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Abstract

This thesis examines the effect of parallel static and low frequency microwave fields on excited 

hydrogen atoms. By low frequency we mean, Clo = Cl/u)k  1, where Cl is the field frequency 

and u k  is the Kepler frequency of the unperturbed excited electron. Experiments and cal

culations have shown that for certain field strengths, resonances arise, sometimes leading to 

enhanced ionisation.

Approximate time-dependent one-dimensional Hamiltonians describing the classical dy

namics were derived previously by Richards [51]. Here we derive a number of properties from 

these Hamiltonians and use these to predict and explain ionisation behaviour.

Because the separatrix is a construct of classical dynamics affecting a relatively small area 

of phase space, it is unclear how it will affect the quantum mechanics of the system or how large 

the quantum numbers must be for measurable effects. For this reason, we derive a new quantal 

method to compute the ionisation probability for the system. The method is tested where 

possible and shown to accurately describe the general behaviour of the system. The method 

is applied to slowly switched fields and is computationally efficient, allowing calculations for 

high principal quantum  numbers, n > 800.

We compare classical and quantum ionisation behaviour. Significant qualitative differences 

exist for low quantum  numbers, n  ~  10, but quantitative differences exist, for higher quantum 

numbers, even for n > 100.

For slowly switched fields, the separatrix can considerably affect the ionisation structure. 

These effects are also manifest in the quantum mechanics for sufficiently high n, but even for 

n = 39, the influence of the separatrix is seen.

Ionisation times are calculated for systems prepared in a single initial state and for mi-
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crocanonical distributions of initial states. Classically, motion near the separatrix is shown to 

lead to longer ionisation times at resonance. This is also seen in quantal calculations, even for 

quantum numbers as low as n — 39, th a t is, those accessible by experiment.
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Chapter 1

Introduction

1.1 Background

Experiments on the ionisation of excited hydrogen atoms subjected to microwave fields began 

in 1974 with the experiments of Bayfield and Koch [5, 6]. In the experiments, hydrogen atoms 

are excited to  a particular, known principal quantum number, n  1, and then subjected to 

a microwave field before measuring the fraction of atoms for which ionisation occurs.

A key characteristic of the microwave experiments is th a t the photon energy for the mi

crowave field is small relative to the energy required for ionisation. For example, for an initial 

principal quantum number, n = 66, in a microwave field of frequency Cl/2ir = 9.92GHz, the 

energy difference between the initial state and the continuum is more than 70Clh. For ioni

sation to occur at all was surprising and not amenable to the quantum techniques available 

a t the time. Previous work on multi-photon ionisation (MPI) had focused on the effects of 

pulsed lasers on ground state atoms where the ionisation energies are typically 1-5 photons. 

However, an application of quantal perturbation theory using a basis of zero-field states would 

require 70 orders of perturbation to  reach the continuum. The field intensity required for 

ionisation, according to this theory, is far larger than observed experimentally; however, this 

theory is invalid because the radius of convergence of the perturbation expansion is much 

smaller than the field sizes used, although estimates for the radius of convergence are difficult 

to calculate. We denote the energy for an unperturbed state of principal quantum  number, n,

11
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by E n . For the microwave experiments, E n + 1 — E n — hQ,, and so the coupling between unper

turbed quantum states is strong. The number of unperturbed states th a t must be included 

and the necessary inclusion of the continuum makes the quantum mechanical treatm ent of 

this problem numerically intractable without further approximation.

Briefly, the experiments typically comprise the following arrangement. A beam of initially 

excited hydrogen atoms in a low n  substate is passed through a pair of CO 2  lasers in a static 

field to cause a double excitation of the hydrogen atoms firstly to  a substate, n' where n' «  10, 

and then by tuning the frequency of the second laser, a second excitation is made to a selected 

high n  state, with n  in the range 23-90.

The atomic beam is passed axially through a TM mode microwave cylindrical cavity where 

the microwave field is applied; the microwave frequency is typically of the order, D/2ir = 

10GHz. On their travel to the microwave cavity the atoms pass through a nominally zero field 

region, where stray fields cause a mixing between substates.

In the cavity the hydrogen atoms are subjected to a field whose amplitude is modified by 

the geometry of the wave cavity. From the perspective of a hydrogen atom transiting the cavity 

the field is seen to rise gradually over a number of field cycles (about 16) as the atom passes 

through a hole machined in the entry wall of the cavity. The atom then sees an approximately 

constant amplitude field over a number of cycles (about 100) before seeing the field gradually 

reduce to zero again as it passes through a hole in the exit wall of the cavity. The particle 

beam density is small, typically with only one excited hydrogen atom in the cavity at any one 

time.

The effect of the applied field on the hydrogen atoms depends on fi0 — n 3Q x (h3/fie4), 

where /j. is the reduced electron mass, e is the electron charge and n  is the principal quantum 

number of the excited state. If 1, then the hydrogen atoms leaving the cavity are

either ionised or remain in approximately the same initial excited state, n. If Do > 1 then the 

electrons can be significantly excited by the field to states n' n, but few atoms are ionised.

The atomic beam leaving the cavity passes through an applied static field, after which 

ionised particles are counted by detectors. The static field is tuned to cause the ionisation 

of atoms th a t have been sufficiently excited by their interaction with the microwave field. 

Hence the experimental signal is a measure of both truly ionised hydrogen atoms and highly
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excited atoms. For each substate there is a critical field above which ionisation occurs, so th a t 

by tuning the static field a criteria can be set for the selection of the highly excited atoms. 

The critical field depends predominantly on the principal quantum number, n, so to a first 

approximation ionisation occurs if n  > n c, where n c is some cut-off value; however, for some 

experiments it is also necessary to take into account the dependence on all three quantum 

numbers specifying the substate.

The results from the experiments are typically plots of ionisation probability against field 

strength, or critical fields causing ionisation against frequency. Examples of each are given in 

[49] figures 8-13 and [24] figures 2 and 3.

The configuration just described was employed by Koch et al in 1974 and is detailed by 

Koch and Leeuwen [31]. In some experiments microwave wave guides have been used instead 

of the cavities; see for example, [7].

From an experimental perspective it is easier to  vary the initial quantum number, n, than 

the field frequency, Q, which is fixed by the geometry of the microwave cavity. Experiments 

are therefore typically performed by fixing the field frequency and using an appropriate choice 

of n  to access different regions of behavioural interest.

The large quantum numbers involved mean th a t classical and semi-classical techniques 

can sometimes be employed, although for some fields and initial excited states, quantal effects 

dominate. In 1978 Leopold and Percival used classical dynamics [36, 37] to calculate ionisation 

probabilities th a t were found to be in good agreement with the original 1974 experiments. 

Fortunately these experiments were for frequencies and quantum numbers where the system’s 

behaviour is well described classically.

The non-relativistic Hamiltonian describing the effect of the field on a hydrogen atom is,

H  = i - er + Z F ( t ) '

where /j, is the reduced electron mass, e is the electron charge and F  is the applied electric field 

of frequency fi. This is a non-linear system system perturbed by a uniform periodic force. A 

crude approximation to F ( t ), ignoring the motion through the cavity ends, is F(t) =  sinf^t, 

where F ^ is the field amplitude.
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The dynamics of this system are determined by various time scales. In the absence of the 

applied field the unperturbed system is degenerate, with one characteristic frequency, u)k , the 

Kepler frequency for the electron, ojk = p>e4/ n 3h3. For an electron in an n =  66 excited state, 

cok ~  23GHz. The applied field introduces a set of resonances, pujx = qCl, where p and q 

are incommensurate integers. In phase space, near any one of these resonances, the classical 

system behaves approximately like a simple pendulum: resonance islands containing librational 

orbits are separated by a boundary layer from surrounding rotational orbits. These resonance 

islands can lead to observed effects on the ionisation behaviour of the system. Unstable orbits 

near the separatrix are the source of chaotic motion. It is the resonances for small p and q 

th a t are most important, because for large p  and q the. resonance islands are small and the 

periodic motion within the islands is long compared to  the field interaction times.

For the quantum mechanics, the energy separation between adjacent states is A E n =  

E n + 1  — E n «  hu)x, so when Cl — ojk, there is approximately one photon energy separating 

the initial excited energy state from its immediate neighbours.

To recognise the effect of the resonances on the dynamics, it is useful to use scaled variables. 

The scaled frequency, Clo =  CI/ujk, and the corresponding scaled field, Fq =  a2F /e 2, where 

a is the unperturbed Kepler ellipse semi-major axis, a = n 2h2//j,e2. In scaled variables, the 

Coulomb force on the excited electron in an unperturbed circular orbit is, Fq =  1.

The dynamics of the system is dominated by one frequency, Qq. From experiments and 

numerical calculations, the observed behaviour can be categorised by six overlapping regions 

with the following characteristic behaviours in each.

R eg io n  I: T h e  T u n n e llin g  R eg ion  For f^o < 0.07 the field changes little in one Kepler 

period of the unperturbed motion and so the classical motion is well described by the 

adiabatically changing action-angle variables for a static field. The electron follows an 

elliptical orbit th a t precesses around the axis of the applied field, with the z-component 

of the Runge-Lenz vector (or equivalently the electric action) approximately constant. 

For slowly switched fields, the adiabatic changes in the motion of the electron mean th a t 

most non-ionising hydrogen atoms entering the microwave cavity in an excited state 

with principal quantum  number, n , leave the microwave cavity in a state with the same 

principal quantum number, n.
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For scaled fields, Fo > 0.13, classical orbits for some values of the action do not exist. 

Hence, as the field is slowly switched on, some orbits ionise. For fields, Fo > 0.38, the 

m ajority of orbits ionise.

Quantally a similar behaviour is seen with the slowly switched-on field causing a number 

of states to  ionise, with additional ionisation arising due to tunnelling through the barrier 

to  the continuum. There is little coupling between the adiabatic states and, after the field 

switch-on, there is little ionisation other than  by tunnelling from adiabatic states lying 

close to the top of the barrier. Experimentally ionisation is found to occur consistently 

below the classical ionisation limit and to be consistent with WKB tunnelling calculations 

described in [53] and [21]. There is a good match particularly for Clo ^  0.03.

R eg io n  II: T h e  Low F req u en cy  R eg io n  This region is approximately given by 0.05 < 

Clo ^  0.3. This region is differentiated from region I by the appearance of quantal tran 

sitions between adiabatic states. Classically, there is greater variation in the adiabatic 

actions. The transitions between adiabatic states lead to the appearance of additional 

structure in experimental graphs of ionisation against field strength: for some values of 

Clo, additional peaks and troughs in ionisation probability arise. This is described, for 

example, in [49].

For lower scaled frequencies, Clo ^  0.05, these features are not seen in the classical 

dynamics. One-dimensional quantal calculations [8, 9, 48, 49, 11, 22] suggest th a t the 

peaks correspond to resonances at Clo ~  1 /P- For large p, resonance effects are too small 

to have a noticeable effect in the classical dynamics, but quantally the resonances lead 

to stronger coupling between the adiabatic states causing excitations and de-excitations. 

These cause, for sufficiently strong fields, consequent changes in ionisation probability 

[49].

These resonances are also theoretically shown to extend into region I although the res

onance widths become exponentially small with increasing p [22] and so do not cause 

observable changes in ionisation.

R eg io n  III: T h e  N e a r  C lassical R eg io n  In the region, 0.1 < Clo ^  1-2, there is generally 

very good agreement between classical simulations and experimental results [24], par
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ticularly for 3-d simulations. Differences are seen at resonances values, where quantal 

descriptions are required. Experiments were carried out a t 9.92GHz, 26.43GHz and 

36.02GHz. Experimental results with initial states, n, chosen to correspond to the same 

scaled frequencies show a very close match (see for example, [31], figure lb ).

In region III, the ionisation region coincides with the onset of classical chaos, identified 

by Meerson et al [46]. This was shown for a one-dimensional model by Jensen [26, 27, 28] 

and by Leopold and Richards [38, 39] for the one-dimensional classical hydrogen atom 

[38] and the three-dimensional classical hydrogen atom [39]. For the Hamiltonians used 

they showed that as the perturbation size increases, the resonance islands become larger 

until the Chirikov ‘resonance overlap condition’ is met and the resonance islands are no 

longer distinct. When this condition is satisfied, some electron orbits become unstable. 

The motion of these electrons through phase space is approximately diffuse, allowing the 

population of higher energy regions of phase space. The onset of this unstable motion 

has been shown to  have good agreement with the experimental onset of ionisation over 

much of region III.

Classical resonances occur when Do =  1 /p, P — 2 ,3 ,----  The effects for p 1, were

discussed for region II. For p  =  2 and p — 3 classical simulations and experiments also 

differ, but the reasons for this are not yet clear; quantal effects are probably im portant.

R eg io n  IV : T h e  T ra n s itio n  R eg io n  For 1 < Do ^  2, the deviation between experimental 

results and classical 3-d simulations becomes more marked. The classical prediction for 

the threshold ionisation field, for which the ionisation probability is greater than  10%, 

is typically lower than th a t observed experimentally, although this is not always true 

near resonances. For some Do values, the quantal system is more stable than the clas

sical system. Jensen [29] showed numerically th a t at these frequencies the stable states 

occupied by the system are associated with classical unstable periodic orbits. Leopold 

and Richards [42] showed th a t the enhanced stability was due to the quantal system 

selectively exciting to these ‘scarred wave functions’. The longer period associated with 

these classical orbits is the same property th a t quantally causes the decoupling of the 

scarred wave functions from the continuum and hence reduces ionisation.
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R eg ion  V: T h e  H ig h -freq u en cy  R eg ion  For Qo > 2, experimental ionisation thresholds 

are above the classical predictions. Casati et al [15] showed th a t quantum effects could 

inhibit the excitation process, inhibiting the diffusive occupation of quantum states, even 

though the corresponding classical motion is chaotic; this process is known as quantum 

localisation. This localisation breaks down above a critical field referred to as the quan

tum delocalisation border. In region V this critical field is above the classical critical field 

for which the resonance overlap condition is met; hence, the quantal ionisation requires 

a higher field. A review of quantum localisation is provided in [16].

The ionisation threshold fields calculated from the quantum  localisation theory are at 

some variance to those observed experimentally. More accurate estimates for ionisation 

threshold fields were given by Leopold and Richards [40] from detailed quantal calcula

tions.

R eg ion  V I: T h e  P h o to e le c tr ic  R eg io n  For fio > n /2 , the energy gap to the continuum is 

one photon. This is the domain of the photoelectric effect, for which Einstein originally 

introduced the concept of the photon in 1905. Classical behaviour is expected to be 

entirely absent in this domain, at least for weak intensity fields.

A number of approaches to solve the quantum mechanics for the ionisation of atoms by 

microwave and laser fields have been developed. The large principal quantum number, the 

consequent high density of states and the need to  include the continuum make the prob

lem computationally intensive. Partly for this reason, almost all of the models developed to 

describe the system are one-dimensional.

Susskind and Jensen [55] compare one-dimensional calculations using different basis: a fi

nite set of unperturbed hydrogenic states and a discretised set of continuum states is compared 

with a finite set of Sturmian states, which overlap the continuum states.

Bliimel and Smilansky [9] use a finite basis set of unperturbed one-dimensional hydrogenic 

states. The calculations include bound-bound and bound-continuum transitions, but exclude 

continuum-continuum transitions. The effects of the field switch are ignored so th a t a Floquet 

method can be used to speed the calculations. The results show reasonable matches against 

experimental data  [43], for fio <  b  with an initial state in the interval 36 < n < 42 and the
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basis set including states in the interval 31 < n < 120.

A more efficient approach for low frequencies is given by Richards [48] using an adiabatic 

basis of bound Stark states and including ionisation to the continuum by the introduction 

of complex energies. The choice of basis requires fewer states to be included in the calcula

tions. The method is compared with experimental results and the calculations of Bliimel and 

Smilansky in [49].

For high scaled frequencies, Qo > 1, Leopold and Richards [41] give an efficient method 

using a truncated basis of one-dimensional hydrogenic Stark states. Ionisation is introduced 

by the inclusion of complex energies which are calculated using semi-classical methods. The 

method includes for the presence of a static field, in order to make the number of bound states 

finite. The calculation of the complex energies is modified in [50] to apply to  lower scaled 

frequencies.

The behaviour and theory just described apply to the excited hydrogen atom subjected 

to a microwave field. There is one fundamental frequency for this system, Do, which is why 

the system can be described reasonably well by one-dimensional approximations. However, 

the physics of the system is changed by the introduction of an additional static electric field, 

which we describe in the following section.

1.2 Microwave and Static Fields

The Hamiltonian for the electron of a hydrogen atom in a static field parallel to a microwave 

linearly polarised field is approximated by,

d  ̂  e
H  =  ----------1- z ^ s i n D t  + F$),

2/j, r .

where F^ is the microwave field amplitude and Fs is the static field. In this thesis we consider 

the low frequency region, Dq ^  1-

The presence of the static field introduces another time scale to the system. In classical 

mechanics, the additional static field causes the axis of the orbital ellipse to precess in the 

plane of the orbit. The frequency of precession varies with the static field, so th a t for some 

static field values resonances arise between the applied microwave field and the frequency of
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the precession. The dynamics are now determined by two frequencies: the scaled frequency, 

Do, and the frequency of precession caused by the static field.

The additional timescale leads to  observable differences in the ionisation behaviour of the 

system with distinct peaks in ionisation sometimes arising near resonances between the applied 

field frequency and the frequency of the precession of the ellipse, the latter depending on the 

static field strength, Fs.

For low frequencies, Dq ^  1> a good match to the experimental results is obtained using 

classical mechanics [51]. However, in this frequency range tunnelling is known to be im portant 

in the absence of a static field, as described for region I in the previous section. This motivates 

the development of a quantum description for the system, but this is complicated by the 

presence of the two time scales and the large quantum numbers involved.

Classically, the separatrix plays an im portant part in the dynamics of the system, leading 

to complex ionisation behaviour, particularly for slowly switched fields. As the separatrix 

occupies a relatively small area of phase space it is unclear how it will affect the quantum 

mechanics, or how large the quantum numbers must be before there is a clear correspon

dence between the classical and quantum  behaviour. To examine this requires a quantum 

approximation that can be applied for high quantum numbers.

This thesis is concerned primarily with the classical and quantum physics of a parallel static 

and linearly polarised microwave field, with scaled frequencies lying in region I described above. 

In this region, in the absence of a static field, resonances between the Kepler frequency and 

the microwave frequency have a negligible effect. Hence, when a static field is introduced we 

expect th a t resonance effects will be primarily due to resonances between the frequency of 

precession and the microwave field frequency.

The Hamiltonian is time-dependent, but is axially symmetric, so the magnetic quantum 

number, m, is constant and the system has 2 degrees of freedom. The classical physics of this 

was described by Richards [51] for low scaled frequencies, Do <C 1. Good agreement was found 

with experimental results for the locations and widths of resonance ionisation peaks, although 

many of the comparisons between experiment and theory remain unpublished [33].

The quantal methods described in the previous section cannot be applied to the prob

lem considered here. For low scaled frequencies in the presence of a static field, the orbital
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ellipse of the electron precesses and the electron motion is not one-dimensional; hence the 

one-dimensional methods just described cannot be used. We are aware of only two methods 

th a t can be used to solve Schrodinger’s equation for excited states th a t can also account for 

variation in the electron angular momentum. Buchleitner et al [12, 13, 14] apply Floquet 

techniques using a Sturmian basis for the three-dimensional Hamiltonian for a linearly po

larised microwave field, although the techniques are applied only for n  ~  20. The case of a 

circularly polarised microwave is also considered [56]. These techniques cannot be straightfor

wardly adapted to describe slowly-switched fields, which can have appreciable effects on the 

dynamics and are important for the system considered here.

The most direct method, although computationally intensive, is the numerical integration 

of the time-dependent Schrodinger equation on a space-time lattice. Robicheaux et al [52] use 

a space-time lattice approach for excited hydrogen atoms subjected to microwave and static 

fields. Their results are compared with the experimental results of Koch et al [32] in the 

vicinity of a resonance for Clo =  0.073. We compare their results with the method described 

here in §2.2.2 and §3.2.2 (pages 56 and 110) for ionisation probabilities and in §5.5 (page 172) 

for ionisation times.

The quantum method developed here is valid for low frequency linearly polarised microwave 

fields with parallel static fields and can be used for slowly-switched fields. The approach is 

computationally efficient, allowing a wide range of parameters to  be explored and for very 

high quantum numbers to be tackled. Results for principal quantum numbers up to n — 800 

are presented, with calculations possible for at least n — 1600. These calculations were carried 

out on a desktop PC with one Q6600 2.4GHz CPU.

1.3 Outline of Thesis

For the region of interest, Clo 1; the period of the applied field is much longer than the 

Kepler period. This fact is essential to the development of a classical approximation for the 

system by Richards [51], which is the starting point for the work described here. For clarity we 

include in this thesis a summary of the elements from [51] th a t we use; these are: the analysis 

leading to the Averaged Hamiltonian in §2.1.1 and §2.1.2, the Resonance Hamiltonian in §2.1.4
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and the classical ionisation mechanism described in §2.1.6. All other work presented here is 

the work of the author, unless stated otherwise within the text.

In the following, we provide an outline of the contents of this thesis. In chapter 2.1.2 we 

develop the classical theory. For the region of interest, 1> the period of the applied

field is much longer than the Kepler period. This fact is essential in the development of an 

approximate Hamiltonian to describe the system, see Richards [51].

The approach taken is to reduce the number of degrees of freedom and separate the faster 

and slower time scales of the system, allowing averaging methods to be used to ultimately give 

a more computationally efficient approximate Hamiltonian.

For a hydrogen atom in a static electric field, the Hamiltonian is separable in parabolic 

coordinates and for bound motion can be re-formulated in terms of action variables. These are 

most usefully expressed as the principal action, In , the axial angular momentum action, Im , 

and the electric action, I e, which corresponds to the z-component of the Runge-Lenz vector 

for the orbital ellipse. For parallel static and microwave fields, axial symmetry means th a t 7m 

is constant.

When the applied field varies slowly with time, the Hamiltonian gains an additional term 

in the canonical transformation to action-angle variables. The term depends on the angle 

variables, causing the action variables, I n and 7e, to evolve. For Clo <C 1, the frequency 

associated with the Kepler motion is much faster than  the frequency associated with the 

evolution of the electric action, I e. A  simpler approximation to the motion is therefore obtained 

by averaging over this faster motion, reducing the system to a one-dimensional time-dependent 

Hamiltonian, the Mean Motion Hamiltonian. This averaging approximation is equivalent to 

ignoring transitions between adiabatic states with different principal quantum numbers. In 

the absence of static fields, this is known to be a reasonable approximation for low frequencies, 

Clo <C 1. We apply the theory over a range of frequencies Clo < 0.1; the theory is expected to 

be more accurate in region I for Clo <  0.05.

The static field cause a precession in the orbital ellipse, the frequency of which depends 

on the static field strength and hence for particular static field strengths, resonances can arise 

between the frequency of the precession and the applied frequency, Cl. This effect can be 

isolated by an appropriate canonical transform ation of the Mean Motion Hamiltonian, after
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which the action variable, I e, and its canonically conjugate angle are both slowly varying 

compared to the external field frequency allowing a further simplifying approximation to be 

made to give the Averaged Hamiltonian. This Hamiltonian forms the basis for most of the 

calculations described here.

For most field values, the action, I e(t), is changed little by the presence of the applied field. 

However, in the vicinity of resonances, the resonance islands th a t appear in the phase space can 

cause larger changes in I e(t), which can result in increases in ionisation. To show this effect on 

the dynamics, an appropriate canonical transformation of the Averaged Hamiltonian is made 

to give the Resonance Hamiltonian, a time-independent Hamiltonian valid in the vicinity of a 

resonance when the applied field is at constant amplitude. The Resonance Hamiltonian proves 

useful in explaining the resonance structures seen in calculated ionisation probabilities and 

ionisation times.

Action-angle variables describe only the dynamics of bound motion. Ionisation therefore 

has to  be included as an additional approximation. For given values of (Jn , / m, / e) there is a 

critical static field in scaled variables, Fc(Im/ I n , I e/ I n) such th a t if Fo > Fc this state cannot 

exist. Banks and Leopold [2, 3] obtained an approximate algebraic formula for this critical 

field. Because the motion is approximately adiabatic for low scaled frequencies, these limits 

can also be incorporated into the ionisation tests used here and applied to each calculated 

orbit: all orbits for which Fc(Im/ I n , I e/ I n ) < F q are assumed to ionise — this is referred to 

as ‘over the barrier’ ionisation.

To validate the derived classical approximation, comparison is made with ionisation prob

abilities calculated using regularised dynamics for the exact Hamiltonian (see [47]). The 

comparisons are made for both single substates for specified (Im, / e(0)) with a uniform distri

bution of the initial conjugate angle of 7e(0), {^(O )}, and for microcanonical distributions of 

initial conditions. Experiments have so far provided data  only for the latter. To confirm th a t 

the equations of motion and their numerical evaluation are correct, we compare curves, I e(t), 

calculated using the equations of motion with analytic expressions derived from the Averaged 

Hamiltonian using classical perturbation theory, which are valid for field values away from 

resonance.

For the exact Hamiltonian, a number of features were identified in the structure of the



1.3. OUTLINE OF THESIS  23

ionisation probability [51]:

• In the vicinity of resonances, some peaks are seen in the ionisation probability as a 

function of static field. However, for some resonances, these are missing [25].

• The height and width of the resonance ionisation peaks vary considerably.

• Resonance ionisation peaks are usually displaced from the exact static field at which the 

resonance occurs and their shapes are difficult to predict.

We show th a t these features also occur for the approximate Averaged Hamiltonian and derive 

properties of the resonance islands that predict and explain some of these features. The 

calculations also show the im portant effect th a t the field switch-on has on the dynamics of the 

system.

For low scaled frequencies in the absence of a static field we know tunnelling to  be an 

im portant contributor to  ionisation. A quantal approximation is therefore required to properly 

describe the problem. This is developed in chapter 3.

A quantal formulation is obtained from the classical Hamiltonians by rewriting them as 

suitably symmetrised operator equations. Quantum equations of motion are derived for the 

Averaged Hamiltonian and the Resonance Hamiltonian.

Because the quantum  equations of motion are derived from the action-angle variable clas

sical Hamiltonian, they can only describe bound states. Ionisation is introduced as a further 

approximation by the inclusion of complex energies.

In the absence of static fields, tunnelling is a significant contributor to ionisation for low 

scaled frequencies, Qo ^  1 • We therefore expect th a t in addition to ionisation due to excitation 

‘over the barrier’, tunnelling will be a significant contributor to  ionisation.

Corresponding to the classical ‘over the barrier’ ionisation, states (n, m, k ) such th a t the 

classical critical field, in scaled variables, Fc(m /n ,k /n )  > Fo are expected to  ionise. Tunnelling 

will also include ionisation from states below this critical limit.

Semi-classical techniques were used by Dando [21] to calculate tunnelling rates for excited 

hydrogen atoms in the presence of a low frequency microwave field. The approach uses tun 

nelling rates calculated for a static field th a t are assumed to also be valid when the field is 

slowly varying. It is not known how the accuracy of this theory varies with frequency, but for
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the low frequencies of region I, a good match was found with experiments [53] for Clo £  0.05, 

with the best match found for Clo ^  0.033. Here we derive a computationally efficient de

cay function suitable, fitted to  semi-classically determined decay rates in the vicinity of the 

classical ionisation limit, for use over a range of field values.

The limited availability of published quantal calculations and experimental data  restricts 

the validation checks th a t we can make for our quantal approximation. Comparison is made 

with classical calculations for the Averaged Hamiltonian and the exact Hamiltonian using 

regularised dynamics to confirm th a t the behaviour is consistent. Later calculations for very 

high quantum numbers (see §6 on page 177) confirm the expected high quantum  number 

correspondence with classical dynamics. However, as far as we are aware, the only other 

published quantal calculations in the region of interest are those of Robicheaux et al [52], who 

compare their calculations with the experiments of Koch et al [32], The essential features 

seen in these limited results are consistent with our quantal calculations, although we identify 

and discuss a number of differences between their calculations, the ionisation probabilities 

presented here and exact classical calculations using regularised dynamics.

Resonances cause broadly similar effects in the quantal and classical ionisation probabilities 

as functions of static field, with ionisation peaks occurring in the vicinity of the classical 

resonances. However, we find th a t tunnelling plays an im portant part in ionisation even for 

relatively high quantum numbers, such as n  =  100. We show these effects for low quantum 

numbers in §3.4 (page 126) and for high quantum  numbers in §6.2 (page 179).

Quantally, additional local maxima and minima are seen in ionisation probability curves, 

particularly for low quantum numbers. Floquet treatm ents show th a t these correspond to 

‘avoided crossings’ where the eigenvalues of neighbouring states become nearly degenerate. For 

low quantum numbers we show th a t the eigenvalues and eigenstates of the quantised Resonance 

Hamiltonian correspond to Floquet quasi-energies and states and th a t the locations of the 

avoided crossings correspond to the observed peaks and troughs in the ionisation probabilities.

In chapter 4 we apply the classical and quantum theory developed in the preceding chap

ters to provide insight into the effects th a t resonances have on ionisation behaviour. Two 

neighbouring resonances are examined for the scaled frequency, Clo = 0.0528. Much of the 

observed quantal behaviour echoes the corresponding classical behaviour, which is traced to
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the effect of the resonance island on the classical orbits. For the second resonance, for short 

field durations, two ionisation peaks are seen both classically and quantally. This structure 

is shown to be a consequence of ionisation contributions from both librational and rotational 

orbits near the resonance, but only arises for gradually switched-on fields.

The time scales associated with classical orbits near resonances are determined by the 

librational orbits of the resonance island. Orbits close to  the separatrix have long periods 

and consequently in the vicinity of a resonance, ionisation times are longer if the orbits con

tributing to ionisation lie close to  the separatrix. In chapter 5 we derive analytic expressions 

for ionisation times and show how the classical ionisation times of individual orbits lead to 

characteristic peaks in ionisation times at resonance for systems prepared in single substates

Of ( W e ( 0 ) ) .

The influence of the separatrix is also seen in quantal ionisation times, even for relatively 

small quantum numbers, n — 39. We examine ionisation times for high quantum numbers 

and confirm th a t for sufficiently high quantum numbers all of the classical features are also 

observed.

When ionisation times are calculated for microcanonical distributions of initial conditions, 

averaging hides much of the structure; however, a clear peak in ionisation times is still seen in 

the vicinity of a resonance. This behaviour is also seen in the calculations of Robicheaux et al 

[52] and their figure 2 in particular, where they plot the ionisation probability as a function 

of time, although this is not conclusive as the results are only given for three field values. We 

calculate similar plots and confirm th a t the behaviour for our quantum  approximation is very 

similar and is a consequence of the behaviour seen for individual substates.

The quantum approximation we have derived is computationally efficient and can be ap

plied to high quantum  numbers with relatively modest computational resources, which we 

exploit in chapter 6. The quantal matrices to solve are tri-diagonal and for a single sub

state the computational time varies approximately as n 1-7, where n  is the principal quantum 

number. In contrast, calculations using unperturbed hydrogenic states vary as n3.

We show th a t although the fraction of states contributing to tunnelling ionisation reduces 

with increasing quantum number, there are still appreciable differences in ionisation behaviour 

for n =  100 and that for small resonance islands, tunnelling is im portant for very large quantum
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numbers, up to n  =  400 for the island sizes considered.

Classically, near a resonance when the external field is slowly switched on, the presence 

of the separatrix causes tangles to develop in the evolving phase curves. The slower the field 

is switched on, the more complex the tangles become. The effects of this on the classical 

ionisation probability were explored by Richards [51] for the exact classical system. As the 

field switch duration is extended, the increasingly tangled initial phase curves cause more 

complex features to be seen in plots of ionisation probability against static field. Multiple 

ionisation peaks appear and for some switch-on durations ionisation is missing entirely. These 

effects are also demonstrated for the classical Averaged Hamiltonian.

The separatrix curves occupy a relatively small region in phase space and so we do not 

expect the same structures to  appear in the quantum mechanics for low quantum numbers. 

However, as the quantum number is increased, the increasing state density should lead to 

mimicked behaviour in the quantum mechanics. We confirm th a t this is the case for high 

quantum numbers (n =  800) and show that, although less clear, the effects are still present at 

n  =  100.



Chapter 2

The Averaged Ham iltonian

2.1 Classical Theory

2.1.1 The M ean M otion H am iltonian

Experiments on the ionisation of excited hydrogen atoms by microwave fields have been carried 

out by two groups using slightly different configurations. Koch and co-workers use a microwave 

cavity with a linearly polarised field coincident and parallel electric field coincident with the 

direction of travel of the atoms through the cavity. Bayfield and co-workers pass the atomic 

beam through a TE mode waveguide in a direction perpendicular to the waveguide axis.

Leopold and Richards [41] showed th a t if, in the rest frame of the hydrogen atom, the field 

is switched on and off gradually then for both experimental configurations the Hamiltonian 

can be approximately written as,

H = h ? 2 - T +F( t ) z  (21)

where /i is the reduced atomic mass, e is the electron charge and F  is the applied field.

The numerical evaluation of the equations of motion for this Hamiltonian are complicated 

by the presence of the Coulomb singularity. Suitable equations can be obtained by a regulari- 

sation method described by Rath and Richards [47]. For the sake of brevity, hereafter we will 

refer to these regularised dynamics for the exact Hamiltonian as the exact classical dynamics.

27
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The applied field is of the form

F(t) = A(t) (Fs + c o s(Qt) ) , (2 .2)

where Fs is the static field, F^ and 0, are the amplitude and frequency of the microwave field. 

The function A (t) determines the shape of the field envelope; this approximation for the field

The field envelope for the Bayfield experiments is sin(7rt/T) where T  is the time taken 

for the atoms to pass through the waveguide. The envelope function we will consider here 

applies to the Koch experiments. In the hydrogen atom rest frame the field is seen to rise 

monotonically from zero to one over a switch-on period lasting N a field periods, remain ap

proximately constant for a period of Nb field cycles and fall monotonically to zero over a 

matching switch-off period lasting N a field cycles. The envelope will be referred to using the 

notation N a- N ^ -N a. A suitable form for the envelope is taken to be,

where T  =  2tt/Q. The suitability of this approximation was checked originally by solving 

Maxwell’s equations numerically for the microwave cavity, including the end caps. For the 

original experiments the best fit was obtained for N a =  13 and Nb =  116. Whilst the field in 

the cavity is axially symmetric, there is variation radially. The approximation therefore allows 

for an averaging over a small field range near the axis centre.

Much of the analysis is more convenient in scaled units defined in terms of the unperturbed 

Kepler ellipse semi-major axis, a = I 2/(fie2) and the Kepler frequency, ujk =  Me4/-̂ n> where 

In — nh  and n  is the principal quantum number for the unperturbed atom. Where it is 

necessary to make clear th a t the quantities are scaled, the subscript 0 will be used. Scaled

is valid only for A/A <C Cl.

(

0 < |  < N a, 

K < ^ < N a + N b,

N a + N b < ^ < 2 N a + N bl

1,
A(t) = < (2.3)

0 otherwise.
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and unsealed frequencies and field values are related by

q  q  o?F F
Q0 = —  =  ——  (0.00533757n)3 and F0 =  =  — — (0.00373535n)4.

ojk GHz e2 V /cm

For a uniform static field the Hamiltonian is separable in squared parabolic coordinates 

(see [1 0 ]),

x  — £?7 Cos</>, y — ^7 7s i n 2  =  i ( £ 2  -  t?2), £ > 0 , 77 >  0,

with the conjugate momenta,

Pe, = f 4 ( t 2 + V2), Pv = /"K f2 +  P2) and P4> =

In these coordinates, the Hamiltonian becomes

H  =
2 +  r]2) P2 + P2 + ^  + ^ ) p I  + -  PA) ~  4/xc5 =  E,  (2.4)

where the energy E  is constant. Since djH/d<j> =  0, p# is constant — the axial angular 

momentum is conserved.

In the following we assume that F  > 0 and E  <  0. The Hamilton-Jacobi equation is

( i  y +H s y +̂ 4- ̂ b+(S)2+  ̂(S)2 - ̂  - 2̂ e=^  (2-5)

where S(q, I) is the generating function for the canonical transformation from the coordinates 

(q, p) to action-angle variables. The symbol q denotes the original coordinates, (£, 77,0 ). This 

equation is separable, so the generating function can be written as

S =  S i ( 0  +  S2( ? 7 ) + « , (2.6)
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where

S iK ) = J p ( d £  = J  + 2^ *  + 2a lfle2e  -  (2.7)

S'Jri) = J  pv dr] = f ^ F v° + 2» E v * + 2a 2, e W - 0(2-8)

The dimensionless terms an and a.2 are the separation constants for the Hamilton-Jacobi 

equation (2.5), satisfying oq +  Q2 =  2.

Before deriving the action variables, it is useful to examine the effective potentials for 

the ^-motion and 77-motion. From the Hamilton-Jacobi equation, expressed in terms of the 

original parabolic coordinate momenta,

+  V2 (?/) =  0(2

where

e/ and V2{rj) =
F r f  Er f

+2e2 e2 ' 2/ue2£2 zw / 2e2 e2 ' 2[ie2r f

Plots of Vi(£) and V2(77) are showm in figures 2.1 and 2.2, assuming that F  >  0.

(2.9)

Figure 2.1 Vi(£). F igure 2.2 V^fr?).

For all F  > 0, the ^-motion is bound, such th a t £1 < £ <  £2- The 77-motion is only bound 

for certain values of E , F  and 0:2. From figure 2.2 it can be seen th a t bound motion satisfies 

771 < 77 < 772 and the unbound motion, 77 > 773. If E  is kept fixed and a 2 increased, the turning
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points 772 and 773 approach each other and eventually coalesce; for larger a.2 there is no bound 

motion. Changing the sign of F  effectively swaps the potentials Vi(£) and V2 (77), so th a t the 

77-motion becomes bound for all values of E,  F  and a\ ,  whereas the ^-motion can be bound 

or unbound.

