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Abstract

The Devrekani Massif in the northern part of the Central Pontides (Northern Turkey) 

provides important clues to the regional tectonics and geodynamic processes associated with 

Jurassic high grade metamorphic conditions. This study reports new paragenetic assemblages, 

mineral compositions, whole-rock geochemistry and 40Ar-39Ar geochronological data from 

the paragneisses in the massif, and, discusses the P–T conditions and geodynamic 

implications of the Jurassic metamorphism during continental extension in the Central 

Pontides. Upper amphibolite to lower granulite facies paragneisses form one of the main 

lithological units in the massif. Within these, there are five different mineral parageneses with 

diagnostic mineral assemblages of: quartz, K-feldspar (An0-1Ab4-26Or73-96), plagioclase (An18-

35), biotite [(XPhl: 0.28-0.57; Mg/(Mg+Fe2+): 0.33-0.61)], sillimanite, cordierite 

[(Mg/(Mg+Fe2+): 0.48-0.71)] and garnet (Alm43-80Grs0-18Prp5-23And0-4Sps10-33) with minor 

hercynite. Based on Na-in-Crd thermometry and GASP barometry results, the peak 
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metamorphic conditions are 775±25°C and 6±1 kbar in the massif. The field relations, 

petrography and bulk chemical data suggest that the paragneisses, derived from shale-

wackestone and pelitic sedimentary protoliths, are typical rock lithologies of an active 

continental margin. They display enrichments in LILE over HFSE, coupled with negative Nb 

and Ti anomalies, which are geochemical signatures of subduction-related sources. It is likely 

that the peak metamorphism took place during the Middle–Upper Jurassic period (ca. 174–

156 Ma), suggesting that the metamorphic rocks cooled to 300-350°C at ca. 156 Ma. The 

mineral assemblages reveal that the prograde history passed from sillimanite zone conditions 

up to the cordierite-garnet-K-feldspar zone. The petrological and geochronological data 

indicate that the protoliths are related to multiple sources such as volcano-sedimentary 

successions. We conclude that the Devrekani Massif represents the products of pre-Jurassic 

sedimentation, and Permo-Carboniferous continental arc magmatism, overprinted by Jurassic 

metamorphism.

Keywords: Central Pontides, Devrekani Massif (Northern Turkey), Geochronology, 

Geothermobarometry, Jurassic metamorphism, Paragneisses

1. Introduction

Turkey (or Anatolia) formed from the amalgamation of three micro-plates, or terranes, 

during the closure of Neotethyan oceanic branches (e.g., Şengör and Yılmaz, 1981; 

Göncüoğlu et al., 1997). From north to south (Fig. 1a), these tectonic units are: the Istanbul-

Zonguldak Terrane (IZT), the Sakarya Composite Terrane (SCT) and the Anatolide-Tauride 

Terrane (ATT). In the north, the IZT and SCT are separated by the Intra-Pontide Suture Belt 

(IPSB; e.g., Göncüoğlu et al., 2014; Çimen et al., 2016) whereas the Izmir-Ankara-Erzincan 

Suture Belt (IAESB; the northern branch of Neotethys), which stretches from the Aegean Sea 
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to the Lesser Caucasus, represents a boundary between the SCT and ATT (e.g., Aldanmaz et 

al., 2008; Parlak et al., 2013; Çimen and Öztüfekci, 2018). In the south, the ATT and the 

Arabian Platform are separated by the southern branch of Neotethys (e.g., Yılmaz and 

Yılmaz, 2013; Akmaz et al., 2014; Parlak, 2016).

The IZT is characterized by the Neoproterozoic crystalline basement (e.g., Bolu Massif; 

Ustaömer et al., 2005), which is unconformably overlain by the Paleozoic and Mesozoic 

cover units (e.g., Dean et al., 1997; Chen et al., 2002; Özgül, 2012; Okay et al., 2015). The 

Paleozoic cover units are locally cut by Permian granitoids (e.g., Şahin et al., 2009; Aysal et 

al., 2018). However, in contrast, the SCT is composed of Devonian magmatic rocks, for 

example, the Çamlık and Karacabey plutons (e.g., Aysal et al., 2012; Sunal, 2013); Variscan 

units, for example, the Söğüt, Devrekani and Pulur metamorphic rocks (e.g., Topuz et al., 

2004; Nzegge, 2008; Ustaömer et al., 2012; Okay and Topuz, 2017) and the Cimmerian 

Karakaya complex basement (e.g., Okay and Göncüoğlu, 2004; Sayıt et al., 2010; Ustaömer 

et al., 2016), which is overlain by the Alpine cover units (Okay et al., 2006; Göncüoğlu, 

2010). The Central Pontides in Northern Turkey is one of the most complex areas in the Black 

Sea region and comprises the IZT, the SCT and a subduction-accretion complex known as the 

Central Pontide Supercomplex (Okay et al., 2013), or, as the Central Pontide Structural 

Complex (Tekin et al., 2012), representing the remnants of the IPSB (e.g., Frassi et al., 2017; 

Çimen et al., 2018).

During the Late Paleozoic, the Variscan orogeny formed in the Appalachians and Central 

Europe due to the collision of Gondwana-derived terranes with Laurasia (Okay and Topuz, 

2017, and references therein). This resulted in the formation of many Variscan basement units 

in the Black Sea region including the Balkans, Pontides and the Caucasus (Okay and Topuz, 

2017). The main Variscan basement units in the SCT are represented by the Söğüt 
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metamorphic rocks in the west (e.g., Ustaömer et al., 2012), the Devrekani Massif in the north 

(e.g., Okay et al., 2014) and the Pulur Complex in the east (e.g., Topuz et al., 2004).

In the Central Pontides, the Variscan basement units are the Devrekani Massif, the Permo-

Carboniferous Sivrikaya and the Deliktas Granitoids (Nzegge, 2008; Okay et al., 2014, Gücer 

et al., 2016). Of these, the Devrekani Massif consists of cordierite and sillimanite-bearing 

gneisses, indicating low pressure-high temperature conditions. Although, the age of 

metamorphism from the Devrekani Massif has been reported as being Middle Jurassic by 

Okay et al. (2014) and Gücer et al. (2016), the metamorphic evolution of this unit has not yet 

to be fully established.

This study reports new mineralogical, petrochemical and geochronological data for 

paragneisses from the Devrekani Massif in order to better evaluate their petrogenetic and 

geodynamic evolution. It will also provide useful insights for the ongoing discussions in 

relation to the evolution of the Central Pontides and the Black Sea region, particularly for the 

Middle Jurassic period.

2. Geological background

2.1. Regional geology

The pre-Jurassic units in the Central Pontides are represented by several basement units 

such as the Devrekani Massif, Geme Complex and Permo-Carboniferous Deliktaş-Sivrikaya 

Granitoids (e.g., Nzegge, 2008; Okay et al., 2014, Gücer et al., 2016, Çimen et al., 2018; Fig. 

1b). The Devrekani Massif and the Geme Complex are mainly composed of orthogneisses, 

micaschists, marble, and metamorphosed ophiolite slices. The Küre Complex has overthrust 

these basement units, and has been defined as dismembered ophiolite-bearing thrust-

imbricated deep-sea sediments (Ustaömer and Robertson, 1999). It pre-dates the late middle 

Jurassic, and is likely to be between Late Triassic and Middle Jurassic in age (Kozur et al., 
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2000; Yılmaz and Yılmaz, 2013; Okay et al., 2015). The Küre Complex is unconformably 

overlain by the Bürnük Formation (Middle-Late Jurassic) in the Central Pontides (Okay et al., 

2015; Hippolyte et al., 2016).

