transformation of E. coli were performed as 

described (Sambrook et al., 1989). Analytical amounts of plasmids were isolated as 

described (Bimboim, 1983), whereas preparative amounts were purified with Qiagen 

columns. Total DNA from Xoo was isolated by the sarcosyl-pronase lysis method 

(Better et al., 1983).

2.5.3 Purification, detection and visualization of signal (AHL) molecules

The purification, detection and visualisation of AHLs signal molecules from culture 

supernatants were performed essentially as previously described [(Steindler and 

Venturi, 2007) and references therein]. Synthetic C4 -AHL to C12-AHL were 

purchased from Fluka Chemie AG (Buchs, CH) and C6-3oxo-AHL to Ci2 -3oxo-AHL 

and C6-30H-AHL to Ci2-30H-AHLs were purchased from the laboratory of Prof. 

Paul Williams (University of Nottingham, UK).
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2.5.4 Inactivation of oryR of Xanthomonas oryzae pv. oryzae

The Xoo KACC10331 oryR gene was in part amplified by PCR as a 385 bp fragment 

using primers oryRintS 55 -cgtctagaggtggaatatgtgg-3 ’ and oryRintR 5’- 

atctctgagttcagatgcaggt-3’ and cloned as a Xbal-Xhol fragment in pKNOCK-Km 

(Alexeyev, 1999) generating pKNORY. This latter plasmid was used as a suicide 

delivery system in order to create an oryR knock-out mutant in Xoo strains 

KACC 10331, BX043 and XKK.12 as described (Alexeyev, 1999) generating 

KACC10331 ORYR, BX0430RYR and XKK.120RYR. The fidelity of the marker 

exchange events was confirmed by Southern blot analysis (Figure 2 - Appendix).

2.5.5 OryR antibodies and protein analysis

Antibodies against OryR of Xoo were generated by injecting purified protein into 

rabbits. Xoo OryR was purified as His6-OryR in pQEORYR in E. coli Ml 5 (pREP-4) 

according to the instructions of the supplier (Qiagen, Hilden, D). pQEORYR was 

constructed as follows: oryR of Xoo KACC 10331 was amplified by PCR using two 

oligonucleotides oryRqes 5’-CCCGGATCCTTCGAAATTCTA-3’ and oryRqer 5’- 

ACCAAGCTTTTATGGCTCCAG-3’ and cloned as a BamRl-Hindlll fragment in 

pQE30 (Qiagen, Hilden, D) yielding pQEORYR.

Proteins were transferred onto PVDF membrane (Immobilon-P; Millipore) using a

tank system according to the manufacturer’s instruction. The membrane was subjected

to Western blot analysis using polyclonal antibodies against either OryR or 6 x-His

monoclonal antibody (BD Biosciences, San Jose, CA, USA) and after incubation with

the second HRP-labelled antibody the proteins were detected with the 3-3’-

diaminobenzidine (DAB) tetrahydrochloride (Sigma, St. Louis, Missouri, USA). No
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significant cross-reaction of the polyclonal antibody against other Xoo or E. coli 

proteins was observed in this study.

Total secreted proteins were isolated and characterized as follows. Cells from 10-ml 

overnight cultures were pelleted by centrifugation for 10 min at 8,000g. Cells 

remaining in the supernatant were removed by an additional centrifugation step for 3 

min at 15,000xg. Proteins in the cell-free supernatant were then precipitated with 10% 

(w/v) trichloroacetic acid, dried and resuspended in 40 pi of sample buffer and loaded 

20 pi in the SDS-PAGE gel.

Protein analysis of secreted and total proteins was performed by boiling the protein 

suspension in sample buffer for 1 0  min, the proteins were then separated by sodium 

dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) on gels containing 

1 2 % (w/v) polyacrylamide.

Selected protein bands were identified as follows; the band was cut out from the 

Coomassie Brilliant blue-stained gel and placed in a siliconized microcentrifuge 

tubes that had been rinsed with water and ethanol. The band was digested with 

trypsin, and the resulting peptides were extracted with water and 60% acetonitrile - 

1% trifluoroacetic acid. The fragments were then analyzed by mass spectrometry (an 

internal sequence analysis of the protein spots was performed by using an 

electronspray ionization mass spectrometer LCQ DECA XP, ThermoFinnigam), 

proteins were then identified by analysis of the peptides and by using the Xoo protein 

data banks.
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2.5.6 OryR over-expression and purification

For OryR overexpression, a single colony of E.coli M15-pQEORYR was used to 

inoculate 10 ml of LB-ampicillin-kanamycin and grown overnight; 1 ml of the culture 

was then used to inoculate 100 ml of pre-warmed medium. The expression was 

induced by adding isopropyl-p-D-thiogalactoside 1 mM at OD6 0 0  0.6 and was carried 

on for 3 hours at 37 °C. The culture was rapidly chilled on ice and the cells were 

harvested by centrifugation and frozen at -80°C.

His6-OryR protein was extracted under denaturing and native conditions according to 

the instructions of the supplier (Quiagen). The purification step was performed using a 

5 ml HiTrap affinity column (Amersham Pharmacia). Native His6-OryR was eluted 

using a imidazole step gradient [lOmM (Buffer A) and 250 mM (Buffer B)]. Protein 

concentration was determined by using a Bradford assay (BioRad).

2.5.7 Bacterial leaf blight virulence assays on rice plants

Xanthomonas oryzae pv. oryzae isolates were grown on Sucrose Peptone Agar 

medium at 28°C and single colonies were transferred to liquid Sucrose Peptone 

medium. Two-day-old cultures were used for inoculum production. The bacterial 

concentration was determined using a spectrophotometer (Multiscan Ex) and adjusted 

to 109, 108 or 107 CFU/ml with demineralised water. Pathogenicity tests on the Xoo 

strains in Table 1 were carried out on rice cultivar IR24 and 3 NILs (Near-Isogenic 

Lines) IRBB5, IRBB7 and IRBB21 (from International Rice Research Institute IRRI). 

Germinated rice seeds were grown in trays in a potting compost (Klassmann substrate 

4, Geeste, Germany) under greenhouse conditions (30 ± 4°C) with a 16:8 light-dark
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photoperiod. Plants were weekly fertilized with 5 g (NEL^SC^ and 10 g FeSC>4 .7 H2 0  

per m2. Forty five day-old plants were used for infection tests.

Rice plants were inoculated by the clipping method (Kauffman et a l, 1973). Three to 

4 leaves were used per plant and 1 leaf per rice line was clipped using sterile H2 O for 

the control. Five to 6  plants were inoculated per isolate and were kept for 18 hours in 

humid chambers (> 92% R.H.) at 30 ± 4 °C, and were thereafter brought back to 

greenhouse conditions for disease development. Fourteen days after inoculation, 

symptoms were evaluated by measuring the lesion length of the leaf covered by 

bacterial leaf blight lesions. Plants were divided into 3 classes: resistant with lesion 

length of 0 to 3 cm, intermediate, with 3 to 9 cm and susceptible with more than 9 cm. 

Rice cultivar IR24 was used to assess the virulence of Xoo strains KACC10331, 

BX043, XKK.12 and their respective oryR mutants. Twenty to twenty-five leaves 

were infected by each of the 6  strains. Experiments were performed in triplicate. 

Lesion length data did not fulfil the requirements for ANOVA and were statistically 

analysed with the SPSS program using the non-parametric tests: Kruskal-Wallis 

multiple comparison completed by the Mann-Whitney test.
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OryR is a LuxR-family protein involved in inter­

kingdom signalling between pathogenic 

Xanthomonas oryzae pv. oryzae and rice
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3.1 SUMMARY

Xanthomonas oryzae pv. oryzae (Xoo), the causal agent of bacterial leaf blight (BLB) 

in rice, contains a regulator in the genome, called OryR, which belongs to the iV-acyl 

homoserine lactone (AHL) dependent quorum sensing (QS) sub-family of LuxR- 

homolog proteins. We previously reported that Xoo however does not make AHLs, 

does not possess a Luxl-family AHL synthase and that the OryR protein is solubilized 

by a compound present in rice. In this study we provide further evidence that OryR 

interacts with a rice signal molecule (RSM) and that the concentration of RSM 

increases when rice is infected with Xoo. We also report three OryR target promoters 

which are regulated differently; (i) the neighbouring proline iminopeptidase (pip) 

virulence gene which is positively regulated by OryR in the presence of the RSM, (ii) 

the oryR promoter which is negatively autoregulated independently of the RSM and 

(iii) the 1,4-p-cellobiosidase cbsA gene which is positively regulated by OryR 

independently of the RSM. It is also shown that the RSM for OryR is small in size, 

not related to AHLs and not able to activate the broad range AHL-biosensor A. 

tumefaciens NTl(pZLQR). Furthermore OryR does not regulate the production of the 

quorum sensing diffusible signal factor (DSF) present in the Xanthomonas genus. 

OryR has therefore unique features being an important regulator involved in the inter­

kingdom communication between host and pathogen.
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3.2 INTRODUCTION

The species Xanthomonas oryzae includes two pathovars, oryzae and oryzicola which 

are pathogens of rice, are closely related and were initially named as pathovars of 

Xanthomonas campestris (Swings et al., 1990). Xanthomonas oryzae pv. oryzae (Xoo) 

are Gram-negative rod-shape bacteria causing bacterial leaf blight (BLB), one of the 

most important diseases of rice. BLB is a vascular disease where Xoo grows and 

colonizes the xylem vessels eventually clogging them; several virulence associated 

determinants have been found including exopolysaccharide production, hypersensitive 

response and pathogenicity (hrp) genes (Cho et a l , 2007; Lee et a l , 2008; Shen and 

Ronald, 2002).

Many Gram-negative bacteria possess a form of gene regulation involving cell-cell 

communication, also known as quorum sensing (QS), via W-acyl homoserine lactones 

(AHLs) signalling molecules. A typical AHL QS system is most commonly mediated 

by two proteins belonging to the LuxI-LuxR protein families; Luxl-type proteins are 

AHL synthases and LuxR-family proteins are modular sensor-response regulators. In 

an AHL QS system, AHLs interact directly at high bacterial cell density, i.e. at 

quorum concentration, with the cognate LuxR-type protein and this protein-AHL 

complex can then bind at specific gene promoter sequences called /wx-boxes, affecting 

expression of QS target genes (Fuqua et a l , 2001). AHL QS has been studied in many 

bacterial species and shown to provide a significant advantage to a community of 

bacteria by adapting to environmental conditions, enhancing its defense capabilities 

against other microorganisms or eukaryotic resistance mechanisms (Camara et a l , 

2002; Waters and Bassler, 2005).
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Xoo does not produce AHL QS signalling molecules; however we recently reported 

that it possesses a protein, called OryR, which is related to the LuxR-family of AHL 

QS regulators (Ferluga et al., 2007). In fact OryR is a modular protein having an N- 

acyl homoserine lactone (AHL) domain and a helix-tum-helix domain both typical of 

the LuxR-family subgroup of quorum sensing (QS) regulators (Ferluga et a l, 2007; 

Fuqua et al, 2001). OryR does not have a typical cognate AHL LuxI family synthase 

present in the genome and can therefore be regarded as an impaired or orphan LuxR- 

type response regulator (Fuqua, 2006; Walters and Sperandio, 2006). OryR was 

shown not to bind the most common AHLs, however it appears to bind a compound 

present in the rice plant. This was concluded following the observation that the OryR 

protein was not solubilized by many of the structurally different AHLs but OryR 

solubilization was achieved in the presence of rice extract (Ferluga et a l, 2007). It 

was also determined that OryR plays a role in Xoo rice virulence since an oryR mutant 

was less able to cause the BLB symptoms (Ferluga et a l, 2007). A highly similar 

protein to OryR, designated as XccR, has also been reported in the plant pathogen 

Xanthomonas campestris pv. campestris (Xcc) which has been associated with Xcc 

pathogenicity and regulates in planta the neighbouring proline iminopeptidase (pip) 

virulence gene (Zhang et a l, 2007). Studies on the xccR/pip locus revealed that XccR 

associates with a plant factor and functions as a transcriptional activator binding to the 

lux box present in the promoter of the pip gene.

Plants have been reported to produce compounds that are able to act as agonists or 

antagonist to bacterial AHL QS systems and hence have been called AHL mimics
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(Bauer and Mathesius, 2004). Halogenated furanones from the marine red alga 

Delisea pulchra, structurally similar to the C4 -AHL molecule, were able to 

competitively bind the LuxR homologue proteins having inhibitory functions 

(Givskov et al., 1996; Manefield et al., 1999). Additionally AHL mimics from the 

unicellular green alga Chlamydomonas reinhardtii and several other plants, including 

rice, were able to stimulate gene expression via LuxR-family AHL sensors/regulators 

(Degrassi et al., 2007; Teplitski et al., 2004). To date the structure of these plant 

compounds is unknown and it cannot be excluded that similar molecules are involved 

in inter-kingdom signalling with OryR of Xoo and rice.

In this study we provide further evidence of the presence of a molecule in rice which 

interacts with OryR and that the presence of this molecule increases when rice is 

infected with Xoo. We also provide evidence of three OryR target genes and how they 

are regulated in response to the presence of macerated rice. It was also established that 

the OryR regulatory network does not affect DSF production, the signal molecule 

found and characterized in Xanthomonas campestris pv. campestris and present in 

multiple Xanthomonas species. OryR therefore has unique features, being an 

important player in plant-bacteria interaction through the detection and response of a 

small diffusible plant compound.
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3.3 RESULTS

3.3.1 The presence of xylem sap, collected from Xoo infected rice, in the growth 

media increases OryR protein solubility

The OryR primary structure contains domains typical of quorum sensing LuxR-family 

regulators: an AHL-binding domain in its A-terminus and an HTH-DNA-binding 

motif at the C-terminus. It was previously shown that when LuxR-family QS proteins 

are over-expressed they are highly insoluble, while in the presence of, and bound to, 

the cognate AHL molecule they become soluble (Schuster et a l , 2004; Urbanowski et 

al, 2004; Vannini et a l, 2002). OryR, like other LuxR-family regulators, was found 

to be highly insoluble, but it became soluble when expressed in E. coli grown in the 

presence of macerated rice (Ferluga et a l, 2007). It was therefore postulated that an 

unknown rice signal molecule (RSM) was present in rice and was able to interact with 

OryR solubilizing the protein. Many structurally different AHLs were unable to 

solubilize OryR indicating that most likely OryR did not bind AHLs (Ferluga et a l, 

2007).

To verify the presence, and possibly the concentration, of the RSM in infected rice, an 

OryR solubilization assay was performed using rice previously infected with Xoo. As 

Xoo is a pathogen colonizing and infecting the xylem it is most likely that the RSM is 

present in this plant environment. Rather than using total macerated rice as used 

previously (Ferluga et a l, 2007), we now harvested the xylem sap from Xoo XKK.12 

infected rice plants, three, six, ten and fourteen days after infection and from non­

infected rice plants as control, as described in Materials and Method section. E. coli

M15-pQEORYR, over-expressing His6-OryR (Ferluga et al., 2007), was then grown

75



X

CHAPTER 3 Results

in the presence of xylem sap isolated from these four time intervals and it was 

established whether a soluble form of the OryR was present via Western blot analysis 

using an anti His-tag antibody. Highest amounts of soluble OryR were found when 

bacteria were grown in the presence of xylem sap collected 10 days after Xoo 

infection. This result indicated that in the xylem either maximum concentrations of 

RSM and/or OryR levels were reached approximately ten days after Xoo infection 

(Figure 1).

Days after infection
10 14

Control

XKK.12

-  25 KDa

Figure 1: Western blot analysis of soluble His-tag OryR expressed in E. coli grown in media 
containing infected xylem sap recovered from rice at various time points (ie. 3 ,6 ,10 or 14 days). A 
soluble form of OryR was detectable most when expressed in E. coli in the presence of xylem sap 
recovered from rice 10 days after infection (see text for details).

3.3.2 Gene promoter studies of the oryR/pip region: OryR regulates pip in 

response to a rice signal molecule (RSM)

Proline iminopeptidase (PIP) production is regulated by XccR, the homolog of OryR, 

in Xanthomonas campestris pv. campestris (Xcc) (Zhang et al., 2007). The biological 

function of PIP is currently unclear; this enzyme can catalyze the removal of the N- 

terminal proline from small peptides or proteins and is widely distributed among 

bacteria. PIP in Xcc has been shown to be a virulence factor as pip mutants were less 

pathogenic to cabbage since they were less fit to spread and grow in the vascular
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system (Zhang et al., 2007). The pip gene in both Xcc and Xoo is genetically linked to 

the xccR and oryR gene respectively (Figure 2).

Interestingly, both pip promoters of Xoo and Xcc contain well conserved lux-boxes 

typically found in AHL QS regulated target genes in Gram-negative bacteria. The 

putative lux box sequence in Xoo pip promoter is centred at position -71 from the start 

codon (Figure 2-A), and was found to be highly similar to the experimentally 

determined lux box in the Xcc pip promoter (Figure 2-B) (Zhang et al., 2007).

B

313 bp

oryR P/P
-71 bp 
lux box

>

5 ' -GCGCATTCAAACCTGTGAGATTTGCCAGTTAACGCCAGTCGGCCC
■ >  < -35

GCTCGCTAGGCTCGGGGCACATCATTGCCGCAGGCAGGCGCAGGT
-10

CATG-3'
pip

X. oryzae pv. oryzae 
X. campestris pv. campestris

Figure 2: (A) Analysis of the pip promoter locus in Xoo. The 313 bp intergenic region upstream 
from the pip gene contains a putative palindromic lux box sequence centred at -71 bp from the 
starting codon as indicated by the arrows. The hypothetical -35 and -10 regions are highlighted 
in bold. (B) Alignment of the two putative pip Iwc-boxes identified in Xoo and Xcc.

To verify whether OryR is able to regulate the pip promoter in Xoo, an IncW gusA 

promoter probe plasmid designated pSS122, stable in Xanthomonas, has been 

constructed here as described in the Materials and Methods section. The pip promoter 

was then cloned upstream of the promoterless p-glucuronidase reporter gene in
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pSS122 generating pPIP122. Xoo strain XKK.12 and oryR mutant derivative 

XKK.120RYR carrying pPIP122 were grown under different conditions in the 

presence and absence of macerated rice. Our previous studies determined that no 

OryR protein was detected when Xoo was grown in a minimal M9 medium, however 

the protein was highly expressed when adding macerated rice to the minimal medium 

demonstrating that oryR expression was most likey induced in planta (Ferluga et al., 

2007). We observed however the presence of the OryR protein when Xoo was grown 

in the rich PYS medium indicating that some component(s) in this complex medium 

was probably in part inducing oryR expression. We therefore performed pip promoter 

activity studies in PYS rich medium with and without the addition of macerated rice 

thus ensuring that OryR is always present with the only difference being the presence 

of macerated rice.

It was determined that pip promoter activity in the wild type strain was approximately 

five times higher when macerated rice was present in the medium, highlighting that 

most likely a compound present in rice was pivotal for pip transcription. Significantly, 

no promoter activity in any of the conditions tested was detected in the Xoo oryR 

mutant indicating that the compound, or rice signal molecule (RSM), present in 

macerated rice was necessary to activate pip promoter via OryR (Figure 3).

