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Abstract

The classical fitting problem in exploratory factor analysis (EFA) is to find estimates 

for the factor loadings matrix and the matrix of unique factor variances which give the 

best fit to the sample covariance or correlation matrix with respect to some goodness- 

of-fit criterion. Predicted factor scores can be obtained as a function of these estimates 

and the data. In this thesis, the EFA model is considered as a specific data matrix de­

composition with fixed unknown matrix parameters. Fitting the EFA model directly to 

the data yields simultaneous solutions for both loadings and factor scores. Several new 

algorithms are introduced for the least squares and weighted least squares estimation 

of all EFA model unknowns. The numerical procedures are based on the singular value 

decomposition, facilitate the estimation of both common and unique factor scores, and 

work equally well when the number of variables exceeds the number of available obser­

vations.

Like EFA, noisy independent component analysis (ICA) is a technique for reduction of 

the data dimensionality in which the interrelationships among the observed variables 

are explained in terms of a much smaller number of latent factors. The key difference 

between EFA and noisy ICA is that in the latter model the common factors are assumed 

to be both independent and non-normal. In contrast to EFA, there is no rotational 

indeterminacy in noisy ICA. In this thesis, noisy ICA is viewed as a method of factor
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rotation in EFA. Starting from an initial EFA solution, an orthogonal rotation matrix 

is sought that minimizes the dependence between the common factors. The idea of ro­

tating the scores towards independence is also employed in three-mode factor analysis 

to analyze data sets having a three-way structure.

The new theoretical and computational aspects contained in this thesis are illustrated 

by means of several examples with real and artificial data.
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Setting the Scene
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Chapter 1 

Introduction and Preliminaries

1.1 M otivation

Multivariate data are often viewed as indirect measurements arising from underlying 

sources or latent variables which cannot be directly measured. One is forced to exam­

ine the hidden sources by collecting data on manifest variables which are considered 

indicators of the concepts of real interest (e.g., Bartholomew, Steele, Moustaki, and 

Galbraith, 2 0 0 2 ).

Consider the following example (Stone, 2004): Electroencephalogram brain scans mea­

sure the neuronal activity in various parts of the brain indirectly via electromagnetic 

signals recorded at sensors placed at different positions on the head. Since each signal 

contains contributions from many different brain regions, observed signals are a mixture 

of the hidden sources. The aim is to extract such sources and to provide information 

on which parts of the brain are activated at a given time or by a given task. 

Exploratory factor analysis (EFA) is a statistical model which addresses this issue of 

extracting the sources underlying a set of measured signal mixtures. Some key refer­

ences are Bartholomew and Knott (1999), Harman (1976), Lawley and Maxwell (1971) 

and Mulaik (1972). The model of EFA aims to explain the interrelationships among 

p manifest variables by A; ( <  p) latent variables called common factors. To allow for

2
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some variation in each observed variable that remains unaccounted for by the common 

factors, p additional latent variables called unique factors are introduced, each of which 

accounts for the unique variance in its associated manifest variable.

The classical fitting problem in EFA is to find estimates for the factor loadings matrix 

and the matrix of unique factor variances which give the best fit, for some specified 

value of k : to the sample correlation matrix with respect to some goodness-of-fit cri­

terion. One may then construct factor scores for the n  observations on the k common 

factors as a function of these estimates and the data.

In this thesis, new approaches for fitting the EFA model are presented. W ithout pass­

ing via an estimate for the model correlation matrix, the EFA model is fitted directly to 

the data. That is, the EFA model is considered as a specific data matrix decomposition 

with fixed unknown matrix parameters. Unlike the factorization of a correlation ma­

trix, fitting the EFA model to the data yields factor loadings and common factor scores 

simultaneously (Horst, 1965; Joreskog, 1962; Lawley, 1942; McDonald, 1979; Whittle, 

1952; Young, 1941).

De Leeuw (2004, 2008) proposed simultaneous estimation of all EFA model unknowns 

by optimizing a least squares (LS) loss function. The algorithms of De Leeuw (2004, 

2008) are further developed in this thesis. However, these approaches are designed 

for the classical case of ‘vertical’ data matrices with n > p. In a number of modern 

applications, the number of available observations is less than the number of variables, 

such as for example in microarray genomic analysis or in atmospheric science. This 

thesis introduces a couple of novel methods for the simultaneous estimation of all EFA 

model unknowns which are able to fit the EFA model to ‘horizontal’ data matrices with 

p >  n. New assumptions are imposed on the EFA model parameters which necessarily
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require the acceptance of unique factors having zero variance.

Principal component analysis (PCA) (e.g., Jolliffe, 2002) is a descriptive statistical 

technique that replaces a set of p  observed variables by k (<C p) uncorrelated variables 

called principal components whilst retaining as much as possible of the total sample 

variance. Despite the differences between PCA and EFA (e.g., Jolliffe, 2002, pp. 158- 

161), both methods aim to reduce the dimensionality of a data set. It is of interest 

to find conditions under which PCA and EFA solutions can or cannot be close for a 

particular data set (Rao, 1996). Therefore, in this thesis PCA is viewed as a special 

case of EFA with the error term resembling the EFA one. Based on an initial PCA 

solution, the error term is then decomposed to achieve an EFA-like factorization of the 

data. This specific EFA-like PCA construction helps to compare the numerical solu­

tions obtained by PCA and EFA. A new approach to accomplish PCA by means of the 

QR factorization of the data matrix (e.g., Golub and Van Loan, 1996) is introduced. 

Classical EFA techniques taking input data in the form of correlations are very vul­

nerable to the presence of outliers. One may either use some robust modification of 

the sample correlation matrix to overcome the outlier problem in the data (e.g., Pison, 

Rousseeuw, Filzmoser, and Croux, 2003) or look for alternative techniques working di­

rectly with the data matrix. Croux, Filzmoser, Pison, and Rousseeuw (2003) proposed 

robust factorization of the data matrix into a loadings matrix and a matrix of factor 

scores by optimizing a resistant alternating regression scheme. However, since esti­

mates of the unique factor variances are obtained after the corresponding loss function 

has already been optimized, the approach of Croux, Filzmoser, Pison, and Rousseeuw 

(2003) resembles a robust PCA solution to EFA rather than ‘truly’ robust EFA.

In this thesis, an algorithm for robust simultaneous estimation of all EFA model un­
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knowns is introduced. The EFA model is fitted to the data matrix by minimizing a 

certain weighted least squares (WLS) goodness-of-fit measure. By imposing weights on 

the residuals of the unweighted least squares (ULS) fitting, the WLS loss function is a 

generalization of the one used by De Leeuw (2004, 2008). Kiers (1997b) introduced a 

very general approach for fitting a model to a data matrix by WLS. The WLS fitting 

problem is reduced to iteratively solving a corresponding ULS problem, by using a 

majorization approach (e.g., Heiser, 1995). In this thesis, the majorizing function of 

Kiers (1997b) is used in a procedure for iteratively reweighted least squares in which 

the weights depend on the residuals and are updated after each cycle of updating the 

model parameters. The influence of large residuals on the loss function is curbed using 

Huber’s criterion (Huber, 1981). This procedure leads to robust EFA that can resist 

the effect of outliers in the data.

Like EFA, independent component analysis (ICA) (e.g., Hyvarinen, Karhunen, and 

Oja, 2001) is a statistical model for reduction of the data dimensionality in which 

the interrelationships among the observed variables are explained in terms of a much 

smaller number of latent sources. The method of ICA is based on the assumption that 

if different sources stem from different physical processes, then those sources are statis­

tically mutually independent. Accordingly, ICA tries to separate signal mixtures into 

independent sources and if independent components can be found they are identified 

with the hidden sources. In addition, at most one component in ICA is allowed to be 

normally distributed.

The ICA formulation is closely related to PCA. Whereas PCA only decorrelates the 

data, ICA looks for components that are mutually independent and non-normal. This 

is achieved by optimizing criteria that involve measures of departure from normality
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and/or independence using supplementary information not contained in the sample 

covariance or correlation matrix (e.g., Hyvarinen, Karhunen, and Oja, 2001). The 

ICA approach can also be viewed as a special case of exploratory projection pursuit 

(Friedman and Tukey, 1974). Whereas in projection pursuit the maximally non-normal 

projections of the data are considered interesting from the viewpoint of visualization 

and exploratory data analysis, ICA seeks non-normal projections of the data which 

produce independent components.

The vast majority of the literature treats the classical (noise-free) ICA model without 

allowing for unique factors. In most applications, it might be more realistic to assume 

that the manifest variables contain some kind of specific variance as well as measure­

ment error. The introduction of unique factors in the ICA framework has led to the 

development of so-called noisy ICA models (e.g., Davies, 2004; Hyvarinen, Karhunen, 

and Oja, 2001). The noisy ICA formulation is very similar to EFA. The key differ­

ence between EFA and noisy ICA is that in the latter model the common factors are 

assumed to be both independent and non-normal. This assumption solves the rota­

tional indeterminacy of the EFA model (Mooijaart, 1985). The loading matrix can be 

identified up to trivial ambiguities and unlike EFA there is no need for further factor 

rotation. In fact, noisy ICA can be considered as one particular method for factor 

rotation, along with the traditional ‘simple structure’ rotation methods (e.g. Varimax) 

which originated in psychometrics (Hastie, Tibshirani, and Friedman, 2009).

This thesis contributes to this area by exploiting the link between noisy ICA and EFA 

with factor rotation. Starting from an initial EFA solution, an orthogonal rotation 

matrix is sought that minimizes the dependence between the common factors. The 

optimal rotation matrix found is then applied to the initial loading matrix to com­
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pensate for the rotation of the scores. This procedure fits the noisy ICA model and 

coincidentally finds uniquely identified factor loadings in EFA. In contrast to the stan­

dard noisy ICA model with random latent sources, it is assumed in this thesis that the 

common factors are fixed matrix parameters. This new method is named independent 

exploratory factor analysis.

Finally, the idea of rotating the scores towards independence is employed in three­

mode factor analysis. Standard ICA is based on two-way data matrices. Sometimes 

three-way data emerge, for instance, if n  subjects are measured on p variables on t oc­

casions. For analyzing three-way data sets, Beckmann and Smith (2005) and De Vos, 

De Lathauwer, and Van Huffel (2007) combined ICA and the three-way model of PAR- 

allel FACtor analysis (PARAFAC) (Harshman, 1970), also known as the CANonical 

DECOMPosition (CANDECOMP) model (Carroll and Chang, 1970). In this thesis, an 

alternative approach to ICA for three-way data is considered. The rotational freedom 

of the three-mode factor analysis (Tucker3) model (Kroonenberg and De Leeuw, 1980; 

Tucker, 1966) is exploited to implement ICA in one mode of the data.

The new theoretical and computational aspects contained in this thesis are illustrated 

by means of several examples with real and artificial data.

Computations in this thesis are carried out using the software package MATLAB 7.7.0 

(The MathWorks, 2008) on a PC under the Windows XP operating system with an 

Intel Pentium 4 CPU having 2.4 GHz clock frequency and 1 GB of RAM. All computer 

code used in the numerical experiments is available upon request.
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1.2 O utline o f th e  th esis

The thesis is organized as follows. Chapter 2 briefly outlines the continuous-time pro­

jected gradient method (Trendafilov, 2006) which is occasionally used in this thesis 

for studying and/or solving constrained matrix optimization problems. Chapter 3 de­

scribes the four related statistical techniques for dimensionality reduction of data which 

are referred to in this thesis: PCA, projection pursuit, noisy ICA, and EFA.

Part II entitled “EFA as Data Matrix Decomposition” begins in Chapter 4 with a 

literature review of procedures for fitting the EFA model with fixed common factors. 

Chapter 5 discusses algorithms for simultaneous estimation of all EFA model unknowns 

in the classical case of vertical data matrices (n > p). By means of the projected gra­

dient approach, first-order necessary conditions for the existence of the minimizers of 

the corresponding loss functions are established. Methods for EFA-like PCA for the 

case n > p are proposed in Chapter 6 . A comparison of the optimality conditions 

derived for EFA-like PCA to the ones for simultaneous EFA sheds light on when one 

can expect similar EFA and PCA solutions. The algorithms developed in Chapter 5 

and Chapter 6  are illustrated numerically with Harman’s five socio-economic variables 

data (Harman, 1976).

Chapter 7 covers the case of horizontal data matrices (p > n). Novel approaches for 

simultaneous estimation of all EFA model unknowns are introduced and an algorithm 

for EFA-like PCA is presented. The new approaches are illustrated with Thurstone’s 

26-variable box data (Thurstone, 1947) and a real large high-dimensional data set from 

atmospheric science. In Chapter 8 , a majorization algorithm for simultaneous param­

eter estimation in robust EFA is presented. An application to European health and
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fertility data shows the performance of the proposed approach. Chapter 9 concludes 

Part II by summarizing the main findings.

Part III entitled “Rotation Towards Independence in Factor Analysis” begins in Chap­

ter 10 with a literature review of procedures for fitting the noisy ICA model. The 

independent exploratory factor analysis method is introduced in Chapter 11. A fit­

ting solution for the new method is obtained by rotating an initial EFA solution such 

that the common factor scores are approximately independent. This is done using an 

appropriate rotation criterion and the projected gradient method. An application to 

Thurstone’s 26-variable box problem is presented.

In Chapter 12 a novel approach to ICA for three-way data is considered. By exploiting 

the rotational freedom of the Tucker3 model, ICA is implemented in one mode of the 

data. A simulation experiment illustrates the performance of the proposed approach 

under different conditions. Chapter 13 concludes Part III.

The current Chapter continues with defining some notation and introducing the pre­

liminary concepts of centring and scaling multivariate data.

1.3 N ota tion

Matrices and vectors are denoted by uppercase and lowercase letters in bold-faced type, 

A and a, respectively, and scalars by italics. A vector a  is considered to be a column 

vector. The transpose of A is denoted by A T; thus aT is a row vector. If A  is square, 

its determinant is written det(A) and the sum of its diagonal elements, the trace, is 

written trace(A). If A is nonsingular, its inverse is denoted by A -1 .

Subscripts to lowercase letters indicate elements of a matrix. For example, the (i, j)-th
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element of A is indicated by a^. An n x n diagonal matrix with elements c?i, cfy. . . ,  dn 

on its main diagonal is represented by diag(di, c?2 j • • • ,  dn). An identity matrix of order 

n  is denoted by In and a vector of n ones by l n. Analogously, an n  x p matrix of zeros 

is denoted by Onxp and a vector of n  zeros by 0 n.

The symbol R represents the set of real numbers. The vector space of all m  x n real 

matrices is denoted by Mmxn. For any matrix A  E Mmxn the rank of A  is written 

rank(A), the range space of A is denoted by range(A) and the null space of A  by 

null(A).

Random variables and their realizations are not distinguished by using uppercase and 

lowercase letters. This is because in the multivariate case the reader will be more con­

cerned about whether a vector or matrix of data is involved than with the distinction 

between random variables and their observed values.

If x is a random vector, then E(x) represents the expectation or mean of x. If x  is a 

p-dimensional random vector which is normally distributed with mean /j, = E(x) and 

covariance matrix E  =  E [(x — /x)(x — /z)T] , this is abbreviated a s x ~  A/^(/li, 51). 

Further symbols and definitions are introduced when necessary to clarify the presenta­

tion.

1.4 M ultivariate data and preprocessing

Let x  =  (x\ , . . . ,  xp)J be a p-dimensional random vector with population mean fx and 

population covariance matrix H. Throughout this thesis it is assumed tha t all variables 

are continuous.

Suppose that a sample of n realizations of x  is available. These np measurements Xij 

(i = 1 , . . . ,  n; j  = 1, . . .  ,p) can be collected in a data matrix X  =  (xp) , . . . ,  X(n))T =
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( x i , . . .  ,Xp) G M.nxp with =  (ar»i,. . .  , 2 ^ )  being the z-th observation vector (i = 

1 , . . . ,  n) and =  (x\ j , . . . ,  x nj )T being the vector of the n  measurements on the j -th 

variable (j  =  1 , ,p).

It will be useful in this and the subsequent Chapters to preprocess x  so tha t its com­

ponents have commensurate means. This is done by centring x, that is, x  <— x  — //. 

For the transformed vector x  it holds tha t E(x) = 0P. In a sample setting, the centred 

data matrix in which all columns have zero mean can be computed as

X  <- C„X  , (1.1)

where C n =  (In — n - 1 l nl j )  is the centring matrix. Unless specified otherwise, it is 

always assumed in the sequel that both x  and X  are mean-centred.

One can transform a mean-centred random vector or mean-centred data further such 

that its variables have commensurate scales. Let A  be the p x p diagonal matrix whose 

elements on the main diagonal are the same as those of X. The standardized random 

vector z with components having unit variance can be obtained as

z  =  A ~ 1/2x , (1.2)

where A - 1 ' 2  is the diagonal matrix whose diagonal entries are the inverses of the square 

roots of those of A . This procedure carries over to the sample case in a straightforward 

fashion. Let Sx — X TX / ( n—1) be the sample covariance matrix of X  and let D  denote 

the p x p diagonal matrix whose elements on the main diagonal are the same as those 

of Sx- The standardized data matrix Z with all its columns having variance equal to 

one can be computed as

Z =  X D "1/2 . (1.3)
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Thus, ZTZ / (n  — 1) is the sample correlation matrix. It will be found convenient in the 

later development to introduce a different form of scaling such that the variables are 

normalized to have unit length. One can obtain such a normalized matrix Z as

7 ,=  1  -XTT1 / 2 , (1.4)
yjn — 1

in which the columns have variance equal to I / ( n  — 1 ). One advantage of the scaling in 

(1.4) is that now ZTZ is the matrix of observed correlations so that division by (n — 1) 

is not required.



Chapter 2 

The Dynam ical System  Approach  
to Optim ization

Problems in multivariate statistics are often concerned with the optimization of matrix 

functions of structured (e.g. orthogonal) matrix unknowns. The dynamical system 

approach (Trendafilov, 2006) is a natural way of solving such optimization problems 

as it is especially designed to follow the geometry of the matrix parameters. It is a 

specific continuous-time method based on the classical gradient approach and modified 

for analyzing and solving constrained optimization problems. In Section 2.1 some 

rationale for the dynamical system approach is given. The four constrained manifolds 

used in this thesis are briefly discussed in Section 2 .2 .

2.1 R ationale

Let Y  be an arbitrary real matrix and let •77 (Y) denote an objective function to be 

minimized. In a continuous-time setting the gradient descent method for unconstrained 

optimization of F ( Y )  can be expressed by the following gradient dynamical system 

(Hirsh and Smale, 1974):

Y  (t) =  ®  =  -V .F (Y (i)) (2 .1 )

13
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together with the initial condition Y(0) =  Y 0, where t > 0 is a real variable interpreted 

as time and V J7 is the gradient of the objective function J7. The solution of the initial 

value problem for the matrix ordinary differential equation (ODE) of first order in (2.1) 

gives the curve (hereafter referred to as ‘flow’) Y (t) along the steepest descent direction 

leading to a minimizer of J7.

Assume that Y (t) is restricted to move on a certain Riemannian manifold M.  (Helmke 

and Moore, 1994). Since the gradient in (2 .1 ) is determined only by T  and not by the 

constraint manifold imposed, V^r(Y(t)) may move the flow Y (t) out of A4. In this 

case, the gradient projection method can be used instead (Chu and Driessel, 1990). Its 

aim is to keep the flow Y(t) following the steepest descent direction and moving on 

the constrained manifold simultaneously. Unlike (2.1), the projected gradient method 

is concerned with the following dynamical system (Trendafilov, 2006):

Y (t) =  -jr(V .F(Y (f))) , (2 .2 )

where ixiVJ7) denotes the projection of the gradient V.F(Y(t)) onto the tangent space 

of the feasible set A4. Chu and Driessel (1990) showed that ^ ( V J 7) is monotonically 

and globally decreasing along Y (£), i.e. convergence to a (local) minimizer is reached 

independently of the initial state Y 0.

2.2 C onstrained m anifolds

Let the feasible set M. be the manifold of all real p x k matrices with orthonormal 

columns, that is,

M  = 0(p,  k) := {T 6  Rpx'!|T t T  =  I*} (k < p) ,
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of which Stiefel (1935-1936) first studied the topological properties. The feasible set of 

all p  x k column-wise orthonormal matrices G(p, k) forms a smooth compact subman­

ifold in Rpxk whose dimension is given by dim((9(p, k)) — pk — (k + l )k /2  (Edelman, 

Arias, and Smith, 1998). Note that the compact Stiefel manifold of all p x k orthonor­

mal matrices is distinct from the non-compact Stiefel manifold of all p  x k matrices 

whose columns are linearly independent (Absil, Mahony, and Sepulchre, 2008; Helmke 

and Moore, 1994):

ST(p,  k) := {T G Rpxk\ rank(T) =  k} ( k < p )  .

The compact Stiefel manifold 0 ( p , k) can be regarded as being embedded in the pk- 

dimensional Euclidean space Rpxk equipped with the Frobenius inner product:

(A, B) := trace(A t B) (2.3)

for any A, B G Rpxk. Then, ||A ||^  =  (A, A )1/2 =  •y//trace(ATA) is the induced

Frobenius matrix norm of A. Suppose that T  depends on t such that, for all t > 0, 

T (t) forms a one-parameter family of p x k orthonormal matrices. Thus, T (t) can be 

regarded as a curve evolving on 0 ( p , k). To facilitate notation, T (t) is abbreviated to 

T  hereafter.

In the projected gradient approach the crucial step is to project the gradient of the 

objective function onto the feasible set of the optimization problem. The projection of 

an arbitrary G G Rpxk onto the tangent space TyO(p,  k) at T  G 0(p,  k) is given by 

(Edelman, Arias, and Smith, 1998):

ttt (G) =  T T  G ~ G T +  (Ip -  T T t )G . (2.4)

For orthogonal matrices with p = k, let

0(k)  := {T G Mfcxfc|T TT  -  T T t =  I*} (2.5)
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be defined as the set of all k x k orthogonal matrices which forms a smooth manifold

with dim(0(A;)) =  k(k  — l) /2  in R kxk. The projection of an arbitrary G G M.kxk onto 

the tangent space T^O(k)  at T  G O(k)  is given by (Jennrich, 2001):

The set OB(k)  is the set of square oblique matrices T  which forms a smooth manifold 

with d\m(OB(k)) = k(k — 1) in Mkxk. The projection of an arbitrary G G M.kxk onto 

the tangent space TyOB(k)  at T  G OB(k)  is given by (Jennrich, 2002):

mization problem under consideration. For example, first-order necessary conditions 

for the existence of stationary points can easily be derived.

The computational procedures require numerical integrators for solving initial value 

problems for matrix ODEs. They are implemented in MATLAB (The Math Works, 

2008). Throughout the thesis, the solver used for the initial value problems is o d e l5 s  

from the MATLAB in-built ODE suite (Shampine and Reichelt, 1997). The code 

o d e l5 s  is a quasi-constant step size implementation of the Klopfenstein-Shampine fam­

ily of numerical differential formulae for stiff systems (Shampine and Reichelt, 1997). 

The integration of the matrix ODEs is terminated when the relative improvement of 

the objective function between two consecutive output points is less than 10~7, indi-

(2.6)

Finally, let OB(k)  be the set of all non-singular k x k matrices T  with columns of

length one, that is,

OB(k)  := {T 6 Mfcxfc|diag(TTT) =  I fc} . (2.7)

ttt (G) =  G  -  T  diag(TTG) . (2 .8)

The dynamical system approach can also give qualitative information about the opti-
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eating tha t a local minimizer has been found. This stopping criterion is used to control 

the accuracy in following the solution path.



Chapter 3

Dim ensionality Reduction  
Techniques in Unsupervised  
Learning

All the techniques described in this Chapter aim to reduce the dimensionality of a set 

of data. Given a set of p observed variables, the aim is to find a A;-dimensional (k p) 

representation of it, while retaining as much as possible of the information present in 

the original set, according to some criterion. Since all the techniques have in common 

that the representation of the data is explored without an a priori output measure, they 

can be classified as unsupervised learning (Hastie, Tibshirani, and Friedman, 2009). 

Both PCA and projection pursuit are viewed as merely descriptive methods concerned 

with summarizing a data matrix in a manner which expresses its structure in a smaller 

number of dimensions. In contrast, EFA and noisy ICA are both latent variable models, 

that is, they attempt to achieve a reduction from p to k dimensions by invoking a 

statistical model relating the p observed variables to k latent variables.

All four methods can be described in a population or a sample setting. For PCA 

and projection pursuit the descriptions are given in a sample setting in Section 3.1. 

In Section 3.2, the model-based techniques noisy ICA and EFA are outlined in both 

population and sample settings.

18
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3.1 D escrip tive m ethods

3.1 .1  P rin cip a l com p on en t an a lysis

Principal component analysis (e.g., Jolliffe, 2002) is the most popular multivariate 

technique for reducing the dimensionality of a data set. Let X  =  (x ^ ),. . .  ,X(n))T G 

M.nxp be a given data matrix with sample covariance matrix Sx- The aim of PCA is 

to derive k  (<C p) uncorrelated linear combinations of the p-dimensional observation 

vectors x p ) , . . .  , X(n), called the sample principal components (PCs), which retain most 

of the total variation present in the data. This is achieved by taking those k components 

that successively have maximum variance, that is, PCA looks for k vectors G M?xl 

(j =  1 , . . . ,  k) which

maximize e j  S x ^

subject to eJ ej =  1 for j  =  1 , . . . ,  k and (3.1)

e 7 e j  =  0  for i =  1 , . . . ,  j  — 1 (j > 2) . (3.2)

It turns out that =  X ej is the j- th  sample PC with zero mean and variance tOj, where 

ej is an eigenvector of Sx corresponding to its j -th largest eigenvalue ujj (j = 1 , . . . ,  k). 

The condition (3.2) ensures that the sample PCs are uncorrelated.

The sample PCs can be found efficiently using the singular value decomposition (SVD) 

of X  (e.g., Golub and Van Loan, 1996). Assume that X  has rank r  with r < min{n,p}. 

Expressing X  by its SVD gives

r

X =  V D E T =  , (3.3)
j =1

where V  =  (vl5. . . ,  v r ) G Rnxr and E  =  (e i , . . . ,  er) G Rpxr are orthonormal matrices

such that V TV  =  E TE =  I r , and D  G Rrxr is a diagonal matrix with the singular
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values of X  sorted in decreasing order, crj > cr2 > ■. > crr >  0, on its main diagonal. 

The matrix E  in (3.3) is the matrix of coefficients or loadings and the matrix of com­

ponent scores Y  G Rnxr is given by Y  — VD. Since it holds tha t E TE  =  Ir and 

Y t Y /  (n—1) =  D 2/ (n— 1), the loadings are orthogonal and the sample PCs are uncorre­

lated. The variance of the j -th sample PC is Oj/ (n—l) which is equal to the j- th  largest 

eigenvalue, Uj, of Sx {j =  1, • • •, r). In practice, the leading k  components with 

usually account for a substantial proportion, (cuH b / t r a c e ( S x ) ,  of the total vari­

ance in the data (say 80%) and the sum in (3.3) is therefore truncated after the first k 

terms. If so, PCA comes down to finding a matrix Y  =  (yl5. . . ,  y k) G Mnxfc of compo­

nent scores of the n samples on the k components and a matrix E  =  ( e i , . . . ,  e*,) G RpxA: 

of coefficients whose k-th column is the vector of loadings for the A;-th component.

Due to the least squares property of the SVD (Eckart and Young, 1936), PCA can be 

defined as the minimization of

I | X - Y E t | £ .  (3.4)

Note that PCA is not scale-invariant. When variables are measured on different scales 

or on a common scale with widely differing ranges, the data are often standardized prior 

to PCA. Basically, the sample PCs are then obtained from an eigenvalue decomposition 

of the sample correlation matrix. These components are not equal to those derived from 

Sx and knowledge of one set does not allow simple transformation to the other set (e.g., 

Krzanowski, 1988).

To enhance interpretation of the sample PCs, it is common in PCA to rotate the 

matrix of loadings by optimizing a certain ‘simplicity’ criterion (e.g., Richman, 1986, 

see also Chapter 11 in this thesis). The method of rotation emerged in EFA and was
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motivated both by solving the rotational indeterminacy problem and by facilitating 

the factors’ interpretation (Browne, 2001). Rotation can be performed either in an 

orthogonal or an oblique (non-orthogonal) fashion. Several analytic orthogonal and 

oblique rotation criteria exist in the literature (e.g., Browne, 2001; Richman, 1986). 

To aid interpretation, all criteria are designed to make the coefficients as simple as 

possible in some sense, with most loadings made to have values either ‘close to zero’ 

or ‘far from zero’, and with as few as possible of the coefficients taking intermediate 

values. However, after rotation, either one or both of the properties possessed by PCA, 

that is, orthogonality of the loadings and uncorrelatedness of the component scores, is 

lost.

3.1 .2  P ro jec tio n  p ursu it

Principal component analysis provides a computationally efficient way of projecting the 

p-dimensional data cloud orthogonally onto a /c-dimensional subspace. However, the 

variance-maximization projection accomplished by PCA does not necessarily afford the 

most informative view of the structure of multivariate data (Bolton and Krzanowski, 

1999). Various other possibilities exist to provide representations of the data based on 

subspace projection. Projection pursuit (Friedman and Tukey, 1974) is concerned with 

finding ‘interesting’ low-dimensional projections of multivariate data in which features 

such as clusters or outliers can be detected (see also Friedman, 1987; Huber, 1985; 

Jones and Sibson, 1987). Since in practice a graphical display of the projections is the 

output of choice, the projections are typically 1-, 2-, or 3-dimensional (Nason, 1992). 

To form a linear projection of the n x p  data matrix X  onto the real line, a p-dimensional 

vector a is specified with the constraint aTa =  1. The projected data is formed by Xa.
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For an orthogonal projection onto a space of k (k <C p) dimensions greater than one, a 

p  x k matrix A  with A TA =  I* is required. The projected data is formed by XA. 

Projection pursuit works by associating a function value Z(XA) to each and every 

low-dimensional projection. This function value is, say, large for projections revealing 

interesting structure, and small for uninteresting ones. Interesting projections are then 

revealed by optimizing the criterion over all possible projections. The function X  is 

called the projection index. A special case of a projection pursuit technique is PCA in 

which the index of interestingness is the variance of the projected data. This is one of 

the few available indices that can be optimized analytically.

Since PCA investigates the covariance structure of the data, there is no need for pro­

jection pursuit to do the same. Therefore, before the application of projection pursuit, 

it is common practice (e.g., Nason, 1992) to preprocess the data X  by a linear trans­

formation to have identity sample covariance matrix. This transformation is called 

sphering (or whitening) (Tukey and Tukey, 1981) and can be carried out as follows. 