Prom equations (2.7) and (2.8), the action variables are

h  = -  t  + 2a i ne2e  -  I I ) 1' 2 (2.10)

and

J2 =  I [ m +  2i iEn1 +  2 a 2 »e 2 n2 -  4  )1/2 (2.11)

where £1 , £2 , Vi and 772 are the classical turning points. The action variables only exist for 

bound-motion.

For much of the analysis, it is more convenient to work with the equivalent canonical 

variables,

In — Ii  +  h  +  Im,

I e = h ~  h i  

Jm =  I  mi

where In is the principal action is associated with the orbital motion of the electron around the 

nucleus and I m is is the axial angular momentum action. The electric action, I e, corresponds 

to the 2 -component of the Runge-Lenz vector for the electron orbital ellipse.

The system is semi-classically quantised by

h  — (n k  +  ^  hi k — 1,2 and I m — (2.12)

where rik are integers satisfying n & > 0. These quantum numbers satisfy,

—  4 n  4 e i  

@2 =  4>n +  4 e i  

@m =  4 n  4*7111

n — n\ +  112 4- |7n| 4-1 and ne =  n<i — 77.1,
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where n  is the principal quantum number and n e is named the electric quantum number.

The integrals (2.10) and (2.11) implicitly relate (E , a \ ) to ( I i , I 2). An evaluation of these 

integrals as series expansions in F  is given by Richards [51], from which much of the following 

is quoted. Prom the series expansions for I\  and I 2 -, the energy can be expressed as

4 oo

E (I e ,F)  = - ^  + J 2 E k( l)F k ’ (2-13)
n k = 1

where the first five perturbation terms for the energy are:

3 7n7e
Ei(I )  = 2 fie2 

J 4±n
16 fi3 es£2(i) =

3 II I.
m )  = - ^ k i n ( 2 3 I n - I '  + n I ^

3 /10
E t (l) = - 102V e20(1829/'  -  ~  183/m +

(602/2 -  3 7 8 4 ) /e2 +  49/e4),

37137
E i(I) = ~ I024> e ^  (1°5637" + 7727” 7" + 725/"  +

(98I I  + 22012m) l l  -  21 I t) .

Some higher terms in the expansion for E ( I e,F)  are given in [51], but here we truncate all 

expansions to 0 ( F 5) as later approximations to derive the Hamiltonian for a time-varying 

field are made to 0 ( F )  only. The radius of convergence of the series sets an upper limit on the 

scaled field, |Fq|. Calculating the ratio of consecutive perturbation terms and using Richardson 

extrapolation, an estimate can be obtained for the radius of convergence. Using this method 

applied to the first 17 terms in the perturbation expansion, Richards [51] calculated th a t for 

Im/ I n — 0,0.8 and 1, the radius of convergence was approximately, 0.17, 0.19 and 0.21.

The angle variables, (9i, O2 ), corresponding to the action variables (7i, I 2 ) can be expressed 

in term s of the auxiliary angles %/j and x  35

91 = ^  + Pxi'i/j) + Qi(x )  and 02 = X + P2 W  + Q 2 U) ,  (2-14)
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where and x  are defined by

and

z-2 2̂ • 2 ^  , >2 2 V* J  2 2 • 2 X , 2 2 X£ = £ 2 sin 7T + ^ i C0S 77 and V = r )2 sm - + ? 7 f c o s  - ,

Pi =  — cti s in 'tp +  0 ( F ) ,  P2 =  — o\  s in ^  +  O(F),

Qi = —cr2 sin x  +  0 ( F )  and Q2 =  - a 2 s in *  +  0 ( F ) ,

where
y / h ( h  +  Im) j  y/12 (I2 +  Im)ai -  ——   and a2 =  —-------=---------

In the presence of a time-dependent field, F ( t ), the generating function (2.6) becomes S ( q , / ,  t) 

and the Hamiltonian in these new coordinates gains an additional term, dS /d t ,

K  = E ( I , F {t)) + § f .

When A(t) =  1, d F / d t  = — F^QsinQt .  During field switch-on and switch-off, it is

= - F ^ Q  
d t *

A(x) sin fIt +
1 dA(x)

2 7riVa dx ^ F.
F
-=r +  cos Qt

where x is given in equation (2.3). If the field switch-on and switch-off periods are sufficiently 

long, then the second term in the brackets can be ignored, so we use the approximation,

F  «  — A(t)i?/if2sinf2£. (2.15)

In scaled units and Q are small, hence a second order approximation can be obtained for 

d S / d t  by expanding d S / d F  in F  and ignoring all terms 0 ( F )  or higher. From [51],

d S  I*
d.F 2 fi2 eG ’
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where

G =  (3/2 +  h  + 2 | / m|)<7i sin'0 -  (3 /i +  I 2 +  2|Jm|)cr2 sin*  -  s in 2^ -  cr| sin 2*).

The resulting approximate Hamiltonian, which will be referred to as the Adiabatic Hamilto

nian, is
r4

(2.16)
I 4±n

2 fi2 et
K  =  E ( I ,  F)  +  G ( h , I 2, ^ ,  x ).

This is the same as given by Richards [51] apart from a sign change for the second term. In 

most cases considered here the sign difference has no effect as the results are generated from 

averages over a uniform distribution of initial conditions for the angle variables.

The Adiabatic Hamiltonian is expected to  be more accurate for small scaled values of F  

and Q, and for sufficiently slowly changing field envelopes such th a t A/A <C Q.

In order to express G (/i, / 2, x)  i*1 terms of canonically conjugate angles, the terms in -i/> 

and x  are obtained as multiple Fourier series expansions in 9\ and 6 2 ,

sin k'lp 
sin kx

OO OO

= E E
S l=  —OO S2 — — 00 '  SlS2a

Xk)
’SiSs
(k) exp [- i  (si0i +  s2#2 )] • (2.17)

The Fourier coefficients are obtained using (2.14),

=  <

i 7T JS2 (sa2 )[Js1+k(s(Ti) +  JSl- k(sai)], s / 0 ,  
2 s

=F-
1 0 2

T ’

0,

s =  0, Si =  ±1 and k — 1, 

otherwise;

and

C (fc) =  <Sl S2 '

i 0 Jsi (^<̂ l)[‘̂ S2+fc(5<72) 4“ t/S2_fc(s(72)], s / 0 ,
2 s

=F-
1 0 1 

’ 4 " ’
s — 0, si =  ±1 and k — 1, 

otherwise,

where s =  Si +  s2.
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A further approximation can be made following examination of the angular frequencies for 

the In and I e motions, which are

and
34

d ln ~  I I  2  fie2

d K  fie 37n (  ̂ f 2 \
UJn = 1r r  = - Fr -  r̂—oF{t) + 0 { F  ).

For small |F |, u e <C ujn . When <j>n changes by 2ir there is little change in <fie, hence an 

approximation can be obtained by averaging over <pn . Averaging removes all terms containing 

exp(—is(f)n) from equation (2.17) where s ^  0. Hence

(sin V>) =  y  sin 20e, (sin x) =  -  y  sin 2(j>e

and

(sin2V>) =  (sin2x) =  0.

Inserting these expressions into G ( I i , l 2 , ^ , x ) )  we obtain the mean motion Hamiltonian,

1 1  ̂ d F
K m = E ( I e, F ( t )) +  - - ^ — A(I€)B(h)sm{24, ' ) ,  (2.18)

where

A ( h ) = ^ / { I n + \Im \)2 - I l  B ( h )  =  V ( I n  -  |/m |)2 -  J? and \h\ < In -  \Im \.

The mean motion approximation reduces the system to a one-dimensional time dependent 

problem in (0e, / e), with I n constant due to the averaging over 4>n. Quantum mechanically 

this is equivalent to ignoring all transitions between different n  states. This is a reasonable 

assumption for the low frequency fields considered, because the energy difference between 

neighbouring principal quantum number states is relatively large compared with the photon
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energy, Ml, of the applied field. As a first approximation,

hence the difference between energy levels is

A E n \En+i -  E n | «  ^ 2 ^ 3  

and the number of photons required to bridge the gap is

A Er
Ml

For the low frequencies considered here, Qo < 0.1 and \AEn/ E ph\ > 10.

2.1.2 The Averaged Ham iltonian

For low scaled frequencies the 0 e-dependent term  in the mean motion Hamiltonian (2.18) is 

relatively small. Consequently, for most values of Fs, and fl, I e executes small amplitude 

oscillations. There are however, values of Fs, F^ and Q for which resonances occur and the 

variation in I e can become much larger. Examples of this variation are shown in figure 2.4 

(page 42), later in this section.

The energy (2.13) contains terms linear in 7e; taken alone these terms cause a simple 

evolution in (j)e which is independent of I e. This can be seen by examining the Hamiltonian 

EL(Ie,F ( t )) obtained by ignoring all components of E  other than those linear in I e. The 

equation of motion for 4>e is

A -  9 E L
0 e  —  O T  )Ole

which is independent of I e and can therefore be immediately integrated to give
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where

r t d E L

/
, ~r dt

■. Jo 9Ie
I 6 F 3=  I At F  + - ^ ( 2 3 / 2 +  1 1 /2 )+

Tl2ip5
" (10563/4 +  772/2/2 + 7 2 5 /4 ) +  . . .  . (2.19)
512

In the above expression and for the rest of this section we have set /i =  e =  1. The function 

g(t) can be w ritten as g(t) = gt + g(t) where g is constant and g(t) is periodic in t with zero 

mean. Restricting attention to  times when A(t) — 1, F(t) — Fs + F^ cos fit  gives

9  =  Fs + ^ ( 2 3 / 2 + l l 4 ) F s ^  +  ^ 2 ]  (2.20)

Tl2 /  i c
i n         rO  rO   r A  X ^  / ^ A  -  , - ,9  ^ -,9  J-O

512
+  ^  (10563^ +  772/2/2 +  7 2 5 0 F ,  ( F s4 +  5 F 3 F 3 +  - F 4 ) +

The periodic function g(t) can be written as a Fourier series,

F  .°T
g{t) = - £ ^ 2  gk sin kt ti  (2.21)

n  ,fc=i

where

h  =  1 +  (23/2 +  11/2 ) / F 2 +  +  o (F 4),

9 2  =  3 /^ f >‘ (23/2 +  l l O  +  0 ( F 4),

r l2  p2
~9 3 = ^ ( ^ i 2n + n i 2m) + o ( F 4)

and all other gf. are 0 ( F 4).

The canonical transformation F2 (4>e,P)  =  P(4>e + 3In9{t)) transforms to a rotating refer

ence frame, ifje = 4>e + 3Ing(t) and P  = I e, which removes the terms linear in I e. The new 

Hamiltonian is

K'm = E n ( I e,F( t ))  -  l l 3n\ ( t )F ltQA(Ie) B ( h ) s m n t s m ( 2 i , e -  3I ng(t)) (2.22)
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where E R(Ie, F ( t )) = E ( I e, F ( t )) -  E L(Ie, F(t)).

From this expression we see th a t for F  and ft in scaled coordinates, I e =  O(Ffl )  and 

■0e =  0 ( F 2), hence the (ipe,Ie) variables evolve slowly compared to the applied field. The 

energy expression used in the mean motion Hamiltonian, equation (2.18), can therefore be 

approximated by averaging over a period of the applied field,

OO

E ( I e,F(t ))  »  E ( I e,Fs ,F„, t)  =  j  + Y ^ E k{l)F* (2.23)
n  fc =  l

where F k are the averages over one field period of F ( t ) fc,

F W ) «  ^  / V s  + E * cos(n t ' ) )k d T  = ~ ,

where we assume th a t A (t) varies little during one field oscillation. The resultant Hamiltonian, 

which will be referred to as the Averaged Hamiltonian, is

K m =  E R{ h , F s, F „ t )  -  i / jA ( t )F // M ( J e)B (/e)sinft£sin(2V>e -  3Ing{t)) (2.24)

where to 0 ( F 5) and ignoring terms independent of 7e,

E R(Ie,Fs,F„, t)  = ^  + ^ p j  + ( f ?  +  ^  (2.25)

_  4 ° ^ V ( t )  ^903/2 _  567/2 +  1 4 7 +  3F , F j +  3 2 ^

_  g ^ | A 5(t) I 'H T J l  +  165/^  _  6U l ' j  ^  ^  +  5F?J?,  + 15 F l j

and A(t) is given by equation (2.3), page 28.

This Hamiltonian forms the basis for much of the analysis and results given throughout the 

remainder of this thesis. It provides a one-dimensional approximation to the three-dimensional 

exact Hamiltonian (2.1), page 27, for a hydrogen atom in a parallel static and linearly polarised 

microwave field. A number of approximations have been made in its derivation, which we 

summarise for clarity:
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1. The energy expression (2.13), page 32, is a perturbation expansion in F.  The expansion 

has a finite radius of convergence in |F |. Here we term inate the expansion a t 0 ( F 5).

2. The adaptation of the static field Hamiltonian to the case of a time-varying field requires 

the inclusion of a time dependent perturbation term, dS/dt ,  calculated as a first order 

expansion in F.

3. The microwave field frequency is small relative to the Kepler frequency, allowing the fast 

oscillation terms in 4>n to be averaged over.

4. The field switch-on and switch off are assumed to be sufficiently long so th a t dF /  dt ~  

—A(t)FMf2 sin fit.

5. Terms linear in I e cause a secular change in the angle variable. The canonical transforma

tion, T2(0e, P ) =  P(cj)e + 3Ing( t )) removes this secular change. A further approximation 

is introduced in the expansion for g(t).

6. From the resultant Hamiltonian, Hamilton’s equations, in scaled variables, are 0 ( F 2) 

and O(FQ),  hence the variables (0e, / e) evolve slowly allowing the term  En(t )  to be 

approximated as E r , obtained by averaging over a period of the applied field.

From these assumptions we expect the Averaged Hamiltonian to be most accurate for 

small Q and F.  For the results shown later, typically in scaled variables, f) < 0.1, FM <  0.15 

and Fs <  0.08. From [53, 21], it was shown th a t for Q > 0.05 transitions between different n 

states need to be taken into account, so we expect the Averaged Hamiltonian to become less 

accurate in this domain.

The approximation for dF /  dt is of less importance. For N a > 5, the approximation is 

a fairly close match, as can be seen in figure 2.3. In practice, the limited evolution of Ie(t) 

observed during short duration field means th a t the inaccuracies in the approximation are 

not important, as is seen later in §6.4, page 191; hence, the approximation can reasonably be 

applied for all N a.
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Figure 2.3 P lo ts com paring {F^Q) 1 dF /  dt  calculated exactly  (solid line) and  using th e  approxim a

tion (Ffj, Q )_1 dF/  d t ~  —A (t)sin f2 t (dashed line) for x =  tQ/2irNa and various Na-

2.1.3 Classical Equations of M otion

The numerical integration of Hamilton’s equations derived from equation (2.24) is complicated 

by the presence of the B ( I e) factor in the time dependent term, which introduces a singularity 

into the equations of motion when I e =  ± ( /n — |/m|). To avoid this the equations of motion 

can be rewritten in terms of the three dimensional vector,

Z =  (B{Ie) cos(2^e -  3g(t)), B{ Ie) sin(2^e -  Sg(t )) ,Ie) .

The components of Z satisfy commutation relations [.Z i , Z j ] — 2eijkZk, where ê -fc is the 

completely antisymmetric tensor. The length |Z| =  I n — \Im \ is constant. The equations of 

motion,

Z i = \Zi, K m} + ^ - ,

become

dZi
dt 2 ^ 3  + Z2 (3® - ) -

d^2 „ „ 9 E r  n ^ ^  dA
,, =  2Zi — 3c/Zi + 2 a Z 1Z2- — ,

Clt o l e o Z s

= - 2 a A Z u  (2.26)

where

a (t ) =  - M 4 L Fjjn s in (fit)  and A ( Z 3) = y f ( In +  | /m|)= -  Z32. (2.27)
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These equations can be easily integrated numerically. Numerical calculations provided here 

are performed either in Fortran using the NAG routine D02CJF for the integration of the 

equations of motion, or in Maple. All numerical calculations are done in scaled variables, 

setting In — e — n  =  1, so th a t I e -» I e/ I n and Im Im/In-

In figure 2.4, the equations of motion, (2.26), are integrated using the method described 

above for the scaled variables, F^ =  0.13, Qo =  0.011414, Im =  0.2, field envelope 16-50-16 

and / e(0) =  —0.5. Two values for Fs are chosen to  exhibit the typical behaviour of I e(t) for 

the Averaged Hamiltonian. For each Fs value, results for two initial conditions for V'e(O) are 

provided.

For Fs — 0.026 the behaviour is characteristic of ‘off-resonance’ field parameters. It can 

be seen th a t for both initial conditions for 7/>e(0), only a small variation in I e(t) occurs, with 

the motion centred on value close to  Ie{0).

Examining I e(t) at the end of integration for a sample of 600 orbits with ijje(0) uniformly 

distributed in the range (0,7r) confirms this behaviour: the mean value is -0.505, the standard 

deviation is 0.0096 and all final I e values lie in the narrow range (—0.52, —0.49). Off resonance 

behaviour is examined in more detail in §2.4 using classical perturbation theory.

In contrast, Fs = 0.02464 is chosen to lie near a resonance between the applied field 

and the system. There are large underlying oscillations in I e(t), with superimposed smaller 

fluctuations. The amplitude and centre of the oscillation depend on the initial value ^(O )- 

For a similar sample of final Ie(t) values for 600 orbits, the mean is -0.439, the standard 

deviation is 0.108 and the range is (-0 .6 0 ,-0 .1 7 ). Resonance behaviour is explored further 

in the following section.
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Fs=0.026, V|/c(0 )= 0
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Figure 2.4 Ie (t) for 0 ( F 5) H am iltonian K m , =  0.13, f2o =  0.011414, / m =  0.2, Ie(0) =  —0.5 and

envelope 16-50-16. All quan tities are given in scaled variables.

2.1.4 The Resonance H am iltonian

In general the time-dependent perturbation term in the Averaged Hamiltonian, equation

(2.24), page 38, changes rapidly and hence when integrated causes only small changes in 

Ie(t). However, for certain field parameters resonances arise and the perturbation term be

comes a more slowly varying function of time. When the equations of motion are integrated 

the slower changes can, as observed in figure 2.4, have significant effects on I e(t).

The nature of the resonances and the behaviour of the system at resonance can be shown 

by a further transformation of the Averaged Hamiltonian. In this section, we assume th a t 

the field amplitude is fixed so th a t A(t) =  1. Fourier expanding the ^ -dependen t term  in 

equation (2.24) yields

OO
sin (2V>e -  3Ing(t)) = '^2  Jk  sin(2'0e -  vkt + kn),

k=—oo

where

vk =  3Ing -  kQ. (2.28)

The Fourier coefficients, J k , depend on gk and to 0 ( F 2) are (from [51], equation (28))
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OO
<Tk = Jk{,z l)Jo(z 2')Jo{.z3) 4“ Jq{z2 ') ^  ' Js{z3 ) [̂ /g—3.s(^l) 4~ ( 1) ^/c+3^(-̂ 1)]

s=1
00

+  ̂ 0 (^3 ) Js{z 2 ) [Jk-2s{z\) + ( — 1)S Jfc+2s(-2:l)] 
s=l 

00 00

4“ ^   ̂Jsi.z 2) ^   ̂ J r i z 3 ) [^fc —2s—3 r ( ^ l )  4" ( 1 )  ^fc—2s+3r('2;l )
s = l  r = l

+ ( — 1)SJfc+2s-3r('2:l) +  ( ~ l ) S+1~^fc-f2s+3r(-Zl)] > (2.29)

where 2 fc =  SgklnF^/Ll. Expanding in powers of F,  the leading term  is

Jk  *  Jk ■ (2-30)

This expression is exact if the series expansion for g(t) is term inated at 0 ( F 2). Defining

the Hamiltonian (2.24) can be rewritten as,

 ̂ OO
K m  «  E R (Ie, F) -  - I * F ,S lA ( Ie)B{Ie) Y  5k  cos(2ipe -  vkt +  kn).

k=—oo

The nature of the solutions to Hamilton’s equations changes in the regions where for some j , 

\i/j \ «  0; i.e. when the field amplitudes, Fs and FM, satisfy

3 In9 (FaiFll) = j n ,  j  = 1 , 2 , . . . .  (2.32)

For fixed F^  and Q, the static field values, F i^ (F M, Q), satisfying this equation will be referred 

to as the dynamical resonances. To a first approximation, including terms up to 0{F )  only, 

Fs^  ~  jD o /3  in scaled units. It will be seen later th a t near Fs = F ^ \  the ionisation 

probability can have local maxima. The maxima usually do not lie exactly at Fs = F ^ \  the 

reason for this is explained in §2.3.

When a comparison is made between the exact classical dynamics and the approximations
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described here, it is seen th a t the locations of the ionisation probability maxima are slightly 

different. Including higher order terms in the calculation of the dynamical resonances, F  

reduces the differences. This is discussed further in §2.2.1.

Ignoring the rapidly oscillating terms for k ^  j ,  the Averaged Hamiltonian can be approx

imated by

K r  «  E R(Ie, F)  -  ^ l l F ^ A { I e)B{Ie)J j  cos(2ijje -  V j t + j i r).

Applying the canonical transformation,

0R = ^ e -  V j t / 2  + j - K/ 2 ,  (2.33)

with I e unchanged, the resultant time-independent Hamiltonian, which will be referred to  as 

the Resonance Hamiltonian, is

K r  =  £ * (/« , F) -  ^ J e -  cos(2 »R), (2.34)

or equivalently,

K r  =  E ( I e,F)  -  cos(28 r ),

where E  and E R are given in equations (2.23)and (2.25) on page 38.

If terms higher than 0 ( F 2) are ignored in the energy expansion, the Hamiltonian is

*R = h + if) ~ aj)2 ~ (^Pi) cos(20«)- (2-35)
where

_  8 / 3  InFs - j Q \
a j ~ 3 1 *  i  n + 2 F 2 )■

The Resonant Hamiltonian is time-independent and has a number of similarities with the 

Hamiltonian for the simple pendulum, with librational and rotational motion phase curves 

separated by a separatrix curve. The size of the librational island can have a significant effect 

on the dynamics and on observed ionisation behaviour.
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For certain values of j ,  and Q, J j  =  0, removing the ^ -d ep en d en t term  from the 

Resonance Hamiltonian. This can affect the observed ionisation behaviour, suppressing the 

appearance of ionisation probability peaks. This effect is observed in the exact classical dy

namics and in experimental results, see for example [25].

It is generally more useful to work in scaled variables. From here on, unless stated other

wise, all scaled variables are used.

2.1.5 Resonance Islands

The behaviour of the system in the vicinity of a resonance is dominated by the presence of 

resonance islands in phase space. In this section we calculate some properties of the resonance 

islands that are useful later to understand and predict ionisation behaviour.

Figures 2.5 and 2.6 show phase curves of the 0 ( F 5) Resonance Hamiltonian given by 

equation (2.34) for the dynamical parameters F^ = 0.13 and Clo =  0.011414. The values 

of Fs are 0.0357 and 0.0363 for figures 2.5 and 2.6 respectively, chosen to bracket the tenth 

resonance, .Fj10̂  =  0.03615. The phase spaces contain both librational and rotational periodic 

orbits. The resonance island appears at the bottom of the phase space as Fs is increased and 

approaches Fs^\  with the centre of the resonance island lying at Ie =  0 when Fs = F ^ .

It can be seen th a t the resonance island can, for particular dynamical values and particular 

initial conditions (0R(O), I e(0)), have significant effects on the range of values taken by I e(t)- 

This in turn can lead to  observable effects on ionisation behaviour.

The equilibrium points satisfy the conditions

d K R n ,  d K R n
^r=° “d w =0-

For the parameters chosen the librational centre of the resonance island lies at 0R =  7t/2 as 

J j  <  0. For J j  >  0, the centre of the island lies at 0R =  0.
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Figure 2.5 Phase curves for 0 ( F 5) K  ft Hamil- F igure 2.6 As for figure 2.5, except Fs =  0.0363.

ton ian , Fp =  0.13, flo =  0.011414, Fs =  0.0357 

and Im — 0.2. T he separa trix  curves are shown 

with dashed lines.

Ionisation probabilities are calculated from averages over initial values of 6r  uniformly 

distributed in the range (0, n) and are therefore unaffected by the sign of Jj .  If J j  < 0 

the separatrix unstable equilibrium points lie at (0, I sep) and (7r.Isep), whereas if J j  > 0 the 

separatrix unstable equilibrium points lie at ( i r j sep). In both cases I sep satisfies

f fP v 3
- J - M  e »  = 0

and e =  — FpDo\Jj\/4.  An approximate solution for Isep can be derived by noting that for 

small 7e,

e r  «  & F

where to 0 ( F 5),

0  = 17 + ? )  "  5l2 (301 "  189/™) +  3F» 'F " + ? )  (2'36)

and by using the Taylor expansion,
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This gives

I -  I 2. m

Figure 2.7 compares this approximation with the numerically calculated value for a range 

of Fs values in the vicinity of the j  =  10 resonance for =  0.13, I m = 0.2 and Do =  0.011414. 

There is a reasonable match for much of the region around the point Fs — F j 10̂  =  0.03615. 

Towards I e =  ±(1 — I m) the approximation diverges. This is a consequence of the singularity 

in B ( I e)' at these limits, where the Taylor expansion is invalid.

0.035 0.036 0.037
F

0.038

Figure 2.7 C om parison between Isep calculated 

using approxim ation  (2.37) (solid line) and  ISep 

calculated  num erically (dashed line) for Fp =  

0.13, Q0 =  0.011414 and Im =  0.2.

The energy on the separatrix is given by

Figure 2.8 A pproxim ate island w idth, wr  (solid 

line) and num erically calculated  island w idth  

(dashed line) for 0 ( F 5) K r H am iltonian, Fp =  

0.13, =  0.011414 and / m =  0.2.

sep 2 ^sep 6 Lsep
1 +  Kn
1 -  I I

Denoting the I e values lying on the separatrix curves at Or  =  7r/2 by T \  and Z 2 , their values 

are obtained from the energy equation,
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and are

Xi =  - f

X2 =

P ~  e 

/3 - e

1 +  72x ~  m
i - 1 2■‘m
1 + / 2 x ~  m
i  - 1 2

- i
+

2 ’

(2.38)

The resonance width, w r ,  is defined as the maximum separation between the separatrix curves 

and given by

w r  =  2 ,
—2e

P - n
l  - i l - • f i

16(P2 — e27 2) J ’
1 + 1 2 x ~  m
i -  p

(2.39)

A comparison between this approximate expression and the resonance island width calculated 

numerically is shown in figure 2.8 for the j  — 10 resonance for =  0.13, Im — 0.2 and 

Do = 0.011414. The match is closest for Fs in (0.035,0.0375), corresponding to the region 

where the calculated value for I sep is valid. Outside this region, the Taylor expansion for 

A ( I e)B ( Ie) is increasingly inaccurate. In general we therefore expect the approximation for 

w r  to be more accurate for Fs values near the dynamical resonance, F ^ P

At the dynamical resonance Fs — F ^ \  Vj = 0 and the width in scaled variables is

W r  — 2 — —  (1 -  I I )  = 2 J 2 i Mn o |J j | ( l  J I P
P V 4/3 + ̂ 01̂ 17 (2.40)

which to 0 ( F 2) is

wR = 8
Fpn 0 \ j j \  ( i - 1 2,) (2.41)

3(2F 2 +  F 2) + 8^ 01^17

At low frequencies, the resonance width will be small; this in turn can lead to characteristic 

narrow peaks in the ionisation probability, Pi(Fs) a t low frequencies. It can be also be seen 

th a t the resonance width is dependent upon the term, Jj .  As J j  —> 0, w r  o c  yJ\Jj\ • Hence, 

if J7y = 0 ,  the island width is zero and the resonance has no effect on the dynamics. Because 

J j  oc TLq x, for low frequencies it is sensitive to  the number of terms included in its expansion. 

The effect of the resonance island width on ionisation is discussed further in §2.3.1.
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2.1.6 The Inclusion of Ionisation

The equations of motion for the Averaged Hamiltonian, equation (2.24), (page 38), are derived 

using action-angle variables, which can only describe bound-motion.

The domain where the action angle variables are valid determines a bound region in the 

phase space of the exact dynamics. Inside this region, the exact dynamics are approximated 

by the action-angle orbits, whilst outside the region the orbits are assumed to be unbound. 

Ionisation is included in the approximation by determining the boundary location and treating 

all orbits th a t reach the boundary as ionising orbits. It should be understood th a t this is an 

approximation only. The equations of motion for the approximate Hamiltonian describe the 

averaged classical motion of the electron and do not include the faster fluctuations of the 

exact motion th a t can, for some orbits, allow the electron to  stray into the ‘ionising’ region 

of phase space even though the averaged motion remain bound. Similarly, an electron could 

temporarily stray into the ‘ionising’ region but remain sufficiently close to the atom to remain 

bound as the field changes. Hence, the boundary determined for the Averaged Hamiltonian 

is expected to  be an approximation only: rather than a discrete boundary separating ionising 

and bound orbits, it marks the approximate location of a finite thickness region in phase space 

containing both bound and ionising orbits.

In the case of a static field, bound motion is only possible for 0 < F  < Fc, where Fc is a 

critical field depending on the values of I m and I e (in scaled variables). Prom an examination 

of figure 2.2 on page 30 it can be seen th a t the rj-motion becomes unbound when the field 

magnitude is such th a t the turning points 7]2  and 773 coalesce.

For a given I e (or equivalently, a given value of I 2 ), a maximum value of F  — Fc can be 

found at which the turning points coalesce. For F  > Fc, no bound motion is possible and 

ionisation is assumed to  occur. There is no simple way to  invert the action integrals, (2.7) and 

(2.8) to  obtain an expression for Fc. The critical fields were calculated by Banks and Leopold 

[2, 3]. The approximations used here for the numerical calculation of Fc are given in [3].

In the present application, it is assumed that the field changes sufficiently slowly th a t the 

change can be treated as adiabatic and hence th a t the same ionisation criteria can be applied
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to determine whether a specific state ionises, i.e. ionisation occurs if

F ( t ) > F c(Ie( t ) J m) for F ( t ) >  0.

For an oscillating field, if F^ >  Fs , F(t)  changes sign during each oscillation. In §2.1.1, it 

was found th a t ^-motion is always bound and th a t the 77-motion can be bound or unbound if 

F  > 0. It can be seen by examining the potentials, F(£) and V"(77) in equation (2.9) th a t when 

F  changes sign, the nature of the two motions is effectively swapped; the 77-motion becomes 

bound for all values of 77, whilst the ^-motion can now be bound or unbound. Physically, 

the case F  < 0 is equivalent to the case F  > 0 with the 2 -axis reflected and the direction of 

axial rotation, reversed. This transforms (77,£, F)  —>• (—77, — £, — F),  which is equivalent 

to (Ie, I m ,F)  —> (—I e, —Im , —F); however, the transformation in Im is immaterial as it only

appears in the equations of motion as \Im \. The ionisation condition for F  < 0 is therefore

- F ( t )  > Fc( - I e( t ) , Im) for F(t) < 0.

Assuming th a t Ie(t) changes relatively little over a field period, a further approximation can 

be made, replacing F(t)  with its maximum value over a field period; hence for Fs and F  ̂

positive, the ionisation criteria are

A(t)(Fs +  Fm) > Fc(Ie(t), Im) for all values of F^ and Fs\ and

A ( t ) ( F » - F s) > Fc( - I e( t ) , Im) if F ^ > F S. (2.42)

For Im — 0.2, Fc is in the range (0.136,0.281).

Ionisation probabilities for a particular choice of field parameters, I m and Je(0), are cal

culated using the Monte Carlo method and N  initial conditions for t/>e(0), then integrating 

the equations of motion (2.26) over the field envelope. The ionisation conditions (2.42) are 

checked throughout the orbit and if satisfied at any point on the orbit, the orbit is assumed 

to have ionised. The overall ionisation probability is the fraction of orbits for which ionisation 

occurs. Each of the initial values of ipe(0) are uniformly distributed throughout the interval 

(0,27r]; hence initial values for ipe(0 ) are selected by stratified sampling — dividing up the
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range of into N  equal sub-intervals and selecting a i^e(0) value randomly from each. The 

use of a Monte Carlo method places a limit on the accuracy for each calculated ionisation 

value. If M  orbits ionise out of a sample size of N , the ionisation probability is estimated to 

be Pi = M / N  and with no stratification, the standard deviation of this estimate is (see [23])

implying a 95% probability of the true result lying in the interval (Pi —2a, Pi+2a).  Stratifica-

interval, there is no estimate for the standard deviation: the above formula gives an upper 

bound for this case.

2.2 Validation of the Classical Approximation

The Averaged Hamiltonian is an approximation to the exact Hamiltonian, equation (2.1) and 

is expected to  be applicable in the case of low frequency fields. In this section we compare 

ionisation probabilities calculated using equations of motion for the approximate Averaged 

Hamiltonian (2.24) together with the ionisation.criteria (2.42), and the exact classical dynam

ics to examine the validity of the approximation.

2.2.1 Single Substate R esults

In figures 2.9 and 2.10 we compare the ionisation probability calculated using the Averaged 

Hamiltonian with exact classical dynamics results for varying Fs, using the parameters, Oo =

0.0528, =  0.13, Im =  h ( $ )  =  0.2 and a field envelope of 16-50-16. These parameters are

selected for comparison with the exact classical dynamics of Richards (see [51], figure 2).

The Hamiltonian for figure 2.9 includes terms up to and including 0 ( F 2), while the Hamil

tonian for figure 2.10 includes terms up to and including 0 ( F 5). We used N  =  250 grid points 

in the initial values of ij)e(0). For the exact classical dynamics, 1600 initial values are used.

Peaks in ionisation probability can occur in the vicinity of the dynamical resonances, 

Fs = F ^ \  discussed in §2.1.2. The peaks are labelled in the diagrams by their corresponding

tion of the samples reduces the statistical errors further, but with only one point per stratified
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j  value (obtained from equation (2.32) on page 43).

j=4:
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P1
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0.2

0 0.02 0.04 0.080.06

Figure 2.9 Ionisation probabilities, P j(F s ), for 

£20 =  0.0528, =  0.13, Im =  h(0)  =  0.2 for the

0 ( F 2) Averaged H am iltonian (solid line) and the  

exact classical dynam ics (dashed line) (R ichards 

[51], figure 2).

Figure 2.10 Ionisation probabilities, Pi(Fs), for 

f20 =  0.0528, =  0.13, 7m =  / 2(0) =  0.2 for th e

0 ( F 5) A veraged H am iltonian (solid line) and th e  

exact classical dynam ics (dashed line) (R ichards 

[51], figure 2).

The figures show a good correspondence between the Averaged Hamiltonian results and 

those for the exact classical dynamics. In particular, the following key characteristics are 

observed:

1. Each of the four resonance peaks calculated for the exact classical dynamics occur also 

for the Averaged Hamiltonian results, although the locations and heights of the peaks 

are slightly different.

2. Local maxima observed in Pi{Fs) for the exact classical dynamics at Fs — 0.0430,0.0535 

and 0.0705 also occur for the Averaged Hamiltonian, although at slightly different values 

of Fs. These peaks are not associated with known resonances.

3. The exact Hamiltonian and the Averaged Hamiltonian results both show an underlying 

increase in ionisation probability for Fs > 0.045.

It can be seen that the locations of the resonance ionisation probability peaks are closer to 

those of the exact classical dynamics for the 0 ( F 5) than for the 0 ( F 2) Averaged Hamiltonian. 

This suggests th a t the differences in locations are a consequence of ignoring higher order F
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Table 2.1: Comparison of measured locations for the local maxima in Pi(Fs), denoted by 
for exact classical dynamics, 0 ( F 2) and 0 ( F 5) Averaged Hamiltonians, with F^ =  0.13, 

Q0 = 0.0528 and 7m =  i2(0) =  0.2. Dynamical resonance locations, are shown for the 
Averaged Hamiltonians.

j

Exact
Hamiltonian

■p(j) j  s

0 ( F 2) Averaged 
Hamiltonian

0 ( F 5) Averaged 
Hamiltonian

jrU) J s F su; F [sJ) f ¥ }
1 0.0166 0.0178 0.0176 0.0170 0.0168
2 0.0327 0.0344 0.0352 0.0330 0.0335
3 0.0486 0.0514 0.0528 0.0492 0.0500
4 0.0645 0.0686 0.0704 0.0654 0.0662

terms in the Averaged Hamiltonian. The measured locations of the maxima in ionisation 

probability peak in the vicinity of each of the four dynamical resonances are shown in table 

2.1. The measured location is the value of Fs for which Pi has a locally maximum value. 

Where Pi(Fs) — 1 for a range of sampled Fs values, the value of Fs in the middle of the range 

is used. The dynamical resonances, Fg2\  are also given, showing th a t the peaks in ionisation 

probability do not necessarily coincide with the dynamical resonances. This behaviour is also 

seen for the exact classical dynamics [51].

We note the presence of the small peak a t Fs =  0.0430; this was also observed for the exact 

classical dynamics [51]. The cause of this peak is not understood; it was suggested, but not 

proven, by Richards th a t the peak might be due to a non-integer resonance at j  — 2 | .

Figure 2.11 shows the ionisation probabilities, Pi(Fs) at the lower frequency of Qo —

0.011414 for the 0 ( F 5) Averaged Hamiltonian and the exact Hamiltonian. All other param

eters are same as for figure 2.10. Figure 2.12 shows the corresponding ionisation probability, 

Pi(Fs), in the case of the 0 { F 2) Averaged Hamiltonian. The resonance location labels refer to 

the locations of the exact classical dynamics; the 0 (F2) resonance locations occur a t different 

values of Fs, in some cases lying close to exact resonance locations with different j  values. 

