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Abstract

A bstract

To establish an infection in the host cell, Papillomaviruses (PVs) encode 

two major oncoproteins, E6 and E7, which interact with numerous 

cellular proteins and interfere with many cellular pathways. We use 

HPV E6 and RhPV-1 E7 oncoproteins as tools to investigate some of the 

most im portant characteristics of the high-risk HPV E6 proteins: their 

association with the ubiquitin pathway and ability to direct proteasomal 

degradation of PDZ domain-containing proteins. We show th a t E6 

protein levels are dependent on the E6AP ubiquitin ligase: in its 

absence, E6 is degraded in a proteasome dependent manner. A 

proteomic analysis for HPV-18 E6 interacting partners showed th a t 

HPV-18 E6 interacts with EDD, another HECT domain ubiquitin ligase. 

EDD does not direct the degradation of p53 or PDZ domain-containing 

substrates, but appears to regulate E6AP levels, with consequent effects 

on E6 protein levels and its p53 targeting. These studies demonstrate a 

complex interplay between E6, EDD and E6AP for regulating E6’s 

degradation of its substrate proteins. Rhesus papillomavirus 1 (RhPV- 

1) is a high-risk mucosal papillomavirus, but its E6 protein has no PDZ- 

binding motif. However, we show a remarkable evolutionary 

conservation, with the PDZ-binding m otif present on the RhPV-1 E7 

protein instead. Furthermore, this directs the binding of RhPV-1 E7 to 

Par3, a PDZ domain-containing protein controlling the polarity 

regulation pathway also controlled by hDlg and hScrib, the PDZ 

domain-containing targets of HPV-18 and HPV-16 E6. RhPV-1 E7 

degrades Par3 analogously to HPV E6’s degradation of its PDZ 

substrates, and also appears to interact with EDD. These studies 

demonstrate th a t PDZ domain-containing cell polarity regulators and 

critical components of the ubiquitin proteasome pathway are common 

targets of evolutionarily diverse oncogenic mucosal papillomaviruses.
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This suggests tha t these pathways represent essential steps in the viral 

life cycles and in these viruses’ ability to induce malignancy.
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Introduction

Introduction  

H um an papillom aviruses (HPVs) and Cancer

Cancer

Cancer is defined as a  genetic disease caused by mutations in various 

genes. Mutations in tumor suppressors, oncogenes and DNA stability 

genes (mismatch repair, nucleotide-excision and base-repair genes) 

destabilize their normal functions, resulting in deregulated cell growth 

and eventually in cancer (Vogelstein and Kinzler, 2004). Interestingly, 

cancer can also occur through epigenetic inheritance which is defined as 

cellular information other than  the DNA sequence itself, th a t is 

heritable during cell division. The three main epigenetic inheritances 

are DNA methylation, genomic im printing and histone modification, 

where abnormalities in all of these have been identified in cancers 

(reviewed in Feinberg and Tycko, 2004). The numbers of new cancer 

cases are rapidly increasing each year. At present, approximately 10 

million new cancer cases are reported yearly and 6 million of them  (12% 

of worldwide deaths) will not survive (www.who.int/cancer/en). In  the 

near future the numbers are expected to increase even more and it is 

predicted th a t by 2020 there will be 15 million new cancer cases each 

year (Frankish, 2003). More than  100 different cancer types and tum or 

subtypes have been reported. It is very interesting to note that, even 

though these cancer types may be distinct and affect different tissues 

and organs, the physiological alterations in the cells which cause the 

cancers follow the same pathways. In order to be established and 

promote its malignancy each cancer cell type needs to a tta in

3
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Introduction

immortalized independent cell growth, to induce continuous 

angiogenesis, to bypass apoptosis and, ultimately, to metastasize 

(reviewed in Hanahan and Weinberg, 2000). This also implies that the 

same molecular signaling pathways are disrupted in cancers th a t have 

evolved due to changes in the genome, as well as in cancers tha t are 

caused by infectious agents, which can be of viral or non-viral origin. A 

good example of this would be the p53 and pRb pathways which have 

been identified as being major targets of the DNA tum or viruses (Klein, 

2002; Miinger and Howley, 2002; zur Hausen, 2001).

HPVs and C ervical Cancer

As mentioned above, cancers can be caused by a number of different 

infectious agents. Currently, it is estimated th a t approximately 20% of 

all global cancer cases are caused by infections (zur Hausen, 2008) and 

th a t 70% of these (15% of cancers worldwide) are caused by viruses, 

accounting for almost 1.5 million cases with 900 000 deaths each year 

(Butel, 2000). Among these are Hepatitis B and C viruses (HBV and 

HCV) and Epstein Barr virus (EBV). However, arguably the most 

abundant are Human papillomaviruses (HPVs), accounting for 

approximately 5% of the world cancer burden (Parkin and Bray, 2006). 

Besides being involved in cervical cancer, HPVs have been linked to 

cancers of external genitalia, anus, mouth and oro-pharynx (Parkin and 

Bray, 2006). Cervical cancer is the second most common cancer among 

women worldwide, with an estimated 493 000 new incidences and about 

274 000 deaths annually, of which approximately 83% occur in women 

in developing countries (Parkin and Bray, 2006). Persistent infection 

with certain HPV types is the most im portant factor for cervical cancer 

development (Castellsague, 2008; zur Hausen, 1996).

4
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HPVs infect either mucosal or cutaneous epithelia and induce 

hyperproliferative lesions which can be manifested either on the genital 

tract, or in the form of nongenital tumors, such as benign skin warts, 

non-melanoma skin cancer and various head and neck cancers (Gillison 

and Shah, 2003; Harwood et a l,, 1999, Herrero et al., 2003). Those HPV 

types which are associated with mucosal malignancies are referred to as 

the high-risk types and they include HPV-16, -18, -31, -33, -35, -39, -45, - 

51, -52, -56, -58 and -59 (Bouvard et al., 2009; de Villiers, 1994; Laimins, 

1993; zur Hausen and de Villiers, 1994). HPV types such as HPV -6 and 

-11 induce benign w arts which are not likely to progress to malignancy 

and they are referred to as low-risk types. I t is im portant to mention 

th a t although approximately 99% of cervical cancers contain high-risk 

HPVs (Walboomers et a l., 1999) not every infected woman will develop 

the disease. The initial phase of the infection usually results in  low- 

grade lesions, term ed dysplasias or cervical intraepithelial neoplasia 

grade I. Lesions a t this stage are more differentiated than  later lesions 

and can be eliminated by the immune system. The average duration of 

agenital HPV infection has been estimated to be less than  a year (Hopfl 

et a l., 2000; Jenson et a l., 1991). However, individuals with persistent 

high-risk HPV infections are likely to develop severe dysplasia which 

can ultimately progress to cervical cancer (Hildesheim et a l., 1994; zur 

Hausen, 1999).

During long term  persistent high-risk HPV infection the viral DNA can 

often become randomly integrated into the host cellular chromosomes. 

Although the episomal HPVs can induce tumors, approximately 70% of 

the m etastatic cells have integrated HPV sequences, which underlines 

the significance of the DNA integration for the later stages of the 

disease development (reviewed in McMurray et al., 2001). I t  is 

important to bear in mind th a t this phenomenon is not a part of the
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natural viral life cycle, it can be rather looked at as an unwanted 

incident through which the virus loses its ability to replicate. This 

integration event frequently results in large deletions of the viral DNA, 

followed by de-regulated expression of the viral oncoproteins E6 and E7 

(Baker et al., 1987; Schwarz et al., 1985; Yee et al., 1985). This 

condition of de-regulated E6 and E7 expression is then a  driving force 

for further cancer development (Jeon et al., 1995). Figure 1 shows a 

schematic depicting some of the major events during HPV induced 

malignancy. In the early stages of the infection the virus causes LSIL 

(low-grade squamous intraepithelial lesions) which results from a 

modification of the normal differentiation in the lower third of the 

epithelium. This kind of lesion represents a normal productive viral 

infection and may remain unchanged for several weeks to months, may 

be neutralized by the immune system or may progress to severe 

dysplasia or HSIL (high-grade squamous intraepithelial lesions). 

Severe dysplastic lesions may rem ain as HSIL or advance to invade 

below the basement membrane, leading to local invasion (reviewed in 

McMurray et al., 2001).

Two major high-risk HPV oncoproteins, E6 and E7, induce malignant 

progression by targeting various cellular proteins involved in the 

regulation of apoptosis and cell cycle, causing immortalization and, 

eventually, cellular transformation (Figure 1) (Mantovani and Banks, 

2001; Miinger et al., 2001). E7 appears to be largely responsible for 

driving cell proliferation in the early stages of malignant progression by 

targeting pRb and the related “pocket proteins”, pl07 nad pl30 (Dyson 

et al., 1989; Imai et al., 1991; reviewed in Miinger et al., 2004), while E6 

enhances cell survival by targeting p53 (reviewed in Mantovani and 

Banks, 2001; Scheffner et al., 1993) and is believed to contribute more 

towards the later, more malignant stages of the disease (Riley et al.,

6
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2003, Song et al., 2000). Interestingly, although HPV-negative cervical 

cancers are exceptionally rare, a  few cases have been reported. HPV- 

negative cell lines derived from those patients were found to have p53 

and pRb mutations, highlighting the requirement for inactivation of 

those cellular pathways in order for malignant progression to occur 

(Scheffner et al., 1991). Furthermore, tissue culture and animal model 

experiments showed the necessity of E6 and E7 activities for cellular 

transform ation and tumor development (Hawley-Nelson et al., 1989; 

M atlashewski et al., 1987; Riley et al., 2003). In addition, in HPV- 

positive cells, inhibition of the expression E6 and E7 by the viral 

transcriptional regulator E2, or by siRNA and ribozyme approaches, 

results in an inhibition of cell growth and the induction of growth arrest 

and highlighting the importance of continued E6/E7 expression for 

maintenance of the transformed phenotype (Alvarez-Salas et al., 1998; 

Goodwin and DiMaio, 2000; Yoshinouchi et al., 2003). It is im portant to 

keep in mind that, besides p53 and pRb, E6 and E7 interfere with many 

other cellular activities, the disruption of which also contributes to 

m alignant progression. Some of these pathways are summarized in 

Table 1 and will be discussed in more detail below.
Table 1. Various cellular activities regulated by E5, E6 and E7 oncoproteins
Viral Oncoprotein Pathways affected Reference

E6

Inhibition of 
apoptosis

Scheffner et al., 1990 
Thomas and Banks, 1998

Cell immortalization Band et al., 1991
Telomerase activation Klingelhutz et al., 1996

Cell junctions, cell adhesion and signaling
Lee et al., 1997 
Huibregtse and 
Nakagawa, 2000

Inteference with the immune system Patel et al., 1999

E7
Unregulated cell growth Arroyo et al., 1993
Centrosome amplification Duensing et al., 2001
Chromosomal instability Reznikoff et al., 1996

E5 Modulation of growth factor receptor 
signaling

Straight et al., 1993

7
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The first evidence of E6 being an oncogene came from studies which 

demonstrated th a t E6 expression can lead to hyperproliferation of cells, 

loss of epithelial cell differentiation, and tumor formation. Early 

experiments reporting E6 transforming capacity were assays which 

showed tha t E6 can efficiently cooperate with an activated ras oncogene 

in the transformation of primary rodent cells (Pirn et al., 1994; Storey 

and Banks, 1993), while independently it can immortalize primary 

hum an mammary epithelial cells a t late passage (Band et al., 1991; 

Wazer et al., 1995). In the case of prim ary hum an keratinocytes, the 

natural target cell of the virus, E6 only displays transforming capacity 

in the presence of E7, where both viral oncoproteins are required for cell 

immortalization (Barbosa and Schlegel, 1989; Hawley-Nelson et al., 

1989; Miinger et al., 1989; W atanabe et al., 1989). A particularly 

interesting feature of all these assays is th a t the ability to immortalize 

different cell types is exclusively restricted to high-risk HPV E6 and E7 

proteins, while low-risk types have little or no immortalizing activity 

(Hawley-Nelson et al., 1989; Schlegel et al., 1988). It is also important 

to point out th a t immortalized keratinocytes will not initially cause 

tumor formation in nude mice. Only after long term  passage or in 

cooperation with other activated oncogenes, do these immortalized 

keratinocytes become fully transformed (DiPaolo et al., 1989; Hurlin et 

al., 1991). This observation reflects the process of HPV-induced 

malignancy in vivo, where the multi-step process between the initial 

infection and cancer development takes many years.

As already mentioned E6 and E7 cause cellular immortalization and 

transformation primarily by targeting their major substrates p53 and 

pRb. However, each of the viral oncoproteins needs to interact with 

other proteins besides p53 and pRb in order to achieve optimal effect in 

cellular transformation. A good example of this came from tissue
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culture experiments which have shown th a t the PDZ binding capacity of 

E6 is im portant for its ability to induce cellular transformation. Kiyono 

and colleagues showed tha t HPV-16 E6 had PDZ-binding potential and 

th a t an intact PDZ binding motif was important for the ability of HPV- 

16 E6 to induce morphological transform ation in ra t 3Y1 cells (Kiyono et 

al., 1997). The study showed th a t the motif was also necessary for the 

ability of HPV-16 E6 to confer tumorigenicity upon a mouse fibroblast 

cell line. Interestingly, the HPV-31 whole-genome studies show th a t E6 

PDZ target binding does not seem to appear to be required for the 

immortalization activity of the virus, but it is required for increased cell 

proliferation and episomal m aintenance (Lee and Laimins, 2004). 

However, in a different keratinocyte-transformation assay it  was found 

th a t the HPV-16 E6 PDZ-binding motif was required for the induction of 

anchorage-independent growth in cooperation with an activated ras 

oncoprotein, both in murine and hum an tonsillar keratinocyte cells 

(Spanos et al., 2008a; Spanos et al., 2008b).

Transgenic mouse models have proved to be extremely useful in 

assaying the relative contributions of E6 and E7 to malignant 

progression. Initial studies in transgenic mice have shown th a t animals 

expressing the oncogenes developed neuroepithelial tumors, and a t 10 

months of age 71% were dead from brain tumors (Arbeit et al., 1993); 

while in transgenic mice where E6/E7 expression was targeted to the 

ocular lens, the animals developed impaired lens fiber cell 

differentiation accompanied by increased cell proliferation (Arbeit et al., 

1993). In addition, when lens cells from those mice were placed in 

tissue culture they became immortalized and developed a tumorgenic 

phenotype sifter continuous passage (Griep et al., 1993). Further studies 

used a model which more accurately represents the process of HPV- 

induced malignancy. This model is based on the transgenic mice
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containing hK14HPV16 E6/E7 transgenes, in which expression of the 

oncoproteins is directed from the hum an keratin 14 (K14) promoter, a 

promoter which is restricted in its activity to the stratum  basale. Use of 

this promoter restricts E6/E7 expression to the cell type thought to be 

the precursor for subsequent HPV-induced malignancy. Mice 

expressing the entire HPV16 early region under the K14 promoter 

showed hyperplasia, papillomatosis, and dysplasia at multiple 

epidermal and squamous mucosal sites (Arbeit et al., 1994). Moreover, 

both E6 and E7 were found to be able to induce epithelial hyperplasia 

and skin tumors when individually expressed (Herber et al., 1996; Song 

et al., 1999), but interestingly, tumors caused by E7 were benign and 

highly differentiated, whereas those tumors caused by E6 had a more 

malignant phenotype (Simonson et al., 2005; Song et al., 2000). In 

contrast, in transgenic mouse models of cervical cancer it was found that 

E7 increased proliferation and centrosome copy number and induced 

progression of multifocal microinvasive cervical cancers, while E6 

elevated centrosome copy number and eliminated detectable p53 

protein, but did not produce neoplasia or cancer. Importantly, the 

combination of both oncoproteins resulted in increased centrosome 

numbers and large, extensively invasive, cancers (Riley et al., 2003). 

Similar observations were seen in models of head and neck squamous 

cell cancers (HNSCC). In these E7 was shown to be the major 

transforming oncoprotein, whereas E6 appears to be more likely to play 

a secondary role in contributing to the later stages of malignancy (Strati 

and Lambert, 2007). In addition, in studies using co-carcinogen assays 

on transgenic mice treated with specific carcinogens known to affect 

different stages of tum or formation, E7 was found to be a strong driver 

of tumor progression, while E6 contributed weakly to this stage of 

malignancy. However, E6 contributed more strongly during tumor

10
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development, enhancing the malignant conversion of benign tumors 

(Songe£ al., 2000).

These transgenic mouse models also showed th a t the cooperative effects 

of E6 and E7 are increased in the presence of estrogen, which plays a 

crucial role not only in the genesis of cervical cancer but also in its 

persistence and continued development (Brake and Lambert, 2005; Shai 

et al., 2008). These studies also support the hypothesis th a t both 

oncoproteins need to cooperate in order for malignant progression to 

occur and th a t each protein is responsible for different functions during 

th a t process. These include both p53- and pRb-dependent and 

independent mechanisms (Balsitis et al., 2006; Nguyen et al., 2002; Shai 

et al., 2007b).

In the case of E7 transgenic mice, studies th a t compared the effects of 

abolishing pRb expression in the epidermis with the effects of E7 

expression in the same tissue in young animals showed few differences. 

However, when both E7 was expressed and Rb was deleted in the same 

tissue, increased hyperplasia and dysplasia were observed. These 

studies have shown th a t pRb inactivation is largely responsible for E7’s 

phenotypes a t an early age, but also th a t pRb-independent activities of 

E7 are detectable in vivo (Balsitis et al., 2003). Further studies done in 

knock-in mice expressing 16 E7 and a m utant form of pRb 

(pRb(ALXCXE) showed th a t pRb inactivation was necessary, but not 

sufficient, for E7 to induce DNA synthesis and to overcome 

differentiation-dependent cell cycle withdrawal and DNA damage- 

induced cell cycle arrest (Balsitis et al., 2006). Expression patterns of 

the E2F-responsive genes Mcm7 and cyclin E indicated a  necessity for 

E7 to interact with other substrates besides pRb for its optimal 

transforming activity. Interestingly, E7-induced p21 upregulation was
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also shown to be pRb independent (Balsitis et al., 2005; Balsitis et al., 

2006).

In  the case of E6, m utational studies in transgenic mouse models have 

shown th a t p53-null mice do not develop epidermal hyperproliferation, 

nor do they respond to tumor promoters as the K14 E6 mice do, 

demonstrating the existence of p53-independent activities of E6 (Song et 

al., 1999). It was also shown th a t transgenic mice expressing a m utant 

of E6, E6I128T, which is defective for binding at least a  subset of the a- 

helix partners, including E6AP, lacked the ability to alter the radiation- 

induced block to DNA synthesis and to promote the formation of benign 

skin tumors in cooperation with chemical carcinogens. In addition, 

these mice showed reduced levels of skin hyperplasia, fever spontaneous 

skin tumors, and lower tumor progression activity, in comparison with 

the wild type K14 E6 mice (Nguyen et al., 2002). Further studies 

dissecting the E6 degradatory pathways were carried out in an E6AP- 

null mouse background. Interestingly, in those mice it was found that 

E6, in the absence of E6AP, retains the ability to induce epithelial 

hyperplasia, to abrogate DNA damage response and to inhibit the 

induction of p53 protein following exposure to ionizing radiation (Shai et 

al., 2007a). In addition, mice expressing an E6 (A146-151) PDZ deletion 

m utant in stratified squamous epithelia, but which were still able to 

degrade p53, failed to display epithelial hyperplasia, but retained the 

ability to contribute to the progression stage of malignancy (Nguyen et 

al., 2003a; Simonson et al., 2005). This observation was supported by 

sim ilar experiments in the mouse lens epithelium where the intact PDZ 

binding motif of E6 was responsible for increased proliferation and 

defects in cellular adhesion and differentiation (Nguyen et al., 2003b).
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Perhaps the most relevant animal model for studying PV and cervical 

cancers are Rhesus macaques (Maccaca mulatto), as they are the only 

species except hum ans in which the naturally  occuring mucosal PVs 

cause cervical neoplasia (Wood et al., 2007). Rhesus papillomavirus 

type 1 (RhPV-1) is closely related to HPV-16 (Ostrow et al., 1990): its 

sexual transmission and disease development resemble high-risk HPV 

infection in all major characteristics. However, unlike HPV-16 and 

HPV-18 E6, the RhPV-1 E6 protein has no PDZ-binding motif. 

Interestingly the virus does express a  PDZ-binding motif, but on the 

carboxy term inus of E7 rather than  E6, as is invariably found in the 

high-risk mucosal HPVs (Tomaic et al., 2009; This thesis). The motif (A- 

S-R-V) corresponds to the canonical class I PDZ binding consensus 

sequence (X-T/S-X-L/V) (Figure 6A and 6B). This observation suggests 

th a t a PDZ-binding motif on a t least one of the oncoproteins is required 

by high-risk PVs, such as RhPV-1, to allow the virus to interfere w ith 

those PDZ-containing proteins whose inactivation is necessary to 

establish an infection in the host cell.

E5 is the th ird  oncogene encoded by the high-risk HPV types, and its 

transforming capacity is manifested largely through modulation of 

growth factor receptor regulation; for example EGFR phosphorylation 

and turnover (Straight et al., 1993). Its attribution as an oncogene 

comes from tissue culture studies showing th a t HPV-16 E5 transform s 

murine fibroblasts and keratinocytes (Leechanachai et al., 1992; Pirn et 

al., 1992; Straight et al., 1993), enhances the immortalization capacity 

of E6/E7 (Stoppler et al., 1996), and, in cooperation with E7, stim ulates 

the proliferation of hum an and mouse prim ary cells (Bouvard et al., 

1994; Valle and Banks, 1995). In addition, recent studies in transgenic 

mice showed th a t HPV-16 E5 alters the growth and differentiation of 

stratified epithelia and induces epithelial tumors a t a high frequency
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(Genther Williams et al., 2005; Maufort et al., 2007). However, E5 is 

frequently lost during the development of cervical cancers, suggesting 

th a t it is not required for the later stages of malignant progression. 

Nonetheless, the above cellular and animal models would suggest a role 

for E5 in the early stages of malignant development in hum an cancers.

The V irus 

HPV Genom e

Papillomaviruses (PVs) belong to a group of small non-enveloped DNA 

tumor viruses with approximately 55 nm diameter virions, which fully 

replicate and assemble in the nucleus of the infected cell. Today more 

than  one hundred different PV types have been characterized, infecting 

various animals from birds to mammals (Zheng and Baker, 2006). All 

HPVs have a double-stranded circular DNA genome which is associated 

with cellular histones to form chromatin-like structures (Favre et al., 

1997). As shown in Figure 2 the genomes of all HPV types contain, on 

average, eight major open reading frames (ORFs) and these are 

expressed from polycistronic mRNAs transcribed from the same DNA 

strand. Regulatory sequences required for viral replication and 

transcription are concentrated in a noncoding region, termed the 

upstream  regulatory region (URR) or long control region (LCR). 

Transcription factor binding sites in this region include those for TFIID 

binding to canonical TATA boxes, and additional binding sites include 

those for Sp-1 and AP-1, NF-1, TEF-1, TEF-2, Oct-1, AP-2, KRF-1, and 

YY1, as well as for glucocorticoid responsive elements (Butz and Hoppe- 

Seyler, 1993; Chang and Laimins, 2000; del Mar Pena and Laimins, 

2001; Gloss et al., 1987; Ishiji et al., 1992; Kyo et al., 1997). In high-risk
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HPVs transcription is initiated a t two major promoters termed, the 

early and the late. The early promoter, which initiates upstream  of the 

E6 open reading frame, is responsible for the expression of the early (E) 

proteins. This promoter is expressed prior to reproductive replication. 

In HPV -16 and -31 this promoter is termed p97, while in HPV -18 it is 

referred to as p l05  (reviewed in Longworth and Laimins, 2004). 

Immediately prior to the initiation of virion synthesis, the other major 

promoter, the late promoter (L), is activated. This promoter is 

responsible for expression of the late (L) proteins and it has several 

initiation sites th a t map to sequences within the E7 ORF (Grassmann et 

al., 1996; Ozbun and Meyers, 1998).

HPV L ife Cycle

The life cycle of HPV is linked to the differentiation program of the 

infected keratinocytes, with m ature virion production being restricted to 

the differentiated suprabasal cells. The initial HPV infection is 

speculated to occur through micro-ruptures in the epithelium, resulting 

in infection of undifferentiated stem cells or transiently-amplifiying cells 

located in the lower layers of stratified epithelium (Pyeon et a l., 2009; 

Stubenrauch and Laimins, 1999). However, the mechanism of viral 

entry is still not completely understood. Interestingly, besides the ir 

natural target keratinocytes, HPVs can infect monolayers of various cell 

types, and the infection is thought to be mediated through a num ber of 

host cell molecules which could potentially serve as receptors (Barnard 

and McMillan, 1999; Evander et al., 1997). Furthermore, recent studies 

have also reported cell cycle progression through mitosis to be crucial for 

HPV infection to take place (Pyeon et al., 2009). Only the basal cell 

compartment of the epithelium contains cells progressing through the
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cell cycle, and therefore this could be one of the reasons why HPVs can 

establish their infection only in these cells (Pyeon et a l., 2009). Infection 

of the cells in the basal layer is continued by the activation of viral gene 

expression which results in the production of approximately 20 to 100 

episomal copies of the viral DNA per cell. These episomes are stably 

m aintained in the undifferentiated basal layer during the viral infection 

(De Geest et a l., 1993; Sterling et a l., 1990).

E l  and E2, proteins involved in viral replication, are among the first 

viral proteins to be expressed (Longworth and Laimins, 2004). These 

two proteins form a complex which then binds to the sequences a t the 

viral origin of replication in order to recruit cellular DNA polymerase 

(Conger et a l., 1999; Frattin i et a l., 1997). The E l, a 70 kD nuclear 

protein, encoded by the largest ORF, is very well conserved among the 

PVs especially in the C-terminal half of the protein (Danos et a l., 1983). 

The protein acts as a helicase by mediating the separation of the viral 

DNA strands ahead of the replication fork (Hughes and Romanos, 1993). 