Let Sx be positive semi-definite with rank(Sx) =  r (r < p) and let the eigenvalue 

decomposition of Sx be

r
Sx =  E n E T =  y ] w ie«e,T , (3.5)

i — 1

where O =  diag(cji,. . .  , u r) is an r x r diagonal matrix containing the positive eigen­

values of Sx, <̂ i >  * • • >  wr > 0, on its main diagonal and E  G Mpxr is an orthonor­

mal matrix whose columns e i , . . . ,  er are the corresponding unit-norm eigenvectors of

UJi,  . . . ,LUr .

The sphered data matrix X  G Mnxr can be obtained by

X  =  X E f i-1/2 =  X W  , (3.6)
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where W  =  Ef2 1//2 G Mpxr is the sphering matrix. Let S-  ̂ =  X TX /(n  — 1) be the 

covariance matrix of X. For S-  ̂ it holds that

Sx = rr1/2ETsxErr1/2 =  n~1/2ETEnETEn_1/2 =  i r , (3.7)

as desired. Since all orthogonal projections of sphered centered data inherit the prop­

erties of zero mean and identity covariance matrix, W  =  Ef2~1//2 is by no means the 

only choice for a sphering matrix.

The transformation in (3.6) is equivalent to computing the sample PCs of X  and then 

rescaling each of the sample PCs to have unit variance. To reduce the dimensionality 

of the data to k (<C r) dimensions, only the first k sphered components need to be 

retained and the sum in (3.5) is truncated after k terms, where k is chosen to explain a 

certain proportion of the total variance. Sphering then comes down to finding a matrix 

W  G M.pxh and a transformed data matrix X  G M.nxk with S^ =  I*,.

A more detailed discussion of sphering for projection pursuit can be found in Jones 

and Sibson (1987) and Nason (1992) (see also the comments of Gower and of Hastie 

and Tibshirani in the discussion of Jones and Sibson, 1987).

Once a sphered data matrix X  has been obtained, projection pursuit essentially consists 

of the following two-step procedure:

1. Choose a projection index X  to judge the merit of a particular fc-dimensional 

projection of X.

2. Use an optimization algorithm to find the local optima of X  chosen in step 1 over 

all A;-dimensional projections of X. This step determines the most informative 

A-dimensional projection of the data.
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Most techniques in projection pursuit start from the premise tha t normality represents 

the notion of ‘uninterestingness’. This is due to the fact that most low-dimensional 

projections of high-dimensional data look approximately normally distributed (Diaco- 

nis and Freedman, 1984). The projection pursuit indices are thus optimized to find 

projections showing departures from normality. Examples of projection pursuit indices 

frequently used include cumulant-based indices and negative entropy (negentropy) (see 

also Chapter 10).

3.2 Latent variable m odels

3 .2 .1  N o isy  in d ep en d en t com p on en t an alysis

Independent component analysis (e.g., Hyvarinen, Karhunen, and Oja, 2001) is a model 

that seeks to uncover latent sources underlying a set of observed signal mixtures. In 

particular, ICA offers a methodology for doing what is called ‘blind source separation’ 

(e.g., Izenman, 2008, Chapter 15). The blind source separation problem consists in 

the recovery of unknown independent signals from observed linear combinations of 

them. The adjective ‘blind’ signifies that almost no information about the sources’ 

distribution and the mixing process is known. An illustration of blind source separation 

is the ‘cocktail-party problem’ (e.g., Hyvarinen, Karhunen, and Oja, 2001) in which 

the speech of several people is received from microphones present in the room. The 

task is to recover the speech of the individual speakers from the overlapped talk. 

Assume that x  E MPxl is a random vector of manifest variables. First, consider the 

noise-free ICA model (e.g., Comon, 1994) which states that x  can be modeled as

x  =  M £ , (3.8)
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where £ G RArxl is a random vector of k <  p  latent variables called sources or compo­

nents and M  G Rpxk is a mixing matrix of fixed coefficients. Assume that the mixing 

matrix M  has full column rank. Furthermore, suppose that the components of £ have 

zero mean and unit variance. Finally, let £ consist of mutually independent sources of 

which at most one is Gaussian, and whose densities are square integrable.

Given a data matrix X  =  ( x i , . . .  ,Xp) G Mnxp of n  observations on x, the noise-free 

ICA model holds if X  can be written as

X  =  S M t , (3.9)

where E  =  € R "xfc is the unknown matrix of scores for the k  sources on

the n observations. The notation here follows the convention established in Section 1.4. 

The aim of ICA is to estimate M  and hence recover S. In noise-free ICA the elements

of M  (and hence S) can only be identified up to ambiguities in permutation and sign

(Robitzsch, 2003). In other words, a separating (unmixing) matrix B  G M.kxp is sought 

such that

B M  =  n , (3.10)

where I I  G ~Rkxk is a generalized permutation matrix (e.g., Liitkepohl, 1996) whose 

nonzero entries are dtl. If the sources are not standardized to have equal variance, 

then M  is unique up to permutation and scaling ambiguities (Robitzsch, 2003).

Before carrying out ICA, the data are typically sphered (e.g., Hyvarinen, Karhunen, 

and Oja, 2001) as in projection pursuit and the dimensionality of the data is reduced 

from p to k dimensions. Since sphering is essentially decorrelation followed by scaling, 

PCA is used for this preprocessing step. Postmultiplying X  by the sphering matrix
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W  £ M.pxk introduced in the previous Section, (3.9) becomes

X  =  S M t W  =  S M T , (3.11)

where M  =  W TM  is the new orthogonal mixing matrix. Indeed:

Sx =  - 2—  X TX  =  M —-— S t S M T =  MI*MT =  M M T =  Ik . (3.12)
72— 1 72 —  1

Thus, the search for the mixing matrix is confined to the set of orthogonal matrices. 

In other words, the search for the separating matrix B amounts to looking for an or­

thogonal matrix T such that T t M  =  II.

Sphering aids understanding of why ICA is not able to find T for normally distributed 

data. In Figure 3.1, 1000 realizations of two independent components both generated 

from a standard normal distribution are linearly mixed using a random mixing matrix 

M. Since the sphered data has circular symmetry, the orthogonal matrix T  cannot 

be found for normal data. In other words, the ICA model is not identifiable for in­

dependent Gaussian sources. This phenomenon is related to the property that jointly 

uncorrelated normal random variables are independent. It turns out that for T to be 

identifiable at most one source is allowed to be normally distributed (Robitzsch, 2003). 

The sphering operation also shows the relation between PCA and ICA. Principal com­

ponent analysis decorrelates the data using second-order information contained in the 

sample covariance matrix. That is, PCA is able to transform any linear mixture of 

independent components into uncorrelated components. However, the sphering matrix 

W  only determines the sources up to an orthogonal transformation. Unlike PCA, ICA 

not only decorrelates the data, i.e. it goes one step further and finds the orthogonal 

transformation T that is left after decorrelation.

One main estimation principle for finding T is ‘non-linear decorrelation’ (Hyvarinen,
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Figure 3.1: ICA of Gaussian data: (i) original data; (ii) after mixing; (iii) sphered data; 

(iv) reconstruction by ICA.

Karhunen, and Oja, 2001). Let f i b e  a sequence of independent univariate ran­

dom variables. For the £* (i = 1 , . . . ,  k) it holds that (e.g., Casella and Berger, 2002, 

pp. 154-155):

=  E[ff(&)]E[fc(&)] for i ±  j  ,

where #(&) and h(£j) are any absolutely integrable functions of & and £j, respectively. 

Hence, independence implies non-linear uncorrelatedness. Thus, one could attem pt to 

implement ICA by a stronger form of decorrelation where the recovered components are 

uncorrelated even after some non-linear transformation. If the non-linearities are cho­

sen properly, the independent components can be recovered approximately (Hyvarinen,
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Karhunen, and Oja, 2001). Using the sample covariance matrix one can only decor­

relate the data in the linear sense. Following the principle of non-linear decorrelation 

one has to use some form of supplementary (higher-order) information not contained 

in the sample covariance matrix.

Another main estimation principle is ‘maximization of non-normality’. This principle 

is based on Lyapunov’s central limit theorem (e.g., Pawitan, 2001, pp. 233-234). As­

sume that f i , . . . ,  are independent but not necessarily identically distributed random 

variables. Suppose that each (i =  1, . . . ,  k) has finite expected value pi and finite 

variance erf, with at least one erf >  0. Suppose that the third absolute central moments, 

E(|X Z- — pi |3), are finite for each i and that Lyapunov’s condition is satisfied:

Let the random variable S k  =  fi 4-------\-£k  denote the K -th partial sum of £ i , . . . ,

Then, for the normalized partial sum it holds that

suggesting that a sum of two or more independent non-normal random variables is 

closer to the normal distribution than the original ones (see also Diaconis and Freed­

man, 1984). In ICA, take a linear combination of the observed mixture variables which, 

in turn, is also a linear combination of the independent components. This linear combi­

nation of two or more independent sources is usually closer to the normal distribution 

than any of the original sources and will be maximally non-normal if it is in fact one 

of the independent components. Estimating the independent components can there­

fore be accomplished by finding the linear combination of the mixture variables which 

maximizes its non-normality. It has been argued that even for a fairly small number



Dimensionality Reduction Techniques in Unsupervised Learning 29

of sources (say, k = 10) the distribution of the linear mixture is usually close to the 

normal. This seems to hold even if the densities of the sources are far from each other 

and are far from being normal (Hyvarinen, Karhunen, and Oja, 2001, p. 35). This 

principle of maximization of non-normality shows the close connection between ICA 

and projection pursuit. Whereas projection pursuit looks merely for non-normal pro­

jections of the data, ICA seeks for both non-normal and independent components. 

Solving the ICA problem is usually performed by specifying a criterion (called the 

objective or contrast function) for measuring the departure from normality and/or in­

dependence and then constructing an algorithm for optimizing this criterion. Criteria 

for measuring independence/non-normality will be discussed in Chapter 10. For a con­

cise summary of optimization algorithms in noise-free ICA, the reader is referred to 

Izenman (2008) and the references therein.

The vast majority of the relevant literature treats the noise-free ICA model. However, 

often it is more realistic to assume that observations consist of a mixture of signals 

contaminated by some kind of measurement error and/or that the manifest variables 

have some specific variance which cannot be accounted for by the latent sources. In 

ICA, measurement error is referred to as noise and the introduction of noise in the 

ICA framework has led to the development of so-called noisy ICA models (e.g., Davies, 

2004; Hyvarinen, Karhunen, and Oja, 2001). The linear noisy ICA model is defined as 

the following latent variable model (e.g., Hyvarinen, Karhunen, and Oja, 2001):

x  =  M £ +  u  , (3.13)

where u  E Rpxl is a random vector of observational noise. In the sequel, to emphasize 

that the components of u  contain noise specific to the corresponding observed variable,
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u will be referred to as a vector of unique factors. Assume that u  ~  A/ ,̂(0, \I/2), where 

\I/2 is assumed to be a positive definite diagonal matrix. Finally, suppose that E(£uT) =  

OkxP- That is, the unique factors are normally distributed with diagonal covariance 

matrix \F2 and are uncorrelated from the latent sources. In the ICA literature it is 

often assumed that the unique factors have homoscedastic variance o2 and hence \I/2 is 

simply of the form o2lp (Hyvarinen, Karhunen, and Oja, 2001). For many applications 

this may be too restrictive. Here, the unique variances are allowed to vary across the 

manifest variables.

In noisy ICA the mixing matrix M  is still unique up to ambiguities in permutation and 

sign (Robitzsch, 2003). In sample form the noisy ICA model can be written as

X  =  E M T + U ,  (3.14)

where U  =  (ul5. . . ,  up) € Mnxp is the unknown matrix of scores of the n  observations 

on the p unique factors. The notation again follows the convention established in 

Section 1.4. The aim of noisy ICA is to estimate M  and recover E. However, due 

to the existence of U  in (3.14), knowledge of M  does not give direct access to S  as 

in noise-free ICA. This means that apart from estimating the mixing matrix M  one 

requires a method for estimating the realizations of the independent components E. 

This makes the noisy ICA problem much more difficult to solve. Procedures for fitting 

the noisy ICA model will be discussed in Chapter 10. The noisy ICA model is closely 

related to EFA which is discussed in the following.
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3.2 .2  E xp loratory  factor analysis

It is customary to work with standardized variables in this context, so we shall do so 

in the sequel. Let z G M.pxl be a random vector of standardized observed variables as 

defined in (1.2). Suppose that the EFA model (e.g., Lawley and Maxwell, 1971) holds 

which states that z can be written in the form:

z =  A f -f u  , (3.15)

where f  G Mfcxl is a vector of k (k p) common factors, A G MPxk with rank(A) =  k 

is a matrix of fixed coefficients referred to as factor loadings, and u  G MPxl is a vector 

of unique factors. The choice of k in EFA is subject to some limitations (Ledermann, 

1937) which will not be discussed here. Assume that E(f) =  0^ and E(u) =  0P. Fur­

thermore, let E (uuT) =  3>2, where T?2 is assumed to be a positive definite diagonal 

matrix. Finally, suppose that E(ffT) =  I*, and E(fuT) =  0^ xp. Hence, all factors are 

uncorrelated with one another. Under these assumptions, the model in (3.15) repre­

sents an EFA model with uncorrelated or orthogonal (random) common factors. 

Unlike the above EFA model with random factors, the fixed EFA model considers f  

to be a vector of non-random quantities or parameters which vary from one case to 

another (Anderson and Rubin, 1956; Lawley, 1942).

The idea behind model (3.15) is tha t the common factors account for the covariance 

structure among the set of manifest variables, while each unique factor corresponds 

to that portion of a particular observed variable that cannot be accounted for by the 

common factors. As such, a unique factor contains the specificity of th a t variable as 

well as errors in measurement or noise.

For the random EFA model, it is often convenient to assume that u  and f  and hence
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z are multinorm ally distributed. This assumption is usually made in order that maxi­

mum likelihood estimation can be used and for purposes of statistical inference (Mardia, 

Kent, and Bibby, 1979). As the elements of f  are uncorrelated, the assumption of nor­

mality means that they are statistically independent random variables.

In contrast, noisy ICA assumes that the k sources are both mutually independent and 

non-normal, or that at least all but one of them are non-normal. Apart from this 

difference, the EFA model (3.15) is virtually identical to the noisy ICA model (3.13), 

where the common factors f  correspond to the sources £ and the factor loadings A to 

the mixing matrix M.

For the purposes of this thesis an alternative representation of the EFA model is em­

ployed in the sequel which is also used in the psychometric literature (e.g., Harman, 

1976; Mulaik, 1972; Yates, 1987). The standard EFA model (3.15) can be rewritten as

z =  A f +  \I/u . (3.16)

Assume that E(uuT) =  Ip and ^  is a diagonal matrix of fixed coefficients called unique­

nesses. Then, the model representation (3.16) is equivalent to model (3.15) in which 

E (u u t ) =  Tf 2 .

The EFA model (3.16) and the associated assumptions imply the following model cor­

relation structure © for the observed variables:

0  =  AAt +  ^ 2 . (3.17)

The converse also holds. If 0  can be decomposed into the form (3.17) then the /c-factor 

model holds for z (Mardia, Kent, and Bibby, 1979).

If the A;-factor model holds then it also holds if the factors are rotated. If T is an
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arbitrary orthogonal k  x k matrix, (3.16) may be rewritten as

z =  A T T xf  +  ’S'u , (3.18)

which is a model with loading matrix A T and common factors T Tf. The assumptions 

about the variables that make up the original model are not violated by this transfor­

mation. Thus, if (3.18) holds, 0  can be written as © =  (A T )(T t At ) +  \F2, that is, 

for fixed and k >  1 there is a rotational indeterminacy in the decomposition of © 

in terms of A and \F. This means that there is an infinite number of factor loadings 

satisfying the original assumptions of the model. In other words, the parameters of the 

EFA model cannot be identified uniquely from second-order cross products (covariances 

or correlations) only.

Consequently, to ensure a unique solution for the model unknowns A and T' additional

constraints such as e.g. ATA or ATTr_2A being a diagonal matrix are imposed on

the parameters in the original model (Joreskog, 1977). These constraints eliminate the 

indeterminacy in (3.17), but such solutions are usually difficult to interpret. Instead, 

the parameter estimation is usually followed by some kind of rotation of A to some 

structure with specific features (e.g., Browne, 2001, see also Chapter 11 in this thesis). 

Suppose that a sample of n  observations on z is available. Collect these measurements 

in a data matrix Z =  (z i , . . . ,  zp) £ Mnxp in which zj =  (zi j , . . . ,  znj )T (j  — 1, ,p).  

The A;-factor model holds if Z can be written in the form:

Z =  FA t +  ITF , (3.19)

where F  =  (f1}. . . ,  fy) £ Rnxfc and U  =  (ul7. . . ,  up) £ Mnxp denote the unknown 

matrices of factor scores for the k common factors and p unique factors on n obser­

vations, respectively. The notation again follows the convention established in Section
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1.4. W ithout changing notation, assume that the columns of Z, F  and U  are scaled to 

have unit length. Suppose that rank(A) =  k , F TF  =  I*., U TU  =  Ip, U TF  =  OpXk and 

tha t is a diagonal matrix.

In standard EFA (with random common factors), a pair {A, \Ir} is sought which gives 

the best fit, for some specified value of k, to the sample correlation matrix ZTZ with 

respect to some discrepancy measure. The process of finding this pair is called factor 

extraction. Various factor extraction methods have been proposed (e.g., Harman, 1976; 

Mulaik, 1972). If the data are assumed normally distributed the maximum likelihood 

principle is preferred. Then the factor extraction problem can be formulated as opti­

mization of a certain log-likelihood function which is equivalent to the following fitting 

problem (Magnus and Neudecker, 1988):

min log(det(AAT +  1F 2)) +  trace((AAT +  4/2)_1(ZTZ)) , (3.20)
A,^F

referred to as maximum likelihood (ML) factor analysis. It is worth mentioning that 

the loadings found by ML factor analysis for a correlation matrix are equivalent to 

those for the corresponding covariance matrix, that is, in contrast to PCA, ML factor 

analysis is scale invariant (Mardia, Kent, and Bibby, 1979).

If nothing is assumed about the distribution of the data, (3.20) can still be used as

one way of measuring the discrepancy between the model and the sample correlation

matrix. There are a number of other discrepancy measures which are used in place of

(3.20). A natural choice is the least squares approach for fitting the EFA model. It 

can be formulated as the following general class of WLS problems (Bartholomew and 

Knott, 1999):

min| | (ZTZ —AAX —<f-2)r||J. , (3.21)
A,4/
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where T is a matrix of weights. The case T = @_1 is known as generalized least squares 

(GLS) factor analysis. If T = Ip, (3.21) reduces to an unweighted LS optimization 

problem. The standard numerical solutions of the optimization problems (3.20) and

(3.21) are iterative, usually based on a Newton-Raphson procedure. Alternatively, 

the appropriate discrepancy function is minimized over one of the unknowns of the 

problem, keeping the other one fixed (Joreskog, 1967, 1977; Lawley and Maxwell, 1971). 

An expectation maximization (EM) algorithm (Dempster, Laird, and Rubin, 1977) for 

solving (3.20) was developed by Rubin and Thayer (1982).

Suppose that a pair {A, Sfr} is obtained by solving the factor extraction problem stated 

above. Then, common factor scores can be computed as a function of Z, A and 

possibly ^  in a number of ways (e.g., Harman, 1976; Mulaik, 1972). The most popular 

one minimizes the discrepancies between the true and estimated factor scores in a least 

squares sense (Thurstone, 1935) and leads to linear regression of F  on the data Z, i.e.:

F r = Z(Zt Z )-2A . (3.22)

Equation (3.22) may be put in the alternative form (Ledermann, 1939):

Fl = ZTf -2A ( I k +  A t 'S'-2A)~1 , (3.23)

which requires computing the inverse of a k x k matrix instead of a p x p matrix as in

(3.22). An alternative to the regression method has been proposed by Bartlett (1937). 

It requires minimization of the sum of squares of the unique factors weighted by the 

reciprocal of their variances, i.e. it minimizes:

trace(Z -  FA t )T '"2(Z -  FA T)T , (3.24)

which gives

F b = ZTf -2A { A T^ ~ 2A ) - 1 . (3.25)
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It seems rather disappointing to obtain non-orthogonal common factors F^, F l and F# 

when considering an EFA model with orthogonal factors. Orthogonality of the factor 

scores can be achieved for F #  if (3.24) is minimized subject to the constraint F TF  =  I fc. 

This leads to the modification of Bartlett’s factor scores proposed by Anderson and 

Rubin (1956):

F ar = Z ^ - 2A(At ^ " 2(Zt Z ) ^ - 2A )-1/2 , (3.26)

which satisfies the correlation-preserving constraint F ^ F ^ #  =  I*. Note that (3.26) 

and (3.24) are undefined if SI/ is singular, a situation not uncommon in practice. 

Strictly speaking, the term ‘estimation’ when applied to common and unique factors 

means that they cannot be identified uniquely, rather than obtaining them in a standard 

procedure for finding particular sample statistics. This form of indeterminacy is known 

as ‘factor indeterminacy’ (e.g., Mulaik, 1972, 2005). This indeterminacy is due to the 

fact that the EFA model postulates the existence of k common and p  unique factors 

such that the p observed variables can be represented as their linear combinations. 

Thus, the scores of the n  observations on the common and unique factors are not 

uniquely identifiable. Guttman (1955) showed that an infinite set of scores for the 

common and unique factors can be constructed satisfying the EFA model equation 

and its constraints (see also Kestelman, 1952). Following G uttm an’s approach and 

assuming that the common factors are orthogonal one can consider (Mulaik, 2005):

F g =  Z(Zt Z )-1A +  SG (3.27)

and

U G =  Z(ZTZ )-1^  -  SG AT\I>_1 , (3.28)
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where S is an arbitrary n x k matrix satisfying (McDonald, 1979):

STS =  I* and STZ =  Opxk . (3.29)

In other words, S is an orthonormal matrix orthogonal in Rn to the data Z, i.e. the 

subspace spanned by S is orthogonal to the subspace spanned by Z. One way to find 

such S is by the QR decomposition of Z (e.g., Golub and Van Loan, 1996):

Z =  QR =  [Q„xp Q J R  ,

where Q G Rnxn is orthogonal, R  G Mnxp is upper triangular, the columns of Q nxp 

form an orthonormal basis for range(Z) and the columns of the n x (n — p) matrix 

Q ± form an orthonormal basis for null(Z). Then, S can be formed by taking any k 

columns of Q± , assuming that k < n — p.

The matrix G in (3.27) and (3.28) is “any k x k Gram factor of the residual covariance 

matrix for the common factors after the parts of them predictable by linear regression 

from the observed variables have been partialed out” (Mulaik, 2005, p. 181), i.e.:

G t G =  l k -  F TRF R = l k -  At (Zt Z )-1A , (3.30)

where I t — AT(Z Z)-1A is assumed positive semi-definite (McDonald, 1979).

One can check by direct substitution of (3.27) and (3.28) into (3.19) that the EFA model 

equation is satisfied. Also, according to the EFA model requirements the following
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properties are fulfilled: F jF c  =  I*, U jU G =  Ip and F JU g  =  OfcXp. For example:

U jU G =  [Z(Zt Z)“1'F - S G A t ’F - 1] T [Z(Zt Z )-1'4 '- S G A t '®'-1]

=  ’S'(ZTZ )"1® +  * _1A G TGAT®_1 

=  ®(ZTZ )-1^  +  ® -1AAt ’®'-1 -  ® -1AAt (Zt Z )-1AAt '®'-1 

=  ® (ZTZ )-1$  +  ® “1AAt ’4'“ 1 -  'F "1(Zt Z -  ®2)(ZTZ)_1AAT® _1 

=  ’S'(ZTZ)“1’®> +  ® (Zt Z)“ 1AAt 'F - 1 

=  Ip.

Note that the expressions in (3.27) and (3.28) imply Zt F g  =  A and Zt U g =  'h (and 

thus diagonal). Guttm an’s approach to finding factor scores does not suffer from 

the common weakness of F ar which requires \I/ being nonsingular. Unfortunately, this 

requirement is still needed to find the unique factors U^.

In the sequel, the common factors are assumed to be fixed population parameters and 

the EFA model is considered as a specific data matrix decomposition. Unlike factoring 

a correlation matrix, a decomposition of the data matrix yield simultaneous solutions 

for both loadings and factor scores. In the next Chapter, a review of procedures for 

fitting the EFA model with fixed common factors is presented.



Part II

EFA as D ata M atrix D ecom position
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Chapter 4 

Fitting the fixed EFA m odel

Lawley (1942) introduced an EFA model in which both the common factors and the 

factor loadings are treated as fixed unknown quantities. To fit the EFA model with 

fixed common factors, Lawley (1942) proposed to maximize the log-likelihood of the 

data (see also Young, 1941):

71
£ i =  - -  [log(27r) +  log(det(^2)) +  trace(Z -  FA T) ^ ~ 2(Z -  FA T)T] . (4.1)

Instead of maximizing (4.1), one might try to minimize the function

£2 =  — £1 +  — log(27r) , 
n 2

= 1 [log(det($2)) +  trace(Z -  FA T) ^ ~ 2(Z -  F A T)T] . (4.2)

Anderson and Rubin (1956) showed that the fixed EFA model cannot be fitted to the 

data by the standard maximum likelihood approach as the corresponding log-likelihood 

loss function (4.2)' to be minimized is unbounded below. Hence, maximum-likelihood 

estimators do not exist for the fixed EFA model.

Attempts to find estimators for loadings and factor scores based on the likelihood 

have persisted (Whittle, 1952; Joreskog, 1962), based partly on the conjecture that 

the loadings for the fixed EFA model would resemble those of the random EFA model 

(Basilevsky, 1994). McDonald (1979) circumvented the difficulty noted by Anderson

40
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and Rubin (1956) in the original treatment of the fixed EFA model by Lawley (1942). 

He proposed to minimize the logarithm of the ratio of the likelihood under the hypothe­

sized model to the likelihood under the alternative hypothesis that the error covariance 

matrix is any positive definite matrix:

£ 3  =  1 [log(det(diag(ETE))) -  log(det(ETE))] , (4.3)

where E  =  Z — FA T. McDonald (1979) showed that (4.3) is bounded below by zero, 

a bound which is attained only if E TE is diagonal. Thus, minimizing (4.3) yields 

maximum-likelihood-ratio estimators (see also Etezadi-Amoli and McDonald, 1983). 

Moreover, McDonald (1979) proved that the likelihood-based estimators of the factor 

loadings and uniquenesses are the same as in the random EFA model, while estimators 

of the common factor scores are the same as the arbitrary solutions given by Guttman 

(1955) discussed in the previous Chapter.

McDonald (1979) also studied LS fitting of the fixed EFA model. Consider the following 

objective function to be minimized:

^ mcd(F ,A ,® ) =  I I ( Z - F A t )t ( Z - F A t ) - ^ 2| | | .  (4.4)

Unlike the log-likelihood loss function (4.2), the LS loss function (4.4) is bounded below 

(Golub and Van Loan, 1996, p. 605). McDonald (1979) showed tha t the parameter 

estimates found by minimizing (4.4) can be compared to the standard EFA least squares 

estimates (with random common factors) obtained by minimizing (e.g. Joreskog, 1977):
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Indeed, the gradients of .TTs^A, \F) with respect to the unknowns A and \I/ are (for 

convenience the objective function (4.5) is multiplied by .25):

= - ( Z TZ -  AAt  -  ^ 2)A ,

=  — [diag(ZTZ — AAt ) — .

McDonald (1979) found that the gradients of .Fmcd(A, *&, F) with respect to the un­

knowns A, \I/ and F  can be written as (for convenience the objective function (4.4) is 

multiplied by .25):

 ̂ v mcd = _ [ ( Z - F A t )t ( Z - F A t ) - ^ 2] ( Z - F A t )t F  ,

V fcD =  —diag((Z — F A t )t (Z — FA T) — 1F 2)1F ,

V McD =  _ ( Z - F A T) [ ( Z - F A T)T( Z - F A T) - ^ 2]A .

The values of the gradients are then calculated at F  =  F ^  from (3.27):

VMcD = _ ( z TZ — AAt  — 4>2)(Z -  F GAT)TF G =  Opxt ,

=  -[diag(ZTZ - A A T) - W 2] ^  = V^s , 

v mcd =  _ ( Z - F gAt )(Zt Z - A A t - '®'2)A =  ( Z - F gAt )V^s .

While calculating the gradients of T m cd {.A, \If,F) at F  =  F ^  one simply makes use 

of the features F JF g  =  I* and Zt F g  =  A. Of course, any other common factors F  

satisfying these conditions and F TU  =  Okxp would produce the same results.

Thus, McDonald (1979) established that the LS approach for fitting the fixed EFA

model gives a minimum of the loss function as well as estimators of the factor loadings

and uniquenesses which are the same as the corresponding ones in the random EFA 

model. The estimators of the common factor scores are the same as those given by the 

expressions of Guttman (1955).
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A LS procedure for finding the matrix of common factor scores F is also outlined in 

Horst (1965). He wrote: “Having given some arbitrary factor loading matrix, whether 

centroid, multiple group, or principal axis, we may wish to determine that factor score 

matrix which, when post-multiplied by the transpose of the factor loading matrix, 

yields a product which is the least squares approximation to the data matrix. This 

means that the sums of squares of elements of the residual matrix will be a minimum.” 

(Horst, 1965, p. 471). Following this strategy, the suggested LS factor score matrix is 

sought to minimize

^ „(F ) =  ||Z —FA t |||. , (4.6)

which is simply given by

Ftf =  ZA(At A )“1 (4.7)

for an arbitrary factor loading matrix A (Horst, 1965, p. 479).

Horst (1965) also proposed a rank reduction algorithm for factoring a data matrix 

Z. For some starting approximation Ao of the factor loadings, let Lq be the k x  k 

lower triangular matrix obtained from the Cholesky decomposition (e.g., Golub and 

Van Loan, 1996) L0Lq of AgZTZA0. Then, the successive approximation Ai  of the 

factor loadings is found as (Horst, 1965, p. 274):

=  ZtZA0(Lq )-1 .

It follows from

ZTZ -  AjAj" =  ZTZ -  ZTZA0(Aj'ZTZAo)“:lA jZ TZ ,

that the successive approximation A] is always a rank reducing matrix for Z Z. After

convergence of the algorithm, the final A found is the matrix of factor loadings. The
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common factor scores are obtained as F  =  ZAdiag(ATZTZA )“ _1/2, i.e. F  is an oblique 

matrix with diag(FTF) =  I*.