For clarity figure 2.13 is included to show the 0 ( F 2) ionisation probability curve with the 

corresponding 0 (F2) resonance locations marked.
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Figure 2.11 Ionisation probabilities, Pi(Fs), for F^ =  0.13, flo =  0.011414 and field envelope 

16-50-16 for th e  0 ( F 5) Averaged H am iltonian  (solid line) and  th e  exact classical dynam ics 

(dashed line).
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Figure 2.12 Ionisation probabilities, Pi(Fs ), for F^ =  0.13, flo =  0.011414 and field envelope 

16-50-16 for th e  0 ( F 2) Averaged H am iltonian (solid line) and  the  exact classical dynam ics 

(dashed line), w ith exact resonance locations m arked.
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Figure 2.13 Ionisation probabilities, Pi(Fs), for =-0.13, flo =  0.011414 and field envelope 

16-50-16 for the 0 ( F 2) Averaged Hamiltonian with corresponding 0 ( F 2) resonance locations 

marked.

As for the higher frequency comparison, the Averaged Hamiltonian results show a. reason

able match against those for the exact classical dynamics:

1. Up to Fs «  0.06, the ionisation behaviour for both the exact and Resonant Hamiltonian 

cases are broadly similar, characterised by narrow ionisation probability peaks near the 

location of the dynamical resonances.

2. For Fs -> 0.06 there is a general underlying trend of increased ionisation probability for 

both the exact and the Averaged Hamiltonian results.

3. For the Averaged Hamiltonian, where resonance ionisation peaks occur, they are rea

sonably close to the locations of resonance peaks for the exact case. The locations are 

closer for the 0 ( F 5) Averaged Hamiltonian than for the 0 ( F 2) Averaged Hamiltonian.

The following key differences are observed:

1. Some of the resonance ionisation peaks present in the exact case are missing for the 

Resonant Hamiltonian and vice versa. For the exact case, the first eight ionisation 

peaks occur near Fs^  for j  = 7 ,8 ,9 ,10,12,13,15 and 16; in comparison, for the 0 ( F 5) 

Averaged Hamiltonian, the j  =  7 and j  =  8 resonance peaks are missing while the

J=]4 j= 15
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j  =  14 resonance peak is present. For the 0 ( F 2) case, the j  — 9 ,11,12,13,14,15 and 16 

resonance peaks are present, but the j  — 10 peak is missing. The presence or absence 

of ionisation peaks near dynamical resonances is analysed in §2.3.

2. There is no obvious match between the exact and Resonant Hamiltonians for the height 

of each of the resonance ionisation peaks.

3. For Fs > 0.06, the underlying ionisation trend is broadly similar between the Resonant 

and exact cases, the detailed behaviour is different. ^

We conclude th a t the Averaged Hamiltonian captures the general characteristics observed 

for the exact classical dynamics ionisation probabilities, with clear peaks in ionisation proba

bility occurring near resonance locations and an underlying increase in ionisation probability 

occurring as Fs passes a threshold value. For both frequencies considered, the location of 

the ionisation peaks is better for the higher order approximation. In the exact case it is ob

served that for isolated resonance ionisation peaks, the peaks are typically narrower for lower 

frequencies; this is also observed in the approximation.

As the frequency is reduced, the approximation is not as good a t predicting the height, or 

presence of ionisation peaks at resonance. The reasons for this are discussed in §2.3.

2.2.2 Averaged Substate R esults

In the preceding section, the values of I m and I e(0) were fixed.

The experimental data  is for ionisation of excited hydrogen atoms averaged over an initial 

distribution of substates of n. The exact distribution is not known, but there are good reasons, 

see Koch et al [31], to assume th a t it is a microcanonical distribution, th a t is there is an equal 

distribution of the unperturbed (free field) substates. In classical mechanics, this means th a t 

/ m, I e{0) and are uniformly distributed in the intervals,

< I m < I m

< I e (  0 ) < I n  | I m

< ^ e ( 0) < 7r.

Figure 2.14 shows ionisation probabilities calculated for the 0 ( F 5) Averaged Hamiltonian
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for Cto — 0.0980, = 0 . 1  and a field envelope of 16-80-16, averaged over a distribution of

initial conditions. The field parameters are selected for comparison with Richards [51] figure 1. 

For the Averaged Hamiltonian results, 39000 orbits are used for each Fs value, obtained from 

780 values of (7m,7e(0)) with 50 initial values of V>e(0) considered for each. The initial values 

are taken to match the possible (m, hi) quantum values for a given n; in this case, n  =  39. 

The exact classical dynamics ionisation probabilities are shown for comparison, derived using 

1296 orbits for each Fs value. The adiabatic ionisation curve is also shown, calculated in the 

absence of the perturbation, for which I e(t) is constant, hence from equations (2.42), page 50, 

ionisation occurs if + Fs > Fc(7e(0),7m) or F^ — Fs > Fc(—7e(0), 7m). The distribution 

of initial values (7m, 7e(0)) is taken in the same way as for the Averaged Hamiltonian, in this 

case with n = 39 and hence with 780 initial values of (7m,7e(0)) for each Fs.

The match between resonance locations is good, although the ionisation probability is gen

erally lower for the Averaged Hamiltonian when compared with the exact classical dynamics 

ionisation probability. For the m ajority of Fs values, the ionisation is seen to be close to the 

adiabatic curve. The cause of this underestimation is assumed to be the location of the phase 

space boundaries between bound and ionising orbits. The actual orbits for the exact dynamics 

only approximately follow those of the Averaged Hamiltonian, allowing some orbits for the 

exact dynamics to ionise whilst the equivalent orbits for the Averaged Hamiltonian lie within 

a region where the orbits are bound.
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Figure 2.14 Ionisation probabilities, Pi(Fs ), for =  0.1 and f2o =  0.0980, field envelope 

16-80-16 0 { F 5) Averaged H am iltonian  (solid line) and th e  exact classical dynam ics (dashed 

line) from [51] figure 1). T he  ad iabatic  ionisation curve is shown by a d o tted  line.

Robicheaux et al [52] numerically obtained quantum and classical ionisation probabilities 

for comparison with the experimental results of Koch et al [32] from quantal and classical 

approximations using the parameters: n =  39, =  319 Vein-1 , O — 8.1 GHz and an overall

held envelope of 150 cycles. The corresponding scaled parameters are F =  0.14372 and 

Q0 =  0.0730. These are the only other available quantal results.

The overall held envelope used by Robicheaux et al was created by multiplying the held 

by functions of the form (1 +  erf(£/5T))/2 for the switch-on and (1 — erf((f — Te)/5 T ))/2  for 

the switch-off. It appears from the description provided by Robicheaux that the integration 

is made for t in the interval (0,Te); if so then the envelope function starts at 1/2 meaning 

th a t the held is instantaneously applied. This physically different initial condition would be 

expected to affect the evolution of the system.

The held envelope used here is given by equation (2.3) with envelope parameters, 16-113- 

16. A better fit to the Robicheaux envelope could be obtained using envelope parameters 

16-134-16 with t, =  0 for Robicheaux occurring after 8 held cycles for the envelope function 

dehned here. We have compared the results generated using both the envelope 16-113-16 

and 16-134-16 and confirmed th a t this has only a minimal effect on the calculated ionisation 

probabilities.

In figure 2.15 we compare the ionisation probabilities in the region of the j  — 1 resonance
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using the 0 ( F 5) Averaged Hamiltonian, over the scaled range Fs =  0.0180-0.0262 (corre

sponding to  Fs =39.97-58.17 Vein-1 ) with those for the exact classical dynamics. For the 

results presented here, the ionisation probabilities were calculated as averages over a uniform 

distribution of 780 values of (7m, / e(0)) with each ionisation value determined from a micro- 

canonical array of 250 initial values. The exact classical dynamics ionisation probabilities 

derived using 4096 initial orbits — are also shown in the figure. Robicheaux classical results 

taken from figure 1 of [52] are shown for comparison and are for the scaled Fs range (0.018,

0.0234).
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Figure 2.16 P j(F s ) for th e  j  =  2 resonance aver

aged over substa tes, F^ =  0.14372, Ho =  0.0730 

and envelope of 16-113-16 for th e  0 ( F 5) Aver

aged H am iltonian (solid line) and exact classical 

dynam ics (dashed line).

F igure 2.15 P* (Fs) for th e  j  = 1 resonance aver

aged over su b sta tes , FM =  0.14372, Ho =  0.0730 

and  envelope of 16-113-16 for th e  0 ( F 5) Aver

aged H am iltonian  (solid line) and exact classical 

dynam ics (dashed  line). C om parison Robicheaux 

classical results taken from [52] are  shown using 

triangles.

The exact classical dynamics ionisation probability is generally higher than the Robicheaux 

calculations for Fs values to the right of the ionisation maximum, and lower for values to the 

left. The location of the probability peaks is similar. We would expect the two sets of results 

to be a better match. Two possible sources of the difference are:

1. Different envelope functions were used; in particular, the Robicheaux envelope has an 

initial value of 1/2 at t =  0. If integration was started at t =  0 then this is equivalent to
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the instantaneous application of the applied field.

2. It is unclear from the Robicheaux description how numerical problems when the elec

tron passes close to the nucleus were avoided. Calculations for the exact Hamiltonian 

shown here use regularisation methods to prevent numerical problems. Robicheaux also 

reports th a t some of the orbits are chaotic. W hilst for fio —> 1 chaos is significant, 

for the low frequencies considered here the orbits are generally stable hence allowing the 

development of the one dimensional approximation described here. The averaged Hamil

tonian, K m, is derived assuming th a t In is constant. From exact classical calculations 

a t Fs =  0.018 for Do = 0.0730, Pi ~  0.71 and 1173 of the original 4096 orbits remain 

bound. The final values of In lie in the interval (0.979,1.028), have a mean of 1.002 and 

standard deviation of 0.004. These results confirm the applicability of the assumption 

th a t In is constant and do not suggest th a t the orbits behave chaotically. It is possible 

th a t the chaotic behaviour reported by Robicheaux in fact is a consequence of numerical 

instabilities.

The classical Averaged Hamiltonian results considered here provide a reasonable match for 

the location of the ionisation peak. The small difference, as discussed in the previous section, 

is assumed to be a consequence of the exclusion of higher order terms in F  from the Averaged 

Hamiltonian. Overall the results for the Averaged Hamiltonian underestimate the ionisation 

probability, with the difference being more marked for Fs values below the ionisation peak; for 

the range of Fs values shown, the largest difference in ionisation probability between the exact 

classical dynamics and the Averaged Hamiltonian classical approximation is approximately

0.34.

The observed ionisation differences for low Fs values is probably partly a consequence of 

underestimating ionisation along the 7i axis for the adiabatic ionisation tests used here (see 

§2.1.3, page 40 and equation (2.42) in particular). At Fs = 0.0180, F^ — Fs =  0.12572, which 

is close to the minimum critical field value, Fc =  0.12944 for I m =  0. Whilst in the Averaged 

Hamiltonian approximation considered here this is insufficient to cause ionisation, there is 

significant ionisation for the exact classical dynamics. This is because the approximation used 

here smooths the dynamics, removing oscillations th a t can lead to ionisation in the exact
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system. This smoothing increases as Qq increases and decreases P?.

In figure 2.16 we compare the calculated ionisation probabilities in the vicinity of the j  =  2 

resonance. In this case, F^ — Fs is sufficiently small to exclude ionisation associated with the 

11 axis for the exact classical system as well. It can be seen th a t in this case there is a 

better match. For the range of Fs values showm, the largest difference in ionisation probability 

between the exact classical dynamics and the Averaged Hamiltonian classical approximation 

is approximately 0.11.

The underestimation of ionisation for small Fs is also observed in comparisons of single state 

initial conditions. In figure 2.17 ionisation curves are compared between the exact classical 

dynamics and Averaged Hamiltonian for Q =  0.0528, I m =  0.2, / e(0) =  —0.4 and field envelope 

16-50-16. In the first figure F^ =  0.14 for the exact and Averaged Hamiltonians, whilst in 

the second figure F M =  0.147 for the Averaged Hamiltonian. When FM — 0.14, ionisation is 

observed in both cases for small Fs but is appreciably less for the Averaged Hamiltonian. It 

is only when F M is increased to 0.147 th a t there is a reasonable match for smaller F s, but the 

ionisation differences are now greater for larger Fs values; the peak at Fs & 0.0165 is also now 

absent.
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Figure 2.17 Ionisation probabilities, P j(F s), for fl =  0.0528, 7m =  0.2, Ie(0) =  —0.4 and envelope 

16-50-16. T he solid lines are for th e  Averaged H am iltonian w ith F M values as m arked. In each figure 

th e  dashed line is calculated  for exact classical dynam ics w ith F M =  0.14.
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2.2.3 Conclusions

Prom the comparisons discussed in the preceding sections, we have shown th a t for low scaled 

field frequencies the Averaged Hamiltonian reproduces most of the ionisation behaviour ob

served for the exact classical system. This includes the presence of ionisation probability peaks 

near resonances and the underlying increase in ionisation probability for sufficiently large \F\ 

and in some cases (when — Fs is sufficiently large) for small Fs.

A number of characteristic differences were observed between the Averaged Hamiltonian 

results and those for the exact classical dynamics. These are as follows:

1 . The locations of dynamical resonance ionisation probability peaks are shifted relative 

to the exact results. It is assumed th a t this is a consequence of excluding higher order 

terms in F  from the Averaged Hamiltonian. Consistent with this assumption, the 0 ( F 5) 

Averaged Hamiltonian provides a better match to exact results than the 0 ( F 2) Averaged 

Hamiltonian.

2. The Averaged Hamiltonian generally predicts a lower ionisation probability than ob

served for the exact case for most Fs values. This is seen most clearly in the case of 

results averaged over substates. This is assumed to be caused by differences between the 

exact and the approximate location of the ionisation boundary, as discussed in §2 .1 . 6  on 

page 49; this discrepancy increases with increasing Qo-

3. For small Fs values when F^ — Fs is sufficiently large, ionisation can occur for the 

exact classical system. This ionisation probability is underestimated by the Averaged 

Hamiltonian approximation.

4. For low frequencies, ionisation probability peaks do not occur at all values of F ^K  This 

is observed for both the exact and the approximation Averaged Hamiltonians; however, 

there are differences between which peaks are present in the exact and approximation 

cases.

The last item is discussed further in the next section.
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2.3 Analysis of Classical Results

63

2.3.1 M issing Ionisation Probability Peaks

In §2.2.1 the ionisation probability, Pi(Fs), was calculated for the low frequency field, Oq =

0.011414, comparing Pi(Fs) for the Averaged Hamiltonian, K m , equation (2.24) on page 38, 

with those for the exact classical dynamics (see figures 2.11 and 2.12 on pages 54 and 54 in 

particular). It was observed th a t in some cases ionisation probability peaks occur near the 

dynamical resonance values, Fs^ ,  although the presence or absence of peaks was different 

for the three Hamiltonians considered: exact classical dynamics, 0 ( F 5) and 0 ( F 2) Averaged 

Hamiltonian.

W hether an ionisation peak is observed near a resonance depends on the initial value, 7e(0), 

the resonance island width and the effects of the field switch-on. These effects are shown in 

the following sections. Particularly for small Qo, the island width is sensitive to the number of 

terms included in the energy expansion, E,  equation (2.23) (page 38). Calculations are made 

to 0 ( F 2) and 0 ( F 5) to show this.

T he 0 ( F 2) A veraged H am ilton ian

The presence and the locations of ionisation peaks can be largely explained by an examination 

of K r , the Resonance Hamiltonian described in §2.1.4, page 42. Results for the presence and 

location of resonance ionisation peaks are derived in this section using properties derived for 

the 0 { F 2) Resonance Hamiltonian, equation (2.35) (page 44).

We consider first the dynamics of the Resonance Hamiltonian, K r  for an instantaneously 

applied field. It was shown in §2.1.5 (page 45) th a t near the dynamical resonances, which for 

the 0 ( F 2) Hamiltonian are a t i =  jQo/3,  resonance islands appear in the phase space, the 

presence of which can cause significant changes in I e(t) for certain initial conditions. If the 

value of Fs is increased from a value initially below F s ^ , the resonance island initially appears 

with its centre, the stable librational equilibrium point, Ie — I s, initially at I s «  \Im \ — In . As 

Fs increases, I s increases, with I s =  0 at Fs — F ^  and I s «  In — \Im \ for Fs sufficiently large. 

Therefore, as Fs increases, the resonance island passes through both I e(0) and IC(FS, F^), the 

critical value above which ionisation occurs. The maximum change in I e(t) is given by the
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resonance width, w r , which is the maximum separation between the resonance separatrix. The 

resonance width varies with Fs, but has a maximum near Fs — F ^  ■ For an instantaneously 

applied field, ionisation is only possible for the Resonance Hamiltonian if

wR > I c - I e(0), (2.43)

where the island width, w r , is given by equation (2.41) on page 48.

The Resonance Hamiltonian, K r , is derived from the Averaged Hamiltonian, ATm, by 

ignoring higher Fourier terms for frequencies Uk where k ^  j .  These terms introduce small 

fluctuations in I e(t) superimposed on the general behaviour th a t modify this ionisation criteria 

slightly. A more significant modification to the ionisation criteria is required when the effects 

of a gradually switched on field are included. During the field switch-on significant changes 

can occur in I e(t) requiring condition (2.43) to be modified to  ionisation only being possible if

w r > I c -  I e { T a ,il>e ( 0 ) ) ,

for at least some of the initial values of V'e(O) and where Ta is the time at the end of the field 

switch-on. W ithout knowing the exact values of Ie(Ta , '0e(O)) f°r each of the initial conditions 

{^e(0 )}, this condition is less useful in predicting the presence of resonance peaks.

The effects of field switch-on can be removed by calculating ionisation probability in the 

case of an applied field which is instantaneously switched on and off, i.e. we set A(t) =  1  

throughout the period of integration. Figure 2.18 shows the ionisation probability calculated 

for the 0 ( F 2) Averaged Hamiltonian, equation 2.24 (page 38), with E r { I &, Fs, Fm,£) and g(t) 

expanded to 0 ( F 2) for a 0-50-0 field envelope, with all other parameters chosen to match 

those of figure 2 .1 2 . The dynamical resonance locations, F ^ \  are marked with arrows.
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Figure 2.18 Ionisation probabilities, Pi(Fs), for F^ =  0.13, f2o =  0.011414, Im =  0.2 and 

7e(0) =  —0.4 for the 0 ( F 2) Averaged Hamiltonian with field envelope 0-50-0. Arrows mark 

the dynamical resonance locations, F ^  =  j£ lo/3.

Table 2.2 compares I c — Ie(0) with w r  at each of the first 17 dynamical resonances. If 

7e(0) -I- w r  — 7C is positive then condition (2.43) is satisfied, indicating that I e(t) may vary 

sufficiently to  cause ionisation. For j  =  1, no ionisation is possible for any value of 7e(£). It 

can be seen by comparison with figure 2.18 that for each j  value an ionisation probability peak 

occurs if and only if 7e(0) +  w r  — Ic > 0.

If we compare the ionisation probability curve of figure 2.12 on page 54 with figure 2.18 we 

observe th a t when the field envelope includes a slow switch then two other ionisation peaks 

are introduced at j  =  9 and j  — 13. From table 2.2 we see th a t 7e(0) +  w r  — Ic is negative but 

small. In these cases, the changes in 7e(t) occurring during the switch-on time are sufficient 

to permit ionisation.

T he 0 ( F 5) A veraged  H am iltonian

Figure 2.19 shows Pi(Fs) for the 0 ( F 5) Averaged Hamiltonian, equation 2.24, page 38, for

a 0-50-0 field envelope, with all other parameters chosen to match those of figure 2.12. The
(i)dynamical resonances, Fg , are marked with arrows.

1=12 j=13
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Table 2.2: Comparison of I c — Ie{0) with resonance width, w r , at each of the dynamical 
resonances, F j^  =  j  Do/3, for the 0 ( F 2) Resonance Hamiltonian with FM =  0.13, Do =  
0.011414, Im =  0.2 and I e(0) =  -0 .4  for a suddenly switched field.

j F jj) w r I c ( F s , F » ) 7e(0) +  wR -  I c
1 0.00380 0.315 No ionisation No ionisation
2 0.00761 0.459 0.735 -0.675
3 0.01141 0.349 0.613 -0.664
4 0.01522 0.431 0.503 -0.472
5 0.01902 0.400 0.402 -0.402
6 0.02283 0.365 0.309 -0.343
7 0.02663 0.444 0.223 -0.180
8 0.03044 0.218 0.144 -0.326
9 0.03424 0.453 0.070 -0.017
10 0.03805 0.250 0.002 -0.152
11 0.04185 0.396 -0.061 0.057
12 0.04566 0.392 -0.120 0.112
13 0.04946 0.203 -0.175 -0.022
14 0.05327 0.411 -0.227 0.237
15 0.05707 0.310 -0.275 0.184
16 0.06087 0.271 -0.319 0.190
17 0.06468 0.387 -0.361 0.348

i i l i i i i 1 i

j=l

1

8
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Figure 2.19 Ionisation probabilities, Pi(Fs ), for F^ =  0.13, Qq =  0.011414, Im =  0.2 and 

7e (0) =  —0.4 for the  0 ( F 5) Averaged H am iltonian w ith field envelope 0-50-0. Arrows m ark
/ n \ '   / j \

th e  dynam ical resonance locations, Fs , satisfying 3g(Fs , FM) =  j Qq.

Table 2.3 contains resonance data  calculated for the 0 ( F 5) Averaged Hamiltonian for each 

of the resonances, j  =  6 — 14 with Qq =  0.011414 and FM =  0.13. Data is calculated with
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Table 2.3: Resonance width, w r , dynamical resonance location, Fs — F ^ \  critical ionisation 
action, 7C, and critical 7e(0) =  2 i for the start of ionisation field envelopes 16-50-16 and 0-50-0 
for the 0 ( F 5) Resonance Hamiltonian with =  0.13 and Qq =  0.011414.

j FSU) W R Ic

Ti for 
16-50-16 
envelope

Ti for 
0-50-0 

envelope

T i + W R -  I c
for 16-50-16 

envelope

Ti + W R -  I c
for 0-50-0 
envelope

6 0.0217 0.098 0.335 0 . 1 0 1 0.167 -0.135 -0.070
7 0.0254 0.493 0.251 -0.205 -0.245 0.037 -0 . 0 0 2

8 0.0290 0.357 0.174 -0.238 -0.192 -0.055 -0.009
9 0.0326 0.407 0 . 1 0 2 -0.423 -0.318 -0.118 -0.013

1 0 0.0362 0.467 0.036 -0.460 -0.422 -0.028 0 . 0 1 0

1 1 0.0397 0 . 1 0 0 -0.026 -0.293 -0.184 -0.166 -0.058
1 2 0.0433 0.461 -0.084 -0.577 -0.540 -0.032 0.005
13 0.0469 0.399 -0.138 -0.531 -0.501 0.006 0.036
14 0.0504 0.255 -0.189 -0.597 -0.498 -0.153 -0.054

and without field switch-on, using the corresponding field envelopes, 16-50-16 and 0-50-0. The 

dynamical resonance locations, F ^ \  are calculated by solving equation (2.32) on page 43,

to find F s^  for each j  value. An approximation to the resonance island width, w r , is 

found using equation (2.39), page 48, at Fs =  F ^ .

For each of the resonances, there is a critical initial value, which we denote by Ti, such th a t 

ionisation is first observed for increasing 7e(0) when 7e(0) =  X*. This is estimated numerically 

for both field envelopes. Ionisation probabilities are calculated from a sample array of 100 

orbits with a grid size of SFs =  2  x 1 0 -5 .

In the previous section it was demonstrated th a t in the absence of field switch-on, the 

appearance of ionisation peaks depends primarily on whether the island size is sufficiently 

large for some orbits to reach above the critical ionisation limit, i.e. when 7e(0) +  w r  >  I c . 

In table 2.3 it can be seen th a t this condition applies in the 0 ( F 5) Hamiltonian as well — for 

each resonance in the case of the 0-50-0 envelope , |X* -I- w r  — 7C| 1 and 7C — w r  is therefore

a reasonable estimate for the 7e(0) value for the onset of ionisation.
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Tables 2 . 2  and 2.3 show th a t for each resonance, there are significant differences between 

the island widths for the 0 ( F 2) and 0 ( F 5) Hamiltonians. These differences can have an 

appreciable effect on whether ionisation occurs near each dynamical resonance.

For the j  — 10 resonance, w r  = 0.24972 for the 0 ( F 2) Hamiltonian and w r  =  0.46749 for 

the 0 ( F 5) Hamiltonian. In the former case the island size is too small to allow ionisation for 

the initial action, I e(0) =  —0.4, but in the latter case the larger island size allows ionisation 

from I e(0) < —0.4; hence the ionisation peak is missing for the 0 ( F 2) Hamiltonian but present 

for the 0 ( F 5) Hamiltonian.

For the j  =  11 resonance, the ionisation peak is missing for the 0 ( F 5) Hamiltonian, but 

present for the 0 ( F 2) Hamiltonian. Again, this is caused by the different island sizes, with 

w r  — 0.39615 for the 0 ( F 2) Hamiltonian and w r  = 0.09964 in the 0 ( F 5) Hamiltonian.

An approximation to the island size was derived in §2.1.5, equation (2.40),

Wr = 2 . / Z E E T ^ T r T ) ,  y = f 1 + J™\ - -  W o \ j ,

and

/? —e7 V ' V I - / *

10 = IS ( F‘ + i f )  "  5l2 (301 “  18W™) ( F* + 3F’ FZ + i f )  ■

In table 2.4 the measured island sizes for each of the resonances are compared with the approx

imate island size calculated using this expression for both the 0 ( F 2) and 0 ( F 5) Hamiltonians. 

It can be seen th a t the approximation provides a close match for each of the 0 ( F 2) resonances 

and a reasonable match for the 0 ( F 5) resonances.

The approximation for w r  is fairly insensitive to the small differences in Fs caused by the 

difference in locations of the dynamical resonances, F f \  for the different order Hamiltonians. 

However, the calculation of J j  is sensitive to the order of the Hamiltonian. To 0 ( F 5), J 3 

is given by equation (2.29) on page 43, whereas to 0 ( F 2), J j  — J j ^ F ^ /Q o ) ,  from equation 

(2.30). The difference between the two expansions is dependant upon F^/Clo, which for the 

dynamical parameters considered is relatively large.

Figure 2.20 compares the J 3 expressions for 0 ( F 2) and 0 ( F 5) expansions for varying F  ̂

in the vicinity of the j  = 10 resonance for =  0.011414. The value Fs — 0.03615 is chosen to 

match the 0 ( F 5) dynamical resonance location, but the small difference between the locations
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Table 2.4: Resonance widths, w r , at each dynamical resonance, Fs =  F ^ \  measured from the 
Resonance Hamiltonian orbits and estimated using equation (2.40) for the 0 ( F 2) and 0 (F ° )  
Resonance Hamiltonians with FM = 0.13 and Qq =  0.011414.

j

0 ( F 2) 0 ( F 5)

\ J j \

Estimated
W r

Actual
W R \ J j \

Estimated
W R

Actual
W R

1 -0.05591 0.31459 0.31458 -0.11406 0.47382 0.47393
2 0.12186 0.45951 0.45947 0.06870 0.36956 0.36962
3 0.06997 0.34898 0.34897 0.12313 0.48990 0.49002
4 -0.10896 0.43094 0.43091 -0.04222 0.28920 0.28923
5 -0.09493 0.40000 0.39999 -0.13363 0.50604 0.50620
6 0.08033 0.36536 0.36535 -0.00491 0.09821 0.09821
7 0.12202 0.44362 0.44359 0.12947 0.49324 0.49342
8 -0.02960 0.21826 0.21826 0.06738 0.35651 0.35660
9 -0.13404 0.45333 0.45330 -0.08972 0.40731 0.40744
10 -0.04098 0.24972 0.24972 -0.12086 0.46728 0.46749
11 0.10776 0.39616 0.39615 0.00542 0.09963 0.09964
12 0.10886 0.39193 0.39191 0.12135 0.46038 0.46063
13 -0.02961 0.20262 0.20262 0.09199 0.39863 0.39882
14 -0.12832 0.41065 0.41063 -0.03792 0.25517 0.25523

for Fs 10) for the different order expansions has only a small effect when compared to the F’M 

dependence. From the figure it can be seen that the difference between the two curves increases 

as is increased. In particular, at =  0.13, for 0 ( F 2), J iq =  —0.04098, whilst for 0 ( F 5), 

J io  =  -0.12086.

0.2

J,10

- 0.1

0.160.140.08 0.120.10.04 0.060.02

Figure 2.20 C om parison between J7io(FM) for 0 ( F 2) (solid) and J \o{FO  for 0 ( F 5) (dashed) 

for Fs =  0.03615 and Q =  0.011414.
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The effect of the field switch on ionisation can be seen by examining table 2.3 for the 16-50- 

16 envelope. For each resonance, l i  is smaller for the gradually switched on field than for the 

instantaneously applied field, apart from for j  = 7. The variation in I e{t) during switch-on 

means that in many cases orbits with smaller values of I e(0 ) can be sufficiently excited in 

the presence of the resonance island that they ionise. The difference between l i  values for 

the 16-50-16 and the 0-50-0 envelopes gives an indication of the amount of change in I e(t) 

occurring during the switch-on; this can be seen in particular for j  =  9,11 and 14.

The changes in I e(t) during switch-on do not always increase ionisation. For j  — 7 the 

evolution of I e(t) is such th a t l i  for the slowly switched field is higher than for the instan

taneously applied field. The reason for this can be seen in figures 2.21 and 2.22. The first

figure shows the initial line, I e(0 ) =  —0.24450, and the evolved line I e(Ta) for this initial

condition, calculated for a 16-50-16 field envelope at Fs — 0.02537, chosen to be close to the 

Fs value at which ionisation starts. The separatrix curves form the boundary of the resonance 

island at t — Ta and are calculated from the Resonance Hamiltonian, equation (2.34), page 

44. In addition, two extra phase curves are shown for the Averaged Hamiltonian, evaluated 

for the 0-50-0 envelope with different ^ (O ). Curve (A) lies sufficiently close to the island to 

be captured and follow a librational orbit before ionising; Curve (B) falls outside the island 

and follows a rotational orbit th a t does not ionise. For clarity, only segments of the whole 

phase curves are shown. The angle coordinates for the I e{Ta) curve are translated using the 

transformation (2.33) on page 44, modified to  account for the switch-on period,

4>e =  V’e  2 - + -? 2  — 2 ^ A’ (2.44)

where G a =  g(Ta) — gTa and g(t) and g are given by equations (2.19) and (2.20) on page

37. This transformation is valid for times after the switch-on when the field envelope is at 

its maximum amplitude, A(t) = 1. The curve I e(Ta) is significantly deformed during the 

switch-on with respect to the initial phase curve, I e(0 ), but in contrast to the instantaneously 

applied field, this phase curve lies wholly outside the resonance island; hence no ionisation 

occurs for the 16-50-16 field with / e(0) =  —0.24450. Figure 2.22 shows / e(Ta) generated for 

7e(0) =  —0.20491, chosen to lie just above l i  for the 16-50-16 envelope. Ionisation occurs for
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orbits lying within the small segment of I e(Ta) lying inside the resonance island, marked on 

the figure with a triangle.

The behaviour observed for the j  — 7 resonance shows that although the field switch can 

have significant effects on the evolution of I e(t), the effects on the observed ionisation can be 

subtle. Switch effects are explored further in §6.4, page 191, where they are shown to have a 

significant effect on ionisation.

0.3

0.2
phase curve (A)

IC
I (T )e v a7-o.i

- 0.2

-0.3
- phase curve (B)

0.80.2 0.40 0.6

0.3

0.2

I ionising segmente

-o.i

- 0.2

-0.3 Io(0 )
0.2 0.4 0.80 0 . 6

<t> <t> J n

Figure 2.21 Phase  curves near the  j  =  7 res

onance for F^ =  0.13, f2o =  0.011414, Fs =  

0.02537 and / m =  0.2 are  shown w ith solid lines. 

T he separa trix  and the  ionisation critical value, 

Ic , are shown by dashed lines. D otted  lines show 

th e  initial action , Ie (0) =  —0.24450, and the  

evolved action , Ie(Ta). Phase curves (A) and (B) 

are exam ples of ionising and non-ionising orbits 

calculated  for K m and a  suddenly applied field 

(envelope 0-50-0).

Figure 2.22 D ynam ical param eters as for figure 

2.21, b u t w ith 7e (0) =  —0.20491 and Ie (Ta ) cal

culated  for th is  initial value. T he triang le  lying 

on th e  Ie(Ta) line m arks the  only segm ent th a t 

ionises.

C o m p ariso n  w ith  E x ac t H a m ilto n ia n  R esu lts

Figures 2.23-2.26 show approximate contour plots for P ,(F s,7e(0)) at a number of resonances 

for the exact classical dynamics with F\  =  0.13, flo =  0.011414, Im = 0.2 and a 16-50-16 

field envelope. The figures are calculated from 225 orbits at each (Fs, I e(0)) point, with 400 

orbits for the j  — 11 plot. Contours are plotted at Pi =  0 .1 ,0 .2 ,...,  1.0 for figures 2.23-2.26,
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with additional contours at Pi =  0.01 and Pi =  0.02 in figures 2.24-2.26. The statistical error 

introduced are significant for this sample size, causing the small fluctuations observed in the 

contours, which would otherwise be smooth. These resonances are very narrow, with widths 

of order AFs =  1 0 - 4  for large j; hence we have magnified the scale and shifted the origin to 

F,  = f F -

Comparison contour plots for the Averaged Hamiltonian, K m , are shown in figures 2.27- 

2.30. These are calculated using 250 orbits for each (Fs , I e(0)) point. The contours are plotted

at Pi =  0 .1 , 0 .2 , . . . ,  1 . 0  in each case.

-0 .2 - 0.1 0.2

- 0.1

- 0.2

-0.3

-0.4

Figure 2.23 Contour plots, Pi(x, Ie(0)),  near 

the j  = 8 resonance for the exact classical dynam

ics with =  0.011414, F  ̂ =  0.13, I m — 0.2 and 

field envelope, 16-50-16; x — 1000(FS — 0.02845). 

The horizontal axis is x and the vertical axis is

I e {  0 ) .

-0.4 - 0.2 0.2 0.4

- 0.1

- 0.2

-0.3

-0.4

-0.5

Figure 2.24 Contour plots, Pi(x , Ie(0)), near 

the j  = 9 resonance for the exact classical dynam

ics with fio =  0.011414, F  ̂ =  0.13, Im  =  0.2 and 

field envelope, 16-50-16; x =  1000(FS—0.031935).
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-0 . 6

-0.7

Figure 2.25 Contour plots, F j ( x ,/e (0)), near 

the j  — 10 resonance for the exact classical dy

namics with J7o =  0.011414, F M - 0.13, Im =  0.2 

and field envelope, 16-50-16; x =  1000(FS — 

0.03540).
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Figure 2.27 Contour plots, Pi(x , Ie (0)), near 

the j  =  8 resonance for the Averaged Hamil

tonian, K m , with fio =  0.011414, F^ =  0.13, 

Im — 0.2 and field envelope, 16-50-16; x =  

1000(FS -0 .0 2 8 9 6 ).
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Figure 2.26 Contour plots, Pi(x, Ie{0)), near 

the j  =  11 resonance for the exact classical dy

namics with f2o =  0.011414, FM =  0.13, I m =  0.2 

and field envelope, 16-50-16; x =  1000(FS — 

0.03870).
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Figure 2.28 Contour plots, Pi(x,Ie(0)), near 

the j  =  9 resonance for the Averaged Hamil

tonian, K m , with flo =  0.011414, F  ̂ =  0.13, 

Im =  0.2 and field envelope, 16-50-16; x  =  

1000(FS -  0.03256).
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Figure 2.29 Contour plots, P i ( x , / e (0)), near 

the j  — 10 resonance for the Averaged Hamil

tonian, K m, with flo =  0.011414, PM =  0.13, 

Im =  0.2 and field envelope, 16-50-16; x — 

1000(FS -  0.03615).

Figure 2.30 Contour plots, Pi(x, Ie(0)), near 

the j  =  11 resonance for the Averaged Hamil

tonian, K m , with fio =  0.011414, FM =  0.13, 

Im  =  0.2 and field envelope, 16-50-16; x =  

1000(FS -  0.03973).

Whilst the details are different for each resonance, a number of general characteristics are 

observed in both the exact classical dynamics and the approximation th a t apply to all of the 

resonances except the j  = 1 0  exact resonance:

1 . The value of I e(0) at which ionisation starts is sensitive to j .

2. From the minimum I e(0) value at which ionisation starts, the region for which P* ^  

0  forms a peninsula with its left side bounded by an approximately constant static 

field value, Fs =  p ( start) ̂  although in the figures this feature is less clear, because the 

minimum contour shown is a t P* =  0.1. The Fs range for which Pi ^  0 increases as 

I e(0 ) is increased.

3. Above a certain value of I e(0), there is also ionisation for Fs < p ( start\  The difference 

between this and the minimum / e(0 ) value at which ionisation starts varies significantly 

between resonances — this is due to the difference in resonance island widths.

Taking figure 2.27 for j  — 8  as an example, the onset of ionisation occurs at Fs «  0.02893 

for —0.25 < / e(0) < 0-0. For / e(0) > 0 ionisation occurs for all Fs values shown. In the
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following section we derive an analytic expression for the start of ionisation, Fs = jr^start\  

Prom equation (2.49) (page 80), for this resonance, F^start  ̂ ~  0.02893.

This behaviour can be understood by considering the effect of the resonance island on the 

phase curves. When Fs is increased the maximum Ie value on the upper separatrix boundary 

of the resonance island also increases. Upon reaching the critical ionisation value, 7C, ionisation 

becomes possible for librational orbits trapped in the resonance island. This can be seen in 

figure 2.21 on page 71: a phase curve starting near the bottom of the resonance island follows 

a librational curve before ionising close to the top of the separatrix.

For the j  = 11 resonance for the exact Hamiltonian shown in figure 2.26 the behaviour 

seems to be the mirror of th a t seen for other resonances for the start of ionisation: for —0.28 < 

I e(0) < —0.13, ionisation stops at approximately the same Fs value. The reasons for this are 

not understood.