Having established that 10-day xylem sap from Xoo infected rice resulted in the 

highest amount of OryR solubilization (see above), we determined whether pip 

promoter activity further increased in the presence of infected rice in the growth 

medium. Xoo XKK.12 (pPIP122) cells were therefore grown in medium containing 

macerated 10-day-old Xoo infected rice and p-glucuronidase assays were then
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performed. As shown in Figure 3, the activity of the pip promoter in the presence of 

macerated, infected rice was approximately ten times higher when compared to the 

activity of the control and a further 2 -fold increase when macerated un-infected rice 

was used; this suggest that 1 0 -day old infected rice probably contained larger amounts 

of RSM produced and recognized by OryR. No p-glucuronidase expression was 

observed in the oryR mutant Xoo XKK.120RY (pPIP122) further confirming that the 

pip gene was tightly regulated by OryR (Figure 3).
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Figure 3: pip gene promoter activity measured in Xoo XKK.12 harbouring the reporter plasmid 
pPEP122 and grown in different media, with and without the presence of macerated rice. ‘PYS’ 
refers to a rich medium (see text for details); ‘PYS-Rice-Medium’ refers to PYS in the presence of 
macerated rice; ‘Rice-Medium’ refers to macerated rice in distilled sterile water; ‘Infected-Rice- 
Medium’ refers to rice which was infected with Xoo for 10 days prior to maceration. The highest 
pip promoter activity was measured when Xoo XKK.12(pPIP122) was grown in the presence of 
infected rice. No promoter activity was detected in the oryR mutant Xoo XKK.120RY (pPIP122). 
The results are expressed as means ± STDEV, n=3. *, p< 0,002; §, p< 0,003; #, p< 0,003; f ,  p< 4 x 
10's, compared to the parental strain.

To further verify whether the pip promoter was also functional in planta, Xoo 

XKK.12 (pPIP122) was used for rice infection and bacterial cells were then recovered 

from rice plants one week after infection and p-glucuronidase assays were performed.

p/p promoter

*

rh
m J L  J _

# t
PYS PYS - Rice - Rice - Medium Infected - Rice -

Medium Medium

□ wild-type □ OryR mutant

Although most of the bacterial cells recovered from the infected plants 10-days after
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inoculation had lost the promoter-probe plasmid, significant p-glucuronidase activity 

was detected, clearly indicating a high level of pip promoter expression in planta 

(Figure 3 - Appendix).

3.3,3 OryR negatively regulates its own expression in a rice independent 

manner

In order to determine whether OryR was able to regulate its own activity, P- 

glucuronidase assay was performed in PYS rich medium on Xoo XKK.12 and on oryR

oryR promoter
1000

8000)
(A
CO
!EE 600
2 4003O
3
01
ca

200

PYS PYS - Rice - Rice - Medium Infected - Rice
Medium Medium

□ wild-type □ OryR mutant

Figure 4; oryR promoter activity measured in Xoo XKK.12(pORY122) and in the oryR mutant 
Xoo XKK.120RY (pORY122) in presence and in the absence of macerated rice in the growth 
medium. ‘PYS’ refers to a rich medium (see text for details); ‘PYS-Rice-Medium’ refers to PYS in 
the presence of macerated rice; ‘Rice-Medium’ refers to macerated rice in distilled sterile water; 
‘Infected-Rice-Medium’ refers to rice which was infected with Xoo for 10 days prior to 
maceration. The results are expressed as means ± STDEV, n=3. *, p< 0,002; §, p< 0,012; #, p< 
0 ,0 0 2 ; f ,  p< 0 ,001 , compared to the parental strain.

mutant derivative XKK.120RY containing the pORY122 plasmid which is a 

transcriptional fusion of the oryR promoter with the promoterless uidA encoding the
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p-glucuronidase gene. In the Xoo oryR mutant, the expression from the oryR promoter 

was two-fold higher when compared to levels obtained in the wild type Xoo strain, 

showing that OryR was acting as a negative autoregulator. The promoter activity 

profile was similar with or without the presence of macerated rice in the medium 

(Figure 4), indicating that OryR was able to negatively regulate its own expression 

and thus act as a transcriptional regulator also in the absence of the RSM.

3.3.4 1,4-P-celIobiosidase expression is OryR-dependent

1,4-p-cellobiosidase (CbsA) catalyses the hydrolysis of 1,4-p-D-glucosidic linkages in 

cellulose, releasing cellobiose from the non-reducing ends of the chains. This 

hydrolytic enzyme was identified as one of the Xoo secreted proteins involved in 

virulence as the ability to cause lesions in rice by Xoo cbs mutants was reduced (Jha et 

a l, 2007). Our previous studies showed that maximal production of the secreted CbsA 

from Aoo KACC10331 wild-type strain occurred when macerated rice was present in 

the culture medium in the presence of a functional oryR gene (Ferluga et a l, 2007).

To verify whether OryR was regulating the expression of cbs A, we performed the p- 

glucuronidase assays on Xoo XKK.12 and on XKK.120RY containing the pCBS122 

plasmid, where the cbs promoter was cloned upstream of the promoterless uidA gene. 

Interestingly, the cbs promoter activity in wild type Xoo XKK.12 in rich PYS medium 

was approximately 50% reduced when macerated rice was added to the medium, 

however no p-glucuronidase expression was observed in the oryR mutant Xoo 

XKK.120RY (pPCBS 122)(Figure 5).
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Figure 5: cbs promoter activity measured in Xoo XKK.12(pCBS122) in different growth media. 
‘PYS’ refers to a rich medium (see text for details); ‘PYS-Rice-Medium’ refers to PYS in the 
presence of macerated rice; ‘Rice-Medium’ refers to macerated rice in distilled sterile water; 
‘Infected-Rice-Medium’ refers to rice which was infected with Xoo for 10 days prior to 
maceration. The results are expressed as means ± STDEV, n=3. *, p< 6  x 10"5; §, p< 0,002; #, p< 2 
x 10-4; f ,  p< 3 x 10"4, compared to the parental strain.

This result indicated that OryR regulated cbs expression and hence 1,4-beta- 

cellobiosidase (CbsA) production independent of the RSM molecule. The reduction of 

cbs promoter activity in the presence of maceratedjrice was surprising since the Cbs 

protein is most abundant when Xoo is grown in the presence of macerated rice 

(Ferluga et al., 2007). It cannot therefore be excluded that cbs/Cbs expression 

undergoes post-transcriptional regulation.

3.3.5 OryR does not regulate production of DSF: the quorum sensing signal 

molecule produced by Xoo

QS has been reported in Xanthomonas campestris pv. campestris to occur via a

signaling molecule designated DSF (diffusible signal molecule) (Barber et a l, 1997;

Slater et a l, 2000). DSF has been characterized as c^s-ll-methyl-2 -dodecenoic acid

which is synthesized by the rpfF gene; DSF signaling is involved in the regulation of
82
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biofilm dispersal and production of virulence factors (Barber et al., 1997; Dow et al., 

2003). A two-component regulatory system designated RpfC/RpfG is involved in the 

perception and transduction of the DSF signal to target genes (He et al., 2006). Since 

Xoo also contains the rp f cluster in the genome and produces DSF (Chatteijee and 

Sonti, 2002), it was of interest to determine if OryR was involved and interconnected 

with DSF production in Xoo. Using a previously described DSF sensor strain (Barber 

et al., 1997), we established DSF production in Xoo XKK.12 and Xoo XKK.120RY 

testing protease and endoglucanase activity as described in the Materials and Methods 

section. DSF levels were comparable in the wild-type and oryR mutant derivative 

demonstrating that OryR was not involved in the regulation of QS via DSF production 

(Figure 4 - Appendix). To further confirm that OryR was not involved in DSF 

production, the rpfF promoter controlling the DSF biosynthesis gene was cloned in 

pSS122 upstream of the promoterless uidA, generating pRPFF122. p-glucuronidase 

assays were then performed on XKK.12(pRPFF122) and Xoo XKK.120RY 

(pRPFF122) cells. No differences in activity were observed in all growth conditions 

tested further confirming that OryR does not regulate DSF production (data not 

shown).

We were interested to also determine whether DSF production in Xoo was influenced 

by the presence of macerated rice in the growth media. Extraction of DSF from Xoo 

XKK.12 and Xoo XKK.120RY grown in PYS rich medium, in macerated rice 

medium and in infected macerated rice medium established that there were no 

differences in DSF production in XKK.12 compared to Xoo XKK.120RY in all

83



CHAPTER 3 Results

growth conditions tested (Figure 4 - Appendix), meaning that probably DSF 

production does not alter in planta.

3.3.6 RSM is a small molecule probably unrelated to AHLs

Previous studies of OryR solubility have shown that the RSM which was able to bind 

OryR was probably not an A-acyl-homoserine lactone type molecule (AHL) (Ferluga 

et al., 2007). This evidence was based on the fact that structurally different AHLs 

could not solubilize OryR. To further confirm this data we analysed the OryR target 

pip promoter activity when adding structurally different AHLs (C4-, C6-, Cg-, C10-, 

C12-, C6 ,3oxo-, C8-3oxo-, Cio-3oxo-, Ci2 -3 oxo-, C6-30H-, C8-30H-, Cio-30H- and 

Ci2-30H-AHL) to the culture medium to a final concentration of 2 pM each in 

independent experiments.
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Figure 6 : ^-Glucuronidase pip promoter activity measured in Xoo XKK.12 (pPBP122) in the 
presence of a mixture of structurally different AHLs. ‘PYS’ refers to a rich medium (see text for 
details); ‘Infected Rice’ refers to rice which was infected with Xoo for 10 days prior to 
maceration; ‘PYS-AHLs’ refer to a rich medium containing 2 pM each of the 15 most structurally 
common AHLs; ‘Infected Rice-AHLs’ refers to rice which was infected with Xoo for 10 days prior 
to maceration containing 2 pM each of the 15 most structurally common AHLs. No pip promoter 
activation and no binding competition was observed in the presence of AHLs. The results are 
expressed as means ± STDEV, n=3. Statistical analysis, performed comparing “PYS” values with 
“PYS-AHLs” values and comparing “Infected rice” values with “Infected Rice-AHLs” values, 
resulted not to be statistically significant (p> 0,05).
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No pip gene promoter induction was observed and no competition for the OryR 

binding site, since the p-glucuronidase production of Xoo XKK.12 (pPIP122) cells by 

RSM was not reduced in the presence of any of the structurally different AHLs 

(Figure 6 ).

To verify that the RSM was a small molecule, media containing the RSM were 

fractionated according to molecular size by progressive filtrations (see Materials and 

Methods).
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Figure 7: pip promoter activity measured in Xoo XKK.12(pPIP122) in rich medium, in the 
presence of macerated rice or in different fractions of filtered infected macerated rice medium. 
‘PYS’ refers to Xoo (pPIP122) grown in rich medium (see text for details); ‘Infected-Rice- 
Medium’ refers to Xoo (pPIP122) grown in rice which was infected with Xoo for 10 days prior to 
maceration; < 1 kDa refers to Xoo (pPIP122) grown in the presence of a filtrate from macerated 
rice excluding all molecules larger than lkDa; 1-3 kDa refers to Xoo (pPIP122) grown in the 
presence of a filtrate form macerated rice including molecules within this size range; 3-10 kDa 1-3 
kDa refers to Xoo (pPIP122) grown in the presence of a filtrate from macerated rice including 
molecules within this size range; >10 kDa refers to Xoo (pPIP122) grown in the presence of a 
filtrate from macerated rice including molecules larger than lOkDa. Promoter activity through p- 
Glucuronidase activity was only detected in the medium containing the <lKDa fraction indicating 
that RSM is a molecule smaller than lKDa. The results are expressed as means ± STDEV, n=3. §, 
p< 1,5 x 10'5 compared to “PYS” value; #, p< 2 x 10-4 compared to “PYS” value. Statistical 
analysis of “1-3 KDa”, 3-10 KDa” and “ >10 KDa” values, compared to “PYS” value, resulted not 
to be statistically significant (p> 0,05).

PYS Infected - < 1 KDa 1-3 KDa 3-10 KDa >10 KDa
Rice - 

Medium
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The p-glucuronidase assay of Xoo XKK.12 (pPIP122) was then performed on the four 

fractions obtained and it was clearly established that strong pip promoter activation 

occurred only in the fraction <1 KDa, clearly indicating the RSM was a small 

molecule (Figure 7).

3.3.7 RSM does not act as an AHL QS mimic

Several studies have reported that plants contain molecules able to activate bacterial 

AHL QS systems, however their structure is currently unknown (Bauer and 

Mathesius, 2004). To study whether RSM could act as an AHL mimic, activating a 

quorum sensing LuxR-family protein, A. tumefaciens NTl(pZLQR) was used as an 

AHL biosensor strain for its ability to recognize a broad range of different AHL 

molecules (Cha et ah, 1998). In the presence of an active AHL molecule, TraR 

activates the transcription of the P-galactosidase reporter gene present in the pZLQR 

plasmid. A. tumefaciens NT1 (pZLQR) was grown in the presence of the <1 KDa 

fraction containing the active RSM as described above. As a positive control a mix of 

different AHL molecules was added to the culture medium whereas medium alone 

was assayed as negative control. As expected p-galactosidase activity was detected in 

the presence of AHLs while no background activity was found in the medium alone. 

A very slight increase in p-galactosidase activity was measured in the presence of 

macerated rice (Figure 8 ). This increase in activity, even if was not so evident, 

appears to be statistically significant. So, we cannot exclude that this fraction from the 

rice plant contained molecules able to weakly activate AHL QS systems.
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Figure 8: P-Galactosidase activity measured in the A. tumefaciens NTl(pZLQR) AHL biosensor 
grown in the presence of the <lKDa fraction obtained from macerated, infected rice. Growth 
medium in the presence and absence of AHLs were used as positive and negative controls 
respectively. The results are expressed as means ± STDEV, n=3. §, p< 0,004 compared to “NT1” 
value; #, p< 2,5 x 10"s compared to “NT1” value.

3.4 DISCUSSION

In this study we demonstrated that the LuxR-family OryR regulatory protein present

in Xoo is responding to a small rice signal molecule (RSM). OryR displays the typical

modular structure of quorum sensing LuxR-family response-regulator proteins; it

contains at the N-terminus an AHL binding domain and a helix-tum-helix DNA

binding domain at the C-terminus. The primary structure of OryR however, just like

XccR of Xanthomonas campestris pv. campestris, does not display sequence

similarity in the AHL-binding domain in two highly conserved amino acids (Trp57

and Tyr61) which structural analysis in TraR of Agrobacterium tumefaciens have

shown to be involved in AHL binding (Zhang et al., 2002). Trp57 forms a hydrogen

bond with the keto group of AHL whereas Tyr61 is part of the p-sheet surface, (the

AHL-binding domain consists of an a/p/a ‘sandwich’) important for interactions with

the fatty acyl chain of the AHL. This lack of conservation in these two important
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amino acids might have evolved allowing OryR to bind to a structurally different 

molecule present in the rice plant and allowing this protein to be involved in inter­

kingdom signalling. Very recently Zhang et al. (2007) have carefully investigated the 

presence of OryR and XccR-like proteins of Xoo and Xcc respectively in other 

bacterial species and have importantly determined that related proteins form a distinct 

group comprising proteins, for example, from Pseudomonas syringae, P. fluorescens 

and Rhizobium leguminosarum. All the bacterial species possessing an OryR related 

protein live in close association with plants, thus it is reasonable to postulate that they 

might be interacting with similar plant-derived signal molecules.

This work has shown that the RSM is present in the collected xylem sap. Experiments 

have shown that highest levels of OryR solubility were obtained by providing to the 

growth media xylem sap from 10-day old Xoo infected plants. In addition OryR 

promoter activation of the pip target gene was highest when adding macerated Xoo 

infected rice to the growth media, resulting in a 10-fold activation compared to 5-fold 

when adding un-infected macerated rice. These results indicate that the RSM is most 

likely present in higher concentrations in rice when it is infected by Xoo, possibly via 

a defence response to the infection. In fact plants synthesize an extremely large set of 

low molecular weight secondary metabolites in response to pathogen attack (Dixon, 

2001) and it is therefore possible that the RSM interacting with OryR is one of these 

molecules. Since salicylic acid is known to be an important signalling molecule 

involved in microbial defence, we tested whether 5 pM of salicylic acid added to the 

growth medium could induce OryR activity of the pip gene promoter; no induction 

was observed (data not shown) hence it was concluded that it does not bind OryR.
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Due to the very numerous low molecular weight secondary metabolites produced by 

plants, some are at very low concentrations, it will be a major challenge identifying 

the molecule(s) interacting with the OryR subfamily of LuxR family regulators. 

Probably the RSM is not related to AHLs since competition experiments with AHLs 

and RSM did not alter the ability of OryR to activate the pip promoter, in addition no 

AHL was able to solubilize OryR.

In this study we report three target promoters of OryR. Firstly, the pip gene target is 

located adjacent to the oryR gene and the pip promoter contains a very well conserved 

lux box. The oryR/pip locus with a lux box is very well conserved among plant 

associated bacteria which possess an oryR-like gene (Zhang et al., 2007). The lux box 

in the pip promoter of Xcc has been shown to be functional and regulated by XccR in 

planta (Zhang et a l, 2007). The pip promoter in Xoo is tightly positively regulated by 

OryR in response to the RSM and due to the very high conservation with the xccR/pip 

locus of Xcc it is most likely that the lux box is functional and that OryR once bound 

to the RSM then binds to the lux box and directly activates transcription of the pip 

gene. The PIP enzyme was shown to be a virulence factor in Xcc. We did not 

determine if it was so also for Xoo. However, due to the high identity of the two loci 

and because both Xoo and Xcc are vascular pathogens, it is probable that PIP in Xoo is 

also associated with virulence. Secondly, OryR negatively regulated its own 

transcription since the oryR promoter displayed a 2-fold increase in activity in the 

oryR mutant; importantly this increase was independent of the presence of rice extract 

indicating that OryR can probably also influence transcription in the absence of the 

RSM. It is not known whether this OryR autoregulation is direct or indirect. We could



CHAPTER 3 Discussion

not detect a clear lux box in the oryR promoter. However this does not exclude the 

possibility of OryR direct regulation since lux boxes can have several sequence 

variations. Thirdly, OryR regulated the expression of the 1,4-p-cellobiosidase cbsA 

gene which encodes a secreted hydrolytic enzyme involved in Xoo virulence (Jha et 

al, 2007). Our previous studies showed that, in Xoo oryR mutants, there was 

significantly less CbsA in the extracellular medium (Ferluga et a l, 2007). The cbs 

promoter displayed strong promoter activity in rich medium which was dependent on 

OryR since in the Xoo oryR mutant the promoter activity decreased very significantly; 

the reason for this is currently unknown. The cbs promoter activity decreased in the 

wild type strain by approximately 50% when macerated rice was added to the 

medium. The cbs promoter was therefore positively regulated by OryR but unlike the 

pip promoter, in a rice-independent way; again we cannot exclude that OryR regulates 

the cbs promoter indirectly as we cannot detect a clear lux box in its promoter region. 

The three OryR promoter targets we report here are therefore regulated differently 

indicating that OryR can probably function with, and without, the RSM and act as a 

positive as well as a negative transcriptional regulator.

Quorum sensing in Xanthomonas has been associated with the DSF signalling 

molecule thus we were interested to determine whether OryR and DSF signalling 

were interconnected. We established that OryR was not involved in DSF production 

since the Xoo oryR mutant was not altered in DSF synthesis and rpfF promoter 

activity. Furthermore, we determined that DSF quantities did not change in the 

presence of macerated rice. We cannot exclude the possibility that DSF can regulate 

oryRlOryR levels. However, a recent genome scale analysis in Xcc revealed
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that DSF QS is not involved in the regulation of xccR (He et a l, 2006). It is therefore 

reasonable to assume that probably also in Xoo, DSF signalling is not regulating oryR. 

