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ABSTRACT

Endothelial cells from different tissues differ widely in the expression of 

junctional proteins like occludin and transporters like the transferrin receptor. The 

mechanism(s) responsible for the differential expression of these proteins is not 

known. In this project we have studied how the occludin promoter interacts with 

nuclear transcription factors (TFs) from brain and non-brain endothelium. EMSA 

data indicates the TFs Spl, Sp3 and YY1 are responsible for the specific binding 

to the occludin promoter in hCMEC/D3 cells, a transformed brain endothelial cell 

line. Using ChIP assays, we confirmed the interaction between these three 

transcription factors and DNA as these complexes were active in live cultured 

cells from transformed and primary brain endothelium. We investigated the 

expression and localisation of Spl, Sp3 and YY1 in these cells and compared with 

lung endothelial cells and report the specific association of the TFs Sp3 and YY1 

in brain endothelium which is absent in non brain endothelium. In addition, we 

have compared the activity of the occludin promoter in hCMEC/D3 cell to that in 

primary human dermal and lung endothelial cells by transfection with reporter 

vectors under the control of the full length and fragments of the occludin 

promoter. Our work identifies a group of transcription factors present in brain 

endothelium which may regulate the expression of the tight junction protein 

occludin. We propose a model whereby the TF Sp3 is necessary for the 

transcription of the occludin promoter in brain endothelium and YY1 negatively 

regulates promoter activity in non-brain endothelium by controlling access of Sp3 

to the initiation sites on the occludin promoter.
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1 Introduction

1.1 Endothelium

Endothelial cells which line the inside layer of blood vessels and the lymphatic 

system form the endothelium. This layer of cells constitutes all physiological 

communication between the circulation and the proximal tissue. Functions of the 

endothelium include maintenance of homeostasis, exchange of nutrients, 

trafficking of cells during an inflammatory response, regulation of vessel 

permeability, control of vasomotor tone and angiogenesis (Jaffe 1985; Nawroth, 

Kisiel et al. 1985; Simionescu and Simionescu 1986).

Structural differences in endothelium are associated with corresponding variations 

in capillary permeability (Fig 1.1) (Risau 1995). Throughout much of the body, 

the endothelial lining is continuous and capillaries with continuous endothelium 

are found in the lungs, muscle and central nervous system. In the brain the 

specialised blood brain barrier is the most restrictive of all continuous endothelia 

in the body and limits paracellular and transcellular traffic to and from the brain. 

Nutrients and molecules either diffuse through plasma membranes or via specific 

membrane transporters (Rubin and Staddon 1999).

However, the blood brain barrier is absent in the choroid plexuses and in the 

following organs: the pineal gland, subfornical organ, organum vasculosum of the 

lamina terminalis, paraventricular organ, median eminence, neurohypophysis, 

subcommissural organ and the area postrema. These structures are located around 

the third and fourth cerebral ventricles and commonly referred to as the
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circumventricular organs (CVOs) (Joly, Osorio et al. 2007). CVOs possess a 

specialised type of endothelium that is continuous but is characterised by circular 

transcellular gaps referred to as fenestrae. Presence of fenestrae enables important 

communication between the brain and the blood because fenestrated capillaries 

are relatively more permeable to unrestricted passage of high-molecular weight 

and polar substances.

Fenestrated capillaries resemble continuous endothelium in having an 

uninterrupted basement membrane but are characterised by regional thinning 

leading to the presence of circular transcellular gaps referred to as fenestrations 

(Stan 2007). The diameter of the fenestrae ranges from 60-80 nm and are readily 

permeable to hydrophilic molecules of low molecular weight and hence their 

location in tissues with high rates of fluid exchange such as the sinusoids of the 

liver, small intestine, glomeruli of the kidney, and in most endocrine glands. In 

the kidney and choroid plexus, signalling from the epithelial layer which is always 

in close proximity to the endothelium is believed to be important in the 

differentiation and maintenance of the fenestrae. High constitutive expression of 

VEGF which is known to induce permeability is highly expressed in epithelial 

layers and therefore could induce the phenotype of the fenestrated endothelium 

(Risau 1998).

Discontinuous endothelium found in liver, spleen and bone marrow has wide 

intercellular spaces, approximately 80-200 nm in width, and with no basement 

membrane. This allows for almost unrestricted transport of molecules from 

interstitium to the capillary lumen (Aird 2007).
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Freeze-fracture electron microscopy analyses have elucidated the differences 

between continuous and discontinuous endothelia. Tight junctional structures in 

the latter do not form a continuous barrier but as the term suggests a discontinuous 

series of stranded clusters. In addition, the spatial distribution of tight junction 

components within the endothelial cell membrane is different. Components of the 

tight junction are associated with either the internal (P-face) or external (E-face) 

membrane leaflets (Lane, Reese et al. 1992). Tight and leaky junctions are 

characterised by components with associations at the P-face and E-face 

respectively (Schneeberger and Lynch 2004). In the endothelial cells of the blood 

brain barrier, it has been found using immunogold labelling and freeze fracture 

technique that 57% of the particles are within the internal P-face and about 44% 

of the particles associate with the external leaflet (Kniesel, Risau et al. 1996) . 

This distribution contributes to the integrity of the blood brain barrier. In 

pathology, increased permeability is associated with a shift of components and 

enzymatic activities from the P-face to the E-face (Wolburg, Neuhaus et al. 1994). 

The molecular mechanisms involved in the gain and loss of P-face association of 

tight junctions are unknown.
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Figure 1-1 Structural Features of Adult Microvascular Endothelial 

Phenotypes

a  Continuous b Fenestrated c Discontinous

(Cleaver and Melton 2003)

(a) Continuous capillaries have no openings in their walls and are lined 

continuously with the endothelial cell body.

(b) Fenestrated capillaries have small openings, called fenestrae, which are 

covered by a small, nonmembranous, permeable diaphragm, and allow the rapid 

passage of macromolecules. The basement membrane of endothelial cells is 

continuous over the fenestrae.

(c) Discontinuous capillaries, also called sinusoids, have a large lumen, many 

fenestrations with no diaphragm and a discontinuous or absent basal lamina 

(Cleaver and Melton 2003).

Intercellular Lumen Fenestrae Intercellular cleft
cleft

Basement JNucieus 
membrane ° f  endothelial 

cell
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1.2 Blood Brain Barrier (BBB)

The blood-brain barrier (BBB) is formed by a complex network of endothelial 

cells, astroglia, pericytes, perivascular macrophages, and a basal lamina (Fig 1.3). 

It was first reported in 1885 by the German pathologist Ehrlich (Ehrlich 1885) 

and subsequent electron microscopy studies showed that intravenous administered 

electron dense particles, such as horseradish peroxidase, are prevented from 

entering the brain by the capillary endothelial cells (Reese and Kamovsky 1967).

Brain endothelial cells differ from endothelial cells in the periphery by forming 

continuous tight junctions (TJ) and lack fenestrations except in the 

circumventricular organs. TJs severely restrict passage of water-soluble 

compounds, including polar drugs and are the structural basis for the paracellular 

impermeability and high electrical resistance (Reese and Kamovsky 1967; Rubin 

and Staddon 1999). In comparison with transendothelial electrical resistance 

(TEER) values of 2-20 fXcm2 in peripheral capillaries, brain capillaries exhibit 

TEER values exceeding 1,000 flcm 2. In addition, the presence of very few 

endocytic vesicles (Sage, Wilson et al. 1998) limits transcellular transport and 

expression of specific transport systems and carrier molecules restrict entry to 

only required nutrients (Wolburg and Lippoldt 2002; Begley 2004). CNS 

endothelium is also characterised by the presence of increased mitochondrial 

content which contributes to about 8-11% of the endothelial cell volume in 

contrast to 2-5% in non-CNS endothelial cells (Oldendorf, Comford et al. 1977).

Structurally, the basic unit of the blood brain barrier is composed of endothelial 

cells which completely surround the lumen of a capillary. Pericytes associate with
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the endothelial cells at the abluminal surface and the cells are embedded in a 

common basement membrane which is about 30 to 40 nm thick and composed of 

extracellular matrix proteins including laminins (8 and 10), collagen type IV, 

heparan sulphate proteoglycans and fibronectin (Farkas and Luiten 2001). The 

basement membrane provides both mechanical support and a barrier function. The 

astrocyte end feet ensheathe the capillary and the plasma membranes of the foot 

processes are closely connected to the basement membrane.
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Figure 1-2 Representation of the Blood Brain Barrier Unit

Tight v 
junction Axonal ending

Microglial
cell

Pericyte

A strocyte^  
foot processes

' Endothelium

Extracellular matrix

The cerebral endothelial cells form tight junctions at their margins where they 

meet. Pericytes are distributed discontinuously along the length of the cerebral 

capillaries and partially surround the endothelium. Foot processes from astrocytes 

form a network fully surrounding the capillaries. Axons from neurons are also 

present close to the endothelial cells and contain vasoactive neurotransmitters and 

peptides. Microglia and perivascular macrophages are derived from systemic 

circulating monocytes and form the resident immuno competent cells of the brain 

(Begley 2004).

20



1.2.1 Development of the Blood Brain Barrier

In rodents, brain capillaries differentiate to blood brain barrier endothelium during 

late embryonic and early postnatal development. The increase in vessel 

impermeability to protein correlates with a conformational change of the TJs. 

There is an increasing association of tight junctional particles with the P-face 

membrane leaflet from embryonic day 13 to postnatal day 125 (Robertson, Du 

Bois et al. 1985). It should be remembered that tight junction components in the 

periphery are usually associated with the E-face in vivo.

1.2.1.1 Role of Astrocytes

Astrocytes, whose processes form end-feet that surround brain microvessels 

(Janzer and Raff 1987; Abbott, Ronnback et al. 2006) have been shown to play 

important roles in conferring BBB properties to the endothelial cells. The 

development of complex tight junctions, specialized enzyme systems, expression 

and asymmetrical localization of transporters in the endothelial cells has been 

attributed to astrocytic signalling (DeBault and Cancilla 1980; Boado, Wang et al. 

1994; Dehouck, Dehouck et al. 1994; Roux, Durieu-Trautmann et al. 1994; 

Wolburg, Neuhaus et al. 1994; Hayashi, Nomura et al. 1997; Rist, Romero et al. 

1997). The astrocytic end feet display a high density of purinergic P2Y receptors, 

K+ channels and the water-channel protein aquaporin-4, indicating a possible role 

in the regulation of water permeability in the brain (Simard, Arcuino et al. 2003).

Transplanted astrocytes in vivo (Janzer and Raff 1987), and astrocytes in vitro 

(Hayashi, Nomura et al. 1997) induce BBB properties in adjacent non-neural 

endothelial cells from different species. Evidence supports the importance of
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astrocytes in mediating expression and localisation of markers including p- 

glycoprotein, GLUT1 and y-glutamyl transpeptidase (y-GTP) (Abbott, Ronnback 

et al. 2006). The parenchymal basement membrane, one of the two basement 

membranes associated with the blood brain barrier, is produced by astrocytes. 

Two components namely agrin (Barber and Lieth 1997) and j82 laminin (Hunter, 

Llinas et al. 1992) in this membrane are important in the terminal development of 

the blood brain barrier.

In addition, astrocytes secrete growth factors like transforming growth factor-p 

(TGF-p), angiopoetin 1 (ANG1), glial derived neurotrophic factor (GDNF) and 

basic fibroblast growth factor (bFGF) which influence development of the barrier 

phenotype. In 2003, Lee and colleagues identified a single gene SSeCKS which is 

upregulated in astrocytes in response to oxygen tension. Ectopic overexpression in 

rat cerebral cortex astrocytes led to downregulation of VEGF and increased 

expression of ANG1. VEGF is a known mediator of increased permeability and 

ANG1 mediates angiogenesis and vessel maturation (Ferrara, Gerber et al. 2003). 

Supernatants from SSeCKS expressing cells also upregulated the expression of 

ZOl and claudin 1, constituents of the TJs of the blood brain barrier. Hence it is 

clear that the gene product of SSeCKS is instrumental in the development and 

maturation of the blood brain barrier (Lee, Kim et al. 2003).

Bidirectional astrocyte-endothelial calcium signalling has been demonstrated in 

co-cultures employing astrocytes and endothelial cells (Braet, Paemeleire et al. 

2001) and in brain slices (Zonta, Angulo et al. 2003). The calcium oscillations 

seen in astrocytes have been shown to be important for vasodilation induced by
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neuronal activity (Zonta, Angulo et al. 2003). Hence it appears that the complex 

interactions between cerebral endothelial cells, astrocytes and neurons regulate 

circulation in the CNS.

However the first known markers of brain endothelial cells and the accumulation 

of p-glycoprotein appear even before astrocytes is present (Qin and Sato 1995). So 

it seems unlikely that all the properties are acquired simultaneously. It also 

appears that astrocytes are important in maintaining the barrier properties in the 

adult although short term loss of astrocytic end feet does not affect the function of 

the blood brain barrier (Krum and Rosenstein 1993). Some of the BBB-inducing 

properties of astrocytes are mimicked by corticosteroids (Romero, Radewicz et al. 

2003).

1.2.1.2 Role of Pericytes

Pericytes are present in the basement membrane formed by the capillary 

endothelial cells and astrocytes (Fig. 1.3) and play important role in conferring 

BBB properties to the cerebral endothelial cells (Lai and Kuo 2005). Pericytes 

possess long cytoplasmic extensions and along with gap junctions are involved in 

maintaining contact with endothelial cells. During embryonic development, the 

ligand PDGF-B required for angiogenesis is expressed by capillary endothelial 

cells, but its receptor PDGFR/3 is expressed on pericytes (Betsholtz, Lindblom et 

al. 2004). Pericytes induce endothelial differentiation and growth arrest (Sims 

2000; Gerhardt and Betsholtz 2003). Pericytes in the brain can function as 

macrophages and also exhibit phagocytic activity (Thomas 1999). They have also 

been shown to protect the integrity of the blood brain barrier in hypoxia in vitro
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(Hayashi, Nakao et al. 2004).

1.2.1.3 Role of Neurons

It is possible that non-astrocytic factors are also important as different kinds of 

nerve endings are also associated with brain capillaries (Kobayashi, Magnoni et 

al. 1985; Petty and Lo 2002). In the developed brain, groups have demonstrated 

roles for noradrenergic (Cohen, Molinatti et al. 1997), serotonergic (Cohen, 

Bonvento et al. 1996) and GABAnergic (Vaucher, Tong et al. 2000) neurons in 

the activation of endothelial cells. Inhibition of noradrenergic contacts to the CNS 

vasculature increases susceptibility of the BBB to hypertension (Ben-Menachem, 

Johansson et al. 1982). Neurons have been shown to be as effective as astrocytes 

in inducing barrier properties in vitro. In 2000, Savettieri and colleagues 

investigated the role of neurons in the induction of occludin, a TJ protein and 

showed the expression and localisation of occludin is dependent on presence of 

neurons in the culture (Savettieri, Di Liegro et al. 2000). It can be said that 

neurons are critical in maintaining the phenotype of the established blood brain 

barrier but their importance in its formation is yet to be clearly demonstrated. The 

same group also has also shown extracellular matrix protein collagen IV 

influences occludin mRNA expression but not the protein levels (Savettieri, Di 

Liegro et al. 2000).
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1.2.1.4 Molecular Characteristics of the Blood Brain Barrier

1.2.1.5 T ran sp o rt Systems

The continuous tight junctions between the cerebral endothelial cells abrogate 

access to polar substances unless they are transferred by specific transport 

pathways. At the BBB, various membrane transporters on the luminal and 

abluminal membranes o f the capillary endothelium function to regulate the entry 

of essential molecules into the brain, as well as effluxing harmful substances and 

waste products from the brain into the blood (Fig. 1-4) (Abbott and Romero 

1996). Transport systems (Fig. 1-4) at the BBB include carrier-mediated transport 

(CMT, Table 1.1), active efflux transport (AET, Table 1.2) and receptor-mediated 

transport (RMT) (Begley 2004).

Figure 1-3 Three Classes of BBB Transport Systems

Carrier-med ated Active-effli-x Receptor-mediated
transport transport transport

Blood Bood Blood

Brain Brain Bram

(Pardridge 2002)

CMT systems (Table 1.1, Fig. 1-4) CMT systems are expressed on both the
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luminal and abluminal membranes of the capillary endothelium, so that transport 

in either the blood-to-brain or brain-to-blood direction can be mediated (e.g. 

amino acid transporters).

AET systems (Table 1.2, Fig. 1-4) are responsible for the transport of substrates 

usually from the brain to blood (e.g. P-glycoprotein).

The RMT systems (Fig. 1-4) are responsible for the transport of endogenous 

molecules. The transferrin receptor depicted as system 1 in panel C, is a 

bidirectional system that transports transferrin in either the blood-to-brain or 

brain-to-blood direction. The blood-brain barrier Fc receptor which is depicted as 

system 2 in panel C selectively transports immunoglobulin G molecules in the 

brain-to-blood direction only. The type I scavenger receptor which is depicted as 

system 3 in panel C, can only mediate the uptake of circulating ligand, such as 

acetylated low-density lipoprotein, into the brain capillary endothelial 

compartment, without transcytosis or release into brain. (Pardridge 2002)
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Table 1-1 CMT at the Blood Brain Barrier

Molecule

Nucleosides/nucleic acid transport 

transport

System ASC/B0+ ......

System B°+

Choline transport 

GLUT1 

i LAT/4F2hc (system L)

CAT1 (system y4)

j j

System A 

i MCT1 "  ■ ' .............

Transport

Nucleosides/nucleic acid

L-Aia/L-Ser/L-Cys & others

Basic AAs

Choline

D-Glucose, Ascorbic acid 

Large neutral AA’s 

Cationic AA’s 

Anionic AA’s 

Small neutral AA’s 

: L-Lactate/monocarboxylates

Table 1-2 AET at the Blood Brain Barrier

. Gene [ Protein i Function

ABCB1 (MDR1) P-glycoprotein multidrug resistance

f  ABCCl ( ^ ^ 1 )  '
i

i MDRl-related protein i drug resistance

ABCC2 (MRP2) cMOAT organic anion efflux

r  ABCC3 ( h ® IMRP3.......... ! drug resistance

ABCC4 (MRP4) MRP4 nucleoside transport

ABCC5 (MRP5) ! MRP5 ..... r “ .............. ! nucleoside transport
i f

ABCG2 (BCRP) breast cancer resistance
.. i i,

drug resistance
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1.2.2 The Blood Brain Barrier in Disease

The blood brain barrier is metabolically active and hence it is possible to modulate 

the gene expression of endothelial cells and subsequent changes in function and 

permeability across the barrier. Transient opening of the barrier occurs at times to 

allow for passage of other blood borne substances into the brain. Cytokines such 

as tumour necrosis factor-a (TNF-a), interleukins IL -la  and IL-6, histamine, 

glutamate, free radicals, nitric oxide, purine nucleotides are known to increase the 

permeability of the barrier.

Breakdown of the BBB is associated with a variety of CNS disorders and results 

in aggravation of the condition. In multiple sclerosis, the barrier function is 

compromised along with the loss of laminin (Oki, Takahashi et al. 2004) in the 

basement membrane and the tight junction proteins claudin -1 and -3 (Minagar, 

Ostanin et al. 2003). Post mortem CNS tissue from HIV-1 patients with 

encephalitis displayed decreased immune reactivity for occludin (Dallasta, Pisarov 

et al. 1999).

Endothelial cells comprising blood vessels in malignant gliomas, metastatic and 

benign tumours fail to form TJs or form leaky TJs. Occludin and claudin-5 are 

down regulated in human gliomas and are absent in metastatic tumour vessel TJs 

(Liebner, Fischmann et al. 2000; Papadopoulos, Saadoun et al. 2001; Rascher, 

Fischmann et al. 2002). Two reasons for the poor quality or absence of TJs can be 

attributed to decreased astrocyte numbers in the tumours and increased secretion 

of angiogenic factors (Janzer and Raff 1987; Bates, Lodwick et al. 1999).
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In bacterial meningitis, free radicals and presence of interleukins IL-6 and IL-1 p 

generated in response to lipopolysaccharide increase permeability (Gaillard, de 

Boer et al. 2003). Exposure to stress or hypoxia results in the increased levels of 

cAMP and Glutl and a subsequent increase in terminal resistance and 

upregulation of Pgp activity (Kis, Deli et al. 2001).

BBB in Alzheimer’s disease is characterised by increase in GLUT1 expression 

(Kalaria 1999), altered agrin levels (Berzin, Zipser et al. 2000) and accumulation 

of amyloid-p due to decreased clearance (Lee and Bendayan 2004). Microglia and 

astrocytes are closely associated with neuronal plaques and activated by the 

accumulated /5-amyloid protein to release cytokines, reactive oxygen species etc 

(Giulian, Haverkamp et al. 1995). /5-amyloid stimulates NFkB a transcription 

factor that has been implicated in altering the barrier function. The transcription 

factor activates transcription of TNF-a; IL-1, IL-6 and monocyte chemoattractant 

protein (MCP)-l all known potentiators of increased permeability of the blood 

brain barrier (Akama, Albanese et al. 1998; Brown and Davis 2005).

Restoration of the BBB is thus one strategy during therapy of CNS diseases. One 

of the agents used to reduce inflammation is dexamethasone, a corticosteroid that 

is commonly used to treat oedema (Kaal and Vecht 2004). Some of the potential 

ideas for therapy include employing modulators that can increase activity of the 

enzymatic machinery and/or affect gene expression in the endothelial or 

surrounding cells resulting in restoration of barrier function and hence integrity. 

Their success depends on the knowledge of the structural and functional aspects 

of the blood brain barrier.
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1.2.3 In vitro Models of the Blood Brain Barrier

Over the past two decades, many groups have devised in vitro models of the blood 

brain barrier in order to facilitate understanding of the unique properties and 

regulation of endothelial cells. Some of the in vitro models are discussed below.

1.2.3.1 Isolated Brain Capillaries

(Siakotos and Rouser 1969) described the isolation of capillaries from 

homogenised post-mortem human brain tissue by filtration. This model was the 

first system used to demonstrate receptor mediated transport of insulin and 

transferrin in capillary endothelial cells. However, isolated capillaries cannot be 

used to measure transendothelial transport across the BBB.

1.2.3.2 Primary Cultures of Endothelial Cells

Primary endothelial cells maintain morphology, biochemistry and function in in 

vitro growth conditions. Detailed methodology of obtaining viable endothelial 

cells from donor tissue has been described in the General Materials and Methods 

section. However, there are several constraints including availability and quality 

of human post mortem donor tissue; slight variation in phenotypic properties 

between different donor tissue; mouse, bovine or porcine based primary 

endothelial cell cultures cannot be compared with human cell cultures because of 

well recognised differences in gene expression (e.g. p-glycoprotein). 

Establishment of immortalised cell cultures has answered some of the problems of 

primary cultures. Endothelial cell lines used in the field are tabled below.
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Table 1-3 Immortalized Brain Capillary Endothelial Cell Lines Reported in 

the Literature

Cell line > Species ? Nature of Reference
m I transformation

SV-HCEC Human SV40 T antigen (Muruganandam, Herx et al.
1997)

| hCMEC/D3 ; Human < r SV40 T antigen + ; j (Weksler, Subileau et al. 2005)
S..' ! IhTERT ;

HBEC-51 Human SV40T antigen (Xiao, Yang et al. 1996)

I BB19 i Human i E6E7 gene (Prudhomme, Sherman et al.
! 11996)

MBEC Mouse E6E7 gene (Tatsuta, Naito et al. 1992)

S5C j Mouse | Adenovirus E l A ;s (Sobue, Yamamoto et ai. 1999)
I !  S ,  i  . ’  I ,  ,  ^

TM-BBB4 Mouse SV40 T antigen (Asaba, Hosoya et al. 2000)

f RBE4 [Rat I Adenovirus El A ; (Couraud, Greenwood et al.
i  ;  ;  :2003)

GPNT Rat SV40T antigen (Regina, Romero et al. 1999)

• CR3 j Rat \ SV40 T antigen < [ (Lechardeur, Schwartz et al.
t : ; :1995)

GP8.3 Rat SV40 T antigen (Greenwood, Pryce et al. 1996)

i RBEC1 Rat | SV40 T antigen | (Kido, Tamai et al. 2000)

RCE-T1 Rat Rous Sarcoma (Mooradian and Diglio 1991)
virus

t-BBEC-117 Bovine ! SV40 T antigen | (Sobue, Yamamoto et al. 1999)

SV-BEC Bovine SV40T antigen (Durieu-Trautmann, Foignant-
Chaverot et al. 1991)

I BBEC-SV ..i i Bovine SV40 T antigen ; (Stins, Prasadarao et al. 1997)

PBMEC Porcine SV40T antigen (Teifel and Friedl 1996)

Adapted from (Gumbleton and Audus 2001)
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1.3 Tight Junctions

Cell junctions can be classified into occluding, anchoring and communicating 

junctions. The occluding junctions commonly referred to as the tight junctions 

(TJs) represent the connections between adjacent cells and represent the apical 

most type of junctional complexes in vertebrate epithelium (Wolburg and 

Lippoldt 2002). They are also observed in endothelial cells and mesothelial cells, 

as well as several other types of cells including Schwann cells, Sertoli cells and 

oligodendrocytes. By transmission electron microscopy, tight junctions appear as 

a series of very close membrane appositions of adjacent cells. On ffeeze-fracture, 

these contact sites principally correspond to continuous networks of tight junction 

strands and complementary grooves in the protoplasmic and extracellular faces, 

respectively (Vorbrodt and Dobrogowska 2003).

TJs are crucial in limiting paracellular transport and in maintaining polarity of 

cells. In addition TJs function as specialized micro domains in the plasma 

membrane and coordinate vesicle protein docking and actin organization. 

Components of the TJs especially the cytoplasmic components are important 

signalling proteins regulating differentiation and proliferation. These multiple 

functions of TJs are important in segregating the epithelial and endothelial cellular 

layers and in establishing distinct tissue compartments within the body to 

ultimately maintain homeostasis.

Disturbance of the functions of TJs is considered to cause or contribute to the 

pathology of diseases, such as inflammatory bowel disease (IBD), infections and
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cancers, as well as vasogenic oedema and blood-borne metastases. In turn, the 

barrier function of tight junctions also restricts drug delivery to underlying tissues 

and therefore how to overcome the paracellular barrier is critical for treatment of 

diseases.

Table 1-4 Recruitment of Proteins into TJs During Development

Protein : j Stage at 
I which first 
I detected

1 Assembly 
[ into TJ

j Model [ Reference

Claudin 1 Not 32-cell stage Mouse Fleming et al.
determined (Epithelium) 2001

Claudin 5 1 Embryonic | Embryonic | Chick IKojima et al.
1 Day 5 [day 10 [(Retinal 

i pigment 
[epithelium)

12002
i  I • ' • • •

Occludin Throughout Early 32-cell Mouse Sheth et al.
all embryonic stage (Epithelium) 2000
stages

Z O - lV ; j throughout I Punctate [Mouse | Sheth et al.
! all embryonic j staining 8-cell ) (Epithelium) ; 1997

■: | stages | embryos 1

Z0-1 a  + Beginning of Early 32-cell Mouse Sheth et al.
the blastocyst stage (Epithelium) 1997
stage

(GONZALEZ-MARISCAL, BETANZOS, NAVA, JARAMILLO, 2003)
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Figure 1-4 Molecular Constituents of Tight Junctions

Claudins

> Plasma membranes of 
^ adjacent cells

Simplekin

Cytosol

Paracellular Space
aE -ca ten in

Actin

TJs are composed of a set of transmembrane proteins- occludin, claudin 5 and 

junctional adhesion molecule-JAM. Adaptor molecules, ZO-1, -2 and -3 bind the 

cytoplasmic tail of occludin and actin, AF-6, ZAK-(Z01 associated kinase) and 

alpha-catenin. The function of simplekin, cingulin and 7H6 which also localise to 

the junctions is not yet known. Many of the cytoplasmic junctional components 

are signalling proteins or exhibit sequence similarities with tumour suppressors, 

and so might function in transducing signals to and from the cell interior.
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1.3.1 Molecular Constituents of TJs

1.3.1.1 Occludin

Discovered by (Furuse, Hirase et al. 1993), occludin is an approximately 65-kD 

type II transmembrane protein composed of four transmembrane domains, two 

extracellular loops, and a large C-terminal cytosolic domain. When observed by 

freeze fracture electron microscopy, occludin is concentrated directly within the 

tight junction fibrils (Fujimoto 1995).

1.3.1.1.1 Structure and Interactions

Occludin protein can be subdivided into five domains based on its structure. 

Referred as domains A-E, these regions include a carboxy terminal, amino 

terminus, two extra cellular loops and a cytosolic loop (Fig 1.5)

Domain E (carboxy terminus) is localised to the cytoplasm and is composed of 

225 residues which are enriched for charged amino acids. Occludin mutants with 

truncations in domain E localise to the TJs but the barriers generated are leaky 

indicating that the this domain is necessary for correct TJ assembly and function 

(Chen, Merzdorf et al. 1997). Protein interaction studies have indicated this 

domain binds the ZO protein family. Within the 150-amino acid region that 

interacts with the ZO proteins, is a 27-amino acid stretch with hydrophobic 

residues clustered in a pattern that has identified to be consistent with a coiled-coil 

structure. In an elegant study (Nusrat, Chen et al. 2000), the authors have shown 

that this region is responsible for most of the interactions of the full length 

occludin protein.



These include associations with members of the TJ and proteins associated with 

the plasma membrane. The following proteins c-Yes, the regulatory (p85) subunit 

of PI3K, PKC-£, and the gap junction component, connexin 26 have been shown 

to interact with this domain. There are however differences in the interactions 

within the proteins; PI3K interacts with both interfacial surfaces of the domain in 

contrast to PKC-£ and c-Yes which interact solely with the hydrophobic surface. 

Connexin-26 interacts with the hydrophilic surface of the coiled-coil (Nusrat, 

Chen et al. 2000).

The N-terminus referred to as domain A is comprised of 65 amino acids and is 

directly involved in barrier function. Occludin constructs lacking this domain 

when over expressed localise to the TJ and also interact with ZO-1 but this 

localisation and subsequent interaction with other TJ proteins is not functional as 

the barriers formed are leaky (Bamforth, Kniesel et al. 1999). Domains A and E 

are enriched in serine and threonine residues. Since occludin at the TJ is hyper 

phosphorylated, it is likely these residues are potential targets for phosphorylation 

and hence are important in function (Feldman, Mullin et al. 2005).

The two extracellular domains, B and D, are rich in tyrosine and glycine residues 

(Feldman, Mullin et al. 2005) and are separated by a short (10 aa) cytosolic loop. 

Occludin constructs lacking domain D, or both the domains when ectopically 

expressed in epithelial cells, were restricted to the basolateral cell surface 

indicating the domains are important in the targeting of the protein to the TJ 

(Medina, Rahner et al. 2000). There are two conserved protein domains, the 

MARVEL and the Occludin-ELL domain. The MARVEL domain is a membrane-
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associating domain often found in lipid-associating proteins and may contribute to 

the machinery of membrane apposition events. The occludin-ELL domain is a 

conserved region of approximately 100 residues between occludin and the RNA 

polymerase II elongation factor ELL.

Figure 1-5 Structural Representation of Occludin

Occludin

254 aa 
COOH10 aa

■y 45 aa

Membrane

(Feldman, Mullin et al. 2005)

Occludin has four transmembrane regions; two extracellular domains and the 

amino and carboxyl terminal ends are oriented towards the intracellular region. 

Both extracellular loops of occludin are of approximately the same size, lack 

charged residues and are very rich in tyrosine (Y). More than half of the first loop 

residues are tyrosines and glycines (G). (Feldman, Mullin et al. 2005).
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1.3.1.1.2 Splice Variants

In 2002 (Mankertz, Waller et al. 2002), identified four differentially spliced 

occludin-specific mRNA transcripts (Fig 1.6). Two splice variants, occludin types 

II and III, lack the fourth transmembrane domain and do not co-localize with ZO-

1. An occludin isoform lacking the TM4 domain was discovered by RT-PCR 

analysis of human tissues, embryos and cells using primers spanning the TM4 and 

adjacent C-terminal region (Ghassemifar, Sheth et al. 2002). It is possible that this 

isoform might modulate intercellular adhesion.

Occludin IB variant contains a 193 bp insertion that results in a longer form of the 

protein with a unique domain A comprising of 56 amino acids. The localization of 

occludin IB on ectopic expression in MDCK cells is similar to that of the full 

length occludin (Muresan, Paul et al. 2000). Occludin IB has been observed in 

T84 human colon carcinoma cells and in a range of epithelial tissues 

(Ghassemifar, Sheth et al. 2002). Co-expression of occludin and occludin IB has 

also been seen in various murine tissues. It appears that occludin IB expressed in 

the gut is conserved between mouse and human. The presence of occludin IB in 

epithelium and conservation across species implies that occludin IB is potentially 

a significant player in the modulation of TJ barrier properties in vascular 

endothelium (Muresan, Paul et al. 2000).
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Figure 1-6 Structural Comparison of the Occludin mRNA Variants

ATG
158 Stop

17361204/
1205 1592/

1593
896/ 1058/ 
897 1059

1258/
1259 2175 2379

IV

(Mankertz, Waller et al. 2002)

Primary nucleic acid sequences from occludin-specific cDNAs (types I, II, III, and 

IV) were compared to the published occludin sequence (GenBank accession 

number U49184). The sequence boundaries are determined by the location of the 

oligonucleotides used for amplification. Translation start and stop codons are 

marked by broken lines, regions of homology are indicated by filled boxes, and 

deletions are represented by thin lines (Mankertz, Waller et al. 2002).

1.3.1.1.3 Expression

Occludin is expressed in a broad range of epithelial cells in addition to the blood 

brain barrier and blood vessel endothelium. It is clear that expression of occludin 

correlates with barrier function.
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Blood Brain Barrier: Occludin is localized at the TJs of cerebral endothelial cells. 

(Hirase, Staddon et al. 1997) first reported that occludin protein was strongly 

expressed and distributed continuously at the interface of brain endothelial cells. 

Occludin expression has been shown to be relatively lower in TJs of endothelial 

cells in non-neural tissue. Occludin levels at the TJs of brain endothelial cells 

increase with development. The levels of occludin protein in brain and non-neural 

tissue are mirrored at the mRNA level (reviewed in Wolburg and Lippoldt 2002).

Blood Retinal Barrier: Occludin is also highly expressed in the capillaries of the 

retina, which represents the blood-retinal barrier (BRB). Occludin is strongly 

expressed between adjacent endothelial cells in all retinal blood vessels. In 

contrast, low levels of occludin were detectable in choroid vessels, which do not 

exhibit blood-barrier properties (Morcos, Hosie et al. 2001).