The resonance island width, w r , is the main factor determining the range in I e{0) for which 

orbits can be trapped in the resonance island, although as previously discussed changes in I e(t) 

during the field switch-on also have an effect. Comparison between the Averaged Hamiltonian 

contour plots and w r  from table 2.4 on page 69 shows a broad correlation between island size 

and the length of the straight line segment, Fs «  j?(start^  in the contour plots. For the j  

values shown, the smallest ‘peninsula’ for the Average Hamiltonian occurs for j  = 1 1 . From 

table 2.4 this also has the smallest island width.

For sufficiently large / e(0), rotational phase curves lying above the separatrix can also 

ionise. Ionisation then can become possible over a broader range of Fs values; as an example, 

for j  = 8  shown in figure 2.27, this occurs for 7e(0) > 0.

The contributions to ionisation from librational and rotational orbits are shown in fig

ures 2.31 and 2.32 for the j  = 9 resonance, chosen for comparison with figure 2.28. The 

probabilities are calculated by integrating orbits for 50 equally spaced initial conditions for 

■0e(O) in the interval (0, w) a t each (Fs , I e(0)) point. Ionising orbits are classified as librational 

or rotational if the point I e(Ta,i/je(0)) lies inside or outside the resonance island calculated 

from the Resonance Hamiltonian. This test is approximate only as trajectories of the Av

eraged and exact Hamiltonians execute small oscillations around an underlying rotational or 

librational curve; so points lying near the separatrix could be either librational or rotational.
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Contours are drawn at Pi =  0 .1 ,0 .2 ,. .. ,  1.0; this excludes some small ionisation contributions 

incorrectly classified as rotational in librational-only ionisation regions. Their incorrect clas

sification was confirmed by examining individual trajectories which were confirmed to follow 

librational orbits within the resonance island. The figures confirm the earlier assertions: as 

7e(0) is increased ionisation initially occurs from librational orbits only, with the smallest Fs 

value for the onset of ionisation approximately constant; rotational ionisation starts at larger 

values of Ie(0) and over a broader range of Fs values.
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Figure 2.31 C ontour plots, P j(x , Je (0)), resu lt

ing from librational o rb its  near th e  j  — 9 reso

nance for the  Averaged H am iltonian, K m , w ith  

U0 =  0 .011414, P M =  0.13, Im =  0.2 and field 

envelope, 16-50-16; x =  1000(F a -  0.03256).

Figure 2.32 C ontour plots, P i(x , 7e (0 )), resu lt

ing from ro ta tio n a l o rb its near th e  j  =  9 reso

nance for th e  Averaged H am iltonian, K m , w ith 

=  0 .011414, F =  0.13, Im =  0.2  and  field 

envelope, 16-50-16; x =  1000(F S — 0.03256).

The dynamical process we have outlined — of resonance islands causing significant changes 

in Ie(t) such th a t ionisation can occur — is assumed to also occur in the case of the exact 

Hamiltonian. However, whilst the general characteristics are seen in both the exact classical 

dynamics and the approximate mechanics, the results do not exactly match at each resonance. 

A cause of this may be the termination to 0 ( F 5) of the series for g(t), equation (2.21), page 

37. Particularly for low frequencies the island width is sensitive to the number of terms, as can 

be seen by comparing 0 ( F 2) and 0 ( F 5) widths in table 2.3 and the results outlined earlier in 

this section.
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C o n clu sio n s

We have shown th a t ionisation can be significantly affected by the presence of resonance 

islands, the width of which has an im portant effect on observed behaviour: much of the 

observed behaviour can be understood from the behaviour of phase curves for the approximate 

Resonance Hamiltonian, K r . The key points are as follows:

1 . The resonance island width, w r , strongly affects the onset of ionisation. In the case of an 

instantaneously applied field, the onset of ionisation for librational orbits is independent 

of 7e(0) and this causes the characteristic straight edge, Fs =  p^start^  seen in each 0f the 

contour plots (except for the j  — 10 exact classical dynamics). In the following section 

an estim ate for jr^start'> is derived.

2. Depending on 7e(0), w r  and 7C, both librational and rotational orbits can contribute to 

ionisation. As I e(0) increases from — (7n — 7m) the first curves to ionise are those inside 

the resonance island.

3. The island size, w r , depends on the coupling term  in the Resonance Hamiltonian, K r . 

In particular, the term J j  depends on F^/Oq and becomes increasingly sensitive to  

the number of terms in the expansion for g(t) as Q —> 0. This might be the cause of 

the observed differences between the exact and approximate mechanics in the size of 

ionisation peaks and the onset of ionisation, 7e(0) =  7C.

4. Field envelope effects are im portant and can have subtle effects on observed ionisation 

behaviour. A slow switch-on of the field causes a spread in 7e values at t = Ta, which 

may either increase or decrease the ionisation probability.

2.3.2 Location of Resonance Ionisation Probability Peaks

It can be seen from figures 2.18 (page 65) and 2.35 (page 82) th a t while the ionisation proba

bility peak associated with each dynamical resonance lies close to the corresponding dynamical 

resonance value, F ^ \  the ionisation peak occurs a t a slightly different value of Fs and in fact 

there is no ionisation at Fs =  F ^  in these particular examples.
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The conditions leading to the beginning and end of ionisation as Fs is varied can be 

understood by examining the location and width of the resonance island and the effect of the 

island on the orbits.

0

-0.5

0 0.5
V *

Figure 2.33 Phase curves near the  j  — 10 dynam ical reso

nance for the  0 ( F 5) Averaged H am iltonian w ith F^ — 0.13,

/ m =  0.2, Fs =  0.0357 and Do — 0.011414. T he separatrix  

curves a t t — Ta are shown by dashed lines. D otted  lines 

show th e  initial value, Ie{0), th e  ionisation critical value, Ic 

and th e  m inim um  and m axim um  separa trix  curve Ie values,

Zi and  Z2.

Figure 2.33 shows a number of phase curves for Q =  0.011414, =  0.13 and Fs =  0.0357,

lying near the dynamical resonance, .Fj10̂  =  0.03615. The separatrix is shown by dashed 

lines. Dotted lines are used to show a number of important I e values: the critical value for 

ionisation, 7C; the initial action, / e(0); and the minimum and maximum separatrix values, T\ 

and X‘2 - For the selected dynamical parameters no ionisation is observed for either a 16-50-16 

or a 0-50-0 held envelope. The greatest change in Ie{t) occurs for librational orbits lying close 

to the separatrix and hence these are the first orbits to  ionise1 when Fs is increased to values

1T his assum es th a t only librational o rb its  con tribu te  to  th e  observed ionisation. If th e  resonance island is 
sufficiently large, ro tational o rb its  can also con tribu te  to  ionisation. T he effect of ro ta tional o rb its  on ionisation 
is explored fu rther in §5.
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such that

X2  >  I c. (2.45)

For ionisation to take place it is necessary th a t some of the initial orbits have been captured in 

the resonance island. As Fs is increased further, the location of the resonance island changes 

until a point is reached when there are no orbits captured and consequently ionisation from 

librational orbits ceases. The Fs value a t which this occurs depends upon the distribution of 

phase points, {(9fi(Ta) , I e(Ta))}, at the end of the field switch-on, t =  Ta. However, for the 

case of an instantaneously applied field the condition is simpler:

Zl  >  I e { 0)- (2.46)

When this condition is satisfied, ionisation is expected to  cease.

Approximate expressions can be obtained to find the Fs values for which conditions (2.45)

and (2.46) are satisfied. We start by deriving an approximate expression for Vj near Fs =  F, 

The Taylor expansion of Vj from equation (2.28) in terms of A Fs — Fs — F ^  yields

U)

^ ( A F 5) =  3p<1>AFs + 0 (A F s2), (2.47)

where
dg_

dFs ps=pU)

The condition (2.45) is met when I c =  X2 , hence, from equation (2.38),

Ir =
3A FsgW

0 ( A F a) + F»n ° W  ( [ ± j |
- 1

+
w r ( A F s )

(2.48)

where f3 and w r  are given in equations (2.36) and (2.39) on pages 46 and 48. We wish to 

evaluate @ and w r  as functions of A Fs. The function (3(AFS) is slowly varying in the vicinity 

of the dynamical resonance, particularly for low frequencies, where the ionisation peak is 

narrow in Fs. Because |A FS| <§; F s, we can assume th a t /3(AFS) ~  fio = /^(0). To 0 ( F 5),
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The island width is then given by 

w r ( A F s ) — 2 - 2e ( 1 _ p  _ 9 (£(1 )) 2 A F27 '

where e =  - F ^ Q 0 \Jj \ /4  and 7  =  (1 4- /£ ) /(1  -  /£ ) .

W ith these expressions for f i (AFs) and w r ( A F s), expression (2.48) can be solved for A F S 

and hence an approximation for the sta rt of ionisation is given by

=  F U) +  ( /c _  y ^ i - ( . (2.49)

This expression is independent of / e(0), which is consistent with the observed onset of ionisa

tion from librational orbits observed in the previous section.

Repeating the analysis for the end of ionisation condition, (2.46), using the expression for 

T\ from equation (2.38), the approximate end of ionisation is given by

piend) = F 0 ) +  ( j e(0) +  ^ — ^ ( 1 - / 2  - / . ( O ) ^ ) )  . (2.50)

This expression is expected to be most accurate when the field is instantaneously applied for 

the reason given above.

Ionisation only occurs if the resonance width is sufficiently large th a t both X2  > I c and 

T\ < I e(0) are simultaneously met. When the first condition is met, orbits within the resonance 

island can be excited sufficiently to  allow ionisation. The second condition determines whether 

any of the initial orbits fall within the resonance island. T hat both conditions are satisfied 

can also be expressed as the condition th a t ionisation can occur if p ^ start  ̂ <  p (end)

Table 2.5 shows p^start  ̂ values calculated from equation (2.49) for Qq = 0.011414, F^ =  

0.13 and Im = 0.2 for each of the resonances j  =  2 . . .  14 (ionisation is not possible for 

j  — 1). The results are compared with start values found by numerically solving the separatrix 

equations to find I 2 = I c and the measured start of ionisation found by examining Pi(Fs) for 

the 0 ( F 5) Averaged Hamiltonian, calculated for a grid of SFs =  2  x 10- 5  and a field envelope of 

0-50-0. The onset of ionisation is calculated for I e(0) values chosen such th a t ionisation occurs,
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Table 2.5: Calculated start of ionisation a t each resonance for 0 ( F 5) Averaged Hamiltonian, 
Clo =  0.011414, Ffj, =  0.13 and Im = 0 .2 . Comparison results are shown by numerical calcula
tions of I 2  =  I c and measured results by calculating Pi(Fs).

j I c W r F ^ j )
rp(start)
*  s

(equation (2.49))

T- , ( s t a r t )
& s

(numerical)

r - i ( s t a r t )  
w  s

(measured)
2 0.746 0.370 0.0073 0.0084 0.0083 0.0083
3 0.630 0.490 0.0109 0.0116 0.0116 0.0116
4 0.523 0.289 0.0145 0.0152 0.0152 0.0152
5 0.425 0.506 0.0181 0.0185 0.0185 0.0185
6 0.335 0.098 0.0217 0.0223 0.0223 0.0222
7 0.251 0.493 0.0254 0.0254 0.0254 0.0254
8 0.174 0.357 0.0290 0.0290 0.0290 0.0289
9 0.102 0.407 0.0326 0.0324 0.0324 0.0324
10 0.036 0.467 0.0362 0.0358 0.0358 0.0358
11 -0.026 0.100 0.0397 0.0396 0.0396 0.0395
12 -0.084 0.460 0.0433 0.0427 0.0427 0.0427
13 -0.138 0.399 0.0469 0.0462 0.0462 0.0462
14 -0.189 0.255 0.0504 0.0498 0.0498 0.0497

but only from librational orbits. The value of I e(0) does not affect the start of ionisation to 

the accuracy of the selected Fs grid size so long as this condition is met, which is consistent 

with the explanation that ionisation starts when Z2  > I c -

The calculated results show a good match in all cases with the numerically calculated and 

measured results.

In figures 2.34-2.37 calculated p ( start^  F^end\  and Fs^  values are compared with Pi(Fs) 

calculated for an instantaneously applied field and gradually switched-on field at a number of 

resonances.

It can be seen th a t the field envelope has little effect on the start of ionisation and p ( start) 

is generally a good approximation, although slightly less accurate for j  =  13. The calculated 

p ( s t o p )  vajue -s reasonabiy close to the instantaneous field result but is a less accurate approx

imation than p ( start\  it  generally underestimates the end of ionisation for the 16-50-16 field, 

which is expected.



C H APTER 2. THE AVERAG ED  H AM ILTO NIAN

(end)(start)

0.6

Pion
0 .4

0.2

0 .0 1 90 .0 1 7 0 .0 1 80 .0 1 60 .0 1 5
Fs

Figure 2.34 Pi(Fs ), for th e  =  0.13, 7m =  0.2 and S~2o =  0.0528 0 { F 5) Averaged Ham il

tonian, field envelope 0-50-0 (solid line) and 16-50-16 (dashed line) in th e  region of th e  j  =  1 

resonance.

0 .4
( 10)(end)(start)

P 0 2ion

0 .0 3 6 20 .0 3 6 0 .0 3 6 10 .0 3 5 90 .0 3 5 7 0 .0 3 5 8
FS

Figure 2.35 Pi(Fs), for th e  F M =  0.13, Im =  0.2 and Qo =  0.011414 0 { F 5) Averaged Ham il

tonian, field envelope 0-50-0 (solid line) and 16-50-16 (dashed line) in th e  region of th e  j  — 10 

resonance.
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(end)(start) ( 12)

0.6

0 .4
Pion

0.2

0 .0 4 2 8 0 .0 4 3 0 .0 4 3 2 0 .0 4 3 40 .0 4 2 6

Figure 2.36 Pi(Fs), for th e  =  0.13, 7m =  0.2 and  f2o =  0.011414 0 ( F 5) Averaged Ham il

ton ian . field envelope 0-50-0 (solid line) and 16-50-16 (dashed line) in th e  region of th e  j  =  12 

resonance.

(end) (13)(start)
0.6

0 .4
P

0.2

0 .0 4 70 .0 4 6 6 0 .0 4 6 80 .0 4 6 2 0 .0 4 6 4
Fs

Figure  2 .37 Pi(Fs ), for th e  =  0.13, / m =  0.2 and f2o =  0.011414 0 { F 5) Averaged Ham il

to n ian , field envelope 0-50-0 (solid line) and  16-50-16 (dashed line) in th e  region of th e  j  — 13 

resonance.

2.4 Off-resonance Analysis

2.4.1 Classical Perturbation Theory

Away from resonances changes in the action, I e(t), are small and a perturbation analysis can 

be used to determine higher order invariant actions of the motion. This analysis is motivated 

on two grounds: firstly the solutions obtained provide an independent check on the solutions
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derived numerically using the equations of motion, (2.26); and secondly the solutions provide 

information on the size of fluctuations in I e(t) away from resonance.

The effects of the field switch-on are excluded in this section, as the method can only be 

applied to periodic perturbations. The results obtained are therefore only applicable for times 

during which the field envelope is constant, when X(t) = 1 .

The method used in this section is described, for example, in [45].

Under the canonical transformation F2 (ipe,P )  =  (ipe — Zg(t)/2)P,  the Averaged Hamilto

nian (equation (2.24)) is transformed to be

X  =  %o(Ie) + e%i ( /e, <f)e, t)

where

3C0  (h )  = E R{ h ) - \ g h ,  aC1 =  A (/c)B(7e) s m n otsin(20e - 3 s ( t ) )  (2.51)

and e =  - F MQ0 /4. The functions g and g(t) are given by equations (2.20) and (2 .2 1 ). This 

canonical transformation is chosen to ensure th a t X i ( I e,(j)e, t ) is periodic in <pe and t.

We wish to find a transformation (0 e, / e) —> (x ,J ) ,  OC —> X '  such th a t J  is constant to 

0(e).  Defining the generating function

S(J,<f>e) =  J^e  +  eSi( J, (j)e, t),

then

Ie  

X

and X'(J,  x, t )

Taylor expanding X ',

— J  T e

+  e

dSi
d(j)e ’ 
dSi  
d J

(2.52)

(2.53)

d S
9C(-W ,X,t),0e(*J,X,*),*) +  -7-.

r  = 3 C0(J)  +  £ +  9 S M x , t )  + X i  ^  +  0{(2)_ ( 2  54)
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where
, n  dXo(J)  d E R(J)  3_ dE (J )

W =  w(J)  =  ^ -  =  - ^ - - 5 s = —  (2.55)

and E(J )  is given by equation 2.23. To 0 ( F 5),

„ (J )  .  .  iffi ( q ,  5 ) .  m - s l ' + " • ' - < F , ( r ; + i f

217“ ’J(2(437^ -  27/2)  +  i 4 t/2 ) /  3 i r4 \

-------------------------512------------------- \ F‘ + T  + 3F» Fs J
3/^3(10563/^ +  7 7 2 7 ^  +  72574 + 3(987" +  2207^)7" -  105 /4) ^

1024

Fs4 + ^ + 5 F t F s2

The perturbing Hamiltonian term , 0Ci(J, x,  t), is periodic in x  and t with zero mean value. 

If 5 1 is chosen such th a t
dSi  , d S 1 _

+  ~dt -  ~ X l  ( ]

then we see from equation (2.54) th a t to 0(e), 2C is independent of x • Hence J  is an invariant 

of the motion to first order in e.

The generating function S\  can be found by expressing and Si as Fourier series,

OO OO
X ( J , 4>e,t) = A ( J ) B ( J )  Y .  Y

/= —oo m=—oo 
OO oo

= A ( J ) B ( J )  Y  E
l= — oo m= —oo

and solving equation (2.56) term  by term, so th a t

i2Cim
Sim — Ioj +  mQo 

The resulting generating function is

£  { Z l T + t k ) s i n W e + kQot) (257)
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where

a k = U o  cos((1-':)s“3§(£))d5-
The series is only convergent if 2w(J) +  kflo ^  0 for all k. Resonances occur when this equality 

is satisfied, which is the same as the condition given by equation (2.32) on page 43.

For the 0 ( F 2) Averaged Hamiltonian,

g(t) =  p p  sin Dot + 0 ( F 2)
i to

and the generating function is

S 1{J>Mt)  = - A ( J ) B ( J )  j r  (  2 ^ J ) + ' l n ° 0) )  sin<2^  +

Hamilton’s equation for x(t)  is trivially solved,

X ( t )  =  u)(J)t +  5,

where 5 is an arbitrary phase factor. Hence from equations (2.52), (2.53) and (2.57), to first 

order,

I e(t) =
oo / _  \

A{J)B(J) E {2l l n klk)cos{2Mt)+mot)' (2-58)k =  — oo ' 7

u\  _  x n\  i ( A{J)  -B(J)^ ^  f  dk — dk+2 \  . 0
X ( t )  -  M t )  +  — g—  [ 2 uj( J )  +  j w S ) s m { 2 M t )  +  k Q o t ) ■

Assuming \ edSi /dJ\  <C 1 the second expression can be inverted approximately to give

 ̂ ,  F^DoJ ( A(J)  , B ( J ) \  ^  f a k - d k+2\  . „ n , , „  x, , orx
M t )  ~u>t +  6 -  —g— + _  j  ^  ( 2w + Mo )  sin((2w + + 2S).

From expression (2.58) it can be seen th a t I e(t) — I e(0) is 0 ( F fjLQo), confirming th a t for 

low frequency fields away from resonance, the fluctuations in I e(t) are small.
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2.4.2 Off-resonance R esults

Diagrams 2.38-2.40 compare the first order perturbation solutions for I e(t) against numerical 

solutions of the classical equations of motion (see equations (2.26)), for Qq =  0.0528, Fs — 

0.026, Im — 0.2, I e(0) =  —0.4 and i>e ( 0 )  — 0. The equations were integrated over 82 field 

cycles with A(£) =  1 throughout, for various values of F^ including term s up to 0 ( F 5) in the 

Hamiltonian. The dynamical parameters are chosen for comparison with figure 2.9 with Fs 

chosen to lie between the j  — 1 and j  = 2 resonances. The diagrams show the calculated I e (t ) 

values in the ranges 0 < t / T e < 0.3 and 0.7 < t / T e < 1, where Te is the overall integration 

time.

The graphs show a good correspondence between the numerical and perturbation theory 

results. The difference between the numerically determined I e (t) and the perturbation theory 

I e(t) for =  0.0325 is almost imperceptible on the figure. Over the full integration time the 

maximum absolute difference between the perturbation and numerically integrated values for 

I e(t) is approximately 0.6% of the maximum variation in numerically calculated I e{t)- As F  ̂

is increased the difference grows, although there is still a close match, even for =  0.13.

Calculations for the 0 ( F 2) Averaged Hamiltonian also showed a good match.

The perturbation theory results also provide some validation of the numerical results pre

sented elsewhere in this thesis for the Averaged Hamiltonian (equation (2.24), page 38), as they 

are derived independently of the equations of motion (2.26), page 40, and their computational 

evaluation.
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-0.39-0.39

-0.4-0.4

!e -0.41

-0.42-0.42

0.8 0.90.70.2
t / T  t / Te c

Figure 2.38 Ie(t) determ ined from p ertu rb a tio n  theory  (solid line) and num erical in tegration  (dashed 

line) for FM =  0.0325, n 0 =  0.0528, Im =  0.2, Fs =  0.026, envelope 0-82-0, 7e (0) =  - 0 .4  and ipe(0) =  0 

for th e  0 ( F 5) Averaged H am iltonian. T he tim e is scaled by Te =  82 x 27r/fio-

-0.34

-0.36

e

-0.38

-0.4

0.8 0.90.7

-0.34

-0.36

e

-0.38

-0.4

0.20 0.1

Figure 2.39 Ie(t) determ ined from p ertu rb a tio n  theory  (solid line) and num erical integration  (dashed 

line) for FM =  0.065, fio =  0.0528, 7m =  0.2, Fs =  0.026, envelope 0-82-0, 7e (0) =  —0.4 and %pe{0) =  0 

for th e  0 ( F 5 ) Averaged Ham iltonian. T he  tim e is scaled by Te — 82 x 27r/f2o-
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-0.4
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-0.44
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-0.48

0.8 0.90.7

-0.4

-0.42

-0.44
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-0.46

-0.48

0.20.1

Figure 2.40 Ie(t) determ ined from pertu rb a tio n  theory  (solid line) and num erical in tegration  (dashed 

line) for F’M =  0.13, S2o =  0.0528, / m =  0.2, Fs =  0.026, envelope 0-82-0, / e (0) =  —0.4 and ipe(0) =  0 

for the  0 ( F 5) Averaged Ham iltonian. The tim e is scaled by Te =  82 x 2n/Qo-



Chapter 3

Quantum M echanics

3.1 Quantum Theory

3.1.1 Quantum  Equations o f M otion

The Averaged Hamiltonian is quantised by rewriting equation (2.24) (page 38), replacing I e 

by the operator p =  —ihd/dipe, so that

H  = E R (p,Fs , F ^ t )  + a(t)A(p)B(p)  sin (2ijje -  3Ing(t))

The function a ( t ) is given by equation (2.27) on page 40. The presence of non-commuting 

factors of p  and mean th a t in its current form, the Hamiltonian is not Hermitian. This can 

be addressed in the normal way by taking a symmetric combination of the non-commuting 

terms, giving

H  =  ~Er (p , Fs,Ffj,,t)

+ ^  | A(p)B{p)  sin (2 -ipe -  3Ing(t))

+  sin(2V>e -  3 /„^(t)) A(p)f?(p)]. (3.1)

The normalised eigenfunctions of the unperturbed Hamiltonian obtained by setting a  = 0

91
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in equation 3.1 are
piklpe

(V’e \k) =
y/2 n

The wave function is 27r-periodic in %/j so k is an integer. The classical action is constrained by 

the requirement that \Ie\ < In — Im . In the quantum case the allowed states are constrained 

such that,

\ k \ < N ,  N  — n — m.  (3.2)

The quantal equations of motion can be derived by expanding the wave function in terms 

of the momentum eigenfunctions. Rewriting equation (3.1) as H  =  H q + Hi  where Ho is

the unperturbed energy term, the eigenfunctions of Ho are the eigenfunctions of p and from

Ho\k) — Ek\k) the eigenvalues are

Ek =  E^hk.Fs^F^t),

where the values of k are subject to the constraint equation (3.2).

Writing the equation of motion for the full Hamiltonian as

H \ t ) = i h ? - t \t) (3.3)

the wave function, |£), can be expanded in terms of the momentum eigenfunctions

N

11) = a fc(*)ifc>-

Multiplying equation (3.3) by (l\ gives

i h a i= E ia . i+  ak (l\Hi\k).  (3.4)
k= — N

Writing f(t/je) =  sin (2^e — 3I ng(t)), the off-diagonal matrix elements are

k= — N

N

(l\Hi\k) =  |  (A(lK)B(lh) + A(kh)B(kh)' j  ( l \ f ( t , ) \ k ) (3.5)
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^ (A ( lh )B ( lh )  +  A(kh)B{kh)^j j j  d0<ty(Z|0)(0|/(0)|<£)(0|fc)

^ A { l h ) B ( l h )  + A ( k h ) B { k h ) ^  j  d6 ei{k~l)ef{d)

exp (-3 iT n#(£)), k = 1 -  2,

-  exp (3i l ng{ t ) ) , k = 1 + 2 ,

0, otherwise.

The perturbation matrix, Hi  is banded, with non-zero coupling between neighbouring states 

only1.

The equations of motion (3.5) must be modified to satisfy constraint (3.2) on page 92. 

This is done by removing the off-diagonal matrix elements corresponding to  the transitions 

k = N - ^ - k  = N  + 2 and k — —N  —> k = —N  — 2. The final equations of motion are

thaw = aNEfi(Nh, Fs, Ffj,,t)

+aN - 2  j .  [A(iV)£(iV) + A { N  -  2) B ( N  -  2)] x

exp ( - 3 i l ng(t)) ,  (3.6)

and

ihd-N  — a - N E n ( —Nh,  Fs, F^,,t)

- a - N+2 j .  [A(7V)E(A0 +  A (N  +  2)B (N  +  2)] x

exp (3 i l ng(t)) (3.7)

ihdk — akEfi{kh,  F s , t)

+  £  {ak- 2 [A(k)B(k)  +  A(k  -  2)B(k  -  2)] exp ( - 3 i l ng(t))
4% I

-  ak+2 [A{k)B(k) + A (k  + 2 )B{k  +  2)] exp(3i lng(t)) ) ,  (3.8)

for —N  < k < N.

lrThe electric quantum number k is defined as 712 — n \ .  Because n i and 712 axe constrained by n \  +  ri2 +  
\m\ +  1 =  n  a change of ±1  in n 2  corresponds to a change of ± 2  in k.
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The equivalent scaled equations of motion are

’ d a w  =
n  d£o V V n

a( t0)
+CLN-2 ‘ A 0 ( N ) B 0 (N) + A 0( N  -  2)B0(N  -  2)

4 i

exp (—i3g(to) ) , (3.9)

- a _ w+2^  [Ao(N)B0 (N) + A 0( N  +  2)B0{N + 2)] x 

exp(i3#(t0)) (3.10)

and

+
a ( t o )

4 i
jafc-2 ^Ao(k)B0 (k) +  A 0(k -  2 )B0(k -  2)j exp (~i3g(t0))

-  ak+2 ^A0 (k)B0 (k) + A 0(k +  2)B0(k + 2)j exp (i3p(£0) ) |  , (3-11)

for —N  < k < N.  Because H  is Hermitian, |a(£)|2 is constant. As only bound states 

are included, ionisation must be added as an additional approximation; this is considered in 

§3.1.3, page 97.

For each of the scaled equations of motion In is set to one in Eji ((k /n),  Fso, F^o, to) and 

a(to)- The functions A 0(k) and Bo(k) are defined by

W o * s ' - © ’ -
3.1.2 The Quantum Resonance H am iltonian

The Resonance Hamiltonian, equation (2.34) (page 44), can be quantised to give the Hamil

tonian

H r  = E R{p, F s , F h) -  y P  +  a RA(p)B(p)  cos(2^ r )
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where [ ip R, p]  =  i h ,  (*r =  —I ^ F ^ O J j / i fF e 6 and i/j is given by equation (2.28), page 42. The 

quantised equations of motion are derived in the same way as described in the previous section, 

to  give
N

iMi  = ( E ri -  y / y )  a i +  ^ 2  a>k(l\HRi\k) (3-12)
k = - N

where the symmetrised perturbing term is

H r i  =  ^  | A(p)B(p)  cos(2'i/j r ) +  cos(2 ^  R)A(p)B(p)^.

The off-diagonal matrix elements are given by

1, k = 1 -  2,

-1 , k — 1 +  2,

0, otherwise.

We shall use the Resonance Hamiltonian to understand the behaviour of the quantum 

mechanical system in the vicinity of resonances, as will be seen later (see §3.3.2).

Equation (3.12) can be rewritten as a =  —iR a  where the m atrix elements are

R u t  =  1  [ f o C E s i  -  j K )  +  < Z | R b i I * > ]  ■ (3.13)

If decay term s are excluded from E ri and for times other than  switch-on and switch-off, the

matrix R  is Hermitian and time-independent. Denoting its eigenvalues and eigenfunctions by

{Afc} and {bfc}, the state vector is therefore given by

N

a (t) =  ^ 2  e~lXktckbk, cfc= b £a(0 ). (3.14)
k = - N

The Resonance Hamiltonian approximation was obtained by excluding Fourier compo

nents of frequencies other than Vj. If frequencies for k ^  j ,  are retained, the resultant
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Hamiltonian, H R, is no longer time-independent, but satisfies the periodic condition,

and can be analysed using Floquet theory. The eigenvalues, Xk, obtained above correspond to 

the Floquet quasi-energies when the non-resonant frequencies are removed as will be shown. 

The monodromy matrix U  for H'R can be obtained by integrating the equation

* (t)  =  - iH k ( i)* ( t )  (3.15)

over one period 27t/^o with the initial condition, $ (0 ) =  I, so th a t U  =  <I>(27r/fio)-

Writing the eigenvalues of U  as exp(—i27rpk/flo), Pk are the Floquet quasi-energies. De

noting the corresponding eigenvectors by d k, the vectors

v fe(£) =  #(£) dk

satisfy equation (3.15) and have the property,

2?rpfc

Vfe(t + ̂ ) =e' n° Vfc(<)-

When the non-resonant frequency components are removed from H R it is time-independent 

and equation (3.15) can be integrated to give the formal solution,

# (t)  =  * (0 )ex p (-iH 'Rt).

The eigenvalues of 3>(27r/fio) for the initial conditions $(0 ) =  I  are the eigenvalues of

exp - 

Hence, if H R =  R, the quasi-energies pk are the eigenvalues, A*,, of R.
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3.1.3 Decay Terms for the Quantum A pproxim ation

Because the quantum  equations described in the preceding sections are derived from the action- 

angle classical Hamiltonians, all states are bound and |a ( t) |2, satisfying equations (3.9-3.11) 

is constant. As for the classical approximation, ionisation must be introduced as a further 

approximation. In the quantum case this is done by the addition of a complex part to the 

eigen-energies. States corresponding to the classical case of F  > Fc are effectively above the 

potential barrier and would be expected to decay rapidly. For states below but close to the 

top of the barrier, ionisation is also expected by tunnelling. Two forms of the decay function 

are considered:

•  Step decay function, for which a constant decay term  is included for all states above the 

barrier, that is F  > Fc. This excludes all ionisation due to tunnelling.

•  Tunnelling decay function, where ionisation due to tunnelling from states below the 

classical barrier are included by fitting the decay function to ionisation rates obtained 

using semi-classical approximations for the case of a static field.

S te p  D ecay  F u n c tio n

Ionisation is introduced into the equations of motion by the substitution,

E R(kh, F, t) -> e(k, t) =  E R(kh, F, t) -  (3.16)

where T(fc,£) > 0. The decay term  in equation (3.16) is scaled by the factor l /2 n  so th a t a 

particular value of D  causes the same amount of ionisation over one Kepler period irrespective 

of n, as we show below.

The step decay function takes the form

rs(M) = <
o, k < kc(t),

(3.17)
D, k > kc(t),

where kc(t) is the critical value a t which ionisation occurs in the classical system and D  is a 

constant.
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In the case of > Fs, classically ionisation is possible along the £-axis, as can be seen 

by the substitution, F  —» —F  in the potential expressions given in equation (2.9) on page 

30: effectively interchanging the form of the potentials for V\ (£) and V^(ry). Quantally, this 

corresponds to ionisation along the n\  axis, where n\  is given by equation (2.12) on page 31, 

so th a t ionisation is also possible for

coordinates). Ignoring oscillatory term s in the phase and coupling terms between states, the 

scaled equations of motion are

The ionisation behaviour is unchanged for a wide range of D  values, although some dif

ferences are observed in the magnitude of ionisation probabilities, particularly a t resonances. 

For very large or very small values, the ionisation probability can be significantly reduced. 

The reasons for this are provided in appendix A.

Figure 3.1 shows the ionisation probability calculated for a number of different D  values for 

varying Fs for the Hamiltonian (2.24) including terms up to 0 ( F 5). The system is prepared 

in an initial state a*, =  1 for k = ki, and dk =  0 for k ^  ki.

The parameters chosen are: n — 39, m  =  10, ki =  —14, jFm = 0.14, Flo — 0.07311, a field 

envelope of 16-50-16 and a grid size of A Fs =  0.0001.

(

rs(M) - <
0, —k < k'c(t)

D, —k > k'c(t)

where k'c is the critical ionisation value in the classical case for the field F^ — Fs.

A suitable value for D  is obtained by assuming that for a state expected to ionise the decay 

function should result in a halving of |afc|2 over one Kepler orbit (for which t — 2tt in scaled

with solutions

dfc (t ) oc exp

if T(k, t) is treated as a constant. Hence over one Kepler period,

exp(—27tD) = th a t is, D  «  0.11.
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0.6

Pi
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0.04 0.080 0.02 0.06
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Figure 3.1 Ionisation probabilities Pi(Fs ) for D =  0 .055.0.11.0 .22 ,0 .44  and 0.88.

The largest differences in Pi(Fs) occur for the ionisation near Fs — 0. Table 3.1 compares 

the difference AP, between the ionisation probability for D  =  0.11 and other values of D. 

Although there are significant differences in the height of ionisation peaks for low Fs , the 

underlying ionisation behaviour does not show any marked differences for these values of D. 

As a measure of the overall difference, the integrated area,

/ • 0.08
/  P,(D. Fa) dFs,

Jo

was calculated for each D  value. The difference between the integrated area for each D  value 

when compared with that for D = 0.11 is less than  3% for each of the D  values considered.

In figure 3.1, the ionisation probability is seen to apparently undertake step changes at a 

number of Fs values, for example, Fs =  0.0318,0.0351 and 0.0386. These non-physical changes 

are a limitation of the step decay approximation. As Fs is increased, the classical critical value, 

kCl above which ionisation occurs, changes continuously; however, for the quantum step decay 

function, the number of ionising states will change by integer amounts as kc falls below each 

allowed state, k. The step changes observed in the ionisation probability correspond to each 

change in the number of ionising states.
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Table 3.1: Comparison of maximum difference between ionisation probabilities, Pi (D,Fs), for 
various step sizes, D,  with P^(0.11, Fs). The difference, A Pi(D),  is calculated as the maximum 
value of |Pi(D, Fs) — Pj(0.11, Fs) \ for 0 < Fs <  0.08. The Fs value a t this maximum is denoted 
by Fsm . The dynamical parameters are: n  =  39, m  =  10, ki = —14, PM =  0.14, fio — 0.07311 
and a field envelope of 16-50-16.

D p M P i ( 0 . n , F sM ) A Pi A P J P i  (0.11, FSM )
0.055 0.057 0.887 0.033 0.037
0.22 0.00 0.387 0.059 0.151
0.44 0.001 0.455 0.115 0.252
0.88 0.001 0.455 0.195 0.430

Sem i-classical D ecay Function

In quantum mechanics, ionisation by tunnelling is expected for states below the classical 

barrier. It is assumed th a t the field is sufficiently slowly varying that at any point in time 

the decay term  can be approximated by the time-independent decay term calculated a t the 

corresponding field value, F(t).

As the principal quantum number is increased, the relative contribution of tunnelling to 

overall ionisation is expected to reduce; however, for the relatively low frequencies considered, 

tunnelling is still significant for relatively high values of n. For example, for f^o =  0.011414, 

tunnelling is still im portant for n > 50 (see figure 3.11 for Fs in the range (0.05,0.065)). For 

small resonance islands, tunnelling can have an appreciable effect for quantum numbers as 

large as n — 200. This is shown in §6.3, page 184 and in particular in figures 6.11-6.14 on 

page 188.

Damburg and Kolosov [19] determined the following semi-empirical expression for the decay 

term in the case of a static field, expressed in atomic units:

, 3 r  _  ( « ) 2 n 2 + m + 1  /  2  1 3

where

n dTDK = — r,— - — rr exp - - R  -  - n 6 Fg{n) , m  > 0, (3.18)n 2 ].{n2 + m)] \  3 4 '

2 i o o ™  , 5 3  d _ ( “ 2 E d k ? ' 2g(n) - 34n2(n2 +  m) 4- 46ri2 +  7m + 23m  +  — and P. -
3 F

and 77,2 is given by equation (2.12) on page 31 and can be determined from the electric quantum
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number, n e, by the following equation.

The energy levels, E d k , were calculated using fourth order perturbation theory (see [19], 

equation 40). In scaled units, E d k 0 = u 2 E d k , which is given by

_  ne j-, Erf (  „ n ( n e \ 2 n f m \ 2 19\- 2  E DKo =  1 +  3- F „  + ^ ( i 7 - 3 ( - )  - 9 ( _ )  +  - * )

3ne /  _ / ne \ 2 ^  f m \ 2 39 \
+ I t e ^ ( 23“ ( » )  + U ( » )  + ^ j

+ E l  (5487 -  1134 + 1806 -  3402
512 ( \  n z J \  n /  \ n  /

e > -

For large n 2 and m, the Damburg and Kolosov decay term  can be approximated using 

Stirling’s approximation to  give

3  1n T d k  — nTDKo =  ^

where

~ 2 /  n e \ , , „  , n o , / n 2\ no +  m ,  / n o + m \
=  - R q - ( 1  +  — J In (4R0 +  — l n ( ^ )  + - ?  In M ------

3 V n J n \ e n J  n \  en J
Fo g(n)
4 n 2

and is expressed in scaled coordinates. i?o is defined by uR,q — R  and Fo is the scaled

field.

