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Abstract

This project investigates how isotope systems respond to changes in continental 

weathering processes and the consequences for the chemical composition of the oceans. 

Both experimental and natural data indicate that Li and Mg stable isotope systems 

preserve information on the mineral reactions controlling water chemistry. Dissolution 

experiments indicate that primary mineral dissolution has little effect on Li, but does 

fractionate the isotopes of Mg, whereas secondary mineral formation involves 

preferential uptake of the lighter isotopes of both Li and Mg. Glacial regions have low 

chemical weathering rates so their rivers should, in principal, have Li isotope 

compositions (8 7Li) that are similar to those of the underlying rock. In practise, glacial 

rivers in Greenland have 8 7Li values that differ significantly from the source rock. 

Subglacial uptake of 6Li by iron oxyhydroxides appears to influence the riverine Li 

isotope composition. In contrast, the principal control on Mg isotopes in glacial rivers 

appears to be primary mineral weathering. Carbonate dissolution dominates the 

chemistry of glacial rivers, and this phase possesses a light Mg isotope composition 

imparting this signature to the Greenland rivers. Both the Li and Mg isotope 

compositions of glacial rivers are similar to their respective global riverine averages, 

suggesting that the impact of glaciation on the Li and Mg composition of seawater may 

be small. The Re-Os radiogenic isotope system is also a useful tracer of continental 

weathering, its composition in the oceans being sensitive to changes in the flux and 

composition of continental weathering. Laterites are widespread in tropical regions and 

are shown to contain high concentrations of highly unradiogenic Os. Consequently, 

their subsequent weathering and erosion has potential to significantly affect the Os 

isotope composition delivered to the oceans.
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Chapter 1
Introduction

The aim o f  this thesis is to investigate how changes in climate and lithology affect 

silicate weathering processes and in turn how this influences the continental weathering 

signal delivered to the oceans. This investigation is divided between the study o f  

natural systems such as rivers and weathering profiles, and experimental systems where 

external variables such as temperature and p H  can be controlled. Primary mineral 

dissolution and secondary mineral precipitation are two o f the most important 

processes that control aqueous geochemistry. By investigating how these weathering 

processes affect isotope systems in controlled experimental environments it is hoped 

that such information can shed light on their behaviour in natural systems.

1.1. Silicate weathering

1.1.1. Silicate weathering reaction

Silicates constitute around 90% of the rocks exposed at the Earth’s land surface 

(G arrels  and M a c k en zie , 1971). The weathering of calcium and magnesium-silicate 

rocks can cause long term changes in the Earth’s climate by altering the CO2 

concentration of the atmosphere. Silicate weathering involves hydrolysis reactions that 

consume the reactant species to form weathering products (W hite , 2003):

CaSi03 + 2 H 2C 03 = Ca2+ + 2 HCOfl + S i0 2 + H 20  Equation 1.1

The dissolution of silicates produces dissolved species such as Ca2+, Mg2+ and 

bicarbonate (HCCV) ions, which are subsequently transported to the oceans via rivers. 

The bicarbonate ion is part of the carbonic acid system (along with H2CO3 and CO32',
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Equations 1.2-1.4) which buffers the pH of seawater over short timescales. The 

activities of these species in solution are dependent on the solution pH (Appelo and 

Postma, 2005). At the pH of seawater (~pH 8) the dominant species is HCO3 ', which 

is free to combine with Ca to form calcite (Equation 1.5) or Mg to form dolomite. 

The result of the continental weathering of Ca and Mg-silicate rocks is that 2 moles of 

CO2 are drawn down; one mole is released back to the atmosphere while one mole is 

stored over a long time period as carbonates (Berner et al., 1983; Walker et al., 

1981). Thus, the weathering of Ca and Mg silicates causes a net drawdown of CO2 

from the atmosphere in a process that operates on a timescale of millions of years 

(Walker et al., 1981). For this reason silicate weathering can only affect the Earth’s 

climate over geological time scales.

C 02(g) + H 20  <=> H 2C 03 (dominant at pH<6.3) Equation 1.2

H 2C 03 <=> H + + H C03~ (dominant at pH>6.3, <10.3) Equation 1.3

HC03~ <=> H + + C 0 3 ~ (dominant at pH>10.3) Equation 1.4

Ca2+ + 2 HC03 = CaC03 + H 20  + C 02 Equation 1.5

The whole process of calcium-silicate dissolution and the associated drawdown of CO2 

can be summarised by the following equation (U r e y , 1952):

CaSi03 + C 02 o  CaC03 + S i02 Equation 1.6

Although the combination of magnesium with bicarbonate to form dolomite (Equation 

1.7) does in theory cause CO2 drawdown and may have been important in the ancient
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oceans, recent studies have shown that this process is not important today (Hardie, 

1996; Holland, 2005)

Ca1* + M g2* + 2CO, + 2H-,0 = MgCa(CO,)2 + AH* Equation 1.7

I
Instead most of the removal of dissolved Mg from the oceans occurs during exchange

0-4-with Ca in mid-ocean-ridge basalts or by precipitation as magnesium silicates e.g. the 

precipitation of Mg-saponites (Gislason et al., 2006), as in Equation 1.8.

3A65Mg2+ + 0.33Als+ + 3.61Si02 + A.66H20  = Mg3l65Al033Si367O10(OH)2 +7.32iT

Equation 1.8

This exchange at mid ocean ridges (MOR) can be simplified to:

Mg2+ + Ca-basalt —» Ca2+ + Mg-basalt Equation 1.9

This exchange between magnesium and calcium is so efficient that it has been proposed 

that Mg indirectly causes the drawdown of CO2 by liberating Ca2+ into solution which 

can then react as in Equation 1.5 (Stanley and Hardie, 1999).

The weathering of carbonates is generally faster than that of silicate rocks 

(Meybeck, 1987), but carbonate dissolution has no long term effect on the composition 

of the Earth’s atmosphere. This is because the carbonate weathering reaction and 

formation of carbonates in the oceans consumes and releases one mole of CO2 

(Equation 1.10), thus unlike the silicate weathering process there is no net change in 

atmospheric CO2 .
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Ca2 + C 02 + H 20  = CaC03 + 2 H + Equation 1.10

1.1.2. Silicate weathering rate

There are many different silicate minerals and they have different weathering 

susceptibilities depending on their chemical composition (intrinsic properties). Also, a 

mineral will weather more or less rapidly depending on the climate that it is subjected to 

(extrinsic properties) (W hite , 2003). Knowing the weathering rate of these minerals is 

important; Ca or Mg-silicate minerals that weather more easily will consume CO2 more 

rapidly than those minerals that weather slowly. Quartz is considered to be the least 

reactive mineral, at the other end of the scale minerals such as forsterite and anorthite 

are less stable at Earth surface conditions and hence will weather far more easily 

(B r a n t l e y , 2003).

Extrinsic factors such as climate have an important influence over the chemical 

weathering rate, changes in temperature cause changes in the reaction rate of most 

chemical reactions including silicate hydrolysis. Surface runoff is also important 

(G a illa r d et  et al., 1999b); minerals will chemically weather only in the presence of 

water so increased precipitation will increase the timescales of mineral-water contact. 

Higher runoff also has the effect of flushing reactants such as HCO3 ' and organic acids 

through the system faster, and diluting solutions so systems are further away from 

equilibrium (W hite , 2003). Results of a study by Gaillardet et al. (1999b) demonstrate 

a linear correlation between runoff and weathering rate, and the same study also shows 

a general increase in weathering rate with temperature. Consequently, it seems likely 

that if both temperature and runoff are increased then the silicate weathering rate will 

also increase, causing more CO2 to be drawn down and deposited as carbonates. This
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will, in turn, lower the CO2 concentration in the atmosphere and so decrease 

temperature and runoff, leading to a reduction in silicate weathering rate. In practise 

this negative feedback loop is thought to occur over millions of years and helps to keep 

the Earth’s climate relatively constant (W alker et al., 1981).

Another factor that affects the chemical weathering rate is the rate of physical 

weathering. In regions where physical weathering is high there is a high production rate 

of detrital sediment. This creation of new unaltered surfaces increases the potential for 

chemical weathering. Studies have shown that in mountainous regions with high runoff 

the chemical weathering intensity is enhanced simply because the yield of sediment in 

these regions is high (Gaillardet et al., 1999a; West et al., 2005).

1.1.3. Riverine systems

Much of the continental material produced by weathering is transported to the oceans by 

rivers, thus their study is crucial in providing information on the continental weathering 

signal that is transferred to the oceans. Lithology plays a key role in controlling the 

chemistry of rivers, particularly with regards to major element compositions. The ionic 

composition of rivers is generally dominated by Ca2+ and HCO3', and they can also have 

substantial concentrations of Mg2+, Na+, K+, Cl" and SO42' (Meybeck, 2003). The 

production of HCCV occurs during the weathering of silicate minerals by carbonic acid 

and during the dissolution of carbonate minerals (Section 1.2.1.). This carbon can only 

be removed from the atmosphere over long timescales by combination with calcium or 

magnesium in the oceans and deposition and burial as carbonates. The lithological 

control over riverine systems is highlighted by the difference in chemistry between 

rivers that drain monolithological catchments (Meybeck, 2003). For example rivers 

that drain carbonate rocks will have high concentrations of Ca , rivers draining
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evaporitic rock will have high Cl' and S O /', those draining alkaline igneous rocks may 

have high Na+ concentrations. Large rivers generally flow over mixed lithologies so 

that the lithological influence is less obvious. The compositions of these rivers will be 

dominated by the most easily weatherable lithologies; for example evaporite rocks and 

carbonates have been shown to dissolve between 1 0  and 1 0 0  times faster than silicates 

(D upre  et al., 2003; M ey b ec k , 1987). Glacial rivers are an example of where this 

preferential dissolution can be important; Ca2+ dominates the cation content in these 

rivers even if the underlying bedrock is silicate (A n d e r so n  et al., 1997; Tr a n t er , 

2003). Estimating the relative proportions of silicate to carbonate weathering is 

important; only silicate weathering causes drawdown of CO2 over geological 

timescales. This is usually performed by calculating element ratios such as Ca/Na and 

Mg/Na (G a illa r d et  et al., 1999b). The benefit of using element ratios is that it allows 

direct comparison between rivers from different climatic regimes.

As described above, easily weathered minerals, such as carbonates, can have a 

disproportionate influence on river chemistry. The same can be said of easily weathered 

silicates; the result is that the dissolved load of a river does not always reflect the 

chemistry of the bedrock. This effect is termed incongruent weathering; that is, those 

minerals that are least stable at Earth surface temperatures and pressures will react more 

readily and their composition will dominate river chemistry. Moreover, individual 

minerals themselves may not always dissolve congruently; for example the calcium rich 

cores of plagioclase may weather more rapidly than the more sodic rims leaving 

plagioclase rich watersheds with a higher Ca:Na ratio than predicted from the bedrock 

(W hite , 2003). Also, there is a range of element mobilities during weathering, and 

elements such as sodium, calcium and magnesium are more mobile than elements like 

iron and aluminium (G isl a so n  et al., 1996). As a consequence the dissolved load will
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always carry a proportionally higher amount of mobile elements than the weathered 

bedload, which will contain a higher proportion of immobile elements such as iron, 

titanium and zirconium (G a illar d et  et al., 2003). The suspended sediment is 

generally more weathered than the bedrock and has developed a higher proportion of 

secondary minerals such as clays. Due to the high sorption capacity and relative large 

surface area of the clays, the suspended sediment also often has high concentrations of 

mono and divalent cations, including transition metal ions such as copper, vanadium 

and cadmium (Pea c o c k  and Sh e r m a n , 2004; Pea c o c k  and Sh e r m a n , 2005; 

Sh e r m a n  and Pea c o c k , 2004). While incongruent weathering is illustrated by the 

difference in the chemistry of the bulk rock and solution, it is also shown by differences 

in isotope ratios between riverine phases. An example of this behaviour is provided by 

the lithium isotope system; during secondary mineral formation the light isotope 6Li is 

retained in secondary phases leaving the dissolved phase isotopically heavy (H u h  et al., 

1998). As a result the lithium composition of the dissolved load is always isotopically 

heavy relative to the bedrock composition. This incongruent weathering is common 

where the dominant weathering regime is chemical. The weathering congruence 

increases where the physical weathering intensity rises and intrinsic properties have less 

control over the weathering susceptibilities. Glacial regions are an example of areas 

where physical weathering dominates.

1.2. Cenozoic climate

1.2.1. Climate change

The climate of the Earth is not static and is controlled by many different processes that 

operate over different timescales. Changes to the Earth’s climate have been inferred

7



Chapter 1 Introduction

from observations in the rock record, both marine and terrestrial. The Cenozoic climate 

record has been reconstructed using variations in the isotopic composition of marine

1 Rsediments and organisms, one such proxy is the oxygen isotope record ( 8  O) (Za c h o s  

et al., 2001). Records of oxygen isotopes have shown that over the last 50 million years 

the 8 180  ratio of the oceans (inferred from benthic foraminifera) has risen, representing

global cooling over this time period (see Fig. 1.1).
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Fig. 1.1 Oxygen isotope composition of seawater over the last 60Ma. Data taken from compilations by 

Zachos et al. (2007) and Molnar (2004).

1RAs can be seen from Fig. 1.1 the rise in the 8  O ratio is not consistent, it increases 

throughout the Eocene (56-33Ma) and then rises sharply at the Eocene-Oligocene 

boundary (33Ma). There is then a decrease in the oxygen isotope value due to a 

warming period in the Miocene (23-15Ma) before the isotope ratio increases again at 

around 15 million years ago, and increases rapidly between 4 and 2 million years ago.
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This cooling trend through the Cenozoic has continued on until the present day 

(anthropogenic global warming excluded).

1.2.2. Causes o f climate change

Changes in climate over the Cenozoic have occurred on both long and short timescales. 

Short timescale changes such as the waxing and waning of the ice sheets during the last 

2-3 million years are caused by changes in the Earth’s orbital shape (eccentricity), axial 

tilt (obliquity) and the wobble of the Earth as it spins on its axis (precession); these 

effects are known as Milankovitch cycles ( B e r g e r , 1988). Over longer timescales 

changes in the atmospheric levels of CO2 have widely been recognised as a potential 

cause of this decrease in temperature.

Photosynthesis Silicate weathering

CaC03
depositionBurial

Meta morph ism 
Diagenesis

Metamorphism
Diagenesis

Weathering

Volcanism

Subduction Subduct ion

CO.

Mantle

Carbonate C 
in sediments

Organic C 
in sediments

Fig. 1.2. - The long term carbon cycle (Berner 2003)

Atmospheric CO2 concentrations are controlled by the long term carbon cycle which 

can be divided into two sub cycles. On the one hand carbon cycles biologically via the 

formation of organic matter during photosynthesis and its burial as organic rich
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sediments, and on the other hand carbon cycles chemically during silicate weathering 

and the precipitation of carbonates; these processes are illustrated in Fig. 1.2. (B erner,

2003). Carbon dioxide is a greenhouse gas; it helps to trap solar radiation in the Earth’s 

atmosphere thus keeping the atmosphere warm. By decreasing the concentration of 

CO2 in the atmosphere more solar radiation can escape and so the atmosphere will cool. 

Records from boron isotopes suggest that the CO2 concentration in the atmosphere has 

decreased over the Cenozoic (P earso n  and P alm er, 2000) and that decreases in the 

CO2 concentration at ~15Ma and 3Ma coincide with intensification of the Antarctic and 

Northern hemisphere glaciations (Fig. 1.3.).
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Fig. 1.3 - The record of carbon dioxide concentration in the atmosphere over the last 25 million years 

(Pearson & Palmer 2000)

Changes in the cycle of carbon can result from factors such as changes in mantle 

activity and volcanism (volcanism will cause outgassing of CO2) and changes in 

primary productivity (enhanced primary productivity causes more CO2 drawdown). 

During the late Cretaceous mantle activity was greater, and large amounts of oceanic
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plateau basalt were produced so a high atmospheric CO2 concentration is thought to 

have been maintained (Tajika, 1998). In the Cenozoic mantle activity decreased so less 

CO2 was outgassed. This is thought to be one reason why CO2 levels dropped, 

particularly in the early stages of the Cenozoic. Primary producers utilise CO2 during 

photosynthesis to create organic compounds and oxygen, thus periods of high primary 

production will cause large quantities of CO2 to be drawdown. Such periods are 

inferred from sharp decreases in atmospheric CO2 at 15Ma and 4-2Ma (Pearson and 

Palmer, 2000) and were probably caused by enhanced deep water formation. Section

1 .1  described silicate weathering and the associated drawdown of CO2 ; enhancement of 

the silicate weathering rate is another possible cause of the decrease in CO2 

concentrations and climate change during the Cenozoic.

1.2.3. Weathering and climate change

It has been proposed that the change in the concentration of atmospheric CO2 

and associated change in climate that occurred during the Cenozoic may be related to an 

increase in the rate of silicate weathering in response to the uplift of mountainous 

regions such as the Himalayas and the Andes (Blum et al., 1998; Ruddiman and 

Prell, 1997). These uplifted terrains erode relatively rapidly due to steep slopes, lack 

of vegetation, possible glaciation and active faulting. Coupling the exposure of 

unaltered rock with greater monsoonal circulation enhances chemical weathering, as 

does the production of fine grained little altered sediment (Ruddiman and Prell,

1997). In theory such orogenically enhanced weathering could cause an increase in the 

net drawdown of CO2 from the atmosphere, as has been inferred in the study of Pearson 

and Palmer (2000).
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This hypothesis linking Cenozoic climate to enhanced silicate weathering is 

supported by the isotope records of strontium and osmium in seawater. The strontium 

and osmium isotope systems have a number of similarities; for example, they are 

isotopically homogeneous in seawater (Levasseur et al., 1998; Sharma et al., 1997) 

and they have a radiogenic end member that is sourced from continental weathering 

(Ravizza and Zachos, 2003). The oceanic record of strontium isotopes during the 

Cenozoic is well established with a rapid rise of the 87Sr/86Sr ratio over the past 40Ma 

(Fig. 1.4, (Depaolo and Ingram, 1985; Hess et al., 1986; Richter and Depaolo, 

1988)). The osmium isotope record also shows that seawater has become increasingly 

radiogenic during this time (Pegram and Turekian, 1999). As both isotope systems 

become increasingly radiogenic it must signify a change in the continental weathering 

input, either with respect to the flux of material or to the composition of that material. 

This change in the weathering signal is commonly explained by increasing amounts of 

uplift such as that caused by the Himalayas (Raymo et al., 1988) and the onset of 

glaciation (Armstrong, 1971). Both mechanisms can cause higher continental 

weathering rates; this change in flux would change the balance between continental and 

hydrothermal strontium (or osmium), leading to an increase in the 87Sr/86Sr (or

1 87 188Os/ Os) ratio. Unfortunately there are problems with using the strontium and 

osmium isotope systems to infer changes in weathering rate of silicates. As already 

stated a change in the oceanic composition can be caused by a change in the flux or a 

change in the composition of continental material, not all rocks have the same isotopic 

composition (Esser and Turekian, 1993; Palmer and Edmond, 1992). High levels of 

strontium are associated with carbonate rocks and high levels of osmium with organic 

rich sediments (Palmer and Edmond, 1992; Pierson-Wickmann et al., 2002). A 

study of Himalayan rivers by Blum et al. (1998) shows that the relative contributions of
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silicate weathering to the riverine flux of HCCV is just 18%, the remainder originates 

from carbonate weathering. Similar studies also show the importance of carbonate 

dissolution in controlling the composition of strontium derived from Himalayan 

weathering (H a r ris  et al., 1998). This shows that while the increased 87Sr/86Sr ratio 

may be related to Himalayan uplift it relates less to changes in the Earth’s climate 

because carbonate dissolution does not affect the atmospheric CO2 composition over 

long time periods. Thus the preferential weathering of certain lithologies such as 

carbonates or organic rich sediments can obscure the seawater record for a specific 

isotope system; changes in the isotopic composition may represent changes in the 

dominant weathering lithology not changes in the silicate weathering rate. For this 

reason other isotope proxies have been investigated such as lithium and magnesium, the 

compositions of which are less dependent on the underlying lithology.
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Fig. 1.4 - Variations in the 87Sr/86Sr of seawater over the past 70 million years. Data taken from DePaolo 

& Ingram, (1985), Hess et al. (1986), and Richter et al. (1988).
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1.2.4. Modern glacial regions

Global cooling during the Cenozoic led to the formation of permanent ice sheets in the 

Southern and Northern hemispheres. The formation of this ice has a global impact on 

the intensity of weathering and the erosional flux delivered to the oceans. Firstly the 

formation of large volumes of ice reduces the volume of liquid water in the oceans and 

consequently causes a drop in sea level. Falling sea levels expose more continental 

crust to be weathered and eroded; over the past 5Ma twice as much terrigenous 

sediment has accumulated on the ocean floor than over any other similar time period 

(Hay et al., 1988; Molnar, 2004). The highest increase in sedimentation rates occur 

between 4 and 2Ma, at the same time as the intensification of Northern Hemisphere 

Glaciation (NHG). There is also a less obvious increase in sedimentation rates at 

~15Ma which coincides with oxygen isotope data that imply global cooling (Molnar, 

2004) and a fall in atmospheric CO2 (Pearson and Palmer, 2000); this is coincident 

with the expansion of the Antarctic ice sheet. In addition to the formation of ice sheets, 

glaciers also occur in high mountains such as the Himalaya and Andes; the presence of 

these glaciers enhances the physical weathering rate to much greater levels than would 

be caused by mountain rivers (Anderson et al., 1997). Today, glaciers are found on 

every continent and in 47 different countries. Major glaciers occur in Antarctica, 

Greenland, Iceland, Canada and Patagonia.

The majority of this ice is in Antarctica (-90% of the total ice on Earth) with the 

next largest ice sheet being on Greenland. The high physical weathering potential of 

glaciers is caused by the fact that when ice builds up to a sufficient thickness it will 

move downhill (or flow) due to the force of gravity overcoming the resistance to 

movement of the ice (Leeder, 1999). As the glacier moves downhill its base and sides 

exert great forces causing the rock beneath it to be ground to fine silt and clay sized
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particles (or rock flour). This sediment is carried within the ice until it reaches the front 

of the glacier and is deposited during melting. Glaciers produce huge quantities of this 

fine grained sediment which may then be deposited as wind blown loess, or carried as 

outwash within the proglacial rivers. While chemical weathering in glacial regions is 

less intense, this relatively fresh sediment has a high chemical weathering potential due 

to its high surface area and strain experienced (Petrovich, 1981). Chemical 

weathering can also occur in subglacial regions, this is dependent on whether there is 

liquid water at the base of the glacier. The source of this water is either from surface 

melting and transfer englacially (within the glacier) to the ice-rock interface along 

crevasses and moulins (Fig. 1.5. (Zwally et al., 2002)) or by melting at the ice-rock 

interface due to the fact that water is more dense than ice. This subglacial water creates 

pressure and can buoyantly support the glacier, if this pressure is close to the ice 

flotation pressure then the glacier will flow at relatively fast rates ( ~ 1  km/year) 

(Clarke, 2005). A number of studies have shown that there is a correlation between 

surface melting and ice sheet acceleration due to penetration of water to the ice-rock 

interface (McMillan et al., 2007; Zwally et al., 2002). The presence of subglacial 

water is important because it will have had a longer water-rock contact time than water 

that has formed on top of the glacier itself (supraglacial water) so will have experienced 

more chemical weathering. Though still dilute, the high volume of water and higher 

than expected water-rock contact time means that the chemical denudation rates in 

glacial catchments can be similar to denudation rates in non-glacial catchments with 

similar discharge (Anderson et al., 1997). Silicate denudation rates are generally much 

lower however due to the low chemical weathering intensity (Anderson et al., 1997). 

These properties are reflected in the chemical compositions of glacial rivers; they are 

generally dilute, high in Ca2+, K+ and SC^2' (which originate from easily weathered

15



Chapter 1 Introduction

trace phases and the oxidation of sulphides) and low in silicon relative to non-glacial 

rivers (Tranter, 2003), they also carry a relatively high amount of suspended 

sediment. This difference in chemistry combined with similar denudation rates to non 

glacial regions suggests that the intensification of glaciation in the Cenozoic had the 

potential to alter the composition of continentally derived runoff. Chapters 3 and 4 of 

this project investigate the composition of rivers with respect to lithium and magnesium 

isotopes and compare their behaviour to that from non-glacial rivers. The aim is to 

assess whether global glaciation could have affected the composition of continental 

runoff.
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Fig. 1.5 - Schematic of glaciological features including surface lakes, moulins and crevasses (Zwally et 

al. 2002)

1.3. Weathering processes in experimental systems

1.3.1. Experimental systems

Understanding how isotope systems behave in the natural environment can be 

complicated by the number of factors that can influence their behaviour. For example 

the magnesium composition of river waters is dependent on the underlying lithology,
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weathering processes such as the formation of secondary minerals (Galy et al., 2002; 

Tipper et al., 2006) and biological factors such as the uptake of magnesium by plants 

(Bi et al., 2008; Black et al., 2006). For this reason isolating how one factor such as 

secondary mineral formation affects the magnesium system is difficult; the same is true 

for all isotope systems in the natural environment that are controlled by multiple factors. 

A way to counter this problem is to set up experimental systems that can be controlled 

yet still mimic certain natural conditions.

Such experimental systems can be either open or closed; closed system 

experiments take place in batch reactors, a self contained setup where nothing is input 

or output from the system unless specifically changed by the user. Open system 

experiments take place in through-flow reactors, where there is continual input and 

output of solution to and from the reactor. There are advantages and disadvantages to 

each approach. For example, over time closed system experiments lead to a build up of 

high elemental concentrations in solution and so promote the precipitation of secondary 

minerals. They are also far simpler to set-up and run, and depending on the apparatus 

used can be much less expensive. Open system experiments can maintain far lower 

concentrations in solution (depending on the flow rate used) so are ideal for experiments 

carried out far from equilibrium such as those designed to determine dissolution rate. 

When taken together with the benefits of being able to control the flow rate of solution, 

this means that most experimental work today is carried out using through flow reactors.

Studies involving the determination of dissolution rates of minerals and rocks 

are extensive, and include many of the major rock forming minerals, including feldspars 

(Anbeek et al., 1994; Blake and Walter, 1999; Brantley and Stillings, 1996; 

Chardon et al., 2006; Holdren and Speyer, 1986; Kobayashi et al., 2001; Oelkers 

and Schott, 1995; Oelkers and Schott, 1998; Petrovic, 1976; Petrovic et al.,
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1976; Shotyk and Nesbitt, 1992; Stillings and Brantley, 1995; Stillings et al., 

1996; Welch and Ullman, 1996), forsterite (Awad et al., 2000; Chen and Brantley, 

2000; Giammar et al., 2005; Grandstaff, 1978; Kobayashi et al., 2001; Liu et al., 

2006; Oelkers, 2001; Pokrovsky and Schott, 2000; Rosso and Rimstidt, 2000; 

Vanherk et al., 1989; Wogelius and Walther, 1991; Wogelius and Walther, 

1992), basalt glass (Berger et al., 1994; Berger et al., 1988; Crovisier et al., 1987; 

Crovisier et al., 1983; Daux et al., 1997; Gislason and Oelkers, 2003; Oelkers and 

Gislason, 2001; Techer et al., 2001; Wolff-Boenisch et al., 2006; Wolff-Boenisch 

et al., 2004) and quartz (Anbeek et al., 1994; Blake and Walter, 1999; Murphy and 

Helgeson, 1989; Poulson et al., 1997). Consequently, today there is a great deal of 

information concerning the dissolution rates of rock forming minerals and natural 

glasses under different pH and temperature conditions and different solution 

compositions.

1.3.2. Investigation o f  isotopic changes in laboratory experiments

While there are abundant dissolution rate data from laboratory experiments, 

there has so far been very little work that has investigated how isotope systems behave 

during water-mineral interactions in a controlled environment. There are two scenarios 

that will be investigated in the current project; the behaviour of isotope systems in far 

from equilibrium conditions where dissolution of the primary mineral is the only 

process occurring, and the behaviour at near to equilibrium conditions where secondary 

mineral formation may take place.

The question of whether isotopes fractionate during mineral dissolution is as yet 

unanswered. In the case of far from equilibrium mineral dissolution, fractionation 

appears unlikely as demonstrated for lithium isotopes during the dissolution of basalt
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(Pistiner and Henderson, 2003). However, slight preferential release of one isotope 

during dissolution has been observed for iron isotopes during the dissolution of 

hornblende in the presence of organic ligands (Brantley et al., 2004) and remains a 

possibility. There is, in theory, more potential for the precipitation of secondary 

minerals to cause isotopic fractionation, particularly for the lithium and magnesium 

systems which have been shown to fractionate during the formation of secondary 

minerals in rivers (Huh et al., 1998; Tipper et al., 2006). Silicate minerals have 

different chemical compositions and are stable at different conditions, and different 

silicate minerals have different isotopic compositions. For example analyses of 

ultramafic mineral separates show that olivine always has a higher 6 7Li value than 

pyroxene (Seitz et al., 2004), while biotite often has a far more radiogenic osmium 

composition than minerals such as quartz and feldspar (Peucker-Ehrenbrink and 

Blum, 1998). The dissolution of one mineral and formation of a secondary phase 

should cause an uptake of (for example) lithium that has a different isotopic 

composition to that of the dissolving mineral, thus changing isotopic composition of the 

solution. There have, as yet, been very few attempts to investigate the isotopic shift 

associated with the formation of secondary minerals. A study of the behaviour of 

lithium isotopes during smectite formation (Vigier et al., 2008) and iron isotopes 

during haematite formation (Skulan et al., 2002) give mixed results; lithium being 

fractionated while iron is not. It is hoped that this investigation will shed new light on 

the question of how primary mineral dissolution and secondary mineral formation will 

potentially affect the behaviour of isotopic tracers of weathering processes such as Li 

and Mg. Ultimately this information can be used to assess how these isotope systems 

behave in the natural environment such as the glacial river catchments in Greenland.
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1.3.3. The dissolution o f  minerals in seawater

The continental weathering flux is comprised of both the dissolved load and suspended 

sediment; much of the previous work investigating continental weathering has focussed 

on the dissolved load of rivers as this dissolved material can directly influence seawater 

composition (Dupre et al., 2003; Gaillardet et al., 1999b; Meybeck, 1987). 

However the total suspended sediment flux is not trivial; an estimated 20 billion tonnes 

of sediment is transported by rivers every year (Milliman and Syvitski, 1992). Much 

of this sediment is buried but some is also reworked and subjected to further weathering 

thus can continue to influence seawater chemistry. High relief and tectonically active 

islands contribute >45% of river suspended material that is carried to the oceans via 

rivers (Milliman and Syvitski, 1992), much of this material is basaltic in origin. For 

example detrital sediment from Icelandic glacial rivers has been shown to have a high 

basaltic glass content (Stefansdottir and Gislason, 2005) and though this glass may 

already be weathered it still readily dissolves on contact with seawater (Gislason et al., 

2006). The ubiquity of basalt glass at mid ocean ridges and on the sea floor as well as 

that which is continentally derived, together with its high reactivity means that the 

interaction between basalt glass and seawater is globally important. Unfortunately 

experimental studies of the dissolution of basalt glass in seawater at low temperature are 

limited (Crovisier et al., 1987; Staudigel et al., 1998; Stefansdottir and 

Gislason, 2006). Consequently, part of this thesis work also involved an experimental 

investigation of the dissolution of basalt glass in seawater in order to determine 

dissolution rates and to assess the behaviour of the lithium and magnesium isotope 

systems during this interaction.
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1.4. Isotope systems as a tracer of continental weathering

Many natural isotopes (both radiogenic and stable) have been used to study processes 

that range from solar system formation, to mantle differentiation, to weathering and 

climate change yielding information on both mechanisms and timescales. However, 

each isotope system responds in a different way, and for radiogenic systems on different 

timescales. Thus it is crucial to use a system that is appropriate to the application. The 

focus of this thesis is to study the effects of weathering on key isotope systems used as 

proxies of climate change in marine sedimentary archives. Amongst those isotope 

systems that have been used in the study of weathering are the radiogenic systems Rb-Sr 

(Galy et al., 1999; McArthur et al., 2001; Palmer and Edmond, 1989; Viers et al., 

2000), Sm-Nd (Burton et al., 1999b; Vance and Burton, 1999), Lu-Hf (Bayon et 

al., 2006; van de Flierdt et al., 2002), Re-Os (Burton et al., 1999a; Esser and 

Turekian, 1993; Levasseur et al., 1999; Peucker-Ehrenbrink and Blum, 1998; 

Ravizza and Turekian, 1992; Sharma et al., 1999) and U-series (Pogge von 

Strandmann et al., 2006; Riotte et al., 2003) and the stable isotope systems of Li 

(Chan et al., 1992; Huh et al., 1998; Pistiner and Henderson, 2003; Teng et al., 

2004), C a , Mg (Tipper et al., 2006; Young and Galy, 2004) and more recently Si (De 

La Rocha et al., 2000; Georg et al., 2007).

1.4.1. Stable isotope systems

The benefits of using a stable isotope system, such as those of lithium and magnesium, 

is that the isotope compositions are dependent on both the composition of the 

underlying bedrock as well as the processes of weathering. These systems show 

significant fractionation due to the large relative mass differences between isotopes.
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1.4.1.1 Lithium

Lithium has two stable isotopes in approximate abundances of 6Li -  7.5% and 7Li 

-92.5%. Because of its relatively large mass difference it has the potential to 

fractionate in nature and hence to be a good tracer of weathering processes. Lithium 

isotope ratios are reported relative to the NIST LSVEC standard:

S 7 Li = V J  sample

T p A
6 L i\ \  J  LSVEC

-1 xlOOO Equation 1.10

Due to this large relative mass difference there is a significant range of 8 7Li values in 

the natural environment, from saprolites with an extremely light isotope ratio of -20%o 

(Rudnick et al., 2004) to seawater with a uniform composition of 31%o, up to the 

dissolved load in rivers which can exceed 40%o (Pogge von Strandmann et al., 2006). 

Lithium behaves conservatively in the oceans with a residence time of around 1 million 

years, and the isotope composition is globally uniform in the oceans with an average 

8 7Li ratio of 31%o and Li concentration of 0.17ppm (Hathorne and James, 2006). 

These values are maintained by the balance of the Li inputs and outputs to and from the 

ocean. Lithium is added to the oceans by both rivers ( 8  Li -  23%o, (Huh et al., 1998))
n

and high temperature hydrothermal fluids at mid ocean ridges (8 Li -  6.7%o, (B ray  et 

al., 2001)). Both of these Li sources are isotopically lighter than seawater itself, which 

suggests that within the oceans some process must be occurring that preferentially 

removes the light isotope of lithium (6Li), leaving the dissolved phase to be isotopically 

heavy. Studies of oceanic basalts suggest that during weathering processes the
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formation of secondary minerals such as clays preferentially take up 6Li (Chan et al., 

1992). This process has been shown to occur both naturally in rivers and 

experimentally through mineral sorption and precipitation experiments (Chan and 

Hein, 2007; Huh et al., 1998; Kisakurek et al., 2005; Kisakurek et al., 2004; 

Pistiner and Henderson, 2003; Vigier et al., 2008). Lithium can be adsorbed into 

loosely bound outer sphere sites caused by electrostatic attraction (physisorption), or 

more tightly bound by chemical bonds (chemisorption) (Chan and Hein, 2007). 

Physical adsorption is the result of electrostatic attractions between the mineral surface 

and ions in solution. These attractions form outer sphere complexes on the mineral 

surface and neither Li isotope is preferentially adsorbed so for example there is no 

isotopic fractionation when Li is adsorbed onto the negatively charged surface of 

smectite (Pistiner and Henderson, 2003). This was also shown by Chan & Hein 

(2007) during leaching experiments on Fe-Mn crusts. The second mechanism is 

chemisorption; this involves the formation of chemical bonds in the inner sphere of the 

mineral surface. Chemisorption occurs even when the charges on the mineral surface 

and adsorbing species are the same. It has been shown to preferentially incorporate 

certain elements and isotopes. Results of Li adsorption experiments on ferromanganese 

minerals (Chan and Hein, 2007) show that amorphous goethite preferentially sorbs 6Li 

into inner sphere surface complexes, thus causing Li isotope fractionation. This 

incorporation of 6Li into inner sphere bonds also occurs during sorption onto illite 

(Williams and Hervig, 2005) and smectite (Vigier et al., 2008). Within the oceans 

the preferential removal of 6Li occurs in a number of ways. A major mechanism of 

removal is the alteration of sea floor basalt and the incorporation of Li into alteration 

products such as smectite (Chan et al., 1992). The formation of altered minerals by 

hydrothermal processes is also important; hydrothermally altered rock having a lighter
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lithium composition than unaltered rock (Ch a n  et al., 1994). The last major mechanism 

of removal is the alteration of continental sediments that are input by rivers and 

associated uptake of lithium. For example a recent study of an Icelandic estuary shows 

that the Li concentration and composition of basaltic sediment alters with salinity, 

suggesting that the further weathering of continental sediment in seawater could be 

significant for the oceanic lithium budget (P ogge v o n  St r a n d m a n n  et al., 2008).

1.4.1.2. Magnesium

Magnesium has 3 stable isotopes, 24Mg (79% abundance), 25Mg (10%) and 26Mg (11%). 

During processes such as evaporation these isotopes partition according to mass causing 

isotope fractionation that is large enough to be measurable.

Like lithium, magnesium isotopes ratios are normalised to a standard; in this study the 

standard used is Dead Sea magnesium (DSM3):

C *M g\
24

S 26Mg =
Mg

( l i Mg^
J  sample

- 1 xlOOO Equation 1.11

24Mg J  DSM-3 7

The concentration and isotopic composition of seawater are uniform at 53mmol/l and 

0.82 %o (T ipper et al., 2006). The major source of magnesium to the oceans is from 

continental waters via the dissolution of both Mg- carbonates and silicates. The major 

sinks are via mole-for-mole exchange with Ca on basalts at mid ocean ridges (B e r n e r ,

2004), and via dolomite precipitation (H o l la n d  and Z im m er m a n , 2000). There is also 

exchange with Ca in detrital sediments derived from continental weathering, 

particularly clays and volcanic glasses (G isl a so n  et al., 2006). Recent studies have
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shown that the dissolution of this suspended sediment in deltas and estuaries can be a 

major source of dissolved solids in seawater (Gislason et al., 2006).

Table 1.1

The magnesium isotope composition of some common rocks, and rock averages

Sample 8 26Mg (relative to DSM-3) Reference

Basalt -0.09 to -0.18 Wiechert et al. 2007

Basalt Glass -0.2 to -0.26 Wiechert et al. 2007

Olivine -0.06 to -0.08 Wiechert et al. 2007

Clinopyroxene 0.04 to 0.06 Wiechert et al. 2007

Chondritic meteorites -0.24 to -0.49 Wiechert et al. 2007

Limestone -2.5 Tipper et al. 2006

Silicate rock average -0.5 Tipper et al. 2006

Silicate soil average -0.03 Tipper et al. 2006

Riverine average -1.09 Tipper et al. 2006

Work by Galy et al. (2002) and Tipper et al. (2006) has shown that magnesium 

will readily fractionate in the weathering environment, although not to the same extent 

as lithium because the relative mass difference between magnesium isotopes is far 

smaller. Results of carbonate studies (Buhl et al., 2007; Galy et al., 2002) show that 

the magnesium isotope composition of speleothems is isotopically lighter than the drip 

water, suggesting that the light isotope is preferentially incorporated into the solid phase 

leaving the resultant solution isotopically heavy. However, later studies of silicate 

weathering (Tipper et al., 2006) suggest that soils are isotopically heavier than the 

silicate bedrock and the corresponding water is isotopically light. These studies show 

that the magnesium system is more complicated than that of lithium; magnesium 

isotopes are controlled by both lithology and more importantly by weathering processes. 

Because the composition of seawater (-0.82%o) is isotopically heavier than that of the 

riverine average (-1.09%o, Tipper et al. 2006) (the major source of magnesium to the

25



Chapter 1 Introduction

oceans) it means that one of two processes must be occurring within the oceans. Either 

the oceans are not at a steady state with respect to magnesium and/or magnesium 

isotope ratios must be fractionated in the ocean (Tipper et al., 2006). In order to get an 

ocean that is isotopically heavier than its source, removal of magnesium must 

preferentially take out light magnesium, suggesting that carbonate formation is the main 

cause.

A further complication to the magnesium system is the impact of biology and 

fractionation caused by biological processes. Magnesium is the central metal atom in 

the chlorophyll molecule so is crucial for photosynthesis and the formation of life on 

Earth. A study investigating isotopic changes (Black et al., 2006) shows that 

chlorophyll preferentially takes up the light magnesium isotopes relative to the growth 

medium. Conversely, a study by Ra & Kitagawa (2007) shows that chlorophyll in 

marine phytoplankton is isotopically heavy relative to seawater. Magnesium is also 

present in plant proteins and stored as free Mg2+ in the vacuoles of plant cells (Shaul, 

2002). A study by Bolou Bi (2008) shows that during higher plant growth the bulk 

plant is isotopically heavy relative to the magnesium source. This preferential uptake of 

heavy magnesium is highlighted by an experiment using a living root; after 60 minutes 

in a magnesium solution the solution became between 2.4 and 3.1 %o lighter than the 

source magnesium.

Evidence from chemical and biological studies shows that the magnesium 

system is very complicated with no controlling factors being fully resolved. This leaves 

the determination of its behaviour in natural systems very difficult. For this reason 

more work investigating this potentially useful weathering tracer is needed.
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1.4.2. Radiogenic isotope systems

Radiogenic isotope systems are those where a radioactive parent isotope decays to the 

radiogenic daughter isotope. These systems are useful because lithology plays an 

important part in determining the isotopic composition of the signal derived from 

continental weathering (Blum and Erel, 2003). Age of the rock is also important; an 

older rock should in theory have a more radiogenic isotope composition (Dickin, 1995). 

If the half life of parent-daughter decay is known then ages of the rock can be estimated.

1.4.2.1. Rhenium-Osmium (Re-Os) system

Osmium is a platinum group element with seven naturally occurring isotopes. One of 

these, 1870s, forms from the beta decay of 187Re and the ratio of parent to daughter has 

been used for many years as a geochemical tracer and dating tool. Rhenium and 

osmium have different compatibilities during partial melting; osmium is a compatible 

element and stays in the mantle while rhenium is mildly incompatible and enters the 

melt. For this reason rocks in the crust (both continental and oceanic) have high Re/Os 

ratios. Over time the rhenium will decay to 1870 s so older rocks will have much higher 

concentrations of 1870 s and higher 1870 s/1880 s ratios.

The major control over the osmium composition of the continental crust is rock

1 07  i 07

type and age. Different rock types have different Re/ Os ratios and so will produce 

different amounts of 1870 s over time. River studies have shown that the dissolved load 

is not always compositionally similar to the suspended or bedloads, and this is attributed 

to incongruent dissolution of mineral phases (Gannoun et al., 2006). Examples of 

minerals that dissolve incongruently and have an impact on riverine chemistry are 

biotite which contains relatively radiogenic osmium (Peucker-Ehrenbrink and Blum,
107  107

1998) and olivine and pyroxenes which have extremely high Re/ Os ratios and so
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develop high levels of radiogenic osmium on relatively short timescales (Gannoun et 

al., 2004). Incongruent weathering of these phases can therefore have a significant 

impact on the riverine osmium composition and potentially affect the composition of 

seawater.

The oceanic composition of rhenium and osmium reflects a balance of inputs 

from continental weathering, exchange at mid oceanic ridges and micrometeoritic dust. 

When this balance shifts the oceanic composition will change and this is reflected in the 

sediment record. Over the last 50 million years the oceanic 1870 s/1880 s ratio has 

increased from -0.2 at the K-T boundary to -1.06 at the present day (Fig. 1.6). The 

composition of the continental weathering input is estimated to be 1.5 compared to the 

1870 s/1880 s  composition of micrometeoritic material and basaltic crust (-0.13), with the 

latter sources varying only very slightly over the Cenozoic. This means the change to a 

more radiogenic osmium composition can be attributed to variations in the continental 

weathering signal input to the oceans.
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Fig. 1.6 - Plot of Os isotope ratio of sediment leachates against age during the last 80 million years 

(Dickin 1997)
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Rhenium and osmium are not distributed evenly in the continental crust, instead they are 

concentrated in accessory phases such as PGE alloys and sulphides, as well as having 

high concentrations in organic rich rocks such as black shales. For this reason the 

composition of bedrock and the rivers that drain them depend on the weathering of these 

PGE rich phases. Studies have shown that intensely weathered soils called laterites can 

be enriched in PGE-rich alloys (Bowles, 1986), so could potentially have high rhenium 

and osmium concentrations. Laterites are estimated to cover -30% of the exposed 

continental crust (Tardy, 1997) and commonly have thicknesses of between 20 and 

100m (Brimhall et al., 1991). An initial study of the Re-Os system in lateritic soils 

(Sharma et al., 1998) shows that there is a substantial enrichment of osmium in the 

topsoil. The last part of this thesis will involve the study of two laterite profiles in India 

and investigate the behaviour of the Re-Os system during intense tropical weathering.

1.5. Project Aims

The overall objective of this project iss to investigate continental weathering processes; 

more specifically to determine how changes in climate, weathering intensity and 

lithology can affect the behaviour of different isotope systems as well as the continental 

weathering flux to the oceans. To this end the first aim of this project has been to 

investigate recently glaciated river catchments in Greenland to study the water 

chemistry and how the lithium and magnesium isotope systems behave in this 

environment. The lithium and magnesium isotope systems are relevant in this case 

because they respond to changes in weathering processes; both elements fractionate 

during the formation of secondary minerals. In theory their behaviour in glacial rivers
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where secondary mineral formation will be less important, should be different to their 

behaviour in non-glacial rivers. This is investigated in Chapters 3 and 4.

Gaining a full understanding of the behaviour of such isotope systems in natural 

systems is complicated by factors such as lithology and (for magnesium) biology. For 

this reason the second aim of the project has been to investigate the behaviour of these 

isotope systems during experimental weathering reactions (Chapters 5 and 6 ). It is 

hoped that the results of these experiments will enable better understanding of the 

behaviour of these isotope systems in natural systems such as the Greenland rivers.

The final part of this project is an investigation of extreme tropical weathering of 

continental sediments and the associated formation of laterite profiles. These 

weathering profiles are known to concentrate elements such as iron and aluminium, but 

also the platinum group elements such as osmium. For this reason two Indian laterite 

profiles have been analysed (Chapter 7) with the aim of understanding how their 

formation will affect the global cycle of rhenium and osmium.
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Chapter 2
Analytical techniques and experimental methods

This chapter describes the various methods used for sample collection, processing and 

analysis. This includes detailed descriptions o f dissolution techniques for ICP-MS 

analyses, Re-Os sample extraction and cation column chemistry for separation o f  

lithium and magnesium. The chapter also details the methods for analyses o f  Re-Os by 

TIMS, and Li and Mg isotopes by MC-ICP-MS. Finally, the techniques used for the 

setup and running o f  dissolution and precipitation experiments are described.