Epithelium:

Occludin expression is seen in stratified (Langbein, Grund et al. 2002) as well as 

simple epithelium (Brandner, Kief et al. 2002) where it contributes to barrier 

function. Occludin has been found localised to focal strands between granular 

cells in the outer most zones of the epidermis in rodents (Moroi, Saitou et al. 

1998). Occludin mRNA expression has also been reported in human neo-natal and 

adult keratinocytes (Tebbe, Mankertz et al. 2002). Immunostaining analyses for 

the protein shows its presence in the intercellular space of the granular layer. It 

appears that occludin contributes to formation of TJs between keratinocytes in the 

epidermis (Brandner, Kief et al. 2002). Increase in occludin protein expression in 

regenerating epidermis suggests that it may function during epidermal wound
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healing (Malminen, Koivukangas et al. 2003).

Its expression has been reported in bladder epithelium of mouse, rat and rabbit 

where it localises to the TJ and contributes to the high resistance of the 

uroepithelial-associated TJ complex (Acharya, Beckel et al. 2004).

Studies investigating occludin expression in liver epithelium demonstarted that its 

localisation alters during cell division which differs from other peripheral proteins 

like ZOl and Z02 (Kojima, Kokai et al. 2001) (Fallon, Brecher et al. 1995). 

Occludin and another integral TJ protein claudin 1 are strongly expressed in the 

mid body between daughter cells. This was one of the first studies wherein a 

difference in the regulation of integral versus periperhal TJ proteins was seen in 

cell division. (Kojima, Kokai et al. 2001).

Occludin is expressed in the acinar cells of the salivary gland (Hashimoto, Ochiai 

et al. 2000). The protein localizes to the abluminal side in adjacent acinar cells. 

Since salivary fluid secretion is dependent on paracellular routes as well as 

transcellular routes, occludin regulates the salivary fluid secretion by means of its 

presence at the tight junction.

Occludin is a component of corneal epithelium (Ban, Dota et al. 2003). Studies on 

the canine kidney have shown weak and irregular to strong, continuous 

immunostaining for occludin. For e.g. the protein was highly expressed in the 

ascending and descending loop of Henle and in the cells of the distal tubule and 

was weak in the cells of the proximal tubule. There is a strong correlation between 

the TER and the level of occludin expression thereby implying this protein is
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required for the function of the renal TJ (Kwon, Myers et al. 1998).

Occludin is concentrated at the TJs in the Sertoli cells of the murine testis (Moroi, 

Saitou et al. 1998) where it is highly phosphorylated and its concentration 

increases with maturity. (Kevil, Okayama et al. 1998) observed that occludin in 

endothelial monolayers was more concentrated in arterial junctions than in venous 

junctions both in vivo and in vitro.

1.3.1.1.4 Occludin Knock-out Mouse

The occludin knockout mouse showed growth retardation, brain calcification, 

thinning of bone, male sterility, chronic inflammation and hyperplasia of gastric 

epithelium (Saitou, Furuse et al. 2000). However, TJ formation in gut epithelial 

cells and function was not affected (Saitou, Fujimoto et al. 1998). Similarly, TJs 

of embryoid bodies originating from occludin-deficient embryonic stem cells were 

similar to their wild-type counterparts (Saitou, Fujimoto et al. 1998).

1.3.1.1.5 Functions

There is considerable evidence for the importance of occludin in TJs. Over 

expression of chicken occludin in cultured MDCK cells increases the number of 

TJ strands, and in increase in transepithelial resistance (TER). Introduction of C- 

terminally truncated occludin into MDCK cells or Xenopus embryo cells resulted 

in the increased paracellular leakage of tracers of low molecular mass. The TER 

of cultured Xenopus epithelial cells is reduced by addition into the culture 

medium of a synthetic peptide corresponding to the second extracellular loop of 

occludin. Occludin confers adhesive property to transfected fibroblasts which can
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be blocked by peptides to any of the two extracellular loops (Anderson and Van 

Itallie 1995; McCarthy, Skare et al. 1996). But nevertheless, occludin is not 

absolutely required for the formation of TJs. Well-developed TJ structures 

between adjacent epithelial cells developed from embryonic stem cells lacking 

occludin.

1.3.1.1.6 Regulation of Occludin Protein

Cytokines

Interferon-y (IFN-y) an inflammatory cytokine released by activated T cells and 

natural killer cells leads to decreased expression of ZOl, redistribution of 

occludin and Z02 and also the disruption and disorganization of actin in vitro. In 

combination with TNF-a, it induces a loss of claudin 5 and occludin. Both 

cytokines act to increase paracellular permeability and have been shown to 

regulate the barrier in gut epithelium (Schmitz, Fromm et al. 1999).

Treatment with TGF-pl results in loss of cell-cell contact, rearrangement in actin 

cytoskeleton and impairment of endothelial permeability (Barrios-Rodiles, Brown 

et al. 2005). Other cytokines such as interleukin (IL)-l, IL-4, IL-13, TGF-p, 

insulin-like growth factor (IGF)-I and -II, and vascular endothelial growth factor 

(VEGF) have been documented to decrease the barrier properties of endothelial 

cells (Walsh, Hopkins et al. 2000).

MAP and PI3 Kinase Signalling

MAP signalling pathway modulates blood brain barrier function by regulating the 

expression or phosphorylation status of TJ proteins (Yuan 2002). Activation of the
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PI3 kinase, and PKB pathway by reactive oxygen species leads to the down 

regulation of occludin in brain endothelial cells (Schreibelt, Kooij et al. 2007). In 

human umbilical vein endothelial cell, alcohol induced toxicity, activation of 

ERK1/2, JNK and p38 signalling results in phosphorylation of Ser residues in 

occludin resulting in its degradation (Kevil, Oshima et al. 2000). HIV-1 Tat 

protein activates ERK1/2 leading to relocalisation of occludin from cell surface to 

the cytosol in brain endothelial cells (Andras, Pu et al. 2003).

The cytokine, TGFpl activates the PI3K pathway and independently upregulates 

the expression of the transcriptional repressor snail (Ozdamar, Bose et al. 2005). 

During epithelial to mesenchyme transitions (EMT), expression of TJ and 

adherens junction proteins is down regulated. The ZnF transcription repressor, 

Snail has recently been implicated in EMT. Snail acts as a transcriptional 

repressor and binds DNA with the carboxy terminal zinc fingers. Snail binds the 

E-box motif, 5-CA (G/C) (G/C) TG, which is found in the E-cadherin promoter 

(Cano, Perez-Moreno et al. 2000) and in the occludin and claudin-3, -4, and -7 

promoters which contain one, six and eight, E-boxes, respectively. In a human 

epithelial carcinoma cell line, Snail over expression in epithelial cells lead to the 

complete repression of occludin, claudin-3, -4, and -7, and E-cadherin expression 

at both mRNA and protein levels, and this was accompanied by the disruption of 

both TJs and adherens junctions with subsequent induction of EMT (Ikenouchi, 

Matsuda et al. 2003).

The effects of PI3K signalling on TJ physiology depends on the stimulus as 

activation of the signalling cascade by different agents can induce opposite effects
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on the TJ proteins. In Caco2 cells, activation of the PI3K pathway by oxidative 

stress mediates the loss of occludin (Sheth, Basuroy et al. 2003). Glucocorticoids 

lead to the recruitment of PI3K subunit p85 and its association with ZOl and the 

C-terminal domain of occludin to positively affect the TJ barrier in brain 

endothelial cells (Forster, Silwedel et al. 2005). PI3K signalling can also act to 

inhibit GSK-3p mediated blocking of p-catenin and snail degradation. In addition, 

it positively upregulates Smad signalling which promotes the transcription of the 

transcription factor LEF1, which promotes EMT and down regulation of TJ 

proteins in epithelial cells (Bachelder, Yoon et al. 2005).

Phosphatases PP1, PP2A and PP2B

Ser/Thr phosphorylation of several TJ proteins promotes the barrier function of 

TJs and it is expected that Ser/Thr phosphatases exert opposite effects on the 

barrier function. Protein phosphatases PP2A and PP1 interact with the carboxyl 

terminal tail of occludin and dephosphorylate occludin on Ser residues leading to 

decrease in TER and increased paracellular permeability. PP2A also associates 

with aPKC£, leading to the inhibition of its activity and promoting its 

relocalisation to the cytosol. This subsequently leads to the disappearance of TJ 

proteins at cell-cell contacts. PP2B in turn appears to blocks the phosphorylation 

and thus activation of cPKCa, the kinase that promotes TJ disassembly in 

epithelial cells (Seth, Sheth et al. 2007).

Rho Signalling

Rho family of small GTPases includes the proteins, RhoA, Rac and Cdc42 

(Wennerberg and Der 2004). These proteins regulate apical and basal actin
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structures in response to extracellular cues (Nusrat, Giry et al. 1995). Many of the 

integral proteins present at the TJ are stabilised by virtue of direct or indirect 

interactions with actin (e.g., occludin, ZO family AF-6 and cingulin). 

Investigations into the effect of dominant active and negative mutants of the Rho 

family indicate all the members are involved in conserving the integrity of the 

barrier. A dominant-negative mutant or an inhibitor of RhoA prevented occludin 

phosphorylation (Hirase, Kawashima et al. 2001). RhoA signalling pathway has 

also been shown to promote the migration of small lung cancer cells through brain 

endothelium (Li, Zhao et al. 2006).

Other Modulators

The E3 ubiquitin ligase Itch was identified to be a binding partner for the amino 

terminus of occludin in a study by Traweger et al. 2002. Itch is a member of the 

HECT domain-containing ubiquitin protein ligases and is responsible for the 

ubiquitination of occludin and subsequent degradation in epithelial cells 

(Traweger, Fang et al. 2002)

1.3.1.2 Claudins

The association of tight junctional particles with the P or the E membrane leaflet 

is dependent on various claudins (Tsukita and Furuse 2000). Claudins were 

identified as major cell-adhesion molecules of TJs and belong to the 

PMP22/EMP/MP20/claudin mammalian superfamily. 20 different claudins have 

been identified in different tissues so far with molecular weights ranging from 20- 

27 kDa (Turksen and Troy 2004). Claudin 1 was the first member of the family to
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be identified as a TJ component (Furuse, Fujita et al. 1998).

1.3.1.2.1 Structure

The claudin family is characterised by four transmembrane helices, two 

extracellular domains, a short N-terminal sequence (2-6 residues), and a long C 

terminus tail (Fig 1.7). The N- and C-termini are localised to the cytoplasm. The 

first extracellular domain ranges from 49-52 residues and includes the conserved 

motif of the claudin family, a set of highly conserved amino acids, W-GLW-C-C. 

The second extracellular domain is comprised of 16-33 amino acids and is a 

known receptor for bacterial toxins. The C-terminus binds cytoplasmic proteins 

through a PDZ (PSD95 DlgA ZOl) motif. The cytoplasmic tails are the most 

diverse in sequence and vary in length from 21-63 residues. The membrane- 

proximal region of the C terminus is palmitoylated on conserved cysteines, and it 

is probable that most claudins can be phosphorylated on serines and/or threonines 

in the cytoplasmic tail. Claudins may form hexamers, as suggested by studies of 

claudin-4 and a distant relative, MP20. (Reviewed (Matter and Baida 2003).

Figure 1-7 Structural Representation of Claudins

Extracellular

W-

Intraccllular

VY

(Turksen and Troy 2004)
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13,1,2.2 Interactions

Multiple claudins interact in both homotypic and heterotypic fashion and confer 

selective permeability in different tissues (Fig 1.8). All claudins (except claudin- 

12) end in PDZ-binding motifs. This motif is responsible for associations with 

related PDZ domains in the cytoplasmic junction proteins ZO-1, -2, and -3; 

MUPP1, PATJ and possibly other proteins. However, blocking of the PDZ- 

binding sites does not restrict localisation. Claudins still localize to cell-cell 

contacts and form freeze-fracture strands, suggesting that they have an inherent 

ability to polymerize, independent of PDZ interactions. However, the strands 

formed by PDZ-blocked claudins are poorly organized and not restricted to the 

apical border (Tsukita and Furuse 2002).

13.1.23 Expression

Northern blotting analysis for claudin expression has shown that most tissues 

expressed more than two species of claudins. For example, kidney epithelium 

expresses claudins -4 and -8 (Acharya, Beckel et al. 2004); claudins -1,-2, and -3 

are present in the liver epithelium (Morita, Furuse et al. 1999). Therefore, it is 

likely that most TJ strands are heteropolymers of claudins (Fig 1.8), although 

specialized TJ strands in the myelin sheaths of oligodendrocytes and in the Sertoli 

cells in the testis appeared to be mainly composed of a single species of claudin, 

claudin-11 (Morita, Sasaki et al. 1999). Claudin 5 was originally described to be 

restricted to endothelial cells. However, the protein was also found in epithelium 

of the stomach and of the large and small intestine (Morita, Furuse et al. 1999).
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1.3.1.2.4 Claudins in the CNS

The only claudins detected in endothelial cells thus far are claudin-1 and claudin-5 

(Morita, Sasaki et al. 1999; Lippoldt, Liebner et al. 2000). A novel anti-claudin-3 

antibody recognized cerebral capillary endothelial cell TJs (Engelhardt and 

Wolburg). Additionally, claudin-11 localizes to TJs in myelin sheaths and 

claudins -1 ,-2  and -11 are present in the fenestrated endothelium of the choroid 

plexus (Wolburg, Wolburg-Buchholz et al. 2001). Claudins 2, 4, 5, 6, 8 and to a 

lesser extent -7 were observed in rat hippocampus and cortex (Lamas, Gonzalez- 

Mariscal et al. 2002).

1.3.1.2.5 Function

The claudin family members are essential for the formation of TJs in epithelial 

and endothelial cells and hence have important roles in the control of paracellular 

transport and in the maintenance of cell polarity. Multiple claudins interact in a 

homotypic as well as in a heterotypic fashion to confer selective permeability in 

different tissues.

In CldS'7' mice, the blood vessels showed normal morphology and distinctly 

formed TJs comprising claudin-12. However, the TJs were not fully functional as 

the BBB was severely affected against molecules less than ~800 D, but not larger 

molecules. Nevertheless, the mice died within 10 hours of birth (Nitta, Hata et al. 

2003).

In addition to barrier functions, claudins are involved in development. Mutations 

in claudin genes lead to various familial diseases such as neonatal sclerosing 

cholangitis (Claudin 1) (Hadj-Rabia, Baala et al. 2004), nonsyndromic

49



recessive deafness (Claudin 14) (Wilcox, Burton et al. 2001), and familial 

hypomagnesaemia (Claudin 16) (Lai-Cheong, Arita et al. 2007).

Recent analyses also show the role of the claudin family in the progression of 

various cancers (Morin 2005). One of the hallmarks of metastasis is loss of tight 

junctions and hence loss of expression in TJ proteins is expected. However, 

expression of claudins -1, -3, -4, -5, -7, -10, -16 are not lost but altered in various 

cancers; claudins 3 and -4 are increased in ovarian, breast, prostate and pancreatic 

tumours (Morin 2005). Claudin 17 is elevated in stomach cancer but is decreased 

in breast cancer (Kramer, White et al. 2000).

Claudins -3 and -4 are being used as targets for therapy in malignancies over 

expressing these proteins. Clostridium perfringens enterotoxin (CPE) a natural 

ligand for Claudins-3 and -4 (Van Itallie, Betts et al. 2008) binds to the proteins 

resulting in rapid cytolysis of the cells (Katahira, Sugiyama et al. 1997).

1.3.1.3 Submembranous TJ Associated Proteins

The transmembrane components are tethered to the actin cytoskeleton and 

properly positioned at the tight junction by a group of cytoplasmic proteins 

including ZOl, -2, -3, AF6, MUPP1, PAR3, Cingulin, Simplekin and 7H6.

1.3.1.3.1 ZO (Zona Occludens) Proteins

ZO proteins are members of the Membrane Associated Guanylate Kinase 

(MAGuK) homologue family and are structurally composed of three PDZ 

domains, an SH3 domain and a non-catalytic guanylate kinase homology domain. 

In addition, they have an acidic and a basic domain, a proline rich C-terminus and

50



a leucine zipper dimerization motif (Gonzalez-Mariscal, Betanzos et al. 2000). 

ZO family members interact with each other to form heterodimers via their PDZ 

domains. The PDZ domain of the ZO family mediates binding to the C-terminal 

regions of claudins 1-8 (Itoh, Furuse et al. 1999; Umeda, Ikenouchi et al. 2006). 

The GuK domain and the acidic domain mediate binding to occludin in vitro. 

Recombinant ZO-2 and -3 also interact with occludin in vitro (Wittchen, Haskins 

et al. 1999) (Fig. 1.10).

ZO proteins are anchored to the cytoskeleton by association of the proline rich C- 

terminus with F-Actin. The SH3 domain mediates binding to G proteins such as 

G a l2. ZOl also interacts with the Ras target, AF-6 (Yamamoto, Harada et al.

1997) and this binding can be disrupted by the over expression of activated Ras. 

ZO-1 binds to Cingulin (D'Atri, Nadalutti et al. 2002), JAM A (Ebnet, Suzuki et 

al. 2004) and the gap junction protein, Connexin 43 (Toyofuku, Yabuki et al.

1998) and also the adherens junction protein a-catenin (Gonzalez-Mariscal, 

Betanzos et al. 2000; Salama, Eddington et al. 2006).

ZO-1 expression is regulated at the post-transcriptional level by alternate splicing 

leading to the generation of two isoforms that can be differentiated by the 

presence or absence of the a  motif. The a  motif is an 80 amino acid domain 

within the C-terminus. The a + isoform is present in epithelial cells and the a  

isoform in cells of endothelial origin (Willott, Baida et al. 1992). Additional splice 

variants in the C-terminus gives rise to the p and y isoforms (Gonzalez-Mariscal, 

Islas et al. 1999).

ZOl has been shown to interact with ZONAB, a TF homologous to Y-box
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proteins (Baida and Matter 2000). The two proteins functionally interact in the 

nucleus to modulate the expression of the erbB-2 proto-oncogene, indicating a 

role for regulation of gene expression for TJ proteins (Baida, Garrett et al. 2003). 

Data supports the view that the two proteins also interact to promote paracellular 

impermeability either through occludin or affecting the gene expression of TJ 

proteins.

Figure 1-8 Structure of ZO Family Members

zo-1------------------------------- --------------------— — r 1745
Claudins ZO-2 JAM-1 ZONAB Occludin AF-6. Cingulin, Actin

ZO-2 ---------a— 1167
Claudins ZO-1 Occtudin Aclin
SAF-B

ZO-3  —  905
A A A AF-6

Claudins ZO-1 Occludin pi20catenin

(Gonzalez-Mariscal, Betanzos et al. 2003)

Domains are represented by labelled boxes. Intermolecular associations with other 

TJ and cytoskeletal proteins are indicated underneath the domains. (Gonzalez- 

Mariscal, Betanzos et al. 2003).
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1.4 Transcriptional control in eukaryotes

RNA polymerases I, II, and III allow for the transcription of rRNA, mRNA, and 

small RNAs in eukaryotes. Much of the regulation of transcription occurs at the 

promoter region where specific DNA sequences effect the recruitment of the 

polymerases and regulatory proteins (transcription factors) (Komberg 2007). 

However, gene expression can be controlled at the processing of the RNA 

transcript, transport of RNA to the cytoplasm, translation of mRNA, and mRNA 

and protein stability. General transcriptional machinery includes:

1. Basal transcription machinery: RNA polymerases and promoter region.

2. Long range regulatory elements and transcription factors (TFs)

3. Co activators and co repressors.

53



Table 1-5 Regulatory Proteins in Transcription

B l B l M l l l l B l i H I B l B

General RNA Pol II
transcription
machinery TFIIB: TF for RNA Pol II B

TBP: TATA-binding protein

TAF: TBP-associated factor 

TFIIE: TF for RNA Pol HE 

TFIIF: TF for RNA Pol IIF

TFIIH: TF for RNA Pol II H

Mediator

Co activators Chromatin modification
l i i l B l i l l l l i f l l l i i i i l l l  l l l l l l l l l l l l l l l l l l l l i l l l B l l i l l l l i l B l i l l S S l l l l l l i l i l i l l l l  
repressors complexes:

HATs: Histone acetvltransferases

HDACs: Histone deacetylases

CBP: CREB-binding protein

HMTs: Histone methyltransferase

LSD1: Lysine-specific 
demethylasel

Function

Catalysis of RNA synthesis

Stabilization of TBP-DNA 
interactions, recruitment of 
RNA Pol II-TFIIF

Core promoter recognition, 
TFIIB recruitment

Core promoter recognition

TFIIH recruitment

Recruitment of RNA Pol II 
to promoter DNA-TBP- 
TFIIB complex

Promoter melting, helicase, 
RNA Pol II CTD kinase

Transduces regulatory 
information from activator 
and repressor proteins to 
RNA Pol II

Elongation
factors

FACT: Facilitates
transcription

chromatin

Elongator

TFIIS: TF for RNA Pol IIS

Acetyl ate histones 

Deacetylate histones 

HAT activity 

Methvlate histones 

Demethyl ates histones

Transcription-dependent 
nucleosome alterations

Exact function unknown

Facilitates RNA pol II 
passage through regions that 
cause transcriptional arrest

54



1.4.1 Eukaryotic Promoters

The promoter of a gene is the cis-regulatory DNA region that can drive the 

transcription of its target gene in response to environmental signals. Eukaryotic 

promoters can be defined into three regions:

1. Core-promoter situated —80—100 bp surrounding the transcription start site.

2. Proximal-promoter present at -250-1000 bp upstream of the core- 

promoter. DNA motifs in this region can predict tissue-specific gene 

expression.

3. Distal-promoter located further upstream, normally excluding enhancer or 

other regulatory regions whose influences are position/orientation 

independent.

1.4.1.1 Upstream and Downstream Core Promoter Elements

Known core promoter elements include the TATA box, the initiator element (Inr), 

the TFIIB recognition element (BRE), the downstream promoter element (DPE), 

and the motif ten element (MTE). TATA box, Inr and BRE form the upstream 

promoter elements; DPE and MTE, the downstream promoter elements.

1.4.1.1.1 TATABox

The TATA Box is a T/A-rich sequence that is usually located 25-35 base pairs 

upstream of the transcription start site(s) and is essential for transcription 

initiation. However, TATA boxes are present in only 32% of 1031 potential core 

promoters and transcription from promoters lacking TATA boxes takes place
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through enhancer elements and or GC boxes. The consensus sequence of TATA 

Box is TATAWAWN (where N is any base and W denotes A-T base pair without 

regard to end-for-end orientation) and recruitment of the TFIID complex which 

includes the TBP and TBP associated factors, directs assembly of the pre­

initiation complex (PIC). TATATAAG has been identified as the optimal TBP 

recognition sequence.

One factor that is present at promoters used by all three RNA polymerases is the 

TATA-binding protein (TBP). TBP along with factors such as the TAFis, TAFus, 

and TAFms that bind to class I, II, and III promoters determine general and gene- 

specific regulation of gene expression. Among the eight factors that interact with 

TBP, TAFi, TAFus, TAFms, and PTF/SNAPc function in promoter selection and 

the other four factors namely, SAGA, Motl, NC2, and Nots function together with 

TAFus to regulate expression of protein-coding genes. All but one of these factors 

(PTF/SNAPc) is highly conserved among eukaryotes. In the case of genes 

transcribed by RNA polymerase II, TBP is responsible for promoter recognition 

and binds directly to DNA in the minor groove of an AT rich sequence (consensus 

TATA T/A A T/A X) (Matangkasombut, Auty et al. 2004; Sandelin, Caminci et 

al. 2007).

1.4.1,1.2 Initiator (Inr) Element

Functionally similar to the TATA box, the Inr element whose sequence is 

PyPyA+lN(T/A)PyPy is recognized by TAFI and TAF2 and can function 

independently of the TATA box. However, in TATA-containing promoters, it acts 

synergistically to increase the efficiency of transcription initiation (Gross and
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Oelgeschlager 2006).

1.4.1.1.3 Downstream Promoter Element (DPE)

The DPE is a distinct seven nucleotide element conserved from the fly to humans 

and is bound by the subunits TAF6 and TAF9 of the TFIID complex. The DPE 

consensus sequence is (A/G)G(A/T)(C/T)(G/A/C) and is located about +30 bp 

relative to the transcription start site. It functions in TATA-less promoters and 

requires the presence of an Inr element for activity (Kadonaga 2002)

1.4.1.1.4 Motif Ten Element (MTE)

MTE whose consensus sequence is C(G/A)A(A/G)C(G/C)(C/A/G)AACG(G/C) is 

located at positions +18 to +27 relative to the transcription start site and promotes 

transcriptional activity and binding of TFIID along with the Inr element. Although 

it can function independently of the TATA box or DPE, it exhibits strong 

synergism with both of these elements (Lim, Santoso et al. 2004; Juven-Gershon, 

Hsu et al. 2006).

1.4.1.2 Proximal Promoter Elements

1.4.1.2.1 CCAAT box

The CCAAT box was one of the first elements identified in eukaryotic promoters. 

The pentanucleotide sequence has been described in different, unrelated 

promoters in vertebrates, plant and yeast and the various transcription factors that 

interact with the sequence have also been described. In higher eukaryotes, the 

CCAAT box is present in reverse ATTGG orientation in 60% of the promoters
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and usually, genes lacking TATA boxes show a preference for the ATTGG box 

(Ramji and Foka 2002). The transcription factors, c/EBP, CTF/NF1, CDP, NF-Y 

(also known as CBF, CPI) have been described extensively to regulate 

transcription from this element. TFs NF1 and c/EBP are discussed in the next 

section.

The CCAAT displacement protein (CDP) is a homolog of the Drosophila 

homeodomain protein Cut (Neufeld, Skalnik et al. 1992). CDP/Cut proteins were 

found to function primarily as transcriptional repressors and some examples of the 

genes targets are H2B, NCAM, c-Myc, etc. Repression can occur through 

competition with activators for a binding site or through the two active repression 

domains identified within the C terminal domain (Nepveu 2001).

The NF-Y is a heteromeric protein that is composed of three subunits NF-YA, -  

YB and -YC and requires all the CCAAT nucleotides for binding and interaction. 

NF-Y sites are predominantly found in proximal promoters and in the absence of 

TATA-TBP interactions, NF-Y has been known to function in connecting the 

upstream activators with the general transcription machinery allowing for RNA 

polymerase to mediate its effects from the start site (Mantovani 1999).

GC box is discussed in detail in the Sp transcription factor section.

1.4.2 Long Range Regulatory Elements

Transcriptional control also involves additional regulatory DNA sequences 

namely enhancers and silencers, insulators, locus control regions (LCRs), and 

matrix attachment regions (MARs).
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1.4.2.1 Enhancers and Silencers

Usually situated 700-1000 bp or more from the transcription start site, these 

elements can be found downstream, upstream, or within an intron, and can 

function in either orientation relative to the promoter (Maston, Evans et al. 2006). 

A typical enhancer is around 500 bp in length and exhibits binding sites for 

several different transcription factors. Enhancer activation could result in 

chromatin reorganisation and access of the promoter to transcription factors 

(Bulger and Groudine 1999; Engel and Tanimoto 2000). Activation of the 

enhancer element could also lead to interaction of proteins separately bound at the 

promoter and enhancer regions resulting in the looping out of DNA and the 

formation of a promoter/enhancer holocomplex (Hatzis and Talianidis 2002). 

Similar elements that repress gene activity are called silencers (Pozzoli and Sironi 

2005).

1.4.2.2 Insulators

An insulator is a DNA sequence element, typically 300 bp to 2 kb in length that 

functions as a chromatin boundary marker, marking the border between regions of 

heterochromatin and euchromatin (Geyer and Clark 2002; Brasset and Vaury

2005). Another important function is to block enhancer blocking activity to 

prevent inappropriate cross-activation or repression of neighboring genes by 

blocking the action of enhancers and silencers (Brasset and Vaury 2005). It is 

believed that insulators tether the DNA to subnuclear sites, forming loops that 

separate the promoter of one gene from the enhancer of another.
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1.4.2.3 Locus Control Regions (LCRs)

LCRs are DNA sequences that organize and maintain a functional domain of 

active chromatin to enhance the transcription of downstream genes and operate in 

an orientation-dependent manner (Dean 2006). LCRs have been shown to be 

important in the transcription of the p-globins (Sawado, Halow et al. 2003), MHC 

II proteins (Mastemak, Peyraud et al. 2003), human growth hormone (Horan, 

Millar et al. 2003), serpins (Zhao, Friedman et al. 2007) and cytokines (Dean

2006).

1.4.2.4 Matrix Attachment Regions (MARs)

MARs are genomic DNA fragments that have the ability to bind to isolated 

nuclear matrices in vitro (Cockerill and Garrard 1986). Located near enhancers in 

5' and 3' flanking sequences, MARs sequences are scattered throughout the 

genome at 5-200 kb intervals and play important roles in modulating chromatin 

structure in interphase and metaphase (Laemmli, Kas et al. 1992; Bode, Stengert- 

Iber et al. 1996). The MARs recognition signature (MRS) comprises two 

individual sequence elements AATAAYAA (where Y = C or T) and 

AWWRTAANNWWGNNNC (where W = A or T, R = A or G, N = A, C, G or T) 

that are <200 bp apart (van Drunen, Sewalt et al. 1999). MARs recruit TFs and 

chromatin-remodelling enzymes resulting in the formation of chromatin loops 

(Mirkovitch, Mirault et al. 1984). Associations of MARs with other factors can be 

altered by interactions with components of enhancers and LCRs.
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Figure 1-9 Model Describing the Activation Process of a Eukaryotic Gene in 

Chromatin

Step 1

Step 2

Enhancer Promoter

HATHem

TFIID
HA1

Step 3

Step A HAT

TFIID

Key:

Sequonce-specifrc activator (R e m ) ATP-dependenl chromatin remodelling complex

Mediator (£}A  ̂ Histone acety ltransferase

(Szutorisz and Dillon, et al 2005)

Step 1: The gene (black box) has a core promoter element (purple box) and is 

regulated by a distal enhancer (grey box). Step 2: The enhancer-bound activator 

recruits ATP-dependent chromatin-remodelling complexes (Rem) and histone- 

modifying factors (HATs) to the core promoter. Step 3: Mediator complexes 

(Med) establish the link between the enhancer-bound activator and the basal 

transcription machinery at the promoter. Step 4: The PIC remains inactive until a



direct contact (looping) occurs between the distal enhancer and the promoter 

resulting in Pol II recruitment and initiation of transcription (Szutorisz and Dillon, 

et al 2005)

1.4.3 Transcription Factors

Transcription factors are proteins that bind to the promoter or enhancer elements 

upstream of genes and function to either initiate or inhibit transcription. 

Transcription factors are composed of two essential functional regions: a DNA- 

binding domain and an activator domain. The DNA-binding domain consists of 

amino acids that recognize specific DNA bases near the start of transcription and 

the structure of the DNA-binding domain has been used to classify transcription 

factors. The activator domains are responsible for interacting with RNA 

polymerase and other regulatory proteins. This interaction often enhances the 

efficiency with which the basal transcriptional complex can be built and bind 

RNA polymerase II. Other mechanisms by which TFs can activate transcription 

are:

1. Induction of a conformational change or post-translational modification (such 

as phosphorylation) that stimulates the activity of the general transcription 

machinery.

2. Interaction with proteins that are involved in chromatin modifications so as to 

permit enhanced accessibility of the promoter region to transcription factors or 

coactivators.

There are several families of transcription factors and those that are relevant in the
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project are discussed below:

1.4.3.1 Zinc Finger Proteins (ZnFs)

Zinc finger proteins include the ubiquitous transcription factor Spl, Kruppel, GR, 

GAT A family, YY1 etc. The proteins have two or more a-helical domains which 

are linked by a centrally located zinc ion. In addition to their role in binding DNA, 

roles for ZnFs have been implicated in protein: protein (RING family) and 

protein: lipid interactions.

1.4.3.2 The Sp Family

G-rich elements such as GC (GGGGCGGGG) and GT/CACC boxes 

(GGTGTGGGG) are widely distributed cis-acting elements required for the 

appropriate expression of genes important in development as well as house­

keeping and viral genes. Spl was the first transcription factor that was shown to 

bind GC elements. However, other proteins related to Spl namely Sp2, Sp3, Sp4 

and members of the KLF family have been characterised to act through the GC 

elements (Philipsen and Suske 1999). Sp family members bind not only GC-box 

motifs but also GT (GGGTGTGC) and CTC (CTCCTCCTC) motifs although 

with different affinities. Sp/KLF family contains at least twenty identified 

members. The Sp proteins are identical in their zinc finger region and N-terminal 

motifs. The KLF family is more heterogeneous in comparison and includes 

factors, BTEB1, TIEG1 and TIEG2 which are closely related to the Sp family and 

the subfamily, XKLFs which includes the factors, BTEB2, GBF/ZF9, ZNF741 

and AP-2rep (Suske, Bruford et al. 2005).

63



Family members bind the GC boxes with different affinities and hence have 

different transcriptional properties. Since cells can express multiple family 

members, there is a possibility of synergistic activation and repression within a 

network of Sp/KLF factors. The prototype family member, Spl can activate 

transcription by functioning as a basal promoter element and as an upstream 

activator simultaneously. In many genes lacking TATA boxes, a proximally 

positioned Spl site determines promoter activity and the start site of transcription 

(Emami, Burke et al. 1998).

1.4.3.2.1 Expression

Except for Sp4 whose expression is restricted to the brain, Spl, -2 and -3 are 

ubiquitously expressed (Table 1.4). Individual cells hence can express multiple 

members of the family (for e.g. Spl, Sp3 have been detected in vascular 

endothelial cells (Yet, McA'Nulty et al. 1998), which leads to the possibility that 

the members can modulate each others activity at the level of expression or at 

promoters or via direct interactions at the level of protein.

Table 1-6 Expression of Sp Family Members

TF Expression Function

Spl Ubiquitous Activator

- Sp2 Absent in Brain endothelium Activator

Sp3 Ubiquitous Activator/Repressor

Sp4 Brain, Epithelial tissues, Testis Activator/Repressor

1.4.3.2.2 Structure

Sp family members have similar domains and are characterized by a highly
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conserved C-terminal DNA-binding domain containing three zinc fingers (Fig 

1.11). Critical amino acids in the zinc fingers are conserved in Spl, Sp3 and Sp4 

but not in Sp2 and hence the former are more closely related to each other than to 

Sp2. Despite conservation in the DNA binding domain, the family members bind 

target motifs with different affinities (Suske 1999).