The Damburg and Kolosov decay expression given by equation (3.18) is accurate for a 

restricted range of the parameters, n, m  and n e, with better accuracy for smaller values of |m| 

and n \. For example, Damburg and Kolosov compared numerically determined decay rates 

with their semi-empirical formula for n = 30, m =  0 and n e =  29 (see [19] table 2.17) and 

showed good agreement for a number of field values. However, experimental results [30] show 

th a t for n =  40 the Damburg Kolosov formula overestimates the decay factor significantly for

n 2(n2 +  m)
e x p ( - n G DK{n,F0)) (3.19)
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Table 3.2: Comparison between classical critical field and Gd k {Fd k ) =  0 in the limit n —> oo.

Im h Ie F d k Fc {Fd k  ~  Fc) /F c

0.2 0.2 -0.4 0.1828 0.1984 -0.0786
0.2 0.4 0.0 0.1544 0.1682 -0.0820
0.2 0.6 0.4 0.1390 0.1491 -0.0677
0.4 0.2 -0.2 0.1694 0.1848 -0.0833
0.4 0.4 0.2 0.1471 0.1593 -0.0766
0.4 0.6 0.6 0.1349 0.1425 -0.0533

The accuracy of expression (3.19) reduces as the barrier top is approached, which unfortu

nately is where ionisation due to tunnelling is greatest. This can be seen in the limit n  —» oo, 

when the quantum ionisation behaviour should approach th a t of the classical case. In this 

limit, physical considerations suggest th a t G d k { F )  should have the behaviour

> 0 , F0 < Fc,

G d k  < =  0, F0 = Fc,

< 0 , F0 > F C.

Table 3.2 compares the value of F  at which Gd k {F) =  0 with Fc for a number of I m and 

Ie values in the limit n  —> oo; it can be seen th a t the Damburg and Kolosov approximation 

gives a consistently low estimate of the critical field value.

More accurate estimates for the decay value near the top of the barrier can be obtained 

using semi-classical methods, as described by Dando [21]. The technique was used to calculate 

ionisation rates for hydrogen in a microwave field in the absence of a static field and provides a 

good match with experimental results for sufficiently low scaled frequency for which ionisation 

is assumed to result primarily from tunnelling [53].

The method used by Dando for the calculation of the semi-classical decay rates requires 

the calculation of a decay rate for each set of parameters, (n , m , n e, F ). This calculation is 

complex and too computationally intensive for direct inclusion in the calculations considered 

here. Instead we derive semi-empirical formulae for particular values of n, m  and n e suitable 

for use over a range of F  values; the formulae use parameters calculated by the semi-classical 

methods.
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Table 3.3: Example decay parameters obtained using semi-classical methods for a static field.

n m n e n i n 2 Fc a b c
39 0 38 0 38 0.130135 0.025309 1.119521 9.918105
39 0 28 5 33 0.137840 0.024067 1.055912 9.644235
39 0 18 10 28 0.146922 0.024660 0.952032 9.804940
39 0 8 15 23 0.157681 0.027769 0.950593 9.057639
39 0 -2 20 18 0.170890 0.034152 0.992983 8.193732
39 0 -12 25 13 0.188302 0.044012 1.035137 7.273361
39 0 -22 30 8 0.214117 0.057068 1.017246 6.339353
39 0 -32 35 3 0.261821 0.079321 0.837856 5.218557
39 0 -38 38 0 0.335513 0.062887 0.559475 2.462048

We start by writing the decay function in a similar form to th a t of Damburg and Kolosov

as

T s c  =  k ( n ) e x p ( - n G Sc ( n , F 0)) (3.21)

and fitting G sc(n , To) to match the decay factors calculated using semi-classical methods at 

values of F  near Fc satisfying F  < Fc. The value of k(n) depends upon m  and n 2,

k( n) =  <

27r I/ n 2(n2 +  m)

27rm’

1,

, n 2 ^  0, m  > 0,

n 2 =  0, m  > 0,

n 2 =  m  =  0.

(3.22)

G s c  is expressed as a quadratic expansion about F q — F c ,

Gs c { n, F0) =  a(n) +  b(n)
Fc - F 0\  f  Fc -  F0

+ c{n) , F q <  F c . (3.23)

Values for a(n), b(n) and c(n) are obtained by matching the approximation against values 

obtained using the semi-classical method. Examples are provided in table 3.3.

As for the Damburg and Kolosov case, in the limit of n  —>■ 0 0 , the behaviour of G s c  should 

be given by equation (3.20). Taking quantum values to match the classical parameters, I m =

0.2, I 2 =  0.2, table 3.4 shows the calculated critical field value, F s c > where G s c ( F s c )  = 0 for 

increasing n. It can be seen th a t as n  increases, the difference between F s c  and Fc decreases,
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Table 3.4: Comparison between classical critical field and G s c  (Fsc)  =  0 for increasing n 
corresponding to Im =  0.2 and 1 2 = 0.2.

n m n 2 n e F sc Fc (Fsc  ~  Fc) / F c

50 10 10 -19 0.2051 0.1965 -0.0440
100 20 20 -39 0.2013 0.1975 -0.0193
200 40 40 -79 0.1995 0.1979 -0.0078
400 80 80 -159 0.1988 0.1982 -0.0030
800 160 160 -319 0.1986 0.1983 -0.0012

as required.

The quadratic decay function approximation is inaccurate for F  <C Fc. However, little 

ionisation will result from any sufficiently large value of Gsc\  inaccuracies for F  « l ?c will 

therefore have little impact on the results of ionisation calculations.

For the time-dependent field (2.2), a further approximation can be made by averaging the 

decay function over a field period,

1 /»t+7r/f2 0
Fsc( t)  ~  T s c (t) = — /  d s k ( n ) e x p ( - n G Sc ( n , F 0 (s ) ) ) . (3.24)

Jt—Tr/flo

This approximation reduces the computational complexity of numerically evaluating the quan

tum  equations of motion. The integral (3.24) can be approximated by expanding about the 

maximum of F(t)  at

t =  2itM/Q,q +  s,

where M  is an integer and |s| <  27r/f2o>

/  27tM  \  (  2ttM  \  /  1 2\  . 4
+ s ) = x  ( " n 7  +  s)  + F» ~  2 F" ( °s) )  +  ( s ) -

Hence,

Gsc  —  n +  &(f^o5)2 +  0 ( 5 )̂>

where

«n). a(n)+( x -  w z + M )  K„)+b _ m z + M ) 2 c(n) (,25)
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and

Fc
(3.26)

Substituting for G sc{ t ) in expression (3.24), we obtain the approximation

erf ( V  7rnb ) for X(t)(Fs +  FM) < Fc.

For F  > Fc, this approximation is not valid, but from physical considerations rapid ionisation

where D — 0.11.

For the case of F^ > Fs ionisation is also possible along the n i quantisation axis, as can 

be seen by examining Fi(£) for F < 0 (see equation (2.9)). The additional decay coefficient 

is obtained from the expressions (3.22), (3.25), (3.26) and (3.27) by making the substitutions 

(ne, Fs) y ( 7ie, — F s).

Numerical tests confirm that the calculated ionisation probability is reasonably insensitive 

to the value of T sc  for F > Fc. The effect of different values of D  in equation (3.27) is 

demonstrated by repeating the quantum ionisation calculations of the previous section for 

F m =  0.14, Clo =  0.07311, field envelope 16-50-16, n — 39, m  = 10, ki =  —14 and grid size 

A Fs =  0.0001 using the semi-classical decay function and varying D. Figure 3.2 compares the 

ionisation probability Pi(Fs) for D = 0.055,0.11,0.22,0.44 and 0.88. The maximum difference 

in ionisation probability calculated for varying D  is shown in table 3.5. Contrasting these 

results with those for the step decay function, it can be seen th a t the effect of the decay value 

for F  > Fc is much less for the semi-classical case. The worst case difference, comparing 

D = 0.11 and D  =  0.88 is approximately 4% and the overall difference in integrated area 

varies by less than  0.3% for the D  values considered.

is expected; hence a step value is assumed for the decay value for F  > Fc. The combined 

expression for the decay function is

(3.27)
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Table 3.5: Comparison of maximum difference between ionisation probabilities, Pi(D,Fs), for 
a semi-classical decay function with various step sizes, D, with F*(0.11, F s). The difference, 
APi(D), is calculated as the maximum value of \PZ(D,FS) — Pj(0.11, Fs)| for 0 <  Fs < 0.08. 
The Fs value at this maximum is denoted by FSM. The dynamical parameters are: n =  39, 
m =  10, hi =  -1 4 , F'n = 0.14, Qq =  0.07311 and a field envelope of 16-50-16.

D f m Pi {D — 0.11, F SM) A  Pi A P i / Pi (0.11, Fg1)
0.055 0.0750 0.9992 0.0001 0.0001
0.22 0.0437 0.8636 0.0081 0.0093
0.44 0.0437 0.8636 0.0214 0.0247
0.88 0.0438 0.8980 0.0369 0.0410

0.6
p

0 .4

0.2

0 .0 80.02 0 .0 4 0 .0 6
FS

Figure 3.2 Ionisation probabilities, Pi(Fs), for th e  0 { F 5) Averaged H am iltonian w ith Qq = 

0.07311, =  0.14, field envelope 16-50-16, n  =  39, m =  10 and ki =  —14. A semi-classical

decay function is used w ith separa te  curves for D =  0 .055 ,0 .11 ,0 .22 ,0 .44 and 0.88.

T h e  E ffect o f  T u n n e llin g  on Io n isa tio n

Tunnelling can make a significant contribution to ionisation for surprisingly high quantum 

numbers. The effect of tunnelling can be isolated by modifying equations (3.9)-(3.11) to 

remove the inter-state interaction terms. Figure 3.3 shows the ionisation probabilities obtained 

by integrating the resultant equations of motion for varying Fs and F M, for n =  39, ki — —10 

and m  — 10. The period of integration is set to match th a t of a field envelope of 16-50-16, 

for a scaled frequency of flo =  0.0528. The lines show the values of Fs and FM for which 

the ionisation probability passes through Pt — 0.5, for the two decay functions, Ts(k,t)  and 

r s c ( k , t ) .  For Fm — Fs sufficiently large ionisation can also occur along the n i axis.
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Figure 3.4 shows the effect of tunnelling on ionisation for different n values. For these 

cases, m  =  0 and k{ =  0 for n odd and ki =  1 for n even. It can be seen that the area for 

which Pt (Fs, F < 0.5 reduces for the semi-classical decay function as n  is reduced; hence 

tunnelling becomes an increasingly significant contributor to ionisation as the quantum number 

is reduced. In the contrast, for the step decay function, the curves for which Pj(Fs) = 0.5 lie 

very close together; the differences are due only to the differences in initial conditions, k i/n  

and m /n , which vary slightly as n is changed. For all n values, ionisation for the semi-classical 

decay function is higher than for the step function.

The effect of tunnelling means that in general, we expect quantum ionisation probabilities 

to be greater than for the classical mechanics, with the differences becoming larger for smaller 

principal quantum  number, although this is not always true; at resonances, the different 

underlying dynamic mechanisms can lead to lower quantum ionisation probabilities.

0.2

0.15

F

0.05

0.20 0.05 0.1 0.15

0.15

F

0.05

0 0.05 0.1 0.15

Figure 3.3 Ionisation probability , Pi(Fs ,FO — F igure 3.4 Pi(Fs ,F O =  0.5 for m  =  0, no in-

0.5, for n  =  39, m  =  10 and no in teraction  term s teraction  term s and n — b, 10, 30, 39 and 50. For

w ith r s (solid line) and T s c  (do tted  line). each n , Pi(Fs) =  0.5 is shown w ith a  solid line

for th e  step  decay function, , and a  d o tted  line 

for th e  semi-classical decay function, Tsc?.

Tunnelling makes a significant contribution for relatively large n, although the effect be

comes smaller with increasing n. Table 3.6 shows ionisation thresholds for =  0.13 for 

various n, comparing the value of Fs for which the ionisation probability rises to 50% for a 

step decay function and for the semi-classical decay function. The initial state is chosen to
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Table 3.6: 50% Ionisation thresholds, Fs for which Pi =  0.5; for =  0.13 and m  =  0 for 
step decay, Ts{Fs), and semi-classical decay, Ts c ( F s), functions for various n  in the absence 
of inter-state interactions. See text for ki values.

n Step decay 
Fs

Semi-classical
Fs

Fs(Ts) /F s(Tsc)
%

10 0.03282 0.00202 6.16
30 0.03623 0.02319 64.02
39 0.03807 0.02748 72.19
50 0.03702 0.02862 77.31

be ki =  0 for n  odd and ki =  1 for n  even. For all values of n  shown there is an appreciable 

contribution from tunnelling.

3.2 Validation of the Quantum Approximation

In this section we provide some validation for the quantum approximation, comprising the 

equations of motion, (3.9-3.11) on page 94 and the ionisation mechanism detailed in §3.1.3, 

page 97. Unless otherwise stated, the semi-classical decay function given by equation (3.27) 

(page 105) is used.

Validation of the quantum approximation is made difficult by the limited availability of 

published data in the region of interest.

We check the consistency of the quantal calculations with classical calculations to ensure 

th a t there are no major errors in the calculations. Comparison is made with the classical 

Resonance Hamiltonian results for a single initial substate (Ie(0 ) ,/TO) and for a microcanon- 

ical distribution of initial states. The parameters are chosen to allow comparison with [51]. 

Later calculations for high quantum  numbers provided in chapter 6 confirm the expected 

correspondence with the classical dynamics.

At this time, the only comparative quantum calculations for low frequency linearly po

larised microwave fields in a parallel static field are Robicheaux et al [52]. We compare the 

quantum calculations described here with those of Robicheaux et al and the exact classical 

dynamics. Comparison with ionisation times calculated by Robicheaux et al are provided in 

§5.5 on page 172.

r
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3.2.1 Quantum R esults for Single Substates

Figures 3.5 and 3.6 compare the ionisation probabilities calculated using the quantum approx

imation for the Averaged Hamiltonian with the classical ionisation ionisation probabilities 

calculated in §2.2.1, figures 2.9 and 2.10 which were calculated for F’M =  0.13, Ho =  0.0528, 

Im = 0.2, 7e(0) =  —0.4 and field envelope 16-50-16. For the quantum calculations, n =  50 

and m = 10. The corresponding best match initial state is chosen to be k{ = —19.
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Figure 3.5 Ionisation probabilities, Pi(Fs ), for 

C2o =  0.0528, F^ =  0.13, envelope 16-50-16, Im =  

/ 2 (0) =  0.2 (classical), n =  50, m  =  10, fcj =  —19 

(quantum ) for the  0 (F 2) Averaged H am iltonian 

quan tu m  (solid line) and  classical (dashed line) 

approxim ations.

Figure 3.6 Ionisation probabilities, Pi(Fs ), for 

f20 =  0.0528, =  0.13, envelope 16-50-16, / m =

/ 2(0) -  0.2 (classical), n  =  50, m =  10, ki — —19 

(quantum ) for th e  0 (F5) Averaged Ham iltonian 

quantum  (solid line) and classical (dashed line) 

approxim ations.

The quantum approximations are seen to be consistent with the classical approximation, 

generating ionisation probability peaks at the same locations as the classical approximations 

for each of the resonances, =  1 . . .  4. Generally the ionisation probabilities for the quantum 

case are higher than the corresponding classical case, due primarily to the effects of tunnelling.

Figure 3.7 compares the ionisation probability, Pi(Fs) for the n  =  39 quantum Averaged 

Hamiltonian with the classical results shown in figure 2.11, §2.2.1 for F^ = 0.13, Ho =  0.011414 

and the field envelope 16-50-16. The quantum numbers, m  =  8 and ki =  —16 are chosen to 

match as closely as possible the classical parameters, Im — 0.2 and I e(0) =  —0.4. It can 

be seen that where resonance ionisation peaks occur, the classical and quantum  results are
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broadly similar, particularly for 0 < Fs < 0.045. For higher values of Fs, there is an underlying 

trend of higher ionisation probability for the quantum approximation due to tunnelling.

0.6

pl
0.4

0.2

0.07 0.080.040.03 0.05
FS

0.06

Figure 3.7 Ionisation probabilities, Pi(Fa), for th e  0 ( F 5) Averaged H am iltonian, =  0.13 

and f2o =  0.011414 for th e  n =  39, m =  8 and ki =  —16 quan tum  (solid line) and classical 

(dashed line) approxim ations.

3.2.2 Quantum Ionisation Probabilities for Averaged Substates

Repeating the calculations of §2.2.2 using the quantum equations of motion, figure 3.8 shows 

the ionisation probability calculated by averaging the ionisation probabilities calculated for 

each possible initial substate (m ,k i ) for n =  39. The classical results generated previously 

for the Averaged Hamiltonian and the exact classical dynamics results are also shown for 

comparison.
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Figure 3.8 P j(F s ), for F =  0.1 and f2o =  0.0980, field envelope 16-50-16 0 ( F 5) Averaged 

H am iltonian  quan tum  approxim ation (solid line), classical approxim ation (do tted  line) and ex

act classical dynam ics (dashed fine). T he blue line shows th e  quan tum  approxim ation  calculated  

using a  step  decay function.

As for the single substate comparison, the locations of ionisation probability peaks for 

each of the resonances are seen to coincide for the classical and quantum results. Overall, the 

quantum ionisation probability is higher at each Fs value than in the corresponding classical 

Averaged Hamiltonian case.

Classically, away from resonance the action, I e(t), undergoes little change after the initial 

held switch-on. The observed ionisation is close to the adiabatic ionisation curve as is seen 

in figure 2.14 on page 58. The quantum dynamics behave similarly and in the absence of 

tunnelling the quantum and classical ionisation probabilities are similar away from resonance, 

as can be seen from the step decay quantum curve also shown. When tunnelling is present 

ionisation can also occur from states below the classical critical ionisation limit, increasing the 

observed ionisation.

Figures 3.9 and 3.10 compare the averaged quantum ionisation probability calculated for- 

held parameters to match figures 2.15 and 2.16, selected for comparison with the results of 

Robicheaux et al [52].
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Figure 3.9 P i(F s) for th e  j  =  1 resonance aver

aged over substa tes, F M =  0.14372, S2o =  0.0730 

and envelope of 16-113-16 for th e  0 ( F 5) n =  39 

quan tum  approxim ation (solid line), classical ap 

proxim ation (do tted  line) and exact classical dy

nam ics (dashed line). Robicheaux com parison re

sults, taken from [52], are shown using triangles 

for th e  classical results and squares for th e  q uan

tu m  results.

F igure 3.10 Fj (F s) for th e  j  =  2 resonance aver

aged over substa tes, F M =  0.14372, f2o =  0.0730 

and  envelope of 16-113-16 for th e  0 ( F 5) n  =  39 

q uan tu m  approxim ation (solid line), classical ap

proxim ation (dotted  line) and exact classical dy

nam ics (dashed line).

The differences between the exact classical dynamics, averaged Hamiltonian and Ro

bicheaux classical results were discussed in §2.2.2, page 56. The quantum and classical ionisa

tion peaks for the averaged Hamiltonian, K m are coincident and generally, at each Fs value the 

quantum ionisation probability is higher than the classical ionisation probability. This is differ

ent to  the Robicheaux results, where p ( quant'> >  p (class) for p g < p.021 and p j quant) < p (class) 

for Fs > 0.021. The reason for this is not understood: tunnelling is expected to enhance the 

ionisation and for the Averaged Hamiltonian we observe th a t p^quant  ̂ > p ( class) for mQst Fs 

values.
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3.3 Analysis o f Quantum Results

113

3.3.1 Ionisation Probability D ependence on Tunnelling

In figure 3.11, the effect of changing the principal quantum  number on ionisation is shown. 

The ionisation probability, Pi(Fs), is plotted using solid lines for n = 10,15,20 and 39 with 

field parameters the same as for figure 3.7 and quantum  states specified in table 3.7, chosen 

to give the best match to the classical initial condition, 7e(0) =  —0.4. The n  =  5 case was also 

calculated but not plotted, because in th a t case the ionisation probability is close to 1 for all

Fs.

To demonstrate the effect of tunnelling on ionisation probability, the adiabatic ionisation 

probabilities, P^adta\ F s) , are also shown in figure 3.11 using dotted red lines. They are 

calculated in the absence of inter-state coupling; this is equivalent to setting {l\Hi\k) =  0 

in equation (3.4) (page 92). For each n  value, the Pi(Fs) and p (adta) c u r v e s  lie close 

together. As n  decreases, the effect of tunnelling on ionisation becomes more significant at 

smaller Fs values and over a wider range in Fs . Tunnelling explains the underlying difference 

in Pi(Fs) observed between the quantum and classical approximations in figure 3.7 on page 

110 for Fs > 0.45.

I
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Figure 3.11 Q uantum  ionisation probabilities, Pi(Fs ), are shown using solid lines for th e  0 ( F 5) Av

eraged Ham iltonian w ith F M =  0.13, flo =  0.011414 and n =  10,15,20, and 39. T he  field param eters 

are chosen to  m atch those for figure 3.7. For each n, corresponding m  and ki values are given in table  

3.7. T he do tted  red lines show th e  ad iabatic  ionisation probabilities, p j arlia * (F s ), calculated  by setting  

all off-diagonal m atrix  elem ents to  zero.

For ionisation probabilities calculated with inter-state coupling, different behaviour is ob

served near resonance for the n values shown. As n  decreases a number of resonance ionisation 

peaks appear, which are missing for higher quantum numbers and also in the classical dynam

ics. For example, the j  =  7 resonance ( F ^  =  0.02536) peak is missing in the classical case 

(see figure 3.7 on page 110); there is a small ionisation probability peak at Fs =  0.02490 with 

Pi =  0.017 for n — 39, whilst for n — 5,10,15 and 20 there are strong ionisation peaks with 

maximum values, Pi(Fs) > 0.66. The differences between the observed classical and quantum 

ionisation probabilities at resonance are partly explained by tunnelling and partly by quantum 

resonance behaviour; the latter is discussed in the next section.

In §2.3 it was shown th a t ionisation occurs if classical orbits are captured by the resonance 

island and the top of the resonance island lies above the classical ionisation point I c (see 

equation (2.43)). The field duration must also be sufficiently long. In the quantum case, 

ionisation by tunnelling can occur for states corresponding to 1e ^  Ic • Hence, dynamical 

effects due to resonances which do not have an observable effect in the classical case can 

manifest as ionisation probability peaks in the quantum dynamics because of tunnelling.
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Table 3.7: Quantum parameters for varying n  chosen to  best match the classical parameters 
Im =  0.2 and I e(0) =  —0.4.

n m hi m / n ki /n n m ki m / n ; ki /n
5 1 -3 0.200 -0.600 50 10 -21 0.200 -0.420
10 2 -5 0.200 -0.500 100 20 -41 0.200 -0.410
15 3 -7 0.200 -0.467 200 40 -81 0.200 -0.405
20 4 -9 0.200 -0.450 400 80 -161 0.200 -0.402
39 8 -16 0.205 -0.410 800 160 -321 0.200 -0.401

3.3.2 Quantum  Resonances

Whilst the presence of classical dynamical resonances are seen to have a similar general effect 

in the quantum dynamics — in the sense th a t ionisation probabilities can be enhanced in the 

region of classical dynamical resonances — the underlying mechanism by which the resonance 

causes changes in the quantum  dynamics is distinctly different.

In the classical mechanics, the presence of the resonance island in phase space causes 

underlying periodic oscillations in I e(t), with periods and amplitudes determined by the initial 

conditions, (Ie( 0), 4 >e( 0)), and the relative location of the phase curve and the resonance island. 

For the quantum  mechanics the resonance can cause enhanced couplings between substates 

which cause periodic underlying oscillations in the population of substates and can cause 

changes in the observed ionisation. The period of these oscillations is entirely quantal in 

nature.

In this section we examine an ionisation peak in the vicinity of a resonance and show 

how the observed ionisation behaviour is related to the coupling between substates. We 

consider the small quantum  number, n  =  10, as this allows the quantal resonance effects to 

be more easily seen. For higher quantum numbers, the same mechanisms outlined here also 

cause the ionisation behaviour, but there are increasing numbers of interacting states and the 

combined effect becomes closer to  the observed classical behaviour. Higher quantum numbers 

are examined in more detail in §6 (page 177).

The effect of a resonance on the quantum dynamics can be seen by examining the state 

expectation value,
N

K ( 0 )  =  aU t ) k a te(*)-
k = - N
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The ratio (ne(t)/n)  corresponds to the classical action, Ie(t). Figure 3.12 plots (n e(t)) for 

the n =  10 Averaged Hamiltonian at Fs = 0.02464, an ionisation peak; and at Fs = 0.26, 

a point not at resonance. To observe the underlying dynamics and the oscillations all decay 

terms are set to zero for the calculations shown in this figure. As for the classical case away 

from resonance, {ne(t)) undergoes small oscillations only. At resonance, larger amplitude 

oscillations occur.

Figure 3.12 also shows the expectation values calculated by integrating the quantum Res

onance Hamiltonian, equation (3.12). It can be seen th a t the behaviour described by this 

simplified Hamiltonian is a reasonable match to the behaviour observed for the Averaged 

Hamiltonian. The frequencies of oscillation are very close, although there is a slight difference 

in phase. This is due primarily to the evolution of the system during the field switch-on, 

which is not expected to be as well approximated by the Resonance Hamiltonian. The fact 

th a t the Resonance Hamiltonian provides a good approximation to the Averaged Hamilto

nian behaviour at resonance can be used to provide a better understanding of the detailed 

resonance behaviour in the quantum mechanical case.

■2

F =0.02464
■3

<n > ac ^

F =0.026
■5

8020 400 60
Q t/271

Figure 3.12 E xpecta tion  values (ne(t)) for th e  0 ( F 5) R esonance (solid lines) and D ynam ical Reso

nance (dashed lines) H am iltonians for n  =  10, m  =  2, ki =  —5, F^ — 0.13, Do =  0.011414 and  envelope 

16-50-16 at two Fs values.

Figure 3.13 shows ionisation probabilities in the region of the j  =  7 resonance, calculated 

for the Averaged Hamiltonian with ionisation now included, for two initial conditions, ki = — 5
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and ki =  — 3. The following features are observed regarding the ionisation probabilities:

1. for ki — —5 there is a dip a t Fs =  0.02428;

2. at Fs — 0.02446 there is a dip for k , =  —3 and a slight shoulder for ki =  —5; and

3. at Fs = 0.02464 there is a peak for ki = —5.

F =0.02464 k.=-3

F =0.02446

P

k.=-5

0.6

F =0.02428

0.0270.024 0.025 0.026 0.02650.0245 0.0255

Figure 3.13 Ionisation p robab ilities Pi(Fs ) for th e  0 ( F 5) Averaged H am iltonian for n =  10, m  — 2,

F^ =  0.13, f2o =  0.011414 and  envelope 16-50-16 around the  j  = 7 resonance; ki — —5 (solid line) and 

ki =  —3 (dashed line).

These features are caused by the effect of the resonance on coupling between states, which 

can most easily be seen for the Resonance Hamiltonian. Whilst the field switch affects the dy

namics and the observed ionisation, the general features described above are largely dependent 

upon state coupling occurring when the field is at its maximum amplitude.

From §3.1.2 in the absence of ionisation and ignoring the field switch, the state vector, 

a(f), satisfies a (£) =  -? 'R a(() , where the matrix R  is given by equation (3.13) on page 95. 

The state vector can be represented in terms of the eigenvectors, {b*.}, of R . From equation 

(3.14) (page 95),

a (t) = ^ 2  e~lXktCkbit, cfc =  b£a(0),
k

where {A*,} are the eigenvalues of R.

When ionisation is included, the matrix R  must be modified to include additional complex 

diagonal matrix elements. Denoting R ' as the matrix including ionisation, a(t) now satisfies
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a (t) — —iR'a( t ) .  The matrix, R ' is not Hermitian, so care is required in the manipulation of 

its eigenvectors. An expansion can be obtained as,

a(t) =  £  e - iw tm fe d t , (3.28)
k

where {dfc} and {fJ-k} are the right eigenvectors and eigenvalues of R '. The eigenvalues, {pk},  

can be complex. The coefficients, {mfc}, are given by, mk  =  d£a(0), where {d£ } are the left 

eigenvectors of R ', satisfying

d j R ' =  Hk&k-

The eigenvectors satisfy orthogonality conditions, d£d/ =  Ski-

We expect the introduction of ionisation to affect the quantum dynamics, but th a t the 

ionisation acts as a perturbation to the non-ionising system and hence th a t the non-ionising 

dynamics are a reasonable approximation. To test this assertion, we examine the ionisation 

for R ' and compare this with an approximation for the ionisation for a system in terms of the 

non-ionising eigenvectors, {bfc}, obtained using a perturbation expansion. We express R ' as,

R  R  T i s r ,

where T is a real matrix with zero non-diagonal elements and £ is a small real expansion 

parameter. To O(e),

d k =  dj.0) +  e d ^  and fj,k =  (3.29)

with solutions,

dfc0) =  b fc, /40) =  A fc, /4 1} =  i b lT b k  and d£1}
i^k k 1

where, by appropriate choice of the phase of bfc, djj^bfc =  0 so th a t the normalisation 

condition, d£dfc =  1, is satisfied to 0 (e).
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To 0 ( e) the left eigenvector corresponding to dfc is,

dfc = b ^ - £ d ^ 1)f.

119

In the presence of ionisation, from equation (3.28) and using the perturbation substitutions 

of equation (3.29),

|a(t)|2 =  at (t) a (t) = ^  |mfc|2 exp (25S(fj.k)t)  + O(e),
k

where Q(x) is the imaginary component of x. The initial state, a(0) can be expanded in terms 

of the unperturbed eigenfunctions,

a (°) =  5 Z Cfcbfc’
k

so th a t to 0 ( e ), mfc ~  Cfc. Hence, if p\.(t) is the ionisation at time t for a system in an initial 

state, a(0) =  bfc, then an estimate for the ionisation at time t is given by,

Pi(t) «  P ^ st)(t) =  £ > fe| y k (t). (3.30)
k

In figure 3.14 estimated ionisation probabilities, P^est\ F s), calculated using equation (3.30) 

at time t =  Te, where Te — 2ir(2Na + Nb)/Qoi are compared with Pi(Fs), calculated from the 

Averaged Hamiltonian. The field parameters are the same as for figure 3.13, other than the 

field envelope, which is 0-50-0 instead. Comparing the red dashed curves in figure 3.14 with 

the curves in figure 3.13 shows th a t the field switch has only a small effect on the curve: the 

majority of features are still present for the instantaneously applied field.
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Figure 3.14 T he solid lines show th e  estim ated  ionisation probabilities, bt) (Fs ), calculated using 

equation  (3.30) w ith param eters chosen to  be the  sam e as for figure 3.13, bu t w ith an instantaneously  

applied field, envelope 0-50-0. For com parison the  curves. Pi(Fs ), calculated  from th e  Averaged Ham il

ton ian , are shown using dashed lines.

The estimated ionisation probabilities, P-est\ F s), exhibits the same general features de

scribed in the list on page 117, although the dip at Fs = 0.02446 for ki — —3 is much larger. 

However, P-est\ F s) also has peaks at Fs =  0.02482,0.025 and 0.02518 that are not present for 

Pi(Fs). If we exclude these peaks, P-est\ F s) captures the general features seen for Pj(Fs). We 

can therefore understand these general features by considering the dynamics of the Resonance 

Hamiltonian in the absence of ionisation. The additional peaks in P-est\ F s) are discussed 

later in this section.

The matrix R  comprises diagonal elements and small off-diagonal perturbation elements. 

Away from resonances, the off-diagonal elements have little effect, the eigenvalues are non

degenerate and the normalised eigenvectors are approximated by b ^  % <5/,./; consequently for 

an initial state k,

a (t) «  e " a ^a(0 )

and hence (n e(t)) ~  k. The inclusion of off-diagonal elements introduces small additional 

oscillations from states, I ^  k, around the mean value, (ne).

The picture changes at resonances which correspond to eigenvalue near-degeneracies where,
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for k ^  I, Afc — Xi is small, but non-zero2. In these regions, a (t) is described by a superposition 

of the nearly degenerate states and (n e(t)) will therefore oscillate. For two eigenstates with 

close eigenvalues, the angular frequency of oscillation will be A*, — Ai. In figure 3.12, for 

Fs =  0.02464, the dominant contributions are predominantly from two eigenstates. The 

calculated time period, expressed as TQ,o/2 tt, is

Qn 31.4,
A f c  -  A ;

which is reasonably consistent with the frequency of 31.9 measured for the Resonance Hamil

tonian in figure 3.12. The amplitude of oscillation resulting from two dominant eigenvectors, 

bj and b j ,  is

Aij — 2|Cj C j(bi|ne|b j) |.

In figure 3.12, taking just the two dominant eigenvectors, ~  2.05; this is close to the 

measured amplitude of 2.11.

Figure 3.15 shows the eigenvalues as a function of Fs calculated for the Resonance Hamil

tonian near the j  — 7 resonance with all decay factors set to zero. It can be seen th a t a t a 

number of Fs values, some of the eigenvalues become close although closer examination shows 

th a t they do not become identical, as is demonstrated in figure 3.16, focusing on a small region 

around a near-degeneracy. The effect th a t the near-degeneracies have on ionisation depends 

on the particular states mixed.

2Near-degeneracies are also referred to in the literature as “avoided crossings” and “avoided level crossings” 
(see, for example, [11]).



122 CHAPTER 3. QUANTUM  MECHANICS

0.02

0.01

XK

- 0.01

0.024 0.0270.025 0.026

Figure 3.15 Eigenvalues of R  for th e  0 ( F 5) Resonance H am iltonian w ith n =  10, m  =  2, F M =  0.13 

and  =  0.011414.
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Figure  3.16 Eigenvalues of R  for th e  0 ( F 5) Resonance H am iltonian w ith n =  10, m =  2, =  0.13

and  S2o =  0.011414 in th e  region of a  near-degeneracy.

Tables 3.8-3.11 show the expectation values for each eigenvector, b j, and the modulus of 

the projection component of the initial state onto the eigenvector, Cj, at various Fs values. 

Tables 3.12 and 3.13 show the eigenvalues, A j and the ionisation probabilities, p^(Te), calcu

lated by integrating the equations of motion for an initial state a(0) =  b j using the equations 

of motion for the Averaged Hamiltonian. The dynamical parameters used in the calculation 

of tables 3.8-3.13 are the same as those used for figures 3.12-3.17. At each Fs value, the 

eigenvectors, {bj}, are labelled in order of increasing expectation value, (b j |n e|b j). From
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Table 3.8: Expectation values, (n e( j )) =  (b j |n e|b j), for eigenvectors, b 7, and projections, 
Cj = bja(O), for initial state ki =  —3 at various Fs values.

j

Fs
0.024 0.02428 0.02446 0.02464

M j) > h i K 0 ')> \Cj\ K 0 ')> h i K ( j ) ) h i
-7 -6.96 0.01 -6.11 0.09 -6.15 0.45 -6.91 0.00
-5 -5.02 0.09 -5.84 0.13 -4.93 0.28 -4.05 0.66
-3 -3.01 0.99 -3.03 0.98 -3.89 0.84 -3.90 0.72
-1 -1.00 0.07 -1.01 0.10 -1.02 0.13 -1.12 0.19
1 1.00 0.00 1.00 0.00 0.99 0.00 0.99 0.01
3 3.00 0.00 3.00 0.00 3.00 0.00 3.00 0.00
5 5.00 0.00 5.00 0.00 5.00 0.00 5.00 0.00
7 7.00 0.00 7.00 0.00 7.00 0.00 7.00 0.00

Table 3.9: Expectation values, (n e( j )) =  (b^|ne(b^), for eigenvectors, b J5 and projections, 
Cj =  bja(O), for initial state ki =  —3 at various Fs values.

j

Fs
0.02482 0.025 0.02518 0.027

( M o ) ) h i (M i)> h i ( M l ) ) h i ( M l ) ) h i
-7 -6.99 0.01 -6.99 0.00 -7.00 0.00 -7.00 0.00
-5 -3.38 0.39 -4.72 0.17 -4.69 0.11 -5.00 0.02
-3 -2.93 0.92 -2.08 0.72 -1.37 0.71 -3.00 1.00
-1 -2.67 0.08 -1.90 0.67 -0.97 0.28 -1.00 0.03
1 0.97 0.01 0.70 0.00 -0.66 0.64 1.00 0.00
3 2.99 0.00 2.99 0.00 2.68 0.02 3.00 0.00
5 5.00 0.00 5.00 0.00 4.99 0.00 5.00 0.00
7 7.00 0.00 7.00 0.00 7.00 0.00 6.99 0.00

tables 3.12 and 3.13 we note th a t the ionisation probability does not necessarily increase with 

increasing j .

Examination of figure 3.15 and tables 3.8-3.13 allows many of the features of the ionisation 

probability curves in figure 3.13 to  be explained.

It can be seen from figure 3.15 and table 3.12 th a t at the point Fs = 0.024, the majority of 

eigenvalues are well separated apart from the lowest two and th a t the closest eigenvalues are 

for the lowest three; from table 3.12 we see th a t these correspond to the states j  — —7, —5 and 

—3. The separation in eigenvalues is reflected in the expectation values of the eigenvectors, 

given in tables 3.8 and 3.10, where (b j |n e|b j) ~  j  apart from the lowest three states. States 

j  — — 7 and j  — — 5 have the closest eigenvalues and have the largest values of |(b j |n e|b j) — j \ .
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Table 3.10: Expectation values, (n e( j )) =  (b j |n e|b j), for eigenvectors, b j, and projections, 
Cj =  b ja(0), for initial state ki =  —5 at various Fs values.