However, E l  by itself has only weak DNA-binding activity which is 

enhanced by the viral E2 protein (Dixon et al., 2000; Sedman et al., 

1997). HPV-31 studies have suggested th a t the primary positive role of 

E2 in the viral life cycle is its function as a replication factor since a 

modest reduction in late gene expression was observed in the m utant 

lines which retained replication activities, but were transactivation 

defective. (Stubenrauch et al., 1998). It is also important to point out 

th a t intact E l  and E2 ORFs were found to be required for stable 

maintenance of the BPV1 extrachromosomal DNA in infected cells 

(Sarver et a l., 1984). Loss of E l  and E2 could eventually lead to viral 

DNA integration, and multiple studies have shown tha t the viral DNA 

integration, which leads to uncontrolled expression of E6 and E7 

proteins, represents one of the initial stages in the series of events
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leading to m alignant development associated with papillomavirus 

infections (Jeon et al., 1995; Song et al., 2000). In addition to the 

replication of viral DNA, E2 is also involved in transcriptional 

regulation. I t is a site-specific DNA binding protein with its binding site 

positioned next to cellular transcription factor binding sites which 

regulate the early promoter (Stubenrauch et al., 1998). High levels of 

E2 repress the early promoter by blocking the binding of cellular 

transcription factors, conversely, low levels of E2 activate the early 

promoter (Steger and Corbach, 1997). This ability allows E2 to have an 

indirect inhibitory effect on cell proliferation through its effect on the 

expression on E6 and E7 (Francis et al., 2000).

Normal squamous epithelial cells grow as stratified epithelium, with 

those in the basal layers dividing as stem cells or transient-amplifiying 

cells. After division, one of the daughter cells migrates towards the 

upper layers and begins to undergo term inal differentiation while the 

other remains in the basal layer as a slow-cycling, self-renewing 

population (Figure 3) (Watt, 1998). In HPV-free epithelia, when cells 

leave the basal layer they exit the cell cycle and during this process of 

term inal differentiation they lose their nuclei, but only in the upper 

layers. Therefore, in order to establish an infection HPVs need to 

redirect this process so th a t viral DNA can be replicated. The virus 

accomplishes this mainly through the viral oncoproteins, E7 and E6, 

which are expressed from the early stages of infection onwards. E7 

targets pRb family proteins to assure cell cycle progression, whilst E6 

prevents growth arrest and apopototic response by targeting p53 (Dyson 

et al., 1989; Schef&ier et al., 1990). Additionally, E7 promotes cell cycle 

progression and transcription by abolishing the activities of histone 

deacetylases (Brehm et al., 1999) and the cyclin-dependent kinase 

inhibitors p21 and p27 (Funk et al., 1997; Jones et al., 1997; Zerfass-
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Thome et a l., 1996). Furthermore, raft culture studies have shown that 

mutations in the CKII phosphorylation site on HPV-18 E7 reduce its 

ability to drive S-phase entry (Chien et a l., 2000). Infected cells divide 

in the basal layer of the epithelium, and as they divide the viral 

genomes are segregated in the daughter cells. As shown in Figure 3, 

some of those cells then sta rt to migrate from the basal layer and begin 

to differentiate. Due to the activity of E7, infected cells remain in the 

cell cycle after they leave the basal layer (Chen et a l., 1995), they 

reenter the S phase in a highly differentiated cell population, and they 

initiate expression of cellular replication factors necessary for viral 

replication. Cells in this phase continue to retain nuclei. Moreover, the 

inactivation of p53/pRb pathways by E6 and E7 is necessary for the 

maintenance of the episomal viral copies in this differentiated cell 

population (Park and Androphy, 2002; Thomas et a l., 1999). In addition, 

recent studies have also shown that, in the case of HPV-31, the 

thickening of the basal epithelial layer and the presence of nuclei 

throughout the suprabasal layers, which are normally seen in HPV 

infections, are lost upon the introduction of PDZ-binding defective 

m utants of E6 (Lee and Laimins, 2004). Furthermore, the growth rate 

of the m utant E6 virus-infected cells is reduced in comparison with the 

wild type virus-infected cells and, interestingly, the number of episomal 

DNA copies decreases and the frequency of viral genome integration 

events increases (Lee and Laimins, 2004).

The other early proteins expressed by HPVs are E4 and E5. E4 localizes 

in the cytoplasm and it is a highly insoluble protein, in part due to its 

association with keratins (Doorbar et a l., 1991). It is probably involved 

in regulating late viral functions, although additional studies need to be 

performed for its functions to be completely understood (Peh et al., 

2004). E4 can actually be considered to be primarily a late protein, as it
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is expressed after the activation of the differentiation-dependent 

promoter upon differentiation of infected keratinocytes (Chow et al., 

1987; Nasseri et al., 1987), and it  has been shown to cause collapse of 

the cytokeratin m atrix which might contribute to virion release 

(Doorbar et al., 1991). E4 is also involved in induction of a  G2 arrest 

which is associated with cytoplasmic retention of active Cdkl/CyclinBl 

complexes; this could play a role in creating an environment suitable for 

viral DNA replication (Davy et al., 2006). The significance of E4 in the 

viral life cycle was demonstrated by studies showing th a t viruses 

lacking E4 were significantly weakened in vegetative replication and 

late gene expression, which could ultimately result in decreased virion 

production (Peh et al., 2004; Wilson et al., 2005).

The E5 protein is highly hydrophobic and interacts with the 16-kDa 

subunit of the vacuolar H+-ATPase proton pump responsible for 

acidifying cellular organelles such as the Golgi apparatus (Conrad et al.,

1993). In addition it interacts with the endoplasmic reticulum  and 

nuclear membrane in host cells, and it is thought th a t it contributes to 

the early stages of infection during neoplastic proliferation and the 

productive stage of the viral life cycle, as shown in HPV-16 and -31 

studies (Genther et al., 2003; Goldstein et al., 1992; Fehrm ann et al., 

2003; Valle and Banks, 1995). HPV-31 E5 m utant genomes showed a 

dramatic reduction in colony-forming ability following methylcellulose- 

induced differentiation (Fehrmann et al., 2003). Furthermore, HPV-16 

and -31 E5 m utated genomes showed decreased abilities to amplify viral 

genomes and activate late gene expression (Genther et al., 2003; 

Fehrm ann et al., 2003). Additionally, several reports have shown 

epidermal growth factor (EGFR) to be a  crucial component in the 

activities of E5. In mouse fibroblasts and in the presence of EGF, E5 

was found to increase cellular proliferation (Leechanachai et al., 1992).
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E5 can also stimulate viral gene expression through AP-1 and NF-1 

(Chen et a l., 1996), since numerous binding sites of AP-1 and NF-1 are 

found in the regulatory region of HPV-16 DNA (Burkhardt et al., 1987).

The viral capsid proteins L I and L2 are produced late in infection, after 

viral genome amplification, and spontaneously form icosahedral capsids 

in vitro. L I protein is directed to the nucleus by its C-terminal nuclear 

localization signal (Zhou et al., 1991) and the virus assembly occurs in 

the nucleus (Zhou et al., 1993). L I was also shown to be required for 

incorporation of DNA into papillomavirus capsids (Touze et al., 2000), 

and its physical interaction with DNA is essential for DNA inclusion 

into virion-like particles (VLPs) (Schafer et al., 2002). After virion 

formation, m ature viruses are released from the epithelial surface as 

shown in Figure 3 (Peh et al., 2002). LI, the major viral capsid protein, 

can spontaneously assemble into VLPs (Kimbauer et al., 1992), while 

L2, the minor capsid protein, is responsible for proper encapsidation of 

the viral genomes (Roden et al., 1996). This ability of L I protein to 

assemble into VLPs provides the basis for vaccine development against 

HPVs (Kimbauer et al., 1992).

HPV O ncoprotein F unction

Not every individual infected by high-risk HPV types will develop 

cervical cancer. Only a small proportion of the infected population 

whose immune system fails to clear the infection, and which then 

remains for years, will be likely to develop cervical cancer. In these 

instances, viral DNA often gets integrated into the host genome, 

resulting in the loss of E l, E2, E4, and E5 sequences, followed by 

uncontrolled expression of E6 and E7 oncoproteins leading to the
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disruption of normal viral life cycle and malignant development as an 

accidental side-effect (reviewed in Doorbar, 2005). Many proteins have 

been identified as interacting partners of E6 and E7, however, to date, 

the biological consequences of the interactions have been correlated 

directly with only a limited number of the identified targets. Therefore, 

in the following section I will focus mostly on the E6/E7 oncoproteins 

and their interacting partners with which biological consequences have 

been correlated.

HPV E7 P rotein

HPV E7 is 98 amino acids in length, and contains a zinc-binding domain 

in the C-terminus of the protein, whose structural integrity is essential 

for the activity of E7 (McIntyre et al., 1993; Rawls et al., 1990). The 

protein is divided into three conserved domains termed CD1, CD2 and 

CD3. CD1 and CD2 correspond to small parts of conserved regions 1 

and 2 (CR1 and CR2) of Adenovirus E la , while CD2 is homologous to 

SV40 large T antigen. Although the overall integrity of the protein is 

crucial for E7’s optimal interaction with cellular partners, the majority 

of the characterized activities of E7 are mediated through the CD2 and 

CD3 domains (Patrick et al., 1994).

E7 is post-transcriptionally modified by the proteasome and by 

phosphorylation. I t interacts with the Skp-Cullin-F box (SCF) ubiquitin 

ligase complex, which results in increased ubiquitination of the protein 

(Oh et al., 2004). I t  has also been shown th a t Casein Kinase II (CKII) 

phosphorylates E7 (Barbosa et al., 1990; FirzlafF et al., 1989) on its N- 

term inal domain, which is crucial for its transformational capacity. 

Further studies have identified an additional phosphorylation site
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located on the C-terminal half of the protein; this appears to be 

phosphorylated primarily during S phase, although the kinase involved 

in  this phosphorylation event still needs to be identified (Massimi and 

Banks, 2000).

Conserved Dom ains o f E7

The first 20 amino acids of the N-terminus, also referred to as the CD1 

domain, are very im portant for E7’s transforming capacity (Banks et al., 

1990; Brokaw et a l., 1994). Mutations introduced in this domain show 

th a t it is required for E7’s ability to induce S-phase progression and cell 

transformation (Demers et a l., 1996). The most im portant known 

binding partners of E7 reported to interact with this domain include 

p600 (Huh et al., 2005) and p300/CBP-associated factor (P/CAF) (Huang 

and McCance, 2002). p600 is crucial for anchorage-independent cell 

growth in both HPV-negative and HPV-positive cells, while P/CAF is 

involved in transcriptional activation of NF-kB family members. 

Interaction between E7 and p600 is thought to be required for E7- 

mediated cell transformation (DeMasi et a l., 2005), however its exact 

role in E7’s activities still need to be identified. However, the 

consequence of the interaction of E7 with P/CAF seems to more clear- 

out: E7 expression has been observed to down-regulate the P/CAF-

mediated activation of the NF-kB family members, which occurs during 

viral infection, resulting in escape from the immune response (Huang 

and McCance, 2002).

Amino acid residues from 20 to 38 of E7, also referred to as the CD2 

domain, contain the CKEI phosphorylation site and the LXCXE binding 

m otif involved in binding of the pocket proteins such as pRb. The CKII
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phospho-acceptor site is important for E7’s transforming capacity 

(Barbosa et al., 1990; Firzlaff et al., 1991) and for its ability to drive S- 

phase progression (Chien et al., 2000), while the interaction with the 

pocket proteins has been implicated as one of the major functions of E7, 

and will be discussed in  more detail below.

Amino acid residues 38-98 comprise the CD3 region located, on the C- 

term inus of the protein, and contain four highly conserved cysteine 

residues. This region of E7 is involved in interactions with several 

binding partners: it interacts with p21 and p27, inhibitors of CDKs, 

which E7 sequesters in the cytoplasm as a  necessary step in inducing 

cell cycle progression and overcoming DNA damage-induced cell cycle 

arrest, although other regions of E7 were also shown to be im portant for 

interactions with these proteins (Jones et al., 1997; Helt and Galloway, 

2001). E7 also induces protein kinase B (PKB) phosphorylation of p21, 

and thus abolishes its nuclear activities (Westbrook et al., 2002). This 

domain also interacts with the Mi2B component of the histone 

deacetylase (HDAC) complex (Brehm et al., 1999). E7 inhibits the 

activity of the HDAC complex, which can lead to upregulation of the 

E2F gene through acetylation of the E2F promoter (Zhang et al., 2004), 

resulting in cell cycle progression. Furthermore, this region of E7 was 

also shown to be involved in interaction with TBP (Massimi et al., 1997), 

with TBP associated factors (Mazzarelli et al., 1995), with M2 pyruvate 

kinase (Zwerschke et al., 1999), with AP-1 transcription factor family 

members, such as c-Jun (Antinore et al., 1996), and DNA 

methyltransferase (Burgers et al., 2007). Importantly, through its C- 

terminus, E7 interacts with the hTid-1 protein, a member of the DnaJ- 

family of chaperones. The large tumor antigens of polyomaviruses, 

including SV40, also encode functional J-domains th a t are im portant for 

viral replication, as well as for cellular transformation. Therefore the
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ability of E7 to interact with a  cellular DnaJ protein suggests th a t these 

two viral oncoproteins may target common regulatory pathways through 

J-domains (Schilling et al., 1998). In HPV-positive cell lines, E7 

localizes in the cytoplasm and the nucleus (Oh et al., 2004; Sato et al., 

1989), while in overexpression assays (Guccione et al., 2002) and in 

epithelial raft cultures (Middleton et al., 2003) it is reported to be 

predominantly nuclear. Since no NLS has so far been identified in E7, 

the mechanism of its nuclear localization still needs to be elucidated. In 

addition to its major role in promoting cell cycle progression, the 

interactions of E7 with the cellular proteins mentioned above also 

suggests th a t E7 has a crucial role in destabilizing of transcriptional 

complexes and in chromatin remodeling, consequently affecting cellular 

proliferation.

E7 and P ocket Proteins

The pRb proteins play a crucial role in cell cycle regulation, promoting 

the transition from G1 to S phase. Under normal circumstances, pRb is 

unphosphorylated in the early G1 phase and becomes progressively 

more phosphorylated towards the S phase. The unphosphorylated form 

of pRb binds to the E2F transcriptional factors and represses 

transcription from promoters containing E2F sites (Dyson et al., 1989). 

E2F family members are responsible for transcriptional regulation, in a 

cell-cycle dependent manner, of many genes involved in DNA synthesis 

(Slansky and Farnham , 1996). In HPV infected cells the 

unphosphorylated form of pRb is targeted by E7 through its LXCXE 

motif (Imai et al., 1991) and subjected to proteasome-mediated 

degradation (Boyer et al., 1996). The disruption of the pRb-E2F complex 

results in a  release of free E2F, further resulting in E2F-induced
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transcription leading to upregulation of CDK2 and cyclins A and E. 

This activity of E7 is considered to be crucial for driving cell cycle 

progression in differentiating epithelial cells, thus establishing an 

environment suitable for viral DNA replication.

Importantly, in addition to the pRb interaction, E7 also binds to the 

other pocket proteins p l07 and pl30. These proteins have been shown 

to have well-established roles in numerous tissue types for the 

regulation of cellular proliferation, differentiation and apoptosis through 

interaction with different molecules (reviewed in Morris and Dyson, 

2001). They inhibit E2F-mediated transcription and negatively regulate 

the transition from GO through G1 into the S phase of the cell cycle 

(Davies et a l., 1993). p l07  is mostly expressed in proliferating cells and 

inhibits E2F4 (Ginsberg et al., 1994), while pl30 is predominantly found 

in non-proliferating cells and inhibits E2F5 activity (Hijmans et al.,

1995). The same LXCXE motif of the CD2 domain of E7 required for 

pRb destabilization is also required for down-regulating p l07  and pl30 

(Helt and Galloway, 2001). This again highlights the importance of E7’s 

interaction with the pocket proteins for its optimal ability to drive the 

cell cycle progression.

E7 and Cell Signaling

E7 is involved in the regulation of several signaling pathways. I t has 

been shown th a t E7 interferes with the response to the insulin-like 

growth factor (IGF-1) signaling pathway by binding to IGF-binding 

protein-3 (IGEBP-3), a protein which can block proliferation in response 

to IGF-1. Thus, by interfering with IGEBP-3, E7 prevents IGEBP-3’s 

pro-apoptotic properties in response to IGF-1 (M annhardt et al., 2000).
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Additionally, studies have shown E7 upregulating Protein kinase B 

(PKB) or Akt activity, a protein associated with cellular proliferation 

and survival (Menges et al., 2006). After being phosphorylated Akt 

promotes phosphorylation of its downstream targets such as BAD, p21, 

and BRCA-1, resulting in their nuclear export (Hanada et a l., 2004). 

Interestingly, it has been shown th a t E7 interacts with the Akt 

signaling pathway, interacting with PP2A subunits and inhibiting their 

interaction with Akt, thereby m aintaining Akt signaling by inhibiting 

its phosphorylation (Pirn et al., 2005). Other reports suggest a  link 

between inactivation of pRb by E7 and the up-regulation of Akt activity 

during cervical cancer progression (Menges et al., 2006).

Furthermore, recent studies have reported E7 interacting with Steroid 

Receptor Coactivator (SRC-1), which is involved in hormone-dependent 

gene expression (Baldwin et al., 2006). In the presence of E7, SRC-1 is 

also retained in the cytoplasm and this causes down-regulation of SRC-1 

transcriptional activation, which prevents it from interacting with p300 

and P/CAF (Baldwin et al., 2006). These observations could provide 

better understanding of the molecular mechanisms by which steroid 

hormones act as cofactors in the induction and progression of cervical 

neoplasia.

E7 and Centrosom al Abnorm alities

Centrosomes are the major microtubule organizing centers in the 

majority of animal and hum an cells (Bornens, 2002). The single 

centrosome duplication occurs exactly once before mitosis takes place, 

through mechanisms that are still not fully understood. Under normal 

circumstances, each of the two centrioles tha t make up a G1 phase
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centrosome functions as a  tem plate for the formation of exactly one 

newly synthesized daughter centriole (Sluder and Nordberg, 2004). In 

order to prevent aberrant centrosome numbers, multipolar mitoses and 

chromosomal instability (Nigg, 2002; Salisbury et al., 1999), cells go 

through a single round of centriole duplication per cell division (Tsou 

and Steam s, 2006). In contrast, tumor cells frequently have abnormal 

centrosome numbers (Lingle et al., 1998). I t is thought th a t aberrant 

centrosome numbers can arise through cell division failure or thorugh a 

genuine dism ption of the centriole duplication cycle itself (Duensing,

2005). Additionally, many oncogenic stimuli have been related to 

induction of abnormal centrosome and centriole numbers in vitro, 

however not much is known about the precise mechanism.

As mentioned previously, both HPV E6 and E7 oncoproteins can 

independently cause centrosomal abnormalities when stably expressed 

in cell lines and in mouse models (Duensing and Miinger, 2002; Riley et 

al., 2003). However, in overexpression systems in primary hum an cells 

and tumor cell lines only E7 has been found to rapidly stimulate 

increased centrosomal numbers suggesting its direct effect in this 

process (Duensing et al., 2001). It is possible th a t the effects of E6 on 

the centrosomal abnormalities might not be direct, but may occur as a 

consequence of interfering with the p53 pathway (Shinm ura et al.,

2007). Interestingly, in cells expressing HPV16-E7, centrosomal 

abnormalities occur even before progression to malignancy (Duensing et 

al., 2001). The mechanism by which E7 causes this still needs to be 

elucidated, however studies have shown th a t it is pRb independent 

(Duensing and Miinger, 2003), implying the possibility of a  direct effect 

of E7 on centrosome overduplication. More recent studies have 

suggested th a t one possible mechanism for E7 inducing centrosomal 

abnormalities could be by its inducing CDK activities where it was
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shown tha t cyclin/CDK2 activity is critically involved in the abnormal 

centrosome duplication induced by HPV-16 E7 oncoprotein expression 

(Duensing et al., 2004). In addition, it was also reported tha t continuing 

RNA pol II-mediated gene transcription is required for HPV-16 E7 

induced centriole overduplication, whereas those activities may be not 

required for normal centriole duplication and cell cycle progression 

(Duensing et al., 2007).

HPV E6 P rotein

The HPV E6 protein is approximately 150 amino acids in length and has 

two zinc fingers characterized by the CXXC motif (Figure 4) (Barbosa 

and W ettstein, 1987; Cole and Danos, 1987). Furthermore, Cole and 

Danos speculate th a t E6 and E7 may have originated by duplication of a 

33 amino acid unit containing a double cysteine, which displays a 

structure compatible with nucleic acid binding activity (Cole and Danos, 

1987). These CXXC motifs are strictly conserved in all characterized E6 

proteins and their integrity is indispensable for E6’s normal function 

(Kanda et al., 1991; Sherman and Schlegel, 1996). E6 is a relatively 

short protein and is difficult to isolate in a native, soluble form. The 

protein has a high content of a-helical and 6-sheet secondary structures 

and these features, together with the high cysteine content, contribute 

to making E6 unstable when attem pting to crystallize, and insoluble 

after purification (Nomine et al., 2001). A model for structure of HPV 16 

E6 was finally obtained using an E6 m utant in which six non-conserved 

cysteines were replaced with serine, in a series of NMR studies (Nomine 

et al., 2006). This E6 m utant was soluble and retained some E6 protein 

functions, such p53 degradation and E6AP binding. Using this m utant 

protein the NMR structure of the C-terminal half was obtained and,
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N-terminus

C-terminus

Violet -  1128T

Red -  PDZ Binding motif 

Blue -  Zn Fingers

a- Helical partners: E6AP, ERC-55(E6BP), IRF3, paxillin and
tuberin

PDZ binding partners: hDlgl, hDlg4, hScrib, MAGI-1, -2, -3,
MUPP1, PTPN3

Unidentified binding motif: p53, Bak, p300/CBP, hADA3, NFX1, 
__________________________Gps2, FADD and procaspase 8______

Figure 4. The E6 protein.
Cartoon representing the HPV-16 E6 protein. The characteristic Zn- 
binding domains are shown in blue, the I128T amino-acid that 
mediates E6AP binding is shown in violet and C-terminal PDZ 
binding motif is shown in red. a-helical partners, PDZ binding 
partners and proteins binding to yet unidentified binding motifs are 
indicated.
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based on this, a  prediction for the N-terminal half was also generated. 

This model of the three-dimensional structure of E6 allows for the 

visualization of the potential parts of the protein involved in its 

interactions with its cellular partners. Some of them are depicted in 

Figure 4.

Extensive studies over the years have identified conserved E6 binding 

motifs, thus defining a group of proteins which are bound by E6 through 

similar domains. One example of such are the PDZ domain-containing 

proteins, which are targeted by the high-risk E6 proteins through their 

C-terminal PDZ binding motifs (see later for more details). 

Interestingly, even though PDZ domain-containing proteins have a high 

degree of homology, their interaction w ith E6 is very specific. For 

instance, E6 specifically binds to a single PDZ domain on hDlg and 

MAGI-1 (Kiyono et al., 1997; Thomas et al., 2001), even though these 

proteins have 3 and 6 PDZ domains, respectively.

Another conserved site binds to the a-helical E6 binding domain th a t is 

found in several targets of E6. These include most notably E6AP, but it 

is also present to a lesser or greater extent on hMcm7, E6BP/ERC-55, 

IRF-3, tuberin and paxillin (Baleja et al., 2006; Chen et al., 1995; Cooper 

et al., 2007; Elston et al., 1998; Ronco et al., 1998). Interestingly, 

several other binding partners of E6, including FADD, Gps2, hADA3 

and procaspase 8 (Degenhardt and Silverstein, 2001; Filippova et al., 

2004; Filippova et al., 2007; Kumar et al., 2002), lack the a-helical motif 

and PDZ binding domains, suggesting the  existence of one or more 

additional binding motifs on the E6 oncoprotein.

Detecting endogenously expressed E6 has been a  long-standing problem, 

due to its poor immunogenicity and apparently low levels of expression.
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The initial reports characterized HPV-18 E6 protein as being a nuclear 

and membrane-associated protein with a bi-modal half-life of 30 

minutes and 4 hours in transformed cells (Androphy et al., 1987). In 

addition, E6 has also been reported to be found in the cytoplasm (Chen 

et al., 1995; Liang et al., 1993), as well as in a generally diffused pattern 

throughout the cell (Guccione et al., 2002), suggesting a widespread 

localization and propensity to interact with protein partners in multiple 

cellular compartments.

U biquitin  L igases and p53 as Interacting Partners o f E6

Ubiquitylation is a very specific and structured multistep enzymatic 

process achieved by the formation of an isopeptide bond between the C- 

term inal Gly76 carboxyl group of ubiquitin and the e-amino group of an 

internal Lys residue of the substrate (reviewed in Bemassola et al.,

2008). The Ubiquitin activating enzyme (E l) activates the carboxyl 

group of ubiquitin in an ATP-dependent m anner to form a high-energy 

thioester bond with an active Cys group of the E l  enzyme. Activated 

ubiquitin is then transferred to a specific Cys residue of one of the 

family of E2 ubiquitin-conjugating enzymes (E2s) through a similar 

thioester bond. The E3 ubiquitin ligases (E3s) play a  crucial role in the 

ubiquitin conjugating cascade by recruiting ubiquitin-conjugated E2s, 

recognizing specific substrates and facilitating or directly catalyzing 

ubiquitin transfer to either the Lys residues (in the majority of cases). 

E3 ligases can also function in the N-end rule pathway. The pathway is 

a ubiquitin-dependent system where E3 ligases called N-recognins 

recognize type-1 (basic) and type-2 (bulky hydrophobic) N-terminal 

residues as part of N-degrons (Tasaki et al., 2005; reviewed in 

Varshavsky, 1996). E3s can modify protein substrates by either adding
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mono- or poly-ubiquitin chains (Hoeller et a l., 2007). The fate of 

ubiquitylated proteins is determined by the nature of the ubiquitin 

chains and the type of isopeptide linkage forming the polyubiquitin 

chain. For example, mono-ubiquitination of intracellular substrates a t 

one or multiple lysine residues of transm em brane proteins, influences 

their stability, protein-protein recognition, trafficking and intracellular 

localization. Lys63 is one of the most characterized lysine residue 

whose mono- and poly-ubiqutination was shown to be involved in 

cellular trafficking processes such as endocytosis and vesicular sorting 

(reviewed in Rotin and Kumar, 2009). In contrast, when the tagging 

occurs through Lys48-linked polyubiquitin chains, proteins are 

generally labeled for 26S proteasome-mediated recognition and 

degradation (reviewed in Bernassola et a l., 2008). Besides Lys48 and 

Lys63, the formation of mono- and polyubiqutin chains can occur 

through Lys6, Lys 11 and Lys29/33. These polyubiquitin chains regulate 

protein degradation in addition to many other cellular proteolysis- 

independent activities, such as DNA damage tolerance, inflammatory 

response, the endocytic pathway, and ribosomal protein synthesis, while 

nonproteolytic Lys6 and Lys 11 polyubiquitin chain accumulation has 

been linked to neurodegenerative disorders (reviewed in Bernassola et 

al., 2008). Interestingly, one study suggested a possibility of tagging 

through Cys-linked polyubiquitin chains. Ubiqutination factor Ubc7 

was auto-ubiquitinated through the catalytic cysteine, and this chain 

functioned as a degradation signal (Ravid and Hochstrasser, 2007). 