Figure 1-10 Structural Features of Sp Family TFs

-c 784

(Suske 1999)

Their length in amino acids is indicated on the right. Sp3 full length isoform is 

represented here. Red boxes indicate regions rich in glutamine and yellow boxes 

indicate serine/threonine rich regions. The black boxes represent the ZnFs and the 

region preceding the first zinc finger (+/-) is rich in charged amino acids. Known 

activation (AD) and inhibitory (ID) domains are indicated. (Suske 1999).

1.4.3.2.3 Structural Variants of Sp3

There are three distinct Sp3 isoforms: a full length 110-115 kDa Sp3 protein and 

two shorter isoforms approximately 80 and 78 kDa species. The lower weight 

species are generated by internal translational initiation within Sp3 mRNA and 

possess functional DNA binding domains and are nuclear localised. They bind the 

Sp target motif with similar affinities (Suske 1999) and function as potent
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inhibitors of Sp3 mediated transcription (Kennett, Udvadia et al. 1997).

1.4.3.2.4 Regulation of Gene Expression by Spl and Sp3

Spl functions primarily as an activator. Sp3 can function either as an activator or 

a repressor depending on the promoter context and ratio of Spl:Sp3 in a cell 

(Sjottem, Anderssen et al. 1996) . Furthermore, functions of Sp3 may depend on 

the number of functional Spl binding sites. Promoters containing a single binding 

site are activated, whereas those containing multiple Spl sites are not activated or 

respond weakly to Sp3 (Dennig, Beato et al. 1996). In addition, Sp3 protein is a 

target for phosphorylation. In the regulation of the VEGF promoter, ERK 

phosphorylates a key serine residue in the Sp3 protein and enhancing its activity 

in vitro (Pages 2007). Sp3 is also modified by acetylation (Braun, Koop et al. 

2001) and sumoylation (Ross, Best et al. 2002). These modifications are likely to 

determine the role of Sp3 in regulating transcriptional activity. Furthermore, 

unlike Spl, binding of Sp3 to GC- and GT-boxes is influenced by flanking 

nucleotides. Amino acid triplet KEE in the inhibitory domain of Sp3 is 

responsible for the poor activity (Plata, Duh et al. 1998) and mutation of these 

amino acids to alanine residues converted Sp3 to a strong activator.

1.4.3.3 YY (Yin Yang) 1

YY1 (NF-E1, UCRBP, and CF1) is multifunctional ZnF transcription factor 

belonging to the GLI-Kriippel class of ZnFs and can act as a transcriptional 

repressor, activator, or initiator element binding protein (Thomas and Seto 1999) 

YY1 plays an important role in embryonic development, cell cycle, oncogenesis, 

X-chromosome inactivation in differentiating and non-dividing cells of all types,
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chromatin remodelling, etc (Sui, Affar el et al. 2004; Gordon, Akopyan et al. 

2006; Kim, Hinz et al. 2006).

This transcription factor has been implicated in the regulation of a very large 

number of genes involved in many metabolic processes in the cell. YY1 may 

target histone deacetylases and histone acetyltransferases to a promoter thereby 

implicating histone modification as one of the functions. Chronic activation of 

YY1 is associated with increased cellular proliferation, resistance to apoptotic 

insults and metastatic potential. The number of promoters that have been reported 

to be regulated by YY1 is increasing and include human transferrin receptor, p53, 

viral LTRs, c-Myc, a-actin, IgH enhancer, p-casein, IFN-y, c-Fos, E6 and E7 of 

HPV, P6 of B 19-parvovirus etc (reviewed in Shi, Lee et al. 1997).

1.4.3.3.1 Related Proteins

In 2004, (Nguyen, Zhang et al. 2004) described the identification of a protein 

YY2 with significant structural similarity to the transcription factor YY1. YY2 is 

a transcriptional activator and it appears that it binds only a few YY1 target sites 

on promoters leading to the suggestion that accessory DNA motifs are needed to 

recruit YY2 to the DNA. Further investigations are needed to ascertain the 

function of YY2. (Wang, Liang et al. 2004) reported the identification of an YY1 

associated protein (YY1AP). YY1AP is ubiquitously expressed in human tissues 

and has been shown to enhance activation of YY1 and hence regulate expression 

from promoters responsive to YY1. The mechanism by which YY1AP synergises 

YY1 activity is not clear but it is possible the factor is recruited by YY1 itself and 

tethered to the DNA.
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1.4.3.3.2 Structure

The YY1 protein is characterised by four C2H2-type zinc-finger motifs. Regions 

comprising amino acids 298-397 in the c-terminus serves as an inhibitory domain. 

Sequences within the zinc finger motifs and a glycine rich region between amino 

acids 157 and 201 promote the activity of the inhibitory domain. The N-terminus 

region (AA 43-53) acts as a potent activation domain (Shi, Lee et al. 1997). The 

role of the 11 consecutive histidine residues (AA 70-80) is not known (Fig. 1.13)

Figure 1-11 Domain Structure of YY1

&

54 80 154 198 295

Zn Fingers

414

(THOMAS AND SETO 1999)

1.4.4 Basic Leucine Zipper proteins

Basic leucine zipper (bZIP) family of proteins which includes c/EBP, API and 

yeast GCN4 are a class of enhancer-type transcription factors that play important 

roles during embryonic development and in the adult organism (Sanyal, 

Sandstrom et al. 2002; Nerlov 2007). The leucine zipper motif that characterizes 

these proteins is composed of leucine residues separated by 7 amino acid residues 

and repeating at least 3 times (LxxxxxxLxxxxxxL) (Landschulz, Johnson et al. 

1988). On binding to a promoter, adjacent basic regions undergo conformational 

change and also interact with the promoter. This domain is followed by a 

regulatory domain that can interact with the promoter to stimulate or repress
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transcription.

1.4.4.1 GATA1

GATA1, along with five other structurally related proteins, -2 to -6, regulates gene 

expression in many different cell types. The consensus DNA sequence is 

A/TGATAA/G which is bound through two highly conserved ZnF domains. The 

conserved ZnFs also function in interaction with other proteins such as PU.l and 

CBP/p300 both of which function as important co-factors enhancing activity 

GATA-1 activity. The main function of GATA1 is the transcriptional control of 

genes that are important in hematopoietic lineage. Mutations in the zinc fingers 

lead to severe dysfunction in the hematopoietic system (Morceau, Schnekenburger 

et al. 2004).

1.4.5 Other TFs

1.4.5.1 GR (Glucocorticoid Receptor)

GR regulates the transcription of genes carrying the specific GR binding 

sequence, the glucocorticoid response element (GRE). Some of the BBB-inducing 

properties of astrocytes are mimicked by corticosteroids (Romero, Radewicz et al. 

2003). GR has a single DNA-binding domain that and a ligand-binding domain 

which is receptive to ligands like cortisol. Inactive GR localises to the cytoplasm 

to a large multiprotein complex containing heat shock proteins (hsp90, hsp70). 

Activation by ligand induces conformational changes resulting in the exposure of 

the GR nuclear localization signal and subsequent nuclear translocation (Chandran 

and DeFranco 1999) where it interacts with specific DNA sequences, known as
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glucocorticoid response elements (GREs), in target genes eliciting a specific 

transcriptional response. The GREs are normally palindromic, with two hexameric 

half sites separated by three nucleotides, the perfect palindromic GRE reading 

5’-AGAACAnnnTGTTCT-3’. GR acts by transactivation or inhibition of the 

transactivating function of other transcription factors (transrepression) such as 

API andNFicB (Schoneveld, Gaemers et al. 2004).

1.4.5.2 NF1

The CTF/NF-1(CCAAT/Nuclear Factor 1 TF) family was first described in the 

replication of Adenovirus DNA and it has been established that this family is 

important in the growth state of cells and oncogenesis. The binding motif is 

TTGGC (N5) GCGAA and the protein has been shown to bind to individual half 

sites-TTGGC and GCCAA though with reduced capacity. NF1 proteins have been 

identified as negative regulatory elements of a number of promoters including 

peripherin, eta-globin, Pit-1 and Glut4 genes (Dusserre and Mermod 1993).

1.4.5.3 c/EBP

The c/EBP (CCAAT/enhancer binding protein) family consisting of six members 

(c/EBP-a, -p , -y, -8 , -s , and CHOP-10/GADD153) is bZIP transcription factors 

which have been shown to bind to the dyad-symmetric sequence ATTGCGCAAT 

either as homodimers or heterodimers. Members of the C/EBP family have been 

implicated in regulating the differentiation of adipocytes, hepatocytes, and 

myelomonocytes (Nerlov 2007).
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1.4.6 Co activators and Co repressors

The coactivators and co repressors proteins effect transcriptional activity through 

protein-protein interactions without binding DNA directly. Genomic DNA is 

packaged efficiently around protein complexes called histone octamers which 

serves the purpose of packing DNA in the nucleus but at the same time, this 

highly compact state limits access of TFs and other regulatory proteins to their 

target sites.

One mechanism by which chromatin is made more accessible to regulatory 

proteins is by histone acetylation. Histones are positively charged proteins that 

interact tightly with the negatively charged DNA. Acetylation of histones reduces 

charge and loosens their interaction with DNA leading to an increase in binding of 

transcription factors. Several transcription factors in a variety of organisms have 

now been found to be histone acetyltransferases (reviewed in (Kuo and Allis 

1998; Roth, Denu et al. 2001). To counteract HATs are the histone 

deacetyltransferases (HDACs) which catalyse the removal of acetyl groups from 

lysine residues in histones leading to chromatin condensation and repression of 

gene transcription (Kuo and Allis 1998).

1.5 Previous work

Promoters of transferrin receptor, claudin 5, and p-glycoprotein-1 were 

investigated for common sequence motifs in the 2000 bp region 5’ to the initiation 

codon. Expression of these proteins is seen in brain endothelium and not in other 

endothelia. However, these proteins are not restricted to brain endothelium and
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found in other cell types such as the epithelial tissue.

Commonly expressed endothelial markers Duffy antigen receptor for chemokines, 

P-selectin and p-glycoprotein-3 were used as controls. None of these proteins 

overlap in function. Work by David Male identified repeated motifs - (GGGC; 

GCCCC) in these regions which are heavily over-represented in the genes 

restricted to brain endothelium, but were present at standard frequencies in a set of 

control genes. Presence of cluster of common motifs in the cis-5’ regions of 

diverse brain endothelial genes suggests these are under common transcriptional 

control. The GC content in the control gene promoters and the CNS gene 

promoters is similar and hence the high incidence of the motif only in the CNS 

genes rules out non-specificity.

Spl/3 (target site is -GGGCGG-) is a known transcription factor that could bind 

this motif partly due to the similarity to the -GGGGC- motif. Analysis of the 

claudin 5 gene yielded a second cluster of 8 -GGGGC- motifs at -750 to -1100 

bp which were regularly spaced at every sixth turn of the DNA helix (69bp), 

shown below, which suggests a target site for a zinc-finger transcription factor. 

Table 1.7 shows the number of iterations of this motif in a segment of 500bp 

located between -150bp and -650bp of the first exon of the three proteins and in a 

previously identified enhancer region of p-glycoprotein-1

The sequence below shows an example of an identified motif in the 5’ region 

of the human claudin 5 promoter.

caggcccagggccccagcctcaccccccatgccactcactgcctctctggagcctgagtctctggcaaaaagcggt
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ggcacaggggctttccccctgcctggcgacccccactctcccaagccgcagggjgcttcccagacctctcaatcttca

caggggctgctcctcttcctgcggtactgcccgcaccccatccttgggggcccagttcaggtgacaccacttcagga

agttcccagtgacccagcacactgggtgtagcacccaggggcagtggtggccccaggcctagcagcctgctctggc

cttcagacaggagagacaaagggacacggaggggctgtgccctgccctcccaccagtggcgatggtgtccctggc

accccagcccccaggccaccctccggaagccaacttgga

Table 1-7 GC-rich Motif in Enhancers of Brain Endothelial Specific Genes.

Protein Gene Expression Forward

(cis)

Reverse

Claudin 5 CLD5 CNS endothelium 6 1

Transferrin

receptor

TFR CNS endothelium & 

dividing cells

9 2

pgp-i MDR1 CNS endothelium 2 -

occludin OCCLD CNS endothelium 3 5

p-glyc.

enhancer

MDR1 CNS endothelium 3

Duffy ARC FY Endothelium & 

erythrocytes

1 2

P-selectin PSL Most endothelia & platelets - -

Pgp3 MDR3 Epithelia outside the CNS - -

1.6 Aims of the Project

Endothelial cells in different tissues vary widely in structural phenotypes and 

function and are highly specialised in order to meet the requirements of the local 

tissue environment. For example, some of the important characteristics that
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distinguish brain- from non-brain endothelium include the presence of continuous 

tight junctions, expression of specific receptors and transporters, high expression 

of heparan sulphate glycoproteins and sialic acid on the cell surface, high 

expression of the chemokine receptor CXCR2. Tight junction proteins like 

occludin and claudin 5 determine the integrity of tight junctions and hence the 

function of the brain endothelium. Occludin is an integral membrane protein at the 

tight junction and is restricted to endothelium in the CNS. It is however, present in 

other cell types such as gut epithelium where continuous tight junctions are seen. 

The molecular mechanisms regulating differential gene expression in brain and 

non-brain endothelia are not known. The constituents of the tissue environment 

such as astrocytes, pericytes and soluble mediators have been known to contribute 

to the development of the barrier function in the brain. Studies have identified 

growth factors, transcription factors and signalling pathways that are responsible 

for the initiation of the endothelial phenotype in various tissues. It is possible 

these factors could be expressed in the endothelial cells and maintaining the 

expression of these factors can be responsible for the terminal phenotype. The 

general aim of this work is to identify transcriptional mechanisms involved in the 

regulation of brain endothelial specific proteins which could shed light on 

terminal differentiation of endothelium. We have analysed the regulation of 

occludin in this present study. Unlike other studies which have examined cues 

from cells in the native tissue, this study will aim to investigate the possibility that 

terminal differentiation in the brain is undertaken by transcription factors which 

are either activated only in brain endothelium or interact in a specific manner 

absent in non-brain endothelium.
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The specific aims of the present study are:

1. Analyse activity of the occludin promoter in brain and non-brain 

endothelial cells

Full length and promoter fragments cloned upstream of GFP sequence in a 

promoter deficient vector on transient transfection in brain (hCMEC/D3) and non­

brain (lung) cells will provide data on any differences in promoter activity.

2. Analyse transcription factor binding profiles in vitro and in vivo

Labelled promoter fragments will be analysed for binding of transcription factors 

present in nuclear preparations of brain and non-brain endothelial cells. Any 

difference in profiles of transcription factors leads to possible candidates. 

Immunoprecipitation of endogenous promoter in the different endothelial cells 

with antibodies to the possible transcription factors will provide information of 

transcription factors bound in a ‘living’ state.

3. Analyse expression and localisation of relevant transcription factors in 

brain and non-brain endothelium and investigate for any possible 

interactions between the target transcription factors.

4. Generation of reporter vectors containing occludin promoter fragments 

with deletions in specific transcription factor binding motifs and determine 

activity in brain endothelium.

5. Inhibition of target transcription factor(s) and investigate changes in 

expression of the occludin protein in brain endothelium.
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Why is the study of transcriptional regulation in endothelia important?

1. Phenotype of endothelium is dictated in large part by space and time specific 

differences in gene expression

For e.g. glomerular endothelium in the kidney and endothelium of the blood brain 

barrier (BBB)

This provides important insights into the molecular basis o f vascular diversity

2. Transcriptional networks act as signal transducers in the endothelium coupling 

input to output. For example, ECs in the blood brain barrier receive input from 

surrounding astrocytes

This helps understand the link between microenvironment and cellular phenotype

3. Each Transcription Factor (TF) is coupled to multiple upstream signals and 

downstream target genes

Characterisation of these small ‘hubs’ of activity in the context of network 

topology will provide:

I. Important mechanistic information

II. Foundation for targeted therapy
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2 General Materials and Methods

2.1 Primary Antibodies

Table 2-1 Primary Antibodies

Antibody Species 
of Ab

Immunogen Clone
/PAD*

Applica
tion

Dilution Company

Claudin 5 rabbit peptide from C- 
terminal region 
of claudin 5 
protein

Z43.JK WB, 
FACS, 
IHC, IF

1:500
1:50

Zymed / 
Invitrogen

Claudin 5 rabbit 167-218 aa’s of 
CLD5 protein

H-52 WB,
FACS,
IF

1:500
1:100

Santa Cruz

Occludin rabbit peptide from C- 
terminal region 
of occludin 
protein

ZMD.46
7

WB 
IF, IHC

1:500
1:100

Zymed/
Invitrogen

Occludin mouse fusion protein 
containing the 
C-terminal 
region of 
occludin

Z-T22 WB
IF, IHC, 
FACS

1:500
1:50
1:100

Zymed/
Invitrogen

ZOl rabbit recombinant 
ZOl containing 
a region that 
lies N-terminal 
to the a-m otif

Z-Rl IF 1:100 Zymed/
Invitrogen

TR
(Transfer
rin
receptor)

mouse Rec. human
transferrin
receptor

H68.4 WB
FACS

1:500
1:100

Zymed

Von
Willebran 
d factor 
(vWF)

rabbit aa’s 2514-281 
mapping at the 
C-terminus of 
vWF

H-300 FACS 1:100 Santa Cruz

YY1 rabbit aa’s 1-414 
representing 
full-length YY1

H-414 WB,
IF, IHC, 
IP

1:500
1:100
2^g

Santa Cruz

78



* PAD: Polyclonal antibody designation

2.2 Cell Culture

All cell lines were human in origin. hCMEC/D3 (D3) (Weksler, Subileau et al. 

2005), a brain microvascular endothelial cell line, bone marrow endothelial cell 

line (BMEC), primary lung (LMVEC) and primary human brain endothelial cells 

(HBMEC) were used in all experiments.

hCMEC/D3 cells were grown on collagen (Sigma, Cat No: C8919) coated flasks 

or culture plates and maintained in EGM-2 MV medium (Cat No: CC-3202, 

Lonza Biologies, Cambridge, UK) supplemented with 2.5% foetal bovine serum, 

and a quarter of the supplied growth factors-vascular endothelial growth factor 

(VEGF), epidermal growth factor (EGF), insulin-like growth factor I (IGF-I), 

human fibroblastic growth factor (FGF) but fully complemented with the supplied 

quantities of hydrocortisone, ascorbic acid and gentamicin sulphate.

Lung (LMVEC) and dermal (DMVEC) endothelial cells were purchased from 

Clonetics/Biowhittaker (Wokingham, UK) and grown in fully supplemented 

EGM-2 MV medium according to the manufacturer’s recommendations.

The transformed human BMEC line was donated by Babette Weksler. Cells were 

maintained in DMEM (Cat No: 31885-023, Invitrogen) with low glucose 

(1 mg/ml), 2 mM glutamine, 100 U/ml penicillin, and 100 pg/ml streptomycin and 

2.5 pg/ml amphotericin-B and with 10% FCS.

hCMEC/D3 cells were used between passages 21 and 30; lung and dermal
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endothelial cells were used at passages between 3 and 7; bone marrow endothelial 

cells at passages 22-28 and primary human brain endothelial cells at passages 1-4. 

The different endothelial cells were passaged when cultures reached 60-70% 

confluency. The monolayers were washed with HBSS without Ca2+ and Mg2+ (Cat 

No: H6648, Sigma Aldrich) and subjected to 0.25% trypsin-EDTA (Cat No: 

25200-072, Invitrogen) solution for 5 min at 37°C after which the cells were 

centrifuged in excess medium and plated as required. For all the analyses 

described in the methods, confluent monolayers were rested in EGM-2 MV 

medium without growth factors but with serum, antibiotics and hydrocortisone for 

48 hours before assay.

2.3 Isolation of Primary Brain Endothelial Cells (HBEC) 

from Human Donor Tissue

Buffers

Buffer A: HBSS without Ca2+ and Mg2+ supplemented with 10 mM Hepes (Sigma 

Aldrich, Cat No: 4034)

Collagenase/Dispase (C/D) solution: lyophilised powder (obtained from Roche 

Diagnostics Ltd, Cat No: 10269638001) was reconstituted in HBSS without Ca2+ 

and Mg2+ to a final concentration of 1 mg/ml and filter sterilised through a 0.22 

pm (Schleicher & Schuell) membrane filter and 20 ml aliquots were stored at - 

20°C. The final concentration of the enzymes was, collagenase: 0.1 U/ml and 

dispase: 0.8 U/ml.
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DNase I solution: 2000 U of the lyophilised enzyme (obtained from Roche 

Diagnostics Ltd, Cat no: 11284932001) was dissolved in 1 ml of sterile HBSS

*74 - 9 +  •without Ca and Mg to achieve a final concentration of 20 U/ml. The solution 

was aliquoted into equal volumes of 200 pi and stored at -20°C. One aliquot was 

used to reconstitute 20 ml of collagenase/dispase solution.

TLCK (Na-Tosvl-L-lysine chloromethyl ketone hydrochloride) solution: (Sigma 

Aldrich, Cat No: T7254). Final concentration of 0.147 mg/ml was achieved by 

dissolving 2.94 mg of TLCK in 20 ml of sterile HBSS without Ca2+ and Mg2+ and 

filter sterilised through a 0.22 pm membrane filter and 1 ml aliquots were stored 

at -20°C. 20 pi was added to 20 ml of collagenase/dispase solution just before use.

24% BSA: 5 gm of bovine serum albumin powder (Sigma Aldrich, Cat no: 

A4161) was dissolved in 20 ml of buffer A and filter sterilised serially using a 0.8 

pm and then a 0.22 pm membrane filter and stored at 4°C.

Percoll® gradient: 4.5 ml of Percoll® (Sigma Aldrich, Cat no: P4937) was added 

to 500 pi of lOx HBSS without Ca2+ and Mg2+ and 5 ml of lx  HBSS without Ca2+ 

and Mg2+ in DuPont tubes and centrifuged at 16500 rpm for 1 hour at 4°C.

Post mortem tissue obtained from MS patients (MS society, Charing Cross 

Hospital, London, UK) or from tissue obtained from temporal lobectomy 

resections for epilepsy at the Kings College hospital (London, UK) was used for 

the isolation of primary brain endothelial cells. The work was approved by the 

ethics committee at KCH.

Primary HBEC were isolated according to the method developed by Hughes and
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Lantos in 1986 with slight modifications. After removal of the meninges, the 

tissue was cut into smaller pieces with a scalpel and centrifuged at 1500 rpm for 5 

min in buffer A. The tissue was resuspended in 15 ml of the collagenase/dispase 

solution and incubated for 1 hour at 37°C with occasional shaking. The 

suspension was then triturated with a Pasteur pipette until all the grey matter was 

dispersed and centrifuged at 1500 rpm for 5 min and the supernatant discarded. 

The digested tissue was resuspended in 17 ml of 25% BSA, mixed gently and 

centrifuged at 2900 rpm for 15 min. After removal of the myelin and the top 

layers, the capillary pellet was washed in buffer A and incubated with 5 ml of the 

enzyme digest solution for 2 hours at 37°C with occasional shaking.

The digested capillary pellet was washed and resuspended in 2 ml of buffer A and 

gently layered over a pre-spun 50% isotonic percoll gradient and subjected to 

density gradient centrifugation at 2900 rpm for 10 min to separate capillary 

fragments from single cells surrounding vessels and erythrocytes. The middle 

fraction of the gradient containing endothelial cells was gently aspirated and 

added to excess of buffer A. After centrifugation to wash off the percoll, 

microvessel fragments were plated on collagen coated flasks or cover slips with 

EGM-2 MV medium supplemented with 2 pg/ml puromycin (Sigma, Cat No: 

P8833) and 100 U/ml of Penicillin G and 100 pg/ml Streptomycin. Puromycin 

selectively eliminates cells that do not express p-glycoprotein (Weksler, Subileau 

et al. 2005). In addition, it is also cytotoxic to cells like astrocytes that express the 

protein albeit at a lower level than seen in endothelial cells. Medium was changed 

every 48 hrs and cells were grown without puromycin after the first passage.
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2.4 Immunofluorescence

Cells were grown to confluence on collagen-coated cover slips and rested for 2 

days in medium complemented with serum but lacking growth factors. The 

monolayers were washed with PBS for 15 minutes with three changes of the 

buffer. For staining for tight junction proteins, methanol was added along the 

walls of the culture plate containing the cover slips and the plate was quickly 

transferred to -20°C for 10 min. Claudin 5 (Z43.JK), Occludin (ZMD.467) and 

ZOl (Z-Rl) were used in the immunostaining. Methanol was gently aspirated 

from the wells with chilled PBS being added simultaneously and this step was 

repeated three times to rid of residual methanol. The cover slips were then 

incubated with blocking buffer (0.5% BSA in PBS) for 15 min at RT. Cells were 

then incubated with the primary antibody for 2 hours at RT and washed in PBS 

for 15 min with three changes of the buffer. This was followed by incubation with 

rabbit anti-mouse or goat anti-rabbit IgG conjugated FITC (1:250, Vector Labs, 

Burlingame, CA) for 1 hour at RT. Cells were washed in PBS for 40 min with 

four changes of buffer and the cover slips were mounted on slides with 

DakoCytomation fluorescent medium (Carpinteria, CA) and analysed by 

fluorescent microscopy.

2.5 Characterisation of endothelial cells

The different endothelia were characterised for expression of the endothelial 

marker vWF by FACS analysis (Fig. 2.1). Expression of the TJ proteins occludin 

and claudin 5 were analysed by western blot (Fig. 2.2). In addition, expression of
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the transferrin receptor and pgp-1, markers that confirm the brain endothelial 

phenotype of hCMEC/D3 cells (Weksler, Subileau et al. 2005) were also 

investigated. Localisation of the TJ proteins occludin, claudin 5 and ZOl was 

observed by immunofluorescence microscopy in hCMEC/D3 cells (Fig. 2.3). 

Results shown are representative of three experiments.

The TJ protein occludin was detected migrating at 65 kDa and is strongly 

expressed by hCMEC/D3 cells, faintly expressed in lung endothelial cells and was 

absent in dermal endothelium (Fig. 2.2). The transferrin receptor was detected as a 

band migrating at 95 kDa; P-glycoprotein-1 was detected at 170 kDa, claudin-5 at 

20-22 kDa (Fig. 2.2).

Localisation of the TJ proteins occludin, claudin 5 and ZOl was observed by 

immunofluorescence microscopy in hCMEC/D3 cells (Fig. 2.3). The proteins 

were localised to the tight junctions. However, ZOl and occludin were also seen 

in the nucleus.

Localization of occludin at tight junctions is controlled by posttranslational 

modifications such as phosphorylation of the protein and also by the 

reorganization of the actin filaments during cell division (Sakakibara, Furuse et al. 

1997, Kojima, Sawada et al. 1998). Serine/threonine phosphorylated form of 

occludin is selectively concentrated at the TJ whereas phosphorylation on tyrosine 

residues leads to its disassociation from the TJ complex. In hepatocytes that 

localization of occludin and actin simultaneously changed upon cell proliferation 

and there was a decrease in immunoreactivity of occludin at cell-cell contacts and 

increased cytoplasmic and nuclear localization (Kojima, Sawada et al. 1998). In
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bovine aortic endothelial cells, occludin expression has been shown in the nucleus 

but when these cells are subjected to cyclic strain, the protein localizes to cell 

borders (Collins, Cummins et al. 2006). However, the function of occludin in the 

nucleus is not known. It has been suggested that occludin may interact with ZOl 

to modulate expression of other TJ proteins but there is no supporting evidence.

It has been documented that ZOl interacts with ZONAB, a TF homologous to Y- 

box proteins (Baida and Matter 2000). The two proteins functionally interact in 

the nucleus to modulate the expression of the erbB-2 proto-oncogene, indicating a 

role for regulation of gene expression for TJ proteins (Baida, Garrett et al. 2003).

All the endothelial cells expressed the vWF marker the expression of which is 

restricted to endothelial cells and cells of megakaryocytic origin. The von 

Willebrand factor mediates adhesion of platelets to endothelial cells at site of 

injury.
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Figure 2-1 Expression of the Endothelial Marker vWF in Different 

Endothelia

hCMEC/D3 LMVEC
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W

hCMEC/D3, lung (LMVEC), dermal (DMVEC) and bone marrow (BMEC) cells 

were grown to confluence and immunostained for expression of the endothelial 

marker vWF (grey histograms). Black histograms indicate cells stained with the 

control antibody (RblgG)
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Figure 2-2 Expression of the TJ Protein occludin in Different Endothelia 
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Whole cell lysates (20jag) from hCMEC/D3 (B), dermal (D) or lung (L) 

endothelial cells were separated on 10% SDS-PAGE gels. Blots were probed for 

transferrin receptor (TFR), p-glycoprotein-1 (pgp-1), occludin and claudin-5. 

Arrows indicate the expected Mr of each of these markers. Blots were stripped 

and reprobed for actin or Akt ascontrols for equal protein loading.
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Figure 2-3 Localisation of occludin, claudin 5 and ZO l at the TJ in

hCMEC/D3

RblgG-FITC claudin 5-FITC

occludin-FITC Z01-FITC

hCMEC/D3 cells were grown to confluence on coverslips and rested for 48 hours. 

Following fixation with methanol, the cells were immunostained for expression of 

the TJ proteins-occludin, claudin 5 and ZOl or control antibody (RblgG) and 

analysed by fluorescent microscopy.



Chapter 3

Activity of human occludin promoter



3 Activity of occludin promoter in vitro

3.1 Introduction

The activity of the occludin promoter has been determined in the human intestinal 

cell line, HT-29/B6 (Mankertz, Tavalali et al. 2000). The authors concluded that 

region of the promoter spanning nucleotides 1402-1853 (451 bp) is sufficient for 

the promoter activity. Further, the work also identified the minimal promoter 

which comprises of 208 bp and extends from 1573-1853. Inversion of these 

sequences abrogated activity of the promoter and hence luciferase activity leading 

to the conclusion that the promoter sequence is unidirectional.

We hypothesised that activity of the full length and specific regions of the 

occludin promoter may not be similar between cells of epithelial and endothelial 

origin. To investigate the regions of the promoter essential for function in brain 

endothelial cells, we constructed a series of constructs in which different lengths 

of the occludin promoter were ligated into the reporter vector, pGlowTOPO®, 

which is a promoter deficient GFP expression vector. This vector can be used to 

analyse in addition to other functions, cell-specific promoter function and 

deletions within a promoter. CMV promoter cloned similarly served as a control 

for transfection efficiency. The reporter vector with no added sequence was used 

as a negative control. The longest construct we examined was the full length 

promoter (occ-FL). The shortest construct was F8, which contained only 120 bp 

of the promoter. Promoter activity and strength of different promoter fragments 

can be determined by assaying GFP activity after ectopic expression in cells of
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interest.

This chapter presents data on the functional analysis of the human occludin gene 

promoter in brain and non-brain endothelium.

Aims:

1. To analyse the activity of the occludin promoter in brain and non­

brain endothelial cells

2. To determine the regulation of promoter activity in brain and non­

brain endothelium

3. To determine the smallest region of the promoter sufficient for

promoter activity (minimal promoter).
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3.2 Materials and Methods

3.2.1 Generation of reporter plasmids

The full length and specific fragments of the occludin promoter were PCR 

amplified using primers described before. PCR reactions were run on 1% agarose 

gels and fragments migrating at the appropriate size were excised from the gel, 

extracted and purified (SpinPrep Gel DNA kit, Novagen) The fragments were 

ligated into pCR2.1-pGlow-TOPO® reporter vector (Invitrogen, Paisley, UK) 

following manufacturers instructions. Colonies obtained after transformation of 

TOPI OF' E Coli cells were grown in LB medium with ampicillin and the DNA 

isolated (Wizard Plus SV Mini-Prep, Promega) was screened by double digestion 

with restriction enzymes to release the insert. The DNA was further subjected to 

PCR amplification using M l3 primers and specific primers for the insert.

FRAGMENT PRIMERS

FP-RP

OCCLUDIN Ch. 5 

NT_006713

SIZE (bp)

0 1-225 19380963-1938118 225

1 1 1 !!! S l l $ s | 202-338 19381165-1938130 136

312-619 19381275-19381582 307

11! 598-864 19381561-19381827 256

842-1091 19381805-19382054 249

5 1068-1238 19382031-19382201 170

6 1218-1524 19382181-19382487 306

7 1505-1754 19382468-19382717 249

8 1733-1853 19382696-19382816 120
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3.2.2 Transient transfections

hCMEC/D3, DMVEC and LMVEC cells were transfected with occludin DNA 

promoter fragments cloned in pGlow TOPO vector using the reagent 

Lipofectamine™ 2000 as per manufacturer’s instructions (Invitrogen, Paisley, 

UK).

Briefly, 2-6 x 105 cells were plated per well on 6 well plates in 2 ml of EGM2- 

MV medium and cultured until 60% confluent. For each transfection condition, 2 

pg or 5 pg of DNA was diluted in 250 pi of basic EGM-2 medium in a sterile 

eppendorf. Similarly, 10 pi of Lipofectamine™ 2000 was diluted in 250 pi 

medium for each transfection condition and incubated for 5 min at RT. 250 pi of 

the diluted Lipofectamine™ 2000 reagent was added to each tube containing the 

diluted DNA, mixed gently by rocking and incubated for 20 min at RT to allow 

DNA-Lipofectamine™ 2000 complexes to form. The medium was aspirated and

0 4 -  9 4 -cell monolayers were washed with HBSS with Ca and Mg for 10 min with two 

changes of the buffer. The DNA-Lipofectamine™ 2000 complexes (-500pi) was 

added directly to each well of the 6 well plates containing cells and swirled so the 

reagent covered the cell monolayer and were incubated at 37°C for 6 hrs. The 

DNA-Lipofectamine™ 2000 complexes were then removed from the wells and 

EGM2-MV medium without antibiotics but with reduced serum (1%) and growth 

factors was added and cells cultured for a further 48-96 hours before analysis for 

GFP expression by FACS analysis.
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3.2.3 FACS analysis

9 -4-  9 -!-Transfected cell monolayers were washed once in HBSS without Ca and Mg 

and then detached from the matrix by incubation with 0.25% trypsin-EDTA at 

37°C for 5 min. Cells were then centrifuged at 1500 rpm for 5 min and cell pellets 

resuspended gently in excess chilled PBS and centrifuged at 1500rpm for 5 min. 

After an additional wash, cell pellets were resuspended in chilled PBS for analysis 

by FACS.