2.1 Sample Collection

2.1.1. Greenland rivers -  July 2006

A total of 15 river samples were collected from the Kangerlussuaq region of 

western Greenland (Chapters 3 and 4). At each sample location a total of 25 1 of water 

was collected and stored in pre-cleaned (acid washed) containers. Between 100 and 200 

g of the bedload sediment was also taken at each locality and stored in clean plastic 

bags. Approximately 100 ml of the river water was filtered (0.2 pm) in the field using a 

hand pump. The difference in mass of the filter before and after filtration was used to 

calculate the concentration of suspended sediment in each river sample. A series of in 

situ measurements were also made; pH (using a Hanna Instruments pH sensor), 

temperature and TDS (using a Hanna Instruments TDS meter) were all recorded at each 

sample location. Within 12 hours of sampling the water samples were filtered (<0.2 

pm) using a Sartorius frontal filtration unit; the suspended particulates were collected 

from each filter and stored while filtered water was either collected for later analysis or 

further filtration. Ten litres of filtered water was retained for co precipitation with iron 

solution and concentrated purified ammonia in order to collect sufficient quantities of
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low abundance metal cations such as uranium and thorium. The last 5-10 1 of the 

filtered water from each sample was filtered again (10 kD) using a Sartorius tangential 

filtration system. The result of this process is that any molecules larger than 10 kD are 

prevented from passing through the filter membrane, such that the residual solution is a 

mixture of colloids and the initial filtrate (<0.2 pm, >10 kD), while the filtrate contains 

only truly dissolved material (<10 kD). The ultrafiltration process continued until 

around 250 ml of residual solution was left. The total filtration process is illustrated 

below in Fig. 2.1.

UNFILTERED WATER

SUSPENDED
SEDIMENT

FILTRATE (<0.2|jm )

COLLOIDS + 
FILTRATE 
(<0.2|jm , >10kD)

10kD filter

0.2 |jm  filter

ULTRAFILTERED WATER 
(<10kD)

Fig. 2.1 -  A diagram showing the filtering steps used in this study.

Alkalinity measurements were performed subsequent to filtration in order to 

keep the volume of CO2 that could dissolve into solution to a minimum. The alkalinity 

of each river sample was measured by titrating against 0.01M HC1. A 40 ml sample of 

river water was taken, to which between 50 and 200pl of 0.01M HC1 was added at each 

step and the pH change recorded until the concentration of H+ starts to rise linearly with
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the amount of H+ added (A ppelo  and Po stm a , 2005). The volume of acid used is then 

plotted against the Gran function (G) (Equation 2.1). A typical plot is given in Fig. 2.2.

G = (V + Vo)-10-pH

Where V = the volume of acid added and V0 = the initial volume of solution

Equation 2.1

9
8
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0.0035
y = 0.000Q1x- 0.00447 

R2 = 0.99966 0.003
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balance alaklinity
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Fig. 2.2 - A graph showing the calculation of alkalinity in a seawater sample. The blue line shows the 

change in pH with volume of acid that is added. The pink line shows the Gran function. The intersect 

between the straight line and the x-axis gives the volume of acid needed to neutralise the alkalinity of the 

solution.

The equivalence point is found by extrapolating the linear part of the graph to the x- 

axis, this being the volume of acid needed to neutralise the alkalinity. All alkalinity 

measurements were performed in this way throughout the course of the study, although 

measurements of seawater alkalinity were performed with a sample size of 2 0 ml and 

titrated with 0.1M HC1.
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2.1.2. Later ite weathering profiles

A study of two Indian laterite profiles is presented in Chapter 7. All samples were 

collected prior to this study; the Bidar laterite succession being previously analysed for 

lithium (K isa k u r ek  et al., 2004) and Sr and Nd isotopes (M a s o n , 2000).

Samples from both laterite profiles were taken at key textural horizons, or else 

taken immediately above or below (i.e. bracketing) levels where distinct textural 

changes are observed. Because the weathering profiles are highly heterogeneous, both 

vertically and horizontally, large samples (between 1 and 3 kg) were taken from 2-3 

sample sites in the same horizon and these samples were then homogenised by milling 

with agate.

2.2 Sample Processing

2.2.1. XRF major elements

Major element analyses of rock and sand samples were performed by XRF (X-Ray 

Fluorescence). Rock samples were crushed using a jaw crusher, crushed rock and sand 

was then ground to a powder of around 200 pm using an agate tema. Fused glass discs 

were made using a combination of dried rock powder and lithium metaborate flux in a 

ratio of 5:1. This was heated at 1100°C in Pt-5%Au crucibles, with the molten liquid 

moulded into a fused glass disc. Once cool this glass disc could then be analysed by 

XRF (Section 2.5.1.1). The percentage loss on ignition (LOI) of volatile components 

such as CO2 and H2O was calculated separately. This was carried out by measuring the 

change in mass of rock powder before and after igniting at 1000°C for one hour.
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2.2.2. ICP-MS chemistry

Major and trace elements in the suspended sediment and in solution, as well as trace 

elements in rocks and sands were all analysed by ICP-MS. Solid material was ground 

to a powder using an agate mill (as for XRF analyses) and a O.lg aliquot then dissolved 

using 1ml of 15M Teflon distilled (TD) HNO3 and 2 ml of Aristar HF at 120°C for 24 

hours. The full ICP-MS dissolution procedure is presented below:

• Weigh out -O.lg of sample powder as precisely as possible into a 15ml 

Savillex vial.

• Add 1ml of 15M TD HNO3 and 2ml of Aristar HF

• Cap and heat on a hotplate at 120°C for 24 hours

• During this period, remove the vial from the hotplate and sonicate the solution 

twice

• Evaporate the sample to incipient dryness

• Add 2ml of TD 6 M HC1

• Heat the sample on a hotplate at 120°C for 24 hours

• Remove the cap and evaporate the sample to incipient dryness

• Add 2ml of 15M TD HN03 and 4ml of MilliQ (MQ) H20

• Cap and heat on a hotplate at 120°C for 24 hours

• During this period, remove the vial from the hotplate and sonicate the solution 

twice

• Remove the cap and evaporate the sample to incipient dryness

• Add 3ml of 15M TD HN03 and 6 ml of MilliQ (MQ) H20

• Cap and heat on a hotplate for at least 4 hours
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• Add the sample to a 125ml bottle that has been weighed and acid cleaned. 

Rinse the sample vial out 3 times with MQ.

• Add enough MQ water for a 1000 times dilution.

Processing the dissolved samples was far more straightforward; this simply involved all 

solutions being acidified to 2% HNO3 using 15M TD HNO3 .

2.3 Leaching experiments

Three suspended sediment samples were subjected to a two stage acid leaching process 

similar to that used in Chan & Hein (2007). A gentle leach involving buffered acetic 

acid, designed to remove freely exchangeable cations, was followed by a more vigorous 

leaching procedure involving 2N TD HC1, designed to remove cations bound to iron 

and manganese oxyhydroxides. The leachates were then analysed using ICP-MS and 

further analysis was carried out for lithium isotopes by MC-ICP-MS (multi-collector 

inductively coupled plasma mass spectrometer). Details of the mass spectrometry are 

presented in Sections 2.3 and 2.4.

The two stages of the leaching process are described below:

Stage 1 -  Acetic acid leach

• Add ~0.2g of suspended sediment to an acid cleaned 14ml centrifuge tube.

• Add 8  ml of sodium acetate buffer solution (pH 4.6, Riedel de Haan). Cap and 

agitate in an ultrasonic bath for 45 minutes.

• Centrifuge for ~10 minutes at 4500 rpm. Remove the supernatant and store in a 

cleaned 30 ml Savillex vial.

36



Chapter 2 Methods

• Add another 8 ml of buffer solution to the residue. Cap and shake vigorously to 

make sure the sediment returns to solution. Agitate in the ultrasonic bath for 45 

minutes.

• Remove the supernatant and add to the same Savillex vial.

• Add another 8 ml of buffer solution, repeat as above.

• Add 8 ml of Milli-Q water, repeat as above.

• Dry down the combined solutions and make up to 10ml of 2% TD HNO3 .

Stage 2 -  HC1 leach

• Transfer the residue from stage 1 to a clean 30ml Savillex vial.

• Add 8 ml of 2N TD HC1 and heat on a hotplate (at ~120°C) overnight.

• Transfer the contents of the Savillex vial to a clean centrifuge tube, centrifuge 

add the supernatant solution to a clean 30ml Savillex vial.

• Add 8 ml of Milli-Q to the residue, cap and agitate in an ultrasonic bath for 45 

minutes. Centrifuge and add the supernatant solution to the solution in the 

Savillex vial.

• Dry down the solution and redissolve in 10ml of 2%TD HNO3.

2.4 Isotope Chemistry

2.4.1. Rhenium and osmium: sample preparation and chemistry

The laterite samples were measured for changes in the 1870 s/1880 s  and 187Re/1880s

isotope ratios. They were processed using the isotope dilution technique developed by

(Birck et al., 1997). Samples were ground to a fine powder using an agate tema.

Sample powders were spiked with a mixed 185Re-190Os spike solution and dissolved
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using a mixture of HF and TD HBr at 140°C for 72 hours. This technique requires that 

the spike equilibrates with the osmium in the sample so that after dissolution they must 

be in the same oxidation state. The separation is achieved by using Cr0 3  (in HNO3) to 

convert all the Os from the sample and spike into OSO4 . Because OSO4 penetrates 

readily into the plastic walls of Teflon beakers the yield of osmium can become severely 

reduced. In order to counter this process the OSO4 is extracted into liquid bromine, 

dried down and the residue purified by microdistillation. Separation of Re is much 

more straightforward, it generally exists in one oxidation state, does not penetrate into 

Teflon and does not evaporate at temperatures below 200°C. An aliquot for rhenium 

analysis is dissolved in 2% HNO3 and extracted using iso-amylol.

There is a possibility that low temperature acid digestion may not recover all the 

Re and Os present in the samples, particularly when PGE-rich phases are present 

(M eisel  et al., 2003). Thus, in order to ensure that both Re and Os are fully recovered 

from the samples studied here, high pressure and high temperature microwave sample 

decomposition (Multiwave 3000, Anton Paar®) was also used. The duplicated samples 

were chosen so as to be representative of the entire range observed for both profiles. 

Approximately 0.2 g of sample material was spiked and digested using HF+HC1 (3:3 

ml) acid mixture in a fluoropolymer vessel at 240 °C and 60 bar for 2 h. The solutions 

were then transferred into a PFA pressure vial, evaporated to dryness and redissolved 

with HF-HBr (2:2 ml) at 150°C for 48 h. The subsequent sample oxidation and Os 

extraction step was similar to that used in the technique described above.

2.4.2. Lithium isotope chemistry

Samples were dissolved using the ICP-MS dissolution technique previously described 

in Section 2.2.2, or are experimental/natural solutions. When analysing solutions by
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MC-ICP-MS the mass spectrometer uses up -0.5 ml per sample run and a concentration 

of -lOppb is needed to measure the Li isotope ratio effectively. For this reason at least 

5ng of Li is needed to run each sample once. It is beneficial to be able to run repeat 

measurements where possible so typically between 1 0  and 2 0  ng of each sample was 

processed. In order to prepare adequate amounts of each sample for lithium analysis the 

Li concentration of all samples was determined by ICP-MS prior to isotopic 

characterisation. Once sufficient solution is dried down the sample can be loaded on to 

the cation columns and the lithium can be isolated by cation exchange chromatography.

The technique for purification of lithium is similar to that documented by James 

and Palmer (2000). The cation columns used in this study are Teflon with an internal 

diameter of 6 mm. They are loaded with 2.4ml of Bio-Rad AG50W-X12 200-400 mesh 

cation exchange resin to a resin height of 8.5cm. Prior to loading the columns are 

pretreated with MQ water in order to wet the resin and to remove any air bubbles. Next, 

8 ml of TD 0.2N HC1 is added, after this stage the column height is measured to make 

sure the resin height it is 8.5cm, if this is not the case resin needs to be removed/added 

and 4ml more TD 0.2N HC1 is added.

After pre-treatment the following method is performed:

• Add -  0.1ml of 0.2N TD HC1 to each sample and make sure sample is fully 

dissolved. If not add more 0.2N TD HC1 to a maximum of -0.5ml.

• Once the sample has been dissolved carefully add it to the top of column.

• Once the sample has eluted add 0.5ml 0.2N TD HC1 to the column and repeat 

this step once more.

• Elute 20ml of 0.2N TD HC1 through the column and discard the flushed acid.

• Elute 21ml of 0.2N TD HCL and collect all the acid in precleaned Savillex vials.

• Dry down the sample.
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• Prior to analysis by MC-ICP-MS the sample can be dissolved in 3% TD HNO3 . 

The volume of nitric acid used is dependent on the mass of lithium that has been 

processed. Enough acid should be used so that the resultant solution has a 

lithium concentration o f lOppb.

• After the sample has eluted clean the columns by flushing through ~25ml of 6 M 

TD HC1.

• Subsequently elute 8 ml of MQ H2 O through the column and store each cleaned 

column in MQ water to keep the resin moist.

2.4.3. Magnesium isotope chemistry

The separation of magnesium also uses cation exchange chromatography similar to that 

for lithium. The major difference between these techniques is the use of an anion 

column for all rock samples to remove any potential interference from iron, as used by 

( W ie c h e r t  and H a l l i d a y ,  2007).
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Fig. 2.3. - A plot showing the proportion of elements that are eluted through the anion column using the 

rock standard AGV-1
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Fig. 2.3 shows the yield of cations that are eluted through the anion column (where 1 = 

100%). Most major cations are unaffected (including magnesium) while the yield of 

iron that is recovered is very low (~2 %) indicating that most of the iron is retained on 

the column. The anion stage is not needed for river or seawater samples as the 

concentration of Fe is low. Once the magnesium has been separated the samples are 

analysed by MC-ICP-MS; because Mg has a high natural abundance the samples can be 

run under wet plasma conditions and the typical sample size is between 500 and 2000 

ng of Mg.
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Fig. 2.4 - A cation column calibration showing the separation of Mg from Ca, Na and Al.

The cation columns used are identical to those used for the processing of lithium, 

together with the Bio-Rad AG50W-X12 resin. The addition of certain elements (Ca, Na 

and Al) to a magnesium solution has been shown to cause a mass bias, affecting the 

8 26Mg ratio by between 0.2 and l%o ( G a ly  et al., 2001). It is therefore important to

41



Chapter 2 Methods

demonstrate that these elements have been removed from solution during the chemical 

separation. As can be seen from Fig. 2.4 during the first 14ml of eluted 2N TD HC1 all 

of the magnesium is collected but there is little Na, Ca or Al (see Appendices Al and 

A2 for data from the anion and cation column calibrations). Na is removed earlier on 

during the elution of 0.75N HC1, and the Ca and Al are removed later. Anion columns 

are also Teflon and have a total volume of 2.1ml and column diameter of 6 mm. The 

anion resin used in these columns is Bio-Rad AG1-X8 (200-400 mesh).

Anion Column

• Preclean columns with MQ water and 8  ml of 6 M HC1.

• Check resin height. If it is not 7 cm add or remove resin and elute a further 4 ml 

of 6 M HC1.

• Dry down the sample aliquot (containing 500-2000 ng of Mg) and re-dissolve in 

-0.5 ml of 6 M HC1.

• Load sample into the top of the anion column

• Elute Mg with 7 ml of 6 N TD HC1

• Dry down the sample to incipient dryness; pass through the cation column (see 

below).

Cation Column

• Precondition the resin with 4 ml of 6 N TD HC1 followed by 8 ml of 0.75N TD 

HC1.

• Check resin height. If it is not 8.5 cm then add/remove resin and elute a further 

4 ml of 0.75N TD HC1.

• Re-dissolve the sample in ~0.1 ml of 0.75N TD HC1.
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• Wash in sample with 2 x 0.5 ml of 0.75N TD HC1.

• Elute light cations with 28 ml of 0.75N TD HC1.

• Collect Mg in i4 ml of 2N TD HC1.

• Dry to incipient dryness.

• Clean the columns using 25 ml of 6 M TD HC1, followed by 8 ml of MQ water, 

then 8  ml of 6 N TD HC1 and finally 8  ml of MQ water.

2.5 Mass spectrometry

2.5.1. Major and trace element analyses

2.5.1.1. Rock, sand and suspended particulates

Major element analyses were carried out by X-ray fluorescence (XRF) for all Greenland 

rock and sand samples. Analyses were performed using an ARL 8420+ dual 

goniometer wavelength-dispersive XRF spectrometer employing routine XRF 

procedures and analytical packages. Elemental intensities were corrected for 

background and known peak overlap interferences and medium-term instrumental 

intensity drift was taken into account using a drift normalisation monitor. The accuracy 

of the XRF measurements is determined by running reference samples of a known 

composition and comparing the measured value with the literature value. The standards 

used were WS-E (Whin-Sill dolerite) and an in house standard OUG94; measured 

values are typically within 1% of the certified values (Appendix A3).

Trace and minor element analyses for rock samples and major element analyses 

for suspended particles and experimental minerals and glass were performed using an 

Agilent 7500a ICP-MS. All samples were dissolved and diluted to a factor of 1000 and 

were run with sample-specific standards. All measurements were calibrated using a

43



Chapter 2 Methods

series of rock standard reference materials and an internal standard consisting of Be, Rh, 

In, Tm, Re and Bi. The rock standards used were JB-2 (JGS basalt), BIR-1 (USGS 

basalt), BHVO-1 (USGS basalt), BCR-2 (USGS basalt), AGV-1 (USGS andesite), W-2 

(USGS diabase), G-2 (USGS granite), SDC-1 (USGS mica-schist) and JG-2 (JGS 

granite). During each sample run one sample or standard was measured every 5-7 

samples to monitor machine drift during the sample run. During analysis of rocks, two 

standards (JB-2 and BIR-1) were routinely measured to assess external reproducibility; 

the external reproducibility of major element analyses (2a) is presented in Appendix A4 

and the external reproducibility of minor element analyses is presented in Appendix A5. 

The 2a external error is <6 % for all major (JB-2) and minor (BIR-1) element analyses.

2.5.1.2. Solutions

Major and trace element concentrations in aqueous samples were also measured by ICP- 

MS. Multi element standards were made up using single element standard solutions 

that had a concentration of lOOOppm; these were diluted to the required standard 

concentration using 2% HNO3 (TD). Analyses of 5 standard solutions of varying 

known concentrations enabled the construction of a calibration curve which in turn 

meant results could be converted from cps (counts per second) to ppm. These standard 

solutions included the following elements: Si, Al, Mg, Ca, Na, K, Ti (major elements), 

Li, Fe, Cr, Zn, Cu, Rb, Sr, Ba (minor elements) as well as the rare earth elements 

(REE). The in house standard Sco2/15 (Scottish river water) and the riverine standard 

SLRS-4 (Ottawa river water, NRCC) were used to monitor and correct for any machine 

drift (see Appendices A6  and A7). External reproducibility as determined from repeat 

measurements of SLRS-4 is better than 8 % (2a). A comparison of measured SLRS-4 

values with the certified values is presented in Appendix A 8 .
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Cation concentrations in the experimental solutions (Chapter 5) were initially 

measured by ICP-AES at the University of Iceland. This technique works well for 

major elements but trace elements such as lithium cannot be so easily measured. For 

this reason most solutions were also measured by ICP-MS at the Open University 

following the method described above. For ICP-AES measurements all solutions were 

acidified with suprapure HNO3 to an acid concentration of 0.5%. Experimental 

solutions were run alongside an in house standard; a natural water sample from the 

Selsund area of Iceland which was calibrated against SPEX CertiPrep single element 

standards. Duplicate measurements of the experimental solutions yielded relative errors 

of less than 5%.

Seawater experimental solutions were also run using a combination of the ICP- 

AES in Iceland and ICP-MS at the Open University. ICP-AES measurements were run 

alongside an in house standard which comprises a mix of Selsund water and N. Atlantic 

seawater. A dissolved solid content of 1% is usually regarded as the maximum for the 

sample introduction system (in order to avoid nebuliser degradation). Seawater has a 

TDS of 3.5% so all seawater samples were diluted by at least 10 times before 

introduction to the ICP-AES. For ICP-MS analyses, an artificial seawater solution was 

prepared using pure salts partly following the method of Kester et al. (1978). The major 

constituents of this standard were NaCl, KC1 and Na2SC>4 . Other elements were added 

to this in the form of ICP standard solutions (lOOOppm). The final TDS of this standard 

was ~2.9%.

Dissolved anion concentrations were determined using a Dionex ion 

chromatograph. Anions measured were fluoride, formate, acetate, chlorite, chloride, 

sulphate, nitrate and phosphate. Two separate runs were performed and the
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measurements were calibrated using standard solutions. Detection limits are O.lppm 

and the external reproducibility is better than 10% (2a), as shown in Appendix A9.

2.5.2. Isotopic analyses

2.5.2.1. Re and Os mass spectrometry

Samples were loaded onto high purity (99.999%) platinum ribbon. Firstly the ribbon is

cut into 2  cm lengths and constructed into a filament and ultrasonically cleaned for

-lrnin, before rinsing with MQ water and rinsing again with acetone. When dry the

filament is degassed by passing current through it until it glows red (at around 2.5A) for

2 minutes and then repeating this procedure. Once the filament is degassed the sample

can be loaded, using a current of 0.5A for Re and 0.6A for Os. Osmium is loaded

slowly and then covered with a mixture of NaOH and Ba(OH)2 . When this is dry the

filament is carefully heated until the sample starts to melt, then immediately cooled.

The purpose of applying NaOH/Ba(OH)2  is to suppress any organic interferences at

masses 233-235. When analysing Re the sample is loaded onto the Pt filament at 0.5A

and again covered with NaOH and Ba(OH)2  but the sample is not subsequently melted.

The Re and Os samples were analysed at the Open University using a Thermo-

Finnegan Triton (TIMS). During analysis the filament is slowly heated to around

800°C. The first species to be emitted is Br2 which can be used to focus the beam.

With further heating up to around 950°C the Os species (in particular OSO3") are emitted

100and with further focussing on the most abundant isotope ( Os) the osmium signal can 

be measured. Isotope ratios are all measured relative to 1880s, with the instrumental 

mass fractionation corrected by normalising to the 1920 s/1880 s ratio of 3.08271. 

Rhenium samples were run in a similar way to those of Os, although Re is emitted at
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lower temperature than Os as ReOT ions, so the filament did not need to be heated as 

high.

The average total procedural blank for the Bidar samples was 0.41 pg for Os and 

4.75 pg for Re; the Os isotopic composition of the blank (1870 s/1880s) was 0.179±0.005. 

Corresponding blanks for Goa were 0.22 pg for Os and 4.42 pg for Re; the Os isotopic 

composition of the blank was 0.186±0.007. The average procedural blanks for the 

microwave digestion technique are 0.083 pg for Os with 1870 s/1880s of 0.250±0.021 and

3.6 pg for Re.

2.5.2.2. Lithium isotope analyses

Lithium isotope ratios were measured on two different multi collector inductively 

coupled plasma mass spectrometers (MC-ICP-MS); a Thermo-Finnegan Neptune MC- 

ICP-MS and a Nu-Plasma MC-ICP-MS. The reason for this split was because a new 

MC-ICP-MS (Thermo-Finnegan Neptune) was installed at the Open University and 

initially was used for isotope measurements because it can achieve greater precision. 

However, due to issues of stability associated with the Aridus II desolvating nebuliser it 

was a challenge to obtain reproducible data. For this reason the majority of analyses 

were subsequently performed on the Nu-Plasma.

a) Li measurements: Neptune

Measurements on the Neptune were carried out in conjunction with an Aridus II 

desolvating nebuliser. All samples were diluted with 3% TD HNO3 to a Li 

concentration of lOppb. The beam signal for 7Li varied from around 3.5 to 5V with a 

lOppb solution, corresponding blanks (3% HN03) had a 7Li beam signal of 70-100mV 

or ~2% of the total sample beam. The two Li isotopes were measured using Faraday
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f  7cups, with Li collected in the L4 cup and Li collected in the H4 cup. Each sample

measurement consisted of 1 block of 2 0  measurements; prior to each measurement the 

program ran a baseline measurement by defocusing the beam and then peak-centering 

the Li species.

b) Li measurement: Nu-Plasma

Isotope measurements on the Nu-Plasma were carried out in conjunction with a Nu- 

DSN desolvating nebuliser. Samples were prepared exactly as they were for use with 

the Neptune with all solution concentrations at lOppb. The intensity of the signal (7Li) 

on the Nu-Plasma was ~1V with a background of ~6 mV or 0.6% of the total sample 

beam. The isotopes were measured simultaneously on Faraday cups with 6Li collected 

in FarO and Li collected in F arll. Each sample run consisted of 1 block of 20 

measurements and was preceded by measuring zeros. The composition of this blank 

was then subtracted from the sample measurement online.

The standard sample bracketing technique was used to calculate isotope ratios 

for both Li and Mg isotopes. This involved the measurement of standards before and 

after each sample measurement, the isotope ratio of the sample being expressed as a %o 

difference from the average isotope ratio of the two bracketing standards. During the 

measurement of Li isotope ratios all samples were measured relative to the NIST 

LSVEC standard as shown below:

J Sample

Li
Equation 2.2

6 Li\  J  LSVEC
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The standard error associated with each sample measurement is also calculated using 

the standard-sample bracketing technique. Details of how this error has been 

propagated are given in Appendix A10. Typically the internal precision (2a) attained 

with the Nu-Plasma was better than 0.2%o, and internal precision on the Neptune was 

better than 0 . 1  %o.

The external reproducibility of the lithium isotope ratios was monitored by 

routine measurement of IAPSO seawater during an analytical session (see Appendix 

A ll). Over a total of 40 seawater standards were measured during the course of this 

project, the average 57Li value was 31.08 ±0.82%o (2a). This compares favourably with 

literature values for the composition of seawater (~31%o) (C h a n  and E dm ond , 1988; 

Jam es and P a lm e r , 2000).

2.5.2.3. Magnesium isotope analyses

Magnesium isotope ratios were measured on a Thermo-Finnegan Neptune MC-ICP-MS. 

All samples were run at medium resolution using a wet plasma, and diluted using 3% 

HNO3 to give a final concentration of 500ppb of Mg in solution. A typical 26Mg signal 

with 500ppb DSM3 was between 10-12V; the blank (3% HNO3 solution) typically gave 

<0.0 IV of Mg, this blank was subtracted offline during data processing. The three 

magnesium isotopes (24, 25 and 26) were collected and measured on Faraday cups (L3, 

centre and H3 respectively). Each sample run consisted of 1 block of 20 isotope 

measurements, with average isotope ratios and concentrations taken from these 2 0  

measurements.

All measurements are reported as 8 26Mg relative to the DSM-3 standard, which is 

measured before and after each sample:

49



Chapter 2 Methods

( 16 Mg''

S 26Mg =
24Mg J  Sample

f26M g} 
Mg

- 1 xlOOO Equation 2.3

24
JD S M - 3

The internal precision of the Mg isotope measurements was calculated using the 

technique in Appendix A10. Typically the internal precision of 8 26Mg measurements

9 ̂was better than 0.05%o, and the internal precision of 5 Mg measurements was better 

than 0.03%o.

The use of DSM-3 and CAM-1 as standard reference materials for the 

magnesium system was proposed by Galy et al. (2003) and both are now widely used in 

the study of magnesium isotopes. Relative to DSM-3, CAM-1 has a S26Mg composition 

of -2.58%o ±0.14 (G a ly  et al., 2003), while seawater has a 8 26Mg composition of - 

0.82%o (C a r d e r  et al., 2004; d e  V i l l i e r s  et al., 2005). In order to monitor the external 

reproducibility of the magnesium isotope measurements the standard CAM-1 was 

routinely measured at least 2-3 times during an analytical session (Appendix A12). The

9 f \average 8  Mg composition of CAM-1 measured over the course of this study (n=24) is 

-2.62 ±0.13%o (2a) while the average 8 25Mg composition is -1.35 ±0.06%o (2a).
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2.6. Dissolution and Precipitation Experiments

2.6.1. Minerals

2.6.1.1. Basalt glass

The basaltic glass used in these experiments is from the Stapafell Mountain in south 

west Iceland. It is the same as that used in previous studies of the dissolution of basalt 

glass by Oelkers and Gislason (2001) and Gislason and Oelkers (2003). The sample 

preparation and composition are described in detail in these publications. In brief, the 

chemical composition is Na0 .08Ca0 .263Mg0.28iFe0.i88Al0.358SiO3 .32, which is close to the 

mean composition of oceanic crust and MORB. Basalt glass samples were crushed and 

sieved to collect grains between 40 and 120pm and ultrasonically cleaned with acetone 

to remove any fine particles. The surface area of the basalt glass was measured using 

the three point Brunauer-Emmett-Teller (B.E.T.) method (B r u n a u e r  et al., 1938). This 

approach involves the measurement of surface area calculated from the volume of gas 

(usually Kr or N2) that can be adsorbed onto the mineral surface, thus taking into 

account the surface roughness of a mineral. For this reason B.E.T. surface area is 

always greater than the geometric surface area which assumes all grains are spherical. 

The surface area of the unreacted basalt glass powder has a B.E.T. surface area of

9 923,000cm /g and a geometric surface area of 250cm /g.

2.6.1.2. Forsterite

The olivine used was San Carlos forsterite and was obtained from Wards Natural 

Science. San Carlos olivine has been extensively used in the past, both in experimental 

work (Oelk er s , 2001; Po k r o v sk y  and S chott , 2000) and for isotopic analyses 

(Pea r so n  et al., 2006; W iechert and H a l l id a y , 2007) and has an approximate 

composition of Mgi^Feo.isSKT* (Fo91). Crystals were first handpicked and then
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crushed using an agate mortar. These were subsequently milled and sieved to collect 

grains between 40 and 120pm. Forsterite powder was then ultrasonically cleaned in 

acetone; this cleaning step was repeated until all fines were removed before drying 

overnight at 60°C. The surface area of forsterite powder has been estimated previously 

(O elk er s , 2001; Po k r o v sk y  and S chott, 2000) using similar forsterite ground to the 

same size fraction. The estimated BET surface area is 800cm /g. The forsterite was 

used in dissolution, precipitation and seawater experiments (Chapters 5 and 6 )

2.6.2. Experimental setup

2.6.2.1. Dissolution experiments

All dissolution experiments were performed using Parr titanium through flow reactors. 

The reactors were heated in a furnace for 24 hours prior to experimentation in order for 

a titanium oxide layer to form inside -  titanium oxide being less reactive than titanium. 

The reactor set up is shown in Fig. 2.5.

Titanium 
/ filter

acetate
filter

Inlet Solution 
(0.01 M/kg)

; magnetic 
■' stirrer

HPLC
pumpReactor vessel - 

300ml capacity
Sample 

(2-5 grams)Heating
sleeve

Fig. 2.5 - The experimental setup for the dissolution experiments
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The dissolution apparatus consisted of the reactor vessel (volume of 300ml), a motor 

driven stirring device, and a pressure regulator. The temperature of the reactor was 

controlled using a Parr heating sleeve capable of maintaining temperatures up to 300°C. 

Low temperatures could be achieved by the use of an internal cooling loop connected to 

either tap water or a refrigerated coolant; by this method temperatures down to ~7°C 

could be maintained. The motorised stirrer kept the reacting mineral in suspension thus 

aiding the dissolution process by keeping the reacting surfaces exposed. Stirring also 

prevents the dissolution becoming dependent on the rate of diffusive transport away 

from mineral surfaces. Gislason & Oelkers (2003) show that at pH 2-3 stir rates should 

be kept above 550rpm and 350rpm respectively, to ensure that dissolution rates are 

surface reaction controlled.

All reacting solutions were prepared to a molar strength of 0.01 mol/kg. They 

were prepared using deionised water and sufficient quantities of suprapure HC1 and 

NH4CI to attain the desired pH. Solution was introduced to the vessel via the input 

valve in the lid and removed via a titanium filter that collected any solid particles from 

the output solution. After precleaning the apparatus with dilute acid, solutions were 

introduced to the reactor firstly via PTFE tubing connected to a high precision High 

Pressure Liquid Chromatography (HPLC) pump capable of maintaining flow rate 

between 0.1 and 10 g/min with a maximum flow rate error of +/-10%. This solution 

was then introduced to the reactor via 0.1mm titanium tubing. On leaving the reactor 

solution passed through PTFE tubing to an acetate 0.2 pm filter directly before 

sampling. Sample containers were 125ml PTFE sample tubes; they were rinsed with 

deionised water and cleaned using dilute reagent grade HC1, before further thorough 

rinsing with deionised water. All samples were acidified using suprapure grade HNO3 

to 0.5% in order to be later run on the ICP-AES (2.5.1.2.). Prior to acidification the
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sample solution was analysed for pH. This was done immediately after sampling to 

allow the pH to remain unaffected by the dissolution of CO2 .

On commencement of each experiment 3 residence times were left before the 

first sampling, and then another 3 residence times in between each sample. If during the 

experiment any changes were made to the setup, such as changing flow rate or pH, then 

a 3 residence time gap was left before sampling began again. The residence time is 

defined as the time to fill up the reactor once. On sampling all solutions had their pH 

measured and were weighed in order to determine the actual flow rate. The sample size 

was around 1 0 0 ml.

2.6.2.2. Precipitation experiments

The precipitation experiments were performed in three polypropylene through flow 

reactors immersed in a water bath as shown in Fig. 2.6.

Solution output Solution input
Input

solution

Acetate 
filter "ir

Water
Bath Peristaltic

pumpcr

Magnetic stirring plate 

Polypropylene reactor with magnetic stirrer
Heat control

and steel outlet filter 

Fig. 2.6 - The experimental setup for the precipitation experiments
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All the reactors were precleaned with reagent grade and suprapure HNO3 before rinsing 

with deionised water. The experimental setup was very similar to that used in the 

dissolution experiments. Polypropylene reactors were used in order to prevent the 

titanium reactors from becoming contaminated with secondary minerals. There is no in 

built stirring mechanism within the polypropylene reactors so Teflon coated magnetic 

stirrers were used to stir the solution throughout the experiment. Floating stir bars were 

used in order to prevent the possibility of grinding the mineral phase and hence 

increasing its surface area during the experiment. Temperature was maintained using 

the water bath, and temperatures between 25 and 75°C were used in these experiments. 

As for the dissolution experiments, solutions were prepared to a 0.01 mol/kg 

concentration, because high pH values were needed a combination of NH4CI and 

NH4OH was used in order to obtain pH 10 and 11. At these high pH values the 

precipitation of carbonates is a possibility because the dominant carbonic acid species is 

CO3 \  To stop this occurring the input solutions were kept in a mantle of nitrogen gas. 

Solutions were introduced to the reactors using a Masterflex peristaltic pump that was 

able to maintain a flow rate of between 0 . 1  and 1 0  g/min, depending on the diameter of 

the Masterflex tubing. The solution was pumped into the reactor through the lid and 

output via a steel filter. Prior to sampling the solution passed through a sterile acetate 

0.2pm filter. On sampling all solutions were immediately acidified using suprapure 

HNO3 , pH was measured (from an unacidified sample) and the solution was weighed in 

order to calculate the actual flow rate. All sample sizes were around 100ml.

2.6.2. Experimental Method

The general method for running each experiment is the same for both dissolution and 

precipitation experiments. The apparatus was always acid cleaned prior to each
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experiment and then cleaned in deionised water. Once clean the mineral phase was 

added to an empty reaction vessel and the vessel filled with the O.Olmol/kg solution. In 

experiments where the pH was changed (dissolution experiments) the lowest pH was 

always used last because it caused the most alteration of the sample and largest change 

in the mineral surface area. At the beginning of each experiment, and after any change 

in the experimental parameters such as flow rate, temperature and pH, sampling began 

only after three residence times. During the experiment solution is constantly output 

from the reactor, thus sampling was simply a case of collecting liquid at a given time. 

All outlet solution was filtered twice; once through a titanium/steel filter and once 

through a 0.2pm polypropylene (PPE) filter.

At the end of each experiment deionised water was flushed through the system and the 

rock powder was collected and dried down ready for future analysis. In the event of 

secondary mineral precipitation reagent grade HC1 was pumped through the reactor for 

24 hours before cleaning with suprapure HC1 for a further 24 hours and a final clean 

with deionised water. Solution and total procedural blanks for both dissolution and 

precipitation experiments are presented in Appendix A14.

2.6.4. Seawater experiments

The seawater experiments were performed on basaltic glass and forsterite. The basalt 

glass used was identical to that used by Gislason & Oelkers (2003) while the forsterite 

was similar to that used by Pokrovsky & Schott (2000). More details on the 

composition and preparation of both mineral phases are presented in 2.6.1. The 

seawater experiments were carried out using one litre polypropylene batch reactors. 

Each reactor vessel was cleaned using 2% HNO3 acid and deionised water prior to the 

start of the experiment. Most experiments were performed at room temperature (~25°C)
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and the reactors were kept on rollers that continuously rotated so that some of the 

mineral sample always remained in suspension. One experiment (BGSW5) was 

performed at lower temperature (~4°C) and so could not be carried out in the same way; 

this reactor was refrigerated and continuously stirred by a Teflon coated magnetic stir 

bar. The seawater was taken from the North Atlantic (S tefa n sd o ttir  and G isl a so n , 

2005) and from the Southern Ocean (Jo n es  and G isl a so n , in  pr ess). All seawater was 

filtered and then irradiated using UV radiation prior to experimentation. The basalt 

glass and forsterite sample sizes varied from between 1 0  and 30g in each reactor, and 

temperature was regularly monitored with fluctuations of ±0.2°C. Samples were taken 

by pumping solution out of the reactors using a Masterflex peristaltic pump. Each 

sample was filtered using sterile 0.2pm filters and pH was measured immediately after 

sampling. No attempt was made to limit the CO2 flux into the system and no seawater 

was replaced in the reactors after samples were taken. For this reason the sample size 

was only ~40ml in order to prevent the total volume of solution falling too rapidly after 

each sample. At the end of the experiments the final solution was used to measure the 

alkalinity, and can be compared with the alkalinity of the unaltered seawater. The 

minerals were drained of as much seawater as possible and then centrifuged and drained 

again. No washing with deionised water was performed prior to drying because it may 

dissolve any secondary minerals that may have formed. For this reason a small amount 

of evaporitic mineral may have formed on drying at 60°C.
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Chapter 3
The behaviour of lithium and lithium isotopes 

during glacial weathering

3.1. Introduction

Northern Hemisphere glaciation (NHG) is thought to be relatively recent in the 

geological timescale, the onset perhaps occurring as early as ~10-12Ma (Maslin et al., 

1998). Intensification of this glaciation (~2.7Ma) and the formation of ice in the Arctic, 

Greenland and Alaska is thought to have been caused by a combination of higher 

frequency changes in the Earth’s obliquity and summer warming in the Pacific that 

provided an increase in the moisture transported to high northern latitudes (Haug et al., 

2005). Glaciation affects the intensity of weathering that silicate rocks are subjected to. 

This is important because over geological timescales the weathering of Ca-Mg silicates 

causes a net drawdown in CO2 and so can cause atmospheric cooling. Thus the 

formation of glaciers and long term glaciation are closely linked to changes in the 

Earth’s climate. Results from seawater analyses of isotope systems such as Os 

(Burton, 2006), Sr (McArthur et al., 2001) and Li (Hathorne and James, 2006) 

suggest that over the last 8 Ma silicate weathering intensity has increased despite global 

cooling and the onset of NHG. A possible reason for this discrepancy is a shift to a 

more physical weathering regime because of the intensification of global glaciation.

Glaciers create highly physical weathering regimes; grinding and mechanical 

erosion produce high volumes of fine grained sediment (Leeder, 1999). In theory, the 

rate of chemical weathering caused by glaciation should be relatively low; glacial 

regions are frozen for long periods, water-rock contact time is short, and the formation
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of soils and vegetation is minimal or absent. However, increased physical weathering is 

often accompanied by enhanced chemical weathering (G a ill a r d et  et al., 1999b; 

G isl a so n  et al., 1996) and consequently chemical denudation rates in glacial 

environments can be comparable with rates of weathering in temperate catchments with 

comparable runoff (A n d e r so n  et al., 1997; Sh a r p  et al., 1995; Tr a n t e r  et al., 2002). 

These high chemical denudation rates are a result of high water flux and the production 

of fine grained sediment with high surface areas that are highly weatherable (A n d e r so n  

et al., 1997). This sediment is eventually transported to the oceans; sediment supply 

from Greenland has a significant influence on the chemistry of waters in the North 

Atlantic and waters west of Greenland (H a sh o l t , 1996). Furthermore, recent work has 

shown that deltas can act like fluidised bed reactors, because the suspended sediment 

that has been transported and deposited by riverine processes is subsequently reworked 

and chemically altered (G isl a so n  et al., 2006). This alteration of this suspended 

sediment can provide a chemical flux to the oceans that, for some elements, is at least as 

great as that provided by the dissolved load.

As well as carrying high volumes of suspended sediment the chemical 

composition of the runoff derived by glacial weathering is different from that of non­

glacial rivers. Glacial runoff is dominated by Ca2+, SO42' and HCO3 ', and usually 

contains relatively high amounts of K+ and relatively low amounts of Si compared to 

non-glacial rivers (A n d e r s o n  et al., 1997; T r a n te r ,  2003). The high concentrations of 

K , SO4  " and particularly Ca in glacial waters occur irrespective of the bedrock 

lithology (A n d e r s o n  et al., 2000; A n d e r s o n  et al., 1997; R a i s w e l l  and T h o m a s, 

1984). High levels of Ca2+ in solution result from preferential weathering of carbonates 

and aluminosilicates; this occurs even in regions dominated by igneous and high grade 

metamorphic rocks because the dissolution kinetics of divalent cations are more rapid
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than those of monovalent cations (W hite et al., 2001). In contrast to glacial rivers, 

those from non glacial settings are dominated by chemical weathering and so generally 

have higher total dissolved solids (TDS) as well as higher silica concentrations 

reflecting the higher silicate weathering intensity. Their composition more accurately 

reflects that of the underlying lithologies as well as climatic influences such as rainfall 

and runoff (M e y b ec k , 2003).

Thus, glacial and non glacial rivers have major physical and chemical 

differences. The aim of this study is to investigate how Li behaves in rivers from a 

recently glaciated area in south-west Greenland. Lithium isotopes readily fractionate 

during weathering because of their large relative mass difference (H u h  et al., 1998). 

The Li composition is controlled by weathering processes; in particular by the 

formation of secondary minerals and adsorption onto secondary minerals such as clays 

and iron oxides (C h a n  and H ein , 2007; H u h  et al., 1998). The light isotope, 6Li, is 

preferentially retained in the solid phase leaving the fluid phase to be isotopically heavy 

(C h a n  et al., 1992). By studying river waters that have experienced different 

weathering regimes (chemical vs physical) the aim is to achieve a better understanding 

of the processes that regulate both the flux of Li to the oceans and the isotopic 

composition of that Li.

Greenland has an area of 2,166,086 km2 (836,109 sq mi), of which the 

Greenland ice sheet covers 1,755,637 km2 (677,676 sq mi) or 81% of its land area. The 

Greenland ice sheet is the second largest ice sheet in the world after Antarctica with 

around 2.5 million km3 of ice (or around 10% of the total global ice mass). The weight 

of this ice sheet has depressed the central land area to form a basin lying more than 

300 m (1,000 ft) below sea level. Recent changing climate conditions have led to 

increased ice sheet melting. Laser altimetry shows that between 1997 and 2003
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Greenland lost ice at a rate of -80 +/- 12km3/yr (Kr a bill  et al., 2004). More recent 

gravity measurements have shown that between 2002 and 2005 an estimated 239 +/- 23 

km /yr has been lost, suggesting that the melting is accelerating as the climate continues 

to warm up (C h e n  et al., 2006). This melting is concentrated at the ice sheet margins, 

so the sheet is retreating inland exposing new terrain to chemical weathering.

Estimates of the current global average glacial runoff range from 0.3xl012m3yr_1 

to lxlO12 m3yr_1 of which around 0.3xl012m3yr_1 comes from Greenland and 0.04-5 

x l0 10m3yr_1 comes from Antarctica (Tr a n t e r , 2003). Glacial runoff provides between 

0.6-1% of the global average runoff and the flux from Greenland is the dominant 

source. With increasing global warming the flux from melting glaciers will increase 

and this will almost certainly affect the chemical composition of seawater.

Despite the importance of the Greenland ice sheet to global runoff there have 

been very few studies of rivers from this area, in particular their chemical composition 

and the link that they provide between the weathering of continents and seawater 

composition. Existing studies have focussed on quantifying discharge and solute fluxes 

in single catchments, including Disko Island (Y d e  et al., 2005) and the Imersuaq 

Glacier (Y d e  and Kn u d s e n , 2004). This investigation is the first to assess the behaviour 

of isotope systems accompanying weathering in rivers from Greenland. The aim of this 

study is to investigate the behaviour of Li and Li isotopes in glacial rivers and compare 

this to results from non-glacial regions. Could changes in the weathering regime, such 

as those associated with glaciation, change the continental weathering signal? 

Ultimately, could the changes in the Li concentration and composition of seawater over 

the past 8 Ma be related to the intensification of glaciation in the northern hemisphere?

3.2. Geological setting
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The geology of Greenland is characterised by ancient metamorphic rocks dating back 

billions of years, forming what is known as Precambrian shield. Some of the oldest 

known rocks on Earth are found in Greenland, at Isua in the south west of the island 

with an age of around 3800Ma (A ppel , 1998). The geological development of 

Greenland spans a huge period from the earliest rocks in the Archaean to relatively 

modem Quaternary geology. Despite this range Greenland is dominated by crystalline 

rocks of the Precambrian shield, formed during a succession of Archaean and early 

Proterozoic orogenic events which stabilised as a part of the Laurentian shield about 

1600 Ma ago (E sch er  and Pu lv er ta ft , 1995). The shield area can be divided into 

three distinct basement provinces: (1) Archaean rocks (3100-2600 Ma old, with local 

older units), almost unaffected by Proterozoic or later orogenic activity; (2) Archaean 

terranes reworked during the early Proterozoic around 1850 Ma ago; and (3) terranes 

mainly composed of juvenile early Proterozoic rocks (2000-1750 Ma old). This 

Archaean and early Proterozoic basement comprises around half of the ice free area of 

Greenland (A ll a a r t , 1982; E scher  and Pu lv er ta ft , 1995)

The glacial and non glacial rivers analysed in this project are located in 

southwest Greenland close to the town of Kangerlussuaq, situated at the head of the 

fjord of the same name (Fig. 3.1). The area around Kangerlussuaq is dominated by 

Archaean gneiss metamorphosed to amphibolite and granulite facies as well as intrusive 

igneous rocks of a similar age (E sch er  and Pu lv er ta ft , 1995). Swarms of alkaline 

dykes were intmded between 1200 -  600Ma, including some kimberlite dykes which 

have been found to contain diamond. For this reason the Kangerlussuaq region has 

recently experienced a great deal of geological exploration and interest from 

prospecting companies.
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Glaciation dominates the topography and there are numerous signs of recent 

glaciation including moraines, u-shaped valleys and glacial lakes. Deglaciation in 

central West Greenland started around 12,300 years BP and most of the inland ice 

reached its present position between 710 and 6,500 years BP (W illem se  et al., 2003) 

although more recent climate change has accelerated this deglaciation. Russells Glacier 

(Fig. 3.1) is now around 30km from the town of Kangerlussuaq and is the source of 

numerous jokulhlaups, the most recent of these occurring in 1987. These have 

substantially reworked glacial sediments, which in some areas form distinctive moraines 

and jokulhlaup deltas (R u sse l l , 2007). In recent years the ice sheet has retreated due to 

global warming but climate is still characterised by extreme cold in winter, as a 

consequence vegetation is sparse and confined to low lying shrubs and grass. The mean 

annual temperature is -5 °C, although the annual temperature range is -30 °C. 

Kangerlussuaq sits in an area of negative precipitation; the total evaporation exceeds 

precipitation by ~150mm each year. Precipitation is highest in August with an average 

of 28mm. Aeolian deposits are common in the region, especially near to the ice sheet 

and on hills (W illem se et al., 2003) resulting from the combination of arid conditions 

and high volumes of fine grained sediment. As a result of low average temperatures the 

study area is underlain by continuous permafrost; the numerous glacial lakes are frozen 

for over 9 months of the year, while the fjord itself is frozen between the end of 

November and mid June. The area is sparsely populated (human influence is confined 

to the area around Kangerlussuaq) and as such the samples have experienced minimal 

anthropogenic input.
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Fig. 3.1 -  A map showing the locations o f  river water and rock samples in this study.