Some examples of the different ubiquitylation pathways regularly 

encountered are depicted in Figure 5 (A Single ligase, B Multiple 

ligases, C E6 ligase redirection).

According to the sequence homology of their E2-binding domains, E3s 

are grouped into three subfamilies: the homologous to E6AP carboxyl

31



Introduction

term inus (HECT) domain containing E3s, RING (Really Interesting 

New Gene) finger domain-containing E3s, and the U-box E3s (reviewed 

in Bernassola et al., 2008). HECT E3 ubiquitin ligases are among the 

most widely abundant ubiquitin ligases. They have been identified 

across the evolutionary spectrum from yeast to humans and they range 

in size from approximately 80 kD to more than 500 kD. They are 

characterized by the HECT (homologous to E6AP C-teminus) domain, a 

C-terminal region of approximately 350 amino acids with significant 

similarity to E6AP (Huibregtse et al., 1995; Scheffner et al., 1995). Good 

examples of HECT ubiquitin ligases are HERC1, HERC2, HERC5, 

Nedd4-1, Nedd4-2, Sm urfl and 2, Itch, E6AP, EDD, and HETCH9, and 

they have been reported to be involved in various diseases. For 

example, EDD was found to be overexpressed in ovarian and breast 

cancers; E6AP is involved in Angleman’s syndrome and cervical cancer; 

Itch was found to be associated with severe immunological diseases, 

including lung and stomach inflammation and hyperplasia of lymphoid 

and hematopoietic cells; Smurfs amplification and overexpression were 

found associated with pancreatic and esophageal squamous cell 

carcinomas; while Nedd4-1 and Nedd4-2 were found linked to Liddle’s 

syndrome (reviewed in Scheffner and Staub, 2007).

Under normal circumstances in the absence of HPV, the p53 tumor 

suppressor is regulated by the RING finger domain containing ubiquitin 

ligase Mdm2 (Honda et al., 1997). However under stress conditions, for 

example upon DNA damage or viral infection this regulated turn  over is 

abolished and p53 is both stabilized and activated due to a series of 

phosphorylation events (reviewed in Ashcroft and Vousden, 1999). 

Importantly, p53 can be also stabilized in phosphorylation independent 

fashion. Tumor suppressor p l4ARF binds direcly to Mdm2 in a distinct 

region from the p53 binding domain and inhibits the turnover of p53
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without preventing Mdm2 binding. Rather, p l4ARF inhbits the ubiquitin 

ligase activity of Mdm2 and sequesters it into the nucleolus, thus 

preventing nuclear export of the Mdm2/p53 complex which is necessary 

for p53 degradation (reviewed in Ashcroft and Vousden, 1999). Kinases 

such as JNK, CKI, ATM, ATR, DNAPK have be found to be responsible 

for p53 N-terminal phosphorylation in vitro. Furthermore, following 

DNA damage, endogenous p53 has been found to be phosphorylated at 

serines 15, 20, 33, and 37. There is also evidence tha t ATR and ATM 

can phosphorylate serine 15 in vivo (reviewed in Ashcroft and Vousden,

1999). Most importantly, phosphorylation of p53 on residues 15, 20, 33 

and 37 renders it unable to bind Mdm2 and thereby this contributes to 

its stabilization. In contrast, in HPV-positive cancer cells the Mdm2 

pathway is completely inactive and p53 degradation is completely 

dependent upon E6 (Hengstermann et al., 2001). This suggests th a t if 

E6 degradation of p53 occurs under conditions of DNA damage this in 

tu rn  could lead to accumulation of genomic mutations which, in turn, 

contribute towards m alignant progression (Foster et al., 1994; Kessis et 

al., 1993). Other DNA tumor viruses also use different mechanisms to 

inactivate p53, since it represents a  major obstacle to viral replication, 

activated by the unscheduled viral induction of DNA replication. 

Normally, this would result in cell cycle arrest or apoptosis of the 

infected cells, (el-Deiry et al., 1993; H arper et al., 1993; Lowe et al.,

1994) and to overcome this DNA tum or viruses encode proteins which, 

in different, ways functionally inactivate p53 activity. As noted above, 

high-risk HPV E6 protein uses proteasome-mediated degradation as the 

major strategy for eliminating p53 (Scheffner et al., 1990). Adenovirus 

E4orf6 in combination with E1B-55K will also inactivate p53 

degradation in a  m anner analogous to th a t of HPV E6 (Querido et al., 

2001), whilst SV40 LT prevents transactivation of p53 target genes 

through its association with its DNA binding domain (Ruppert and
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Stillman, 1993). Ad E1B-55K by itself abolishes the same function by 

binding to the transactivation domain of p53, while the HBV X protein 

sequesters p53 in the cytoplasm (reviewed in Mantovani and Banks, 

2001).

As shown in Figure 5, E6 highjacks a cellular E3 ligase, in this 

particular case E6AP, to degrade p53 (Scheffner et a l., 1993). E6AP has 

a large N-terminal region which it uses for substrate recognition, while 

ubiquitination of the targets is catalyzed via a cys residue with its 

conserved C-terminal HECT domain (Schwarz et a l., 1998). High-risk 

HPV E6 binds to E6AP within its N-terminal substrate recognition 

domain (Huibregtse et a l., 1993b), and after the stable complex E6- 

E6AP is formed the association with p53 occurs. This interaction 

between E6 and E6AP results in a redirection of the substrate 

specificity of E6AP towards p53 (Huibregtse et a l., 1993a) and several 

reports have confirmed the importance of this interaction for p53 

degradation (Scheffner et a l., 1993; Talis et a l., 1998). When E6AP was 

neutralized by either the use of antisense oligonucleotides (Beer-Romero 

et al., 1997), siRNA to E6AP (Kelley et a l., 2005) or catalytically inactive 

dominant negative m utants (Talis et a l., 1998), increased levels of p53 in 

HPV positive cells, but not in HPV negative cells, were detected. This 

suggested tha t E6AP plays a crucial role in E6 directed degradation of 

p53 in vivo and th a t it does not associate with p53 in HPV negative 

cells. Furthermore, it was suggested th a t the global transcriptional 

effects of E6 upon the cell are largely dependent on the presence of 

E6AP (Kelley et a l., 2005), suggesting indirectly, th a t many of E6’s 

activities are mediated through its association with E6AP.

The efficiency with which E6 degrades p53 varies among different HPV 

E6 proteins and is dependent on the strength of interaction between p53
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and E6. Both high- and low-risk HPV types bind to the C-terminus of 

p53, but not all of those interactions resu lt in p53 degradation. High- 

risk E6 proteins bind p53 more strongly and the binding is enhanced by 

the presence of E6AP, which results in p53 degradation (Li and Coffino,

1996). For example HPV-16 E6 binds p53 much more strongly than  

HPV-18 E6, which results in more efficient degradation of p53 by HPV- 

16 E6 than  by 18 E6. The low-risk HPV-11 E6 has a very weak binding 

capacity for E6AP in vitro (Huibregtse et a l., 1993a) and degrades p53 

poorly in vivo (Storey et al., 1998). However, new studies suggest th a t 

HPV-11 E6 can interact quite strongly with E6AP in vivo, suggesting 

th a t low risk HPV E6 proteins can connect directly to the proteasome 

(Brimer et al., 2007). Why they still rem ain weak at targeting p53 for 

degradation turnover remains to be determined.

There are numerous reports showing th a t E6 can use other pathways to 

abolish p53 activities. Both high- and low-risk HPV E6 proteins are 

capable of neutralizing p53-mediated transcriptional repression in vivo 

(Lechner et al., 1992) and this is likely to occur through binding to the 

p53 C-terminus (Li and Coffino, 1996). Interestingly, studies have 

shown th a t the capacity of the high-risk E6 proteins to prevent 

transactivation of p53 target genes does not only rely on p53 

destabilization, since E6 m utants incapable of degradation still possess 

the ability to abolish transcriptional activation by p53 in vivo (Pirn et 

al., 1994). Moreover, it was shown th a t E6-interacting regions of p300 

are necessary for E6 to inhibit p53-dependent chromatin transcription 

and tha t E6-mediated repression of p53-dependent activation correlates 

with inhibition of acetylation on p53 and nucleosomal core histones, 

without altering p53 and p300 recruitm ent to chromatin. This process 

is E6AP- independent and shows a unique mechanism of E6 repression 

of p53 which does not involve proteasomal degradation of p53 (Thomas
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and Chiang, 2005). In addition, several more recent studies have 

reported th a t E6 is able to target p53 along with other substrates, such 

as PDZ domain-containing proteins, in an E6AP-independent fashion in 

tissue culture and in mouse model studies. Taken together, these 

studies suggest other, as yet unidentified mechanisms, by which E6 can 

target proteins to the proteolytic machinery (Camus et a l., 2007; Grm 

and Banks 2004; Massimi et a l., 2008; Pirn et a l., 2000; Shai et al., 

2007b; Storrs and Silverstein, 2007).

A number of studies have reported variable amounts of p53 protein 

during viral infection and in HPV-induced cervical lesions, implying 

th a t not all p53 is degraded either during viral infection or in induction 

of malignancy (Cooper et a l., 1993; Lie et al., 1999; Mantovani and 

Banks, 1999). One possible explanation for these observations came 

from a study showing th a t E6 preferentially targets Thrl55 

phosphorylated forms of p53. CNS kinase was shown to be involved in 

T hrl55 p53 phosphorylation (Bech-Otschir et al., 2001). The function of 

this kinase is not precisely clear, however the purified complex from 

hum an blood cells was shown to posses the kinase activity that 

phosphorylates transcriptional regulators such as c-Jun, IxBa and pl05 

(Seeger et a l., 1998). In  vitro and in vivo experiments showed tha t the 

T hrl55 site m utated to Vall55 was sufficient to stabilize p53 against 

E6-dependent degradation (Bech-Otschir et a l., 2001). This suggests 

th a t variable amounts of p53 protein levels are detected in HPV infected 

and transformed cell owing to the fact th a t certain phosphorylated 

forms of p53 are less prone to be targeted by E6.

Another possible pathway for regulating E6 activity with respect to p53 

or some other cellular targets relies on the E6 spliced forms, termed 

E6*. They are exclusively expressed by the high-risk HPVs through
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alternative splicing of E6 mRNA, thus producing several shorter forms 

of E6: E6*I-IV as in the case with HPV-16 E6 or ju st E6*I as in the case 

with HPV-18 E6 (Schneider-Gadicke and Schwarz, 1986). Interestingly, 

E6*I from HPV-18 E6 protein was reported to interact with both the 

full-length E6 and with E6AP, thereby blocking the degradation of p53 

during viral infection (Pirn et al., 1997). This phenomenon could assist 

E6 in the delicate control of its activity with respect to p53 and other 

targets during viral infection. Interestingly, it was shown tha t although 

p53 specifically inhibits HPV amplificational DNA replication in vivo, it 

has no effect on episomal maintenance, which occurs in synchrony with 

the cell cycle (Lepik et a l., 1998). Therefore, in order to obtain a proper 

productive infection, viral DNA amplification needs to be under control 

and it is reasonable to suggest th a t the activity of E6* could be 

responsible for ensuring the presence of a  lim ited amount of p53 a t the 

replication sites, where it could both prevent overreplication of the viral 

genome and, potentially, assist DNA synthesis by means of its 

proofreading ability.

E6 and Apoptosis

Although one of the major anti-apoptotic activities of E6 is the 

inactivation of p53, a  number of other cellular pro-apoptotic targets of 

E6 have been described. One of those targets is Bak, which is normally 

localized in the outer mitochondrial membrane (Karbowski et a l., 2006). 

After UV exposure it is activated and stabilized independently of p53 

(Jackson et a l., 2000). It is thought th a t multimerized Bak forms pores 

in the mitochondrial membrane th a t allow release of cytochrome c and 

other pro-apoptotic factors into the cytoplasm (Hacker and Weber, 

2007). In addition, Bak is highly expressed in the upper epithelial
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layers (Krajewski et al., 1996), suggesting it may play a role in terminal 

differentiation. HPV E6 binds to Bak and induces its proteasomal 

degradation which is catalyzed by E6AP, thereby leading to a reduction 

in apoptosis (Jackson and Storey, 2000; Thomas and Banks, 1998; 

Thomas and Banks, 1999). Degradation of Bak with a low-risk type 

HPV, such as HPV-11 E6, is less effective and this correlates with a 

weaker anti-apoptotic activity of the low-risk mucosal HPV types 

(Thomas and Banks, 1999). Cutaneous HPV E6 proteins are also able to 

abolish p53-dependent and independent apoptosis in response to UV- 

induced DNA damage (Jackson and Storey, 2000), and cutaneous HPV 

E6 proteins also inhibit Bak activities by driving its proteasomal 

degradation. Bak protein levels are undetectable in HPV-positive skin 

cancers in comparison with HPV-negative cancers which express it 

(Jackson et al., 2000). Thus, Bak is one of the few highly conserved 

targets of cutaneous and mucosal HPV E6 proteins.

An anti-apoptotic protein Survivin, was recently identified as an 

indirect target of HPV E6, which strongly upregulates Survivin 

promoter activity, resulting in the suppression of apoptosis (Borbely et 

al., 2006). Interestingly, recent studies also demonstrated th a t E6 is 

able to inhibit apoptosis in a PDZ-dependent m anner (James et al.,

2006), however the actual PDZ domain-containing substrate for this 

activity still remains to be identified. Furthermore, E6 has been 

reported to interact with other components of the host apoptotic 

machinery such as the tumor necrosis factor receptor 1 (TNF R l) 

(Filippova et al., 2002), the adaptor molecule Fas-associated death 

domain (FADD) (Filippova et al., 2004), and procaspase 8 (Filippova et 

al., 2007). In the case of procaspase 8 and FADD, E6 binds to their 

death effector domains (DEDs) and it mediates the accelerated 

degradation of both proteins. Through these interactions E6 prevents
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these proteins from transm itting receptor-induced apoptotic signals, 

thereby contributing to HPV-infected and transformed cells’ escape from 

apoptosis.

E6, Transcription and DNA R eplication

As noted above for Survivin, E6 proteins from both high- and low-risk 

types also modulate transcription from many host and viral genes 

(Desaintes et a l., 1992; Etscheid et a l., 1994; Sedman et al., 1991; 

Veldman et a l., 2001). An understanding of the mechanisms by which 

E6 performs this function has come from several studies. Perhaps the 

most important of those is the ability of E6 to interact with the 

p300/CBP co-activators (Patel et a l., 1999; Zimmermann et al., 1999). 

These proteins are crucial in regulating expression of many genes 

involved in the regulation of cell cycle, differentiation and the immune 

response. In line with a  central role for p300/CBP in the life cycle of 

many different viruses, several other DNA tum or viruses have also been 

shown to interact with p300/CBP (reviewed in Goodman and Smolik,

2000), highlighting its central role in regulating cellular homeostasis. 

As is the case with many other E6 targets, high-risk HPVs such as 

HPV-16 E6 was reported to bind strongly to p300/CBP whereas a low- 

risk HPV-6 E6 bound weakly (Patel et al., 1999). I t  was also shown th a t 

HPV-16 E6 inhibits the intrinsic transcriptional activity of p300/CBP on 

both p53 and NF-k-B responsive promoter elements. In  the case of p53 

this is partly due to an inhibition of p300-induced acetylation of p53 

(Thomas and Chiang, 2005). It has also been shown th a t HPV-16 E6 

targets hAda3, a component of the histone acetyltransferase complex, 

which is itself a  p53 transcriptional coactivator (Kumar et al., 2002). 

The HPV 16 E6 Y54D m utant which is able to target hAda3 for
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degradation, but not p53, was able to protect mammary epithelial cells 

(MECs) from pl4ARF-induced senescence, a function associated with 

p53 acetylation and which requires hAda3 (Sekaric et a l., 2007). 

Furthermore, recent studies showed th a t E6-targeted degradation of 

hAda3 is E6AP-dependent in HPV-transformed cell lines (Hu et al.,

2009). Certainly, by binding and inactivating transcriptional effectors 

such as NF-k-B and c-myc, E6 would promote escape of HPV-infected 

cells both from the immune system and from the induction of apoptosis 

(Filippova et al., 2002; Gross-Mesilaty et al., 1998). Moreover, p300/CBP 

has an effect on the expression of numerous cellular promoters, 

including those regulating differentiation (Bannister and Kouzarides, 

1995; Goodman and Smolik, 2000). However, with the most likely 

exception of p53, it remains to be determined which are the truly 

relevant other target genes of the E6/p300/CBP complex.

In addition to its association with transcription, HPV E6 is also involved 

in the deregulation of the cellular DNA replication machinery. Normal 

somatic cells finish their replicative life span by reaching the state of 

senescence, which occurs due to the major shortening of telomere DNA 

and therefore most normal cells do not have telomerase activity. For 

neoplastic cells to activate telomerase they first need to overcome 

senescence check-point mechanisms. After this is achieved, telomerase 

can be activated, which then forms the basis for indefinite propagation. 

In senescent cells the levels of p lG ^  are upregulated, and its activation 

has been reported to be an early step during the induction of senescence 

of hum an epithelial cells (Kiyono et al., 1998). Furthermore, activated 

telomerase is found in cervical carcinomas and in a certain number of 

high-grade cervical lesions associated with high-risk HPVs (Snijders et 

al., 1998). It was shown tha t HPV-16 E6 can induce telomerase activity 

in primary epithelial cells through a p53-independent mechanism
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(Klingelhutz et al., 1996; Veldman et al., 2001). This is thought to occur 

by E6-mediated transcriptional activation of the gene encoding the 

telomerase catalytic subunit, hTERT, while the minimal promoter 

region involved in induction by E6 was found to require an intact E box 

and Myc (Gewin and Galloway, 2001; Veldman et al., 2001; Veldman et 

al., 2003). Interestingly, there are contradictory reports about the 

activation of the hTERT promoter. Originally, it  was reported tha t 

hTERT activation was dependent on the ability of E6 to interact with 

E6AP and th a t the activation was dependent upon Myc binding sites in 

the promoter (Gewin and Galloway, 2001; Liu et al., 2005), while more 

recent studies show th a t binding of HPV-16 E6 to E6AP is not required 

for activation of hTERT (Sekaric et al., 2008), and th a t an interaction 

with c-myc itself is more relevant. In addition, it was also shown th a t 

E6/E6AP dependent degradation of the transcriptional repressor NFX1- 

91 th a t binds to the hTERT promoter dissociates the mSin3A/HDAC 

complex from the hTERT promoter and induces hTERT transcription 

(Xu et al., 2008). Thus, although the mechanism of activation is 

controversial, hTERT activation by E6 would appear to be a critical 

aspect in HPV-induced malignancy, although its role in a  normal viral 

life cycle remains to be determined.

E6 in  E pithelial O rganization and D ifferentiation

I t was reported tha t HPV-16 E6 interacts with E6BP/ERC-55 (Chen et 

al., 1995), a putative calcium-binding protein localized in the 

endoplasmic reticulum (ER) (Weis et al., 1994). E6BP was shown to 

form a complex with both E6 and E6AP in vivo, but interestingly the 

complex formation did not result in proteasomal degradation of E6BP 

(Chen et al., 1995). Since epithelial differentiation occurs in response to
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Ca2+-mediated signaling, it could be reasoned th a t E6 targeting of E6BP 

likely contributes to E6’s ability to interfere with term inal 

differentiation.

Attachment to the extracellular m atrix is responsible for the regulation 

of various cellular processes ranging from cell morphology to 

proliferation and migration. Therefore, preservation of proper epithelial 

architecture is necessary for a cell to regulate its growth appropriately. 

Normal cell division takes place when cells respond to proliferation 

signals, and term inates when the signal is removed or when proper 

tissue size is reached. In order to overcome limitations in cell 

proliferation, high-risk E6 proteins interact with, and subsequently 

inactivate, various proteins tha t are associated with epithelial 

organization. The proteins tha t belong to this category and which are 

targets of HPV E6 are Paxillin (Tong and Howley, 1997), zyxin 

(Degenhardt and Silverstein, 2001), and fibulin-1 (Du et al., 2002).

Paxillin is involved in mediating signaling from the plasma membrane 

to focal adhesions and to the actin cytoskeleton (Turner, 2000). HPV-16 

has been shown to bind paxillin, and this interaction correlates with E6 

transforming capacity, although it does not lead to paxillin degradation 

(Tong and Howley, 1997). Zyxin is a focal adhesion molecule responsible 

for connecting the ECM to the cytoskeleton, for regulating cell 

proliferation and differentiation, and for transm itting signals from the 

sites of cell adhesion to the nucleus and for organizing actin 

(Degenhardt and Silverstein, 2001). Binding of E6 to zyxin impairs its 

ability to m aintain proper cellular structure, which could also contribute 

to E6 induced transformation. Finally, interactions between E6 and 

fibulin-1 have also been reported to support-cellular transformation and
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tumor invasion by further contributing to the destabilization of the 

extra cellular m atrix (Du et a l., 2002).

E6 and PDZ D om ain-containing P roteins as In teracting  

P artners

Analysis of the amino acid sequence from high-risk HPV E6 proteins 

shows a rem arkable conservation of amino-acids at the extreme carboxy 

term ini of the proteins. As shown in Figure 6 all of those E6 proteins 

have a  class I PDZ (PSD95/Dlg/ZO-l)-binding motif [x-T/S-x-L/V 

(Songyang et al., 1997)] at their carboxy termini. Interestingly, none of 

the so-called low-risk types have this motif and it can be argued th a t 

this represents a  possible m arker of the m alignant potential of mucosal 

HPVs.

PDZ domains are approximately 90 amino acid residues in length and 

serve to mediate protein-protein interactions (reviewed in Javier, 2008). 

They are named after the first three PDZ domain-containing proteins 

identified: the postsynaptic density protein PSD95/SAP90, the

Drosophila septate junction protein Discs-large, and the epithelial tight 

junction protein ZO-1. Proteins which have PDZ domains are referred 

to as PDZ domain-containing proteins and can be divided into three 

general groups: 1. PDZ-only proteins, 2. membrane associated guanylate 

kinases (MAGUKs) and 3. PDZ proteins with other protein domains 

(reviewed in van Ham and Hendriks, 2003). PDZ containing proteins 

typically function as scaffolds to assemble receptors and cytosolic factors 

into supramolecular signaling complexes and to localize them  at 

specialized membrane regions of cell-cell contact, such as adherens 

junctions and tight junctions (reviewed in Javier, 2008).
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Numerous studies have shown th a t both HPV-16 and -18 use their PDZ- 

binding motifs to interact with a number of different PDZ domain- 

containing cellular proteins. Table 2 shows some of the major PDZ 

domain-containing targets of E6 tha t have so far been identified. Many 

of these are involved in the regulation of epithelial cell polarity, 

implicating the significance of interaction with this pathway for both

viral replication and for virus-driven m alignant progression.
T a b le  2. I d e n t if ie d  P D Z -c o n ta in g  ta r g e t s  o f  H u m a n  p a p il lo m a v ir u s  o n c o p r o te in s
Protein Function Effect on target protein Reference

D ig
Scribble

MAGI-1
MAGI-2
MAGI-3

Cell polarity/tum or suppressor 
Cell polarity/tum or suppressor

Cell polarity/tum or suppressor 
PTEN localization  
to m em brane

U biquitination and proteasom al 

degradation

Gardiol et al. 1999  
N akagaw a and 
H uibregtse 2000  
G launsinger e t al. 
2000
Thomas e t al. 2002

M UPP1 Signaling com plex scaffold Lee e t al. 2000

PATJ
T ight Junctions  

form ation and integrity

U biquitination and proteasom al 
degradation plus E6*-directed  

degradation

Latorre e t al. 2005  
Storrs and  
Silverstein  2007

PSD95
PTPH 1/
PTPH3

Signaling com plex scaffold  
Protein tyrosine phosphatase

U biquitination and proteasom al 

degradation

Handa et al. 2007  
Jing e t al. 2007  
Topffer e t al. 2007

PTPN13
TIP-1

Non-receptor phosphatase  
Downregulator of 
PDZ interactions

?
?

Spanos e t al. 2008a  
Ham pson et al. 2005

TiP-2/GIPC

CAL

TGFB signaling  

Intracellular trafficking

U biquitination and proteasom al 

degradation

Favre-Bonvin e t al. 
2005
Jeong e t al. 2007

The specificity of PDZ binding is a very im portant factor in E6 PDZ 

target recognition. As can be seen in Table 2 there is a variety of 

proteins th a t have been reported as being HPV E6 targets, and Figure 6 

shows th a t different high-risk HPV E6 proteins have distinct PDZ 

binding motifs, suggesting that different E6 proteins could 

preferentially target some PDZ domain-containing proteins over others. 

Studies which show th a t HPV-18 E6 exhibits stronger binding than  

HPV-16 E6 to D lgl and MAGI-1 support this hypothesis (Thomas et al.,

2001). Furthermore, substituting the last amino-acid residue of the
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HPV-16 E6 mhqkrtamfq
hdiilecvyc
yrdgnpyavc
ygttleqqyn
ekqrhldkkq
rtrrETQL

dpqerprklp
kqqllrrevy
dkclkfyski
kplcdllirc
rfhnirgrwt

qlctelqtti
dfafrdlciv
seyrhycysv
incqkplcpe
grcmsccrss

HPV-16 E7 mhgdtptlhe
sseeedeidg
cdstlrlcvq
cpicsqkp

ymldlqpett
pagqaepdra
sthvdirtle

dLYCYEqlnd
hynivtfcck
dllmgtlgiv

RhPV-1 E7 migpkptled
qlsdsseded
pedgdcyriv
lrvledllmg

ivldlqpfpq
evdhhhnnqq
sdcyscgkpl
tldivcpscA

pqpvdLMCYE
qhhqharpev
rlvvvsshee
SRV

Figure 6. Mucosal PV types and PDZ binding motifs. A. Protein 
sequences of HPV-16 E6, HPV-16 E7, and RhPV-1 E7 are shown. pRb 
(blue) and PDZ binding motifs (red) are indicated.