3

Fs
0.024 0.02428 0.02446 0.02464

K 0 ') ) M K ( j ) ) \Cj\ KC?)> M ( M j )) M
-7 -6.96 0.13 -6.11 0.65 -6.15 0.06 -6.91 0.11
-5 -5.02 0.99 -5.84 0.74 -4.93 0.94 -4.05 0.73
-3 -3.01 0.09 -3.03 0.16 -3.89 0.34 -3.90 0.68
-1 -1.00 0.00 -1.01 0.01 -1.02 0.01 -1.12 0.04
1 1.00 0.00 1.00 0.00 0.99 0.00 0.99 0.00
3 3.00 0.00 3.00 0.00 3.00 0.00 3.00 0.00
5 5.00 0.00 5.00 0.00 5.00 0.00 5.00 0.00
7 7.00 0.00 7.00 0.00 7.00 0.00 7.00 0.00

Table 3.11: Expectation values, (n e( j )) =  (b j |n e|b j), for eigenvectors, b j, and projections, 
Cj =  b^a(0), for initial state ki = —5 at various Fs values.

3

Fs
0.02482 0.025 0.02518 0.027

M i ) ) \Cj\ M o ) ) M K C O ) M K ( . j)) M
-7 -6.99 0.08 -6.99 0.06 -7.00 0.05 -7.00 0.01
-5 -3.38 0.72 -4.72 0.96 -4.69 0.97 -5.00 1.00
-3 -2.93 0.25 -2.08 0.14 -1.37 0.08 -3.00 0.02
-1 -2.67 0.64 -1.90 0.09 -0.97 0.02 -1.00 0.00
1 0.97 0.00 0.70 0.20 -0.66 0.07 1.00 0.00
3 2.99 0.00 2.99 0.00 2.68 0.19 3.00 0.00
5 5.00 0.00 5.00 0.00 4.99 0.00 5.00 0.00
7 7.00 0.00 7.00 0.00 7.00 0.00 6.99 0.00

Table 3.12: Ionisation probabilities, Pj(Te), and eigenvalues, A j, a t various Fs values. Pb{Te) 
values are calculated for a(0) =  b j from the equations of motion for the Averaged Hamiltonian.

j

Fs
0.024 0.02428 0.02446 0.02464

Pb(Te) P?(Te) pb(Te) ^ j K  (Te) ^j
-7 0.19 -0.0081 0.37 -0.0051 0.61 -0.0030 0.19 -0.0010
-5 0.46 -0.0072 0.39 -0.0049 0.61 -0.0036 0.97 -0.0020
-3 0.99 -0.0051 0.97 -0.0038 0.81 -0.0029 0.95 -0.0023
-1 1.00 -0.0020 1.00 -0.0016 1.00 -0.0013 0.99 -0.0010
1 1.00 0.0023 1.00 0.0019 1.00 0.0016 1.00 0.0013
3 1.00 0.0078 1.00 0.0064 1.00 0.0056 1.00 0.0047
5 1.00 0.0144 1.00 0.0122 1.00 0.0108 1.00 0.0094
7 1.00 0.0223 1.00 0.0192 1.00 0.0172 1.00 0.0152
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Table 3.13: Ionisation probabilities, pbj(Te), and eigenvalues, A j, at various Fs values. Pj(Te) 
values are calculated for a(0) =  bj  from the equations of motion for the Averaged Hamiltonian.

j

Fs
0.02482 0.025 0.02518 0.027

P°i(Te) P?(Te) Xj P°i(Te) ^3 P°i(Te)
-7 0.15 0.0010 0.14 0.0030 0.13 0.0050 0.08 0.0252
-5 0.88 -0.0006 0.61 0.0008 0.56 0.0022 0.61 0.0166
-3 0.96 -0.0014 0.98 -0.0002 0.99 0.0006 1.00 0.0091
-1 0.90 -0.0007 0.99 -0.0007 1.00 -0.0003 1.00 0.0027
1 1.00 0.0010 0.98 0.0007 0.99 0.0004 1.00 -0.0024
3 1.00 0.0039 1.00 0.0030 0.98 0.0022 1.00 -0.0065
5 1.00 0.0080 1.00 0.0065 1.00 0.0051 1.00 -0.0093
7 1.00 0.0133 1.00 0.0113 1.00 0.0093 1.00 -0.0108

Expectation values for the point Fs =  0.027 are also given (in tables 3.9 and 3.11) because of 

the generally large separation between eigenvalues at this point; again, (bj \ne |bj) «  j .  For 

both points, Fs — 0.024 and Fs =  0.027, the initial state, ki has a projection dominated by 

the state j  — ki, consistent with the earlier assertion th a t (ne(t)) ~  ki.

Returning to the earlier observations regarding ionisation probability for figure 3.13, these 

can now be understood as follows:

1. At Fs =  0.02428, from table 3.12 it can be seen th a t eigenvalues for the lowest two 

eigenstates, j  = - 5  and j  =  —7, are close. From table 3.10 it can be seen th a t the initial 

state ki =  —5 contains a significant contribution from the eigenstate j  =  — 7 which 

has a lower ionisation probability, hence lowering the overall ionisation probability and 

causing the observed dip at this point.

2. In the region of Fs «  0.02446 the eigenvalues for the j  =  —3 and j  =  —7 eigenstates 

are closest, with j  = — 5 also close, causing a mixing of these states. The effect of 

this is most visible for k i  = —3, where the contribution from the j  =  — 5 and j  =  —  7 

eigenstates — that have lower ionisation probabilities — causes a dip in the overall 

ionisation probability.

3. In the region of Fs «  0.02464 there is mixing between the eigenstates j  = —3 and 

j  =  —5. Both states are strongly ionising. For both ki =  —3 and ki = —5, the largest 

contributions come from these eigenstates, leading to significant ionisation.
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It was noted earlier that the estimated ionisation curve, P-est\ F s) for ki =  —5 has peaks 

at Fs =  0.02482,0.025 and 0.02518 th a t are not present for Pi(Fs). These peaks are seen to 

correspond to near-degeneracies. Their absence in the Pj(Fs) curve may be a consequence 

of changes in the eigenvectors caused by the inclusion of ionisation terms in the matrix, R '. 

In figure 3.17 ionisation curves are plotted for the Averaged Hamiltonian with a step decay 

function only; the perturbation of the eigenvectors is expected to be smaller in this case. 

Although very small, ionisation probability peaks can be seen at Fs = 0.02482,0.025 and 

0.02518, corresponding to locations of near-degeneracies.

0.01

F =0.2518
0.008

0.006
F =0.025P

F =0.02482S0.004

0.002

0.02550.0245 0.025

Figure 3.17 Ionisation probability  curve, P ,(F S), for th e  0 ( F 5) Averaged H am iltonian for n  =  10 

using a step  decay function. All o ther param eters are th e  sam e as for figure 3.13.

3.4 Low Quantum Numbers

The field parameters chosen for figure 3.6 on page 109 were selected for comparison with 

experimental results for hydrogen atoms excited such th a t n  =  50. In this section, we examine 

the behaviour of the quantum system for lower quantum  numbers.

We wish to select quantum parameters best matching the classical dynamical parameters 

chosen for figures 2.10 (page 52) and 3.6 (page 109), namely Qo =  0.0528, =  0.13 and a field

envelope of 16-50-16. The azimuthal quantum number, m, is selected such that m / n  = Im = 

0.2. The initial state, ki is selected to best match I e(0) =  —0.4; however, as the quantum 

number is decreased there is an increasing disparity between the best fit initial condition,
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Table 3.14: Initial quantum  states for various n selected to best fit the classical parameters, 
I m = 0.2 and 7e(0) =  —0.4.

n m ki Corresponding 7e(0)
100 20 -41 -0.41
50 10 -21 -0.42
40 8 -17 -0.425
20 4 -9 -0.45
10 2 -5 -0.5
5 1 -3 -0.6

k — ki and the required classical initial condition, as is shown in table 3.14.

In figure 3.18 we compare the quantum and classical ionisation probabilities for decreasing 

principal quantum  number n, with the other quantum parameters selected from table 3.14. 

The decay terms include tunnelling. It can be seen th a t there is a general increase in ionisation 

probability as n is reduced and tunnelling becomes more significant, as discussed in §3.3.1. 

For the n = 5 case, Pi(Fs) «  1 for all Fs values.

n=5

n=10

0.6 j=3P
n=50

0.4

n=20 classical
0.2

0.080.040 0.02 0.06
FS

Figure 3.18 Ionisation probabilities for th e  q uan tum  (solid) and  classical (dashed) Averaged Ham ilto

nian for flo =  0.0528, F^ =  0.13 and envelope 16-50-16. Various n values shown, w ith m  and ki chosen 

to  best fit Im — 0.2 and  / e (0) =  —0.4

In figure 3.19 Pi(Fs) is shown for a number of longer field durations of the form 16 — A^ —16. 

It would appear th a t the ionisation process continues indefinitely until all states are ionised. 

In figure 3.20 we plot Pi(t) for Fs =  0.026, selected as a point away from resonance. The
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decay curve is a close fit to an exponential decay curve after an initial period, suggesting that 

Pi(t) —> 1 as t —>■ oo and that the decay rate depends solely on the remaining population of 

states.

This behaviour contrasts markedly with th a t observed classically. Classically, for the field 

parameters considered, the orbits are regular and after the field amplitude has reached its 

maximum value, the orbits settle into periodic orbits th a t either ionise or remain as stable 

non-ionising orbits indefinitely. The ionisation probability, Pt(t), tends to some constant value 

over time as the ionising orbits each reach the threshold ionisation limit.

0.6
P

0.4

0.2

0.040.020

0.6

Pi
0.4

0.2

100 200 300 400 500 6000
t / T ,

Figure 3.19 Ionisation probability, P j(F s ), for 

n =  10, m  =  2 and ki =  —5, F^ =  0.13 and t2o =  

0.0528 for field envelopes 16 — Nf, — 16 and =  

50 ,100 ,200 ,300 ,400  and 500. P j(F s ) increases 

w ith Nf,.

Figure 3.20 T he solid line shows Pi{t) for n  =  

10, m  =  2 and ki =  - 5 ,  P M =  0.13, S20 =  0.0528, 

Fs =  0.026 and field envelope 16-500-16, where 

Tf — 2n/£lo- T he dashed line is a  num erically 

fitted exponential decay curve.

If an Fs value near resonance is chosen, additional features can be seen in Pi(t). In figure 

3.21 curves are shown for n =  10 and n = 39 for a 16-500-16 field envelope, although for 

clarity only the first 150 field cycles are shown. Ionisation due to tunnelling still dominates 

for n — 10, but additional bumps can also be seen, both for n — 10 and n — 39. These are due 

to the presence of the resonance island; their origin is explored further in §4. In particular, 

compare this figure with figure 4.4 on page 136.
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Figure 3.21 T he solid line shows Pi{t) for n =  10, m =  2 and  hi =  —5, =  0.13, flo =  0.0528 a t

Fs =  0.0163 calculated  for a field envelope of 16-500-16, where Tj  =  2n/£lo- T he dashed line is for 

n =  39, in =  8 and ki — —16.

Tunnelling obscures the underlying quantum dynamics for low quantum numbers. In figure 

3.22, quantum ionisation probabilities are calculated in the absence of tunnelling, using a step 

decay function, which mimics the classical ionisation mechanism, in the vicinity of the j  =  1 

resonance. Whilst the j  =  1 resonance ionisation probability peak is present for all n  values 

shown, there is an increasing difference between the classical and the quantum results as n  is 

reduced.

Part of this difference is due to  the difference between the quantum initial condition, k =  kj, 

and the corresponding classical initial condition; however, this is not the principal cause. This 

is demonstrated in figure 3.23, where classical ionisation curves for I e =  —0.4 and Ie =  —0.6 

are compared with a quantum ionisation curve for n =  5 and ki — —3.
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n = 5 0
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Figure 3.22 Ionisation probabilities for th e  

quan tum  (solid) and classical (dashed) Averaged 

H am iltonian for flo =  0.0528, =  0.13 and

envelope 16-50-16 in th e  vicinity of th e  j  = 1 res

onance. A step decay function is used. Various n 

values are  shown, w ith m and kr chosen to  best 

fit 7m =  0.2 and 7e (0) =  —0.4; see tab le  3.14.

Figure 3.23 Ionisation probabilities for the  

quan tum  (solid) and classical (dashed) Averaged 

H am iltonian for f2o =  0.0528, — 0.13 and

envelope 16-50-16 for n — 5, m  =  1, =  —3,

7e (0) =  —0.6 and 7e (0) =  —0.4. A step  decay 

function is used.

The changing behaviour in ionisation as n is reduced reflect the differences in underlying 

dynamical behaviour. This can be exhibited by comparing the quantum expectation value 

(ne(t)) with the analogous classical case, obtained by generating an ensemble of orbits for 

the same initial value, I e(0), and a number of initial angles, {ipi}, taken from a uniform 

distribution over [0, 27t). The classical expectation value is defined as

N

(h i t ) )  =
1 = 1

Figures 3.24-3.26 compare this classical expectation value, calculated for N  =  300 orbits, 

and the scaled quantum expectation value, (ne)/n , for various quantum numbers for the 0 ( F 5) 

Averaged Hamiltonian. The parameters are Qq = 0.0528, =  0.13 and Im =  0.2. For these

comparisons the field envelope is 0-50-0. The quantum initial conditions are chosen to satisfy 

m / n  =  Im and to best fit Ie(0) =  —0.4 according to table 3.14. To allow the classical and 

quantum behaviours to be accurately compared, the classical initial parameter, Ie{0) is chosen 

to exactly match the quantum initial condition, 7e(0) =  ki /n .  Two values of Fs are shown in
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the vicinity of the j  =  1 resonance; Fs = 0.013 is off-resonance and Fs =  0.01685 is near the 

classical ionisation probability peak. Ionisation channels are switched off in both the classical 

and quantum calculations.

n=50n=100
F =0.01685 F =0.01685

-a  - 0 .2-a -0.2

v  - 0 - 3-0.3
F =0.013 F =0.013

-0.4-0.4

-0.5,-0.5,
t / T ,t /T, ff

Figure 3.24 E xpecta tion  values for th e  quan tum . {ne ( t ) /n ), (solid black lines) and classical, {Ie(t)), 

(dashed red lines) 0 ( F 5) Averaged H am iltonian  w ith F2o =  0.0528, F =  0.13 and envelope 0-50-0. 

P rincipal q uan tum  num bers are shown on th e  figures, w ith values of m, ki and 7e (0) given in tab le  

3.14.

n=20n=40
F =0.01685 F =0.01685

A
c

- 0.2

-0.3
F =0.013

F =0.013
-0.4 --0.4

-0.5,-0.5,
t / T ,t / T , ff

Figure 3.25 As for figure 3.24.
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F =0.01685S

F =0.013

£  -0.2
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■g -0.3
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v° -0.4

F =0.01685

Figure 3.26 As for figure 3.24 w ith additional blue curves depicting  (n c (£)/n) for th e  quan tum  Reso

nance H am iltonian.

For both the on and off resonance Fs values shown, there is a close match between (Ie(t)) 

and (ne(t)/n)  for n  =  100. As n  is reduced the differences increase, although even for n as 

small as 20 there is a reasonable match for Fs =  0.013, away from resonance. The differences 

between classical and quantum mechanics at smaller n reflect the fundamental differences in 

the mechanisms involved. In the figures for n =  5 and n — 10, (ne(t)/n)  curves are also shown 

using blue lines for the Resonance Hamiltonian, K r ; these provide a good approximation to 

the quantum curves. Hence, the state vector, a (£), can be approximated by equation (3.14), 

page 95,
N

a (t) =  ^ 2  e~lXhtCkbfc, ck =  bj.a(0),
k =  — N

where { }  and {b^} are the eigenvalues and eigenvectors of the matrix R  of equation (3.13). 

The expectation curve, (ne(t)), is the sum of coupling terms between different states, p, q, of 

frequency Xp — \ q. For n = 5 and m  =  1, there are 4 states and hence only 6 frequencies 

contributing to (ne(t)/n).  In contrast, the classical curve is calculated as an average over a 

large sample of trajectories. The time period of the trajectories vary continuously depending 

on the location of the trajectories in relation to the resonance island.



Chapter 4

Quantal Resonances

In chapter 2 and §2.3 in particular, we showed th a t for the classical mechanics, many of the 

features observed in the ionisation probabilities could be understood by examining the role 

th a t the resonance island has on determining the evolution of the classical trajectories.

Classically, initial conditions and the size of the resonance island affect the shape of the 

ionisation probability curves, determining whether rotational and librational orbits near the 

resonance contribute to ionisation.

In this chapter we will examine quantal ionisation probabilities calculated near two reso

nances and show how much of the observed behaviour can be understood by comparison with 

the corresponding classical mechanical system. Some of the differences between quantal and 

classical ionisation behaviour are identified and explained.

Two resonance locations are examined. For the j  = 1 resonance and chosen initial condi

tions, classically only librational orbits contribute to ionisation. For the j  = 2 resonance, both 

librational and rotational orbits contribute to ionisation leading to more complex ionisation 

behaviour.

(,

4.1 The 7 =  1 Resonance

Figure 4.1 shows the n =  39 and n  =  100 quantum  and classical ionisation probabilities at the 

j  =  1 resonance for =  0.0528, F  ̂ =  0.13 and field envelope 16-50-16 calculated using the

133
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equations of motion for the Hamiltonians 3.1 (page 91) and 2.24 (page 38) respectively. The 

calculations use the grid size, SFs =  1 x 10-5 and 300 orbits in the classical calculation. Both 

the quantal n — 39 and n =  100 ionisation probability curves are similar to the classical curve, 

with the n =  100 curve being the closer match. This suggests th a t the classical dynamics 

provide a good description of the observed quantum  physics.
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Figure 4.1 Ionisation probabilities, P 7(F S) for 

Ffj, =  0.13, fio =  0.0528 and field envelope 16- 

50-16. Q uantum  ionisation probabilities for th e  

H am iltonian i7m for n  =  39, m — 8 and ki =  

— 16 are shown w ith a  solid line; for n =  100, 

m  =  20 and ki =  —41 w ith a  d o tted  line; and 

classical ionisation probabilities for m atching Im 

and / e (0) are shown w ith a  dashed line.

Figure 4.2 Resonance island for F M =  0.13, 

n 0 =  0.0528, Im =  8 /39  and Fs =  0.01685. T he 

separatrix  and th e  critical ionisation line, Ic, are 

shown by dashed lines. T he initial line, Ie{0) is 

shown by a  horizontal d o tted  line and th e  evolved 

line, Ie(Ta ), is shown as a  th ick  solid line and a 

do tted  line.

Classically, the ionisation probability can be understood in terms of the effect of the res

onance island upon the orbits. Figure 4.2 shows the resonance island for the Resonance 

Hamiltonian 2.34 (page 44) at the field Fs =  0.01685. The initial action, I e(0) =  —16/39, and 

the ionisation critical I e value, Ic =  0.459, are marked with dashed lines. The island width, 

Wr , is 1.3. The t/;e values are translated by n /2  so that the resonance island lies at the centre 

of the figure.

The resonance island divides the orbits into librational and rotational orbits. If the field is 

instantaneously applied such th a t X(t) =  1 for t, > 0, the rotational orbits will all lie below the
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resonance island centre. The maximum change in I e(t) for a librational orbit is w r , whereas 

for a rotational orbit the maximum change for Fs «  F is approximately w r / 2; for the 

j  = 1 resonance, with 7e(0) =  —16/39, this means th a t only librational orbits can change 

sufficiently to ionise. Further, for the given 7e(0) and 7C, all of the librational orbits have 

sufficient amplitude to ionise with a sudden switch. For a set of initial conditions, {^(O )} 

uniformly distributed in (0,7r), the ionisation probability is therefore the fraction of orbits 

lying within the island; this is confirmed by numerical integration of the classical equations 

of motion for a field envelope 0-50-0: the fraction of orbits lying in the island is 0.62 and the 

ionisation probability calculated by numerical integration is 0.61.

When the field amplitude is switched on gradually, the dynamics is changed by the ap

pearance of the resonance island a t the bottom of phase space and its subsequent motion 

through the initial line, 7e(0). The effect of this is shown on the figure by the evolved line 

I e(Ta), where Ta =  16 x (27r/fJo)> shown as a thick line for the orbits th a t can ionise (given a 

sufficiently long duration applied field) and a dotted line for the non-ionising orbits. After the 

switch-on period the dynamical evolution of the quantum and classical systems is the same 

as for the instantaneously applied field but with the initial conditions given by {ak{Ta)} and 

{('ipe(Ta), 7e(Ta))}; hence the ionisation probabilities for a 16-50-16 field envelope are the same 

as for a 0-50-0 field envelope with a modified distribution of initial conditions, { l e(0),if)e(0)}.

Ionisation begins at the time when the first orbit reaches 7e(t) =  7C. For the 0-50-0 

field envelope, ionisation begins a t t / T f  =  10.26 with Pi rising to 95% of its final value by 

t / T f  =21.73. The first orbit to ionise is not from the librational orbit closest to the centre of 

the island. Although this orbit has the shortest period of oscillation, it is not the fastest orbit 

to cover the portion of phase space from 7e = 7e(0) to I e — I c. The measured time for onset 

of ionisation is consistent with the calculated theoretical time for this portion of the orbit.

For the 16-50-16 envelope the onset of ionisation begins later at t / T f  =  22.31, as for much 

of the switch-on time the field has little effect on I e(t).

Much of the observed quantum  ionisation behaviour is consistent with the classical descrip

tion just given, with the differences appearing primarily because of the difference in ionisation 

mechanisms. Figure 4.3 compares the expectation value, (n e( t ) / n ), with the classical ex

pectation value, (7e(t)), calculated as the average of I e(t) for the remaining bound orbits at
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each time t. The expectation values are calculated at Fs =  0.013 and 0.01685 for the 0-50-0 

field envelope with 300 orbits used to determine the classical curves. The off-resonance value, 

Fs = 0.013, has zero ionisation probability and it can be seen that the classical and quantum 

expectation curves are virtually indistinguishable, exhibiting small amplitude oscillations in 

the vicinity of I e{ 0). For Fs =  0.01685, if ionisation is excluded from the integration, there is 

a similar close match between classical and quantum expectation values; however, differences 

become evident when ionisation is included. In figure 4.3 for Fs =  0.01685, the classical and 

quantum expectation curves are very close until ionisation starts, at t / T f  ~  9.
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Figure 4.3 E xpecta tion  values for F^ =  0.13, 

120 =  0.0528, Im =  8 /39  and Fs =  0.01685 for 

th e  0-50-0 field envelope. T he quan tum  param e

ters  are n  =  39, m — 8 and ki =  —16. T he clas

sical curves, (Ie {t)), are shown by dashed lines 

and th e  quantum  curves, (ne( t ) /n ), are shown 

by solid lines.

Figure 4.4 Ionisation probabilities, Pi(t) for 

F^ =  0.13, =  0.0528, Fs =  0.01685 and field

envelope 0-100-0. Q uantum  ionisation probabili

ties for th e  H am iltonian Hm for n =  39, m =  8 

and ki =  —16 are shown w ith a solid line; classi

cal ionisation p robabilities for m atching 7m and 

Ie(0) are  shown w ith a dashed line.

The different effects of ionisation on the classical and quantum systems can be seen by 

comparing the evolution of the quantum state distribution with the corresponding classical 

density for Ie(t). We first consider the classical mechanics.

So that we can compare the classical and quantum mechanics, we define the classical orbit 

density, pe(k , t ), as the fraction of orbits lying in the region, (k — / n  < I e(t ) < (k +  | )  / n  

at time t for the substate k.
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In figure 4.5 classical contour plots of y/pe(k, t ) are shown for the 0-50-0 field envelope, 

with i e(0) =  —16/39. A sample of 300 orbits is taken and the k and n  values are chosen to 

match the n =  39, m  — 8 quantum parameters. The vertical axis shows k / n  and the horizontal 

axis shows the time in units of field cycles, 27t/Qo- The contours are at 0.1, 0.2 and 0.3. The 

plotted points are smoothed for clarity, by averaging over 11 neighbouring time sample points 

for each (/c, t ) sample point, centred on the time t. The time grid size, 5t = 10.

Figure 4.5 Classical y / p e {k, t).  Figure 4.6 Classical y / p e ( k , t )  Figure 4.7 Quantum |a,fc(f)|

in the absence of ionisation. with ionisation present.

Quantum |afc(t)| and classical y / p e (k, t) contour plots for Fs =  0.01685, F  ̂ =  0.13, fio =  0.0528 and 

field envelope 0-50-0. Quantum parameters are n  =  39, m  =  8 and ki  =  —16. Classical parameters 

are / m =  8 /3 9  and Ie {0) =  —16/39. The vertical axis is shown as k / n .  Tim e on the horizontal axis is 

shown in units of field cycles, T f  =  2-k /Q.q. Contours are shown at |afc| =  0.1, 0.2 and 0.3.

In figure 4.6, y/pe{k, t) is shown in the absence of ionisation. The classical orbit density 

is seen to be composed of two components: a larger amplitude component of librational 

orbits that oscillate around the resonance island centre and a smaller amplitude component 

of rotational orbits oscillating about points below the separatrix unstable equilibrium points, 

I e =  I sep = 0.0605. In the presence of ionisation, for the Fs value selected, all of the librational 

orbits ionise and from figure 4.5 it can be seen th a t after about 20 field cycles, few librational 

orbits remain. The effect of ionisation on the librational orbits can be seen by examining the 

fractions of non-ionised orbits above and below I sep, which for a sample of N  orbits, with 

initial conditions, {{ipi,Ie{0))}, are,
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where H(x)  is the Heaviside step function. The subscript ‘L’ is used to  denote the fraction of 

states above I sep as only librational orbits can contribute to Pl(£)- The subscript ‘R ’ is used 

as after a sufficient amount of time, only rotational orbits contribute to PR(t). In figure 4.9 

these sums are plotted as functions of time. The librational component, P l(£)5 has a single 

peak whose maximum coincides with the onset of ionisation; after the peak its value quickly 

reduces to zero as all librational orbits ionise.

We now consider the quantum mechanics. Figure 4.7 shows the quantum state values, 

|afc(£)|, for n  =  39, calculated for the 0-50-0 envelope as a function of k and t. The vertical 

axis shows k / n  and the horizontal axis shows the time in units of field cycles, Tf  =  2'k/Q,q. 

The contours and sampling are the same as for figures 4.5 and 4.6.

The initial evolution of |afc(£)| is similar to  y/pe(k, t) up to the start of ionisation. However, 

whereas classically the population of librational orbits has reduced to zero by t / T f  ~  30, this is 

not the case quantally. In particular, a lobe is seen rising to a peak at ( t / T f , k/n)  ~  (35,0.4) 

which corresponds with the stepped increase in ionisation seen in figure 4.4. If the field 

envelope duration is extended further then additional lobes are also seen, with accompanying 

rises in ionisation, although generally the successive lobes become smaller and less distinct.

The observed differences can be made clearer by examining the quantum analogue of Pl(£) 

and pji(t): these are

P L (£) =  la *(*)|2 and 'PR(t ) =  la*(*)|2-
k>ks fc<fcs

Whereas classically Pl(£) has one peak after which all ionisation is complete, for the quantum  

analogue, P l(£ ), there are a series of peaks, as shown in figure 4.8. The peaks are associated 

with increases in ionisation shown in figure 4.4. As the quantum system evolves, there is a 

wider distribution of occupied k states so th a t not all ‘librational’ states ionise at the first 

ionisation event. The remaining population of states contribute to  further ionisation. The 

second ionisation event occurs at t / T f  «  35, the contributing states being visible in figure 4.5 

as the rising lobe discussed above; equivalently, the ionisation is associated with the second 

peak in P l(£) seen in figure 4.8.
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In figure 4.9, quantum density function, V l (t), for n = 400 is also shown. It can be seen 

that the quantum curve for the first peak is similar to the classical curve and that the size of 

the subsequent peaks have become much smaller.
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Figure 4.8 Probabilities, ^2k |ctfc(t)|2 for =  

0.13, =  0.0528, Fs =  0.01685, n  =  39, m =  8,

ki — —16/39 and 0-100-0 field envelope. T he 

sum  is shown by th e  solid line; V l { t )  is

given by the  dashed line; and th e  do tted  line is 

Elk la Jt(f)|2 sum m ed for all k.

Figure 4.9 Classical densities, ^Zpe(^) for F^ =  

0.13, S20 =  0.0528, Fs =  0.01685, Im =  8 /39, 

/ e (0) =  —16/39 and 0-100-0 field envelope. T he 

sum pF/(t) is shown as a  solid line; the  sum  p l O  

is shown by a dashed line; and  th e  upper do tted  

line is Y1 Pe( t )  sum m ed over all 7e . T he lower 

d o tted  line shows th e  q uan ta l function, Vl R), 

for n  =  400, m  =  80 and ki =  —161.

In conclusion, the n  =  39 quantal and corresponding classical ionisation probability curves 

at resonance share the same broad features, with peaks of similar size and with their maxima 

close together. The expectation values, (ne(t)/n)  and state densities |afc(£)| are similar to 

their classical counterparts up to the time when ionisation begins, indicating th a t the resonance 

island has a similar effect on the quantum dynamics to the classical dynamics. Differences arise 

primarily as a consequence of the different ionisation mechanisms. Classically, the mechanism 

is discrete — either an orbit will ionise or it will remain bound. For the chosen parameters, 

the rotational orbits are bound and all of the librational orbits ionise. Each librational orbit 

ionises within a time th a t is less than its librational period; for the parameters chosen here, 

each orbit ionises at a time th a t is approximately half its librational period.
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For the quantum mechanics, ionisation leads to a reduction in the population of states 

below the classical critical ionisation limit, but the remaining population of bound states 

continues to evolve, with the dynamics driven by the resonance island. This leads to further 

ionisation events occurring a t intervals after the initial ionisation peak.

4.2 The j  =  2 Resonance

In this section we examine the j  — 2 resonance. Although the resonance island width is 

similar to th a t of the j  =  1 resonance, the larger static field means th a t the classical ionisation 

limit, I c, is much smaller. The resonance island can cause sufficient variation in I e(t) that, 

for some Fs values near Fs2\  ionisation can also occur for rotational orbits. This causes some 

differences in the overall ionisation behaviour.

In figure 4.10 (a) the quantum and classical ionisation probabilities, Pi(Fs), are shown for 

the j  — 2 resonance; all other parameters are the same as for figure 4.1. There is a close 

match between the quantum and classical ionisation probabilities, Pi(Fs), with the Pi(Fs) 

curves reaching their maximum values at similar Fs values and having similar magnitude. 

The quantum and classical ionisation probabilities become closer as n  is increased.

The dynamics causing ionisation is more complex for the j  — 2 resonance than for the 

j  = 1 resonance. This is exhibited in figure 4.10 (b), which shows Pi(Fs) for the shorter field 

envelope, 16 — 5 — 16, where there are two local maxima. The same does not occur for the 

j  =  1 resonance: for a field envelope 16 — Nb — 16 where Nb < 50, if ionisation occurs, only 

one peak is observed in the Fs interval (0.016,0.018).

Again, for the 16-5-16 envelope a good match is observed between these and classical 

ionisation probabilities, with a close match at the left ionisation peak. Quantum results are 

shown for n =  39 and n  =  100 and it can be seen th a t for higher n  the quantum  curve 

becomes increasingly close to  the classical curve, although there is still a noticeable difference 

at the second maxima. However, the close matches between the classical and quantum results 

suggests that the quantum behaviour can be understood in terms of the classical dynamics.

Classically, the more complex ionisation structure is a consequence of both librational and 

rotational motion ionising in contrast to  j  = 1 where only librational orbits ionise.
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The resonance island width, w r  = 1.2 at Fs =  0.0335 and for Fs in the range (0.030,0.037),

I c is in the range (0.021,0.153). This reduces the change required in I e(t) to cause ionisation, so
( 2 )that for some Fs values near Fs ionisation is possible from rotational orbits. The field switch- 

on also has an important effect on the observed ionisation — for field envelopes, 0 — Nb — 0, 

there are no Nf, values for which two peaks are observed.

0.4

(b) F =0.0325 Envelope: 16-5-16Envelope: 16-50-16 -

0.3

0.6

F =0.0335
0.4

F =0.03426

0.2

0.0340.03 0.0320.034 0.0360.03 0.032 0.036

Figure 4.10 Pi{Fs) for =  0.13, flo =  0.0528 and field envelopes given in th e  figures. Q uantum  

resu lts for th e  H am iltonian Hm for n — 39, m =  8 and ki — —16 are shown w ith  a  solid line; for n =  100, 

m  =  20 and ki =  —41 with a  do tted  line; and classical results for Im =  8 /3 9  and  Ie (0) =  —16/39 are 

shown w ith a dashed line.

The appearance of the two ionisation peaks is most easily understood by examining the 

phase space plots shown in figures 4.11-4.13 for Fs =  0.0325,0.0335 and 0.03426. These 

values are chosen by examining figure 4.10 (b): Fs — 0.0325 is for the first ionisation peak; 

Fs =  0.0335 is in the region of zero ionisation between the peaks; and Fs =  0.03426 is at 

the second ionisation peak. In each of figures 4.11-4.13 a number of phase curves are shown 

calculated from the Hamiltonian 2.24 (page 38) using a field envelope of 16-50-16 with the ijje 

values translated using the transformation (2.44) on page 70,

(Pe = <Ae ~ ^  ~  \  {9{Ta) - g T a),

where g(t) and g are given by equations (2.19) and (2.20) on page 37. This transformation is

used only for t > T a when A( t )  = 1.
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For clarity, the phase curves in figures 4.11-4.13 are shown only for times when A(t) = 1 

and to see the individual phase curves more clearly, only a few field periods are shown. On 

each diagram the curve shown as a dotted line with thick solid segments is the initial phase 

line (# ,/e(0)) evolved to time t =  Ta. The thick line segments show the orbits th a t ionise if 

sufficient time is allowed. The horizontal dotted lines indicate the critical ionisation point, 

Ie = Ic. The curved dashed fines mark regions where ionisation would occur for orbits of 

the Resonance Hamiltonian 2.34 (page 44): above these fines all orbits would ionise, given 

sufficient time. In figure 4.12 the dashed line also marks the lower separatrix boundary.
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Figure 4.11 Fs — 0.0325 Figure 4.12 Fs =  0.0335 Figure 4.13 Fs — 0.03426

Phase curves for various Fs values, for =  0.13, S2o =  0.0528, 7m =  8 /39  and / e (0) =  —16/39. Phase 

curves are shown with solid black lines. T he black curved dashed lines and solid black segm ents show 

th e  evolved line, Ie (Ta), w ith th e  solid black segm ents showing o rb its  th a t ionise given sufficient time. 

T he red horizontal dashed line m arks th e  classical ionisation lim it, Ic■ All o rb its  above th e  curved 

dashed red lines ionise for th e  Resonance Ham iltonian.

From each of the figures the ionising sections of the evolved fine Ie(Ta) mostly fie within 

the ionising region expected for the Resonance Hamiltonian. The ionising orbits outside this 

region are a consequence of the small high frequency oscillations, produced by the additional 

higher frequency perturbations not present in the Resonance Hamiltonian.

For Fs =  0.0325 ionisation is possible only from rotational orbits. Two ionising orbits 

are shown; however, while the rotational orbit starting on the left ionises after 18.87/ the 

rotational orbit starting on the right takes 41.87/. Hence for a 16-5-16 envelope only the 

former contributes to the ionisation probability. It can be seen that for this Fs value the field 

switch-on has a significant effect on I e(t). In the absence of the switch-on none of the orbits 

have sufficient time to ionise.
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For Fs — 0.0335, all the librational orbits ionise, but all rotational orbits remain bound. 

However, for a 16-5-16 envelope there is insufficient time for any of the librational orbits to 

reach ionisation and so Pi — 0. At Fs — 0.03426 the field envelope sufficiently distorts I e(Ta) 

to allow a small fraction of rotational orbits to ionise.

For the quantum  mechanics, although two peaks in Pi(Fs) are seen for the 16-5-16 envelope, 

ionisation occurs for all Fs values between the peaks, in contrast to the classical Pi(Fs) curve. 

In figure 4.14, probabilities are shown for the 16-5-16 field envelope for Fs =  0.0341 where the 

classical ionisation is zero, whilst Pi = 0.074 for the n — 39 results. Probabilities are shown 

summed over states lying above the effective classical ionisation limit,

Pi(t) = E  M 0 I 2. (4-!)
k > k c

and below the effective ionisation limit,

v 2(t) = E  M t ) |2, (4-2)
k < k c

where kc is the lowest quantum state for which classical ionisation would occur. It can be seen 

th a t V\ (t) =  0 until t / T f  > 19. The field switch-off begins at t / T f  = 21 leaving a relatively 

small time period for ionisation to occur. The dotted line shows the survival probability, 

1 — Pi(t) =  Vi(t )  + V 2 {t), and although the upper states included in V\{t)  are populated until 

t / T f  > 28, the reducing field amplitude means th a t the tunnelling probabilities rapidly reduce 

and by t / T f  «  22 all ionisation has ceased. The upper dashed black line shows the survival 

probability for a step decay function, where ionisation is only permitted for k > kc.

Equivalent classical state occupation densities are shown in figure 4.15 calculated by de

termining the time dependent density of non-ionised orbits. For a sample of N  orbits, with 

initial conditions, {(i/>i, / e(0))}, the fraction of orbits corresponding to substates k > kc is,
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and the fraction of classical orbits corresponding to the substates k  <  k c is,

( * c  -  5 )  -  / « ( * ( 0 ) , 0 )  • t 4 -4 )

It can be seen that although the classical and quantum dynamics result in occupation of

states close to the critical ionisation limit in similar times, P i ( t )  rises from zero slightly later 

than for the quantum system. Critically, although there are a small number of orbits th a t 

satisfy I e(t) >  (kc — 1/2)/n , there is insufficient time for any orbit to reach I e(t) =  I c before 

the field switch-off begins; hence there is no ionisation.