Transfection of the brain and lung microvascular endothelial cells lead to the 

generation of heterogeneity in the cell population. The forward scatter and side 

scatter profiles of cell populations that have been successfully transfected showed 

two populations of cells readily distinguished by the differences in the forward 

scatter profiles (Fig. 3.1). These two distinct populations can also be differentiated 

in the expression of the transgene. Smaller cells corresponding to lower forward 

scatter profile and gated as region R2 represent the transfected population. The 

untransfected population has been gated into region 1. Gate 3 (R3) on the FACS 

profiles represent both the R1 and the R2 gates.
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Figure 3-1 FACS Profiles of Transfected Cells
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Figure 3-3 Schematic of the Occludin Promoter showing Fragments used in

Deletion Constructs 
4 FO
^TTATGCTAAGTGAAAGAAGACAGACACAAAGGGCACATATTGTATTATCCATTCATATAAAATGTCCAG -1853 

AATAGGCAAATTAATAGAGACAGAAAGTACATTAGTGGTTGCCGAGGGATGAGGGGAGAGGGGAAATGGG -1783

4F1
GAGTGACTATTAATGGGCATGGGGTTTCTTTTGGGGGCGATTAAAATGGAATTAGATGGT(EG7GA7GG7T -1713

G7'ACAATC7~GG7GAgTATACTAAAACCCATTGAATTGTACGTGCCCTTTAAAAGGGTGAATTTTATGGTA -1643

fF 2
T GTG A ACT CT CTTTTAT AA AGT G G AAA AAA ACTCCTAA GA TCTCTTCA GAA CA TG 7~£A A A AT AC ATT AT A -1473

AAATAATAGACATGTGTTTACAAATCTGAGAGTATTAGGAAATGTTCCCTTGTTTAATTATAAACCAAAT -1503

GGAATGTTTGGAGATTTCAGTAATCTGACAGGGAACATTAAGGGGATTAACCTGACTTCCCCAGTGTTAA -1433

C AATACCAATTTAAACT G CAT CATT CAAA AACT AC AT AGT CATATT AAAG C ATTT GT AG CAAT G ACTT CC -1363

4F3
ACG A AAA A A AT ACC A ATT AA ATTAATT ACCC ATT AAAG CTGCCATCATCTGAAA TA CC7TAT ATTT AT AT -1293

F 2 i
AGT G CTTTTACTT CCT CAAGTAT G AATT GT G CCTT AAG AT CT AAT GTATGGG AG AGT CACAT CT CTAACC -1223

ATTTAATTAAAGGTAGAGAAGTGGGTGGGATTGGATAGAAATTTATTAGCAATGCTGACATTCCAGATTG -1153 

G AAC ACAAAG ACAAG CAGG AT GT AAG AAACCT A AAAGTT CG CTTT CAAT G CAG ATAGTTAAAT G CCA AG A -1083

4F4
AdTAL4A7TGCCACATCCrGGAG^ACAATTAAAAAATATGTTGAAAAACAACCAACATACATAAAAATAT -1013

ACACAGTGTTAAGTGCAGACTATGAAATTTCCCTTGGAAACAGAATCCAGATCAAGAAATAGAATACAGC -943 

ACCCGG A ACTAAG GTG CTTTTT CGTTTT CTT AAAAA AAA AA AAGT A AACCAAGTTT ATTTT G CTTTTTAA -873

f 5GTAGT GTT GTT CTTAAAG aACTACAGGTTG GTAAA CAA CGljATAAGGTG CTTTTT CT CAG G CCAAAG AG C -803

CATAATAGTTTAAATTTCCCGGTCCTCAAGAGCGGACCGGGTGGGCAGGAGAGGACCCTGGGGTGGTGAT -733
tF6

GTGTAAACTGTATTATGCACTTTAGCCTGdTGGATGGCA4CT4ACACC[rACAGTAGTTCACCCTCATTTT -663
F5t

AACCCCT CT AAGTAATT GT CT CTTATT CT G AAT CTAG AG ATT CAG AA ACAG CG CCA AT GTTTACAC ACG A -593

CTTTTG AAATTTT CCCAGG AGT CTTT CGTTG G AG CAATAC AT CTAG AT G CCTTTTT CCAG C AACAGTTTA -523

ATCAAATTCTGGAAGCAGAAAAGTGTCCTGTGAGGACGTGCCTTTCCTATCAAAGTGCTGAGTGCCTGGA -453
AF7

CCCTCTTTCCGGAGGAAACAGTCCCCTCTGGACCTICG7TCGGCCrCrCTCC4r(TAGACACCCCAAGGTTC -383
F6 +

CATCCGAAGCAGGCGGAGCACCGAACGCACCCCGGGGTGGTCAGGGACCCCCATCCGTGCTGTCCCCTAG -313

GAGCCCGCGCCTCTCCTCTGCGCCCCGCCTCTCGGGCCGCAACATCGCGCGGTTCCTTTAACAGTGCGCT -243

4F8
GGCAGGGTGTGGGAAGCAGGACCGCGTCCTCCCGCCCCCTCCCATCCGAGTntAGGTGAATTGGTCACC -173

GAGGIGAGGAGGCCGACACACCACACCTACACTCCCGCGTCCACCTCTCCCTCCCTGCTTCCTCTGGCGGA -103
F f t
GGCGGCAGG AACCGAG AGCCAGGTCCAG AGCGCI -33Cl



3.3 Results

3.3.1 Activity of Full Length Human Occludin Promoter in 

Brain and Non-Brain Endothelium

The three constructs containing either no sequence (black histograms, empty 

vector) or the full length promoter (Figs. 3.4 and 3.5) or the CMV promoter (Figs. 

3.6 and 3.7) were transiently transfected into hCMEC/D3 (Figs. 3.4 and 3.6) and 

LMVEC cells (Figs. 3.5 and 3.7). Cells were assayed for GFP expression 56 hours 

(hCMEC/D3) or 72 hours (LMVEC) post transfection.

Results clearly indicate the expression of GFP driven by the CMV promoter in 

hCMEC/D3 and LMVEC cells is similar though seen at different time points 

(Figs. 3.6 and 3.7). Between experiments, we encountered different transfection 

efficiency rates between the transformed and the primary cells. It was easier to 

ectopically introduce foreign DNA into hCMEC/D3 cells but the primary 

LMVECs were resistant to transfection requiring higher amounts of DNA and 

longer culture durations post transfection.

We also encountered higher cell death in the primary cell line and poor 

transfection efficiency with increasing passage number. In addition, independent 

of the cells and conditions of culture, there was batch variation with the 

lipofectamine reagent leading to different ranges of transfection efficiencies.

However, when the transfection efficiencies were similar in the two cell types, the 

activity of the CMV promoter is comparable in both brain (Fig. 3.6) and non-brain 

endothelial cells (Fig. 3.7).



However, the GFP expression mediated by the full length occludin promoter in 

lung endothelial cells (Fig. 3.5) is similar to that driven by the reporter alone 

(empty vector). In contrast the occludin promoter is active in the brain 

endothelium (Fig. 3.4). These results indicate the differential activation of 

regulatory elements mediate expression from the occludin promoter in brain and 

non-brain endothelium.
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Figure 3-4 Activity of Occludin Promoter in Brain Endothelium

—> empty vector
empty vector

Colour histograms show GFP expression mediated by the human occludin 

promoter in the transfected (green histograms, R2) and the entire population (red 

histograms, R3) which includes the untransfected population represented in gate 

R1 (red histograms). Expression driven by the empty vector is represented in 

black histograms.
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Figure 3-5 Activity of Occludin Promoter in Non-Brain Endothelium
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Colour histograms show GFP expression mediated by the full length occludin 

promoter in the transfected (green histograms, R2) and the entire population (red 

histograms, R3) which includes the untransfected population represented in gate 

R1 (red histograms). Expression driven by the empty vector is represented in 

black histograms.
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Figure 3-6 Activity of CMV Promoter in Brain Endothelium
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Colour histograms show GFP expression mediated by the CMV promoter in the 

transfected (green histograms, R2) and the entire population (red histograms, R3) 

which includes the untransfected population represented in gate R1 (red 

histograms). Expression driven by the empty vector is represented in black 

histograms.

102



Figure 3-7 Activity of CMV Promoter in Non-Brain Endothelium
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Colour histograms show GFP expression mediated by the CMV promoter in the 

transfected (green histograms, R2) and the entire population (red histograms, R3) 

which includes the untransfected population represented in gate R1 (red 

histograms). Expression driven by the empty vector is represented in black 

histograms.
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3.3.2 Activity of human occludin promoter fragments in

brain (hCMEC/D3) and lung (LMVEC) endothelium

We also tested a series of constructs with fragments of the human occludin 

promoter in brain and non-brain endothelium. The nine constructs (Fig. 3.1) 

containing different promoter sequences and/or the empty vector (black 

histogram, empty vector) were transiently transfected into hCMEC/D3 (Figs. 

3.10-3.18, panels A-C) and LMVEC (Figs. 3.10-3.18, panels D and E) cells. Cells 

were assayed for GFP expression 56 hours (hCMEC/D3) or 72 hours (LMVEC) 

post transfection.

Results clearly indicate in hCMEC/D3 cells, the expression of GFP is driven by 

all of the occludin promoter fragments that we have used in the experiments in 

hCMEC/D3. However, the intensity of the GFP generated was different with the 

various fragments leading to the conclusion that the promoter strengths vary 

between the fragments.

However, the GFP expression mediated by the occludin promoter fragments in 

lung endothelial cells (LMVEC) is similar to that driven by the reporter alone 

(empty vector). These results indicate the differential activation of regulatory 

elements mediate expression from the occludin promoter in brain and non-brain 

endothelium.
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Figure 3-8 Activity of occludin promoter fragments in pGLOW-Topo in

hCMEC/D3 cells
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Relative GFP activity from occludin promoter fragments. hCMEC/D3 cells were 

transfected with the reporter plasmids (FO- F8) and cultured for 56 h. GFP 

activities were measured and the relative values of each reporter was calculated 

and normalized to that of the empty vector-transfected cells to derive the median 

fluorescence of transfected cells. The values represent the mean ± SD of the 

median fluorescence values from three independent experiments for each reporter. 

The data was analysed by ANOVA (p<0.001) followed by Tukey’s multiple 

comparison test. Promoter activity from fragments FI, F2, F3 and F4 is 

significantly lower than that from the minimal promoter F8 (p<0.01 in all cases), 

but the activity of FO, F5, F6 and F7 is not significantly different from that of F8 

(p>0.05).
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Figure 3-9 Activity of Occludin Promoter Fragments in pGlow-TOPO in 

Lung Endothelial Cells

Relative GFP activity from occludin promoter fragments. Lung endothelial cells 

cells were transfected with the reporter plasmids (FO- F8) and cultured for 72 h. 

GFP activities were measured and the relative values o f each reporter was 

calculated and normalized to that of the empty vector-transfected cells to derive 

the median fluorescence of transfected cells. The values represent the mean ± SD 

of the median fluorescence values from three independent experiments for each 

reporter.
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Figure 3-10 Activity of FO in hCMEC/D3 and LMVEC cells
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Figure 3-11 Activity of F I in hCMEC/D3 and LMVEC cells
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Figure 3-12 Activity of F2 in hCMEC/D3 and LMVEC cells
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Figure 3-13 Activity of F3 in hCMEC/D3 and LMVEC cells
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Figure 3-14 Activity of F4 in hCMEC/D3 and LMVEC cells
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Figure 3-15 Activity of F5 in hCMEC/D3 and LMVEC cells
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Figure 3-16 Activity of F6 in hCMEC/D3 and LMVEC cells
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Figure 3-17 Activity of F7 in hCMEC/D3 and LMVEC cells
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Figure 3-18 Activity of F8 in hCMEC/D3 and LMVEC cells
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3.4 Discussion

This chapter details the characterization of the human occludin gene promoter 

activity in brain and non brain endothelial cells. Analysis of promoter regulation 

is one among the many strategies available to study regulation of genes and 

evaluation of promoter activity of tissue specific genes helps to understand 

mechanisms behind development and maintenance of differentiated phenotypes.

Full length and various fragments of the promoter were cloned upstream of GFP 

in the pGlow TOPO reporter vector that lacks promoter and enhancer sequences. 

The activity of the full length promoter and the fragments were monitored by GFP 

expression in transfected cells, expression of GFP indicating the activity. The 

present work set out to determine the effect of promoter length on activity, isolate 

minimal region showing strong promoter activity and determine differences in 

promoter activity between brain and non-brain endothelium.

The full length promoter was active in brain endothelium but not in lung 

endothelium. In hCMEC/D3 cells, its activity was comparable to that of the CMV 

promoter although variability of GFP expression was high between experiments. 

Cells transfected with plasmid DNA containing CMV promoter expressed GFP 

24-36 hours post transfection but GFP expression driven by the occludin promoter 

was not visible until 56 hours post transfection. Surprisingly, occludin promoter 

fragments FO, F5, F6 and F8 displayed activity similar to that of the full length 

promoter leading to the conclusion that there isn’t a single defined minimal 

promoter region. It appears promoter fragments which are rich in GC residues
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display maximal promoter activity. These fragments exhibited binding sites for 

YY1 and the Sp family TFs (discussed in detail in Chapter 4). Other unidentified 

binding sites for factors that activate or repress occludin expression may also 

contribute to this result.

Occludin protein expression is differentially regulated in endothelium. It is highly 

expressed in brain endothelial cells and absent in lung endothelial cells. It is 

however expressed in epithelial cells where it participates in the formation of tight 

junctions. The activity of the promoter in epithelial cells has been analysed by 

Mankertz et al using a luciferase reporter vector system (Mankertz, Tavalali et al. 

2000). The data shows the region of 1400-1853 bp to be sufficient for 

transcription as maximum promoter activity was driven by deletion constructs 

containing this region. The data in the epithelial cells also identifies a minimal 

promoter which is the region extending from 1645-1853 bp. However, our data 

does not clearly define a region in the occludin promoter that exhibits maximal 

promoter activity. Nevertheless, the present data suggests that occludin promoter 

is actively repressed in non brain endothelium-there was no ‘leakage’ of promoter 

activity. Shorter versions of the promoter were also inactive. These results 

indicate differential regulation of the protein in endothelia that contributes to 

tissue specific expression of occludin.
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Chapter 4

Analysis of Transcription Factors 

Binding to Occludin Promoter in vitro
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4 Analysis of Transcription Factors Binding 

to Occludin Promoter in vitro

4.1 Introduction

The promoter region of the human occludin gene was identified by Mankertz et al 

in 2000 (Mankertz, Tavalali et al. 2000). In addition to promoter activity there are 

several studies that have reported the modulation of the protein expression by 

transcription factors via a direct interaction with the promoter.

Expression of occludin may be regulated at the transcriptional level by a number 

of different factors, including those in the Ras pathway. In the human intestinal 

cell line HT-29/B6, the inflammatory cytokines, tumour necrosis factor-a, and 

interferon-y regulate promoter activity (Mankertz, Tavalali et al. 2000).

In an elegant study, Wang et al (2007) demonstrated that expression of oncogenic 

Raf 1 in Pa4 epithelial cells increases expression of occludin by direct interaction 

with the occludin promoter. In addition, Raf 1 also upregulates the expression of 

the well documented transcriptional repressor, slug which also interacts with an E- 

box in the occludin promoter to repress transcription (Wang, Wade et al. 2007).

Dokladny et al have shown that Caco-2 cells upregulated occludin protein in 

response to stress induced by heat. HS-induced activation of heat shock factor-1 

(HSF-1) resulted in nuclear translocation of cytosolic HSF-1 and binding to its 

target motif in the occludin promoter (Dokladny, Ye et al. 2008). In 2003, the 

transcriptional repressor snail was shown to repress transcription from the
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occludin promoter. Snail along with the related slug belong to the Snail 

superfamily of transcriptional repressors. In 293T epithelial cells, snail interacts in 

vitro with the single E-box present in the occludin promoter (Ikenouchi, Matsuda 

et al. 2003; Forster, Silwedel et al. 2005).

Brain endothelial cells treated with glucocorticoids lead to an increase of occludin 

at protein and mRNA levels by activation of the glucocorticoid receptor (GR) and 

its binding to putative glucocorticoid responsive elements in the occludin 

promoter (Forster, Silwedel et al. 2005).

However, the analyses have been restricted mainly to epithelial cell systems and 

the present chapter represents the detailed investigation of the regulation of 

occludin promoter in endothelial cells and aims to identify important transcription 

factors regulating expression via a direct or indirect interaction with the promoter.

4.2 Analysis of the Occludin Promoter for Putative TF 

Binding Sites

One of the elements in studying the process of gene regulation is investigating the 

binding of TFs to cis-elements, short sequences of DNA which influence the 

expression from the gene. TFs each recognize a family of cis-regulatory DNA 

sequences usually about 4-10 bases long with varying degrees of conservation at 

each position. There are approximately 2000 known different TFs from about 100 

species. They regulate spatial and temporal gene expression by binding to DNA 

and either activating or repressing action of an RNA polymerase. Like other 

proteins, TFs are composed of evolutionary units called domains, which belong to
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families that can occur in many different proteins and various domain 

combinations. The precise description of TFs in DNA-binding is useful in a wide 

variety of studies. Examples include ChlP-chip assays, protein chip or yeast one- 

hybrid. This information is also valuable for studies involving gene regulation 

comparing multiple genomes or gene regulation networks. Hence it is useful to 

have a program, which can predict putative transcription factor binding sites in a 

given sequence of DNA based on binding motifs.

Transcription Element Search Software- TESS is a web based software tool for 

predicting possible transcription factor binding sites in a given DNA sequence. It 

can identify binding sites using site or consensus strings and positional weight 

matrices from the TRANSFAC, JASPAR, IMD, and the CBIL-GibbsMat 

databases. One of the disadvantages of using bioinformatics is that motif 

searching eliminates useful data when gene regulation is complex. For instance, 

the expression pattern of a particular gene may be due to a combination of 

different regulatory elements conferring different effects at different times (Xu, 

Unseren et al. 2000). In addition, a TF may be constitutively expressed but 

regulated strictly post-transcriptionally. A transcription factor's function may 

require cofactors that vary in expression temporally or spatially in a way that is 

not correlated with the TF itself. The program would not be able to predict the 

binding sites of such TFs nor would the algorithm make successful predictions 

concerning TFs that do not vary in expression.

The occludin promoter was analysed using this web program and results 

summarised (Appendix-1). Literature from groups who have published target-
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binding sites based on mutagenesis assays was also considered. For example 

Forster et al., 2005 investigated glucocorticoid receptor (GR) binding sites in the 

human occludin promoter. According to their study, the human occludin promoter 

contains several pentamer sequences located (332-336, 361-365, 399-403, 448- 

452, 781-785, 1073-1077, 1325-1329 and 1427-1431) bp upstream of the 5' 

flanking region, which may be glucocorticoid-responsive elements (GREs) and on 

which glucocorticoids can influence gene expression.

4.3 Organisation of the Occludin Promoter

For use in EMSAs, we generated 15 individual overlapping gene segments of 

<200bp. The double stranded occludin promoter probes were divided into three 

categories based on the presence/absence of target sites for Sp family or YY1 on 

each of the probes (Fig. 4.1, Table 4.1). Eight of the probes have potential target 

sites for Sp-family transcription factors and six probes respectively for YY1. Four 

of the probes have sites for both of the TFs (Table 4.1). To determine which 

regions of the occludin promoter may interact with DNA-binding proteins in 

different endothelia, each probe was analysed by EMSA using nuclear extracts 

from hCMEC/D3 and lung endothelium. Data for each individual fragment shown 

is a representative image of data that has been repeated at least three times.

1 2 2



Figure 4-1 Schematic of the occludin promoter showing fragments used in
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GTAGTGTTGTTCTTAAAGlCAC7AG4GGTTGG7AA4C4ACGrATAAGGTGCTTTTTCTCAGGCCAAAGAGC

CATAATAGTTTAAATTTCCCGGTCCTCAAGAGCGGACCGGGTGGGCAGGAGAGGACCCTGGGGTGGTGAT
AF6.1

GTGTAAACT GTATTAT G CACTTTAG CCT GCTGGATGGCAA CTAA CACQTACAGTAGTT CACCCT CATTTT
F5t

AACCCCTCTAAGTAATTGTCTCTTATTCTGAATCTAGAGATTCAGAAACAGCGCCAATGTTTACACACGA

4F6.2
CTTTT G AAATTTT CCCAGG AGT CTTT CGI7TGGA G CAA TA CATCTAGATGCCTTTTT CCAG CAAC AGTTTA

F6 .1t
ATCAAATTCTGGAAGCAGAAAAGTGTCCTGTGAGGACGTGCCTTTCCTATCAAAGTGCTGAGTGCCTGGA

4F7.1
CCCTCTTTCCGGAGGAAACAGTCCCCTCTGGACCirG7TCGGCCTCrCTCCATJAGACACCCCAAGGTTCm  

ir
CATCCGAAGCAGGCGGAGCACCGAACGCACCCCGGGGTGGTCAGGGACCCCCATCCGTGCTGTCCCCTAG

+F7.2
GAGCCCGCGCCTCTCCTCTGCGCCCCGCCTCTCGGGCCGCAACATCGCGCGGTTCCTTrAACAGTGCGCr

4F8
GGCAGGGTGTGGGAAGCAGGACCGCGTCCTCCCGCCCCCTCCCATCCGAGTTTCAGGTGAA7TGGTCACC

F7.1t
AGGAGGCCGACACACCACACCTACACTCCCGCGTCCACCTCTCCCTCCCTGCTTCCTCTGGCGGA

GG CG G C AG G AACCG AG AG CCAGGT CCAG AG CG d
f F

-1853

-1783

-1713

-1643

-1473

-1503

-1433

-1363

-1293

-1223

-1153

-1083

-1013

-943

-873

-803

-733

-663

-593

-523

-453

-383

-313

-243

-173

-103

-33
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4.4 Materials and Methods

4.4.1 Preparation of nuclear and cytosolic extracts from 

endothelial cell cultures

Buffers

Solution A: 10 mM Hepes (pH 7.8), 10 mM KC1, 1 mM DTT*, 2 mM MgC^, 0.1 

mM EDTA, 0.4 mM PMSF, 0.2 mM NaF, 0.2 mM Na3VC>4, 0.3 mg/ml Leupeptin 

made up in water.

Solution B: 10 ml nonidet-40 in 100 ml distilled water (final concentration is 10% 

v/v).

Solution C: 50 mM Hepes, 50 mM KC1, O.lmM DTT, 300 mM NaCl, 0.1 mM 

EDTA, 0.2 mM PMSF, 0.2 mM NaF, 0.4 mM PMSF, 0.2 mM Na3VO4,10% v/v 

Glycerol, made fresh before assay and stored on ice or at 4°C.

Fully confluent and rested cell cultures of endothelial cells in 175 cm flasks were 

used for the assay. Medium was discarded and cell monolayers were washed twice 

in chilled PBS and drained thoroughly. 1 ml of fresh PBS was added and cells 

were scraped into this volume by using a cell scraper (Cat no: 541080, Greiner). 

Cells were pipetted from the flask into a clean and sterile eppendorf tube and 

centrifuged at 1200 rpm for 10 min at 4°C. The supernatant was discarded and 

pellet was gently resuspended in 400 pi of solution A and incubated on ice for 15 

min. 25 pi of solution B was added and mixed vigorously by vortexing for 15 sec 

followed by centrifugation at 14000 rpm for 1 min. The supernatant which is the 

cytosolic extract was quickly removed into another eppendorf and left on ice. The



pellet which is the nucleic fraction was resuspended in 50 pi of solution C and 

incubated for 40 min at 4°C on a cell mixer. The tube was then centrifuged at 

14000 rpm for 10 min at 4°C and supernatant collected, the protein concentration 

estimated and aliquots stored at -80°C.

4.4.2 Assay for estimation of protein concentration

The Bio-Rad DC protein assay, a modification of the Lowry method was 

employed to determine the protein concentration of the nuclear and cytosolic 

extracts. Serial dilutions of the BSA protein standard were prepared to generate a 

range of protein concentrations: 2, 1.5, 1, 0.75, 0.5 and 0.25 mg/ml. 5 pi of the 

standards and the sample were pipetted into a 96-well flat bottomed micro titre 

plate. 25 pi of reagent S/A (20 pi of reagent S + 1 ml of reagent A) was added to 

each well followed by addition of 200 pi reagent B. Plate was read in an ELISA 

reader at 640 nm and the protein concentration of the samples was determined 

using the standard curve.

4.4.3 Generation of occludin promoter fragments for use in

EMSA analysis

Primers were designed to amplify regions of 100-150 bp in the occludin promoter. 

Occludin promoter is 1853 bp in length and was obtained from Joachim 

Mankertz, whose work had earlier established and characterised the promoter 

(Mankertz, Tavalali et al. 2000).

Primers were designed using the Custom Primers-OligoPerfect™ Designer on the
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Invitrogen (http://www.i nvitrogen.com) website following the parameters below:

1. Length of the primer ranging from 17-28 bases.

2. GC composition restricted to 50-60%.

3. Primers preferably ending (3') in a G or C, or CG or GC.

4. Melting temperatures (Tm) ranging from 55-80°C and the primers

constituting the primer pair having similar melting temperatures.

5. No internal complementarity.

6 . Restrict runs of three or more C’s or G’s at the 3'-ends of primers. 

Desalted primers were synthesised at 50 nM scale using oligonucleotide synthesis 

services at Invitrogen. Appropriate amount of deionised water was added to 

achieve a final concentration of 100 pM. Primer pairs were generated by diluting 

individual forward and reverse primers together to a final concentration of 10 pM 

in water and were stored at -20°C. A PCR reaction contained 1 pi DNA template, 

2 pi primer pairs, 1.2 pi 25 mM MgCh, 2 pi 10 x Taq buffer, and 11.5 pi water 

and 0.5 units’ high fidelity Taq polymerase. PCR was carried out by 1 step at 

94°C for 10 min, followed by 30 cycles of: 72°C 1 min, 50°C 30 sec, 72°C 30 sec, 

and finally 1 step of 72°C for 7 min. PCR products were diluted in blue/orange 

loading dye (Cat no: G1881, Promega) and were run on 1% agarose gels with 

O.lpg/ml ethidium bromide. 1 kb and 100 bp DNA ladders were loaded and 

fragments migrating at the appropriate size were excised from the gel using a 

clean scalpel into autoclaved eppendorfs. The gel slices were weighed and DNA 

extracted and purified using the SpinPrep Gel DNA kit according to 

manufacturer’s instructions (SpinPrep Gel DNA kit, Novagen). Concentration of
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the DNA was maintained at 1 |ig/}il for use in EMSA analyses. 

Table 4-2 Forward Primers

5’ATT ATG CTA AGT GAA AGA AGA CAG ACA C 3’
FP 97 5’ATC CCT CGG CAA CCA CTA ATG TAC 3’
FP 202 5’GTA CAT TAG TGG TTG CCG AGG GAT 3’
FP 312 5’CTC CTA AGA TCT CTT CAG AAC ATG TC 3’

5’GAT TAA CCT GAC TTC CCC AGT GT 3’
5’GCT GAC ATT CCA GAT TGG AAC AC 3’

m m m m : 5’ CTA TAA TTG GCA CAT CCT GGA G 3’
m m r n m i 5 ’ GAA TAC AGC ACC CGG AAC TAA G 3 ’
FP 1068 5’GCA CTA CAG GTT GGT AAA CAA CG 3’
FP 1218 5’TGC TGG ATG GCA ACT AAC AC 3’
FP 1358 5’GTT GGA GCA ATA CAT CTA GAT GCC 3’
FP 1505 5’TCG TTC GGC CTC TCT CCA T 3’
FP 1668 5’TTA ACA GTG CGC TGG CAG 3’
FP 1733 5’TCA GGT GAA TTG GTC ACC GAG 3’

Table 4-3 Reverse Primers

RP 120 5’ ATC CCT CGG CAA CCA CTA ATG TAC 3’
59 TC A CCA GAT TGT ACT ACC ATC C A 39

RP 338 5’ GAC ATG TTC TGA AGA GAT CTT AGG AG 3’
5’ACA CTG GGG AAG TCA GGT TAA TC 3’

:IK1 I  '9$m m 5’GCT GCC ATC ATC TGA AAT ACC 3’
5’GGT ATT TCA GAT GAT GGC AGC 3’
5’GTG TTC CAA TCT GGA ATG TCA GC 3’

l i i i e i i i i ® - 5’CTC CAG GAT GTG CCA ATT ATA G 3’
RP 994 5’CTT AGT TCC GGG TGC TGT ATT C 3’
RP 1091 5’CGT TGT TTA CCA ACC TGT AGT GC 3’

5’GTG TTA GTT GCC ATC CAG CA 3’
5’GGC ATC TAG ATG TAT TGC TCC AAC 3’

RP 1524 5’ATG GAG AGA GGC CGA ACG A3’
RP 1686 5’CTG CCA GCG CAC TGT TAA 3’
RP 1754 5’CTC GGT GAC CAA TTC ACC TGA 3’
RP 1853 5’GCG CTC TGG ACC TGG CTC T 3’
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4.4.4 Electrophoretic Mobility Shift Assay

The electrophoretic mobility shift assay (EMSA) of DNA-protein interactions is a 

sensitive method for the detection of sequence-specific (transcription factors) or 

non-sequence specific (histones) proteins in cellular extracts that can bind a 

particular gene segment in vitro. It can also be used to study the binding activities 

of purified or recombinant sequence-specific DNA-binding proteins. Additionally, 

it can be used to determine the affinity, abundance, association and dissociation 

rates and binding specificities of DNA binding proteins.

The basis of the EMSA assay is based on the observation that protein: DNA 

complexes migrate slower than free DNA molecules when subjected to separation 

on non-denaturing polyacrylamide or agarose gel electrophoresis. In an EMSA, a 

32P-labelled DNA fragment is incubated with a candidate transcription factor 

present in a nuclear extract or as a pure protein. The protein-DNA complexes are 

separated from free (unbound) DNA by electrophoresis through a non-denaturing 

polyacrylamide gel. The protein retards the mobility of the DNA fragments to 

which it binds; thus, the free DNA migrates faster through the gel than does the 

DNA-protein complex. Appearance of more than one or more slowly migrating 

bands indicates the presence of more than one sequence specific DNA-binding 

protein in the extract.

Buffers and reagents

150 mM STE buffer pH 8.0: 0.438 g of NaCl was dissolved in 40 ml TE buffer 

(10 mM Tris-HCl, pH 8.0, and 1 mM EDTA) and the pH was adjusted to 8.0 and

129



the volume made up to 50 ml with lx TE buffer, pH 8.0.

T4 Polynucleotide Kinase and lOx buffer (Cat no: M4101) - Promega 

Nuclease free water (Cat no: PI 193)-Promega 

[y-32P]ATP Amersham (discontinued from Dec 2007)

4.4.4.1 Phosphorylation reaction and purification

Phosphorylation was carried out using 2 pi (lpg/pl) consensus oligonucleotide, 1 

pi T4 Polynucleotide Kinase (5 U/pl), 1 pi 1 Ox Buffer, 2.5pl [y-32P] ATP and 3.5 

pi nuclease-free water in a sterile micro centrifuge tube. The reaction was 

incubated at 37°C for 30 min following which lp l of 0.5 M EDTA was added to 

stop the labelling reaction. The volume was made up to 50 pi with lx  STE buffer 

and advanced to the next step.

Illustra ProbeQuant G-50 Micro Columns containing Sephadex™ (Amersham) 

were used for the removal of incorporated labelled nucleotides from the DNA 

labelling reaction. Briefly, the Sephadex G-50 resin in the column was vortexed 

for a few seconds followed by centrifugation at 735*g for 1 min to resuspend the 

resin and remove the excess storage buffer. The column was inserted into a sterile 

eppendorf and the 50 pi volume from the labelling reaction was applied to the 

centre of the resin bed. The tube was centrifuged for 2 min at 735xg and the 

eluted volume containing the purified labelled oligonucleotide was used 

immediately or stored at -20°C for subsequent assays.
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4.4.4.2 Gel preparation

30% Acrylamide/Bis Solution, 29:1 (Bio-Rad, Cat no: 161-0157) 

lOx Tris-Borate-EDTA buffer-DNase and RNase free, (Cat no: T4415)

20% APS (Sigma, Cat no: A3678)

TEMED (Sigma, Cat no: T9281)

Gels were made up with 8 ml 30% Acrylamide/Bis Solution 29:1,1.5 ml lOx TBE 

buffer, and 0.4 ml 10% APS, 0.1 ml TEMED and 50 ml water. The gels were 

allowed to set in the plates for about 2 hours at room temperature before using 

them in the experiment. Gels were pre-run at 120 V for 30 min in chilled 0.25x 

TBE buffer for equilibration. Temperature of the running apparatus was 

maintained at less than 15°C.

4.4.4.3 DNA binding reaction

Binding buffer: 8% Ficoll® (Cat no: F2637, Sigma) in 40 mM Hepes (Cat no: 

H3375, Sigma) pH 7.5.

Poly (deoxyinosinic-deoxycytidylic) acid sodium salt (Poly dI:dC): (Cat no: 

P4929, Sigma) 1 mg/ml solution were generated in water and aliquots of 50 pi 

were frozen at -20°C.

10 mM MgCE: (Cat no: M8266, Sigma) and 10 mM DTT: (Cat no: D9779, 

Sigma).

Loading dye: 250 mM Tris-Cl, pH 7.8, 0.2% bromophenol blue, 40% glycerol.
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The DNA binding reation was carried out with 10 pi binding buffer, 1 pi poly-dl: 

dC, 0.2 pi 10 mM MgCE, 0.2 pi 10 mM DTT, 1 pi labelled probe, adjusted to 20 

pi with water and 5 pg nuclear protein extract. The reaction without the labelled 

oligo was assembled in sterile, U-bottomed 96 well plate for 20 min at room 

temperature on a shaker. For super shift and cold inhibitor assays, 2 pi of antibody 

(200 pg/O.lml) or 2 pi of the ds DNA oligonucleotide (35 pMol/pl) were added 

respectively after this incubation and further incubated for 30 min at 4°C with 

gentle rocking.

Following this incubation, 1 pi of the labelled oligonucleotide was added to each 

condition and further incubated at RT for 30 min. After addition of 1 pi of the 

loading dye (250 mM Tris-Cl, pH 7.8, 0.2% bromophenol blue, 40% glycerol) 

DNA-protein complexes were loaded in pre-cooled and pre-run 6% native 

polyacrylamide (29:1) gels in 0.25x TBE for 5 hours at 120V. The gel plates were 

opened and the gel placed on a sheet of Whatman® 3 MM filter paper and then 

covered with plastic film and dried under vacuum at 70°C on a gel dryer and then 

exposed to Kodak X-Omat film (Amersham) at -80°C.