Both algorithms in Horst (1965) find a pair {A, F}. No care is taken to obtain unique 

factor scores U  or the uniquenesses tP. In this sense, the proposed procedures resemble 

PC A rather more than EFA.



Chapter 5 

Simultaneous Estim ation of all EFA 
M odel Unknowns

In formulating EFA models with random or fixed common factors, the standard ap­

proach is to embed the data in a replication framework by assuming the observations 

are realizations of random variables. In the sequel, the EFA model is formulated di­

rectly in terms of the data instead and all model unknowns A, F , F  and U  are assumed 

to be fixed matrix parameters.

For n > p, De Leeuw (2004, 2008) proposed to minimize the following LS loss function:

n 2

At
J De i(A ,^ ,F ,U )  = Z -  [F U]

subject to rank(A) =  k , F TF  =  I*., U TU  =  Ip: U TF  =  OpXk and F  being a p x  p 

diagonal matrix. Minimizing (5.1) amounts to minimizing the sum of the squares of the 

residuals defined as the differences between the observed and predicted standardized 

values of the scores on the variables. The loss function Tj^eL defined in (5.1) is bounded 

below (Golub and Van Loan, 1996, p. 605). The idea is that for given or estimated A 

and F , the common and unique factor scores F  and U  can be found as a solution of a 

Procrustes problem (De Leeuw, 2004, 2008).

45
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The EFA model (3.19) and the imposed constraints imply the following identities:

F t Z =  F t F A t +  F tU'®' = >  F t Z =  At , (5.2)

U TZ =  U t F A t  +  U TU ^  = >  U TZ =  -F (and thus diagonal) . (5.3)

The identities (5.2) and (5.3) also imply that

( I „ - F F t )Z =  Z - F F TZ =  Z - F F T(FAT +  U ^ )  ,

=  Z -  F F tF A t -  F F t U ^  =  Z -  F A t =  U 'P (5.4)

and thus

ZT(I„ -  F F t )Z = 9 2 . (5.5)

Any proper EFA solution should fulfil (5.2) -  (5.4) and most likely they would appear 

as optimality conditions of the problem.

5.1 D ynam ical system  approach and op tim ality  con­
d itions

Before discussing efficient methods for minimizing JFDeL in (5.1), such a solution for 

simultaneous estimation of all EFA matrix parameters {A, \F ,F ,U }  can be explored 

by making use of the continuous-time projected gradient approach as described in 

Chapter 2. It does not rely on an alternating solution for certain parameters while the 

rest are kept fixed.

The gradients of Tr>eL with respect to the unknowns A, \I/, F  and U  are (for convenience
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the objective function (5.1) is multiplied by .5):

DeL __
A ” - ( Z - f a t - U ^ ) t F  ,

y j D e L  __V r̂ - —diag ((Z - FA t -  U ® )TU)

II>

- ( Z - f a t -U 'J 'J A  ,

y j D e L
v u  - - ( Z - f a t

First order optimality conditions are readily available if the gradients of ToeL are set 

equal to zero. Somehow more informative first order conditions for the existence of the 

minimizers of J^DeL can be obtained by applying the dynamical system approach.

By projecting the gradients of J^DeL ont°  the corresponding constrained manifolds of 

A, \I/, F  and U, respectively, the following matrix ODEs of first order are obtained:

A -  .5A(At Zt F  — F t ZA) +  (Ip — A(At A)-1At )Zt F  , (5.6)

i f  = diag(ZTU ) - ^  , (5.7)

F  =  .5F(Ft ZA — A t Zt F) +  (In — F F t )(Z — U 1F)A  , (5.8)

U  =  .5U(UTZ ^ - ^ Z TU) +  (In - U U T) ( Z - F A T) ^  . (5.9)

The dynamical system (5.6) -  (5.9) governs simultaneous steepest descent flows for 

A, \I/, F  and U  leading to the minimum of T dbL- The right hand side of equation (5.6) 

is the projection of V^eL onto the non-compact Stiefel manifold of all p x k  matrices 

with rank exactly k.

Let V(p)  denote the linear subspace of all p x p diagonal matrices. Using the fact that 

the tangent space of T>(p) is T>{p) itself, the right hand side of equation (5.7) is the 

projection of V^eL onto V(p).

The right hand sides of the equations (5.8) and (5.9) are the corresponding projections
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of V peL and V j j L onto the compact Stiefel manifolds of all n  x k and n x p  column-wise 

orthonormal matrices, respectively.

For more accurate estimation of A, \1/,F and U  one can consider alternatively the

following system of three matrix ODEs:

A =  .5A(At Zt F  — F t ZA) +  (Ip — A(At A)-1At )Zt F  , (5.10)

^  =  diag(ZTU) -  ^  , (5.11)

B =  .5B(BTZ A - A TZTB) +  (In - B B T)ZA , (5.12)

where B [F U] and A := [A are block matrices with dimensions n  x (k +  p) 

and p x (k +  p), respectively, and B is the projection of the gradient of ToeL with 

respect to B onto the compact Stiefel manifold of all n x (k+p)  orthonormal matrices. 

The problem with this approach is that the projection onto the non-compact Stiefel 

manifold (5.10) involves computation of the inverse matrix (ATA)-1 which may not be 

efficient and/or stable. To avoid this, using (5.2), one can replace (5.10) simply by

A =  Zt F  ,

as F  should be calculated in (5.12) anyway.

By means of (5.10) -  (5.12), the following first order optimality conditions for the 

existence of the minimizers of EoeL are obtained:

At Zt F  must be symmetric , (5.13)

Zt F  =  A(At A )-2At Zt F  , (5.14)

=  diag(ZTU) , (5.15)

B t ZA =  A t Zt B , (5.16)

(In -  B B T)ZA =  Onx(p+fc) . (5.17)
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Condition (5.14) states that ZTF is entirely in the range of A, i.e. there exists a nonzero 

k x k matrix G such that ZTF  =  AG. Then, by making use of (5.13) one finds that 

At AG — G t At A which can be true only if G is diagonal with equal entries.

The optimality condition (5.16) implies that B TZA must be a symmetric matrix. 

Writing this in detail gives that

F t ZA F t Z*I>
(5.18)

must be a symmetric matrix. This leads to the following first order optimality condi­

tions for F  and U:

f t f t z a F t Z'F
Z[A =

U T u t z a U TZ $

f t z a  =  a t z t f  ,

U TZ ^  =  ^ Z TU  ,

u t z a  =  ^ z t f  .

(5.19)

(5.20)

(5.21)

Condition (5.19) is equivalent to (5.13). Condition (5.20) and St? being diagonal with 

different entries imply that U TZ must be diagonal and using (5.15): Sfr = U TZ. 

Condition (5.21) enforces that A =  ZTF. The optimality condition (5.17) implies that

(In -  F F t  -  U U 1 )ZA =  Onx(p+k) ,

that is, the linear subspace spanned by ZA =  [ZA Z\I/] is orthogonal in Mn to the 

linear subspace spanned by [F U]. Writing this in detail gives

rT

(In — F F t  — U U 1 )ZA =  Onxk 

and simultaneously

(In -  F F t -  U U T)Z'F =  o

r T ' (5.22)

n x p (5.23)
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Applying \1> =  U TZ, (5.22) turns into

[(I„ -  F F t )Z -  U\P]A =  Onxfc , (5.24)

which generalizes the identity (5.4). By making use of AT =  F TZ and 'i ' =  U  Z, 

(5.24) turns into

(Z -  F A t  -  U * )A  =  Onxk (5.25)

and (5.23) turns into

(Z -  FA t -  U*)1> =  Onxp . (5.26)

If fH1 is nonsingular, (5.26) leads to: Z =  F A T + U 'F. Combining (5.21) with (5.19)

implies that at the minimum of ToeE

(F -  U ^ “ 1A)t ZA =  Onxk , (5.27)

which means tha t F  — U'®r-1A belongs to null(A Z ). For an arbitrary n  x k  matrix

f t  one can express F  as

F  -  I F F 1 A +  (In -  ZA(At Zt Z A )-1At Zt ) 0  . (5.28)

Premultiplying F  by its transpose, (5.28) turns into

F t F  =  I* =  At * - 2A +  ... , (5.29)

which implies that, in general, AT\I/-2A is not a diagonal matrix as is assumed in ML 

factor analysis (e.g., Mulaik, 1972). The condition (5.27) is considerably more general 

than the assumption ATTr_2A being a diagonal matrix.

The factor loadings A can be any p x k matrix of full column rank. For example, any
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matrix AV, where V  is an arbitrary k x k orthogonal matrix, gives the same model fit 

if one compensates for this rotation in the scores. For interpretational reasons and to 

avoid this rotational indeterminacy the property rank(A) =  k can be accomplished by 

having A in the form of a p x  k lower triangular matrix L, with a triangle of k(k — l) /2  

zeros (Unkel and Trendafilov, 2009a). Consider the following slightly modified loss 

function:

T 1 2 
Lt

(5.30)

which should be minimized subject to the usual EFA constraints (FTF  =  I/;;,UTU  =  

Ip, U t F  =  OpXfc and ^  being a p x p  diagonal matrix).

Let C(p, k) denote the linear subspace of all p x k lower triangular matrices and note 

that the tangent space of C(p, k) is £(p, k) itself. Then, the parameter matrices L, F  

and U  that minimize (5.30) can be found by integrating the following matrix ODEs 

simultaneously:

Lt
F DeL( L , * , F , V )  = Z — [F U]

L =  t r i l ( Z TF) -  L ,

^  =  diag(ZTU) -  ^  ,

B =  .5B(Bt ZA -  A TZTB) +  (In -  B B T)ZA ,

(5.31)

(5.32)

(5.33)

where t r i l ( )  is the operator taking the lower triangular part of its argument, tha t is, 

t r i l ( Z TF) is composed of the elements of ZTF  with the upper triangle of k(k — l) /2  

elements replaced by zeros. Note that (5.32) and (5.33) are equivalent to (5.11) and 

(5.12), respectively.

Thus, the first order optimality conditions for L ,\I/,F  and U  that minimize EoeL in
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(5.30) are (5.19)-(5.23) with A replaced by L and

L = tr i l(Z TF) ,

® =  diag(ZTU ) .

Of course, if A and \F are available from a standard EFA solution, finding a block- 

orthonormal matrix [F U] is just another method for factor score estimation.

5.2 Iterative algorithm s

De Leeuw (2004, 2008) proposes an algorithm to optimize (5.1) that finds F  and U  

simultaneously by solving an augmented Procrustes problem for the block-orthonormal 

matrix [F U], By making use of the block matrices B =  [F U] and A =  [A T'] 

defined in the previous Section, (5.1) can be rewritten as

?DeL =  | | z - B A T||p  =  ||Z||J. +  trace(A BTB A T) -  2 trace(BTZA) . (5.34)

Thus, as with the standard Procrustes problem (Gower and Dijksterhuis, 2004; Golub 

and Van Loan, 1996), the minimization of J^DeL in (5.34) subject to

B t B =
f t

U T
F U

O k x p

op x k

= 1
f t f  f t u  

u t f  u t u

is equivalent to the maximization of trace(BTZA) (for given or estimated A). 

Assume that n > p +  k and let

k + p  ?

Y  =  ZA =
ZA TEE

n x k n x p
(5.35)
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The SVD of Y  can be expressed in the form Y  =  V D T t , where V, T  and D are 

partitioned as follows:

T n  T 12  

k x  k k x p  

T 21 T 2 2

p x k  p x  p

V  =
V i v 2

n x  k n x p
T  = , D =

D ll Qfcxp 

Opxfc D 2 2

Then, the minimum of fFoeL in (5.34) is achieved by
~ i T

T 11 T 12

T 21 T 2 2

iT  . v  rpiT v  r r T  , "\ t rriT

B =  V T t =  [V1 V 2]

=  [ V ^ + V j T ^  W T i + V j T i ] ,

which means that

f  =  v 1t J'1 +  v 2t J2

. (5.36)

(5.37)

(5.38)

and

U  =  V i T j  + V 2T.2 2

One can easily check that B TB =  T T  1 =  Indeed:

T rpT 1 rp  rr\”T rp rpT 1 rp  rpT
11 J -11 +  -1- 12 -L12 1 11 1  21 +  -*-12-1-22

• 2 1 - i - n  ^

iT

b t b  =
T rpT 1 fp rpT rp rp\T « rp rpT

21-*-11 - r  -*-22 12 1  21 -1-21 +  -L22 -*-22

I k D / j x p

I p

=  1 k + p  j

(5.39)

(5.40)

which follows from the SVD of Y. Thus, the algorithm finds block-orthonormal [F U] 

for given or estimated A and 'I', and then updates them as A =  Z F  and 'I' =  

diag(UTZ).
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The matrix of factor loadings A in the EFA model is required to have full column rank 

k. Assuming that rank(Z) >  k , the alternating algorithm preserves the rank of A by 

constructing it as A =  ZTF  which gives rank(A) <  min{rank(Z), rank(F)} =  k. The 

whole alternating least squares (ALS) process of finding {F ,U } and {A, \F} continues 

until the loss function (5.1) cannot be reduced further.

The approach by De Leeuw (2004, 2008) is equivalent to a method developed by Henk 

A. L. Kiers in some unpublished notes (H. A. L. Kiers, personal communication, 2009). 

Socan (2003) called this approach Direct-simple factor analysis and gives a description 

in some detail.

Since premultiplying (3.19) by ZT gives

ZTZ =  (FAt )tFAt +  (U ^ ) t UT^ =  AAt +  ,

it can be seen that optimizing the loss function (5.1) is just another (orthogonally 

invariant) way to optimize (4.5), that is, to measure how similar the sample correlation 

matrix ZTZ is to the model correlation matrix © =  AAT +  \F2 in the least squares 

sense.

De Leeuw (2004) also outlines an algorithm to optimize (5.1) that updates F  and U  

successively:

(i) for given A, \F, and U  find orthonormal F  which minimizes 11 (Z — U\F) — F A T | |F

(ii) for given A, Tq and F  find orthonormal U  which minimizes 11 (Z — F A T) — UiF | |F

(iii) for given F  and U, find A =  ZTF  and \I/ =  diag(UTZ) .

However, no indication is given in De Leeuw (2004) how the orthonormal F  and U  

constructed this way could fulfill U TF  =  OpXk. Furthermore, Z — F A T in step (ii) is
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always, by construction, rank deficient. A method for solving such modified Procrustes 

problems can be obtained as follows.

Assume that F  has full column rank k. Let the columns of the n x  (n — k) matrix Fj_ 

form an orthonormal basis of null(F) in Rn. One way to find such Fjl is by means of 

the QR factorization of F  which has the following simple form:

F  =  Q R  =  Q
h

Q ( n —k ) x k

F  F _L

where Q 6 Mnxn is orthogonal and R  E W ixk is upper triangular. Let U  =  Fj_U and

Ifc

Q(n—k)xk

(5.41)

note that U TU  =  U  F_|_F_lU =  U  U  =  Ip. Using (5.41), the constraint F 1 U  =  O kxp:
T iT T T i

and the fact that F T(Z — F A 1) =  Okxp: the function in (ii) can be transformed into

2

T'

||Q t ( Z - F A ' - U t f ) | |J .T
F t ( Z - F A t - U 'F )

f J ( z  -  f a t - U ® )

=  ||F j(Z  — F A 1) — U\FT' (5.42)

Thus, the modified Procrustes problem (ii) is reduced to the standard Procrustes prob­

lem of minimizing (5.42) subject to LJTU  =  Ip. Suppose U  is the (n — k ) x p  orthonor­

mal matrix found by minimizing (5.42). Then, the original U  of the Procrustes-like 

problem (ii) is computed as U  =  Fj_U. The constraint F TU  =  Okxp is fulfilled as 

F t Fj_U =  Ofcxp. The alternating procedure (i) -  (iii) is continued until the loss func­

tion (5.1) cannot be reduced further.

For reasons explained above one can look for a p x k  lower triangular matrix of factor 

loadings L, with a triangle of k(k — l) /2  zeros. Then, the updating formula A =  ZTF 

should simply be replaced by L =  t r i l ( Z TF) and thus one obtains an alternative 

solution of the Procrustes problems discussed above.



Chapter 6

EFA-like PC A for n > p

A statistical technique that is frequently used as a synonym for EFA is PC A. Despite 

the differences between PCA and EFA (e.g., Jolliffe, 2002, pp. 158-161), both methods 

aim to reduce the dimensionality of a set of data. It is of interest to find conditions 

under which PCA and EFA solutions can or cannot be close for a particular data set 

(Rao, 1996). For this reason, in this Chapter PCA is viewed as a special case of EFA 

with the error term resembling the EFA one. Based on an initial PCA solution, the 

error term is then decomposed to achieve an EFA-like factorization of the data. This 

specific EFA-like PCA construction helps to compare the numerical solutions obtained 

by PCA and EFA. In Section 6.1, aside from the standard PCA based on the SVD, 

a new procedure to accomplish PCA by means of the QR factorization of the data is 

introduced. Numerical procedures to achieve an EFA-like factorization of the error term 

are presented in Section 6.2. The algorithms developed in Chapter 5 and Chapter 6 

are illustrated numerically with Harman’s five socio-economic variables data (Harman, 

1976) in Section 6.3.

56
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6.1 P C A  based on th e  SV D  and Q R  factorization  
o f th e  data

As a matrix decomposition, PCA is based on the SVD (Golub and Van Loan, 1996) 

of the data Z which is quite different from the EFA matrix decomposition of Z. To 

appreciate the difference between EFA and PCA, consider the SVD of Z which has the 

form:

where V  E M.nxp is orthonormal, T E M.pxp is orthogonal and D E M.pxp is a diagonal 

matrix with the singular values of Z sorted in decreasing order, <Ti > <72 > • • > crp > 0, 

on its main diagonal. After partitioning, (6.1) can be written as

where Di =  diag(crl5..., cr )̂, D 2 =  diag(crfc+1, ..., o p )  and V i,V 2,T i, and T 2 are the 

corresponding orthonormal matrices of left and right singular vectors with sizes n  x k ,  

n  x  ( p  — k ) ,  p  x  k ,  and p  x  ( p  —  k ) ,  respectively. The norm of the error term E s v d  =  

V 2D 2T j  is

EFA decomposition of Z. Moreover, F  (= V i) in both EFA and PCA is orthogonal to 

the second (‘error’) term. However, the error term E s v d  in the PCA decomposition 

has a very different structure from in EFA. It will be demonstrated that the form 

of E s v d  gives only superficial differences between EFA and PCA. W hat really matters 

is the underlying model of the EFA matrix decomposition (3.19) which is assumed a

Z =  V D T t (6 .1)

Z =  V aD 1T^ + V 2D 2T j  , (6 .2)

P

||Esy£>||

By defining F  := V i and A := T iD 1} one obtains the first (common) part F A T in the
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priori. In other words, the EFA algorithms look for pairs of unknowns {A, and 

{F ,U }, whereas EFA-like PCA looks for {A,F} and { ^ ,U } .

Formally speaking, to get an EFA-like decomposition from the PCA one, E s v d  should 

be further decomposed as a product of orthonormal and diagonal matrices U  and 

of sizes n x p and p  x p, respectively This can be formulated as the following LS 

optimization problem:

min UEsyx) — U \I/||^ , (6.3)
U ,^

subject to the constraints U TU  =  Ip and \I/ being a diagonal matrix. In addition, U  

should be orthogonal to F  already found in (6.2).

Traditionally, PCA accomplished by the SVD reduced-rank approximation is consid­

ered as the optimal method for the reduction of the dimensionality of the data. This 

is due to the LS property of the SVD stated in (3.4). However, as a rank-reducing 

method, the SVD can be expensive to compute.

Recently, it has been shown that “if any reduced-rank approximation is accurate then 

it contains good approximations to the singular vectors corresponding to large singular 

values” (Berry, Pulatova, and Stewart, 2005, Theorem 6.1).

This is true, in particular, for the QR decomposition (Golub and Van Loan, 1996) 

which possesses a number of attractive numerical properties that the SVD lacks (Stew­

art, 1998). For computational and interpretational reasons, one can perform a PCA-like 

analysis based on the QR factorization of Z which is given by

Z =  Q R  , (6.4)
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where Q E R nxn is orthogonal and R  E M.nxp is upper triangular. After partitioning, 

(6.4) can be written as

Z = Qi Q;
R i

R 2
— QjRi +  Q2R 2 , (6.5)

where Qx E ]Rnxfe and Q2 E Mnx(” are orthonormal and R i E M.kxp and R 2 G 

R(n~k)xp are Upper triangular. By defining F  := Q x and L := R ^, (6.5) turns into

z  =  F L t  +  E qr , (6 .6)

where L E MPxk is a lower triangular matrix and E qr = Q2R 2 is the error term. Note 

that F t Eq^ =  O kxp- The norm of E qr is HEg^H/? =  ||R 2||/r, tha t is, the size of the 

error equals the sum of squares of the elements of an upper (p — k) x (p — k) triangular 

submatrix which are the only non-zero entries in R 2.

To get a further EFA-like decomposition of Z one needs to solve the optimization 

problem:

min ||E QJ2- U ^ | £  , 
U ,^

(6.7)

subject to U TU  =  Ip, U t F  =  OpXk and \I/ being a diagonal matrix.

Thus, whether an initial PCA solution is available from either the SVD or the QR 

factorization of Z, a Procrustes-like problem should be solved in both cases to obtain 

the corresponding EFA-like solution.
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6.2 EFA-like decom position  o f th e  error term

6.2 .1  D yn am ica l sy stem  approach and  o p tim a lity  con d ition s

Before finding an efficient method for solving (6.3) and (6.7), such EFA-like solutions 

can be explored by considering the following dynamical system:

U  =  .5U(UTEiP — \FETU) +  (I„ — U U t)E'®' , (6.8)

4- =  diag(ETU) -  ® , (6.9)

where E  denotes either E svd or E qr. The descent gradient flow U  starts from a

random orthonormal U 0 orthogonal to the corresponding F  and remains orthogonal 

to F  until convergence. In practice, since E  has not full column rank, one can rewrite 

(6.8) for U  =  F jU  and replace E  by E  =  F jE ,  where F_l is obtained from the QR 

decomposition of F  in (5.41).

First order optimality conditions for U  and Sf? that minimize either (6.3) or (6.7) are 

available from (6.8) and (6.9):

U t E\I> =  ^ E t U  , (6.10)

(I„ -  U U T)E ¥  =  Onxp , (6.11)

® =  diag(UTE) . (6.12)

Condition (6.10) states that U  EUi is a symmetric matrix. Since is diagonal, U  Ed/ 

is also diagonal. If Hi is nonsingular, then U  E is necessarily diagonal.

As U  F =  Opxfc, the optimality conditions (6.10) -  (6.12) are equivalent to

U TZS' =  ’PZTU  , (6.13)

(In -  U U T)Z *  =  FA 1’’®' , (6.14)

^  =  diag(UTZ) . (6.15)
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The conditions (6.13) and (6.15) together with the condition A =  ZTF, where the lat­

ter follows from the construction of either (6.2) or (6.4), are identical to the optimality 

conditions for simultaneous EFA established in (5.19)-(5.21). Clearly, the simultane­

ous EFA solutions will coincide with the EFA-like PCA solutions if they have identical 

F  and A obtained from either (6.2) or (6.6). If ^  is nonsingular, then (6.14) leads to

Z =  FA t +  U U TZ , (6.16)

which together with (6.15) gives the following optimality condition:

z  =  FA t  +  ITF . (6.17)

One is tempted to say that those A, F, U  and \I/ that are solutions of the EFA-like 

PCA, are also solutions of the simultaneous EFA, despite the fact that A and F  are 

found beforehand by the SVD or the QR factorization of Z. However, in contrast to 

simultaneous EFA, the EFA-like PCA solutions do not satisfy the condition (5.25):

(Z -  FA t -  U ¥ )A  =  0 „ xfc .

The optimality conditions derived for simultaneous EFA and EFA-like PCA shed light 

on in which cases one can expect similar EFA and PCA solutions. This addresses

the following comments made by Rao (1996): “Some conditions under which the factor

scores and principal components are close to each other have been given by Schneeweiss 

and Mathes (1995). It would be of interest to pursue such theoretical investigations 

and also examine in individual data sets the actual differences between principal com­

ponents and factor scores.” Both EFA and PCA solutions will be similar if the PCA 

solution meets the EFA optimality condition (5.25).
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6 .2 .2  Itera tiv e  a lgorith m

The application of EFA-like PCA to Z requires an efficient method for solving the 

Procrustes-like problem:

m i n | |E - U * |£ .  , 
U,\l>

(6.18)

subject to U TU  =  Ip and \I> being a diagonal matrix. In addition, U  should be 

orthogonal to F, for which F TE  =  Okxp, that is, F TU  =  Okxp- The major problem 

with transforming (6.18) into a standard Procrustes problem is that E  is always, by 

construction, rank deficient.

Using E  =  F ^ E  and U  =  F_lU, where Fj_ is obtained from the QR decomposition of 

F  in (5.41), one notes that U TU  =  XJTF jF j_U  =  IJTU  =  Ip. Then, the objective 

function in (6.18) can be transformed into

||e - u * | ^ h IQt (e - u t o |£  =
F t (E -  IFF) 

F l ( E - l P F )
=  ||E  — U ’J'HJ. , (6.19)

F

where Q F  F JL
, F  1 U  — OkxP, and F TE =  0 ^ Xp. Thus, the modified Pro­

crustes problem (6.18) is reduced to the following standard Procrustes problem:

m i n | |E - U ^ | | |  , (6.20)

subject to U  U  =  Ip and being a diagonal matrix. Hence, the Procrustes-like 

problem (6.18) can be solved by an alternating procedure of solving (6.20) and updating 

^  =  diag(UTE) =  diag(IJTE) until convergence.
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6.3 A pplication  to  H arm an’s five socio-econom ic  
variables data

To illustrate the iterative algorithms developed in Chapter 5 and Chapter 6, a well- 

known and frequently studied data set in factor analysis is employed next: Harman’s 

five socio-economic variables data (Harman, 1976). The raw data are given in Table 6.1 

(Harman, 1976, Table 2.1, p. 14). Only n = 12 observations and p — 5 variables are

Tract POPULATION SCHOOL EMPLOYMENT SERVICES HOUSE

1 5700 12.8 2500 270 25000

2 1000 10.9 600 10 10000

3 3400 8.8 1000 10 9000

4 3800 13.6 1700 140 25000

5 4000 12.8 1600 140 25000

6 8200 8.3 2600 60 12000

7 1200 11.4 400 10 16000

8 9100 11.5 3300 60 14000

9 9900 12.5 3400 180 18000

10 9600 13.7 3600 390 25000

11 9600 9.6 3300 80 12000

12 9400 11.4 4000 100 13000

Table 6.1: Raw data for Harman’s five socio-economic variables.

analyzed. The twelve observations are census tracts - small areal subdivisions of the 

city of Los Angeles. The five socio-economic variables are ‘total population’ (POPU­

LATION), ‘median school years‘ (SCHOOL), ‘total employment’ (EMPLOYMENT),
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‘miscellaneous professional services’ (SERVICES) and ‘median house value’ (HOUSE). 

The raw data are preprocessed such that the variables have zero mean and unit length. 

The preprocessed measurements are collected in a 12 x 5 matrix Z and are fitted by an 

EFA model with two common factors (k = 2) in terms of different LS loss functions. 

First, standard EFA least squares solutions {A, \I/} are obtained by minimizing E ls 

in (4.5). To make the solutions comparable to the ones obtained in the sequel, these 

are found by defining the LS fitting problem of minimizing E ls according to an eigen­

value decomposition (EVD) and a lower triangular (LT) reparameterization of the EFA 

model, respectively (Trendafilov, 2003, 2005). It would be helpful to recall briefly the 

idea of the EVD and LT reparameterization.

Consider the EVD of the positive semi-definite matrix AAT of rank at most A: in (3.17), 

that is, let AAT =  Q D 2Q t , where D 2 is a k x k diagonal matrix composed of the 

largest (non-negative) k eigenvalues of AAT arranged in descending order and Q is 

a p x k column-wise orthonormal matrix containing the corresponding eigenvectors. 

Then, the model correlation structure (3.17) can be rewritten as

0  =  Q D 2Q t +  ®2 .

Thus, instead of a pair {A, tE1}, a triple {Q, D, 'I'} will be sought and A is decomposed 

as QD.

Let L be a p x k lower triangular matrix, with a triangle of k(k — l) /2  zeros. Then 

AAT can be reparameterized by LLT. Hence, for the LT reparameterization, (3.17) 

can be rewritten as

0  =  LLT +  ^ 2 .
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For both reparameterizations, the corresponding LS fitting problems are solved by mak­

ing use of the projected gradient approach (Trendafilov, 2003, 2005). The LS solutions 

{ A ,* 2} are given in Table 6.2.

Variable

EVD

reparameterization

LT

reparameterization

A vp2 L \p2

POPULATION .62 .78 .0117 1.00 0 .0101

SCHOOL .70 - .52 .2344 .03 .87 .2347

EMPLOYMENT .70 .68 .0347 .97 .13 .0439

SERVICES .88 - .14 .2029 .43 .78 .2029

HOUSE .78 - .60 .0260 .01 .99 .0251

Table 6.2: Standard LS solutions for Harman’s five socio-economic variables data.

Then, LS solutions for estimating {F, A, U, \1/} simultaneously are obtained by mini­

mizing J~r)eL in (5.1), making use of the new iterative algorithm discussed in Section 5.2 

for updating F  and U  successively. To reduce the chance of mistaking a locally opti­

mal solution for a globally optimal one, the algorithm was run twenty times, each with 

different randomly chosen column-wise orthonormal matrices F  and U. The algorithm 

was stopped when successive function values differed by less than e =  10~6.

The corresponding results for {A, \I/2} applying two parameterizations for the loadings 

are provided in Table 6.3. The results reported are the ‘best’ obtained after the twenty 

random starts. By ‘best5 a solution employing the full column rank (FCR) preserving 

formula A =  ZTF is meant which resembles the lower triangular one L =  t r i l ( Z TF) 

most.
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Variable

A =  

error of fit

z tf

=  .002835

L =  tril(ZTF)

error of fit =  .002836

A \|/2 L q>2

POPULATION .99 .05 .0150 1.00 0 .0173

SCHOOL -.01 .88 .2292 .03 .88 .2307

EMPLOYMENT .97 .16 .0182 .98 .11 .0158

SERVICES .40 .80 .2001 .44 .78 .2009

HOUSE -.03 .98 .0318 .02 .98 .0292

Table 6.3: Simultaneous EFA solutions for Harman’s five socio-economic variables data.

For both algorithms the twenty runs led to the same minimum of J2DeL? UP to the 

fourth decimal place. Numerical experiments revealed that the algorithm employing a 

lower triangular matrix L is slower but yields pretty stable loadings. In contrast, the 

algorithm employing A =  ZTF is faster, but converges to quite different A.