The quantal ionisation depicted in figure 4.14 is a consequence of two quantal effects: 

ionisation due to tunnelling from states k  <  k c \ and the populating of states k  >  k c at 

earlier times than for the equivalent classical system. The dominant contribution is from the 

first effect, as can be seen by comparing the survival probability calculated with tunnelling 

— shown as a black dotted line in figure 4.14 — and the survival probability calculated for

ionisation restricted to states k  >  k c — shown as the upper black dashed line in the same

figure.
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Figure 4.14 Q uantum  probabilities, |oA. ( t) |2>

for Fa =  0.13, Fs =  0.0341, 0.0528 and

field envelope 16 — 5 — 16. T he solid line shows 

V\(t) given by equation  (4.1); th e  lower dashed 

line shows V2 R) given by equation  (4.2); and the  

survival probability, 1 — Pi(t), is shown by a dot

ted  line. T he upper dashed line is th e  survival 

probability  if ionisation is only pe rm itted  from 

sta tes, k > kc-

Figure 4.15 Classical probabilities, JZ Pe(t), for 

Fm =  0.13, Fs =  0.0341, =  0.0528 and field

envelope 16 — 5 — 16. T he solid line shows pi{t) 
from equation  (4.3); th e  lower dashed line shows 

P2 O  from equation  (4.4); and the  survival prob

ability, 1 — Pi(t),  is shown by a  do tted  line.

In summary, this examination of the j  =  2 resonance has shown th a t for certain initial 

conditions both rotational and librational orbits can contribute to the classical ionisation. 

The different time scales associated with these types of orbits means th a t for short duration 

field envelopes, 16 — N a — 16 two separated ionisation peaks can arise, associated with the 

ionisation of rotational orbits, although we note th a t the peaks only arise if there is a gradual 

field switch-on, which sufficiently distorts the initial phase line, (9 ,Ie(0)) to allow subsequent 

ionisation during the short time, t / T f  =  Nb.

The complex effects that the rotational and librational orbits have on the ionisation prob

ability are also manifest in the quantum system, with two distinct maxima arising at similar 

locations to the classical peaks. As for j  =  1, differences between classical and quantum 

ionisation behaviour are primarily a consequence of the different ionisation mechanisms.



Chapter 5

Ionisation Tim es

5.1 Introduction

The time taken for ionisation to  occur is characteristically different on and off resonance. 

Away from resonances, when the field amplitude is constant (after switch-on), the action, 

I e(t), undergoes small oscillations around a constant value. During the field switch-on a 

greater variation in I e is observed, but this is normally much less than the variation observed 

in the vicinity of a dynamical resonance.

Ionisation occurs when the field amplitude has risen to sufficient size to satisfy ionisation 

conditions (2.42), i.e. when

\ { t ) (F s + F^) > Fc(Ie( t ) J n J m) and/or A (t)(F^ -  Fs) > Fc( - I e( t ) J n , Im ) if F^ > Fs .

Away from resonances, I e(t) ~  Ie(0) and the orbits ionise at approximately the same time, so 

th a t Pi(t) approaches a step function,

1
0, t < T i ,

1, t > T u

where T* is the ionisation time. In figure 5.1, the ionisation probability, Pi(t),  is shown for

147
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Fs — 0.0168, near the j  = 1 resonance, and Fs — 0.062, away from resonance. Away from 

resonance, the ionisation probability rises from 0 to 97% of its final figure within 1.57/. In 

contrast, for Fs — 0.0168, near the j  =  1 resonance, the corresponding rise in Pi(t) takes 187/.

0.5

F =0.06
0.4

0.3 F =0.0168
P1

0.2

20 80400 60
t / T f

Figure 5.1 Classical ionisation probability, Pi(t),  for th e  Averaged H am iltonian near resonance a t 

Fs =  0.0168 (red dashed line) and away from resonance a t Fs — 0.06 (solid black line). T he field 

param eters are =  0.13, flo =  0.0528 and an envelope of 16-50-16. T he end of th e  field sw itch-on,

Ta =  2nNa/Qo,  is m arked w ith a  blue d o tted  line.

Near a resonance, ionisation times depend upon the initial conditions and are generally 

larger than when there is no resonance; we will show th a t where orbits near the island sep- 

aratrix are the principal contributors to ionisation, the ionisation time is larger. Further, we 

shall show numerically th a t quantum mechanics mimics this classical behaviour very well for 

n  =  400, and even for n =  39 the ghost of the separatrix survives in the quantum mechanics.

Here we define the ionisation time, Tj(Fs ), as the time taken for half of the ionising orbits 

to have ionised. In the figures the ionisation time is scaled to lie in the range [0,1], by 

dividing Ti(Fs) by Te, where Te is the time at the end of of the applied field envelope, Te =  

27r(2Na -I- Nb)/Q(). This definition allows later comparison with quantal ionisation times.

Figure 5.2 shows the ionisation time as the static field, Fs , is varied for the exact classical 

dynamics for Ho =  0.0528, F'M =  0.13 and a field envelope of 16-50-16. The ionisation prob

ability is shown for comparison. The time at which the field envelope reaches its maximum 

amplitude, 27riVa /Q o , is shown by a red dotted line.
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Figure 5.3 shows the corresponding results for the Averaged Hamiltonian using using 1600 

orbits and a grid size, 5FS = 1 x 10-5 . The approximation shares much of the structure seen in 

the exact case and hence we can use the simpler approximation to understand the behaviour 

exhibited in figures 5.2 and 5.3.

The peaks in ionisation time shown in figure 5.3 are very sharp; for example, for the j  — 1 

resonance, the ionisation time falls from its peak value at Tt/ T e = 0.73 to T)/Te =  0.56 in one 

grid interval, 5FS — 1 x 10~5.

j=2 j=3
End o f ramp up, T = 271N / i l

0.4

0.2

0 0.02 0.04 0.080.06
FS

Figure 5.2 Ionisation tim e, Ti(Fs ) (solid line), and ionisation probability, Pi(Fs) (dashed line), for 

=  0.13, S2o =  0.0528, field envelope 16-50-16, Im — 0.2 and Ie(0) =  —0.4 for th e  exact dynamics. 

T he end of th e  field sw itch-on, Ta =  27rjVa /flo - is m arked w ith  a  blue d o tted  line.
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Figure 5.3 As for figure 5.2 for th e  0 ( F 5) Averaged H am iltonian.

The following general behaviour can be observed for the ionisation times for both the exact 

classical dynamics and the Averaged Hamiltonian:

1. Away from resonances if ionisation occurs then the ionisation times are similar to the 

switch-on times, consistent with the explanation outlined at the beginning of this section: 

I e ( t ) changes little with time with ionisation happening when A( t )  has increased to an 

amplitude such th a t one of the conditions (2.42) are met. For the Averaged Hamiltonian 

ionisation occurs for all Fs > 0.0531 and the ionisation times are close to the end of the 

switch-on period, Ta =  2‘k N cl/TIq.

2. For the exact and the 0 ( F 5) Averaged Hamiltonians, in the vicinity of the resonances, 

large ionisation times are observed, with the highest ionisation times occurring near edges 

of the ionisation probability peaks. For both the Averaged Hamiltonian and the exact 

Hamiltonian, an additional peak in ionisation time is observed for the j  — 2 resonance. 

Figures 5.4 (a) and (b) show the j  =  1 and j  =  2 resonances in more detail for the 

Averaged Hamiltonian.

3. In general, the ionisation times at the edges of the resonance ionisation islands are higher 

for the exact case than for the approximate Averaged Hamiltonian.

4. There is an ionisation peak between the j  — 2 and j  =  3 peaks for the Averaged 

Hamiltonian (at Fs — 0.045) and the exact classical dynamics (at Fs — 0.043). The
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cause of this peak is not known, but the fact th a t Ti(Fs) has similar structure to the 

resonance peaks suggests th a t this is also caused by a resonance with an associated 

resonance island.

5. The ionisation times for the Averaged Hamiltonian are not as good an approximation 

for Fs > 0.52. This might be due to the series truncation at 0 ( F 5) in the Averaged 

Hamiltonian, or because Fg + F^ is close to the radius of convergence of the perturbation 

expansion in I e.

5.2 Analysis

In this section we show th a t the behaviour of the ionisation times a t the j  — 1 and j  = 2 

resonances, seen in figures 5.2 and 5.3, is due to the large variation in the period of the 

librational and rotational motions near the resonance island separatrix.

The gradual switch-on of the field envelope also affects ionisation times, because a signifi

cant change in I e can occur during the field switch-on and this can have an effect on ionisation. 

However, the general behaviour is the same for sudden and adiabatic switches, as can be seen 

by comparing the results shown in figures 5.4 (a) and (b) for a field envelope of 16-50-16, 

with figures 5.5 (a) and (b), calculated for constant amplitude field envelopes of 0-50-0, but 

otherwise identical dynamical parameters.
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(a)j = 1

t- 0.4
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(b) j = 2
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Figure 5.4 Ionisation tim es. Ti(Fs) (black solid line), and ionisation probabilities, Pi{Fs ) (red dashed 

line), for th e  resonances j  =  1 and j  =  2, for =  0.13, flo =  0.0528 and field envelope 16-50-16 for 

th e  0 ( F 5) Averaged H am iltonian. T he end of th e  field switch-on, Ta =  2nNa/Qo,  is m arked w ith a  

blue do tted  line. T he overall field d u ra tion  is Te.
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Figure 5.5 As for figure 5.4 w ith envelope 0-50-0.

It can be seen th a t the overall behaviour is similar, although there are the following dif

ferences:

1. The resonance peak widths are smaller for the 0-50-0 envelope field. The reason for this 

was provided in §2.3.

2. The ionisation times at the edges of the resonance island are generally higher in the
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constant field amplitude case, with the exception of the j  =  2 right hand edge.

The constant envelope behaviour can be explained by considering ionisation times for the 

simpler case of the Resonance Hamiltonian. In the following sections, an approximation for 

the period of librational and rotational orbits for the Resonance Hamiltonian is calculated and 

used to calculate the approximate ionisation time.

The sharp peak a t the right edge of the ionisation time plot for j  — 2 is not explained by 

the behaviour for a constant amplitude field. The cause of it is discussed in §5.3 on page 167.

5.2.1 T im e Period for the D ynam ical Resonance H am iltonian

A simple approximation can be found for the librational time period at the stable equilibrium 

centre of the resonance island when Fs =  when the centre of the island lies on the line 

I e =  0. At this point, in scaled coordinates, the Resonance Hamiltonian, equation (2.34), page 

44, becomes,

Truncating E n ( I e,F)  to 0 ( F 2) and making the approximation, A ( Ie)B ( I e) «  A(0)R(0), 

reduces the Hamiltonian to th a t a simple harmonic oscillator, from which the librational time 

period, TJ, is,

The librational time period is at its minimum at the island centre, so this expression is useful 

for estim ating the lower bound of librational time periods. If the field duration is comparable 

or shorter than  half of this minimum librational period then the ionisation can be reduced. 

For smaller island sizes the librational period is longer, so long field durations are required for 

ionisation to  occur for small islands. This is discussed further in §6.3 on page 184.

We wish to  examine ionisation times across the ionisation peaks near resonances. To do this 

requires a more accurate expression than (5.1) th a t is valid at Fs values other than Fs = F s ^ . 

For a time independent Hamiltonian, the one dimensional Hamilton-Jacobi equation can be 

w ritten in the form

K r  = E R(Ie)F) -  ^ ^ - A ( I e) B ( h ) a } cos(20fl).

T , = (5.1)
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where W ( q ,E )  is the characteristic function and p = dW/dq.  The time may be calculated as

t -  t 0 =
d W
~dE

Hence,

t - 10 =
d E

j  p(q ,E)  dq, (5.2)

where in the integration appropriate choice is made of the multivalued function, p(q,E).

We wish to transform the Resonance Hamiltonian, (2.34), to  a form more amenable to the 

calculation of the time period. Rewrite it as,

OO OO

K r  =  Y  U k l k + e j j  Y  v k l e  c°s(2Or ) ,

fc=1 fc=0

where e =  —F^SIq/A and the coefficients {uk} and {vk} are defined by

E R(Ie,F)  = J 2 Ul‘I>' and A ( h ) B ( h )  = Y , ^ l i -
k= 1 fc=l

Note th a t the function A (Ie)B (Ie) is an even function of / e, so for odd k , vk = 0.

We seek a canonical transformation F 2 =  Q r { P + c x )  such th a t the transformed Hamiltonian 

is of leading order P 2. The transformed Hamiltonian, K t ,  is

K t  =  p f ^ k u ka k - 1 + P 2 f ^ u k ( l ) a k - 2 + P 3 f ^ u k ( k ' ) a k - 3 + - -  (5.3)
k= 1 k = 2 ^ ' k= 3

+  e J ' Y  vk&k + p Y kvkQk 1+ p2 £ Vk
,k= 0 k = l k = 2

a k ~ 2 + cos(2 9r ),

where terms independent of P  and Or  have been dropped. 

Choosing a  such th a t
OO

kukoF- 1  = 0, (5.4)
k=1

where |o;| < 1, the leading energy term  in K t  is 0 ( P 2). In the region |o:| < 1, the function is 

approximately linear and to a first approximation, a  = —U\j 2 u 2 - 

To simplify the writing of the equations, we define the terms
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^  =  and Vr = ± v k f k)
L* —— rr> '  '  l>— IT '  '

a fc- r .
k = r  '  k = r

In the region of the resonance, it is numerically found th a t \UkP k \ »  \Uk+iPk+1\ and hence 

the Hamiltonian, (5.3), can be approximated to reasonable accuracy by

OO

K t  «  U2 P 2 + t j j  Y ,  v *p k  cos(2 gR).
k = 0

The magnitude of the terms {Vk} reduces more slowly as k is increased. However, for the 

purposes of calculating the time period, a reasonable approximation to the Hamiltonian can 

be obtained by truncating the sum in Vk after three terms, giving the final approximate 

Hamiltonian,

K t  ~  U2 P 2 +  e j j  (V0 +  V1P  + V2 P 2) cos(2Or ) = E T , (5.5)

where E t  is the energy, which is constant. Prom this approximation, the momentum P  can 

be expressed as P ( 6 r , E t )- Substituting for P  in equation (5.2) gives, for Or  between the 

turning points,

t —t o — [  ^ R - , (5-6)
J  y / a  cos2 2O r  +  b cos 2 0 r  +  c  

where a =  e2 J 2 {V2 -  4V0 V2), b =  4eJj{ETV2 -  U2 V0 ) and c =  4U2 E T .

For librational motion, the period is

Ti = ; g . , (5.7)
J e o V a  cos2 2 0 r  +  b  cos 2O r  + c

For the resonances we will consider, J j is negative, which corresponds to motion around a 

librational centre a t Or  =  7 t / 2  s o  that #o =  7r/2- The limit, 0\, is determined from the 

maximum value of Or  for the motion.

For rotational motion, the period is

Tr = 2 f  ddR (5.8)
J tt/ 2  Va  cos2 2O r  +  b  cos 2O r  +  c

Each of the integrals, (5.6)—(5.8), is evaluated numerically.



156 C H APTER 5. IO N ISATIO N  TIM ES

5.2.2 Calculation of Approxim ate Ionisation Tim es at R esonance

The overall ionisation time is calculated by averaging the ionisation times for a set of phase 

curves for a chosen initial action, Ie(0), and initial canonically conjugate angles uniformly 

distributed in the range [0,2ir). W hilst the ionisation time depend on the time periods of 

the ionising phase curves, it also depends on where the phase curve is located relative to the 

resonance island and the ionisation critical limit, I c.

The presence of ionisation in the vicinity of the dynamical resonances, F ^ \  depends on the 

size of the resonance island (see §2.1.2, page 36). For the Resonance Hamiltonian, assuming 

a constant amplitude field of the form 0-A^-0, ionisation can only occur if the island size, w r  

— defined as the maximum separation in I e between the two separatrix curves — satisfies the 

criterion,

w r ^ I c -  h ( 0).

In the case of the j  — 1 resonance, this criterion is satisfied for a range of Fs values and 

ionisation is observed. However, whilst the island size is large enough to allow some of the 

librational phase curves to contribute to ionisation, it is too small to allow any rotational phase 

curves to be ionised. This is not the case for the j  =  2 resonance where I c — I e(0) is sufficiently 

small when compared to w r  th a t there are contributions to ionisation from both librational 

and rotational phase curves. It is this difference th a t causes the characteristic differences in 

behaviour seen in the ionisation times of the j  — I and j  =  2 resonances.

Io n isa tio n  T im es for th e  j  =  1 R eso n an c e

Figure 5.6 shows a number of phase curves calculated for the 0 ( F 5) Resonance Hamiltonian 

in the region of the j  =  1 resonance, with Fs =  0.0167, =  0.13, Qo =  0.0528 and a field

envelope of 0-50-0. Horizontal lines are marked on the figure showing the initial action, I e{0) 

and the critical action, I c = 0.463. The phase curves are all calculated for I e(0) =  —0.4.
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Figure 5.6 Phase curves, Ie (6n). for FM =  0.13. Fs =  0.0167, fio =  0.0528 and field envelope 0-50-0 

for the  0 ( F 5) j  =  1 R esonance H am iltonian. Horizontal lines are shown for Ie (0) =  —0.4 and th e  

critical ionisation value, Ie =  Ic- T he separatrix  is shown using blue dashed lines.

Two ionising phase curves are highlighted with bold lines, marked (A) and (B). The value 

m ax(/e) for curve (A) lies just above the critical action. Two possible initial conditions for 6r 

lie on the same phase curve, at 0a x and 0a 2 with, ir/2 — Qa x =  0a 2 — 7t/2. The phase curve 

motion is clockwise around the resonance. If rnax(Ie) =  Ic the ionisation times, Tj, for the 

two initial conditions are (TJ — T$ )/2 and (7] + T$ )/2 respectively, where T/ is the librational 

time period and T$ is the time taken to go from 0a 2 to $a x •

For curve (B) there is an appreciable portion of the phase curve that lies above I e — Ic. 

The ionisation times for the two phase curves with initial values, (^ ^ ^ ^ (0 ) )  and (#B2, / e(0)), 

are
^  Tt - T c - T 5 J ^  Tz - T c +  T5 
Ti =     and Tj = -------   ,

where Tc is the time spent during one orbit such that I e(t) >  I c and T$ is the time taken to 

go from 0b 2 to 0r x-

The time Tc can be calculated from equations (5.6-5.8), but in general its calculation 

depends on whether the motion is librational or rotational and whether the critical ionisation 

value, / c, lies above or below the I e value for the separatrix nodes a t 9 =  0. The details of 

this calculation are provided in appendix B, page 221.
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In earlier sections, the ionisation time was calculated as the time taken for half of the 

ionising orbits to have ionised; this will be referred to as the median ionisation time. Here we 

define the mean ionisation time, Ti,  as,

Ti = ^ r ' E Ti(ei Je (  0)), (5.9)
1 j

where N i  is the number of ionising orbits, 0j  labels the initial values of Or  at time t =  0 and 

the sum includes only those orbits which ionise. Any orbits whose ionisation times are longer 

than the applied field duration, Te =  2ir(2Na +  Nb)/Qo,  are also excluded.

Using this definition simplifies the calculation as we do not need to  find T&. In general, 

for each closed curve in phase space intersecting both the critical line, I e =  I c, and the initial 

line, I e = I e{0), unless 0 r ( 0) =  7 t / 2  there are two phase curves satisfying the initial condition 

/ e(0): one with 0r(O) < 7t/2 and the other with 6 r  > 7r/2. The average ionisation time for 

these two curves is just Ti —Tc, which is independent of T$. Hence,

Ti  =  (5.10)

The mean librational time period, Ti,  and the mean time above the critical limit, T c, are cal

culated as the corresponding averages of the sets {Ti} and {Tc} calculated for orbits satisfying 

the criteria specified for equation (5.9).

The calculation of the time period is complicated by the calculation of Tc, which requires 

the evaluation of the intersection points, of the phase curve with the I e — Ic critical ionisation 

line. The phase curves calculated using the approximate Hamiltonian, K t , (5.5) are generally

close to  the corresponding phase curves for the Resonance Hamiltonian; however, in some cases

where the maximum I e value for the Resonance Hamiltonian phase curve only just satisfies 

Ie >  Ic, the condition is not satisfied for the approximate Hamiltonian. In these cases, it is 

assumed that Tc = 0 in the calculation of the theoretical ionisation time.

Figure 5.7 compares half the averaged librational time period, T i , calculated from equation 

(5.7), with the numerical mean ionisation time for the j  =  1 resonance. The numerical 

mean ionisation times are obtained by integrating the equations of motion for the Resonance
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Hamiltonian and averaging the times taken for each ionising orbit to reach the critical value, 

I e( t ) = I c.

In figure 5.8 we compare the theoretical mean ionisation time, T n calculated using equation 

(5.9), with the numerical mean ionisation time. The graphs for T J 2 and T,; are calculated 

using 200 orbits at each Fs value, with the initial values, {#^(0)}, equally spaced in the range 

[0,tt/2).
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0.016 0.0165 0.017 0.0175
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0.4
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0.2

0.016 0.0165 0.017 0.0175

Figure  5.7 H alf average librational tim e period, 

Ti(Fs ) / 2, (solid) and num erical m ean ionisation 

tim e (dashed) for th e  0 ( F 5) j  = 1 Resonance 

H am iltonian, F^ =  0.13, Qo =  0.0528 and field 

envelope 0-50-0. T he field du ra tion  is Te.

Figure 5.8 Mean theoretical ionisation tim e, 

Ti (Fs ), (solid) and num erical m ean ionisation 

tim e (dashed). O ther param eters as for figure 

5.7.

Comparing figures 5.7 and 5.8 with figure 5.5 the following is observed regarding ionisation 

times:

1. The general behaviour observed for the mean ionisation time for Resonance Hamiltonian 

is close to th a t of the median ionisation time calculated for the Averaged Hamiltonian1.

2. There is a very good match between the numerical mean ionisation time and Ti  for the 

Resonance Hamiltonian.

3. The T i j 2 component is the dominant term in the theoretical ionisation time, particularly

at the edges of the ionisation peak; this leads to the longer ionisation times seen there. 

: T h e  m edian ionisation tim es for th e  Resonance and Averaged H am iltonians are also sim ilar.
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4. There is a close match between the averaged T / /2 curve and the numerical ionisation 

time at the start of the ionisation peak, with an increasing difference as Fs is increased, 

consistent with the explanation provided in §2.3.2 (page 77) th a t ionisation starts when 

Fs reaches a value such that the maximum value of I e(t) is just equal to Ic. At this 

point, Tc =  0 and hence Tj ~  T / /2.

Io n isa tio n  T im es for th e  j  — 2 R eso n an ce

For the j  = 2 resonance, ionisation can occur for both librational and rotational phase curves. 

In this section we will show how this leads to a difference in ionisation time behaviour.

Although the island widths, w r , for j  =  1 and j  =  2 are similar (wr  =  1.30 and w r  = 1.20 

at Fg1'1 =  0.0168 and F j2) =  0.0335 respectively), the required change in Ie(t) to cause 

ionisation is much less for j  = 2: for j  =  1, I c — I e{0) =  0.86, whilst for j  =  2, I c — Ie(0) — 0.50.

Figure 5.9 depicts phase curves for the j  =  2 Resonance Hamiltonian with Fs =  0.03262 

and other parameters identical to those detailed for the j  =  1 phase curves shown in figure 

5.6. The line marked (C) is an example rotational orbit th a t ionises. Line (D) is a librational 

ionising phase curve.
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Figure 5.9 Phase curves. Ie(0R), for F^ =  0.13, Fs =  0.03262, f2o =  0.0528 and field envelope 0-50-0 

for th e  0 { F 5) j  =  2 Resonance H am iltonian. Horizontal lines are shown for / e (0) =  —0.4 and  the  

critical ionisation value, Ie =  Ic =  0.101. The sep ara trix  is shown using blue dashed lines.
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The ionisation times for the two rotational orbits with initial conditions (6 c 1 , I e(0)) and

where Tr is the rotational period given in equation (5.8), T$ is the time taken to go from 0c2 

to 6 c 1 and Tc was given previously.

For the reason described in the previous section, the times, T$, do not contribute to  the 

mean ionisation time, Ti,  given by equation (5.9). W ith the inclusion of ionisation from 

rotational orbits, equation (5.10) is modified to become,

where the mean time period, T p, is the average taken over both the librational ionising orbits 

periods, {T}}, and the rotational ionising orbit periods, {Tr}.

Whereas for the j  = 1 resonance the definition of the ionisation time, as either the mean 

or median, has little difference on the general behaviour, this is not the case for the j  = 

2 resonance. In figure 5.10 we compare the mean and median ionisation times calculated 

numerically from the equations of motion for the Resonance Hamiltonian.

In figure 5.11 the theoretical mean ionisation time, Ti, is compared with the numerical 

mean ionisation time and is shown to be a reasonable approximation, although the differences 

between the curves are more marked than for the j  — 1 resonance.

There are two main causes for the increased error. In the vicinity of the j  =  2 resonance 

there are ionising orbits with larger m ax(|/e(£)|) than for the j  — 1 resonance. The approxi

mate Hamiltonian, K t , is likely to be less accurate for larger \Ie\. The second source of errors 

is due to differences between the location of the separatrix curves calculated for K t  and the 

Resonance Hamiltonian, K r . Some initial conditions resulting in librational phase curves for 

the Resonance Hamiltonian correspond to  rotational phase curves for the K t  Hamiltonian, 

hence contributing to  errors in the calculation of the mean ionisation time.

(9c2 J e ( o)), are
Tr - T c -  T§

i — 0 and Ti =
Tr — Tc + T<5

2
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Figure 5.10 Num erical mean ionisation tim e, 

Ti{Fs ) / 2, (solid black line) and num erical me

d ian ionisation tim e, T j(F s )/2 , (dashed red line) 

for th e  0 ( F 5) j  =  2 Resonance H am iltonian, 

FM =  0.13, f i0 =  0.0528, Im =  0.2, 7e (0) =  -0 .4  

and field envelope 0-50-0. T he field du ra tion  is 

Te.

Figure 5.11 Theoretical m ean ionisation tim e, 

Ti(Fa), (solid black line) and num erical mean 

ionisation tim e (dashed red line). T he param 

eters are as for figure 5.10.

The separated contributions to ionisation from the librational and rotational phase curves 

are shown in figure 5.12. Figure 5.13 shows the mean ionisation times calculated separately 

for the librational and rotational phase curves. The location of the field, Fs =  0.03274, is 

marked on both figures. This is the location of m ax(T; (Fs)) for the combined mean ionisation 

time in figure 5.11.
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Figure 5.12 Ionisation probability, Pi(Fs), for 

librational (solid) and ro ta tio n a l (dashed) phase 

curves for th e  approxim ate j  =  2 H am iltonian, 

K t ,  for =  0.13, f2o =  0.0528 and field enve

lope 0-50-0.

Figure 5.13 M ean theoretical ionisation tim e, 

Ti(Fs), for lib ra tional (solid) and ro tational 

(dashed) phase curves for th e  approxim ate j  =  2 

H am iltonian, K t ,  for F^ =  0.13, flo =  0.0528 

and field envelope 0-50-0.

The structures shown in figures 5.12 and 5.13 are complex and there are a number of 

features to note:

1. In the absence of contributions from the rotational phase curves, the ionisation time 

behaviour would be broadly similar to that observed for the j  — 1 resonance.

2. The rotational phase curves contribute more towards the edges of the ionisation peak 

and are the sole contributors at the very edge.

3. In the central region, 0.03293 < Fs < 0.03359, there is no ionisation from rotational 

orbits.

4. The ionisation times for rotational orbits increase as Fs increases in the region 0.03243 < 

Fs < 0.03293.

5. As Fs increase in the region 0.03359 < Fs < 0.03398 there is a general decrease in 

ionisation time although there is a small rise at the right hand edge.

These features can be understood by examining the effect the resonance island has on the 

phase curves for the Resonance Hamiltonian.
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In figure 5.14, phase curves are shown for Fs =  0.03245 to demonstrate why rotational 

orbits are the first to ionise at the edges of the resonance. The location of the resonance island 

causes Ie(t) for some rotational orbits to change sufficiently to  ionise, but the separatrix 

boundary is below I c so no librational orbits ionise.
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Figure 5.14 As for figure 5.9, except Fs =  0.03245 and Ic =  0.104. T h e  th ick  black lines m ark a

ro tational ionising orbit and a  bound librational orb it.

From figures 5.14 and 5.9 we see th a t the rotational orbits th a t ionise all start in two 

regions along the / e (0) line: the first is bounded by Or  =  0 and the smallest Or  value where 

the separatrix intersects 7e(0); the second is bounded by the largest Or  value where the 

separatrix intersects 7e(0) and Or  =  7r. As Fs is increased the resonance island moves up 

through the phase space and these two regions become smaller, eventually disappearing when 

the separatrix unstable equilibrium point, IS(FS), satisfies IS(FS) =  7e(0) at Fs — 0.03294. 

Ionisation from rotational orbits reduces to zero as this limit is approached and the ionisation 

time increases because the remaining ionising orbits are closer to the separatrix and their 

period is longer. Because we exclude ionisation times that are greater than the field duration, 

ionisation will stop at an Fs field below the limit; in this case at Fs = 0.03293.

Figure 5.15 shows the phase space for Fs — 0.0334, selected to lie in the region (0.03293,0.03359) 

where no rotational orbits ionise. The figure shows that for the selected field value the only 

orbits to intersect both the initial line, 7e(0), and the critical line, 7C, are librational orbits.
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Figure  5.15 As for figure 5.9, except Fs =  0.0334 and Ic =  0.086. T he thick black lines m ark a 

ro ta tio n al ionising orb it and a  bound librational orbit.

For Fs > 0.03358, the separatrix unstable equilibrium point, IS(FS), satisfies IS(FS) > I c. 

When this condition is met the rotational orbits below the resonance island can be excited 

sufficiently to  ionise. Figure 5.16 shows the phase curves for Fs =  0.03361, lying just above 

this limit. The bold black line shows a rotational orbit that ionises, but at this resolution 

is virtually indistinguishable from the separatrix border. All of the librational orbits shown 

also ionise. For Fs values just above 0.03358, the rotational orbits that ionise lie close to the 

separatrix and therefore have longer ionisation times. As Fs is increased, rotational orbits 

further from the separatrix can contribute; these have shorter periods, causing the mean 

ionisation time for the rotational orbits to reduce, as highlighted in item 5 listed on page 163.
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Figure 5.16 As for figure 5.9, except Fs =  0.03361 and Ic =  0.082. T he thick black line m arks an

ionising ro tational orbit.

For Fs > 0.03390, the minimum I e value on the lower separatrix curve lies above 7e(0) and 

there are no librational orbits for the given initial conditions. This coincides with the edge of 

librational ionisation seen in figure 5.12.

Figure 5.17 shows phase curves for Fs = 0.03398, lying close to the right edge of the 

ionisation peak. At this field only rotational orbits can ionise whose initial values lie close to 

(7r/2 ,/e(0)). These are the closest orbits to  the separatrix curve, causing the slight rise seen 

in the mean ionisation time for the rotational orbits in figure 5.12 and noted in item 5 on page 

163. The separation between the orbits and the separatrix is greater than at the onsets of 

ionisation for the two rotational ionisation peaks at Fs =  0.03358 and 0.03243, so the mean 

ionisation time peak is not as large.
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Figure 5.17 As for figure 5.9, except Fs =  0.03398 and Ic =  0.075. T he thick black line m arks an 

ionising ro ta tio n a l orb it.

5.3 Envelope Effects for j  =  2

In the preceding section we showed that most of the features seen in ionisation times for j  =  2 

can be understood by examining the effect of the resonance island on phase curves when the 

field is at constant amplitude. From a comparison of figures 5.4 (b) on page 152 for a 16-50-16 

envelope with figure 5.5 (b) on page 152 for a 0-50-0 envelope the following differences are 

seen:

1. For the gradual field switch, ionisation is present for a larger range in Fs.

2. For the gradually switched field a sharp peak in ionisation time is observed at the right 

hand side of the ionisation peak, at Fs =  0.03459. This is missing for the 0-50-0 envelope.

The first feature has been explained previously; see, for example, §2.3.2 on page 77. The 

second feature is explained in this section.

Figure 5.18 shows a typical ionising phase curve for the instantaneously applied field en

velope, 0-50-0, at Fs =  0.03398, chosen to be close to the limit at which Pi(Fs) = 0. The time 

is scaled in units of the applied field period, Tj  =  2tt/PL\ the critical ionisation limit, I e =  / c, 

is shown as a dashed line. Ionisation commences at t / T f  =  9.43.
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For the instantaneously applied field, 96% of the orbits ionise in the time 9.42 < t / T f  < 

10.54. This is the region where, in the absence of the smaller faster oscillations, I e{t) reaches 

its first maxima, as is seen in figure 5.18.
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Figure 5.18 An ionising phase 

curve Ie(t), for th e  j  =  2 0 ( F 5) 

A veraged H am iltonian for Fs =  

0.03398, F M =  0.13. f20 =  0.0528 

and field envelope 0-50-0.

Figure 5.19 Two ionising phase 

curves, for th e  j  — 2 0 ( F 5)

Averaged H am iltonian for Fs =  

0.03459, F m =  0.13, =  0.0528

and field envelope 16-50-16.

Figure 5.20 Close up  of figure 

5.19, in th e  vicinity  of th e  first ion

isation.

For comparison, figure 5.19 shows two ionising phase curves for the 16-50-16 field envelope 

at Fs — 0.03459, the field value chosen to lie at the edge of the ionisation region. The effect 

of the field switch-on clearly seen in the motion up to t / T f  = 16. For 16 < t / T f  < 66 the 

behaviour is broadly similar to that of the instantaneously applied field phase curve, although 

with the orbits starting from a different region in phase space. However, whilst the trajectories 

for the two curves remain close, one orbit ionises at t / T f  =  20.44, whilst the other ionises at 

t / T f  =  71.11. Figure 5.20 shows the two phase curves in the vicinity of the first ionisation.

The dominant contribution to the motion for 1 6 < £ / T / < 6 6 i s  caused by the presence of 

the resonance island and is closely approximated by the motion for the Resonance Hamiltonian. 

However, the small oscillations caused by the higher frequency terms present in the Averaged 

Hamiltonian become significant for field values near the edge of the ionisation region, leading 

to longer ionisation times.

For the 16-50-16 envelope field, although the ionising phase curves make a number of close 

approaches to the critical limit, 7C, only 5.3% ionise at the first peak. Further ionisation takes 

place at time intervals determined by the rotational periods of the Resonance Hamiltonian
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Table 5.1: Classical ionisation times for ionising orbits for the 0 ( F 5) Averaged Hamiltonian 
with Fs =  0.03459, f2o =  0.0528, F^ =  0.13, Im = 0.2, / e(0) =  —0.4 and field envelope 
16-50-16. A sample of 1600 orbits is used, of which 228 ionise.

Ionisation time 
range, T%/Tf

Percentage of 
Ionising orbits

20.44-20.45 5.3
45.43-45.45 13.2
57.44-57.46 1.8
68.38-74.85 79.7

with the majority of the orbits actually ionising in the switch-off period, t / T f  >  66, as can 

be seen in table 5.1. These contributions cause the sharp peak in ionisation time at the right 

hand edge of the j  = 2 ionisation time curve, Ti(Fs), seen in figure 5.4 (b) on page 152.

5.4 Quantal Ionisation Times

In the previous section we showed th a t classically the structure seen in ionisation times near 

a resonance is largely due to the effect of the separatrix on the orbits and their periods.

Quantally, ionisation is caused by coupling between substates, with the time-dependent 

behaviour determined from the Fourier components with periods, 2tt/ (X ic — A/), where and 

Xi are the eigenvalues of the coupled substates, k and I.

In this section, we will show th a t although the classical and quantum  ionisation mechanisms 

are very different, the quantal ionisation times exhibit similar structures to those caused by 

the classical separatrix if sufficiently large quantum numbers are used.

Figures 5.21 and 5.22 show ionisation times, T^/T/, for the j  =  1 and j  — 2 resonances 

for the classical and quantum  dynamics with various n. The classical ionisation time is the 

median ionisation time defined previously; i.e. the time taken for half the ionising orbits to 

ionise. The quantal ionisation time is the time taken for the ionisation probability to  reach 

half its final value.

The quantal ionisation times fluctuate significantly for small Pi and so we impose a cut-off 

such th a t for Pi(Fs) < 0.02 we set T* =  0 in figures 5.21 and 5.23. This arbitrary cut-off 

excludes ionisation times for small Pi where numerical errors arise. In figure 5.23 ionisation
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times are shown for n =  400 at the j  — 2 resonance with and without this cut-off.
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Figure 5.21 Ionisation tim es, Ti /T f ,  for F  ̂ =  0.13, fio =  0.0528 and field envelope 16-50-16 a t the  

j  =  1 resonance, for various n. C orresponding m and k values are  given in tab le  5.2 on page 171. 

Com parison classical curves are shown w ith a red dashed line for Im =  8 /3 9  and / e (0) =  —16/39.
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Figure 5.22 As for figure 5.21 for th e  j  =  2 resonance.
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Table 5.2: Initial quantum states for each n  value used in figures 5.21 and 5.22.

n m ki
39 8 -16
100 20 -41
200 40 -81
400 80 -161

f-7
40

f—'

0.0370.033 0.0340.03 0.032 0.035 0.0360.031
FS

Figure 5.23 P aram eters as for figure 5.21. T h e  solid black line shows Ti(Fa) for n =  400 w ith th e  

artificial cut-off, Ti(Fs) =  0 for Pi(Fs ) <  0.02 in the  vicinity of th e  j  =  2 resonance. T h e  red dashed 

line shows Ti(Fa) w ithout th e  cut-off.

From figure 5.21 for the j  =  1 resonance, we see that as n increases, the quantal ionisation 

time becomes progressively closer to the corresponding classical time and for n =  400 there 

is a very close match. Calculations were also carried out for n =  800, which showed th a t the 

difference between classical and quantal ionisation times continues to reduce as n increases.