CONSENSUS PDZ DOMAIN-BINDING XTXV
SEQUENCE   S

HIGH-RISK MUCOSAL HPV 
TYPES

H P V 16E 6C C . . . . RSSRTRRETQL

HPV 18 E6 CCNRARQERLQRRRETQV

HPV45 E6 CC DQARQE RLRRRRET QV

HPV31 E6 CW. . . . . R . RPRTETQV

HPV33 E6 CW. . . . . R . SRRRETAL

HPV35 E6CW. . . . . K . PTRRETEV

LOW-RISK MUCOSAL HPV 
TYPES

HPV6E6 CWTTCMEDMLP 

HPV-11E6 CWTTCMEDLLP

HIGH-RISK 
MUCOSAL RhPV1

RhPV-1 E7 DLMCYE......................ASRV

Figure 6. Mucosal PV types and PDZ binding motifs, (cont.) B. The 
carboxy-terminal PDZ-binding motif is common to high-risk mucosal 
papillomavirus (PV) proteins. The PDZ-binding motif (X-T/S-X-V/L) is 
absent from low-risk mucosal HPV type E6s and from RhPV-1 E6. It is 
found at the carboxy-terminus of high-risk HPV E6s and RhPV-1 E7.
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HPV-16 E6 protein with the equivalent amino-acid residue of HPV-18 

E6 switches this phenotype (Thomas et al., 2001). In contrast, HPV-16 

binds hScrib more strongly than  HPV-18 E6 and this is again dependent 

upon the last carboxy term inal amino-acid residue (Thomas et al., 2005). 

This demonstrates th a t the exact sequence of the E6 PDZ-binding motif 

is crucial for substrate recognition. Additional support for these 

observations came from studies which revealed the crystal structures of 

MAGI-1 PDZ1 and the Dlgl PDZ2 and PDZ3, demonstrating th a t a 

peptide homologous to the HPV-18 E6 carboxy-terminus forms different 

strength bonds with the different PDZ domains of these proteins (Liu et 

al 2007; Zhang et al.-, 2007). Interestingly, as mentioned earlier in the 

text, Rhesus papillomavirus 1 E7 protein has a canonical class I PDZ 

binding motif which is significantly different from the PDZ binding 

motif in HPV-16 and -18 (Figure 6). The difference in the binding motif 

of E7 also has an impact on its preferred PDZ domain-containing 

targets, and this will be discussed in more detail in the Results section.

The R egulation o f Cell Polarity

Epithelial cells are polarized along their apicobasal axis and th is is 

controlled by the action of three cell polarity regulating protein 

complexes; the Crumbs complex (constituted by Crumbs (Crb), Pals (Sdt 

in Drosophila) and PATJ), the Par complex (constituted by Par3 

(Bazooka in Drosophila), Par6 and aPKC) and the Scribble polarity 

complex (constituted by Scribble (Scrib), Dig and Hugl-l(Lgl in 

Drosophila)) (Figure 7) (Humbert et al., 2006). The Crumbs and Par 

complexes are localized to the subapical region and the Scribble polarity 

complex is localized to the basolateral region and adherens junctions 

region. There are m utual antagonistic interactions between these
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polarity complexes, which are necessary for restricting the activity of 

each complex to specific cortical domains, and for the positioning of the 

adherens junctions (constituted by E-cadherin, a-catenin and B-catenin). 

In Drosophila embryonic epithelial studies, it was shown tha t the Par 

complex is required first for the establishm ent of apicobasal cell 

polarity, and it acts to repress the activity of the Scribble polarity 

module and promote the activity of the Crumbs complex (Humbert et al., 

2008). In addition, Lgl inhibits aPKC activity, and aPKC 

phosphorylates Lgl excluding it from the apical cortex. The Scribble 

polarity complex also plays a role in negative regulation of cell 

proliferation by inhibiting the expression of the cell cycle regulator, 

Cyclin E, and in promoting apoptosis by blocking expression of the 

apoptosis inhibitor, DIAP1 (Humbert et al., 2008).

Although Dig and Scribble are the most well-characterized PDZ domain- 

containing targets of HPV E6, a number of other cell polarity 

regulations have been reported as being E6 targets. These include 

MAGI-1, -2, and -3 located at regions of cell-cell contact, and MUPP1, 

located at subapical tight junctions (Thomas et al., 2008). Both HPV-16 

and -18 have also been reported to promote degradation of PATJ, a 

component of the Crumbs complex (Latorre et al., 2005; Storrs and 

Silverstein, 2007), further highlighting the necessity of a continued viral 

assault on these polarity regulators during the viral life cycle. 

Additionally, these reports support the previously discussed ability of 

E6 to affect the stability of entire cellular complexes by targeting only 

one component of the complex and causing ju s t minor alterations in 

protein concentrations which are sufficient to destabilize the entire 

complex. For example, even slight alterations in balances between the 

proteins of the Scrib, PAR and Crumbs complexes can have quite serious 

effects on the proper functioning, not only of each complex, but also of
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Tight
junction • : 1

Adherens 
junction

PATJ

arqapKC

MAGI-1

Figure 7. Cell polarity regulators
The Crumbs complex, the Par complex and the Scribble complex are the 
main three cell polarity regulating complexes. There are mutual 
antagonistic interactions between these polarity complexes, which are 
essential for restricting the activity of each complex to specific cortical 
domains and to control the positioning of the adherens junctions. The Par 
complex acts to repress the activity of the Scribble polarity module and to 
promote the activity of the Crumbs complex. Hugl-1 inhibits aPKC activity, 
and aPKC phosphorylates and excludes Hugl-1 from the apical cortex.
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the ‘polarity super-complex’, tha t embraces them  all. Furthermore, this 

suggests th a t th is ability of E6 to target various substrates of the 

polarity complex could trigger crucial events during different stages of 

the viral life cycle, in addition to potentially driving malignant 

progression.

47



Thesis Aim

T hesis Aim

The aim of this thesis is to understand how HPV E6 is regulated 

through interaction with the proteasome pathway, and to further 

characterize the relevance of PDZ binding for HPV oncogenicity. The 

first part of the thesis focuses on HPV E6 interaction with ubiquitin 

ligases and the proteasome degradatory pathways. Many studies have 

suggested th a t some of E6’s biochemical activities were E6AP 

independent, and consequently I was interested in investigating further 

E6’s association with E6AP, and determining the consequences of this 

interaction for both E6 function and stability. At the same time I also 

pursued a series of studies to investigate whether E6 could associate 

with other components of the ubiquitin proteasome pathway. In the 

second part of the thesis I performed a series of studies on the Rhesus 

Papillomavirus 1 E7 (RhPV-1 E7) protein since, unlike high-risk 

mucosal HPVs, the PDZ binding motif is found on E7 as opposed to E6. 

The aim of these being to verify th a t this was a bona fide PDZ binding 

motif and to identify which cellular PDZ domain-containing cellular 

proteins were the substrates of RhPV-1 E7.
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R esults 

PART I: U biqu itin  L igase R egulation  o f HPV-18 E6

E6 P rotein  Stability  is  E6AP-dependent in  HeLa Cells

Many of the previous studies investigating the respective roles of E6 

and E6AP have involved either overexpression systems or, in cases 

where endogenous E6 was analysed, conditions in which the level of E6 

protein expression was not determined. The question of their 

interdependence seemed particularly relevant considering the apparent 

overwhelming importance of E6AP for E6’s global effects on cellular 

transcription (Kelley et al., 2005). Therefore in order to further clarify 

the role of E6AP in the function of E6, we first investigated the levels of 

E6 expression in HPV-positive cells, in the presence and absence of 

E6AP. To do this, HPV-18-containing HeLa cells were transfected with 

siRNAs directed against either E6AP, HPV-18 E6, or Luciferase for 

control, and the levels of both proteins were then analysed by W estern 

blot analysis. The proteasome inhibitor CBZ was also added to the cells 

2.5 h  prior to harvesting, to determine whether any changes in the 

pattern  of protein expression were proteasome-dependent. Cells were 

harvested 72 h post-transfection, and the total cellular lysates were 

subjected to W estern blot analysis using anti-E6AP, anti-Tubulin, and 

anti-18E6 antibodies. The results obtained are shown in Figure 8. As 

can be seen, the reduction of E6 levels by siRNA results in a marked 

upregulation in the level of E6AP expression, and th is is consistent w ith 

previous observations showing th a t E6 induces the auto-ubiquitination 

and degradation of E6AP (Kao et al., 2000). Most strikingly however, 

ablation of E6AP expression also results in a  dram atic reduction in E6
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protein, to levels tha t are even lower than  those obtained using the E6 

siRNA. In addition, inclusion of the proteasome inhibitor CBZ prior to 

harvest rescued the expression of E6, indicating that its decreased level 

in the cell in the absence of E6AP is proteasome-mediated. In order to 

reduce the possibility of off-target effects of the E6AP siRNA, we 

repeated the analysis using a different siRNA from another supplier 

(SCBT lane), and an identical reduction in the level of E6 expression 

was obtained. These results demonstrate tha t E6 steady-state levels are 

strongly dependent upon the presence of E6AP, and tha t when E6AP is 

not present E6 is down-regulated in a  proteasome-dependent manner.

E6AP S ilencing does not Affect E6 RNA Transcripts Levels

To further investigate the effects of E6AP depletion upon E6 expression 

levels, we proceeded to determine whether this was in any way related 

to the level of E6 gene transcription. To do this, HeLa cells were 

transfected with siRNA luciferase or siRNA E6AP. After 72 h  the cells 

were harvested and total RNA was extracted and processed, with and 

without reverse transcriptase. The cDNAs were then amplified using 

HPV-18 E6 flanking primers and the results obtained are shown in 

Figure 9. Two PCR products were obtained, the upper corresponding to 

full length E6 and the lower corresponding to the shorter, alternatively 

spliced, E6* transcript. The relative difference in amounts being a 

reflection of higher levels of E6* mRNA than of full length E6 mRNA in 

HeLa cells (Schwarz et al., 1985). However, it can be seen th a t the 

presence or absence of E6AP has minimal effects upon the level of HPV- 

18 E6 gene expression, as determined by this semi-quantitative assay. 

These results demonstrate tha t the decrease in the levels of E6 protein 

th a t is observed when E6AP is depleted is not due to any major changes
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Figure 8. HPV E6 protein stability in HPV positive HeLa cells 
is E6AP-dependent. HeLa cells were transfected with siRNA 
Luciferase, or siRNA E6AP, or siRNA 18E6/E7. After 72 h cells 
were incubated with or without CBZ (Z-Leu-Leu-al/Sigma) for 2.5 h 
to block the proteasome, with DMSO treatment as control. The 
cells were then harvested and the protein levels were detected 
using western blotting with anti-E6AP antibody, anti-Tubulin 
antibody to monitor protein loading, and anti-18E6 antibody; 
followed by HRP-coupled anti-mouse antibody and ECL detection. 
Note that the siRNA E6AP (SCBT) track is from the same 
experiment and western blot. Arrows indicate the positions of the 
E6AP, Tubulin, and E6 proteins.
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Figure 9. E6 RNA transcripts are not affected by E6AP silencing.
HeLa cells were transfected with siRNA Luciferase or siRNA E6AP. After 
72 h cells were harvested and total RNA was extracted. Purified RNAs 
were then annealed with random decamers and cDNAs generated with 
Reverse Transcriptase; to control for plasmid DNA carry over, a parallel 
set of random decamer-annealed samples were incubated without RT (- 
RT). The cDNAs generated from the RT step, and their control samples, 
were amplified using HPV-18 E6 flanking oligos. Arrows indicate the 
position of full length E6, alternatively spliced E6* and the GADPH 
loading control.
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in  the levels of HPV gene expression, but ra ther is mostly due to a 

decrease a t the protein level.

E6AP R egulates E6 P rotein  Turnover

Having shown tha t E6AP depletion reduces the steady-state levels of 

E6, we then wanted to analyse the effects upon E6 protein turnover. 

Assays were performed as above in HeLa cells, using siRNA Luciferase 

as a negative control and siRNA against E6AP. 48 hours post­

transfection the cells were treated with Cycloheximide for different 

times in order to determine whether E6AP had any effect on E6 protein 

half-life. The levels of E6 protein were then assessed by W estern blot 

analysis using the anti-18 E6 monoclonal antibody and the results 

obtained are shown in Figure 10A, with the quantitation from multiple 

assays shown in Figures 10B and IOC. As can be seen, when cells were 

treated with the control siRNA the E6 protein levels remained relatively 

unchanged from time-point 0 to 60 minutes, and they started  to 

decrease a t the 120 minute time-point, similar to w hat has been 

reported previously on endogenously expressed protein (Androphy et al., 

1987, Grossman et al., 1989). In contrast, when E6AP is depleted from 

the cells the E6 levels show a significant decrease by the 30 m inute 

time-point, and the protein is completely absent by the 120 minute time- 

point. As expected E6AP protein levels did not change significantly in 

the control cells, since previous studies have reported th a t E6AP has a 

half-life of 25 hrs in HPV-negative cells and th a t in HeLas the half-life 

is reduced to 7 hrs due its increased turnover regulated by E6 (Kao et 

al., 2000). These results show th a t silencing E6AP in HPV-positive 

HeLa cells results in a dramatic increase in E6 protein turnover.
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Both Wild Type E6AP and C atalytically Inactive M utant E6AP 

(C->A) Up-regulate E6 P rotein  Stability

Since most studies have focused on HPV-16 E6 in the context of the its 

association with E6AP (Kao et al., 2000; Kelley et al., 2005), we were 

obviously interested in determining whether HPV-16 E6 was similarly 

affected by loss of E6AP. Unfortunately, my attem pts to detect 

endogenous HPV-16 E6 in CaSKi cells by W estern blotting were 

unsuccessful. Therefore, as an alternative approach, we reasoned tha t 

under conditions of E6 ectopic expression, co-transfection of exogenous 

E6AP should also result in an increase in the levels of E6 protein 

expression. To investigate this, HEK 293 cells were transfected with 

HPV-16 and HPV-18 E6 expression plasmids, together with FLAG- 

tagged wild type E6AP and a catalytically inactive E6AP m utant, in 

order to determine whether E6AP enzymatic activity was also required 

for E6 stabilisation. The expression levels of E6AP and E6 were then 

determined by western blotting. The results, in Figure 11, show a 

number of interesting points. Firstly, HPV-16 E6 appears to direct the 

degradation of E6AP more strongly than  HPV-18 E6, and this is in part 

dependent upon E6AP catalytic activity. These results are in agreement 

with previous studies (Kao et al., 2000) and also support data suggesting 

th a t HPV-16 binds much more strongly to E6AP than  HPV-18 E6 does 

(Huibregtse et al., 1993b). Most importantly however, both the wild 

type and m utant E6AP significantly increase the levels of both HPV-16 

and HPV-18 E6 expression. These results demonstrate th a t E6AP 

contributes directly to the increased stability of HPV-16 and HPV-18 E6 

and, further, th a t this is a t least in part independent of E6AP’s catalytic 

activity.
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Figure 10. E6 protein turnover is regulated by E6AP. A. HeLa cells 
were transfected with siRNA Luciferase or siRNA E6AP. 48 h post 
transfection and prior to harvesting cells were treated with Cycloheximide 
for 5 different time points (O’, 15’, 30’, 60’, and 120’). Protein levels were 
detected using western blotting with anti-E6AP antibody, anti-Tubulin 
antibody to monitor protein loading, and anti-18E6 antibody; followed by 
HRP-coupled anti-mouse antibody and ECL detection. Arrows indicate 
the positions of the E6AP, Tubulin, and E6 proteins.
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Figure 10. E6 protein turnover is regulated by E6AP. (cont.) The 
collated results from 3 independent experiments to measure E6 protein 
turnover in cells treated with siRNA Luciferase and siRNA E6AP are 
shown in panels B and C respectively. Band intensities were determined 
using the OptiQuant quantification program. E6 levels were normalized to 
100% at time 0. Standard deviations are also shown.
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Figure 11. Stabilisation of E6 by E6AP. HEK 293 cells were 
transfected with plasmids expressing HPV-16 and HPV-18 E6, 
together, as indicated, with FLAG-tagged wild type and a catalytically 
inactive mutant of E6AP (C->A) plus a LacZ expression plasmid. After 
24hrs the cells were harvested and the levels of E6AP monitored 
using anti-FLAG antibody, and HPV-16 and HPV-18 E6 were 
monitored using the respective anti-E6 monoclonal antibodies. Blots 
were stripped and re-probed for LacZ to control for transfection 
efficiency. Westerns blots were developed using appropriate HRP 
conjugated secondary antibodies and ECL detection.
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Identification  o f HPV-18 E6 Interacting Partners

Based on the above studies, it is clear th a t association with E6AP is 

critical for regulating E6 stability, it also demonstrates th a t E6 most 

likely interacts with components of the proteasome system in the 

absence of E6AP. In addition, many studies have raised the possibility 

th a t E6 can interact with other components of the proteasome pathway 

to target certain substrates for proteasome-mediated degradation, 

including p53 and the PDZ-containing substrates (Camus et a l., 2007; 

Grm and Banks, 2004; Massimi et a l., 2008; Shai et a l., 2007b; Storrs 

and Silverstein, 2007), which in some cases appears to be E6AP 

independent. Therefore, we were interested to investigate whether we 

could identify other, as yet unidentified, components of the proteasome 

degradatory pathways, with which E6 might interact. To do this we 

decided to take a proteomic approach: overexpressing HA-tagged E6, 

and immunoprecipitating it, then performing a mass spectrometry 

analysis of the total protein complex. Therefore, I first generated the 

pCA vector based on pCDNA3, with a cassette insert containing two HA 

tags and one FLAG tag, such th a t the FLAG and HA tags were cloned 

into the multiple cloning site of pCDNA3 between the Bglll and Xbal 

sites (Figure 12A). This was then used as the basis for cloning HPV-18 

E6 wild type and E6* (Pirn et a l., 1994) into the tagged expression 

vector. These proteins were cloned in the EcoRI and H pal cloning sites 

of the cassette so th a t the tags were positioned on the N-terminal part of 

the E6 proteins, as shown with HPV-18 E6 in Figure 12B. A splicing 

defective m utant, E6SM, was also constructed from pCA 18 E6, such 

th a t only full length E6 would be expressed. To verify th a t these 

constructs were functional, 293 cells were transfected with the three 

different expression plasmids, 24 hrs post-transfection cells were 

harvested and the total cellular lysates were subjected to W estern blot
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analysis using the anti-18 E6 monoclonal antibody. As shown in Figure 

13, pCA:18 E6 expressed both the full length protein and the E6* spliced 

form, while the splicing defective m utant pCA:18E6SM only expressed 

the full length protein and pCA:18E6* expressed only the spliced form of 

the protein (Pirn et al., 2009).

The tagged E6 protein was then used as a bait for isolating additional 

binding partners. 293 cells were transfected with pCA:18E6 alone, or in 

combination with a known target, MAGI-2, in case the interaction with 

any component of the ubiquitin pathway might require the binding of 

E6 to a substrate. The pCA vector was also transfected alone as the 

control for nonspecific protein binding. After 24h the cells were treated 

with a proteasome inhibitor CBZ for a further 2.5 hrs. Cells were then 

extracted and immunoprecipitated on HA-conjugated agarose beads. 

The protein complexes were then subsequently processed by Dr. Mike 

Myers and subjected to mass spectrometry analysis.

A subset of the proteins identified are listed in Table 3, anything th a t 

was also identified in the control pulldown being discarded. We also 

only focused on those interactions th a t had a potential link to the 

proteasome regulating pathways. These results show a num ber of 

interesting features: the identified targets are categorized in the order of 

abundance, and proteins marked in red are those th a t are unique for 

each complex. In both samples where E6 complexes were assessed we 

pulled down 18 E6 protein and the known ubiquitin ligase E6AP. Along 

with those targets we also identified a  large number of the proteasome 

pathway components in both samples, as shown in Table 3. In addition 

to E6AP, we identified several components of the 26S proteasome 

degradatory pathway, such as ubiquitin and various 26S proteasome 

subunits which are directly involved in the degradation of ubiquitinated
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Figure 12. pCA and pCA-18 E6 expression plasmids. A. Cassette 
with Flag and two HA tags was cloned into PCDNA-3 in vivo expression 
plasmid in the multiple cloning site between the BamHI and Xbal cloning 
sites.
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Figure 13. Western blot of pCA18E6 WT, 
pCA18E6 SM and pCA18E6* expressed in 293 
cells. 293 cells were transfected with 5 pg of 
pCA:18E6 or 5 pg of pCA:18E6SM or 5 pg of 
pCA:18 E6* or 5 pg of pCA plasmid. 24h post 
transfection cells were harvested and E6 protein 
levels were were assessed by Western blot 
analysis using anti-18 E6 monoclonal mouse 
antibody. Control lane is labeled as C. Wild type 
pCA:18E6 shows two bands E6 full length 
protein, and E6*, while the other two lanes show 
only E6 full length protein (pCA:18E6SM) and 
E6* (pCA:E6*).
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substrates. This again highlights E6’s strong association w ith the 

proteasome pathway and with ubiquitin protein ligases. Furtherm ore, 

both samples also confirmed E6’s interaction with PDZ-domain 

containing substrates. This suggests th a t Dig is likely to be the 

preferred HPV-18 E6 PDZ-domain-containing target in vivo in 293 cells. 

In contrast, in the other sample where MAGI-2 was overexpressed 

together w ith 18 E6, only MAGI-2 was pulled down together w ith E6, 

suggesting th a t MAGI-2 was in excess and therefore competing out hDlg

in interacting with E6 (Table 3).
Table 3. HPV-18 E6 and HPV-18 E6 + MAGI-2 Mass Spectrometry Comparison Data

#o f
HPV-18 E6 peptides HPV-18 E6 +MAGI-2
hDlg 96 104 MAGI-2
E6AP 6 14 E6AP
E6 7 8 E6
EDD1 3 5 EDD1
26S Proteasome Non-ATPase regulatory 9 8 26S Proteasome Non-ATPase regulatory
subunit 3 subunit 3
26S Protease regulatory subunit 8 4 5 26S Protease regulatory subunit 8
26S Proteasome Non-ATPase regulatory 4 5 26S Protease regulatory subunit 6A
subunit 13 26S Protease regulatory subunit 7
26S Proteasome Non-ATPase regulatory 6 4 26S Protease regulatory subunit 4
subunit 2 3 26S Protease regulatory subunit S10B
26S Protease regulatory subunit 4 3 2 26S Proteasome Non-ATPase regulatory
26S Proteasome Non-ATPase regulatory 4 subunit 13
subunit 4 3 26S Proteasome Non-ATPase regulatory
26S Protease regulatory subunit 6A 2 subunit 2
26S Proteasome Non-ATPase regulatory 3 2 26S Proteasome Non-ATPase regulatory
subunit 6 subunit 11
Ubiquitin 2 2 26S Proteasome Non-ATPase regulatory
26S Protease regulatory subunit 7 2 subunit 6
Ubiquitin-like protein 4A 1 2 Ubiquitin

3 26S Proteasome Non-ATPase regulatory
subunit 4

1 Proteasome subunit alpha type 2

However, the most interesting feature of this mass spectrometry 

analysis was the identification of another ubiquitin ligase, EDD, in 

addition to E6AP. Marked in blue and shown in Table 3, EDD was 

pulled down in both complexes. EDD, a 300kD nuclear protein, is a 

mammalian ortholog of the Drosophila melanogaster “hyperplastic
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discs” tumor suppressor gene (hyd) (Callaghan et a l., 1998) and it has 

critical roles in control of cell proliferation and tumorigenesis (Mansfield 

et al., 1994). Studies have shown th a t EDD (-/-) mice die a t mid­

gestation due to failed yolk sac angiogenesis and defective placental 

development, leading to general failure of embryonic cell proliferation 

and widespread apoptosis (Saunders et al., 2004). EDD has been found 

to be overexpressed in breast and ovarian cancers (Clancy et al., 2003); 

while truncating m utations of the protein are commonly found in gastric 

cancers with micro-satellite instability (Mori et al., 2002). It is also 

involved in DNA damage signaling, and, intriguingly, functions as an 

E3 HECT ubiquitin ligase (Callaghan et al., 1998; Munoz et al., 2007).

HPV-18 E6 B inds to  EDD in vitro

Since EDD is a  ubiquitin ligase, we were particularly interested in 

investigating further its potential interactions with E6 and how this 

might affect and/or contribute to E6 functions. We first analyzed the 

potential of HPV-18 E6 to interact with EDD in vitro. EDD was in vitro 

translated, 35S radiolabelled and then incubated with GST-18 E6, GST- 

Dlg, GST-18 E6* or GST alone for comparison. The result of the assay 

in Figure 14A shows th a t HPV-18 E6 binds to EDD more strongly than  

either Dig or the GST control. Interestingly, the binding between E6* 

and EDD is also very weak, suggesting th a t most of the interaction 

motif lies within the carboxy terminal half of HPV-18 E6.

We were also interested in determining if EDD binding is specific for 

HPV-18 E6. Therefore we used GST fused HPV-16 E6 and HPV-11 E6 

as comparisons for the ability to bind EDD. EDD was in vitro 

translated, 35S radiolabelled and then incubated with GST-18 E6, GST-
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GST-18 E6*. Bound proteins were assessed by autoradiography and 
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EDD was incubated with GST, GST-18E6, GST-16E6, and GST-11E6. 
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16 E6 GST-11 E6 or GST alone for control. The result in Figure 14B 

shows tha t HPV-18 E6 binds to EDD more strongly than  both HPV-16 

E6 and HPV-11 E6. Interestingly, both HPV-16 E6 and HPV-11 E6 

bind EDD a t a similar level, demonstrating th a t the ability of E6 to bind 

EDD is not restricted to the high risk types.