Antibodies used in super shift EMSA were purchased from Santa Cruz 

Biotechnology and 2 pg was used per reaction.

Table 4-4 Antibodies used in EMSA

Antibody Species of Immunogen (human) Clone/P AD*

GATA-1

c-Myb
Pitl

Ab
Mouse

Rabbit
Goat

120-235 aa’s of Gata-2 CG2-96

500-640 aa’s of c-Myb H-141
Peptide mapping at the N-20 
N-terminus of Pitl
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Spl

Sp3

TFIID

YY1

Rabbit

Rabbit

Rabbit

Rabbit

528-548 aa’s within an PEP2 
internal region of Spl 
Peptide mapping at the D-20 
C-terminus of Sp3
1-300 aa’s representing Sl-1 
lull length TFIID p36
aa’s 1-414 representing H-414 
full-length YY1

Consensus and mutant oligonucleotides in EMSA analysis were purchased 

from Santa Cruz Biotechnology and 2 pi was used per reaction.

Table 4-5 Cold Block Oligonucleotides

ds DNA probe 
AP-1 consensus

AP-1 mutant

CBF consensus

CBF mutant

TFIID consensus

TFIID mutant

MEF-2 consensus

MEF-2 mutant

c/EBP consensus

c/EBP mutant

Spl
Consensus
Spl
mutant
AP-2a consensus

AP-2a
Mutant
YY1 consensus

Sequence
5’ CGCTTGATGACTCAGCCGGAA 3’
3’ GCGAACTACTGAGTCGGCCTT 5’
5’ CGC TTG ATG ACT TGGCCGGAA 3'
3’ GCGAACTACTGAACCGGCCTT 5'
5’ AGACCG TACGTGATTGGTTAATCTCTT 3’
3’ TCTGGCATGCACTAACCAATTAGAGAA 5’
5 ’ AG ACCGT ACG A A AT ACGGG A AT CTCTT 3 ’
3’ TCTGGCATGCTT TATGCCCTTAGAGAA 5'
5’ GCAGAGCATATAAAATGAGGTAGGA 3’
3’ CGTCTCGTATATTTTACTCCATCCT 5’
5’ GCGGAGCAGCTAAAATGAGGTAGGA 3'
3’ CGTCTCGTCGATTTTACTCCATCCT 5‘
5’ GATCGCTCTAAAAATAACCCT GTCG 3’
3’ CTAGCGAGATTTTTATTGGGACAGA 5’
5’ GATCGCTGTAAACATAACCCT GTCG 3'
3’ CTAGCGACATTTGTATTGGGACAG C 5’
5’ TGCAGATTGCGCAATCTGCA 3’
3’ ACGTCTAACGCG TTAGACGT 5’
5’ TGCAG AG ACTAGTCTCTGCA 3’
3’ ACGTCTCTGATCAGAGACGT 5’
5* ATTCGATCGGGGCGGGGCGAGC 3’
3’ TAAGCTAGCCCCGCCCCGCTCG 5'
5’ ATTCGATCGGTTCGGGGCGAGC 3'
3' TAAGCTAGCCAAGCCCCGCTCG 5’
5' GATCGAACTGACCGCCCGCGGCCCGT 3'
3' CTAGCTTGACTGGCGGGCGCCGGGCA 5’
5' GATCGAACTGACCGCTTGCGGCCCGT 3’
3' CTAGCTTGACTGGCGAACGCCGGGCA 5'
5’ CGC TCC CCG GCC ATC TTG GCG GCT GGT 3’ 
3’ GCG AGG GGC CGG TAG AAC CGC CGA CCA 5’
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YY1 mutant

GR consensus

GR mutant

Ets-1/PEA3
consensus
Ets-1/PEA3
mutant
c-Myb consensus

c-Myb
mutant
CDP
consensus 
GATA consensus

GATA
mutant
IRF-1 consensus

MEF-2
consensus
NF-1
consensus
NF-1
mutant
NFkB consensus

NFAT-c
consensus

5 ’ CGCTCCGCGATTATCTTGGCGGCTGGT 3 ’
3’ GCGAGGCGCTAATAGAACCGCCGACCA 5’
5 ’G ACCCTAG AGG ATCTGTAC AGG ATGTTCTAGAT35 
3 ’CTGGG ATCTCCTAG AC ATGTCCTAC A AG ATCTA 5 * 
5 ’ G ACCCTAG AGG ATCTC A AC AGG ATC ATCTAG AT3 ’ 
3’CTGGGATCTCCTAGAGTTGTCCTAGTAGATCTA 
5’ GATCTCGAGCAGGAAGTTCGA 3'
3’ CTAGAGCTCGTCCTTCAAGCT 5’
5’ GATCTCGAGCAAGAAGTTCGA 3’
3’ CTAGAGCTCGTTCTTCAAGCT 5’
5' T AC AGGC AT A ACGGTTCCGT AGTG A 3'
3' ATGTCCGTATTGCCAAGGCATCACT 5'
5' TACAGGCATATCGGTTCCGTAGTGA 3’
3' ATGTCCGTAT AGCCA AGGC AT C ACT 5'
5' ACCCAATGATTATTAGCCAAT TTCTGA 3'
3’ TGGGTTACTAATAATCGG TTA A AG ACT 5'
5’ CACTTGATAACAGAAAGTGATAACTCT 3'
3’ GTGAACTATTGTCT TTCACTATTGAGA 5’
5’ C ACTT GAT A AC AG A A AGTCTT A ACTCT 3’
3' GTGAACTATTGTCTTTCAGAATTGAGA 5’
5’ GGAAGCGAAAATGAAATTGAC T 3’
3' CCTTCGCTTTTACTT TAACTGA 5’
5' GATCGCTCTAAAAATAACCCTGTCG 3’
3' CTAGCGAGATTT TTATTGGGACAGC 5’
5, TTXXGGATTGAAGCCAATAXGAXAA 3- 
3’ A A A ACCT A ACTTCGGTT AT ACT ATT 5’
5' TTTTGGATTGAATAAAATATGATAA 3’
3’ A A A ACCT A ACTT ATTTTAT ACT ATT 5'
5’ AGTTGAGGGGACTTTCCCAGGC 3'
3’ TCAACTCCCCTGAAAGGGTCCG 5’
5* CGCCCAAAGAGGAAAATTTGTTTCATA 3’
3' GCGGGT TTCTCCTTTT A A ACA A AG TAT 5’
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4.5 Results

4.5.1 Promoter Probes with Sp Target Sites

In this section, I shall discuss the interaction of occludin promoter probes 

containing putative target sites for the Sp family with nuclear protein from brain 

endothelial cells (hCMEC/D3) and/or lung endothelial cells (LMVEC, non-brain 

endothelium).

Fragment Position on Chr5 
NT 006713

Size (bp) *Target sites for Spl

6.2 19382321-19382487 166 X
7.1 19382468-19382649 181 X
8 19382696-19382816 120 X

4.5.2 Fragment 6.2

1382 1398 1424 1442 1447 1475

NF-AT AP-1 GR N H  GATA1 NF 1
NF-AT

Fragment 6.2 spans the region 1358-1524 in the occludin promoter and includes 

binding sites for NF-AT (1382, 1442), AP-1 (1398), NF-1 (1442, 1475), GR 

(1424) GATA (1447) and Sp family (1491). There is an overlap of nineteen base 

pairs between probes F6.2 and F7.1 owing to the particular nature the fragments 

were amplified and includes the transcription start site as published by Van Itallie 

and Anderson (Van Itallie and Anderson 1997) but this short stretch does not 

exhibit any potential transcription factor sites.
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Activity of fragment 6.2 in brain endothelium (hCMEC/D3)

The probe interacted with nuclear protein from hCMEC/D3 cells to form four 

DNA-protein complexes (Fig 4.2). The highest mobility complex was specific for 

Sp family as it was blocked in the presence of 100 molar excess of unlabelled Spl 

competitor (lane 9) and the complex was shifted in the presence of an antibody to 

Sp3 (lane 4) but not Spl (lane 3) hence confirming the preferential binding of Sp3 

and not Spl to this probe in the brain endothelial cells.

Table 4-6 Summary of F6.2 Activity in Brain Endothelium (hCMEC/D3) 

Shifted band Spl Sp3 GATA NF-1

6.2.1

6.2.3 - ^
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Figure 4-2 Activity of Fragment 6.2 in Brain Endothelium

Labelled oHgoF6.2

hCMEC/D3
Nuclear Extract - ---------  - ---------------
GATA ab - - + - - ........................
Sp1 ab - - - + - - - - - - -
Sp3 ab - - - - + - ...................
GATAoligo ................. -
Sp oligo ................. -
NF1 oligo................. ................. - - - - + .
NF1 mut oligo ................. ..............................

1 2 3  4 5  6 7 8  9 1011

6 . 2.2 -»

Nuclear protein bound 
to 32P labelled probe 
F6.2 (lanes 2, 7) was 
challenged with 
antibodies or 
consensus 
oligonucleotides to 
GATA1 (lane 3 and 
8), Spl (lane 4 and 9), 
Sp3 (lane 5 and 9).
Sp3 antibody (lane 5) 
shifted the highest 
mobility complex and 
this was also blocked 
in the presence of a 
competitor (lane 9). 
Wild type (lane 10) 
and mutant 
competitors (lane 11) 
to the factor NF1 did 
not affect the DNA- 
protein complexes.
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4.5.3 Fragment 7.1

Fragment 7.1 spans the occludin promoter region between 1505 and 1686 

(including the first and last base). This region includes target binding sites for the 

TF, AP2 at 1590 and 1614; Sp family at 1551, 1572, 1632 and 1675; a single 

binding site for the TFs, GR, NF-AT, c-Ets and c-Myb site at 1601, 1610, 1663 

and 1669 respectively.

The transcriptional role of API has been well established for cytokine gene 

promoters. Functional association for the TFs, API and Spl has been reported 

from the characterisation of the human GMCF gene promoter (Ye, Zhang et al. 

1996). API is a nuclear localised transcription factor that comprises gene products 

of the Fos and Jun families and binds to 5 '-TGA (C/G) TCA-3' target sequence 

(Bohmann, Keller et al. 1987). API activity requires co-operation from the NF- 

AT or Elf group of TFs (Macian, Lopez-Rodriguez et al. 2001).

Ets transcription factors comprise about 20 members and are characterised by a 

conserved 85 amino acid ETS domain. Members bind to the consensus DNA 

sequence GGA (A/T) and binding is affected by presence of flanking sequences 

(Seth and Watson 2005).

c-Myb is a nuclear localised oncogenic TF that is mainly expressed in cells of 

hematopoietic origin. It recognises the target motif 5'-VHYAACYR-3’ (where V 

= A, C, or G, and H = A, C, or T). Ets-12 and CBF/PEBP2/AML1 are two 

examples of TFs associating with c-Myb to enhance transcription from target 

promoters (Gonda 1998).
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Activity of F7.1 in brain endothelium (hCMEC/D3)

Probe F7.1 interacted with nuclear proteins from hCMEC/D3 cells to generate one 

low mobility and one high mobility complex of which the latter was abolished by 

addition of competitor to Spl (Fig 4.3, lane 7). Unlike the other promoter probes 

where Sp3 successfully competed out Spl for the binding sites, the converse was 

true as the DNA-protein complex was retarded by addition of an antibody to Spl 

(lane 3) and not Sp3 (lane 4).

Lung endothelial nuclear extracts did not generate any nuclear protein-DNA 

complexes with probe 7.1.

Table 4-7 Summary of Probe 7.1 in Brain Endothelium (hCMEC/D3)

Shifted band Spl Sp3 c-Myb

7.1.1 - - -

7.1.2 ^ - -
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Figure 4-3 Activity of Fragment 7.1 in Brain Endothelium

labelled oligo F7.1

Nuclear Extract 
Sp1 ab 
Sp3 ab 
Sp cold 
c-Myb ab 
Ets ds oligo  
NF-1 ds oligo 
NF1 mut ds oligo  
GR

 hCMEC/D3

—  +  -  -  - .....................................

 + .................................
 + ...................

 +  -

  +
1 2 3 4 5 6 7 8 9101112

+** £ i r*' . A

F7.1.1 ->

F7.1.2

EMSA showing the 
characterisation of 
complexes (lanes 2, 6; 
indicated by arrows) 
formed between 32P 
labelled probe F7.1 
and hCMEC/D3 
nuclear extracts. 
Addition of an 
antibody directed 
towards Spl (lane 3) 
or an unlabelled Spl 
consensus probe (lane 
7) super shifted 
and/or retarded one of 
the complexes. 
Antibodies against 
Sp3 (lane 4), c-Myb 
(lane 8) or wild type 
(lane 10) and mutant 
competitors (lane 11) 
to the factor NF1 
have no effect on 
formation of the 
complexes.
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4.5.4 Fragment 8

173
^  oo oo oo

H ---- 1----0 -i—'8=3
AP-1 GR Sp1 Sp1 Sp1 NF-1 GR

Fragment 8 spans the nucleotide bases 1733-1853 in the occludin promoter. Using 

HT29/B6, a subclone of the human intestinal cell line HT-29, Mankertz et al 

(Mankertz, Tavalali et al. 2000) determined the minimal promoter activity of the 

occludin promoter resides in 208 bp upstream of the putative transcription start 

site at 1781 bp previously published by Ando-Akatsuka et al (Ando-Akatsuka, 

Saitou et al. 1996). Putative transcription factors with target binding sites on this 

fragment include the Sp family, GR and members of the CCAAT binding proteins 

as illustrated in the figure above. These transcription factors have been discussed 

in chapter 1.

Activity of fragment 8 in brain endothelium (HCMEC/D3)

Four nuclear protein-DNA complexes, 8.1, 8.2, 8.3 and 8.4 were seen in the 

presence of extracts from hCMEC/D3 (Fig. 4.4 and 4.5, lane 2). The subunit 

composition of the complexes was investigated using competitor probes and/or 

antibodies directed against transcription factors predicted to have binding sites on 

the probe.

In the presence of a cold competitor to Spl (Fig. 4.4, lane 18) which as previously 

described is also specific to Sp3 due to redundancy in binding targets between Sp
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family members, the formation of complexes, 8 .1, 8.2 and 8.3 was inhibited and 

in the presence of an antibody directed against Sp3 (Fig. 4.4, lane 4), the 

complexes, 8.1, 8.2, 8.4 were retarded. In an unexpected observation we have 

observed that protein binding to this region is blocked by 100-molar fold excess 

of competitor for NFkB and AP2-a (Fig. 4.5, lanes 26 and 30), in which 

formation of nuclear protein-DNA complexes 8.1 and 8.2 are blocked. Since 

NFkB consensus oligonucleotide blocks the same complexes as does the Spl 

competitor, it is likely that the transcription factor interacts with the Sp family. 

Whether this is a functional interaction is not known. Due to this observation we 

performed EMSA employing cold probes and antibodies against transcription 

factors that do not have putative target sites on the probe (lanes 5-9; 11-25; 27-29 

and 31). With the exception of the AP-2a transcription factor, none of the other 

antibodies and competitors inhibited the formation or retarded the nuclear protein- 

DNA complexes.

Activity o f fragment 8 in lung microvascular endothelium (LMVEC)

The F8 probe interacted with nuclear extracts from lung endothelial cells to form a 

single DNA-protein complex (Fig 4.6, lane 2) which was not super-shifted by 

antibodies to Spl (lane 3) or Sp3 (lane 4). Notably, the complexes formed by 

brain and non-brain endothelium are totally distinct, implying that lung 

endothelium lacks the active Sp3 complex, even though Sp3 is present in these 

cells, albeit at a lower level than in brain endothelium (Holloway, Sade et al. 

2007). Furthermore, this complex is blocked in the presence of all of the 

unlabelled cold competitors (lanes 5-8) leading to the observation that the DNA-
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protein complex is not sequence specific.

Table 4-8 Activity of F8 in Brain Endothelium (hCMEC/D3)

Shifted Band Spl Sp3 NFkB AP2-cx

F8.1 S S S

F8.2 ysi;iiiiiiBiisiiiSiBi: l!IIS !!!!|||illl

F8.3 - s -

F8.4

Table 4-9 Activity of F8 in Non-Brain Endothelium (LMVEC)

Shifted Band Spl Sp3 NFkB AP2-a

F8.I
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Figure 4-4 Activity of Fragment 8 in Brain Endothelium

Labelled Oligo F8

Nuclear Extract ------------------ hCMEC/D3------------------------
Sp1 ab  - .......................... -
Sp3 ab - - - + ---------     -
YY1 ab - - - - + .............................................................
TFIID ab  + ...........................................................
GATAab  + ......................................................
P itlab .................................................... + ..................................................
c-Myb ab  - - + .......................  - -
Ets ds oligo    +  - ...........................
NF1 ds oligo - - -   - + ............................
YY1 ds oligo----------- ------------------------------ ------------------------------
NFAT-c ds oligo - - .................. - ........................ + - ------------
NF1 ds oligo m ut  .................. - ................................+ - - - .
YY1 ds oligo m ut  .................. - .............................. -  - +  - -
Sp1 ds oligo - - - - - -  - - ..........................
CBF ds oligo     +

1 2 3 4 5 6 7  8 9 1011 1213141516171819

8.1

8 . 2*

8.3-
8 .4 -

A

i
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Figure 4-5 Activity of Fragment 8 in Brain Endothelium

Labelled oligo F8

Li , n _  hCMEC/D3
Nuclear E xtract------------------------------
Pitl ds oligo + ..........................................................
SREds oligo - + ....................................................
Sp ds m u t oligo - - + .............................................
GATA ds oligo - - - + .......................................
C reb ds oligo - - - - + ...................................
TFIID ds o l i g o .........................+ ................................
NFkB oligo ...............................+ .........................
CDP ds oligo ......................................+  - -  - -
IR F d so ig o  ........................................... +  - - -
c-Myb ds o l i g o ....................................... - - +  - -
A P2-a ds o l i g o .............................  +  -
AP1 ds oligo .............................................................+

20 21 22 23 24 25 26 2728 29 30 31



Figs. 4.4 and 4.5: EMSA analyses of complexes (8.1, 8.2, 8.3 and 8^4) formed 

with hCMEC/D3 (lanes 2-9 and 11-31) nuclear extracts and the promoter probe 

F8. Lanes 1 and 10 represent mobility of the probe in the absence of nuclear 

protein. The composition of the complexes was investigated using antibodies 

directed against transcription factors predicted to bind to the F8 sequence. 

Addition of an antibody to Sp3 (lane 4) or a competitor to Spl (lane 18) blocked 

the formation of all the nuclear protein DNA complexes in hCMEC/D3 cells. 

Addition of a consensus mutant Sp oligonucleotide reversed the loss of the 

complexes. Competitors to the transcription factors NFkB (lane 26) and AP2-a 

(lane 30) also blocked the formation of the nuclear protein-DNA complexes.

Antibodies to Spl (lane 4), YY1 (lane 5), TFIID (lane 6), GATA (lane 7), Pitl 

(lane 8), c-Myb (lane 8) or presence of consensus or mutant competitors-YYl (13, 

16), TFIID (25), GATA (lane 23), Pitl (lane 20), c-Myb (lane 29), Ets (lane 11), 

NF1 (lanes 12 ,15), NFAT-c (lane 14), CBF (lane 19), SRE (lane 21), Creb (lane 

24), CDP (lane 27), IRF (28) and AP-1 (lane 31) did not affect the formation of 

the complexes.

Fig. 4.6: EMSA analysis of nuclear protein derived from LMVEC cells bound to 

32P labelled probe F8. Antibodies, wild type or mutated oligonucleotides to Spl 

and 3 (lanes 3 and 4, 5, 6), NFKB (lane 7), AP-2a (lane 8) were added to 

characterise the composition of the nuclear protein DNA complex (8.1).
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Figure 4-6 Activity of Fragment 8 in Lung

endothelium

Labelled oligo F8

Nuclear Extract - LMVEC

Sp1 ab -  -  +  -  -  -  - -
Sp3 a b -  

Sp1 oligo -  
Sp1 mut oligo -  - _ - . _ 4 . _ _  

NFkB oligo - - - - _ _ 4 - _  

AP2-a oligo - - _ _ _ _ _ 4_

1 2 3 4 5 6 7 8

8.1-

FP
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Fig. 4.5: DNA-protein complexes with lung nuclear lysates (8.1) and probe F8 

(lane 2) do not appear to be specific for any of the transcription factors (lane 3- 

Spl; 4-Sp3) as they were blocked by the addition of consensus (5-Spl; 7-AP1; 8- 

NFkB) or mutant (6-Spl) oligonucleotides.
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4.5.5 Promoter Probes with YY1 Target Sites

Fragment Position on Chr5 NT_006713 Size (bp) *Target 
sites for 

YY1

1 19381165-19381301 136 X
2.1 19381275-19381450 175 X
2.1 19381428-19381582 154 X
4.1 19381805-19381957 152 X
4.2 19382031-19382201 119 X
6.1 19382181-19382362 181 X

4.5.6 Fragment 1

283

GR c-Myb c-Myb GR TFIID GR
YY1

FI of the occludin promoter exhibits putative binding sites for the TFs GR (210, 

283, 328), c-Myb (220, 239), YY1 (284) and TFIID (295). YY1 has been shown 

to interact with a complex containing the TFs Stat 5 and GR in the nucleus in the 

transcription of the Spi 2.1 gene (Bergad, Towle et al. 2000). c-Myb is capable of 

replacing GR in erythroid progenitors (Wessely, Deiner et al. 1997).

Activity o f FI in non-brain endothelium (LMVEC)

Two closely migrating nuclear protein-DNA complexes were seen when probe FI 

was incubated with nuclear protein from lung endothelial cells (Fig. 4.7). 

Formation of complexes was unaffected in the presence of antibodies to the TFs c- 

Myb, TFIID, Pitl andYYl.

338

149



Figure 4-7 Activity of Fragment 1 in Lung Endothelium

Nuclear Extract 
c-Myb ab 
c-Myb ds oligo 
c-Myb ds mut oligo 
TFIID ab 
TFIID ds oligo  
YY ab
YY1 ds mut oligo 
Pit1 ab 
Pit1 ds oligo 
Pit1 ds mut oligo 
GR ds oligo  
c/EBP ds oligo

LMVEC

-  -  -  -  -  -  -  +  -

r  \ ........

F1.I

"■' ' i r V - ;/. 

y v 'h y y / : : , ; M,  y f c .

/
/  1 y,:; •'

.y.v, ; ■ ■  ■■■!;y:/.-.yy.;:; ..

... - y . y r ^ : ;/y y: 4\.;Ss

ŷ̂ Syy

1 2 3 4 5 6 7 8 91011121314

Fig. 4.7 EMSA 
analysis o f nuclear 
protein derived 
from LMVEC cells 
bound to 32P 
labelled probe FI. 
Antibodies, wild 
type or mutated 
oligonucleotides to 
c-Myb (lane 3 and 
4, 5), TFIID (lane 6 
and 7), full-length 
YY1 (lane 8 and 9) 
or Pit 1 (lane 10 and 
1 1 ,12) were added 
to characterise the 
composition of the 
nuclear protein 
DNA complex 
( 1.1).
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4.5.7 Fragment 2.1

398
399

328 338 347 357 3 ^7  1 ? 4° 4 0 9  417 436 446 468 478 481    t  ChQ~D"""  S"(̂T>0 f  > D i  CM87
GR YY1 TFIID YY1 P ltl YY1SRFTFYY1 c/EBP AP-1 c ^ y b  c-Myb YY1

c/EBPa Pit1 IID *  AP1
c/EBPa

F 2.1 probe of the occludin promoter spans nucleotides 312 to 487 and exhibits 

putative binding sites for the TFs GR (328), c-Myb (468, 478), YY1 (338, 357, 

417, 481) and TFIID (347, 409), SRF (405), API (446, 478), Pitl (387, 399), 

c/EBP-a (387,400,436).

Activity o f F2.1 in brain endothelium (hCMEC/D3)

Nuclear protein from brain and non-brain endothelium interacted with probe F2.1 

(Fig 4.8) to form a single nuclear protein-DNA complex which was not affected in 

the presence of consensus oligonucleotides or antibodies directed against any of 

the factors predicted to have binding sites on the probes.

Table 4-10 Summary of Activity of F2.1 in Brain Endothelium (hCMEC/D3) 

YY1 ] P  ©TMyb"~]['TFIID [ c/EBP Kj| A P I..Shifted

F2.1.1
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Figure 4-8 Activity of Fragment 2.1 in Brain Endothelium

Nuclear Extract -  H C M E C /D 3
YY1 ab - - + - . - - - - - - - -
TFIID ab - - . + . ...............................
c-Myb ab - - - - + - - - - - - - -
YY1 oligo - - - . . - - + .................
YY1 mut oligo - - ............................ + - - - -
c/EBP oligo ..................
TFIID oligo - - - - -
c-Myb oligo ..................  - ................... + -
AP1 oligo - - - - -  - - ...................+

F 2 .1 .1 i l l  d&tw Wr

n sp

FP -»

Fig. 4.8 Nuclear 
protein isolate 
from hCMEC/D3 
cells was
incubated with 32P 
labelled probe 
F2.1. The DNA- 
protein complex 
(2.1.1, lanes 2, 7) 
was challenged 
with antibodies, 
wild type or 
mutated 
consensus 
oligonucleotides 
to YY1 (lanes 3, 
8, 9), TFIID
(lanes 4, 11), c- 
Myb (lanes 5 and
12), API (lane
13) and c/EBP 
(lane 10).

910111213
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4.5.8 Fragment 2.2

4 6 8  4 7 8 481 4 9 6
4 7 3

513
51 4

531 5 53  562 598

465
c - M y b  A P 1YY1 c-MyD bKh SRF YY1

AP2 TFIID
AP-1 YY1

0 619
YY1

F2.2 probe of the occludin promoter spans nucleotides 465 to 619 and exhibits 

putative binding sites for the TFs c-Myb (468, 487), YY1 (481, 531, 562, 598), 

TFIID (513), SRF (514), API (478, 553), AP2 (473).

Activity o f F2.2 in brain endothelium (ltCMEC/D3)

Nuclear protein from brain and non-brain endothelium interacted with probe F2.2 

(Fig 4.9) to form a single nuclear protein-DNA complex which was not affected in 

the presence of consensus oligonucleotides or antibodies directed against any of 

the factors predicted to have binding sites on the probes.

Table 4-11 Summary of Activity of F2.2 in Brain Endothelium (hCMEC/D3)

Shifted
band

YY1 c-Myb TFIID I SRF I API

i

AP2

F2.2.1
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Figure 4-9 Activity of Fragment 2.2 in Brain Endothelium

labelled F2.2

hCMEC/D3
Nuclear Extract - +
TFIID ab 
YY1 ab 
c-Myb ab 
TFIID ds oligo
YY1 ds oligo ....................+ ................
YY1 mut ds o l i g o ......................... +---------
c-Myb ds o l i g o ...............................+ ____
SRF ds oligo 
AP1 ds oligo 
AP2 ds oligo

 +  -

1 2 3 4 5 6 7 8 9101112131-4

F2 .2 .1-»

n sp

FP

f e - :v

Fig. 4.9 Nuclear 
protein isolate 
from hCMEC/D3 
cells was
incubated with 32P 
labelled probe 
F2.2. The DNA- 
protein complex 
(2.2.1, lanes 2, 7) 
was challenged 
with antibodies, 
wild type or 
mutated 
consensus 
oligonucleotides 
to YY1 (lanes 4, 
9, 10), TFIID
(lane 3), c-Myb 
(lane 77), SRF 
(lane 12), API 
(lane 13) and AP2 
(lane 14).
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4.5.9 Fragments 4.1 and 4.2

Probes 4.1 and 4.2 span the occludin promoter between the nucleotides 842-994 

and 972-1091 respectively. The region comprising nucleotides 876-1044 is 

conserved in human and mouse. The probes exhibit putative binding sites for the 

TFs Pitl, TFIID, YY1 andNFl.

Activity o f 4.1 and 4.2 in brain and non brain endothelium

In the presence of nuclear protein from hCMEC/D3 and lung endothelial cells the 

probes generated a single nuclear protein-DNA complex in each condition (Fig. 

4.10-F4.1.1 and F4.2.1). But, antibodies and/or competitor probes to the 

transcription factors predicted to bind to the sequence did not abrogate or restrict 

the migration of the complexes. Extensive smearing was seen in the lanes where 

nuclear extract from hCMEC/D3 cells was used. This smearing was also seen 

with nuclear protein from lung endothelial cells but it was less intense. There is a 

possibility that there could be a protein-DNA complex in the region of the 

smearing. Hence, poly dA: dT was employed instead of poly dl: dC which was 

effective in getting rid of the background. However, it also abrogated the 

formation of complex F4.1.1 (Fig. 4.11). This can be attributed to the fact the 

F4.1.1 is a low specificity complex. Nuclear protein-DNA F4.2.1 was seen but 

remained unaffected when challenged by antibodies and/or cold competitor probes 

to the TFs.
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Figure 4-10 Activity of Fragments 4.1 and 4.2 in Brain and Lung

Endothelium

labelled F4.1 labelled F4.2

Nuclear Extract hCMEc/D3 lm vec hCMEC/D3 lmvec 
YY1 ab 
TFIID 
Pit1 ab -  -  -  +  -  -  -  +

1 2 3 4  5 6 7 8 910111213141516
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Figure 4-11 Activity of Fragments 4.1 and 4.2 in Brain Endothelium

labelled  . , n . _ . _
 ̂ labelled  F4.2

11 | _ „ * hCMEC/D3N uclear Extract ---------------  ---------------------------------
YY1 ab - - + ................... + .......................................
YY1 ds oligo ................................
TFIID ab - - - - + .....................+ - ..........................
TFIID ds oligo ................ + ....................... + ........................
Pit1 ab   + . . . .
Pit1 ds oligo ...................................................... + - - -
Pit1 m ut ds oligo ..............................................................+ - -
NF1 ds oligo  + -
NF1 m ut ds oligo ...................................................................... +

1 2 3 4 5 6 7 8 9  10 11121314 15161718
Q* -’ ’ -  \   .



Figure 4-11 Activity of Fragments 4.1 and 4.2 in Brain Endothelium

Nuclear Extract 
YY1 ab 
YY1 ds oligo 
TFIID ab 
TFIID ds oligo 
Pit1 ab 
Pit1 ds oligo 
Pit1 m ut ds oligo 
NF1 ds oligo 
NF1 m ut ds oligo

labelled
F4.1 labelled  F4.2

hCMEC/D3

-  -  -  -  +  + ..............................

-  +  -  -  -  -

 -  + -

 +
1 2 3 4 5 6 7 8 9  1011121314 15161718

m
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(lanes 5-7; 13-16) endothelial cells was incubated with 32P labelled probe F4.1 

(lanes 1-7) or F4.2 (lanes 8-16). The DNA-protein complexes (F4.1.1 and F4.2.1- 

lanes 2, 5, 9, 13) were challenged with antibodies to YY1 (lanes 3, 6, 10, 14), 

TFIID (lanes 4, 7, 11, 15) and Pitl (lanes 12, 16).

Fig. 4.11: Nuclear protein isolated from hCMEC/D3 endothelial cells was 

incubated with 32P labelled probe F4.1 (lanes 1-8) or F4.2 (lanes 9-18). The non­

specific inhibitor poly dA:dT was used instead of poly dI:dC. The DNA-protein 

complexes were challenged with antibodies, wild type or mutated consensus 

oligonucleotides to YY1 (lanes 3, 4, 9, 10), TFIID (lanes 5, 6, 11, 12) and Pitl 

(lanes 14,15, 16) andNF-1 (17, 18)

Table 4-12 Summary of Activity in Brain (hCMEC/D3) Endothelium 

Shifted band YY1 TFIID Pitl NF1

F4.1.1 

F4.2.1
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4.5.10 Fragment 6.1

1232 1260 1279
1313
1314

1338
13401342 1382

1218 c CTF
SRF

c/EBP-a AP‘2 
NF-AT

NF-AT
1382

c-Myb c-Myb c-Myb

F6.1 of the occludin promoter exhibits putative binding sites for the TFs c-Myb 

(1232, 1260, 1279), SRF (1314), NF-AT (1340, 1382), AP2 (1342) and c/EBP-a 

(1338).

Activity in brain endothelium (hCMEC/DS)

The promoter segment spanning nucleotide base pairs F6.1 interacted with the 

nuclear proteins from the hCMEC/D3 cells to generate six distinct migratory 

DNA-protein complexes (Fig. 4.12, lanes 2 and 6). Addition of an antibody to 

YY1 abrogated complex 6.1.5 in contrast to the competitor which proceeded to
j

block the formation of all the complexes but a mutant form of the competitor 

failed to inhibit or retard the complex confirming the sequence specificity of this 

interaction. From the data it is likely the YY1 sites are occupied by other 

transcription factors.
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Figure 4-12 Activity of Fragment 6.1 in Brain Endothelium

Labelled o ligo  F6.1

Nuclear extract -  !lCM EC/D3--------
YY1 ab - -  .....................................
c-Myb ab - - - + ......... .........................
YY1 oligo ................................... + - - -
YY1 mut o l i g o ........................................  - -
c-Myb oligo ..........................
c/EBP oligo .............................................. ....

F6.1.1-* 
F 6.1.2-?

F6.1.3-*
F6.1.4-*
F 6.1 .5- *

F6.1.6-*

■; . .'f t,,;... .

. ■"■■■■'; ■' ---
   :: :

: :

n sp ^  ‘

1 2 3 4  5 6 7 8 9  10
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Fig. 4.12: Nuclear protein isolated from hCMEC/D3 cells was incubated with 32P 

labelled probe F6.1. The DNA-protein complexes (6.1.1-6.1.6, lanes 2, 6) were 

challenged with antibodies, wild type or mutated consensus oligonucleotides to 

YY1 (lanes 3, 7, 8), c-Myb (lanes 4 and 9) and c/EBP (lane 10). Shifts 6.1.5 and 

6.1.6 were retarded in the presence of an antibody to YY1 (lane 3) and the 

complexes were restored in the presence of an YY1 mutated oligonucleotide (lane 

8) confirming the sequence specific interaction of YY1 with the probe. The 

consensus oligonucleotide however blocked the formation of all the complexes 

(lane 7) and it is possible these complexes are specific to transcription factors that 

are binding to the YY1 target site.

Table 4-13 Summary of Activity of F6.1 in Brain Endothelium (hCMEC/D3)

Shifted Band YY1 c-Myb c/EBP-a

6.11 -
■ .. ■ • • ■ .. . ?