DSF cell-cell communication and OryR-RSM regulation are therefore acting 

independently and are not interconnected; it cannot be excluded however that the two 

systems might have overlapping regulons. Experiments reported here have also shown 

that the RSM is very small and does not interfere and/or act as an agonist in AHL QS 

systems. This suggest that this member of the LuxR-family, regardless of the 

conservation with AHL QS members does not bind AHLs, but an unknown RSM and 

is involved in inter-kingdom signalling.

3.5 EXPERIMENTAL PROCEDURES

3.5.1 Bacterial strains, media and growth conditions

Xanthomonas oryzae pv. oryzae strain XKK.12 was grown at 28 °C in PYS liquid 

medium (Ferluga et a l, 2007), PS (Tsuchiya et a l, 1982) solid medium and M9 

minimal medium (Sambrook et a l, 1989) with the addition of casamino acids. 

Escherichia coli DH5a (Sambrook et a l, 1989) was grown at 37°C in Luria-Bertani 

(LB) medium (Miller, 1972), A. tumefaciens NT 1 (pZLQR) was grown at 28 °C in AB 

minimal medium (Cha et a l, 1998). Rice medium and infected rice medium were 

prepared by macerating healthy and infected rice plants (cv. Baldo) respectively 

(2,5% w/v), frozen in liquid nitrogen, the powder obtained was added to water, 

autoclaved for sterilization and filtered (Millipore) to remove rice tissue (Ferluga et 

al, 2007). PYS-Rice was obtained by adding uninfected rice powder to PYS. When 

necessary, antibiotics were added at the following concentrations: ampicillin
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(100 pg/ml), kanamycin (50 pg/ml) and gentamicin (30 pg/ml). Infected rice medium 

was fractionated by ultrafiltration using YM10, YM3 and YM1 membranes (Amicon 

Inc.)* AHLs were acquired from the laboratory of Professor Paul Williams (University 

of Nottingham, UK).

3.5.2 Recombinant DNA techniques

DNA manipulations, including digestion with restriction enzymes, agarose gel 

electrophoresis, purification of DNA fragments, ligation with T4 ligase and 

transformation of E. coli, were performed as described previously (Sambrook et al., 

1989).

Table 1: Xanthomonas oryzae pv. oryzae strains, plasmids and oligonucleotides used in this study.

Strains, plasmids and 
oligonucleotides Characteristics or sequence Reference or source

Strains
Xoo strain XKK.12 Wild type strain (Ferluga eta i, 2007)
Xoo XKK. 120RYR Xoo strain XKK.12 -  OryR mutant (Ferluga et al., 2007)
A. tumefaciens NTL4(pZLQR) Indicator strain for AHLs detection (Cha etai, 1998)

Plasmids
pMOSBIue Cloning vector, Ampr Amersham-Pharmacia
pSS122 Promoter probe vector, IncW, Apr-Gmr This study
pORY122 oryR promoter cloned HindW.Smal in pSS122 This study
pPIP122 pip promoter cloned HindHlPstt in pSS122 This study
pCBS122 cbs promoter cloned Hindl\\.Sal\ in pSS122 This study
pRPFF122 rpfF promoter cloned Psfl.Sa/l in pSS122 This study

Oligonucleotides
UIDAS 5’- CCGGTACCTTGACCAGTATTAT -3’ This study
UIDAR 5’- CAGAATTCTCATTGTTTGCCTC -3’ This study
ORYPRS 5’- ATAAGCTTAGACGCCGCCGAAG -3’ This study
ORYPRR 5’- ATCCCGGGTAGACCAACGACTG -3’ This study
PIPPRS 5 - TTAAGCTTCGCGTGATGCGCTTG -3’ This study
PIPPRR 5’- TTCTGCAGTGGCCGCCAGATCCT -3’ This study
CBSPRS 5’- TTAAGCTTGCGTGTGGGCGTCAG -3’ This study
CBSPRR 5’- TTGTCGACCGCGCCTGTCAGCAA -3’ This study
RPFFPRS 5’- AAC TGC AGA TCG CCA CCA TGC -3’ This study
RPFFPRR 5*- CAG TCG ACC GTC GAA TTC TAT -3’ This study

Plasmids were purified using Jet star columns (Genomed GmbH, Lohne, Germany) or 

by he alkaline lysis method (Bimboim, 1983). Genomic DNA from Xoo was isolated
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by Sarkosyl-pronase lysis as previously described (Bimboim, 1983). Xoo promoters 

were amplified by PCR and cloned in pMOSBlue cloning vector (Amersham- 

Pharmacia). All DNA sequencing was performed by Macrogen (www.macrogen.com). 

Reporter plasmid pSS122 was transferred to Xoo cells by electroporation as previously 

described (do Amaral et a l , 2005).

3.5.3 pSS122 promoter-probe plasmid construction

Plasmid pSS122 (IncW replicon) was constructed from pUFR047 (De Feyter et al., 

1993), a stably maintained plasmid at low copy number in both E. coli and 

Xanthomonas. Reporter gene uidA was amplified from E. coli K12 genomic DNA by 

PCR using UIDAS and UIDAR primers and cloned Kpnl-EcoKl in pUFR047. The 

resulting plasmid, approximately 10.5 Kb in size, has unique restriction sites for 

Hindlll, Pstl, Sail, Smal and Kpnl. pSS122 retained ampicillin and gentamicin 

resistance genes but lost lacZ^ marker.

3.5.4 P-glucuronidase assay

Overnight cultures ofXoo-pSS122 reporter plasmid carrying different promoters were 

assayed for p-glucuronidase activity. Xoo cells were pelleted and resuspended in 600 

pi of GUS buffer (50 mM sodium phosphate (pH 7.0), 1 mM EDTA and 14.3 mM 2- 

mercaptoethanol). 23 pi of both TRITON X-100 3% in GUS buffer and sodium 

lauryl- sarcosinate 3% in GUS buffer were added to the samples and placed at 30°C 

for 10 minutes. 100 pi of /?-nitrophenyl-p-D-glucuronic acid (PNPG) (Sigma) 25 mM 

were added. The reaction was stopped by adding 280 pi of 1M Na2 C0 3  solution after
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sufficient yellow colour had developed. Both OD5 9 5 of Xoo cultures and OD4 1 5  pnpg of 

the samples were measured and Miller Units (M.U.) of p-glucuronidase activity were 

determined as follows: 1 M.U.= 1000 x {[OD4 1 5  pnpg -  (1,75 x OD5 9 5  pnpg)] / (t x v x 

OD5 9 5)}, where t is the time of the reaction in minutes, v is the volume of the culture 

assayed in millilitres, OD5 9 5 is the cell density just before the assay, OD4 1 5  pnpg is the 

measure of the yellow colour developed after the p-glucuronidase reaction, and 1,75 is 

the correction factor. All measurements were done at least in triplicate.

5.5.5 Rice infection and xylem sap collection

Xoo XKK.12 was grown on PS plates (Tsuchiya et a l , 1982) at 28 °C and single 

colonies were transferred to liquid PYS medium (Ferluga et a l , 2007). One-day-old 

culture adjusted to 109 CFU/ml was used to inoculate 6  weeks-old rice plants (cultivar 

IR24) by the clipping method as previously described (Ferluga et a l, 2007). To 

collect xylem sap, infected plants were placed in humid chambers and the dried 

blighted part of the infected leaf was removed cutting approximately 2-3 cm below 

the lesion. Drops from the xylem were collected during the subsequent 8  hours and 

placed in sterile tubes.

3.5.6 OryR over-expression and Western blot analysis

E. coli M15-pQEORYR (Ferluga et a l, 2007) was grown in 10 ml of LB medium 

adding 20 pi of xylem sap collected from Xoo infected rice plants. OryR expression 

was induced with ImM of isopropyl-P-D-thiogalactoside at an OD6 0 0  of 0.6 and 

carried on for 1 h at 28°C. The culture was rapidly chilled on ice and soluble Hise-
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OryR was extracted under native conditions according to the supplier’s instructions 

(Qiagen). Proteins were transferred onto PVDF membrane (Immobilon-P; Millipore) 

using a tank system according to the manufacturer’s instruction. The membrane was 

subjected to Western blot analysis using 6 x-His monoclonal antibody (BD 

Biosciences, San Jose, CA, USA) and after incubation with the second HRP-labelled 

antibody the protein was detected with the 3 -3 ’ -diaminobenzidine (DAB) 

tetrahydrochloride (Sigma, St. Louis, Missouri,USA).

3.5.7 DSF measurements

DSF signalling regulates the production of protease and endoglucanase in Xcc (Barber 

et al., 1997). Protease activity of Xoo XKK.12 parental strain and Xoo XKK.120RY 

were assayed on skimmed milk plates as previously described (Barber et a l , 1997). 

Endoglucanase activity was visualized on CMC agar plates due to the ability of crude 

DSF extracts from Xoo to restore DSF production of Xcc indicator strain (rpfF 

mutant) (Barber et al., 1997). Xoo XKK.12 and Xoo XKK.120RY were grown in 

PYS rich medium, in macerated rice medium and in infected macerated rice medium. 

DSF was extracted from different culture volumes in order to normalize the number of 

cells of XKK.12 compared to Xoo XKK.120RY for each medium.

3.5.8 Statistical analysis

P values were calculated using the ANOVA one way test led by MS excel. P values 

<0,05 were considered to be statistically significant.
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The plant opportunistic pathogen 

Pseudomonas fuscovaginae contains a conserved 

quorum sensing system involved in virulence
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4.1 SUMMARY

Pseudomonas fuscovaginae is a fluorescent pseudomonad and an opportunistic plant 

pathogen of a wide variety of graminaceae, in particular it causes sheath rot in rice 

(Oryza sativa). This pathogen can cause severe problems especially in rice cultivation 

in highland fields 1200-1600 meters above sea level. In this study we have identified 

the iV-acyl homoserine lactone (AHL) quorum sensing (QS) system and characterized 

its role in plant pathogenicity. P. fuscovaginae isolates from various areas of the 

world possess a conserved QS system, designated Pfvl/R, responding to long chain- 

AHLs. This system displays significant similarity to the Lasl/R system of P. 

aeruginosa and the Ppul/R system of P. putida. The PfVI/R system is involved in 

plant associated virulence in two plant models, ie. in rice and in Chenopodium quinoa 

which has never been reported previously. In addition, the PfVI/R system is required 

for eliciting a non-host plant response. This is the first report of a molecular study of 

virulence in this important plant opportunistic pathogen.
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4.2 INTRODUCTION

Pseudomonas fuscovaginae is a Gram-negative fluorescent pseudomonad first 

identified and reported as a pathogen of rice (Oryza sativa) in Japan in 1976 

(Miyajima et al., 1983; Tanii et a l, 1976). Typical symptoms on mature rice plants 

are characterized by brown-black, water-soaked spots on the adaxial side of flag leaf 

sheath, with grain discoloration, poor spike emergence and sterility in severe cases 

(Duveiller et a l, 1989; Miyajima et a l, 1983; Zeigler and Alvarez, 1987). Symptoms 

on seedlings are limited to brown, water-soaked necrosis on the sheaths and can 

sometimes lead to death of the plant (Duveiller et a l, 1988; Rott and Notteghem, 

1989; Zeigler, 1990). P. fuscovaginae is widespread and has been isolated from 

diseased rice in Latin America (Duveiller, 1990; Zeigler and Alvarez, 1987), Asia 

(GuanLin, 2003; Miyajima et a l, 1983) and Africa (Rott and Notteghem, 1989) in 

tropical upland fields, between 1450 and 2100 meters above sea level (Duveiller et a l, 

1989). In fact, one distinctive feature is its ability to grow and colonize at high 

humidity and low temperatures, usually below 20 °C, even if the optimal growth 

temperature in the laboratory is 28°C (Miyajima et a l, 1983). P. fuscovaginae is now 

regarded as an opportunistic plant pathogen that causes bacterial brown sheath rot on 

several cereals including maize {Zea mays), sorghum {Sorghum bicolor) (Duveiller et 

al, 1989) and wheat {Triticum aestivum) (Duveiller, 1990). Importantly, P. 

fuscovaginae can be distinguished from other fluorescent pseudomonads by a 

combination of biochemical tests, serological techniques and pathogenicity tests 

(Duveiller et a l, 1988; Rott, 1991).
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The development of the disease and the progression of symptoms is believed to be 

associated with the production of several phytotoxins (Gross and Cody, 1985; Gross, 

1991); thus far, three different types of phytotoxic metabolites, syringotoxin, 

fuscopeptin A (FP-A) and fuscopeptin B (FP-B) (Flamand et al., 1996), were shown 

to be involved in generating the symptoms. Syringotoxin belongs to a group of 

antifungal metabolites known as lipodepsipeptides (LDPs) acting at the level of 

plasma membrane forming ion channels and consequently increasing membrane 

permeability (Batoko et al., 1998; Hutchison et al., 1995; Hutchison and Gross,

1997). FP-A and FP-B, equally characterized as LDPs (Ballio et a l, 1996), display 

similar toxic properties to syringotoxins and are structurally related to syringopeptins 

produced by pathogenic P. syringae pv. syringae strains (Ballio et a l, 1991). FP-A 

and FP-B have the same quantitative amino acid composition differing only for fatty 

acid moieties (Ballio et a l, 1996).

Despite the importance of P. fuscovaginae as an opportunistic pathogen on several 

plant hosts around the world, no molecular studies of virulence have thus far, to our 

knowledge, been reported. In this study we investigated the role of the quorum 

sensing gene regulatory system in sheath rot caused by P. fuscovaginae in rice. 

Quorum sensing (QS) is an intercellular communication system that couples bacterial 

cell density to gene expression via the production and detection of signal molecules 

(for reviews, see references: (Bassler, 1999; Fuqua et a l, 1994; Lazdunski et a l, 

2004; Swift et a l, 1994; Zhang and Dong, 2004). In Gram-negative bacteria, 7V-acyl 

homoserine lactones (AHL) signal molecules are most commonly used; they are 

produced by an AHL synthase which in most cases belongs to the Luxl-protein
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family. A transcriptional regulator belonging to the LuxR family then forms a 

complex with the cognate AHL at threshold (‘quorum’) concentration and affects the 

transcriptional status of target genes (Fuqua et a l , 2001). The luxl and luxR type 

genes are in most cases genetically linked and the system usually is under a positive 

feedback loop resulting in signal amplification at high cell density. QS-dependent 

regulation in bacteria is most often beneficial to a community of bacteria as for 

example is the case for biofilm formation, conjugation, bioluminescence, production 

of extracellular enzymes, virulence factors and pigment formation (Fuqua et a l, 2001; 

Whitehead et a l, 2001), as for example extracellular enzyme production in Erwinia 

carotovora, conjugation in Agrobacterium tumefaciens and toxin production in 

Burkholderia glumae (Kim et a l, 2004; Von Bodman et a l, 2003).

In this study we report the identification and characterization of the AHL QS system 

of the rice sheath rot pathogen P. fuscovaginae. We studied 15 P. fuscovaginae strains 

isolated from diseased rice from various parts of the world for their AHL production. 

The AHL QS system, designated PM/R, of two P. fuscovaginae strains has been 

isolated, characterized and found to be highly conserved also among all the other 13 

P. fuscovaginae strains tested. The PM/R system displayed high similarity to the 

Lasl/R and Ppul/R systems of Pseudomonas aeruginosa and Pseudomonas putida 

respectively (Bertani and Venturi, 2004; Venturi, 2006). AHL QS in P. fuscovaginae 

was shown to be important for sheath rot in rice and also in the convenient 

Chenopodium quinoa-P. fuscovaginae plant-virulence model which we report here. 

Finally, we also observed that the PM/R system of P. fuscovaginae was involved in
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the hypersensitive response in non-host plants. This is the first report of a molecular 

study of virulence in this important plant opportunistic pathogen.

4.3 RESULTS AND DISCUSSION

43.1 AHL QS is well conserved in P. fuscovaginae

In order to determine if P. fuscovaginae could synthesize AHLs, we analysed a 

collection of 15 different strains for AHLs production; all these strains were isolated 

from diseased Oryza sativa grown in very different geographical regions (Table 2). 

Thirteen of these strains are able to cause bacterial brown sheath rot on rice plant 

whereas the two Colombian strains (UPB0898 and LMG12428) appeared to cause 

leaf stripe (unpublished; Zeigler and Notteghem personal communication). The strains 

were initially tested for AHL production by a plate T-streak using biosensors CV026 

and FI 17 (pRKC12) as described in the Material and Methods section. CV026 is a 

specific sensor to detect short and medium acyl chain AHLs whereas FI 17(pRKC12) 

is sensitive to Ci2 -3 oxo- and Cio-3oxo-AHL (Steindler and Venturi, 2007). It was 

observed that only strains UPB0898 and LMG12428 were able to induce a strong 

activation of both biosensors on plates, probably indicating high levels of AHLs. We 

then decided to examine AHL production in all the 15 strains by purifying AHLs from 

culture supernatants and performing TLC analysis. Due to its capability to respond to 

a wide range of AHL molecules, A. tumefaciens NTL4 (pZLR4) was used as 

biosensor for this experiment (Figure 1).

Three strains, LMG5742, UPB0898, and LMG12428, displayed the same profile 

probably producing C6-3oxo-AHL, Cg-3oxo-AHL, Cio-3oxo-AHL, Ci2 -3 oxo-AHL.
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The other strains appeared to produce Cg-3oxo-AHL and Cio-3oxo-AHL since the 

retention factor (Rf) of these spots was similar to the Rf of synthetic AHLs.

OHC6 OC6

*

OC8 0 6
0HC8

C7

OC10 
OHC10 C8

0H C 12 0C 12  C10

________________________ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Figure 1: TLC analysis representing AHL production profile of the 15 P. fuscovaginae strains 
using A. tumefaciens NTL4 (pZLR4) as overlay biosensor. Synthetic AHLs were used to compare 
the retention factor (Rf) of the unknown AHLs produced by P. fuscovaginae (hydroxy substituted 
AHLs, first lane; oxo substituted AHLs, second lane; unsubstituted AHLs, third lane). 
Unsubstituted C4- and C^-AHL are not detectable and the asterisk marks an unknown active 
component (Shaw et a l , 1997). Numbers correspond to the following strains (see Table 1 and 
Table 2 for details): 1, LMG2158T; 2, LMG2192; 3, LMG5097; 4, LMG5742; 5, LMG12424; 6, 
LMG 12425; 7, UPB0266; 8, UPB0266b; 9, UPB0304; 10, UPB0305; 11, UPB0306; 12, UPB0306b; 
13, UPB0736; 14, UPB0898; 15, LMG12428.

It was concluded that all strains had a similar AHL production profile and that three 

strains produced considerably greater amounts of AHLs indicating that AHL QS is 

present and the system(s) might be conserved within the species.

4.3.2 Identification and characterization of the AHL QS systems of P. 

fuscovaginae LMG12428 and UPB0736

Following the observation that all the strains tested produced similar AHLs, it was of 

interest to identify and characterize the AHL QS system of P. fuscovaginae in two 

strains which were reported to display different symptoms in rice. In order to identify 

the AHL-QS locus in P. fuscovaginae LMG 12428, we constructed a cosmid library of 

this strain and then screened it by complementation in trans in CV026 AHL biosensor

106



CHAPTER 4 Results and discussion

as described in the Materials and Methods section. A cosmid clone able to restore 

purple pigmentation ofCV026 was isolated and shown to contain the typical luxl-

Table 1: Pseudomonas fuscovaginae strains, plasmids and oligonucleotides used in this study.