HPV-18 E6 B inds to EDD in vivo

We then proceeded to confirm th a t the interaction between E6 and EDD 

occurrs in vivo. To do so, we performed pull-down assays in cells where 

EDD was overexpressed alone, together with HA-tagged 18 E6 or in 

combination with HA-tagged 18 E6 and HA-tagged MAGI-2. The 

results in Figure 15 confirm the interaction between EDD and 18 E6 in 

vivo. In both experiments (panels A and B) EDD was co- 

immunoprecipitated when overexpressed with E6. When EDD was 

overexpressed by itself or in combination with MAGI-2, binding to the 

HA-resin was very weak or absent. Interestingly, EDD was able to 

bind to E6 when those two proteins were expressed together, and also 

when both were expressed in combination w ith MAGI-2, suggesting th a t 

these three proteins might interact in a  triple complex. The fact th a t E6 

could interact with MAGI-2 and EDD in a complex also suggests th a t 

the binding between EDD and E6 does not adversely effect Ed’s ability 

to bind MAGI-2, further suggesting th a t the EDD-binding region on E6 

is probably not located in the C-terminal PDZ binding domain of E6.
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EDD Inhibits H P V 18 E6 D egradation o f D ig in vitro

As already mentioned, HPV E6 is not able to degrade targets by itself, it 

needs to form a complex with a cellular ubiqutin ligase, such as E6AP, 

and with such target proteins as p53, Bak, or various PDZ domain- 

containing proteins for proteasomal degradation to occur (Handa et al., 

2007; Kuballa et al., 2007; Scheffner et a l., 1993; Thomas and Banks, 

1998; Thomas and Banks, 1999). Since EDD is a ubiquitin ligase we 

were obviously interested in investigating the potential role of EDD in 

E6’s degradatory activities. To do this E6, Dig and EDD were 

translated in vitro and co-incubated a t 30°C for 1 and 2 hrs. The level of 

Dig protein remaining was then ascertained by SDS-PAGE and 

autoradiography. The results in Figure 16 show the levels of in vitro 

translated Dig at time-points 0, 60 and 120 minutes. As expected, Dig 

remained relatively stable over this time period. After the addition of 

E6 the levels of Dig were dramatically decreased a t the 60 minute time- 

point, while at 120 minutes time-point Dig was almost completely 

degraded. Interestingly, in the presence of EDD, Dig protein 

degradation was greatly reduced at both the 60 and 120 minute time- 

points. This observation is opposite to the outcome th a t one might 

expect if EDD was acting as an E6-dependent ubiquitin ligase to 

degrade its targets. The result from Figure 16 suggests th a t EDD 

somehow interferes with E6 degradatory activity.

EDD Interferes w ith  HPV 18 E6 Degradation o f Dig, MAGI-2 and  

p53 in vivo

To investigate these effects of EDD further, we analyzed whether EDD 

could rescue Dig protein levels in the presence of E6 in vivo in human
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Figure 15. HPV-18 E6 protein binds to EDD1 in 
vivo. 293 cells were transfected with 10 pg of HA 
tagged HPV18 E6, 5 pg EDD1, or 5 pg HA-tagged 
MAGI-2, alone or in combination. After 24 h cells were 
incubated for 3h with proteasome inhibitor (CBZ) 
before harvesting. Soluble fractions were incubated 
with HA-antibody conjugated agarose beads for 2h at 
4°C. Immunoprecipitated EDD1 protein was assessed 
by Western blot analysis using anti-EDD1 antibody (A 
and B). EDD1 protein was only detected in lanes 
which included co-transfected HA-18 E6 or 
combination of HA-18 E6 and HA-MAGI-2.
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293 cells which were transfected with plasmids expressing Dig alone or 

in combinations with HPV E6 and EDD (Figure 17A). In addition, we 

introduced MAGI-2 into the same experiment (Figure 17B), to 

determine whether the observations from Figure 16 were Dlg-specific, or 

whether EDD could have the same effects on other E6 PDZ domain- 

containing targets. Finally, we also included p53 (Figure 17C) in this 

experiment to investigate if EDD could have the same effect on rescuing 

p53 from E6-mediated degradation. 24 h post-transfection, cells were 

harvested in SDS lysis buffer and Dig, MAGI-2 and p53 levels were 

assessed by W estern blot analysis. The results in Figure 17 show 

degradation of Dig, MAGI-2 and p53 in the presence of E6 as expected. 

Interestingly, and similar to what was seen in the Figure 16, after EDD 

was co-transfected with both Dig and MAGI-2 protein levels were 

restored back to control levels. Interestingly, p53 protein levels were 

also rescued in the same way. Furthermore, when EDD and MAGI-2, 

Dig or p53 were combined in the absence of E6 there were no major 

changes in the protein levels of these targets. These results suggest 

th a t the effects of EDD in rescuing MAGI-2, Dig and p53 from Ed- 

induced degradation are most likely associated with a direct effect on E6 

function, rather than  an effect on the target proteins per se, or on 

indirect effects involving general components of the proteasome 

pathway.

E ndogenous EDD D irectly  R egulates HPV E6 A ctivity in vivo

To further elucidate these observations and to investigate the role of 

EDD in the context of HPV E6 function in cervical tumor-derived cell 

lines, we performed siRNA EDD silencing experiments in HPV-18- 

positive HeLa and HPV-16-positive CaSKi cells. Both HeLa and CaSKi

59



Part I: Results

cells were transfected with siRNAs directed against either EDD, HPV- 

18 or HPV-16 E6, respectively, or Luciferase for comparison, and the 

levels of both proteins were then analysed by western blotting after 72 

hrs. The results obtained are shown in Figure 18. As can be seen, the 

reduction of E6 levels by siRNA results in a marked upregulation in the 

level of p53 expression (Figure 18 A and B), and this is consistent with 

previous observations showing th a t E6 uses E6AP in targeting p53 for 

proteasome-mediated degradation (Kao et a l., 2000). Interestingly 

however, depletion of E6AP expression results in even greater 

upregulation in p53 protein levels, to levels th a t are even higher than 

those obtained using the E6 siRNA. These results reflect our 

observations in Figure 8, where we show th a t E6 levels are lower in cells 

treated with siRNA E6AP than  in cells treated with siRNA E6 only, 

highlighting again tha t E6 protein stability is highly dependent on 

E6AP levels.

However, even more striking results were observed from cells treated 

with siRNA EDD. In both cell lines (Figure 18 A and B), cells treated 

with siRNA EDD show a dramatic reduction in p53 levels in comparison 

with the control p53 levels, suggesting tha t the presence of EDD is 

inhibiting E6 degradatory function with respect to p53. Interestingly, 

there were still some residual levels of EDD after siRNA treatm ent, 

suggesting th a t complete silencing of EDD protein levels would probably 

result in even greater p53 degradation. These results show th a t EDD is 

a crucial component of the E6 degradatory machinery and that it 

directly or indirectly has a major effect on E6’s ability to direct the 

degradation of its main target, p53.
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Effects o f siRNA EDD D epletion  on HPV E6 and E6AP in  HeLa 

Cells

From the results mentioned above it  is clear th a t EDD does not have 

any major direct effects on E6 targets such as the PDZ domain- 

containing proteins, but th a t it ra ther has a direct effect on E6 or on 

some component linking E6 to the proteasome pathway. Therefore, we 

were interested in investigating the potential effects of EDD upon the 

levels of both E6 and E6AP. Assays were performed as above in HeLa 

cells, using siRNA Luciferase as a negative control and siRNA against 

E6AP, siRNA against EDD, and combined siRNAs against E6AP and 

EDD. 72 hours post transfection cells were harvested and total cellular 

lysates were subjected to W estern blot analysis using the anti-18 E6 

antibody, an anti-E6AP antibody, and an anti-Tubulin antibody as a 

loading control. The results obtained are shown in Figure 19. As shown 

above, when E6AP was silenced in HPV-positive cells the levels of E6 

were dramatically reduced, and tha t observation was confirmed in this 

experiment. However, more interesting results were observed in cells 

treated with siRNA EDD, where upregulation of both E6 and E6AP was 

observed after EDD was silenced. To exclude the possibility th a t EDD is 

the ubiquitin ligase which turns over E6 when E6AP is not present, we 

also included cells treated with siRNA EDD and siRNA E6AP. As can 

be seen from lane four, there was no significant E6 protein rescue when 

both ubiquitin ligases were silenced. These results demonstrate th a t 

EDD has a potential direct effect on E6AP stability, since EDD silencing 

leads to E6AP accumulation, which consequently results in E6 

upregulation. The results also suggest th a t E6 protein turnover is not 

EDD-dependent in the absence of E6AP, which suggests several 

possibilities th a t will be discussed in more detail in the Discussion.
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HPV E6, EDD and E6AP can Interact in vitro

In  order to investigate if E6, EDD and E6AP can potentially interact, 

EDD and E6AP were in vitro translated in W heat Germ Extract. The 

reasoning for using W heat Germ system was because it does not contain 

E6AP which is present in the Rabbit Reticulocyte system. The in vitro 

translated proteins were incubated individually or in combination with 

GST-18 E6, and GST alone for the negative control. The result of the 

binding assay in Figure 20A shows tha t both proteins bind to E6. The 

introduction of either E6AP or EDD to the mixture does not increase the 

binding affinity of the proteins towards E6. Additionally, this result 

suggests th a t EDD could form a complex with E6 independently of 

E6AP.

Furthermore we wanted to investigate if an E6 m utant (I130T), which is 

significantly reduced in its ability to bind E6AP, would also have any 

effects on EDD binding. EDD and E6AP were in vitro translated, 35S 

radiolabelled and then incubated with GST-18 E6, GST-18 E6 (I130T), 

and GST alone for control. The result of the assay in Figure 20B shows 

th a t HPV-18 E6 binds to EDD similarly to the HPV-18 E6 (I130T) 

m utant, while there is a difference between wild type HPV-18 E6 

binding to E6AP in comparison to the I130T m utant. This again 

suggests a possibility th a t E6 does not require E6AP for EDD binding 

and th a t the binding sites for EDD and E6AP are distinct on E6.

To clarify this even further, and to additionally confirm tha t EDD can 

bind to E6 without E6AP, we decided to perform pull-down assays in 

E6AP-null cells. NIH3T3 mouse fibroblasts were used as the positive 

control since they are positive for E6AP. Prior to harvesting, cells were 

treated with the proteasome inhibitor CBZ for 2.5 hrs and then
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Figure 17. EDD down-regulates HPV-18 E6 degradation of 
Dig, MAGI-2 and p53 in vivo. 293 cells were transfected with 3 
pg of HA-tagged Dig, 5 pg of HA-MAGI-2, 5 pg of EDD1, and 5 
pg of HA-18 E6 (2 pg with p53), alone or in combination. After 
24 h cells were harvested in SDS sample buffer and residual Dig 
(A), MAGI-2 (B) and p53 (C) protein levels were assessed by 
Western blot analysis using anti-HA antibody. The expression 
of ft-galactosidase (Lac Z) was used as a control of transfection 
efficiency and loading (lower panels).
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Figure 18. Effects of siRNA EDD depletion on HPV E6 
substrates. HeLa cells (A) and Caski cells (B) were 
transfected with siRNA Luciferase, or siRNA EDD, or siRNA 
E6AP, or siRNA 18E6/E7, or siRNA 16E6/E7. After 72 h cells 
were harvested and the protein levels were detected using 
Western blotting with anti-EDD, anti-p53 and anti-Tubulin 
antibody to monitor protein loading, followed by HRP-coupled 
anti-mouse anti goat-antibody and ECL detection. The arrows 
indicate the positions of the EDD, p53 and Tubulin proteins.



Figure 19. siRNA EDD effects on HPV E6 and 
E6AP in HeLa cells. HeLa cells were transfected 
with siRNA Luciferase, or siRNA E6AP, or siRNA 
EDD, alone or in combination After 72 h cells were 
harvested and the protein levels were detected 
using Western blotting with anti-E6AP antibody, 
anti-E6 and anti-Tubulin antibody to monitor 
protein loading, followed by HRP-coupled anti­
mouse and ECL detection. The arrows indicate the 
positions of the E6AP, E6 and Tubulin proteins.



•+ E6AP

GST Inputs

.. . .

Figure 20. HPV-18 E6, EDD and E6AP interact 
in vitro. A. Wheat Germ in-vitro-translated EDD 
and E6AP were incubated with GST and GST-18 
E6 alone or in combination. Bound proteins were 
assessed by autoradiography and the input GST 
fusion proteins were visualized with Coomassie 
staining (lower panel). Full amounts of EDD and 
E6AP used in the binding assays are also shown.
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Figure 20. HPV-18 E6, EDD and E6AP interact in vitro, (cont.) 
B. /n-v/fro-translated EDD and E6AP were incubated with GST, 
GST-18E6 and GST-18E6 (I130T). Bound proteins were 
assessed by autoradiography and the input GST fusion proteins 
were visualized with Coomassie staining (lower panel). GST-18 
E6(I130T) binding to EDD is 21% lower in comparison with GST- 
18 E6, while GST-18 E6(I130T) binding to E6AP is 77% lower in 
comparison to GST-18 E6. Arrows indicate GST fusion proteins.
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incubated with GST-18 E6 or GST alone for comparison. The result of 

the assay in Figure 20C shows th a t E6 was able to bind to EDD 

regardless of whether E6AP was present or not. Interestingly, the 

result also shows th a t the presence of E6AP did not significantly 

increase the amount of EDD bound to E6, confirming the result from 

Figure 20A.

siRNA EDD Effects on HPV E6 Substrates in  H PV-negative Cells

Since EDD has a downregulating effect on E6AP in HPV positive cells, 

we wanted to investigate further if EDD is also responsible for E6AP 

regulation in HPV negative cells and if it has any effects on p53. First, 

293 cells were transfected with E6AP alone or in combination with 

either EDD or an EDD (C->A) catalytically inactive m utant. Cells were 

harvested 24 hrs post-transfection and the total lysates were analyzed 

by Western blot analysis using anti-FLAG and anti-8 Gal antibodies. 

The results are shown in Figure 21. As can be seen, E6AP protein levels 

are completely depleted in the presence of EDD, and in the presence of 

the catalytically inactive EDD (C->A) m utant E6AP levels rem ain 

unchanged. This result demonstrates th a t EDD is responsible for E6AP 

protein turnover and this process is proteasome regulated.

Furthermore, we wanted to confirm this effect on endogenous protein 

levels in a HPV negative background. To do this, HT1080 cells were 

transfected with siRNAs directed against either EDD, E6AP or 

Luciferase for comparison, and the levels of both proteins were then 

analysed by western blot analysis. Cells were harvested 72 h rs post­

transfection, and the total cellular lysates were subjected to western 

blot analysis using anti-EDD, anti-E6AP, anti-p53 and anti-Tubulin
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antibodies. The results obtained are shown in Figure 22. As can be 

seen, the reduction of EDD and E6AP levels by siRNA did not result in 

any marked changes in the level of p53 expression (Figure 22A). 

However, in contrast, siRNA silencing of EDD in the same cell type 

resulted in a dramatic upregulation of E6AP (Figure 22B). These 

results demonstrate th a t the effects of EDD on p53 downregulation are 

specifically associated with an HPV-positive environment and the 

consequent E6-regulated p53 protein turnover. Furthermore, these 

results also show th a t EDD effects on E6AP are not necessarily HPV- 

related, but tha t it also occurs in HPV-negative cells, and tha t EDD 

could therefore be a crucial factor in regulating E6AP protein levels.
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Figure 20. HPV-18 E6, EDD and E6AP interact in 
vitro, (cont.) C. E6AP(-/-) and 3T3 cells were treated 
with CBZ proteasome inhibitors 2.5 hrs prior to 
harvesting. The soluble fractions of each sample were 
then incubated with GST and GST-18 E6 fusion 
proteins for 2 hrs at 4°C. Bound proteins were 
assessed by Western Blot analysis using EDD 
antibody. The EDD inputsfrom the cells are also 
shown.
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Figure 21. EDD degrades E6AP in vivo. 293 cells 
were transfected with 5 pg of FLAG-tagged E6AP, 5 pg 
of EDD and 5 pg catalytically inactive EDD (C->A), 
alone or in combination. After 24 hrs cells were 
harvested in SDS sample buffer and residual E6AP 
protein levels were assessed by Western blot analysis 
using anti-FLAG antibody. The expression of Q>- 
galactosidase (Lac Z) was used as a control of 
transfection efficiency and loading (lower panel).
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Figure 22. siRNA EDD effects on HPV E6 substrates in 
HPV negative cells. HT1080 (A and B) cells were 
transfected with siRNA Luciferase, or siRNA EDD, or siRNA 
E6AP. After 72 h cells were harvested and the protein levels 
were detected using Western blotting with anti-EDD, anti- 
p53, anti-E6AP and anti-Tubulin antibody to monitor protein 
loading, followed by HRP-coupled anti-mouse and ECL 
detection. The arrows indicate the positions of the EDD, 
E6AP and Tubulin proteins.
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PART II: PDZ B inding is  C onserved B etw een  HPV and

RhPV

RhPV-1 E7 has a Functional PDZ B inding Dom ain

As noted above, PDZ binding appears to be an im portant aspect of high- 

risk mucosal HPV types. Since RhPV-1 induction of cervical carcinoma 

in monkeys has been proposed as a model for HPV induced malignancy, 

we were interested to know whether RhPV-1 E6, like HPV-16 and HPV- 

18 E6, contains a PDZ binding motif. As can be seen from the amino 

acid sequence alignment in Figure 23, no such m otif exists in RhPV-1 

E6, whether it is compared with class I, as in the case of HPV-16 and 

HPV-18 E6, or class II and class III binding motifs. However, most 

intriguingly, the RhPV-1 E7 C-terminal sequence is a perfect match 

with a class I PDZ binding motif (Figure 23). This retains the canonical 

residues S/T and the C-terminal VZL, although the non-canonical 

residues are different from those present in HPV-16 and HPV-18 E6 

proteins. To determine whether this is a true PDZ recognition motif, we 

investigated whether RhPV-1 E7 could bind a panel of known PDZ 

domain-containing targets of HPV-18 E6. The wild type RhPV-1 E7 

plus carboxy term inal V->A and APDZ m utants, which should destroy 

the PDZ binding site (Figure 23), were expressed as GST fusion proteins 

and incubated with in vitro translated, 35S radiolabeled hScrib, MAGI-2 

and MAGI-3. The results of the pull-down assays in Figure 24 and 

Figure 25 show th a t wild type RhPV-1 E7 can interact with MAGI-2, 

MAGI-3 and hScrib, albeit not as strongly as HPV-18 E6, while the 

RhPV-1 E7 V->A and APDZ m utants show much weaker interactions. 

Interestingly, as seen in Figure 24, the V->A mutation did not
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completely abolish the binding of RhPV-1 E7 to hScrib, suggesting tha t 

the entire PDZ binding motif is involved in binding hScrib. As seen 

from Figure 25, when the m utant lacking the entire PDZ-binding motif 

was introduced the binding to all three targets was abolished. These 

observations demonstrate th a t the C-terminus of RhPV-1 E7 is a 

recognition motif for three different PDZ-domain containing substrates.

Furthermore, these results also indicate that, whilst RhPV-1 E7 has 

PDZ binding potential, it is very different from HPV-18 E6, and this is 

not surprising when one considers the amino acid differences in the 

respective PDZ binding motifs. To investigate this further we 

performed pull-down assays using expression constructs of MAGI-3 tha t 

had been used previously to map the PDZ domain recognized by HPV-18 

E6 (Thomas et al., 2002). The results in Figure 26 confirm th a t HPV-18 

E6 only binds to MAGI-3 PDZ1. In contrast, the binding of RhPV-1 E7 

to MAGI-3 is weaker, and is not dependent upon a single domain. 

RhPV-1 E7 can bind both to the N-terminal portion of MAGI-3, 

including the PDZ 1 domain, and to the C-terminal portion of the 

protein, including PDZ domains 2-5, suggesting a more promiscuous 

form of PDZ recognition than th a t seen with HPV-18 E6. Interestingly, 

as observed before the point mutation V->A did not completely abolish 

the interaction highlighting again the fact that more than  one amino 

acid in the PDZ binding motif is involved in PDZ recognition.

Par3 is  a  Target o f RhPV-1 E7

The degeneracy in PDZ domain recognition shown by RhPV-1 E7, 

coupled with its weaker binding characteristics, led us to conclude tha t 

these substrates of HPV-18 E6 were unlikely to be strong substrates for
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HIGH-RISK MUCOSAL HPV 

TYPES

LOW-RISK MUCOSAL HPV 

TYPES

HIGH-RISK MUCOSAL 
RhPV1

HIGH-RISK MUCOSAL wt 
RhPV1

HIGH-RISK MUCOSAL V'>A 
RhPV1

HIGH-RISK MUCOSAL APDZ 
RhPV1

CLASS I PDZ BINDING MOTIF

CLASS II PDZ BINDING MOTIF

CLASS III PDZ BINDING MOTIF

H P V 16E 6 CC. . . . RSSRTRRETQL

HPV 18 E6 CCNRARQERLQRRRETQV

HPV31 E6 CW. . . . . R . RPRTETQV

HPV33 E6 CW..

H PV6 E6 CWTTCMEDMLP.................

HPV-11E6 CWTTCMEDLLP.................

RhPV-1 E 7 .............................. PSCASRA

RhPV-1 E 7 ............................. PSCSTOP

X - S /T - X - V /L

F / Y - X - F /V /A

E /D -X -W -C /S

RhPV-1 E6 CW................................FLQA

RhPV-1 E 7 .............................. PSCASRV

Figure 23. The C-terminal PDZ-binding motif is common to high- 
risk mucosal PV proteins. The PDZ binding motif (X-T/S-V/L) is 
absent from low risk mucosal HPV type E6s and from RhPV-1 E6. It is 
found at the C-terminus of high-risk HPV E6s and RhPV-1 E7. Below 
are the three different classes of PDZ binding motifs.
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Figure 24. RhPV 1 E7 binds to MAGI-2, MAGI-3 and Scribble.
In v/Yro-translated MAGI-2, MAGI-3 and Scribble were incubated 
with GST, GST- RhPV 1 E7, GST-RhPV 1 E7 (V->A) and GST- 
HPV18 E6 fusion proteins. The protein inputs are shown (MAGI-2 
17%, MAGI-3 25%, Scribble 17%). Bound protein was assessed by 
autoradiography and input GST fusion proteins were visualized by 
Coomassie staining (lower panels).
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Figure 25. RhPV 1 E7 protein binds to MAGI-2, MAGI-3,and Scribble via 
its PDZ binding domain. A. In vitro-translated and radiolabeled MAGI-2, 
MAGI-3 and Scribble were incubated with GST, GST- RhPV 1 E7, GST- 
RhPV 1 E7 (APDZ) deletion mutant, and GST-HPV 18 E6 fusion proteins. 
Bound proteins were assessed by autoradiography and the input GST fusion 
proteins were visualized by staining the gels with Coomassie blue (lower 
panel). B. The inputs of the in vitro-translated proteins are shown (MAGI-2 
25%, MAGI-3 33%, Scribble 13%).
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Figure 26. RhPV 1 E7 binds to MAGI-3 in a different manner from
HPV 18 E6. A. Schematic diagram shows the full length MAGI-3 and two 
deletion mutants. B. 293 cells were transiently transfected with 5 pg of 
empty vector or 5 pg of plasmid encoding the truncated V5-tagged MAGI- 
3 proteins (4A and 4BL) as indicated. Cells were harvested 24 h post 
transfection. The soluble fraction of each sample was then incubated 
with GST, GST- RhPV 1 E7, GST-RhPV 1 E7 (V->A) mutant, and GST- 
HPV 18 E6 fusion proteins for 2 h at 4°C. Bound proteins were assessed 
by Western Blot analysis using anti-V5 antibody. The input GST fusion 
proteins were visualized by staining gel membranes with Ponceau red 
stain (lower panels). C. The inputs of the transfected MAGI-3 constructs 
are shown.
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RhPV-1 E7 in vivo. To identify preferred cellular PDZ substrates of 

RhPV-1 E7 we decided to use a proteomic approach. To do this, human 

293 cells were transfected with an N-terminally HA-tagged RhPV-1 E7 

expression construct, such th a t the C-terminal PDZ binding motif was 

preserved. 24h post transfection cells were treated with CBZ 

proteasome inhibitor for 2.5 hrs prior to harvesting. Extracts were 

immunoprecipitated with anti-HA antibody and the complexes were 

subjected to mass-spectrometric analysis. Several potentially important 

targets of RhPV-1 E7 were identified in the pull-down assay. The most 

relevant ones are shown and categorized in the order of abundance in

Table 4.
Table 4. Mass spectrometry analys is on HA-RhPV1 E7

# of
peptides

14 RhPV-1 E7
11 EDD
12 pRb

Identified proteins specific 6 Par3
to RhPV-1 E7 4 Retinoblastoma-associated protein factor 600

1 26 S proteasome non ATP-ase regulatory 
subunit 3

1 26 S protease regulatory subunit 4
1 Proteasome subunit alpha type 4
1 Cullin-2 (CUL-2)

293 cells were transfected w ith either HA-RhPVl E7 or w ith the empty 
plasmid for the control of the unspecific binding. Beads were then 
subjected to mass spectrometry analysis. Identified proteins shown in 
the table are RhPV-1 E7 specific and some of them  are known targets of 
HPV E7 proteins.

Targets such as pRb (Dyson et al., 1991), Cullin-2 (Huh et a l., 2007), and 

Retinoblastoma-associated protein factor 600 (p600) (Huh et al., 2005); 

(DeMasi et al., 2005) which was shown to function as an N-recognin E3 

ligase (Tasaki et al., 2005), have been reported as some of the major 

interacting partners of HPV E7. Interestingly, all of those substrates 

were identified in this analysis. In addition to these targets 26 S 

protease regulatory subunit 4 was identified in th is analysis, which was
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previously identified as an interacting partner of HPV-16 E7 and 

suggested to be involved in 26 S proteasomal degrdadation of pRb 

(Berezutskaya and Bagchi, 1997). Therefore, this mass spectrometry 

analysis also shows some important conserved targets between the E7 

proteins of the two species, as well as other potential targets which 

could be type-specific. Besides those targets, components of the 

proteasome pathway, including the HECT3 ubiquitin-ligase EDD were 

also pulled down (as discussed above). This suggests th a t RhPV-1 E7 

could interact with components of other proteasome degradatory 

pathways besides Cullin-2. Interestingly, of a number of potential E7 

binding partners, the only cellular PDZ-containing protein found was 

identified as Par3 (Table 4). This was intriguing since Par3 functions in 

the regulation of cell polarity upstream  of the HPV-16 and HPV-18 E6 

targets, hDlg and hScrib (Humbert et a l., 2006). Moreover, together 

with Par6 and aPKC it constitutes the PAR complex, which with the 

Crumbs and Scrib complexes controls cellular apico-basal polarity 

(Figure 7) (Humbert et al., 2006).