Widespread Middle Jurassic continental arc magmatism, for example the Çangaldağ and 

Karaman plutons, cuts the basement units and the Küre Complex at several locations (Okay et 

al., 2014; Çimen et al., 2017, 2018; Ballato et al., 2018). This represents an active arc above 

the subducting slab of the Jurassic ocean beneath the accreted basement of the Central 

Pontides. Notably, the isotope data from the Çangaldağ Pluton, reveals that the arc 

magmatism may have incorporated partially melted Neoproterozoic/Mesoproterozoic crustal 

rocks (e.g., Devrekani Massif), which are a common feature in Gondwana-derived terranes 

(Çimen et al., 2017). The Jurassic arc-type volcanic rocks are also known in the Crimea 

region, which may have been derived from a subduction-related setting beneath the active 

margin of Eurasia (e.g., Meijers et al., 2010). Besides, similar Jurassic volcanic rocks with 

subduction-related geochemical characteristics have been reported in the Caucasus region 

(e.g., McCann et al., 2010).

Pre- to Late-Jurassic rocks in the Central Pontides are unconformably overlain by cover 

such as the Upper Jurassic İnaltı Unit, Lower Cretaceous Çağlayan Unit and also Tertiary 

units (e.g., Uguz and Sevin, 2007; Akdoğan et al., 2017).

2.2. Local geology

The Devrekani Massif in the north of the Kastamonu region covers an area of ~180 km2 

(Fig. 1c), and contains predominantly gneisses, marble, and to a lesser extent, amphibolites 

and quartzites. The mineral assemblage of gneisses is quartz, K-feldspar, plagioclase, biotite, 

sillimanite, cordierite and garnet, with minor Fe-Ti oxide, hercynite, and accessory minerals 

apatite and zircon. The gneisses are light to dark grey with a distinctive white and brown 
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weathering color, and the foliation is generally parallel to NE-SW and dips at 35°-70°. Their 

compositions suggest that the protoliths are mainly Neoproterozoic to Paleozoic sedimentary 

and magmatic rocks. The Middle-Jurassic granitoids that cross-cut the Devrekani Massif are 

syenogranite to granodiorite in composition (Yılmaz, 1980), and are 170-165 Ma in age 

(Nzegge, 2008).

3. Analytical techniques

3.1. Electron microprobe (EMP) analysis

Electron microprobe analysis of rock-forming minerals (garnet, sillimanite, cordierite, 

plagioclase, K-feldspar, biotite, hercynite and Fe-Ti oxide) were performed on 10 polished 

thin sections of representative paragneiss samples with a CAMECA SX-50 electron 

microprobe at the Elektronenstrahl-Mikrosonde Labor, Ruhr Universität (Bochum, Germany). 

The EMP is fitted with four wavelength-dispersive spectrometers (WDS) and one energy-

dispersive spectrometer (EDS). Operating conditions were an accelerating voltage of 15 kV 

and a beam current of 15 nA. Counting times were 20 s on peak for Na, Mg, Al, Si, Ca, K, Ti, 

Mn and Fe. Natural and synthetic minerals were used as calibration standards, and detection 

limits were 0.02-0.06 wt% for the analyzed elements. A focused beam was applied to all 

phases except for micas, for which a slightly defocused beam was used. Mineral abbreviations 

used in the text, figures, and tables are from Whitney and Evans (2010).

3.2. Whole-rock geochemical analysis

Whole-rock geochemical analyzes of 18 representative paragneiss samples were carried 

out at ACME Analytical Laboratories Ltd., Vancouver (Canada). Samples were crushed into 

small chips of 0.1-1 cm using a jaw crusher and then powdered using a mild-steel mill. For 

major elements, samples were prepared with 0.2 g of rock powder fused with 1.5 g LiBO2 and 
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dissolved in 100 ml of 5% HNO3. For rare earth elements (REE) the samples were prepared 

with 0.25 g rock powder that was dissolved during multiple acid digestion steps. Loss on 

ignition (LOI) is the difference in weight before and after ignition at 1000°C. All major and 

trace element compositions were determined by inductively coupled plasma atomic emission 

spectroscopy (ICP-AES), with detection limits of approximately 0.01 to 0.1 wt% for major 

oxides, 0.1 to 10 ppm for trace elements. The REEs were analyzed by inductively coupled 

plasma mass spectrometry (ICP-MS), with detection limits of 0.01 to 0.5 ppm.

3.3. 40Ar-39Ar analysis

Biotite minerals from 3 representative paragneiss samples were dated at the 40Ar-39Ar and 

Noble Gas Laboratory, in the STEM Faculty at the Open University (UK). The infrared (IR) 

laser probe spot dating technique was used to analyze biotite, and the samples were prepared 

as 5x5 mm polished thick sections with approximately 250 µm in thickness. Samples were 

irradiated at the McMaster Nuclear Reactor, McMaster University, Canada, for 50 hours. 

Neutron flux was monitored using biotite mineral standard GA1550 which has an age of 

98.8±0.5 Ma (Renne et al., 1998). The resulting J values ranged from 0.00758 to 0.00759 

(error 0.000038; n= 3). The following correction factors were used: (39Ar/37Ar)Ca = 0.00065, 

(36Ar/37Ar)Ca = 0.000264, and (40Ar/39Ar)K = 0.0085; based on analyzes of Ca and K salts. 

Results were corrected for 37Ar decay, and neutron-induced interference reactions. The 

irradiated slabs were loaded into an ultra-high vacuum system and mounted on a New Wave 

Research UP-213 stage. A 1064 nm IR CW fibre laser was focused into the sample chamber 

and was used to date spot in individual minerals in each of the sample slabs. This was 

achieved by using an automated shutter to allow the laser to couple with the sample for 20 ms, 

achieving a laser pit size of ca. 50µm. Each individual laser pit yielded an age for the mineral. 

After each laser spot the extracted gases were cleaned for 5 minutes using two SAES AP- 10 
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getters running at 450°C and room temperature. The gas clean-up and inlet system is fully 

automated and the mass spectrometer used was an MAP 215-50, which was operated by 

Labiew software. The mass discrimination value for atmospheric 40Ar/36Ar was measured at 

285. Isotopes of 36Ar to 40Ar were measured 15 times per scan, and for 10 scans, the final 

measurements are extrapolations back to the inlet time. All data corrections were carried out 

using an Excel macro and the probability density plots and mean ages were calculated using 

Isoplot 3 (Ludwig, 2003). All ages are reported at the 2σ level and include a 0.5% error on the 

J value.

4. Results

4.1. Sampling

Ninety paragneiss samples were prepared and examined using standard optical microscopy 

to determine the textures, mineral contents, and rock types of each sample. Based on 

petrographic observations forty-one fresh samples were chosen for petrography, mineral 

chemistry, whole-rock major, trace and rare earth elements, and 40Ar-39Ar dating on biotite.

4.2. Rocks types and their textures

The Devrekani Massif is mostly composed of gneisses and metacarbonates, with lesser 

amphibolites (Fig. 2), which are cut by aplite, granite and tourmaline-bearing pegmatite veins. 

In the massif, gneissic and amphibolitic rocks form the lower parts and calcite marbles form 

the upper parts (Fig. 3a). Gneisses are both para- and ortho-gneisses and they are associated 

with amphibolites (Figs. 3b,c) that are discontinuous thin layers and small pod-like lenses. 

Any weakly- or non-foliated rocks are rich in quartz and feldspar minerals whereas 

sillimanite- and biotite-rich rocks have a distinct gneissic banding (Figs. 3d,e,f), and, strongly 

tectonized samples have localized migmatitic textures. Aplite and tourmaline-bearing 
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pegmatite veins cross-cut the Devrekani Massif, and consist of quartz, orthoclase, white mica 

and tourmaline. The paragneisses are generally grayish and light colored.

The paragneisses include a variety of lithologies with variable mineral contents and with 

lepidograno-, fibrolepidograno- and porphyro-blastic textures. The rocks generally consist of 

feldspar, quartz, biotite, garnet, cordierite, sillimanite and hercynite with minor Fe-Ti oxide 

(Table 1). Zircon and apatite are also present as accessory minerals, and muscovite, sericite 

and chlorite are secondary phases in assemblages. Generally, the paragneisses can be 

classified into five major groups based on mineral abundances: sillimanite-biotite (SB), 

garnet-biotite (GB), cordierite-biotite (CB), sillimanite-cordierite-biotite (SCB) and garnet-

sillimanite-cordierite-biotite (GSCB) gneisses.