Strains, plasmids and 
oligonucleotides Characteristics or sequence Reference or 

source

Strains

P.fuscovaginae LMG 2158t Wild type strain LMG Collection
P.fuscovaginae LMG 2192 Wild type strain LMG Collection
P.fuscovaginae LMG 5097 Wild type strain LMG Collection
P.fuscovaginae LMG 5742 Wild type strain LMG Collection
P.fuscovaginae LMG 12424 Wild type strain LMG Collection
P.fuscovaginae LMG 12425 Wild type strain LMG Collection
P.fuscovaginae UPB 0266 Wild type strain H. Maraite
P.fuscovaginae UPB 0266 b Wild type strain H. Maraite
P.fuscovaginae UPB 0304 Wild type strain H. Maraite
P.fuscovaginae UPB 0305 Wild type strain H. Maraite
P.fuscovaginae UPB 0306 Wild type strain H. Maraite
P.fuscovaginae UPB 0306 b Wild type strain H. Maraite
P.fuscovaginae UPB 0736 Wild type strain H. Maraite
P.fuscovaginae UPB 0898 Wild type strain H. Maraite
P.fuscovaginae LMG 12428 Wild type strain LMG Collection
P.fuscovaginae 13R P.fuscovaginae strain UPB0736 - pfvR mutant This study

Plasmids

pBluescriptKS Cloning vector, Ampr 
Cloning vector, Ampr

Stratagene
pMOSBIue Amersham-Pharm.
pQE30 Expression vector, Ampr Qiagen
PRK2013 Kmr Tra+ Mob+ ColE1 replicon (Figurski, 1979)
pMP220 Promoter probe vector, IncPI, Tcr (Spaink, 1987)
pKNOCK-Km Suicide vector for gene knockout, Kmr (Alexeyev, 1999)
pLAFR3 Broad-host-range cloning vector IncPI, Tcr (Staskawicz 1987)
pSG100 pl_AFR3 cosmid containing the QS locus of LMG12428 This study
pSGIOOL QS locus of LMG12428 subcloned in pBluescriptKS This study
pSG120 QS locus of UPB0736 cloned in pBluescriptKS This study
pKNR13 p/vR-internal fragment of UPB0736 cloned in pKNOCK-Km This study
PQER13 pfvR of UPB0736 cloned in pQE30 This study
pQER15 pfvR of LMG12428 cloned in pQE30 This study
pMPI13 pfvl promoter of UPB0736 cloned in pMP220 This study
pMPI15 pfvl promoter of LMG12428 cloned in pMP220 This study

Oligonucleotides

PFVR15F 5'- GCGGATCCCTACTTATGGATGA -3’ This study
PFVR15R 5’- GAAAGCTTCTAGGGCGTCATGA -3’ This study
IPR15F 5 - CCGAATTCCTCAACCCGAACAT -3’ This study
IPR15R 5’- CATCTAGAGTCCTGCAGGATCA -3’ This study
PFVR13F 5’- TCGGATCCACCCTATGGTAA -3’ This study
PFVR13R 5’- GTAAGCTTTCAGGGCGTGATC -3’ This study
IPR13F 5’- TTGGTACCCGACCGCTGAGGTA -3’ This study
IPR13R 5’- GATCTAGATTCAGCGCTTGCGG -3’ This study
PK13RF 5 - ACTCTAGACTGATCGGTCTCAA -3’ This study
PK13RR 5’- AACTCGAGTGCTGCGCTCCACT -3’ This study
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luxR family genes; the AHL-QS system of P. fuscovaginae was designated as pfvIlR 

(Figure 2-A). The PfVI/R system displayed significant similarity to the Ppul/R and 

Lasl/R systems of P. putida and P. aeruginosa respectively (see below); these two 

systems produce and respond to Ci2 -3 oxo-AHL (Bertani and Venturi, 2004; Pearson 

et al., 1995; Pesci et a l, 1997).

Table 2: Geographical and biological origin of the 15 P. fuscovaginae strains used in this study 
and possible acyl homoserine lactone (AHL) molecules produced. The symbol (-) indicates no 
biosensor induction whereas the symbol (+) indicates the induction of the biosensor; the number 
of (+) refers to the intensity of the response.

Number Strain Geographic
origin Biological origin NTL-4 PKRC12 CV026

1 LMG 2158t Japan Oryza sativa OC10 + _

2 LMG 2192 Japan Oryza sativa OC10 + -
3 LMG 5097 Japan Oryza sativa OC10 + -
4 LMG 5742 Burundi Oryza sativa OC6-OC8-OC10-OC12 ++ +
5 LMG 12424 Philippines Oryza sativa OC8-OC10 + -
6 LMG 12425 Philippines Oryza sativa OC8-OC10 + -
7 UPB 0266 Burundi Oryza sativa - - -
8 UPB 0266 b Burundi Oryza sativa - - -
9 UPB 0304 Japan Oryza sativa OC8-OC10 + -
10 UPB 0305 Japan Oryza sativa OC8-OC10 + -
11 UPB 0306 Japan Oryza sativa OC8-OC10 + -
12 UPB 0306 b Japan Oryza sativa OC8-OC10 + -
13 UPB 0736 Madagascar Oryza sativa OC8-OC10 + -
14 UPB 0898 Colombia Oryza sativa OC6-OC8-OC10-OC12 +++ +++
15 LMG 12428 Colombia Oryza sativa OC6-OC8-OC10-OC12 +++ +++

In between the pjvl/R genes was located rsaL (Figure 2-A), which in P. aeruginosa 

and P. putida encodes a negative regulator that was shown to negatively regulate the 

AHL synthase gene (de Kievit et a l, 1999; Rampioni et a l, 2006). In order to identify 

the AHL-QS locus in P. fuscovaginae UPB0736, the pfvl gene of strain LMG12428 

was used as a probe and a plasmid clone, designated pSG120, was identified 

containing the pfvI/R system of strain UPB0736 as described in the Materials and 

Methods. The AHL QS system of strain UPB0736 was similar to the one of strain 

LMG12428 having the genespfvR-rsaL-pfvI arranged in a similar way (Figure 2-A).
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The two pfvl genes (546 bp- pfvl LMG12428 and 543 bp- pfvl UPB0736) encoded 

two proteins of 181 and 180 amino acids long respectively, having an identity of 

47.2% (similarity 57.3%).

A
2600980 984 1214 1353 1895264

pfvR rsaL pfvl
UPB 0736

ACCTCCCAA^yAGGTAGGA

2600289 1008 1233 1415 1960

pfvR rsaL pfvl
LMG 12428

260 bpACCTATC^GAT^GATAGGC

B
ffljATCAGAT-TGAT GC pfvl P. fuscovaginae LMG12428

fficCCAAATTAGGTj GA pfvl P. fuscovaginae UPB0736

fficCCAAATTAGGT GA ppul P. putida WCS358

WGCCAGTTCTGGq GT Iasi P. aemginosa PAOl

ffiACCAGATCTGGC GT rhll P. aemginosa PAOl

MGTAAGAGTT AC C TT cepl B. cepacia K56-2

WGTCAATCCTGAC TT soli R. solanacearum AW1

S g t a g g a t c g t a c GT luxl V. fischeri

a C C T g  c C A g A t  c t  Gg  c A G g  T lux-box consensus

Figure 2; (A) Quorum sensing locus gene organization in P.fuscovaginae strain UPB0736 and 
strain LMG12428. For both strains a putative lux-box was identified in the p fv l promoter region. 
(B) Alignment of the putative /wx-boxes of P. fuscovaginae strain UPB0736 and strain LMG12428 
with other known lux boxes and with the lux-box consensus sequence. The most conserved 
nucleotides are shown in bold.

PM-LMG12428 was shown to be 54% identical to Ppul of P. putida and 47.8% 

identical to LasI of P. aeruginosa whereas PfVI-UPB 0736 was 81.7% identical to 

Ppul and 47.3% identical to LasI. The two PfVR proteins (encoded by 720 bp -pfvR 

LMG12428 and by 717 bp-pfvR UPB0736) were 43.8% identical and 58.3% similar
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and both displayed high identity to PpuR of P.putida strains and to LasR of 

P.aeruginosa. Interestingly, PfvR-UPB0736 was 99.2% identical to PpuR (PfvR- 

LMG12428 identity was 43.2%) and 42.7% identical to LasR (pfvR-LMG12428 

identity was 40.6%).

The RsaL-LMG12428 and RsaL-UPB0736 display an identity of 33.7% (48.8% 

similarity) however RsaL-UPB0736 was 100% identical to RsaL of P. putida (RsaL- 

LMG12428 was 33.7% identical) whereas was only 36.2% identical to the RsaL of P. 

aeruginosa strain (RsaL-LMG12428 was 27.3% identical). This data suggested that 

AHL-QS in P. fuscovaginae was more closely related to AHL-QS of P. putida than to 

AHL-QS of P. aeruginosa, especially for strain UPB0736, in which not only PfVR 

and RsaL proteins were identical but also the intergenic DNA region of the AHL QS 

genes was absolutely conserved. In the pfvl promoter regions of strain LMG12428 

and strain UPB0736, putative lux-boxes, probably important for the binding and 

regulation of PfVR, were found (Figure2-A). The putative lux-box of P. fuscovaginae 

UPB0736 was identical to the mapped and experimentally shown lux-box of P. putida 

WCS358 (Rampioni et a l, 2006), whereas the lux-box of P. fuscovaginae LMG12428 

also displayed very high identity but contained a deletion of a single nucleotide 

(Figure 2-B).

4.3.3 The PfvI/R AHL QS system is very well conserved in P. fuscovaginae

In order to determine the conservation of the PfVI/R AHL QS system among P.

fuscovaginae strains, a Southern blot analysis was performed on the chromosomal

DNA of the 15 isolates reported in Table 2, using the pfvl gene of P. fuscovaginae

strain LMG12428 as probe. The experiment was performed at high hybridization
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stringency conditions giving a strong positive hybridization signal with 13 of the 15 

isolates (Figure 3).

.......

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Figure 3: Southern blot analysis using p fv l  DNA of strain LMG12428 as a probe against H indi- 
digested chromosomal DNA from 15 P. Juscovaginae strains. Numbers correspond to the 
following strains (see Table 1 and Table 2 for details): 1, LMG2158T; 2, LMG2192; 3, LMG5097; 
4, LMG5742; 5, LMG12424; 6, LMG12425; 7, UPB0266; 8, UPB0266b; 9, UPB0304; 10, 
UPB0305; 11, UPB0306; 12, UPB0306b; 13, UPB0736; 14, UPB0898; 15, LMG12428.

This data together, with similar TLC AHL producing profiles (see above), indicated 

that most P. fuscovaginae strains, if not all, isolated from geographically distant parts 

of the world, possess the Pfvl/R system, suggesting that this AHL QS system was a 

feature of this species and thus it might play a central regulatory role.

4.3.4 Studies on PfvR-AHL specificity

LuxR family QS proteins bind the cognate AHL molecule(s) with high affinity most 

commonly resulting in the formation of homomultimers, resistant to proteases, and so 

becoming active regulatory molecules affecting transcription of target genes (Chai and 

Winans, 2004; Collins et a l, 2005; Schuster et a l, 2004; Urbanowski et a l, 2004; 

Zhu and Winans, 2001). To characterize PfvR AHL specificity, the protein was over­

expressed in E.coli M l5 in the presence of different AHL molecules and cognate pjvl 

promoter activities were then determined. Both gene promoters pjvl-UPB0736 and 

/?/v/-LMG12428 were therefore cloned in the broad-host-range, low-copy-number 0- 

galactosidase promoter probe vector pMP220 (Spaink et a l, 1987), yielding pMPI-13
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and pMPI-15 vectors respectively and introduced into E. coli M l5 expressing the 

cognate PfvR protein, generating E. coli M15 (pQER13)(pMPI-13) and E. coli M15 

(pQER15)(pMPI15). The activity of the /?/v/-UPB0736 promoter increased fourfold in 

the presence of Cio-3oxo-AHL and Ci2 -3 oxo-AHL and about threefold in the presence 

of C8-3oxo-AHL, C12-AHL, C10-AHL, Ci2-30H-AHL and Ci0-3OH-AHL, 

demonstrating a preference for long-chain AHLs (Figure 4). The same activity profile 

was observed for the pjvI-YMG12428 promoter, showing an increase of ten-times in 

the presence of Cio-3oxo-AHL and Ci2 -3 oxo-AHL and an increase of about six/seven 

times in the presence of Cs-3oxo-AHL, C12-AHL, C10-AHL, Ci2-30H-AHL and C1 0- 

3OH-AHL (Figure 4).

fc H \h
f  & & * & #  #  o^vvv^vv0.

I % UPB0736 □ % LMG12428

Figure 4: p fv l  promoter activity of P. fuscovaginae strain UPB0736 and strain LMG12428 in the 
presence of different AHL molecules. The assay was performed in triplicate in E. coli M15 over­
expressing pfvR  (see text for details). PfvR in both strains responds best to C12-3oxo-AHL and 
C10-3oxo-AHL, showing however a relaxed specificity being able to respond also to C12-AHL, Q o -  
AHL, C8- 3oxo-AHL, Ci2- 30H-AHL and Ci0- 30H-AHL. The results are expressed as means ± 
STDEV, n=3. Statistically significant differences (p<0,05) were analysed: A, p< 0,02; B, p<l,5 x 
10"4; C, p<4 x 10*4; D, p<0,001; E, p<0,001; F, p<0,004; G, p<6 x 10*4; H, p<l^ x 10 4; I, p<2,64 x 
10'5; L, p<4,85 x 10‘6; M, p<0,002; N, p<0,007; O, p<10‘4; P, p<0,001, compared to the control 
without AHLs.
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Interestingly, it was therefore concluded that PfvR had relaxed specificity towards 

AHLs being able to respond very well to two AHLs and reasonably well to a set of 

five other long-chain AHLs. This is in contrast to what has been reported for the 

similar PpuR and LasR proteins which were found more specific and responded well 

only to C12-3 oxo-AHL .

4.3.5 PfvR is involved in P. fuscovaginae pathogenicity in planta

To examine whether AHL-QS in P. fuscovaginae was involved in pathogenicity and 

in disease development, P. fuscovaginae UBB0736 parental strain and P. 

fuscovaginae 13R (pfvR knock-out mutant) were inoculated on Chenopodium quinoa 

and Oryza sativa host plants and disease development was evaluated.

Figure 5 : Severity scale used to evaluate disease caused by P. fuscovaginae infection on 
Chenopodium quinoa: 0, no symptoms; 1, necrosis on less than 2 mm around the puncture; 2, 
necrosis from 2 to 10 mm around the puncture; 3, necrosis from 2 to 10 mm around the puncture 
and bending of the petiole; 4, collapse of the petiole and 5, wilting of the leaf.
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Here we report for the first time the use of C. quinoa as a plant model to assess P. 

fuscovaginae virulence (Figure 5 and Materials and Methods). Five days after 

infection (see Materials and Methods for details) disease development on C. quinoa 

and rice was evaluated with a 0-5 disease severity index as depicted in Figures 5 and 

6 .

Figure 6 : Severity scale used to evaluate disease caused by P. fuscovaginae infection on Oryza 
sativa: 0, no symptoms; 1, necrosis around the puncture till 1 cm; 2, necrosis around the puncture 
and chlorosis 1 to 3 cm on the new leaf; 3, necrosis around the puncture and chlorosis till 5 cm on 
the new leaf; 4, necrosis around the puncture and chlorosis for the two third of the new leaf and 
5, necrosis around the puncture and chlorosis of all the new leaf.

P. fuscovaginae UBB0736 parental strain was very pathogenic on both C. quinoa and

rice plants whereas P. fuscovaginae 13R was attenuated in virulence in both plants

showing less severe disease index, as we can see from the results of the statistical

analysis. The Kruskall-Wallis test for the C. quinoa gave a high score for the %2 test

(20.828) and a very low score for the variance (p<0.0001); the Mann-Whitney test
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showed a low score for the variance (pO.OOOl). For the rice infection the results are 

almost the same: x2=l 5.436 and pO.OOOl for the Kruskall-Wallis test and p=0.005 

for the Mann-Whitney test.
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Figure 7: P. fuscovaginae UPB0736 parental strain and P. fuscovaginae 13R (pfvR mutant) 
pathogenicity assay performed on Chenopodium quinoa (A) and Oryzja sativa (B). Disease was 
evaluated in agreement with a 0-5 severity scale (Figures 5-6). See text for statistical analysis 
details.
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The ability to cause disease symptoms was only partially restored when P. 

fuscovaginae 13R was complemented in trans with pMP122 harbouring the pfvR gene 

because the plasmid was found to be highly unstable without antibiotic selection: just 

1 % of the cells recovered from infected plant tissue held the plasmid (data not 

shown). It is therefore evident that a functional AHL QS was essential for optimal P. 

fuscovaginae virulence on host plants suggesting that it is involved in the regulation 

of virulence associated factors. It is believed that symptoms of sheath brown rot 

caused by P. fuscovaginae are caused by the phytotoxins prior to extensive 

colonization. It is possible therefore that QS is involved in part in the regulation of 

expression of the phytotoxin structural genes; the role that QS might play in 

progressive plant colonization is currently unknown.

4.3.6 The P. fuscovaginae pfvR mutant is unable to cause HR on tobacco

It was previously reported that P. fuscovaginae is able to elicit a plant defence 

response in non-host plants (also known as the hypersensitive response or HR) like 

tobacco (Duveiller et al., 1988). We therefore tested the ability of P. fuscovaginae 

UPB0736 parental strain to cause HR on tobacco (Nicotiana tabacum) leaves by 

infiltrating leaf mesophyll with bacterial suspensions (108 CFU m l/1). It was 

determined that browning and tissue collapse was detectable at the injection sites 

indicating the development of a clear HR (Figure 8 ).

The quorum sensing mutant P. fuscovaginae 13R was also tested in order to establish

the involvement of QS during this process. No detectable changes, just like the

control, in the tissue structure were observed at the injection sites (Figure 8 ),

indicating that pjvR and hence quorum sensing, is necessary to develop the HR
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reaction on tobacco leaves. The necrotic phenotype which we observe in non-host 

tobacco could also be due to the phytotoxins produced by wild-type P. fuscovaginae; 

future work will precisely determine how this plant hypersensitive response occurs.

&
y

P. fuscovaginae 13RP. fuscovaginae UPB0736 Control

Figure 8: HR developed on tobacco leaves (Nicotiana tabacum) infiltrating leaf mesophyll with a 
bacterial suspension (108 CFU mL'1) of P. fuscovaginae UPB0736 parental strain and P. 
fuscovaginae 13R, pfvR  mutant. Sterile medium was infiltrated as control. The black arrows 
indicate the infiltration sites.

4.3.7 P. fuscovaginae motility and exoenzyme production

Bacteria can remain localized or can move to colonize larger areas depending on

availability of nutrients and surface conditions. Swimming is mediated by polar

flagella that enable bacteria to swim in aqueous environments or on semi-solid

surfaces; swarming is the movement of a group of bacteria associated with the

production of multiple lateral flagella and cell-cell contacts (Harshey, 2003).

To our knowledge no studies on the motility of P. fuscovaginae have been performed

so far, therefore we tested the swimming and swarming activity of P. fuscovaginae

strain UPB0736 in laboratory conditions (see Materials and Methods). To assess the

involvement of QS in bacterial motility regulation we performed the assays also on P.

fuscovaginae\3R and on complemented strain P. fuscovaginae 13R-pMP122. P.

fuscovaginae UPB0736 parental strain was able to swim, creating a dendrite, while P.
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fuscovaginae 13R (pfvR mutant) generated numerous dendrites and was able to swim 

considerably further (Figure 9). The P. fuscovaginae 13R-pMP122 complemented 

strain restored the parental phenotype.

P. fuscovaginae  
UPB 0736

P. fuscovaginae  
13R

P. fuscovaginae  
1 3 R -  pM P122

Figure 9: Swimming motility assay of P. fuscovaginae parental strain UPB0736 compared to the 
P. fuscovaginae 13R (pfvR mutant) and to P. fuscovaginae 13R complemented in trans with 
pMPI22 containing pfvR  gene.