The iterative algorithm gives the same 4/2 and goodness-of-fit for both types of load­

ings. It is worth mentioning that their \P2 values are similar to those produced by the 

standard EFA solutions in Table 6.2. Moreover, for the lower triangular reparameteri­

zation the loadings of the two solutions are almost identical.

It is of interest to compare the simultaneous EFA solutions in Table 6.3 and the stan­

dard EFA solutions in Table 6.2 with the ones obtained by means of EFA-like PCA 

based on the SVD and the QR decomposition of Z. The corresponding algorithms min­

imizing (6.19) were run twenty times each and were stopped when successive function 

values differed by less than e =  10-6. The initial value for 4? was simply taken to be
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Variable

error

SVD 

of fit = .059281

QR decomposition 

error of fit =  .029820

A \p2 L vp2

POPULATION .58 .81 .0000 1.00 0 .0000

SCHOOL .77 -.54 .0945 .01 1.00 .0000

EMPLOYMENT .67 .73 .0095 .97 .14 .0314

SERVICES .93 -.10 .1019 .44 .69 .3114

HOUSE .79 -.56 .0055 .02 .86 .2211

Table 6.4: EFA-like solutions for Harman’s five socio-economic variables data.

a diagonal matrix with diagonal entries randomly drawn from a uniform distribution 

on the unit interval. The EFA-like solutions obtained from the two types of PCA are 

shown in Table 6.4. The most striking feature of both EFA-like PCA solutions com­

pared to the simultaneous EFA solutions given in Table 6.3 is that the fits attained by 

the former are considerably worse.

One can further assess the difference between the simultaneous EFA solutions and 

the EFA-like PCA solutions by substituting them into the optimality condition (5.25) 

which is not satisfied for EFA-like PCA, that is, by calculating 

| | ( Z - F A t - U ’®')A|||,
E  =

nk
(6 .21)

This gives a value of 0.0079 for EFA-like PCA based on the SVD and 4.5080 x 10-8 

for simultaneous EFA. For the LT reparameterization, the values are 0.0015 for EFA- 

like PCA based on the QR factorization and 2.0241 x 10-8 for simultaneous EFA, 

respectively.

The SVD based EFA-like solution in Table 6.4 has loadings which are similar to the
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ones of standard EFA using A =  ZTF. The corresponding uniquenesses are smaller 

than the ones obtained by both standard EFA and simultaneous EFA. The QR based 

EFA-like PCA solution has loadings which are very similar to the ones in Table 6.2 

and Table 6.3 employing the lower triangular reparametrization but the uniquenesses 

differ.

Numerical experiments revealed that both EFA-like PCA procedures are faster than 

the iterative algorithms for simultaneous parameter estimation.

Estimated common factor scores for the five socio-economic variables data are shown in 

Table 6.5. The first two pairs of columns are the scores obtained by using the formula 

(3.26) proposed by Anderson and Rubin (1956). They are denoted by F arEvd anc  ̂

Farl t , respectively, as they are calculated from the two types of loadings shown in 

Table 6.2. For both parameterizations of the loadings, the next two pairs of columns 

are the factor scores F f c r  and F l t  found by the iterative algorithm for simultaneous 

parameter estimation. The last two pairs of columns F svd  and Fqr  show component 

scores obtained by PCA based on the SVD and the QR decomposition, respectively. 

Note that for all sets of scores it holds that F TF =  I*. It can be seen from Table 6.5 

that the factor scores F arl t  and F l t  as well as the component scores F q r , all obtained 

from a lower triangular parameterization of the loadings matrix, are quite similar.

In contrast, Guttm an’s arbitrary constructions for the common factor scores discussed 

in Section 3.2.2 may not always be applicable in practice. Indeed, for both loading 

matrices in Table 6.2, one can easily check that I& — AT(ZTZ)-1A in (3.30) is not 

positive semi-definite as required. For example, using the parametrization A =  ZTF
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Standard EFA Simultaneous EFA PCA

Tract A R e v  D A R l t F for F lt F S V D F Q R

1 .27 .28 -.05 .38 .04 .38 .02 .38 .29 .21 -.05 .37

2 -.51 .18 -.46 - .29 -.41 -.32 -.41 - .32 -.40 .23 -.46 - .30

3 -.45 -.04 -.25 -.38 -.28 -.37 -.27 - .37 -.44 -.03 -.25 - .44

4 .16 .40 -.21 .37 -.21 .39 -.20 .38 .14 .39 -.21 .37

5 .16 .38 -.20 .36 -.22 .38 -.21 .38 .10 .35 -.20 .37

6 -.11 -.31 .17 -.28 .13 -.25 .12 - .25 -.21 -.35 .17 - .27

7 -.31 .32 -.44 - .04 -.47 -.03 -.48 - .04 -.31 .35 -.44 - .00

8 .04 -.29 .25 -.15 .25 -.15 .24 - .15 .02 -.26 .25 - .15

9 .24 -.22 .32 .05 .25 .04 .25 .04 .24 -.17 .32 .05

10 .50 .02 .29 .40 .26 .37 .27 .37 .57 .02 .29 .38

11 -.02 -.39 .29 -.26 .27 -.25 .27 - .25 -.07 -.40 .29 - .25

12 .04 -.33 .28 -.17 .39 -.19 .41 - .19 .08 -.35 .28 - .18

Table 6.5: Common factor scores for Harman’s five socio-economic variables data.

one finds:

Gt G =  Ijt — A 1 (Z 1 Z)_:LA =T/ryTryN-l
( \  

.0155 .0038

V.0038 -.0177
/

From this point of view the estimation procedures developed in this thesis for obtaining 

common factor scores present more reliable alternatives to G uttm an’s expressions.



Chapter 7 

EFA of D ata M atrices w ith p > n

In a number of modern applications, the number of available observations is less than 

the number of variables. Consider for example data arising from experiments in genome 

research. The data from such experiments are usually in the form of large horizontal 

matrices of expression levels of p genes (variables) under n  experimental conditions 

(observations) such as different times, cells or tissues. Another discipline where high­

dimensional data with p~^> n  typically occur is in atmospheric science, where a mete­

orological variable is measured at p spatial locations at n different points in time.

This Chapter covers the case of EFA of horizontal data matrices with p > n (Unkel 

and Trendafilov, 2009a). Novel numerical procedures for simultaneous estimation of all 

EFA model unknowns are introduced in Section 7.1. An algorithm for EFA-like PCA 

is presented in Section 7.2. In Section 7.3, the new procedures are illustrated with 

Thurstone’s 26-variable box data (Thurstone, 1947) and a real large high-dimensional 

data set from atmospheric science.

70
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7.1 Sim ultaneous E stim ation  o f all EFA M odel U n ­
knowns

If p  > n, the sample covariance/correlation matrix is singular. Then, the most common 

factor extraction methods, such as ML factor analysis or GLS factor analysis, cannot 

be applied. Robertson and Symons (2007) consider maximum likelihood fitting of 

such rank-deficient correlation matrices by the EFA correlation structure 0  =  AAT +  

T'2. In other words, they look to approximate a singular symmetric matrix by a 

positive definite one having the specific form AAT +  \F2 imposed by the EFA model 

and assuming \F2 positive definite.

Alternatively, one can minimize the LS loss function (4.5), which does not require ZTZ 

to be invertible. However, there is a conceptual difficulty in adopting the approach to 

EFA introduced by Robertson and Symons (2007) or minimizing (4.5).

It is demonstrated in Section 3.2.2 that the EFA correlation structure © =  AAT +  \l/2 

is a consequence of the accepted EFA model (3.19):

Z -  F A T +  U #  ,

and the assumptions made for its parameters. When p  > n, there is no problem to 

assume that the rank of the loading matrix A is k  ( k  <C p ) .  The ft-factor model can 

still assume that F TF =  I* and U TF  =  OpXk. Unfortunately, the classical constraint 

U TU  =  Ip cannot be fulfilled as U TU  has at most rank n (<p).  W ith U TU  ^  Ip, the 

EFA correlation structure can be written as

0  = AAt +  TaJTTTF .

In order to preserve the standard EFA correlation structure (3.17), the more general 

constraint U TU\F =  \I/ is introduced. In other words, \F can have at most n  non­
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zero entries. Then, the EFA model and the new constraint imposed imply the same 

identities as for the classical case (n > p ) :

F t Z =  F tF A t +  F tU ^  =*• F t Z =  At , (7.1)

U TZ =  U t FA t  +  U TU ^  =>• U TZ =  ® (and thus diagonal) , (7.2)

which can be used to find A and ^  for given or estimated F  and U.

The immediate consequence of the new constraint U TU\F =  is that the existence 

of unique factors with zero variances should be acceptable in the EFA model when 

p  > n .  There is a long standing debate in classical EFA (n > p )  about the acceptance 

of zero entries in \1/2 which are commonly referred to as Heywood cases (Bartholomew 

and Knott, 1999; Joreskog, 1977). While Bartholomew and Knott (1999) argue that in 

such situations the Heywood case variable is explained entirely by the common factors, 

Anderson (1984) finds it unsatisfactory for interpretational reasons and requires to 

be strictly positive definite. Either way, since the diagonal entries in \I/2 are interpreted 

as variances, negative values are inadmissible and \I/2 must be non-negative definite. It 

seems that a universal EFA model covering both cases p  > n  and n >  p  should accept 

\F2 being positive semi-definite.

By making use of the block matrix B =  [F U], simultaneous estimation of the EFA 

parameters can be performed again by solving an augmented Procrustes problem by 

minimizing:

? DiL = | | z - b a t | £

subject to the following new constraint:

F U  =  FFT +  U U T =  I„ . (7.3)b b t =
U T
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This modified EFA problem will fit the singular covariance/correlation p x p matrix of 

rank at most n  by the sum AAT +  \F2 of two positive semi-definite p x p  matrices with 

ranks k  and n — k, respectively. A similar problem is studied by Grubisic and Pietersz 

(2007) where a low-rank approximation to a singular correlation matrix is sought but 

without specifying the form of the approximation matrix.

The new constraint (7.3) simply gives the following identity:

u  = UUTU ,

which postmultiplied by \I/ leads to

U5> = UUTU ^ => U(^ -  U 1U^) = oT i
n x p (7.4)

Since U  has not full column rank, (7.4) demonstrates that the constraint =  T'

does not necessarily follow from (7.3) and must be imposed separately. For p >  n, the 

EFA loss function EueL has the following form:

?DeL =  ||Z  — B A t | fF =  | |Z ||!  +  trace(BTB A TA) - 2  trace(BTZA) (7.5)

which is different from (5.34), because B TB is not an identity matrix in this case. 

Nevertheless, one can see that:
r r

F

U T
trace(BTB A TA) =  trace I

- - trace

F  U A W

VA T

trace
U 1ITFA U 1 U V

= trace(A A) +  tracef^  ) ,
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showing that trace(BTB A TA) does not depend on F  and U. Thus, for given or 

estimated A, the minimization of TFoeL remains equivalent to the maximization of 

trace(BTZA) and simply requires the SVD of A TZT. After solving the Procrustes 

problem for B =  [F U], one can update the values of A and \Er by making use of the 

identities (7.1) and (7.2). The whole alternating process of finding {F, U} and {A, \I/} 

continues until the loss function (7.5) cannot be reduced further.

Another way to find F  and U  such that F TF =  I& and U TF  =  OpXk is by updating F  

and U  successively. The first step of the algorithm is as follows:

(i) for given A, and U, find F  that minimizes | |(Z — U\I/) — F AT1 , 

subject to F t F  =  Ifc .

To update U, recall the QR decomposition of F  in (5.41). Since Q Q T =  F F t + F jlF J  =  

In, it follows from (7.3) that U U T =  Fj_Fj. As U  =  Fj_U, one also notes that 

U U T =  F x U U TFX. Thus, only U t T  =  I„_* ensures that U U T =  F i .F j  and hence 

the new constraint F F T +  U U T =  In is fulfilled. The loss function TFoeL is transformed

into F j ( Z - F A T) - I P F  . Then, the second step of the algorithm is as follows:
F

2
(ii) for given A, and F, find U  that minimizes I I f K z - f a q - i p f  

subject to U U T =  In-k •

F

Expanding the loss function in (ii) gives

||FX(Z -  FA t ) ||f  +  trace('FU TU «') -  2  trace(* (Z  -  F A T)TF XU) .

Using the new constraint U TUTr =  S&, the middle term, trace(1F U TU 1F), turns into 

trace(’F U TU ’£ ) =  trace(^U TF x F l U ^ )  =  tra ce (^ U TU U TU ^ )  =  tra c e (^ 2) ,
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which shows that trace(\I/U UT') does not depend on U. Thus, the minimization of 

||F ^(Z  — F A t ) — U^llfn is equivalent to the maximization of trace(^ (Z  —FA t )t F j_U) 

and simply requires the SVD of \F(Z — F A t )t F j_. After solving this Procrustes prob­

lem, the original U  is computed as U  =  Fj_U. Finally:

(iii) for given F  and U, find A =  ZTF  and 'F =  diag(UTZ) .

The alternating procedure (i) -  (iii) is continued until the loss function (7.5) cannot be 

reduced further.

7.2 EFA-like P C A

If p > n, the rank of the unique part U ’F of the EFA model (3.19) can be at most 

n. As mentioned in the previous Section, this implies that for such cases insisting on 

positive definite \I/ 2 is not reasonable. Since U TU  ^  Ip, the constraint ^  =  U TU\F is 

imposed. Instead of (6.18), the following optimization problem is solved:

i m n | |E - U ¥ | | ! .  , (7.6)
U ,F

subject to the constraints: F F T +  U U T =  In, U TF  =  Opxj- and being a diagonal 

matrix.

Recall the QR decomposition of F  in (5.41) and again set U  =  F ^U , E  =  Fj_E. Since 

Q Q t  =  F F t  +  F j F l  =  C , it follows that U U T =  F XF ] \  As U U t  =  F x U U TF l ,

only U U T =  l n-k ensures that U U T =  F j_F j and hence F F T +  U U T =  I„. By 

making use of F TU  =  O kxP and F TE =  OfcXp, the optimization problem (7.6) can 

then be reduced to the following one:

m m ||E - U * | |J .  , (7.7)
U,F
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subject to U U  =  In-k and being a diagonal matrix. Hence, the Procrustes- 

like problem (7.6) can be solved by an alternating procedure solving (7.7) for U  and 

updating \I> =  diag(UTE) =  diag(UTE) until convergence.

7.3 A pplications

7.3 .1  T h u rsto n e’s 26-variable b ox  d ata

Thurstone (1947) collected a random sample of 20 boxes and measured their three 

dimensions x  (length), y (width) and z  (height). In this data set, the boxes constitute 

the observational units. Table 7.1 shows the three dimensions x, y  and z for each box.

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 13 14 15 16 17 18 19 2 0

X 3 3 3 3 3 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5

y 2 2 3 3 3 2 2 3 3 3 4 4 4 2 2 3 3 4 4 4

z 1 2 1 2 3 1 2 1 2 3 1 2 3 1 2 2 3 1 2 3

Table 7.1: Dimensions x  (length), y (width) and z  (height) of Thurstone’s twenty boxes.

The variables of the example are twenty-six functions of these dimensions: x, y , z, xy, 

xz, y z , x 2y , xy2, x 2z , x z 2, y2z, y z2, x/y ,  y /x ,  x / z ,  z /x ,  y / z , z /y ,  2x +  2 y, 2x +  2z, 

2y-h2z, y /x 2 + y2, Vx 2 + z2, y/y2 + z 2, xyz  and y /x2 +  y2 +  z 2. Some of the manifest 

variables are non-linear functions of the dimensions of the boxes. However, the linear 

regression over the values x, y and z shown in Table 7.1 which were used to generate the 

data is quite satisfying (Jennrich and Trendafilov, 2005). Therefore, the assumption of
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linearity made in EFA is only mildly violated.

The observed variables are mean-centered and scaled to have unit norm. The result is 

expressed in a 20 x 26 data matrix Z. The first few eigenvalues of the sample correlation 

ZTZ sorted in decreasing order are 12.4217, 7.1807, 5.5386, and 0.2963. As expected, 

three eigenvalues are considerably greater than one, which is Kaiser’s solution (Kaiser, 

1958) for the number of common factors.

The data matrix Z is fitted by an EFA model in terms of different LS loss functions, 

making use of the new iterative algorithms for simultaneous EFA and EFA-like PCA 

discussed in Section 7.1 and Section 7.2, respectively. As in Section 6.3, standard EFA 

least squares solutions {A, \I/} are obtained first and shown in Table 7.2.

Since for both the EVD and the LT reparameterization the algorithms of Trendafilov 

(2003, 2005) result in S&2 staying on the cone of positive definite diagonal matrices, the 

standard LS approach of minimizing (4.5) leads to uniquenesses being strictly positive. 

In contrast, the simultaneous EFA as well as the EFA-like PCA procedures both allow 

the unique factors to have zero variance. The corresponding solutions are given in 

Table 7.3 and Table 7.4, respectively.

Table 7.3 and Table 7.4 show that for the 26-variable box data the fit attained by the 

EFA-like solutions is worse than by the simultaneous EFA solutions. The values for E  

in (6.21) are 0.0049 for EFA-like PCA based on the SVD and 1.4743 x 10~ 8  for simul­

taneous EFA, respectively. Applying the LT parameterization, the values are 0.0142 

for EFA-like PCA based on the QR factorization and 1.1754 x 10- 7  for simultaneous 

EFA, respectively.

For both EFA-like solutions, the loadings in Table 7.4 are virtually identical to the 

corresponding ones in Table 7.2 and therefore the PCA loadings can be used as ade-
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Formula

EVD

reparameterization

LT

reparameterization

A xp2 L yp2

X .50 .53 .68 .0054 1.00 0 0 .0011

y .47 .70 -.53 .0058 .25 .97 0 .0015

z -.63 .78 -.00 .0058 .10 .23 .97 .0022

xy .61 .79 -.07 .0089 .68 .73 -.00 .0079

xz -.35 .89 .27 .0108 .49 .20 .84 .0103

y z -.29 .92 -.22 .0132 .19 .60 .77 .0130

x2y .61 .76 .17 .0292 .82 .54 -.00 .0293

x y 2 .58 .76 -.25 .0254 .52 .84 -.03 .0256

to -.14 .87 .42 .0454 .68 .16 .68 .0455

x z 2 -.44 .86 .14 .0449 .33 .25 .88 .0449

y 2z -.08 .92 -.30 .0570 .25 .73 .59 .0570

b* to -.42 .87 -.14 .0540 .16 .46 .84 .0541

x / y -.06 -.30 .93 .0420 .44 -.87 -.04 .0423

y / x .07 .27 -.94 .0319 -.47 .87 .01 .0322

x / z .80 -.47 .23 .0927 .31 -.15 -.89 .0929

z j x -.80 .46 -.30 .0665 -.36 .20 .87 .0666

y / z .86 -.28 -.34 .0727 .05 .39 -.88 .0728

z/y -.85 .30 .33 .0789 -.04 -.37 .88 .0791

2x + 2 y .61 .78 .09 .0064 .79 .61 .00 .0032

2x +  2z -.09 .88 .46 .0071 .74 .16 .65 .0042

2 y  -f- 2 z -.09 .93 -.34 .0066 .22 .76 .61 .0033

{x2 +  y 2)1/2 .61 .75 .23 .0102 .87 .49 -.00 .0094

(x2 +  z 2)1/ 2 .18 .79 .58 .0162 .90 .11 .40 .0163

(y2 + z2y/2 .09 .90 -.42 .0133 .24 .86 .44 .0132

xyz -.11 .98 -.00 .0289 .47 .54 .68 .0290

(x2 +  y 2 +  z 2)1/ 2 .37 .90 .20 .0142 .80 .52 .28 .0142

Table 7.2: Standard LS solutions for Thurstone’s 26-variable box data.
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quate surrogates for the corresponding EFA loadings. Compared to the standard LS 

solutions the uniquenesses are smaller for EFA-like PCA, but the former ones are very 

similar to the ones obtained by simultaneous EFA.

All algorithms employing a LT parameterization give virtually identical loadings. More­

over, the loadings exhibit an interpretable and contextually meaningful relation between 

the observed variables and the common factors. If one ignores all loadings with mag­

nitude .25 or less in the LT loading matrices in Table 7.3 and Table 7.4, the remaining 

loadings perfectly identify which of the box dimensions x, y and z  were used to generate 

each of the variables. Using the results for EFA-like PCA based on the QR decompo­

sition in Table 7.2, this can be done by ignoring all loadings with magnitudes of .26 or 

less.
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Formula

a  =  z t f

error of fit =  .175174

L =  tril(ZTF) 

error of fit =  .175184

A \ j> 2 L \J>2

X .99 .17 .02 .0000 1.00 0 0 .0000

y .10 .90 .43 .0000 .25 .97 0 .0000

z .12 -.20 .97 .0000 .10 .23 .96 .0000

x y .55 .76 .33 .0000 .68 .73 -.00 .0000

x z .50 -.11 .85 .0000 .49 .20 .84 .0000

y z .14 .22 .96 .0000 .20 .59 .77 .0000

x 2y .72 .62 .25 .0191 .82 .54 -.00 .0191

x y 2 .38 .84 .35 .0001 .52 .84 -.03 .0000

x 2z .69 -.05 .69 .0198 .68 .15 .68 .0198

x z 2 .34 -.12 .92 .0000 .33 .24 .90 .0000

2y  z .16 .43 .86 .0298 .25 .73 .60 .0298

o
y z .13 .06 .97 .0000 .16 .45 .85 .0000

x / y .57 -.68 -.42 .0279 .44 -.87 -.05 .0279

y / x -.59 .68 .39 .0290 -.46 .87 .02 .0290

x / z .27 .30 -.86 .0811 .31 -.15 -.89 .0811

z / x -.33 -.26 .87 .0476 -.36 .20 .88 .0476

y / z -.07 .74 -.61 .0566 .04 .40 -.87 .0566

z / y .08 -.72 .62 .0651 -.03 -.38 .88 .0651

2x  +  2 y .68 .67 .28 .0000 .79 .61 .00 .0000

2x +  2 z .75 -.02 .66 .0000 .74 .15 .65 .0000

2 y  +  2 z •14 .44 .88 .0000 .23 .76 .61 .0000

{x2 +  y 2 ) 1//2 .78 .58 .23 .0000 .87 .49 -.01 .0000

( x2 +  z 2) 1/ 2 .90 .07 .42 .0001 .91 .10 .39 .0001

(t/2 +  z2)1/2 .13 .61 .77 .0000 .25 .86 .44 .0000

x y z .41 .26 .86 .0017 .47 .54 .68 .0017

(;x2 +  y 2 +  Z2) 1/ 2 .72 .47 .49 .0001 .80 .52 .28 .0001

Table 7.3: Simultaneous EFA solutions for Thurstone’s 26-variable box data.
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Formula

SVD

error of fit =  .198038

QR decomposition 

error of fit =  .222478

A \|>2 L \j>2

X .50 .53 .68 .0000 1.00 0 0 .0000

y .47 .70 -.53 .0000 .26 .97 0 .0000

z -.62 .78 -.00 .0000 .10 .23 .97 .0000

xy .61 .79 -.06 .0000 .68 .73 -.01 .0000

xz -.34 .89 .27 .0000 .49 .20 .83 .0000

yz -.29 .92 -.22 .0000 .20 .59 .76 .0000

0
% y .61 .76 .17 .0157 .82 .54 -.00 .0285

x y 2 .59 .76 -.25 .0014 .52 .84 -.03 .0000

2X Z -.14 .87 .42 .0177 .68 .15 .67 .0450

2XZ -.44 .86 .14 .0000 .33 .24 .88 .0004

2
y z -.08 .92 -.30 .0290 .24 .73 .58 .0572

2
y z -.42 .87 -.14 .0000 .16 .45 .84 .0000

x / y -.06 -.30 .94 .0149 .45 -.87 -.04 .0210

y / x .07 .27 -.95 .0169 -.46 .87 .02 .0196

x j z .81 -.47 .24 .0613 .31 -.16 -.88 .0768

z / x -.80 .46 -.31 .0343 -.36 .20 .89 .0123

y h .86 -.28 -.34 .0394 .04 .40 -.87 .0559

z / y -.86 .30 .34 .0459 -.04 -.37 .90 .0348

2x +  2 y .61 .78 .09 .0000 .79 .61 .00 .0000

2x +  2 z -.09 .88 .46 .0000 .74 .16 .65 .0000

2y +  2z -.09 .93 -.34 .0000 .22 .76 .61 .0000

(x2 +  y 2)1/2 .61 .75 .23 .0000 .87 .49 -.01 .0000

(x2 -F 2:2 ) 1/ 2 .18 .79 .58 .0001 .91 .10 .40 .0001

{y2 +  z 2) l/2 .09 .90 -.42 .0000 .24 .86 .44 .0000

x y z -.10 .98 -.00 .0016 .46 .53 .67 .0057

{x2 +  y 2 + z 2)1/2 .37 .90 .20 .0001 .80 .52 .28 .0001

Table 7.4: EFA-like solutions for Thurstone’s 26-variable box data.
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7.3 .2  A tm osp h eric  sc ien ce  d a ta

Climate is a natural system that is characterized by complex and high-dimensional 

phenomena. To improve understanding of the physical behaviour of the system, it is 

often useful to reduce the dimensionality of the data. This requires the development 

and use of statistical techniques in atmospheric science for describing patterns of me­

teorological variables over a large spatial area in low-dimensional space.

Empirical orthogonal function (EOF) analysis, known in statistics as PCA, is among 

the most widely used methods in atmospheric science (Hannachi, Jolliffe, and Stephen­

son, 2007; Jolliffe, 2002). Given any space-time meteorological data set, EOF analysis 

finds a set of orthogonal spatial patterns (EOFs), in PCA referred to as loadings, along 

with a set of associated uncorrelated time series or principal components, such that the 

first few PCs account for as much as possible of the total sample variance.

Unlike PCA, the use of EFA in atmospheric science is quite rare (M. B. Richman, 

personal communication, 2008). Most publications which claim to make use of EFA in 

their studies actually apply PCA/EOF analysis. Regarding the use of EFA in the liter­

ature, we are aware of the publications by Bukantis (2002), Carter and Eisner (1997), 

Barring (1987), Walsh, Richman, and Allen (1982), and Walsh and Richman (1981). 

At this point, EFA is applied to atmospheric science data from the National Center for 

Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) 

reanalysis project. The data set was kindly provided by Dr. Abdel Hannachi who is 

currently affiliated with the Department of Meteorology, King Abdulaziz University, 

Jeddah, Saudi Arabia. The data set consists of winter monthly sea-level pressures 

(SLP) over the Northern Hemisphere north of 20°N. The winter season is convention­
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ally defined by the months December, January and February (DJF) (e.g., Hannachi, 

Jolliffe, and Stephenson, 2007; Wallace and Gutzler, 1981). The data set spans the 

period December 1948 to February 2006 (n =  174 observations) and is available on 

a regular grid with a 2.5°latitude x 2.5°longitude resolution (p = 29 x 144 =  4176 

variables representing gridpoints).

Prior to the analysis the data were preprocessed as follows. First, the mean annual cy­

cle was calculated by averaging the monthly data over the years. Anomalies were then 

computed as departures from the mean annual cycle. To account for the converging 

longitudes poleward, an area weighting was finally performed by multiplying each grid 

point by the square root of the cosine of the corresponding latitude. These weighted 

SLP anomalies are the data to which methods are applied.

Applying the new approach for fitting the EFA model in the case p >  n  which updates 

F  and U  simultaneously, five factors are extracted which account for 60.2% of the 

total variance in the data. This choice is dictated by the need for a balance between 

explained variance and spatial scales. Extracting more factors increases the explained 

variance but includes more small scales. Five factors are found to provide a good bal­

ance.

For k =  5 and twenty random starts, the procedure required on average 90 iterations, 

taking about 20 minutes to converge. The algorithm was stopped when successive 

function values differed by less than e =  10-3 . Using a higher accuracy criterion such 

as e — 10~ 6  needed considerably more CPU time but did not change the quality of the 

solution. Numerical experiments revealed that the algorithm converges to the same 

minimum of the loss function, up to the second decimal place.

For comparison, factorizing a 4176 x 4176 covariance matrix and finding a numerical
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solution for minimizing the LS loss function E ls in (4.5) based on an iterative Newton- 

Raphson procedure takes about 2.5 hours.

By means of the loading matrix, EFA provides a method of describing spatial patterns 

of winter sea-level pressures. For each factor, there is a loading for each manifest vari­

able, and because variables are gridpoints it is possible to plot each loading on a map 

at its corresponding gridpoint, and then draw contours through geographical locations 

having the same coefficient values. Compared to a loading matrix with 4176 loadings 

for each factor, this spatial map representation introduced by Maryon (1979) greatly 

aids interpretation, as is illustrated in Figure 7.1.

For the winter SLP data, the plots represent the first (i) and second (ii) column of the 

4176 x 5 loading matrix. These plots give the maps of loadings, arbitrarily renormal­

ized to give ‘round numbers’ on the contours. Winter months having large positive 

scores for the factors will tend to have high SLP values, where loadings on the map 

are positive, and low SLP values at gridpoints where the coefficients are negative. The 

first and second common factor explains 14% and 13% of the total sample variance, 

respectively.

The first pattern (i) shows the North Atlantic Oscillation (NAO). The NAO is a cli­

matic phenomenon in the North Atlantic Ocean of fluctuations in the difference of 

sea-level pressure between the Icelandic low and the Azores high (Hannachi, Jolliffe, 

and Stephenson, 2007). The second EFA pattern (ii) yields the North Pacific Oscil­

lation (NPO) or Pacific pattern, a monopolar structure sitting over the North Pacific 

(Hannachi, Jolliffe, and Stephenson, 2007). For the twenty different random starts, the 

obtained EFA loadings look similar.

It is of interest to compare the spatial patterns obtained by EFA to the ones obtained
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Figure 7.1: Spatial map representations of the first (i) and second (ii) column of the 

EFA loading matrix for winter SLP data (.k = -5).
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by PCA/EOF analysis. Figure 7.2 shows the two leading modes of variability of the 

winter monthly SLP. They explain 21% (1st EOF) and 13% (2nd EOF) of the total 

winter variance. The spatial map (i) shows a low-pressure centre over the polar region 

and two high-pressure centres over the Mediterranean/North-east Atlantic and over the 

North Pacific, respectively. This tripolar structure corresponds to the familiar Annular 

Oscillation (AO) (Hannachi, Jolliffe, and Stephenson, 2007). Like EFA pattern (ii), 

the EOF 2  has the NPO with a polar high over the North Pacific but in addition it also 

has a low centre over the North-east Atlantic.