SB gneisses are weakly foliated and contain quartz (45-50%), K-feldspar (28-30%), biotite 

(10-12%), sillimanite (5-7%), and minor opaque minerals (1-2%), with secondary muscovite 

and accessory zircon. They are fine- to medium-grained with a fibrolepidogranoblastic 

texture. Biotite forms continuous foliation planes and sillimanite grains appear to be oriented 

prisms in contact with biotite, quartz and/or feldspar. Sillimanite is fine-grained and fibrolitic 

with an acicular fabric. Secondary muscovite forms small laths in veins and feldspar is 

sericitized.

GB gneisses contain quartz (25-27%), plagioclase (20-22%), K-feldspar (18-20%), biotite 

(12-15%), garnet (7-8%), minor sillimanite (3-4%) and opaque minerals (2-3%), with 

accessory zircon and apatite. They are generally banded; light domains contain quartz and 

feldspar, and dark domains are dominated by mafic minerals such as biotite. Their common 

texture is lepidoporphyroblastic with K-feldspar up to 2 mm and garnet porphyroblasts up to 

0.9 mm (Fig. 4a). Most garnet porphyroblasts are surrounded by biotite flakes, some occur as 

rounded and tabular grains, and contain abundant inclusions of biotite, plagioclase, quartz, 

sillimanite and ilmenite. Inclusions in some garnet porphyroblasts are rotated, indicative of 
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syntectonic deformation and progressive metamorphism. Sillimanite crystals are typically 

elongated and needle-like fibroblasts and are associated with garnet and biotite.

CB gneisses are well-foliated paragneisses and the most common mineral assemblage is: 

quartz (25-30%), biotite (15-18%), K-feldspar (15-20%), plagioclase (10-15%), cordierite (8-

10%), opaque minerals (3-5%), and minor sillimanite (2-4%) and hercynite (0-1%), with 

accessory zircon. They are generally fine- to medium-grained and have lepidogranoblastic 

and porphyroblastic textures with cordierite porphyroblasts up to 2.5 mm across. Cordierite 

forms subhedral to anhedral grains, commonly with inclusions of sillimanite and hercynite, 

and in some samples there is near-complete pinitization. The hercynite inclusions are worm-

shaped green and dark green lamellae.

SCB gneisses have different mineralogical and textural properties that vary from sample to 

sample. However, the most abundant minerals are: quartz (28-32%), biotite (16-25%), 

cordierite (15-22%), plagioclase (8-13%), sillimanite (5-12%), K-feldspar (5-8%), and opaque 

minerals (2-4%), such as ilmenite, minor hercynite (0-1%), with accessory zircon. Common 

textures are fibro- and lepido-porphyroblastic with cordierite porphyroblasts (up to 3.5 mm). 

The gneissic texture in these rocks is well-developed and defined by the alignment of 

intergrown cordierite, biotite and sillimanite (Figs. 4c,d). These intergrowths suggest that 

sillimanite and biotite have been partly replaced by cordierite, which is locally heavily 

pinitized (Fig. 4e). Small zircon grains and some cordierite porphyroblasts have pleochroic 

halos. In some sillimanite-rich samples, a relative abundance of sillimanite is negatively 

correlated with cordierite. In some samples, sillimanite is well-developed, fibrous in form, 

and in equilibrium with biotite and cordierite in the rock matrix. This suggests that sillimanite 

crystallized either from anatectic melt or resulted from melt reactions.

GSCB gneisses are the most common rock type and consist mainly of quartz (27-33%), 

biotite (18-23%), plagioclase (10-18%), cordierite (9-15%), K-feldspar (8-13%), sillimanite 



  

11

(4-12%), garnet (2-7%), hercynite (0-3%) and opaque minerals (2-4%), with accessory zircon. 

The foliation is well-developed and defined by the alignment of biotite, sillimanite and 

cordierite with the biotite-rich foliation surrounding porphyroblasts. These fine- to medium-

grained rocks generally have granoblastic to fibro- and lepido-porphyroblastic textures with 

porphyroblasts of cordierite up to 3 mm and garnet up to 2 mm in diameter. These are mostly 

poikiloblastic with inclusions of quartz, biotite, sillimanite, hercynite and ilmenite. Most 

cordierites are pinitized and have pleochroic halos as do some more zircon grains. Garnet 

porphyroblasts are subhedral to anhedral, are often fractured and fragmented, and some 

appear as inclusions in cordierite (Figs. 4f,g). In some samples, euhedral garnets are partially 

or completely enveloped by coarse anhedral cordierite (Fig. 4h), suggesting that these garnet 

grains have been partly replaced by hercynite and cordierite (with hercynite occurring as 

worm-shaped forms inside the cordierite; see Fig. 4b).

4.3. Mineral chemistry

Mineral chemistry was obtained on garnet, biotite, K-feldspar, plagioclase, cordierite, 

sillimanite, hercynite and Fe-Ti oxides from selected gneisses to establish their mineral 

compositions and to enable the calculations of pressure and temperature conditions. 

Representative analyzes are found in supplementary Table S1.

Garnets vary in size and composition. The size of crystals ranges from 0.5 to 2 mm (type-

I), whereas the smaller porphyroblasts are 0.02-0.5 mm (type-II). Type-I crystals are anhedral 

to subhedral in form and are mostly fractured. The large porphyroblasts frequently contain 

isolated grains of Ti-rich biotite (2.94-4.72 wt% TiO2), quartz, plagioclase, fibrous sillimanite 

and opaque mineral such as ilmenite (Fig. 5). Type-II crystals occur both as subhedral to 

euhedral phenocrysts and some of them have porphyroblastic textures. There is no core-rim 

chemical zoning and there are only minor compositional variations between grains. Garnets 
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are rich in almandine with Alm+Sps (72-92%), the andradite and uvarovite end-members are 

in low concentrations (<4%). The pyrope component in some samples is relatively high, 

ranging from 5 to 23%. The range of the composition of Type-I garnets is Alm66-80Grs0-3Prp5-

10And0-4Sps10-24 [(Mg/(Mg+Fe2+) = 0.1-0.3)], whereas Type-II garnets have a range of the 

composition of Alm43-60Grs0-18Prp6-23And0-3Sps13-33 [(Mg/(Mg+Fe2+)= 0.07-0.13)].

Biotite flakes occur parallel to the foliation planes along with sillimanite and cordierite. 

They are relatively Fe-rich with [(Fe2+/(Fe2++Mg)] ratio of 0.39-0.67 and moderate AlVI 

contents (0.5-1.1 apfu), corresponding to siderophyllite component enrichment with XPhl 

[(Mg/(Fe2++Mg+Mn+AlVI)] ratio of 0.28-0.57. Additionally, TiO2 in biotite varies from 1.81 

to 4.72 wt%. In some paragneisses, biotites occur as inclusions in coarse-grained garnet and 

cordierite porphyroblasts, suggesting that they more likely to be a component of a prograde 

metamorphic reaction.

Plagioclases occur as fine to coarse-grained phenocrysts, they are subhedral to anhedral, 

with some that are fragmented, and all are partly sericitized. The twinning is generally albite 

in form and the compositions range from oligoclase to andesine with An18-35 (Fig. 6a).

K-feldspars are medium- to fine-grained and often occur as aggregates parallel to the 

foliation. The chemical composition is relatively homogeneous and mostly orthoclase (An0-

1Ab4-26Or73-96; Fig. 6a).