These results indicated that possibly one or more polar flagella are present in P. 

fuscovaginae and that quorum sensing is involved in motility regulation.

P. fuscovaginae UPB0736 was unable to grow on M8 minimal medium thus we could 

not evaluate the swarming motility and role of quorum sensing. This result does not 

exclude that P. fuscovaginae is able to swarm but leaves the possibility that one or 

more essential nutrients, such essential amino acids, different carbon sources or 

different experimental conditions, are necessary for swarming (Kohler et al., 2000). P. 

fuscovaginae UPB0736 did not display any proteolytic and lipolytic activity on plate 

assays in laboratory conditions (see Materials and Methods).
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4.4 CONCLUDING REMARKS

This is the first genetic and molecular study of virulence of the opportunistic plant 

pathogen P. fuscovaginae. This bacterium is closely related to other fluorescent 

pseudomonads being widespread in many different geographical regions and having a 

wide host range among the graminaceae. In this study we have shown that distantly 

isolated strains possess a conserved AHL QS system and that it plays a role in plant 

associated virulence and hypersensitivity response in a non-host plant. P. 

fuscovaginae is an opportunistic plant pathogen requiring, in conjunction, a crop at the 

susceptible growth stage and a favourable environment for disease development 

(highland swamps 1300-1600 metres above sea level and low temperatures of 

approximately 20°C). Future studies will focus on the targets of the AHL QS related 

to plant infection, colonization and progression of the disease. In addition, studying P. 

fuscovaginae may reveal interesting differences and similarities to closely related 

fluorescent pseduomonads which are either plant beneficial bacteria or human 

opportunistic pathogens.
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4.5 EXPERIMENTAL PROCEDURES

4.5.1 Bacterial strains, plasmids, and media

All strains and plasmids used in this study are listed in Table 1. P. fuscovaginae and 

derivatives were cultured at 30°C in King B medium (KB) (King et a l, 1954) and M9 

minimal medium (Sambrook et a l , 1989) supplemented with 0.3% citric acid and 

0.3% casamino acids. Escherichia coli DH5a (Sambrook et a l, 1989), E. coli DH5a 

(pRK2013) (Figurski and Helinski, 1979), E .coli HB101 (Magazin et a l, 1986) and 

E. coli JM109 (pSB401) (Winson et a l, 1998) were grown at 37°C in Luria-Bertani 

(LB) medium (Miller, 1972). Chromobacterium violaceum strain CV026 (McClean et 

a l, 1997) and Pseudomonasputida FI 17 (pKRC12) (Riedel et a l, 2001) were grown 

at 30°C in LB medium. Agrobacterium tumefaciens NTL4 (pZLR4) (Cha et a l, 1998) 

was grown at 28°C in both Nutrient Agar (NA) plates and AB minimal medium 

(Chilton et a l, 1974). When required, antibiotics were added at the following 

concentrations: ampicillin (100 pg/ml), chloramphenicol (50 pg/ml), gentamicin (30 

pg/ml), kanamycin (50 fig/ml), nalidixic acid (25 pg/ml), spectinomycin(100 pg/ml) 

and tetracycline (15 pg/ml). 5-Bromo-4-cloro-3-indoyl-P-D-galactopyranoside (X- 

gal) was used at 80 jig/ml when necessary.

PfvR proteins of P. fuscovaginae strain UPB0736 and LMG12428 were expressed in 

E. coli Ml 5 as a 6 -His-PfvR protein and expression plasmids were constructed as 

follows: pjvR genes were amplified by PCR using PFVR13F-PFVR13R and 

PFVR15F-PFVR15R primers for pfvR strain UPB0736 and pjvR strain LMG12428 

respectively and cloned BamRl-Hindlll in pQE30 expression plasmid (Qiagen) 

generating pQERl 3 andpQER15 (Table 1).
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4.5.2 Recombinant DNA techniques

DNA manipulations, including digestion with restriction enzymes, agarose gel 

electrophoresis, purification of DNA fragments, ligation with T4 ligase, DNA 

hybridization, radioactive labelling by random priming, and transformation of E. coli, 

were performed as described previously (Sambrook et a l, 1989). Southern 

hybridizations were performed by using N+Hybond membranes (Amersham 

Biosciences); plasmids were purified using Jet star columns (Genomed GmbH, Lohne, 

Germany) or by the alkaline lysis method (Bimboim, 1983); total DNA from 

Pseudomonas was isolated by Sarkosyl-pronase lysis as described previously (Better 

et a l, 1983). Triparental matings fromE. coli to P. fuscovaginae were carried out with 

the helper strain E. coli (pRK2013) (Figurski and Helinski, 1979).

4.5.3 Cloning the AHL QS locus of P. fuscovaginae strains LMG12428 and

UPB0736

A pLAFR3 cosmid library of partially digested EcoBl of P. fuscovaginae strain

LMG12428 genomic DNA was constructed using Gigapack III XL-4 packaging kit as

recommended by the supplier (Stratagene). The cosmid library of P. fuscovaginae

strain LMG12428 harboured in E. coli was transferred by triparental conjugation to

C. violaceum CV026 (Swift et a l, 1993). After overnight incubation at 30°C, the

conjugations were plated on KB containing tetracycline for selection of

transconjugants and ampicillin and spectinomycin for counter-selection of E. coli.

These plates were incubated at 30°C for 24 h, transconjugants that turned purple were

further assayed. One cosmid, named pSGlOO, could restore purple pigmentation in C.

violaceum CV026. A 4 Kbp BamRl fragment from pSGlOO was subcloned in
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pBluescriptKS, generating pSGlOOL plasmid. pSGlOOL could induce violacein 

production on solid KB medium in a streak plate assay (Piper et a l , 1993) using C. 

violaceum CV026. pSGlOOL was sequenced in both strands and shown to contain the 

AHL QS locus consisting of three genes, pfvI-rsaL-pjvR (Figure 2).

In order to clone the AHL QS system of P. fuscovaginae UPB0736, genomic DNA of 

strain UPB0736 was digested with Hindi and ~5 Kbp fragments were cloned in 

pBluescriptKS since Southern analysis using the pjvl gene of strain LMG12428 as 

probe showed that the AHL QS system was present in a Hindi fragment of 

approximately this size. The plasmid carrying the QS locus, pSG120, was then found 

via a colony blotting protocol (Amersham Biosciences) having a 4,7 Kbp insert which 

was consequently sequenced in both strands and confirmed to contain the AHL QS 

locus (Figure 2).

4.5.4 Construction of P. fuscovaginae UPB0736 - pfvR  mutant

P. fuscovaginae UPB0736 pfvR 462 bp-intemal fragment was amplified by PCR using 

pK13RF-pK13RR primers (Table 1) and cloned as an Xbal-Xhol fragment in 

pKNOCK-Km (Alexeyev, 1999) generating pKNR13. pKNR13 was then delivered by 

triparental conjugation to P. fuscovaginae UPB0736 as a suicide system in order to 

create P. fuscovaginae 13R (a pjvR knock-out mutant) via homologous recombination 

(Alexeyev, 1999). Selection was performed on KB medium containing ampicillin, 

chloramphenicol, nalidixic acid, spectinomycin and kanamycin. The marker exchange 

event in the mutant strain 13R was further confirmed by Southern blot analysis.
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4.5.5 Reporter gene fusion assay

B-galactosidase activities were determined during growth in LB medium essentially as 

described by Miller (Miller, 1972), with the modifications of Stachel et al. (Stachel et 

al., 1985). All experiments were performed in triplicate. E. coli M l5 

(pQER13)(pMPI13) and E. coli M15 (pQER15)(pMPI15) were induced with IPTG 

(Isopropyl p-D-l-thiogalactopyranoside) at OD6 0 0  0.6 and B-galactosidase activities 

were determined one hour after induction.

4.5.6 Purification, detection and characterization of AHLs

Purification, detection, and characterization of AHLs were performed as previously 

described (McClean et al., 1997). Briefly, P. fuscovaginae strains were grown 

overnight in M9 minimal medium supplemented with citric acid, casamino acids and 

10% KB medium. 30 ml of supernatants of the cultures were extracted two times with 

the same volume of ethyl acetate-0.1% acetic acid, the extracts were then dried and 

resuspended in ethyl acetate. TLC analysis was performed using a Ci8 reverse-phase 

TLC plates in an elution buffer 60% (vol/vol) methanol-water. Synthetic AHLs were 

used as standard molecules (acquired from P. Williams, University of Nottingham, 

Nottingham, UK). Characterization of the AHLs was based on the evaluation of the 

Rf, shapes of the spots and on the differential responses of the AHL bacterial sensor 

strain (Steindler and Venturi, 2007). The AHL molecules on the TLC plate were 

detected by overlaying the TLC plate with a thin layer of AB top agar and X-gal 

seeded with A. tumefaciens NTL4 (pZLR4). T-streak plate assays (Piper et al., 1993) 

were performed on solid KB medium using C. violaceum CV026 and FI 17 (pKRC12) 

AHLs biosensors.
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4.5.7 Plant inoculations

The infection was performed on four weeks old Chenopodium quinoa plants, 

choosing the fifth, the sixth and the seventh leaves from the apex. C. quinoa was 

grown in a greenhouse at 28°C, humidity 70% with a photoperiod of 16 hrs light and 

8  hrs dark. P. fuscovaginae was grown on KB-agar plates, bacteria were collected 

with a pin and the petiole was then pierced passing through all the tissues. The control 

experiment was performed by piercing the petiole with a clean sterile pin. Each 

treatment was done on six plants and three leaves per plant were inoculated. After the 

infection, the plants were sprinkled with water and placed into a humid chamber for 

four days, at 28°C, 100% humidity and with a photoperiod of 16 hours light and 8  

hours dark. Infected plants were placed for one day outside of the humid chamber 

before the evaluation. After five days, disease index was performed on a 0-5 severity 

scale; 0 : no symptoms, 1 : necrosis on less than 2  mm around the puncture, 2 : necrosis 

from 2 to 10 mm around the puncture, 3: necrosis from 2 to 10 mm around the 

puncture and bending of the petiole, 4: collapse of the petiole and 5: wilting of the leaf 

(Figure 5). The infection on rice (Oryza saliva, cv. IR24; provided by IRRI, 

Philippines) was performed on three weeks old plants grown in the greenhouse at 

28°C, humidity 70% with a photoperiod of 16 hrs light and 8  hrs dark. The stem was 

pierced with a syringe full of water paying attention not to pass through the stem but 

maintaining the tip of the needle in the center of the shaft. The water was inoculated 

so as to watersoak all of the stem. P. fuscovaginae was grown on KB plates, bacteria 

were then collected from the plate with a pin which was used to pierce in the same 

point where the water was injected, passing the pin through the entire stem. The
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control experiment was performed by injecting the water into the stem and, with the 

same needle, passing through the entire shaft. Each treatment was performed on 40 

plants. After the infection, the plants were sprinkled with water and placed into a 

humid chamber for four days, at 28°C, 100% of humidity and with a photoperiod of 

16 hours of light and 8  hours of dark. The evaluation was done after five days from 

the infection, the plants were placed for one day outside of the humid chamber before 

disease evaluation The disease index was on a 0-5 disease severity scale; 0: no 

symptoms, only the sign of the puncture, 1 : necrosis around the puncture till 1 cm, 2 : 

necrosis around the puncture and chlorosis from 1 to 3 cm on the stem, 3: necrosis 

around the puncture till 5 cm on the stem, 4: necrosis around the puncture for the two 

third of the new leaf and 5: necrosis around the puncture throughout the new leaf 

(Figure 6 ).

Statistical analyses were performed by means of SPSS 15.0 software. Score ratings in 

the two groups were analysed statistically in SPSS program using the Kruskal-Wallis 

multiple comparison test. Then the two groups has been tested by the Mann-Whitney 

comparison test. The minimum level of statistical significance was set at p=0.05.

HR was performed on 10 weeks old tobacco (Nicotiana tabacum) leaves by injection 

with a needle-less hypodermic syringe. Two-three sites on each leaf were infiltrated 

with a 108 CFU mL' 1 bacterial suspension. As a control sterile culture medium was 

also injected into three sites on a tobacco leaf. Infected plants were placed at 26 °C in 

greenhouse with 70% humidity. The reaction at the infiltrated sites was scored 24, 48 

and 72 hours after injection.
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4.5.8 Exoenzyme production

Both proteolytic and lipolytic activity were determined on KB agar plates 

supplemented with 2% w/v powder skim milk and 1% v/v tributyrin respectively as 

previously described (Frazier and Rupp, 1928; Huber et al., 2001; Knaysi, 1941). 

After inoculation, plates were incubated at 30 °C for three days.

4.5.9 Motility assays

The swimming assay was performed on 0.3% Difco agar KB plates (Burkart et a l ,

1998), with antibiotic selection when necessary. Plates were dried for at least one hour 

under a sterile hood and the inoculation was performed from a culture at OD6 0 0  2.0 

using sterile toothpicks. Plates were incubated in humid conditions at 30 °C and the 

result was evaluated three days after inoculation.

The swarming assay was performed in M8 minimal medium used in this assay 

consisted of 20 mM Na2HPC>4 , 3 mM KH2PO4 , 1 mM NaCl, 0.2% glucose, 0.05% 

glutamate, 0.5% Difco agar. M8 plates were dried for at least one hour under sterile 

hood and the inoculation was performed from a culture at OD6 0 0  2.0 using sterilized 

toothpicks. Plates were incubated at 30 °C and the result was evaluated 7 days after 

inoculation.

4.5.10 DNA sequencing and nucleotide sequence accession numbers

All DNA sequencing was performed by Macrogen (www.macrogen.com) and the 

nucleotide sequences of the 2600 bp Hindi fragment harboring pfvl, rsaL and pfvR of 

strain UPB0736 and the 2600 bp BamYll fragment of strain LMG12428 harboring
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pjvl, rsaL and pfvR have been deposited in GenBank/EMBL/DDBJ under the 

following accession numbers respectively AM943857 and AM943858.

4.5.11 Statistical analysis

P values were calculated using the ANOVA one way test led by MS excel. P values 

<0,05 were considered to be statistically significant.

4.6 ACKNOWLEDGEMENTS

S.F. is beneficiary of an ICGEB fellowship. L.C and M.M. and research activities at 

the Biosafety Outstation are supported by the Fondazione Cassamarca, Treviso, 

Italy. We wish to thank Francesca de Terlizzi for assistance in statistical analysis, 

Laura Chiappetta for the tobacco plants and Gabriele Giachin for his contribution in 

the project.

127



CHAPTER 4 References

4,7 REFERENCES

Alexeyev, M.F. (1999) The pKNOCK series o f broad-host-range mobilizable suicide vectors for gene 

knockout and targeted DNA insertion into the chromosome o f  gram-negative bacteria. 

Biotechniques 26: 824-826, 828.

Ballio, A., Barra, D., Bossa, F., Collina, A., Grgurina, I., Marino, G., Moneti, G., Paci, M., Pucci, P., 

Segre, A., and etal. (1991) Syringopeptins, new phytotoxic lipodepsipeptides o f  Pseudomonas 

syringae pv. syringae. FEBS Lett 291: 109-112.

Ballio, A., Bossa, F., Camoni, L., Di Giorgio, D., Flamand, M.-C., Maraite, H., Nitti, G., Pucci, P., and 

Scaloni, A. (1996) Structure o f  fuscopeptins, phytotoxic metabolites o f Pseudomonas 

fuscovaginae. FEBS Lett 381:213-216.

Bassler, B.L. (1999) How bacteria talk to each other: regulation o f gene expression by quorum sensing. 

Curr Opin Microbiol 2: 582-587.

Batoko, H., de Kerchove d'Exaerde, A., Kinet, J.M., Bouharmont, J., Gage, R.A., Maraite, H., and 

Boutry, M. (1998) Modulation o f  plant plasma membrane H+-ATPase by phytotoxic 

lipodepsipeptides produced by the plant pathogen Pseudomonas fuscovaginae. Biochim 

BiophysActa 1372:216-226.

Bertani, I., and Venturi, V. (2004) Regulation o f  the A-acyl homoserine lactone-dependent quorum- 

sensing system in rhizosphere Pseudomonas putida  WCS358 and cross-talk with the 

stationary-phase RpoS sigma factor and the global regulator GacA. Appl Environ Microbiol 

70: 5493-5502.

Better, M., Lewis, B., Corbin, D., Ditta, G., and Helinski, D.R. (1983) Structural relationships among 

Rhizobium meliloti symbiotic promoters. Cell 35:479-485.

Bimboim, H.C. (1983) A rapid alkaline extraction method for the isolation o f  plasmid DNA. Methods 

Enzymol 100:243-255.

Burkart, M., Toguchi, A., and Harshey, R.M. (1998) The chemotaxis system, but not chemotaxis, is 

essential for swarming motility in Escherichia coli. Proc Natl Acad Sci U S A  95: 2568-2573.

Cha, C., Gao, P., Chen, Y.C., Shaw, P.D., and Farrand, S.K. (1998) Production o f  acyl-homoserine 

lactone quorum-sensing signals by gram-negative plant-associated bacteria. M ol Plant 

Microbe Interact 11:1119-1129.

Chai, Y., and Winans, S.C. (2004) Site-directed mutagenesis o f  a LuxR-type quorum-sensing 

transcription factor: alteration o f  autoinducer specificity. Mol Microbiol 51: 765-776.

Chilton, M.D., Currier, T.C., Farrand, S.K., Bendich, A.J., Gordon, M.P., and Nester, E.W. (1974) 

Agrobacterium tumefaciens DNA and PS8 bacteriophage DNA not detected in crown gall 

tumors. Proc Natl Acad Sci U S A  71: 3672-3676.

128



CHAPTER 4 References

Collins, C.H., Arnold, F.H., and Leadbetter, J.R. (2005) Directed evolution o f  Vibrio fischeri LuxR for 

increased sensitivity to a broad spectrum o f acyl-homoserine lactones. Mol Microbiol 55: 712- 

723.

de Kievit, T., Seed, P.C., Nezezon, J., Passador, L., and Iglewski, B.H. (1999) RsaL, a novel repressor 

o f virulence gene expression in Pseudomonas aeruginosa. JBacteriol 181:2175-2184.

Duveiller, E., Miyajima, K., Snacken, F., Autrique, A., and Maraite, H. (1988) Characterization o f  

Pseudomonas fuscovaginae and differentiation from other fluorescent Pseudomonads 

occurring on rice in Burundi. J. Phytopathology 122: 97-107.

Duveiller, E., Snacken, F., and Maraite, H. (1989) First detection o f  Pseudomonas fuscovaginae on 

maize and sorghum in Burundi. Plant Disease 73: 514-517.

Duveiller, E. (1990) Bacterial sheath rot o f wheat caused by Pseudomonas fuscovaginae in the 

highlands o f  Mexico. Plant Disease 74: 932-935.

Figurski, D.H., and Helinski, D.R. (1979) Replication o f  an origin-containing derivative o f  plasmid 

RK2 dependent on a plasmid function provided in trans. Proc Natl Acad Sci USA 76: 1648- 

1652.

Flamand, M.-C., Pelsser, S., Ewbank, E., and Maraite, H. (1996) Production o f  syringotoxin and other 

bioactive peptides by Pseudomonas fuscovaginae. Physiol Mol Plant Pathol 48: 217-231.

Frazier, W.C., and Rupp, P. (1928) Studies on the proteolytic bacteria o f  milk I. A Medium for the 

direct isolation o f  caseolytic milk bacteria. JBacteriol 16: 57-63.