-

6.12 [ -

6.13 - - -

6.14 ✓ - '
...........  .-1

6.15
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4.6 Promoter Probes with Sp and YY1 Sites

Fragment Position on Chr5 NT 006713 Size (bp) *Target 
sites for 

Spl

* Tar get 
sites for 

YY1

0.1 19380963-19381083 120 X X
0.2 19381054-19381188 128 X X
3.1 19381561-19381740 179 X X
5 19382031-19382201 170 X X

Fragment F 0.1

24 32,34 4546 51 57 100

  HH3D30----------□— 120
GR Sp1 NF-lPit1 TFIID YY1

F0.1 of the occludin promoter exhibits numerous binding sites for diverse 

transcription factors as predicted by the TESS program. The reverse primer for 

F0.1 is also the forward primer for F0.2 hence there is an overlap of twenty three 

base pairs and so the probes share the predicted YY1 binding site at position 100. 

In addition to the YY1 site, F0.1 has response elements for TFs: interferon 

regulatory factors IRF1 and IRF 2, GR, members of the Sp family, Pitl and 

TFIID.

IRF-1 and IRF-2 are highly homologous TFs that bind specifically to AAGTGA 

hexamer repeat motifs (Tamura, Yanai et al. 2008). IRF-1 recognizes this site to 

initiate transcription of downstream target genes in contrast to IRF-2 which binds 

competitively and represses transcription through its C-terminal repression 

domain. The IRF recognition DNA sequence is also found in the regulatory
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regions of IFN-ce and IFN-inducible genes so it is possible that occludin promoter 

region is a target for transcriptional modulation during inflammation and disease.

Activity o f F0.1 in brain endothelium (HCMEC/D3)

The single nuclear protein-DNA complex formed between probe F0.1 and nuclear 

proteins from brain endothelial cells (FO.1.1) is not specific for any of the 

transcription factors with binding sites in the segment (Fig. 4.13)

Activity of F0.1 in lung endothelium (LMVEC)

However, probe F0.1 formed three complexes-FO.l.I, F0.1.II, F0.1.III with 

nuclear proteins from lung endothelium (Fig. 4.14, lane 2). Complex 0.1.Ill was 

formed by YY1, since addition of a lull length antibody to YY1 (lane 7) super 

shifted the complex. Probes F0.1 and F0.2 share one common YY1 site but the 

nuclear protein-DNA complex formed with F0.2 is not specific for YY1 (Fig 

4.15), implying that the single YY1 site in F0.1 is a genuine target for YY1. 

Complex 0.1.II was blocked by a TFIID consensus oligonucleotide (lane 6), but 

was not supershifted by a TFIID antibody. There is a potential TFIID site in F0.1 

located between the Sp site and the YY1 site.

Hence these data imply that a DNA-binding protein occupies the TFIID site, but 

that it is not TFIID itself. Taken together the data suggests that the YY1 site in 

F0.1 is active in lung endothelium, but not brain endothelium and that two 

additional proteins from lung endothelium may bind to this region.

164



Figure 4-13 Activity of Fragment 0.1 in Brain Endothelium

Labelled oligo FO. 1 

hCMEC/D3
Nuclear Extract 
Sp oligo
Sp mut oligo
Pitl oligo
Pitl mut oligo
TFIID ab
TFIID oligo
YY1 ab
GR oligo
NF1 oligo
NF1 mut oligo

i   ■mw

FO.1.1

#  is

Fig. 4.13: EMSA 
analysis showing the 
binding of nuclear 
extracts from brain 
endothelial cells to 
32P labelled probe 
F0.1 in the presence 
of consensus 
oligonucleotides to 
Spl (lane 3), Pitl 
(lane 5), TFIID (lane
8) orNFl (lane 10) 
or with antibodies to 
TFIID (lane 7), full- 
length YY1 (lane 9) 
or with mutated 
consensus probes- 
Spl (lane 4) and Pitl 
(lane 6).

1 2 3 4  5 6 7 8 9  10
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Figure 4-14 Activity of Fragment 0.1 in Lung Endothelium

Labelled oligo F0.1
^  u M c

Nuclear Extract -
Sp oligo - - + .............................
TFIID ab - - - - + ....................
TFIID oligo ......................... + - - - -
YY1 ab  + - - -
GR oligo  + - -
NF1 oligo    “
NF1 mut oligo " ~ “ " “ “ " " " +

.V
ss

F0.1.I

F0.1.II

FO. 1 .III

FP

1 2 3 4  5 6 7 8 9  10

Fig. 4.14: EMSA 
analysis of nuclear 
protein complexes 
formed between 
radiolabelled probe F0.1
(0.1.1,0.1.11, 0 .1 .m ,
lanes 2-10) in the 
absence (lane 1) or 
presence of nuclear 
proteins (lanes 2) 
isolated from lung 
endothelial cells. 
Consensus
oligonucleotides to Spl, 
Pitl, TFIID, GR, NF1 
(lanes 3,4, 6, 8, 9,10  
respectively) or 
antibodies to TFIID (lane 
5) and full length YY1 
(lane 7) were added to 
the binding reactions in 
order to investigate the 
composition of the 
complexes. Shift 0.1. Ill 
(ss, *) was super shifted 
in the presence of 
antibody to YY1, 
whereas shift 0.1 .II was 
retarded by an antibody 
to TFIID confirming the 
presence of functional 
YY1 and TFIID proteins 
within LMVEC cell 
nuclei, ss denotes super 
shifted band.
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Table 4-14 Summary of FO.l Activity in Brain Endothelium (hCMEC/D3)

Shifted Band [ .....~“Sp~ ;| Piti  F TfTdF  T  “ y y T

FO.1.1 - - - -

Table 4-15 Summary of FO.l Activity in non-brain endothelium (LMVEC)

•r w r ~ ..Shifted Band i Sp Piti

F0.1.I 

FO.l.Ill

TFIID

✓

Fragment F0.2

O Tf 00
°  £553: 155 210 220

,7-0—KHDM .225

>  o .£  2 o . § i  Sp1 GR c_Myb
>- 1/1 >- D.

Fragment 0.2 shares an YY1 site at position 100 with FO.l in addition to a 

predicted site for YY1 at position 124. Other TFs with putative target binding 

sites in this region include Sp (121, 138, 155), AP2 (137), p300 (139), GR (210) 

and c-Myb (220).
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Figure 4-15 Activity of Fragment 0.2 in Brain Endothelium

labelled F0.2

Nuclear Extract -
Sp1 ab
Sp3 ab
Sp1 ds oligo
Sp ds mut oligo -
YY1 ab
AP-1 oligo

hCMEC/D3

•  r*. la

'  '  : '

FO.2.1 ->

.

Fig. 4.15 EMSA analysis 
of nuclear extracts from 
brain endothelial cells 
with 32P labelled probe 
F0.2 in the presence of 
antibodies to Spl (lane 3) 
or Sp3 (lane 4) or to full- 
length YY1 (lane 7) or 
with 30-molar excess of 
consensus
oligonucleotides to Spl 
(lane 5), mutated Spl 
probe (lane 6) or to API 
(lane 8).

1 2 3 4 5 6 7 8
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Figure 4-16 Activity of Fragment 0.2 in Lung Endothelium

labelled F0.2

Nuclear Extract - -------------------------
Sp1 ab 
Sp3 ab
Sp1 ds oligo - - + - -
YY1 ab
AP-1 oligo - . . .  . - +

Fig. 4.16 EMSA analysis of 
nuclear extracts from lung 
endothelial cells with 32P labelled 
probe F0.2 in the presence of 
antibodies to Spl (lane 3) or Sp3 
(lane 4) or to full-length YY1 
(lane 6) or with 30-molar excess 
of consensus oligonucleotides to 
Spl (lane 5) or to API (lane 7)
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4.6.1 Fragment 3.1

598 622 626 640 658

SRFTFIID YY1

683 696699 724 733 756 765

1 -0  •  Or—177
756 765

AP"1 c-Myb 
YY1

Sp1 GATA1 AP-1 GATA1
GR YY1

Activity o f F3.1 in brain endothelium (hCMEC/D3)

The probe F3.1 showed three distinctly migrating DNA-protein complexes in the 

presence of nuclear proteins from hCMEC/D3 cells-F3.1.1, F3.1.2 and F3.1.3 (Fig 

4.17). All of the complexes were competed out by the addition of 100-fold molar 

excess of non radio-labelled Spl consensus oligonucleotide (lane 8). However, 

different complexes were retarded in the presence of antibodies to Spl (lane 5, 

complex I) and Sp3 (lane 6, complex III). The DNA probe has in addition 

potential binding sites for other transcription factors including c-Myb, the 

antibody to this transcription factor affects the mobility of complex III (lane 7) but 

the binding is not specific as addition of an unlabelled competitor does not block 

the association (lane 9).

Table 4-18 Summary of F3.1 Activity in Brain Endothelium (hCMEC/D3)

[ Shifted '[ Y Y f - ’j TFIID " i f ”  Spl j~  Sp3 cJVIyb
1 i i | .  it II It



Figure 4-17 Activity of Fragment 3.1 in Brain Endothelium

Nuclear Extract 
YY1 ab 
TFIID ab 
Sp1 ab 
Sp3 ab 
c-Myb ab 
Sp1 ds oligo 
YY1 ds oligo 
c-Myb ds oligo

labelled oligo F3.1 
hCMEC/D3

+  -

1 2 3 4 5 6 7  8 9  10

F3.1.1 -» 
F3.1.2-*

F3.1.3-*

*

- I -

■%
' i  '

n sp-» pti. "tt* ■■' fp f

Fig. 4.17: DNA-protein 
complexes formed between 
32P labelled promoter probe 
F3.1 and nuclear extracts 
from hCMEC/D3 cells (lane 
2) were investigated in the 
presence of antibodies (3-7) 
or consensus oligonucleotides 
(lanes 8-10) against 
transcription factors predicted 
to bind to the probe. 
Antibodies to Spl (lane 5) 
and Sp3 (lane 6) retarded 
complexes II and III 
respectively whereas the 
competitor to Spl (lane 8) 
restricted the formation of all 
the complexes. Retardation of 
complex III by the antibody 
to c-Myb (lane 7) was not 
specific as the competitor did 
not affect the formation of the 
complex (lane 10).
Antibodies to YY1 (lane 3) 
and TFIID (lane 4) did not 
affect the mobility of the 
complexes.
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4.6.2 Fragment 5

1088
1091 1160

1201
1195 1206 1232

1068« 1 i — d — [ > 1238
SRF
TFIID

Sp1 YY1 Pit 1 Sp1 c-Myb

Fragment 5 spans the region 1068 to 1238 of the occludin promoter and includes 

target binding sites for the TFs SRF (1091), TFIID (1091), Spl (1160, 1206), 

YY1 (1195), Pitl (1201) and c-Myb (1232).

Activity ofpromoter probe F5 in brain endothelium (HCMEC/D3)

The double stranded probe F5 generates a high mobility DNA-protein complex 

(5.1) with brain endothelial nuclear proteins (Fig 4.18, lanes 2 and 8) and this 

interaction is retarded on incubation with an YY1 antibody (lane 6) and is also 

blocked by the addition of 100 molar excess of unlabelled competitor (lane 12). 

Addition of 100-fold excess of an unlabelled oligonucleotide containing a mutated 

YY1 binding site (lane 13) failed to inhibit or retard the complex confirming the 

sequence specificity of this interaction.

Activity o f promoter probe F5 in non-brain endothelium (LMVEC)

The probe interacts with nuclear extracts from lung endothelial cells and generates 

a single nuclear protein-DNA complex, F5.I (Fig. 4.19, lane 2) which was not 

affected in the presence of consensus oligonucleotides or antibodies directed 

against any of the factors predicted to have binding sites on the probe (lanes 3-15).
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Table 4-19 Summary of F5 Activity in Brain Endothelium (hCMEC/D3)

YY1 ' Spl Sp3 TFIID c-MybShifted
Band

F5.1 ✓

Table 4-20 Summary of F5 Activity in Non-Brain Endothelium (LMVEC)

Shifted YY1 Spl ; Sp3 : TFIID ; c-Myb
Band

F5.I
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Figure 4-18 Activity of Fragment 5 in Brain Endothelium

Nuclear Extract 
Pitl ab 
Sp1 ab 
c-Myb ab 
YY1 ab 
Pitl ds oligo 
Pitl ds mut oligo 
c-Myb ds oligo 
YY1 ds oligo 
YY1 mut ds oligo 
NF-1 ds oligo

labelled oligo F5 
HCMEC/D3

- -  + ...................................................................

- - - + ..................................................................

- - - - + ..........................................................

 + ..................................

...........................

  + ■
 +
1 2 3 4 5 6 7 8  9 1011121314

  • • - •  i,.-

•• <•

F5.1 -»

Fig. 4.18:32P labelled 
probe F5 was 
incubated in the 
absence of (lanes 1, 7) 
or presence of nuclear 
extracts from 
hCMEC/D3 
endothelial cells 
(lanes 2-6; 8-15). 
DNA-protein 
complexes formed- 
F5.1 were 
characterised by 
incubating with 
antibodies, wild type 
or mutant 
oligonucleotides to 
transcription factors 
to Pitl (lanes 3, 9);
Spl (lanes 4 ,10); c- 
Myb (5 ,11); YY1 (6, 
12, 13) predicted to 
bind to the sequence.
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'Figure 4-19 Activity of Fragment 5 in Lung Endothelium

__________ labelled F5 oligo__________

Nuclear Extract ----------------- LMVEC-----------------------
Pit1 ab - - + .............................................
Pit 1 ds oligo - - - + ...................................................
Pit 1 mut ds oligo - - - - + ..............................................
Sp1 ab  + - - ................
Spt ds oligo  + .......................
Sp3 ab  + .................
Spt mut ds oligo .................................+ ..............................
c-Myb ab  + .
c-Myb ds oligo - - - - - -  - - - - - + - - - -
c-Myb mut ds o l i g o ....................................................+ - - -
YY1 ab ............................
YY1 ds oligo ..................................................... - + -
YY1 mut ds oligo ..................................................... - -  +

1 2 3 4  5 6 7 8 9  101112131415
M k.- A  Jfe. A  Aik. A

F5J -»

FP->

Fig. 4.19:32P 
labelled probe F5 
was incubated in 
the absence of 
(lane 1) or 
presence of 
nuclear extracts 
from LMVEC 
endothelial cells 
(lanes 2-15). 
DNA-protein 
complexes 
formed-F5.I were 
characterised by 
incubating with 
antibodies, wild 
type or mutant 
oligonucleotides 
to transcription 
factors to Pitl 
(lanes 3 ,4, 5);
Spl (lanes 6, 8,
9); Sp3 (7) c-Myb 
(10,77,12); YY1 
(13 ,1 4 ,15) 
predicted to bind 
to the sequence.
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4.7 Discussion

The occludin protein was identified as a major constituent o f  brain endothelial 

tight junctions (Furuse, Hirase et al. 1993; McCarthy, Skare et al. 1996). Apart 

from its restricted expression in brain endothelium, it is expressed in epithelia 

where it participates in tight junction formation and regulates paracellular 

permeability. The regulation o f  expression from the occludin promoter has been 

studied in epithelial cells (Mankertz, Tavalali et al. 2000). Information on the 

mechanism o f  occludin gene expression is useful in understanding the differential 

regulation o f  the protein in different endothelia. Additionally, occludin has been 

shown to play an important role in pathology o f several neurodegenerative 

disorders and inflammation processes. It is dephosphorylated in experimental 

autoimmune encephalitis (EAE) (Morgan, Shah et al. 2007). This event has been 

shown to coincide with inflammation and increased BBB permeability. These data 

imply occludin is a possible target in the pathological process in EAE. In 2007, 

(Romanitan, Popescu et al. 2007) showed an increase in occludin expression in 

Alzheimer's disease (AD), and vascular dementia (VD) brains in comparison to 

ageing controls. So understanding the regulation o f occludin gene expression in 

normal physiology is helpful to investigate possible alteration o f  transcriptional 

regulatory mechanisms in inflammatory or degenerative diseases o f the CNS.

In intestinal epithelium, TNF-a has been shown to affect transcription from the 

promoter. Specific transcription factors have not yet been attributed to the 

promoter in endothelial cells. We have used the program TESS to screen for 

potential TFs binding motifs in the promoter. The list o f the transcription factors

177



has been summarised in a table (appendix). In this study, in addition to data from 

the TESS program, we have particularly focussed our attention on the Sp family 

and YY1 TFs. Previous work in our group on the regulation o f the human 

transferrin receptor which is also restricted to the brain endothelium has 

implicated Sp and YY1 TFs to be important for its expression in brain 

endothelium (Holloway, Sade et al. 2007). Data suggests two important events 

that lead to the initiation o f  gene expression from the HTR promoter in brain 

endothelium:

1. Requirement o f the transcription factors TFIID and Sp3.

2. TFIID successfully competes for YY1 binding sites on the HTR promoter DNA  

in the brain but not non-brain endothelium.

Additional data had shown differences in TF binding profiles between brain 

endothelial cells and lung, dermal and bone marrow endothelial cells as 

determined by EMSA. The TFs, Spl, Sp3, IRF1, CBF, NFAT, SRE, and CDP 

exhibited similarity in the formation o f  nuclear protein complexes between the 

different endothelia. P itl, GAT A, c-Myb were slightly different and YY1 was 

completely different (Holloway, Sade et al. 2007).

We have used the transformed cell line, hCMEC/D3 and primary lung 

microvascular endothelium cells (LMVEC) to elucidate the regulation o f  

transcription from the occludin promoter.

Our work identifies TFs Sp3 (Figs. 4.2, 4.3, 4.4, 4.5 and 4.17) and YY1 (Figs. 

4.12 and 4.18) present in brain endothelial nuclear lysates to bind their target
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elements on the occludin promoter. TFs c-Myb (Fig. 4.17), NFkB (Fig. 4.5) and 

AP2- a  (Fig. 4.5) present in the brain endothelial cells also bind the promoter in 

EMSA analyses. In the lung endothelium however, only the Y Y 1 TF occupies its 

target site in FO (Fig. 4.14) and though Spl and Sp3 are expressed in the lung 

endothelium, they do not appear to bind the target motifs on the occludin 

promoter probes (Fig. 4.6). Therefore, it would be reasonable to think that these 

transcription factors might be involved in the expression o f occludin in a cell- 

type-independent manner.

Figure 4-20 Summary of Identified TFs on the Occludin Promoter in Brain 

and Lung Endothelial Cells.

Brain Endothelial Cells
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The transcription factors Spl and Sp3 are ubiquitous and play important roles in 

normal tissue and organ development (Suske 1999). It is to be noted that despite 

the ubiquitous nature o f  expression o f  Spl and Sp3, these factors have been
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shown to regulate gene transcription in development and these mechanisms differ 

among cell types (Opitz and Rustgi 2000; Ghayor, Chadjichristos et al. 2001; 

Yoo, Jeong et al. 2002; Guo, Degnin et al. 2003; Reddy, Vuong et al. 2003; 

Nakamura, Kawachi et al. 2007). Changes in level o f expression and nuclear 

localisation in cells may occur during different stages o f development. And 

posttranslational modifications like acetylation and sumoylation have been known 

to affect the activity o f  these transcription factors whilst preserving their nuclear 

localisation (Sapetschnig, Rischitor et al. 2002; Stielow, Sapetschnig et al. 2008).

In endothelium, Sp family TFs have been implicated in the regulation o f  

endothelial specific genes, cadherin (Gory, Dalmon et al. 1998), human thrombin 

receptor (Wu, Ruef et al. 1998), integrin alphaV promoter (Czyz and Cierniewski 

1999) and fgl2 (Liu, Leibowitz et al. 2003). Spl functions mainly as a 

transcriptional activator in contrast to Sp3 which is capable o f  activation or 

repression depending on cellular context (Hagen, Muller et al. 1994). It is clear 

from the data obtained from the EMSA analyses that Sp3 competes successfully 

with Spl for the Sp target sites on the occludin promoter in brain endothelial cells. 

This maybe explained by the Sp3:Spl ratio in these cells where Sp3 protein levels 

are significantly higher than Spl (discussed in detail in Chapter 6). Considering 

that relatively high levels o f Sp3 expression are observed in brain endothelial 

cells, gene expression mediated by Sp3 may be controlled by the expression level 

o f Sp3 (Karantzoulis-Fegaras, Antoniou et al. 1999). And it is well known that 

promoters containing multiple adjacent Sp-sites form significantly more stable 

Sp3-DNA complexes than those with single Sp-binding sites. These Sp3-DNA  

complexes are also more stable than a corresponding Spl-D N A  complex (Yu,
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Datta et al. 2003). This observation seems to be true in the case o f  promoter probe 

F8 (Figs. 4.4 and 4.5) which has two closely positioned Sp sites (1798 CCCTCCC 

1804 and 1820 AGGCGG 1825). Spl is excluded from this complex and it is 

probable that Sp3 occupies both the sites.

There are two possible reasons for the inability o f Sp factors present in lung 

endothelium to bind the occludin promoter fragments:

1. Inaccessibility o f  the TFs to the occludin promoter due to the presence o f  

other DNA binding proteins that promote chromatin condensation in the 

occludin promoter region (discussed in chapter 5)

2. Increased level o f splice variants o f Sp3 which repress Spl and Sp3 

mediated transcription (discussed in chapter 6)

In addition to Sp3, TF c-Myb binds the promoter probe F3.1 (4.17). However, the 

binding o f c-Myb is not specific because the association is not blocked in the 

presence o f a competitor. Two other proteins bind the occludin promoter on probe 

F8 and these associations are blocked in the presence o f a competitor to NFkB 

(Fig. 4.5) and A P2-a (Fig. 4.5). We haven’t been able to confirm the association 

o f  these TFs by super shift assays. Nevertheless, functional interaction between 

Sp family and AP2-a have been reported in the regulation o f  human pPro-al (I) 

collagen gene promoter (Vergeer, Sogo et al. 2000). Data from transmission 

electron microscopy shows Spl binding to target sites in an intron resulting in the 

looping out o f DNA. This leads to the interaction o f  the TF with AP2 bound in the 

proximal promoter region. Spl and AP2 associations have been shown to be
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required to drive transcription from the mouse GM3-synthase gene promoter in 

neuro 2a cells (Xia, Zeng et al. 2005) and from the human fragile-X mental 

retardation promoter in SK-N-SH neuronal cells (Carrillo, Cisneros et al. 1999). 

More importantly, associations between AP2 and Sp family have been shown for 

promoters o f  genes that are regulated temporally and spatially during 

development. Sp3, Spl and AP2 TFs have been shown to associate in the 

activation o f  transcription from the human MIP gene promoter (Ohtaka- 

Maruyama, Wang et al. 1998).

During neuronal differentiation, the NR1 gene that encodes for the N-methyl-D- 

aspartate (NMDA) receptor has been shown to be regulated by the binding o f Spl 

and Sp3 family members to an NFkB response element (Liu, Hoffman et al. 

2004). It is known that Sp family bind NFkB sites and can activate transcription 

from NFkB sites as seen in the case o f  the P-selectin promoter (Hirano, Tanaka et 

al. 1998). Interestingly in the CNS, there appears to be a distinct neuronal-KB- 

binding factor that is found in a complex o f Spl and -3 and binds the NFkB 

consensus (Mao, Moerman et al. 2002). It is possible that this specific binding 

factor is recruited to the proximal promoter along with A P2-a by virtue o f  their 

associations with the Sp family members. Whether this is a functional interaction 

remains to be elucidated.

We have shown the regulation o f the transferrin receptor (Holloway, Sade et al. 

2007) by YY1 in brain endothelium. YY1 is multifunctional ZnF TF that can 

either activate or repress transcription from target promoters (Thomas and Seto 

1999). YY1 core consensus binding site is CGCCATnTT (n indicates any base at
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that position); other less stringent binding motifs include CCATnTT without the 

CpG dinucleotide or ACATnTT (Kim and Kim 2008). Since YY1 binding to its 

CpG-containing binding site (CGCCATnTT) is methylation sensitive it can be 

controlled by CpG methylation (Kim, Kollhoff et al. 2003) and since it has 

relatively flexible binding sites, EMSA results may not correspond with YY1- 

target sequences predicted by the program.

The occludin promoter sequence includes YY1 binding sites (Table 4.1) and we 

examined if  these sites are actively bound by the transcription factor in brain and 

non-brain endothelial nuclear extracts. YY1 from lung lysates interacted only with 

the binding motifs in the 5’ end o f the promoter region (Fig. 4.14). YY1 from 

brain endothelial lysates interacted with consensus binding sites in the probes 

from F5 (Fig. 4.18) and F6.1 (Fig. 4.12) though it is likely the YY1 sites in F6.1 

are occupied by other transcription factors.

Further analysis is required to reveal the cooperative mechanism between Sp3 and 

YY1. In vivo analysis o f transcription and translation level o f  occludin in normal 

brain endothelial cells and cells where the TFs have been silenced is required for 

further clarification o f the involvement o f  the TFs in regulation.

To conclude, EMSA data clearly indicates there is a difference in the association 

o f transcription factors with the occludin promoter between brain and non-brain 

endothelium. However, the biochemical technique investigates interaction o f  

transcription factors with naked DNA under in vitro conditions and results do not 

necessarily represent a functional target in vivo. It should be remembered that 

EMSA analyses do not demonstrate all possible interactions between TFs and
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binding motifs on target genes and hence we used chromatin immunoprecipitation 

analysis to look at protein: DNA interactions in vivo.
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Chapter 5

Interaction of TFs with Human 

Occludin Promoter
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5 Interaction of TFs with Human Occludin 

Promoter

5.1 Introduction

Protein-DNA interactions influences include DNA replication and repair, 

transcription and epigenetic silencing o f gene expression. Transcriptional 

regulation o f  gene expression is required for the maintenance o f  cellular 

homeostasis and disruption o f this regulation is directly linked to many human 

diseases, including cancer. The identification o f TFs, binding sites within the 

genome, and regulated genes is necessary to understand signalling in normal 

physiology and in disease. Hence, investigating interactions between transcription 

factors and targets in vivo is a very important aspect in the field o f transcriptional 

regulation. Techniques such as EMSA, DNase I footprinting, microarrays have 

been used to study protein-DNA interactions. However, the assays measure TF 

binding to naked DNA under in vitro conditions and results do not necessarily 

represent a functional target in vivo and observed gene expression changes may be 

due to direct or indirect regulation, making it challenging to detect primary gene 

targets. In addition, factors like chromatin structure, nucleosome positioning, 

associations and competitions between different TFs, modifications o f histones or 

DNA control the interaction o f a given factor to a target DNA sequence.

Chromatin immunoprecipitation (ChIP) is an experimental method used to 

determine whether proteins, such as certain transcription factors, are associated
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with a specific genomic region in living cells or tissues using specific antibodies 

that recognize a specific protein or a specific modification o f a protein. This cell 

based technique is often used together with non-cell-based assays to characterize 

protein: DNA purified and identified by PCR using specific primers to the 

suspected binding region. This technique is a valuable tool in identifying 

regulatory regions directly bound by a TF in the context o f the native chromatin 

structure.

Data in the present chapter investigates the role o f potential regulatory elements 

controlling transcription from the occludin promoter in brain and lung endothelial 

cells.
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5.2 Materials and Methods

5.2.1 Chromatin Immunoprecipitation (ChIP) assay

Kits: Active M otif Enzymatic shearing kit and Upstate Chromatin

immunoprecipitation kit were used for the assay.

Buffers and solutions

37% Formaldehyde: (Sigma, Cat No: F I635)

Glycine Stop-Fix solution: 3 ml o f lOx glycine (supplied in the Active M otif kit), 

3ml lOx PBS mixed in 24 ml o f  deionised water. Made just prior to use and stored 

at RT.

Treatment with formaldehyde

Cells were grown to confluence in a 175 cm flask and rested for 48 hours prior to

n

assay. 10 cells were used for one assay. 37% formaldehyde (Cat no: F I635, 

Sigma Aldrich) was directly added to the culture medium to achieve a final 

concentration o f 1% (3pl/cm ) and incubated for 10 min at 37°C. Medium was 

aspirated and the fixation reaction was stopped by adding 10 ml glycine stop-fix 

solution and swirling the culture flask to cover the cell monolayer and then 

rocking at room temperature for 5 minutes. The solution was then discarded and 

cells washed with ice cold PBS containing protease inhibitors (1 mM PMSF, 1 

pg/ml aprotinin and lpg/m l pepstatin A) for 10 min with two changes o f  buffer.
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Isolation of nuclei

Cells were scraped into a tube and centrifuged for 4 min at 2000 rpm at 4°C. The 

pellet was resuspended in 1ml chilled lysis buffer and incubated on ice for 40 min 

to release nuclei. The nuclei were collected by centrifugation at 5000 rpm for 10 

min at 4°C.

Shearing of chromatin

The nucleic pellet was resuspended in 1ml digestion buffer (supplemented with 5 

pi PIC and 5 pi o f 1 mM PMSF) and warmed at 37°C for 5 min. A  working 

enzymatic shearing cocktail solution was prepared by diluting 1:100 o f the 

supplied mixture (Active Motif) with 50% glycerol (in nuclease free water) to 

make a final stock at 200 U/ml. 50pl o f  the working stock o f  enzymatic shearing 

cocktail was added to the pre-warmed nuclei, vortexed to mix and incubated at 

37°C for 40 min. The tube was flicked and/or vortexed periodically during the 

incubation to ensure the chromatin is evenly sheared. The reaction was then 

stopped by addition o f  20 pi ice-cold 0.5 M EDTA and the tube chilled on ice for 

10 min followed by centrifugation at 15000 rpm in a 4°C micro centrifuge for 10 

min. The supernatant contains the sheared chromatin and was aliquoted into 

4x250 pi; each 250 pi aliquot to be used for one ChIP reaction.

Immunoprecipitation of the Chromatin

The 250 pi sheared chromatin lysate was pre-cleared with 40 pi o f  Salmon Sperm 

DNA/Protein A agarose-50% slurry (upstate Biotechnology) for lhr at 4°C. After 

a brief centrifugation to pellet agarose, the supernatant fraction was collected.
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4 jig o f  the immunoprecipitating antibody was added per each reaction and 

incubated overnight at 4°C with rotation. 60 pi o f Salmon Sperm DNA/Protein A  

agarose slurry was then added and further incubated for 60 min at 4°C with 

rotation to collect the antibody/histone complex. The agarose was pelleted by 

gentle centrifugation at 1000 rpm at 4°C, -lm in . The supernatant which contains

the unbound, non-specific DNA was carefully removed. The protein A

agarose/antibody/histone complex was washed for 3-5 min on a rotating platform 

with 1ml o f  each o f the buffers listed in the order as given below:

Low Salt Immune Complex Wash Buffer, one wash

High Salt Immune Complex Wash Buffer, one wash

LiCl Immune Complex Wash Buffer, one wash

lx  TE, two washes

250 pi o f  freshly prepared elution buffer ((1% SDS, 0.1 M NaHCOs) was added to 

the pelleted protein A  agarose/antibody/histone complex , vortexed briefly to mix 

and incubated at room temperature for 15 min with rotation. The tubes were 

centrifuged at 1000 rpm for lmin at RT and the supernatant fraction (eluate) 

carefully transferred to another tube. The elution step was repeated and the eluates 

were combined (total volume = -500  pi).

Reversal of cross links

20 pi o f 5 M NaCl was added to the combined eluates (500 pi) and histone-DNA  

crosslink’s reversed by heating at 65°C for 4 hours. Then, 10 pi o f  0.5M EDTA,
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20 pi 1M Tris-HCl, pH 6.5 and 2 pi o f 10 mg/ml Proteinase K(Sigma) was added 

to the combined eluates and incubated for 60 min at 45°C. After addition o f 3 pi 

o f a carrier molecule, glycogen (2 pg/pl), DNA was recovered by 

phenol/chloroform extraction and ethanol precipitation, resuspended in TE buffer 

for use in PCR analyses.

5.2.2 Antibodies used in ChIP

All antibodies were purchased from Santa Cruz Biotechnology and 2 pg was used 

per reaction.

Table 5-1 Antibodies used in ChIP Assays

Antibody Species of Ab Immunogen (human) Clone/PAD*

GATA-2 Mouse 120-235 aa’s o f  Gata-2 CG2-96

c-Myb

Pitl

Spl

Sp3

TFIID

YY1

Rabbit

Goat

Rabbit

Rabbit

Rabbit

Rabbit

500-640 aa’s o f  c-Myb H-141

Peptide mapping at the N- N-20

terminus o f Pitl

528-548 aa’s within an PEP2

internal region o f  Sp 1 

Peptide mapping at the C- D-20

terminus o f Sp3

1-300 aa's representing full SI-1

length TFIID p36

aa’s 1-414 representing H-414

full-length YY1

* PAD: Polyclonal antibody designation
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5.3 Results

5.3.1 Interaction of Spl, Sp3 and YY1 with the occludin 

promoter

This chapter presents a study addressing the promoter occupancy o f  occludin by 

the TFs SP1, Sp3 and YY1 in endothelial cells derived from brain, dermal and 

lung. EMSA data clearly indicates there is a difference in the association o f  

transcription factors with the occludin promoter between brain and non-brain 

endothelium. To determine if  the TFs Spl, Sp3 and YY1 are present in the 

regulatory protein complex on the chromatin o f occludin in different endothelia 

and to elucidate any differences between the cell types, chromatin 

immunoprecipitation (ChIP) was carried out using specific antibodies directed 

against the three TFs.

DNA isolated from immunoprecipitation with TF(s) and/or control antibody was 

subjected to a PCR analyses with primer pairs designed to amplify regions o f  the 

promoter DNA that have Sp or YY1 sites and the length o f the amplified 

fragments corresponding to <500 bp.

Chromatin isolated from hCMEC/D3 (Figs. 5.1, 5.4 and 5.8), primary human 

brain endothelial cells (Figs. 5.2, 5.5 and 5.9), non-brain (Figs. 5.3, 5.6 and 5.10; 

LMVEC, DMVEC) endothelial cells was immunoprecipitated with antibodies to 

Spl (Figs 5.1, 5.2 and 5.3), Sp3 (Figs. 5.4, 5.5, 5.6) or YY1 (Figs 5.8, 5.9 and 

5.10). Results show that varying association o f  the TFs with the endogenous 

occludin promoter. Results are summarised in tables 5.2 (Spl), 5.3 (Sp3) and 5.4 

(YY1).
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5.3.2 Association of the Sp family with the endogenous 

occludin promoter in brain and non brain endothelium

Spl occupied the endogeouns occludin promoter in the transformed brain 

endothelial cell line, hCMEC/D3 and in the primary brain endothelial cells 

(Tables 5.2, Figs. 5.3 and 5.4). Spl was also seen in association with the occludin 

promoter in dermal endothelial cells (Fig. 5.6) which do not express the protein 

(Chapter 2, Fig. 2.2). The TFs did not associate with the endogenous promoter in 

lung endothelial cells. (Fig. 5.5 ).