RhPV-1 E7 and Par3 Bind in vitro

To investigate this further we analysed the potential of RhPV-1 to 

interact with Par3 in vitro. Par3 was translated then incubated with 

RhPV-1 GST-E7, plus HPV-18 E6 for comparison. The result of the 

assay in Figure 27 shows tha t RhPV-1 E7 binding to Par3 is much 

greater than  th a t of HPV-18 E6. A single amino acid substitution in the 

PDZ consensus motif greatly reduces E7 binding to Par3 and this is 

reduced to almost background levels if the whole PDZ-binding domain is 

deleted. Interestingly, substitution of a single amino acid in the PDZ 

binding motif of RhPV-1 E7 did not completely abolish the binding,

68



PAR3
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Figure 27. RhPV 1 E7 protein binds to Par3 via its PDZ 
binding domain. In v/Yro-translated Par3 was incubated with 
GST, wild type and mutant GST-RhPV 1 E7, and GST-HPV- 
18 E6. Bound proteins were assessed by autoradiography 
and the input GST fusion proteins were visualized with 
Coomassie staining (lower panel). Input of Par3 is also 
shown. The numbers above each lane show the mean 
percentage of Par3 bound (with standard deviations) from at 
least 3 independent experiments.
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suggesting th a t other amino acids in the PDZ binding motif of the E7 

protein were still able to interact w ith Par3. Moreover, although E7’s 

ability to bind Par3 was almost completely abolished when its PDZ 

binding motif was removed, there was still a minor interaction detected 

between the two proteins, suggesting th a t additional amino acids 

further upstream  in Rh E7 could contribute to its binding activity. 

Furthermore, the strong interaction of RhPV-1 E7 with Par3, compared 

with the very weak interaction of HPV-18 E6, also suggests th a t the 

differences in the amino acid sequence of the PDZ binding motifs in the 

two proteins could have a significant impact on the target preference, as 

was previously discussed with HPV-18 E6 and its preference in 

targeting Dig over other PDZ domain-containing proteins (Table 3).

RhPV-1 E7 and EDD Bind in vitro

We were also intrigued by the identification of EDD as a  binding 

partner, and wanted to determine whether this was also a  specific 

target of RhPV-1 E7. Therefore, EDD was in vitro translated, 35S 

radiolabeled, and then incubated with GST, RhPV-1 GST-E7 and HPV- 

16 GST-E7 for comparison. As shown in Figure 28, RhPV-1 E7 bound 

strongly to EDD, while HPV-16 E7 binding to EDD was very weak, 

suggesting th a t RhPV-1 E7 binding to EDD is indeed specific. These 

results suggest th a t although RhPV-1 E7 and HPV-16 E7 are closely 

related proteins with many conserved functions, there are still some 

im portant differences between the two proteins with respect to their 

interacting partners and with pathways with which they might connect.
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RhPV-1 E7 D irects Par3 Degradation in vitro

A characteristic of the HPV E6-PDZ interaction is substrate degradation 

(Gardiol et al., 1999; Nakagawa and Huibregtse, 2000). We wished to 

investigate whether RhPV-1 E7 could likewise direct the degradation of 

Par3. In order to investigate this E7 and Par3 were translated in vitro 

in rabbit reticulocyte lysate and co-incubated a t 30°C. The level of Par3 

protein remaining was ascertained by SDS-PAGE and autoradiography. 

The results in Figure 29 show substantial degradation of Par3 in the 

presence of RhPV-1 E7, the activity of which is dependent upon an 

intact PDZ binding motif. Reduction in Par3 protein levels was 

noticeable a t the 60 minute time-point, and a t the 120 minute time- 

point Par3 was almost completely degraded. This was not the case with 

the APDZ m utant, where the Par3 protein levels were still detectable 

after 120 minutes. This suggests tha t the degradation activity is much 

weaker with the APDZ m utant of E7, demonstrating th a t this is also 

largely PDZ dependent. However, a weak degradative activity is still 

observed, which is consistent with the low level of interaction still seen 

between the APDZ m utant and Par3 (Figure 27).

RhPV-1 E7 D egrades Par3 in vivo

To investigate whether RhPV-1 E7 could degrade Par3 in vivo, hum an 

293 cells were transfected with plasmids expressing either Par3 alone or 

in combination with wild type or APDZ m utant RhPV-1 E7. After 24 hrs 

the cells were harvested, separated into soluble and insoluble fractions 

and Par3 levels were analysed by western blotting. The results in 

Figure 30 show th a t it the presence of wild type RhPV-1 E7 there is a 

reduction of Par3 levels in the insoluble fraction, part of which is due to
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Figure 28. RhPV 1 E7 binds to EDD. In vvfro-translated EDD 
was incubated with GST, GST- RhPV 1 E7, GST-RhPV 1 E7 (V- 
>A) and GST-HPV 16 E7 fusion proteins. The protein input is 
shown (EDD 10%). Equal amounts of GST fusion protein were 
added in each sample.
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Figure 29. RhPV-1 E7 directs the degradation of Par3 in 
vitro. Par3, RhPV-1 E7 and the APDZ mutant were 
translated, and co-incubated at 30°C for the times indicated. 
Residual Par3 was then detected by immunoprecipitation, 
SDS-PAGE and autoradiography. Phospholmager 
quantitation of triplicate assays provides the mean 
percentage degradation by wild type E7 of 32.3% (60mins) 
and 64.9% (120mins) with the APDZ mutant degrading Par3 
by 22.9% (60mins) and 23.5% (120mins).
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Figure 30. RhPV 1 E7 protein enhances degradation of Par3 
via the proteasome pathway. 293 cells were transfected with 1 
pg Myc-tagged Par3 plus pCDNA3 (-) or plasmids expressing 
RhPV 1 E7 and the APDZ mutant as indicated. After 24h cells 
were incubated for 3h with or without proteasome inhibitor (CBZ) 
before harvesting. Residual Par3 protein levels in the soluble (A) 
and insoluble (B) fractions were assessed by Western blot 
analysis using anti-Myc antibody. The expression of p- 
galactosidase (Lac Z) was used as a control of transfection 
efficiency and loading (lower panel). Scanning of multiple assays 
in the absence of CBZ treatment (in relation to the LacZ control) 
shows a mean change in Par3 levels in the soluble fraction of a 
67% (± 18.8) reduction in the presence of wild type E7 and an 
11.8% (± 10.2) reduction in the presence of the APDZ mutant. In 
the insoluble fraction the mean change in Par3 levels are a 50.3% 
(± 8.3) decrease with the wild type E7 and an 11% (± 10.8) 
increase with the APDZ mutant.
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an accumulation of Par3 in the soluble fraction. In contrast, Par3 is 

unaffected by the APDZ m utant, and the protein levels of Par3 remain 

unchanged in the presence of the RhPV-1 E7 APDZ m utant. 

Furthermore, the reduction in Par3 levels by RhPV-1 E7 is partly 

proteasome dependent, since a protein levels are restored after 

incubation with the proteasome inhibitor CBZ. Interestingly, in 

comparison with high-risk HPV E6 proteins, which only target PDZ 

domain-containing proteins in a proteasome dependent manner, these 

data suggest that, in addion to inducing proteasomal degradation of 

Par3, RhPV-1 E7 also needs to partially relocalize Par3 from the 

insoluble to the soluble fraction. Additionally, these results support 

previously shown in vitro experiments and suggest th a t Par3 is likely to 

be a biologically relevant PDZ target of RhPV-1 E7 in vivo.

RhPV-1 E7 Wild Type and APDZ M utant P roteins Induce pRb 

D egradation Equally Well

As a major target of HPV-16 E7 is the pRb tumour suppressor, we were 

interested to determine whether RhPV-1 E7 could likewise target pRb 

for degradation, since it has the pRb binding motif which is commonly 

found on HPV E7 proteins. Therefore, pRb (-/-) Saos-2 cells were 

transfected with pRb alone or in combination with either HPV-16 E7 

used as a positive control, RhPV-1 E7, RhPV-1 E7 (V->A) or RhPV-1 E7 

(APDZ), and the levels of pRb expression were ascertained by W estern 

blotting. The results in Figure 31 show th a t RhPV-1 E7 targets pRb for 

proteasome mediated degradation, similarly to HPV-16 E7. 

Furthermore, similar results were obtained with both PDZ m utant 

RhPV-1 E7 proteins. These results indicate th a t the point m utation (V-
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>A) and the complete PDZ motif deletion in RhPV-1 E7 do not have any 

significant effects upon its ability to degrade pRb.

The RhPV-1 E7 APDZ M utant has R educed Ability to Transform  

Prim ary BRK Cells in  Comparison w ith  the Wild Type Protein

Previous studies have shown th a t RhPV-1 E7 can cooperate with EJ-ras 

in the transformation of primary BRK cells, an activity th a t is probably 

dependent upon the LxCxE motif (Ostrow et al., 1993). However we 

wanted to know whether the PDZ binding potential of RhPV-1 E7 could 

play a role in transformation. Therefore, co-transformation assays were 

performed in BRK primary cells using wild type E7 or the APDZ m utant 

together with EJ-ras while HPV-16 E7 was used as a positive control. 

BRK cells from 9-day-old W istar rats were transfected with 2 pg EJ-ras 

either alone or together with 5 pg HPV16 E7, RhPV 1 E7, RhPV 1 E7 

(APDZ) expression plasmids. Cells were maintained in medium 

containing 200 pg/ml G418 for 2 weeks and then fixed and stained. 

Morphologically transformed colony numbers from 4 independent 

experiments are shown in Table 5. The results show tha t wild type 

RhPV-1 E7 cooperates with EJ-ras somewhat more weakly than  wild 

type HPV-16 E7. This could be attributed to either the different 

expression plasmids used in the experiment (pJ4nl6 E7 and 

pCDNA3RhPV-l E7), or to differences in the pRb binding motif, th a t of 

RhPV-1 E7 being LMCYE compared with the HPV-16 E7 LYCYE, 

although Figure 31 would suggest no major differences in their 

respective abilities to target pRb for degradation. In contrast, the APDZ 

m utant shows significantly reduced levels of transforming activity in 

comparison with RhPV-1 E7 and HPV-16 E7 proteins, suggesting tha t
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Figure 31. RhPV-1 E7 degrades pRB via the 
proteasome pathway. Saos-2 cells weretransfected with 
3 pg pRb expression plasmid plus pCDNA3 (-) or plasmids 
expressing HPV-16 E7, wild type RhPV-1 E7, the V->A and 
APDZ mutants, as indicated. After 24h cells were incubated 
for 3h with (+) or without (-) CBZ before harvesting. 
Residual pRb levels were ascertained by Western blotting 
using anti-pRb antibody. The expression of Lac Z was used 
as a control of transfection efficiency and loading (lower 
panel).



P art II: Results

an intact PDZ binding motif is required for the optimal transforming 

activity of RhPV-1 E7.

Table 5. BRK Transformation assays.
Constructs Experiment 1 Experiment 2 Experiment 3 Experiment 4

Number of Transformed Colonies
RhPV1 E7+EJ-ras 32 38 22 8
RhPV1 E7(APDZ)+EJ-ras 15 18 3 0
HPV16 E7+EJ-ras 50 72 58 48
EJ-ras alone 1 2 0 2

RhPV-1 E7 and Par3 Co-localise

We were also interested in investigating if the RhPV-1 E7 and Par3 

interaction would have any effect on the cellular localization of those 

two proteins. Par3 is primarily expressed at sites of cell contact and in 

the cytoplasm (Joberty et al., 2000), while we would expect RhPV-1 E7 

to be predominantly nuclear. To determine whether specific pools of 

either protein could co-localise, U 20S cells were transfected w ith a 

plasmid expressing Myc-tagged Par3, either alone or in combination 

with HA-tagged wild type and APDZ RhPV-1 E7. After 24h the 

expression of each protein was assessed by immunofluorescence. The 

results in Figure 32A show th a t Par3 is largely cytoplasmic, whilst both 

wild type and APDZ E7 show nuclear and cytoplasmic expression. 

Interestingly, the deletion of the PDZ binding motif of the RhPV-1 E7 

protein did not have any effect on the cellular localization of the protein. 

Upon co-transfection with Par3, however, wild type E7 is redistributed 

to the cytoplasm and is mostly absent from the nucleus (Figure 32B(i) 

and 32B(ii)), whereas the APDZ m utant localization is largely unaffected 

(Figure 32C(i) and 32C(ii)), and rem aining predominantly nuclear after 

being co-transfected with Par3, suggesting th a t the removal of the PDZ 

binding motif of the Rh E7 protein significantly reduced its ability to
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interact with Par3. These results demonstrate th a t the co-localization is 

pronounced when E7 and Par3 are co-expressed, and tha t this depends 

in part upon an intact PDZ motif in E7.
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Figure 32. Co-localization of RhPV-1 E7 and Par3. U20S 
cells were transfected with 1 |jg c-myc tagged Par3, 2 pg HA- 
tagged wt or mutant RhPV-1 E7, alone or in combination. 
After 24h, cells were fixed and probed with mouse anti-c-myc 
and rabbit anti-HA antibodies, followed by Rhodamine- 
conjugated goat-anti mouse (red, for Par3) and FITC- 
conjugated goat-anti rabbit (green for RhPV-1 E7) antibodies. 
The two fields from each slide were scanned with a Leica 
DMLB fluorescence microscope. Panel A: Par 3 alone (i), wt 
E7 alone (ii) and mutant E7 alone (iii).
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Figure 32. Co-localization of RhPV-1 E7 and Par3. (cont.) 
Panel B: Par3 plus wt E7 (fields i and ii). Panel C: Par3 plus 
mutant E7 (fields i and ii)
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D iscussion

PARTI: U biquitin  L igase R egulation o f HPV-18 E6

Previous studies have shown th a t E6AP is critical for the ability of E6 to 

target p53 for proteasome-mediated degradation, which is in part a 

consequence of E6AP’s ubiquitin ligase activity (Scheffner et al., 1993). 

However, there have been several reports showing th a t E 6 can degrade 

proteins, albeit weakly, in the absence of functional E 6AP, suggesting 

the existence of other routes by which E6 can degrade its substrate 

proteins (Camus et al., 2007; Massimi et al., 2008). Most importantly, 

however, it was also found th a t all the effects of E 6  on cellular gene 

expression appeared to be mediated by E6AP (Kelley et al., 2005). At 

first glance, these different studies appear irreconcilable. However, the 

data  presented in the Results section of this thesis are perfectly 

consistent with all of the above reports. Thus, in the absence of E 6AP, 

E 6 levels are very low and the protein is rapidly degraded at the 

proteasome. Obviously, a  by-product of this would be an apparently 

central requirement for E6AP in all of E6 ’s biochemical activities, with 

loss of E6AP mimicking E 6  ablation. However, in the light of the 

studies presented above, we can now conclude th a t the actual 

biochemical functions of E 6 , whilst requiring E 6AP for stability, are not 

necessarily E6AP-dependent with respect to substrate targeting and 

degradation.

E6 P rotein  Levels are E6AP-dependent

The results presented above raise a number of interesting points. 

Firstly, we clearly show in both overexpression and endogenous settings
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th a t HPV-16 and HPV-18 E 6 protein levels are highly dependent on 

E6AP, while E6AP depletion does not have a significant effect on E6 

mRNA transcript levels. This was shown in cells derived from cervical 

cancers, where siRNA ablation of E 6AP greatly decreased the levels of 

HPV E 6 expression. This reduction is proteasome dependent, since 

treatm ent with proteasome inhibitors rescues E 6 from degradation. We 

also showed a clear reduction in the half life of the E6 protein from 120 

to 30 minutes in the absence of E 6AP. In a series of overexpression 

assays we also showed tha t both HPV-16 and HPV-18 E6  protein levels 

could be increased in the presence of ectopically expressed E 6AP. 

Interestingly, the ability of E 6AP to induce a stabilization of E6 was 

independent of its ubiquitin ligase activity since the catalytically 

inactive E 6AP (C->A) m utant is as effective as wild type E 6AP in 

stabilizing E6 .

An im portant conclusion from the results is tha t HPV-16 and HPV-18 

E6 are regulated by the proteasome independently of E6AP, suggesting 

th a t other ubiquitin ligases may be involved in regulating E 6 turnover. 

This possibility is supported by the fact tha t E6  has been shown to 

complex with a t least two other ligases, EDD (this thesis) and HERC2 

(Vos et al., 2009). Based on studies presented here, there does not 

appear to be very strong evidence th a t EDD is the ligase responsible for 

E 6 degradation in the absence of E 6AP. Obviously, it will be of a great 

interest to assess whether HERC2 possesses this ability.

How E6AP regulates E6 turnover is an important question and there 

are a number of possibilities. The results in this thesis suggest tha t 

E 6AP somehow blocks E6 degradation; this might be through either 

masking E 6 sites of ubiquitination or masking binding sites for other 

ubiquitin ligases. Alternatively, E 6AP binding could also alter E6
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structure, thus acting as a molecular chaperone. Prior to considering 

some of these possibilities in more depth, we need to consider whether 

E 6 requires a physical association with E6AP for these effects to occur, 

or whether the effects of E 6AP are indirect. In addition, the relative 

levels of expression of E6 and E 6AP need to be considered. Previous 

studies have suggested th a t HPV-16 E6 E6AP binding-defective 

m utants (L37S and L110Q), which do not associate with E 6AP in vivo, 

are expressed in cells a t levels similar to wild type E6  (Sekaric et al., 

2008). If a simple 1:1 interaction is required for the effects of E 6AP, 

then one would expect the protein stability of L37S and L110Q m utants 

to be very low in cells, since their inability to associate w ith E 6AP would 

result in rapid proteasomal degradation. However, the situation could 

be much more complex. It is possible tha t the levels of E 6AP are 

actually much lower than  those of E6 in HPV-positive tum or cells, and 

the W estern blots in th is thesis would tend to support this. In addition, 

reports have suggested tha t native E 6  predominantly exists in 

multimeric forms (Garcia-Alai et al., 2007; G. Trave, personal 

communication), and since experiments for detecting E 6 protein levels 

are performed under strong denaturing conditions, this could likely be 

the explanation for our detecting predominantly the monomeric forms of 

E 6 (V. Tomaic, personal observation). Therefore, it is possible th a t a 

multimer of E 6 is bound to only one or two molecules of E 6AP. Also, one 

needs to bear in mind th a t the E 6AP half-life is more than  3 times 

longer in HPV-positive cells than  the half-life of E6 (Kao et al., 2000), 

which would suggest th a t a lower number of E6AP molecules could be 

sufficient to interact with a higher number of E6  molecules. In  a  such 

situation, any residual binding activity displayed by m utants of E 6 

might actually be sufficient to allow E 6 stabilization by E 6AP. With 

these points in mind, I would like to consider the three possible 

mechanisms by which E 6AP might stabilize E6 . In the first, it could be
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th a t E6AP is involved in masking E6  sites of ubiquitination or in 

inhibiting the binding of ubiquitin ligases to E6 , as depicted in Figure 

33A. In this model, if  E 6AP is not bound to E 6 , the site is free and gets 

occupied by as yet unidentified ubiquitin ligase(s), which then leads to 

E6 ubiquitination and its subsequent degradation a t the proteasome. In 

the second possibility, E 6AP could be acting as a molecular chaperone 

(Figure33B), where it is suggested tha t when E6  is not bound to E6AP it 

loses its conformation, the cell recognizes it as an unfolded protein, 

which is then rapidly degraded at the proteasome. This is actually a 

reasonable explanation for E 6’s rapid tu rn  over in the absence of E 6AP. 

It has been shown th a t heat shock proteins such as HSP70 and HSP40 

promote the proper folding and refolding of non-native proteins. 

However, under circumstances when the molecular chaperone system is 

unable to promote the proper folding of a protein substrate to its native 

state, the protein substrate is selected for degradation (reviewed in 

Sherman and Goldberg, 2001). The protein substrate degradation in 

many instances is thought to be mediated by CHIP (carboxyl terminus 

of Hsp70-interacting protein), a co-chaperone tha t functions as an E3 

ubiquitin ligase linking the polypeptide binding activity of HSP70 to the 

ubiquitin proteasome system (Rosser et a l., 2007; reviewed in Sherman 

and Goldberg 2001). In our proteomic analysis we identified HSP70 as 

an interacting partner of HPV-18 E6  and therefore it is possible tha t 

misfolded E 6 in the absence of E 6AP is degraded through the HSP70- 

CHIP-mediated ubiquitin proteasome system. In addition, recent 

studies have suggested tha t E6AP can interact with the substrate 

binding domain of HSP70 chaperones and promote the degradation of 

chaperone-bound substrates, such as misfolded luciferase that is bound 

to HSP70 (Mishra et a l., 2009), thereby providing evidence of a link 

between E6/E6AP and cellular chaperones. Finally, E6AP could be 

acting indirectly on a third protein which would normally target E 6 for
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Figure 33. HPV E6 is rapidly turned over in the absence of E6AP. A
schematic representation of possible E6 outcomes in absence of E6AP. 
A. The binding site of E6AP on E6 is occupied by another ubiquitin ligase 
(X) in the absence of E6AP, which results in E6 ubiquitination and 
proteasomal degradation. B. E6AP acts as a chaperone and in its 
absence E6 loses its conformation and is degraded at the proteasome, 
possibly via the CHIP-HSP70 complex. C. Besides being bound to E6, 
E6AP is also involved in regulation of another cellular ligase. Upon E6AP 
depletion, this ligase is released and induces the proteasomal degradation 
of E6.
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degradation. This model is depicted in Figure 33C. Here we speculate 

th a t a  certain pool of E 6AP which is not bound to E 6  could be 

interacting with other cellular proteins, such as other ubiquitin ligases. 

When E 6AP is depleted from cells the potential ubiquitin ligase, which 

is regulated by E 6AP, is released and consequently degrades E 6 . In this 

case this second ubiquitin ligase does not necessarily need to bind to the 

same site of E6  as E6AP, but the absence of E6AP leads to its 

upregulation to levels sufficient to efficiently degrade E6 .

Obviously, the above results highlights the fact th a t the E 6AP (C->A) 

m utant can still stabilize E6 , showing tha t it does not require its 

ubiquitin ligase activity for this effect. Furthermore, the results also 

suggest th a t this m utant, which can act in a dominant negative fashion 

with respect to E6 degradation of p53 (Beer-Romero et a l., 1997; Talis et 

al., 1998), may alter E6  structure or inhibit ligase recruitm ent, rather 

than  ju st acting to destabilise E6 . However, our data also suggest th a t 

wild type E6AP is likely to be more rapidly turned over than  the 

catalytically inactive m utant C->A in an E6 -negative background, an 

observation tha t could be attributed to the catalytically active site on 

the wild type protein, which has previously been shown to be involved in 

self-ubiquitination of E6AP (Kao et al., 2000). Interestingly, even 

though wild type E 6AP protein is significantly less stable than  E 6AP (C- 

>A), it seems th a t the wild type protein is equally able to stabilize E 6 . 

This observation could be due to protein saturation, and suggests th a t a 

certain amount of E 6AP, regardless of its catalytic activity, is sufficient 

to stabilize E6 protein to a  certain level. In addition, E6AP seems to be 

a  very stable protein, with a  half-life of 25 hrs in HPV-negative cells, 

while in HPV-positive cells th is is reduced to 7hrs due to its increased 

turnover regulated by E6 (Kao et al., 2000). Therefore, from these data 

it could be argued th a t E6 does not only interact with E 6AP to target
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cellular proteins such as p53, but th a t it is also likely for E 6 to 

preferentially complex with E6AP due its high stability. A short half- 

life of E6AP would automatically reflect on the half-life of E 6 and 

therefore this could result in a reduced ability of E 6 to interact with 

various cellular proteins. As was shown in Figure 10 the half-life of 

HPV-18 E6  is about 120 minutes and over th a t time period the levels of 

E 6AP remain unchanged, providing the necessary stability for E6 . In 

contrast, in the cells which had depleted E 6AP, the E6  half-life was 

reduced to only 30 minutes thus making E 6 a  4-fold less stable protein.

Additionally, the results presented above suggest th a t variations in the 

levels of certain E 6  substrate proteins such as p53 and Dig, frequently 

observed in cervical tumour tissues (Cavatorta et al., 2004, Cooper et al., 

1993), might actually be a reflection of alterations in E6AP levels or of 

the ability of E6AP to bind E6 . Future studies will have to be 

undertaken to elucidate these aspects further and clarify how E6 

mediates its degradation functions in the presence and absence of E6AP.

Proteom ic Analysis o f HPV-18 E6

Based on the above studies, we decided to use a proteomic approach to 

identify new components of the proteasome pathway with which E6 

might interact: both with respect to those th a t might be potential novel 

ubiquitin ligases for E 6 degradation functions, and also those proteins 

th a t might be involved in regulating E 6 turnover. Using this approach 

a number of interesting candidate binding proteins of E6 were 

identified. Confirmation tha t the assay was functional was provided by 

the identification of hDlg as a binding partner (Gardiol et al., 1999). 

Interestingly, this was the only PDZ domain-containing protein of E 6 to
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be identified in this analysis, further suggesting th a t Dig is a major 

target of HPV-18 E6 . In contrast, in samples which contained both 

HPV-18 E 6  and ectopically expressed MAGI-2, only MAGI-2 was 

identified, suggesting th a t overexpressed MAGI-2  out-competed 

endogenous Dig for E6 binding. This observation also suggests tha t 

HPV-18 E 6 is obviously capable of interacting with various PDZ 

domain-containing proteins, but it could be argued th a t under different 

circumstances with respect to the viral life cycle and/or cell 

transformation, E6  can preferentially target certain PDZ proteins over 

other ones.

Since the major aim of this analysis was to identify new E 6 targets in 

the proteasome pathway, we were primarily focused on proteasome- 

related proteins. Again, identification of E6AP as a major interacting 

partner verified the integrity of the assay. Interestingly, many other 

components of the proteasome pathway, such as ubiquitin and 26S 

proteasomal subunits, were also identified. This observation highlights 

the fact th a t E 6 is involved in interaction with many proteins associated 

with cellular degradatory activities. I t is also im portant to mention th a t 

this assay does not rule out indirect interactions between the proteins 

identified in this analysis, suggesting th a t some of the identified 

proteins could be as a result of an interaction with E 6AP rather th a t 

directly with E6 . However, the most exciting result of th is analysis was 

the identification of EDD, another HECT domain ubiquitin ligase. EDD 

is an interesting cellular protein involved in many cellular functions. In 

Figure 34 EDD protein domains and reported functions are depicted. 