Finally, the effect of increasing the number of extracted factors was also studied. With 

more extracted factors, the scale of the spatial patterns becomes smaller and more 

concentrated. In particular, the NAO pattern starts to lose its structure.

One is tempted to ask for the use of statistical tools to validate the EFA model and 

to compare EFA with PC A. Note that EFA as well as PC A are not usually validated 

as such but examined to see whether they give an insightful low-dimensional repre­

sentation of the data. In particular for this type of atmospheric science data, there 

is less interest in the quality of the fit than whether the factors found can be usefully 

interpreted in terms of the underlying physics of the process. That is, the emphasis is 

on physical interpretation, not on statistical significance. In any case the model fit can 

be improved by increasing the number of extracted factors. Thus, results are evaluated 

and compared by the map representations of the EFA and PC A loading matrices to 

find spatial patterns which can be interpreted in a meteorological sense. One can be 

content with the comparison if the maps look the same, but one may also be content 

if they are different, provided that both sets of maps can be usefully interpreted.
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Figure 7.2: Spatial map representations of the two leading EOFs one (i) and two (ii) 

for winter SLP data ( k  =  5). The EOFs have been multiplied by 100.



Chapter 8 

Simultaneous Estim ation of all 
M odel Unknowns in Robust EFA

Classical EFA techniques take input data in the form of a matrix of second-order cross 

products, that is, of correlations or covariances. Since the influence of outliers in the 

data is multiplied by the use of product moments these approaches are not robust. In 

the context of EFA, a variety of robust estimates of the multivariate scatter matrix 

have been proposed. Among them are the multivariate M-estimator (Kosfeld, 1996; 

Huber, 1981), the minimum volume ellipsoid estimator (Filzmoser, 1999; Rousseeuw, 

1985), and the minimum covariance determinant estimator (Pison, Rousseeuw, Filz­

moser, and Croux, 2003; Rousseeuw, 1985). Mavridis and Moustaki (2008) performed 

outlier detection in factor analysis models using a forward search algorithm instead of 

using some robust modification of the sample correlation matrix.

In the current Chapter, an alternative approach to resist the effect of outliers is pre­

sented. Without passing via an estimate of the model correlation matrix, the EFA 

model is fitted directly to the data matrix (Unkel and Trendafilov, 2009c).

Croux, Filzmoser, Pison, and Rousseeuw (2003) proposed robust factorization of the 

data matrix into a pair of estimates {A, F} by optimizing a resistant alternating (criss­

cross) regression scheme (Wold, 1966; Gabriel and Zamir, 1979). Croux, Filzmoser,
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Pison, and Rousseeuw (2003) apply an ‘ignoring errors’ strategy to factor analysis. 

The unique factors are not incorporated in the corresponding loss function but treated 

as residuals to be minimized and an estimate for is obtained after the discrepancy 

measure has already been optimized. This is not satisfactory as U 1̂  is part of the 

EFA model (3.19). By neglecting this part and computing the fitted values Z simply 

as Z =  FA  , the approach of Croux, Filzmoser, Pison, and Rousseeuw (2003) resem­

bles a robust PC A solution to EFA with additional interpret ational tools rather than 

‘truly’ robust EFA. Moreover, monotonic convergence of the regression algorithm has 

not been proven.

In this Chapter, a robust approach for simultaneous estimation of A, F, \I/ and U  is 

presented (Unkel and Trendafilov, 2009c). The EFA model is fitted to the data matrix 

by minimizing a certain WLS goodness-of-fit measure. By imposing weights on the 

residuals of the ULS fitting, the WLS loss function considered is a generalization of the 

ULS one used by De Leeuw (2004, 2008).

Kiers (1997b) introduced a very general approach for fitting a model to a data matrix 

by WLS. It consists of iteratively performing steps of an existing algorithm for ULS 

fitting of the same model. The approach is based on minimizing an auxiliary function 

that majorizes the WLS loss function. In this Chapter, the majorizing function of Kiers 

(1997b) is used in a procedure for iteratively reweighted least squares (IRLS) in which 

the weights depend on the residuals and are updated after each cycle of updating the 

model parameters. Monotonic convergence of the IRLS algorithm is guaranteed. To 

down-weight the effect of outliers in the data, the Huber criterion is used as a robusti- 

fier (Huber, 1981). Optimizing Huber’s function by the IRLS algorithm leads to robust 

EFA.
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In Section 8.1, the ULS function of De Leeuw (2004, 2008) is generalized by setting 

up a robust WLS discrepancy measure. A reweighted least squares algorithm which 

monotonically improves the value of the WLS objective function using iterative ma- 

jorization is presented in Section 8 .2 . Section 8.3 illustrates the performance of the 

proposed robust EFA approach on real data.

8.1 W eighted  least squares loss function  and choice  
o f robustifier

The approach of De Leeuw (2004, 2008) can be generalized by imposing weights on the 

ULS residuals. Assume that n > p and consider the following WLS objective function:

f WLS =  ||(Z -  B A T) © W || |  = ± ± ^ - ^ 1 ^  =  £ £ * 4 4  - (8-1)
i =  1 j —1 2 = 1  7 =  1

where b* and a j are column vectors of length k +  p containing the elements of row i 

of B =  [F U] and of row j  of A — [A \p], respectively, W  is an n x p matrix of 

non-negative weights W i j  attached to each residual e^, and 0  denotes the elementwise 

(Hadamard) matrix product. For given Z and W , the aim is to minimize (8.1) over B 

and A  subject to the constraints on the EFA model parameters, tha t is, rank(A) =  k , 

F t F  =  Ik, U TU  =  Ip, U t F  =  Opxfc, and 4̂  being a p x p diagonal matrix.

The WLS goodness-of-fit criterion is typically associated with robust statistical meth­

ods. The idea of robust methods is to down-weight cases with large residuals rela­

tive to cases with small residuals. For many statistical techniques the standard ULS 

goodness-of-fit criterion is very sensitive to large deviations between the model and the 

data (Verboon, 1994). When the ULS criterion is trying to compensate for these large 

errors, the solution of the problem may be ‘shifted’ towards an incorrect one.

W hat remains is to make a careful choice of the weights attached to each residual in
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order to implement a robust form of simultaneous parameter estimation in EFA. As­

sume that the data matrix Z contains some outlying points giving rise to high residuals. 

Then, loss functions which try  to curb the influence of those outliers are desirable. 

Several possibilities for downweighting are available, for example the l \  matrix norm, 

where the sum of moduli of errors is minimized (e.g., Rousseeuw and Leroy, 1987, Chap­

ter 1), the biweight function (Mosteller and Tukey, 1977) or Huber’s robust estimator 

(Huber, 1981). Consider the Huber function:

The Huber function is symmetric and for |e^-| >  7 , the residuals have less effect than 

they would have with ULS. The basic idea is that outliers, yielding large residuals when 

the structure of the majority of the data points is fitted well, will have a less disturbing 

effect upon the solution than in the ULS case. When 7  is chosen very large, (8 .2 ) 

becomes equal to the ULS function; when 7  is close to zero, (8.2) reduces to the least 

sum of absolute residuals criterion. Therefore, the loss function is a hybrid i \  — 1 2  error 

measure and the algorithm to minimize it can also be used for solving the t \  problem. 

The criterion (8 .2 ) can be formulated in a WLS form with (squared) weights

Of course, the residuals and hence the weights are not known and have to be given 

initial estimates. After fitting the model to the data, new estimates of the residuals

n p

(8 .2)
i = 1 j = 1

where f H(eij)

and 7  is a given ‘tuning constant’, which distinguishes small residuals from large ones.

(8.3)
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will be available which can be used to compute new weights. Thus, / # ( B, A) or equiv­

alently fwLS with weights defined in (8.3) can be minimized by an algorithm that is 

based on IRLS.

One may resort to standard numerical procedures like Newton or conjugate gradient 

methods to solve the WLS problem. However, these techniques become computation­

ally slow when the matrices of unknowns are large (Kiers, 2002). In the next Section, a 

monotonic convergent IRLS algorithm is derived by means of the iterative majorization 

approach to optimization instead.

8.2 Iterative rew eighted  least squares algorithm

8.2 .1  Itera tiv e  m ajoriza tion  approach  to  o p tim iza tio n

The basic idea of iterative majorization (e.g., Heiser, 1995) is that in each iteration 

a complicated objective function is substituted by a simple (for instance, linear or 

quadratic) auxiliary function called a majorizing function.

Assume a model parameter matrix X  varies in some domain O. The aim is to minimize 

an objective function, /(X ), by minimizing a majorizing function m (X |X c), where

X c denotes the current estimate of X  (called the supporting point). The majorizing

function must meet the following requirements:

m(X|X°) >  /(X )  V X  , (8.4)

and

m (X c|Xc) =  / ( X c) . (8.5)
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Thus, the values of the majorizing function must never be smaller than the values of the 

original loss function and the values of both functions must coincide at the supporting 

point.

Iterative majorization consists of finding an update X u for X  (called the successor 

point) which minimizes the majorizing function ra(X |X c), that is,

X u =  argm inm (X |X c) .
Xe^

Using the conditions (8.4) and (8.5) as well as the fact that the search for X u is such 

that m (X u|Xc) <  m (X c|Xc), the following chain of inequalities holds:

. / ( X u) <  m (X u|Xc) =  m inm (X |X c) <  m (X c|X c) =  / (X c) . (8 .6 )
XE'

Hence, by iteratively minimizing m (X |X c), a sequence of monotonically decreasing loss 

function values is obtained. If the loss function /(X ) is bounded below, the iterative 

procedure will stop at a stationary point which is not necessarily a local optimum. 

Note that optimizing f j j (B, A) or the WLS fitting problem in (8.1) involves two block 

matrices or parameter sets, that is, B and A. However, these optimization problems 

can be solved by a combination of a majorization and a block relaxation (De Leeuw, 

1994) algorithm. The only complex step here is to find an update B u using a solution 

for minimizing /j*(B, A) over B (keeping A  fixed). This is done using the majoriza­

tion approach. In the next section, a simple majorizing function m (B ,A |B c,A c) is 

presented which can be used to decrease the objective function /# ( B, A).

8 .2 .2  M ajorizing  fu n ction  and  o p tim iza tio n  a lgorith m

Note that /# ( B ,A ) in (8.2) is separable, that is, / # ( B ,A ) =  E j = i ( eu)- 

De Leeuw and Lange (2009) show that the ‘sharpest’ (best possible) quadratic majorizer
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4  for 141 < 7 ,
"M ed ley ) =  *j *J '3 ' (8-7)

j % 4  +  7 l 4 | - 7 2  for 141 > 7 ,

where e?- denotes the estimate of residual found in the previous iteration.

If mn{eij |e?-) majorizes for z =  1 , . . . ,  n and j  = 1, . . .  ,p, then ra# (B, A |B C, A c)

m ajorizes///(B , A), that is,

f H (B ,A ) < m H (B ,A |B C,A C)

and

/ h (Bc,A c) =  m # (Bc,A C|B C, A c) .

By choosing weights wfj as

I
I for |ef-| <  7  ,

(8.8)

7/141 for 141 - 7 .

the piecewise function (8.7) turns into (Verboon and Heiser, 1992):

”M e« l4 ) = <
*44 for I4'l <7.
«44 + 7141 _ 72 for 14,1 > 7 •

(8.9)

From (8.9), it can be seen that ra//(B , A |B C, A c) is (up to a constant for |e^| >  7 ) a 

WLS function in the residuals and thus in B and A. Therefore, it suffices to look 

at the WLS problem J w l s  in (8-1) with weights defined in (8 .8 ).

Kiers (1997b) introduced an iterative majorization algorithm to solve any WLS fit­

ting problem in cases where an algorithm for the corresponding ULS fitting is already 

available. Using the method of Kiers (1997b), fwLS in (8-1) is majorized and touched
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where Z =  B CA°T +  w~2(W  O W  © (Z — B cA cT)), w^  is the maximum of the squared 

elements of W , and a  is a constant. Thus, by setting-up an iterative majorization 

algorithm, the WLS problem can be solved by iteratively solving the corresponding 

ULS problem of fitting the same model to Z instead of Z, that is, by minimizing 

| |Z - B A t ||J,.

Keeping A  fixed and using the fact that ||Z —B A T||J. =  ||Z ||^ + ||A ||^ —2 trace(BTZA), 

the minimization of ||Z — B A t ||Ji is equivalent to the maximization of trace(BTZA) 

over B. The maximizing B  can be found as a solution to a Procrustes problem which 

can be solved analytically via the SVD of ZA.

Once optimal factor scores F  and U  are found, the parameter matrices A and ^  are 

updated by A =  Z F  and \I/ =  diag(UTZ) which immediately follows from replacing 

Z by Z in the identities (5.2) and (5.3). This alternating procedure continues until the 

original loss function cannot be reduced further. Hence, the optimization algorithm is 

a combination of an iterative majorization and a block relaxation approach.

Note that in Kiers (1997b), the weights are considered fixed. However, the iterative 

majorization approach can be used in an IRLS setting in which the weights depend on 

the residuals and are updated according to (8 .8 ) after each cycle of updating the model 

parameters.

For WLS fitting of matrix decomposition problems, Groenen, Giaquinto, and Kiers 

(2003) proposed the so called weighted majorization algorithm (see also Groenen, Gi­

aquinto, and Kiers, 2005). Using the method of Groenen, Giaquinto, and Kiers (2003), 

f w L S  in (8-1) is majorized and touched by

m G(B ,A |B c,A c) = /3  +  t r a c e (Z -B A T)TD ^ ( Z - B A T) , (8.11)
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where (5 is a constant, D m is an n x n  diagonal matrix containing the squared maximum 

row values m? (i = 1 ,. . . ,  n) of W , and Z =  B CA°T +  D “2(W  © W  © (Z -  B cA cT)) 

with elements

Zi j  ~

2
W i i1  ~2
m iJ

2

I*: -*'; ! "  ■ (8.12)2mf

Minimizing m<3 (B, A|B°, A c) is a WLS problem in a diagonal metric instead of a ULS 

problem for the minimization of m ^(B , A |B C, A c).

If there is a single weight Wij that is much larger than all the other weights, the effect 

is limited only to the single row to which the large weight belongs. This is because the 

term w ^ /m f  in (8.12) depends on the largest squared weight per row, while in Kiers 

(1997b) it depends on the overall largest (squared) weight w^.  For the special case 

of B 2m =  w^J-n and thus all maximum row weights equal, the weighted majorization 

approach coincides with the method of Kiers (1997b).

In rows that have their weights close to the largest row weight, the weighted majoriza­

tion algorithm will fit b j a j to a large extent to Zij. For rows with a large single weight 

it will fit bja.j mostly to and to a minor extent to z^.  Since wfj /mf  > w ^ /w ^ ,

in weighted majorization b  J  aj is fitted more to the data than to the values of the pre­

vious iteration compared to the method of Kiers (1997b). The consequence is tha t the 

more deviant the largest weight is from all the other weights, the slower the algorithm 

of Kiers (1997b) is expected to be compared to the one by Groenen, Giaquinto, and 

Kiers (2003).

The weighted majorization method can be applied to any WLS matrix decomposition 

model with differential non-negative weights for each residual (Groenen, Giaquinto, 

and Kiers, 2005). Naturally, it only improves those optimization problems for which a
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diagonally WLS solution can be obtained easily. Unfortunately, by imposing a diago­

nal weight matrix in (8 .1 0 ) it becomes much more difficult to minimize (8 .1 ) by 

iterative majorization. Indeed, expanding the non-constant term in (8.11) gives

||D m( Z - B A T)|||. =  ||D mZ |£ .+ trace(A B TD ^ B A T) - 2 trace(BTD ^Z A ) , (8.13)

in which the second term on the right side of (8.13) is not constant. Hence, for given 

or estimated A  the minimization of m c(B , A |B C, A c) is not equivalent to the max­

imization of trace(BTD ^Z A ) over B. No closed-form solution for this optimization 

problem exists. Since it only makes sense to consider an algorithm if the minima of 

the majorizing functions in the substeps can be obtained readily, the majorization al­

gorithm of Kiers (199Tb) is used in the sequel.

Summarizing, the set-up for the proposed IRLS algorithm for minimizing /# ( B ,A ) 

over B and A  is as follows:

1. Set convergence criterion e to some small value, say 10-6 . Initialize B and A  as 

B c and A c, respectively. Set the iteration counter c =  0.

2. For given 7 , compute f f j  = f n ( B c, A c) and weight matrix W c according to (8 .8 ).

3. Compute Zc =  B CA°T +  u>“ 2 (W c 0  W c 0  (Z -  B cA cT)).

4. Keeping A° fixed, find B c + 1  that minimizes ||Z — BA°T|If over B.

5. Partition the block matrix B c + 1  into F c + 1  and U 0+1.

Update A c + 1  =  [Ac + 1  : ’F c+1] using A c + 1  =  ZTF C + 1  and 'F c + 1  =  diag(U 0+lTZ).

6 . Compute f f f 1 = f n  (Bc+1, A 0+1) and new weight matrix W c + 1  according to (8 .8 ).

7- If U% ~  f t t 1) > effj,  set c =  c +  1 and go to step 3; else consider the algorithm 

converged.
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Essentially, the IRLS algorithm for minimizing f n ( B, A) consists of two main steps. 

In one step, a WLS problem is solved for a fixed set of weights by means of the 

majorization approach, and in the other the weights are chosen as a monotonically 

decreasing function of the absolute values of the residuals from the previous step.

8.3 A pplication  to  E uropean health  and fertility  
data

The proposed approach is applied to data originating from the statistical office of the 

European Union (Eurostat). Nine variables (p = 9) related to health and fertility are 

measured for 16 European countries (n = 16). The data set can be downloaded via 

http://www.statistik.tuwien.ac.at/public/filz/data/europop and is reported in Table 8.1. 

Croux, Filzmoser, Pison, and Rousseeuw (2003) used these data in the context of robust 

factor analysis.

The variables are average population growth from the year 1986 to 2000 (pop_growth), 

percentage of women of an age able to give birth (g ive_b irth ), percentage of women of 

all ages per hundred men (women°/0), life expectancy of women ( l i f  eexp_f) and of men 

( l i f  eexp_m), infant mortality rate (inf_m ort), number of inhabitants per physician 

(inhab/doc), daily consumption of calories per capita (c a lo rie s ) , and percentage of 

babies which are underweight at birth (baby_underw). The observations are Austria 

(A), Albania (AL), Bulgaria (BG), Switzerland (CH), Czechoslovakia (CS), German 

Democratic Republic (GDR), Hungary (H), Norway (N), Poland (PL), Romania (RO), 

Sweden (S), Finland (F), Soviet Union (SU), Turkey (TR), Yugoslavia (YU), and the 

European Community (EC). These sixteen countries correspond to their configuration 

in the year 1986.

http://www.statistik.tuwien.ac.at/public/filz/data/europop
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To underline the necessity of a robust analysis, potential outliers in the data are iden­

tified first. Assume that the raw data from Table 8.1 are stored in a matrix X  =  

(x(i),. . .  ,X(n))T G Rnxp. Robust distances are used to detect whether an observation 

is an outlier or not. The robust distance of an observation i is defined as

RDi — \ J (x ( 0  — Amve)T^m ve(x 6 ) ~  Amve) j (8-14)

where AmvE and Sm ve denote the minimum volume ellipsoid (MVE) estimates of the 

location vector /i and the scatter matrix X for the p variables, respectively (Rousseeuw, 

1985). Becker and Gather (2001) proposed to use the MVE estimator as an outlier 

identification tool. The MVE looks for the ellipsoid with smallest volume that covers 

at least h data points. To ensure that Amve an(  ̂ ^m ve have maximum breakdown 

values, h can be taken equal to [(n + p +  l ) / 2 ], where [a] denotes the integer part of 

a G M. The location estimator Amve defined as the center of this ellipsoid. The 

corresponding covariance estimator Smve is given by the ellipsoid itself, multiplied by 

a suitable factor to obtain Fisher consistency at the multivariate normal distribution. 

The robust distance (8.14) is a robustification of the Mahalanobis distance defined as

MDi =  y j (x(i) -  x)TS_1(x(i) -  x) , (8.15)

which uses the sample mean x and sample covariance matrix S as estimates of location 

and scatter. For multivariate normally distributed data the values in (8.15) are approxi­

mately distributed according to Xp- Using the robust distances in (8.14), an observation 

is declared as an outlier if the RD for an observation i is larger than a cut-off value, say 

yjxp,0 .9 7 5 - For the Eurostat data, Figure 8.1 displays for each observation its robust 

distance. A horizontal line is drawn at the cut-off value yjxp ,o 9 7 5  — V19.023 =  4.3615. 

Two outlying observations can clearly be identified: Albania and Turkey.
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Figure 8.1: Identification of outliers by robust distances.

The data are standardized next so that the p  variables have commensurate means and 

scales. Since the data contain outliers, the data mean as well as its standard deviation 

are no longer reliable estimates, and therefore, robust data preprocessing is required. 

For this purpose the coordinatewise median (med) is used for the estimation of the 

location and the median absolute deviation (MAD) for scale estimation. Both esti­

mators attain a maximum breakdown value of 50% (Rousseeuw and Leroy, 1987). In
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mathematical terms, the robust preprocessed data are obtained as

x i;j -  m e d ^ y , . . . ,  xnj) . .
Zii : ■ VTTT77--------------- -̂---- for 7 =  1 , . . . ,  p , (8.16)

where , x nj) =  1.4826 x med*{|:rz-j — med(aqj, . . . ,  x nj)\}. The centered and

scaled observations zij (i = 1, . . .  , n; j  = 1, . . .  ,p) are stored in the matrix Z G M.nxp 

and are the data to which the proposed method is applied.

A two-factor-model is considered in the following. The model parameter matrices F  

and U  are initialized randomly in an orthonormal block matrix B. To avoid local op­

tima, the algorithm was run twenty times and it was stopped when successive function 

values differed by less than e =  10~6. For k =  2, the procedure required on average 920 

iterations, taking about 0.41 seconds. The twenty runs led to the same function value, 

up to the third decimal place, which was deemed adequate. Using a higher accuracy 

criterion such as e — 10- 9  needed considerably more CPU time but did not change the 

quality of the solution.

Thus, it can be concluded that, whereas the algorithm takes a large number of itera­

tions, the analysis of the present data set can be carried out very quickly on a currently 

standard computer, and the IRLS algorithm is numerically stable. To give some insight 

into the iteration process, the function value has been plotted for two of the twenty 

randomly started runs against the iteration number in Figure 8.2. It can be seen that 

for both runs the decrease of the objective function is rather gradual. Whereas in the 

first example (left), the decreases are consistently decreasing, in the second example 

(right) the process seems to have converged after about 500 iterations, but then jumps 

down after which the process gradually decreases until convergence. In both cases, the 

monotonically decreasing function value stabilized at the same height.
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o  15

iteration iteration

Figure 8.2: Function value plotted against iteration number for two randomly started 

runs of the IRLS algorithm.

After convergence, not only estimates for the block parameter matrices A  and B but 

also a set of weights € ]0 , 1 ] (i = 1 , . . .  ,n; j  = 1 , . . .  ,p) are available that can be 

used to examine the outlyingness of the residuals. Weights equal to 1  are assigned to 

data that fit the model well, while outliers will have small weights.

Recall that W  is an n x p matrix of possibly different weights attached to each resid­

ual, that is, elementwise weighting is performed. The loss function is applied to each 

residual element, e^, and then these loss values are summed up to obtain the overall 

loss. Instead of elementwise weighting, rowwise weighting aggregates the residuals over 

the rows and the loss function is then applied to these n aggregated values. Since 

small weights could be assigned to separate scores of an observation, leaving its other 

scores unaffected, elementwise weighting is more flexible than rowwise weighting which 

considers whole objects as possible outliers (Verboon, 1994).

Figure 8.3 is a checkerboard plot, a flat surface plot with its view set to directly above, 

of the final 16 x 9 matrix of weights W . The values of the elements of W  specify the 

colour in each cell of the plot, ranging from yellow to red. Note that the scale of the
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Figure 8.3: Checkerboard plot of the 16 x 9 matrix of weights W  obtained after the 

IRLS algorithm has converged for the Eurostat data.

colourbar in Figure 8.3 is upside-down, that is, red rectangular faces of the surface cor­

respond to small weights and hence large residuals. As Figure 8.3 shows, the proposed 

IRLS algorithm detects that the observations Albania (row 2 ) and Turkey (row 14) are 

outlying in most of the variables. As desired, the IRLS algorithm fits the data in such 

a way that residuals corresponding to outliers are relatively large after applying the 

procedure.

The Huber function depends on the tuning constant 7  which must be determined before 

running the IRLS algorithm. For the Eurostat data, the Huber constant was chosen 

as 7  =  0.05. This value appeared to yield the most satisfactory results, which means 

that the outliers were well distinguished from the other points.
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The purpose of a robust procedure is to fit the majority of the data or the proper 

(non-outlying) data points well. In other words, the outliers should not be capable 

of obscuring the main structure in the data. Fitting the EFA model by the proposed 

approach yields Z =  FA  + U $ .  From Z one finds the matrix X  containing the fitted 

values X i j  (i =  1 . . . ,  n ; j  = 1 , . . .  ,p) expressed in the location and scale of the original 

values of the variables as

X  =  l nf iT +  1 n<rT 0  Z ,

where fi and <x are the vectors of (robust) estimates of center and scale for the p 

variables, respectively.

As in Croux, Filzmoser, Pison, and Rousseeuw (2003), the fit of the majority of the
n p

data is evaluated by computing ^  J2(x ij ~  that is, the sum the squared
i = 1 j = 1 

*¥2,14
differences between the observed and fitted values with the index i running over all 

rows except 2  and 14 (the rows representing the outliers Albania and Turkey). For 

three different approaches, the corresponding values are given in Table 8.2. W ith the 

ULS approach of De Leeuw (2004, 2008), the effect of the outliers on the model fit is 

clearly disastrous. It yields large residuals for non-outlying data points. The robust 

IRLS procedure outperforms the non-robust ULS approach and the majority of the 

data is fitted well. The results from Table 8.2 imply that for the presentation of the 

parameter estimates the proposed IRLS approach is preferable.

Finally, as Table 8 . 2  reveals, the IRLS algorithm fits the proper data points better 

than the robust approach to factor analysis proposed in Croux, Filzmoser, Pison, and 

Rousseeuw (2003). Recall that in Croux, Filzmoser, Pison, and Rousseeuw (2003) the 

data matrix is factorized into a pair {A, F} by optimizing a weighted t \  alternating
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regression procedure. Estimates for the matrix of unique variances are obtained 

from the residuals Z — FA  after the algorithm has already converged. Additional 

weights which would account for the unequal variances among the unique factors are not 

included in the regression scheme because it “can affect the stability of the algorithm” 

(Filzmoser, 2002). However, U 1̂  is part of the EFA model (3.19). If the EFA model 

(3.19) holds for a particular set of data, then a procedure which estimates all EFA 

model unknowns {F,A , U , ’F} simultaneously can be expected to obtain a better fit 

than an approach which ignores the unique part of the EFA model in the loss function.



Chapter 9

Discussion

Classical EFA fitting techniques factorize the sample covariance or correlation matrix 

into a factor loadings matrix and a matrix of unique factor variances with respect to 

some goodness-of-fit criterion. In Part II of this thesis, the EFA model was considered 

as a specific data matrix decomposition with fixed unknown matrix parameters. Sev­

eral new algorithms were introduced for the LS and WLS estimation of all EFA model 

unknowns.

For vertical data matrices with n > p, a new iterative algorithm for the simultaneous 

estimation of all EFA model parameters {F, A, U, \I/} was introduced in Chapter 5 

which updates the common and unique factor scores successively.

Furthermore, a reparameterization of the EFA model was proposed to produce solu­

tions with a lower triangular matrix L of loadings. Whereas the parameter matrix A in 

the classical EFA formulation (3.19) admits an infinite number of orthogonal rotations, 

the lower triangular reparameterization removes the rotational indeterminacy of the 

EFA model and leads to solutions already having an interpretable pattern. Moreover, 

the new parameters are subject to the constraint rank(L) =  k expressing the nature of

108
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the EFA model, rather than facilitating the numerical method for their estimation (as 

is the case with the condition ATA or AT\I/-2A being diagonal for the standard EFA 

estimation procedures).

In Chapter 6 , EFA was viewed as a special case of PC A with the error term resem­

bling the EFA one. This EFA-like PC A construction helped to provide conditions 

under which for a particular data set the PCs and their coefficients can be used as 

adequate surrogates for the common factors and their loadings. It was demonstrated 

by examples that the PCA and EFA solutions can look very similar, despite the fact 

that the EFA model provides a better fit to the data than PCA. As an alternative to 

the SVD, the QR decomposition was proposed for rank reducing approximation of the 

data. Whereas the iterative algorithms for simultaneous EFA look for pairs { A , ^ }  

and {F, U}, EFA-like PCA looks for pairs {A, F} and {TqU}.

For horizontal data matrices with p > n, an extension of the EFA model was proposed 

in Chapter 7 and novel algorithms for the estimation of all EFA model unknowns were 

presented. The new model requires \I/ 2 being positive semi-definite. For a number of 

modern applications the data are often high-dimensional with n « p .  Iterative algo­

rithms factorizing a p x p  correlation matrix ZTZ may become computationally slow if 

p is huge. In the case that n<Cp,  taking an n x p data matrix Z as an input for EFA 

seems a reasonable alternative.

Classical EFA techniques take input data in the form of covariances/correlations and 

are very vulnerable to the presence of outliers. To overcome the outlier problem, the 

EFA model was considered as a weighted data matrix decomposition in Chapter 8 . 

The weights in the WLS loss function are used to diminish the outliers’ influence in 

the data. Each entry in the data matrix is separately weighted and the weights are
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related to the residuals obtained after each cycle of updating the model parameters. 

This yields an iteratively reweighted least squares (IRLS) scheme. An iterative ma­

jorization approach to optimization is employed to provide a monotonically convergent 

IRLS algorithm for the robust estimation of all EFA model parameters.

In the proposed IRLS scheme, the weights are chosen according to the Huber function. 

However, by merely choosing the weights differently, the iterative majorization ap­

proach presented can be used for a variety of resistant loss function. Examples are the 

biweight function (Mosteller and Tukey, 1977) or simply a trimming function, which 

assigns 0 to residuals larger than a particular value and 1 otherwise. This makes the 

IRLS algorithm widely applicable.

Due to the factor score indeterminacy in EFA, the common and unique factor scores 

are not uniquely estimable. However, the non-uniqueness of the factor scores is not 

a problem for the numerical algorithms that find estimates for all matrix parameters. 