Fuqua, C., Parsek, M.R., and Greenberg, E.P. (2001) Regulation o f gene expression by cell-to-cell 

communication: acyl-homoserine lactone quorum sensing. AnnuRev Genet 35:439-468.

Fuqua, W.C., Winans, S.C., and Greenberg, E.P. (1994) Quorum sensing in bacteria: the LuxR-LuxI 

family o f  cell density-responsive transcriptional regulators. JBacteriol 176:269-275.

Gross, D.C., and Cody, Y.S. (1985) Mechanisms o f  plant pathogenesis by Pseudomonas species. Can J  

Microbiol 31:403-410.

Gross, D.C. (1991) Molecular and genetic analysis o f toxin production by pathovars o f  Pseudomonas 

syringae. Ann Rev Phytopathol 29:247-278.

GuanLin, X. (2003) First report o f sheath brown rot o f  rice in China and characterization o f  the causal 

organism by phenotypic tests and Biolog. International Rice Research Notes 28: 50-52.

Harshey, R.M. (2003) Bacterial motility on a surface: many ways to a common goal. Annu Rev 

Microbiol 57:249-273.

Huber, B., Riedel, K., Hentzer, M., Heydom, A., Gotschlich, A., Givskov, M., Molin, S., and Eberl, L. 

(2001) The cep quorum-sensing system o f  Burkholderia cepacia H i l l  controls biofilm 

formation and swarming motility. Microbiology 147:2517-2528.

Hutchison, M.L., Tester, M.A., and Gross, D.C. (1995) Role o f  Biosurfactant and Ion Channel-Forming 

Activities o f  Syringomycin Tranransmembrane Ion Flux: A Model for the Mechanism o f  

Action in the Plant-Pathogen Interaction. Mol Plant Microbe-Interact 8: 610-620.

129



CHAPTER 4 References

Hutchison, M.L., and Gross, D.C. (1997) Lipopeptide Phytotoxins Produced by Pseudomonas syringae 

pv. syringae: Comparison o f  the Biosurfactant and Ion Channel-Forming Activities of  

Syringopeptin and Syringomycin. Mol Plant Microbe-Interact 10: 347-354.

Kim, J., Kim, J.G., Kang, Y., Jang, J.Y., Jog, G.J., Lim, J.Y., Kim, S., Suga, H., Nagamatsu, T., and 

Hwang, I. (2004) Quorum sensing and the LysR-type transcriptional activator ToxR regulate 

toxoflavin biosynthesis and transport in Burkholderia glumae. Mol Microbiol 54: 921-934.

King, E.O., Ward, M.K., and Raney, D.E. (1954) Two simple media for the demonstration o f  

pyocyanin and fluorescin. J  Lab Clin M ed  44:301-307.

Knaysi, G. (1941) On the Use o f  Basic Dyes for the Demonstration o f  the Hydrolysis o f  Fat. J  

Bacteriol 42: 587-589.

Kohler, T., Curty, L.K., Baija, F., van Delden, C., and Pechere, J.C. (2000) Swarming o f Pseudomonas 

aeruginosa is dependent on cell-to-cell signaling and requires flagella and pili. J  Bacteriol 

182: 5990-5996.

Lazdunski, A.M., Ventre, I., and Sturgis, J.N. (2004) Regulatory circuits and communication in Gram- 

negative bacteria. Nat Rev Microbiol 2: 581-592.

Magazin, M.D., Moores, J.C., and Leong, J. (1986) Cloning o f  the gene coding for the outer membrane 

receptor protein for ferric pseudobactin, a siderophore from a plant growth-promoting. 

Pseudomonas strain. J  Biol Chem 261: 795-799.

McClean, K.H., Winson, M.K., Fish, L., Taylor, A., Chhabra, S.R., Camara, M., Daykin, M., Lamb, 

J.H., Swift, S., Bycroft, B.W., Stewart, G.S., and Williams, P. (1997) Quorum sensing and 

Chromobacterium violaceum: exploitation o f violacein production and inhibition for the 

detection o f  A-acylhomoserine lactones. Microbiology 143 ( Pt 12): 3703-3711.

Miller, J.H. (1972) Experiments in molecular genetics. Cold Spring Harbor Laboratory C old Spring 

Harbor, N.Y.

Miyajima, K., Tanii, A., and Akita, T. (1983) Pseudomonas fuscovaginae sp. nvm. rev. Int. J. Syst. 

Bacteriol. 33: 656-657.

Pearson, J.P., Passador, L., Iglewski, B.H., and Greenberg, E.P. (1995) A second A-acylhomoserine 

lactone signal produced by Pseudomonas aeruginosa. Proc Natl A cad Sci U S A  92: 1490- 

1494.

Pesci, E.C., Pearson, J.P., Seed, P.C., and Iglewski, B.H. (1997) Regulation o f  las and rhl quorum 

sensing in Pseudomonas aeruginosa. JBacteriol 179: 3127-3132.

Piper, K.R., Beck von Bodman, S., and Farrand, S.K. (1993) Conjugation factor o f  Agrobacterium  

tumefaciens regulates Ti plasmid transfer by autoinduction. Nature 362:448-450.

Rampioni, G., Bertani, I., Zennaro, E., Polticelli, F., Venturi, V., and Leoni, L. (2006) The quorum- 

sensing negative regulator RsaL o f Pseudomonas aeruginosa binds to the Iasi promoter. J  

Bacteriol 188: 815-819.

Riedel, K., Hentzer, M., Geisenberger, O., Huber, B., Steidle, A., Wu, H., Hoiby, N., Givskov, M.,

Molin, S., and Eberl, L. (2001) jV-acylhomoserine-lactone-mediated communication between
130



CHAPTER 4 References

Pseudomonas aeruginosa and Burkholderia cepacia in mixed biofilms. Microbiology 147: 

3249-3262.

Rott, P., and Notteghem, J.L. (1989) Identification and Characterization o f Pseudomonas fuscovaginae, 

the Causal Agent o f  Bacterial Sheath Brown Rot, from Madagascar and Other Countries. 

Plant Disease 73: 133-137.

Rott, P. (1991) Identification o f  Pseudomonas fuscovaginae with Biochemical, Serological, and 

Pathogenicity Tests. Plant Disease 75: 843-846.

Sambrook, J., Fritsch, E.F., and Maniatis, T. (1989) Molecular cloning: a laboratory manual, 2nd ed. 

Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N. Y.

Schuster, M., Urbanowski, M.L., and Greenberg, E.P. (2004) Promoter specificity in Pseudomonas 

aeruginosa quorum sensing revealed by DNA binding o f  purified LasR. Proc Natl Acad Sci U  

S A  101:15833-15839.

Shaw, P.D., Ping, G., Daly, S.L., Cha, C., Cronan, J.E., Jr., Rinehart, K.L., and Farrand, S.K. (1997) 

Detecting and characterizing TV-acyl-homoserine lactone signal molecules by thin-layer 

chromatography. Proc Natl Acad Sci U S A  94: 6036-6041.

Spaink, H.P., Okker, R.J.H., Wijffelmann, C.A., Pees, E., and B.J.J., L. (1987) Promoter in the 

nodulation region o f  the Rhizobium leguminosarum Sym plasmid pRLl JI. Plant Mol. Biol. 9: 

27-39.

Stachel, S.E., An, G., Flores, C., and Nester, E.W. (1985) A  Tn3 lacZ  transposon for the random 

generation o f beta-galactosidase gene fusions: application to the analysis o f  gene expression in 

Agrobacterium. Embo J 4: 891-898.

Steindler, L., and Venturi, V. (2007) Detection o f quorum-sensing A-acyl homoserine lactone signal 

molecules by bacterial biosensors. FEMS Microbiol Lett 266: 1-9.

Swift, S., Winson, M.K., Chan, P.F., Bainton, N.J., Birdsall, M., Reeves, P.J., Rees, C.E., Chhabra, 

S.R., Hill, P.J., Throup, J.P., and et al. (1993) A novel strategy for the isolation o f  luxl 

homologues: evidence for the widespread distribution o f  a LuxR:LuxI superfamily in enteric 

bacteria. Mol Microbiol 10: 511-520.

Swift, S., Bainton, N.J., and Winson, M.K. (1994) Gram-negative bacterial communication by A-acyl 

homoserine lactones: a universal language? Trends M icrobiol!: 193-198.

Tanii, A., Miyajima, K., and Akita, T. (1976) The sheath brown rot disease o f  rice and its causal 

bacterium Pseudomonas fuscovaginae sp. nov. Ann. Phytopathol. Soc. Jpn. 42: 540-548.

Urbanowski, M.L., Lostroh, C.P., and Greenberg, E.P. (2004) Reversible acyl-homoserine lactone 

binding to purified Vibrio fischeri LuxR protein. JBacteriol 186:631-637.

Venturi, V. (2006) Regulation o f  quorum sensing in Pseudomonas. FEMS Microbiol Rev 30:274-291.

Von Bodman, S.B., Bauer, W.D., and Coplin, D.L. (2003) Quorum sensing in plant-pathogenic 

bacteria. Annu Rev Phytopathol 41:455-482.

Whitehead, N.A., Barnard, A.M., Slater, H., Simpson, N.J., and Salmond, G.P. (2001) Quorum-sensing 

in Gram-negative bacteria. FEMS Microbiol Rev 25: 365-404.
131



CHAPTER 4 References

Winson, M.K., Swift, S., Fish, L., Throup, J.P., Jorgensen, F., Chhabra, S.R., Bycroft, B.W., Williams, 

P., and Stewart, G.S. (1998) Construction and analysis o f  luxCDABE-based plasmid sensor for 

investigatig iV-acyl homoserine lactone-mediated quorum sensing. FEMS Microbiol Lett 163: 

185-192.

Zeigler, R.S., and Alvarez, E. (1987) Bacterial Sheath Brown Rot o f Rice by Pseudomonas 

fuscovaginae in Latin America. Plant Disease 71: 592-597.

Zeigler, R.S. (1990) Characteristics o f  Pseudomonas spp. Causing Grain Discoloration and Sheath Rot 

o f  Rice, and Associated Pseudomonad Epiphytes. Plant Disease 74: 917-922.

Zhang, L.H., and Dong, Y.H. (2004) Quorum sensing and signal interference: diverse implications. Mol 

Microbiol 53: 1563-1571.

Zhu, J., and Winans, S.C. (2001) The quorum-sensing transcriptional regulator TraR requires its 

cognate signaling ligand for protein folding, protease resistance, and dimerization. Proc Natl 

Acad Sci U S A  98:1507-1512.

132



CHAPTER 5

SUMMARISING DISCUSSION

133



CHAPTER 5 Summarising discussion

5.1 SUMMARISING DISCUSSION

The aim of these studies was to investigate the quorum sensing (QS) systems based on 

A-acyl homoserine lactone (AHL) signal molecules in two important rice pathogens, 

Xanthomonas oryzae pv. oryzae (Xoo) and Pseudomonas fuscovaginae. When these 

investigations began almost four years ago, there were no reports of AHL 

communication in these two rice-associated bacterial species. Our studies revealed 

two very different situations: (i) Xoo did not present the typical AHL quorum sensing 

(QS) system for intra/inter-species communication. However it was able to detect a 

plant signal molecule establishing an inter-kingdom communication via a LuxR- 

family regulator closely related to AHL QS and (ii) in P. fuscovaginae we found a 

typical AHL QS system, highly conserved and highly similar to the QS systems 

present in Pseudomonas aeruginosa and Pseudomonas putida species. Due to these 

differences the following summarizing discussion will be divided into two parts. 

Since the three chapters in this thesis which present research data already contain a 

discussion, in this section a summary of the results is outlined and discussed in a more 

general context.

5.1.1 Xanthomonas oryzae pv. oryzae

Xanthomonas oryzae pv. oryzae (Xoo) is the causal agent of bacterial leaf blight of

rice (Oryza sativa). It is a vascular disease eventually clogging xylem vessels causing

wilting, if infection occurs in earlier growth stages, or lesions of leaf blight if it occurs

in later stages. The main objective of the project was the characterization of the AHL

QS system and regulation in Xoo. The most common quorum sensing system in
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Gram-negative bacteria employs iV-acyl homoserine lactone (AHL) as signal 

molecule. AHLs allow bacteria to monitor their cell density and it is commonly used 

to synchronize/coordinate the expression of virulence associated factors. What was 

established fairly quickly using AHL bacterial biosensors is that Xoo does not 

produce AHLs. This was then confirmed once the first Xoo genome was published in 

January 2005 (Lee et al., 2005) which did not reveal the presence in the genome of a 

/wx/-family gene, essential for AHLs synthesis. However an unpaired or orphan luxR- 

homolog gene closely related to QS luxR family genes was found in the Xoo genome. 

Interestingly this Xoo LuxR-family protein, which was designated OryR, displayed 

the classical structure of the AHL QS LuxR-family regulators: it possessed an AHL- 

binding domain and a helix-tum-helix DNA binding motif, leading to the hypothesis 

of a possible OryR-AHL interaction during its regulatory activity. Such a scenario 

was previously reported in Escherichia coli and Salmonella enterica, where the 

protein SdiA enables these bacteria, which do not synthesize AHLs, to detect and 

respond to exogenous AHLs produced by other bacterial species (Ahmer, 2004). To 

test this hypothesis we analysed OryR solubility in the presence of many different 

AHLs. It was previously demonstrated for LuxR in Vibrio fischeri, for LasR in 

Pseudomonas aeruginosa and for TraR in Agrobacterium tumefaciens that LuxR- 

family quorum sensing proteins, when over-expressed, are highly insoluble, however 

in the presence of their cognate AHL molecule, they become soluble (Schuster et a l , 

2004; Urbanowski et al., 2004; Vannini et al., 2002). OryR was over-expressed in E. 

coli in the presence of different AHLs and an affinity chromatography was performed
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after an extraction under native conditions to recover a soluble form of the protein. No 

solubility has been observed with any of the AHLs tested and it was therefore 

concluded that OryR, unlike SdiA, was not binding AHLs. Since Xoo is a rice 

pathogen and its aim is rice xylem vessel colonization, it was hypothesized that a 

possible regulatory function of OryR was during the infection stages, thus possibly 

interacting with a plant molecule. To verify this possibility we created a new culture 

medium containing macerated rice and analysed OryR solubility under these 

conditions. Interestingly some soluble OryR in the elution fraction was detected, 

indicating possibly that something in macerated rice can bind and solubilize OryR.

In order to reproduce the host environment, we also tested whether xylem sap, 

recovered from infected leaves, could solubilize OryR. Xylem sap had been collected 

in different periods from 3 to 14 days after Xoo infection and OryR solubilization was 

tested by over-expressing the protein in E. coli in the presence of xylem sap in the 

medium. Western blot analysis revealed highest amounts of the soluble form of OryR 

in the presence of xylem sap collected 10 days after infection. From this result we can 

assume that probably the amount of rice signal molecule (RSM) increased during 

infection, reaching a peak after 10 days from the infection. A low amount of the 

soluble form of OryR detected in the presence of non-infected rice xylem sap 

indicated that the unknown RSM was produced by the rice plant. It is therefore 

possible that the RSM is a low molecular weight compound (possibly a secondary 

metabolite) which the plant produces more under pathogen attack (Dixon, 2001).

OryR was found to be highly conserved among Xoo strains, as demonstrated from the 

Southern and Western blot analysis. OryR orthologues are also present in X.
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campestris pv. campestris and X. axonopodis pv. citri, indicating a common ancestral 

origin and a possible important function of OryR in Xanthomonas spp. as this gene 

has been conserved during evolution.

To investigate the involvement of OryR in Xoo rice virulence, three Xoo strains were 

mutagenized, creating three Xoo oryR knock-out mutants. From the pathogenicity 

profile of the oryR mutants vs the parental strains it was clear that OryR was involved 

in Xoo virulence, as demonstrated by the reduction of leaf lesion length for all the 

three strains tested. The reduction in pathogenicity was however clearest for the most 

pathogenic strain, especially when the bacterial inoculum was reduced, but was less 

evident for the other two strains of which the parent was less pathogenic on rice. OryR 

is therefore certainly involved in Xoo rice pathogenicity, probably via the regulation 

of virulence gene(s).

In order to test our OryR working model, we studied OryR target promoters in the 

presence of macerated rice, as we hypothesized that OryR needs RSM to carry out its 

regulatory function. In Xanthomonas campestris pv. campestris (Xcc), which is 

closely related to Xoo, it was reported that an OryR ortholog, termed XccR, had 

regulatory function on the downstream adjacent gene encoding for the proline 

iminopeptidase (Pip) (Zhang et a l, 2007). It was demonstrated that Pip is a 

periplasmic protein involved in virulence (its mode of action is currently unknown), 

directly regulated by XccR in Xcc in the host plant in response to an unknown plant 

compound (Zhang et a l , 2007). We analysed pip promoter regulation via OryR in Xoo 

by firstly creating a new promoter probe plasmid, designated pSS122; the pip 

promoter was then cloned upstream of the promoterless uidA gene, encoding (3-

137



CHAPTER 5 Summarising discussion

glucuronidase. Pip promoter activity was measured after growing Xoo in different 

culture media, in the presence and in the absence of macerated rice. Our results 

demonstrated that OryR is necessary for pip promoter activation, since no promoter 

activity has been observed in Xoo OryR mutants. It was demonstrated for XccR in Xcc 

that the protein binds a canonical QS lux-box present in the pip promoter region 

(Zhang et al., 2007); a highly conserved QS lux-box was also found in the pip 

promoter region of Xoo leading to the hypothesis that this lux-box was the possible 

OryR binding site during pip promoter regulation. It is therefore tempting to conclude 

that OryR in Xoo and XccR in Xcc function in the same manner, but only when the 

bacterium is colonizing the host plant. It was of interest to determine whether OryR 

was able to regulate its own activity, so we tested the oryR promoter activity using the 

pSS122 reporter plasmid, in the presence and in the absence or rice in the culture 

medium. Surprisingly we observed that OryR could regulate its own promoter in a 

negative manner, independently of the RSM. We identified a weak QS lux-box 

sequence in the oryR promoter region. However, due to the very low consensus, we 

cannot conclude or convincingly speculate that OryR could bind this sequence. The 

putative oryR lux-box is imperfect, as one of the two highly conserved regions was 

not perfectly conserved, and this could possibly explain the regulation of OryR on its 

promoter even when not bound to the signal molecule; further experimentation is 

necessary in order to test this possibility. It was established that the OryR protein was 

present in Xoo when grown in minimal defined medium only in the presence of 

macerated rice but not in a minimal medium alone. This result was further confirmed 

testing oryR promoter activity on growing Xoo in a minimal medium with and without
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macerated rice. OryR was expressed at a basal level when Xoo was grown in the 

minimum medium, whereas the expression was almost three times higher when rice 

was added to the medium, indicating again that oryR was itself regulated by an 

unknown regulator being induced in planta.

Analysing the secreted protein profile of Xoo, grown in the presence and in the 

absence of rice, it was observed that an approximately 60 KDa protein was present 

only when Xoo was grown with rice in the culture medium. This protein was however 

not detected in the Xoo oryR mutant. This protein was identified as a 1,4-p- 

cellobiosidase (CbsA), important for the hydrolysis of 1,4-p-D-glucosidic linkages in 

cellulose. CbsA was identified as one of the Xoo secreted proteins involved in 

virulence as the ability to cause lesions in rice of a Xoo cbs mutant was reduced (Jha 

et a l, 2007). To further confirm possible cbs A regulation via OryR, we cloned the 

cbs A promoter in the pSS122 plasmid and tested the promoter activity in Xoo grown 

in the presence and in the absence of macerated rice. Surprisingly our results indicated 

a reduction in cbsA expression in the presence of rice. However its activity was OryR 

dependent under all conditions tested and it was independent of the RSM. Since CbsA 

was detected in highest amounts when Xoo was grown in the presence of macerated 

rice, we cannot exclude a possible subsequent post-transcriptional regulation. As cbsA 

expression was tightly dependent on OryR, at this stage we cannot state whether OryR 

regulation on the cbsA promoter is direct or indirect. In the cbsA promoter a weak lux- 

box sequence is present but, as for the oryR promoter, this sequence was imperfect. 