Data shows that Sp3 also occupies target motifs on the occludin promoter but only 

in brain endothelial cell (Figs. 5.7 and 5.8)s. It interacts with similar regions as the 

Spl TF except that the proximal region in hCMEC/D3 cells was also occupied 

(Figs. 5.7 and 5.8). Spl and Sp3 bind to GC and GT boxes, but with diferent 

affinities which is dependent on the ratio o f their expression in cells. Sp3 levels 

are higher in brain endothelial cells (Holloway, Sade et al. 2007) and it is possible 

Sp3 succesfully competes with Spl to interact with the consensus binding motifs. 

Our data clearly shows that Sp3 does not interact with the endogenous occludin 

promoter.

5.3.3 Association of the YY1 family with the endogenous 

occludin promoter in brain and non brain endothelium

YY1 interacted with the promoter regions in hCMEC/D3 cells, the primary brain 

endothelial cells and also in the lung endothelial cells. (Table 5.2, Figs. 5.11, 5.12 

and 5 .13).



In the lung endothelial cells, YY1 appears to interact at various points through the 

length o f the promoter (Fig. 5.13)

Results clearly demonstrate that the Spl, Sp3 and YY1 TFs actively associate 

with the occludin promoter in brain endothelial cells. However, in the lung ECs it 

appears that the Sp family is not associated with the endogenous occludin 

promoter. Experiments using higher cell number, increased amount o f  

immunoprecipitating antibody or PCR amplification cycles did not yield a 

positive PCR amplification. Nevertheless, the TF YY1 associated with the 

endogenous promoter in the lung endothelial cells.

To our knowledge, this is the first demonstration showing association o f  the Sp 

family and YY1 TFs with endogenous occludin promoter in human brain and lung 

endothelial cells. This is also the first study whereby occludin promoter regulation 

and hence activity is illustrated by the differential binding o f  TFs in brain and 

non-brain endothelium. It was not possible to repeat EMSA analysis undertaken 

with the transformed cell line in primary human brain endothelial cells as 

availability o f  tissue was a limiting factor. However, it was possible to scale down 

the ChIP protocol for primary human brain endothelial cell cultures and 

investigate any possible differences in TFs associated with the promoter in 

transformed and primary cell cultures. The ChIP assays confirm the in vitro 

interaction seen between the three transcription factors present in hCMEC/D3 

nuclear extracts and occludin promoter DNA as these complexes were active in 

cultured live cells. It is clearly apparent that the some o f the TF-DNA interactions 

are also seen in primary cell cultures.
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5.3.4 Discussion

Chromatin immunoprecipitation (ChIP) is a powerful technique for studying 

interactions o f  DNA with proteins including transcription factors and histones. 

Data in this chapter represents to the best o f  our knowledge, the first analyses 

carried out on transcription factor interactions with the endogenous occludin 

promoter in primary and transformed brain and lung endothelial cells.

The ChIP assays demonstrate that

1. Sp family and YY1 interact with target cis-elements in the endogenous 

human occludin promoter.

2. Spl and Sp3 are recruited to the occludin gene promoter in brain 

endothelial cells in contrast to the lung endothelium, where Sp family TFs 

are not associated with any o f the target sequences and only YY1 

association is observed.

3. The TF YY1 binds the promoter at different sites in the brain and lung 

endothelium raising the possibility that it differentially regulates chromatin 

structure across different endothelia.

We found that Sp3 in primary and transformed brain endothelium is associated 

with the proximal GC rich region which has been shown to be a part o f  the 

minimal promoter in epithelial cells. It is known that this binding is not exclusive 

to occludin as expression o f a number o f other genes involves Sp family binding 

to similar proximal GC motifs.
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5.3.4 Discussion

Chromatin immunoprecipitation (ChIP) is a powerful technique for studying 

interactions of DNA with proteins including transcription factors and histones. 

Data in this chapter represents to the best of our knowledge, the first analyses 

carried out on transcription factor interactions with the endogenous occludin 

promoter in primary and transformed brain and lung endothelial cells.

The ChIP assays demonstrate that

1. Sp family and YY1 interact with target cis-elements in the endogenous 

human occludin promoter.

2. Spl and Sp3 are recruited to the occludin gene promoter in brain 

endothelial cells in contrast to the lung endothelium, where Sp family TFs 

are not associated with any of the target sequences and only YY1 

association is observed.

3. The TF YY1 binds the promoter at different sites in the brain and lung 

endothelium raising the possibility that it differentially regulates chromatin 

structure across different endothelia.

We found that Sp3 in primary and transformed brain endothelium is associated 

with the proximal GC rich region which has been shown to be a part of the 

minimal promoter in epithelial cells. It is known that this binding is not exclusive 

to occludin as expression of a number of other genes involves Sp family binding 

to similar proximal GC motifs.



In the lung endothelium, YY1 binds to an upstream 5’ cis element (also confirmed 

by EMSA); this association has not been observed in the brain endothelium. It is 

possible, YY1 binding to the endogenous promoter may lead to different 

outcomes in brain and lung endothelia.

YY1 can function as a positive or negative regulator of transcription. The TF 

positively modulates transcription by inducing bends in DNA (Thomas and Seto 

1999) or forming synergistic associations with other proteins. Transcription 

factors are able to act as activators or repressors by using specific domains. 

However, certain regulatory proteins are able to exert their control on gene 

promoters indirectly. These proteins bend DNA resulting in the alteration of 

promoter structure which can either facilitate or abrogate interactions between co­

activators, TFs and other components of the basal transcription machinery (Maher 

1998). Examples of DNA-bending proteins include HMGB proteins (Grasser, 

Launholt et al. 2007), SRY (Harley 2002), YY1 etc. YY1 induced bending of 

DNA has been reported in the regulation of the c-fos (Natesan and Gilman 1993) 

and the c-Myc (Austen, Cerni et al. 1998) promoters.

Interactions with other regulatory proteins have been known to alter or modulate 

the ability of YY1 to interact with its recognition sequence on DNA. A large 

number of proteins have been reported to interact with YY1 and includes TATA 

binding protein, Spl (Seto, Lewis et al. 1993), c-Myc (Shrivastava, Saleque et al. 

1993), C/EBP (Bauknecht, See et al. 1996) etc. YY1 also associates with p300 

(Austen, Luscher et al. 1997) and CREB-binding protein (CBP) (Lee, Galvin et al. 

1995) which function as histone acetyltransferases. Acetylation of histones
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neutralises the charge on their N-terminal tails and reduces the affinity of histones 

for DNA. This leads to a decondensation of chromatin resulting in a relaxed 

structure that can be accessed by other TFs and co-activators. YY1 also interacts 

with histone deacetylases (HDACs) (Yang, Inouye et al. 1996; Yang, Yao et al. 

1997) which deacetylate the repressor domain(s) and hence determine the ability 

of YY1 to function as a transcriptional repressor. The binding of YY1 to the F0.1 

(Fig. 4.14) in the lung endothelium could lead to changes in chromatin structure 

that impairs the access of Sp family members to the occludin promoter.

In the brain endothelium, however, it is possible that synergistic association 

between the Sp family and YY1 transcription factors contribute to activating 

transcription from the occludin promoter. ChIP analysis from primary brain 

endothelium shows the association of YY1 in the region which has been identified 

to be a minimal promoter in epithelial cells. The Sp family also interact with the 

promoter in this region. Sp and YY1 TFs interactions have been observed in the 

activation of other gene promoters. This could be the case for occludin gene 

expression as well. Beyond directly regulating occludin basal promoter activity, 

they could also potentially contribute to remodelling the chromatin structure. 

Recent work identified the ability of Sp family to interact with p300 a histone 

acetyltransferase (Hung, Wang et al. 2006).

Further chromatin structure modifications could be undertaken by the recruitment 

of a TF that binds to a NFicB-like site in the proximal promoter (Fig. 4.5). As 

discussed before, there appears to be a distinct neuronal-KB-binding factor that is 

found in a complex of Spl and -3 and binds the NFkB consensus (Mao, Moerman
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et al. 2002). And if this factor, can like NFkB recruit histone acetyl transferases 

could result in increased acetylation of histones in the occludin promoter region 

leading to relaxation of the chromatin structure and allowing easy access for Sp3 

and YY1 TFs to the binding regions. It is likely that the chromatin structure of the 

occludin promoter is predominantly in the relaxed form in brain endothelial cells.

Detailed study of chromatin remodelling in the occludin promoter region in brain 

endothelial cells could thus potentially contribute to an understanding of how 

transcriptional regulation is differentially controlled in the brain and non brain 

endothelium.
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Chapter 6

Sp family and YY1 Transcription 

Factors in Endothelium
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6 Sp family and YY1 Transcription Factors 

in Endothelium

6.1 Introduction

Spl, Sp3 and YY1 are ubiquitously expressed ZnF transcription factors. Spl is a 

known activator and has been implicated in the activation of diverse genes 

regulating tissue specificity, cell-cycle and is required to prevent methylation of 

CpG islands (Suske 1999). Sp3 apart from its role as a transctivator is known to 

repress Spl activity (Hagen, Muller et al. 1994). Spl and Sp3 when expressed in 

the same cell compete for the binding sites on the DNA and hence the levels of 

expression of the individual proteins determine the binding of either Spl or Sp3 to 

bind target motifs (Sjottem, Anderssen et al. 1996). The structure and arrangement 

of the recognition sites and the ratio of the factors in a cell appear to determine 

activity or repression. It has been established that prompters containing a single 

binding site are activated, whereas promoters containing multiple binding sites 

often are not activated (Dennig, Beato et al. 1996).

YY1 is a bi-functional protein that serves as a repressor or activator (Thomas and 

Seto 1999). YY1 represses transcription from the adeno-associated virus promoter 

and activates transcription of the c-myc and ribosomal proteins L30 and L32 (Lee, 

Galvin et al. 1995; Yang, Inouye et al. 1995; Austen, Cemi et al. 1998). YY1 

activity is further complemented by its ability to induce DNA-bending which 

affects position and interaction of other proteins present on the promoter or
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enhancer regions (Thomas and Seto 1999).

Aims

In the present study, the occludin promoter interacts with the Sp and YY1 family 

of transcription factors in brain endothelial cells. However, in lung endothelial 

cells, the association of occludin promoter fragments with Sp TFs is absent and 

YY1-DNA complexes are seen in different regions of the promoter.

1. To establish the expression and localisation of YY1 and Sp family 

in brain and lung endothelial cells

2. Investigate if the transcription factors interact at the level of the 

protein

3. To determine the effect of inhibition of transcription factor-DNA 

complexes on the expression of the occludin protein
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6.2 Material and Methods

6.2.1 Immunofluorescence

Cells were grown to confluence on collagen-coated cover slips and rested for 2 

days in EGM-2 medium with serum but lacking growth factors. The monolayers 

were washed with chilled PBS for 15 minutes with three changes of the buffer. 

For staining for transcription factors, cells were fixed with 4% paraformaldehyde 

(PFA) in PBS for 15 min at RT. Cells were then washed with PBS for 15 min with 

three changes of buffer were permeabilised with 0.2% Triton-X-100 in PBS for 10 

min. After 15 min incubation with blocking buffer (0.5% BSA in PBS), cells were 

incubated with the primary antibody for 2 hours at RT and washed in PBS for 15 

min with three changes of the buffer. This was followed by incubation with rabbit 

anti-mouse or goat anti-rabbit IgG conjugated FITC (1:250, Vector Labs, 

Burlingame, CA) for 1 hour at RT. Cells were washed for 40 min with four 

changes of buffer and the coverslips were mounted on slides with 

DakoCytomation fluorescent medium (Carpinteria, CA) and analysed by confocal 

or fluorescent microscopy.

6.2.2 Immunoprecipitation analysis

Buffers

RIPA buffer: 50mM Tris-HCl (pH 7.4), 1% NP-40, 0.25% Na-deoxycholate, 150 

mM NaCl, 1 mM EDTA, 1 mM PMSF, 1 pg/ml each of aprotinin, leupeptin, 

pepstatin, 1 mM Na3V04  and 1 mM NaF. 1 mg/ml aliquots of the protease 

inhibitors were stored at -20°C and were made up in water (leupeptin and
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aprotinin) or methanol (pepstatin). All other components were stored at 4°C

40 pi of Protein G slurry (Pierce, Chester, UK) was used per immunoprecipitation 

reaction. The slurry was spun down, washed once and then resuspended in 250 pi 

of chilled RIPA buffer and 2 pg of the specific antibody was added and incubated 

for 1 h at 4°C on a cell mixer. Isotype matched IgG was used to control for 

specificity in all immunoprecipitation assays.

106D3, DMVEC or LMVEC endothelial cell monolayers were washed twice with 

chilled PBS and then scraped into 1ml of ice-cold RIPA lysis buffer. The samples 

were incubated at 4°C for 15 min on a cell mixer. The lysates were then 

centrifuged at 14000 rpm for 15 min at 4°C to remove cell debris. The supernatant 

was carefully removed and immunoprecipitated overnight at 4°C with the protein 

G beads previously incubated for 1 h at 4°C with the specific antibody. After three 

washes with chilled RIPA buffer to remove non-specific protein, beads were 

resuspended in SDS lysis buffer and boiled at 100°C for lOmin and samples spun 

briefly at 14000 rpm. The supernatants containing the immune complexes were 

separated on 10% SDS-PAGE gels and subunit composition of the complexes was 

detected by western blotting as described in below.

6.2.3 Western blot analysis 

Buffers

Tris/EDTA: 6.057g Tris, 0.93g EDTA, pH adjusted to 7.4 with HC1

Lvsis Buffer: 1%TNE, 1% Triton-X-100, 1 mM PMSF and lpg/ml each of
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leupeptin, aprotinin, pepstatin and made up in water.

Laemelli’s reducing buffer: 62.5 mM Tris HC1 pH 6.8, 2% SDS, 10% (v/v) 

glycerol, 50 mM DTT, 0.5% bromophenol blue made up in distilled water.

lOx Running Buffer-lOx Tris/Glvcine/SDS: 0.25 M Tris, 1.92 M Glycine and 1% 

SDS (Cat No: EC-870, National Diagnostics)

lOx Transfer Buffer-lOx Tris/Glycine: 0.25 M Tris, 1.92 M Glycine (Cat No: EC- 

880, National Diagnostics)

Blocking buffer: 5% non-fat dry milk (Blotto®, Cat No: sc-2325, Santa Cruz 

Biotechnology) in 0.1% Tween 20 in PBS

ProtoGel 30%: (Cat No: EC890, National Diagnostics)

PBS-Tween 20 (PBS-D: lx  PBS (pH 7.4) with 0.1% Tween 20

Cells were harvested and washed twice by centrifugation in chilled PBS. Cells 

were lysed in 100 pi of lysis buffer, vortexed and then sonicated on ice for 10 sec 

to reduce sample viscosity. Protein concentration was measured using the DC 

Protein assay kit according to the manufacturer’s instructions (Cat no: 500-0116, 

Bio-Rad Laboratories). Samples were made up in 2x or 4x Laemelli’s buffer 

depending on the protein concentrations and boiled at 100°C for 5 min. Samples 

were centrifuged at -14000 rpm for a min before loading on 10-15% SDS-PAGE 

gels. 5 pi of pre-stained protein molecular weight marker (Cat No: P7708S, NEB) 

was loaded on the gels to visualise and determine the molecular weights of the 

target proteins. Proteins were transferred onto Hybond-ECL nitrocellulose
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membrane (Cat No: RPN303D, Amersham) for 2 hours at 0.45 mA using the wet 

transfer technique. Protein transfer was validated by using Ponceau Red (Cat No: 

09189, Sigma) staining. Membranes were washed in PBS constituted with 0.1% 

Tween-20 for 5 min to rid of excess dye and then incubated in blocking buffer for 

1 h at RT. The membrane was incubated overnight with primary antibody in 

blocking buffer at 4°C, with gentle rocking. Membranes were washed for 30 min 

with three changes of buffer and then incubated for 1 h at RT with goat anti-rabbit 

HRP or with rabbit anti-mouse HRP (1:5000, Pierce Biotechnology), diluted in 

blocking buffer. After another three washes, proteins were detected by 

chemiluminescence, according to the manufacturer’s instructions (Amersham)

6.2.4 Treatment with mithramycin

Mithramycin: cat no: M6891 (Sigma). Stock solutions were made up in DMSO 

and stored at -20°C.

' X lEMSA: Double stranded P-labeled fragment 8 containing two Sp sites was used 

as a probe. To block Spl/3 binding to DNA, DNA probes were preincubated for 1 

h at 4°C with mithramycin (50 nM, 100 nM, 200 nM) or DMSO (control) before 

being used in binding reactions with nuclear extracts derived from hCMEC/D3 

ECs.

Immunostaining: For analysis of tight junctions in mithramycin treated cells, 

confluent hCMEC/D3 cells were cultured with 100 nM and 200 nM mithramycin 

for 48 hours. Cell monolayers were washed in HBSS without Ca2+ and Mg2+ and 

then detached from the matrix by incubation with 0.25% Trypsin-EDTA at 37°C
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for 5 min. Cells were then centrifuged at 1500 rpm for 5 min and gently 

resuspended in PBS containing 0.4% paraformaldehyde and incubated for 20 min 

at room temperature followed by centrifugation. Supernatants were discarded and 

cell pellets were washed twice with PBS and then resuspended in PBS containing 

0.01% triton-X-100 (permeabilisation buffer, PB) and incubated on ice for 20 

min. Samples were microfuged at 4000 rpm for 5 min and pellets resuspended in 

lOOpl of primary or isotype antibody made up in the PB and incubated on ice for 

40 min. Samples were microfuged at 4000 rpm for 5 min and cell pellets washed 

twice with excess chilled PBS to rid of unbound antibody. 100 pi of secondary 

antibody (1:200, goat anti rabbit Alexa Fluor 488, Cat No: Al 1094) was added to 

the cell pellets and incubated on ice for 40 min following which samples were 

microfuged and cell pellets washed in excess chilled PBS. Finally, the cells were 

resuspended in chilled PBS for analysis on FACS.

Trypan blue exclusion assay: cells were incubated at RT for 10 min with 0.1% 

trypan blue and the cells were counted in a hematocytometer for dye uptake. At 

least 300 cells were counted for each data point.
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6.3 Results

6.3.1 Immunoreactivity and localisation of Sp family and YY1 in 

Brain and Non-brain Endothelium

hCMEC/D3 (Fig. 6.1), LMVEC (Fig 6.2), BMEC (Fig. 6.3) and primary human 

brain endothelial cells (Fig. 6.4) were assayed for the expression and localisation 

of the regulatory proteins. The transcription factors were detectable on all three 

endothelia and show a predominantly nuclear localisation, though cytosolic 

localisation is observed following Sp3 and YY1 immunostaining in lung and 

dermal endothelial cells respectively. Levels of the transcription factors were 

similar between cells in various stages of cell cycle. However, the levels and 

profiles of the transcription factors are dependent on the endothelial cell type.

6.3.1.1 Sp 1 and Sp3

The Sp3:Spl ratio is highest in brain endothelium, in both the primary as well as 

the transformed line (Figs. 6.1 and 6.4). Similar Sp3:Spl ratio was maintained in 

lung (Fig. 6.2) but not in dermal ECs (Fig. 6.3) where the expression of Spl was 

favoured over Sp3. Spl expression in hCMEC/D3 and lung endothelial cells was 

predominantly nuclear but speckled. In the primary brain and dermal endothelial 

cells, Spl expression was seen in the nucleus and excluded from the nucleolus. 

Additionally, in the primary endothelial cells, traces of Spl protein were also seen 

in the cytoplasm. Sp3 protein was predominantly nuclear localised in hCMEC/D3, 

dermal and primary brain endothelial cells.
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However, in lung endothelial cells, the Sp3 protein was also observed in the 

cytoplasm. It should be noted that the antibody to Sp3 recognises in addition to 

the full length protein, the shorter isoforms (N-terminal truncations) which are 

also nuclear localised.

6.3.1.2 YY1

The expression of YY1 was low in hCMEC/D3 cells and a distinctive punctuate 

nuclear localisation was observed (Fig. 6.1). Lung (Fig. 6.2) and dermal (Fig. 6.3) 

ECs expressed higher levels of YY1 though the cytosolic localisation was 

restricted to the latter cell line. YY1 expression was excluded from the nucleolus 

in cells of both the lines. It must be noted that YY1 expression and, especially, 

localisation in the primary endothelial cells is similar to that visualised in primary 

lung and dermal endothelium. It is indeed possible that some of the characteristics 

of the hCMEC/D3 cell line could be contributed by virtue of the SV-40 large T 

transformation. We investigated whether a bone marrow endothelial cell line 

which has been transformed by SV-40 large T showed similar pattern of staining 

to hCMEC/D3 cells (Fig. 6.5). Bone marrow endothelial cells showed strong 

expression of YY1 in the nucleus and did not show the nuclear punctate staining 

seen in the brain endothelial cell line. These data suggests that the YY1 

expression and localisation of YY1 in hCMEC/D3 is a characteristic of the cell 

line which is not dependent on the transformation.
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Figure 6-1 Expression of Sp Family and YY1 in hCMEC/D3 Cells by 

Immunofluorescence Confocal Microscopy

hCMEC/D3 

RblgG Sp1

Sp3 YY1

Cells were rested for two days after reaching confluence and were then stained 

with antibodies to Spl, Sp3 or full length YY1 (H414). Normal rabbit IgG served 

as a negative control. All TFs are predominantly nuclear localised. Spl and YY1
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exhibit a speckled nuclear profile. Data shown is representative of 3 independent 

experiments.

Figure 6-2 Expression of Sp Family and YY1 in Lung Endothelial (LMVEC) 

Cells by Immunofluorescence Confocal Microscopy.

LMVEC
RblgG Sp1

Sp3 YY1

Cells were rested for two days after reaching confluence and were then stained

with antibodies to Spl, Sp3 or full length YY1 (H414). Normal rabbit IgG served
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as a negative control. Spl expression in very low but is nuclear localised. Sp3 and 

YY1 are strongly expressed but expression also seen in the cytosol. Data shown is 

representative of 3 independent experiments.

Figure 6-3 Expression of Sp Family and YY1 in Dermal Endothelial 

(DMVEC) Cells by Immunofluorescence Confocal Microscopy

DMVEC 
RblsG

Sp3 YY1

Cells were rested for two days after reaching confluence and were then stained

with antibodies to Spl, Sp3 or full length YY1 (H414). Normal rabbit IgG served
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as a negative control. Spl and YY1 are strongly expressed; Sp3 levels are low 

with some localisation in the cytosol. YY1 levels in the cytosol are the highest in 

among the endothelia.

Figure 6-4 Expression of Sp family and YY1 in Primary Human Brain 

Endothelial Cells by Immunofluorescence Confocal Microscopy

P r im a r y  BEC 
RblgG Sp1

Sp3 YY1

Cells were rested for two days after reaching confluence and were then stained

with antibodies to Spl, Sp3 or full length YY1 (H414). Normal rabbit IgG served
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as a negative control. Sp family and YY1 are strongly expressed, the latter shows 

punctate cytoplasmic localisation.

Figure 6-5 Expression of Sp Family and YY1 in Bone Marrow Cells by 

Immunofluorescence Confocal Microscopy

RblgG Sp1

Sp3 YY1

Cells were rested for two days after reaching confluence and were then stained 

with antibodies to Spl, Sp3 or full length YY1 (H414). Normal rabbit IgG served 

as a negative control. Sp 3 family and YY1 are strongly expressed, Spl exhibits
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speckled localisation in the cytosol and nucleus.

Figure 6-6 Quantification of differences in Sp family and YY1 TFs in 

hCMEC/D3 (D3), LMVEC (LM) and DMVEC (DM) cells
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After correction for background intensity which was estimated from several 

intensity measurements in regions of the coverslip that did not contain any cells, 

boxes were drawn around the fluorescent structure in each cell and the pixel 

intensity was determined. This measurement was repeated for -40 cells each 

from three experiments done on different days.
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6.3.2 Interaction of Sp3 and YY1 in Brain Endothelium

Whole cell lysates from different endothelia were investigated by 

immunoprecipitation analyses to determine if the TFs interact in vitro (Fig. 6.6). 

Sp3 (top panel) or YY1 (lower panel) protein were immunoprecipitated with their 

respective antibodies and the immunoprecipitates from each condition were 

analysed by western blotting for the presence of the precipitated protein as well as 

for the other transcription factors as evidence of interaction.

The results show that in hCMEC/D3 cells, Sp3 immunoprecipitation causes the 

co-precipitation primarily of the smaller YY1 variants. We detected some co- 

immunoprecipitation of the full length YY1 (70 kDa) by anti-Sp3 in dermal 

endothelium, but not in lung endothelium. The result was confirmed when the 

analyses was carried out by immunoprecipitating YY1 and investigating for the 

presence of Spl and Sp3 in the complexes. YY1 interacts with the larger variant 

of Sp3 (116 kDa) in the brain endothelium, but not from lung endothelium. Co­

precipitation of Sp3 with anti-YYl from dermal lysates was barely detectable.

The results indicate a strong association of YY1 and Sp3 in brain endothelium 

which is absent in non-brain endothelium.
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Figure 6-7 Interaction of Sp3 and YY1 Proteins in Endothelium
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Cell lysates o f  hCMEC/D3 cells, lung (LMVEC) and dermal (DMVEC) 

endothelia were immunoprecipitated with protein-G beads in the presence o f  

antibodies to transcription factors (Sp3 or Y Y I) or RblgG as negative control. 

Whole cell lysates (WCL) were used as positive control to confirm the 

size/presence o f  the transcription factor in each cell type. The precipitates were 

examined by western blotting for the presence o f Sp3 or Y Y 1. The upper 6 blocks
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show experiments in which immunoprecipitating antibody was Sp3, to detect co 

precipitation o f  YYI. The lower 6 blocks show an experiment in which 

immunoprecipitation was carried out with anti-YYI antibody to detect co 

precipitation o f  Sp3.

6.3.3 Promoter Activity of Fragment 8 with Sp Site Deletions

A  single Sp site has been shown to be sufficient to drive transcription in 

promoters o f diverse genes. Most promoters contain multiple GC boxes to which 

Sp family members can bind but it is possible that only one or two sites are 

important in driving transcription. The human H-ras promoter has six Spl sites o f  

which only the most proximal one located around -45 is required for expression 

(Pintzas and Spandidos 1991). DNase I footprinting experiments using a TATA- 

less promoter containing Spl binding sites have shown that binding o f Spl 

stabilizes interaction o f TFIID with the transcription start site region (Emami, 

Burke et al. 1998).

Hence we hypothesised that the two Sp sites on fragment 8 could be important for 

the regulation o f the occludin promoter by the Sp TFs. The two Sp sites on 

fragment 8 ; 1798 CCCTCCC 1804 and 1820 AGGCGG 1825 were targeted for 

deletion and two single deletion mutants were generated. EMSA were carried out 

with the wild type and the mutants but unfortunately the results were not clear as 

the mutant probes generated a lot o f  background (not shown). However, the 

double stranded DNA probes were cloned into promoter deficient vectors and 

transient transfections were carried out in hCMEC/D3 cells (Fig. 6.3)
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Results show strong mediation o f GFP expression in cells transfected with the 

wild type fragment 8 . In cells transfected with the promoter fragment lacking the 

first Spl binding sequence-CCCTCCC (1798-1804), the GFP expression was 

comparable to WT albeit slightly decreased. However, deletion o f  the second Sp 

site AGGCGG (1820-1825) dramatically decreased the ability o f  the promoter 

fragment to drive GFP expression. The results imply that the downstream Sp site 

is important for the expression o f the occludin protein in brain endothelium. 

Sp3/Spl interacts with two putative target binding sites close to the transcription 

start to initiate or maintain expression. However, these sites are inactive in lung 

endothelium.
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Figure 6-8 Contribution of Sp Sites to the Activity of Fragment 8
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Promoter activity implicated by GFP expression in hCMEC/D3 transfected with 

vector containing wild-type F8 (A), or F8 with deletion o f  Sp target sites (B and 

C) (filled histograms) compared with control vector (open histograms). (B) 

Mutant represents deletion o f  the Sp-site at position -34 and (C) denotes deletion 

o f  the Sp-site at position -56. (D) represents relative GFP fluorescence o f  the three
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vectors from 5 different experiments.

6.3.4 Inhibition of Sp Transcription Factors by Mithramycin

Mithramycin is an aureolic acid antibiotic that specifically binds to GC sequences 

on the DNA and selectively inhibits transcription. Mithramycin A is a potent 

inhibitor o f  Spl binding to GC boxes in DNA, and is capable o f  interfering with 

Spl-mediated gene transcription (Blume, Snyder et al. 1991). Mithramycin has 

been shown to block binding o f  Sp factors consensus sites in the human c-myc, 

the SV40 early promoter and in the human dhff promoter (Ray, Snyder et al. 

1989; Blume, Snyder et al. 1991; Snyder, Ray et al. 1991). Mithramycin has been 

used as a specific inhibitor o f Spl, although the inhibition o f the binding o f  other 

transcription factors that recognize GC-containing sequences in the minor groove 

o f the DNA cannot be excluded (Miller, Polansky et al. 1987). For example, other 

ZnF transcription factors, including Egr-1, bind to GC-rich sequences in DNA  

(Krikun, Schatz et al. 2000). A lack o f specificity would lead to primary 

mithramycin cytotoxicity. With this possibility in mind we used concentrations o f  

mithramycin that did not affect cell viability. Mithramycin used at 50, 100 and 

200 nM did not affect cell survival 72 hours post incubation as assayed by trypan 

blue exclusion (Fig. 6 .8).

236



Figure 6-9 Cytotoxicity of Mithramycin in hCMEC/D3 Cells
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6.3.4.1 Inhibition of Spl/3 Binding to F8 Probe

We first tested the effectiveness o f  mithramycin in reducing the binding o f  

Spl/Sp3 to the occludin promoter in a gel-shift assay (Fig. 6.9). The DNA probe 

F8 was used as it functions as minimal promoter in hCMEC/D3 cells. Labelled ds 

DNA probe was incubated with three different concentrations o f  mithramycin 

before the binding reaction with brain endothelial nuclear extracts. In chapter 3 , 1 

discussed the activity o f  the promoter probe in brain endothelial cells and 

concluded that Sp3 binds to the probe and is responsible for nuclear protein-DNA 

complexes F8.1, F8.2 and F8.3. Nuclear protein-DNA complex F8.4 was not 

abrogated in the presence o f  an antibody to Sp3 but was inhibited in the presence 

o f  a Sp competitor. Spl did not bind to the probe as evident by supershift assays. 

In the present experiment, Mithramycin reduced the binding o f  Sp3 to its
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recognition sequence in a dose-dependent manner (Fig. 6.9, lanes 5, 6 and 7). In 

the presence o f  50 nM mithramycin, complex F8.1 was partially abrogated (lane 

5). Incubation with 100 nM concentration o f  the drug abrogated complexes F8.1 

and F8.2. Higher concentration (200 nM) o f the drug inhibited the same 

complexes as the condition in which Sp3 antibody was present (lanes 4 and 6).

Figure 6-10 Mithramycin Blocks Binding of Sp TFs to Target DNA Motifs
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Fig. 6.10: EMSA analysis o f complexes (8.1, 8.2, 8.3 and 8.4) formed with 

promoter probe F8 and hCMEC/D3 nuclear extracts cultured in the absence (lanes 

2) or presence o f  different concentrations o f  the drug, mithramycin (lanes 5, 6 and 

7). Lane 1 represents mobility o f the probe in the absence o f  nuclear protein. 

Presence o f  lOOnM (lane 7) or 200nM (lane 6) mithramycin inhibited the 

formation o f  nuclear protein complexes identical to those inhibited in the presence 

o f  Sp3 supershift antibody.

6.3.4.2 Occludin Protein in Mithramycin Treated hCMEC/D3 Cells

To further demonstrate the role o f Sp transcription factors in the expression o f  

occludin, cells treated in the presence or absence o f 100 nM or 200 nM 

mithramycin were immunostained with an antibody to occludin (Fig. 6.12). Total 

occludin protein levels were down regulated in the presence o f  the 

pharmacological inhibitor (Figs. 6.11 and 6.12). This appears to be specific as 

expression o f other tight junction proteins-claudin 5 and ZOl was unaffected.
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Figure 6-11 Expression of TJ Proteins in Mithramycin Treated Brain

Endothelial Cells
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Graph represents percentage o f hCMEC/D3 cells expressing claudin 5 or occludin 

when cultured in the presence or absence o f  mithramycin. Data is obtained from 3 

experiments. Each protein was analysed by ANOVA followed, i f  p<0.05, by 

Dunnett’s multiple comparison test. *** indicates expression is significantly 

different from untreated cells, p<0 .001 .
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Figure 6-12 Loss of Occludin Protein in Mithramycin Treated Brain

Endothelial Cells
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Fully confluent hCMEC/D3 cells were cultured in the presence o f  DMSO  

(control), 100 nM mithramycin or 200 nM Mithramycin for 48 hours following  

which the cells were immunostained for the tight junction proteins-claudin 5 (left 

hand panel) and occludin (right hand panel) and assayed on FACS. Isotype 

matched IgG was used as a control.
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6.4 Discussion

Data so far shows that nuclear factors belonging to the Sp family and YYI present 

in brain endothelial cells bind the occludin promoter in vitro and in vivo and the 

key question is investigating whether one or both o f these proteins are involved in 

tissue-specific expression o f occludin in CNS endothelium.