EDD was originally reported to play a critical role in coordinating the 

balance between cell cycle progression and differentiation (Henderson et 

al., 2 0 0 2 ), while more recent studies have shown th a t amplification and 

overexpression of EDD is frequently found in  several cancers, including
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those of ovary and breast, while truncating mutations are also found in 

gastric and colon cancer (Clancy et al., 2003; Mori et al., 2002). In 

addition, EDD was shown to be a crucial factor during development, 

where EDD-deficient embryos in mice had delayed growth and 

development, failed yolk sac and vascular development, together with 

defective chorioallantoic fusion, leading to a general failure of embryonic 

cell proliferation and widespread apoptosis (Saunders et al., 2004). 

However, although EDD is implicated in various diseases, there is still 

not much known about the biochemical activities of the protein and only 

a few EDD interacting partners have been reported so far. Importantly, 

EDD was shown to be an E3 HECT-domain ubiquitin ligase (Callaghan 

et al., 1998) and more recently it was also shown th a t EDD can operate 

as an N-recognin in the N-end rule degradatory pathway (Tasaki et al.,

2005). Binding assays have shown th a t EDD was captured by type 1 

(Arg), but not by type 2 (Phe) X-peptide beads, suggesting tha t EDD can 

bind to type 1, but not to type 2 N-degrons (Tasaki et al., 2005). 

However, this is only a proposed model for EDD function based on 

peptide recognition, and whether the actual substrate proteins are 

targeted in this way still needs to be elucidated.

Some of the major reported interacting partners of EDD include Paip2, 

one of the poly(A)-binding proteins (PABP), which was reported to be 

targeted by EDD for proteasomal degradation, suggesting EDD 

involvement in mRNA metabolism (Yoshida et al., 2006). CIB1/KIP 

(calcium- and integrin-binding protein), a protein tha t interacts with a 

number of DNA damage response proteins, including the catalytic 

subunit of the DNA-dependent protein kinase (Wu and Lieber, 1997) 

and polo-like kinases PLK1 and PLK3 (Winkles and Alberts, 2005), has 

been shown to be a binding partner of EDD (Henderson et al., 2002). In 

addition, Topoisomerase II-binding protein (TopBPl), a protein
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Figure 34. EDD protein sub-domains and functions. A schematic 
representation of EDD protein is shown. EDD sub-domains and reported 
functions are indicated.
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associated with DNA damage response and cell cycle regulation, is also 

targeted by EDD for proteasome degradation, further suggesting EDD 

involvement in the DNA damage response (Honda et al., 2002). 

Furthermore, EDD was also reported to be required for optimal CHK2 

Thr68  phosphorylation and kinase activity and for cell survival after 

DNA damage (Henderson et al., 2006). More recent studies have 

suggested th a t EDD can form a ligase complex with DDB1 (DNA- 

damage binding protein 1) and VPRBP (VPR-binding protein), known as 

the EDVP (EDD, DDB1, VPRBP) complex. This is dependent on a 

protein kinase, DYRK2, for its formation, and for the subsequent 

phosphorylation, ubiquitylation and degradation of their substrates 

(Maddika and Chen, 2009), which are involved in regulating mitotic 

progression.

It is clear th a t the majority of EDD interacting partners are involved in 

DNA damage signaling, which suggests th a t EDD could play an 

important role in regulation of tha t cellular pathway (Henderson et al., 

2002; Henderson et al., 2006; Honda et al., 2002). Therefore, it  is not 

surprising th a t EDD is targeted by E 6 , since it has been shown th a t E 6 

is involved in inducing DNA damage and genomic instability (reviewed 

in Duensing and Miinger, 2004). I t is possible tha t E6  interacts w ith 

EDD and alters its cellular functions in order to have an additional 

effect on eliminating the DNA damage response. Improper functioning 

of those mechanisms could result in DNA damage accumulation, which 

if not repaired, might further contribute to the virus on its way to 

establish an optimal infection in the cell. Indeed it has been shown th a t 

E6 can affect DNA damage response pathways independently of p53 

(Shin et al., 2006; Song et al., 1998). Moreover, a recent report has 

suggested th a t HPV-16 E 6  targets a protein or proteins other than  p53 

to deregulate the activity of CHK1 in carcinogen-damaged cells (Chen et
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al., 2009). W hether some of these activities are mediated through its 

association with EDD remains to be determined. In addition, it was also 

shown th a t activation of CHK2 is mediated by ATM, which directly 

phosphorylates the Thr68  of this protein kinase, leading to its 

dimerization (Matsuoka et al., 1998). Furthermore, ATM was also 

shown to be involved in p53 Serl5  phosphorylation in vivo (reviewed in 

Ashcroft and Vousden, 1999). As discussed above EDD was shown to be 

required for optimal CHK2 phosphorylation (Henderson et al., 2006), 

however it seems th a t the effect of EDD is specific only to CHK2, since 

downstream substrates of ATM, such as p53, are unaffected in 

irradiated HPV-negative MCF-7 cells upon EDD depletion (Henderson 

et al., 2006). Therefore, it would be of a great in terest to investigate 

these interactions in more detail in an HPV-positive environment and to 

observe whether E6 has any effects on CHK2 activity (Henderson et al.,

2006).

EDD D ow n-regulates HPV-18 E6 M ediated D egradation of p53 

and PDZ dom ain-containing substrates

Having found in the proteomic analysis th a t EDD is a  potential target of 

E 6 , it raised the obvious possibility th a t this ligase might be involved in 

some of E6 ’s degradatory activities. We first verified the interaction 

between E6 and EDD in vitro and in vivo in a number of binding assays 

and confirmed th a t EDD is a strong binding partner of HPV-18 E6 . 

Interestingly, we also found th a t HPV-11 E6 and HPV-16 E 6 could also 

interact with EDD, but the strength of association seems much weaker 

than  th a t seen with HPV-18 E 6 . W hether this has any reflection on the 

apparently high pathology of HPV-18 E 6  (Burger et al., 1996; Walker et 

al., 1989) remains to be determined. In addition, in vivo co-
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immunoprecipitation assays we verified the E6 ’s interaction with both 

EDD and MAGI-2 when co-expressed, suggesting th a t the binding 

regions for EDD and MAGI-2 on E6 are likely to be different and 

demonstrating th a t these partners of E 6  do not compete for E6 

interaction.

Since EDD is an ubiquitin ligase and it is likely to exist in a complex 

with E6 without affecting E6’s ability to interact with its PDZ 

substrates, we performed several in vitro and in vivo degradation assays 

to investigate the effects of EDD on the degradation process. 

Interestingly, and opposite to what we expected, EDD inhibited the 

ability of E 6  to degrade several of its PDZ substrates in both 

experimental settings. We also included p53 in the degradation assays 

to determine whether effects of EDD on E6  function was PDZ-specific or 

if it could be also observed with p53. Interestingly, the same effect was 

observed with p53, leading us to conclude th a t the effect of EDD on E6 

degradatory activities is not only associated with PDZ domain- 

containing targets, bu t th a t it is likely to be a general effect on some of 

E 6’s target proteins. These observations were also verified in vivo on 

endogenous p53, where we could show th a t EDD depletion in both HPV- 

18 positive HeLa, and HPV-16 positive CaSKi cells results in increased 

degradation of p53. E 6  and E6AP-depleted HeLa and CaSKi cells were 

used in parallel for the control, and depletion of both proteins resulted 

in upregulation of p53, as expected. At the same time however, we did 

not observe any corresponding increase in hScrib and hDlg protein 

degradation in HeLa or CaSKi cells after EDD silencing, and thus could 

not confirm the effects observed in the overexpression assays. The 

reasons for this are unclear, but E6 ’s targeting of endogenous PDZ 

substrates seems to be more complex than  its targeting of p53 (Massimi 

et a l., 2006; Narayan et a l., 2009). Indeed, in cells treated with siRNA
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against E 6 and E6AP, which were used as the positive controls, only 

marginal rescue of those proteins was observed, suggesting th a t other 

factors could be involved in their targeting. For example, it was shown 

th a t E6  preferentially targets certain phosphorylated nuclear forms of 

hDlg (Narayan et al., 2009), suggesting th a t other post-translational 

modifications are likely to be im portant in E6’s degradation of the PDZ 

substrates. To fully elucidate the particular effects of EDD on E 6/PDZ 

targeting requires further study.

E6AP is  a Cellular Target o f EDD

The increased degradatory activity of E 6 with respect to p53 in the 

absence of EDD led us to suspect th a t EDD could be having a direct 

effect either on E6 or on some of E6 ’s interacting partners. Therefore, 

we also investigated the effects of EDD depletion upon the levels of E6 

and E6AP in HeLa cells and found a clear increase in both in the 

absence of EDD. Further, we show th a t EDD appears to be mediating 

this effect largely via E6AP, since when both ligases were depleted from 

HeLa cells there was no apperent rescue of E 6  protein levels, suggesting 

th a t there could be other ligase(s) involved in E6  turnover in the 

absence of E 6AP. This also suggests th a t the effects of EDD on E6 

levels are indirect, and as a result of the increase in E 6AP. This 

scenario is summarized in Figure 35: when EDD is absent, E6AP levels 

are upregulated and, as a consequence, this leads to E 6 protein 

upregulation, overall resulting in increased ubiquitination and 

proteasomal degradation of p53.

We were also interested in investigating whether EDD could affect 

E 6AP levels in a HPV-negative background. In overexpression assays
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ubiquitination and degradation of p53.
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we show tha t EDD can target E 6AP for proteasome-mediated 

degradation (Figure 21). In  addition, we also show th a t EDD depletion 

in HPV-negative cells leads to a strong upregulation of E6AP levels. 

This suggests th a t E 6AP is likely to be an EDD substrate regardless of 

the presence or absence of HPV E6 . In HPV-positive cells it is possible 

th a t E 6 , by binding to both E 6AP and EDD, alters the biochemical 

interaction between these proteins, possibly resulting in a decrease of 

the EDD-induced turnover of E6AP, and consequently increasing E 6 

stability. As already mentioned in the Results section of this thesis we 

clearly show th a t E 6 can complex with EDD in an E 6AP negative 

background, suggesting th a t E 6  is likely to interact with both ligases 

and tha t they do not exclude each other from the E 6  interaction. 

Furthermore, in in vitro binding experiments using an HPV-18 E 6 

I130T m utant, which is greatly reduced in binding to E6AP, showed 

th a t EDD binding to HPV-18 E6 and HPV-18 E6 I130T is similar, 

whereas E 6AP binds significantly more strongly to wild type HPV-18 E 6 

than  to the m utant. In addition, HPV-16 E6 , which binds E6AP more 

strongly than HPV-18 E 6  (Huibregtse et al., 1993b), in contrast binds 

EDD more weakly than  HPV-18 E6 . Taken together this all suggest 

th a t the E6  interaction with EDD is not mediated through E6AP, and 

th a t the binding sites on E 6  for those two proteins are distinct.

Since EDD appears to be involved in the regulation of various cellular 

processes, there is more than  one possible outcome for its interaction 

with E 6 . Initial studies characterized EDD as a tum or suppressor, 

where less severe m utations resulted in impaired cell proliferation 

(Mansfield et a l., 1994), while more recent studies have shown th a t 

severe mutations in EDD were lethal for transgenic mice (Saunders et 

a l ., 2004). Therefore, it is likely th a t E6 by binding to EDD could be 

altering some of its tumor suppressor properties and in th a t way may
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have a direct impact on cellular proliferation which might in tu rn  

promote viral production and cellular transformation. Finally, since 

EDD is an ubiquitin ligase with an N-recognin potential in targeting 

cellular proteins, it is also possible th a t E6  could be redirecting EDD 

towards certain cellular substrates in order to drive their proteasomal 

degradation through this pathway. However, further analysis is needed 

in order to clarify this possibility, as well as to characterize potential 

target proteins.

Many studies have reported variable amounts of certain E6  cellular 

substrates, such p53 and PDZ domain-containing proteins, during viral 

infection and in HPV-induced cervical lesions, highlighting the fact th a t 

not all of them  are degraded completely, either during viral infection or 

during the induction of malignancy (Cavatorta et al., 2004; Cooper et al., 

1993; Lie et al., 1999; Mantovani and Banks, 1999). The results 

presented above suggest tha t the variation in protein levels of those E6 

substrates could be a reflection of fluctuations in the levels of either 

EDD or E 6AP, which in turn  affect E6 function. Further studies need to 

be performed to elucidate these aspects and to clarify the role of EDD in 

E6 degradatory functions with respect to the viral life cycle and to HPV- 

induced malignancy.



P art II: Discussion

PART II: PDZ B inding is  Conserved B etw een  HPV and

RhPV

PDZ domain recognition is a  true  molecular signature of E6  proteins 

derived from cervical cancer-causing HPVs. Only high-risk HPV E6 

proteins have PDZ binding motifs on their extreme C-termini (Figure 6 ), 

through which they target various PDZ domain-containing proteins 

(Table 2 ). Rhesus Macaques are arguably the most relevant animal 

model for studying PV and cervical cancers. RhPV-1 oncoproteins E6 

and E7 have high homology with equivalent oncoproteins to HPV-16 

(Ostrow et al., 1991) and the virus also causes cervical cancer in 

monkeys, which is phenotypically similar to HPV-16 related malignancy 

(Kloster et al., 1988; Ostrow et al., 1991). Interestingly, although RhPV- 

1 E 6  is derived from a high-risk mucosal papillomavirus, it has no PDZ- 

binding motif. However, a PDZ binding motif is encoded by the virus, 

and we now show a remarkable evolutionary conservation of PDZ- 

binding activity on the RhPV-1 E7 protein instead. Intriguingly, this 

directs the binding of E7 to Par3, a PDZ domain-containing protein 

controlling the same polarity regulation pathway as th a t controlled by 

hDlg and hScrib (reviewed in Aranda et al., 2008), the preferred PDZ 

domain-containing targets of HPV-18 and HPV-16 E 6 , respectively 

(Thomas et al., 2005). These studies thus provide compelling evidence 

for a direct functional role for the inactivation of this pathway in the 

development of cervical cancer.
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Targeting o f PDZ D om ain-containing P roteins is  a Conserved  

F unction am ong H igh-risk PV Types

HPV-16 and HPV-18 E 6 degradation of a number of PDZ domain- 

containing targets contributes to these viruses' ability to induce 

malignancy (Table 2 and Figure 36). From this it is clear that for high- 

risk HPV types it is necessary to interact with various members of the 

cell polarity regulators, suggesting th a t these interactions could play 

pivotal roles during different stages of the viral life cycle, as well as in 

driving malignant progression. I t is also clear, as discussed previously, 

th a t HPV-16 and HPV-18 preferentially target Scribble and Dig, 

respectively. However, besides Dig and Scribble other PDZ domain- 

containing proteins have been reported to be targeted by HPV E6 

proteins, as also shown in Figure 36. Good examples of such substrates 

are the MAGI and PATJ proteins, which have been shown to be 

degraded through a proteasome dependent pathway by high-risk HPV 

E6 proteins (Glaunsinger et al., 2000; Latorre et al., 2005; Storrs and 

Silverstein 2007; Thomas et al., 2002). This diversity of PDZ substrates 

which can be targeted by HPV E6 does not only suggest tha t there is a 

clear specificity in the targeting, but also th a t there is a constant 

requirement for those substrates to be destabilized to allow the viruses 

to establish a productive infection in the cell. In addition, it can be 

reasoned th a t during different stages of the viral life cycle certain PDZ 

domain-containing proteins could be preferentially targeted over other 

ones. Interestingly, loss of the PDZ binding domain of E 6  in the context 

of the whole virus has a deleterious effect upon viral episome 

maintenance. This was first reported for HPV-31 (Lee and Laimins, 

2004), but has been confirmed with HPV-16 (K. Raj, personal 

communication) and HPV-18 (S. Roberts, personal communication). 

One interesting question would be to determine whether the domain
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cell polarity ‘supercomplex’ that are targeted by papillomavirus 
oncoproteins. HPV-16 E6 preferentially targets Scribble, while HPV-18 
E6 preferentially targets Dig. MAGI-1 and PATJ have also been 
identified as HPV E6 targets. Meanwhile Rhesus papillomavirus 1 E7 
(RhPV-1 E7) targets Par3.
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th a t we have identified in RhPV-1 E7 is also similarly important. How 

PDZ binding might contribute to this aspect of the viral fife cycle is a 

m atter of great debate. However, based on the substrates so far 

identified we could propose one or two possibilities. E ither it reflects a 

need to alter polarity of cell division or, alternatively, perhaps to alter 

certain intracellular signaling pathways, such as MAPK, in order to 

efficiently m aintain the viral episomes or promote cellular proliferation. 

Further analysis is required to identify which of these possibilities are 

true.

The lack of a PDZ-recognition motif on RhPV-1 E6 was a  concern since 

this virus is a high-risk mucosal PV type and induces equivalent 

malignancies in its natural host. However, the finding th a t the RhPV-1 

E7 protein has such a motif resolves this issue. In several assays we 

show th a t the carboxy-terminal four amino acids of the RhPV-1 E7 

protein form a PDZ-recognition site. Using a single point m utation or 

deletion of the entire motif weakened PDZ recognition. However, the 

ability of RhPV-1 E7 to bind PDZ domains was different from th a t of 

HPV-18 E6, with respect both to the precise PDZ domains recognized as 

well as in the strength of the interactions. This is not surprising when 

one considers th a t the actual PDZ-binding motifs are very different, 

even though the consensus sequence is conserved, and th is would be 

expected to alter substrate recognition (Zhang et al., 2007). In  vivo 

studies, which were also supported by structural studies, have shown 

th a t for the degradation of Scribble the L/V difference at the -1 position 

in the PDZ binding motifs of E6 appears to be critical, which makes 

Scribble more susceptible to degradation by HPV-16 than  by HPV-18 

(Thomas et al., 2002; Zhang et al., 2007). Furthermore, crystallographic 

studies have also revealed tha t a  Q a t the -2 position of the HPV E6 

proteins, which is highly conserved, is in part responsible for E6 binding
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to MAGI-1 and Dig. Furthermore, T rather than  S a t the position -3 has 

also been shown highly correlated to, necessary for efficient Dig binding, 

while E at the position -4 contributes to Dig and MAGI-1 binding (Zhang 

et a l., 2007). Interestingly, in addition to the critical roles played by 

each of the four amino acids in the PDZ binding motif of HPV E6 

proteins in substrate recognition, it was shown th a t amino acids 

positioned further upstream  of the PDZ recognition motif could also 

significantly contribute to the binding affinity for different proteins. 

Highly conserved R a t the positions -5 and -6 have been reported to be 

involved in MAGI-1 binding, while R a t the position -5 contributes to E6 

ability to interact with and degrade Dig (Thomas et a l., 2008; Zhang et 

al., 2007). As can be seen from Table 5, there are major differences 

between the extreme carboxy termini of high-risk HPV E6 and RhPV-1 

E7 proteins. Of particular importance would appear to be the S/T 

difference, which has been shown previously to be not functionally 

equivalent (Thomas et a l., 2008). In addition, there are significant 

differences a t the -2 position with an R in RhPV-1 E7 compared with Q 

in HPV E6, but perhaps most critically, 3 major changes a t -4, -5 and -6 

positions with A, C and S in Rhesus compared with E, R and L in HPV. 

Considering the obvious importance of these residues in PDZ 

recognition it is therefore not surprising th a t RhPV-1 E7 preferentially 

targets PDZ substrates th a t are different from those th a t are targeted 

by HPV-18 and HPV-16 E6. In this case Par3 appears to be the 

preferred substrate.
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Table 6. Extreme C-terminal amino acid sequences of HPV-18 E6 and RhPV-1 E7 
oncoproteins

Nucleotide position -6 -5 -4 -3 -2 -1

HPV-18 E6 R R E T Q V

HPV-16 E6 R R E T Q L

RhPV-1 E7 S C A S R V

PDZ B inding M otif o f RhPV-1 E7 P lays an Im portant R ole in  

C ellular Transform ation

A role for this motif in one of the biological activities of RhPV-1 E7 was 

shown by its requirement for optimal co-transforming activity in 

primary cells. Previous studies had shown th a t RhPV-1 E7 can 

cooperate with EJ-ras to transform prim ary BRK cells (Ostrow et al., 

1993), which is expected since RhPV-1 E7 retains the pRb recognition 

site (Ostrow et al., 1991). Interestingly, the pRb binding motif of RhPV- 

1 E7 (LMCYE) slightly differs from HPV-16 E7 (LYCYE). Although this 

could partially account for the difference in the numbers of transform ed 

colonies between the wild type forms of these two proteins, the 

overexpression assays suggest th a t both proteins are equally effective in 

targeting hum an pRb for degradation (Figure 29). However, the  most 

intriguing finding from this assay was th a t the RhPV-1 APDZ E7 

m utant has a significantly weaker co-transforming activity th an  the 

wild type RhPV-1 E7 protein, suggesting th a t the ability to target one or 

more PDZ domain-containing substrates might contribute to the ability 

of RhPV-1 E7 to bring about cell transformation. Interestingly, it was 

reported th a t in hum an cells expressing oncogenic ras, loss of Scribble or
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related polarity regulators, Dig and Lgl, is sufficient to induce 

tumorigenic growth and promote spontaneous invasion and metastasis 

(Dow et al., 2008). In addition, it was also shown th a t deregulation of 

Scribble in combination with overexpressed myc oncogene promotes 

mammary tumorigenesis in mice and human breast cancer (Zhan et al., 

2008). These observations might provide explanations for the difference 

in numbers of the transformed colonies between RhPV-1 E7 and RhPV-1 

APDZ E7 proteins. The m utant protein was unable to target Par3 and 

consequently destabilize the polarity complexes, which resulted in 

greatly reduced transforming capacity of the protein in combination 

with activated ras. Furthermore, in the binding assays we show that 

RhPV-1 E7 had some potential to interact with Scribble, although we 

did not observe any protein degradation. This would suggest that 

besides targeting Par3 RhPV-1 E7 might also interact with Scribble, 

and the loss of binding to Par3 or Scribble with the APDZ m utant would 

explain reduced co-transforming activity with EJ-ras. These results 

also support previous studies which have shown th a t the PDZ binding 

motif on HPV E6 proteins plays critical roles in cellular transformation, 

cell proliferation, and in induction of anchorage-independent growth in 

tissue culture (Kiyono et al., 1997; Lee and Laimins, 2004; Spanos et al., 

2008a; Spanos et al., 2008b). Moreover, transgenic mice expressing an 

E6 (A146-151) PDZ deletion m utant failed to display epithelial 

hyperplasia (Nguyen et al., 2003a; Nguyen et al., 2003b). This further 

suggests th a t RhPV-1 is likely to interfere with certain cellular 

pathways or complexes known to be targeted by high-risk HPVs, but in 

the case of PDZ substrates this occurs through E7 ra ther than E6.
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Proteom ic A nalysis o f RhPV-1 E7

Because of the major differences between RhPV-1 E7 and HPV-18 E6 in 

binding known PDZ substrates, we attem pted to identify the other, 

potentially preferred, PDZ-containing substrates of RhPV-1 E7 using a 

proteomic approach. The most exciting cellular target identified was the 

PDZ domain-containing protein, Par3. Besides Par3, a number of other 

cellular targets were identified which had previously been reported for 

HPV-16 E7. pRb is known to be one of the m ain targets of HPV E7 

(Dyson et al., 1991) and since RhPV-1 and HPV-16 are closely related 

viruses it was likely th a t RhPV-1 E7 would interact with hum an pRb, 

and this was confirmed by the proteomic analysis. This also suggests 

th a t the one amino acid difference (M->Y a t position 2) between the 

RhPV-1 E7 and HPV-16 E7 pRb binding motifs does not seem to have a 

significant effect upon the ability of RhPV-1 E7 to interact with hum an 

pRb. This was further confirmed by in vivo degradation assays which 

showed that RhPV-1 E7 and HPV-16 E7 direct the degradation of 

hum an pRb to similar levels.

p600, a protein involved in regulation of anchorage-independent growth, 

was found to be another intriguing target of RhPV-1 E7. Previous 

studies have shown p600 to be an im portant cellular target of both HPV- 

16 and BPV-1 E7 which was required for some of the transform ing 

activities of E7, shown to be pRb independent (Huh et al., 2005; DeMasi 

et al., 2005). Therefore the identification of p600 as an interacting 

partner of RhPV-1 E7 in this proteomic analysis would suggest th a t 

p600 is a very im portant target of PV E7 proteins and th a t the 

interaction is conserved among many different PV types. Interestingly, 

both the HPV E7 and BPV E7 proteomic analyses were performed on C- 

terminally tagged E7 proteins since it was previously shown th a t N-
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terminally tagged E7 is functionally defective (Gonzalez et al., 2001). 

This loss of function might reflect loss of p600 interaction, since it was 

also shown tha t N-terminally tagged HPV E7 was incapable of 

interacting with p600 (Huh et al., 2005). However, in our mass 

spectrometry analysis we used N-terminally tagged RhPV-1 E7 because 

our primary objective was to look for PDZ domain-containing substrates 

and therefore had to leave the C-terminus untagged. Unlike HPV E7 

and BPV E7, our N-terminally HA tagged RhPV-1 E7 protein was still 

able to interact with p600 in this analysis, suggesting th a t RhPV-1 E7 

may interact with p600 in a m anner different to th a t seen with HPV E7 

and BPV E7. Alternatively, this might indicate th a t the RhPV-1 E7 

association with p600 is not direct, but is rather mediated through 

another cellular protein. Further studies will be required to clarify 

these aspects.

Besides p600 this proteomic analysis also identified other important 

components of the ubiquitin proteasome pathway, consistent with the 

ability of RhPV-1 E7 to target proteins for proteasome-mediated 

degradation. These were Cullin-2 and EDD, toghether with a number of 

proteasome subunits. Cullin-2 was previously shown to complex with 

HPV E7 and pRb, leading to poly-ubiquitination of pRb in vivo, resulting 

in aberrant degradation of pRb in HPV-16 E7-expressing cells (Huh et 

al., 2007). Therefore, it seems likely tha t RhPV-1 E7, a t least in part, 

interacts with this ubiquitin ligase in order to target pRb. I was 

particularly interested in the results demonstrating th a t EDD was a 

potential binding partner of RhPV-1 E7, especially as I have shown that 

th is is potentially important in HPV E6 activity. Thus, it would appear 

th a t RhPV-1 E7 has two functions which are normally found in HPV E6: 

EDD binding and PDZ binding. The EDD binding to RhPV-1 E7 was 

confirmed by in vitro binding assays where we show th a t EDD binds
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much more strongly to RhPV-1 E7 than  to HPV-16 E7, suggesting tha t 

its interaction with RhPV-1 E7 is specific. As already discussed, EDD 

was also shown to act as an N-recognin ubiquitin ligase (Tasaki et al., 

2005). This would suggest th a t the RhPV-1 E7 interaction with EDD 

could result in redirection of EDD towards a pool of cellular substrates 

which are then targeted in a proteasome dependent manner. Again, 

further studies are required to characterize this interaction in more 

detail.