Cordierites are present as subhedral to anhedral coarse-grained aggregates, with 

porphyroblastic and/or poikiloblastic textures. They have ca. 100 wt% EMP totals indicating 

that fluid species such as H2O or CO2 are absent in the crystal structure. The Mg/(Mg+Fe2+) 

ratio ranges between 0.48 and 0.71, and the CaO and K2O contents are generally low (<0.17 

wt%). The contents of MnO and Na2O vary between 0.30-1.09 wt% and 0.13-0.37 wt%, 

respectively.
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Hercynites are present as inclusions within cordierite. Hercynite contains 56-62 wt% Al2O3 

and 24-36 wt% FeOT, and Mg/(Mg+Fe2+) ratios vary from 0.09 to 0.11 (Fig. 6b). These 

samples have low Cr2O3 (0.11-0.62 wt%) with Cr/(Cr+Al) values ranging from 0.001 to 0.007 

and the calculated formula is Fe2+
0.90-0.95Mg0.05-0.1Al2.00O4. In some samples, aggregates occur 

in cordierite coronas as a reaction product between sillimanite and garnet porphyroblast, a 

texture that suggests a stage of decompression and cooling.

4.4. 40Ar-39Ar dating

The results of the 40Ar-39Ar dating are available as supplementary material in Table S2. A 

summary of ages is provided in Table 2, and age data are plotted in Fig. 7. Individual 40Ar-

39Ar ages of GCSB gneiss sample H3 range from 225±3 to 166±3 Ma (n= 9). However, there 

are two groups of ages when plotted against 38ArCl/39ArK (Fig. 7a). The weighted mean of 5 

ages (group-I) is 174±6 Ma (Aalenian), and the second group has a range of 225±3 - 202±3 

Ma (group-II, n=4). This indicates that two groups are distinct in terms of age and in argon 

isotope composition, and, therefore, it is likely that an older biotite has been partially reset by 

a subsequent thermal event. Individual biotite ages of GB gneiss KD1 range from 164±4 to 

152±1 Ma (n=10). There is a cluster at 160-155 Ma (n=7) and the weighted mean age is 

158±1 Ma (Oxfordian; Fig. 7b). In SCB gneiss sample KD7B, individual ages range from 

173±3 to 139±6 Ma (n=9). The weighted mean age is not meaningful because of the very high 

MSWD value (age of 156±8 Ma; Fig. 7c). The measured biotite 40Ar-39Ar average ages from 

the H3, KD1 and KD7B samples range between ca. 156 and 174 Ma. These age data indicate 

that the rocks cooled to 300-350°C during the Middle-Upper Jurassic, which is the mostly 

accepted closure temperature for 40Ar-39Ar in biotite (Harrison et al., 1985; Grove and 

Harrison, 1996).
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4.5. Whole-rock geochemistry

The whole-rock geochemical data are plotted on diagrams that can be used to determine 

the provenance and tectonic setting of the protoliths. The representative analyzes are given as 

supplementary material in Table S3. LOI values are generally low (1-3 wt%) and suggest that 

the selected samples are fresh. The rocks have high Al2O3 (12-21 wt%) and Fe2O3
T (7-11 

wt%), and low MgO (1.88-3.52 wt%; Mg# = 0.36-0.51) contents. Additionally, CaO, Na2O 

and K2O vary between 0.32-2.13 wt%, 0.89-2.49 wt% and 2.03-3.93 wt%, respectively. This 

compositional range may be due to variations in protolith composition, or metamorphic 

conditions, and therefore, less mobile elements such as Zr, Ti, Ni Th, Sc and REE were used 

for classifying the protolith composition (e.g., Pearce, 1983; Winchester, 1984; Rollinson, 

1993). The paragneisses have high Ni contents and intermediate Zr/TiO2 ratios - the 

100*TiO2/Zr=0.4 (wt%/ppm) empirical discrimination ratio (Garcia et al., 1991) is in the 

range 0.42-0.78. The samples also have low log(SiO2/Al2O3) and slightly high 

log(Fe2O3
T/K2O) ratios. Th/Sc ratios of the samples vary between 0.5-0.8 and have relatively 

high La contents.

Mid-ocean ridge basalt (MORB) and Post-Archaean average Australian sedimentary rock 

(PAAS)-normalized trace element diagrams with chondrite and PAAS-normalized REE 

diagrams are used to identify the source characteristics of the paragneisses. They are also 

compared with North American shale composite (NASC) of Gromet et al. (1984) and the 

upper crust (UC) compositions suggested by Taylor and McLennan (1981). The large-ion 

lithophile elements (LILE), Sr, Rb, Ba, Th and K, are generally enriched; in contrast, the high 

field strength elements (HFSE), Ta, Nb, Ti and P, are depleted (Fig. 8a). Zr, Hf, Sm, Y and 

Yb concentrations are close to MORB. The negative Nb, Ta and Ti anomaly, with high Th/Ta 

ratios (11-25), confirms their formation in a subduction zone environment (Pearce, 1983; 

Rogers and Hawkesworth, 1989; Gorton and Schandl, 2000). The high LILE contents may 
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also indicate a crustal contribution. In Fig. 8b, the trace elements are normalized to PAAS 

which demonstrates that they are approximate to PAAS with positive Nb and negative Cu 

anomalies. The significant positive Nb anomaly indicates the presence of titanite minerals in 

the protoliths.

Chondrite-normalized REE patterns (Fig. 8c) are typically concave upwards with 

LaN/LuN= 3.70-10.75 and LaN/YbN averaging 7.33. Paragneiss samples have LaN/SmN= 2.96-

3.88 and GdN/LuN= 0.98-1.74. The REE patterns also show Eu anomalies ranging from 0.47 

to 1.27, suggesting plagioclase fractionation, or crustal contribution, and the LREE 

enrichment with negative Eu anomalies indicates a continental provenance. Representative 

PAAS-normalized REE data are shown in Fig. 8d, where samples plot close to PAAS and are 

similar in composition to shale. The distribution of the REE patterns indicates that their 

protoliths might have been sediments, of predominantly shale composition, and implies that 

sedimentary protoliths were derived from a mafic and/or intermediate source.

4.6. Metamorphic reactions in the paragneisses

The Devrekani paragneisses have resulted from transitional upper amphibolite to lower 

granulite facies metamorphism of sedimentary protoliths. Common mineral assemblages are 

presented in Fig. 2 and Table 1.

4.6.1. Sillimanite-bearing gneisses

In these samples primary muscovite is absent and sillimanite appears to be oriented and 

fibrous, and in contact with biotite, quartz and/or K-feldspar. The assemblage Sil+Kfs 

indicates that the temperature was above ca. 700°C within the sillimanite stability field. 

Therefore, in the K2O-Al2O3-SiO2-H2O (KASH) system, dehydration reaction producing Sil + 

Kfs as follows:
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Ms + Qz = Sil + Kfs + H2O (or Lq)                                                                                         (1)

This reaction is regarded as the lower boundary of the upper sillimanite zone of the 

amphibolite facies (Yardley, 1990). The textures in this rock suggest that Qz + Pl + Kfs + Bt 

+ Sil (+H2O) was a stable assemblage, suggesting that the muscovite dehydration melting 

reaction (1) modified by Spear et al. (1999) resulted in the growth of plagioclase:

Ms + Qz + Pl = Sil + Kfs + Lq                                                                                                 (2)

4.6.2. Cordierite-bearing gneisses

Garnet is not present in most cordierite-bearing gneisses, and Crd + Kfs is in equilibrium, 

indicating that garnet was completely consumed by the cordierite-producing reactions. Most 

samples are characterized by Crd + Bt + Sil + Kfs + Qz with minor hercynite and they are 

likely to have formed through the reaction (3):

Sil + Bt + Qz = Crd + Kfs + Lq                                                                                                (3)

Where garnet is present it is as inclusions within cordierite, and along with fibrolitic 

sillimanite inclusions. It is likely that another reaction also contributed to the production of 

cordierite:

Grt (Alm) + Sil + Qz + H2O = Crd                                                                                           (4)
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4.6.3. Garnet, cordierite and hercynite-bearing gneisses