Occludin mRNA levels increase with increasing confluence in brain endothelial 

cells cultures. The levels o f  occludin protein at the tight junction increase as cell­

cell contacts and junctions are established in fully confluent and resting culture. In 

this study we found that one o f the two Sp elements namely the one located 

between 1820-1825 (AGGCGG) o f the occludin promoter is responsible for a 

major part o f  occludin promoter activity in hCMEC/D3 cells (Fig. 6 .8C) and Sp3 

bound to this element (Figs. 4.4 and 6.10). It was slightly unexpected that 

promoter activity could be determined by a single Sp element especially as the 

data with the reporter vector constructs indicated activity in regions o f the 

promoter which lack this site. A  single Sp site has been shown to be sufficient to 

drive transcription in promoters o f diverse genes. Most promoters contain 

multiple GC boxes to which Sp family members can bind but it is possible that 

only one or two sites are important in driving transcription. The TATA-less 

human H-ras promoter has six Spl sites o f  which only the most proximal one 

located around -45 is required for expression (Pintzas and Spandidos 1991). Based 

on these results, it was suggested that Spl is required for functional assembly o f  

the basal transcription machinery on the H-ras promoter. DNase I footprinting 

experiments using a TATA-less promoter containing Spl binding sites have
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shown that binding o f  Spl stabilizes interaction o f TFIID with the transcription 

start site region (Emami, Burke et al. 1998). Another reason could be the fact that 

occludin expression is restricted and its regulation is different from genes that are 

commonly expressed. One o f  the main differences in the regulation o f  promoters 

from housekeeping and tissue specific genes is the presence o f extensive 

redundancy in the house keeping gene promoters. Both kinds o f  promoters 

display numerous transcription factor binding sites but large deletions or removal 

o f TF binding sites have relatively little effect on promoter activity on the 

promoters o f  housekeeping genes. Examples o f  such housekeeping promoters are 

the mouse DHFR promoter, the mouse hprt promoter and several promoters o f 

ribosomal protein genes. It has been proposed that different cell types exhibit 

different sets o f transcription factors and hence multiple regulatory elements are 

required for gene expression in each cellular background. Another proposal 

contends that activity o f  housekeeping genes is not sensitive to singular or 

transient cues from the environment and altering promoter activity in these 

promoters requires manifold changes in the cell environment and recruitment o f  

multiple regulatory elements.

We also confirmed the importance o f  the Sp elements by using mithramycin, a 

drug that modifies GC-rich regions o f  the DNA and blocks Spl/Sp3 binding 

(Blume, Snyder et al. 1991). Mithramycin treatment inhibited Sp3 binding to the 

Sp element (Fig. 6.10) and the protein levels o f occludin also decreased in 

mithramycin treated cells (Fig. 6.12) which strongly suggests that Sp3 binding is 

essential for occludin expression. Other TJ proteins like claudin 5 and ZO 1 were 

not affected. All o f these results clearly suggest that induction o f  occludin gene
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expression is dependent on activity of Sp3.

It is unlikely that Sp3 acts alone to activate expression from the occludin 

promoter. Sp3 is not a strong transctivator like Spl (Hagen, Muller et al. 1994) 

and usually interacts with other co-activators to drive transcription. We have 

investigated if  the Sp and YYI family members interact in brain endothelium. Sp3 

interacts with YYI in the brain but not in lung endothelium (Fig. 6.7).

The lung and dermal endothelial cells express the full length form o f  YYl-70kDa. 

The full length form o f  YYI in the brain and non-brain endothelium is subject to 

posttranslational modification like phosphorylation and acetylation that regulate 

the DNA-binding affinity and the capacity to form complexes with other nuclear 

proteins (Thomas and Seto 1999). In the brain endothelium there is a shorter 

isoform o f  YYI that migrates at 45 kDa in addition to the full length form 

(Holloway, Sade et al. 2007). Ths shorter isoform lacks the C-terminus which 

contains the DNA binding region but retains the ability to interact with TFs. This 

isoform migrates at 45kDa and is only present in the brain endothelium and absent 

from lung and dermal endothelia. This isoform could in essential act like a 

dominant negative or constitutively active form o f Y Y 1 by being able to bind 

other TFs that if  were allowed to interact with full length YYI could result in 

activation or inhibition o f transcription from a responsive promoter. In the brain, 

this isoform is as strongly expressed as the full length form (Holloway, Sade et al.

2007).

In the brain, it is clear that the shorter isoform o f  YYI interacts specifically with 

functional form o f Sp3-118 kDa and not the shorter form o f 97 kDa that has been
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shown to negatively regulate Sp3 activity. Despite interaction o f  Sp3 and YY 1 

protein, data from the YYI antibody super shift (lane 5, Fig 4.4) indicates that 

Sp3 and YY 1 do not interact in this region. Could it be possible that YY 1 and Sp3 

interact only at the level o f proteins but not as a complex with the promoter DNA?

It is possible because the shorter isoform lacks the DNA binding region but is able 

to bind TFs. It has to be remembered that YYI has the dual nature o f  activating or 

inhibiting transcription. It is possible in the brain endothelium; the shorter isoform 

binds Sp3 and acts to initiate transcription. Sp3 is a weak transactivator but in the 

presence o f  YYI and Spl is able to initiate transcription.

Figure 6-13 YYI isoforms in Brain Endothelium

Interacts with Sp-family TFs Binds DNA
A —--------------------

54 201 260 331 414

N □  • • •  l _ l j  r r i  n r m  C
B

Acid-rich-1 Poly-His Acid-rich-2 GA-region Spacer Zn fingers

54 201 260 331

N i it—  r r i R i  i i ic
Acid-rich-1 Poly-His Acid-rich-2 GA-region Spacer

A: Full length YYI protein 

B: Brain specific shorter isoform

However, it is also possible that yet another single or groups o f  transcription 

factors are involved. Promoter probe F8 forms four nuclear protein complexes 

with hCMEC/D3 nuclear extract. Formation o f all complexes is completely and 

partially abolished in the presence o f a Sp competitor and an antibody to Sp3
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respectively. In addition, Spl is not a component o f these complexes as presence 

o f an antibody to the protein does not affect the formation o f  these complexes. 

Hence, all the DNA-nuclear protein interactions in this probe are Sp3 dependent. 

There are however, only two Sp sites on this probe. Several possibilities can 

explain the mismatch between the number o f binding sites and number o f  nuclear 

protein-DNA complexes:

1. There is a low molecular weight isoforms o f Sp3 in addition to the 

full length protein. The faster migrating bands on the EMSA gel may be 

attributed to these variants which would migrate differently in EMSA but 

not in western blots.

2. Presence o f  post translational variants o f Sp3 generated via 

sumoylation, phosphorylation or acetylation. F8.3 appears to have a higher 

affnity than F8.1 or F8.2 as it is harder to block. Hence it is possible these 

two complexes are formed by a post translational variant o f  Sp3.
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Chapter 7

Conclusion and Future Work
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7 Conclusion

Understanding the mechanism o f tissue-specific gene expression remains a 

fundamental question in genome biology. Despite major advances in 

developmental biology and bioinformatics, unravelling the seemingly simple 

concept o f different tissue types being determined by the same DNA template still 

remains a major challenge. The human genome has more than 25000 genes which 

display remarkable diversity in patterns and levels o f expression in different 

tissues. However these vast changes in spatial and temporal gene expression are 

controlled by only ~1850 TFs. Computational approaches have provided 

important tools in understanding transcriptional regulation in being able to predict 

identification o f  TF binding sites, regulatory elements o f combinatorial pathways 

and identification o f  gene targets for TFs in addition to promoter regions, but 

these predictions remain to be validated in vitro. Research which incorporates 

ChIP and microarray analyses in concert with cis-regulatory element analysis is 

proving a popular choice for researchers in this field.

In the present study, we investigated the transcriptional regulation o f  the tight 

junction protein occludin whose expression is restricted to the brain endothelium. 

Endothelial cells from different tissues differ widely in the expression o f  

junctional proteins and transporters. The expression o f proteins like occludin, p- 

glycoprotein and transferrin receptor is restricted to brain endothelial cells in 

contrast to claudin-5 which is strongly expressed in the brain and to a lesser extent 

in dermal and lung endothelia (Holloway, Sade et al. 2007). The mechanism(s) 

responsible for the differential expression o f these proteins is not known.
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Previously, we have shown that human brain, dermal and lung endothelial cells 

have distinct expression profiles o f  transcription factors and have demonstrated 

that a select few play important roles in the regulation o f a brain endothelial 

specific protein, the transferrin receptor promoter. Our study represents the one o f  

but many investigations where prior knowledge o f TFs expression was used to 

understand tissue specific gene expression patterns.

A brief summary o f  key findings from the work in the regulation o f  occludin in 

brain and lung endothelial cells are as follows:

1. Analysis o f the in vitro activity o f  the promoter by using a reporter vector 

transfection assay system concluded that the promoter in brain endothelial cells is 

capable o f  driving gene expression in contrast to the lung endothelium where no 

activity was observed.

2. Sp l, Sp3 and YYI present in nuclear extracts o f hCMEC/D3 cells associate 

with the occludin promoter under in vitro and in vivo conditions.

3. Sp3 interacts with YYI protein in brain endothelium and this is absent in the 

lung endothelium. The association is absent in lung in the case o f the Sp family.

4. Blocking Sp3 binding to target sites by the antibiotic mithramycin lead to the 

down regulation o f the occludin protein but not other tight junction proteins such 

as claudin 5 and ZOl.

5. Deletion o f one o f the proximal Sp sites on the promoter lead to a decrease in 

its activity on transient over expression within a reporter vector in brain
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endothelium.

From the data, it is clear that Sp family positively regulates the expression from 

the occludin promoter in brain endothelium and YY1 augments this function and 

these TFs have important roles in maintaining the phenotype o f the differentiated 

brain endothelial cells.

It has been established in literature that Sp and YY1 TFs regulate differentiation 

in various cell types. Spl has been shown to regulate promoters o f  genes 

associated with differentiation and is also involved in transactivation o f promoters 

o f  housekeeping genes. Spl interacts with MyoD to positively up regulate the 

expression o f  many muscle-specific genes during muscle cell differentiation (Guo, 

Degnin et al. 2003). In corneal epithelial cells, the promoter o f  keratin 4 which is 

important in maintaining the differentiated phenotype is transactivated by Spl 

(Okano, Opitz et al. 2000). In F9 cells the induction o f  tissue plasminogen 

activator (t-PA) in the presence o f retinoic acid is mediated by Spl binding to 

proximal GC boxes in the t-PA promoter (Darrow, Rickies et al. 1990). Spl binds 

to a proximal GC box in the promoter o f the DNA topoisomerase Ha gene 

promoter in proliferating rat cells and activates transcription o f the gene (Yoon, 

Kim et al. 1999). Other promoters include dihydrofolate reductase (DHFR) 

(Dynan, Sazer et al. 1986), thymidine kinase (Dou, Fridovich-Keil et al. 1991), 

p21wafl/cipl (Pardali, Kurisaki et al. 2000), GM-CSF (Brettingham-Moore, Rao 

et al. 2005), EGFR (Liu, Innocenti et al. 2005). Spl physically interacts with other 

DNA binding proteins like PU.l (Feng, Teitelbaum et al. 2000), E2F-1 (Lin, 

Black et al. 1996), and p53 (Schavinsky-Khrapunsky, Huleihel et al. 2003). Rb
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protein is known to stimulate Spl and Sp3 mediated transcription (Chen,

Nishinaka et al. 1994; Udvadia, Templeton et al. 1995).

Importantly, the Sp family have also been implicated in regulation o f genes that 

are specific to endothelial cells such as those coding for the platelet-derived 

growth factor B-chain, the platelet-derived growth factor A-chain, the endothelial 

nitric oxide synthase, the vascular cell adhesion molecule-1, and KDR/flk-1.

In Chapter 1, I have discussed the upregulation o f SSeCKS (Src-suppressed C 

kinase substrate) in response to oxygen tension in astrocytes. Supernatants from 

SSeCKS-expressing cells increase the protein levels o f  ZOl and claudin 1, 

constituents o f  the TJs o f the BBB (Lee, Kim et al. 2003). An interesting 

observation is the the presence o f  a GC box between -1 0 6  and -4 9  in the proximal 

promoter o f  SSeCKS which is bound by Spl/Sp3. In v-Srotransformed NIH3T3 

cells, this region is negatively regulated by HDAC1 which is recruited into this 

complex (Yahao Bu and Irwin H. Gelman 2007).

The proximal promoter o f  GDNF (Glial cell line-derived neurotrophic factor) 

which is also involved in the development o f  blood brain barrier properties 

exhibits binding sites for Sp, AP2 and NFkB TFs (Woodbury, et al., 1998). 

GDNF is a weak promoter which is thought to be due to the presence o f  an 

upstream YY1 binding site and target motifs for other repressors namely 

epidermal growth factor receptor (ETF) and GC factor (GCF) (Baecker, Walter et 

al., 1999).

Spl along with a member o f the Ets family o f TFs, GABP has been implicated in
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the transcription o f Robo4, which is expressed exclusively in endothelial cells 

(Okada, Yano et al. 2007). In this study, GABP and Spl associate with the 

endogenous promoter in endothelial cells and transfection o f these cells with small 

interfering RNA against GABP and Spl resulted in a significant decrease in 

endogenous Robo4 mRNA expression.

Vascular endothelial cadherin another junction protein that is specific to 

endothelial cells is also regulated by the Sp family (Gory, Dalmon et al. 1998). 

Spl and Sp3 have been shown to associate with two GT boxes at positions -4 8  

and-4 0  in the proximal VE cadherin promoter and in conjunction with Ets TFs 

drive transcription.

Sp3 was initially described to inhibit Spl mediated transcription (Hagen, Muller 

et al. 1994; Dennig, Hagen et al. 1995) but later studies have identified it as a 

transcriptional activator (Liang, Robinson et al. 1996; Ihn and Trojanowska 1997; 

Prowse, Bolgan et al. 1997). This property depends on cellular context, levels o f  

Spl protein, number o f Sp elements on the promoter (Yu, Datta et al. 2003) and 

levels o f the shorter isoforms o f Sp3 itself (Kennett, Udvadia et al. 1997). There 

are three isoforms o f  Sp3; the full length isoform acts as an activator and the two 

shorter isoforms retain DNA binding activity and associate with target sequences 

to repress transcriptional activation by full length Sp3 or Spl (Kennett, Udvadia et 

al. 1997). The full length form predominates in brain endothelial nuclei, whereas 

the short isoforms predominate in non-brain endothelium, which could partly 

explain the differential activity o f Sp3 in lung and brain endothelium.

Sp3 competes successfully with Spl for the Sp target sites on the occludin
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promoter. Data indicates that it is possible the Sp3 protein singularly or via 

associations with other TFs acts to initiate transcription as Sp3 has been reported 

to be a poor activator in certain cellular systems. Our data on protein interactions 

indicate that Sp3 interacts with the transcription factor YY1 in brain endothelial 

cells and this specific interaction is absent in lung endothelial cells.

The Sp proteins present in nuclear extracts derived from the lung endothelial cells 

do not bind to the endogenous promoter or to the naked DNA in EMSA. Since 

lung endothelial cells express Spl and Sp3 it is possible that the binding motifs 

are occupied by other DNA modifying proteins restricting access to the promoter 

as seen with F8 in lung endothelial cells or there is a transcription factor that 

represses activation o f occludin transcription in the lung endothelium. Data 

suggests the possible candidate is the TF YY1 which like the Sp family proteins is 

widely expressed and acts as a repressor or as an activator dependent on cellular 

contexts.

YY1, a member o f  the Polycomb Group protein family is a ubiquitous and 

multifunctional zinc-finger transcription that has critical roles in hematopoiesis 

and cell cycle control (Thomas and Seto 1999). Promoters that have been 

established to be under YY1 control include endothelial nitric-oxide synthase 

promoter (Karantzoulis-Fegaras, Antoniou et al. 1999), c-Myc (Austen, Cemi et 

al. 1998), c-Fos (Zhou, Gedrich et al. 1995), p53 (Sui, Affar el et al. 2004), a -  

actin (Wu and Lee 2001), E6 and E7 o f HPV (O'Connor, Tan et al. 1996) and a 

number o f other viral LTRs (Shrivastava and Calame 1994). YY1 present in the 

lung endothelial nuclear extracts associates with the promoter region up stream o f
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the transcription start site and this specific binding is not seen in the brain 

endothelial cells. However, YY1 in the brain endothelial nuclear extract binds to 

other target motifs on the occludin promoter namely F5 and F6.1 raising the 

possibility that the preferential binding on the F0.1 in the lung endothelium is 

important in repression o f transcription. We have shown the interaction o f YY1 

with Sp3 in the brain endothelium where it is likely that the association is 

synergistic.

Interestingly, the Sp and YY1 family have been shown to associate with pathways 

that modulate expression and localisation o f the occludin protein at the tight 

junctions. I have discussed the regulation o f occludin protein in section 1.4.1.1.6 

by cytokines, phosphatases, Rho, PI3K and MAPK signalling. It is possible the 

regulation is mediated at the transcriptional level i.e. the decrease in protein levels 

may be correlated to the disruption o f transcription factor(s) involved in occludin 

promoter regulation.

Glucocorticoids such as hydrocortisone and dexamethasone have been shown to 

upregulate protein levels o f  occludin and increase localisation at the tight junction 

in brain endothelial cells. In brain endothelial cells, the activated glucocorticoid 

receptor has been shown to bind glucocorticoid-responsive elements, GREs in the 

occludin promoter (Forster, Silwedel et al. 2005). It will be interesting to know  

whether YY1 or Sp family o f  TFs are recruited to the promoter in this context. 

YY1 functions as a repressor in the regulation o f (3 casein promoter and in mouse 

mammary epithelial cells activation o f the glucocorticoid receptor can lead to 

disassembly o f  YY1 at the P casein proximal promoter and enhancer elements
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thus allowing for transcription (Meier and Groner 1994). It would be interesting to 

investigate if  the converse is true in the brain endothelium. Does activation o f GR 

induce increasesd recruitment o f YY1 to the oclcudin promoter? ChIP analysis o f  

hCMEC/D3 cells treated with dexamethasone and investigated for YY1 

association with the endogenous promoter would provide information.

Treatment o f  a multiple myeloma cell line, LP1 with dexamethasone induced the 

proteasomal degradation o f c-maf (Mao, Zhu et al. 2008). Mao and colleagues 

investigated the mechanism by which GCs were able to upregulate ubiquitin 

mRNA without direct association with the promoter. The authors showed 

increased association o f  the TF Spl with the ubiquitin promoter in dexamethasone 

treated cells. Since the protein levels or localisation patterns o f  Spl were not 

modulated it is speculated the increased affinity o f Spl for the ubiquitin promoter 

may be due to increased phosphorylation. In rat muscle cells, increased binding o f  

Spl to the ubiquitin promoter has been attributed to MEK1 dependent Spl 

phosphorylation (Marinovic, Zheng et al. 2002). GR induced phosphorlatyion o f  

Spl is specific as other Spl regulated genes such as Glutl are not increased in 

these cells. The mechanism behind the selective activation o f Spl in the regulation 

o f  specific genes is is unknown. Again, treatment o f  hCMEC/D3 and lung 

endothelial cells with dexamethasone and investigating any possible effects on the 

phosphorylation status o f the Spl and Sp3 protein would provide additional 

insights.

Activation o f signalling through the protein kinase C pathway induces 

phosphorylation o f occludin and its redistribution at cellular contacts. Activation
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o f  the PKC pathway in primary human nasal epithelial cells induces transcription 

from the GATA-3 and -6 gene promoters and these TFs have been shown to be 

responsible for upregulating levels o f ZO-1 and-2 and claudin-1 in these cells 

(Koizumi, Kojima et al. 2008). In T cells, PKC isoforms transactivate the 

p21W AFl gene promoter by mediating the binding o f Spl-p53 complex to 

binding sites on the promoter (Schavinsky-Khrapunsky, Huleihel et al. 2003). 

Synergistic associations between PKC and Spl drive the transcription o f  the 

human serum paraoxonase 1 (PON1) in hepG2 cells (Osaki, Ikeda et al. 2004). It 

remains to be seen if  transfection o f  small interfering RNA to the respective PKC 

isoform in our system would disrupt occludin protein expression via decreased 

association o f Sp family with the occludin promoter.

However, the role o f  Sp family and YY1 is not restricted to signalling pathways 

that upregulate occludin protein. The Sp family have been shown to play an 

important role in signalling pathways that lead to the down regulation o f  occludin 

protein and increase permeability. The cytokine TNF-a, VEGF A, reactive 

oxygen species are known to activate signalling pathways that downregulate the 

occludin protein (discussed in chapter 1). Sp family have been implicated in the 

activation o f  transcription o f the VEGF A promoter in many systems (Hasegawa, 

Wakino et al. 2006; Bermudez, Yang et al. 2007; Pages 2007; Santra, Santra et al.

2008). In ovarian cancer cells, treatment with VEGF leads to an increase in 

telomerase activity which is highly dependent on Sp and the AP family o f  TFs 

(Bermudez, Yang et al. 2007). Some o f these mentioned pathways also synergise 

to mediate their effects. Presence o f  reactive oxygen species enhances VEGF A  

gene expression and analysis o f  the VEGF-A promoter mapped the
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oxidative stress response element to a minimal sequence that contains two target 

sequences for Spl and Sp3 (Schafer, Cramer et al. 2003).

When human brain microvascular endothelial cells are exposed to 

methamphetamine, depletion o f  glutathione and corresponding increase in reactive 

oxygen species have been shown (Lee, Hennig et al. 2001). Activation o f TFs, 

AP-1 and NFkB was central to these effects. These TFs are regulated by cellular 

redox status and are known activators o f  TNF-a the cytokine that downregulates 

occludin expression. It is interesting to note the proximal promoter in occludin 

contains two sites that are bound by TFs with similar motifs to AP2-oc and NFkB. 

Shono and collagues in a different study have also shown the activation o f AP-1 

and NFkB in brain endothelial cells and have further investigated the involvement 

o f Sp family. Data indicates the Sp family are not activated in response to 

oxidative stress (Shono, Ono et al. 1996).

The work identifies the importance o f  Sp family and YY1 in the regulation o f  

occludin promoter in brain and non-brain endothelium. The occludin gene is 

actively transcribed in brain endothelium which involves the association o f the Sp 

family, particularly Sp3 which occupies the Sp binding motif close to the 3 ’-end 

o f the promoter. In lung endothelium the Sp family o f TFs do not associate with 

their target motifs due to a possible change in chromatin structure induced by the 

binding o f  YY1 to an upstream cis-element and this is associated with the lack o f  

occludin gene transcription.
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7.1 Future Work

1. The data from reporter vector assays is not conclusive in the brain endothelium. 

We were not successful in identifying a minimal promoter region and in addition 

all the fragments exhibited fairly strong promoter abilities. Deletion analysis 

resulting in the differing lengths o f  the promoter from the proximal end o f the 

promoter would probably be more useful and provide data as to the region o f the 

promoter that is most indispensable for function.

2. Chromatin immunoprecipitations in healthy and pathological brain tissue where 

occludin expression is disrupted. If the decrease in expression o f occludin is 

regulated at the transcription level rather than posttranslational mechanisms, this 

work would provide valuable data on possible disruption in TF networks.

3. Deletion or mutation o f the upstream YY1 target motif (position 100 in F0.1) in 

the occludin promoter which is actively bound by the TF only in the lung 

endothelium. We hypothesise that YY1 interaction at this site is responsible for 

changing chromatin structure and impairing the accessibility o f  the Sp family to 

the target sites on the promoter region. Hence, deletion or mutation o f  this site 

should relieve the structural repression o f  YY1 and this occludin promoter 

construct in a reporter vector should be able to mediate GFP/luciferase expression.

4. Analysis o f  other gene promoters o f  other proteins similarly restricted in 

expression to the brain endothelium.
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9 Appendix
Table 9-1 TESS analysis of the human occludin promoter

TF Beg
IRF-1,2 9
PRDI-BF1 9
GR 16
GR 24
Spl 32
GR 33
Spl 34
NF1 45
Pit-1 46

Pit-la 48
Pit-la 51
SRF 56
TFIID 57
TBP 57
YY1 100
Spl 121

Spl 124
YY1 124
Spl 125

YY1 134
AP-2a 137
Spl 138
p300 139
API 144
N-Oct-3 149
Spl 155
AP2 156
GR 171
N-Oct-3 180
F2F 182
YY1 184
Pit-la 185
GR 210

GR 210
GATA-1 214

Sense Length Sequence
N 6 AAGTGA
N 10 AAGTGAAAGt
R 6 AGAAGA
N 6 GACACA
N 5 GGGCA
R 6 GGCACA
R 5 GCACA
N 10 ATTWNNNATK
N 8 TTATCCAT
R 10 ATtCATTCAT
N 7 CATTCAT
R 5 ATATA
N 6 TATAAA
N 7 TATAAAA
N 6 AAATGG
R 11 GAGGGGAGgGG
N 10 GGGgGAGGGG
N 6 GGGgGA
N 10 GGgGAGGGGA
R 6 AAATGG
N 6 TGGGGA
N 10 GGGGAGTGgC
N 7 GGGAGTG
N 4 TGAC
R 7 ATTWATK
N 5 GGGCA
R 8 SSSNKGGG
R 9 TTGGGGGCG
R 9 ATTWNNATK
N 6 TAAAAT
R 6 AAATGG
R 8 AATGGAAT
N 6 TGTACA
R 6 TGTACA
R 6 CAATCT
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c-Myb 220
c-Myb 239
Spl 252
F2F 270
GR 283

YY1 284
TBP 292
TFIID 295
NF-ATp 302
NF-ATc 303
NF-ATp 303
GR 328
GR 328
API 335
YY1 338
c/EBP-p 345
TFIID 346
TFIID 347
F2F 349
YY1 357
Pit-la 364
c/EBP 384
c/EBP-a 385
Pit-la 386
PEA3 387
YY1 398
C/EBP-P 399
Pit-la 400
TBP 404
SRF 405
SRF 405
TFIID 408
TBP 409
TFIID 409
YY1 417
Pit-la 418
H4TF-1 433
c/EBP-a 436

c/EBP-a 436

N 6 GGTGAG
N 6 ATTGAA
R 5 TGCCC
R 6 ATTTTA
N 6 TGAACT
N 5 GAACT
R 7 TATAAAA
N 6 TATAAA
R 8 TGGAAAAA
N 6 GGAAAA
R 6 GGAAAA
N 6 AGAACA
R 6 AGAACA
R 4 TGAC
N 11 CCWTNTTNNNW
R 10 ATTAcAAAAT
R 5 TTATA
N 6 TATAAA
N 6 TAAAAT
N 6 ANATGG
R 7 GTGTTTA
N 7 ATTAGGA
N 9 TTAGGAAAT
N 10 TAGGAAATcT
N 6 AGGAAA
N 11 CCWTNTTNNNW
N 10 CTTGTTTAAT
R 10 TTGaTTAATT
R 7 TTAATTA
N 8 TAWWWWTA
R 8 TAWWWWTA
R 5 TTATA
N 6 TATAAA
N 6 TATAAA
R 6 AAATGG
R 8 AATGGAAT
N 6 GATTTC
N 8 TTNNGTAA
R 9 TTNNGTAAT
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API
c-Myb
API
c-Ets-2
AP-2-a
AP-2
YY1
c-Myb
SRF
TBP
SRF
TFIID

API
YY1
API
YY1
TBP
N-Oct-3
N-Oct-3
TBP
N-Oct-3
YY1
N-Oct-3
SRF
SRF
TBP
TBP
TFIID
TBP
TFIID
TFIID
YY1
GR
Spl
AP-1
AP-1
c-Myb
YY1
TBP

446 N 4
468 N 4
473 N 4
476 R 6
478 R 6
478 N 10
481 N 6
486 R 4
496 N 5
498 R 7
513 N 5
514 N 6
529 R 4
531 N 6
553 N 4
562 N 6
577 N 7
580 N 7
581 R 7
582 R 7
585 R 10
598 N 9
606 N 10
622 R 8
622 N 8
622 R 10
622 N 10
624 R 6
624 R 8
626 N 6
626 R 6
640 N 6
658 N 6
658 N 5
683 N 7
686 R 4
696 N 4
699 N 6
703 R 7

278

TGAC
TAAC
TGAC
CTTCCC
TCCCCA
TCCCCAGTGg
CATTT
GTTA
CCAAT
AATTTAA
CCAAT
TTCAAA
GTAC
CATTT
TGAC
CATTT
TTAAATT
MATWAAT
ATTWATK
TTAATTA
ATTWNNNATK
GCTGCCATC
MATNNNWAAT
TAWWWWTA
TAWWWWTA
TATATATATA
TATaTATATA
TTTATA
TTTATATA
TATATA
TATATA
CATTT
TGTGCC
TGTGC
AGAGTCA
GTAC
TAAC
CCATTT
TTAATTA



TBP
CACCC-binding factor 
Spl
GATA-1
Spl
CCAAT-binding factor 
SRF
GATA-1
GATA-1
N-Oct-3
API
IL-6 RE-BP 
GATA-1
CCAAT-binding factor
SRF
PEA3
c-Myb
c-Myb
GATA-1
GATA-1
GATA-1
c-Myb
NF-1
GR
TFIID
PEA3
c/EBP-p
TBP
SRF
c-Myb
Spl
NF-kB
NF-kB
YY1
TBP
TBP
TBP
GR
GR

N 7 TAATTAA
N 6 GGGTGG
R 6 GGGTGG
R 7 GGGTGGG
N 6 GGTGGG
N 6 GATTGG
R 5 ATTGG
N 6 GGATAG
R 6 GATAGA
R 7 ATTWATK
N 4 GTAC
R 6 TTCCAG
N 6 AGATTG
N 6 GATTGG
R 5 ATTGG
N 8 CAGGATGT
R 6 AAGTTC
R 6 TTCAAT
R 6 AGATAG
N 6 AGATAG
N 6 AGATAG
R 4 GTTA
R 6 TGCCAA
R 6 AGAACT
N 5 TATAA
R 8 ACATCCTG
R 10 ATTAcAAAAT
N 7 TAAAAAA
R 5 ATATA
R 4 GTTA
R 5 GTGCA
N 10 gGAAATTTCC
R 10 gGAAATTTCC
N 6 CATTT
R 7 TCTTAAA
N 7 TAAAAAA
R 7 TTTATTT
R 6 TGTTCT
N 6 TGTTCT
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704
723
723
723
724
729
730
733
734
741
756
761
765
766
767
786
805
814
822
822
822
827
833
838
843
853
868
870
907
918
923
933
933
976
1008
1011
1034
1058
1058



GR 1058 R 6 TGTTCT
GR 1058 N 6 TGTTCT
TBP 1061 R 7 TCTTAAA
SRF 1088 R 10 cCGTATAAGG
TFIID 1091 N 5 TATAA
TBP 1130 N 7 TTAAATT
AP2 1158 R 8 SSSNKGGG
CACCC-binding
factor

1159 N 6 GGGTGG

Spl 1159 R 6 GGGTGG
GATA-1 1159 R 7 GGGTGGG
Spl 1160 N 6 GGTGGG
Spl 1163 N 6 GGGCAG
AP-2-a 1176 R 7 CCCTGGG
CACCC-binding
factor

1181 N 6 GGGTGG

Spl 1181 R 6 GGGTGG
YY1 1195 N 6 CATTT
Pit-la 1201 N 10 TATTATtCAC
Spl 1206 N 5 TGCAC
c-Myb 1232 N 4 TAAC
GR 1245 R 6 AGTTCA
F2F 1256 R 6 ATTTTA
AP-3 1257 R 10 TTTaAACCCC
c-Myb 1260 N 4 TAAC
c-Myc 1279 N 7 TCTCTTA
CBF 1313 N 6 GCCAAT
CTF 1313 N 7 GCCAATG
SRF 1314 N 5 CCAAT
TFIID 1333 R 6 TTTGAA
C/EBPoc 1338 N 9 AATTTTCCC
NF-ATp 1340 R 6 TTTTCC
NF-ATc 1340 N 6 TTTTCC
C/EBPp 1342 R 7 TTYCCAG
AP-2 1342 N 10 TcCCCAGGAG
IL-6 RE-BP 1343 R 6 TCCCAG
c/EBP-a 1360 R 9 TGGAGCAAT
Pit-la 1377 R 10 ATGCaTTTTT
NF-ATp 1382 N 8 TTTTTCCA
NF-ATc 1383 R 6

280
TTTTCC



c/EBP-p 1384 R 7 TTYCCAG
IL-6 RE-BP 1385 R 6 TTCCAG
AP-1 1398 N 7 TTAATCA
GATA-1 1399 R 6 TAATCA
IL-6 RE-BP 1409 N 6 CTGGAA
GR 1424 N 6 TGTCCT
NF-1 1442 N 6 CTTTCC
NF-ATp 1442 N 7 CTTTCCT
PEA3 1443 R 6 TTTCCT
GATA-1 1447 R 6 CTATCA
GATA-1 1447 N 6 CTATCA
NF-1 1475 N 6 CTTTCC
NFAT-1 1482 R 7 GAGGAAA
PEA3 1483 N 6 AGGAAA
NF-ATp 1483 R 8 AGGAAACA
Spl 1491 N AGGCG
GR 1496 R 5 CTCTG
Spl 1550 R 10 gAGGCGGAGC
Spl 1551 N 6 AGGCGG
CAC-binding protein 1568 R 6 CACCCC
API 1570 R 4 GTCA
AP2 1570 R 8 SSSNKGGG
Spl 1572 N 10 tCGGGGTGGT
CAC-binding protein 1574 N 6 GGGGTG
CBF 1575 N 6 GGGTGG
Spl 1575 R 6 GGGTGG
API 1580 R 4 GTCA
AP2 1590 N 8 CCCMNSSS
GR 1601 N 6 TGTCCC
GR 1601 R 6 TGTCCC
NF-ATp 1610 N 6 GGAGCC
AP-2 1614 N 7 CCCGCGC
Spl 1614 R 10 tCCGCGCCTC
GR 1626 R 5 CTCTG
Spl 1627 R 10 TCTcCGCCCC
Spl 1632 N 10 GCCCCGCCcC
Spl 1632 R 15 GCCCCGCCcC
c-Ets-2 1663 R 6 TTCCTT
c-Ets-2 1663 N 6 TTCCTT
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c-Myb 1669 N 4 TAAC
Spl 1675 N 5 TGCGC
CBF 1683 R 10 CAGGGTGgGG
c-Ets-2 1691 N 6 GGGAAG
Spl 1709 N 10 CcCCCGCCCC
Spl 1711 R 8 CCCGCC
Spl 1711 N 9 CCCGCCCCC
EGR2 1712 N 10 CCGCCCCCgC
AP-1 1712 N 8 CCGCCCCC
Spl 1714 N 11 GCCCCCTCCCc
SRF 1714 R 5 ATTGG
AP2 1716 N 8 CCCMNSSS
AP-1 1729 N 7 AGTTTCA
AP-1 1745 R 4 GTAC
GR 1764 N 6 GACACA j
Spl 1767 R 7 ACACCAC |
NF-1 1767 R 7 ACACCAC * ]
p300 1779 R 7 CACTCCC
Spl 1790 R 15 CCACCNNNNCCaCCC
Spl 1798 N 7 CCCTCCC
PEA3 1806 R 8 RCWTCCKS j
EGR2 1816 R 10 GCGGgGGCGG ]
Spl 1820 N 6 AGGCGG ]
NF-1 1837 N 6 AGCCAG
GR 1846 N 5 CAGAG
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