Samples were taken from both ‘glacial’ and ‘non-glacial’ rivers. For the 

purposes of this study glacial rivers refer to rivers that are directly sourced from the 

glacier via surface run off, and non glacial rivers are those that are not directly sourced 

from the glacier. The majority of the glacial river samples were taken on 

Akuliarusiarsuup Kuua (sometimes referred to as the Watson River), which flows to the 

south-west from Russells Glacier, as it has relatively easy access for sampling. Samples 

were also taken from the Qinnguata Kuusua river which flows from the ice sheet 

directly east of Kangerlussuaq. The dominant underlying lithologies of both rivers are 

amphibolite facies gneiss, although the catchment for Qinnguata Kuusua is also 

underlain by Archaean intrusives. These rivers supply large volumes of glacial 

sediment, near to the ice sheet they form braided systems with wide expanses of sand, 

gravel and quicksand. For this reason access to these rivers is severely restricted, 

especially Qinnguata Kuusua where there is no access road. Non glacial rivers and
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streams were sampled from a number of locations, mostly close to the two main glacial 

rivers.

3.3. Methods

3.3.1. Sampling procedure

The fifteen river samples were collected in July 2006. Each river sample involved 

collection of 251 of water and ~100g of bedload sediment. At each sample site the pH, 

temperature and TDS of the water was also recorded.

Within 12 hours of collection all 251 water samples were filtered (<0.2pm) and either 

stored for later analysis or filtered again (lOkD) to separate the colloids; further details 

of the sampling procedures, filtering processes and alkalinity titration are given in 

Section 2.1.1.

3.3.2. Leaching Experiments

Three suspended sediment samples were subjected to a two stage acid leaching process 

similar to that used in Chan & Hein (2007). A gentle leach involving buffered acetic 

acid, designed to remove freely exchangeable cations, was followed by a more vigorous 

leaching procedure involving 2N TD HC1 designed to remove cations bound to iron and 

manganese oxyhydroxides. The leachates were then analysed using ICP-MS and 

further analysis was carried out for lithium isotopes by MC-ICP-MS (multi-collector 

inductively coupled mass spectrometer). The leaching process is described in more 

detail in Section 2.3.
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3.3.3. Major and Trace elements

The methods used for sample processing which include rock crushing and preparation 

for analysis by XRF, and the dissolution of solid samples for analysis by ICP-MS are 

described in detail in Section 2.2. All major element analyses of rock and sand samples 

were performed by XRF (Section 2.5.1.1). The accuracy of the XRF measurements is 

assessed by the reproducibility of known standards; these typically reproduce to within 

1 % of the certified values.

Major element analyses of the suspended sediment and all trace element 

analyses for rock and sand were performed using ICP-MS. These measurements were 

calibrated using a series of rock standard reference materials and an internal standard 

consisting of Be, Rh, In, Tm, Re and Bi. Details of the sample analysis and 

reproducibility of standards are given in Section 2.5.1.1. In brief, the concentrations of 

measured standards are mostly close to certified concentrations. The external error for 

both major and minor elements is better than 6 % (2 o).

River waters were also analysed by ICP-MS; their preparation involved being 

acidified with 15M TD HNO3 to a concentration of 2% HNO3 . These waters were 

calibrated using multi element standards, and the external reproducibility was assessed 

by repeat measurements of the river water standards SLRS-4 and in house standard 

Sco2/15. Details of the sample analysis and reproducibility of standards are given in 

Section 2.5.1.2. External reproducibility (as determined from repeat measurements of 

SLRS-4) are better than 8 % (2a), a comparison of measured SLRS-4 with the certified 

values is presented in Appendix A8 .

Dissolved anions were measured using a Dionex ion chromatograph. Anions 

measured were chloride, sulphate, nitrate and phosphate. Two separate runs were 

performed and the measurements were calibrated using standard solutions (see
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Appendix A9). Detection limits are 0.1 ppm and the external reproducibility is better 

than 1 0 % (2 a).

3.3.4. Lithium isotope measurements

Separation of lithium for isotope analysis was carried out by ion chromatography 

following the method of James & Palmer (2000) (Section 2.4.2). Isotope measurements 

were performed on both the Thermo-Finnegan Neptune and Nu Instruments MC-ICP- 

MS at the Open University. Lithium isotope ratios were calculated by the sample- 

standard bracketing technique with all ratios reported as a %o difference relative to the 

standard LSVEC. More details concerning lithium sample analysis are given in Section

2.5.2.2. The external precision of the analyses was determined by repeat measurements 

(n=40) of the IAPSO seawater standard measured over the course of this study. The 

mean and standard deviation (2a) of these analyses is 31.08%o ±0.82%o (see Appendix 

A ll).

3.4. Results

3.4.1. Field measurements

In situ measurements of pH, temperature, TDS and total suspended solids (TSS) are 

presented in Appendix B l. Glacial river waters are colder (0.3-8°C) than non glacial 

waters (10-19°C) because they are sourced directly from the glacier. TDS and TSS data 

also reflect the river type; glacial rivers have relatively high TSS (0.2-0.85 g/1) and low 

TDS (2-18 pS) while non glacial rivers show the opposite with a low TSS (0.001-0.16 

g/1) and high TDS (25-2600pS). TDS and TSS both increase downstream in the glacial 

rivers (Fig. 3.2).
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Fig. 3.2 -  Variation in TDS and TSS in glacial rivers as a function of the distance downstream from the 

ice sheet.

The pH of these rivers varies between 6.3 and 8.5 with most glacial rivers 

having a pH of between 7 and 8 . The exception is sample GR3, which was recovered 

from a stream flowing from on top of the glacier and had no contact with the bedrock 

(i.e. supraglacial), this sample has a lower pH (6.3). Non glacial rivers have a similar 

pH range to the glacial rivers although three of the six rivers sampled have a pH of 

greater than 8 . Glacial rivers have a relatively low alkalinity (ranging between 0.02 and
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0.15 meq/1) compared to the non glacial rivers (between 0.26 and 1.74 meq/1). Within 

the glacial rivers the alkalinity increases with distance from the ice sheet in a similar 

way to the TDS and TSS.

CATIONS

Glacial rivers Non-glacial rivers

ANIONS

□hco3 
■ so42
oO

p
Glacial rivers Non-glacial rivers

Fig. 3.3 -  Average cation and anion compositions o f  glacial and non glacial rivers. Error bars show 1 

standard deviation o f  the mean value.

3.4.2. Major and trace element data

3.4.2.1. Dissolved load

Cation and anion data for the dissolved load is presented in Appendix B2. The average 

of the sum of the major cations (Na+ + Mg2+ + Ca2+ + K+) in the glacial rivers is 

134peq/l and 1419peq/l in non glacial rivers. As a percentage of the cation sum Ca 

dominates in both the glacial and non glacial rivers (on average 57 and 44% 

respectively, Fig. 3.3). Sodium concentrations are similar between the two sets of 

rivers, and both glacial and non glacial rivers have -16%  Na+. The biggest difference 

between the glacial and non glacial rivers in terms of the major cations is the behaviour 

of potassium and magnesium. Glacial rivers have a K and Mg concentration o f -12  and
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16% respectively compared to K and Mg concentrations of ~5 and 36% in non glacial 

rivers. These differences in the chemical composition of glacial versus non-glacial 

rivers are illustrated in a ternary diagram (Fig. 3.4).

Fig. 3.4 -  A ternary diagram showing the major cation compositions of glacial and non glacial rivers in 

Greenland. Data for a selection of other rivers are shown for comparison. Data for average silicate rivers 

from Gaillardet et al. (1998), average world rivers from Meybeck (2003), the average composition of 

rivers from SW Iceland taken from Gislason et al. (1996), Bench River data from Anderson et al. (2000) 

and data for the Ganges from Galy et al. (1999).

There is a range of silica concentrations in solution; glacial river samples 

contain from 6.3 to 43 pmol/1 while non glacial rivers have a wider range of 

concentrations from 4 up to 325 pmol/1. The global average for dissolved silica is 130 

pmol/1 (M illot et al., 2002), indicating the glacial rivers have lower than average 

dissolved silica and some non glacial rivers have greater than average dissolved silica. 

Iron concentrations in the dissolved load are between 87 and 690 nmol/1 in glacial 

rivers, compared to between 170 and 12700 nmol/1 in non glacial rivers. All but two 

rivers have an iron concentration below the riverine average of 1180 nmol/1  

(G a illar d et  et al., 2003). The anion content of Greenland rivers is almost entirely 

comprised of bicarbonate, sulphate and chloride ions. The dominant anion is

Ca •  Glacial rivers (this study)
ital rivers (this study)

a  Average silicate rivers 
Average world rivers 

A Average SW Iceland 
A Bench River, Alaska

Na + K Mg
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bicarbonate in all rivers, but the concentration of sulphate and chloride ions varies 

between glacial and non glacial rivers; in glacial rivers the sulphate concentration is far 

greater than that of chloride while the reverse is true in non glacial rivers (Fig. 3.5).

• Glacial Rivers
* Non-Glacial Rivers

Fig. 3.5 -  A ternary diagram illustrating the difference between anion compositions in glacial and non­

glacial rivers.

The high organic content of samples GR11 and GR12 is reflected by nitrate 

concentrations of 0.7 and 5 mg/1; nitrate is below detection limit in all other river 

samples. The average anion sum in glacial rivers is 137 peq/1. This balances the cation 

sum and shows that all of the major ions are accounted for. The average anion sum in 

non glacial rivers is 1221 peq/1. This is 14% lower than the corresponding cation sum 

(Fig. 3.6) probably because of the presence of humic substances that have not been 

measured.
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Fig. 3.6 -  A graph showing the anion and cation sums for all Greenland river samples.

3.4.2.2. Colloids and ultrafiltered waters

The chemical composition of the dissolved load includes everything in solution 

that is below 0.2 pm. Today much research has been performed on smaller size 

fractions within the dissolved load by ultrafiltering the water to separate out colloids 

(D rev er  and S tillin g s , 1997; Po k r o v sk y  and S chott , 2002; R iotte et al., 2003). 

Colloids are inorganic or organic particles that are between lnm and 0.2pm in size and 

are carried in suspension (G a illar d et  et al., 2003). The most common mineral 

colloids are metallic oxyhydroxides (mostly Fe-, Al- and Mn- oxides) and clays while 

organic colloids are dominated by humic and fulvic acid (D u pre  et al., 1999; 

Ga illar d et  et al., 2003; P o k r o v sk y  et al., 2005; S iv r y  et al., 2006).

Major and trace element data for colloids (<0.2pm, >10kD) and the ultrafiltered 

fraction (below lOkD) are given in Appendix B3. The colloidal fraction has higher 

concentrations of all elements (Al3+, Na+, Ca2+, Mg2+, K+, Li+, Fe2+) relative to the 

dissolved and ultrafiltered waters. Concentrations of iron, copper and aluminium are 

particularly high in the colloidal phase; for example iron is below detection in the
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ultrafiltered phase while the colloidal fraction has iron concentrations from 2350 to 

352000 nmol/1. The major cation composition of the ultrafiltered waters are shown in 

Fig. 3.7. In comparison to the dissolved (<0.2 pm) fraction (Fig. 3.3) note that the
j

composition of the non-glacial and glacial waters contain relatively similar Ca 

concentrations. Results show that the major differences between the two sets of river 

are the relative proportions of K and Mg.
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Fig. 3.7 -  A graph comparing the major cation composition of ultrafiltered waters for glacial and non 

glacial rivers. Error bars show 1 standard deviation of the mean value.

The separation of the river waters into colloids, ultrafiltered (<10kD) and 

dissolved (<0 .2 pm) is achieved by using tangential ultrafiltration equipment as 

explained in Section 3.3.1. One drawback to this method is that the filter can retain 

some elements and possibly cause sample contamination (A n d e r ss o n  et al., 2001; 

D u pre  et al., 1999; R iotte et al., 2003). A  way to check whether elements are being 

affected by the ultrafiltration process is to calculate a mass balance, between the 

concentration of the water to be filtered and the two ultrafiltered phases (the colloids or 

retentate and <10kD water or the filtrate). In this study the volumes of water used were

---------- :

□ Ca
□ K 
b Mg
□ Na

-p

j l

H I j | j j l

Average glacial Arerage non glacial

74



Chapter 3 The behaviour o f Li during glacial weathering

not well constrained and an estimated 1 0 1  of water was ultrafiltered until -250ml of 

retentate was produced. Using these figures mass balance calculations suggest that 

some elements are not affected by the ultrafiltration process; Li, Na. Mg, K and Sr all 

balance to within ±15%. Some calcium is retained during ultrafiltration; calcium 

balances to within ±25%. Elements which seem to be strongly affected by ultrafiltration 

are Al, Fe and Si. Aluminium is lost during ultrafiltration in all but one sample, with 

between 10 and 80% of the aluminium retained by the filter. Iron is also commonly lost 

during ultrafiltration although there is a gain of up to 23% in three samples. This 

behaviour of aluminium and iron is consistent with previous work suggesting that 

colloids such as Fe and Al-oxyhydroxides are fixed to the filtration membrane (R iotte 

et al., 2003). Silicon behaves differently; the ultrafiltered fraction is enriched in silicon 

in all but one sample by between 6  and 75%. This means that the filtration cassette is 

contaminating the solutions with silicon suggesting that silicon concentrations in the 

ultrafiltered fraction are unreliable.

3.4.2.3. Rocks, sands and suspended material

Major and trace element data for the bedrock, bedload and suspended load are presented 

in Appendix B4, and the major cation compositions are presented in a ternary diagram 

for each of the three phases (Fig. 3.8).

Analyses of suspended sediments are limited to sediment from glacial rivers; the 

low TSS in non glacial rivers meant that there was not enough sediment to measure the 

concentrations. The suspended load has a relatively consistent composition throughout 

all of the samples. Silicon concentrations have not been measured because the 

dissolution procedure involves the use of HF. If it is assumed that silicon is the most
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abundant cation present then the next most dominant cation is aluminium at ~6 . 8  Wt%. 

The suspended sediment also has an iron concentration of -4.4 Wt%.

•  Average suspended load 
ci Average bedload 
a Average amphiboilite

\ \ \ \ \ \ \ \ \ \ \ 
Na +  K Mg

Fig. 3.8 -  A comparison of the cation composition of the solid phases of Greenland rivers (bedload and 

suspended load), showing the change in composition with increasing weathering intensity. Data for 

average amphibolite are taken from Wells (1978).

The composition of the bedload is similar to that of the suspended sediment in 

particular the sodium and aluminium concentrations. Other major cations such as 

magnesium, calcium, potassium and iron have on average higher concentrations in the 

suspended sediment, for example the average magnesium composition of the suspended 

sediment is 1.9 Wt% compared to 1.1 Wt% in the bedload. The iron concentration in 

the bedload is quite variable; from 2.2 Wt% at GR8  to 7.1 Wt% at GR4. In general the 

chemical composition of the bedload from glacial rivers is very similar to that recovered 

from non glacial rivers.

A selection of unweathered bedrock was sampled; mostly from adjacent to the 

Watson River. As a collection they vary widely in chemical composition and are not all 

representative of the dominant lithology in the Kangerlussuaq region. The area is part
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of the Archaean shield and dominated by amphibolite grade gneiss with a mineral 

assemblage consisting of biotite-gamet-cordierite-sillimanite-quartz. Comparison with 

the compilation of Wells (1978) suggests that the rock samples GR2R and GR6 R are 

the closest in composition to the average Greenland amphibolite. They are also the 

closest in composition to the bedload, which is assumed to be the least weathered 

riverine phase. In particular the silicon concentrations of the bedrock and bedload are 

almost identical (~31 Wt%), while iron is on average over 1.8 Wt% greater in the 

bedload relative to the bedrock.

3.4.3. Lithium and lithium isotope data
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Fig. 3.9 -  A graph showing the 87Li value and 1/Li for glacial and non glacial rivers. The global average 

87Li value of river waters (23%o) is taken from Huh et al. (1998).

Lithium and lithium isotope results for the different riverine phases are presented in 

Appendices B2, B3 and B4. The concentration of lithium in the dissolved load ranges 

from 14 nmol/l at GR3 to 1810 nmol/l in GR10. Sample GR10 was taken at the harbour
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and thus contains a seawater component, for this reason GR10 is excluded from any 

subsequent discussion. On average the lithium concentration in glacial rivers is 60 

nmol/l compared to a higher average of 180 nmol/l in non glacial rivers (Fig. 3.9). The 

isotope composition of Li varies from 13.5 to 36%o compared to an average riverine Li 

composition of 23%o (H u h  et al., 1998). Most glacial rivers have a 8 7Li value close to 

-26 %o; sample GR3 (supraglacial) has a more isotopically light lithium composition
n *7

( 8  Li of 13.5%o) while non glacial rivers tend to have higher 8  Li values, ranging 

between 27.1 and 36.5%o.
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Fig. 3.10 -  A graph comparing the 87Li composition and Li concentration of suspended sediments and 

bedload.

Concentrations of lithium in the suspended load are higher than they are in the 

bedload or bedrock with a range of concentrations between 24.9 and 35.5 ppm and 

average concentration of 28.8 ppm. The 8 7Li value of the suspended load (between 2.7 

and 4.1 %o) also tends to be lower than that of the bedrock and bedload. In comparison 

the bedload has the lowest Li concentration with an average of 10.6 ppm and higher 

8 7Li (3.64 to 6.9l%o, Fig. 3.10). A range of bedrock samples were taken and these have
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n

a far greater range in Li concentration ranging from 11.3 to 26.2 ppm. The average 6  Li 

value of the bedrock is 8.8%o which is higher than the average of the suspended or 

bedload.
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Fig. 3.11 -  A graph showing the 57Li value of the colloidal fraction relative to the dissolved load.

Lithium concentrations are very similar between the dissolved (>0.2um) and 

ultrafiltered waters (<10kD); for example in GR1 the dissolved load has a lithium 

concentration of 49 nmol/l compared to 44 nmol/l in the ultrafiltered phase. The 

isotopic composition of the colloids in non glacial rivers is the same as that measured 

for the dissolved load, but the colloids in glacial rivers are isotopically lighter than the 

corresponding dissolved load (Fig. 3.11). The 8  Li value of the glacial colloids ranges 

from 13 to 21%o while the corresponding dissolved load is between 25.5 and 26.7%o. 

The 8 7Li values of a selection of ultrafiltered waters have also been measured; results 

show that the ultafiltered water has an identical lithium composition to the 

corresponding dissolved phase.
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3.4.4. Leaching experiments

The results of the three leaching experiments are presented in Appendix B5 and 

illustrated in Fig. 3.12.
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Fig. 3.12 - Results of the two stage leaching procedure showing the average total percentage of each 

element that is leached by an acetic acid buffer and 2N HCI. The total % of each element is calculated 

from the mass of each element that is in 0.2g o f the suspended sediment sample. Error bars are 1 standard 

deviation of the mean value.

Three suspended sediment samples were analysed, their chemical similarities are 

reflected by the results of the leaching experiments which show little variation between 

the samples. The results presented in Appendix B5 have both the solution compositions 

in ppm and the total % of each element that the leaching step removes from the 

sediment. A greater proportion of each element, as expected, is leached by the stronger 

acid (2M HCI). For example the acetic leach removes around 1.5% of the total 

available lithium, while the HCI leach removes -65% of the total lithium. Another 

element that shows a large contrast in abundance between the acetic and HCI leaches is 

iron; mass balance shows that only 0.5% of the available iron is leached by acetic acid
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while nearly 1 0 0 % of the iron from the suspended sediment is removed by the strong 

acid leach. Other elements that have a high concentration in this leach are Ni (-93% of 

total suspended Ni), Zn (-70%) and Mn (-65%).
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Fig. 3.13 - The 87Li composition of fluid derived from the two stage acid leaching process on suspended 

sediments (GR1, GR5 and GR7).

While the concentration of lithium that is removed by the different leaching stages is 

dissimilar further analyses of the fractions show that the compositions of the two 

leaching stages are different with respect to lithium isotopes (Fig. 3.13). The acetate

7 7leach has a 8  Li value of ~15%o while the HC1 leach has lower 8  Li (~5%o).

3.5. Discussion

3.5.1 Physical characteristics

The source of proglacial river water is a combination of surface and subglacial melting 

(Anderson et al., 2000; Das et al., 2008; Tranter, 2003). As a consequence the
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♦
♦
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glacial rivers contain large volumes of water and are fast flowing; for this reason the

water-rock contact time and thus the intensity of chemical weathering is low. This

the non glacial rivers (12.3°C) and the low TDS (10.5jiS) relative to the average TDS of 

the world rivers (50jllS, Gaillardet 1999). Temperature has a direct impact on the rate of 

chemical reactions as illustrated by the Arrhenius equation:

where A is the pre-exponential factor and Ea is the activation energy, R  is the gas constant, and T  the 

temperature in K.

Thus reactions such as the hydrolysis of silicates will increase exponentially with 

increasing temperature, and so relative to non glacial rivers the rate of reaction will be 

lower. This is illustrated in Fig. 3.14, which shows a positive relationship between 

temperature and TDS.

Alkalinity is the capacity of a solution to neutralise acid and is usually 

dominated by carbon species which at pH values of less than 8.3 are mostly in the form 

of HCO3 ' (A ppelo and P o stm a , 2005). In the glacial rivers the alkalinity increases 

from the source of the rivers to 30km downstream. Alkalinity is produced during the 

weathering of silicate rocks and can also be related to the contact time with atmospheric 

CO2 . The trend in alkalinity generally follows that of TDS, showing that rivers with 

higher alkalinity have a higher silicate weathering intensity.

explains the relatively low average temperature (4.6°C) of the glacial rivers relative to

Equation 3.2
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Fig. 3.14 -  A graph showing the TDS vs temperature in both glacial and non glacial rivers. The average 

riverine TDS (50pS) is from Gaillardet et al. (1998).

Glacial rivers also characteristically have high TSS (on average 0.5g/l compared 

to 0.045g/l in non glacial rivers) due to their direct link to the ice sheet; glaciers produce 

high amounts of fine grained sediment that can be transported in the meltwater, there is 

evidence for this fine grained sediment in the glacial sediments and landforms in and 

around the Kangerlussuaq region (R u sse l l , 2007) and the abundance of wind blown 

dust. This fine grained sediment can be easily transported by the glacial rivers, in 

particular because the rivers are fast flowing, and the high flux of water means that the 

total mass of sediment that is carried is high.

In contrast the non glacial rivers are not directly linked to the glacier so glacial 

meltwater doesn’t directly flow into them. Kangerlussuaq is in an area of negative 

precipitation and underlain by continuous permafrost (Jo r g e n sen  and A n d r e a s e n , 

2007) so the amount of rainwater and groundwater flow into the non glacial rivers is 

low. For this reason the volume of water carried in these rivers is small relative to the
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glacial rivers, and because they have slower flow rates the contact time between water 

and rock is far higher and the chemical weathering intensity is greater. The low flow 

rate and isolation from the glacier means that total sediment that is carried in suspension 

is also much lower than in glacial rivers. The brown colour of the filtered water (in 

particular GR11 and GR12) indicates that organics such as humic acid are likely to be 

present in these rivers (G a illa r d et  et al., 2003) while there is no obvious organic 

presence in the glacial rivers. Despite the rivers being called ‘non-glacial’ they are not 

representative of non-glacial rivers worldwide; many rivers draining non glacial regions 

discharge huge volumes of water such as the Amazon (~6600km3/yr) and the Congo 

(~1200km /yr). As well as having a far greater discharge these rivers can also carry 

high amounts of suspended sediment e.g. the Ganges which has an average TSS of 

1100mg/l (G a illa r d et  et al., 1999a). Though the ‘non-glacial’ rivers in this study 

cannot be representative of major rivers worldwide the two sets of river in this study do 

represent extremes in intensity of chemical weathering and so make an important 

comparison of how differences in the weathering intensity can affect the behaviour of 

stable isotope systems.

Variations in pH in natural waters can result from two processes; a) the consumption of 

protons during the weathering of silicate rocks, b) the generation of protons by 

atmospheric CO2 entering solution or oxidation of sulphides. The sample with the 

lowest pH is the supraglacial sample (GR3, pH 6.3); this low pH suggests that the water 

has had no contact with the bedrock and so the consumption of protons by silicate 

weathering is limited. In contrast the proglacial rivers have higher pH’s (7.1 to 8.4) 

indicating that these waters have had a longer contact time with the bedrock thus the 

level of weathering is greater and more protons are consumed. The proglacial water is 

sourced either from surface melting or subglacially, in either case it must flow through
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the subglacial zone; here the dominant reactions are silicate and carbonate hydrolysis 

which can raise the pH of the water as high as pH 9 and 10. Another important reaction 

in the subglacial environment is the oxidation of sulphides as shown in Equation 3.3 

(T r a n t e r , 2003):

4Fe2S  + \6Ca(l_x)MgxCo3 +150 2 +14 t f 20=>
. Equation 3.3

16(1 -jc  )Ca2* +16 xMg2* +16 HCO,~ +SSO, +4Fe(OH ) 3

Sulphide oxidation produces protons which lowers the pH of the water as well as 

producing by products such as iron oxyhydroxides. This reaction consumes oxygen 

where it is available but does not always require atmospheric oxygen to be present; it 

can be supplied from bubbles in the melting ice and the reaction can also be mediated 

by sulphur oxidising bacteria that use Fe(III) as an oxidising agent (B ottrell and 

Tr a n t er , 2002; Tr a n t e r , 2003). As well as lowering the pH the provision of protons 

enhances the dissolution of carbonates by lowering the saturation state of carbonates in 

solution (Tr a n t e r , 2003). The resulting solution has a pH that reflects a combination 

of processes; the supraglacial chemical weathering of silicates consumes protons, but 

the oxidation of sulphides prevents the pH of the resulting subglacial water rising above 

~9. The closest proglacial sample to the ice sheet is GR1, the pH of which is 8.4. 

Further downstream from GR1 the pH decreases to ~7.2 at the entrance to the fjord at 

Kangerlussuaq. This shows that outside of the subglacial environment the production of 

protons by CO2 entering solution must be greater than the consumption of protons by 

silicate weathering and indicates that the weathering rate in these glacial rivers must be 

relatively low.
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Non glacial rivers have a similar range in pH to the glacial rivers. Sample GR12 has a 

high pH (8.25) and also high TDS, which suggests that protons have been consumed by 

weathering reactions. Conversely sample GR11 has a low pH (6 .8 ) and relatively low 

TDS (25pS) indicating that the weathering intensity is low and atmospheric CO2 plays a 

greater role in controlling pH.

3.5.2. Major and trace elements

3.5.2.1. Dissolved load

Major and trace element analyses show that there are both similarities and differences 

between chemical compositions of the glacially and non glacially sourced rivers. In

04 -both sets of river the most abundant major cation is Ca and the most abundant anion is 

the bicarbonate ion (HCO3"), despite the underlying lithology being essentially a 

monolithological area of amphibolite grade gneiss and ancient volcanics with only trace 

amounts of carbonate present (W ells , 1979). These high Ca2+ concentrations in glacial 

rivers are consistent with previous research on glacial processes (A n d e r so n  et al., 

1997; Tr a n t e r , 2003) as explained in Section 3.1.

The greatest difference between the major cation contents of the glacial and non 

glacial rivers are the relative proportions of K+ and Mg2+ ions. Changes in the relative 

proportions of cations in rivers are often driven by changes in lithology (M e y b e c k , 

2003). However, since the source terrain is essentially monolithological (Wells 1978), 

it is more likely that the differences in cation concentrations are caused by differences in 

chemical weathering intensities. The variation in potassium concentrations can be 

illustrated by the K/Na ratio. In most non glacial rivers the molar K/Na ratio is ~0.33 

while this ratio tends to be higher (~1) in glacial rivers (A n d e r so n  et al., 2000); in the 

Greenlandic rivers the K/Na ratio exceeds 1 in the three river samples that have the
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closest proximity to the ice sheet (GR1, GR3 and GR9). This increase in the K+ 

concentration is caused by non stoichiometric biotite dissolution and the leaching of 

interlayer K, a process that is relatively rapid under glaciers and in glacial soils 

(A n d e r so n , 2005; A n d e r so n  et al., 1997; B l u m  et al., 1998; N e w m a n  and B r o w n , 

1969; Sh a r p  and G o m ez , 1986; St a l l a r d , 1995). The combination of preferential K+ 

release from interlayer biotites, with a relatively small amount of sodium release due to 

the low intensity of chemical weathering, means that the K/Na ratio is greater than in 

non glacial rivers. Non-glacial rivers have significantly higher concentrations of 

magnesium than glacial rivers (16% of major cations in glacial rivers compared to 36% 

in non glacial rivers). Because the weathering intensity is higher in non glacial rivers 

the processes that are important in glacial rivers such as the interlayer leaching of biotite 

and dissolution of trace carbonates are less important. As a consequence the chemistry 

of the non glacial rivers is dominated by silicate rock dissolution and so the relative 

proportion of magnesium that is mobilised is higher.

There are also differences with regards to the relative anion composition in the 

two river types. Glacial rivers have a proportionally higher SO42' concentration 

compared to non glacial rivers (2 2 % compared to 1 0 % in non glacial rivers); this is 

because the chemical composition of glacial rivers is strongly influenced by subglacial 

processes (Tr a n t er , 2003) and one of the most important is the oxidation of sulphides 

(Equation 3.2). While sulphide oxidation will still occur in non glacial rivers the 

relatively high chloride concentrations mean that proportionally the levels of sulphate in 

solution are lower than in glacial rivers.

It is useful to use the Cl/Na ratios of the water in order to assess how much 

influence seawater has over the chemical compositions of the rivers. The low Cl" 

concentrations in the glacial rivers (averaging 0.13 mg/1 or -3%  of the total anion
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content) and low Cl/Na ratios (-0.2 compared to 1.8 in seawater) suggest that seawater 

influence is small. The supraglacial sample GR3 has the highest Cl/Na ratio of 0.6 

showing that even on the ice itself the influence of aerosols is low, or possibly masked 

by the weathering of glacial and aeolian sediment which may provide relatively high 

amounts of sodium. In non glacial rivers the chloride concentration is much higher 

(averaging 8.7 mg/1 or -20% of the anion content) due to a combination of high levels 

of evaporation in the Kangerlussuaq region (A n d e r so n  et al., 2001; Jo r g e n sen  and 

A n d r e a s e n , 2007) and the fact that the non-glacial rivers themselves have small water 

volumes; this leaves the resulting fluid more concentrated. As a result of this high 

chloride concentration the Cl/Na ratio in these rivers is also higher, averaging 0.9, but is 

still low relative to that of seawater. The difference between chloride concentration in 

glacial and non glacial rivers is large, this may be especially true in summer when 

glacial melting and evaporation are at a maximum. In general it seems unlikely that 

seawater has any impact on glacial river composition, and despite high levels of 

evaporation the impact on non glacial rivers is also relatively small.

Because the Kangerlussuaq region is underlain by a zone of monolithological 

rock (amphibollite grade gneiss) the relative contribution of silicate versus carbonate 

rocks to the chemical composition of the rivers should be dominated by silicate 

weathering; this can be checked by calculating major element ratios. The average 

molar Ca/Na, Mg/Na and Sr/Na ratios (1.6, 0.7 and 3><10' 3 respectively) reflect the low 

level of carbonate dissolution in the area and the dominance of silicate weathering (for 

reference carbonate rivers in Gaillardet et al. (1998) have Ca/Na, Mg/Na and Sr/Na 

ratios of approximately 50, 10 and 35x10‘3). The samples collected either on or 

adjacent to the ice sheet have higher Ca/Na ratios of 2.3 -  3.8. Further downstream the
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level of chemical weathering and the amount of Na+ that is released into solution 

increases causing the Ca/Na ratio to fall to ~1.

Relative mobilities of major elements can be estimated by normalising the molar 

concentration of an element in solution by the molar concentration of that element in the 

bedload. Elements with a greater mobility will have a higher ratio as more of the 

element has entered solution relative to the amount in the bedload. Results are plotted 

in Fig. 3.15, and the elements are ordered with respect to their mobilities in the glacial 

rivers.
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Fig. 3.15 - A graph showing the average relative mobilities o f  cations in glacial and non glacial rivers 

from Greenland. The higher the ratio Xdissolved/Xbedloa<1, the more readily the element dissolves.

In the glacial rivers the most mobile elements are calcium and potassium, caused 

by the preferential release of these elements by weathering of trace carbonates and 

biotite. The least mobile elements are iron and aluminium which are known to be less 

mobile during weathering from work on rivers ( G i s l a s o n  et al., 1996) and from their 

retention in soils and in some circumstances the formation of laterites and bauxites

□ Glacial rivers 

■ Non-glacial rivers

Increasing mobility

Ca K Mg Na Mn Si Al Fe
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(S c h el lm a n n , 1994; Ta r d y , 1997). The final sequence of element mobility in the 

glacial rivers is (in decreasing order): Ca>K>Mg>Na>Mn>Si>Al>Fe. This pattern of 

mobility is similar in the non-glacial rivers; again in decreasing order 

Mg>Ca>Na>K>Mn>Si>Fe>Al. In general all of the elements are more mobile in non­

glacial rivers, but particularly magnesium, sodium and iron which reflects the higher 

chemical weathering intensity in non glacial rivers and the lesser importance of glacial 

weathering processes that preferentially mobilise K and Ca.

3.5.2.2. Suspended and bedload

The suspended load has been subjected to more weathering than the bedload and as a 

consequence of this should have a higher clay and secondary mineral content. If the 

average cation compositions of the bedload and suspended loads are compared to Wells 

average amphibolite (Fig. 3.8) it shows that with increasing amounts of weathering (i.e 

bedrock < bedload < suspended sediment) the relative concentrations of Ca2+ and Mg2+ 

increase at the expense of Na, Al and Si. Clay minerals have been shown to be effective 

at adsorbing metal ions in numerous studies (B r o w n a w ell  et al., 1990; D a v is  and 

K e n t , 1990; Pe a c o c k  and Sh e r m a n , 2005b; S c h u lth ess and H u a n g , 1990; T iller  

et al., 1984) and have large surface areas. Clay minerals such as smectites and 

vermiculites have permanent surface charge which results from the substitution of 

divalent cations (e.g. Mg2+) for trivalent ions in the octahedral sheet (e.g. Al3+) or the 

substitution of trivalent cations for Si4+ in the tetrahedral layer (D a v is  and K e n t , 1990). 

These substitutions result in a negative surface charge. For this reason clay minerals 

often take up metal cations such as Mg2+, Ca2+ and K+. Iron oxide minerals can also 

adsorb metal ions but they have no surface charge so adsorption occurs via binding with 

surface hydroxyl groups (R a n d a l l  et al., 1999). The suspended sediments in the
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glacial rivers are enriched in Mg, Ca, K, Li, and Fe; all elements that form cations in 

solution. Through substitutions into octahedral layers in clays, electrostatic attractions 

with the clay surfaces and binding with surface hydroxyls on iron oxide minerals these 

cations can become relatively enriched on suspended sediments. Trace elements also 

show a substantial enrichment on the suspended sediment in relation to their 

concentration in the bedload. This is particularly true of the transition metal cations 

which are readily incorporated into clays (D ec a r r e a u , 1985) and iron oxides 

(Pea c o c k  and Sh e r m a n , 2005a; Sh e r m a n  and Pea c o c k , 2004). In this case the 

adsorption of Ni, Cu and Zn onto the suspended sediment has enriched these elements 

by -145, 250 and 140% respectively relative to bedload concentrations.

The suspended sediment is fine grained relative to the bedload (hence it can be 

transported in suspension by the river). This fine grain size is achieved either by higher 

levels of chemical weathering or by physical grinding. The relative levels of chemical 

weathering subjected to the bedload and suspended load can be assessed by using 

element ratios, in this case the molar ratios of Ca/Na and Mg/Na (S ta l la r d  and 

Ed m o n d , 1981). Although relative mobilities of elements in these rivers (Fig. 3.15) 

show that calcium is the most mobile element (due to its preferential release during 

weathering of trace carbonates) sodium is usually considered to be the most mobile of 

the major cations during weathering (G a ill a r d et  et al., 1999a; G isl a so n  et al., 1996). 

Because of this mobility sodium will preferentially enter solution and so with increasing 

weathering intensity the element ratios should rise. Molar ratios of Ca/Na and Mg/Na 

in the suspended load average 0.69 and 0.7 respectively, compared to average ratios in 

the bedload of 0.5 and 0.38 respectively indicating that some chemical weathering has 

occurred as the more mobile Na is lost into solution and the resulting suspended 

sediment has proportionally less sodium. Thus suspended sediment has been subjected
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to more chemical weathering than the bedload and is likely to contain a higher 

proportion of alteration minerals such as clays and iron oxide minerals than the less 

altered bedload. Because the sediment has a finer grain size the total surface area per g 

available for new minerals to nucleate upon is greater and there is greater potential for 

further cation exchange reactions to happen. For this reason the bulk composition of the 

suspended sediment is different from that of the bedload with a greater content of major 

and trace metal divalent cations. Lithium is also substantially enriched in the suspended 

phase, this is discussed further in Section 3.5.3.2.

The suspended sediment is the most altered solid phase in the Greenlandic 

rivers, this can be compared with the composition of suspended sediments in rivers 

worldwide. A study of suspended sediment (G a ill a r d et  et al., 1999a) lists 

compositions of a number of rivers including the Huanghe, Mekong, Niger, St 

Lawrence and MacKenzie. Calculated Mg/Na ratios for these rivers are 1.6, 1.9, 1.8,

1.1 and 5.3 respectively; Ca/Na ratios for the same rivers are 3.5, 1.9, 0.8, 1.1 and 7.8. 

In each case the suspended sediment has a higher element ratio when normalised to 

sodium relative to the ratios obtained in this study from glacial rivers (Fig. 3.16). 

Another study of suspended sediment from rivers in the Congo Basin have Ca/Na ratios 

of between 3 and 10 (D u pr e  et al., 1996). The relatively high Ca/Na and Mg/Na ratios 

in these studies suggests that the sediment within these rivers has been subjected to 

more intense chemical weathering and subsequently a greater loss of sodium into 

solution.

The bedload is less weathered, is likely to have a low clay content and is closer 

to the chemical composition of the unaltered bedrock (Appendix B4). The lower 

amount of weathering of the bedload is highlighted by comparing the silicon 

composition of the bedload and the silicon concentration in the average amphibollite
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(W el ls , 1979); results show that the concentration of bedload Si is almost identical to 

that in the bedrock at ~31 Wt%. This means that very little Si has been lost and 

supports the idea that in general the intensity of chemical weathering in these rivers is 

low.
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Fig. 3.16 - A graph showing the Ca/Na and Mg/Na ratios of suspended sediment from the glacial rivers in 

Greenland and from sediment sampled by Gaillardet et al. (1999) from the Huanghe, Changjiang, Xijiang, 

Mekong, Niger and St Lawrence rivers

3.5.2.3. Colloids

The colloidal fraction of glacial rivers is significantly enriched in iron and aluminium. 

These are likely to be present in the form of metallic oxyhydroxides or possibly clays. 

Iron oxyhydroxides can occur in various forms, either attached to particulate grains or 

as unattached nanoparticles (R aisw ell  et al., 2006) so they can affect both the 

suspended and colloidal phases. Low levels of nitrate and phosphate in the glacial 

rivers suggests that the formation of organic colloids in these rivers is unlikely.
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The colloidal fraction of the non-glacial rivers is also enriched in many elements, 

including Fe and Al, anion analyses also imply the presence of organics in many of the 

non glacial rivers. The occurrence of organic colloids such as humic acid is often 

shown by the brown colour of the water (G a ill a r d et  et al., 2003) as seen in samples 

GR11 and GR12. The combination of anion data and observations in the field imply 

that the dominant colloidal presence in the non glacial rivers is organic. Trace element 

data also supports this conclusion; comparisons between the concentrations of the 

biologically important elements Cu, Zn and Ni in the dissolved and ultrafiltered waters 

of the glacial rivers are similar. In comparison there is a greater concentration 

difference between phases in the non glacial rivers, with all three elements having lower 

concentrations in the ultrafiltered phase. Divalent metal cations such as Cu, Ni and Zn 

are known to form strong complexes with fulvic acid (Po k r o v sk y  et al., 2005) which 

supports the conclusion that the colloids in the non glacial rivers are organic in origin. 

The behaviour of the major cations in the ultrafiltered glacial waters suggests that a high 

proportion of the ‘dissolved’ Ca in the <0.2um fraction seems to be present in colloids 

(Fig. 3.7). While other studies have shown that glacial rivers have high Ca 

concentrations (A n d e r so n  et al., 1997; A n d e r so n  et al., 2003; R a isw ell  and 

Th o m a s , 1984; Tr a n t er  et al., 1993; Tr a n t e r  et al., 2002) these studies did not 

separate the colloids from the dissolved load. If a high amount of Ca is present in the 

colloidal phase in the glacial rivers it suggests that the colloids themselves are Ca rich. 

One possibility is that the ultrafine material is CaC0 3  rich, although calcium-carbonate 

is only present in trace amounts in the bedrock. Another is that Ca is adsorbed onto the 

surface of any ultrafine particles or iron oxyhydroxide nanoparticles. The results of the 

leaching experiments show that -50% of the total Ca in suspended sediment is 

leachable, and so can be inferred to be associated with oxyhydroxide minerals.
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3.5.3. The behaviour o f  lithium

3.5.3.1. Riverine 8 Li

The 8 ?Li composition of the dissolved load of Greenland rivers (~27%o) is distinctly 

different from that of the bedrock from which this lithium was initially derived (~8 %o). 

This difference shows that the dissolved phase is highly enriched in the heavy isotope of 

lithium and that in order to balance this the light isotope of lithium (6Li) must be 

preferentially removed from the solution or the heavy isotope (7Li) must be 

preferentially released during dissolution. Experimental work investigating the 

dissolution of basalts (P is t in e r  and H e n d e r s o n , 2003) and work completed during this 

PhD involving the dissolution of silicate minerals (Chapter 5) show that fractionation of 

lithium isotopes does not occur during dissolution. Instead this fractionation occurs 

during secondary mineral formation as proposed in a number of previous studies 

investigating the behaviour of lithium isotopes (C h a n  and H ein , 2007; H u h  et al., 

1998; K is a k u r e k  et al., 2004; P is t in e r  and H e n d e r s o n , 2003; P o g g e  v o n  

S tr a n d m a n n  et al., 2006). For this reason the 8 7Li composition of the dissolved phase 

reflects the balance between primary mineral dissolution and secondary mineral 

formation, this is discussed in Fig. 3.17. The 8 7Li composition of both the glacial rivers 

(~25%o) and non glacial rivers (~30%o) are higher than the global riverine mean of 23%o 

(H uh  et al., 1998). The lithium concentrations in the glacial rivers (14-92 nmol/1) are 

far below the global average (230 nmol/1) while the concentration in the non glacial 

rivers (14-572 nmol/1) can be far greater. The combination of these lithium data 

suggests that in both sets of rivers secondary mineral formation dominates over primary 

mineral dissolution.
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Fig. 3.17 -  Rayleigh fractionation curve showing the variation in the value of S7Li of the dissolved load 

as a function of the proportion of lithium that is removed into secondary minerals. The light isotope, 6Li, 

is preferentially incorporated into secondary minerals leaving the fluid phase enriched in 7Li (Huh et al. 

1998). The line represents an isotopic fractionation factor (Ommerai-fiuid) of 0.980. The initial rock 

composition used is that of the unaltered bedrock (~8%o).

One sample has a different lithium isotope composition from the glacial and non 

glacial rivers; GR3 (supraglacial) has an isotopically light 8 7Li ratio of 13.5%o. The 

fractionation between unaltered bedrock and GR3 is hence relatively small and so 

suggests that the amount of secondary mineral formation in GR3 is low. Sample GR3 

has had no contact with the bedrock, instead its composition is derived from the surface 

ice and weathering of glacial and aeolian sediment that is entrained within it (For tn er  

et al., 2005; Tr a n t er  et al., 1993). GR3 not only has a distinct lithium isotope 

composition but also has a low pH (6.3) relative to the other waters. This information 

can help identify the source of the proglacial water, suggesting that while the melting of 

surface ice must contribute to the composition of the glacial rivers and provide a source 

of glacial sediment the overall riverine composition is dominated by subglacial water.

n

A river sample from 2km downstream of the ice-sheet such as GR1 has a 8  Li
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composition of 25.4%o. It is unreasonable to suggest that the signal has evolved from a 

supraglacial value of ~13%o to 25%o over 2km when the composition of the solution has 

remained relatively constant over the 30km stretch of river towards Kangerlussuaq. 

Instead the high 8 7Li composition of proglacial rivers must be derived from prolonged 

water-rock contact at the base of the glacier; showing that a significant amount of liquid 

water must be present here over a long period of time.

3.5.3.2. Suspended and Bedload S Li

The 8 7Li value of the suspended sediments (~3.3%o) in Greenlandic rivers is always
n

lower than the 8  Li value of the corresponding bedload (~5.2%o) which suggests that it 

contains a proportionally higher secondary mineral content (Huh et al., 1998). A higher 

amount of secondary minerals means that more 6Li is taken up out of solution; 

correspondingly this leaves the dissolved load to be isotopically heavy relative to the 

bedrock and bedload. The isotopic composition of the dissolved Li in glacial and non 

glacial rivers is relatively similar (average of 25 to 30%o) compared to a global range of 

riverine lithium compositions between 6  and 41%o (Huh et al., 1998; Kisakurek et al., 

2005; Pogge von Strandmann et al., 2006). This requires proportionally similar 

amounts of 6Li to be taken out of solution by secondary mineral formation. In glacial 

rivers however, the water is more dilute and rock and particulate phases have been 

subjected to a lower weathering intensity than in non glacial rivers. For this reason the 

glacial rivers should be less saturated with respect to secondary minerals and in theory 

there should be a more pronounced difference between 8  Li compositions in the two 

river sets. The fact that there is not suggests that there are different controls on the 

lithium isotopic composition between glacial and non glacial rivers in Greenland. 

These controls on lithium behaviour are discussed below.
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3.5.4. Controls on the behaviour o f lithium

3.5.4.1. Saturation indices o f secondary minerals

The potential for formation of secondary minerals can be assessed by calculating 

their saturation states in the dissolved load using a geochemical modelling program 

such as PHREEQC (Parkhurst and Appelo, 1999). This program calculates the 

saturation index (SI) of minerals in solution from the chemical composition of the 

dissolved load as well as other variables including temperature and pH. The saturation 

index provides information about the mineral stability, if the SI of a certain mineral is > 

0 then that mineral is supersaturated and has the potential to precipitate. If the SI is < 0 

then the mineral phase is unstable and will dissolve; if  the SI = 0 then the mineral phase 

is at equilibrium. The units of SI are in a log scale so a SI of 2 is ten times greater than 

a SI of 1.

Primary minerals 
♦Diopside 
□ Albite

Secondary Minerals 
a Goethite 
•  K Mica
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Fig. 3.18 -  A graph showing the saturation states of a selection of primary and secondary minerals in 

ultrafiltered water vs the pH of the sample. Glacial samples are plotted as open symbols, non-glacial 

samples are plotted as closed symbols. Saturation indices of above 0 indicate that the solution is 

oversaturated while saturation indices of below 0 indicate that the solution is undersaturated.
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Because of the presence of colloidal material in all of the river samples 

saturation state modelling using dissolved concentrations (<0 .2 um) gives misleading 

results. Instead all saturation state modelling has been performed on ultrafiltered water 

(>10kD) where all of the colloids have been removed; saturation indices calculated for a 

selection of primary and secondary minerals are presented in Appendix B6 . Fig. 3.18 

shows the saturation state index as a function of pH for a selection of primary and 

secondary minerals in the ultrafiltered phase of both the glacial and non glacial rivers. 