From this evidence we can speculate that possibly the four nucleotides at the 

beginning of the sequence are critical for OryR binding (these sequences are present

139



CHAPTER 5 Summarising discussion

in all putative lux-boxes, ie. in pip, oryR, and cbsA promoter) while the last three 

nucleotides of the putative cbsA and oryR /wx-boxes could be important for the 

specificity of OryR bound to the RSM.

Xcc produces the QS signal molecule designated DSF (diffusible signal molecule), 

involved in the regulation of biofilm dispersal and production of virulence factors 

(Barber et al., 1997; Dow et al., 2003). DSF production and regulation is under the 

control of the rpfA-H cluster, in particular the gene rpjF is responsible for DSF 

synthesis (Barber et al., 1997). It was of interest to determine whether OryR was 

regulating DSF production since the DSF system is also found in Xoo (Chatteqee and 

Sonti, 2002). DSF was extracted from the Xoo parental and Xoo oryR mutant, grown 

both in the presence and in the absence of rice, and differences in DSF production 

were evaluated using a Xcc DSF biosensor strain. Our results demonstrated that 

almost the same amount of DSF was extracted from Xoo parental and Xoo OryR 

mutant, both in the presence and in the absence of rice. To further support this result, 

the rpfF promoter was tested for OryR regulation, in the presence and in the absence 

of rice, confirming that OryR was not involved in rpjF regulation. It was concluded 

that OryR was probably not connected with the DSF system. At this stage we cannot 

exclude a possible regulation of the DSF QS system on oryR/OryR. A DSF genome 

scale analysis however did not detect that the DFS QS system was regulating oryR 

(He et al., 2006).

From previous studies on OryR solubility we demonstrated that the rice signal 

molecule (RSM) recognized by OryR was not an jV-acyl-homoserine lactone type 

molecule. We further confirmed this result by testing pip promoter activity in the
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presence of many different AHLs. Our results showed that no pip promoter activity 

was induced in the presence of AHLs. The same experiment was performed in the 

presence of both the AHLs and the RSM, to demonstrate a possible inhibitory activity 

of AHLs on OryR due to a possible competition for binding. As expected we did not 

observe an inhibition of pip promoter activity consistent with the contention that 

OryR could not bind AHLs.

As RSM was expected to be a small molecule, media containing the RSM were 

fractionated in line with molecular size by progressive filtrations. Each fraction was 

tested on pip promoter induction, as pip expression was tightly regulated by OryR 

bound to the RSM. A strong pip promoter activity was detected only adding the 

<lKDa fraction to the growth medium, clearly indicating that the RSM is a small 

molecule. Our results demonstrated that RSM did not compete with AHLs for OryR 

binding, but we cannot however exclude the possibility that RSM could bind other 

LuxR-homolog regulators. Previous studies have shown that plants contain molecules 

able to activate bacterial AHL QS systems (Bauer and Mathesius, 2004). We therefore 

tested the possible binding between RSM to TraR of A. tumefaciens, (Cha et a l, 

1998). The A. tumefaciens NTl(pZLQR) AHL biosensor strain was grown in the 

presence of the <lKDa fraction containing the RSM; a very slight increase of p- 

galactosidase activity was observed. It has been reported that rice contains AHL QS 

agonist molecules able to activate several AHL biosensors (Degrassi et a l, 2007), and 

we cannot exclude the presence in very low concentrations of these molecules in the 

fraction analysed. We can therefore conclude that RSM did not act as an AHL mimic, 

at least for the TraR regulator. Due to the very large number of low molecular weight
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compounds produced by plants (Dixon, 2001), many of which produced in very low 

quantities, it will be a major task identifying the RSM interacting with OryR. One 

possibility could be a chemical extraction from the rice tissue, using a solvent (e.g. 

chloroform, ethyl acetate, ether...) in which the molecule results to be more soluble 

than in water. After a solvent extraction it would be possible to isolate the molecule 

using the HPLC chromatography; each fraction could then be tested by a bioassay, 

analysing for example the p-glucuronidase activity in Xoo XKK.12 (pPIP122) cells.

5.1.2 Pseudomonasfuscovaginae

Pseudomonas fuscovaginae is a Gram negative fluorescent pseudomonad pathogenic 

to rice (Oryza sativa) (Miyajima et a l , 1983; Tanii et a l , 1976). This opportunistic 

pathogen has been isolated in many countries and from different host plants, 

especially in tropical upland fields (Duveiller et a l , 1989), due to its ability to grow 

and colonize at high humidity and low temperatures (Miyajima et a l, 1983). P. 

fuscovaginae causes bacterial brown sheath rot on many cereals (Duveiller et a l, 

1989; Duveiller, 1990) producing several phytotoxins (Gross and Cody, 1985; Gross, 

1991).

The aim of this study was the characterization of the quorum sensing system (QS) in 

this emerging rice pathogen, as no molecular studies have been performed so far on 

this topic in this organism.

A collection of 15 P. fuscovaginae strains, isolated from diseased rice all over the 

world, were initially tested for AHL production. This screening was performed using 

many different AHL biosensors in order to detect the structurally different AHLs
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(Steindler and Venturi, 2007). The results obtained, in particular using A. tumefaciens 

NTl(pZLR4) as biosensor, indicated a clear AHL production profile in three strains, 

LMG5742, UPB0898, and LMG12428, possibly identified as C6-3oxo-AHL, Cs- 

3oxo-AHL, Cio-3oxo-AHL, Ci2 -3 oxo-AHL. The remaining strains displayed a quite 

conserved AHL profile, producing mainly Cs-3oxo-AHL and Cio-3oxo-AHL. As 

AHLs were extracted from a large volume of culture supernatant in order to obtain 

detection, P. fuscovaginae probably produces low amounts of AHLs, indicating that 

the QS system could be regulated or possibly the system requires low concentrations 

of AHLs for its functioning.

To identify the QS genes we focused on two strains, UPB0736, that causes brown 

sheath rot on rice, and strain LMG12428, that causes leaf stripe on rice. We chose 

these strains not only for the differences in the lesion created on the rice plant, but 

also for the differences in the amount of AHLs produced. Firstly we constructed a 

cosmid library of strain LMG12428 and screened it by complementation in trans in 

the CV026 AHL biosensor. The cosmid containing the QS genes was isolated, 

subcloned and sequenced, leading to the identification of the typical luxI-luxR family 

genes. The AHL-QS system of P. fuscovaginae, designated as pfvI/R, was found to be 

highly similar to the Ppul/R and Lasl/R systems of P. putida and P. aeruginosa 

respectively. In between the pfvI/R genes, the negative regulator rsaL was found 

which in P. putida and P. aeruginosa is an important negative regulator of the AHL 

synthase gene (de Kievit et a l , 1999; Rampioni et al., 2006). A structurally similar 

pfvI/R QS locus was also then found in P. fuscovaginae UPB0736.
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Due to the presence of the RsaL negative regulator, we can hypothesize that pfvl in 

strain UPB0736 is repressed by RsaL explaining the low amounts of AHLs detected 

in the TLC analysis. Similarly we can also speculate that in strain LMG12428, maybe 

RsaL is not repressing pfvl very strongly hence much more AHLs are produced. The 

pfvI/R QS system in P. fuscovaginae was found to be highly conserved among the 15 

strains isolated from all over the world most likely revealing that the system has been 

conserved during evolution and that it could be part of the core genome of this 

species.

To better characterize PfVR AHL specificity, the protein was over-expressed in E .coli 

in the presence of different AHLs and cognate pfvl promoter activity was measured. 

For both strains, LMG12428 and UPB0736, pfvl promoter activity was induced in the 

presence of long chain AHLs, especially Cio-3oxo-AHL and Ci2 -3 oxo-AHL; PfvR 

could also respond reasonably well to C8-3oxo-AHL, C12-AHL, C1 0-AHL, Ci2-30H- 

AHL and Cio-30H-AHL. This result was surprising since PfvR displayed rather 

relaxed specificity responding well to a rather large number of AHLs. In contrast, the 

similar systems found in P. putida and P. aeruginosa respond specifically only to C1 2- 

3oxo-AHL. The reason for this relaxed specificity by PfvR is unknown. It could allow 

P. fuscovaginae to respond to more of the AHL it produces or possibly to exogenous 

ones produced by other bacterial species. Since we observed also short chain AHLs in 

the TLC profile, we cannot exclude the presence of a second QS system in P. 

fuscovaginae, as is the case in P. aeruginosa (Pearson et al., 1995).

To evaluate the involvement of the QS system in pathogenicity and in disease 

development, we created a pjvR knock-out mutant in the very virulent P. fuscovaginae
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strain UBB0736. Virulence of P. fuscovaginae UBB0736 parental strain and P. 

fuscovaginae pfvR mutant were evaluated on Chenopodium quinoa and Oryza sativa 

host plants by the stem puncture method. The P. fuscovaginae pfvR mutant was less 

aggressive compared to the parental strain for both plants tested, confirming an 

involvement of the QS system in virulence possibly by regulating virulence associated 

factors, for example the fuscopeptin phytotoxins that are known to be produced by 

this species (Ballio et al., 1996).

It was previously reported that P. fuscovaginae is able to elicit a plant defence 

response in non-host plants like tobacco, causing an hypersensitive response (HR) 

(Duveiller et al., 1988). To verify whether HR response was regulated by the QS 

system, we performed an HR assay of P. fuscovaginae UPB0736 parental strain 

compared to P. fuscovaginae pfvR mutant, by infiltrating tobacco leaf mesophyll with 

the bacterial suspensions. Interestingly the pfvR mutant was no longer able to cause an 

HR reaction on tobacco leaves, indicating an involvement of QS in the regulation of 

this process. It must be noted however that unusual necrotic symptoms were observed 

on tobacco leaves; these could be due to phytotoxins production rather than an 

hypersensitive response by the plant. This merits further attention before more 

concrete conclusions are drawn from this experiment.

Finally we tested swimming and swarming motility of the P. fuscovaginae UPB0736 

parental strain and the P. fuscovaginae pfvR mutant, in laboratory conditions, in order 

to verify a possible involvement of QS in bacterial motility regulation. The P. 

fuscovaginae UPB0736 parental strain was able to swim on rich media plates. 

However the P. fuscovaginae pfvR mutant swam considerably faster compared to the
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parental strain, creating numerous dendrites. Under the conditions we tested P. 

fuscovaginae UPB0736 was not able to undergo swarming motility, but interestingly 

the swimming profile observed in the pfvR mutant was very similar to the swarming 

motility of P. aeruginosa (Caiazza et a l, 2005). AHL QS is likely involved in the 

regulation of expression of many other genes; unfortunately, the lack of genome 

sequence data will render future investigations on the AHL QS regulon more 

laborious and time consuming.
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Figure 1: Western blot o f the total protein extracts from the 7 strains which did not give a 
positive result in a Southern analysis using the complete oryR gene as probe. A  protein o f the 
expected size, recognized by the anti-OryR antibody, was detected in 5 o f the 7 strains tested; this 
most likely is the OryR-homolo/ortholog. The numbers correspond to the following Xoo  strains 
(see Table 1, chapter 2): 3- XAPC.10, 9-XAPC.20, 14-XKK.16, 15-XK Pt4, 19-XKV.5, 23- 
XTNP.4,25-LMG5047.
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KACC10331 BX043 XKK.12
wt oryR-mut wt oryR- mut wt oryR-mut

mm m mBm

Figure 2 : Southern blot analysis performed on the three Xoo  strains, KACC10331, B X 043 and 
XKK.12, versus their corresponding oryR knock-out mutants. Chromosomal DNA was digested 
with TVcoI restriction enzyme. The suicide vector pKNORY, used for the mutagenesis, contains a 
N col restriction site in the sequence thus generating, after digestion in the oryR mutant strains, 
two fragments o f approximately 2100 and 2800 bp.
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Figure 3: pip  gene promoter activity in planta. (3-glucuronidase assay was performed on Xoo 
XKK.12 (pPIP122) cells recovered from infected plants seven days after infection. Significant 13- 
glucuronidase activity was detected despite that most of the bacterial cells recovered had lost the 
promoter-probe plasmid. The results are expressed as means ± STDEV, n=3. #, p< 0,003 
compared to XKK.12 without the promoter-probe plasmid.
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Figure 4: A: Plate test for DSF production. A plate containing skimmed milk (to indicate 
protease production) was inoculated with a streak of DSF producing Xoo and the DSF indicator 
strain Xcc 8523 was inoculated as an L-shaped streak. No differences were observed in protease 
activity induced by Xoo XKK.12 compared to protease activity induced by Xoo XKK.120RY. B: 
CMC agar plate test for DSF production. DSF was extracted from both Xoo XKK.12 parental 
strain and Xoo XKK.120RY, OryR mutant, grown in PYS medium, rice medium and infected 
rice medium; PYS alone was used as control. Extracted DSF was loaded into plate wells. 
Endoglucanase activity was detected as a clear halo around the wells. No differences were 
observed in the halo size induced by DSF extracted from Xoo XKK.12 and Xoo XK K .120RY, 
both in the presence and in the absence of rice in the culture medium.
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ANNEX Sequences

1. The Pseudomonas fuscovagine LMG 12428 quorum sensing locus (Chapter 4):

LOCUS
DEFINITION

ACCESSION
VERSION
KEYWORDS
SOURCE

ORGANISM

REFERENCE
AUTHORS

TITLE

JOURNAL
REFERENCE

AUTHORS
TITLE
JOURNAL

FEATURES
so u rce

m is c  fe a tu r e

gene

CDS

gene

AM943858 2600 bp DNA l i n e a r  BCT 09-APR-2008
Pseudomonas f u s c o v a g in a e  quorum  s e n s in g  lo c u s ,  
s t r a i n  LMG12428.
AM943858
AM943858.1  G I:182375405

Pseudomonas fu s c o v a g in a e  
Pseudomonas fu s c o v a g in a e
B a c te r ia ;  P r o te o b a c te r ia ;  G a m m a p ro te o b a c te ria ; 
Pseudom onadales;
Pseudom onadaceae; Pseudomonas.
1

F e r lu g a ,S . ,  C a b r io ,L . ,  M a t t iu z z o ,M . , M a ra ite ,H .  and 
V e n tu r i ,V .
The p la n t  o p p o r t u n is t ic  p a th o g e n  Pseudomonas fu s c o v a g in a e  
c o n ta in s  a c o n s e rv e d  quorum  s e n s in g  sys tem  in v o lv e d  i n  
v i r u le n c e  
U n p u b lis h e d  
2 (bases 1 t o  2600)
V e n tu r i ,V .
D ir e c t  S u b m iss io n
S u b m itte d  (27 -F E B -2008 ) V e n tu r i  V . ,  B a c te r io lo g y ,  
I .C .G .E .B ,  P a d r ic ia n o  99, 34012 T r ie s te ,  ITALY 

L o c a t io n /Q u a l i f ie r s
1 ..2 6 0 0
/o rg a n is m ="Pseudomonas f u s c o v a g in a e "
/m o l_ ty p e = "g e n o m ic  DNA"
/s tra in = "L M G 1 2 4 2 8 "
/s p e c if ic _ h o s t= " O r y z a  s a t i v a "
/ d b _ x r e f= " ta x o n :50340"
/c o u n try = "C o lo m b ia "
1 ..2 6 0 0
/n o te = "q u o ru m  s e n s in g  lo c u s "
2 8 9 ..1 0 0 8  
/g e n e= np f v R n
2 8 9 ..1 0 0 8  
/g e n e - npfvR"
/ fu n c t io n = " L u x R - fa m i ly  quorum s e n s in g  

s e n s o r / r e g u la to r "
/c o d o n _ s ta r t= l  
/ t r a n s l_ t a b le = l1 
/p ro d u c t= "p fv R  p r o t e in "
/p ro te in _ id = "C A Q 1 5 9 5 1 .1 "
/d b _ x r e f= " G I :182375406"
/translation="MLLMDECIELLSAMDARTWFQSLVLSVQKLGYSQ 
VLYALKPNKEAQNSTARIMSNFPDAWRDLYDNENYSSIDPWSHSFSS 
SLPILWEDKLYKTRREKEFAEDARRAGLSHGLTLPIHGPQGQVGMLSL 
SCAPMPQNEYLQVLQHSIAAASMLRDYAVTSGSSLFLHNSSSTAPHLT 
PRELEILHWAWAEKTTWEIGKILSLAE PTVEFHFKNIRRKLNVS S RRL 
AVARAIQLDLMTP" 
co m p le m e n t(9 8 8 ..1 2 3 3 )
/g e n e = "rs a L "
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CDS

gene

CDS

co m p le m e n t(9 8 8 ..1 2 3 3 )
/ g e n e = "rsaL"
/ f u n c t io n = " t r a n s c r ip t io n a l  re p re s s o r  o f  th e  

quorum  s e n s in g  sys te m "
/c o d o n _ s ta r t= l  
/ t r a n s l_ t a b le = l l  
/p ro d u c t= "R s a L  p r o t e in "
/p ro te in _ id = "C A Q 1 5 9 5 2 .1 "
/d b _ x r e f= " G I :182375407"
/translation="MRVERSLIRQAWLRLQLGKSQEAFWRMFGLSQP
AASRLECAGKGSASLAVLLGLYVAGRIDDDDLLFVSAREVALGRHEI"
1 4 1 5 ..1 9 6 0
/ q e n e = " p fv l "
1 4 1 5 ..1 9 6 0  
/g e n e = "p jfv l"
/ fu n c t io n = "2 \7 -a c y l h o m o se rin e  la c to n e  s y n th a s e "
/ c o d o n _ s ta r t= l 
/ t r a n s l_ t a b le = l l  
/ p r o d u c t= " p f v I  p r o t e in "
/p ro te in _ id = "C A Q 1 5 9 5 3 .1 "
/d b _ x r e f= " G I :182375408"
/translation="MHILRAKIFRDKKDWDVSVIGGMEIDGYDALNPY 
YMILQDADLNESVRGCWRLLPTTGPNMLADTFPELLAGAPVPRAEDTW 
ELSRFAICQQSGRPYAFSDQSLIAIRAWHFGVERGLKRFVTVTTVGV 
EKLLIRLGLDIRRLGPAKTIGVERAVALSIALNHKTLDALETTGAASN 
LSN"
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ANNEX Sequences

ORIGIN
1 c c g t c g g a c a  g c t g a c c a a c  g a g t a a c t g c  g t a c c a g c c c  g t t g g g c a g a  t g c a g a t c a a  