From this point of view, the numerical procedures developed in this thesis avoid the 

conceptual problem of factor score indeterminacy and facilitate the estimation of both 

F  and U. Far more important than this, the new algorithms facilitate the application 

of EFA for analyzing multivariate data because they are based on the computationally 

efficient and well-studied numerical procedure of the SVD of data matrices, as PCA is. 

The main drawback of the proposed decomposition models with fixed matrix param­

eters is that it is not possible to test them by statistical methods. Nevertheless, as 

De Leeuw (2008) points out, the notions of monotonic convergence of the algorithms, 

stability of solutions and goodness-of-fit continue to apply.



Part III

R otation Towards Independence in
Factor Analysis
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Chapter 10 

Fitting the noisy ICA m odel

Recall the noisy ICA model (3.13):

x  =  M £ +  u .  (10.1)

The problem in noisy ICA is to estimate the mixing matrix M  and to obtain the re­

alizations of the independent components £ from n  available observations on x  only. 

Due to the existence of u  in (10.1), knowledge of M  does not give direct access to the 

independent components. This implies that apart from a procedure for estimating the 

mixing matrix one requires a method for obtaining the realizations of the independent 

components. This Chapter provides an account that is intended as a review of ICA in 

the presence of normally distributed noise. Objective functions, originally devised in 

noise-free ICA, which measure the departure of the recovered components from inde­

pendence are presented in Section 10.1. How these criteria are embedded in algorithms 

for fitting the noisy ICA model is discussed in Section 10.2.

10.1 C riteria for m easuring departure from  inde­
pendence

The assumption underlying all ICA models is that the latent sources are independent, 

that is, the &;-dimensional joint probability density function (pdf) of £ =  (£i , . . .  ,£fc)T,
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factorizes into the product of their marginal densities as

k

/€«)=n&te). (io-2)
i=i

Let £ =  (£1 , . . .  ,Cfc)T denote a vector of ‘estimates’. Note tha t £1 , . . .  ,£& cannot be 

estimated in the usual statistical sense since they are not parameters which can be 

inferred from sample statistics but values ascribed to unobservable variates.

If the joint pdf of £ also factorizes, then £i, . . . ,£* are independent and the ICA problem 

of separating observed linear mixtures of signals into independent sources is solved.

An objective (also called contrast) function is a scalar measure, <p : M.k —> M, which 

serves as a criterion for measuring the deviation of £1}. . . ,  £*, from independence (Car­

doso, 1998).

10.1 .1  C ontrast fu n ction s defined  in  term s o f  d ifferen tia l en ­
trop ies

Contrast functions (or contrasts for short) are operating on a pdf and are designed 

such that source separation is obtained when they reach their optimal value, tha t is,

!P(/|(€)) > ¥>(/*(£)) . (10-3)

where / ^ ( 0  denotes the joint pdf of £. Equality (10.3) holds if and only if £ is a copy 

of £, that is, the entries of £ are identical to those of £ up to permutation and scaling 

ambiguities. To facilitate the notation, (10.3) can be rewritten as

v?[£] >  <p[£] > (10.4)

where square brackets are used to emphasize that the contrasts depend on the pdfs of 

£ and £ rather than directly on £ and £. Following Cardoso (1998), the canonical form

of an ICA contrast may be regarded as being derived from the information-theoretic
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concept of mutual information.

Mutual information can be derived in terms of differential entropies as follows (see 

Cover and Thomas, 1991, Chapter 9). Differential entropy is a concept in informa­

tion theory which extends the idea of Shannon entropy, a measure of the uncertainty

associated with a discrete random variable, to continuous probability distributions.

Differential entropy of a random vector x  with pdf /x (x ) is defined as

id[x] =  -  f  /x (x ) lo g /x (x )  dx . (10.5)
J  3C

where X  denotes the support set (Casella and Berger, 2 0 0 2 , p. 50) of the distribution of 

x. In this and all subsequent examples involving an integral it is assumed that the inte­

gral exists and that integration is carried out over the support set of the corresponding 

distribution. Thus, for example, the differential entropy of a p-variate random vector 

x  ~  Afp(0, X) is (Cover and Thomas, 1991, pp. 230-231):

F(Vp(0,E)) =  iln[(27re)” det(S)] , ( 1 0 .6 )

where In denotes the natural logarithm. Since it only changes the measurement scale, 

the choice of the log base is not important. Joint entropy, id[x, y], of two random 

vectors x  and y  with joint density, / x ,y(x, y), is

# [ x > y] =  -  J  /x ,y  (x, y) log / x ,y (x, y) dx dy (10.7)

and the conditional entropy of x  given y  is given by

id[x|y] =  -  J / x ,y (x, y) log /x |y  (x|y) dx dy , (1 0 .8 )

where /x |y (x |y ) denotes the conditional density function of x  given y. Using (10.5), 

(10.7) and (10.8), it follows that

id[x, y] =  id[x] +  id[y|x] =  H[y] +  i/[x |y] . (10.9)
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Mutual information is then defined as

/[x;y] =  / / x , y ( x ,
:)/y(y)

=  tf[x] +  f f [ y ] - # [ x ,y ]  . (10.10)

Thus, /[x;y] is the difference in the information that is obtained by observing x  and 

y  separately and jointly. Using (10.9), (10.10) becomes

J[x;y] =  ff[x] -  ff[x|y] =  H[y] -  H{y|x] . (10.11)

Since #[x |y] < #[x] and #[y |x] < H[y], /[x;y] > 0 where equality holds if and only 

if x  and y  are mutually independent.

Using entropies, the mutual information between ^  can be written as

k

j® = !>[& ]-#[«] >
i = 1

M i )

- j w - t f t m * -  {ma>
which is the information common to £1 , . . . ,  Thus, /[£] =  0 if and only if £ i , . . . ,  ^  

are mutually independent, so that the joint density factorizes. Hence, source separation 

can be evaluated by the following contrast:

¥>m, &  =  / [ £ ] ,  (10.13)

where y?M1 [£] is minimized when the source separation into independent sources is suc­

cessful, that is, if </?Mj[£] =  y>Mi[£] =  0 .

Alternatively, mutual information may be interpreted as a distance between two pdfs 

/ x ( x )  and </x(x) using the Kullback-Leibler divergence which is defined as (Cover and 

Thomas, 1991, p. 231):

£ > k l ( / x ( x ) | | p x ( x ) )  =  J /x (x) log . (10.14)
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Note that DKh ( /x (x)||px(x)) is finite only if the support set of /x (x ) is contained in 

the support set of px(x )-

The Kullback-Leibler divergence is not symmetric and therefore it does not satisfy the 

distance axioms (e.g., Mardia, Kent, and Bibby, 1979, pp. 375-376). However, since 

Dkl  ( / x ( x ) | | f l x ( x ) )  >  0 with equality if and only if / x ( x )  is a copy of g x ( x )? it can be 

used as a measure quantifying the closeness of two distributions. Comparison between 

(10.12) and (10.14) reveals that the mutual information between £ i , . . .  ,<fy is identical 

to the Kullback-Leibler divergence between /^(^) and its version for independent ^  

(i = 1 , . . . ,  k), tha t is, ipul[£] = DKh ( / | ( £ ) |  j U i = i  4 ^ ) ) -

Among all distributions with fixed covariance structure, the normal distribution maxi­

mizes the differential entropy. It serves therefore as an upper bound which is stated in 

the following Theorem 10.1.

Theorem  10.1. Let x  £ Rpxl be a random vector with zero mean and covariance 

matrix X. Then, H [x] < |  log[(27re)p det(X)] with equality if and only if x  ~  Afp(0,

Proof, (see Cover and Thomas, 1991, p. 234). □

Source separation may be achieved by exploiting this property of the normal distri­

bution. Assume that f i , . . .  are uncorrelated. In light of (1 0 .1 2 ), minimizing the 

mutual information between is equivalent to minimizing the marginal en­

tropies Y ^ i= i which in turn, according to Theorem 10.1, amounts to maximizing

their departure from normality.

The deviation from normality of £ may be quantified conveniently in terms of the ne- 

gentropy measure (e.g., Lee, 1998). Let /x (x ) be a Gaussian pdf with entropy H[x\
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having the same mean and covariance matrix as /^(C)- Negentropy is defined as

m  =  Aa. ( /|(O II /x (x ))  =  H[x\ -  HIS] >  0 . (10.15)

If £ i , . . . ,  £* are uncorrelated, negentropy is related to mutual information by

k
(10.16)

i=1

Like mutual information, the negentropy is non-negative and it is zero if and only if £ 

is normally distributed.

The use of differential entropy or negentropy as a contrast requires estimates of the 

densities involved. This is computationally rather complicated and/or error prone. 

Therefore, approximations to the contrast functions are often used in practice instead 

(e.g., Izenman, 2008). These approximations are either based on higher-order cumu- 

lants using polynomial density expansions or based on non-polynomial functions.

10.1 .2  A p p rox im ation s to  con trast fun ction s

Given a p-dimensional random vector x  =  (aq,. . .  , xp)T with pdf /x (x ) and a vector

t  =  ( t i , . . . , t p)T E Rpxl, the joint moment generating function of x  is (e.g., Mood, 

Graybill, and Boes, 1974, pp. 78-80):

if the expectation exists for all values of £i , . . .  , tp such that —h < t{ < h for some 

h > 0 (i =  1, . . .  ,p). For any set of non-negative integers r i , . . . ,  rp, let denote

the ( r i , . . . , rp)~th joint moment of x  which is the coefficient of (tj1 "  -tpp) /(r i! • • • rp\) 

in the Taylor series expansion of Mx (t) around t  =  0P. This implies that

(10.17)

Q r l + —+ r p
(10.18)

t — Op
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Using (10.18) to generate the first-order moments m r i , . . . ,  m Tp, the (7*1 , ,  rp)~th joint 

central moment of x  is /iri;...,rp — E[(ari — m ri)ri • • • (xp — m r )rp].

The joint cumulant generating function is defined as

tfx (t) =  ln(M x (t)) . (10.19)

Let Kri ,. .. ,rp denote the ( 7 * 1 , . . .  , r p)-th joint cumulant of x  which is the coefficient of 

(f-i • • •tpP)/{r 1 ! • • -rp\) in the Taylor series expansion of i fx (t) around t  =  0P. Using

(10.18) and (10.19), Kri,...,rp can be expressed as

Q r iA  h r p

l^ n , . . . , r p c u O > - ^ x ( ^ ) (10.20)
t=Or>

Thus, for example, the first four univariate cumulants for a single random variable x  

with mean ji and variance o2 are

=  mi = ji ,

« 2  =  h 2 = m 2 -  m\  =  (j2 ,

« 3  =  f a  =  m 3  -  3g m 2  +  2 /i3 ,

K4  =  fj>4 — 3/i2 =  fl4 — 3/ 2̂ 3

where K3  and ^ 4  can be used to define the skewness and kurtosis of a distribution,

which measure the asymmetry and peakedness of a pdf, respectively. Skewness, 7 1 ,

and (excess) kurtosis, 7 2 , are defined as

7i =  = ~§ , (10.21)

(10.22)

For symmetric distributions such as the normal, 7 1  =  0. Distributions with positive 

skewness (negative skewness) are called right-skewed (left-skewed).

Distributions for which 7 2  =  0 are called mesokurtic and those for which 7 2  >  0 ( 7 2  < 0)

^ 3 =  a*3/2 
« 2 cr3

/i4
k\ (J4
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are named leptokurtic (platykurtic). Leptokurtic distributions have a sharper peak and 

heavier tails than the normal curve. Since for the normal 7 2  =  0 and for most non­

normal distributions 7 2  7  ̂0 , kurtosis can also be used as a measure of non-gaussianity 

and hence as an objective function in ICA.

Consider now the multivariate case. According to Hinich (1994), if 7 7 , . . .  , rp are all 

equal to one, the joint cumulants are called simple and the 2nd and 4th-order (simple) 

joint cumulants are

« i,i(xi,Xj) = {i1A = E(xiXj) ( i ^ j )  ,

Ki,i,i,i(xiXjXkxi) = E(xiXjXkxi) -  E(xiXj)E(xkxi)

-E(x iXk)E(xjXi) -  E(xiXi)E(xjXk) (i ^  j  ^  k ±  I) .

If all random variables are identical, = o2 and ^ 1 ,1 ,1 ,1  =  k4, that is, the

nth-order (simple) joint cumulant turns into the nth-order univariate cumulant.

For the following reasons it is preferable to express higher-order statistics through 

cumulants rather than through moments (McCullagh, 1987, p. 25):

(i) Most statistical calculations using cumulants are simpler than the corresponding 

calculations using moments.

(ii) For independent random variables, the cumulants of a sum are the sum of the 

cumulants.

(iii) For independent random variables, the joint cumulants are zero.

(iv) If x  ~  E), then

I
Ax(t) =  t Tfj, +  - t TXt .
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Hence, unlike higher-order moments, the cumulants with order greater than two 

vanish for the normal distribution.

(v) Polynomial density expansions are conveniently expressed in terms of cumulants.

As stated in (v), approximations of the contrasts through cumulants can be obtained 

using polynomial representations of the pdfs in an orthonormal series expansion (Stuart 

and Ord, 1994).

Using multivariate Edgeworth series expansion up to fourth-order and the assumption 

that x i , . . .  , xp are uncorrelated, <pMi[x] can be approximated by (Hyvarinen, 1999c):

1 P
<pMI[x] «  C +  — ^ 2  [^Ki(x i) +  Kl(x i) +  7«4( X i )  -  0i4(x i)^ (x i)]  , (10.23)

i=1

where c is a constant. The approximation (10.23), in a slightly altered guise, forms the 

basis of many objective functions in ICA. For example, Comon (1994) proposed simply 

to maximize the criterion Y%=\ KI f e )• Comon (1994) also suggested a criterion test­

ing the independence between the components by summing all squared joint (simple) 

cumulants. Cardoso and Souloumiac (1993) proposed a similar criterion:

1 ,1 ,1  (x i , xj , x k ,x i) , (10.24)

also being a sum of the squared joint (simple) cumulants of the components, where the 

notation indicates that the sum is taken over all the quadruples of indices with i ^  j .  

In the context of projection pursuit, Jones and Sibson (1987) approximate the departure 

from normality measured by negentropy using higher-order cumulants as follows:

J(x)  «  +  ^ 4 ( 2 0  , (10.25)

where the random variable x  is assumed to be of zero mean and unit variance. For 

symmetric distributions the first term in (10.25) vanishes, and this approximation leads
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to the use of kurtosis as a measure of non-normality. In fact, the same projection pursuit 

indexes (higher-order cumulants, polynomial-based indexes) are often used as objective 

functions in ICA (Izenman, 2008).

Cumulant-based approximations simplify considerably the use of mutual information 

and negentropy. However, the main difficulty of using cumulant-based indexes arises 

from their lack of robustness against outliers (e.g. Jones and Sibson, 1987). This led 

to the development and use of approximations based on non-polynomial functions. 

Hyvarinen (1999a) uses an approximation to negentropy of the form:

J(G (x) )« /? [E { G (^ )} -E { G (2)}]2 , (10.26)

where (3 is a positive constant and z ~  A7(0,1). Note that the objective function G 

must not be quadratic because otherwise (10.26) is zero for all distributions. This 

approximation is a generalization of the cumulant-based approximation (10.25), if x  

has a symmetric distribution in which the first term in (10.25) vanishes. Indeed, taking 

G(x) = x 4, one obtains a kurtosis-based approximation. By choosing G(x) carefully one 

can obtain approximations of negentropy that are more robust performers. Hyvarinen 

(1999a) proposed the following choices of G(x):

G\(x) = — log cosh (cue) , (10.27)
a

G2{x) =  -e~x2/2 , (10.28)

where in (10.27) 1 <  a  < 2 is some suitable constant (usually, a  = 1).

After choosing a measure of independence, one needs a practical algorithm in which

this measure is embedded and that can be used for fitting the noisy ICA model.
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10.2 E stim ation  procedures in noisy IC A

Since cumulants of order greater than two are unaffected by Gaussian noise, it is possi­

ble to identify the mixing matrix M  by optimizing an independence measure composed 

of higher-order cumulants only (e.g., Lathauwer, Moor, and Vanderwalle, 1996). An 

advantage of this approach is that one does not need to know or estimate the noise 

covariance matrix \k2. However, in Lathauwer, Moor, and Vanderwalle (1996) no indi­

cation is given as to how the realizations of the sources £ should be estimated after an 

estimate for M  is found.

Another attempt to estimate the noisy ICA model is to modify ordinary noise-free ICA 

methods such that the effect of the noise is removed or at least reduced. Suppose the 

noise covariance matrix \I/2 is known. Then this information can be taken into account 

to correct the second-order statistics of the observed data. This can be done either 

in conjunction with higher-order cumulants or some non-linear measures of indepen­

dence which are immune to Gaussian noise (Hyvarinen, 1999b). However, the method 

of Hyvarinen (1999b) requires prior knowledge of and, again, there is no mention 

about how the additional problem of estimating £ is solved.

Estimates of M  and £ can be obtained within a maximum likelihood framework. Meth­

ods which belong to this category are presented next.

10.2.1 M eth o d s w ith in  a m axim u m -lik e lih ood  fram ew ork

Assuming that the noise covariance matrix \I/2 is known, Hyvarinen (1998) maximizes 

the joint likelihood of the mixing matrix and the realizations of the independent com­

ponents. A more popular approach proposed by Attias (1999) and Moulines, Cardoso,
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and Gassiat (1997) is to introduce a generative parametric density model for the dis­

tributions of the independent sources based on mixtures of Gaussians (MoG). Unlike 

Attias (1999), Moulines, Cardoso, and Gassiat (1997) do not discuss the reconstruction 

of the sources once an estimate of the mixing matrix is obtained. The approach by 

Attias (1999) is a general model named independent factor analysis in which \I/2 is not 

necessarily diagonal. It reduces to EFA when \F2 is diagonal and the model sources 

are normally distributed. Independent factor analysis is described in the sequel.

Let the independent sources (z = 1 , . . . ,  k) have arbitrary densities /&(£;|0z), where 

the z-th source density is parameterized by 0*. Then, the unknown parameters of the 

noisy ICA model (10.1) are 0  =  {M, \I/2,0}, where 0 = {0 \ , . . .  ,9k}. The resulting 

model density for the observed signals is

/x(xi© ) =  ,

fc
0(x; M$, «-2) P [  f b (Zi\e,) d£ , (10.29)

i = 1

where </>(•; fi, X) denotes the multivariate normal pdf with mean [i and covariance 

matrix X and d£ = Ylid^.  To choose a parametric form for /&(Ci|0i), which is both

sufficiently general to model arbitrary source densities and allows one to solve the

integral in (10.29) analytically, a factorized MoG model for the sources is adopted 

(Pawitan, 2001, pp. 349-352). Assume that source z is a mixture of ra* Gaussians with 

means gi,qi, variances VijQi, and mixing proportions (<& =  1, . . .  ,ra*):

mi
’ (10.30)

<?i =  l

where 0* =  {zq>g., / i ^ ,  ViiQi} and z r =  1 for each source. The parametric form in

(10.30) provides a probabilistic generative description of the sources in which the differ­

ent Gaussians play the role of hidden states. Viewed in A;-dimensional space, the joint
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source density is itself a MoG. Its collective hidden states q  =  (<71,... ,qk)T

run over all ]~Ii=i m i possible combinations of source states. Each state q  corresponds 

to a A;-dimensional Gaussian density whose mixing proportions 7 rq =  JJiLi » mean 

Mq =  (^ 1 ,91 > ••• 7 J T5 and covariance matrix Y q =  diag(vi>gi, . . . ,  vk,qk) are deter­

mined by those of the constituent source state. Hence,

k

/ $ ( € i 0 ) = n 4 t e ^ ) = E 7r« ^ ^ - T -) - (io -31)
2—1 q

where the sum over all collective states q  represents summing over all the individual 

source states, that is, =  E £ = i  +  ' * * +  E%t=r

Using (10.29) and (10.31), the likelihood C of the parameter set O given the independent 

and identically distributed data X  — {x1?... ,xn} is

n

c{e\x) = n /x .W e )  ,
2 = 1

n

=  n s
2=1 q

7rq</»(xi ;MMq,M T qM T +  ^ 2) ^  . (10.32)

In Attias (1999), the model parameters are chosen to minimize a contrast such as the 

Kullback-Leibler distance (10.14) which measures the distance between the model and 

the observed sensor densities. Minimizing the KL distance is equivalent to finding 0  

that maximizes C or log £ , that is,

©ml =  argmaxlog£(©|Af) . (10.33)

The model parameters can be found by the iterative EM algorithm (Dempster, Laird, 

and Rubin, 1977). The EM algorithm is suited for problems where the data is incom­

plete or some parts are missing. In the context of noisy ICA, £ and q  represent the

J  7rq(j)(xi] M £, \P2)(/>(£; /rq, Y q) d£ ,
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missing data and X  is called the incomplete data. The likelihood in (10.32), C(Q\X),  is 

called the incomplete likelihood. Let y  — {£, q} denote the missing information. If it 

is possible to ‘fill in’ y, the analysis of the complete likelihood C{0\X,  T) is relatively 

simple. The EM algorithm consists of two steps. In the first step (E-step), one finds 

the expected value of log£(@|<T, T) with respect to the unknown data y  given X  and 

the current parameter estimates:

=  E [log £ (© [* , y ) !* ,© '4- 1’)] .

The parameters obtained in the previous iteration that are used to evaluate the expec­

tation are denoted by 0 b _1) and © are the new parameters that are to be optimized 

to increase Q. The second step (M-step) is to maximize the expectation computed in 

the first step, that is,

©b) =  argm axQ (0, ©b-1)) .

The two steps are repeated until convergence is achieved. Each iteration is guaranteed 

to increase the log-likelihood.

Once the estimates of the parameters have been obtained, estimates of the latent vari­

ables can be constructed from the determined density model. The two most common 

ways are to use the minimum mean squared error (MMSE) estimator or the maximum 

a posteriori (MAP) estimator. Each satisfies a different optimality criterion.

The MMSE minimizes E[(£ — £)T(£ — £)]2 and the optimal estimate is given by the 

conditional mean of the sources given the observed data:

Lmse =  E(£|X) =  J€ /€pc(£|x, 0 )  , (10.34)

where |X(£lx 7 ©) is th e posterior density of the sources which depends on the gener­

ative parameters 0 . The conditional mean (10.34) has already been calculated in the
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E-step of the EM algorithm (see Attias, 1999, Appendix).

The MAP estimator maximizes the source posterior:

/ f B« W  -  / " t (y i’) ■ ’ (.0-35)

For given x, maximizing the source posterior is equivalent to maximizing the numerator 

in (10.35) or its logarithm, that is,

LAP =  ^ g m a x ^ lo g /X|£(x|O  +  ^ l o g 4 ( f i |0 i ) J  . (10.36)

To find £MAP the quantity log / X|£(x I£) +  EJL i 1°6 /& to l^ )  in (10-36) can be maximized 

iteratively by means of the gradient ascent method (Attias, 1999).

Both the MAP and the MMSE estimator are non-linear functions of the data. For 

normally distributed sources, they are equal and reduce to the linear estimator (3.23) 

for predicting common factor scores in EFA devised by Ledermann (1939). 

Independent factor analysis has the benefit of being able to estimate all model un­

knowns M, S  and Tf2. However, this approach has a couple of drawbacks. One 

problem is that it is not clear how to choose the number of Gaussians for modelling 

the source distributions. Moreover, EM algorithms are notorious for being slow to 

converge (Pawitan, 2001, p. 348), which limit their use to analyzing data sets having 

low-dimensionality.

10.2 .2  N o isy  IC A  as a m eth o d  o f  factor ro ta tio n

A more practical approach for fitting the noisy ICA model is to transform the problem 

of obtaining approximately independent realizations of the factors into a specific EFA 

task. This amounts to separating the estimation procedure into two parts.

The first part is to decorrelate the data and to reduce its dimensionality. This can
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be achieved by sphering the observations. In the spirit of Section 3.2.1, the sphering 

operation in noisy ICA is called quasi-sphering (Hyvarinen, Karhunen, and Oja, 2001). 

Since in preliminary quasi-sphering of the noisy ICA model the effect of the noise 

covariance matrix 4/2 has to be taken into account, EFA is employed instead of PCA. 

Recall the noisy ICA model in its sample form (3.14):

X  =  H M t +  U  . (10.37)

Quasi-sphering of X  in (10.37) can be performed as follows. Assume that as a result of

~ 2
an EFA solution, a pair of estimates {A, } for the matrix of factor loadings and the

matrix of unique factor variances is available. Ikeda and Toyama (2000) suggest to use

ML factor analysis for this factor extraction problem. Unkel and Trendafilov (2007)

and Stegeman and Mooijaart (2008) propose (unweighted) LS fitting.

Hence, by means of EFA, the noisy ICA mixing matrix M  in (10.37) can be identified

with the ambiguity of an orthogonal rotation. Let the eigenvalue decomposition of the

~ 2
noise-free (reduced) sample covariance matrix Sx — ^  of rank r (r < p) be

r

Sx -  # 2 =  AAT =  Ef2ET =  , (10.38)
2 = 1

where Ft = diag(o;i,. . .  , u r) is an r  x r  diagonal matrix containing the positive eigen- 

- 2
values of Sx -  ^  , wi >  * • ■ > wr > 0, on its main diagonal and E € Mpxr is an 

orthonormal matrix whose columns e i , . . .  , e r are the corresponding unit-norm eigen­

vectors of cji, . . . ,  uor. To reduce the dimensionality of the data to k (<C r) dimensions, 

assume that the sum in (10.38) is truncated after k terms. Postmultiplying X  by 

Qt  =  E f r 1/2 G Mpxfc gives

X  =  X E fT 1/2 =  X Q t , (10.39)
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where X  =  (x1?. . . ,  x^) G Rnxfc is the quasi-sphered data matrix. Since

X  =  S M t Q t +  U Q t =  S M T +  U  , (10.40)

the quasi-sphered data matrix follows a noisy ICA model as well with square mixing 

matrix M  =  Q M  G R kxk and linear transform of the unique factor matrix U  =  U Q T G 

RPxk. Since

1 "1 1
S* =   X X =  M 3 t3M  +  U  U  ,

n — 1 n — 1 ri — 1

=  q m m t q t +  q ^ 2q t ,

=  r r 1/2E TE n E TE i r 1/2 +  q ^ 2q t ,

=  I* +  Q * 2Q T , (10.41)

the new mixing matrix M  is orthogonal. As (10.41) reveals, the covariance matrix of 

the quasi-sphered data is not the identity matrix. In other words, after preprocessing 

the data by Q T only the part of X  due to the common factors is uncorrelated whereas 

the part of X  due to the noise remains correlated. The transformed data X  has noise 

covariance matrix Q ^ 2Q t =  f i“ :l/2E T« '2E i r 1/2.

Ikeda and Toyama (2000) proposed the following alternative approach for performing
 ̂ -j~ ^ ^ ^ ^  ̂  2

quasi-sphering. Let Q =  (A iL A)-1 A ^  G R fcxp be a generalized inverse matrix 

of A satisfying the condition (e.g., Liitkepohl, 1996):

AQA =  A(AT® _2A )-1AT® "2A =  A . (10.42)

The quasi-sphered data matrix X  =  X Q T =  S M T +  U  has sample covariance matrix

Sx =  q a a t q t +  Q * 2QT ,

=  (AT# _2A )_IAT<P-2AAT'S!,_2A(AT'i '_2A )_:1 +  (AT4i_2A )_1 ,

=  Ik + (AT'i-‘ 2A )-1 , (10.43)
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and noise covariance matrix (A 4* A) 1. Note that preprocessing X  by QT =

/v _2  ~  ̂T ~ —2 ~
$  A(A ^  A )” 1 is equivalent to obtaining the common factor scores (3.25) (Bartlett, 

1937).

The generalized inverse of A is not unique. One could also choose Q =  (A A)-1A £ 

M.kxp (Stegeman and Mooijaart, 2008) which corresponds to the unique Moore-Penrose 

inverse of A satisfying the four conditions (Liitkepohl, 1996, pp. 34-35):

AQA =  A(ATA )-1ATA =  A . (10.44)

QAQ =  (ATA )-1ATA(ATA )-1A T ,

=  (ATA )_1AT =  Q . (10.45)

(AQ)t  = (A(at a ) - 1a t )t  ,

=  A(ATA)-1AT =  AQ . (10.46)

(QA)t =  QA , (10.47)

where (10.47) follows from the fact that rank(A) =  k O  QA =  fy.

Note that post multiplying X  by QT =  A(A A)-1 is equivalent to obtaining the com­

mon factor scores (4.6) (Horst, 1965). For this choice of Q, again it holds that ^  I*. 

Summarizing, the choices of Q made in the ICA literature lead to preprocessed data 

X  which are still correlated.

To obtain preprocessed data with no second-order correlations, Unkel and Trendafilov 

(2007) proposed to use Q =  (A IF Sx>F A )-1//2A £ M.kxp instead. Postmulti-

plying X  by QT is equivalent to obtaining the common factor scores (3.26) (Anderson
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and Rubin, 1956) and leads to uncorrelated data X  because

Sx = q a a t q t  +  q ^ 2q t  , 

= (AT# _2Sx ^r_2A)_1/2ATl̂ _2AATll r_2A(ATli f_2S x ^ _2A)_1/2 

+ (A T# _2Sx 1̂ _2A)_1/2AT# _2# 2li r_2A(ATW-2S x ^ r”2A)“ 1/2 , 

= (AT# _2Sx 1̂ _2A)_1/2ATli f_2Sx^r_2A(ATli r_2Sx1i r_2A)_1/2 ,

=  h  (10.48)

Once quasi-sphered data have been obtained, the second part of the estimation proce­

dure is to find an orthogonal k x k matrix T  which rotates X  towards independence, 

that is,

E  =  X T  , (10.49)

where S  is an estimate of the matrix S  of independent common factor scores of the n  

observations on k common factors.

Noisy ICA starts then essentially from an EFA solution and seeks a rotation matrix 

which minimizes the dependence between the common factors. From this point of 

view, noisy ICA is another method of factor rotation along with the well-known simple 

structure rotation methods such as e.g. Varimax which originated in psychometrics 

(Hastie, Tibshirani, and Friedman, 2009). The difference between EFA and noisy ICA 

is that the rotation criteria involve factor loadings for EFA and factor scores for noisy 

ICA.