Cordierite and hercynite are present in some garnet-bearing rocks, hercynite is generally 

observed in cordierite porphyroblast cores. The occurrence of anhedral remnant garnet as 

inclusions in some cordierite porphyroblasts, and fibrolitic sillimanite associated with 

hercynite within cordierite, suggests that hercynite was formed by the reaction:

Sil + Grt (+ Qz + Kfs + Lq) = Crd + Hc                                                                                   (5)

Where garnet occurs as subhedral and/or anhedral grains it has variable mineral inclusions, 

such as biotite, sillimanite, quartz, plagioclase and ilmenite, where the abundance of biotite 

and quartz are negatively correlated with cordierite and garnet. Most cordierite grains include 

fibrolitic sillimanite as inclusions. The textural observations in these rocks suggest that 

cordierite, garnet and K-feldspar were produced by the consumption of sillimanite, biotite, 

quartz and plagioclase by the reaction:

Sil + Bt + Qz + Pl = Crd + Grt + Kfs + Lq                                                                              (6)

Overall, the assemblage of biotite, garnet, cordierite, K-feldspar, quartz and plagioclase, 

with hercynite and fibrolitic sillimanite as inclusions in cordierite, is the highest-grade 

assemblage from the Devrekani Massif rocks. The prograde evolution of the paragneisses 

included sillimanite zone conditions in the amphibolite facies passing up into the cordierite-

garnet-K-feldspar zone of the lower granulite facies.
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5. Discussion

5.1. P-T estimates of metamorphism

Peak P–T conditions for the Devrekani paragneisses were estimated using the 

GeoThermoBarometry computer software (GTB v2.1, 2006) based on mineral assemblages 

and compositions from the GB, CB, SCB and GSCB gneisses.

The Na-in-cordierite (Na-in-Crd) thermometer is applied because cordierite is a major 

component in most samples. For comparison, it is also applied garnet-biotite (Grt-Bt) and 

garnet-cordierite (Grt-Crd) Fe-Mg exchange thermometers. Detailed temperature estimates 

are presented as supplementary in Table S4 and summarized in Table 3. The Na-in-Crd 

geothermometer of Mirwald (1986) is used since it can be applied to natural cordierite 

coexisting with Pl + Kfs + Bt + Qz (Kalt et al., 1998). The Na (cpfu) content of cordierite 

varies from 0.025 to 0.065 with a mean of 0.039, resulting in temperature estimates of 698-

808°C with a mean of 770°C (Table 3 and supplementary Table S4). Other temperature 

estimates for the GB and GSCB gneisses were calculated using the Fe-Mg exchange method 

of Ferry and Spear (1987) applied to matrix biotite and garnet porphyroblasts. The average 

temperatures range from 619±32°C to 822±20°C at an assumed 6 kbar (Table 3 and 

supplementary Table S4), corresponding to the average results from the GASP and GRIPS 

barometers. The homogeneity of garnet and the presence of high-temperature mineral 

inclusions, suggest that these estimates of peak P-T conditions may be appropriate. The Fe-

Mg geothermometer of Bhattacharya et al. (1988), which is based on the exchange of Fe and 

Mg between Grt-Crd couples, yeilded temperatures from 646 to 732°C at an assumed pressure 

of 6 kbar (supplementary Table S4). Overall, the average temperature values vary from 

653±5°C to 709±22°C (Table 3) and are consistent with the mineral paragenesis and textural 

observations.
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The geobarometry is based on the garnet-sillimanite-quartz-plagioclase (GASP), garnet-

rutile-ilmenite-plagioclase-quartz (GRIPS) and garnet-rutile-sillimanite-ilmenite-quartz 

(GRAIL) barometers. GASP and GRIPS yielded consistent pressures of 5 to 7 kbar at 750 and 

800°C respectively, however, pressures derived from the GRAIL barometer for samples are 

relatively high and range from 7.5 to 8.6 kbar (Table 4). Pressures determined from equilibria 

involving Crd + Hc are relatively low (~4 kbar), and consistent with the observed mineral 

parageneses and textural properties (see Figs. 4 and 9). The isopleths derived from the GASP 

barometer dissect the curve of reaction (6) at ∼750°C and ∼4.75 kbar. The intersections of the 

Na-in-Crd geothermometer (∼750-800°C) with the GASP isopleths yielded pressure estimates 

of 4.75-7.25 kbar for paragneissic rocks with an aluminosilicate phase. Combining the 

mineral assemblages, textural features, compositions and the geothermobarometry indicates 

that peak P–T conditions were 6±1 kbar and 775±25°C (Fig. 9).

5.2. Potential protoliths of the paragneisses

Gneisses produced by high-grade metamorphic conditions can occur in various geological 

environments, such as continental orogenic belts. The geochemical characteristics of the 

metamorphic rocks provide information about their source material. According to 

mineralogical observations and whole-rock geochemical data the possible protoliths for the 

studied paragneisses are shales and wackes, indicating a pelitic sediment source (Figs. 10a,b). 

In the provenance discrimination diagram of Roser and Korsch (1988), the paragneiss 

samples reflect an intermediate igneous provenance (Fig. 10c). Also, on the Th vs Sc 

discrimination diagram of McLennan et al. (1993), the samples indicate intermediate and 

mafic sources (Fig. 10d). Based on the La vs. Th diagram of Taylor and McLennan (1985), 

the paragneiss samples fall into the post-Archean field (Fig. 10e). Plotting data on the 

discrimination diagram of Roser and Korsch (1986) reveals that the protolith might have been 
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deposited in an active continental and a passive margin setting (Fig. 10f). The distribution and 

concentrations of REE and trace elements, along with the negative Ta, Nb, P and Ti 

anomalies, as well as the high Th/Ta, emphasizes that the protoliths were subduction-related 

(Pearce, 1983; Rogers and Hawkesworth, 1989; Gorton and Schandl, 2000) and close to the 

average composition of the PAAS and NASC sedimentary rocks. Moreover, significant LREE 

enrichment along with ΣLREE/ΣHREE (4.63-9.57) and Th/Sc (0.5-0.8) ratios suggests that 

the protoliths were derived from a mafic and/or intermediate sources. According to our new, 

and existing, petrological and geochronological data, most protoliths of the paragneiss rocks 

in the Devrekani Massif were originally sediments that were predominantly deposited during 

the pre-Jurassic period, and fed by Permo-Carboniferous magmatic rocks (Duru et al., 2004; 

Nzegge, 2008; Okay et al., 2014; Gücer, 2014; Gücer et al., 2016; Okay et al., 2017; Okay 

and Topuz, 2017; this study; Table 2).

5.3. Geodynamic implications

The petrochemical and geochronological results reported here for the Jurassic metamorphic 

rocks enable a re-assessment of the geodynamic evolution of the Central Pontides, in which 

there are oceanic subduction–accretion complexes, magmatic arcs and fore-arc sequences 

formed during the Triassic, Jurassic and Cretaceous (Akdoğan et al., 2017; Okay et al., 2017, 

Çimen et al., 2018). The presence of the Jurassic subduction–accretion complexes along with 

the subduction zone ophiolites (Göçmengil et al., 2013; Topuz et al., 2013a,b), and the 

existence of Jurassic ophiolitic rocks in the Late Cretaceous mélanges, suggest that the 

subduction zone system was active during the Early to Middle Jurassic period (e.g., Dilek and 

Thy, 2006; Sarıfakıoğlu et al., 2009; Çelik et al., 2011; Gücer and Aslan, 2014).
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Zircon U-Pb ages from the orthogneisses in the Devrekani Massif yielded ages of 253±9, 

268±5 and 316±9 Ma (Gücer et al., 2016), indicating that the orthogneiss protoliths developed 

during the Permo-Carboniferous period. The Variscan terranes in the Central Pontides are

 represented by medium- to high-grade metamorphic rocks consisting predominantly of 

orthogneisses, paragneisses, amphibolites and meta-ultramafic rocks. In addition, Permo-

Carboniferous magmatism is a common feature of the Variscan basement units (Duru et al., 

2004; Okay et al., 2006; Nzegge, 2008). Apart from these magmatic ages, the 40Ar-39Ar 

biotite and K-Ar hornblende cooling ages range from the Sinemurian to Kimmeridgian (e.g., 

Nzegge, 2008; Okay et al., 2014; Gücer, 2014; Gücer et al., 2016; this study). In particular, 

the 40Ar-39Ar biotite ages are Middle-Late Jurassic (Fig. 11), so it is highly likely that these 

metamorphic rocks finally cooled to below ca. 300°C during the Late Jurassic.