61 t a t g g g c t c c  a g c c t c g a a t  g c c g g t a a g c  g a t c g g a g c c  g a c c g g a g c c  a g g t c t a t c g  
121  a g a c g a t a c t  g g g g g t t t c c  c g g a t g a t g t  t c c t g a c g c g  g a c g g t c t g a  a g g c t a g c g t  
181  t c a t a a c t a c  t t c c t t g t a t  a t a t c c a a g a  a t a g a g g c t a  t t g a c c t c g t  t t g g a g c a g g  
2 4 1  c c c c t a t c g c  t g a c a a a a a t  a a c g a t t c a c  t g a t a c c g g a  t t t t t t c t a t  g c t a c t t a t g  
3 0 1  g a t g a a t g t a  t a g a g c t g c t  a a g t g c a a t g  g a c g c a c g a a  c c t g g t t c c a  g t c a c t t g t t  
3 6 1  t t g t c c g t g c  a g a a a c t c g g  a t a c a g c c a g  g t g c t g t a t g  c c c t g a a a c c  c a a c a a a g a g  
421  g c a c a g a a c a  g c a c g g c a c g  a a t c a t g a g c  a a c t t t c c g g  a c g c c t g g c g  a g a t c t t t a t  
481  g a ta a c g a g a  a c t a c t c c a g  c a t c g a c c c t  g t c g t c t c c c  a c a g c t t t t c  a t c c t c g c t t  
5 4 1  c c c a t t c t c t  g g g a g g a c a a  g c t c t a c a a a  a c c c g t c g a g  a a a a g g a g t t  t g c c g a g g a t  
601 g c c c g a c g a g  c c g g a c t c a g  c c a c g g c c t g  a c a c t g c c c a  t t c a c g g g c c  c c a g g g c c a g  
661  g t c g g c a t g c  t c a g c c t g a g  c t g c g c c c c t  a t g c c g c a a a  a c g a g t a c t t  g c a g g t c c t g  
721  c a a c a c a g c a  t c g c c g c a g c  c a g c a t g c t g  c g c g a c t a t g  c g g t c a c g a g  c g g c a g c a g c  
78 1  c t c t t c c t g c  a c a a t t c c a g  c t c g a c t g c a  c c t c a c c t c a  c a c c c c g g g a  a c t g g a a a t c  
841  c t g c a t t g g g  c c t g g g c c g a  a a a a a c c a c c  t g g g a a a t c g  g c a a g a t c c t  c a g t c t g g c g  
901  g a a c c c a c c g  t c g a g t t c c a  c t t c a a g a a c  a t t c g t c g c a  a a c t c a a t g t  c a g c t c c a g g  
961  c g a c t c g c c g  t g g c c a g g g c  c a t a c a a t t a  g a t c t c a t g a  c g c c c t a g c g  c a a c t t c a c g  

10 2 1  g g c c g a c a c g  a a g a g c a g a t  c g t c g t c a t c  g a t c c g g c c g  g c g a c a t a c a  g g c c g a g c a g  
10 8 1  c a c g g c c a g g  c t g g c c g a g c  c c t t g c c t g c  g c a t t c c a g c  c g g c t c g c g g  c c g g c t g g c t  
1 1 4 1  c a a c c c g a a c  a t c c g c c a g a  a c g c c t c c t g  g c t c t t g c c c  a a c t g c a a t c  g c a g g a c a a c  
1 2 0 1  g g c c t g c c t g  a t c a a a c t t c  g c t c a a c c c t  c a t t t c a a c g  c c t t c g c a g g  g a a a c c c a g a  
1 2 6 1  c g a t a t t c g a  c t c c c c t c c g  g c c a g c c a c c  t a t c a g a t t g  a t a g g c t a c t  a a t t a t c c a t  
13 2 1  a c t g g a t a t a  t a a a t a c c t g  g t c t t t t c g a  g g t a a c t t c c  g t g a a t a t a g  c c a t t g a t a a  
13 8 1  a a g a a a c a a c  t t c g a c g a t a  t a t g c c t g g a  a a a a a t g c a t  a t c c t g a g a g  c g a a g a t a t t  
14 4 1  c c g t g a t a a g  a a a g a t t g g g  a t g t c a g t g t  c a t c g g t g g c  a t g g a g a t c g  a t g g c t a c g a  
15 0 1  t g c a c t g a a t  c c c t a t t a c a  t g a t c c t g c a  g g a c g c c g a t  c t g a a t g a a a  g t g t c c g c g g  
15 6 1  c t g c t g g c g a  c t c t t g c c c a  c c a c c g g c c c  g a a c a t g c t g  g c c g a t a c t t  t t c c g g a a c t  
16 2 1  t c t g g c a g g t  g c t c c g g t t c  c c c g c g c g g a  g g a c a c c t g g  g a a c t c a g t c  g c t t t g c c a t  
16 8 1  c t g c c a g c a g  a g c g g t c g c c  c c t a t g c g t t  t t c c g a t c a a  t c g c t g a t c g  c c a t c c g c g c  
17 4 1  g g t t g t c c a c  t t t g g c g t c g  a g c g t g g c c t  g a a g c g a t t c  g t c a c g g t g a  c c a c g g t g g g  
1 8 0 1  c g t c g a g a a a  c t g c t c a t c a  g g c t c g g c c t  g g a t a t c c g g  c g a c t g g g c c  c a g c c a a g a c  
18 6 1  c a t c g g t g t c  g a g c g c g c c g  t c g c g c t g t c  c a t c g c c c t g  a a c c a c a a g a  c g c t g g a t g c  
19 2 1  c c t g g a g a c a  a c g g g c g c g g  c g t c c a a c c t  g t c a a a c t g a  t a g g t t g t c c  c g c c c a c g g a  
19 8 1  t t g a t a g a t g  a t t t g g c c c c  a c a c c g g g c a  c g c c c c g g t t  g c c g c t a c g a  g a c a c a g c t a  
2 0 4 1  t c a c c g c t c t  c a t c a t a a a t  a c a a t t g g a t  t g t g g a g a c g  a c a c a t g g a a  a c c g t g a c t g  
21 0 1  a t t t g c c a a a  a g g c g a c a c c  a c c g c a t t c g  c c a g c c g g g a  a a c c t g g c c a  g c c t t c a t c a  
21 6 1  c c g c c a c c g c  t c a g c a a g a c  t a t c t g a c a g  c c g a g g c g g g  c c t g c a g c g g  g c c c t g g a g c  
2 2 2 1  a g g g g t a c a g  c c a t t g g t a c  a t c g a c g g c a  g c c t c g a a g g  c g a a c g t c c c  t c c g a c t t c a  
2 2 8 1  c c a c a c a a c g  c c t g g c g g c g  c t g a a c g a a c  t g a t c g c c a g  c a g c g g c g t g  a a a c c g a t t t  
2 3 4 1  t c c a c g g c a a  c t t c a a g g c c  c c c c t g g g c a  g c g a t g t c g a  g g a t c t g g c c  g c t g c c g c c c  
2 4 0 1  t g g a c t a c g t  g a a a a a a g a g  g t c g a c a t c t  g t g c c g c c c t  g g g c g g t g c g  c c g c t g a t t g  
2 4 6 1  t c c a c g g a g g  t g g c g t g g t c  g a g c c g c g c c  t g g t c a a g g a  a g c c c g c c a g  a a g g g c c t g g  
2 5 2 1  a a c g c c t g g t  g g g c a a c c t g  c g t g a g c t g g  t g g c c t a t g g  c a a g g c c c g t  g g c g t c g a g a  
2 5 8 1  t c t g g c t g g a  g a a c c t g t g c
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2. The Pseudomonas fuscovagine UPB0736 quorum sensing locus (Chapter 4):

LOCUS
DEFINITION

ACCESSION
VERSION
KEYWORDS
SOURCE

ORGANISM

REFERENCE
AUTHORS

TITLE

JOURNAL
REFERENCE

AUTHORS
TITLE
JOURNAL

FEATURES
s o u rce

m is c  fe a tu r e

gene

CDS

gene

AM943857 2600 bp DNA l i n e a r  BCT 09-APR-2008
Pseudomonas f u s c o v a g in a e  quorum  s e n s in g  lo c u s ,  
s t r a in  UPB0736.
AM943857
AM943857.1 G I:182375401

Pseudomonas fu s c o v a g in a e  
Pseudomonas fu s c o v a g in a e
B a c te r ia ;  P r o te o b a c te r ia ;  G a m m a p ro te o b a c te ria ; 
P seudom onadales;
Pseudomonadaceae; Pseudomonas.
1

F e r lu g a ,S . ,  C a b r io ,L . ,  M a t t iu z z o ,M . , M a ra ite ,H .  and 
V e n tu r i ,V .
The p la n t  o p p o r t u n is t ic  p a th o g e n  Pseudomonas fu s c o v a g in a e  
c o n ta in s  a c o n s e rv e d  quorum s e n s in g  sys tem  in v o lv e d  i n  
v i r u le n c e  
U n p u b lis h e d  
2 (bases 1 t o  2600)
V e n tu r i ,V .
D ir e c t  S u b m iss io n
S u b m itte d  (27 -F E B -2008 ) V e n tu r i  V . ,  B a c te r io lo g y ,  
I .C .G .E .B ,  P a d r ic ia n o  99, 34012 T r ie s te ,  ITALY 

L o c a t io n /Q u a l i f ie r s
1 ..2 6 0 0
/o rg a n is m ="Pseudomonas fu s c o v a g in a e " 
/m o l_ ty p e = "g e n o m ic  DNA"
/s tra in = "U P B 0 7 3 6 "
/s p e c if ic _ h o s t= "C > ry z a  s a t i v a ”
/d b _ x r e f= " ta x o n :50340"
/c o u n try = "M a d a g a s c a r"
1 . . 2 6 0 0
/n o te = "q u o ru m  s e n s in g  lo c u s "
2 6 4 . . 9 8 0  
/ g ene="pfvR"
2 6 4 . . 9 8 0  
/qene~"pfvR"
/ fu n c t io n = " L u x R - fa m i ly  quorum s e n s in g  

s e n s o r / r e g u la to r "
/c o d o n _ s ta r t= l  
/ t r a n s l_ t a b le = l1 
/p ro d u c t= "p fv R  p r o t e in "
/p ro te in _ id = "C A Q 1 5 9 5 1 .1 "
/d b _ x r e f= " G I :182375406"
/ 1 r a n s la t  i  on="MTLLVMDELLRLSEMERFEDWLAHLKILTRKLGY 
SNFLIGLKPAPTDANQQVLIYSDYPDAWRTRYDAESYAAVDPWQHCL 
NANRPLLWDRDNYRRPSESEFFEEAAAHGLQQGLALPLHGPRGEAGML 
CLKPSESGPQATATMIESLPTATLLRDYAMEGMLKARIECSTPVHLTS 
REKEVLQWSAAGKTTWEISMILSCTTSAIDFHFKNIRRKFQVSSRQMA 
VLKAIQQKSIT P" 
com p lem en t(9 8 4 ..1 2 1 4 )
/g e n e = "rs a L "

158



ANNEX Sequences

CDS

gene

CDS

co m p le m e n t(9 8 4 ..1 2 1 4 )
/g e n e = "r sa L "
/ f u n c t io n = " t r a n s c r ip t io n a l  re p re s s o r  o f  th e  

quorum  s e n s in g  sys te m "
/c o d o n _ s ta r t= l  
/ t r a n s l_ t a b le = l l  
/p ro d u c t= "R s a L  p r o t e in "
/p ro te in _ _ id = "C A Q 1 5 9 5 2 .1 "
/d b _ x r e f= " G I :182375407"
/translation="MKLLNTSAVREVAHQAISLRLGLKQSQTEFWSRF 
GISQACASRIECTSQVPAPVYILLRLYLSGRLEES DLAQRPQ "
1 3 5 3 . .1 8 9 5  
/g e n e = " p f v l "
1 3 5 3 . .1 8 9 5  
/g e n e = "p fV I"
/ f u n c t io n = " N - a c y l  ho m o se rin e  la c to n e  s y n th a s e "
/c o d o n _ s ta r t= l
/ t r a n s l_ t a b le = l l
/ p r o d u c t= " p f v I  p r o t e in "
/p ro te in _ id = "C A Q 1 5 9 5 3 .1 "
/d b _ x r e f= " G I :182375408"
/ 1 ra n s 1a t  ion="MLISIDRRTNIDPQALNAMHKLRARIFKVKKMWD 
IPLINDMEIDGYDALDPYYMIINRDDEAGYVCGCWRILPTTGPNMLAH 
TFPELLHGHPAPCSDAIWELSRFAIELPDGNRFGFSQGTTQAIHAIVS 
YAIGCGVKQFVTVTTVGVEKMLIRLGLDDLQGGGGKPRCVSKSLMLHC 
TR"
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ANNEX Sequences

ORIGIN
1 t t g a c a t g a t  t a c g c c a g c g  c g c a a t t a a c  c c t c a c t a a a  g g g a a c a a a a  g c t g g g t a c c

61 t c c c a g a a c a  g g g a g g t t g t  g g c g g g t t g g  g c a a c t g a c t  a g t g t c t g c g  a c c g c t t g c t
1 2 1  t c t c g t c g g c  g a g c a c t c t a  t g c a c g t t g a  t t t c a a t g t g  c c a t g t a a c t  a t c t t a t c g a
181  c c c a c c t g a a  t g a g g g a g t c  g a t a t t c c c t  c g c g t g t t g t  c t c g c c a t g a  g a c c a c c g t c
24 1  a a a c g g t g c c  ta c g a g g a a g  g g a a t g a c c c  t a c t g g t a a t  g g a t g a g c t g  c t g c g a c t c a
30 1  g c g a a a t g g a  g c g c t t t g a g  g a c t g g c t g g  c t c a c c t t a a  a a t c c t g a c c  c g c a a g c t g g
36 1  g a t a c t c g a a  c t t t c t g a t c  g g t c t c a a g c  c t g c g c c c a c  t g a c g c c a a t  c a g c a g g t g c
421  t g a t c t a c a g  c g a c t a c c c t  g a t g c g t g g c  g c a c a c g t t a  c g a c g c c g a g  t c c t a c g c t g
481  c g g t c g a t c c  g g t g g t t c a g  c a c t g c c t g a  a c g c a a a c c g  g c c a c t g c t c  t g g g a c c g g g
541  a c a a c t a c c g  c c g t c c c t c a  g a g t c g g a a t  t c t t c g a a g a  a g c c g c c g c a  c a t g g c t t g c
601 a g c a a g g c c t  t g c g c t g c c c  t t g c a t g g t c  c g c g c g g c g a  g g c g g g c a t g  c t c t g c c t g a
661 a a c c c t c t g a  a a g t g g t c c g  c a a g c g a c t g  c t a c g a t g a t  c g a g t c c t t g  c c t a c g g c g a
72 1  c c c t g c t g c g  c g a t t a c g c g  a t g g a g g g g a  t g c t c a a g g c  a c g c a t c g a a  t g c t c c a c a c
78 1  c c g t g c a c c t  g a c g a g c c g g  g a a a a a g a g g  t g c t g c a g t g  g a g c g c a g c a  g g c a a g a c c a
841  c c t g g g a a a t  c t c g a t g a t t  c t g t c g t g c a  c g a c c t c g g c  c a t c g a c t t c  c a c t t c a a g a
901  a c a t c c g c c g  c a a g t t c c a g  g t c a g c t c g c  g c c a g a t g g c  g g t g c t c a a a  g c c a t c c a g c
961 a a a a a t c g a t  c a c g c c c t g a  g t g t c a c t g c  g g g c g t t g g g  c c a g g t c g c t  t t c c t c c a g g

1 0 2 1  c g a c c g c t g a  g g t a a a g g c g  c a g c a g g a t a  t a c a c c g g g g  c g g g c a c t t g  a c t g g t g c a t
1 0 8 1  t c g a t g c g g c  t g g c g c a g g c  c t g g c t g a t g  c c g a a c c t t g  a c c a g a a t t c  g g t c t g g c t c
1 1 4 1  t g c t t g a g g c  c c a g g c g c a g  g c t g a t g g c t  t g a t g g g c g a  c c t c g c g c a c  a g c t g a g g t a
1 2 0 1  t t g a g t a g c t  t c a t c g g g a a  t c a a t c c t g c  a a a a g c c g a a  a a a t t a a c a a  g t c t g g t t a a
1 2 6 1  t g t c g g c c a c  c t c c c a a a t t  a g g t a g g a t t  t t a t t t a a c c  g g c a t g a a t a  t a c c g t g g g t
1 3 2 1  g g c a a t t c a a  a c c c c t g c c g  g t a a t t g c c c  c t a t g c t t a t  c t c c a t t g a t  c g c c g c a c t a
1 3 8 1  a c a t c g a c c c  g c a a g c g c t g  a a t g c c a t g c  a t a a a c t t c g  g g c a c g t a t c  t t c a a a g t t a
1 4 4 1  a a a a g a t g t g  g g a c a t c c c g  c t g a t c a a t g  a c a t g g a g a t  c g a t g g c t a c  g a t g c g c t c g
1 5 0 1  a c c c c t a t t a  c a t g a t c a t c  a a c c g c g a t g  a c g a g g c g g g  c t a t g t c t g t  g g g t g c t g g c
1 5 6 1  g g a t a c t g c c  g a c c a c g g g c  c c g a a c a t g c  t g g c g c a t a c  c t t c c c c g a a  c t g c t g c a t g
16 2 1  g g c a t c c t g c  a c c g t g c t c c  g a c g c c a t c t  g g g a g c t g a g  c c g c t t t g c c  a t c g a g c t g c
1 6 8 1  c g g a c g g c a a  t c g g t t c g g c  t t c t c c c a g g  g c a c c a c g c a  g g c t a t t c a t  g c g a t c g t c a
17 4 1  g c t a t g c c a t  t g g c t g t g g c  g t g a a a c a g t  t c g t c a c g g t  g a c c a c g g t g  g g g g t c g a g a
18 0 1  a a a t g t t g a t  c c g c c t g g g g  t t g g a t g a c c  t g c a g g g g g g  g g g g g g a a a g  c c a c g t t g t g
1 8 6 1  t c t c a a a a t c  t c t g a t g t t a  c a t t g c a c a a  g a t a a a a a t a  t a t c a t c a t g  a a c a a t a a a a
1 9 2 1  c t g t c t g c t t  a c a t a a a c a g  t a a t a c a a g g  g g t g t t a t g a  g c c a t a t t c a  a c g g g a a a c g
1 9 8 1  t c t t g c t c g a  g g c c g c g a t t  a a a t t c c a a c  a t g g a t g c t g  a t t t a t a t g g  g t a t a a a t g g
2 0 4 1  g c t c g c g a t a  a t g t c g g g c a  a t c a g g t g c g  a c a a t c t a t c  g a t t g t a t g g  g a a g c c c g a t
2 1 0 1  g c g c c a g a g t  t g t t t c t g a a  a c a t g g c a a a  g g t a g c g t t g  c c a a t g a t g t  t a c a g a t g a g
2 1 6 1  a t g g t c a g a c  t a a a c t g g c t  g a c g g a a t t t  a t g c c t c t t c  c g a c c a t c a a  g c a t t t t a t c
2 2 2 1  c g t a c t c c t g  a t g a t g c a t g  g t t a c t c a c c  a c t g c g a t c c  c c g g g a a a a c  a g c a t t c c a g
2 2 8 1  g t a t t a g a a g  a a t a t c c t g a  t t c a g g t g a a  a a t a t t g t t g  a t g c g c t g g c  a g t g t t c c t g
2 3 4 1  c g c c g g t t g c  a t t c g a t t c c  t g t t t g t a a t  t g t c c t t t t a  a c a g c g a t c g  c g t a t t t c g t
2 4 0 1  c t c g c t c a g g  c g c a a t c a c g  a a t g a a t a a c  g g t t t g g t t g  a t g c g a g t g a  t t t t g a t g a c
24 61 g a g c g t a a t g  g c t g g c c t g t  t g a a c a a g t c  t g g a a a g a a a  t g c a t a a g c t  t t t g c c a t t c
2 5 2 1  t c a c c g g a t t  c a g t c g t c a c  t c a t g g t g a t  t t c t c a c t t g  a t a a t c t t a t  t t t g a c g a g g
2 5 8 1  g a a a t t a a t a  c g t t g t a t t g
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