To find T, one needs a rotation criterion and an optimization algorithm. Ikeda and 

Toyama (2000) optimize the criterion (10.24) proposed by Cardoso and Souloumiac 

(1993). The popularity of this criterion stems mainly from the fact that it can be



Fitting the noisy ICA model 131

optimized by means of simultaneous diagonalization of a set of fourth-order cumulant 

matrices. Let V  be an arbitrary k  x k orthogonal matrix. Suppose that {N*|z =

1 . . . . ,  k2} is any basis for the fc2-dimensional linear space of k x k matrices and let 

C(N*) (i = 1 , . . . ,  k2) denote the matrix of fourth-order cumulants in which the (p,'q)~ 

th  element is defined as

k kEE «i,1,1,1 (xp,x 9,x r ,x s)nW , (10.50)
r=l s=l

where n S  is the (r, s)-th element of N*. One simple way to choose the set {N*|z =

1 . . . . ,  k2} is as {6 rz,J|l <  r, s < k}, where i r is a fc-dimensional column vector with a 

single entry of one in the r-th  position and zeros elsewhere (Cardoso, 1999). 

Minimizing (10.24) is then equivalent to maximizing (Cardoso and Souloumiac, 1993):

k2
FjADE^y)  =  y ] t r a c e  [diag(VTC (N j)V ) ] 2 . (10.51)

2=1

Maximizing (10.51) over all orthogonal matrices V  gives T. The algorithm that max­

imizes (10.51) is called JADE (Joint Approximate Diagonalization of Eigenmatrices) 

and is a Jacobi-type algorithm (Cardoso and Souloumiac, 1993, 1996). The idea is to 

parameterize V  by a product of plane rotations using Jacobi rotation matrices and 

then optimize with respect to the Givens angle, d, involved in each rotation. The 

(z, j)-th  plane rotation on the whole set of cumulant matrices is performed by a Jacobi 

rotation matrix R (z,j, 0) which is an identity matrix where the (z,z) and ( j , j )  entries 

are replaced by cos(#), the (i ,j)  entry is replaced by — sin($), and the (j,z) entry is 

replaced by sin(9). At each step the Givens angle is found by updating V  <— V R  and 

solving (10.51). Givens rotations are orthogonal and multiplication by R  amounts to a 

rotation of 9 radians on the (z, j)-th  coordinate plane. The aim of JADE is to make the 

cumulant matrices as diagonal as possible which coincides with making the columns
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of X  as independent as possible. Once the optimal rotation matrix T  and hence S  is 

found, an estimate for the ICA mixing matrix M  is obtained by M  =  AT.

In addition to algorithms diagonalizing fourth-order cumulant matrices, Stegeman and 

Mooijaart (2008) used the Newton-type FastICA algorithm (Hyvarinen, 1999a) to max­

imize the sample analogue of the approximation to negentropy (10.26) to find T. 

Kano, Miyamoto, and Shimizu (2003) proposed a rotation criterion derived from the 

Crawford-Ferguson family of rotation criteria in EFA (Crawford and Ferguson, 1970):

Fcf(V) = (l-T)trace(AV©AV)T(AV©AV)(iaI-I/0

+  r trace (A V © A V )T( l„ lJ  -  I„) , (10.52)

where A is an initial EFA loading matrix. The function ^ c f (V )  provides a family of 

orthogonal and oblique rotation criteria by choosing different values of r .  For example, 

when restricted to orthogonal rotation, the Crawford-Ferguson family with r  =  1/p 

yields the Varimax criterion (Kaiser, 1958).

Assume that in (10.52) A is replaced by X. The idea of Varimax, maximizing the 

variance of the squared entries in each column of XV , is closely related to the max­

imization of the fourth-order cumulant of each column of XV. In fact, by setting 

t  = 3/p, the criterion ^ c f (V )  is proportional to the criterion Y^j=i where « 4 ( j )

denotes the fourth-order cumulant of the j - th  column of XV . Minimizing (10.52) over 

all orthogonal matrices V  gives T. However, in Kano, Miyamoto, and Shimizu (2003) 

no indication is given which algorithm is actually used to optimize (10.52).

Moreover, although Kano, Miyamoto, and Shimizu (2003) explore the connection be­

tween noisy ICA and EFA with factor rotation, their procedure is actually used to fit 

the noise-free ICA model. As a pre-analysis, PCA is used to sphere the data. Then
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(10.52) is optimized to obtain the separation matrix.

Jennrich and Trendafilov (2005) also considered the noise-free case. The authors intro­

duced a criterion being a sum of squared fourth-order statistics formed by covariances 

computed from squared components. Optimization of the criterion is carried out by 

means of the continuous-time projected gradient method as described in Chapter 2. 

This specific rotation criterion will be discussed in more detail in the next Chapter. 

Unkel and Trendafilov (2007) used the criterion introduced by Jennrich and Trendafilov 

(2005) to fit the noisy ICA model taking explicitly unique factors into account. In­

stead of solving ODEs, an iterative scheme proposed by Jennrich (2001) is used to 

keep the gradient flow following the steepest descent direction and moving on the 

constrained manifold of orthogonal matrices simultaneously (see also Bernaards and 

Jennrich, 2005).



Chapter 11 

Independent Exploratory Factor 
Analysis

In contrast to the standard noisy ICA model with random latent sources, it is assumed 

in this Chapter that the underlying factors are nonrandom quantities or parameters 

to be estimated. This new method is named independent exploratory factor analy­

sis (IEFA) (Unkel, Trendafilov, Hannachi, and Jolliffe, 2009; Unkel and Trendafilov, 

2009b).

A fitting solution for IEFA is obtained by exploiting the link between IEFA and EFA 

with factor rotation. That is, starting from- an initial EFA solution an orthogonal 

rotation matrix is sought such that the common factor scores are approximately in­

dependent. The rotation matrix found is then applied to the EFA loading matrix to 

compensate for the rotation of the scores.

To obtain the initial EFA solution, the iterative algorithms for simultaneous LS es­

timation of all EFA model unknowns developed in Part II are employed. Unlike the 

methods discussed in the previous Chapter for obtaining an EFA solution and quasi­

sphered data, the algorithms used in IEFA are based on the SVD of data matrices. 

The SVD of data matrices is computationally efficient, facilitates the computation of 

sphered factor scores, and works well when the number of variables exceeds the num-

134
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ber of observations. Section 11.1 describes the rotation criterion and the optimization

algorithm. In Section 11.2, IEFA is applied to Thurstone’s 26-variable box problem in

psychometrics.

11.1 R ota tion  criterion and op tim ization  algorithm

Assume that an estimate F  for sphered common factor scores is obtained by means 

of the numerical iterative procedures discussed in Chapter 5 (for n  > p) or Chapter 

7 (for p > n). To solve the corresponding IEFA problem one needs to go one step 

further. The common factor scores should be independent. For this reason, they are 

rotated towards independence, that is,

for some k x k orthogonal matrix T.

To find the matrix T  that leads to approximately independent factor scores 3 , an ap­

propriate rotation criterion is set up next which resembles the simple structure rotation 

criteria in EFA.

If the common factors are independent their squares are also independent. Thus, the 

model covariance matrix of the squared factors is diagonal. Let V  be an arbitrary 

orthogonal k x k matrix and let

( n . i )

G =  F V  . (11.2)

The sample covariance matrix between the element-wise squares of G  is

(11.3)
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where H  =  G  0  G  and C n is the centring matrix introduced in (1.1). The matrix Sh 

is the covariance matrix of the squared orthogonally transformed factor scores F.

The problem is to find the k x k orthogonal matrix T  which makes the covariance matrix 

Sh in (11.3) as close as possible to a diagonal matrix. This is equivalent to reducing the 

off-diagonal elements of Sh as much as possible. The approximate diagonalization of 

Sh can be achieved by minimizing the sum of the squared off-diagonal elements of Sh- 

For this reason, the following rotation criterion is defined (Jennrich and Trendafilov, 

2005; Unkel and Trendafilov, 2007):

J-(V) =  t r a c e ( i a l  -  I*)(SH 0  SH) ■ (11-4)

The aim is to minimize the sum of the squared off-diagonal elements of Sh over all 

orthogonal matrices V  or, equivalently, over all orthogonal rotations V  of F. Since 

Sh is symmetric, it is sufficient to minimize the elements below or above the diagonal, 

respectively. Therefore, the criterion (11.4) is multiplied by 1/2. In other words, one 

needs to solve the following optimization problem:

min i  trace(lfcl j  -  I*)(SH © SH) , (11-5)veo(k) 2

where 0 (k )  denotes the set of k x k orthogonal matrices as defined in (2.5). Solving 

(11.5) over all orthogonal matrices V  gives T.

The continuous-time projected gradient approach (see Chapter 2 ) can be used to find 

T. In order to apply this approach, one has to construct the projection of the gradient 

of the objective function (11.4) onto the feasible set 0(k) .  Thus, one needs to know 

the gradient Vy of JF(V) at V  with respect to the Frobenius inner product (2.3). The 

differential dJ7  of JF(V) at V  can be expressed in the form (Jennrich, 2001):

d F = ( V v ,dV) . (11.6)
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Thus, a formula for V v can be found by expressing the differential d T  of T ( V )  at V  

in this form. The differential of the criterion function in (11.4) is

d T  =  trace(lfclfc -  Ifc)(SH O (dSu )) - (H -7)

After substituting dSu = (dH)TC nH  +  H TC n(dH) in (11.7) and making use of the 

following identity (Magnus and Neudecker, 1988):

traceA t (B © D) =  trace(AT 0  B T)D ,

where A, B and D are n x  k matrices, one finds that

d T  = tra c e (l* lj  — I/i) f s H  0  [(dH)TC„H  +  H TC„(dH )]Tl ,

=  2  trace(dH)TC„H  [ ( l* l j  — I*) © SH] . (H -8 )

Since H  =  G 0  G, it follows that

dU  =  dG  © G +  G © dG = 2 (dG © G) . (11.9)

Using (11.9), (11.8) can be written as

d T  — 4 trace(dG © G )TC nH  [(lfc lj — Ifc)Sn] ,

=  4trace(dG )T [G O C „H  [(ljtlJ  — I*)SH] ] • (11-10)

Since G =  F V  and dG =  FdV, one can finally express d T  as

d T  =  4 trace(dV)TF T(G © [C„H [(1*1^ — I*)SH]]) >

=  4 (FT(G © [C„H [ ( l j t l j  — I fc)SH]]),dV ) . (11.11)

Hence, using (11.6), the gradient of the objective function (11.4) with respect to the

Frobenius inner product (2.3) is

V v =  4 F T(G © [C„H [(lfc lj — It) © SH]]) . (11.12)
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Then, the projection V  of V v onto the tangent space 7 y  O(k) at V  G O(k) is

V  = VV ^ - Vly v  . (11.13)

A solution of the minimization problem (11.5) can then be found as a limit point Vqo of 

the gradient flow V (t) evolving on O(k) and defined by the dynamical system (11.13). 

The rotation criterion is monotonically decreasing and the algorithm converges from 

any starting point to a stationary point. At a stationary point of T  restricted to 0(k) ,  

the Frobenius norm of the gradient after projection onto the plane tangent to 0(k )  at 

the current value of V  is zero. The algorithm stops when the Frobenius norm of the 

gradient after projection is less than some prescribed precision, say 1 0 -6 .

Jennrich (2001) proposed an iterative scheme to keep the gradient flow ‘nailed’ to the 

manifold of orthogonal matrices (see also Bernaards and Jennrich, 2005). Jennrich 

(2004a) introduced a modification of the gradient projection algorithms of Jennrich 

(2001, 2002). The gradients are replaced by numerical approximations, that is, the 

algorithm of Jennrich (2004a) only requires the definition of the criterion. However, the 

use of numerical gradients generally needs more CPU time than using exact gradients. 

Once the optimal rotation matrix T  and hence S  has been found, the IEFA mixing 

matrix is obtained by M  =  AT. Summarizing, the proposed IEFA method is as follows:

1. Set up the number of common factors, k, prescribed or estimated.

2. Estimate all EFA model unknowns by optimizing ||Z — F A T —

3. Find an orthogonal matrix T  that solves (11.5).

4. Calculate approximately independent factor scores as S  =  F T .

5. Obtain the IEFA mixing matrix by M  =  AT.
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11.2 A pplication  to  T h u rstone’s box problem

Developing analytical methods for factor rotation has a long history (Browne, 2001). 

It is motivated by both solving the rotational indeterminacy problem in EFA and 

facilitating the factors’ interpretation. The aim for analytic rotation is to find loadings 

with ‘simple structure’ in an objective manner. Thurstone has set forth a number of 

general principles which, vaguely stated, say that a loading matrix with many small 

values and a small number of larger values is simpler than one with mostly intermediate 

values (Thurstone, 1947, p. 335; Yates, 1987, p. 34). Thurstone’s 26-variable box 

problem (Thurstone, 1947) was notorious for being difficult to solve by any analytic 

rotation method. The problem is to find simple loadings which identify the dimensions 

of the boxes.

As in Jennrich and Trendafilov (2005), seven additional boxes, whose dimensions are 

given in Table 11.1, are added to the twenty boxes in Table 7.1 to form a set of boxes 

whose dimensions rr, y  and z are independent. This data set is in turn well-suited to 

be analyzed by IEFA.

21 22 23 24 25 26 27

X 3 3 3 3 4 5 5

y 4 4 4 2 2 3 2

z 1 2 3 3 3 1 3

Table 11.1: Dimensions x  (length), y  (width) and 2 : (height) of the seven additional 

boxes for Thurstone’s 26-variable box data.

Assume that the three dimensions of the extended set of 27 boxes constitute the column
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vectors £1} £2 and £ 3  °f the factor score matrix S. As £l7 £2 and S3 are independent, 

the box problem seems quite appropriate to be attacked by IEFA instead of simple 

structure analytic rotation.

As in Section 7.3.1, the twenty-six functions of Thurstone (1947) are used to generate 

the observed variables. The columns of the resulting 27 x 26 data matrix are then 

mean-centered and scaled to unit norm to obtain a data matrix Z.

The IEFA method described in the previous Section was applied to get S  =  FT. 

The columns £1} £2, and £3 of S  are the rotated factor scores and estimates of the 

standardized form of the three dimensions £2 and £3 used to generate the mixtures. 

According to Table 11.2, £1? £2 and £3 are quite independent. The off-diagonal elements

.48441 -.00001 .00001

-.00003 .48847 -.00000

.00002 -.00001 .49531

Table 11.2: Covariances (diagonal and above) and correlations (below diagonal) be­

tween the element-wise squares of £l5 £2 and £3 for the 27 x 26 box data.

of the correlation matrix for the element-wise squares of £1} £2 and £3 are all very 

small (below 3 x 10-5). The value of the rotation criterion (11.4) at the minimum 

is 3.77 x 10~10. Figure 11.1 displays that IEFA has quite accurately recovered the 

dimensions for each of the 27 boxes.

In ICA, the performance of an algorithm is often quantified in terms of the following 

error measure (Amari, Cichocki, and Yang, 1996):

±  (± jg ib  - 4 +±  (± - . ) .
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Figure 11.1: Standardized box dimensions ’o’ and their estimates for each dimension 

x  (length) (upper panel), y  (width) (middle panel) and 2  (height) (lower 

panel) and each box i (z =  1, . . . ,  27) for the 27 x 26 box problem.

where the Pij (i , j  =  1 , . . . ,  k)  are the elements of the performance matrix P =  BM  and

y. ~f yv y, T
B =  (M M )-1M G M.kxp denotes the Moore-Penrose inverse of the estimated mixing 

matrix M. The index (11.14) evaluates unbiasedness of the estimation of the mixing 

matrix M apart from permutation and sign ambiguities. In a noise-less setting the 

estimate of H is simply obtained by H =  XB. Hence, unbiased estimation of the mixing 

matrix is equivalent to unbiased estimation of S  and (11.14) can be considered as an 

appropriate measure of evaluating source separation. As discussed in Section 3.2.1 this 

simple relationship does not hold any more in noisy ICA. The following error measure
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is proposed instead:

p  _  l l ^  _  ^\\F / I I  1

( n - 1 5 )

which evaluates the performance of IEFA by means of the normalized Frobenius norm 

of the difference between the true sources and the recovered sources. The relative error 

measure E  indicates good performance in accurateness of separation by low values and 

vanishes if the dimensions of the boxes are recovered perfectly. For the 27 x 26 box 

problem E  =  .0473 confirming that IEFA has recovered the dimensions of the boxes 

very well.

The IEFA loading matrix is obtained by M  =  AT. The simple structure achieved 

in M  can be compared to the ones obtained by the more sophisticated rotation-to- 

simplicity methods originated in psychometrics such as Varimax, Minimum entropy, 

Quartimin, and Geomin. Whereas Varimax and Minimum entropy are orthogonal 

rotation methods, Quartimin and Geomin use oblique rotations.

Recall from Section 10.2.2 that the Varimax criterion (Kaiser, 1958) can be derived by 

restricting the Crawford-Ferguson family of criteria (10.52) to orthogonal rotation and 

setting r  =  1/p.

McCammon (1966) suggested an orthogonal rotation criterion based on the entropy 

function of information theory. The simplest entropy criterion (Jennrich, 2004b) is

E ( V )  = - tra ce  [(AV © AV)T ln(AV © AV)1 . (11.16)

Unlike orthogonal rotation, oblique rotation methods seek a non-orthogonal and non­

singular rotation matrix V  G M.kxk with columns having unit length, such tha t the 

oblique rotated loadings A(VT)_1 optimize a particular criterion .F(V). Oblique ro­

tations give extra flexibility and often produce a better simple structure than orthog­
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onal rotations. If the Crawford-Ferguson family is optimized subject to V  being a 

non-singular matrix with columns of length one, then (10.52) with r  =  0 yields the 

Quartimin criterion of Carroll (1953).

Finally, the following modified version of the Geomin criterion (Yates, 1987) proposed 

by Browne (2001) is considered:

i ( l n ( ( A V © A V )  +  e ) ) l t (11.17)

where e is a small constant, say e = .01 (Browne, 2001), to eliminate problems arising 

from loadings equal to zero.

The continuous-time projected gradient approach was used to optimize all four rotation- 

to-simplicity criteria. The gradients for the Varimax, Minimum entropy, Quartimin and 

Geomin methods can be found in Bernaards and Jennrich (2005). The feasible set for 

orthogonal criteria is 0 (k )  in (2.5) and for oblique criteria is OB(k)  in (2.7).

The criteria considered might have multiple local minima. As in Browne (2001) and 

Jennrich (2004b), this is dealt with by arbitrarily defining the best rotation produced 

from 20 random starts for the initial rotation matrix to be the operational minimizer 

of the criterion under consideration. For the orthogonal rotation criteria orthogonal 

random starts are used (e.g., Browne, 2001). An orthogonal random start is a matrix 

that is randomly selected from the uniform distribution on the group of orthogonal 

matrices (Jennrich, 2004b). For the oblique rotation methods oblique random starts 

are used as advocated by Rozeboom (1991). An oblique random start is a matrix 

whose columns are independently generated and randomly selected from a unit sphere 

of appropriate dimension.

For Varimax, Minimum entropy and Quartimin (as well as for IEFA) an identity start
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and 20 random starts gave the same criterion value. Apparently for the 27 x 26 box 

data and those methods random starts are not required. Geomin failed to produce a 

global minimum when started from an identity matrix. It gave the minimum criterion 

value using 15 of the 20 random starts.

The IEFA loadings and the solutions of the Varimax, Minimum entropy, Quartimin 

and Geomin rotations of A are given in Table 11.3 and Table 11.4, respectively.

If one ignores all loadings with magnitude .05 or less in the IEFA loading matrix, the 

remaining loadings perfectly identify the box dimensions x : y and z used to generate 

the mixtures. The simple structure achieved by IEFA is nearly as good as the ones ob­

tained by the best rotation-to-simplicity methods known for Thurstone’s box problem, 

namely the Minimum entropy and Geomin criteria (Bernaards and Jennrich, 2005). 

With the latter two methods if one ignores all entries with magnitude .01 and .02 or 

less, respectively, the remaining loadings perfectly identify the dimensions that are used 

to generate the manifest variables. Both the Varimax and the Quartimin method fail 

to identify some of the corresponding box dimensions.

In Table 11.3 results for the noise-free ICA approach of Jennrich and Trendafilov (2005) 

are also given. These rotated loadings are also obtained by optimizing the rotation- 

to-independence criterion (11.4) but the initial sphered factor scores are derived by 

means of PC A instead of EFA. For this approach one has to ignore all loadings with 

magnitude .15 or less to identify the box dimensions.

One must look fairly hard at the aligned rotated loading matrices in Table 11.3 and Ta­

ble 11.4 to form an opinion about the simple structure achieved. Two or more rotated 

loading matrices can be more easily compared using sorted absolute loadings (SAL) 

plots as advocated by Jennrich (2004b). The SAL plot does not need to produce the
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Function

IEFA

(orthogonal)

Varimax

(orthogonal)

Minimum entropy 

(orthogonal)

Noise-free ICA 

(orthogonal)

X 1 .0 0 .0 2 .03 .89 -.45 .04 1 .0 0 - .0 1 .0 0 .99 .08 .09

y - .0 2 1 .0 0 .04 .45 .89 -.09 .0 1 1 .0 0 .0 0 -.09 .99 .1 1

z -.03 -.04 1 .0 0 .0 0 .1 0 .99 .0 0 .0 0 .99 -.08 - .1 2 .99

xy .58 .81 .04 .89 .44 -.05 .60 .79 - .0 1 .52 .83 .14

x z .42 -.03 .90 .40 - .1 2 .90 .45 - .0 1 .89 .37 -.07 .92

y z -.04 .52 .84 .25 .57 .77 .0 0 .55 .82 - .1 2 .44 .87

2
*  y .79 .58 .04 .97 .14 - .0 2 .81 .56 - .0 1 .75 .62 .14

x y 2 .35 .92 .04 .74 .64 -.07 .38 .91 - .0 1 .29 .93 .14

x 2z .65 - .0 2 .72 .60 -.24 .73 .67 - .0 1 .70 .61 -.03 .76

x z 2 .26 -.03 .94 .25 -.04 .94 .28 .0 0 .94 .2 0 -.09 .95

2
y z -.04 .72 .64 .34 .72 .54 .0 0 .75 .61 - .1 2 .67 .69

2
yz -.03 .32 .92 .16 .41 .87 .0 0 .36 .91 - .1 1 .25 .94

x / y .58 -.78 - .0 1 .14 -.96 .1 0 .56 -.80 .0 0 .64 -.74 -.03

y / x -.61 .76 .0 2 -.18 .95 -.09 -.59 .77 .0 0 -.67 .72 .03

x / z .41 .05 - .8 6 .35 -.25 -.85 .39 .0 0 -.87 .46 .15 -.83

z / x -.47 -.04 .84 -.40 .29 .83 -.44 .0 1 .8 6 -.52 -.14 .81

y / z .0 2 .52 -.80 .23 .34 -.85 .0 1 .48 -.81 .03 .58 -.76

z / y .0 0 -.59 .75 -.24 -.42 .82 .0 1 -.55 .78 .0 0 -.65 .71

2x +  2  y .69 .72 .05 .95 .31 -.03 .71 .70 .0 0 .64 .75 .14

2x + 2z .69 - .0 2 .72 .63 -.25 .73 .71 .0 0 .70 .64 -.03 .76

2 y  +  2  z -.03 .6 8 .73 .32 .69 .64 .0 1 .71 .70 - .1 2 .61 .78

y / x 2 + y 2 .78 .61 .04 .98 .17 - .0 2 .80 .59 .0 0 .73 .65 .14

yjx2 +  z 2 .87 .0 0 .47 .79 -.36 .48 .89 .0 0 .44 .84 .0 2 .52

yjy2 + z 2 -.03 .79 .58 .38 .77 .47 .0 1 .82 .54 - .1 1 .74 .63

xyz .34 .48 .78 .56 .35 .72 .37 .50 .76 .26 .44 .84

y/x2 + y 2 +  z 2 .71 .55 .41 .91 .19 .35 .74 .55 .36 .65 .56 .49

Table 11.3: Orthogonally rotated loading matrices obtained by IEFA, Varimax, Mini­

mum Entropy and noise-free ICA for the 27 x 26 box problem.
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Function

IEFA

(orthogonal)

Quartimin

(oblique)

Geomin (e =  

(oblique)

.0 1 )

X 1 .0 0 .0 2 .03 .89 -.57 - .06 1 .0 0 - .0 2 - .0 2

y - .0 2 1 .0 0 .04 .49 .83 - .07 - .0 2 1 .0 0 - .0 1

z -.03 -.04 1 .0 0 -.09 .0 1 1 .0 0 - .0 1 - .0 1 1 .0 0

xy .58 .81 .04 .92 .32 - .09 .58 .78 - .0 2

xz .42 -.03 .90 .32 -.24 .87 .44 - .0 2 .8 8

y z -.04 .52 .84 .2 0 .47 .79 - .0 2 .54 .82

x 2y .79 .58 .04 .99 .0 1 - .09 .79 .55 - .0 2

x y 2 .35 .92 .04 .78 .54 .09 .36 .90 - .0 2

x 2z .65 - .0 2 .72 .53 -.37 .67 .6 6 - .0 2 .69

x z 2 .26 -.03 .94 .17 -.15 .93 .27 - .0 1 .93

2y  z -.04 .72 .64 .31 .63 .57 - .0 2 .74 .60

2y z -.03 .32 .92 .1 0 .31 .89 - .0 2 .35 .90

x / y .58 -.78 - .0 1 .1 1 -.98 .03 .58 -.81 .0 0

y / x -.61 .76 .0 2 -.15 .98 - .0 2 -.61 .78 .0 1

x / z .41 .05 - .8 6 .43 -.23 - .90 .40 .0 1 - .8 8

z / x -.47 -.04 .84 -.47 .27 .89 -.46 .0 1 .87

y / z .0 2 .52 -.80 .32 .38 - .8 6 .0 1 .49 -.82

z / y .0 0 -.59 .75 -.33 -.45 .82 .0 1 -.56 .78

2x +  2  y .69 .72 .05 .98 .18 - .09 .70 .69 - .0 2

2x +  2  z .69 - .0 2 .72 .57 -.39 .67 .70 - .0 2 .69

2 y  +  2  z -.03 .6 8 .73 .29 .60 .6 6 - .0 2 .70 .70

y / x 2 +  y 2 .78 .61 .04 1 .0 0 .04 - .09 .78 .58 - .0 2

y/x2 +  z 2 .87 .0 0 .47 .75 -.49 .40 .8 8 - .0 2 .43

vV + 2:2 -.03 .79 .58 .36 .6 8 .49 - .0 1 .81 .54

x y z .34 .48 .78 .51 .2 2 .71 .36 .49 .74

y / x 2 4 - y 2 + z 2 .71 .55 .41 .89 .05 .29 .72 .53 .34

Table 11.4: Obliquely rotated loading matrices obtained by Quartimin and Geomin

compared to IEFA for the 27 x 26 box problem.
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column permutations and sign changes often required to align loadings matrices for 

comparison. Let m  =  pk and let |Ai| <  | A2 1 <  • ■ • <  |Am| denote the absolute values of 

the rotated loadings sorted in increasing order. The SAL plot is a plot of |Aj-| against j  

for j  =  1 , . . . ,  m. Generally, the greater the number of small loadings, the simpler the 

loading matrix.

Figure 11.2 (i) and (ii) are SAL plots of the IEFA rotated loadings compared to the 

orthogonal criteria Varimax and Minimum entropy as well as to the oblique criteria 

Quartimin and Geomin, respectively. The plots reveal that Minimum Entropy, Geomin 

and IEFA all have the smallest 27 loadings very close to zero and seem to encourage 

small loadings much more than Varimax and Quartimin. The smallest 27 loadings for 

IEFA are only slightly larger than the ones of Minimum entropy and Geomin.

Clearly, IEFA outperforms Quartimin and Varimax in terms of simplicity achieved. 

Results for the noise-free ICA approach of Jennrich and Trendafilov (2005) are also 

shown in Figure 11.2 (i). It is worth noting that IEFA is able to obtain a better simple 

structure than the noise-free approach. Since both methods optimize the same crite­

rion, results suggest that it is the initial EFA decomposition taking unique factors into 

account that causes this simpler structure. Note that while easier to compare than 

a set of aligned loading matrices, the SAL plot contains less information. Only the 

distributions of the absolute loadings are displayed and not the locations and the signs 

within a loading matrix.

It is worth investigating whether IEFA recovers the dimensions of the boxes accurately 

and produces simple loadings if the factors are correlated rather than independent. To 

discover this, the previous analysis was carried out using the original set of Thurstone’s 

twenty boxes from Table 7.1. Assume that the three dimensions constitute the column
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Figure 11.2: SAL plots of IEFA, noise-free IGA as well as orthogonal (i) and oblique 

(ii) rotation-to-simplicity criteria applied to the 27 x 26 box problem.
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vectors £1} £ 2 and £ 3  of the factor score matrix S . The columns have the intercor- 

relations .25 between and £2, *10 between and £3, and .25 between £ 2 and £3, 

respectively. Thus, the factors are dependent. The off-diagonal elements of the correla­

tion matrix for the element-wise squares of £ 2  and £ 3  in Table 11.5 indicate that the 

recovered factors are also not independent. Nevertheless, Figure 11.3 displays that for

.73159 -.10079 -.04575

-.14018 .69673 -.04569

-.06301 -.06450 .72041

Table 11.5: Covariances (diagonal and above) and correlations (below diagonal) be­

tween the element-wise squares of ^ , £ 2 and £ 3  for the 2 0  x 26 box data.

the 20 x 26 box problem IEFA recovers the dimensions of the boxes fairly accurately. 

This is confirmed by the low value .1720 for the error measure E.