Okay et al. (2014) suggested that there was no crustal thickening in the Central Pontides, 

prior to the Early-Middle Jurassic extension and metamorphism, based on the regional 

stratigraphy and petrography of the metamorphic rocks. In this model, the Jurassic 

magmatism and metamorphism in the region occurred simultaneously with submarine 

sedimentation and volcanism in an extensional magmatic arc setting. Similar Jurassic arc-type 

volcanic rocks were also reported from the Eastern Pontides (e.g., Dokuz et al., 2017; Karslı 

et al., 2017), Crimea (e.g., Meijers et al., 2010) and Caucasus (e.g., Sosson et al., 2010). The 

Central Pontides are generally characterized by the presence of Jurassic–Cretaceous 

subduction–accretion complexes in the south, and mid-Cretaceous submarine turbidites in the 

north (e.g., Okay et al., 2013, 2017; Aygül et al., 2016; Akdoğan et al., 2017). From these, the 

Jurassic accretionary complex is represented by the Küre unit, that may have been deposited 

in a fore-arc basin (Okay et al., 2015). Similar accretionary prisms are known in the Crimea 

and Caucasus as the Tauric Group (Meijers et al., 2010) and the Dizi Series (Adamia et al., 
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2011), respectively. All these complexes may represent the accretionary prisms of the 

northward subducting ocean beneath the accreted southern margin of Laurasia.

Based on the new petrological data and associated field relations, the following tectonic 

model is proposed for the Jurassic metamorphism during the continental extension in the 

region (Fig. 12). The calc-alkaline arc granitoid magmatism resulted from the northward 

subduction of the Paleo-Tethyan oceanic crust during the Permo-Carboniferous. Later, the 

Triassic-Jurassic accretionary prism (Küre Complex) could have been deposited by 

continuing northward Paleo-Tethyan subduction beneath the basement units of the Central 

Pontides. At the same time, the Devrekani Massif may have been metamorphosed within an 

extensional magmatic arc setting as proposed by Okay et al. (2014). Here, the high-

temperature area formed in mid-lower crust at about 20 km depth due to the extension of the 

Laurasia continent. Therefore, the volcano-sedimentary protoliths of the paragneisses and the 

granitic protoliths of the orthogneisses were metamorphosed under high-temperature 

conditions. Following the Jurassic period, the Devrekani Massif was not subjected to 

progressive regional metamorphism and the Early Cretaceous subduction–accretion prism 

continued to form in the southern Central Pontides.

6. Conclusions

The Devrekani Massif in the Northern Turkey is important for understanding the 

metamorphic processes and geodynamic evolution of the Central Pontides. This study reports 

new petrological, petrochemical and 40Ar-39Ar radiometric age data from the Devrekani 

paragneisses, and provides new constraints on the timing of the metamorphism. The main 

results can be summarized as follows:

• There are five main types of paragneisses with the diagnostic mineral assemblage of 

quartz, K-feldspar (An0-1Ab4-26Or73-96), plagioclase (An18-35), biotite [(XPhl: 0.28-0.57; 
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Mg/(Mg+Fe2+): 0.33-0.61)], sillimanite, cordierite [(Mg/(Mg+Fe2+): 0.48-0.71)], garnet 

(Alm43-80Grs0-18Prp5-23And0-4Sps10-33) and hercynite. The mineral assemblages of the 

paragneisses, determined here, indicate that the prograde history passed from sillimanite 

zone conditions in the amphibolite facies up to cordierite-garnet-K-feldspar zone 

conditions in the granulite facies.

• Whole-rock geochemistry of paragneisses reveals that the protoliths were pelitic sediments 

such as shales and greywackes. The major and trace elements indicate intermediate and 

mafic igneous provenances, deposited in both an active continental margin and a passive 

margin setting. In general, LILE and LREE are enriched, whilst HFSE are depleted in 

samples, with negative Eu anomalies. The compositions of the protoliths are close to the 

average composition of the PAAS and NASC sedimentary rocks.

• The petrological and geochronological data suggest that the protoliths are related to 

multiple sources, and linked to pre-Jurassic sedimentation and continental arc magmatism, 

overprinted by Jurassic metamorphism. It is most likely that peak metamorphism was 

during the Middle–Upper Jurassic period (ca. 174–156 Ma), suggesting that the 

metamorphic rocks cooled below 300°C at ca. 156 Ma.

• Temperatures for peak metamorphism range from 646 to 822°C at 6 kbar. GASP and 

GRIPS barometry yielded consistent pressures of 5.4 to 7.3 kbar at 750 to 800°C 

respectively. The estimated peak P–T conditions of metamorphism are 6±1 kbar and 

775±25°C.

• The Jurassic HT metamorphism developed within a continental crust, in the deep segments 

of an extensional continental arc that developed on the Laurasian southern margin, due to 

the northward subduction of Paleo-Tethyan oceanic lithosphere.
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Figure captions

Fig. 1. (a) Map of the main tectonic units of Turkey (modified after Okay and Tüysüz, 1999) 

and the tectonic relationships between metamorphic massifs and basement (modified from 

Atalay, 1987; Okay, 2008). (b) Geological map of the northern part of Central Pontides (Okay 

et al., 2014). (c) Generalized geological map of the Devrekani Massif and surrounding areas 

(modified after Altun et al., 1990; Uğuz and Sevin, 2007). IZT: Istanbul-Zonguldak Terrane, 

SCT: Sakarya Composite Terrane, ATT: Anatolide-Tauride Terrane, IPSB: Intra-Pontide 

Suture Belt, IAESB: Izmir-Ankara-Erzincan Suture Belt.

Fig. 2. Detailed geological map showing the distribution of metacarbonates, paragneisses, 

orthogneisses and amphibolites in the Devrekani Massif.

Fig. 3. Field photographs of paragneisses and related rocks from the massif. (a) Gneisses 

form the lower parts and metacarbonate form the upper parts. (b-c) Gneisses and amphibolite 

assemblages in the massif. (d) A hand specimen of a paragneiss with irregular folds rich in 

biotite (dark). (e-f) Well-developed centimeter-spaced gneissic banding with symmetric, 

asymmetric and irregular folds.
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Fig. 4. Photomicrographs from the Devrekani paragneisses (a and b images were taken in 

plane polarized, others in cross-polarized light). (a) Garnet is present as subhedral- to 

anhedral-crystals up to 1 mm in size and contains quartz, biotite, feldspar and ilmenite 

inclusions. Biotite flakes associated with garnet porphyroblasts in biotite-rich bands. (b) 

Gneisses with garnet, sillimanite, pinitized cordierite, biotite and hercynite. (c-d) Strongly 

foliated rocks dominated by sillimanite, biotite and cordierite with quartz, feldspar and 

opaque minerals. (e) Pinitized cordierite porphyroblasts with biotite (brown) and quartz. (f-g) 

Gneisses with cordierite, biotite, sillimanite, garnet and quartz. (h) Coarse anhedral cordierite 

crystals partially or completely envelope euhedral garnet grains.

Fig. 5. Alm + Sps, Grs and Pyp ternary diagram showing the compositions of garnet in GB 

and GSCB gneisses from the Devrekani paragneisses, and thin section microphotographs of 

garnet minerals showing different morphologies.