Primary minerals such as diopside and albite are all undersaturated, while some 

secondary minerals, including goethite and potassium mica are supersaturated. Note 

that the SI of these minerals is pH dependent; this is because the dissolution mechanism 

of silicate minerals usually involves metal-proton exchange reactions that break down 

the crystal lattice (O elk er s , 2001). If the concentration of H+ increases the potential for 

exchange reactions increases and mineral stability decreases. On the other hand at high 

pH high concentrations of OH' can reduce the mineral stability causing the saturation 

index of minerals to decrease.

If the formation of secondary minerals is related to 6Li uptake then a relationship 

between SI and 8 7Li in the dissolved phase might be expected. However plots of 

secondary minerals such as ferrihydrite and kaolinite versus 8 7Li show that the 

relationship in these rivers is small or non existent (Fig. 3.19). This could be because 

most of the river samples have relatively similar lithium isotope compositions of around 

27%o (±4%o) and that there would be a more significant relationship if there were a 

wider range of lithium isotope values, or alternatively that secondary mineral formation 

within these rivers is not driving the shifts in 8  Li.
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Fig. 3.19 - The relationship between saturation index and 87Li of the dissolved phase for the secondary 

minerals ferrihydrite and kaolinite. There is no significant relationship between saturation index and 

lithium isotope composition.
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Fig. 3.20 - XRD trace of the suspended sediment from GR2. Results show that the sediment is dominated 

by plagioclase, amphibole and quartz (i.e. rock flour). There is also a small clay component; mainly illite 

and kaolinite.

While the relationship between 57Li and SI is not significant the results of the 

saturation state modelling do highlight a difference between the glacial and non glacial 

rivers. There is a large difference between the saturation states of the glacial and non 

glacial rivers with respect to the iron oxide minerals. Iron is present almost exclusively
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in the colloids in glacial rivers hence the saturation state of iron oxide minerals in the 

ultrafiltered water is relatively low (e.g. for goethite the SI ranges from -0.9 to 1.3). In 

contrast a significant proportion of iron is present in the ultrafiltered phase of the non­

glacial rivers, so much so that minerals such as haematite and magnetite are highly 

saturated (SI of up to 17). This suggests that iron oxide formation in the glacial rivers is 

not important but dominates in the non-glacial rivers. It is a similar story for 

aluminium; around 90% of aluminium in the dissolved phase is also associated with 

colloids again suggesting that the likelihood of aluminium silicates and in particular 

clays forming in the glacial rivers is low. This is supported by XRD analyses of 

suspended sediment samples (Fig. 3.20) which show that the main constituents of the 

suspended sediment are amphibole, quartz and plagioclase feldspar. The only traces of 

secondary minerals are illite and a small component of kaolinite and chlorite.

The results of the saturation state modelling show that essentially the glacial and 

non glacial rivers have similar mineral saturations except in the case of iron oxide 

minerals as iron is present only in the colloids in glacial rivers while it is truly dissolved 

in non glacial rivers. In the non-glacial rivers the formation of these iron oxide minerals 

could be the mechanism for the removal of 6Li from solution. In general the saturation 

indices for the glacial rivers are very low, and together with the low TDS it would be 

predicted that secondary mineral formation was not important. This has been supported 

by the XRD data. However the relatively high 8 7Li composition of the water (~25%o) 

compared to the riverine average (23%o (H u h  et al., 1998)) shows that secondary 

mineral formation must have occurred and removed 6Li from the water in a similar 

proportion to that removed in the non-glacial rivers (~30%o).
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3.5.4.2. Colloidal lithium

One difference between the glacial and non-glacial rivers is the nature of the colloidal 

material. Anion analyses of the dissolved phases imply that organic molecules are 

present in the non-glacial rivers while none are present in the glacial rivers. Lithium 

isotope analyses of the colloidal fraction show that in the non-glacial rivers the colloids 

have the same 5 Li value as the dissolved load. In the glacial rivers however the 

colloids have lower 6  Li than the river water, indicating that the colloids preferentially 

incorporate 6Li (Fig. 3.11). In non glacial rivers the colloids are likely to be organic, 

inferred from the results of the anion analyses, so probably comprised of humic or 

fulvic acid (G a ill a r d et  et al., 2003). This suggests that the organic colloids take up 

lithium from the river water in a way that is indiscriminate of mass. Conversely, in 

glacial rivers, the colloids are inorganic in origin because of the lack of biological 

activity in these rivers. The most likely origin for these inorganic colloids is ultrafine 

particles of suspended sediment that have been ground down by the glacier and possibly 

further weathered in solution. From analyses of the suspended load these particles will 

have a lithium composition of ~4%o, and if  they have been subjected to further

f \  • 7weathering and preferential Li uptake they could be even isotopically lighter. The 8  Li 

value of the colloidal lithium is not the same as the suspended sediment because each 

‘colloid’ sample is in fact a mixture of dissolved and colloidal phases. These results 

show that the colloidal fractions are different in the two sets of river and that the 

colloids in glacial rivers are enriched in 6Li. Nevertheless this has no significant affect 

on the 8  Li composition of the dissolved load of the rivers because colloidal lithium 

concentrations are simply too low -  ultrafiltration causes little or no variation in lithium 

concentration of the dissolved load. This is supported by the lithium isotope 

composition of the two fluid phases; the lithium in the dissolved phase (<0 .2 pm) has the
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same isotope composition as the lithium in the ultrafiltered phase (<10kD). If there was 

abundant colloidal lithium present then its removal from the dissolved load should have 

an affect on the lithium isotopic composition, particularly in glacial rivers.

3.5.4.3. Suspended sediment

Glacial rivers carry far more suspended sediment than non glacial rivers; the average 

TSS in glacial rivers is ~0.5g/l while in non glacial rivers it is over ten times lower at 

~0.045g/l. The suspended sediment carries between 2 and 4 times more Li than the 

bedload and this lithium is on average 2%o lighter. As glacial rivers progress 

downstream the amount of suspended sediment that is carried in the river also increases. 

Because there is more sediment in suspension this means that more Li can be 

transported. For example in GR1 the dissolved load carries -250 ng of lithium per litre. 

In comparison the suspended sediment carries -15 pg of lithium per litre, over 60 times 

more than carried in solution. This can be compared to sample GR2 taken 30km 

downstream along the Watson River; here the total lithium carried in solution is -420 

ng per litre. In suspension the total lithium is -17.3 pg per litre, over 40 times more 

than carried in the dissolved phase. These mass balance calculations show that the 

suspended load carries far more lithium to the oceans than the dissolved load, although 

how much of this sediment can be further weathered and release its lithium to the 

oceans is not known. Further weathering of this sediment in estuaries and deltas may 

have an impact on the chemistry of seawater lithium similar to that proposed by 

Gislason et al. (2006) for the Ca flux to seawater carried by Icelandic rivers.

Glacial rivers carry high volumes of sediment that has an isotopically light 

lithium composition, but it is important to know with what phases this lithium is 

associated. The most likely minerals to be preferentially taking up 6Li are clay minerals
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such as smectites (V igier et al., 2008), aluminium oxides such as gibbsite (Pistiner  

and H e n d e r so n , 2003), and iron oxyhydroxides (C h a n  and H e in , 2007). However 

XRD analyses show that the suspended sediment has only trace amounts of clay mineral 

present (Fig. 3.20). In order to get a better idea of which phases are present on the 

suspended sediment and how Li is incorporated into these phases leaching experiments 

were performed (the results of which are described in Section 3.4.4).

The suspended sediment is on average enriched in Fe by -12% relative to the 

bedload and contains over twice the amount of Fe present in the bedrock. This means 

enrichment of Fe on the suspended load must be due to either adsorption processes or 

the formation of new minerals. The leaching experiments show that almost all (98- 

100%) of the Fe present in the suspended sediment can be leached by 2M HC1 while 

very little can be removed by the acetic acid buffer. This suggests that little Fe is 

adsorbed by electrostatic attraction (physisorption) and that there has been significant 

precipitation of secondary Fe-minerals; the most likely being amorphous Fe- 

oxyhydroxides that are produced during subglacial sulphide oxidation as explained in 

Section 3.5.1. (Tr a n t e r , 2003). These secondary minerals will attach to the surface of 

quartz and clay minerals as patches, aggregates or layers with limited extent (R a isw ell  

et al., 2006), they may also infill pores on clay mineral surfaces (Po u lt o n  and 

Ra isw ell , 2005). Even so, the high percent of Fe that is taken up by growth of Fe- 

oxyhydroxides is surprising, particularly when the composition of unaltered amphibolite 

has an Fe content of -  2.1 Wt % (W el ls , 1979) of which none will be present as Fe- 

oxyhydroxides. Because the Fe concentration in suspended sediment is -  4.5 Wt % a 

more reasonable estimate for the percentage of Fe in oxyhydroxide minerals would be 

60-70%.
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The high concentration of cations that are released along with the iron, such as 

Ni, Zn, Mn and Li suggest that these elements are also associated with the surface iron 

oxides. Around 65% of Li from the suspended load is associated with this HC1 leach
n

while only -2%  is freely exchangeable. The 8  Li composition of the fluid from the two 

leaching stages is also isotopically different. The lithium isotopic composition of the 

acetate leach is -15 %o, this is over 10%o heavier than the composition of the bulk 

suspended sediment (~3.5%o). In contrast the HC1 leach has a Li isotope composition of 

~5%o, much closer to that of the bulk suspended sediment. The reason for this 

difference is that the lithium in the acetate leach is freely exchangeable; this is lithium 

that has bonded by electrostatic interactions with no isotopic preferences as shown in 

previous studies of Li in ferromanganese crusts (C h a n  and H ein , 2007) and Li sorption 

onto smectite (P istin er  and H e n d e r so n , 2003). In this case the composition of the 

lithium reflects that of the river water so is isotopically heavy relative to the suspended 

sediment. The composition is not identical to that of the river water (in theory it should 

be ~25%o) but the acetate buffer may have caused a small amount of oxyhydroxide 

dissolution, particularly if  it is poorly crystalline. A relatively minor loss of chemically 

sorbed lithium from iron or aluminium oxyhydroxides would be enough to significantly 

offset the lithium composition because the amount of lithium that is freely exchangeable 

is small (-1.5% of the total Li). The lithium leached by HC1 is bound during the 

formation of secondary minerals such as Fe and Mn-oxyhydroxides (C h a n  and H e in , 

2007). This is lithium that has been chemically bound, not attracted by charge 

imbalance. Recent work into the behaviour of lithium during sorption onto gibbsite has 

shown that there is an isotopic fractionation associated with the uptake of lithium from 

solution with a preference for 6Li (P istiner  and H e n d e r so n , 2003). Gibbsite, like the 

iron oxide minerals does not have a permanent structural charge at near neutral pH
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(D a v is  and K e n t, 1990) so this uptake cannot have been caused by electrostatic 

interaction; the conclusion of the study by Pistiner & Henderson (2001) is that the 

lithium fractionation occurs during chemical sorption. As a result of this preferential 

6Li uptake, the chemically sorbed Li (~5%o) is close in isotopic composition to that of

n

the suspended sediment (~3.5%o) and around 21%o lower than the river water 8  Li 

composition. The difference in the lithium isotope composition between the chemically 

sorbed Li and the river water can be used to calculate a fractionation factor (C h a n  et al., 

1992). In this case the fractionation factor (aminerai-fiuid) is 0.979, which is similar to the 

average of the fractionation factors between suspended and dissolved phases in the 

glacial rivers (range between 0.974 and 0.979). The degree of fractionation is slightly 

larger than that calculated by Pistiner & Henderson (2003) during the sorption of Li 

onto gibbsite (a = 0.986) but is within the range reported for lithium in ferromanganese 

crusts (a = 0.978-0.999) (C h a n  and H ein , 2007) and is similar to values obtained in a 

study of Li sorption from seawater onto kaolinite and vermiculite (a = 0.979 and 0.971) 

(Z h a n g  et al., 1998).

These results show that the suspended sediment has a relatively high content of 

easily leachable iron probably in the form of iron oxyhydroxides which preferentially 

removes 6Li from solution. Saturation state modelling shows that the formation of iron 

oxides in the glacial rivers is unlikely; there is no free iron in solution. Instead, the 

formation of Fe-oxyhydroxides must have occurred subglacially, which explains why 

there is a difference of over 12%o between the 8 7Li values of the supraglacial and 

proglacial rivers. The formation of these iron oxyhydroxide minerals occurs in 

conjunction with the oxidation of sulphides and carbonate hydrolysis ( B o t t r e l l  and 

T r a n te r ,  2002; T r a n te r ,  2003). Most of this Fe-oxyhydroxide will form on the 

suspended sediment itself, studies of suspended sediment in Arctic, Alpine and
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Antarctic locations have all shown the presence of Fe-oxyhydroxide nanoparticles 

attached to sediment grains (Raiswell et al., 2006). Because of the low concentration 

of dissolved lithium and high amount of suspended sediment the formation of these 

secondary minerals and associated preferential 6Li uptake causes substantial 

fractionation of the dissolved phase, resulting in a ~21%o fractionation between 

dissolved and bedload lithium. As the rivers progress out of the subglacial environment 

the chemical weathering intensity remains low. Relatively little lithium is released by 

the weathering of primary minerals and further uptake of lithium onto secondary 

minerals is limited due to the low amount of clay formation. For this reason the 5 Li 

composition of the river water remains high, and does not alter appreciably along the 

course of the glacial rivers. By this mechanism the composition of lithium in solution 

can be isotopically heavier than the riverine global average despite these glacial rivers 

having TDS and dissolved concentrations that are below average.

3.5.5. Global implications

The results from this study show that glacial and non glacial rivers in Greenland have 

very similar 8 7Li isotope compositions and that these compositions are similar to that of 

the global riverine mean. In order to assess the impact of glaciation on the behaviour of 

lithium globally, these results have been compared to results of river analyses 

worldwide (Fig. 3.21). The comparison shows that the behaviour of Li in glacial rivers 

from Greenland in this study and from Iceland (P o g g e  VON S tr a n d m a n n  et al., 2006) 

are similar, having average 8 7Li compositions of 21 and 24 %o and Li concentrations of 

53 and 40nmol/l. It is also clear that some of the highest S7Li values (and relatively low 

Li concentrations) are recorded in non-glacial rivers in low temperature environments 

(~30%o). However these high 8 7Li values are not unique to these environments. The
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n
Yangzte and Orinoco rivers also have relatively high 6  Li because of significant inputs

n
from carbonates that have high 8 Li (Huh et al., 1998). Generally the glacial and non­

glacial rivers carry lithium with an isotopic composition that is either similar to the 

global mean or within the known range of global rivers. The fact that the isotopic 

compositions in Greenland are so similar to the lithium compositions in rivers from 

non-glaciated regions suggests that the onset of glaciation is unlikely to have had a 

significant impact on the composition of dissolved Li delivered to the oceans.

35
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Fig. 3.21 -  A compilation of all available Li concentration and Li isotope data for the dissolved load of 

rivers. Data for Icelandic rivers are from Pogge von Strandmann et al. (2006), the Dudh Khosi and 

Indrawati are from Kisakurek et al. (2005), and all other river data is from Huh et al. (1998).

While evidence from the dissolved load suggests that glaciation cannot have had 

an impact on changing oceanic compositions over the last lOMa, glacial rivers also 

carry a substantial flux of sediment to the oceans. This sediment has potential to be 

subsequently reworked and weathered, which would cause further Li uptake and cause 

further alteration of the 57Li composition of seawater. Glacial rivers in this study 

transport high volumes of suspended sediment (on average 0.5g/l), although if this is 

compared to rivers globally many carry more sediment such as the Mississippi (0.86g/l), 

Brahmaputra (1.06g/l) and Ganges (l.lg/1) (G a ill a r d et  et al., 1999a). Globally rivers
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input -20 billion tonnes of suspended sediment into the oceans per year (Milliman and

Syvitski, 1992), if the average volume of suspended sediment carried in glacial rivers

per litre is taken as 0.5g/l and the annual discharge for all glacial rivers is 

10 1 1-0.5x10 m yr then the estimated flux of sediment from glacial rivers globally is 250 

million tonnes, or 1.25% of the total riverine input. Compositionally this sediment is 

immature; it has a short rock-water contact time and low weathering intensity. While 

there are few measurements of the lithium composition in suspended sediments in the 

literature, data from the Orinoco (Huh et al., 2001), and Himalayan rivers (Kisakurek 

et al., 2005) show that suspended sediments in these rivers have higher lithium 

concentrations (on average 35 and 48ppm respectively) and that the lithium is 

isotopically lighter (-1.7 and -2.3%o) than in glacial rivers in Greenland (see Fig. 3.22). 

This could be because the bedrock composition is also isotopically heavy; GR2R and 

GR6 R have 8 7Li values of ~6.5%o. This is higher than the range for continental crust (- 

5 to +5%o) proposed by Teng et al. (2004). However, other studies have shown that
n

basalts commonly have 8  Li values up to 6 %o (Huh et al., 2004) and unaltered granites 

can have a 8 7Li value of ~9%o (Pistiner and Henderson, 2003). If the bedrock does 

not have an unusually high 8 7Li composition the isotopic composition of the suspended 

sediment must reflect low secondary mineral formation in the glacial rivers. This 

supports the idea that glacial sediment is less weathered and less mature. Continued 

weathering of glacial sediment once it has reached the oceans could cause further 

preferential uptake of 6Li leaving the dissolved Li isotopically heavy and could 

contribute to the heavy seawater Li isotope signal. While this mechanism could work in 

theory global mass balance calculations indicate that the total volume of sediment 

transported by glacial rivers is relatively small. Moreover, much of this sediment would 

be trapped in fjords before entering the oceans implying that further weathering of
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glacial sediments in seawater is unlikely to have caused a significant alteration in 

oceanic lithium composition.
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Fig. 3.22 -  A comparison of lithium compositions in the suspended sediments of this study, Iceland 

(Pogge von Strandmann et al. 2006), the Himalayas (Kisakurek et al. 2005) and the Orinoco (Huh et al. 

2001).

3.6. Conclusions

The average S7Li composition of glacial and non glacial rivers in Greenland are 

relatively similar to each other (24%o compared to 29%o) and close to the world average

n

of 23%o (Huh et al., 1998). Despite the two types of river having similar 8  Li

n

compositions the controlling processes are different; high 8  Li in non glacial rivers is 

caused by high mineral saturation states causing high levels of secondary mineral 

formation, particularly of iron oxide minerals. Iron is not present in the glacial waters 

in a truly dissolved form; the iron budget is dominated by colloids. For this reason the 

formation of iron oxides in the glacial rivers themselves is highly unlikely. XRD
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analyses of the suspended sediment carried in glacial rivers also indicates that very little 

clay formation has occurred. Instead, the high 57Li value of these rivers is most likely 

caused by preferential removal of 6Li from solution in the subglacial environment. 

High sulphate concentrations in the glacial rivers indicate that sulphide oxidation is an 

important process; as shown in many other studies of glacial rivers (A n d e r so n  et al., 

2000; Tr a n t er , 2003). A by product of this process is the formation of Fe- 

oxyhydoxides, and leaching experiments show that a large quantity of isotopically light 

lithium is indeed associated with these easily leachable iron phases.

Despite the low chemical weathering intensities and low concentrations of 

dissolved ions within the glacial rivers the dissolved Li isotope ratios are distinct to that
n

of the bedrock. However, if the 8  Li values of the glacial rivers (~25%o) are compared 

to that of the global average (23 %o) the values are very similar. From this evidence it 

seems unlikely that glaciation could influence riverine chemistry enough to cause a 

significant shift in the oceanic Li isotope composition.

I l l
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Chapter 4
Magnesium isotope and elemental behaviour in 

glacial and non-glacial rivers from Greenland

4.1. Introduction

Magnesium is the seventh most abundant element in the Earth’s crust by mass and is 

second only to oxygen in abundance among the rock forming elements (Y o u n g  and 

Ga l y , 2004). It is also the second most abundant cation in seawater; this mostly 

originates from the weathering of Mg-silicates and Mg-carbonates (M e y b e c k , 1987). 

Once transported to the oceans Mg2+ can cause the direct drawdown of CO2 via 

combination with HCO3" (H o l l a n d , 2005), or indirect CO2 drawdown via exchange for 

Ca at mid ocean ridges and in detrital sediment (B er n er , 2004; H a r d ie , 1996). 

Magnesium plays a key role in many biological systems; it is at the centre of the 

chlorophyll pigment which is essential for plants to photosynthesise, and Mg ions are 

essential for nucleic acids which carry genetic information (S h a u l , 2002). Magnesium 

has three stable isotopes, 24Mg (78.99%), 25Mg (10.00%), and 26Mg (11.01%) and their 

relatively large mass differences mean that they are likely to be fractionated by a 

number of processes in the environment, including weathering, which makes them 

useful for studies of the Earth system. Magnesium isotope ratios (526Mg) are expressed 

as the %o difference between the 26Mg/24Mg ratio of a sample and the 26Mg/24Mg ratio

Ofsof a standard (DSM-3), more details are given in Section 1.4.1.2. The 8  Mg 

composition of Mg in the oceans of -0.82%o, (C a r d e r  et al., 2004) is controlled by a 

balance between the input of continentally derived Mg at -1.09%o (T ipper  et al., 2006b)
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and the removal of Mg via hydrothermal exchange at mid ocean ridges, the precipitation 

of dolomite and exchange reactions with clays (Berner, 2004; Holland, 2005). 

Thus, changes in the flux or isotopic composition of Mg that is derived from the 

continents can have a significant impact on the past composition of Mg in the oceans.

New analytical techniques, in particular the development of MC-ICP-MS 

technology, means that Mg isotope ratios can now be measured at high precision even 

in low concentration natural samples. Nevertheless, the number of studies of the 

behaviour of Mg isotopes during rock-fluid interactions is small. Preliminary data 

suggest that the Mg composition of the continental weathering flux is controlled by a 

combination of lithology and weathering processes such as the formation of secondary 

minerals. Data also suggest that Mg behaves differently in the silicate and carbonate 

systems; speleothems preferentially incorporate the light isotope relative to drip waters 

(Galy et al., 2002), while soils are enriched in heavy magnesium relative to silicate 

rocks (Tipper et al., 2006a).

The principal control over the Mg isotope composition of large scale rivers 

appears to be secondary mineral formation, with lithology playing a subsidiary role 

(Tipper et al., 2006a; Tipper et al., 2006b). However, in smaller rivers lithology exerts 

a greater control (Tipper et al., 2006b). For example, rivers that drain limestone have a 

lighter Mg isotope composition (—2.6%o) than those that exclusively drain silicates (- 

0.6 to -0.8%o). As well as having chemical controls Mg isotopes are strongly influenced 

by biological processes. In seawater, organisms such as corals and foraminifera 

fractionate Mg by preferentially removing the light isotope (Chang et al., 2004). In 

plants Mg is the central atom in the chlorophyll molecule and is essential for the 

function of many enzymes. Plants also have high levels of free Mg2+ that is situated in 

cell vacuoles which regulate its distribution to where it is needed (Shaul, 2002).
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Studies that have extracted chlorophyll-a from cyanobacteria show that the Mg is 

isotopically light relative to the culture medium, although during the major growth stage 

of cyanobacteria the 8  Mg composition of the chlorophyll becomes marginally heavier 

than the initial ratio (Black et al., 2006). In contrast, chlorophyll extracted from 

marine phytoplankton contains Mg that is isotopically heavy relative to the source 

(seawater). This study also shows that the level of fractionation varies between the 

different types of chlorophyll (Ra and Kitagawa, 2007). While chlorophyll takes a 

high proportion of the plants total Mg (~6 % in healthy plants) the majority is used 

elsewhere (Shaul, 2002). An initial investigation of the Mg composition of higher 

plants indicates that bulk plant material is isotopically heavy relative to the Mg source; 

experiments using living roots show the residual solution becomes progressively 

depleted in heavy Mg with time (Bi et al., 2007). The contrasting results of these 

studies suggest that more research is needed to discern how Mg is taken up into 

biological systems; however the evidence from higher plants suggests that they 

preferentially remove heavy Mg from solution.

The importance of both chemical and biological processes in controlling Mg 

isotope behaviour suggests that interpreting the fractionation in natural samples may be 

complicated. In this Chapter I extend the work presented in Chapter 3 to an 

investigation of the controls on the Mg isotope composition of Greenland rivers. The 

advantage of using glacial rivers for investigations of Mg is that the biological 

influences such as vegetation are often unimportant (Anderson et al., 1997) which 

means that the isotope data can be interpreted in terms of lithology and weathering 

processes alone. Moreover, the study area is essentially monolithological (Escher and 

Pulvertaft, 1995; Wells, 1979), so any variations due to differences in rock type 

should be minor. Further details of geological settings and sample locations are given
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in Section 3.2 and Figure 3.1. The aim of this work is to compare the behaviour of Mg 

isotopes in glacial rivers where silicate weathering intensity and secondary mineral 

formation is low, with non-glacial rivers where these processes are more important. 

The question is whether a change in the chemical weathering intensity such as that 

which would accompany glaciation could also cause a change in the composition of Mg 

that is delivered to the oceans?

While there are as yet very little data concerning the Mg isotope composition of 

seawater during the Cenozoic studies have shown that the Mg concentration has 

increased from 35mmol to 52mmol over the last lOMa (Fantle and DePaolo, 2006). 

This increase in concentration is thought to have been caused by changes in input from 

continental weathering possibly driven by mountain building and changes in climate. It 

seems likely that a change in the flux or composition of continental input would also 

drive a change in the Mg composition by disturbing the balance between Mg source and 

sink in a similar way as that observed for Li (Hathorne and James, 2006) and Sr 

(Palmer and Edmond, 1989). The investigation of these glacial rivers and comparison 

of the behaviour of Mg with that in non glacial rivers may further our understanding of 

how glaciation could potentially affect the continental Mg signal and thereby alter the 

oceanic Mg budget.

4.2. Methods for Mg isotope analysis

The sampling procedures and techniques for elemental analysis of major and minor ions 

in the various river water constituents are described in detail in Chapter 2.

Magnesium is separated from the sample matrix by cation exchange 

chromatography, similar to the separation of Li described in Chapter 2. The main 

difference is that all rock samples are additionally processed through an anion column
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to minimize any interference from iron (Wiechert and Halliday, 2007). Details of 

both column procedures and column calibrations undertaken over the course of this 

study are given in Section 2.4.3.

Magnesium isotope ratios were measured on a Thermo-Finnegan Neptune MC- 

ICP-MS. A detailed description of sample analysis is given in Section 2.5.2.3. The 

internal precision of the Mg isotope measurements was calculated using the technique 

described in Appendix A10. Typically the internal precision of S26Mg measurements 

was better than 0.05%o, and the internal precision of 8 25Mg measurements was better 

than 0.03%o.

In order to monitor the external reproducibility of the Mg isotope measurements 

the standard CAM-1 was routinely measured at least 2-3 times during a daily analytical

O ftsession. The average 8  Mg composition of CAM-1 measured over the course of this 

study (n=24) is -2.62 ±0.13%o (2o) while the average 8 25Mg composition is -1.35

±0.06%o (2 a).

4.3. Results

Magnesium concentrations and Mg isotope ratios for Greenland rivers are presented in 

Appendix B7.

4.3.1. Magnesium concentrations

The average Mg concentration in the glacial rivers is 0.25ppm compared to 6.1ppm in 

non glacial rivers; thus, the non glacial rivers have on average over 24 times more Mg. 

As a proportion of the major cations (Na, Mg, Ca and K) in solution Mg comprises 

-12% in the glacial rivers in comparison to -29% in non glacial rivers (Figure 3.4).
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Table 4.1

Magnesium isotope ratios for the dissolved, suspended (SP) and bedload (S) phases in the Greenland 
rivers.

SAMPLE [Mg]
ppm

826Mg
(%oo)

Error
(24

825Mg
(%o)

Error
(2a)

GR1 199 -1.04 0.04 -0.52 0.03
GR2 264 -1.07 0.08 -0.54 0.05
GR3 81 -1.31 0.10 -0.67 0.05
GR4 278 -1.12 0.06 -0.56 0.03
GR5 274 -1.17 0.04 -0.58 0.02
GR7 329 -1.19 0.05 -0.64 0.03
GR8 347 -1.18 0.05 -0.59 0.03
GR9 233 -1.06 0.03 -0.54 0.02
GR11 2071 -0.66 0.08 -0.35 0.05
GR12 18622 -0.58 0.07 -0.32 0.04
GR13 2794 -0.65 0.02 -0.34 0.02
GR15 4853 -0.62 0.03 -0.32 0.03

[Mg] Wt %
GR1-SP 2.07 -0.41 0.03 -0.21 0.02
GR3-SP 1.79 -0.27 0.04 -0.13 0.03
GR5-SP 1.92 -0.44 0.03 -0.23 0.02
GR8-SP 1.97 -0.46 0.03 -0.24 0.03

GR1-S 0.99 -0.53 0.03 -0.25 0.02
GR3-S 1.17 -0.39 0.03 -0.20 0.02
GR5-S 1.20 -0.43 0.03 -0.22 0.02
GR8-S 0.65 -0.44 0.02 -0.22 0.02
GR11-S 1.06 -0.10 0.02 -0.05 0.02
GR12-S 0.94 -0.31 0.02 -0.16 0.02
GR15-S 1.24 -0.34 0.02 -0.18 0.02

Mean Greenland amphibolite (W ells , 1979) has a Mg concentration of 0.88 

Wt%. The Mg concentration of the bedload sampled in this study varies between 0.65 

and 1.24 Wt% and there are no clear differences between the glacial and non-glacial 

rivers. In comparison the suspended sediments (glacial rivers) have a much higher Mg 

concentration; averaging 1.92 Wt%. Magnesium is present in the colloidal phase of all 

the rivers, as shown by the higher levels of Mg in the retentate fraction (Appendix B3). 

However, the total Mg contents in the colloids are likely to be small because the 

concentrations of dissolved (<0.2pm) and ultrafiltered (>10kD) waters are very similar.
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4.3.2. Magnesium isotopes

The 8 26Mg and 8 25Mg values of all samples and standards measured in this study define 

a line with a gradient of 0.515±0.0032 (R2  = 0.9994) (Figure 4.1.) similar to the 

terrestrial equilibrium mass fractionation line defined by Young and Galy (2004) of 

0.521. The Mg isotope composition of the dissolved load ranges from 8 26Mg = -1.31%o 

in the supraglacial sample (GR3) to 8 26Mg = -0.58%o in sample GR12. Note that the 

glacial and non glacial rivers have distinctly different Mg concentrations and Mg 

isotope compositions (Fig. 4.2) with glacial rivers having both lower Mg and lower
A /

8  Mg relative to the non-glacial rivers. The average 8  Mg composition of the 

dissolved fraction in the glacial rivers is -1.12 ±0.06%o compared to -0.63 ±0.04%o in 

the non glacial rivers. By contrast, the average global riverine 8 26Mg value for rivers 

has been estimated to be -1.09%o (T ipper et al., 2006b) extending from -2.5 to -0.3%o 

(T ipper et al., 2006b).

-0.1 Slope = 0.5147±0.0032 (2a)
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Fig. 4.1 - All Mg isotope ratios lie on a mass fractionation line with a gradient o f 0.515
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Fig 4.2 - The Mg composition of the dissolved phase plotted versus its Mg concentration. Error bars 

represent the standard error (2a) on each isotope measurement.

The suspended sediment in the glacial rivers has an average 8 26Mg composition 

of -0.44%o. This is isotopically heavy relative to the dissolved load carried in these 

rivers. The suspended sediment in GR3 is slightly heavier than the average (526Mg = - 

0.27%o). The 8 26Mg values of the bedload are close to, or very slightly lighter than 

those of the corresponding suspended sediment; for example in GR1 the bedload has a 

526Mg composition of -0.53%o compared to -0.4l%o in the suspended load, while at GR3 

the bedload is -0.39%o in comparison to the suspended loads -0.27%o (Fig. 4.3), but in 

all cases this difference is little greater than the analytical uncertainty.
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Fig. 4.3 - The Mg isotopic composition of the dissolved phase versus the corresponding composition of 

the bedload. Error bars represent the standard error (2d) on each isotope measurement.

4.4. Discussion

4.4.1. Magnesium concentrations

A discussion of the physical and chemical characteristics of the river samples is 

presented in Chapter 3. In brief, the glacial rivers have low concentrations of dissolved 

ions, but a high concentration of suspended sediment. The intensity of chemical 

weathering in the glacial rivers is therefore relatively low, presumably because the 

water-rock contact time is short. In contrast, the non-glacial rivers have higher 

concentrations of dissolved ions and lower concentrations of suspended sediments.

With the exception of sample GR10, which contains a seawater component and
^  I

has a high [Mg ], Mg concentrations are on average over 24 times greater in the non­

glacial rivers than they are in either the supraglacial or glacial rivers. In terms of cation 

percentage the non-glacial rivers are on average comprised of 29% Mg, compared to 

12% in the glacial rivers. To put this in context the average riverine Mg composition is
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20% as shown in Figure 3.4 (Meybeck, 2003). While lithology is often the cause of 

major cation variation in rivers (Meybeck, 2003) it seems unlikely to be the cause in 

this case; there would need to be two separate lithologies, one underlying the glacial 

rivers and the other underlying the non-glacial rivers. Another possibility proposed 

from the study of a pingo at Russell’s glacier is that deep water from below the 

permafrost has influenced the surface water composition after travelling along faults 

(Scholz and Baumann, 1997). This hypothesis would need deep water movement 

along faulting in the vicinity of each non-glacial river while leaving the glacial rivers 

unaffected, which again seems highly unlikely. Instead, the most reasonable 

explanation is that the high Mg content of the non-glacial rivers is a result of a higher 

degree of chemical weathering in these rivers. Glacial rivers preferentially dissolve 

trace minerals high in Ca and K, hence their compositions are dominated by these ions. 

Contrastingly, in the non-glacial rivers Mg and Na are more mobile (section 3.5.2.1) 

because the chemical weathering intensity is much higher and the weathering of silicate 

minerals is more important.

The Mg concentrations in the solid phases (suspended, bedload and bedrock) 

range from 0.88 Wt % in amphibolite from the region (Wells, 1979) to ~1.1 Wt % in 

the bedload and ~1.9 Wt % in the suspended load. The XRD analyses of the suspended 

sediment show that the uptake of Mg by clay minerals is likely to be insignificant 

(because the suspended sediment only contain a small clay mineral component). 

However, the leaching experiments (section 3.4.4.) show that high levels of Mg2+ are 

released by leaching with 2M HC1. This suggests that a high % of the Mg on the 

suspended sediment is associated with easily leachable minerals such as iron- 

oxyhydroxides (Chan and Hein, 2007). This is consistent with studies of Mg sorption
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onto goethite which show that Mg is mainly adsorbed as a bidentate innersphere 

complex, with outersphere sorption being less important (Rahnemaie et al., 2006).

4.4.2. Magnesium isotopic composition

Glacial, supraglacial and non-glacial rivers have different Mg isotope compositions. 

The supraglacial river (GR3) has a lighter 8 26Mg value (-1.3%o) than the glacial rivers (- 

1.1 %o) and the non-glacial rivers are isotopically the heaviest (-0.6%o). By contrast, 

excluding sample GR11-S the suspended and bedloads have 8 26Mg = -0.40±0.07%o 

(Table 4.1). The dissolved load is thus always isotopically lighter than the solid phases, 

in contrast with Li in which the dissolved phase is always enriched in the heavy isotope 

in the dissolved phase. In the following sections I explore various ways of explaining 

these data.

4.4.2.1. Secondary mineral formation

In Chapter 3 it was shown that Li isotopes are fractionated during the formation of 

secondary minerals, and in particular the formation of iron oxides with preferential 

uptake of 6Li. By analogy as the 8 26Mg value of the river water is always lower than it 

is in the solid phase it appears that the heavy Mg isotopes are preferentially retained in 

the solid phase in the Greenland rivers. Other studies have also suggested that Mg 

isotopes are fractionated during weathering processes: Galy et al. (2002) show that 

speleothems are isotopically lighter than their dripwaters while Tipper et al. (2006b)

Ofsshow that soils are enriched in Mg relative to the source rock, which is in keeping with 

that data presented here. Nevertheless it is curious that saturation indices (3.5.4.1), 

leaching experiments and XRD analyses suggest that secondary minerals are far more 

likely to form in the non-glacial rivers and yet these rivers have 8 26Mg values that are
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most similar to the source rock. For example, rivers with higher saturation indices for 

iron oxide minerals such as goethite and haematite have higher 8 26Mg values (Fig. 4.4.). 

Again, this behaviour contrasts with that of the Li isotopes; the non-glacial rivers have 

5 Li values (~30%o) that are much higher than that of the source rock (~8 %o) whereas 

the supraglacial sample (GR3) has 8 7Li (~13%o) that is closest to the source rock. This 

suggests that the Mg isotope system is affected by other factors, and these are 

considered below.

R2= 0.965

R2= 0.965

♦ Goethite 
n Haematite

-1.4 - 1.2 - 1.0 •0.8 -0.6 - 0.2-0.4

826|V|g (%0)
Fig. 4.4 - The magnesium composition of the dissolved phase plotted versus the saturation index with 

respect to the iron oxide minerals goethite and haematite.

4.4.2.2 Biological controls

Anion analyses of the non-glacial rivers show that they have some organic 

material present (e.g. the presence of phosphates and nitrates in GR11 and GR12). 

Biological processes have been shown to utilise magnesium and some of these 

processes are isotope specific. The water within the non glacial rivers moves at a slow 

rate, and has a relatively long water-rock contact time in comparison to the glacial rivers
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and as a consequence it has a higher TDS. This higher water-rock contact time also 

means that the water is longer in contact with organic material such as soils and roots. 

The current understanding of how Mg isotopes behave when taken up into biological 

systems is described in 4.1. As can be seen the results are mixed; heavy Mg is taken up 

by chlorophyll in marine phytoplankton while the opposite is the case for chlorophyll in 

cyanobacteria (B l a c k  et al., 2006; Ra  and K it a g a w a , 2007). However, magnesium in 

chlorophyll is only a fraction of the total Mg in plants (S h a u l , 2002); studies have also 

shown that the growth of higher plants causes preferential removal of heavy Mg relative 

to the Mg reservoir (Bi et al., 2007). If uptake by plants is the dominant control over 

Mg in the non glacial rivers then this suggests that the dissolved composition of the 

water would be isotopically lighter than the glacial rivers where organic influences are 

negligible. If the behaviour of higher plants is representative of how Mg is taken up by 

organic material then this suggests that increasing the biological influences should leave 

the solution isotopically lighter, the opposite of what is observed in the Greenlandic 

rivers despite the fact that non glacial rivers do have an organic influence.

4.4.2.3 Source controls

It is important to consider whether other sources of Mg (i.e. in addition to rock 

weathering) could influence the 6  Mg value of the dissolved load. Seawater has a high 

[Mg2+] (52mmol/l), and 8 26Mg = -0.82%o (C a r d e r  et al., 2004; T ipper  et al., 2006b; 

Y o u n g  and Ga l y , 2004). The sample that is most likely to be affected by seawater 

input is GR3 because it is supraglacial and so has had no contact with bedrock and no 

biological influence. The Mg isotope composition of this sample (-1.3%o) is lighter than 

that of seawater and cannot be explained by mixing between seawater and rock (-0.4%o). 

In addition, the proportion of Mg that could be derived from seawater (estimated using
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dissolved Cl' concentrations) is only -3%, this is too low to have significantly altered 

the Mg isotope ratio. The 8 26Mg value of the glacial rivers is also too low to be 

explained by mixing between Mg derived from rock and Mg derived from seawater. 

Conversely the composition of the Mg in the non-glacial rivers (-0.6%o) could in theory 

be produced by a mixing between seawater and rock weathering. However, like the 

glacial rivers the proportion of Mg that could be derived from seawater is low ( - 8 %); 

straightforward mixing of Mg derived from seawater (-8 % , 526Mg -0.82%o) and from

ry e

rock weathering (-92%, 8  Mg -0.4%o) would only give a Mg composition of around - 

0.44%o. This suggests that the impact of Mg derived from seawater is unimportant.

While the Kangerlussuaq region of Greenland is essentially monolithological 

(E sch er  and Pu lv er ta ft , 1995; W el ls , 1979) the potential effect of glacial 

weathering processes on 526Mg must be considered. As discussed above, glacial rivers 

preferentially weather trace phases like carbonates, and leach K from interlayer sites in 

biotite (A n d e r so n  et al., 1997; Tr a n t e r , 2 003). The Mg isotope composition of 

carbonate rock is isotopically lighter than silicate. For example carbonate rocks range 

in composition from -1.1 to -4.8%o while silicate rocks range from 0 .02  to -l.l% o  

(Y o u n g  and Ga l y , 2 0 0 4 ) and the composition of small rivers that drain these two 

lithologies supports this. For example, in a study by Tipper et al. (2006) the Jura which 

drains limestone has a 8 26Mg composition of -2.52%o; in comparison, rivers draining 

basaltic rock have an average composition of -0.6%o and those draining acidic 

crystalline rock have an average 8 26Mg value of -0.8%o. This evidence suggests that the 

preferential dissolution of carbonate material should input Mg which is relatively 

isotopically light in relation to Mg derived from silicates. This theory can explain why 

the glacial and supraglacial rivers have higher 8 26Mg compositions (-1.1 and -1.3%o 

respectively) than the non-glacial rivers (-0.6%o). As the seawater input is relatively
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minor the Mg composition can be modelled simply by two component mixing between 

carbonate (—4%o, (Y o u n g  and Ga l y , 20 0 4 )) and the bedrock (-0.4%o). To achieve Mg 

compositions of between -1.1 and -1.3%o then clearly silicate weathering must be 

dominant source of Mg, the difference in Mg composition must reflect changes in 

weathering intensity and changes in the ratio between carbonate and silicate derived 

Mg. The higher chemical weathering intensity in non-glacial rivers means that these 

rivers will be dissolving more silicate rock than the glacial rivers. This means non­

glacial rivers provide more Mg from the dissolution of silicates and so obscure the Mg 

isotope signal derived from preferential dissolution of trace carbonates and hence have 

higher 526Mg ratios.

4.5. Conclusions

The results of this study show that in the Greenland rivers there are two controls on the 

composition of Mg. These are the formation of secondary minerals, and overprinting 

this is the preferential dissolution of trace carbonate phases which is a common process 

in glacial rivers (A n d e r so n  et al., 1997; A n d e r so n  et al., 2003; Tr a n t e r , 2003). 

Carbonate rocks have been shown to be isotopically lighter than silicates with respect to 

Mg isotopes (T ipper  et al., 2006b; Y o u n g  and Ga l y , 2004). Correspondingly the 

rivers that drain exclusively limestones have isotopically lighter Mg isotope ratios than 

those that drain exclusively silicate rocks (T ipper  et al., 2006b). The major cation 

analyses show that the glacial and supraglacial rivers are dominated by Ca (~43% in 

glacial rivers, 54% in GR3) derived from trace carbonates which dissolve more readily 

than silicate minerals. Because the water-rock contact time is so low the proportion of 

silicate rock that can dissolve is very small, so the dissolved load is dominated by those 

easily dissolvable minerals such as CaCC>3 . In contrast the non-glacial rivers have a
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longer water-rock contact time and silicate mineral dissolution is far more important. 

This means that the dissolution of easily weathered trace phases will be obscured by the 

dissolution of silicates; as shown by the lower proportion of Ca that constitute the major 

cations (-34%) and the higher proportion of Mg (-29%). As a consequence the Mg 

isotope composition is more reflective of the silicate rock. Thus despite the area being 

monolithological it is a difference in the dissolving minerals that causes the change in 

Mg isotope ratio between the glacial and non-glacial rivers. This difference has been 

caused by variations in the chemical weathering intensity.

^  - 1.5

0.001 0.010 0.100

nvers 
lacial

l  Greenland supraglacial 
e  Greenland non-glacial 
x  Limestone draining 
o Iceland glacial 
+ Iceland non-glacial

1.000

Log 1/Mg (pmol/l)

Fig. 4.5 - A comparison of the Mg isotope data from the Greenland rivers with data for global rivers. All 

global river data and data for limestone draining rivers is from Tipper et al. (2006b), data from Iceland is 

from Pogge Von Strandmann et al. (2008), data from Greenland rivers is from this study.

The average riverine Mg composition is estimated to be -1.09%o (T ipper et al., 

2006b). The range of riverine Mg compositions are plotted in Figure 4.5  with most

Of*nvers having a Mg isotope composition ( 8  Mg) between -0 .5  and -1.5%o. The only 

rivers to significantly deviate from this range are those that drain limestone with much 

lighter Mg compositions of around -2.5%o (T ipper et al., 2006b), and a recent study of
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rivers from Iceland with 8 26Mg values as high as 0.6%o (Pogge v o n  St r a n d m a n n  et 

al.). These Icelandic rivers are also from glacial regions, but here it is inferred that 

secondary mineral formation is removing isotopically light Mg, possibly due to the 

formation of carbonate. The Icelandic rivers are also affected by the input of 

hydrothermal fluids which have heavy Mg isotope ratios (0.85%o). The Mg isotope 

compositions of the Greenland rivers fall well within the global riverine range, with the 

glacial rivers having a Mg isotope ratio that is within error of the estimated global mean 

(average glacial river composition -1.12%o ± 0 .0 6  (lsd)). This is similar to the findings 

for Li isotopes, i.e. that the composition of glacial river water is not significantly 

different to that of rivers with no glacial influence. While it is unknown whether the 

behaviour of Mg in these rivers is representative of glacially sourced rivers worldwide 

the difference between Mg composition in glacial and non-glacial rivers in Greenland 

suggests that glacial processes do have an impact on Mg isotope ratios. However, the 

similarity between Mg isotope ratios from glacial rivers in Greenland and global rivers 

suggests that glaciation is likely to have had little measurable affect on the composition 

of dissolved Mg that has been delivered to the oceans by rivers.
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Chapter 5
Isotopic changes accompanying the experimental 

dissolution of basalt glass and forsterite

5.1. Introduction

The weathering of Ca- and Mg-silicates causes a net drawdown of atmospheric CO2 

which may potentially regulate Earth’s climate over geological timescales (B er n er  et 

al., 1983; W a lk er  et al., 1981). Therefore, quantifying weathering rates of silicate 

rocks and understanding the processes that control such weathering is fundamentally 

important because it may improve our understanding of the controls on climate over 

time. In order to constrain the factors that control weathering rate (such as mineralogy, 

pH, temperature, CO2 concentration and organic acid composition) as well as to gain a 

more complete understanding of water-rock interactions, a number of studies have used 

experimental techniques to quantify the rates and mechanisms of dissolution of silicate 

minerals (B r a n t l e y  and Stilling s , 1996; Ch e n  and B r a n t l e y , 2000; G isl a so n  and 

Oelk er s , 2003; Oelk er s , 2001a; P o k r o v sk y  and Schott , 2000; Stillings  and 

B r a n t l e y , 1995). Over the course of these studies a wide range of experimental 

conditions have been used in order to simulate the wide variety of conditions seen in 

nature, and so to obtain comprehensive dissolution rate and solubility data for silicate 

minerals. Particular focus has been on either common rock-forming minerals such as 

feldspar and quartz (A n b e e k  et al., 1994; B la k e  and W alter , 1999; B r a n t l e y  and 

Stilling s , 1996; Ch a r d o n  et al., 2006; Petro vic , 1976; P o u lso n  et al., 1997; 

Stillings  and B r a n t l e y , 1995), or on minerals and glasses that have high dissolution 

rates (B erger  et al., 1994; Crovisier  et al., 1987; D a u x  et al., 1997; G isl a so n  and
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Oelk er s , 2003; Oelkers  and G isl a so n , 2001). The latter because if a mineral 

dissolves rapidly then it can have a disproportionate effect on the weathering signal. In 

this regard many studies have considered olivine, and in particular the Mg rich end 

member forsterite due to its abundance in basalts and basic igneous rocks and its 

relatively high dissolution rate (A w a d  et al., 2000; B erger  et al., 1988; B lu m  and 

La s a g a , 1988; Ch e n  and B r a n t l e y , 2000; G ia m m a r  et al., 2005; G isl a so n  and 

A r n o r sso n , 1993; Gr a n d st a f f , 1978; Ha n c h e n  et al., 2006; K o b a y a sh i et al., 2001; 

Liu et al., 2006; M u r ph y  and H elg eso n , 1989; Oelk er s , 2001a; P o k r o v sk y  and 

Schott , 2000; Rosso and R im stidt , 2000; V a n h e r k  et al., 1989; W ogelius  and 

W a lth er , 1991; W ogelius and W a lth er , 1992).