The simplicity of the rotated loadings can be assessed from Table 11.6. For IEFA, 

Minimum entropy and Geomin the factors are clearly related in an appropriate way to 

the box dimensions. The smallest absolute loadings can be associated with the miss­

ing dimensions in the formula for the corresponding variable. This is not the case for 

Quartimin, which fails to identify the dimensions x, y and z  used to generate some of 

the mixtures. W ith dependent factors, the oblique Geomin criterion performs best. If 

one ignores all loadings with magnitude .04 or less, the remaining loadings perfectly 

identify the box dimensions used to generate the observed variables. For IEFA and 

Minimum entropy, this can be done by ignoring loadings with magnitudes of .20 and 

.31 or less, respectively. Hence, the simple structure achieved by IEFA is even better 

than the one obtained by the best orthogonal rotation-to simplicity method known for
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Figure 11.3: Standardized box dimensions ’o’ and their estimates ’*’ for each dimension 

x  (length) (upper panel), y (width) (middle panel) and z  (height) (lower 

panel) and each box % (i = 1 , . . . ,  20) for the 20 x 26 box problem, 

solving Thurstone’s box problem, namely Minimum entropy.
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Function

IEFA

(orthogonal)

Quartimin

(oblique)

Minimum entropy 

(orthogonal)

Geomin (e =  

(oblique)

.0 1 )

X .99 .15 .05 .97 -.48 - .09 .96 .27 .04 1 .0 0 - .0 2 .0 0

y .1 0 .99 .1 0 .58 .74 - .05 - .0 2 1 .0 0 .05 .0 0 1 .0 0 - .0 1

z .0 2 .15 .99 .05 .08 .97 .0 1 .2 0 .98 -.03 .0 1 1 .0 0

xy .56 .82 .1 0 .91 .32 - .09 .46 .8 8 .05 .49 .75 - .0 1

xz .42 .19 .8 8 .43 - .1 2 .81 .39 .28 .87 .38 .0 0 .87

yz .07 .54 .83 .29 .38 .75 .0 1 .59 .80 - .0 1 .43 .79

x2y .73 .6 6 .09 .99 .09 - .09 .65 .74 .05 .69 .55 - .0 1

xy2 .39 .90 .08 .80 .50 - .1 0 .28 .95 .03 .31 .87 -.04

x2z .62 .19 .73 .63 -.25 .64 .60 .29 .72 .60 - .0 2 .71

xz2 .26 .2 0 .92 .29 - .0 1 .8 8 .23 .28 .92 .2 0 .03 .93

0
y z .1 1 .70 .67 .41 .49 .57 .0 2 .74 .64 .0 1 .62 .61

2
yz .05 .40 .89 .2 0 .26 .85 .0 1 .44 .8 8 - .0 2 .27 .8 8

x/y .57 -.79 -.09 .14 -.99 - .06 .6 6 -.72 -.06 .67 -.91 -.03

y/x -.59 .78 .06 -.16 .99 .03 - .6 8 .71 .03 -.69 .91 .0 0

x/z .36 - .0 2 - .8 8 .36 - .2 2  - .93 .36 - .0 2 - .8 8 .41 .04 -.91

z/x -.42 .06 .87 -.39 .28 .92 -.42 .05 .87 -.47 .0 1 .90

y / z .0 2 .48 -.84 .29 .40 - .91 -.04 .44 -.85 .0 1 .62 -.91

z / y - .0 2 -.46 .84 -.28 -.39 .92 .04 -.42 .8 6 .0 0 -.60 .92

2x +  2  y .6 8 .72 .1 0 .98 .16 - .09 .60 .80 .06 .64 .62 .0 0

2x +  2  z .6 8 .2 0 .70 .69 -.27 .59 .6 6 .31 .6 8 .6 6 - .0 1 .67

2 y +  2 z .08 .72 .6 8 .40 .52 .58 .0 0 .76 .65 - .0 1 .64 .62

to + <*5 to .78 .61 .09 1 .0 0 .0 2  - .1 0 .70 .70 .05 .75 .49 - .0 1

y/x2 + z2 .8 6 .2 0 .45 .8 6 -.38 .32 .83 .32 .44 .85 .0 0 .41

y / y 2 + .09 .84 .52 .47 .61 .40 - .0 1 .87 .48 - .0 1 .79 .44

xyz .35 .54 .75 .55 .2 0 .64 .29 .61 .72 .28 .39 .70

yjx2 + y2 + z2 .70 .60 .37 .92 .05 .2 0 .62 .70 .33 .65 .46 .29

Table 11.6: Rotated loading matrices obtained by IEFA, Quartimin, Minimum Entropy

and Geomin for the 20 x 26 box problem.



Chapter 12 

Im plem entation of ICA in 
Three-m ode Factor Analysis

Statistical methods like EFA or ICA are used to analyze two-way data matrices. Three- 

way data emerge, for instance, in multivariate longitudinal studies where I  subjects 

are measured on J  variables on K  occasions. The three ways pertain to three different 

sets of entities named ‘modes’ of the data. Three-mode models are explicitly designed 

to handle such data. For a comprehensive survey of three-mode models and recent 

advances the reader is referred to Acar and Yener (2007), Kroonenberg (2008) and the 

references therein.

The most prominent three-mode models are the three-mode factor analysis (Tucker3) 

model introduced by Tucker (1966) and the PARAFAC/CANDECOMP (CP) model 

introduced independently by Harshman (1970) and Carroll and Chang (1970).

Both models are supposed to be extensions of bilinear factor analysis to trilinear data 

(Harshman, 1970; Tucker, 1966). Since neither of these two techniques estimate unique 

factors or unique variances, both models are generally referred to in the literature as 

three-mode component models (Kroonenberg, 1983).

Beckmann and Smith (2005) and De Vos, De Lathauwer, and Van Huffel (2007) com­

bined the CP model and ICA. These approaches are reviewed in the next Section. In

152
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Section 12.2, an alternative approach to ICA for analyzing three-way data is considered 

combining ICA and the Tucker3 model. The performance of the proposed approach is 

evaluated by numerical experiments in Section 12.3.

12.1 C om bining IC A  and th e  C P m odel

Let a three-dimensional array X G M7xJxK be defined as the collection of elements 

{x^k | i j . . . ,  / ;  j  = 1 , . . . ,  J; k = 1 , . . . ,  K }  which are placed in X such that the indices 

i , j ,  and k run along the vertical, horizontal, and depth axes, respectively. A three-way 

data array of order I  x J  x K  is sometimes called a 3rd order ‘tensor’ in R7xJx7C (e.g., 

Acar and Yener, 2007). Each of the three sets of indices i , j  and k designates one mode 

of the data. Then, the three-mode CP model with R  components is defined as (Carroll 

and Chang, 1970; Harshman, 1970):

R

3'ijk ^   ̂airbjrCkr T  CijTc {i 1 , . . . , / ,  j  1 , . . . ,  J . k — 1 , . . . ,  JT) , (12.1)
r —1

where air , bjr and Ckr denote the elements of the component matrices A  G R7x-R, 

B G RJxJ7 and C G M.KxR, respectively, and e^k are the elements of the three-way 

error array £  G R7xJx7C

Let a r G M7xl, b r G MJxl , and cr G M.Kxl denote the r-th  columns of A, B and C, 

respectively. Then, the CP model (12.1) can be expressed in a concise form as (Kiers, 

2000; Kroonenberg, 2008):
R

X  =  £ a r obrocr + e  (12.2)
r = 1

«=> vec(X) =  (C| (g) |B | G> |A)1# +  vec(£) , (12.3)

where the symbol o denotes the vector outer product, vec is the column stacking op­

erator and | G> | denotes the column-wise Kronecker or Khatri-Rao matrix product.
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The expressions (12.2) and (12.3) display the symmetry of the CP model. The term 

(ar o b r o cr) in (12.2) is called a rank-1 array. The rank of the three-way array X 

is defined as the minimum number of rank-1 arrays sufficient to fully decompose X 

additively (Kiers, 2000).

The aim of the CP model is to find matrices A, B and C which minimize the sum of 

squares of the elements of the error array £. In this sense, the CP model tries to find 

the best rank-i? approximation to X. This can be done by means of an ALS algorithm 

in which each component matrix is sequentially optimized, keeping the other two com­

ponent matrices fixed. For an overview and comparison of several algorithms for fitting 

the CP model, the reader is referred to Tomasi and Bro (2006).

The most attractive feature of the CP model is its uniqueness under the following 

(mild) sufficient condition (Kruskal, 1977):

rankfc(A) +  rankfc(B) +  rank*;(C) >  2R  +  2 , (12.4)

where rank^(') denotes the Kruskal rank or &-rank of a matrix. The A;-rank of a matrix 

is the maximal number r  such that any set of r  columns of the matrix is linearly 

independent. By fixing the columns of two of the three component matrices to unit 

length, a CP solution for A, B and C is unique up to sign and permutation ambiguities 

in the component matrices if (12.4) holds.

Beckmann and Smith (2005) introduced the idea of combining the CP model and ICA 

for analyzing three-way data. Their method is a three-way extension of the noisy ICA 

model (3.13) with the noise covariance matrix being proportional to the identity matrix. 

The noisy ICA model with homoscedastic noise variance is called a probabilistic ICA 

(pICA) model (Penny, Roberts, and Everson, 2001). Beckmann and Smith (2005)
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named their method ‘tensor pICA’. In tensor pICA, it is assumed that X G MIxJxK 

obeys the structure of a CP model.

It will be convenient to write the CP model in matrix form. Let X ^ , E ^  G W xJK 

be unfolded matrices formed by the K  frontal ‘slices’ of X and £, respectively, and 

arranged next to each other. Then, (12.3) can be rewritten as:

X „ =  A(C| ® |B)T +  Ea ■ (12.5)

Since the CP model treats the parameter matrices in a symmetric way, matrix equations 

similar to (12.5) for X # or X c can be formulated if X is sliced into I  horizontal 

or J  lateral slices, respectively. Assume that the components in the first mode are 

independent, so that the I  x R  matrix A  contains the values for the independent 

components and the mixing matrix M G MJKxR equals C| 0  |B. Estimation of the 

tensor pICA model is done by means of the following iterative algorithm (Beckmann 

and Smith, 2005):

1. Ignore the structure of the mixing matrix in (12.5). Decompose the data X ,4 «  

AM t into a compound mixing matrix M and an associated matrix A using an 

approach for estimating the two-way pICA model (e.g., Beckmann and Smith, 

2004; Stegeman, 2007).

2. Decompose M such that M «  C| 0  |B. Map each column r (r = 1 , . . . ,  R)  of M  

into a J  x K  matrix Mr which has rank 1 according to model (12.5). The matrix 

Mr contains K  scaled repetitions of a single column of B. Perform an SVD on 

Mr which leads to the best rank-1 approximation of M r. Compute estimates 

of the r-th  columns of C and B which are given by the dominant left and right 

singular vector of Mr, respectively.
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3. Go to step 1 if two successive estimates for (A, B, C) are not sufficiently alike 

and use (C| ® |B) to perform another iteration in the decomposition of X^; else 

consider the algorithm converged.

Note that in tensor pICA the three-way structure is imposed after the independent 

components are obtained. Instead, De Vos, De Lathauwer, and Van Huffel (2007) 

introduced HCA-CP’ which imposes the CP structure during the ICA computation. 

As was mentioned in Chapter 10, the standard noisy ICA problem for two-way data 

can be solved by diagonalizing the fourth-order cumulant tensor of the observed data 

X  in (10.37). Using the fact that all higher-order cumulants of the independent factors 

are diagonal tensors and that all higher-order cumulants greater than two vanish for 

Gaussian distributed noise, the fourth-order cumulant tensor of X  in (10.37) has the 

following CP decomposition of rank k (De Lathauwer, De Moor, and Vandewalle, 2000):

k

^  ^ ( r )  n v  o m r o m r o m r , ( 1 2 .6 )
r=1

where ^ ( r )  corresponds to the fourth-order cumulant of the r-th  source or common 

factor and m r denotes the r-th  column of the mixing matrix M.

For data sets having a three-way structure according to model (12.5), De Vos, De Lath­

auwer, and Van Huffel (2007) proposed to solve the ICA problem by diagonalizing the 

fourth-order cumulant of X^ in (12.5). With a mixing matrix M  =  (C| <S> |B), this 

fourth-order cumulant can be expressed as an eighth-order tensor of rank R  with the 

following CP structure:

R
ft4(r) cr o b r o c r o b r o c r o b r o c r o b r . (12.7)

r = l

For the computation of the CP decomposition (12.7), De Vos, De Lathauwer, and

Van Huffel (2007) proposed a simultaneous generalized Schur decomposition (Golub



Implementation of ICA in Three-mode Factor Analysis 157

and Van Loan, 1996) of a set of matrices which is considered in De Lathauwer, De Moor, 

and Vandewalle (2004).

The computation of the CP decomposition in De Vos, De Lathauwer, and Van Huffel 

(2007) requires that R  < min{/, J}. Once estimates for C and B and hence M  have 

been obtained, the independent sources A  can be estimated from equation (12.5). 

Both tensor pICA and ICA-CP impose a CP structure for the three-way array X 

to implement the ICA in one mode of the data. In the next Section, an alternative 

approach to ICA of three-way data is considered combining ICA and the Tucker3 model.

12.2 C om bining IC A  and th e  Tucker3 m odel

12.2 .1  Tucker3 m odel

The Tueker3 model (Tucker, 1966) factorizes X =  {xijk} € M/xJxX such tha t for 

i = l , . . . , / ; j  =  1 , . . . ,  J;fc =  1 , . . . , A :

P  Q R

X i jk  EEE Q'ipbjqCkrQpqr  T &ijk  3 (12.8)
p —1 q— 1 r = 1

where as before a*p, bjq, and c r̂ denote the elements of the component matrices 

A  G M/xP, B G Mjx<2 and C G MXxP, respectively. The gpqr are the elements of 

the three-way core array S G MPxQxR which describe the interactions between the 

components in A, B and C. The core S can be referred to as containing the weights of 

all possible triads. That is, the core elements represent the importance of the respective 

factor combinations. The largest squared elements of the core will indicate what the 

most important factors are in the model of X.

In Tucker (1966) the component matrices A, B and C are not subject to almost any
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constraints; they are required to be simply full column rank matrices. Both for com­

putational and uniqueness purposes, Kroonenberg and De Leeuw (1980) describe the 

Tucker3 model in terms of column-wise orthonormal matrices A, B and C.

The Tucker3 model can be expressed in a concise form as follows (Kiers, 2000; Kroo­

nenberg, 2008):

p  Q R

X =  X !  X I  X I  gMr ( ^  ° ° Cr) +  £  (12-9)
p —1 q =  1 r —1

4=̂  vec(X) =  (C ® B 0  A)vec(S) +  vec(£) , (12.10)

where 0  denotes the Kronecker matrix product. Expression (12.10) gives insight into 

the role of the elements of the core as regression weights for the columns of C 0  B 0  A. 

The Tucker3 model in unfolded matrix form is:

X^ =  A G ^ C  0  B )t +  , (12.11)

where the unfolded core G a € mPxQR is formed by the frontal slices of S* Because of 

the symmetry of the Tucker3 model displayed by the expressions (12.9) and (12.10), 

(12.11) can also be formulated in terms of the two remaining unfoldings X g and Xc- 

In contrast to the Tucker3 model, the Tucker2 model leaves one mode in X uncom­

pressed (Kroonenberg and De Leeuw, 1980). Hence, the Tucker2 model uses only two 

component matrices, but still a full core. Consequently, unlike CP and Tucker3, the 

Tucker2 model is not symmetric. Leaving the third mode unreduced, the Tucker2 

model can be formulated as

X,4 =  A G ^(Ik ® B ) t +  E^ , (12.12)

where 6 denotes the ‘extended core matrix’. Note tha t G.i has full di-

mensionality K  in the uncompressed mode. The Tucker2 model does exploit fully the
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three-way structure of the data. An application that requires this feature is the multi­

variate analysis of time series data, where in general no useful meaning can be attached 

to the components in the time mode. In this thesis only the Tucker3 model, in which 

components are computed for all three modes will be considered.

The hierarchy between the Tucker3 and the CP model can be revealed by using for the 

unfolded CP model (12.5) a notation equivalent to (12.11), namely

=  A H (C  ® B )t  +  E a , (12.13)

where the matrix H  is the R  x R 2 unfolded version of a unit superdiagonal array IK,

that is, an array with hpqr = 1 if p =  q =  r, and hpqr =  0 otherwise.

Equation (12.13) shows that the CP model is a constrained version of Tucker3 in which 

all cross-relations (multi-collinearities) between the components in different modes are 

eliminated. In other words, the CP model assumes that the components in different 

modes only interact factor-wise. Moreover, as a consequence of a superdiagonal core, 

an equal number of components are extracted in each mode.

Hence, the CP model is considerably more restrictive than the Tucker3 model. However, 

if this restriction is tenable, it implies that the CP has a unique solution under a fairly 

general condition and the components found are to be interpreted without recourse to 

rotation. By contrast, the Tucker3 model allows for extraction of different numbers 

of factors in each of the three modes and any factor in a certain mode is allowed to 

interact with any factor in the other two modes. The Tucker3 model has no unique 

solutions. This is due to the full-core array structure S- Indeed, for any non-singular
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square matrices T  E M.PxP, Q E and P  E M.RxR, one finds that (Kiers, 1992):

X„ =  A G j4(Ct ® B t ) +  Ej4 ,

=  A T T -’G^ [(C P P - 1 ) 7  ® (BQ Q “ 1)t ] +  E .4 ,

=  (A T )T _1 G /1(P _ 1  ® Q - y  [(C P )T ® (BQ)t ] +  E A ,

= A G j4 (CT ® B T) +  E^ , (12.14)

where A =  A T, B =  BQ , C  =  C P , and G^ =  T - 1 G j4 (P “ 1 ® Q _1)t . Equation (12.14)

shows that rotation of the factors leaves the fit of the model unchanged provided that 

such transformations are compensated in the core array S- Hence, the Tucker3 model 

suffers from rotational indeterminacy and the parameter matrices can only be deter­

mined up to a rotation.

The solutions of the Tucker3 model are usually difficult to interpret, due to the inter­

actions between the components given by S- The rotational freedom can be exploited 

to enhance the interpretability of the solution (see Kroonenberg, 2008, Chapter 10). 

Component matrices or the core can be rotated towards a specific target (Kiers, 1992). 

Furthermore, orthogonal and oblique transformations of the component matrices A, B 

and C, or of the core, or both, towards a simple structure can be considered.

Kiers (1997a) proposed a procedure that aims at core array simplicity by optimizing 

the Orthomax criterion (Jennrich, 1970). Kiers (1998a) discusses a method for joint 

orthogonal rotation of the core and the component matrices so as to optimize any 

desired weighted sum of simplicity values for the component matrices and the core. 

Oblique transformations of the core to obtain a simple structure are introduced in 

Kiers (1998b). Although simplicity of each of the component matrices can be opti­

mized independently, for the core to be simple one has to strike compromises between
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simplicity of the core and of the component matrices. As Kiers and Van Mechelen 

(2 0 0 1 ) point out, the desired simplicity of each of the component matrices and of the 

core may differ between situations.

The rotational freedom of the Tucker3 model is now exploited to implement ICA in one 

mode of the data. That is, based on an initial Tucker3 solution, one of the component 

matrices is rotated towards independence. To begin with, a Tucker3 solution needs to 

be obtained.

12.2 .2  ALS so lu tio n  and  ro ta tio n  tow ards in d ep en d en ce

To find estimates for the parameters in the Tucker3 model, consider minimizing the 

following loss function (Kroonenberg and De Leeuw, 1980):

s.t. A, B and C are orthonormal. The loss function (12.15) can be also formulated in 

terms of the two remaining unfoldings X # and X c by cyclically permuting the letters 

that indicate the modes.

Kroonenberg and De Leeuw (1980) showed that for fixed A, B and C, the which 

minimizes (12.15) is uniquely defined as:

Hence, the loss function (12.15) depends only upon A, B and C. Substituting (12.16), 

the loss function (12.15) can be rewritten as:

T KuoeL{A ,B ,C ,G )  =  11X̂4 - A G ^ ( C ®  B)T |pF , (12.15)

G a = A t X ^i(C ® B ) . (12.16)

FKkDedA ,B ,C ) =  ||X j4 - A A 1X ( C C t ® B B t ) | | |  ,

||Xy, | | | - t r a c e (A T{Xj4(CCT ® B B T)X^}A) . (12.17)
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Hence minimizing (12.17) over A  (keeping B and C fixed) is equivalent to maximizing 

trace(AT{X ,i(C CT 0  B B T)X^}A). In a completely parallel fashion, it can be shown 

that minimizing (12.17) over B (keeping A  and C fixed) is equivalent to maximizing 

trace(BT{XB(A A T 0  C C T)X j}B ) and minimizing (12.17) over C (keeping A  and B 

fixed) is equivalent to maximizing trace(CT{X c(B B T 0  A A T)X j}C ).

To minimize (12.17), Kroonenberg and De Leeuw (1980) developed an ALS algorithm, 

the TUCKALS3 algorithm, in which in each main iteration step, A, B and C are 

updated in turn, while keeping the other two parameter matrices fixed (see also Kroo­

nenberg, 1983; ten Berge, De Leeuw, and Kroonenberg, 1987).

To initialize the TUCKALS3 algorithm, A, B and C are chosen according to Tucker’s 

algebraic solution (Tucker, 1966). That is, initially A  consists of the principal P  eigen­

vectors of X ^ X j; B consists of the principal Q eigenvectors of X ^ X j; and C consists 

of the principal R  eigenvectors of X ^ X j.

In each A-substep of the main iterative procedure one could carry out an eigendecom- 

position of the I  x /  matrix X j4 (C C t 0 B B t )X^ to find an update for A. Analogously, 

in each B-substep (C-substep) one can compute an eigendecomposition of the J  x J  

matrix X B(AAT 0  C C T)X j (of the K  x K  matrix X C(BBT 0  A A T)X j)  to find an 

update for B (for C).

Such a procedure is likely to become computationally burdensome because of the sizes 

of the corresponding matrices. To avoid this, Kroonenberg and De Leeuw (1980) used 

one step in the iterative routine of Bauer-Rutishauser (Rutishauser, 1969) for comput­

ing eigenvectors and eigenvalues of a matrix, to find an update for A (and analogously 

for B and C). The advantage of this approach is that in the A-substep only an eigen­

decomposition of a P  x P  matrix is required to find an update for A, where usually
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P  <C I. Correspondingly, in the B-substep (C-substep) only an eigendecomposition 

of a Q x Q (R  x R) matrix is required for finding an update for B  (for C), where in 

practice Q c  J  and R ^ i  K .

After all parameter matrices have been estimated once, the main iterative step is re­

peated again and again until convergence. The iterative procedure terminates if two 

successive estimates for (A ,B ,C ) are sufficiently alike or if the differences between 

successive iterations with respect to the loss function are below some arbitrary small 

value. The loss function can be shown to converge in a monotone fashion to at least a 

local optimum. Once estimates for the component matrices are found, an estimate for 

the core matrix can be computed via (12.16).

Further improvements of the original TUCKALS3 algorithm which led to reduction of 

the computational load are proposed by Kroonenberg, ten Berge, Brouwer, and Kiers 

(1989) and Kiers, Kroonenberg, and ten Berge (1992).

Assume that independence constraints are imposed on the components of the first 

mode. Finding orthonormal A, B, C and a core is an ALS problem. To implement 

ICA in the A-mode of the data, one needs to go one step further. The component 

scores A  should be independent. For this reason A  is rotated towards independence, 

that is, A =  A T  for some orthogonal P  x P  matrix T. To find the matrix T  that 

leads to approximately independent component scores A, one can solve for example the 

optimization problem (11.5) by means of the projected gradient approach. In fact, any 

of the standard ICA criteria and algorithms discussed in Chapter 10 such as FastICA 

or JADE can be used to achieve the ICA goal.

Once the optimal rotation matrix has been found, the core has to be rotated as well 

to maintain the LS fit of the model. Summarizing, the proposed method to implement
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the ICA data sets having a three-way structure is as follows:

1. Set up the number of components in each mode [P, Q , R], prescribed or using a

model-selection procedure (see Kroonenberg, 2005).

2 . Obtain estimates A, B and C solving (12.15) by means of an ALS algorithm.

3. Compute via (12.16).

4. Find an orthogonal matrix T  that solves the optimization problem (11.5), where 

Sh in (11.5) is the covariance matrix of the squared orthogonally transformed 

component scores A.

5. Calculate approximately independent components in the first mode as A  =  A T .

6 . Obtain a counter-rotated core by G a =  T t G^.

12.3 Sim ulation experim ent

The performance of the proposed approach to ICA (called Tucker3-ICA) of three-mode 

data shall be evaluated by means of a simulation study. A matricized version of a 

three-way array X G R/xJxX with known model structure

X^ =  AG^(Ct ® B t) + E j4 (12.18)

and independent components in the first mode is constructed as follows. Recall the 

27 x 26 box data in Chapter 11. The dimensions of the 27 boxes in Table 7.1 and 

Table 11.1 are independent and hence well-suited for an ICA analysis. The three 

dimensions constitute the column vectors of the true component matrix A  G M27x3 and 

hence the factors the proposed approach aims to recover. The entries of the other two
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modes (in B E M2 0 x 3  and C  E M50x3) are drawn from a standard normal distribution.

Performance of the algorithm is investigated under different degrees of multi-collinearity 

in the core and various levels of additive observational noise. The elements of the

interval [0 , 1 ] in the ‘low’ multi-collinearity case, and from the uniform distribution on 

the interval [0.5,1.5] in the ‘high’ multi-collinearity case.

The values of were drawn randomly from a zero-mean normal distribution with 

noise variances crjy =  1 , . . .  ,20. Furthermore, two more conditions are added to the 

analysis to provide ‘zero-point’ references, namely the case of a unit superdiagonal core 

and the case of complete absence of noise.

To eliminate unwanted differences in level and scale, all elements Xijk {i = 1, . . . ,  j  =  

1 , A: =  1  , . . . ,  A) in are preprocessed by centring across the entries of the 

A-mode and normalizing within the jB-mode, that is,

where the subscript dot is used to indicate the mean across i =  1 , . . . ,  I. Preprocessing 

by (12.19) centres all vertical ‘fibers’ by subtracting the fiber means and normalizes 

the complete lateral slices by dividing by the square root of the sum of squares in each 

slice (Kiers, 2000).

To obtain an initial Tucker3 solution the loss function (12.15) is optimized by means 

of the TUCKALS3 algorithm. For running the TUCKALS3 algorithm, the MATLAB 

N -way toolbox version 3.1 is used (Andersson and Bro, 2000).

Once an initial Tucker3 solution has been obtained, the procedure described above 

is used to implement the ICA. Monte-Carlo simulations are conducted consisting of

unfolded core, E M3x9, are drawn randomly from the uniform distribution on the

(12.19)
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500 replications. The MATLAB code for running the simulation study is available 

upon request. The performance of the proposed approach is evaluated by means of the 

normalized Frobenius norm of the difference between the true (standardized) source 

matrix A and the recovered (estimated) matrix A:

l|A -  A||f
E  = HAIL

Figure 12.1 displays the mean value of E  against noise levels ct2n = 1 , . . . ,  20 for Tucker3- 

ICA and three different cores. With respect to robustness against additive Gaussian
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Figure 12.1: Mean value of E  against noise levels a% = 1 , . . . ,  20 assuming three dif­

ferent cores for Tucker3-ICA based on 500 replications.

noise, Tucker3-ICA performs best if the components in the three modes are only allowed 

to interact factorwise. However, Figure 12.1 reveals that the proposed method is also
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quite robust in the cases of correlated cores. The gap in performance between the unit 

superdiagonal core solution and the two multi-collinear cases increases with increasing 

noise level. Irrespective of the core, A  is recovered accurately in the case of complete 

absence of noise.

Finally, the effect of varying the sizes of the data array and the core has been studied. 

Results (not shown) indicate that if more components are extracted in the second and 

third mode, the overall fit of the model is improved. The mean value of E  decreases with 

increasing the size of the core. Another feature is that the mean value of E  increases 

if the number of entries in the second and third mode, J  and K , are reduced.



Chapter 13

D iscussion

In Chapter 11 the IEFA method was introduced for recovering independent latent 

sources from their observed mixtures. To implement IEFA, the new model was viewed 

as a method of factor rotation in EFA. First, estimates for all EFA model parameters 

were obtained simultaneously by means of the numerical procedures presented in Part

II. Then, an orthogonal rotation matrix was sought that minimizes the dependence 

between the common factors. The rotation criterion used requires minimization of 

squared fourth-order statistics formed by covariances computed from squared compo­

nents. It is easily optimized using the projected gradient approach. It was chosen 

because its appropriateness was easily motivated. Of course, the IEFA method can be 

used in combination with any other ICA rotation criterion.

Since the initial EFA decomposition is based on the computationally efficient proce­

dure of the SVD of data matrices, the IEFA method facilitates the application of noisy 

ICA. In particular for high-dimensional data, this initial EFA decomposition seems to 

be a reasonable choice for decorrelating the common factors before applying any ICA 

rotation criteria.
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The new approach was applied to the notorious Thurstone’s 26-variable box problem. 

By rotating the factors towards independence, the dimensions of the boxes were re­

vealed accurately and a simple structure of the loadings was achieved.

Note that there is an important difference between simplicity rotation criteria and 

IEFA. The application of the IEFA rotation is based on the assumption that the un­

derlying sources for the process to be analyzed are independent. Then, rotating the 

scores towards independence produces patterns of loadings in which the obtained sim­

plicity reflects the physics of the underlying process rather than a formal simplicity 

criterion. In contrast, for rotation-to simplicity methods there is no clear guidance on 

which one to use to enhance interpretation.

Thurstone's box data is an entirely artificial data set, though. The example was chosen 

as one illustration of the usefulness of IEFA. Noisy ICA is a rapidly evolving method 

that is currently finding applications in various disciplines, e.g. atmospheric science. 

It will be of great interest to explore the application of IEFA to real (correlated) data. 

Especially for high-dimensional data one might produce with the IEFA rotation a sim­

ple structure in the loadings in a computationally more efficient fashion. W ith p n, 

rotating a p x k matrix of initial loadings towards simplicity needs more CPU time 

than rotating a n n x f c  matrix of scores towards independence.

In Chapter 12 an extension of common two-way ICA to data sets having a third mode 

was presented. The ICA was implemented by exploiting the rotational freedom of the 

Tucker3 model. After obtaining an initial Tucker3 solution, one of the component ma­

trices was rotated orthogonally towards independence to implement ICA in one mode 

of the data. However, obtaining approximately independent factor scores in one mode 

may spoil the simplicity and hence the interpretation of the core. Rotation towards
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independence in one mode can be combined with rotation-to-simplicity methods to 

enhance interpretation of the remaining component matrices and/or the core.

In the conducted numerical experiments Tucker3-ICA was shown to be quite robust 

against normally distributed noise. As indispensable stages in a complete three-way 

analysis process, one should carry out a more detailed study of model fit and the resid­

uals in practice. This not only includes a careful choice of the number of components 

for each mode but also the choice between different models, e.g. between a Tueker3 

and a Tucker2 model (Kroonenberg, 2005). Furthermore, the performance of the new 

approach to ICA for three-mode data has to be compared to the existing algorithms 

tensor pICA and ICA-CP both of which impose independence constraints in the CP 

model.

The Tucker3 model does not include the concept of unique factors. A (stochastic) 

three-mode common factor model with unique variances for combination variables was 

proposed by Bloxom (1968) and further developed by Bentler and Lee (1978, 1979). 

These techniques differ mainly from the Tucker3 model in that they are modelling co- 

variances rather than the raw data (see also Kroonenberg, 2003). Due to aggregation 

over the entities in one mode no estimate for one of the component matrices is given. 

Extending the analysis in Part II to develop an algorithm for fitting the three-mode 

common factor model directly to the data shall be the subject of further work.
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