Fig. 6. Chemical classification and variation diagrams of the feldspar and spinel-group 

minerals from the Devrekani paragneisses. (a) Or-Ab-An triangular plot of feldspar minerals, 

(b) Cr/(Cr+Al) vs. Mg/(Mg+Fe2+) classification diagram of spinel-group minerals and 

microphotographs of cordierite with inclusions of biotite, sillimanite, hercynite (dark green) 

and garnet.

Fig. 7. (a) 38ArCl/39ArK vs. age plot for GSCB gneiss sample H3. (b) Weighted mean of 40Ar-

39Ar age diagram for GB gneiss sample KD1 and (c) SCB gneiss sample KD7B.

Fig. 8. Normalized trace element diagrams for the protoliths of the Devrekani paragneisses. 

(a) MORB (Pearce, 1983) and (b) PAAS normalized trace element diagrams. (c) Chondrite 

(Boynton, 1984) and (d) PAAS normalized REE diagrams. UC: upper continental crust 

(compositions from Taylor and McLennan, 1981), NASC: North American shale composite 

from Gromet et al. (1984), PAAS: Post-Archaean average Australian sedimentary rock 

(compositions from McLennan, 1989).
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Fig. 9. Pressure-temperature diagram of the Devrekani Massif. Peak metamorphism is 

constrained by the intersection of equilibria derived from the GASP barometer with Na-in 

cordierite and garnet-biotite equilibria. High-temperature decompression was determined 

from the Crd + Hc assemblage. Al2SiO5 triple point and Sil/Ky transition of Pattison (1992). 

Alm + Sil = Hc + Crd, H2O-saturated metapelite solidus and Ms+Qtz dehydration-melting 

according to Spear et al. (1999). Bt + Sil + Qtz + Pl = Grt + Crd + Kfs + Melt from Le Breton 

and Thompson (1988); Stevens et al. (1997). Thermometers: Na-in cordierite (Mirwald, 

1986); Grt–Bt Fe-Mg exchange (Ferry and Spear, 1978). Barometers: GASP; garnet-

sillimanite-quartz-plagioclase, GRIPS; garnet-rutile-ilmenite-plagioclase-quartz, GRAIL; 

garnet-rutile-sillimanite-ilmenite-quartz (references for calibration of barometers see Table 4).

Fig. 10. Geochemical discrimination diagrams for the protoliths. (a) Zr/TiO2 vs. Ni plot 

distinguishing igneous from sedimentary fields (Winchester and Max, 1982), (b) Log 

(Fe2O3
T/K2O) vs. (SiO2/Al2O3) classification diagram (Herron, 1988), (c) Discriminant 

function diagram for the provenance signatures of sandstone-mudstone suites (Roser and 

Korsch, 1988), (d) Th vs. Sc diagram from McLennan et al. (1993), (e) La vs. Th diagram 

from Taylor and McLennan (1985), (f) K2O/Na2O vs. SiO2 discrimination diagram of Roser 

and Korsch (1986) for sandstone-mudstone suites.

Fig. 11. 40Ar-39Ar biotite cooling ages with data from other rocks from the Devrekani Massif. 

Each vertical solid line represents a single biotite (bt) or hornblende (hbl) age. Amphibolite 

ages are from Gücer (2014) and orthogneiss data from Gücer et al. (2016).

Fig. 12. Simplified tectonic model (modified from Gücer et al., 2016) showing the Middle – 

Upper Jurassic geodynamic evolution of the Devrekani Massif in Central Pontides (N 

Turkey).
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Table captions

Table 1. Mineral assemblages of the Devrekani paragneisses.

Table 2. Summary of 40Ar-39Ar and U-Pb Zircon ages from the Devrekani Massif.

Table 3. Summary of temperature estimates from the Devrekani paragneisses.

Table 4. Pressure estimates for GB and GSCB gneisses from the Devrekani paragneisses.

Supplementary Table captions

Table S1. Representative electron microprobe analyzes of garnet, biotite, plagioclase, K-

feldspar, cordierite, sillimanite, hercynite and Fe-Ti oxide minerals for the Devrekani 

paragneisses.

Table S2. 40Ar-39Ar biotite dating data for the Devrekani paragneisses.

Table S3. Representative major oxide (wt%), trace (ppm) and rare earth (ppm) element 

concentrations of the Devrekani paragneisses.

Table S4. Thermometer and barometer results from the Devrekani paragneisses.
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Table 1. Mineral assemblages of the Devrekani paragneisses

Samples Ms Qz Pl Kfs Bt Sil Grt Crd Hc Qpq Chl Ser Spn Zr Ap

Sillimanite-biotite (SB) gneisses (mainly shows fibrolepidogranoblastic texture)

DB3A + ++ ++ ++ ++ ++ -- ⊕ -- + * ** -- ⊕ --

Garnet-biotite (GB) gneisses (mainly shows porphyroblastic texture)

KD1 -- ++ ++ ++ ++ + ++ -- -- + -- ** -- ⊕ ⊕

Cordierite-biotite (CB) gneisses (mainly shows lepidogranoblastic texture)

D712 + ++ + ++ ++ + -- ++ + + -- ** -- ⊕ --

DB3 + ++ + ++ ++ + -- ++ -- + -- ** -- -- --

HK8 + ++ + ++ ++ + -- ++ + + -- ** ⊕ ⊕ --

HK9 ⊕ ++ + ++ ++ + -- ++ + + -- ** -- ⊕ --

KD7 -- ++ + ++ ++ ⊕ -- ++ -- + -- -- ⊕ ⊕ --

KM2 -- ++ + ++ ++ + -- + -- + -- -- -- ⊕ --

TDS11 ⊕ ++ + + ++ + ⊕ ++ -- + -- ** ⊕ ⊕ --

TDS16A ⊕ ++ + ++ ++ ⊕ -- ++ -- + -- ** -- -- --

Sillimanite-cordierite-biotite (SCB) gneisses (mainly shows fibrolepidogranoblastic texture)

DB6 -- ++ ++ + ++ ++ -- ++ -- + * ** -- -- --

KD7B ⊕ ++ -- -- ++ ++ -- ++ -- + -- -- -- ⊕ --

KD8 ⊕ ++ -- -- ++ + -- ++ -- + -- -- ⊕ ⊕ --

KD9 ⊕ ++ + + ++ ++ -- ++ -- + -- ** -- ⊕ --

TDS12 + ++ + ++ ++ ++ -- ++ -- + -- ** -- -- ⊕

TDS13 -- ++ + + ++ ++ -- ++ -- + -- ** -- -- --

TDS5 + ++ + + ++ ++ -- ++ + + -- ** -- ⊕ --

TDS7 + ++ ⊕ + ++ ++ -- ++ -- + -- ** -- ⊕ --

DA5B -- ++ ++ ++ ++ ++ -- ++ -- + -- ** -- -- --

DG5 ⊕ ++ ++ + ++ ++ -- ++ -- + -- ** -- ⊕ --

G4 ⊕ ++ ++ ++ ++ ++ -- ++ -- + * ** -- -- --

TDB7 ⊕ ++ ++ + ++ ++ -- ++ ⊕ + -- ** -- -- --

Garnet-sillimanite-cordierite-biotite (GSCB) gneisses (mainly shows fibrolepidogranoblastic texture)
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D711 ⊕ ++ ++ ++ ++ + ++ ++ -- + -- ** ⊕ ⊕ --

D713 ⊕ ++ ++ ++ ++ + + ++ + + -- ** -- ⊕ --

D718 ⊕ ++ ++ ++ ++ + ++ ++ -- + -- ** -- ⊕ --

H7 + ++ ++ ++ ++ + ++ ++ -- + -- ** ⊕ ⊕ --

KD6 -- ++ ++ ++ ++ -- ++ ++ -- + -- -- -- ⊕ --

TDO10 ⊕ ++ ++ ++ ++ + ++ ++ -- + -- ** ⊕ ⊕ --

TDO12B ⊕ ++ ++ ++ ++ + ++ ++ + + * ** ⊕ -- --

++ major constituent (>5%); + minor constituent (1-5%); ⊕ accessory phase (≤1%); * secondary minerals. (from minerals 

and/or veins); ** secondary minerals (from feldspar and cordierite); -- not observed. Ms: Muscovite, Qz: Quartz, Pl: 

Plagioclase, Kfs: K-feldspar, Bt: Biotite, Sil: Sillimanite, Grt: Garnet, Crd: Cordierite, Hc: Hercynite, Opq: Opaques, Chl: 

Chlorite, Ser: Sericite, Spn: Sphene, Zrn: Zircon and Ap: Apatite (mineral abbreviations after Whitney and Evans, 2010).