Another material that has been widely characterised is amorphous silicate glass 

and in particular basalt glass due to its widespread occurrence at mid ocean ridges and 

on the ocean floor, together with its relatively rapid dissolution rate when compared to 

that of crystalline basalt (B erger  et al., 1994; B erger  et al., 1988; Cr o v isier  et al., 

1987; Cro v isier  et al., 1983; D a u x  et al., 1997; G isl a so n  and Eu g st e r , 1987; 

G isla so n  and O elk er s , 2003; G isl a so n  et al., 1993; G u y  and Schott , 1989; 

Oelkers and G isl a so n , 2001; Techer  et al., 2001; W olff-B oenisch  et al., 2006; 

W olff-B oenisch  et al., 2004). The study of amorphous glasses of varying 

compositions has shown that their dissolution rates are greater relative to a crystalline 

rock of the same composition (G isl a so n  and A r n o r sso n , 1993; G isl a so n  et al., 1996; 

G isla so n  and Eu g ster , 1987; W olff-B o enisc h  et al., 2006). For example basaltic 

glass dissolves at a rate that is 1 0  times faster than a crystalline basalt of similar 

composition (G isla so n  and Eu g ster , 1987).

Much of the experimental work has centred on obtaining information on the 

mechanisms and rates of silicate mineral dissolution. However, more recently there has
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been an increasing interest in the behaviour of isotope systems during silicate 

dissolution and the growth of secondary minerals during weathering. Through the study 

of certain isotope systems a wide range of information can be gained such as, changes in 

past weathering processes, weathering rates, variations in redox conditions and changes 

in the Earths climate. Two isotope systems that have been increasingly used in studies 

of silicate weathering are those of Li and Mg (C h a n  et al., 1992; H u h  et al., 2004; H u h  

et al., 2001; P istiner  and H e n d e r so n , 2003; Pogge  v o n  St r a n d m a n n  et al., 2008; 

R u d n ic k  et al., 2004; Ten g  et al., 2004; T ipper  et al., 2006b). These are both stable 

isotope systems, the isotopes of which are readily fractionated during weathering 

processes due to the large relative mass differences between isotopes (H u h  et al., 1998; 

Ja m e s  and Pa lm er , 2000; Y o u n g  and Ga l y , 2004). In the case of Li this is thought to 

involve the preferential uptake of the light isotope (6Li) into the solid phase leaving the 

dissolved phase isotopically heavy (H u h  et al., 1998). Contrasting behaviour has been 

proposed for Mg isotopes where the solution becomes enriched in 24Mg when secondary 

silicate phases preferentially take up 26Mg (T ipper  et al., 2006a). The particular utility 

of these isotope systems is that the isotope signal transferred to rivers from the 

weathering of bedrock is highly dependent on the weathering processes rather than 

variations in bedrock composition. Thus, an understanding of the behaviour of Li and 

Mg isotopes during weathering and erosional transport to the oceans may provide key 

information to aid the interpretation of marine sedimentary records of continental 

weathering and their relationship to changes in past climate.

The difficulty with interpreting natural systems, such as rivers or soils, is that 

they are subject to changes in temperature, pH, runoff rate, biological activity and 

changes in the physical conditions of weathering, for example mechanical grinding by 

glaciers. All of these variables may cause changes in weathering rate and intensity and
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thus can all potentially perturb the isotope signal of systems such as Mg and Li. This 

makes interpretation of isotope data from natural systems more challenging and 

quantifying that behaviour very difficult. The benefit of experimental work is that most 

of these parameters can be controlled and the effect of changing specific parameters on 

the behaviour of isotopes can be more easily assessed. The aim of this study is to 

investigate the behaviour of Li and Mg isotopes at far from and near to equilibrium 

conditions during the dissolution of basalt glass and forsterite. As such this involves the 

investigation of these systems during primary mineral dissolution and secondary 

mineral precipitation. These are amongst the most important controls on the chemistry 

of natural waters so the quantification of their effects on isotope systems is imperative.

Previous experimental investigation of the behaviour of isotope systems during 

mineral dissolution and precipitation is limited. The incongruent weathering of bulk 

rocks such as granite causes the Li isotope ratio of the solution to be isotopically 

distinct, interpreted to be due to the effects of preferential weathering (P istin er  and 

H e n d e r so n , 2003). When the same experiment was applied to basalt no fractionation 

of Li was observed, demonstrating an isotopic homogeneity in Li between the different 

basaltic minerals and suggesting that the dissolution process does not cause incongruent 

loss of Li from a single mineral phase. Pistiner & Henderson (2003) also studied the 

behaviour of lithium isotopes during sorption onto clay minerals and found that the 

preferential sorption of lithium isotopes was mineral dependent. Adsorption onto 

minerals with negative surface charge such as smectite caused no fractionation of Li, 

while adsorption onto minerals with positive surface charge such as gibbsite caused 

significant fractionation, the sorbed Li being isotopically light relative to the source. 

This difference is thought to be caused by two different adsorption mechanisms; the 

former being sorption by weak electrostatic attractions (or physisorption) and the latter
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being sorption by chemical bonding (or chemisorption). Only chemisorption is isotope 

specific. A more recent study has investigated the behaviour of Li during smectite 

formation (V igier  et al., 2008), the freely exchangeable Li was removed and the Li 

incorporated in the octahedral sites was analysed. Results show that octahedrally 

bonded (or chemisorbed) Li is enriched in 6Li during smectite formation resulting in a 

10%o difference between mineral and solution. Similar results were obtained from 

experiments investigating sorption of Li onto iron-manganese crusts (C h a n  and He in , 

2007); these are discussed further in Section 3.5.4.3. Many of the other isotope studies 

investigating isotopic change in laboratory dissolution experiments involve Fe isotopes 

and their behaviour with precipitating or dissolving secondary minerals. Skulan et al. 

(2002) found that there is no fractionation of Fe isotopes when haematite precipitates 

from solution. Similar studies involving the dissolution of goethite showed that Fe will 

fractionate from its dissolution in certain circumstances including in the presence of 

bacteria (B r a n t ley  et al., 2004). But this occurs only when a specific dissolution 

mechanism operates; proton donating dissolution will not cause Fe fractionation 

(W iederh old  et al., 2006).

In summary previous studies of the behaviour of isotope systems in 

experimental systems suggest that isotopic fractionation can occur, but is more likely 

when new secondary minerals form. Li analyses suggest that dissolution of single 

mineral phases will not cause Li fractionation. However, this has not been tested 

thoroughly for Li and it has never been tested for Mg isotopes, thus assessing the 

behaviour of these systems at far from equilibrium was the first aim of this study.

The second part of this work involves investigating the process of secondary 

mineral formation. Dissolution in natural systems may cause a build up of elements in 

solution. These precipitate as secondary minerals when the solution becomes
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oversaturated (saturation also depends on a number of factors such as water temperature 

and pH). When minerals form they partition certain amounts of an element and certain 

isotopic compositions that may not necessarily reflect the composition of the solution 

from which they have formed. Thus, while lithology is important, the Li and Mg isotope 

signal carried in a river does not simply reflect the composition of the bulk or partially 

dissolved bedrock, but will also be controlled by the processes of primary mineral 

dissolution and secondary mineral precipitation. The aim of the precipitation 

experiments was to quantity the isotope variations associated with secondary mineral 

formation accompanying the dissolution of forsterite. Forsterite has been chosen for the 

precipitation experiments because the Mg silicate system is relatively simple; there 

should be only trace amounts of aluminium present so the range of clay minerals and 

aluminium silicates that can form is limited. In addition CO2 input will be limited so no 

Mg-carbonates can form. The Mg silicate system is shown in Fig. 5.1, and comprises 

forsterite, talc, chrysotile, brucite and quartz. Consequently, any potential secondary 

phases are limited and more easily identified. This will be important when interpreting 

the effect of mineral precipitation, that is, the fractionation can be attributed to the 

formation of a specific mineral.

Overall, the aim of this investigation is to quantify the effect of dissolution of 

primary minerals and precipitation of secondary phases in natural waters. This will 

enable more accurate modelling of water rock interactions. Ultimately such information 

may better constrain the link between the oceanic isotope record and continental 

weathering, which, in turn, has consequences for CO2 drawdown and regulation of 

Earth’s past climate.

Experimental Background
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Previous work on olivine and basalt glass dissolution has provided a wide range of data 

that shows a dependency on factors such as pH, temperature, and solution composition.
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Fig. 5.1 - Magnesium silicate stability diagram, constructed using data from the geochemical modelling 

program PHREEQC (Parkhurst & Appelo 1997)

Many studies have shown that the dissolution of forsterite is pH dependent 

(B lu m  and La s a g a , 1988; Ch en  and B r a n t l e y , 2000; G isl a so n  and A r n o r ss o n , 

1993; M u r ph y  and He l g eso n , 1987; W ogelius  and W a lt h er , 1991; W o gelius  and 

W a lth er , 1992) with studies reporting that the dissolution rate increases with 

decreasing pH in acidic conditions. The dissolution rate of forsterite in high pH 

solutions is more controversial. Some studies have shown that the dissolution rate 

increases with increasing pH in basic solutions (B lu m  and La s a g a , 1988; W ogelius 

and W a lth er , 1991) but a more recent study by Pokrovsky & Schott (2000) shows that 

the dissolution rate does not increase with increasing pH, instead it remains relatively 

constant. The authors explain this discrepancy with the suggestion that the experiments 

of Blum & Lasaga (1988) and Wogelius & Walther (1991) had not yet reached steady
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state, thus dissolution rates are not accurate. High dissolution rates at low pH means 

that the dissolution of forsterite becomes rapidly stoichiometric (i.e. the system reaches 

a steady state quickly), lower dissolution rates at high pH means it takes much longer 

for solution compositions to become stoichiometric. The mechanism of dissolution is 

also dependent on pH; prior to the solution composition becoming stoichiometric at low 

pH conditions the dissolution of forsterite involves the preferential loss of Mg, and in 

high pH solutions involves the preferential loss of Si (Po k r o v sk y  and Schott , 2000). 

This has been interpreted to indicate that different precursor layers form during 

dissolution depending on the pH. Further work (O elk ers , 2001a) has investigated the 

effect of both silica and Mg in solution on forsterite dissolution. The dissolution rate 

was found to be independent of the concentration of Mg and Si at low pH conditions, 

suggesting that forsterite dissolution proceeds via two steps; firstly, via protonation 

forming the rate controlling precursor complex, secondly, by breaking of the octahedral 

chain that links the Mg-0 causing the release of Mg and Si from the forsterite structure.

The dissolution of basalt glass has also been shown to be both pH and 

temperature dependent (G isla so n  and Oelk er s , 2003; Gu y  and Schott , 1989). At 

low pH the dissolution is controlled by adsorption of H* ions onto Al and Fe surface 

sites while at high pH dissolution is controlled by the adsorption of OH' ions onto Si 

surface sites (G isl a so n  and Oelk er s , 2003). The dissolution rate increases rapidly in 

low pH conditions with decreasing pH, is independent of pH at neutral conditions, and 

increases slowly at high pH conditions. Studies of the effect of dissolved silica and 

aluminium concentration and speciation on basaltic glass dissolution rate have enabled 

an understanding of the mechanism of dissolution (B er g er  et al., 1994; D a u x  et al., 

1997; G isl a so n  and Oelk ers , 2003; Oelkers and G isl a so n , 2001; W olff-B o enisc h  

et al., 2004). The proposed mechanism involves: 1) the removal of cations by metal-
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proton exchange that leads to the formation of a leached zone, 2 ) then the substitution of

tetrahedra. The concentration of these partially liberated Si-tetrahedra near the glass 

surface controls the dissolution rate of the glass. In turn the concentration of Si- 

tetrahedra is controlled by the rate of Al-proton exchange reactions that create the 

partially liberated Si tetrahedra. Thus the rate of dissolution is dependent on the activity 

of aqueous Al3+ and H+:

Where r  =  surface area normalised basaltic glass steady state dissolution rate 

k  =  rate constant equal to i f f 11-65 (mol ofSi)/cm2/s

5.2. Methods

Details of all experimental parameters are given below in Table 5.1.

5.2.1 Experimental minerals and glass

The basaltic glass used in these experiments is from the Stapafell Mountain in south 

west Iceland, and is the same glass used in similar dissolution experiments involving 

basalt glass (G isla so n  and Oelk ers , 2003; Oelkers  and G isl a so n , 2001).

Forsterite was obtained from Wards Natural Science and has an approximate 

composition of Mgi.82Feo.i8Si0 4  (Fo91). It is similar to forsterite used in dissolution 

experiments by Pokrovsky & Schott (2000) and Oelkers (2001). More details 

concerning the compositions of the basalt glass and forsterite and their preparation are 

given in Section 2.6.1.

Al3+ by substituting three H* ions and 3) the liberation of partially detached Si

Equation 5.1
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Table 5.1 - General parameters for dissolution and precipitation experiments

Experiment Reactant Temp (°C) PH Flow rate (g/min)

BG l Basalt Glass 25 2 1

BG2 Basalt Glass 25 3 & 4 1-8 .3

BG3 Basalt Glass 25 4 1

BG4 Basalt Glass 3 5 -5 5 4 1

BG5 Basalt Glass 2 5 -5 5 3 5

FOl Forsterite 25 2,3,4 1 & 3

F 02 Forsterite 25 3 & 2 2 & 3

F 03 Forsterite 25 10 0 .1 5 -4

F 04 Forsterite 2 5 -5 5 3 1

F 05 Forsterite 25 11 0 .2 -3

F 06 Forsterite 75 10 1 & 2

F 07 Forsterite 75 11 1 & 2

5.2.2 Experimental setup

All dissolution experiments were carried out in titanium mixed flow reactors as 

illustrated in Fig. 2.5. This reactor enabled control of temperature, pressure, inlet 

solution flow rate and internal stirring speed. Precipitation experiments were also 

performed in flow through reactors (Fig. 2.6) though these are constructed from 

polypropylene. The main difference between experimental setups was that the 

temperature was controlled during the precipitation experiments by submersing the 

reactors in a water bath.

More details concerning operation of the dissolution and precipitation experiments are 

given in Section 2.6.2.

Experimental parameters such as flow rate, stirring rate and solution 

composition could be changed during the experiment without disruption to the reactors. 

However in order to assume a steady state had been reached four reactor residence times 

were allowed to pass before commencement of sampling and whenever these 

experimental parameters were changed. The reactor residence time being the reactor 

volume divided by inlet flow rate, high flow rates giving shorter reactor residence times.

140



Chapter 5 Dissolution Experiments

At the end of each experiment deionised water was flushed through the system and the 

rock powder was collected and dried down ready for future analysis. In the event of 

secondary mineral precipitation reagent grade HC1 (1 mol/kg) was pumped through the 

reactor for 24 hours before cleaning with suprapure HC1 (1 mol/kg) for a further 24 

hours and a final clean with deionised water.

5.2.3 Major and trace element analyses

Major and trace element concentrations for mineral and glass samples were determined 

by ICP-MS (Agilent 7500a). Solid material was dissolved following the standard ICP- 

MS dissolution protocol in Section 2.2.2.

Samples were analysed and calibrated as described in Section 2.5.1.1. The 

external reproducibility over the course of the investigation are presented for major and 

minor elements in Appendix A3 and A4. The concentrations of measured standards are 

mostly close to certified concentrations. The external error for both major and minor 

elements is better than 6% (2 a).

Aqueous samples were analysed for major cation concentrations by ICP-AES in 

Iceland and analysed for both major and trace elements by ICP-MS at the Open 

University. Details of both techniques are presented in 2.5.1.2. Duplicate

measurements of the experimental solutions by ICP-AES yielded relative errors of less 

than 5%. External reproducibility for measurements by ICP-MS are better than 8 % 

(2a); a comparison of measured SLRS-4 standards with certified values are presented in 

Appendix A6 .

5.2.4. Lithium analysis
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The separation of Li for isotope analysis was carried out by ion chromatography 

following the protocol of James & Palmer (2000) described in Section 2.4 .2 . Lithium 

isotope ratios were determined using a combination of a Thermo-Finnegan Neptune and 

Nu Instruments MC-ICP-MS. The methods of analysis together with the associated 

internal and external errors are given in 2 .5 .2 .2 . The internal error (2cr) of sample 

measurements was typically better than 0.2%o with the Nu-Plasma, and better than 0.1 %o 

on the Neptune. The external reproducibility of the lithium isotope ratios was monitored 

by routine measurement of IAPSO seawater during sample measurement (see Appendix 

A8 ). Over a total of 40  seawater standards that were measured the average 8 7Li value 

was 31 .08  ±0.82%o (2 sd)

5.2.5. Magnesium analysis

The separation of Mg uses cation exchange chromatography similar to that used for the 

separation of Li; the main difference that an anion column is also used for all rock 

samples to remove any potential interference from iron (W iechert  and H a l l id a y , 

2007). The lull procedure for separation of Mg, including cation and anion column 

calibrations, is given in Section 2.4 .3 .

Magnesium isotopes were measured on a Thermo-Finnegan Neptune MC-ICP-MS. The 

methods of analysis together with the associated internal and external errors are given in

2 .5 .2 .3 . The internal precision of the Mg isotope measurements was calculated using 

the technique in Appendix A10. Typically the internal precision of 526Mg 

measurements was better than 0.05%o, and the internal precision of 525Mg 

measurements was better than 0.03%o. External reproducibility was monitored by 

routinely measuring the Mg standard CAM-1 at least 2-3 times for each day of analyses. 

The average 8 26Mg composition of CAM-1 from 20  measurements was -2.62%o with a
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2c error of 0.13%o while the average 8 25Mg composition was -1.35%o with a 2c error of

0.06%o.

5.3. Results

The results of the dissolution experiments involving basalt glass and forsterite are given 

in Appendices Cl and C2. The results of the precipitation experiments are presented in 

Appendix C3. All dissolution rates have been calculated using the following equation:

SinTJT x F
r = ------------  Equation 5.2

^  BET

Where r = dissolution rate (mol/cm2/s)

S i ( o u t )  ~ outlet Si concentration (mol/kg)

F  =  fluidflow  rate (g/s)

S (bet)  = surface area o f  sample powder determined by BET method

5.3.1. Mineral phases

Results of the ICP-MS analyses of unreacted and reacted mineral phases are presented 

in Appendix C4. The dissolution procedure involved the use of HF so silicon 

concentrations could not be measured. By comparing the concentration of elements in 

the reacted phase with the concentrations in the unreacted mineral the % loss during 

dissolution can be calculated. The experiment involving the dissolution of basalt glass 

at pH2 (experiment BG1) shows the highest % loss of each element; the elements with 

the greatest % loss were Ba, Li, Al, Sr and Mg with loss of 23, 12, 11.5, 11 and 10.5%, 

respectively. In general these elements were the most readily lost in all of the basalt 

glass experiments while Ti and Th concentrations remained similar. Unreacted basalt 

glass has a Li concentration of 4.7ppm and a Mg concentration of 6  Wt%. In the
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forsterite experiments most elements were below detection limits with aluminium, 

potassium and sodium among the elements unable to be measured. The element with 

the greatest loss during the experiments was Li with a loss of ~ 17% relative to the 

levels in the unreacted forsterite. The forsterite Li concentration is lower than that of 

basalt glass with a concentration of 2 ppm.

5.3.2. Dissolution Experiments

The results of the dissolution experiments show that at low pH (2-4) the amount of 

silica released into solution during the dissolution of both basalt glass and forsterite 

increases with decreasing pH. For example the concentration of silicon in solution 

increases from ~1.8ppm in pH 3 solution to 13ppm in pH 2 at the same flow rate and 

total surface area. As silica concentration is used in the dissolution rate equation this 

means that the dissolution rate of both minerals also increases with decreasing pH 

(Figure 5.2). This is consistent with previous experimental work on basalt glass 

(G isl a so n  and Oelk er s , 2003; Oelkers and G isl a so n , 2001; W olff-B o enisc h  et 

al., 2004) and forsterite dissolution (C h en  and B r a n t l e y , 2000; Oel k er s , 2001a; 

P o k r o v sk y  and Schott , 2000; W o gelius  and W a lth er , 1992).
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Fig. 5.2 - Graph showing how the dissolution rate (r) changes as a function of pH in basalt glass and 

forsterite dissolution experiments

The dissolution rates obtained here are almost identical to those reported in the literature 

(Appendix C5). Changing the experiment temperature also causes changes in the 

amount of silicon that is released; i.e. temperature regulates the rate of dissolution (Fig. 

5.3).

Results show that an increase in temperature from 25°C to 55°C causes the 

concentration of silicon in the outlet solution to double from ~2ppm to ~4ppm. This 

causes a concordant increase in the dissolution rate from 5.5x1 O' 14 to 1.1 xlO ' 13 

mol/cm /s (Fig. 5.4). Changing the solution temperature during the dissolution of
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forsterite (experiment F04, Fig. 5.5) has less of an impact on the concentration of 

silicon released. An increase in temperature from 35 to 55°C increases the 

concentration of silicon in the outlet solution by -lppm  and causes a slight increase in 

dissolution rate from 7 .8 x l 0 " 13 to 9*10 ' 13 mol/cm2/s.
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Fig. 5.3 - Concentration o f dissolved silicon in solution as a function of time and temperature in 

experiment BG5

The behaviour of Li is similar to that of silicon, in that the highest Li 

concentrations coincide with those of silicon in the low pH experiments. Lithium 

concentrations in solution vary depending on the experiment; low pH experiments 

involving the dissolution of basalt glass like BG1 have Li concentrations of around 

0.5ppb. Experiments involving forsterite have much lower Li concentrations; for 

example in FOl initial Li levels were -0.01 ppb. Lithium isotope analyses require a 

minimum of 5ng in order to make a single measurement thus for many of the samples 

(those with <0.1ppb Li) isotope analysis was not possible.
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Fig. 5.4 - Graph showing how basaltic glass dissolution rate (r) varies as a function of temperature in 

experiment BG5 (pH3)
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Fig. 5.5 - Concentration o f dissolved silicon in solution as a function of time and temperature in 

experiment F04 (pH~3.4)
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5.3.3. Precipitation experiments

By comparison with the low pH dissolution experiments, at pH 10 and 11 the dissolution 

rate of forsterite is far lower, in agreement with the work of Pokrovsky & Schott (2000).

In experiment F03 (pH 10) the system maintains a relatively constant dissolution 

rate for over 130 hours at flow rates of 4, 2 and lg/min; this dissolution rate is 1.62x10" 

14 mol/cm2/s. When the flow rate drops to 0.15g/min the dissolution rate also falls to
ic o #

3.16x10" mol/cm/s (see Fig. 5.6). A similar pattern of change is seen during 

experiment F05 (pH ll), at a flow rate of 3g/min the dissolution rate remained at a 

constant value of 2.82x10"14 for 24 hours, and after dropping the flow rate to 0.2g/min 

the dissolution rate dropped to 3.16xl0"15 mol/cm2/s.
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Fig. 5.6 - Change in forsterite dissolution rate (r) with time in experiment F03 performed at 25°C and 

pHIO

These high pH experiments were repeated at 75°C. The dissolution rate is 

higher than at 25°C, with the experiment at pH 10 having the higher rate of 3.98xl0"14 

mol/cm2/s compared to 1.41 x 10"14 mol/cm2/s at pHl 1.
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Lithium concentrations are generally greater than during the dissolution of 

forsterite at far from equilibrium, with concentrations ranging from 0.1 to 3.8ppb. As a 

consequence there was potential for a larger number of samples to be analysed than was 

possible in the dissolution experiments.

5.3.4. Li isotope results

5.3.4.1. Dissolution experiments

Lithium isotope measurements have been made on both experimental solutions 

(Appendix C6 ) and experimental minerals (Appendix C4). Results of basalt glass 

dissolution experiments show that the solutions possess a similar isotopic composition 

to that of the dissolving mineral. Original basalt glass has a 8 7Li composition of 

between 5 and 6%o with solutions from the dissolution experiments ranging in 

composition from 2.4 to 3.5%o. Unfortunately analyses often involved small sample 

size so no repeats could be undertaken on many of the samples, while others had a 

lower Li signal than expected during analysis on the mass spectrometer. The residual

n
glass had 8  Li compositions that were more consistent with the unaltered basalt glass, 

BG1 and BG2 all having almost identical Li isotope compositions of ~6 %o. 

Experiments BG3-5 yield slightly lighter isotope ratios of ~4.8%o.

Results from the forsterite experiments show that the solution composition is 

similar to that of the dissolving mineral. The composition of the forsterite ranges from

1.5 to 2.1%o while the solutions have a slightly greater range between 0.5 and 2.7%o 

(Fig. 5.7). Only four solutions could be measured because the concentration of Li in 

most of the samples is below the O.lppb threshold needed to make one measurement. 

The S7Li isotope composition of unaltered forsterite is ~1.5%o, with the reacted 

forsterite being slightly heavier between 2  and 2 .1 %o.
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Forsterite composition
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Fig. 5.7 - Variation in the lithium isotope composition of the outlet solution with time in dissolution 

experiment F02 (25°C)

5.3.4.2. Precipitation experiments

Results from the precipitation experiments show that the isotope composition of the 

solutions is much heavier than either the unaltered or experimental forsterite. The 8 ?Li 

value of the solutions ranges from 2 to 12%o, up to 10%o greater than the values 

recorded in the fluids produced during the far from equilibrium dissolution experiments. 

In this case a far greater number of solutions could be analysed because the Li 

concentration in the precipitation reaction solutions is much higher. For this reason a

n

plot of the 8  Li composition over time can be made for each experiment (see Fig. 5.8 for

n
F03). These plots show that the 8  Li value of the fluid increases over time, for example 

in F03 (pHIO, 25°C) the S7Li value of the solution is 2%o after 15 hours, increasing to 

8.4%o after 120 hours and remains relatively stable thereafter. Similarly in F07 (pHl 1, 

75°C) the 8 7Li composition is 7.2%o after 15 hours and reaches 12.2%o after 130 hours, 

remaining constant thereafter.
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Fig. 5.8 - Change in the lithium isotope composition of the outlet solution with time during precipitation 

experiment F03 (25°C).

5.3.5. Mg isotope results

5.3.5.1. Dissolution experiments

Magnesium isotope measurements have been made on the initial mineral phases and the 

sample solutions for experiments involving both basalt glass and forsterite. The results 

of these measurements are presented in Appendix Cl. In experiments involving both 

forsterite (F02) and basalt glass (B G 5) the initial solutions have a S26Mg composition 

of, respectively -0 .45  to -0.5%o and with time the solutions become isotopically lighter; 

the final solution of each experiment having a 8 26Mg value of -0.62%o. The 

reproducibility of standards when running experiment B G 5 was ~0.1%o hence all of the 

samples are within error and any trend cannot be resolved. When running F02 the 

reproducibility of the standards was far better; on the order of 0 .0  l%o and the change in 

Mg composition with time is illustrated in Fig. 5.9.
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The unreacted mineral phases of forsterite and basalt glass have Mg 

compositions of -0.26 and -0.3%o respectively. In comparison reacted phases from 

experiments FOl and BG1 are isotopically lighter with compositions of -0.34 and - 

0.35%o respectively.

Forsterite composition -0.26%oS ,  -0.3

30 40 60

Time (hours)

Fig. 5.9 - Change in magnesium isotope composition o f the solution with time during the forsterite 

dissolution experiment F02 at 25°C. The error bars represent the 2a error on each sample measurement.

5.3.5.2. Precipitation experiments

In the precipitation experiments the isotope composition of the experimental solutions 

becomes heavier with time (Fig. 5.10). Three experiments were analysed; F03, F05 

and F06 and in each case the first sample had the lightest Mg isotope composition with 

values of -0.54, -0.65 and -0.30%o, respectively. With time the Mg isotope composition 

of the fluid phase became increasingly isotopically heavy; the §26Mg values of the final 

solutions being -0.34, -0.23 and -0.2 l%o respectively. Thus, the Mg isotope 

composition of the solutions approaches that of forsterite with time. A sample of 

reacted forsterite from F05 was also analysed, and the results show it has an Mg isotope
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composition of -0 .3  l%o, which is similar to the composition of unreacted forsterite (-

0.26%o).
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Fig. 5.10 - Change in the magnesium composition of the outlet solution during the precipitation 

experiment F05 performed at 25°C and pHl 1.

5.4. Discussion

5.4.1. Dissolution experiments

5.4.1.1. Dissolution rate

The dissolution rate of both basalt glass and forsterite is dependent on pH, and results 

from BG4 and BG5 show that basalt glass dissolution is also temperature dependent. 

This is as expected, the dissolution mechanism of both basalt glass and forsterite 

involves the exchange of protons for metal cations on the mineral surface (O el k er s , 

2001a; Oelkers and G isl a so n , 2001; P o k r o v sk y  and S c hott , 2000). In the case of 

basalt glass the dissolution mechanism involves the exchange of protons for aluminium, 

this partially liberates silica tetrahedra and is the rate limiting step for basalt glass 

dissolution (O elkers and G isl a so n , 2001). During the dissolution of forsterite at low
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r y t

pH protons exchange for Mg causing the formation of a silica rich layer on the 

surface, it is the decomposition of this silica rich layer that is the rate limiting step 

controlling the dissolution rate of forsterite (P o k r o v sk y  and Schott , 2000). For both 

the glass and olivine decreasing the pH will increase the concentration of protons in 

solution and so more of these exchange reactions can occur, resulting in a faster 

breakdown of the mineral lattice which is reflected in higher dissolved silicon 

concentrations and so higher dissolution rates. Correspondingly, the composition of the 

reacted mineral is also more depleted in the low pH experiments; for example at pH2 

the basalt glass lost -12% of its lithium into solution while at pH4 the basalt glass lost 

<1%. Changing the temperature of the system also causes a change in the solution 

chemistry and reaction rate; this is consistent with the Arrhenius equation:

(  — E
k  = A x exp ----------------------------------------   Equation 5.3

{ RT J

A is the pre-exponential factor, Ea is the activation energy, R is the gas constant, and T the temperature 

in K.

Thus reactions such as the hydrolysis of silicates will increase exponentially with 

increasing temperature. It is predicted that reaction rates will increase by an order of 

magnitude through an increase in the temperature from 0 to 25°C (W hite , 2003). 

Changes in the dissolution rate of basalt glass in this study increase from -5x1 O' 14 to

1.5 xlO"13 mol/cm2/s as temperature increases from 25 to 55°C. Forsterite behaves 

slightly differently; in experiment F04 the dissolution rate increases with temperature 

but only fractionally from 7.8x1 O’ 13 to lxlO ' 12 mol/cm2/s with an increase of 

temperature by 20°C. This increase is smaller than expected from the Arrhenius 

equation and from previous work investigating the dissolution of forsterite between 25
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and 65°C (O elk er s , 2001a). One possible explanation for the behaviour of F04 is that 

it had not yet reached a steady state before the temperature was changed; this is 

suggested by fluctuations in the silicon concentrations. In general however the 

dissolution rate of forsterite and basalt glass increases with temperature.

Comparison of the dissolution rate data obtained here with those of previous 

studies indicates that they are very similar (G isl a so n  and Oelk ers , 2003; P o k r o v sk y  

and S chott , 2000; Rosso and R im st id t , 2000) as shown in Appendix C5. The two 

exceptions are in the case of forsterite dissolution using variable stir speeds at low pH 

(this effect is also demonstrated at pHIO and 11). At pH 2-4 the dissolution of 

forsterite is similar to literature values when the stirring speed is kept constant at 350 

rpm. In order to test whether the dissolution is surface reaction controlled the stirring 

speed was changed during the end of experiments FOl and F02 to 500 rpm. This had a 

dramatic effect on the dissolution rate; increasing it from 2.2x1 O' 12 to around 6x1 O' 12 

mol/cm2/s. Literature dissolution rates for forsterite range from 7x1 O' 13 to 2x10‘ 12 

mol/cm2/s (Po k r o v sk y  and S chott , 2000; Rosso and R im stidt , 2000; W o gelius and 

W alth er , 1991); so by increasing the stir speed within the reactor the dissolution rate 

has increased by nearly three times over rates at 350 rpm and up to one order of 

magnitude over rates reported in the literature. This effect has been shown to occur 

during the dissolution of basalt glass (G isl a so n  and Oelk er s , 2003) and is attributed 

to relatively slow diffusional transport of metal ions away from the crystal surface, 

which limits the diffusion rate at low pH. Gislason & Oelkers (2003) show that a 

stirring speed of over 550rpm is needed to keep the dissolution rate of basalt glass 

surface reaction controlled at pH 2, and 325 rpm is needed at pH 3. The results from the 

present study in pH 2 solutions show that a stir speed of 350 rpm is not sufficient to 

move metal ions away from the dissolving forsterite surface and as a consequence
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dissolution becomes diffusion limited. Determination of the dissolution rate is not the 

focus of the current investigation. Nevertheless it can be concluded that previous 

estimates for the dissolution rate of forsterite at low pH and particularly at pH 2 are too 

low, and on this basis it is recommended that any new studies investigating forsterite 

dissolution should take diffusional processes into account and use a stir speed of at least 

500 rpm at pH 2.

5.4.1.2. Reaction Stoichiometry

The stoichiometry of a reaction is a measure of the molar ratios in solution in 

comparison to the molar ratios in the dissolving mineral. It is also a good indicator of 

whether or not the reaction is at a steady state and if dissolution is occurring 

congruently. This is useful because the mechanisms of dissolution of both basalt glass 

and forsterite involve preferential loss of a major element and thus can depend on the 

pH of the solution. In particular, the dissolution of forsterite at low pH involves the 

formation of a Si rich layer on the surface so preferentially loses Mg, and vice versa at 

high pH (Po k r o v sk y  and Schott , 2000). Therefore the stoichiometry of dissolution 

can affect the dissolution rate (e.g. if Si is preferentially lost) and may also affect the 

isotope composition of material that is lost to solution. Assessing the stoichiometry of 

basalt glass dissolution is usually performed by analysing the molar ratio of Si:Al (in 

Stapafell glass this should be 2.77), while the stoichiometry of forsterite dissolution is 

assessed through the Mg.'Si ratio (in this case the Mg:Si ratio should be 1.82). Molar 

ratios for basalt glass in experiments BG1 to BG5 show that the system is not in a 

steady state although in most cases the Si:Al ratio is approaching 2.9 (see Fig. 5.11). 

This is not ideal because it indicates that incongruent dissolution is occurring, and in 

this case the Li isotope composition will not necessarily reflect the steady state
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dissolution of basalt glass. The Si:Al ratio generally starts off lower than 2.77 reflecting 

the early cation exchange of Al3+ for protons, with preferential Al3+ release into solution 

(O elkers  and G isl a so n , 2001). Over time and changing conditions the solutions do 

approach stoichiometry but never completely achieve it, thus it seems likely that a 

longer time period would have been needed to attain a steady state. In the higher 

temperature experiments the solutions are also non stoichiometric; each increase in 

temperature of 10°C causes the Si:Al ratio to increase dramatically. For example as 

BG4 is increased from 45°C to 55°C the Si:Al ratio increases from ~4 to over 30 before 

decreasing again with time. The easiest way to explain this is that the increase in 

temperature causes precipitation of Al(OH)3  which would remove aluminium but not 

silicon thus increasing the Si:Al ratio. However there is no evidence to support this, 

saturation state modelling (see Section 5.4.1.3) shows that Al(OH)3  is always 

undersaturated. Another more complicated explanation involves the dissolution 

mechanism of basalt glass; basalt glass dissolution involves the removal of A1 which 

causes the partial liberation of silica tetrahedra (O elkers and G isl a so n , 2001). In 

steady state conditions these partially liberated tetrahedra will be released gradually, but 

it is possible that the sudden increase in temperature causes a rapid release of these 

partially attached silica tetrahedra. As time passes at a fixed temperature the Al-proton 

exchange reaction will re-establish itself and the system can return to steady state 

conditions.
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Fig. 5.11 - Graph showing how the Si:Al ratio of the outlet solution changes over time with changing 

reactor temperature in (a) pH4 (BG4) and in (b) pH3 conditions (BG5). The red line represents the 

stoichiometric Si:Al ratio in basalt glass of 2.92:1

In contrast to the basalt glass experiments the dissolution of forsterite in FOl 

and F02 achieved stoichiometric ratios of Mg:Si almost immediately, as shown in Fig. 

5.12. Initial Mg:Si ratios were slightly higher than stoichiometric (~2) because the 

dissolution mechanism of forsterite involves the preferential release of Mg in acidic
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solutions (O elk er s , 2001a; P o k r o v sk y  and S chott , 2000). With time this ratio 

approached 1 . 8  and remains at this level indicating that steady state dissolution has been 

achieved. On average the Mg:Si ratio was 1.87 ± 0.05 (la ) over the course of two 

experiments and a combined total of ten days sampling. This is indistinguishable to the 

average Mg/Si ratio of 1.84 ± 0.19 recorded by Rosso & Rimstidt (2000) (based on 235 

Mg/Si ratios).
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Fig. 5.12 - Graph showing how the Mg:Si ratio of the outlet solution changes with time and changing pH. 

Red line represents the stoichiometric forsterite ratio of 1.82:1
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5.4.1.3. Mineral Saturation

The aim of the dissolution experiments is to assess how Li and Mg isotopes behave 

during solely dissolution of the primary mineral. For primary mineral dissolution to be 

the only process that occurs the system needs to be at conditions far from equilibrium so 

that the reverse reaction cannot easily occur and the likelihood of secondary mineral 

formation is very low. The saturation state of the system can be estimated with respect 

to the primary mineral and any potential secondary phases through geochemical 

modelling. The program PHREEQC (Pa r k h u r st  and A ppelo , 1999) enables the 

calculation of saturation states of solutions with respect to specific minerals using the 

element concentrations of the solutions. The saturation index is an indicator of mineral 

stability; if it is at zero then the mineral is said to be at equilibrium and should be stable 

or relatively stable in solution (A ppelo  and Po st m a , 2005). If the SI is >0 then the 

mineral is said to be supersaturated and may precipitate, and as the SI increases the 

mineral in question is increasingly likely to precipitate. If the SI is below zero then the 

mineral is undersaturated, it is unstable and if present and exposed to such a solution it 

will have a tendency to dissolve. The predictions of mineral stability obtained from 

PHREEQC are not definitive but they do provide a useful means of estimating mineral 

stability within the reactors. Equilibrium constants for each mineral were taken from 

the Wateq4f database (B all  and N o r d st r o m , 1991) within PHREEQC, data for 

hydrated basalt glass was taken from Oelkers and Gislason (2001), using a log 

equilibrium constant of 0.079 for the following hydrolysis reaction:

SiAl036O2(OH)lM + l M H + -» S i0 2 + 0.36Als+ +1.08H 20 Equation 5.3
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The phases that are most at risk of forming in the reactors are amorphous iron and 

aluminium hydroxides and/or cryptocrystalline goethite and gibbsite (G isla so n  and 

Oelk er s , 2003). Results from PHREEQC show that all of these minerals as well as 

hydrated basalt glass, kaolinite and illite are undersaturated, and that the degree of 

undersaturation increases at lower pH (Appendices C8  and C9). For this reason it is 

reasonable to assume that the dissolution experiments are all far from equilibrium and 

no secondary mineral formation has occurred.

5.4.1.4. Lithium isotope behaviour

As a consequence of the small sample size Li isotope analysis of the experimental 

solutions was extremely difficult, and no repeat measurements could be made. The Li 

isotope composition of the basalt glass is ~5.8%o, while the composition of reacted 

basalt glass ranges from 4.8 to 6%o, these are all within or close to the range of Li 

compositions documented for MORB (Elliott et al. 2004). The fact that the reacted 

basalt glass is not identical to unreacted basalt glass could be due to a number of 

reasons. Firstly, there could be some sample heterogeneity, although the fact that the 

glass has been powdered and well mixed makes this unlikely. Secondly, samples may 

have experienced incongruent dissolution or leaching of Li, involving the preferential 

loss of one isotope. To account for the l%o difference between the unreacted basalt 

glass and basalt glass from experiments BG3, 4 and 5 there would need to be 

preferential loss of the heavy isotope of Li. However analysis of the solution from BG5 

shows that it is in fact isotopically lighter than the original basalt glass by ~2%o. Mass 

balance calculations suggest that this can only occur if there is another phase present 

that is preferentially incorporating the 7Li. However, this seems extremely unlikely 

because all data, thus far, suggest that secondary minerals remove the light isotope of Li
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(C h a n  and H ein , 2007; H u h  et al., 2001; H u h  et al., 1998; K is a k u r e k  et al., 2005; 

K is a k u r e k  et al., 2004; P is t in e r  and H e n d e r s o n , 2003; P o g g e  v o n  S tr a n d m a n n  et 

al., 2006). The most likely explanation is that there have been slight variations 

generated during the chemical purification of the samples or measurement variations 

introduced during mass spectrometry. In the context of the very large range of Li 

isotope compositions observed in nature (e.g. the recorded range of riverine Li is 

between 6 and 40%o (H u h  et al., 1998; P o g g e  v o n  S tr a n d m a n n  et al., 2006)), the 

small variations in isotope ratios observed in these experiments suggest that there is 

minimal fractionation between mineral and solution at far from equilibrium conditions. 

This would also be in keeping with the results of basalt leaching experiments by Pistiner 

and Henderson (2003).

5.4.1.5. Magnesium isotope behaviour

Previous studies of Mg isotopes in crustal and mantle material suggest that there are a 

wide range of compositions. For example olivine from San Carlos has been measured 

in several different studies with a range of compositions from -0.73%o (T en g  et al.,

2007), to -0.06%o (W ie c h e r t  and H a l l id a y ,  2007). This difference could be due to 

heterogeneity of the San Carlos olivine (P e a r s o n  et al., 2006) or due to weathering or 

metasomatic affects (T en g  et al., 2007). Alternatively it could be due to problems with 

Mg isotope analysis. In comparison to these literature values the Mg composition 

measured in this study falls within the reported range at -0.26%o. The isotopic 

composition of the phases from the experiments are similar to that of the unaltered 

forsterite (-0.31 and -0.34%o) although they are slightly lighter, which could result from 

alteration of the mineral during dissolution but could also be due to sample 

heterogeneity. This is particularly likely because the forsterite was powdered from
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forsterite crystals in batches. Such potential heterogeneity could have been avoided 

through the use of one large well mixed batch of powder, rather than crushing and 

sieving in batches.

There are also numerous studies of the composition of basalt; for example the 

composition of SUNY MORB has been found to be between -0.28 and -0.32%o 

(R ic h te r  et al., 2008; T e n g  et al., 2007) while the composition of BCR-1 ranges from - 

0.37 (Y o u n g  and G a ly ,  2004) to -0.09%o (W ie c h e r t  and H a l l id a y ,  2007). The 

Stapafell basaltic glass has a very similar Mg composition to these basalts with a 6 26Mg 

of -0.3%o. The composition of the reacted basalt glass is very similar to this, suggesting 

that the sample is homogeneous and that there has been no fractionation during 

dissolution.

The results of Mg isotope analysis from the forsterite dissolution experiments 

indicate that the dissolution fluid is isotopically light relative to the composition of the 

forsterite and has become isotopically lighter with time. For the composition of the 

fluid to be different to that of the mineral there either needs to be fractionation during 

the dissolution process (i.e. incongruent dissolution with respect to the Mg isotopes) or 

secondary mineral formation within the reactor causing preferential uptake of the heavy 

or light isotopes. The latter explanation seems most likely to be the cause of the 

solutions becoming isotopically light; weathering studies have shown that heavy Mg is 

preferentially retained in silicate soils (T ipper  et al., 2006a). However, two lines of 

evidence support the assumption that no secondary mineral formation has occurred. 

Firstly, modelling of the saturation states shows secondary minerals are undersaturated 

as discussed in Section 5.4.1.3. Secondly, the solution has a stoichiometric Mg/Si ratio, 

and any precipitation of silicate minerals will cause the ratio to change. Precipitation of 

amorphous iron oxyhydroxides and iron oxides would not affect the Mg/Si ratio but
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saturation state data show that these minerals are all undersaturated. The Mg/Fe ratio in 

forsterite is -10.1, in both experiment FOl and F02 the ratio by the end of the 

experiment is approximately stoichiometric at 10.5 implying that there has been no iron 

mineral precipitation.

These data suggest that secondary minerals are unlikely to have formed; the only 

other way to explain the behaviour of Mg isotopes is by the preferential loss of light Mg 

during forsterite dissolution. If this is the case then it is assumed that if the experiment 

was to proceed for a longer period of time the fluid composition would become 

progressively heavier and approach the Mg isotope ratio of forsterite. This is because if 

dissolution is the only mechanism that occurs then mass balance would require the 

mineral to preferentially lose heavy Mg at some stage during the dissolution.

5.4.2. Precipitation Experiments

5.4.2.1. Dissolution rate

Dissolution rates at pH 10-11 are far slower than at pH 2-4 as predicted from previous 

work on forsterite dissolution (Po k r o v sk y  and S chott , 2000; W o g eliu s  and 

W a lth er , 1991).

Results from experiments F03 and F05 show that the dissolution rate is highly 

dependent on the flow rate of the solution pumped into the reactors. For example in 

F03 the dissolution rate remains relatively constant at 1.25x1 O' 14 mol/cm2/s for flow 

rates 4, 2 and 1 g/min. After -130 hours the experiment was changed to a much lower 

flow rate of 0.15g/min. This caused the dissolution rate to decrease over the same time 

period finishing at a rate of 2.82xl0‘ mol/cm /s similar to the results of Pokrovsky & 

Schott (2000). The system appeared to be at a steady state for the first 130 hours, 

similarly in F05 for the initial 24 hours. During this period the dissolution of forsterite
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at pH 11 was greater than that of forsterite at pH 10 (~1.3><10‘ 14 at pH 10 compared to

1A 9-2.9x10' mol/cm /s at pHl 1). It is only when the flow rates drop to between 0.15 and 

0.2 g/min that the dissolution rates at both pH 10 and 11 fall to ~4xl0 '15mol/cm2/s 

similar to results of Pokrovsky & Schott (2000). The fall in dissolution rate could be for 

two reasons; either the system is still reaching a steady state or the slowdown is related 

to the increasing concentrations in solution. Studies have shown that it can take as long 

as 200-300 hours for the dissolution of forsterite to reach steady state at high pH 

(Pokrovsky & Schott 2000). However, if the drop in dissolution rate is caused by the 

system reaching steady state conditions the composition of the solution should become 

more stoichiometric; this is not the case. Instead the falling dissolution rates coincide 

with falling element concentrations and Mg:Si ratios that are becoming less 

stoichiometric with time (Fig. 5.13). Initially the decrease in flow rate causes a build up 

of dissolved solids in the reactor; this may result in the saturation state of secondary 

minerals like chrysotile and talc also increasing. If secondary minerals were to form 

they would remove both Mg and Si from solution. Because the dissolution rate is 

calculated from the dissolved Si concentration this would result in an apparent decrease 

in dissolution rate. Mineral saturation states and how they may relate to changes in the 

dissolution rate of forsterite are described in Section 5.4.2.3.
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Fig. 5.13 - Graphs showing how the Mg: Si ratio of the outlet solution changes with time and flow rate at 

(a) pHIO and (b) pHl 1.