Interestingly, based on the protein sequence comparisons EDD has a 

potential pRb binding site (LCCND) and four potential LXXLL binding 

motifs. The LXXLL binding site is found on several interacting partners 

of E6 tha t are referred to as a-helical partners (Baleja et al., 2006; Chen 

et al., 1995), with the best characterized protein th a t belongs to this 

group being E6AP (Baleja et al., 2006). Therefore it can be speculated 

th a t EDD could interact with E6 through one of its conserved LXXLL 

motifs in a similar way to E6AP. In contrast, the interaction of EDD 

and RhPV-1 E7 could be partially direct and partially indirect through 

EDD’s potential association with pRb.

Par3 is a Target o f RhPV-1 E7 both in vitro and in vivo

From the standpoint of searching for potentially relevant PDZ domain 

substrates of RhPV-1 E7, identification of Par3 in the proteomic 

analysis was the most im portant finding. We verified the interaction in 

vitro in a  number of basic protein-protein interaction assays and 

confirmed th a t the interaction required an intact PDZ binding motif of 

RhPV-1 E7. Par3 has 3 PDZ binding domains, and unfortunately we 

have not been able to access clones to verify which is the exact 

recognition domain. However, the interaction appears to be very strong,
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and most importantly, results in some degradation of the Par3 protein. 

We were particularly surprised th a t we could detect this in an in vitro 

assay, suggesting th a t this is really very efficient. The mechanism by 

which RhPV-1 E7 degrades Par3 is currently unknown, however the fact 

that this activity is readily detectable in an in vitro assay suggests tha t 

it is quite different from tha t used for the degradation of pRb, which is 

extremely difficult to recapitulate in vitro (V. Tomaic, personal 

observation).

An im portant concern was whether E7 could be found in similar cellular 

locations to those expected for Par3 (Joberty et a l., 2000)

imunofluorescent analysis showed th a t RhPV-1 E7 is in both nuclear 

and cytoplasmic compartments, while Par3 is mainly cytoplasmic. 

Interestingly, when HA-tagged RhPV-1 E7 is co-expressed with Par3 

there is a clear co-localization of both proteins, with an apparent 

recruitm ent of E7 from the nucleus into the cytoplasm. This re­

localization absolutely depends upon an intact PDZ-recognition motif, 

further supporting its role in Par3 recognition. It is notable tha t these 

studies were done using HA-tagged E7, where no degradation of Par3 

was seen, and this is an important similarity with HPV-16 E7, which 

also requires a  free N-terminal region to direct substrate proteins for 

proteasome-mediated degradation (Reinstein et al., 2000; Gonzalez et 

al., 2001).

The most intriguing finding of th is study is tha t RhPV-1 E7 targets 

Par3, a protein th a t provides anchorage to assemble the Par complex at 

the apical-lateral border by binding Par6 and recruiting Par6-associated 

proteins (reviewed in Aranda et al., 2008). The regulation of cell 

polarity and directional cell migration involves three different protein 

complexes: the Crumbs complex, comprising Crumbs and Stardust; the

98



P art II: Discussion

P ar complex, comprising Par3, Par6, Cdc42 and aPKC; and the Scribble 

complex, comprising Dig, Scrib and Lgl. Each component of these 

complexes is essential for the proper functioning of the whole (Humbert 

et al., 2006). The three complexes spatially segregate and are 

functionally antagonistic, restricting each other's precise cellular 

localization in different ways, depending on the cellular context 

(Humbert et al., 2006) (Figure 7).

Interestingly, in the case of the cancer-causing mucosal HPV types, 

HPV-16 E6 would appear to preferentially target hScrib, whereas HPV- 

18 E6 targets hDlg, and thereby inducing alterations in cell migration 

and proliferation control (Nakagawa and Huibregtse, 2000; Watson et 

al., 2003). RhPV-1, which causes the same cancer, also targets cell 

polarity and proliferation albeit through a component of a different 

complex, Par3, but via a  conserved PDZ-recognition m otif (Figure 36). 

This evolutionarily conserved assault on polarity control is a very 

powerful argument for a  critical role of the Crumbs/Par/Scrib complexes 

in  the life cycle of mucosal HPVs and it also is compelling evidence for a 

functional relevance in the induction of cervical cancer.

In addition to their role in cell polarity maintenance, members of the 

P ar complex have been implicated in various hum an and mouse 

malignancies such as ovarian, head and neck, and breast cancers. For 

example, hyperactivation or mislocalization of aPKC kinase was shown 

to have an impact on tumor growth, motility and proliferation in cell 

lines, suggesting th a t improper control of aPKC by normal polarized 

activity of the Par complex may lead to its pro-oncogenic activities 

(reviewed in Aranda et al., 2008). Furthermore, overexpressed Par3 was 

shown to inhibit TGF-6-induced loss of E-cadherin and epithelial-to- 

mesenchymal transition (EMT), suggesting th a t TGF-B alters the Par
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complex from one th a t is responsible for polarity control to one th a t 

promotes transformation (reviewed in Aranda et al., 2008). The RhPV-1 

targeting of the PAR complex through its interaction with Par3 may 

have two consequences. By degrading Par3, or by re-localising it from 

insoluble to soluble fractions, RhPV-1 E7 might de-stabilize Par 

complexes, allowing mislocalization of aPKC, thus increasing cell 

proliferation. In the context of the natural viral life cycle this might 

promote viral production, while in the context of transformation this 

might increase the oncogenic potential of the Par complex.
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Future D irection s

The results of this thesis define im portant aspects of the control of HPV 

E6 protein stability and its association with the proteasome pathway. 

Furthermore, evolutionary they also demonstrate im portant conserved 

activities between the two high-risk mucosal papillomavirus types in 

targeting cell polarity regulators through their oncoproteins, HPV E6 

and RhPV-1 E7. To expand on these findings in more detail and to 

better understand how these oncoproteins’ functions contribute to the 

viral life cycle and to PV-induced malignancy, there are a  num ber of 

aspects which will need further investigation.

Further clarification of the role played by E6AP in E6 stability is 

something th a t needs to be investigated for a better understanding of 

the mechanisms regulating E6 protein stability. Firstly, it should be 

established whether E6 protein stability is directly or indirectly 

dependent on its association with E6AP. E6AP binding-defective 

m utants of E6 (L37S and L110Q) (Sekaric et et al., 2008) will be used for 

these experiments and they should help to clarify this aspect. In 

addition, we will investigate whether E6AP functions as a  molecular 

chaperone in providing conformational stability for E6. This will also 

include investigation of HSP70 and CHIP ligase involvement in E6 

protein turnover in the absence of E6AP. We are also planning to 

perform a proteomic analysis of E6AP and to search for other ubiquitin 

ligases which may complex with E6AP and which may also be involved 

in E6 turnover in the absence of E6AP. Other obvious experiments will 

include investigation into whether the HERC2 ubiquitin ligase (Vos et 

al., 2009) is involved in E6 protein turnover in the absence of E6AP. We 

could also expand our search and look for other ubiquitin ligases which
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might be involved in this process. This could be done using HeLa cells 

in a high-throughput analysis, where siE6AP would be co-expressed 

with an siRNA library to the known hum an ubiquitin ligases, the 

positive readout being rescue of E6 expression when cells are lacking 

E6AP and one other ligase.

In the proteomic analyses EDD was identified as an interacting partner 

of both HPV E6 and RhPV-1 E7 proteins, suggesting that this is a 

common interacting protein of the two viruses, but although associated 

with different oncoproteins. I t will be of a great interest to characterize 

the EDD association with HPV E6 and RhPV-1 E7 proteins in more 

detail in order to better understand any potentially conserved functions 

between the two viruses. From the data presented in this thesis, it is 

likely tha t EDD has an indirect effect both on E6 stability and its ability 

to degrade p53 through its regulation of E6AP. However, since EDD is 

involved in many other cellular processes, such as protein turnover 

(Honda et a l., 2002), carcinogenesis (Clancy et al., 2003; Mori et al., 

2002), and DNA damage response (Henderson et al., 2006) it is likely 

th a t both HPV E6 and RhPV-1 E7 complex with EDD in order to 

interfere with some of its other functions. Therefore, since DNA damage 

appears to be a common theme, studies should be carried out to 

determine if the abilities of E6 and RhPV-1 E7 to induce DNA damage, 

or to perturb DNA damage response pathways is in any way linked to 

their ability to bind EDD. For example, does their ability to interact 

with EDD have any effects on CHK2 phosphorylation?

Furthermore, since EDD is a HECT domain ubiquitin ligase with an N- 

recognin ligase potential (Callaghan et al., 1998; Tasaki et al., 2005), we 

also plan to search for potential cellular substrates whose degradation is 

E6 and RhPV-1 E7-mediated through association with EDD. This will
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be particularly im portant with respect to RhPV-1 E7 targeting of Par3. 

Finally, from the data presented in th is thesis it seems possible th a t 

EDD could function as a natural ubiquitin ligase of E6AP, and therefore 

we are planning to characterize the association of those two ligases in 

more depth, which could be an im portant step for better understanding 

the signaling pathways disrupted in the Angleman’s syndrome.
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M aterials and M ethods

Cells and transfection. U 20S (human osteosarcoma, p53+/+ pRb+/+), 

293 (human embryonic kidney), SAOS-2 (human osteosarcoma p53-/- 

pRb-/-), Baby Rat Kidney (BRK), HT1080 (fibrosarcoma), NIH3T3 

(mouse fibroblasts), E6AP (-/-) (mouse epithelial kidney cells), HeLa 

(HPV-18 positive) and CaSKi (HPV-16 positive) cells were grown in 

DMEM supplemented with 10% fetal bovine serum, penicillin- 

streptomycin (lOOU/ml) and glutamine 292pg/ml. Transfection was 

carried out using calcium phosphate precipitation as described 

previously (Matlashewski et al., 1987) or using Lipofectamine2000 

(Invitrogen) according the m anufacturer’s protocol.

Plasm ids.

pCA: The pCA plasmid was created by inserting a cassette containing 2 

x HA and 1 x FLAG epitopes derived from the AdTrack vector (kindly 

provided by Patricio Meneses) into the multiple cloning site of pCDNA3 

between BamHI and Xbal restriction sites as shown in Figure 12A.

HPV E6: Wild type HPV-18 E6 was amplified by PCR using the

following primers to produce N-terminally tagged E6: forward primer 5’ 

CAAGACAGTATTGGAACTTACAGAAGTATTTGAATTT; reverse 

primer 5’ TAGTAAGTTAACTTATACTTGTGTTTCTCTGCGTCG 

followed by digestion using ECoRI and Hpal restriction enzymes into 

the pCA plasmid (Figure 12B). E6* (Pirn et al., 1997) was amplified by 

PCR using the same primers as for the wild type E6 followed by 

digestion using the same pair of enzymes as for the wild type protein
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and cloned into pCA. Splicing defective m utant E6SM was constructed 

from pCA 18 E6 using the Gene Tailor Mutagenesis k it (Invitrogen) 

according to the m anufacturer’s instructions, where G was replaced 

with A a t the nucleotide position 233. Untagged HPV-18 E6 and HPV- 

16 E6 pCDNA-3 expression plasmids have been described previously 

(Gardiol et al., 1999; Pirn et al., 1994). The GST-fusion proteins HPV-18 

E6 and HPV-18 E6* have been described previously (Pirn et aZ.,1997; 

Thomas et al., 1996).

RhPV-1 E7: RhPV-1 E7 was amplified from RhPV-1 genomic DNA 

(kindly provided by Michele Ozbun) by PCR to produce untagged and N- 

terminally tagged E7: The following primers were used for producing 

the N-terminally tagged E7: forward primer 5’

TACATGAATTCATGATTGGGCCTAAACCT; reverse prim er 5’ 

ATGAAGTTAACTTACACTCTGCTGGCACA followed by digestion using 

ECoRI and H pal restriction enzymes into pCA plasmid. To generate 

untagged (pCDNA3) E7 and GST fusion proteins, RhPV-1 E7 was 

amplified from RhPV-1 genomic DNA by PCR using the following 

primers: forward primer 5’

TACATGGATCCATGATTGGGCCTAAACCT; reverse prim er 5’ 

AGTAAGAATTCTTACACTCTGCTGGCACA followed by digestion using 

BamHI and ECoRI restriction enzymes into pCDNA3 and GST 

plasmids. The point m utant (V->A) in the PDZ binding motif and the 

complete PDZ deletion m utant (APDZ) were generated using the Gene 

Tailor Mutagenesis k it (Invitrogen) according to the m anufacturer’s 

instructions.

A dditional in vitro  expression plasm ids. For bacterial expression of 

GST-tagged proteins the following constructs were used: GST-Dlg

(Gardiol et al., 2002). For in vitro transcription translation: hScrib,
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MAGI-2 and MAGI-3 (Thomas et a l., 2002); Dig (Gardiol et al., 2002); 

E6AP (Huibregtse et a l., 1993a); and EDD (Clancy et a l., 2003).

A dditional in vivo expression plasm ids. The following in vivo 

expression plasmids used have been described previously: EJ-ras

expression plasmid pEJ6.6 (Matlashewski et al., 1987); the wild type 

and m utant E6AP (C->A) expression plasmids were kindly provided by 

Scott Vande Pol (Brimer et al., 2007); FLAG-p53 was kindly provided by 

Georgine Faulkner; HA-Dlg (Gardiol et al., 2002); V-5 tagged MAGI-3 

constructs and HA-MAGI-2 (Thomas et al., 2002); pJ4nl6  E7 (Storey et 

al., 1988); the pRb expression plasmid was kindly provided by Giannino 

Del Sal; the EDD expression plasmid was kindly provided by Collin 

W atts; the Myc-tagged Par3 expression plasmid was kindly provided by 

Ian Macara

A ntibodies. Mouse monoclonal antibodies against HPV-18 E6 (1:1000/ 

[N-terminus #399]) and mouse monoclonal anti-16E6 antibody (1:1000/ 

[N-terminus #74 and C-terminus #813]) were generated and generously 

provided by the Arbor Vita Corporation.

The following commercial antibodies were used at the dilutions 

indicated in parenthesizes: anti-HA monoclonal antibody 12CA5

(Roche; WB 1:100, IF 1:100); anti-B-galactiosidase (Promega, WB 

1:5000); anti-FLAG mouse monoclonal antibody M2 (Sigma, WB 1:5000); 

mouse anti-p53 DO-1 (Santa Cruz 1:1000); mouse anti-pRb (Santa Cruz; 

WB 1:500), mouse anti-y-tubulin (Sigma; WB 1:5000); mouse anti-E6AP 

(BD Transduction Labs; 1:500 WB); goat anti-EDD M-19 (Santa Cruz; 

WB 1:200); mouse anti-Dlg SAP97 (Santa Cruz; WB 1:200); goat anti-
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hScrib (Santa Cruz; WB 1:200); mouse anti-V5 (Sigma; WB 1:5000); 

mouse anti-c-myc (Santa Cruz, WB 1:1000).

Appropriate secondary antibodies conjugated to HRP were purchased 

from DAKO and used for Western blotting a t a  dilution of 1:1000. In the 

case of immunofluorescence staining, secondary antibodies conjugated 

to either fluorescein or rhodamine were purchased from Molecular 

Probes and used a t a concentration of 1:700.

BRK T ran sfo rm a tio n  assays. BRK cells from 9-day-old W istar rats 

were transfected with 2 pg EJ-ras either alone or together with 5 pg 

HPV16 E7, 5 pg RhPV 1 E7 and 5 pg RhPV 1 E7 (APDZ) expression 

plasmids. Cells were m aintained in medium containing 200 pg/ml G418 

for 2 weeks and then fixed and stained with Giemsa-Blue (Diagnostica 

Merk) and then morphologically transformed colonies were counted. .

F u s io n  p ro te in  p u r if ic a tio n  a n d  in vitro  b in d in g  assays* GST- 

tagged fusion proteins were expressed and purified as described 

previously (Thomas et a l., 1996). Briefly, 40 ml of an overnight culture 

of E.Coli strain  DH5-a previously transformed with the appropriate 

expression plasmids were inoculated in Luria Broth (LB) containing 

ampicillin and grown a t 37°C up to an OD of 0.6 at 395 nm. 

Recombinant protein expression was induced for 3 hrs with InM 

isopropyl-8-D-thiogalactopyranoside (IPTG, Sigma). The cells were 

harvested by centrifugation, disrupted by sonication in lysis buffer 

(PBS, 1% Triton X-100, 100 U/ml DNAse, protease inhibitors cocktail I, 

Calbiochem) and the lysates were then cleared from cell debris by 

centrifugation. The GST-fusion proteins were then incubated for 2hr
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with glutathione-conjugated agarose beads. The purity of all fusion 

proteins was determined by SDS-PAGE and Coomassie Brilliant Blue R 

(Sigma) staining.

In vitro transcription translation was performed in either rabbit 

reticulocyte lysate or wheat germ extract using the Promega TNT 

system and were radiolabelled with [35S] cysteine or [35S] methionine 

(Amersham). Equal amounts of in u^ro-translated proteins were added 

to GST fusion proteins bound to glutathione resin and incubated for 1 hr 

at 4°C. After extensive washing with PBS containing 0.25% NP-40, or 

as otherwise indicated, the bound proteins were analysed by SDS-PAGE 

and autoradiography.

Binding assays were quantified using a  Phospholmager (Packard) and 

the percentage binding with respect to inputs was calculated.

GST pull downs using cellular extracts were performed by incubating 

GST-fusion proteins immobilized on resin with cells extracted in E1A 

buffer for 1 h r a t 4°C on a rotating wheel. The resin was then washed 

extensively with the extraction buffer and bound proteins were detected 

using SDS-PAGE and Western blotting using the appropriate 

antibodies.

Im m unoprecipitation and W estern blotting. Total cellular extracts 

were prepared by directly lysing cells from 6 cm2 or 10 cm2 dishes in 

SDS lysis buffer. To obtain the soluble and insoluble fractions 

separately, cells were lysed in E1A extraction buffer (25mM HEPES pH 

7.0, 0.1% NP-40, 150mM NaCl, plus protease inhibitor cocktail set I; 

Calbiochem). After incubation on ice for 20 min lysates were cleared by
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centrifugation at 13000 rpm  for 10 min. The supernatant (soluble 

fraction) and the pellet (insoluble fraction) were analyzed by SDS-PAGE 

and W estern blotting. For W estern blotting, either 0.45 or 0.22 pm 

nitrocellulose membrane (Schleider & Schuell) were used and 

membranes were blocked for lh r  a t 37°C in PBS+10% milk followed by 

the incubation with the appropriate primary antibody diluted in PBS 

10% milk/0.5%Tween 20 for 2 hrs. For E6 antibodies the protocol 

included 5% milk and 2% BSA in lxTBS for blocking and primary E6 

antibodies were diluted in 2.5% milk and 1% BSA in lxTBS/0.1% Tween 

20. After several washings with either PBS 0.5% Tween 20 or TBS 0.1% 

Tween 20, secondary antibodies conjugated with HRP (DAKO) were 

diluted in either 10%milk PBS/0.5% Tween 20 or 2.5%milk 1%BSA 

TBS/0.1% Tween 20 and incubated for lh r. Blots were developed using 

either Amersham ECL, or ECL+ in the case of 16 E6, according to the 

m anufacturer’s instructions.

For co-immunoprecipitations and mass spectrometry pull-down 

experiments, 293 cells were transfected with the appropriate plasmids. 

24 hrs post transfection, either E1A (250 mM NaCl, 0.1% NP40, 50 mM 

Hepes pH 7.0) or mass spectrometry lysis buffer (50 mM Hepes pH 7.4 

(at 4°C), 150 mM NaCl, 50 mM NaF, 1 mM EDTA, 0.25% NP40) 

extractions were performed and the soluble fraction was incubated with 

anti-HA beads (Sigma) to pull down either E6 or RhPV-1 E7 for 2-3 hrs 

on a rotating wheel a t 4°C. The beads were then extensively washed in 

the extraction buffer depending on the experiment type, dried and sent 

to Mike Myers for proteomic analysis.

Sam ple preparation for m ass spectrom etry. The proteins were 

then eluted directly from the affinity beads using 50 ng of sequencing
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grade trypsin (Promega) in 20 mM diammonium phosphate pH 8.0, for 6 

hrs at 37°C. The supernatant was removed from the beads and the 

cysteines were reduced and alkylated by boiling for 2 min in the 

presence of 10 mM Tris(2-carboxyethyl)phosphine (Pierce, Milan, Italy) 

followed by incubating with 20 mM acetaminophen (Sigma) for 1 h  at 

37°C. The reactions were stopped by the addition of acetic acid (Sigma) 

to 0.1%. The resulting mixture was desalted using C18 Ziptips 

(Millipore, Milan, Italy) and lyophylized to dryness.

Mass spectrom etry. Nanobore columns were constructed using 

Picofrit columns (NewObjective, Woburn, MA, USA) packed with 15 cm 

of 1.8 mm Zorbax XDB C18 particles using a homemade high-pressure 

column loader. The desalted samples were injected onto the nanobore 

column in buffer A (10% methanol/0.1% formic acid) and the column was 

developed with a discontinuous gradient and sprayed directly into the 

orifice of an LTQ ion trap mass spectrometer (Thermo Electron, San 

Jose, CA, USA). A cycle of one full scan (400-1700 m/z) followed by 

eight data-dependent MS/MS scans at 25% normalized collision energy 

was performed throughout the LC separation. RAW files from the LTQ 

were converted to mzXML files by READW (version 1.6) and searched 

against the Ensembl human protein database and the NCBInr Viral 

database using the Global Proteome Machine interfaced to the 

XITandem algorithm (version 2006.06.01.2).

H alf-life experim ents. 48 hrs or 72 hrs post transfection, cells were 

treated for different time points as indicated with cycloheximide 

(50pg/ml in DMSO) to block protein synthesis. DMSO treated cells were 

used as the control. Total cellular extracts were then analyzed by
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W estern blot and the intensity of the bands on the X-ray film was 

measured using Optiquant program. The standard deviation was 

calculated from three independent assays.

RT-PCR. Total RNA was isolated from HeLa cells 72 hrs after 

transfection with either siRNA against Luciferase (control) or siRNA 

against E6AP using TRI reagent (Sigma) according to the 

m anufacturer’s instructions. A total of 1 pg of RNA was subjected to 

reverse transcriptase (RT) using RETROscript system (Ambion). No 

reverse transcriptase control was also added for assaying contamination 

w ith DNA. PCR was performed with 20 cycles and an annealing 

tem perature of 55°C and 58°C for GAPDH. PCR primers for E6 (Pirn et 

al., 1997) have been described previously. GAPDH primers were as 

follows: forward 5’ FCCATCACCATCTTCCAGGAG; reverse 5’

GGATGATGTTCTGGAGAGCC.

Im m u n o flu o rescen ce  a n d  M icroscopy. Cells were stained and fixed 

for immunofluorescence as described previously (Grm et al., 2005). 

Briefly, cells were fixed with 3.7% paraformaldehyde in PBS for 20 min 

and permeabilized with 0.1% Triton X-100 in PBS for 5 min. Prim ary 

antibodies were incubated for 2 h r at 37°C, followed by extensive 

washing with PBS and incubation for 30 min at 37°C with secondary 

anti-rabbit or anti-mouse conjugated with fluorescein- or rhodamine 

(Molecular probes). Cells were then subjected to extensive washing with 

H 2O and mounted.

Slides were analysed using a Leica DMLB fluorescence microscope 

equipped with a Leica photo camera (A01M871016) and the da ta  were 

collected utilizing the 100X objective oil immersion lens.

I l l



Materials and Methods

In vivo degradation assays. 293 cells (for FLAG-p53; HA-Dlg, HA- 

MAGI-2; FLAG-E6AP, myc-Par3) and SAOS-2 cells (for p53 

degradation) were transfected with 2pg of the constructs noted above, 

along with 0.5 pg of LacZ. Additionally, the following plasmids were 

also included: pCDNA3 18 E6 (3pg); pCA 18 E6 (3pg); EDD1 (5pg). 24 

hrs post-transfection, or as otherwise indicated, the cells were harvested 

and analyzed by W estern blotting.

In vitro degradation assays. Proteins were transcribed and 

translated in vitro in rabbit reticulocyte lysate using the Promega TNT 

system according to the manufacturer's instructions. The HPV-18 E6 

and RhPV-1 E7 proteins were radiolabelled with [35S]-cysteine while the 

Dig, Par3 and EDD1 were radiolabelled with [35S]-methionine. 

Degradation assays were performed as previously described (Thomas et 

al., 2001). Briefly, radiolabelled proteins were mixed and incubated for 

the indicated times a t 30°C. Volumes were adjusted using water-primed 

lysate. The rem aining Dig or Par3 proteins were immunoprecipitated 

with anti-Dlg polyclonal rabbit serum (Gardiol et al., 1999) or anti-myc 

mouse monoclonal antibody (Santa Cruz), respectively, and analyzed by 

SDS-PAGE and autoradiography.

Inhibitors. The following inhibitors were dissolved in DMSO and used 

at indicated concentrations: proteasome inhibitor Z-leu-leu-leu-al (CBZ; 

Sigma) (50pM); Calpain Inhibitor (LLnL; Sigma) (50 pM); proteasome 

inhibitor Epoxomycin (Sigma) (25 pM); protease inhibitors Cocktail Set I 

(Calbiochem).
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siRNA e x p erim en ts . HPV-positive HeLa and CaSKi cells and HPV- 

negative HT1080 cells were seeded in 6 cm2 dishes and transfected 

using Lipofectamine2000 (Invitrogen) with the following siRNAs: 

siRNA against luciferase (Dharmacon) as the control; siRNA against 18 

E6/E7 (5’ CAUUUACCAGCCCGACGAG) (custom ordered from

Dharmacon); siRNA against 16 E6/E7 (5’

UUAAAUGACAGCUCAGAGG) (custom ordered from Dharmacon); 

siRNA against E6AP (Dharmacon and Santa Cruz); siRNA against EDD 

(Santa Cruz).
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