Table 1. Continued

Samples Ms Qz Pl Kfs Bt Sil Grt Crd Hc Qpq Chl Ser Spn Zr Ap

D706 ⊕ ++ ⊕ + ++ ++ + ++ -- + -- ** ⊕ ⊕ --

H3 ⊕ ++ + ++ ++ + + ++ + + -- ** -- ⊕ --

H3B ⊕ ++ + ++ ++ + + ++ + + -- ** -- ⊕ --

H7B -- ++ ++ ++ ++ ++ ++ ++ + + -- ** ⊕ ⊕ --

KD2 -- ++ ++ ++ ++ ++ ++ ++ -- + -- ** -- ⊕ --

KD3 -- ++ + ++ ++ ++ + ++ -- + -- ** -- ⊕ --

TDG3 -- ++ ++ + ++ ++ + ++ -- + -- ** ⊕ ⊕ --

TDG4 -- ++ ++ + ++ ++ ++ ++ -- + -- ** -- ⊕ --

TDS8 -- ++ + + ++ ++ ++ ++ -- + -- ** -- -- --

TDS9 -- ++ ++ ++ ++ + + + + + -- ** -- ⊕ --

TDS10 -- ++ + + ++ ++ + ++ -- + -- ** ⊕ ⊕ --

TDS19 -- ++ ++ + ++ + + ++ + + -- ** -- -- --

++ major constituent (>5%); + minor constituent (1-5%); ⊕ accessory phase (≤1%); * secondary minerals. (from minerals 

and/or veins); ** secondary minerals (from feldspar and cordierite); -- not observed. Ms: Muscovite, Qz: Quartz, Pl: 

Plagioclase, Kfs: K-feldspar, Bt: Biotite, Sil: Sillimanite, Grt: Garnet, Crd: Cordierite, Hc: Hercynite, Opq: Opaques, Chl: 

Chlorite, Ser: Sericite, Spn: Sphene, Zrn: Zircon and Ap: Apatite (mineral abbreviations after Whitney and Evans, 2010).
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Table 2. Summary of 40Ar-39Ar and U-Pb Zircon ages from the Devrekani Massif

Ar-Ar ages (Ma) U-Pb zircon ages (Ma)Sample
No Age range Mean age Age range Mean age

Paragneisses (this study)

KD7B 139 – 173 (n= 9) 156 ± 8 (biotite)

KD1 152 – 164 (n= 10) 158 ± 1 (biotite)

H3 166 – 225 (n= 9) 174 ± 6 (biotite)

Orthogneisses (from Gücer et al., 2016)

DG9 144 – 159 (n= 7) 152 ± 5 (biotite) 209 – 276 (n=16) 268 ± 5

G3 149 – 160 (n= 10) 157 ± 2 (biotite) 158 – 320 (n=23) 316 ± 9

DB14 155 – 159 (n= 2, biotite)

DB14 160 – 176 (n= 6) 163 ± 6 (hornblende)

DA3 176 – 302 (n=28) 253 ± 9

Amphibolite (from Gücer, 2014)

DB8 176 – 196 (n= 9) 192 ± 3 (hornblende)

TDB10 154 – 184 (n= 8) 171 ± 6 (hornblende)
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Table 3. Summary of temperature estimates from the Devrekani paragneisses

Na-in-cordierite thermometer

Sample Na content (cpfu) TMIN – TMAX (°C) Calibration

H3 (GSCB gneiss) 0.040 (n= 10) 747 - 794

HK9 (CB gneiss) 0.036 (n= 12) 744 - 800

KD7B (SCB gneiss) 0.038 (n= 12) 747 - 808

KD3 (GSCB gneiss) 0.033 (n=3) 770 - 800

H7B (GSCB gneiss) 0.038 (n= 5) 763 - 794

H7 (GSCB gneiss) 0.055 (n= 5) 698 - 741

DB3 (CB gneiss) 0.035 (n= 3) 764 - 798

G4 (SCB gneiss) 0.044 (n= 2) 734 - 776

Mirwald (1986)

Garnet-biotite thermometer

Sample Analysis No T (°C) at assumed P of 6 kbar

H3 (GSCB Gneiss) C1-33/C1-6 622 ± 15

H3 (GSCB Gneiss) C1-38/C1-6 680 ± 17

H7 (GSCB Gneiss) C2-9/C2-17 668 ± 33

H7 (GSCB Gneiss) C4-2/C2-3 801 ± 49

H7B (GSCB Gneiss) C1-8/C1-20 633 ± 15

H7B (GSCB Gneiss) C1-10/C1-17 822 ± 20

KD1 (GB Gneiss) C3-23/C3-34 734 ± 25

KD1 (GB Gneiss) C3-21/C3-33 821 ± 32

KD3 (GSCB Gneiss) C3-17/C3-44 619 ± 32

KD3 (GSCB Gneiss) C3-13/C3-31 753 ± 52

KD6 (GSCB Gneiss) C2-19/C2-6 698 ± 34

KD6 (GSCB Gneiss) C2-25/C2-40 749 ± 35

Ferry and Spear (1978)

Garnet-cordierite thermometer

Sample Analysis No T (°C) at assumed P of 6 kbar

H7 (GSCB Gneiss) 653±5 (n= 10)

H7 (GSCB Gneiss) 709±22 (n= 18)

H7B (GSCB Gneiss) 689±12 (n= 10)

KD3 (GSCB Gneiss) 671±8 (n= 12)

H3 (GSCB Gneiss)

see supplementary 
Table A4

662±5 (n= 7)

Bhattacharya et al., (1988)
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Table 4. Pressure estimates for GB and GSCB gneisses from the Devrekani paragneisses

P (kbar) at assumed T of
Sample Barometer

750 °C 800 °C Calibration of barometers

H7/1 GASP 5.4 ± 0.4 6.2 ± 0.4
H7B/1 GASP 5.8 ± 0.7 6.7 ± 0.7
KD3/1 GASP 5.7 ± 0.6 6.6 ± 0.7
KD6 GASP 5.7 ± 0.2 6.5 ± 0.2
H7/2 GASP 6.3 ± 0.8 7.1 ± 0.8
H7B/2 GASP 6.4 ± 0.7 7.3 ± 0.7
KD3/2 GASP 6.2 ± 0.2 7.0 ± 0.2

Koziol (1989)

H7 GRIPS 5.7 ± 0.4 6.2 ± 0.4
H7B GRIPS 6.6 ± 0.4 7.2 ± 0.4
KD6 GRIPS 6.3 ± 0.6 6.9 ± 0.6

Bohlen and Liotta (1986)

H7 GRAIL 7.6 ± 0.2 8.0 ± 0.2
H7B GRAIL 8.1 ± 0.1 8.6 ± 0.1
KD6 GRAIL 7.5 ± 0.2 8.0 ± 0.2

Bohlen et al. (1983)
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Highlights

•The protoliths of paragneisses are composed of pelitic sediments including shale and 

wackestone.

•The protoliths are linked to a pre-Jurassic sedimentation and a continental arc magmatism.

•The Devrekani Massif was exposed to a Jurassic MP/HT metamorphism (ca. 156 Ma).

•The Jurassic HT metamorphism developed in an extensional tectonic environment.
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