166



Chapter 5 Dissolution Experiments

a) F06 (pH10) 
2.0

1.8

1.6

1.4

55 12
W 1.0 £

0.8
0.6

0.4
0.2

0.0

♦♦ ♦ ♦

Stoichiometric dissolution
♦ ♦ ♦ ♦

2g/min

Decrease in flow rate

1g/min
50

b) F07 (pH11) 
2.0

100 150

Time (hours)
200 250

1.8
1.6

1.4
—  1.2 
CO
o> 1.0
s

0.8 

0.6 

0.4 

0.2  ̂
0.0

Stoichiometric dissolution

♦ ♦ ♦ ♦
♦ ♦ ♦ ♦

2g/min

Decrease in flow rate

1g/min

20 40 60 80 100 120 140 160 180

Time (hours)
200

Fig. 5.14 - Graphs showing how the Mg:Si ratio of the outlet solution changes with time and flow rate at 

75°C and (a) pH 10 and (b) pH 11

5.4.2.2. Reaction Stoichiometry

Unlike the dissolution experiments where stoichiometric dissolution was quickly 

attained, this did not occur in any of the experiments at pH 10 and 11 (see Fig. 5.13 and

5.14). An example of this is shown in experiment F03 (Fig. 5.13), here the Mg:Si 

solution ratio is initially - 0 . 1  and steadily rises over time; this is because the mechanism
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of dissolution in alkaline conditions involves the formation of a Mg rich layer and the 

preferential loss of Si into solution (P o k r o v sk y  and Schott , 2000). After -130 hours 

the Mg:Si ratio rose to -1.6; the dissolution of forsterite approached stoichiometry and 

the system approached a steady state. It is only after the flow rate is decreased to 

0.15g/min that the composition of the solution then changes; the Mg:Si ratio starts to 

decrease away from the stoichiometric ratio for forsterite. A change in the composition 

of the sample solutions to a lower Mg/Si ratio can result from either a change in the 

dissolution process (i.e. that forsterite is now dissolving incongruently and 

preferentially losing Si), or by some other process that preferentially removes Mg from 

solution. Incongruent dissolution of forsterite is unlikely; it was not observed at far 

from equilibrium and any initial incongruence will result in the solution becoming 

relatively enriched in silicon as shown in the early stages of F03. The other more likely 

possibility is the formation of secondary minerals; in theory a new mineral could be a 

Mg silicate such as talc, a Mg hydroxide such as brucite, Mg carbonate (dolomite) or 

some combination of all three. If concentration data from F03 is analysed (see Fig.

5.15) it shows that both Mg and Si concentrations increase up to 130 hours but then 

both concentrations decrease along with the Mg: Si ratio. The fact that both Mg and 

silicon concentrations decrease show that the drop in Mg/Si is caused by incorporation 

of both Mg and silica into a new mineral phase(s). The drop in the Mg:Si ratio is 

caused by the fact that more Mg is removed from solution than Si.
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300

Fig. 5.15 - Change in the concentrations of silica and magnesium in the outlet solution with time in 

experiment F03 (25°C, pHIO)

If solutions from experiments at pH 10 and pH 11 are compared, then those at 

pHIO have Mg:Si ratios that are closer to stoichiometric than p H ll (at pHIO Mg/Si is 

-1.5, at p H ll Mg/Si is -1.1) but despite the running time of these precipitation 

experiments lasting for far longer than at low pH stoichiometric dissolution is not 

achieved. The fact that stoichiometric dissolution is not achieved could be due to lower 

reaction rate at high pH (from - lx lO ' 13 at pH3 to -2x1 O' 15 mol/cm2/s at pH 10) but 

could also be due to the precipitation of secondary minerals which then affects element 

ratios. High pH experiments are known to take up to 200-300 hours to reach a steady 

state (Po k r o v sk y  and S chott , 2000), yet despite experiments such as F03 and F05 

running for similar periods of time the solutions did not achieve a stoichiometric 

chemistry. It seems unlikely that if  run for longer these solutions would become 

stoichiometric because the systems appear to have already reached a steady state, in 

particular those experiments at pHl 1. If non steady state conditions cannot explain the
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offset in the Mg: Si ratio of the solution then the alternative explanation is that 

secondary mineral formation has occurred and altered the solution chemistry.

5.4.2.3. Mineral saturation states

The calculation of secondary mineral saturation by PHREEQC can yield information on 

the likelihood of secondary mineral formation. Because the dissolving mineral is 

forsterite and has a composition of (Mgi.82Feo.i8)Si0 4  the likely secondary minerals in 

these experiments are Mg silicates. Iron concentrations in solution are below the 

detection limits of the ICP-AES so it is assumed that the formation of iron 

oxyhydroxides will not be important, this is supported by the solution chemistry which 

shows that both Mg and Si are removed from solution. Figure 5.16 shows the log 

activities of (Mg2+)/(Hf)2 and silica for experiments F03 and F05 (carried out at 25°C). 

The coloured lines represent the activities in solution needed for the fluid phase to be in 

equilibrium with respect to the phase in question. For example, a solution that plots on 

or close to the green line is in equilibrium with talc. A solution that plots below the 

green line is undersaturated and talc would dissolve if present, while any solution 

plotting above the green line is supersaturated with respect to talc and so talc has 

potential to precipitate. Saturation state modelling shows that solutions in both F03 and 

F05 are supersaturated with respect to chrysotile and talc so it is possible that these 

phases have precipitated from solution. Talc has 3Mg to 4Si so any precipitation should 

remove more Si than Mg. In contrast chrysotile has 3Mg to 2Si so any precipitation 

should remove more Mg than Si from solution. Solutions from both F03 and F05 have 

lower Mg: Si ratios than is stoichiometric which suggests that more Mg is being taken 

out of solution than Si. Of the two supersaturated minerals the evidence from solution 

chemistry is in favour of chrysotile precipitation over talc. However, in order to prove
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this conclusively the secondary phase would need to be identified using SEM analysis, 

and results so far have proved inconclusive.
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Figure 5.16 - Solubility relationship in the system M g 0 -S i0 2-H20  using the W ateq4f database (Ball and 

Nordstrom, 1991). Superimposed on the diagrams are PHREEQC modelling o f  the aqueous solutions 

from forsterite experiments at 25°C and pHIO (F 0 3 ) and p H l l  (F 05). The dashed line represents an 

estimation o f  the reaction path during forsterite dissolution at the respective pH assuming stoichiometric 

dissolution.
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If the solutions from the higher temperature experiments (F06 and F07) are also 

analysed in PHREEQC the results are similar to those at 25°C, if slightly less saturated. 

This is surprising given the greater stability of magnesium silicates at higher 

temperature. However, increasing the reactor temperature causes the pH of the solution 

to change; for example a solution that has a pH of -10 at 25°C will have a pH of ~9 at 

75°C. The stability of silicate minerals is highly dependent on the pH of the solution. 

The magnesium silicates are more stable at high pH so the drop in pH causes the 

saturation indices of minerals such as chrysotile and talc to be lower than expected. 

Even so, all solutions at 75°C are saturated with respect to chrysotile and many are 

saturated with respect to talc.

High saturation indices in solution such as those in F05 and F07 suggest firstly, 

that the formation of secondary minerals is likely, and secondly, that the dissolution rate 

of the dissolving mineral (in this case forsterite) may be inhibited by its saturation state. 

When a mineral approaches saturation the total dissolution rate no longer represents just 

forward dissolution but is also influenced by the reverse reaction (G isl a so n  and 

Oelk ers , 2003). This means that the dissolution rate will slow down. The braking 

effect on the dissolution rate can be quantified by using the saturation state (SI) of the 

mineral in order to calculate the Gibbs free energy of the reaction (AGr kJ/mol).

_  R x T x  2.303 x SI
A ( jr = ---------------------------------------------------  Equation 5.4

1000 H

Where R is the gas constant and T is the temperature in K

A dissolution reaction will become dependent on the saturation state of the reactants at 

AGr values of 0 to -lOkJ/mol for basalt glass and AGr values of 0 to -20kJ/mol for 

forsterite (Fla a t h e n  and G isla so n , 2007). The braking effect of saturation state on
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dissolution rate can be quantified using the following simplified equation to calculate 

the affinity term:

f AGr

Affinity term = 1 -ex p _<jRT _

V J
Equation 5.5

Where AGr is the Gibbs free energy o f  reaction, R is the gas constant and T is the temperature (K). 

a is Temkins stoichiometric constant and is the ratio o f  the mineral stoichiometry and the stoichiometry o f  

the activated complex (Oelkers 2001). For basalt glass this value is 1, fo r forsterite this value is 2.

Equation 5.5 applies to multioxides whose chemical formula has been normalised to the 

formation of one rate-controlling precursor complex (O elk ers, 2001b). In the 

experiment F03 (at 25°C pHIO) forsterite has moved from a AGr of around -50 to - 

15kJ/mol, the increase in concentration causing the dissolution of forsterite to change 

from being saturation state independent to its saturation state causing a slowdown in the 

dissolution rate by ~5%. In F05 (at 25°C and pHl 1) the pH is greater and forsterite is 

more stable in solution, consequently the AGr is greater than in F03 (between -18 and - 

lOkJ/mol) and dissolution of forsterite slows by between 3 and 13%. At 75°C the 

equilibrium constant (Keq) for forsterite changes as expressed below in Equation 5.6:

K forsterite = 2  log + log aH 2S i04 = 28.29 at 25°C Equation 5.6

= 23.19 at 75°C

Because Kforsterite is lower at 75°C it means that a solution with a given activity of Mg2+ 

and a given pH will be closer to equilibrium at 75°C than at 25°C. However the 

increase in temperature also acts to lower pH which in turn lowers saturation states; as a

173



Chapter 5 Dissolution Experiments

result the dissolution rate of forsterite at 75°C slows down by between 5 and 22% which 

is comparable with the affect of saturation state at 25°C.
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Fig. 5.17 -  A graph showing the relationship between the dissolution rate of forsterite (log R) versus the 

saturation index of solution at different flow rates during experiment F03 (25°C, pHIO).

The use of PHREEQC to obtain saturation state data shows that secondary 

mineral formation is likely in many of the precipitation experiments, both at 25°C and 

75°C. Together with evidence from element concentrations and Mg:Si ratios this 

strongly implies that the reason for the slowdown in dissolution rate at low flow rates is 

that secondary minerals have formed and removed Si and Mg from solution. This can be 

illustrated by plotting the saturation index of a secondary mineral such as chrysotile 

versus R (Fig. 5.17). The results show that solutions with a higher SI with respect to 

chrysotile have slower dissolution rates, supporting the suggestion that secondary 

mineral formation is causing in an apparent change in dissolution rate. For this reason it 

is assumed that the dissolution rates at pH 10 and 11 obtained with flow rates of 

~0.2g/min are not accurate, despite being similar to the rates published by Pokrovsky & 

Schott (2000) (Fig. 5.18).
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Fig. 5.18 -  A comparison of forsterite dissolution rates obtained in this study with those obtained in 

similar experiments by Pokrovsky & Schott (2000). Also plotted are the results of experiments conducted 

in this study at high pH, with a high flow rate.

The dissolution rates gained at higher flow rates should, in theory, be more 

accurate as the solutions are further away from equilibrium. However, it is uncertain 

whether the systems had attained a steady state; the compositions of the experimental 

solutions at higher flow rates were not stoichiometric. The fact that the Mg:Si ratios 

were lower than 1.8 (Fig. 5.13) show that Si was still being preferentially lost, thus Si 

concentrations would give a dissolution rate that is greater than normal. Even so, 

solutions from experiment F03 (pH 10) were approaching stoichiometric Mg:Si ratios 

and the dissolution rate over the first 130 hours remained relatively constant (Fig. 5.6). 

While the calculated dissolution rate may be an overestimate it is likely to be more 

accurate than the rates calculated at the end of the experiment where Si has been 

removed from the system. In F05 (pHll) inlet rates of 3g/min were maintained for 

only 24 hours, thus steady state dissolution was almost certainly not attained. Over the 

24 hour period the dissolution rate was relatively stable and always faster than
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dissolution rates at pH 10. However it is unclear how much the dissolution rate may 

change as the system establishes stability over a period of 2 0 0  hours or more.

While these data suggests that the dissolution of forsterite at both pH 10 and 

pHl 1 is faster than literature rates the fact that the Mg: Si ratios were non-stoichiometric 

means that steady state, far from equilibrium dissolution was not attained and 

consequently these results cannot be considered to be reliable. Quantifying the 

dissolution rate of forsterite was not the primary purpose of this study and more 

experiments are needed in order to confirm the behaviour of forsterite at high pH. 

These experiments should run at pH 9-12 with as high a flow rate as possible and the 

system should be undisturbed for at least 2 0 0  hours in order to make sure that it is at a 

steady state. Such experiments would verify whether the dissolution rates obtained here 

at high flow rates are accurate and whether the dissolution rate of forsterite continues to 

decrease as pH increases from 9 to 12 as stated in Pokrovsky & Schott (2000) or 

whether there is an increase in dissolution rate at high pH as previously proposed by 

Blum and Lasaga (1988) and Wogelius and Walther (1991). The results from the high 

flow rate solutions provide support for the latter (Fig. 5.18).

5.4.2.4. Lithium isotope behaviour

During the precipitation experiments the Li isotope composition of the solutions 

became increasingly heavy. This behaviour contrasts with that of the dissolution 

experiments where the Li isotope compositions of the solutions remained relatively 

constant and similar to that of the dissolving forsterite (8 7Li ~ 2%o). The fact that the 

solutions are isotopically heavy suggests that 7Li is preferentially lost into solution, 

consistent with previous work on weathering in natural waters (H u h  et al., 2001; 

K isa k u r e k  et al., 2004; P istiner  and H e n d e r so n , 2003; Seyfried  et al., 1998). The
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enrichment of 7Li in solution is usually attributed to the preferential retention of 6Li 

during secondary mineral formation and/or by adsorption onto clays. The simplest 

explanation for the Li composition of the fluid phase becoming isotopically heavy is 

that the mineral preferentially loses 7Li into solution when it dissolves. However this 

hypothesis can be discounted for two reasons; a) the isotopic composition of the fluid in 

the dissolution experiments is similar to the composition of the dissolving mineral, and

b) the mineral phase at the end of the experiments has a 8 7Li composition that is 

indistinguishable from that of an unaltered sample.
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Fig. 5.19 - A graph showing the saturation indices of chrysotile vs the 57Li (%o) composition o f the 

solutions

14

The only difference between the dissolution and precipitation experiments was 

that the latter were set up to run at near to equilibrium conditions so that the 

precipitation of secondary minerals was encouraged. If the behaviour of Li is compared 

with mineral saturation for all four precipitation experiments (as in Fig. 5.19 for
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chrysotile), then this shows that as the mineral saturation increases the 8 7Li composition 

of the solution also increases. Analysis of the end-forsterite sample indicates that it is 

compositionally similar to or slightly heavier than the unaltered forsterite. Thus, in 

order to satisfy the mass balance there must be a solid present with a Li isotope 

composition of <2%o. That the molar ratios of Mg:Si have also decreased throughout 

the course of the precipitation experiments suggests that if a secondary mineral has 

formed it is chrysotile. This can only be unambiguously confirmed by analysis of the 

solid phase by SEM. However, initial analysis by SEM has been unable to show 

evidence for secondary mineral formation associated with the forsterite grains. The 

problem is that the mass of any secondary mineral that has precipitated is likely to be 

very low. The change in solution chemistry during F03 can be used to predict just how 

much chrysotile may have formed by using the change in dissolution rate (Fig. 5.6) to 

calculate just how much Si may have been removed from solution. In this case the 

amount of Si that has been removed is ~0.14mg which equates to ~0.7mg of chrysotile 

which is -0.007% of the total mass of forsterite in the reactor (lOg). Such a small mass 

would be difficult to identify, even by SEM.

5.4.2.5. Magnesium isotope behaviour

The Mg composition of the San Carlos forsterite is -0.26%o; in comparison the results 

from the precipitation experiments show that the solutions are initially isotopically light, 

and become isotopically heavy with time. The evidence presented in this discussion 

from solution stoichiometry and Li isotope data implies that secondary minerals have 

formed, although the identity of the secondary phase has proven to be elusive. The use 

of nitrogen gas to prevent CO2 dissolving into the solution should prevent the formation 

of carbonates. This leaves the formation of silicate minerals or metal oxides to be the

178



Chapter 5 Dissolution Experiments

most likely cause of the changes in solution composition with time. As the 

concentration of both Mg and Si decrease with time it seems likely that both are 

incorporated in the formation of a new mineral. The sense of fractionation observed 

here, where the light isotope of Mg is preferentially incorporated into the secondary 

phase is the opposite to that observed by Tipper et al. (2006) who consider that the 

heavy isotope of Mg is retained in soils and secondary minerals leaving the dissolved 

phase to be isotopically light. This interpretation is based on results from rivers in the 

Himalayas where the composition of the river water is ~l . l% o lighter than that of the 

source rocks. However, in a more recent study it was found that soils with an 

increasing clay content (dominantly allophane) possessed systematically lighter Mg 

isotope compositions, suggesting that, at least, some secondary minerals preferentially 

incorporate the light isotope of Mg (P ogge v o n  St r a n d m a n n  et al., 2008). 

Furthermore, in both this study of Icelandic rivers (Pogge  v o n  St r a n d m a n n  et al.,

2008) and another on Himalayan rivers (K isa k u r e k  et al., 2005), waters were found to 

possess Mg isotope compositions both lighter and heavier than the bed load or 

suspended load, suggesting that fractionation may occur in both senses. Work of Galy et 

al. (2 0 0 2 ) showed that during carbonate precipitation as a speleothem the drip water is 

isotopically heavy relative to the speleothem, whereas in another study of the Mg 

composition of coral and foraminifera also show that the light isotope is preferentially 

incorporated into their shells (Ch a n g  et al., 2004). Overall, these studies suggest that 

the Mg isotope system appears to behave in a less predictable manner than for example 

Li isotopes, where it is always the light isotope that is preferentially incorporated into 

secondary minerals irrespective of the type of mineral that is forming. Carbonate 

formation in these reactors is unlikely but not impossible; flow rates during the 

experiment are very low (down to 0 .2 ml/min) and the reacting solution travels through
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plastic tubing to enter the reactor. There may be time for some CO2 to dissolve into 

solution through the tubing, and the high pH (10-11) means that H2CO3 would 

dissociate to CO3 While this could account for the drop in Mg concentration by 

formation of MgCC>3 , it cannot explain the accompanying fall in Si concentration. It is 

far more likely for the secondary mineral forming being a Mg silicate, and if so these 

results suggest that secondary Mg silicate minerals incorporate preferentially the light 

isotope of Mg.
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Fig. 5.20 - A diagram showing the theoretical evolution of the magnesium isotopic composition o f the 

dissolved phase during the dissolution of a mineral grain. The fluid develops light Mg isotope ratios 

relative to the dissolving forsterite as it begins to dissolve (1), as inferred from results of the dissolution 

experiments. As the mineral continues to dissolve mass balance requires the solution to become 

isotopically heavier (2) and eventually as the entire mineral dissolves the composition of the fluid will 

match that of the dissolving mineral (3).

There is one other possible explanation for the behaviour of Mg isotopes 

observed in this study that is linked to the process of dissolution. During dissolution the 

isotope composition of the solution becomes lighter with time, but this cannot continue
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at conditions far from equilibrium. If the entire mineral was to dissolve then the 

solution has to have the same composition as the dissolving mineral (see Fig. 5.20) and 

so mass balance dictates that the mineral must at some point release isotopically heavy 

Mg. If it is a question of time then the precipitation experiments are on average three 

times longer than those carried out at far from equilibrium. It is possible that the 

progression to increasingly isotopically heavy fluid is a result of an initial loss of light 

Mg and the reestablishment of the system towards congruent loss of Mg. However a 

major difference between the experiments at far-from and near-to equilibrium are the 

varying dissolution rates; between pH 2-4 the dissolution rate of forsterite is around 2 

orders of magnitude faster than at pH 10 and 11 (P o k r o v sk y  and S chott , 2000). For 

this reason the total amount of forsterite dissolved at high pH should be much lower 

than that at low pH despite the experiments lasting for much longer. Taken together 

with evidence that secondary mineral formation has occurred (from solution chemistry 

and Li isotopes), and that Mg isotope fractionation is associated with secondary mineral 

formation (G a l y  et al., 2002; Tipper  et al., 2006b) it is most likely that this trend 

towards isotopically heavy Mg is caused by preferential uptake of light 24Mg into 

secondary phases.

5.5. Implications for natural systems

The results of the dissolution experiments have implications for the way we interpret 

how Li and Mg isotopes behave in the natural environment. In Chapters 3 and 4 these 

isotope systems were analysed in rivers from Greenland. In the laboratory the Li 

isotope composition of fluid at far from equilibrium is similar to the composition of the 

dissolving mineral; there is no fractionation associated with dissolution. On the other 

hand precipitation of secondary minerals causes preferential uptake of 6Li from solution.
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The Greenland rivers illustrate the control of secondary mineral formation on the Li 

composition of the dissolved load. The most dilute river with the lowest amount of 

secondary mineral formation (GR3) has the Li isotope composition that is closest to that 

of the bulk rock. The non-glacial rivers are more concentrated and have probably 

experienced the highest level of secondary mineral formation, hence their dissolved Li 

compositions are most fractionated from the bulk rock. Although the story is 

complicated by subglacial processes, it is still true that the primary control on Li isotope 

composition is secondary mineral formation.

The magnesium system is more complicated than that of lithium; magnesium 

fractionates differently during the formation of carbonates and silicates, and is affected 

by biology. If secondary mineral formation is the dominant control over the Mg system 

(as is the case for Li) then the precipitation experiments suggest that rivers with more 

secondary mineral formation should have higher 526Mg ratios, and rivers should have a 

826Mg composition that is close to or heavier than the bedrock. However this is not the 

case in the Greenland rivers. Instead all dissolved phases are isotopically light relative 

to the bedrock. This evidence suggests that a) secondary mineral formation is not the 

dominant process in the Greenland rivers or b) any secondary mineral formation is 

fractionating magnesium in the opposite sense to that observed in the laboratory.

The major control over the magnesium isotopes in Greenland is the chemical 

weathering intensity and the incongruent dissolution of trace phases such as carbonates 

(see Chapter 4). Thus the experimental work has little relevance to this natural system. 

In regions that are controlled by weathering process the experimental work may be 

more relevant. However, because magnesium behaves differently depending on the 

secondary mineral that is forming, characterisation of the secondary phase is essential.
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Without this information it is impossible to apply experimental results to natural studies 

concerning the behaviour of magnesium isotopes.

5.6. Conclusions

The results of these laboratory experiments have implications for the interpretation of Li 

and Mg isotope data in natural waters. The behaviour of Li isotopes is consistent with 

previous experimental work (P istiner  and He n d e r so n , 2003) and with predictions 

from the study of the different riverine phases; suspended sediment that is enriched in 

secondary minerals is always isotopically lighter than the bedload of a river (H u h  et al., 

2001; K isa k u r e k  et al., 2005; P ogge  VON St r a n d m a n n  et al., 2006). One question 

that had not been answered was whether individual mineral phases dissolve 

congruently. Experimental work involving the dissolution of whole rocks suggests that 

minerals do dissolve congruently with respect to Li (P istiner  and He n d e r so n , 2003), 

and the results from this study support this hypothesis.

While the results of Li analyses confirm established understanding the behaviour 

of the Mg isotope system is more complicated. Unlike Li, which fractionates from 

solution in the same sense for all secondary minerals, the response of Mg appears to be 

dependent on the mineral type (G a l y  et al., 2002; T ipper  et al., 2006a). An aim of this 

study was to precipitate Mg silicate minerals by dissolving forsterite at near to 

equilibrium conditions. Previous studies suggest that silicate formation should cause 

the heavy isotope of Mg to be incorporated into new minerals (T ipper  et al., 2006b), 

while carbonate incorporates the light isotope (G a l y  et al., 2002). In practise the 

results of this study show that the light isotope of Mg is preferentially lost during the 

dissolution of forsterite, and that during secondary mineral formation the light isotope is 

preferentially incorporated leaving the solution isotopically heavy. The most likely
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secondary phase to have formed is a Mg silicate mineral. If so then this suggests that 

different silicate minerals incorporate different compositions of Mg. The results 

highlight the present difficulties in interpreting variations in Mg isotopes in natural 

systems because, in addition to fractionation caused by primary mineral weathering and 

the formation of secondary phases, natural waters (in soils and rivers) will also be 

affected by removal and fractionation accompanying biomass activity, in soils and 

vegetation. More research into the behaviour of Mg isotopes during weathering 

processes in the laboratory and natural environments is needed to fully understand the 

way that this system behaves.
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Chapter 6
The dissolution of basalt glass and forsterite in 

seawater

6.1. Introduction

Chapter 1 describes the weathering of Ca-Mg silicates and the associated drawdown of 

CO2 that helps to control climate over geological timescales. While the weathering of 

Ca-silicates directly removes atmospheric CO2 via the formation of CaCC>3 in the 

oceans the link between weathering of Mg-silicates and CO2 is only indirect. In the 

modem oceans the formation of dolomite is unimportant; instead Mg in solution 

exchanges with Ca in mid ocean ridge basalts and in detrital sediments. This process is 

thought to be so efficient that it is thought by some that there is an indirect link between 

Mg-silicate dissolution and CO2 drawdown (G isl a so n  et al., 2006).

Basalts are among the most easily weathered crystalline silicate rocks (D esse r t  

et al., 2003), they are mostly comprised of plagioclase and pyroxene but may also 

contain a significant proportion of the Mg-rich olivine, forsterite, which is one of the 

most readily weathered rock forming minerals (B r a n t l e y , 2003). The ease of 

weathering of mafic minerals and glass means that chemical erosion rates are high in 

basaltic regions. For example rates of erosion in SW Iceland, Reunion and the Deccan 

Traps range between 20 and 170t/km3/yr (D esser t  et al., 2001; G isl a so n  et al., 1996; 

L o u v a t  and A llegre , 1997). In comparison, chemical erosion rates in mixed silicate 

terrains such as the Congo (G a illa r d et  et al., 1995), Amazon (G a il l a r d e t  et al., 

1997) and Ganges (S um m erfield  and H u l t o n , 1994) are generally lower (0.6- 

42t/km /yr). Rates of CO2 consumption are also high in basaltic regions ranging from
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0.3xl06mol/km2/yr in the Massif Central (N egrel  and D e sc h a m ps , 1996) to 

6 .4 x1 06mol/km2/yr in Java (D esser t  et al., 2003). Such is the susceptibility of basalt to 

weathering that the emplacement of large igneous provinces like Columbia River may 

have caused an increase in the global level of CO2 drawdown of up to 2 % over a period 

of ~3 million years (Ta y l o r  and La s a g a , 1999).

It is not just on the continents that the weathering of basalt has important 

consequences for long term climate change. Low temperature alteration of calcium 

bearing silicates in basalt, and of basalt glass itself, in seawater are estimated to release 

as much calcium to the oceans as continental weathering (B r a d y  and G isl a so n , 1997; 

St a u d ig el  et al., 1989). Much of this alteration takes place at mid ocean ridges and on 

the ocean floor; however rivers also transport around 2 0 , 0 0 0  million tonnes of sediment 

from the continents to the oceans per year (H a y , 1998; M illim an  and Sy v it sk i, 1992) 

which may experience continued weathering in the oceans. Not all of this material will 

simply be buried, as deltas and estuaries can act as fluidised bed reactors that are driven 

by riverine input, with tides extensively reworking this sediment over a timescale of 

hundreds to thousands of years (A ller , 1998; A ller  and B la ir , 2004). If such 

reworking is common then the continued weathering of continentally-derived sediment 

in the oceans is likely to affect the chemistry of seawater. It has been suggested that 

high relief volcanic and tectonically active islands provide -45% of this flux of river 

suspended sediment, much of which consists of basaltic glass (G isl a so n  et al., 2006; 

M illim an  and Sy v it sk i, 1992). For Icelandic rivers, Gislason et al. (2006) estimated 

just how much calcium could be delivered to the oceans via suspended material (mostly 

basalt glass) versus the volume delivered in the dissolved load. This study showed that 

a combination of ion exchange on clays (Ca for Na), diffusive flux from ocean 

sediments, and dissolution of suspended Ca-bearing silicates could supply enough Ca to
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match the dissolved Ca flux. Furthermore, because the flux of suspended Ca is more 

dependent on changes in river runoff (and hence climate) than dissolved Ca then the 

suspended load may have a stronger link to CO2 drawdown than the dissolved load 

(G isl a so n  et al., 2 006). Clearly the interaction of detrital sediment with seawater could 

affect the chemistry of the oceans and the behaviour of rock types such as basaltic glass 

that are susceptible to dissolution in seawater is particularly important to characterise.

Natural glasses comprise -12% of the average exposed continental crust 

(N esbitt  and Y o u n g , 1984) and over one billion cubic metres of volcanic glass is 

produced each year, mostly as basalt glass along the mid ocean ridge system (W olff- 

B oenisch  et al., 2004). Natural glasses are less stable than crystalline igneous minerals 

at the Earth’s surface partly because the glass retains more of the energy from the parent 

magma (G isl a so n  and A r n o r sso n , 1993; G isl a so n  and Eu g ster , 1987a; W olff- 

B oenisch  et al., 2006; W olff-B o enisch  et al., 2004). Basalt glass dissolves over an 

order of magnitude faster than crystalline basalt at pH 9-10 (G isl a so n  and Eu g ster , 

1987b) and volcanic glasses of rhyolitic to basaltic compositions dissolve a factor of 1-2 

faster than crystalline rocks of the same composition at 25°C and pH4 (W olff- 

B oenisch  et al., 2004). Basalt glass also enhances the flux of mobile elements by 2-5 

times where present in river catchments in Iceland (S t e f a n sso n  and G isl a so n , 2001). 

The high reactivity of basalt glass, both on the continents and potentially in the deep 

ocean (at mid-ocean ridges) suggests that its dissolution may have a significant affect on 

seawater chemistry, and may also have some impact on the drawdown of atmospheric 

CO2 over long time periods. Similarly on the scale of an individual mineral the high 

reactivity of forsterite olivine, coupled with its commonly high abundance in basalts and 

ultramafic rocks, suggests that the dissolution of this mineral may exert a 

disproportionate influence on seawater, which it is important to quantify.
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There are many experimental studies involving the dissolution of basalt glass 

and forsterite at far from equilibrium conditions (C rovisier  et al., 1987; G isla so n  and 

Oelk er s , 2003; Oelk er s , 2001; Oelkers  and G isl a so n , 2001; P o k r o v sk y  and 

S chott , 2000; Techer  et al., 2001; W ogelius and W alth er , 1991; W ogelius and 

W a lth er , 1992; W olff-B o enisch  et al., 2006; W olff-B oenisch  et al., 2004) so the 

rate and mechanism of dissolution of these phases have been deduced for a range of pH, 

temperature and solution chemistries. Experimental studies involving the low 

temperature dissolution of basalt glass or forsterite in seawater are less common. 

Crovisier et al. (1987) used both natural and artificial basalt glass to estimate its 

dissolution mechanism and rate of dissolution in seawater. However, because this study 

focussed on the altered layer (palagonite) that develops on the glass they were 

performed on centimetre sized pieces of glass, rather than the powdered samples that are 

more usually used, and this difference in the available surface area makes direct 

comparison of dissolution rate difficult. Brady & Gislason (1996) undertook dissolution 

experiments using unaltered pillow basalt in artificial seawater at low temperature 

(between 25 and 50°C). They obtained a dissolution rate for such basalt of 4.47x10‘ 15 

moles/cm2/s at 25°C. In comparison the dissolution of basalt glass in pH8  freshwater 

solutions is ~7.4xl 0‘ 15 mol/cm2/s (G isl a so n  and Oelk ers , 2003). Studies of olivine 

dissolution in seawater are rarer still and confined to dissolution at higher temperatures 

(B erger  et al., 1988) representative of hydrothermal conditions. Therefore the 

principal aim of this study is to assess the dissolution rate of basalt glass and forsterite 

in seawater with particular emphasis on comparing the results here with those obtained 

for freshwater solutions.

While the low temperature interaction of basalt glass with seawater has been 

poorly studied, even less is known about how isotope tracers of continental weathering
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such as the magnesium and lithium isotope systems might behave. These are both 

stable isotope systems that have been shown to fractionate by mass during weathering 

processes (H u h  et al., 1998; T ipper et al., 2006a). In the case of magnesium the 

seawater composition (8 26Mg = -0.82%o) is largely controlled by continental input with 

subsequent removal of Mg by carbonate precipitation and exchange with oceanic basalts 

and detrital sediments. The global average isotope composition of the dissolved flux 

carried by rivers is -1.09%o (T ipper et al., 2006b) and rivers are thought to be the most 

important source of magnesium to the oceans. The offset between seawater and riverine 

Mg isotope compositions must mean that either the oceans are not at a steady state with 

respect to Mg or that fractionation is occurring during removal of Mg from seawater. 

The lithium isotope composition of seawater (8 7Li = 31%o) is maintained by inputs of 

hydrothermal fluids at mid ocean ridges (8 7Li = 6.7%o) and dissolved lithium from 

rivers (8 7Li = 23%o) (H a th o r n e  and Jam es, 2006). Seawater is isotopically heavier 

than its sources because secondary mineral formation preferentially removes 6Li from 

solution. Because materials like basalt and basaltic glass are so common in the oceans 

(on the seafloor and as products of continental weathering), and are relatively reactive, 

their interaction with seawater is likely to have a significant and measurable effect on 

the behaviour of isotope systems like Li and Mg. This work should help to shed some 

light on how the processes of dissolution, ion exchange and secondary mineral 

formation can affect the Li and Mg isotope composition of seawater.

6.2. Method
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The seawater experiments were performed on basaltic glass and forsterite, the basalt 

glass used was identical to that used by Gislason & Oelkers (2003) while the forsterite 

was similar to that used by Pokrovsky & Schott (2000) (that is, the same as that used in 

Chapter 5). A detailed description of the composition and preparation of both mineral 

phases are given in Section 2.6.1, and the experimental technique is explained in 

Section 2.6.3. The seawater experiments were carried out using one litre polypropylene 

batch reactors, at temperatures between 4 and 25°C. The seawater was taken from the 

North Atlantic (S tefa n sd o ttir  and G isl a so n , 2005) and from the Southern Ocean 

(Jones  and G isl a so n , 2008). All seawater was filtered and then irradiated using U V  

radiation prior to experimentation. Basalt glass and forsterite sample size varied from 

between 1 0  and 30g in each reactor and temperature was regularly monitored, with 

fluctuations of ± 0.2°C. Samples (of ~40ml) were taken by pumping solution out of the 

reactors, each sample was filtered and subsequently pH was measured. At the end of 

the experiments a sample was taken to measure alkalinity and the glass and minerals 

were drained and collected.

Element concentrations in solution were determined by ICP-AES at the Science 

Institute in Reykjavik and by ICP-MS at the Open University (see Section 2.5.1.2). The 

high concentration of dissolved solids (-3.5% TDS) in seawater means that the sample 

matrix is very different to that of freshwater samples so a different set of standards was 

used. For the ICP-AES analyses in Reykjavik a seawater standard and a groundwater 

standard (Selsund 03) were used, whereas for the ICP-MS analyses at the Open 

University artificial seawater was prepared using pure salts partly following the method 

by Kester et al. (1978). The major constituents of this standard were NaCl, KC1 and 

Na2 S0 4 , other elements were added to this in the form of ICP standard solutions 

(lOOOppm). The final standard TDS from the dissolved salts was -2.9%.
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Lithium and magnesium isotope ratios were determined by MC-ICP-MS and 

cation chromatography was used to purify the solutions, as described in Sections 2.4.2 

and 2.4.3, respectively. Details of isotope analytical procedures, and the internal and 

external precision of the isotope measurements, are given in Section 2.5.2.

6.3. Results

6.3.1. Major elements

Experimental parameters and results of pH measurements are given in Appendix CIO. 

Results of major element analyses and dissolution rates are given in Appendix C ll ,  and 

changes in pH and Si concentration are plotted in Figs. 6.1 and 6.3. During all of the 

experiments the solution pH initially increased by between 0.1 (FOSW-1) and 0.5 pH 

units (BGSW-2). The pH then dropped from 7.9 to 7.69 over the first 40 days of the 

experiment and then rose steadily, reaching 8.18 at the end of the experiment at 270 

days. This is illustrated in Figure 6.1 for experiment BG-SW1, but the same pattern is 

observed in all of the seawater experiments.

191



Chapter 6 The dissolution o f basalt glass andforsterite in seawater

X
a .

1000 2000 4000 5000 6000 7000

Time (hours)
Fig. 6.1 - Change in solution pH with time during the dissolution of basalt glass in seawater (BGSW-1)
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Fig. 6.2 - Change in the dissolved silicon concentration of the solution with time during the dissolution of 

basaltic glass in seawater (BGSW-1)

The initial alkalinity of the seawater was 2.19 meq/1 for Atlantic seawater and 

2.01 meq/1 for Southern Ocean seawater. At the end of the experiments, alkalinities
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ranged from 2.08 to 2.33 meq/1; the largest increase in alkalinity was measured in 

experiment BG-SW2 (0.25 meq/1).

Major element concentrations (Na, Ca, Mg and K) remained relatively constant 

throughout each experiment. On the other hand, the concentration of silicon in seawater 

is low (~0.5ppm) so any silicon released during basalt glass dissolution will make a 

significant difference to the overall concentration. Therefore, changes in silicon 

concentration have been used to estimate the dissolution rate of the glass.
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Fig. 6.3 - Change in the dissolved silicon concentration of the solution with time during the dissolution of 

forsterite in seawater (FOSW-1)

Results show that Si concentration increases with time (see experiment BG- 

SW1, Fig. 6.2). The increase in silicon during the dissolution of basalt glass is not 

linear. Dissolved silicon concentrations rise rapidly at the beginning of each 

experiment, slow after -500 hours and reach a plateau at -4000 hours. The dissolution 

of forsterite also begins with rapid release of silicon during the first 240 hours, but the 

increase in concentration of dissolved silicon becomes linear from that point on until the 

end of the experiment. Experiment BG-SW4 (using 30g of basalt glass) was the
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experiment that attained a plateau in the rate of silicon release most rapidly, with a 

concentration of 4.4ppm reached after 700 hours. Experiment BG-SW5 (at 4°C) was 

run for the shortest length of time but over the 3000 hours it was running it reached a 

maximum Si concentration of 2.2 ppm. In comparison experiments at room 

temperature had Si concentrations of 3.4ppm (BG-SW1) and 3.5ppm (BG-SW2) after 

3000 hours. The dissolution rate of forsterite is faster than that of basalt glass in the 

same way as seen in the freshwater experiments (Chapter 5) and illustrated by a 

dissolved silica concentration in FO-SW1 at 3000 hours of 4.48ppm (Fig. 6.3).

6.3.2. Lithium and lithium isotopes

The experimental solutions were analysed for both Li and Mg isotopes, the results of 

which are tabulated in Appendices C l2.

Lithium concentrations remained constant throughout the experiments, staying 

at around 0.165ppm which is consistent with literature values of ~0.18ppm (C h a n  and 

Ed m o n d , 1988).

Three experiments were analysed for Li isotopes; BGSW1, BGSW4 and 

FOSW1. These results show that in each experiment the Li isotope composition does 

not vary significantly from that of seawater (5?Li of ~31%o). The external 

reproducibility of the Li isotope measurements (2a) is 0.84%o; the only experiment 

where the solution composition is statistically different from that of seawater is in 

BGSW1. Here the 57Li value remains constant (at around 31%o) up until BGSW1-K 

where there is a slight increase of ~0.5%o. After 4800 hours (BGSW1-M) the 

composition had increased to 32.4%o (Fig. 6.4.).
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During the measurement of solutions from FOSW1 the Nu-Plasma yielded a 

87Li value of 30.6%o for seawater. Samples FOSW1-A and FOSW1-I have similar S7Li 

values, while the 87Li value of FOSW1-M was slightly heavier at 31.1 %o.
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Fig. 6.4 - Change in the isotopic composition o f  dissolved lithium during experiment BGSW -1. The 

shaded zone is the range o f  IAPSO seawater lithium compositions measured during this part o f  the study.

6.3.3. Magnesium and magnesium isotopes

Magnesium concentrations are also constant throughout the experiments with the 

solutions having average Mg concentrations of 1280ppm ±25 (la).

The results of Mg isotope analyses also show that there is little variation from 

the seawater value. The Mg isotopes were measured in two stages; initially three 

experimental samples were analysed (BGSW1-A, D and G) and each sample was 

measured between 4 and 6 times so that an average isotopic composition could be 

calculated. The average composition of these samples was then compared to the 

average of seven IAPSO seawater standard measurements. Literature values for 

seawater are 826Mg of -0.82%o (T ip p e r  et al., 2006b), the average composition of 

IAPSO seawater (n=7) in this initial study was -0.88 ± 0.04%o. In comparison the
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experimental samples are on average within 0.06%o of the seawater standard. The 

external reproducibility (2 a) during magnesium isotope analyses is 0 . 1  %o (calculated 

from 20 measurements of CAM-1). Therefore the experimental samples have 526Mg 

compositions that are within error of seawater.

All other samples were run at a later date; at this time the average composition 

of seawater was -l%o, and the compositions of the experimental solutions were again 

within error of this value.

6.4. Discussion

6.4.1. p H  and alkalinity

Changes in pH in natural waters reflect either proton consumption during the 

weathering of silicate rocks or proton production during the dissolution of CO2 into 

water, the formation of secondary -OH bearing minerals and biomass activity. 

Seawater pH is controlled by two buffering systems; on relatively short timescales it is 

primarily buffered by the carbonic acid system, while on longer timescales pH is 

regulated by ion exchange reactions between seawater and aluminium silicates 

(M a r tin , 1970; R iley  and Ch ester , 1971; S illen , 1967). As a result, the pH of 

seawater is relatively stable and rarely falls outside the range 7.8 -8 .2 except in restricted 

basins. However, in an experimental system holding only one litre of seawater, the 

buffering capacity is much more limited. The bicarbonate ion concentration in seawater 

is around 2.5><10'3M; if just 3xl0‘3moles of HC1 is added to one litre of seawater it is 

enough to lower the pH to < 6  (R iley  and Ch ester , 1971). In the present study the pH 

of the experimental solution rose from around 7.9 in the North Atlantic seawater and 7.7 

in the Southern Ocean seawater to between pH 8  and pH 8.4. The rise in pH is due to
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the dissolution of the reacting mineral/glass, a process which involves the consumption 

of protons (G isl a so n  and A r n o r sso n , 1993; G isl a so n  and Eu g ster , 1987a; 

G isl a so n  and Oelk er s , 2003). Nevertheless, the rise in pH is not continuous; there is 

an initial rise in pH over the first week, which is probably due to the removal of 

partially attached silica tetrahedra from the surface of the basalt glass or forsterite. 

These silica tetrahedra are initially abundant on the edges and sharp tips of the crystals 

(G isla so n  and Oel k er s , 2003; Oelkers  and G isl a so n , 2001; W olff-B o enisc h  et 

al., 2004). After this rise there is a general decrease in pH possibly due to buffering by 

the carbonic acid system and/or precipitation of secondary minerals. Over time 

however the pH generally rises as the minerals continue to dissolve and the surface area 

of the minerals increases (because of an increase in surface roughness) as shown during 

extended basalt glass dissolution experiments (G isl a so n  and Oelk er s , 2003). 

Alkalinity should, in theory, also increase with time; one of the main sources of 

alkalinity is its production during the dissolution of silicate minerals, although it can 

also be consumed during the precipitation of secondary minerals. While two of the 

experiments show an increase in alkalinity (BGSW1 and BGSW2), this increase is 

small (up to 0.16mmol/l) and in the other experiments the alkalinity decreased by 

similar amounts. Taking the precision of the analyses into account, it thus appears that 

seawater alkalinity has remained relatively constant over the course of the 8  month 

experiments.

6.4.2. Major elements

The major cations Mg2+, K+ and Ca2+ show little variation in concentration over time, 

remaining close to the average for North Atlantic seawater used in these experiments 

(S tefan sdo ttir  and G isl a so n , 2005). In the freshwater experiments the solution
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becomes enriched in the major cations with time. Data from Chapter 5 shows that 

during the dissolution of basalt glass the concentration of magnesium in solution can 

increase by over 5ppm. While the amount of magnesium that will enter solution is 

likely to be even more in seawater experiments (because they are run for a longer time 

and the system is closed) even if 50 mg of magnesium was to dissolve this would only 

constitute -1%  of the total Mg concentration in seawater. As a consequence any change 

in concentration linked to mineral dissolution is likely to be within the error of the 

analysis by ICP-MS. This problem does not affect the measurement of Si; seawater has 

a relatively low Si concentration (~0.5 ppm) hence any Si that is added to the system 

can be observed. The Si concentration initially rises rapidly (Fig. 6.1) due to the initial 

dissolution of crystal edges and partially attached silica tetrahedra (O elkers and 

G isl a so n , 2001). However the rate of release of Si then slows and the resulting Si 

concentrations do not exceed 4.6ppm in the basalt glass experiments and 6.4ppm in the 

forsterite experiments. This apparent slow down in the release rate of Si could be 

caused by the system reaching steady state with respect to the dissolving material or 

could be caused by Si being taken out of solution by secondary mineral formation. This 

will be discussed further in the following sections.

6.4.3. Dissolution rate

These experiments were performed in a closed system so that estimating the dissolution 

rate is difficult. This is because as the experiment (and time) progresses, more of the 

mineral dissolves and with successive samples being taken the remaining volume of 

solution will decrease. As a consequence the solution becomes more concentrated and 

the saturation state of the solution will change, increasing the potential for secondary 

mineral formation. These high concentrations also mean that dissolution of the primary
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mineral may be inhibited by an increasing saturation state, and the precipitation of 

secondary phases. In either case the dissolution rate is no longer representative of the 

far from equilibrium dissolution rate, and is likely to be significantly slower than that 

rate.

The dissolution rate is calculated using the following equation:

Si ,
R = 7 ———r Equation 6.1

(SAxt)  *

Where R = dissolution rate (mol/cm2/s)

Si(oUt) =  the total silicon in solution (mol)

SA = the BET surface area o f  basalt glass or forsterite (cm2)  

t  =  time (s)

The silicon out value must take into account the concentration of silicon and volume of 

solution in the reactor, but also has to account for the concentration of silicon and 

volume of solution that is removed. If not the final dissolution rate will be an 

underestimate.

Dissolution rates obtained using this equation are presented in Appendix C l2. 

The dissolution rate of forsterite in seawater is faster than that of basalt glass, in 

agreement with the findings in Chapter 5 and dissolution rates obtained for the same 

two phases in the literature (G isla so n  and Oel k er s , 2003; P o k r o v sk y  and Sch o tt ,

2000). There are a range of dissolution rates, with log r for basalt glass between -12.7 

and -16 and rates for forsterite between -12.1 and -15.1. Over time, the dissolution rate 

changes from initially high values before decreasing by 2  orders of magnitude over the 

first 1 0 0 0  hours of the experiment and continuing to decrease by another half order of 

magnitude over the next 5000 hours (Fig. 6.5). This suggests that the system is
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approaching a steady state and that the initial rapid dissolution rates are too fast to be 

representative.

1E-12
Dissolution rate = 2.18*13 * time*'7,71 ^  

R2 = 0.997CM

£2 1E-13-

■§ 1E-14

? 3
3  1E-15 -

1E-16
0 1000 2000 3000 4000 5000 6000 7000

Time (hours)
Fig. 6.5 - The dissolution rate of basalt glass during experiment BGSW-1

Dissolution rates often slow down in batch reactors for two reasons; firstly, there 

will be an initial rapid dissolution of ultrafine particles adsorbed on the larger grains and 

over time the grains become more rounded (this also applies to through flow reactors). 

Secondly, as the concentration in the solution increases the saturation state of the 

dissolving mineral changes so that it could inhibit dissolution, as discussed previously 

in Section 5.4.2.3 .

Although equation 6.1 can be used to show how the rate of dissolution changes 

with time it cannot be used to generate a dissolution rate that is representative of the 

mineral for the entire experiment. However, dissolution rate can be estimated by 

plotting the total silicon lost from the solution versus time (Fig. 6 .6 ).
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Fig. 6.6 - A graph showing the change in the total number o f  moles o f  dissolved silicon with time during 

experiment BGSW-1. Dissolution rates were estimated for two time periods. The first, Zone A, consists 

o f  5 sample points at the end o f  the experiment where it is inferred a steady state has been reached. The 

second, Zone B, consists o f  5 samples recovered in the early stages o f  the experiment. Dissolution rates 

estimated for zone A are described in 6.4.3. and those estimated for zone B are described in 6.4.5.
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Fig. 6.7 - A graph using the last five sample points from BGSW-1 (see Figure 6.6, zone A) to calculate 

the dissolution rate based on change in silicon concentration
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■log R = 16.3 (mol/cm2/s)

BGSW-1

♦ ♦

♦

♦

♦

♦
♦

♦
♦

♦
B-see Fig. 6.11

►
►
►

A-see Fig. 6.7
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This is different from the silicon concentration of the solution because it is 

cumulative and takes into account the mass of silicon removed by sampling. As Fig. 

6 . 6  shows the rate of silicon loss is initially rapid for the first 1 0  days and then the rate 

of release decreases until reaching a steady state after 59 days. By drawing a straight 

line through this steady state region (Zone A, Fig. 6 .6 ) the dissolution rate can be 

estimated from the rate at which the silicon concentration increases (Fig. 6.7). This 

gives a dissolution rate (log R) of -16.3 mol/cm2/s, in comparison the rate calculated by 

Gislason et al. (2003) in a freshwater solution at pH 8  and 25°C is -14.55 mol/cm2/s, 

over one order of magnitude higher. The same calculation gives similar results for the 

dissolution of forsterite, the last five points show the system to be at steady state (Zone 

A, Fig. 6 .8 .), a straight line drawn through these points yields a dissolution rate (log R) 

of -15.4 (Fig. 6.9) in comparison to the rate calculated by Pokrovsky & Schott (2000) at 

pH8  and 25°C which is an order of magnitude higher at -14.4. These results show that 

by the end of the experiment the dissolution rates of both basalt glass and forsterite are 

slower than those measured in freshwater at the same temperature and similar pH. 

There are two possible reasons for this: a) high concentrations in the batch reactors are 

inhibiting the dissolution process, or causing formation of secondary minerals that alter 

the chemistry of the solution, or b) the seawater is inhibiting the dissolution process.
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Fig. 6.8 - A graph showing the change in total number o f  moles o f  dissolved silicon with time during 

FOSW-1. Dissolution rates were estimated for two time periods. The first, Zone A, consists o f  5 sample 

points at the end o f  the experiment where it is inferred a steady state has been reached. The second, Zone 

B, consists o f  5 samples recovered during the early stages o f  the experiment. Dissolution rates estimated 

for zone A are described in 6.4.3 and those estimated for zone B are described in 6.4.6.
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Fig. 6.9 - A graph using the last five sample points from FOSW-1 (see Figure 6.8, zone A) to calculate 

the dissolution rate based on change in silicon concentration

FOSW-1
y = 3.11E-12x + 9.07E-05 ^ -----^

R2 = 9.94E-01 ^

Dissolution rate R = Si(out)/TxSA
Si(out)/T = 3.1E-12
3.1E-12-SA  = R
3.1E-12 -  8000 = 3.88E-16 (mol/cm2/s)
■log R = 15.4 {molicm2/s)

FOSW-1

♦

♦
♦

♦ A - see  Fig. 6.9
♦

♦
♦

*  B - s e e  Fig. 6.12
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The first hypothesis is that the closed system causes build up of dissolved solids 

which in turn inhibits dissolution or promotes secondary mineral formation as described 

earlier in 6.4.3. Also by changing the saturation state of the dissolving mineral (i.e. the 

solution becomes more and more saturated) the dissolution rate can become saturation 

state dependent. The inhibiting effect of saturation state can be evaluated by calculating 

the affinity term (see Section 5.4.2.3). A dissolution reaction will become dependent on 

the saturation state of the reactants at AGr values of between 0 and -lOkJ/mol 

(Fla a th en  and G isl a so n , 2007). In this case it will cause a slowdown in the forward 

reaction. In the current experiments modelling of the seawater saturation states 

(PHREEQC) and calculation of AGr gives AGr values that range from -18.5 to - 

10.7kJ/mol. Because the AGr values are lower than -lOkJ/mol they suggest that the 

impact of saturation state on dissolution rate is negligible. However, although 

saturation state itself does not appear to be inhibiting the dissolution of mineral phases 

this does not imply that secondary minerals have not formed.

6.4.4. Saturation state modelling

The saturation states of the solutions can be modelled by geochemical modelling 

software such as PHREEQC; further details of the modelling procedure are presented in 

5.4.1.3 and results of the modelling are given in Appendices Cl 3 and Cl 4.

Saturation state modelling suggests that the fluid phase becomes supersaturated 

with respect to many secondary minerals during the seawater experiments. This is 

particularly true of clay minerals such as pyrophyllite, K-mica, illite and kaolinite (Fig. 

6.10) which all become highly saturated. For example, over the course of the 

experiment, the saturation index of K-Mica changes from 2 to 8 , while kaolinite is 

initially undersaturated (-1.1) but becomes oversaturated (reaching 3.2) over time.
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Carbonate minerals such as calcite and dolomite are also oversaturated in solution 

although their saturation states do not change over the course of the experiments (as 

alkalinity remains relatively constant). High saturation states in seawater are 

unsurprising; seawater has a high solute content. The formation of silicate minerals is 

controlled by the relatively low concentration of aluminium and silicon in seawater. 

Thus, initially the saturation state of secondary minerals is low or undersaturated but as 

silicon enters the solution through the dissolution of basalt glass or forsterite the 

secondary mineral saturation state will rise. By the end of the experiments the dissolved 

silicon concentrations are at their highest level and saturation state modelling suggests 

that by this time the likelihood of clay formation is high. The formation of secondary 

minerals would then account for the “apparent” slowing of the dissolution rate by 

removing silicon from the solution.

0 50

Oversaturated

Chiysotile
-o-G ibbsite

A

x-Kaolinite 
©—TalcUndersaturated

200 250100 150

Time (hours)
Fig. 6.10 - The change in saturation state with time for a selection of secondary minerals during 

experiment BGSW-1.

205



Chapter 6 The dissolution o f  basalt glass and forsterite in seawater

6.4.5. Inhibition by seawater

The second hypothesis is that seawater itself could cause a slowdown in the rate of 

dissolution; either because the high element concentrations in solution inhibit the 

hydrolysis reactions that cause the breakdown of basalt glass and forsterite, or because 

the high concentrations mean that the dissolution is always inhibited by the high 

saturation states. Experiments have been performed upon basalt glass using high 

concentrations of dissolved species such as Si and Al. The dissolution rate of basalt 

glass has the potential to be dependent on the concentration of these two elements 

because dissolution involves the removal of Al, then the removal of Si tetrahedra. 

Studies have shown that Si concentration has no effect on the dissolution rate, while Al 

can inhibit dissolution at low and high pH (O elkers and G isl a so n , 2001). The 

aluminium concentration in seawater is ~8ppb, which is too low to have any impact on 

the dissolution rate of basalt glass. For this reason there does not appear to be any 

reason why seawater should inhibit the dissolution rate of basalt glass. The dissolution 

of forsterite involves the formation of Si-rich or Mg-rich surface layers depending on 

the pH of the solution (Po k r o v sk y  and S chott , 2000). At low pH forsterite initially 

preferentially loses Mg into solution so high concentrations of Mg in solution could 

potentially affect the rate of dissolution. However, a recent study of forsterite 

dissolution rates as a function of aqueous Si and Mg concentrations shows that the rate 

of dissolution is independent of solution composition (O elk er s , 2001). In summary, 

there is no evidence to support the notion that seawater could inhibit basalt glass or 

forsterite dissolution rates. Instead there is good evidence from saturation state 

modelling to suggest that secondary minerals have formed within the reactors and it is 

the removal of silicon from seawater during this secondary mineral formation, not the 

seawater itself which is causing the low dissolution rates.
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6.4.6. Far from, equilibrium dissolution rates

If secondary mineral formation has affected the dissolution rates as indicated by the 

saturation state modelling then one way to overcome this is by calculating the rate 

(using equation 6.1) based upon the early stages of the experiment where the saturation 

states will be lower and the system should be further from equilibrium. The problem 

with doing this is that the system may not have attained a steady state and consequently 

the calculated dissolution rate may be incorrect. The experiments of Gislason & 

Oelkers (2003) involving basalt glass at pH 7, took 16 hours for the dissolution to reach 

a steady state. Whereas, experiments involving the dissolution of forsterite show that 

steady state can take between 6 and 100 hours (Po k r o v sk y  and Schott , 2000), the 

system taking far longer to reach a steady state at high pH. The pH of seawater is ~8 so 

the dissolution of basalt glass will be faster than at pH 7 (G isl a so n  and Oelk er s , 

2003) and as a consequence steady state will take less time to attain. Thus for 

dissolution rate estimates from these experiments it is reasonable to exclude the first 

two samples of BGSW1 and FOSW1 and use the solutions that were sampled between 

24 and 240 hours into the experiment. Using these samples (Zone B, Fig. 6.6 and 6.8) a 

modified dissolution rate can be estimated for both materials. This new estimate for the 

dissolution rate of basalt glass is (log R) -14.66 mol/cm2/s (Fig. 6.11), which is very 

close to the rate estimated by Gislason & Oelkers (2003) of -14.55 mol/cm2/s. The new 

estimate for the dissolution rate of forsterite is (log R) -14.3 mol/cm2/s (Fig. 6.12), 

which is also close to that determined by Pokrovsky & Schott (2000) with dissolution 

rates of -14.4 mol/cm2/s.
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Fig. 6.11 - A graph using the first five sample points from BGSW-1 (see Figure 6.6, zone B) to calculate 

the dissolution rate based on change in silicon concentration
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Dissolution rate R = Si(out)/T*SA
♦ Si{out)/T = 5E-11
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Fig. 6.12 - A graph using the first five sample points from FOSW-1 (see Figure 6.8, zone B) to calculate 

the dissolution rate based on change in silicon concentration

These results suggest that in the early stages of the experiments the system was at far 

from equilibrium conditions and that the dissolution rates of both basalt glass and

FOSW-1
y = 4E-11x + 4E-05 ^  

R2 = 0.9489

♦

Dissolution rate R = Si(out)/TxSA 
Si(out)/T = 4E-11 
4E-11+SA = R
4E-11 -s- 8000 = 2.18E-15 (mol/cm2/s) 
•log R = 14.30 (mol/cm3/s)
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forsterite are close to the rates obtained from similar experiments with non seawater 

solutions. Consequently, these results support the hypothesis that seawater itself does 

not inhibit the dissolution rate of either basalt glass or forsterite and that the slow 

dissolution rates at the end of each experiment were caused by either high saturation 

indices of the dissolving mineral or secondary mineral formation.

Despite the similarity between these results and literature values it should be 

noted that the dissolution rates are estimates, and that they carry a significant 

uncertainty, because the system may not have reached a steady state even after 24 hours. 

In an ideal world, an open system experiment should be set up; this would enable far 

from equilibrium conditions to be maintained over a long period of time so that the 

systems can reach steady state without the occurrence of secondary mineral formation.

6.4.7. Isotopic changes

The results of the isotope analyses (see 6.3.2 and 6.3.3) show that there has been 

very little change in the Mg and Li isotope composition of the solution. The reasons for 

this are the relatively high concentrations of both Li and Mg in seawater. There are two 

ways that the isotopic composition of the fluid phase could alter with time. Firstly, Li 

or Mg that is isotopically different from the fluid phase could be added to solution

n
during dissolution. Seawater has a 8 Li value of 31%o, in comparison basalt glass and 

forsterite have much lighter Li isotope compositions (87Li values of ~5 and 2%o 

respectively). A significant input of Li from the dissolution of these minerals would 

lead to the solution becoming isotopically lighter, assuming that there is no fractionation 

of Li during mineral dissolution (as indicated in Chapter 5). Similarly the 526Mg values 

of basalt glass and forsterite are -0.3 and -0.26%o respectively (Chapter 5) so any input 

of Mg should drive the isotopic composition of the solution to values higher than -
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0.82%o. While this mechanism has the potential to drive isotopic change, a high 

concentration of Mg or Li would need to be added to the system to cause a detectable 

change in the isotopic composition of seawater. The concentration of Li in seawater is 

~0.18ppm; therefore in a 1 litre reactor there are 0.18mg of Li in solution. In 

comparison the basalt glass has a Li concentration of 4.7ppm; this means that in lOg of 

basalt glass there is a total of 0.047mg of Li or 25% of the total Li in one litre of 

seawater. Using a dissolution rate for basalt glass of 3.16xl0'15mol/cm2/s for pH8 and 

25°C ( G is la s o n  and O e lk e r s ,  2003), a total of 0.048pg will be released into solution 

over 6000 hours, which is only -0.03% of the total Li in the seawater solution. Similar 

results are obtained for Mg; even though silicates contain far higher Mg (particularly 

forsterite), Mg is also far more abundant in seawater. Assuming stoichiometric 

dissolution and using dissolution rates from freshwater experiments (G is la s o n  and 

O e lk e r s ,  2003; P o k r o v s k y  and S c h o t t ,  2000) the dissolution of basalt glass will 

provide -0.84% of the total Mg in seawater and forsterite will provide -4.4% of total 

Mg from seawater. Therefore it is unlikely that the either the Li or Mg isotope 

composition of the experimental solution could be altered by straightforward mineral 

dissolution.

The second way in which the Li and Mg isotope compositions may be altered 

would be via the formation of secondary minerals. Previous work has shown that both 

isotope systems can be fractionated during weathering processes (H u h  et al., 1998; 

T ipper et al., 2006a), as has also been observed in laboratory experiments (Chapter 5) 

and in the Greenland rivers studied here (Chapters 3 and 4). In principle, secondary 

mineral formation should cause the solution to become isotopically heavy in the case of 

Li as 6Li is preferentially removed from solution into the solid phase. Lithium isotope 

values show little variation; solutions from BGSW-1 change from ~31%o to 32.5%o over
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the course of the experiment. This change is small; the average IAPSO standard 

measured over the course of this work is 31 .2  ±  0 .84  (2a ), so statistically it is only just 

outside the range of the seawater standards. Assuming that secondary minerals have 

indeed formed, the reason that the amount of Li fractionation from IAPSO seawater is 

so small is because of the high Li concentration in seawater. A relatively large amount 

of 6Li would need to be removed from solution by secondary minerals to cause a change 

in the 57Li composition of seawater. Similarly for Mg isotopes the ratios of the 

solutions do not change over time. The relative mass difference between Mg isotopes is 

far less than that for Li isotopes and as a consequence the degree of Mg fractionation 

will also be less. For example the range of riverine Li compositions in Greenland 

(Chapter 3) is 23%o, yet the same rivers have a range of Mg isotope compositions of 

0.8%o. Any variation in the Mg isotopic composition of the experimental waters would 

be lower than the external reproducibility of the analysis (which is 0.1 l%o (2a)).

6.5. Conclusions and future work

The aims of this study were to investigate the dissolution rate of easily weathered 

basaltic phases, such as glass and forsterite, in seawater and to assess the effect of this 

(as well as the formation of secondary minerals) on the Li and Mg isotope composition 

of the fluid phase. To this end, a number of experiments were conducted but the results 

have proved rather inconclusive for two reasons.

First, the experiments were conducted in a closed system, which though ideal for 

the precipitation of secondary minerals is less suited to the determination of dissolution 

rates at far from equilibrium conditions because of the build-up of high concentrations 

in solution. This is illustrated by the high secondary mineral saturation states and the
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observation that the dissolution rate at steady state was over an order of magnitude 

slower than the dissolution rate at far from equilibrium conditions obtained by Gislason 

& Oelkers (2003). Dissolution rates were also calculated using samples from the first 

two weeks of the experiment in order to attempt to obtain far from equilibrium 

dissolution rates. The results showed similar dissolution rates to experimental results 

carried out in freshwater solutions suggesting that the dissolution of basalt glass and 

forsterite is not inhibited by seawater. However these solutions may not have attained a 

steady state and as such the results cannot be seen as being entirely reliable.

Secondly, the amount of Li and Mg released into solution was low in relation 

to the amount of Li and Mg in the seawater solution, which meant that any isotope 

changes accompanying basalt glass dissolution and/or the precipitation of secondary 

minerals were obscured. This problem could be overcome by the use of an artificial 

seawater solution containing all of the major cations, but with no Mg2+ or Li+.

The most effective way to run these experiments would be to use a through flow 

reactor (see Chapter 5) and using artificial seawater, so that both far from equilibrium 

dissolution rates and high concentrations in solution could be achieved, while changes

0& Hin 8 Mg and 8 Li could be measured. The only complicating issue with such a setup 

would be the amount of artificial seawater that would be needed (especially if 

experiments were to last for 8 months or longer), and the through flow reactor itself. It 

would not be wise to use a reactor that is mostly used for low concentration far from 

equilibrium experiments because of the risk of secondary mineral formation and the 

high dissolved solid content of the seawater contaminating the apparatus.
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Chapter 7
Rhenium and osmium isotope and elemental 

behaviour accompanying laterite formation in the 

Deccan region of India

This chapter contains work investigating rhenium and osmium behaviour in two laterite 

profiles from India. This was originally written up in paper format and submitted to 

EPSL in October 2006. After going to review some parts were rewritten and the 

manuscript was resubmitted in June 2007 when it was accepted for publication.

7.1. Introduction

The continental crust is severely depleted in many platinum group elements (PGE: 

Ru, Rh, Pd, Os Ir and Pt) relative to the Earth’s core and mantle, and contains less than 

0.01% of the terrestrial PGE budget (e.g. (E sser  and Tu r e k ia n , 1993; Peu c k er - 

Eh r en br in k  and Ja h n , 2001; Sc h m idt  et al., 1998; Ta y l o r  and M cLe n n a n , 1995; 

W edepo h l , 1995)). This depletion, in part, reflects the siderophile and chalcophile 

behaviour of these elements, which means that they are highly concentrated in the 

Earth’s metallic core (S hirey  and W a lk e r , 1998; W a n k e , 1981), but also, in part, 

because some of these elements are compatible during silicate melting, and hence are 

preferentially retained in the residual mantle (A llegre  and Lu c k , 1980; Sh ir ey  and 

W a lk er , 1998).

Osmium (Os) is a platinum group element that is related to rhenium (Re) through 

the beta decay of 187Re to form 1870s. During partial melting Os behaves as a 

compatible element, whereas Re is moderately incompatible and enters the melt
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(S hir ey  and W a lk e r , 1998). Consequently, the Earth’s crust (continental and oceanic) 

possesses high Re/Os (parent/daughter) ratios and develops radiogenic Os isotope 

compositions over time, relative to contemporaneous mantle. Under normal 

circumstances the Os isotope composition of the continental crust is controlled by the 

Re/Os ratio and age of a given rock type (E sse r  and Tu r e k ia n , 1993). However, 

estimates for the average 1870 s/1880 s isotope composition of the upper continental crust 

are variable, ranging from 1.4 to 1.9 (from loess (Peu c k er -Eh r en b r in k  and Ja h n ,

2001) and river sediments (Le v a ss e u r  et al., 1999), respectively) while rivers 

themselves yield a global mean value of ~1.4 (Le v a ss e u r  et al., 1999; Peu c k er - 

Eh r en br in k  and R a v iz z a , 2000b).

The behaviour of Re and Os during continental weathering is unusual because these 

elements are often highly concentrated in accessory phases or else in particular rock 

types. At the mineral scale in silicate rocks, a significant proportion of the Re and Os 

present is located in phases present at trace levels (accessory phases) such as sulphide 

and PGE-alloys (B u r t o n  et al., 1999; H a r t  and R a v iz z a , 1996). It is these phases that 

control the Os isotope composition and elemental abundance of Re and Os in the whole- 

rock, and often their behaviour during weathering that determines the composition of 

waters and soils. Similarly, certain rock types such as organic-rich sediments are highly 

concentrated in Re and Os, possess very high Re/Os ratios, and thus with time develop 

highly radiogenic Os isotope compositions, relative to average continental crust (Jaffe  

et al., 2002; Peu c k er -Eh r en b r in k  and H a n n ig a n , 2000; S ingh  et al., 1999). Such 

sediments are also highly susceptible to weathering and readily release their radiogenic 

Os, and this weathering signal may strongly influence the marine Os isotope 

composition, despite comprising less than 1% of the continental crust (Peu c k e r - 

Eh r en b r in k  and Ha n n ig a n , 2000). Notwithstanding, the concentration of Re and Os
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in accessory phases and particular rock types, under certain circumstances both 

elements may be highly mobile during weathering, and readily transported in natural 

waters (i.e. ground and river waters).

Laterites result from extreme weathering of the continental crust in tropical or sub 

tropical climates, they are estimated to cover 30% of the exposed continental crust, and 

nearly 50% of continental drainage flows through laterite covered terrain (T a r d y ,  

1997). Laterites are commonly over 20m thick and can have thicknesses of up to 100 m 

( B r im h a l l  et al., 1991). Laterite profiles generally show a progression from unaltered 

bedrock to increasingly altered rock above with an iron rich crust or duricrust at or close 

to the surface. Laterites are formed during continuous in situ weathering of bedrock 

( B r im h a l l  et al., 1991; S c h e l lm a n n , 1981; T a r d y , 1997; W id d o w so n  and Cox, 

1996), which acts to strip away less resistant elements (such as silica, and the mobile 

elements Na, Mg, Ca) leaving secondary minerals enriched in Fe2 C>3 and AI2 O 3 . There 

is also some evidence to suggest that they are, at least in part, modified by external 

input and redistribution processes (B r im h a l l  et al., 1991; K isa k u r e k  et al., 2004) and 

that their formation may be initiated by changing weathering conditions (D e q u in c e y  et 

al., 2002).

It has long been known that laterite soils may be enriched in platinum group 

elements, located in PGE-rich alloys and associated sulphides and iron-oxides (e.g. 

(B o w les , 1986)). Early work suggested that these PGE-rich minerals were present as 

resistant phases residual from weathering of the parent rock (e.g. (C a br i and H a r r is , 

1975)). However, it is now established that under the conditions prevalent in laterite 

soils (that is, low pH and high Eh) some platinum group elements may be taken into 

solution, transported and redeposited (B o w l es , 1986; B o w les et al., 1994), consistent 

with textural evidence indicating that PGE-minerals in laterites have grown in situ
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( B o w l e s ,  1986; M a n n ,  1984). Thus far there have been few published Re-Os isotope 

measurements for laterites. The data that have been obtained indicate a depletion of Re 

and enrichment of Os in the topsoil part of the profile, and consequently a relatively 

unradiogenic Os isotope composition, relative to the parent rock ( S h a r m a  et al., 1998). 

These results were taken to indicate that the weathering of laterite soils will yield 

relatively unradiogenic Os which may control the composition of dissolved and aeolian 

material delivered to the oceans ( S h a r m a  et al., 1998).
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Fig. 7.1. Location map showing the two laterite study sites. Bidar is in central India in the Deccan 

CFBP, Goa is on the west coast o f  India on the Dharwar Craton.
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This study presents major-, trace element, and Re-Os isotope and elemental data for 

two laterite profiles from a similar climatic regime, but having different parent rock 

types, from Bidar and Goa in India. These results provide information on the 

distribution and mobility of Re and Os during laterite formation and groundwater 

movement, the consequences for the Os isotope evolution of laterites (compared to 

parent rock types), and the implications for the behaviour of these elements during 

weathering in tropical and sub-tropical climates.

7.2. Geological setting and Background

7.2.1. Geological setting

Two laterite profiles from the Deccan region have been studied here; the first is 

from Bidar in central India, and the second is from Goa on the west coast (Fig. 7.1). 

Bidar is located near the present-day edge of the Deccan Traps Continental Flood Basalt 

Province (CFBP). The Deccan Traps were erupted during a ~3-4 Ma period straddling 

the Cretaceous-Tertiary boundary (e.g. (C o urtillot  et al., 1988; W id d o w so n  et al., 

2000)), onto a complex Archean-Proterozoic basement comprising part of the Dharwar 

craton (Ch a d w ic k  et al., 2000). Today the Deccan Traps cover an area of over 

500,000km2, and have a maximum thickness of ~2km (M itchell and W id d o w so n , 

1991). Each lava package (or formation) has a distinct chemical and isotopic signature, 

reflecting different stages of the eruptive history (K ale  et al., 1992). Of these different 

lavas the Ambenali formation is the most volumetric and geographically widespread 

(W id d o w so n  et al., 2000), and forms the upper flow units that have been subsequently 

laterised at Bidar (K isa k u r ek  et al., 2004). The second profile at Goa developed on a 

Proterozoic greywacke that forms part of the Dharwar supergroup.
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Fig. 7.2. Schematic profiles of the studied laterites at (a) Bidar and (b) Goa. Both profiles show 

progression from unaltered rock at the base to increasingly altered rock towards the surface, and both 

have a hard indurated iron cap at the surface and a distinct paleowatertable horizon. Zones I-IV illustrate 

the progressive lithological changes within the laterite. Zone I - unaltered or little altered bedrock, Zone II 

- high alteration bedrock/ laterite (saprolite), Zone III - paleowatertable, Zone IV - Fe rich laterite cap (see 

text). Includes major element profiles that are characterised by a general decrease in Si, and relative 

enrichment in Fe and Al contents. This pattern of chemical change is interrupted at the paleowatertable 

where there is considerable enrichment of Fe, and depletion of both Si and Al.
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During the later stages of eruption of the Deccan Traps, northwest drift of India, 

across the equator (Klootw ijk  and Peirce , 1979), exposed the Deccan (CFBP) to 

intensive weathering leading to the development of deep weathering profiles capped by 

a regional laterite (W id d o w so n  and Cox, 1996). At the Bidar site, this major period of 

laterite formation was brought to a close between 55 and 45 Ma (S chm idt  et al., 1983), 

when regional uplift raised the laterite above the watertable (W id d o w so n , 1997), 

possibly as a result of the collision of India and Asia, thereby preserving this ancient 

weathering profile. In contrast, the site at Goa did not experience this uplift, and 

paleomagnetic data suggest that laterite formation occurred during the late Tertiary, ~20 

Ma, and is ongoing today.

The profile at Bidar extends to a depth of ~50 m where unaltered basalt is located 

(Fig. 7.2). In the region of the Bidar profile the Ambenali formation represents the 

uppermost flow units of the Deccan, constructed at the highest elevations, and not 

overlain by later eruption. Consequently, any extraneous groundwater influence from 

different lithologies at higher levels can be discounted. Rather, the huge lateral extent 

and thickness of the Ambenali formation suggests that the majority of elements 

mobilised and transported by groundwaters were ultimately derived from the 

breakdown of this tholeiitic precursor. Moreover, the uniform composition of the 

Ambenali formation offers an ideal substrate for assessing the chemical variations 

accompanying laterite formation, because any changes in chemistry are unlikely to be a 

result of parent rock heterogeneity. Moreover, the intracontinental location precludes 

any marine influence on the chemistry, through aerosols or precipitation, but does not 

rule out the presence of continental derived aeolian material. The profile at Goa is a ~35 

m thick and developed on a Proterozoic greywacke that forms part of the Dharwar 

supergroup. By contrast to the site at Bidar, the relatively low topography of the laterite
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and the heterogeneity of the Dharwar craton raises the possibility of lateral input of 

groundwater potentially sourced by a range of lithologies. Moreover, unlike the 

Ambenali formation, the parent greywacke shows some chemical variation both 

laterally and vertically.

7.2.2. Sample Description

The two profiles are shown in detail in Fig. 7.2 and sample depths and 

descriptions of their lithology and mineralogy given in Appendix El (previously 

reported in (B orger  and W id d o w so n , 2001; K isa k u r ek  et al., 2004)). Both show 

progression from unaltered rock at the base to increasingly altered rock towards the 

surface, and both have a hard indurated iron cap at the surface (“cuirasse”) together with 

distinct paleowatertable horizon a few meters below the cap. The laterite profiles can 

be divided into zones based on the level of alteration reflected in their physical 

properties, mineralogy and elemental behaviour (Fig. 7.2). Zone I is unaltered or 

slightly altered bedrock. Zone II is altered bedrock increasingly so up the profile. At 

Bidar the crystalline groundmass of the basalt is initially replaced by illite and kaolinite 

clay, similarly at Goa primary quartz, biotite and feldspar are also replaced by clays in 

this zone. Moving up, the primary mineralogy is lost, and the groundmass becomes 

mottled due to the development of Fe and Al oxides and oxyhydroxides. Zone III is the 

paleowatertable horizon, and Zone IV is the Fe-rich indurated laterite crust. Within 

Zone IV no remnant of the protolith texture or primary mineralogy remains. The high 

haematite content of these samples indicates that well drained oxidizing conditions 

prevailed.

There is no petrographic evidence for significant input of aeolian material to 

either profile, this supporting the view that the laterite profiles across the Deccan region
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were predominantly formed by in situ alteration of the underlying bedrock. However, 

for the profile at Bidar, Sr, Nd and Li isotope data have been taken to indicate aeolian 

input of weathered continental material to the top of the profile (Kisakurek et al., 

2004; Mason, 2000). Consequently, a number of potential sources of local aeolian 

material have been examined here including basement granite, banded iron formation 

(BIF) and a limestone all from the Dharwar craton.

Finally, a sequence of Deccan ‘bole’ samples have also been analysed. These are 

highly weathered basaltic material or basaltic ash that developed between successive 

lava flows (i.e. during a hiatus in eruption). The Bole samples studied are from a 

locality close to the village of Ambenali, and comprise a ~1.4 m profile sandwiched 

between two massive lava flows. The base of the profile is marked by weathered flow 

top material that is overlain by fine-grained ash which is increasingly weathered 

towards the top of the bole horizon. These bole samples serve to illustrate the behaviour 

of Re and Os in weathered basalt that has not had sufficient time to develop into a 

laterite.

7.3. M ethods

7.3.1. Sampling and sample preparation

Samples were taken from each of the profiles (sample locations shown in Fig. 7.2) 

chosen as representative of each key horizon, or else taken immediately above or below 

(i.e. bracketing) levels where distinct textural changes are observed. Because the 

weathering profiles are highly heterogeneous large samples (between 1 and 3 kg) were 

taken, and these large samples were then homogenised by milling in agate.
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7.3.2. Major and trace element analysis

Bulk materials from the weathering profiles and surrounding basement rocks were 

analysed by XRF for major elements and ICP-MS for minor and trace elements. Full 

details of the analytical procedures are given in Section 2.2 and 2.5.

7.3.3. Re-Os isotopic analysis

Rhenium and Os were separated from laterite and rock samples using techniques 

previously described (B irck  et al., 1997) and given in Section 2.4.1. Re and Os 

samples were analysed as OSO3' and Re(V oxides by negative TIMS (Section 2.5.2.1). 

The average total procedural blank for the Bidar samples was 0.41 pg for Os and 4.75 

pg for Re; the Os isotopic composition of the blank (1870 s/1880s) was 0.179 ± 0.005. 

Corresponding blanks for Goa were 0.22 pg for Os and 4.42 pg for Re; the Os isotopic 

composition of the blank was 0.186 ± 0.007.

7.4. Results

7.4.1. Major and trace element data

Major and trace element data for both profiles are given in Appendices E2 and E3. 

Above the zone of unaltered bedrock (zone I) both profiles show a decrease in the 

concentration of the more mobile elements (e.g. Ca, Na, K and Mg) relative to the 

parent rock, towards the surface (zones II, III and IV). The decrease in mobile elements 

is accompanied by a decrease in SiC>2 , and relative enrichments in Fe and Al contents 

(Fig. 7.2). This pattern of chemical change is interrupted at the level of the 

paleowatertable (-11-14m depth at Bidar, -7-8.5m depth at Goa) where there is 

considerable relative enrichment of Fe, and a relative depletion of both Si and Al.
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The variation of trace elements with depth is also similar for both profiles. The 

concentration of mobile trace elements, such as Sr and Rb, is highest in the unaltered 

bedrock and decreases as the rock becomes more altered (and permeability increases) 

(Appendix D3). At Goa there is a sharp change in permeability at 15m depth that is 

marked by a line of seepage and loss of the mobile elements. Relatively immobile 

transition elements such as Cu, V, Sc and Cr are enriched in the upper half of the laterite 

profile, and have lowest concentrations in the unaltered bedrock (Fig. 7.3).

(a) Bidar (b) Goa
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Fig. 7.3. Trace element profiles for (a) Bidar and (b) Goa, showing that the immobile trace elements V, 

Cr and Ni are enriched in laterite compared to the parent rock.
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Fig. 7.4. Re and Os concentration profiles for (a) Bidar and (b) Goa. The parent rocks have relatively low 

Re and Os concentrations. However, both profiles show a significant increase in Re and Os concentration 

with increasing alteration, with the highest values being seen in the Fe-rich laterite cap. For both profiles 

enrichment of Os is always greater than Re, consistent with previous work. In addition, both profiles 

show a decrease in the concentration of Re and Os at the level of the paleowatertable.

7.4.2. Re-Os elemental data

The concentrations of Os and Re at Bidar show significant variation with depth (Fig. 

7.4). Osmium concentrations increase from 4ppt at 47m depth to 1410ppt at 5m depth, 

a 300-fold increase. Rhenium concentrations are higher than those of Os, increasing 

from 0.7 ppb at 47m depth to 10 ppb at 6m depth, but the level of enrichment is much 

lower (some 14-fold). Similar Re and Os variations are observed at Goa. Osmium 

concentrations increase from 43 ppt at 34 m depth to 492 ppt at 2.5 m depth, an 

enrichment factor of >11. Rhenium has higher concentrations than Os, increasing from 

0.7 ppb at 34 m depth to 1 ppb at 2.5 m depth, an enrichment factor of 1.4. The pattern
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of increasing Re and Os concentration towards the top of the profile is interrupted by a 

sharp decrease in the concentration of both elements at the level of the paleowatertable.

7.4.3. Re-Os isotope data

For both profiles parent rock 187Re/1880 s  ratios are greater than those of the

• * 1 8 7  1QQ
overlying laterite and Os/ Os ratios are also in general more radiogenic; the least 

radiogenic ratios being found at the surface (Fig. 7.5). At Bidar, 187Re/1880 s  drops from 

2286 at 35m depth to 2 at 5m depth. 1870 s /1880 s  ratios show a similar pattern, falling 

from 0.98 at 45m depth to 0.33 at 2m. Both isotope ratios shift to lower values where 

the Os concentration starts to increase (between 35 and 26m depth). A similar pattern is 

observed in the Goa profile; both 187Re/1880 s  and 1870 s/1880 s ratios shift to lower values 

towards the surface. The parent rock has a 187Re/1880 s  ratio of -100, and a 1870 s/1880s 

ratio of -4.5; these values are far more radiogenic than those of Deccan basalt. Both 

ratios fall as the Os concentration starts to rise at 12m depth. The 187Re/1880 s  ratio at 

the surface is 4.4 and the 1870 s/1880s ratio is 0.48, similar to the values recorded at 

Bidar.
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Fig. 7 .5 .187Re/1880 s and 1870 s /1880 s  ratios shown against depth at (a) Bidar and (b) Goa. The 187Re/1880 s  

and ratios of the laterite are, with one exception, always lower than the those of the parent rock. The 

measured 1870 s/1880 s isotope ratios are also always less radiogenic than the parent rock
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7.4.4. Basement lithologies and Bole samples

The three granite samples analysed have Os concentrations of ~4 ppt; similar to 

the unaltered basalt at Bidar but far lower than the laterites at both Bidar and Goa. 

1870 s/1880 s isotope compositions of the granites range from 0.74 to 1.77; these 

compositions are more radiogenic than the surface compositions of either laterite 

profile. The BIF and limestone samples from the Dharwar craton have Os 

concentrations of between 20 and 31 ppt, an order of magnitude lower than the highest 

concentrations recorded at Goa and two orders of magnitude lower than recorded at 

Bidar. The 1870 s/1880 s  isotope ratio of the Bhima limestone is relatively unradiogenic 

(0.175) while the 1870 s/1880s ratio of the BIF is relatively radiogenic (1.345). The basalt 

bole samples have Os concentrations between 20 and 44 ppt, and 1870 s/1880 s  ratios of 

between 0.157 and 0.171. The concentration of Re is variable ranging from 97 to 1080 

ppt, and consequently the 187Re/1880s ratio also shows wide variation from 23 to 119.

7.5. Discussion

7.5.1. Elemental variations

The variation in the chemical composition of both profiles is very similar, and 

consistent with previous studies of laterite formation on comparable protoliths (e.g. 

(B r im h all  et al., 1991; Ta r d y , 1997; W id d o w so n  and Cox, 1996)). The data indicate 

loss of the more mobile elements (e.g. Ca, Na, Mg, K, Rb and Sr) in the earlier stages of 

weathering, followed by a decrease in silica content, facilitated initially by the 

breakdown of the primary mineralogy, and subsequently by the breakdown of neo­

formed clay minerals. The depletion in mobile elements is accompanied by a 

concomitant increase in the concentration of less mobile elements within the developing
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laterite profile, in particular Fe, Al and Ti, typically considered as residual. 

Superimposed on this pattern of enrichment and depletion is element behaviour at the 

watertable, since many elements are controlled by the change in redox conditions at this 

level. For example, iron can exist as reduced Fe2+ that is mobile or oxidised Fe3+ that is 

immobile. The paleowatertable marks a change in the redox conditions from sub-oxic to 

oxic so that Fe2+ is oxidised to immobile Fe3+ that is then deposited as oxides or 

oxyhyroxides.

At both Bidar and Goa high Re and Os concentrations occur in the upper parts of 

the profile, coinciding with significant Fe2 0 3  enrichment and Si0 2  depletion. 

Enrichment of trace metals, in particular the rare earth elements (REE) in heavily 

weathered and lateritized soils has been widely recognised (B r a u n  et al., 1998; K oppi 

et al., 1996; N esbitt  and M a r k o v ic s , 1997; W alter  et al., 1995). REE’s form mobile 

complexes with phosphates, fluorides and carbonates (W a lter  et al., 1995), can be 

mobilized by organic matter (B r a u n  et al., 1998) and can be trapped by Fe- and Mn- 

oxides (K oppi et al., 1996; W a lter  et al., 1995). Substantial PGE enrichment in 

lateritic soils has also been documented (B o w les , 1986; B ow les  et al., 1994; B r o w n  

et al., 2003; Eliopoulos and Ec o n o m o u -Elio po u lo s , 2000; M a n n , 1984; R o q u in  et 

al., 1990; Topp et al., 1984) and attributed to supergene enrichment and co-precipitation 

of PGE-rich alloys with iron and manganese oxides. Lateritic soils are considered to 

develop in a high Eh (+200 -  +800mV) and low pH (2-5) environment (B o w les , 1986;

0-4-
M a n n , 1984), and these conditions are thought to arise because cations such as Fe are 

removed from solution under increasingly oxidising conditions (M a n n , 1984). The 

release of protons into solution causes pH to decrease; and where Fe2+ concentrations 

are high, such as just below the water table, pH can be as low as 2 (Bowles, 1986). 

Under these conditions the PGEs become mobile by forming complexes with species
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such as chlorides, oxides and hydroxides as well as with organic matter such as oxalates 

and humic acid (B a k er , 1978; B o w les , 1986; B ow les et al., 1994; M o u n t a in  and 

W o o d , 1988). However, not all of the PGEs have the same mobility: for example Pd is 

considered to be more mobile than Pt (M o u n t a in  and W o o d , 1988; Obe r th u r  et al., 

2003; Tr a o r e  et al., 2006) and more readily enters the aqueous phase in solution 

(B ow les et al., 1994), whilst available data suggest that Os is amongst the most soluble 

(B o w les , 1986). The PGEs are then progressively removed from solution as conditions 

become increasingly oxidising and pH increases towards the surface. Here there are 

high concentrations of poorly crystalline secondary phases such as Mn- and Fe- 

oxyhydroxides that act as scavengers of metal ions in solution (K u h n e l , 1987). This 

secondary mineral crystallisation accounts for the high PGE, Au and Ag concentrations 

in a number of weathering profiles (B o w les , 1986; B ow les et al., 1994; B r o w n  et al., 

2003; M a n n , 1984; R o q u in  et al., 1990) and the same processes can also account for 

the high Re and Os concentrations seen in the laterites studied here. That is, high Eh and 

low pH conditions cause Re and Os dissolution, and redistribution occurs via 

groundwaters. Subsequently with increasing pH in the upper part of the laterite profile, 

both elements are scavenged out of solution and precipitate either as PGE-rich alloys or 

are strongly partitioned into oxides or oxyhydroxides.

The variation in Re and Os, in particular those seen at the level of the 

paleowatertable (Fig. 7.4, zone III) indicates that they are mobile. The extent of this 

mobility can be assessed by comparison with an ‘immobile’ index element. Elements 

such as Ti, Th and Zr are considered relatively immobile in surface weathering 

environments because of their relatively high field strength and low solubility in water, 

for this reason they have been used previously in many studies of weathering profiles 

and processes (B rim h all  and D ietrich , 1987; B r o w n  et al., 2003). Nevertheless it
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should be remembered that they are not totally immobile and that they can be mobilised 

in extreme weathering conditions or in the presence of high organic matter (H o d so n , 

2002; Oliva  et al., 1999). In this study Zr has been used as the index element because 

its concentration shows the least variation over the two profiles, when compared to 

concentration in the parent rock (Fig. 7.6). Re and Os concentrations normalised to Zr 

and Ti show little difference in patterns of enrichment or depletion (Figures 7.7 and 

7.8), where enrichment or depletion can be defined by:

R — R
% enrichment/depletion = 100 x — l-  Equation 7.1

Ri

In equation 7.1 R is the ratio of the element concentration to the Zr concentration and 

the subscripts i and n indicate the bedrock and weathered horizon respectively. At 

Bidar there are substantial enrichments of both Os and Re. The highest Os enrichment 

occurs at 5m depth where the laterite is -19,000 % enriched relative to the parent rock, 

and Re is enriched by 920 %. At Goa most samples are enriched in Os relative to the 

bedrock, the sample at 2-5m depth being enriched by 630%. Concentrations of Re are 

very variable; some horizons contain higher Re and some lower Re than the parent rock. 

It is important to note that the Zr content at the level of the watertable is -40% lower 

than the parent basalt, suggesting that this element may also have been mobilised. The 

net effect of this relative mobilisation of Zr will be to enhance the relative depletion of 

Re and Os. However, throughout the remainder of the profile the trends revealed by Zr 

normalisation remain unaffected.
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Fig. 7.6. - Percentage change for concentrations of Ti, Zr and Th relative to parent concentrations at (a) 

Bidar and (b) Goa.
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Fig. 7.7. Re and Os concentrations for Bidar shown relative to (a) zirconium and (b) titanium. Since both 

trace elements are considered to be immobile, this serves to illustrate the degree of enrichment of Re and 

Os in both laterite profiles, relative to their parent-rock.
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F ig .  7 .8 . Re and Os concentrations for Goa shown relative to (a) zirconium and (b) titanium. Since both 

trace elements are considered to be immobile this serves to illustrate the degree of enrichment of Re and 

Os in both laterite profiles, relative to their parent-rock.

The pattern of increasing enrichment in Os towards the laterite surface has also 

been observed in a laterite with a granodiorite parent rock from Burkina Faso, west 

Africa (S h a r m a  et al., 1998) but these authors report low levels of Re at the surface 

(lower even than the parent rock) which is in contrast to the profiles at Bidar and Goa.

7.5.2. Re-Os isotope variations

Elemental enrichment of Os relative to Re in both profiles has an impact on the
10*7 lOO

measured parent/daughter Re/ Os ratios. Both profiles show a decrease in 

187Re/1880 s  with increasing alteration. Because 1870s is produced from the p-decay of 

187Re it can be anticipated that with time the altered laterite samples will develop a less 

radiogenic 1870 s/1880 s  isotope composition than the parent rock. Accordingly both 

profiles show 1870 s/1880 s  values that are significantly less radiogenic than the parent 

rock with increasing alteration (i.e. up the profile). As will be seen for the profile at Goa

1 Q7this is not simply due to in situ decay of Re but reflects the sources and distribution of
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Re and Os. Therefore, for the profiles studied here and elsewhere (Sharma et al., 1998) 

the data indicate that laterites possess a less radiogenic 1870 s/1880 s  isotope composition 

that the parent rock from which they were formed, and this relationship appears to hold 

irrespective of rock type or age, or the timing of laterite formation.

7.5.3. Basalt Bole samples

The basaltic red ‘boles’ are relatively short lived weathering profiles that 

developed between successive lava flows in the uppermost lava sequences of the 

Deccan. These boles have been subject to intense tropical weathering (hence their red 

colour), but laterite formation sensu-stricto did not occur (Schellmann, 1981), and 

thus they serve to distinguish the affects of element transport in a low pH, high Eh 

environment from straightforward basalt weathering at higher pH conditions. The Os 

concentrations in the boles are higher than the parent basalt at Bidar, but within the 

range observed for other Deccan basalts. However, the Os concentrations remain much 

lower than those observed in the laterite at Bidar. Rhenium concentrations are high at 

the base of the bole profile, similar to concentrations in unaltered basalt, but Re contents 

decline at higher levels where they are lower (in most cases) than the laterite at Bidar. 

The low Re and relatively low Os concentration results in generally low 187Re/1880s 

ratios and relatively unradiogenic 1870 s/1880s isotope compositions, but all are within 

the range observed for unaltered Deccan basalt (Allegre et al., 1999).

Thus, overall the bole samples appear to have experienced Re loss, with perhaps 

some slight Os enrichment, relative to the unweathered parent basalt. However, they do 

not show the either the extreme or differential enrichment of Os > Re seen in the laterite 

samples. This is presumably because there has been little external input of Re or Os to
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the profile, and pH and Eh conditions have not resulted in significant mobility of these 

elements.

7.5.4. Origin o f  elemental and isotope variations 

7.5.4.1. In situ parent rock weathering

There are a number of possible processes that may have been responsible for the 

high levels of Re and Os found in the laterites studied here. It is possible that this 

enrichment is simply due to in situ weathering of the parent rock, where Re and Os are 

located in weathering resistant minerals retained in the residue.

In order to estimate the amount of parent rock needed to supply the Re and Os 

found in the laterite, the Os (and Re) content of each horizon (Osn) is weighted by the 

horizon thickness (hn) and its absolute density (pn).

n - x

Os = E M  nhnp n Equation 7.2
n = 1

Using equation 7.2 the total Os content of the Bidar profile is 3 x 10'5 kg/m2 and at Goa 

it is 7.6 x 10' kg/m . The total mass of Os that can be supplied from parent basalt to the 

Bidar profile is 5.8 x 10'7 kg/m2, which is 1.9% of the estimated Os. Using the same 

method for Re then the precursor basalt can contribute 35% of the total Re, emphasising 

the greater level of Os enrichment in the profile. At Goa, the parent greywacke can 

supply 45% of the Os and all of the Re measured in the profile.

The same approach can be used to calculate the mass of Re or Os in 1 m of 

bedrock to give an estimate of the number of metres of parent rock that would have to 

be weathered and removed in order to concentrate the estimated masses of Re and Os. 

The high Os enrichment in the laterite at Bidar demands the weathering and erosion of 

some 2600 m of parent basalt to account for the laterite Os content; while 42m of
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vertical loss are required at Goa. It has been suggested that some two thirds of the initial 

volume of the Deccan basalt may have been removed by weathering and erosion over 

the past 65 Ma (C ourtillot  et al., 1988). However, the Ambenali formation at Bidar 

represents the uppermost flow units of the Deccan eruptions (W id d o w so n  et al., 2000) 

and such volumes of basalt loss seem unlikely. Therefore, the elemental data appear to 

suggest that a direct, vertical, contribution by weathering and removal of the parent 

rock, concentrating Re and Os in the residue, is unlikely to supply the Re and Os at 

Bidar. However, such a process could potentially provide much of the Re and Os in the 

laterite at Goa.

The Os isotope data can also be used to evaluate whether the relatively 

unradiogenic Os at both sites could be derived from the parent rock. Laterite formation 

at Bidar is thought to have commenced at or soon after the final Deccan eruptions at 

-65 Ma, and ceased sometime between 55 and 45 Ma, when the profile was elevated 

above the level of the watertable (W id d o w so n , 1997). At first sight it would appear 

that laterite and parent rock at this locality possess very different 1870 s/1880 s isotope 

compositions. However, the laterite has a much lower parent/daughter 187Re/1880 s  ratio

1 Q7 1 Q7
and thus growth of radiogenic Os from the decay of Re may have been very 

different both over the 10-20 Ma of laterite formation, and up to the present-day. 

Assuming that there has been no recent mobility of Re or Os calculations indicate that 

the Os isotope compositions of the laterites has not changed significantly over the past 

65 Ma. Initial 1870 s/1880s isotope ratios have also been calculated for the parent basalt 

to take into account the amount of 1870 s growth since between 65 and 45 Ma, and are 

shown against Os concentration in Fig. 7.9. The 1870 s/1880 s of the parent basalt was 

relatively unradiogenic at the time of eruption at 65 Ma (1870 s /1880 s  « 0.128; this study 

and (A llegre et al., 1999)). However, over the timescale of laterite formation the
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basalts will have evolved to much more radiogenic values such that the Os isotope 

composition of the parent basalt at 55 to 45 Ma could have sourced the laterite at that 

time.
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Fig. 7.9. Initial 1870 s /1880 s  ratios against Os concentration (shown as l/[1880s]) for the laterite and parent 

rock at Bidar (open symbols) and previously published data for the Deccan basalts (filled symbols). For 

the laterite samples there is no significant change in 1870 s /1880 s composition over the 20 Ma between 

basalt eruption and the end of laterite formation. However the parent basalt (and other Deccan basalts) 

rapidly evolve to radiogenic Os isotope values and may have possessed an appropriate composition at 45 

Ma to source the laterite, albeit that the laterite is significantly enriched in Os. Initial ratios calculated 

using: (1870 s /1880s)i = (1870 s /1880s)a -  [(187Re/1880s)a x e(Xt_1)] where X is the decay constant of Os (taken 

as 1 .6 6 x l0 _11yr_1).

At Goa the parent greywacke again possesses much more radiogenic 1870 s /1880s 

isotope compositions than the overlying laterite and higher 187Re/1880 s ratios. Laterite 

formation at Goa occurred during the late Tertiary (between 20 and 30 Ma) and is 

ongoing today, providing a 30 Ma maximum timescale for the radiogenic growth of 

1870s. However, calculations indicate that even if laterite formation started at 30 Ma the 

greywacke will have been only slightly less radiogenic than at the present-day, and there 

will have been little resolvable change in the composition of the laterite (Fig. 7.10).
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Therefore these calculations indicate that the unradiogenic Os isotope compositions of 

the laterite at Goa cannot have been simply acquired from the parent greywacke.
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Fig. 7.10. Initial 1870 s /1880 s  ratios against Os concentration (shown as l/[1880s]) for the laterite and 

parent rock at Goa. The initial Os isotope compositions have been calculated for 5, 10 and 15 Ma of 

radiogenic growth of 1870s. In contrast, to Bidar there is no significant change in 1870 s /1880 s  ratios of the 

parent greywacke over these time intervals, and its composition is too radiogenic to exclusively source 

the laterite material, indicating that there must have been some external source of Os.

Overall, these data indicate that there must have been some form of external 

input of Re and Os to both profiles. While the Os isotope composition of the laterites at 

Bidar can be explained by ageing of the parent rock, the level of Os enrichment cannot 

be attributed to concentration (in residual minerals) through massive vertical weathering 

and erosion. At Goa, the level of Os enrichment is lower, and could conceivably be 

supplied by the parent greywacke. However, the parent greywacke at Goa possesses Os 

that is too radiogenic to account for the unradiogenic Os isotope compositions seen in 

the overlying laterites.
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7.5.4.2 Aeolian input

Previous isotope studies of the laterite at Bidar have concluded that some degree 

of aeolian input to the top of the soil profile must have occurred. With increasing laterite 

alteration 87Sr/86Sr isotope composition becomes more radiogenic, shifting from 

0.704249 to 0.710099 while 143Nd/144Nd becomes less radiogenic, shifting from 

0.512818 to 0.512437. This variation far exceeds the natural variation of the Ambenali 

basalt, and is too extreme to be explained by fractionation induced by weathering. 

Instead these isotope shifts can be explained by aeolian input of ancient continental 

material such as the neighbouring Dravidian Shield (M a s o n , 2000). Li isotope data 

suggests that this continental material must have been weathered prior to aeolian 

transport and deposition (K isa k u r ek  et al., 2005). Redistribution of aeolian material 

input to the top of the profile could occur via dissolution and transport in groundwater 

and the subsequent precipitation of secondary minerals.

The Archean to Proterozoic Dharwar craton is one possible source of aeolian 

material. For the locality at Bidar, during the main period of laterite formation India 

was located to the south of the equator, and so southeast trade winds could have carried 

dust from this terrain (Kale et al., 1992). A number of potential source rocks have 

been studied from the Dharwar craton including granites, banded iron formation and 

limestone. However, while some rock types (or mixture of rock types) possess the 

appropriate Os isotope compositions, none have a sufficiently high Os concentration to 

account for those measured in the laterite. Further afield another potential source is

187 188loess, and samples from China, Europe and S. America give an average Os/ Os 

composition of 1.05 ± 0.23, and Os and Re concentrations of 31pg/g and 198pg/g 

respectively (Peuck er-E h r en br in k  and Ja h n , 2001). If it is assumed that the present 

day dust flux of 1-10 g/m2/yr (D uc e  et al., 1991) is similar to that during the -15-20 Ma
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period over which both profiles developed then it is possible to estimate the potential 

mass of aeolian derived Os. If it is further assumed that all this Os dissolved and 

entered the laterite then such aeolian sources can account for a maximum of 20% of the 

total Os at Bidar and 81% of the total Os at Goa. This suggests that aeolian material 

with an average continental crustal Os composition and radiogenic 1870 s/1880s isotope 

ratio cannot by itself account for all of the Os in these laterites, although it could 

account for much of the Os seen in the profile at Goa. Cosmic (interplanetary) dust is 

also known to have a high Os concentration and very unradiogenic 1870 s/1880 s  isotope 

composition. The average flux of cosmic dust to Earth is 40-80 g/km2/yr (Peu c k er - 

Eh r en b r in k  and R a v iz z a , 2000a) with an Os concentration of ~50ng/g and 

1870 s/1880s composition of -0.127 (A n d e r s  and Gr ev e sse , 1989). Over 20 Ma a 

maximum of 8xl0'5g of Os could be input to the laterite profiles, accounting for 0.26% 

and 1% of the total Os at Bidar and Goa, respectively. This suggests that despite the 

high Os concentrations of cosmic dust it is unlikely to be solely responsible for the 

enrichment seen in the laterite profiles.

These results highlight the fundamental difficulty of sourcing the Os isotope and 

elemental signature seen in the laterites directly from crustal rocks. This is because first, 

average continental crust has a much lower Os concentration (~50 ppt) (E sse r  and 

Tu r e k ia n , 1993; Peu c k er -E h r en br in k  and Ja h n , 2001; Peuck er -E h r e n b r in k  and 

Ra v iz z a , 2000b) than that seen in the laterites (80 to 1400 ppt). Second, average 

continental crust also has a relatively high 187Re/1880 s ratio (E sser  and Tu r e k ia n , 

1993; Peuck er -Eh r en b r in k  and Ja h n , 2001; Peu c k er -Eh r en b r in k  and R a v iz z a , 

2000b) and thus ancient continental crust would be expected to develop a radiogenic

187 188Os/ Os isotope composition, consistent with the measurements for some of the 

Dharwar lithologies. It is possible to invoke the input of specific rock types, for
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example, the weathering and erosion of ultramafic peridotites which possess high Os 

concentrations and radiogenic Os compositions (e.g. (Reisber g  and Lo r a n d , 1995; 

Sn o w  and Re isb e r g , 1995)). However, such peridotites do not normally possess 

unradiogenic Sr and radiogenic Nd compositions and so are unlikely to account for the 

variations seen in those systems (e.g. (Ja c o b se n  et al., 1984; R a m po n e  et al., 1996). 

Alternatively it is possible that if the aeolian material was weathered prior to deposition 

then the Os concentration and isotope concentration in this residual material may be 

very different from that of the bulk rock from which it was sourced.

Therefore, while aeolian input is likely to have had some influence on the Re-Os 

isotope system in the laterites, the nature and extent of this input is difficult to assess. In 

any event, if aeolian deposition is responsible for the external input to the laterites then 

this must have occurred while the groundwaters were still actively redistributing 

elements within the profile or else the patterns of change, including that at the 

watertable would be obscured.

7.5.4.3. Groundwater input

The chemical variations observed in both profiles provide clear evidence of the 

role of groundwater in the redistribution of elements. In particular, the oxic-suboxic 

stratification provides a means for dissolution, transport and precipitation of both Re 

and Os. This raises the possibility that material may be gained or lost from the profile, 

not only by vertical movement from in situ weathering or aeolian input, but also by 

lateral movement of solute-laden groundwaters. The laterite at Bidar is remote from 

basement lithologies and developed upon the highest elevations. Consequently, there is 

no topography or adjacent rock types to drive a flow of externally sourced groundwater 

towards the profile. However, this does not preclude the input of groundwaters from the
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breakdown of the Ambenali formation itself. As was shown in section 7.5.3.1 the Os 

isotope composition of the laterite at Bidar can be accounted for by derivation from the 

parent basalt, but does demand Os enrichment which could have been facilitated by Os- 

rich groundwaters.

Groundwaters carrying externally derived Os are much more likely to be present 

in the laterite at Goa, not only because of the low lying topographic position but also the 

presence of diverse surrounding rock types. Many of the surrounding rocks are from 

Archean and Proterozoic lithologies of the Dharwar craton, and therefore be expected to 

possess radiogenic Os isotope compositions. However, some lithologies do possess less 

radiogenic compositions and it is possible that Os could be input via groundwater 

derived from a mixture of these sources. Alternatively, the chemical signature of the 

groundwaters may have been derived from the nearby Deccan basalts.

7.6. Laterites and the surficial Os cycle

The results presented here, together with those of reported previously (S h a r m a  

et al., 1998) suggest that laterites commonly possess much less radiogenic Os isotope 

compositions than their parent rock, and may also have much higher Os concentrations. 

Significantly, the laterites are also much less radiogenic and have much higher Os 

concentrations than average upper continental crust. Given the extensive geographical 

coverage of laterites (~30% of the exposed continental crust (T a r d y , 1997), and their 

influence on the surface water cycle (nearly 50% of continental drainage flows through 

laterite terrain (Ta r d y , 1997) it seems likely that they will exert a significant influence 

on the movement of Re and Os between the continents, oceans and atmosphere.

During their formation laterite soils may initially act to sequester Os mobilised 

by weathering (either from groundwaters or aeolian input). However, over time the
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relatively unradiogenic Os isotope composition from the weathering and erosion of 

laterite topsoils is likely to influence the composition of rivers and dust that they source. 

There is little detailed data for rivers draining laterite terrains, but, in general global 

river data suggest that the riverine 1870 s/1880s isotope composition is actually more 

radiogenic than the average continental crust (Le v a sse u r  et al., 1999; Peucker- 

Eh r en b r in k  and R a v iz z a , 2000b), possibly due to the effects of incongruent 

weathering. An upper limit of the Os contribution to the oceans from mineral aerosols 

can be calculated, from estimates of the global aerosol flux (e.g. (D u c e  et al., 1991) and 

the Os content of average continental crust (E sser  and Tu r e k ia n , 1993; Peuck er- 

Eh r en b r in k  and Ja h n , 2001; Peu c k er -Eh r en b r in k  and R a v iz z a , 2000b), which 

suggests about a 10% contribution from aerosols (e.g. (Peu c k er -Eh r e n b r in k  and 

R a v iz z a , 2000b). However, if 30% of that aeolian flux is derived from laterite topsoils 

(reflecting the continental coverage) then at least some aerosols may contain a much 

higher Os content than has previously been considered.

Changes in the balance of Os sequestered or released by laterites might be 

expected to accompany tectonic or climatic change. For example, uplift or cooling may 

lead to their enhanced physical weathering, and in particular, periods of global aridity 

will result in an enhanced dust flux from the continents. Conversely, during periods of 

global warming laterite formation may be enhanced (D eq u in c ey  et al., 2002).

7.7. Summary

Laterite weathering profiles at Bidar and Goa developed on different rock types, 

with different ages and a time interval of ~40 Ma between periods of laterisation. 

Nevertheless, the profiles are very similar, progressing from unaltered bedrock upwards 

to increasingly altered saprolite and an uppermost Fe-rich iron crust. Both profiles also
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preserve a watertable that is coincident with significant major and trace element 

variation.

Platinum Group element enrichment in laterites is well documented, and the 

data from this study confirms that both Re and Os are highly enriched in the laterite 

relative to the parent rock. The pattern of Re and Os enrichment and depletion, 

particularly at the level of the watertable indicates that both elements are mobile. The 

level of Os enrichment is far greater than that of Re, which is reflected in the decreasing

187 188 187 188Re/ Os ratio and corresponding decrease in Os/ Os up profile. Laterite

187 188Os/ Os ratios are always less radiogenic than the parent bedrock that they developed 

from, consistent with previous work (S h a r m a  et al., 1998).

The origin of the high Re and Os concentrations in the laterites remains unclear. 

Previous isotope studies of the laterite at Bidar have concluded that aeolian input to the 

profile must have occurred. Nd and Sr isotope data suggest that the source of this 

material was ancient continental crust (M a s o n , 2000), while Li isotopes indicate that 

this material has experienced significant weathering prior to deposition (K isa k u r e k  et 

al., 2004). However, for Os most potential crustal sources have low Os concentrations 

demanding significant aeolian deposition or the pre-concentration of Os in aerosols 

(perhaps as residues from weathering). Similarly average crustal sources are too

187 188radiogenic to account for the unradiogenic Os/ Os compositions observed in both 

laterites. Alternatively, the Re and Os may have been transported into the profile by the 

lateral movement of solute-laden groundwaters.

The Os concentration in laterites is similar to that found in Os-rich rock types, 

such as organic-rich sediments (Jaffe  et al., 2002; Peu c k er -E h r en b r in k  and 

H a n n ig a n , 2000; S ingh  et al., 1999) and ultramafic peridotites (R eisbe r g  and 

Lo r a n d , 1995; Sn o w  and Reisber g , 1995), but in contrast to those lithologies laterites
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comprise a significant part of the continental land surface, and play an active role in the 

surface water cycle. Under those circumstances laterite formation or weathering is likely 

to exert a significant influence on Os behaviour in the surface environment, and that 

influence is itself likely to be highly sensitive to climatic or tectonic change (cf. 

(D eq u in c ey  et al., 2002).
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Appendix A
Analytical techniques and experimental methods

Appendix A provides supporting data for Chapter 2 and includes:

• Column calibrations for Mg isotope analyses (Appendices A1 and A2)

• Data regarding reproducibility o f  standards for rock analysis by XRF and ICP- 

MS and water analysis by ICP-MS (Appendices A3 to A9)

• Reproducibility o f  standards during Li isotope analyses (Appendix A10)

• Reproducibility o f  standards during Mg isotope analyses (Appendices A l l  and 

A12)

• Solution and total procedural blanks during the dissolution experiments 

(Appendix A13)



Appendix A Methods

Appendix A1

Column calibration for the separation of magnesium from iron using an anion column. The sample was 
eluted using 2ml aliquots of 6 N TD HC1. Concentrations are in ppb. Yields are calculated by comparing 
the total of each element that is recovered with the elemental abundances in the standard (Wt %).

BIR-1

v o l (m l) Na Mg A1 K Ca Ti Fe
2 16.3 79.4 123 0 i l l 8.54 0.35
4 6.58 16.1 29.6 0 20.8 1.91 2.87
6 3.79 0.21 4.00 0 0.50 0.04 0.45
8 4.69 2.16 27.0 0.43 0.41 0.22 7.25
1 0 3.76 0.19 3.90 0 0.45 0.04 0.33
1 2 4.09 0.18 4.06 0 0.16 0.04 0.58
14 3.09 0.13 3.19 0 0.33 0.04 0.38
T ota l (n g) 84.6 197 389 0.86 268 21.7 24.4
Y ie ld  (% ) 157 84 119 100 91 94 8

AGV-1

v o l (m l) Na Mg A1 K Ca Ti Fe
2 256 88.6 895 226 311 60.5 1.48
4 15.2 5.27 39.6 6.58 17.7 6.55 1.52
6 3.50 0.14 3.36 0 0.57 0.03 1.17
8 3.91 0.13 2.45 0 0.82 0.03 1.16
1 0 3.52 0.13 3.60 0 0.27 0.02 1.03
1 2 3.14 0.18 1.82 0 2.28 0.07 0.90
14 5.09 0.22 5.12 0 0.68 0.07 1.10
T ota l (n g) 581 189 1900 435 667 134 16.7
Y ie ld  (% ) 84 93 95 82 110 97 2
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Appendix A2

Column calibration for the separation of magnesium using a cation column and 2.5ml aliquots.

DSM-3 Cation concentration (ppb)

2M HC1 (ml) Na Mg A1 K Ca Ti Cr Fe

2.5 0 0.00 0 1.94 0 0.03 6.84 1.00

5 0 0.08 0 2.93 0 0.06 8.98 0.99

7.5 0 31.7 0 2.71 0 0.05 8.23 0.84

1 0 0 29.7 0 2.95 0 0.05 6.75 0.93

12.5 0 0.11 0 3.21 0 0.06 6.66 0.52

15 0 0 0 3.25 0 0.04 6.85 0.79

17.5 0 0 0 2.27 0 0.04 6.67 0.38

2 0 0 0 0 2.70 0 0.03 7.12 39.5

22.5 0 0 0 2.65 0 0.03 6.14 0.92

25 0 0 0 2.93 0.29 0.03 5.69 0.83

yield (%) 102

BG1-A

2M HC1 (ml) Na Mg A1 K Ca Ti Cr Fe
2.5 1.3 0.2 0.1 2.4 1.6 0.33 8.4 1.5

5 0 0.0 0 3.0 2.4 8.14 9.1 1.1

7.5 0 45.1 0 2.1 2.8 0.51 9.9 7.4

1 0 0 44.0 0 2.4 2.5 0.06 8.1 108

12.5 0 0.1 0 5.8 2.9 0.05 6.5 36.9

15 0 0 0 2.8 1.4 0.05 6.6 1.5

17.5 0 0 1.6 2.8 1.3 0.04 6.8 0.6

2 0 0 0 16.0 2.0 0.7 0.03 6.8 0.5

22.5 0 0 51.8 2.3 0.2 0.02 6.3 0.7

25 0 0 48.6 2.8 0.0 0.03 6.6 0.7

yield (%) 99
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Appendix A3

Standards run during XRF analyses.

w t. % WS-E WS-E WS-E OUG94 OUG94 OUG94

1 2 recommended 1 2 recommended

S i0 2 51.25 51.24 51.10 70.05 70.17 69.95
T i0 2 2.416 2.424 2.400 0.309 0.313 0.314
a i 2o 3 13.84 13.80 13.78 14.51 14.57 14.66
Fe20 3 13.22 13.23 13.15 3.04 3.05 3.05
MnO 0.170 0.170 0.171 0.075 0.074 0.075
MgO 5.56 5.59 5.55 1.06 1.06 1.04
CaO 8.95 8.89 8.95 1.35 1.34 1.34
Na20 2.46 2.47 2.47 4.60 4.59 4.60
k 2o 1 .0 1 0.99 1 .0 0 2.98 2.99 2.96
P2O5 0.299 0.299 0.302 0.163 0.168 0.165
LOI 0.85 0.85 0.85 1.97 1.97 1.97
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Appendix A4

Major element analyses of 
Concentrations are in Wt %.

JB-2 (JGS) measured by ICP-MS over the course of this study.

Na Mg AI K Ca Mn Fe

Standard JB-2 JB-2 JB-2 JB-2 JB-2 JB-2 JB-2
Average 1.57 2.94 8.21 0.35 5.71 0.17 10.06
2 c  (abs) 0.05 0.11 0.29 0.02 0.28 0.007 0.43
2 c (%) 3.4 3.6 3.5 5.5 4.8 4.3 4.3

Certified 1.51 2.79 7.75 0.35 7.02 0.169 9.97

Appendix A5

Minor element analyses o f the rock standards JB-2 (JGS) and BIR-1 (USGS) over the course of this 
study. Concentrations are in ppm.

Standard

Li

BIR-1

Ti

BIR-1

V

BER-1

Cr

BIR-1

Co

BIR-1

Ni

BIR-1

Cu

BIR-1
Average 3.33 6030 341 428 52 181 119

2 o (abs) 0.113 320 18.6 20.4 2.1 8 4.6

2 c  (%) 3.38 5.30 5.46 4.78 4.02 4.43 3.89

Certified 3.6 ±0.2 5760 ± 60 310 ±11 370 ± 8 52 ± 2 170 ± 6 125 ± 4

Standard JB-2 JB-2 JB-2 JB-2 JB-2 JB-2 JB-2
Average 8.67 6860 26.1 37.8
2 o (abs) 0.4 375 2.4 2

2 c  (%) 4.57 5.46 9.19 5.40
Certified 7.78 7100 575 28.1 38 16.6 225

Zn Rb Sr Zr Ba Th U

Standard BIR-1 BIR-1 BIR-1 BIR-1 BIR-1 BIR-1 BIR-1
Average 69.7 0.21 109 14.7 6.6 0.03 0.01
2 c (abs) 1.7 0.01 2.8 0.39 0.2 0.002 0.001
2 c (%) 2.49 3.63 2.60 2.63 3.04 5.35 5.56
Certified 70 ± 9 110 ± 2 18± 1 7 (± nd)

Standard JB-2 JB-2 JB-2 JB-2 JB-2 JB-2 JB-2
Average 109 6.32 177 227 0.25 0.15
2 c  (abs) 3.87 0.32 6.97 8.7 0.02 0.02
2 c  (%) 3.55 5.01 3.93 3.81 9.53 13.74
Certified 108 7.37 178 51.2 222 0.35 0.18

283



Appendix A

03

5

Q M
CO
«

2
S

D >  S2

5  5

£  2? s s P P03
h» 3 S ia

kk

o
o
p0

1
§

o  o
S  jfi

P  o\
o  o*

p  $
to g

o <*> 
o  u>
CO o

O  O  
o  <7\

to Cl

g ^O' to

S3 95 55
5 S S USEEE

H
0
t=s

to to to to to to to to

5 2 s § 2 § W W W
I—• H-« P

0 0 0 0 0 0 0 0 0 0 K1 p O P P P O tj Ui If A 
O  '6

to to to to to to
8  8  i  §  §  §

to J- 
o o

K3 to to f-

O o\ Ia> w Ia Ui UU i Ui Ui Ui Ui A►-* <2 l O S - r ' f ' P ^ y W M Q " A Ul lit A
w K § 8 8 5

o c » N & ' 0 \ f o < - i o o c o c i  J  ^  5  o  m  oi
u ioaot ot ot ^-oCofoo — °i t  -  io o ►-

^ 2 S SM ^ ^

o> to^ s

CA CAs s (0 '•t Ul ffl IA IA
“  b  5  §  S  2

u  h  b  ^  !u  u  u  u  m° A « W M s J O i ^ M0' 0

^ • ! S ! 8 S S s ! g S S S

K P P P P P P P P P Pv p o o o o o o o o o^ W C 0 V 0 0 0 \ 0 \ 0 O ^ ^ H -

« i £ 5 S S 5 S S S 5

“ 8 8 8 8 o n m S 3 8

'“ S c o A - w ^ j k i A o i e

^P^tOtOUJUJfOtOtOtO
' 1 i 3 i s i o « b o » ' j i o i A

o  u  u  u  u

9 ° £  %  $  $  $M W O IA M ui

go p  P p  p  P
->J O  O  O
A  S  t w

® C\ 4i tA O O

.. n  _ •  m  1-4 »-«
N  L ,  w  ( O  f j  w
00 &i -d -O VD v»

?

I 1ra

{ft

K

P

s?

B

&

on*1

a
0

Methods

284

Appendix A
6

M
ajor 

and 
m

inor 
elem

ent 
analyses 

of 
the 

river 
w

ater 
standard 

S
L

R
S

-1 
during 

this 
study. 

C
o

n
cen

tratio
n

s 
are 

in 
p

p
b

.



Appendix A Methods

> Ul CA W (A Ul U (A tfl
0  0

*

OS CO 05 W CO OJ CO
8 8 8 8 8 8 8
I i  ^  §  S i  fc i  fc»
H H Ni H h> H K(A tA U (A Ul (A (A

l O t O t O t O t O l O l O t O t Oo o o o o o o o o
o o o o o o o o o0\0\0\0\C\ 0\ 0\ 0\ 0\

o o o o o o o o o o o
OVOVOVOOOO»-*^OVO

w ° ° o o o o o o o o o o

> NUi y i U | Ui u u i u i v ^ u <" W W l d U - O t J U i i ' W N

&3 fcJ 8  b i  8  
8 S S 8

~ » O t » U J Ui p UWWP pS r ' u i O ) O t 5 ( d U i - i 5 w*- ioC^Kiwm' 4u«u>' Ju>

, , M U)U)UU>UU>UUU>U> 
5 0  0  0  0

s g g B g B S K K g g SM o o c 5 o o o o o o o

P  r

P  J*.
oo r*
VO t o

§ £ £ S £ * $i- b\ « o bi w «

p o o o o o p p o p o
- J  g ' J ' J M n J vJ O S O V O O ' J

y j O P P O O p O P P P P

' f t S O ' - W W « J M O O “ VO

►- 0 0 0  — 0 0 0 0 0 0 0  
S s s i s s g s i s s s i s i e

p  p«e a ■hJ ■sj vj s) n) >)
1/1 VO ON

^O^^O^VOVOVOMVOMJO
^ ! 3 i S » 2 2 « s S s 2 s 8

to to i5 to to to to
Q  Q  O  Q  Q  Q  c o
o  o  o  o  o  o  oC\ OV OV ff\ OV C\ ov

o O O o o o o o p
o p Ui p u> p U w u>VAVi OJ u> to Ul 00 00

►- *. vpyowwu»i *>t j i

VO
ve 

VO ov
00 o  o  o

^ ' w  ' O V ( V » i t U \ U 3 W

^ s U0)^U>UU10)b>
S § S | 3 g S i l §

M  w  W  w  K)W T̂* ^ ''J• S  o  ^  oo .  _   _  _

U> OQ
^ W Q S i & K  i j Hg I  g g 8 S 8

£ © P P P P P P P P

f j o p p o o o o p o
W V i O O W * —  O - 0 V0~4

o o p o o  p o p p 
i ^ i o § o t s 6 t o 8 8

00 00 00 00 -4 -1 O * M w \t) A

u > ! o » r * r * r J ^ ! - * ok>SoU>OOji.OOv
£2 p- s

s?

?

sTO

K

p

cn
o

5?

p

S’

on
*1

W

285

A
ppendix A

7
M

a
jo

r 
and 

m
in

o
r 

e
le

m
e

n
t 

a
n

a
ly

se
s 

of 
the 

in 
h

o
u

se
 

riv
e

r 
sta

n
d

a
rd

 
S

c
o

2
/1

5
 

d
u

rin
g

 
th

is 
s

tu
d

y
. 

C
o

n
c

e
n

tra
tio

n
s

 
are 

in 
p

p
b

.



Appendix A Methods

Appendix A8

Major and minor element analyses of the river water standard SLRS-4 measured during this study (n=l 1).

Li (ppb) Na (ppm)

Cation concentrations 

Mg (ppm) A1 (ppb) Si (ppm) K (ppm) Ca (ppm)

Measured 0.51 2.1 1.5 51 2.04 0.60 5.5

(±)SD 0.01 0.08 0.05 3.2 0.11 0.02 0.18

Certified 0.54 2.4 1.6 54 1.86 0.68 6.2

(±)SD 0.07 0.2 0.1 4 0.05 0.02 0.20

Mn (ppb) Fe (ppb) Ni (ppb) Cu (ppb) Zn (ppb) Sr (ppb) Ba (ppb)

Measured 3.3 96.5 0.8 1.84 l.l 39.5 12.8

(±)SD 0.1 5.4 0.03 0.07 0.04 1.24 0.16

Certified 3.37 103 0.67 1.81 0.93 26.3 12.2

(±)SD 0.08 5.0 0.08 0.08 0.10 3.20 0.60

Appendix A9

Standard anion analyses (n=4).

Anions (ppm) chloride nitrate phosphate sulphate

concentration 50 10 10 50

measured (n=4) 51.01 10.02 10.04 50.44

(±) 2SD 7.3 1.1 0.8 6.3

286



Appendix A Methods

Appendix A10

Error propagation using the standard-sample bracketing technique

1. The standard-sample bracketing technique normalises the isotope ratio of a sample 

(S) to the mean value of the isotope ratio of the bracketing standards (X).

Thus the final ratio (Y) = StX.

2. The total error associated with the two standards, (AX), is:

2

where AA and AB are the errors on standards A and B respectively.

3. The error on the sample measurement (AS) can be combined with the error on the 

standard measurements (AX) to find the total error on the isotope ratio (AY):

V(A^)2 +(AB):

Example: 7/6Li errorerror

LSVEC 13.94251 0.00083

Sample 14.37965 0.00073

LSVEC 13.94383 0.00098

„ -J(0.00083)2 +(0.00098)2
AX  = - ------------------------------- = 0.00064

2

Y = 14.37965/13.94317 = 1.0313

at, , I 0.00073 Y f  0.00064 YAT = l .0 3 l3 x J  -------------  +-------------
VU4.37965 J U3.94317J

So the 87Li isotope ratio = 31.3±0.07%o (la )  

= 0.000074
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Appendix A l l

Compilation of seawater standards (IAPSO) run during lithium isotope analyses on Neptune and Nu- 
Plasma (*) MC-ICP-MS.

Date 8 7Li (%o) E r r o r  (2a) Date S7Li (%o) E r r o r  (2a)

22/02/2007* 30.28 0.11 06/02/2008 30.82 0.14

22/02/2007* 31.13 0.12 07/02/2008 30.80 0.18
01/03/2007* 31.02 0.16 09/02/2008* 31.72 0.2
08/11/2007 30.67 0.09 10/02/2008* 31.45 0.17
08/11/2007 30.36 0.05 10/02/2008* 31.71 0.16
12/11/2007 31.10 0.07 02/04/2008* 30.43 0.19
22/11/2007 31.82 0.15 02/04/2008* 31.11 0.18
23/11/2007 31.38 0.25 02/04/2008* 30.74 0.16
24/11/2007 31.13 0.07 02/04/2008* 30.57 0.17
24/11/2007 31.43 0.09 02/04/2008* 30.71 0.15
24/11/2007 31.39 0.05 02/04/2008* 30.80 0.21

24/11/2007 31.32 0.06 08/05/2008* 30.71 0.17
24/11/2007 31.20 0.09 08/05/2008* 30.97 0.14
24/11/2007 31.74 0.02 08/05/2008* 31.18 0.14
24/11/2007 30.95 0.08 09/05/2008* 30.76 0.11
24/11/2007 31.38 0.09 09/05/2008* 31.11 0.17
24/11/2007 31.28 0.08 09/05/2008* 31.24 0.24

25/11/2007 31.63 0.09
26/11/2007 31.78 0.07
26/11/2007 31.36 0.10
17/12/2007 30.92 0.11 Average 31.08 (n=40)

18/12/2007 30.62 0.14 2  a 0.823
18/12/2007 30.54 0.17
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Appendix A12

Compilation of CAM-1 standards run during magnesium isotope analyses on Neptune MC-ICP-MS.

Date 826Mg (%o) E r r o r  (2a) 825Mg (%o) E r r o r  (2a) 825Mg:826Mg

26/02/2008 -2.60 0.05 -1.35 0.03 0.521

26/02/2008 -2.60 0.03 -1.36 0.02 0.521

26/02/2008 -2.51 0.04 -1.33 0.02 0.530

26/02/2008 -2.60 0.07 -1.34 0.04 0.514

27/02/2008 -2.74 0.11 -1.41 0.05 0.512

27/02/2008 -2.54 0.04 -1.30 0.02 0.511

27/02/2008 -2.63 0.03 -1.37 0.02 0.521

13/05/2008 -2.52 0.04 -1.29 0.03 0.512

14/05/2008 -2.57 0.06 -1.33 0.03 0.517

15/05/2008 -2.50 0.07 -1.29 0.04 0.516

16/05/2008 -2.76 0.03 -1.42 0.03 0.516

16/05/2008 -2.66 0.04 -1.38 0.03 0.518

16/05/2008 -2.61 0.03 -1.37 0.02 0.523

17/05/2008 -2.66 0.03 -1.37 0.02 0.515

17/05/2008 -2.66 0.04 -1.36 0.02 0.510

05/06/2008 -2.63 0.02 -1.33 0.03 0.505

05/06/2008 -2.63 0.02 -1.37 0.02 0.521

06/06/2008 -2.68 0.04 -1.37 0.03 0.512

06/06/2008 -2.66 0.03 -1.36 0.02 0.512

07/06/2008 -2.66 0.03 -1.38 0.03 0.517

07/06/2008 -2.58 0.02 -1.34 0.03 0.520

07/06/2008 -2.64 0.02 -1.35 0.02 0.511

09/07/2008 -2.56 0.03 -1.33 0.03 0.519

09/07/2008 -2.57 0.02 -1.33 0.02 0.519

Average (n=24) -2.62 -1.35 0.516

2  a 0.13 0.06 0.011
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Appendix A13

Compilation of IAPSO seawater standards run during magnesium isotope analyses on Neptune MC-ICP- 
MS.

D a te 8 26Mg (%o) Error (2a) 8 25Mg (%o) Error (2a) 8 25Mg:8 26Mg

26/02/2008 -1.22 0.02 -0.62 0.01 0.510

26/02/2008 -1.25 0.05 -0.64 0.03 0.510

26/02/2008 -0.95 0.08 -0.49 0.04 0.515

12/09/2007 -0.86 0.02 -0.44 0.02 0.514

12/09/2007 -0.85 0.02 -0.43 0.02 0.504

12/09/2007 -0.89 0.03 -0.47 0.02 0.523

13/09/2007 -0.93 0.2 -0.50 0.1 0.540

13/09/2007 -0.84 0.03 -0.43 0.02 0.516

12/05/2008 -1.04 0.02 -0.55 0.02 0.526

12/05/2008 -1.05 0.03 -0.55 0.02 0.523

12/05/2008 -1.09 0.11 -0.59 0.05 0.543

12/05/2008 -0.85 0.26 -0.43 0.12 0.504

13/05/2008 -0.84 0.19 -0.44 0.11 0.525

16/05/2008 -1.15 0.05 -0.58 0.03 0.499

16/05/2008 -1.12 0.05 -0.57 0.03 0.508

05/06/2008 -1.08 0.02 -0.59 0.02 0.544

05/06/2008 -1.04 0.03 -0.56 0.02 0.536

06/06/2008 -1.08 0.02 -0.56 0.02 0.519

06/06/2008 -1.00 0.02 -0.50 0.02 0.500

07/06/2008 -0.89 0.02 -0.45 0.02 0.509

Average (n=20) -1.14 -0.58 0.518

2  CT 0.33 0.16 0.028
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Appendix B
Greenland Rivers

Appendix B provides supporting data for Chapters 3 and 4 concerning the analyses o f  

glacial rivers in Greenland and includes:

• Field measurements for Greenland river samples (Appendix B l)

• Cation measurements for all phases (Appendices B2 to B4)

• Results o f  leaching experiments carried out on the suspended sediment 

(Appendix B5)

• Li isotope results for all phases andfor leaching experiments (Appendices B2 to 

B5)

• Saturation indices o f  the ultrafiltered Greenland river waters (Appendix B6)



Appendix B Greenland Rivers

Appendix B1

Field measurements for Greenland river samples.

Sample Latitude Longitude Origin PH
T

(°C)
TDS
(pS)

TSS
(g/1)

Alkalinity
(meq/1)

GR1 N 67°04.666' W 50°16.935' Glacial 8.48 4.2 9.21 0.435 0.073
GR2 N67°01.745' W 50°35.683' Glacial 7.91 4.2 14.4 0.598 0.098
GR3 N 67°09.129' W 50°02.790' Glacial 6.32 0 .6 2 . 6 0.229 0.023
GR4 N67°01.057' W 50°39.869' Glacial 7.11 6 17.8 0.846 0.119
GR5 N 67°01.172' W 50°40.747' Glacial 7.18 3 9.77 0.399 0.145

GR6 N 66°59.057' W 50°27.051'
Non­

glacial 7.61 12.62 61.6 0.133

GR7 N 66°59.243' W 50°26.962' Glacial 7.3 8 .6 12.7 0.545 0.151
GR8 N 67°03.269' W 50°24.644' Glacial 7.2 5.5 10.7 0.444 0.099
GR9 N 67°09.060' W50°13.101' Glacial 7.18 5.3 6.77 0.266

GR10 N 66°58.09' W50°57.101'
Non­

glacial 6.96 10.5 2650 0.162 0.358

GR11 N 66°55.915' W 50°46.448'
Non­

glacial 6.81 1 0 25.1 0.004 1.74

GR12 N 67°03.606' W 50°25.983'
Non­

glacial 7.65 19.3 198 0.014 0.532

GR13 N 66°59.089' W 50°41.864'
Non­

glacial 8.23 14.2 55.3 0.556

GR14 N 66°57.096' W 53°39.940'
Non­

glacial 8 .1 7.5 1 2 0 0 . 0 0 2 0.784

GR15 N 67°05.945' W50°15.950'
Non-
crlar.inl 8.25 12.3 106 0.073
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Appendix B Greenland Rivers

Appendix B7

Magnesium isotope ratios for the dissolved, suspended (SP) and bedload (S) phases in the Greenland 
rivers.

SAMPLE [Mg]
ppm

8 26Mg
(%o)

Error
f2<7j

8 25Mg
(%oo)

Error
(2a)

GR1 199 -1.04 0.04 -0.522 0.03
GR2 264 -1.07 0.08 -0.541 0.05
GR3 81 -1.31 0 . 1 0 -0.670 0.05
GR4 278 -1 . 1 2 0.06 -0.561 0.03
GR5 274 -1.17 0.04 -0.579 0 . 0 2

GR7 329 -1.19 0.05 -0.640 0.03
GR8 347 -1.18 0.05 -0.590 0.03
GR9 233 -1.06 0.03 -0.539 0 . 0 2

GR11 2071 -0 . 6 6 0.08 -0.348 0.05
GR12 18622 -0.58 0.07 -0.323 0.04
GR13 2794 -0.65 0 . 0 2 -0.342 0 . 0 2

GR15 4853 -0.62 0.03 -0.320 0.03

[Mg] Wt %
GR1-SP 2.07 -0.41 0.03 -0.207 0 . 0 2

GR3-SP 1.79 -0.27 0.04 -0.134 0.03
GR5-SP 1.92 -0.44 0.03 -0.234 0 . 0 2

GR8 -SP 1.97 -0.46 0.03 -0.243 0.03

GR1-S 0.99 -0.53 0.03 -0.252 0 . 0 2

GR3-S 1.17 -0.39 0.03 -0.203 0 . 0 2

GR5-S 1 .2 0 -0.43 0.03 -0 . 2 2 0 0 . 0 2

GR8 -S 0.65 -0.44 0 . 0 2 -0 .2 2 1 0 . 0 2

GR11-S 1.06 -0 . 1 0 0 . 0 2 -0.054 0 . 0 2

GR12-S 0.94 -0.31 0 . 0 2 -0.162 0 . 0 2

GR15-S 1.24 -0.34 0 . 0 2 -0.183 0 . 0 2
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Appendix D
Laterite Data

Appendix D provides supporting data for Chapter 7 and includes:

• Lithology and mineralogy o f  the laterite profiles (Appendix D l)

• Major and trace element data for the two laterite profiles (Appendices D2 and 

D3)

• Re and Os elemental abundances and isotope ratios for the two laterite profiles 

(Appendix D4)



Appendix D Laterite data

Appendix D1

Lithology and mineralogy of the laterite samples from Bidar and Goa and the Bole samples from 
Ambenali.

Sample Depth Lithology Mineralogy

Bidar
(m)

(17°54.87’N, 77°32.39’E)

BB9 2 vermiform laterite Haematite, Goethite, Kaolinite

BB8 5 nodular laterite Haematite, Goethite, Kaolinite

BB7 6 base of laterite Haematite, Goethite, Kaolinite

BB6 11 laterite base/top o f saprolite Haematite, Goethite, Kaolinite

BB5 13 saprolized basalt Haematite, Goethite, Kaolinite, Magnetite

BB4 15 reddened saprolite Haematite, Goethite, Kaolinite, Magnetite

BB3 26 deeply weathered basalt Haematite, Goethite, Kaolinite, Magnetite

BB2 35 low alteration basalt Anorthite, Augite, Illite

BB1 47 unaltered basalt Anorthite, Augite

Goa
(l5°28.44’N, 73°52.35’E)

SQ14 0 indurated laterite Iron, traces o f clay and quartz

SQ13 2.5 indurated laterite Iron, traces o f clay and quartz

SQ12 3.5 indurated laterite Iron, traces o f clay and quartz

SQ11 7.5 massive laterite Iron 96%, Quartz 2%, Clay 2%

SQ10 8.5 semi-indurated laterite, nodules 
fusing together

Iron 95%, Quartz 2%, Clay 3%

SQ9 12 increased nodule density and size Iron 50%, Quartz 45%, Clay 5%

SQ8 13.5 base o f nodular laterite, haematite 
segregations present

Quartz 50%, Iron 45%, Clay 5%

SQ7 14 laterite base/ top o f altered 
greywacke

Quartz 75%, Iron 22%, Biotite 2%, 
Muscovite 1%

SQ6 15 top of reddened greywacke, soft 
and well consolidated

Quartz 75%, Biotite 12%, Feldspar 6%, Iron 
5%, Muscovite 2%

SQ5 22.5 soft weathered greywacke, base 
o f weathered zone

Quartz 74%, Biotite 20%, Feldspar 2%, 
Muscovite 2%, Chlorite 1%, Opaques <1%

SQ4 25.5 Softer, white weathered 
greywacke

Quartz 80%, Biotite 8%, Feldspar 8%, 
Chlorite/Muscovite 3%, Opaque 1%

SQ3 30 lighter greywacke from start o f 
weathered zone

Quartz 75%, Biotite 12%, Feldspar 8%, 
Opaque 2%, Other 3%

SQ2 34 unaltered greywacke Quartz 75%, Biotite 15%, Feldspar 5%, 
Opaque 2%, Other 3%

Ambenali
(cm)

(17°57.10’N, 73°34.58’E)

MPr2a 10 uniform fine grained ash

MPr2b 70 Blocky, lithified, reworked ash

MPr2c 90 Fine-grained ash

MPr2d 140 Weathered flow top material
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0.221 
13.9 

1.42 
0.022 

0.29 
1.42 

3.75 
4.54 

0.050 
0.36

IND120 
73.5 

0.130 
14.3 

1.15 
0.026 

0.47 
1.65 

4.19 
3.72 

0.051 
0.55

Bhlm
aLat 

16.6 
0.341 

2.33 
1.34 

0.061 
0.95 

423 
0.38 

0.34 
0.092 

34.6
BIT_________________________

55J________
0.016________

018_________440________
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0.019_______
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N

00
ON

M
A t o  t o

ON NO
— CO
£ S S£6  v*

ON t o La ft i» UN w ON •O VO • O 00 0 0  ^

ftftooMtjUftui *ss«•- U> I*
ift -ft -ft00 CO fs> 
ON VO 00

i j  O n o o  w i . w u o o ( O i - A  f t

Ul — K> >— Ul VO '— <» — ~4 ~J

5 8 8 2

5  VO NO tzP  v l  1^ "

-  -  Wft
8 3 2 3

— Ul-OWJtfUlO'jgj 
W^OWqOOiW^,

£S8E*25itfS®00VO—‘K>'OU»-IOl<— uiuiuiuibibibuibo

i sg s s s s^ p g s s

M
4̂

|—1 
$

u>
2

*-#
Ui s 00Ul1—1

JOsUl00
ft o H-* UNOnto 1ft M

coiaiv w ® A 'OWNHCCO''6, ^
nnt^OOft^U'JU)S S v o P ^ S P P ^ftbovow*- b°'4WM

S'

8

1 ¥

!  ¥

wp

S' »*{y»i
Hp»

Cft«

I  <

I P

I  9

320

A
ppendix 

D3 
- Trace 

elem
ent data for die Bidar and 

Goa 
laterite profiles.



Appendix D Laterite data

Appendix D4 - Re-Os elemental and isotopic data for the Bidar and Goa laterite profiles

Sample
Os

(ppt)

Re
(ppt)

187Os/188Os Error 187Re/188Os

B idar laterite
BB9 863 3410 0.3313 0.0002 19.7
BB9* 887 3540 0.3375 0.0013 20.0
BB8 1410 523 0.4295 0.0002 1.88
BB7 901 10500 0.4634 0.0003 59.4
BB6 87 1390 0.4505 0.0007 81.7
BB5 508 6190 0.4382 0.0036 61.8
BB4 491 5610 0.4695 0.0003 58.1
BB4* 550 5730 0.4725 0.0004 53.0
BB3 83.1 883 0.4964 0.0006 54.2
BB2 4.27 2100 1.1863 0.0028 2286
BB1 4.35 719 0.9805 0.0028 896
BB1* 4.62 736 0.9876 0.0026 863

B asalt bole
MPr 2a 35.3 273 0.1712 0.0006 37.4
MPr 2b 20.1 97 0.1713 0.0003 23
MPr 2c 43.7 1080 0.1572 0.0004 119
MPr 2d 945

G oa laterite
SQ14 224 196 0.4764 0.0004 4.4
SQ13 492 1070 0.5475 0.0003 11.2
SQ13* 502 983 0.5565 0.0006 10.1
SQ12 404 142 0.5630 0.0006 1.8
SQ11 117 393 0.8154 0.0012 17.8
SQ11* 113 428 0.7803 0.0011 20.0
SQ10 324 175 0.5330 0.0004 2.8
SQ9 48.5 1070 1.7602 0.0017 128
SQ8 53.6 610 1.5895 0.0002 65.4
SQ8* 53.6 642 1.6350 0.0022 69.9
SQ7 40.4 155 2.0583 0.0014 23.1
SQ6 39.2 559 4.0769 0.0028 104
SQ5 42.1 801 4.3359 0.0021 142
SQ4 29.6 519 2.5299 0.0021 110
SQ3 44.4 458 5.1031 0.0054 82.0
SQ2 43.4 708 4.5568 0.0067 123
SQ2* 39.4 747 4.0495 0.0030 123
SQ1 46.7 909 68.005 0.0719 889

C ountry rock  
IND108 4.2 0.7426 0.0011
IND114 4.5 1.7662 0.0070
IND120 2.4 1.6692 0.0039
Bhima Lst 31.0 74 0.1752 0.0008 11.5
BIF 19.6 2830 1.3449 0.0037 786
'Errors shown are 2o mean; 1870 s /1880 s  ratios normalised using 192Os/188Os=3.08271 and corrected using measured 180 / 160  and 170 / 160  of 0.002047 
and 0.0037 respectively; Given isotope ratios are blank corrected. D.L. samples are below mass spectrometer detection limits.
* Duplicate results for the same laterite powder samples using the high pressure, high temperature microwave method for digestion (HP-HT).
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