A similar behaviour is seen for the j  =  2 resonance in figure 5.22, with the quantal ionisation 

times becoming increasingly close to  the classical ionisation times as n increases, although the 

peak at the right edge is not present classically. For n = 800 the peak is still present but is 

smaller.

Classically, ionisation at the j  = 1 resonance is from librational orbits only, whilst for 

j  — 2 both librational and rotational orbits contribute, leading to the more complex structure, 

including the peak at Fs «  0.0327. W ith the exception of the right edge peak for j  — 2, figures 

5.21 and 5.22 show that for sufficiently large n, these separatrix effects are also echoed in the
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quantal dynamics.

For both resonances, as the quantum number is reduced, larger fluctuations in the quantal 

ionisation times are seen. For the n =  39 curves shown, these fluctuations obscure most of the 

underlying resemblance to the classical behaviour, although an increase in ionisation time is 

still seen at the edges of the ionisation peak for j  = 1.

5.5 Ionisation Times for M icrocanonical Distributions

In the previous sections we have shown th a t the presence of the separatrix leads to distinct 

structural features in the ionisation times for both the classical and quantal dynamics. The 

calculations were for fixed initial conditions, (7e(0), Im)• In this section we examine ionisation 

times for microcanonical distributions of initial states near resonance, allowing comparison 

with other calculations [52].

Classically, away from resonance, the majority of ionisation takes place during the field 

switch-on time, as after the initial field switch-on, changes in 7e(£) are small, so th a t few of the 

remaining orbits proceed to ionisation. At resonance, Ie(t) can change significantly after field 

switch-on, with phase speeds determined by the proximity of the orbit to the separatrix. This 

leads to longer ionisation times for some orbits a t resonance. However, the resonance island 

width reduces as I m increases whilst for fixed I e, the critical ionisation limit, 7C, increases 

as I m reduces. These changes affect the field values at which the edges of ionisation peaks 

occur and hence the field locations of the peaks in ionisation time. For a microcanonical 

distribution of initial conditions, we therefore expect averaging to  remove most of the more 

distinct features seen for fixed initial conditions, (7e(0),7m).

In figure 5.24, classical and quantal ionisation times are compared for a microcanonical 

distribution of initial conditions chosen to match those given in 2.2.2 and 3.2.2 for figures 

2.15 (page 59) and 3.9 (page 112) in the vicinity of the j  =  1 resonance for Qq = 0.0730 

and =  0.14372 using a grid size of 8FS =  0.0002. For the classical dynamics, the median 

ionisation time, Ti(Fs), is defined as the time taken for half of the ionising orbits for a particular 

Fs value to have ionised. For the quantal dynamics, the median ionisation time is defined as 

the time taken for the ionisation probability averaged over all initial conditions at a particular
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Fs value to reach half its final value. For comparison, the ionisation probabilities are shown 

in figure 5.25.

These figures show that the median ionisation times for both the classical and quantal 

dynamics have peaks at similar locations to the ionisation probability peaks and that, after 

averaging, the sharp peaks seen in the previous sections are missing.

h "

14 -

0.02 0.022 0.0240.018 0.026

0.9

0.6

0.5

0.02 0.022 0.0240.018 0.026

Figure 5.24 M edian ionisation tim es, T ftF s ), for 

th e  j  — 1 resonance, calcu la ted  for a  micro- 

canonical d is tribu tion  of initial substa tes, =  

0.14372, Qo =  0.0730 and  field envelope 16-113- 

16 for th e  Averaged H am iltonian. Q uantal ion

isation tim es a re  shown with a solid black line 

and classical tim es w ith  a  red dashed line. The 

ionisation tim es are scaled by th e  field period, 

Tf = 27r / T2q •

Figure 5.25 Q uan tal and classical ionisation 

probabilities, Pi(Fs ), w ith  o ther param eters as 

given for figure 5.24.

The parameters for the above figures are chosen to allow comparison with the calculations 

of Robicheaux et al [52], in particular their figure 2, where quantal ionisation probabilities 

as a function of time, P;(t), are compared for three static field values: lying below resonance 

(Fs — 0.0185), at resonance (Fs =  0.0221) and above resonance (Fs =  0.0234). Robicheaux et 

al use units of Vcm-1 ; in these units, the field values are 41 Vcm-1 , 49 Vcm-1 and 52 Vcm-1 . 

The ionisation probabilities are approximately the same for the choice of field values above 

and below resonance.
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Robicheaux et al make the following observations based on their calculations:

1. The rate of ionisation for t / T f  <  17 is the same for each static field value, from which 

they conclude that ionisation is independent of static field strength during this period.

2. The ionisation curves, Pj(£), are similar for the two off-resonance field values.

3. For t / T f  > 17, ionisation mostly stops for the off-resonance field values.

4. For 17 <  t / T f  < 35, ionisation continues for the resonance field value, mostly ceasing 

for t / T ,  >  35.

In figure 5.26 we compare quantal ionisation probabilities, P?:(t), for three field values, 

similarly chosen to lie below resonance at Fs =  0.0212, on resonance at Fs =  0.0224 and above 

resonance at Fs — 0.0240 for the Averaged Hamiltonian. The off-resonance field values are 

chosen as they have similar ionisation probabilities.

0.6
P

0.4

0.2

10 20 30 40 50 60 70 80 90 100 110 120 130 140 1500
t / T f

Figure 5.26 Ionisation probabilities, Pi{t), for th e  off resonance fields. Fs =  0.0212 (black solid line) 

and  Fs =  0.0240 (blue do tted  line) and  on resonance field, Fs =  0.0224 (red dashed line). O ther 

param eters as for figure 5.24.
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Figure 5.27 As for figure 5.26, w ith th e  region around the  in itial ionisation enlarged.

The ionisation behaviour for the Averaged Hamiltonian is broadly similar to that described 

by Robicheaux et al. Comparing figure 5.26 with [52] figure 2 and the observations quoted 

above, we note the following similarities and differences:

1. The initial ionisation rates for the Averaged Hamiltonian are similar for each of the field 

values for 12 < t / T f  <  15. However, contrary to observation 1 on page 174, a closer 

inspection confirms th a t the gradients vary slightly with the static field value as can be 

seen in figure 5.27.

2. Ionisation starts at t / T f  ~  5 for the Robicheaux calculations. For the Averaged Hamil

tonian ionisation starts at t / T f  ~  12, which is close to the end of the field switch-on at 

t / T f  =  13. The cause of this difference could be the different field envelopes used, as 

discussed in §2.2.2 on page 56. For the Robicheaux field envelope, the field would be 

approaching its maximum amplitude after 5Tf  if integration is started from t =  0. This 

would suggest th a t the field amplitude has a non-zero value at t =  0 as stated in their 

paper.

3. From the Robicheaux calculations, ionisation continues for a longer time at resonance: 

Pi{t) reaches 80% of its final value after 25Tf  for the resonance field value and after 142/ 

and 19Tf  for the off resonance values. This is also seen for the Averaged Hamiltonian. 

The ionisation probability, Pi(t), reaches 80% of its final value at 342/ for the resonance 

field value and at 21T/ and 25Tf  for the off-resonance field values.
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4. When the difference in ionisation start times is taken into account, the ionisation times 

for the Averaged Hamiltonian are consistent with the Robicheaux calculations.

5. Although data is given by Robicheaux only for three field values, the median ionisation 

times for these fields are broadly consistent with the results presented here for the 

Averaged Hamiltonian, with longer median ionisation times a t resonance.

The similarities between the calculations by Robicheaux et al and those presented here 

provide an independent check on the validity on the quantal method described in this thesis.



Chapter 6

Application to Higher Quantum  

Num bers

6.1 Introduction

In chapter §3, the quantum mechanical calculations were typically carried out for n  <  50. 

However, because the basis set of eigenstates involved in the quantum  mechanical approxima

tion is relatively small, the numerical evaluation of these equations can be applied to higher 

quantum  numbers with relatively modest computational resources. Calculations presented 

here have been carried out up to n = 800.

We have seen in earlier chapters th a t in the vicinity of resonances, the separatrix has 

significant effects on the classical dynamics and have shown th a t this leads to  much of the 

structure seen in ionisation probabilities and ionisation times. These effects are also seen to 

manifest themselves in the quantum  mechanics, becoming increasingly similar to  the classical 

mechanics as the quantum number is increased. In this chapter we compare the quantal and 

classical dynamics over a broader range of fields to show on and off resonance behaviour and 

examine the convergence with classical behaviour for increasing quantum number.

At low quantum numbers tunnelling has a significant effect on ionisation, as shown in 

§3.3.1 on page 113. For increasing quantum  number, the range over which tunnelling is signif

177
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icant, A I e, becomes smaller and tunnelling generally becomes a less significant contributor to 

ionisation, although even for n =  100, tunnelling can be significant over a wide range of field 

values. For small resonance islands, tunnelling is an im portant factor even for high quantum 

numbers. This is explored in §6.3.

For slowly switched fields, the slow movement of the resonance island through phase space 

allows many of the orbits to be tangled by the separatrix. For the exact classical dynamics 

this has been shown [51] to lead to more complex ionisation behaviour. We show in §6.4 th a t 

similar effects are seen in the classical mechanics for the Averaged Hamiltonian and th a t for 

high quantum numbers, these effects are also mimicked in the quantum mechanics.

To understand how the computational time scales with increasing quantum number for the 

quantum approximation, the times were measured for quantal calculations of the ionisation 

probability, Pj(Fs), for the principal quantum numbers, n =  200 ,3 0 0 ,..., 1000. For each 

calculation, PM =  0.13, flo =  0.011414, the field envelope is 16-50-16 and the ionisation 

probability is calculated for 12 equally spaced values of Fs in [0.035,0.03608]. The quantum 

numbers, m and ki are chosen to best fit m / n  =  0.2 and ki /n  =  —0.4. The results are shown 

in figure 6.1, from which the computational time using a linear least squares fit is estimated 

to scale as n x, where x  w 1.7.

7

6.5 

6

5.5_c

5

4.5 

4
In (n)

Figure 6.1 P lot of th e  logarithm s of com putational tim e, tc, in seconds, against th e  principal quan tum  

num ber, n, for the  calculation described in the tex t. T he circles m ark th e  m easured values and th e  red 

line is a linear least squares fit.
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6.2 Ionisation Probability for Increasing Quantum N um 

ber

By the correspondence principle, as the principal quantum number is increased it is expected 

that the behaviour of the quantum mechanical system should become increasingly similar 

to the corresponding classical system. Here we compare ionisation probabilities for a wide 

range of static field values, encompassing both on and off resonance behaviour. The classical 

ionisation behaviour at resonance is a consequence of the separatrix effect on the orbits. As the 

quantum number increases, we see th a t these effects are manifest in the quantum mechanics 

as well.

In this section we also examine the effective range, A /e, over which tunnelling is significant 

for varying quantum  number and confirm th a t this range reduces as the quantum  number 

increases and consequently tunnelling is less significant for higher quantum numbers.

In figures 6.2 and 6.3 the ionisation probability, Pi(Fs), is shown for the 0 ( F 5) Averaged 

Hamiltonian for increasing principal quantum  number, with parameters chosen to provide the 

best m atch to the classical parameters, Im =  0.2, I e{0) =  —0.4, F  ̂ =  0.13, ULq =  0.011414 and 

field envelope 16-50-16; chosen for comparison with figure 3.7 in §3.2.1. The principal quantum 

numbers shown are n  =  100,200,400 and 800, w ith other quantum values given in table 3.7 

on page 115. For comparison the classical ionisation curve is also shown. The Fs range is 

restricted to allow the differences between the ionisation curves to be more clearly seen. In 

figure 6.4 the classical and n — 800 ionisation probabilities are compared over the ranges 

Fs =  0.02-0.08. Each of the quantum calculations in figures 6.2-6.4 use the semi-classical 

decay function described in §3.1.3 (page 97) to include the effects of tunnelling.

The figures clearly show th a t as n  is increased the quantum ionisation probability becomes 

increasingly close to the corresponding classical case. For n  =  800 there is very little difference 

between the quantum  and classical ionisation probabilities throughout the region considered.
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Figure 6.2 Ionisation probabilities, Pi(Fs ), for th e  0 ( F 5) Averaged H am iltonian, F^ =  0.13, flo =  

0.011414 and envelope 16-50-16 for n =  100 (blue d o tted  line) and n =  200 (solid black line) and 

classical (red dashed line) approxim ations.
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Figure 6.3 Param eters as for figure 6.2. Ionisation probabilities, Pi(Fa), for n  =  400 are  shown w ith 

a  blue do tted  line and for n =  800 w ith a  solid black line. T he  classical approxim ation is shown w ith a 

red dashed line.
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Figure 6.4 Ionisation probabilities, Pi(Fs), for the  0 ( F 5) Averaged H am iltonian, =  0.13, Qo =  

0.011414 and envelope 16-50-16 for the  n =  800, m  =  160 and kz =  —321 q uan tum  (solid line) and 

classical (dashed line) approxim ations.

As n  is increased, the effect of tunnelling on ionisation becomes less significant and for 

sufficiently large n tunnelling can be ignored. The calculations for figures 6.2-6.4 were also 

carried out using the step decay function which excludes the effect of tunnelling. The difference 

between the semi-classical decay and the step decay calculated probabilities reduces with 

increasing n. In figure 6.5 for n =  100 and n =  400 ionisation probabilities are shown with 

and without tunnelling. For n  =  400, the contribution due to tunnelling is seen to be small. In 

general, for n >  400 the contribution due to tunnelling is small, although this is not necessarily 

true for the case of small resonance islands: this is discussed in §6.3. For n =  100, we see 

that tunnelling makes an appreciable contribution to ionisation, although this is not the only 

cause of the difference between the classical and quantal ionisation curves. For the quantum 

mechanics, ionisation increases for longer interaction times. For n =  100 we have confirmed 

this by comparing ionisation for various field envelopes of the form 16 — TV̂ — 16 for Fs in the 

interval (0.06,0.07). In contrast, classically there is little ionisation for Nb > 30. The quantal 

dependence of ionisation on field duration was explored earlier for small quantum numbers, 

in §3.4 on page 126.
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Figure 6.5 Ionisation probabilities, Pi(Fs ), using a  semi-classical decay function (do tted  blue line) and 

a  step  decay function (solid black line) for n — 100 and n  =  400. T he classical ionisation probability  

is shown w ith a  red dashed line. All o th er field param eters are as for figure 6.2 w ith  q u an tu m  initial 

values given in tab le  3.7 on page 115.

On physical grounds the effect of tunnelling is expected to reduce as n increases and 

the classical limit is approached. To show the effect of tunnelling on ionisation, the 0 ( F ' >) 

Averaged Hamiltonian quantum approximation was used to calculate ionisation probabilities 

for various n in the absence of inter-state coupling — obtained by setting (l\Hi\k) =  0 in 

equation (3.4) — for each of the initial conditions, kt =  — n + m +  1, — n +  ra +  3, — m — 1.

The parameters used were: flo =  0.011414, =  0.13, Fs =  0.05 and the field envelope,

10-10-10. The short duration field envelope was selected to extend the kj range over which 

the significant change in ionisation probability occurs. The azimuthal quantum  number, m, 

is chosen such th a t m / n  =  0.2.

Table 6.1 shows the number of initial states, A k, over which the ionisation probability rises 

from 5% to 95% of its maximum value. From this we see th a t the number of quantum states 

over which tunnelling is effective is seen to remain broadly similar as n increases; hence, as n 

increases there is a reduction in the corresponding classical range, A /e, over which tunnelling is 

significant, A Ie ~  2A k/n .  This can be seen in figure 6.6 which plots the ionisation probability, 

Pi, against k i /n  for n =  50,100,200,400 and 800 for the semi-classical decay function (solid 

lines) and step decay function (dashed lines). All inter-state coupling is switched off for these 

calculations. The semi-classically calculated ionisation probabilities are seen to rise more
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Table 6.1: The number of initial states, A k, over which the ionisation probability rises from 
0.05 to 0.95 for various values of n in the absence of inter-state coupling. The dynamical 
parameters are flo =  0.011414, FM = 0.13, Fs =  0.05, m / n  =  0.2 and the field envelope is 
10-10-10. The effective tunnelling range is A Ie =  2Ak/n .

n A k V 
^

1
<1

50 4 0.160
100 5 0.100
200 5 0.050
400 5 0.025
800 4 0.010

sharply as n is increased, getting closer to the ionisation probabilities calculated for the step 

decay function and hence reducing the contribution from tunnelling.

n=200

n=50 n=4000.6
P1

1=1000.4

n=800
0.2

n=200
n=50

-0.3 - 0.2-0.25 -0.15
k. / n 1

Figure 6.6 Ionisation probabilities, Pi(ki /n),  for th e  0 ( F 5) Averaged H am iltonian w ith no in te r-sta te  

interactions, F^ =  0.13, Fs =  0.05, flo =  0.011414 and envelope 10-10-10 for the  sem i-classical (solid 

black lines) and step (red dashed lines) decay functions for n =  50,100, 200, 400 and  800.

The calculations shown in this section demonstrate th a t as the quantum number is in

creased, the quantal and classical ionisation probabilities become increasingly similar, both on 

and off resonance: for n =  800, the ionisation curves are practically indistinguishable to the 

resolution shown in figure 6.4. The observed classical ionisation behaviour at resonance is a 

consequence of the separatrix effect on the orbits. These effects are also manifest in the quan

tum  mechanics for sufficiently high quantum  numbers. We have shown th a t the contribution 

to  ionisation from tunnelling decreases as the quantum number increases but th a t even for
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n = 100, tunnelling is still important.

6.3 The Effects of Small Resonance Islands

In this section we examine the effects of small resonance islands on the classical and quantum 

dynamics. This exploration requires the use of high quantum  numbers: as the island size is 

reduced, higher quantum numbers are required for the resonance island effect on ionisation 

not to be obscured by the contribution from tunnelling.

An approximation for the island width was derived in §2.1.5 on page 45. From equation 

(2.40), page 48, the approximate resonance island width for the j- th  resonance is,

For given and do,  the main factor determining the island width is the parameter, Jj ,  

given by equation (2.31) (page 43) and depending on jFm, Fs and do.  To more clearly identify 

the effects of the island width without changing other dynamical parameters we carry out all 

calculations using the Resonance Hamiltonian, K r , and vary the island width by artificially 

setting J j  = Jp,  where Jf  is a tuning parameter. To exclude the effects of the field switch, 

all calculations are made using envelopes of the form 0 — N^ — 0.

In figures 6.7 and 6.8 classical ionisation probabilities are shown for different J f  for d  — 

0.0528, Fn =  0.13, Im =  0.2 in the vicinity of the j  — 1 resonance. Initial values, I e{0), are 

chosen so th a t (Ic — I e(0))/wR is nearly constant, with slight adjustments made so th a t the

ionisation peaks are approximately the same height for each island width. The initial values
( k)are chosen so th a t only librational orbits contribute to ionisation. The parameters, JF , are 

given in table 6.2 and are selected so that the island size approximately halves with each 

successive k value. The figures show different field envelopes, 0-50-0 and 0-400-0.

Comparing the two figures, the ionisation peaks are very similar for Jp = Jp^  or Jp  =  J p \

where, from equation (2.36), page 46,
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/o\
but for Nb =  50 the JF =  J F ionisation peak is much smaller and no ionisation is observed 

for JF =  J y  ) or Jy  =  Jy '1 ■

The differences are caused by the increase in librational period as the island size decreases. 

For the first two islands, the field duration is sufficient for the majority of ionising orbits to 

move round the resonance island sufficiently for ionisation to occur. For the Jy  = J F , 40 

field cycles is insufficient for all potentially ionising orbits to  reach the ionisation threshold. 

For the smallest two islands, the motion is so slow that no ionisation occurs in 40 field cycles.
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F igure 6.7 Classical ionisation probabilities.

Pi(Fs)  for K r , =  0.13, =  0.0528 and
(k)Im =  0.2 for various J F and the  field envelope, 

0-50-0.

Figure 6.8 Classical ionisation probabilities, 

Pi (Fs) for field envelope 0-400-0; o th er p a ram 

eters as for figure 6.7.

An analysis of ionisation times was made previously, in chapter 5. Here, we make use of 

two results from th a t analysis. For librational orbits the shortest period occurs a t the centre 

of the resonance island, and a first approximation is given by equation (5.1), page 153, as,

Ti
8 7 r

3 F „ n o U i l ( l - /^ ) ( 2 F 2  +  F2)

In table 6.2 this expression is compared with more accurate calculations for T/ using equation 

(5.7) from chapter 5 for each of the island widths and, for present purposes, confirmed to 

provide a reasonable estimate in each case. From the approximation, for small island sizes,

w R oc whilst Ti o c  I / d \ J j \ .  This longer period can be seen by comparing the expec-
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Table 6.2: Island data calculated for LIq =  0.0528, FM =  0.13 and Fs =  0.01677 for each 
forcing parameter, Jp . Island sizes, w r , are calculated from equation (2.40). Librational 
time periods, 7), are expressed as multiples of Tf  =  27r/flo, and calculated from equations (5.7)
and (5.1) on pages 155 and 153. The initial values, I e(0), are selected to give approximately

(k)the same height ionisation probability peaks for each JF value.

k j(k)
F W r Ti /T f Ti /Tf

(approximate)
7e(0)

1 -0.25000000 1.31 21 23 -0.4000
2 -0.06250000 0.73 47 45 -0.0185
3 -0.01562500 0.38 96 91 0.2147
4 -0.00390625 0.19 194 182 0.3374
5 -0.00097656 0.09 390 364 0.3900

tation values, (7e(f)), for two JF ] values in figures 6.9 and 6.10, with Fs values selected to 

lie close to the maximum value of Pl(Fs) in each case. A sample set of 300 orbits are used 

with the initial phase angle equally distributed in the range [0, tt). Expectation curves are 

shown with and without ionisation enabled to show the onset of ionisation where they initially 

diverge. For the larger island, ionisation is seen to start a t T / T f  ~  10 and for the small island 

at T / T f  «  85; in both cases this is approximately half the librational period.

0.4

0.38

0.36<1 >

0.34

0.32

200 300 4000 100

<Ie> -0.2

-0.3

-0.4

200 40 8060 100
t/Tf t/Tf

Figure 6.9 Classical (Ie(t)), calculated for =  F igure 6.10 As for figure 6.9, b u t for Jp — ■

0.13, n 0 =  0.0528, Im =  0.2 and Fs =  0.0168 for

Jp — JF \  T h e  solid black line is shown with

ionisation sw itched on and th e  dashed red line

with ionisation sw itched off.

The quantum system’s response to smaller island sizes is shown in figures 6.11 to 6.14 for
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n  =  50,100j 200 and 400. For each island size the initial state, hi, is selected to best match 

the I e(0) values in table 6.2. Comparison classical ionisation probabilities are also calculated, 

with initial conditions chosen to match the quantum initial state, / e(0) =  ki/n.

Only the first three island sizes are shown in figure 6.11 forn =  50, as quantally, Pi(Fs) «  1 

for the two smallest islands. As the island size decreases, the differences between the classical 

and quantum  ionisation curves become more marked; this is due primarily to tunnelling.

Tunnelling contributes to ionisation for a range of substates; the extent of this range when 

compared to the resonance island size is im portant and has an effect on the observed ionisation. 

We define the tunnelling region as the size of the region in k / n  with the following bounds. 

The lower bound is found from the smallest k value for which the ionisation probability, 

p(adta) (^) > q j  ancj p ( adta') (fc'j js ionisation probability calculated for a system in an 

initial state, k , with off-diagonal elements set to  zero and an integration time of 400 field 

cycles. The upper bound is found from the smallest k value for which P^adm^[k) > 0.9.

At Fs = 0.0172 for n — 50, P^adia\ k i )  > 0.1 for ki > 9 whereas classically, ionisation 

starts a t kc — 23. The tunnelling region is A I e «  0.3; this is comparable to the island width 

for the third largest island and larger than the widths of the two smallest resonance islands 

given in table 6.2.

As n  is increased the tunnelling region reduces and peaks in Pi(Fs) becomes visible for 

smaller islands. Progressively, as n  is doubled, the number of distinct peaks in Pi(Fs) increases 

by one, until at n = 400 there are clear peaks for each of the five values. This is consistent 

with the reduction in the size of the tunnelling region as n  increases: for n  =  50,100, 200 and 

400 the tunnelling regions are 0.27, 0.16, 0.09 and 0.05. Comparing these sizes with the 

resonant island sizes given in table 6.2 and the quantal ionisation peaks seen in figures 6.11- 

6.13, we see th a t the ionisation peaks become less distinct for island sizes similar to or smaller 

than the tunnelling region size.
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n=50

P1
0.4

0.2

0.0172 0.01760.0164 0.0168
FS

Figure 6.11 Ionisation probabilities, Pl (Fs ), for =  0.13, n — 50, 7m =  m / n  — 0.2 and field envelope
(k)0-400-0 for th e  first th ree  JF values, w ith ki values chosen to  best m atch th e  Ie (0) values given in 

tab le  6.2. Q uantum  curves are shown w ith solid lines. Classical results for m atching Ie{0) and / m are 

shown with dashed lines. Different colours are used for each Jp  value.

n=100

0.6

0.2

0.0172 0.01760.0164 0.0168
FS

Figure 6.12 As for figure 6.11 bu t w ith n  =  100 and w ith curves shown for th e  five Jp  values given in 

tab le  6.2.
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- n=200
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P, 0.4

0.2

0.0164 0.0168 0.0172 0.0176
F
S

Figure 6.13 As for figure 6.11 bu t w ith n =  200 and w ith curves shown for the  five Jp  values given in 

table 6.2.

n=400
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0.0164 0.0168 0.0172 0.0176
FS

Figure 6.14 As for figure 6.11 b u t w ith n =  400 and w ith curves shown for th e  five Jf values given in 

table  6.2.

The slower librational motion observed classically is also seen in the quantum mechanics, 

with (■ne(t)) evolving more slowly as the island size reduces. This is shown in figure 6.15,

where (ne(t)/n) for n = 400 is compared with corresponding classical curves, (.Ie{t)), for the
(k)J f  =  J F values given in table 6.2. The periods of oscillation are seen to become longer with 

reducing island size.
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-0.4
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Figure 6.15 Q uantum  expectation  curves (solid lines), (ne( t ) /n ) for n  =  400 and classical ex-
(k)

pectation  curves (dashed lines), (Ie( t )), for Jp =  Jp and k — 1 , 2 , . . . ,  5. Ionisation chan

nels are sw itched off. T he Fs values are  chosen to  lie near th e  ionisation p robability  peaks, a t 

F s =  0.0168,0.0172,0.0174,0.0175 and 0.01756. T he m  and ki values are given in tab le  6.2. Field 

param eters are  F^ =  0.13, f2o =  0.0528 and field envelope 0-400-0.

The slower changing expectation value, (ne(t)/n)  as the island size is reduced corresponds 

to a slower rate of transition between quantum states. This is confirmed in figure 6.16 for 

n  =  400, which plots \dk(t)\2 for the k =  183 substate, calculated in the absence of ionisation. 

This substate is chosen as the largest k value below the classical critical ionisation limit. For 

clarity, the more rapidly varying curve for Jp  =  1 curve is omitted. It can be seen that as

the island size is reduced \ak{t)\2 changes more slowly.
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t  /  T ,
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f

Figure 6.16 S ta te  p robab ility  densities, |o*.(£)|2, calculated  for n =  400 in th e  absence of ionisation 

for k =  183 for various J f  values. T he  field p aram eters and Fs values are those given for figure 6.15.

The slower rate of transition between quantum states in the region of the resonance island 

as the island size is reduced makes the ionisation probability more sensitive to the ionisa

tion mechanism. At high quantum numbers for larger islands and for Fs values away from 

resonance, there is little difference in ionisation probabilities calculating using a step decay 

function rather than tunnelling. However, for the island sizes considered here, the step de

cay approximation increasingly underestimates the ionisation probability as the island size is 

reduced.

The reasons for this are presumed to be similar to those described in appendix A: because 

the states in the region of the first ionising state, k =  kc, are populated slowly, the state 

densities, |a^| of states k > kc remain very small and this effectively decouples the non

ionising states from the ionising states. This is equivalent to reducing the magnitude of T  in 

equation (A.9), page 220, limiting the ionisation rate.

6.4 Field Envelopes

6.4.1 Classical Features

In earlier chapters it was observed that the field switch-on can have significant effects on 

the dynamics and observed behaviour such as the presence of ionisation and the shape of 

the ionisation curves. In this section we are concerned primarily with the effect of the field



192 C H APTER 6. APPLIC ATIO N  TO HIGHER QU ANTU M  NUM BERS

switch-on on the quantum mechanics. W hilst the separatrix plays a significant role in classical 

mechanics, it occupies a relatively small area in phase space so we do not expect the separatrix 

to have the same effect on the quantum mechanics unless the quantum numbers — and hence 

the density of states in phase space — is sufficiently large. In §6.4.2 we will consider a range 

of quantum numbers to demonstrate this.

Before considering the quantum mechanics we examine the classical mechanics and identify 

some of the key observed features. These features are also seen for the exact Hamiltonian [51].

During the field switch-on, resonance islands will appear at the lower edge of phase space 

and pass through the evolving phase points, {(i/>e(t), I e(t))}. The speed of the resonance 

island motion depends on d \ /  dt. In the vicinity of dynamical resonances, Fs ~  F ^ \  the 

j -th resonance island moves more slowly as t —> Ta and dA/ d t —>• 0. As the separatrix 

slowly crosses a phase curve comprising the phase points, {(i(je(Ta), I e(Ta))}, the phase curve 

becomes tangled. The slower the separatrix crosses the phase curve the more tangled the 

curve becomes and so for slowly switched fields, the separatrix has an increased effect on the 

subsequent evolution of the phase curve.

Note that for Fs > F ^  where q > 1, each of the resonance islands, j  =  1, ,q,  pass 

through the phase space during the field switch-on. Their effects on the phase curve are 

assumed to be small, as they pass quickly through the phase space allowing little time for 

their separatrix to affect the phase curve evolution.

To simplify the notation, the evolved curve of points {(,ij>e{Ta) , I e(Ta))} will be labelled by 

Ca and the initial line of phase points, { (^ (O ) ,/e(0))}, by Co- The subsequent motion of each 

phase point lying on Ca for times when A (t) = 1 is determined primarily by whether the point 

lies inside or outside the separatrix curve boundaries of the resonance island, as demonstrated 

in previous chapters (for example, see chapter 4).

Figures 6.17-6.20 show the effects of different duration switch-on fields of envelope N a — 50— 

N a on ionisation for the 0 ( F 5) classical Averaged Hamiltonian for Qo =  0.011414, =  0.13,

Im =  0.2 and / e(0) =  —0.4 near the j  =  10 resonance. The probabilities are calculated using 

a grid size of<5Fs =  2 x l 0 -6 and 300 orbits.
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Figure 6.17 Ionisation probabilities, Pi(Fs), for 

th e  classical 0 ( F 5) Averaged H am iltonian  for 

=  0.13, Qq =  0.011414, Im =  0.2 and  various 

envelopes, N a — 50 — N a- Each curve is labelled 

by its Na value.

Figure 6.18 As for figure 6.17.
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Figure 6.19 As for figure 6.17. Figure 6.20 As for figure 6.17.

From the figures and from examination of the data, the following features are observed:

1. For N a < 22 the ionisation curves are of similar shape to the N a = 0 instantaneously 

applied field ionisation curve.
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2. For N a > 23, excluding N a = 28 and N a =  36, the ionisation curves become increasingly 

complex, sometimes with multiple local maxima. For example, for N a = 32, there is a 

sharp peak at Fs =  0.03588 and a broader smaller peak at Fs = 0.03604.

3. There is no obvious correlation between N a and the Fs width of the ionisation peak, or 

the maximum ionisation probability.

4. For N a =  12 and N a = 36, the ionisation peaks are very small. For N a =  8,11,13 and 

28 no ionisation is observed a t all.

The observed behaviour shows the same general features as the exact classical dynamics, 

described in [51] §6 for the j  =  7 resonance, although the details are different, due, at least 

in part, to the differences in resonance island width between the exact Hamiltonian and the 

approximate Hamiltonians considered here.

The observed effects on ionisation are a consequence of the changes in I e{t) occurring during 

the field switch-on. In figures 6.21 and 6.22 the evolved lines, Ca, are shown for two different 

Fs values and for a number of different N a values. The angle variables are transformed using 

equation (2.44) so th a t the evolved phase points can be compared with the separatrix for 

the Resonance Hamiltonian. For each phase point, integration is carried out for the full field 

duration, N a — 50 — N a, to determine whether ionisation occurs; if it does, the point is marked 

with a thick line.

In figure 6.21 it can be seen th a t for N a =  6,8 and 10, relatively small changes have occurred 

in I e(t) by t = Ta. For Fs =  0.0358 only librational orbits lying close to the separatrix can 

change sufficiently to ionise, as can be seen for N a =  4 where the ionising segments lie inside 

the island, but the segments closest to  the stable equilibrium point a t the resonance island 

centre do not ionise. For Na =  6, Ca lies close to the initial line, Cq and hence the ionisation 

probability is close to th a t observed for the instantaneously applied field, as can be seen in 

figure 6.17 by comparing Pi(Fs) for N a = 0 and N a =  6. For N a — S the evolved line, Ca lies 

wholly outside the resonance island and hence no ionisation occurs — this is true for all Fs 

values in the vicinity of the j  — 10 resonance and hence no ionisation occurs for Na =  8.

For the higher N a values shown in figure 6.22, the evolved lines, Ca , have become much 

more complex. In figure 6.18 it can be seen th a t a t Fs =  0.036, there is ionisation for N a — 23
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but not for N a =  22 or Na =  24. From figure 6.22 it can be seen th a t only for N a = 23 is there 

a segment of the Ca curve lying within the resonance island. For the dynamical parameters 

chosen, only librational orbits can be ionised, hence excluding ionisation for N a  — 22 and 

N a =  24.
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Figure 6.21 Phase space curves, Ca, for Na =  

4, 6 and 8 a t t =  Ta for th e  classical 0 ( F 5) Aver

aged H am iltonian  w ith Fs — 0.0358, =  0.13,

fto =  0.011414, 7m =  0.2 and Ie{0) =  -0 .4 . 

Thick lines show portions of phase curves which 

ionise later. T he separatrix  curves for th e  Res

onance H am iltonian are shown by dashed lines. 

T he horizontal do tted  line m arks th e  critical ion

isation value, Ie — l c-

Figure 6.22 Phase space curves, Ca, for Na =  

22, 23 and 24 a t t =  Ta for Fs =  0.036. O ther 

details as for figure 6.21.

6.4.2 Quantum Ionisation Probabilities for Different Envelopes

In this section we examine the ionisation probabilities for different field envelopes starting 

with higher quantum numbers using n — 800 and n  =  200 and conclude with an examination 

of envelope effects at the lower quantum numbers of n =  100 and n =  39. In figures 6.23-6.26 

quantum Pj(Fs) curves are compared to their classical counterparts for a number of different 

N a values. In each figure curves are shown for n =  200 and n =  800 with m  and ki chosen to 

best match the classical parameters, Im =  0.2 and / e(0) =  —0.4.
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Figure 6.23 Ionisation probabilities, P j(F s ), for 

th e  quantum  0 ( F 5) Averaged H am iltonian (solid 

lines) for FM =  0.13, flo =  0.011414, n  =  200, 

m =  40, ki =  —81, envelope Na — 50 — Na 

and Na as m arked. C om parison classical curves 

for Im =  0.2 and Ie {0) =  —0.4 are shown with 

dashed lines.

F igure 6.24 Ionisation probabilities, Pi(Fs ), for 

th e  quan tu m  0 ( F 5) Averaged H am iltonian (solid 

lines) for =  0.13, =  0.011414, n =  800,

m  =  160, ki =  —321, envelope Na — 50 — Na 

and Na as m arked. C om parison classical curves 

for Im — 0.2 and Ie(0) =  —0.4 are shown w ith 

dashed lines.
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Figure 6.25 Ionisation probabilities, F j ( F a ) ,  for th e  quan tum  0 ( F 5 )  A veraged H am iltonian (solid and 

so lid /d o tted  lines) for F^ =  0.13, flo — 0.011414, n  =  200, m — 40, ki — —81, envelope Na — 50 — Na 

and Na as m arked. C om parison classical curves for 7m =  0.2 and / e (0) =  —0.4 are shown with dashed 

lines.
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Figure 6.26 Ionisation probabilities, P ,(F S), for th e  quan tum  0 ( F 5) Averaged H am iltonian (solid 

lines) for F^ =  0.13, F2o 1 0.011414, n  =  800, m — 160, ki =  —321, envelope Na — 50 — Na and  Na as 

m arked. C om parison classical curves for Im =  0.2 and Ie(0) =  —0.4 are shown w ith dashed lines.

There is a very close match between the quantum and classical Pi(Fs) curves. The n — 800 

quantum curves lie closer to the classical curves, but the n  =  200 quantum mechanics clearly 

also echo the classical behaviour including the complex effects th a t the separatrix has on 

the classical evolution of the initial action curve during field switch-on. For N a — 31 the 

quantum and classical ionisation curves show two distinct ionisation peaks at Fs 0.03585 and 

Fs ~  0.03605, separated by a region of lower but non-zero ionisation probability. Classically, 

the differences can be seen to be a consequence of the complex folding of the initial action 

by the time t — Ta. This is shown in figures 6.27 to 6.29 for Fs values near the two peaks 

and at a point in between. They are calculated using 600 equally distributed initial orbits 

comprising the initial line, Cq. The Ca curves are seen to undergo significant folding during the 

field switch-on and the shapes change considerably as Fs is varied. Although not clear from 

the diagrams because the phase points are no longer equally distributed, the fraction of orbits 

lying within the island also changes significantly, which has a direct effect on the observed 

ionisation probability.
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Figure 6.27 Fs =  0.03585 Figure 6.28 Fs — 0.03595 Figure 6.29 Fs =  0.03605

Phase space curves, Ca, for Na =  31 a t t =  Ta for th e  classical 0 ( F 5) Averaged H am iltonian with 

=  0.13, f20 =  0.011414, Im — 0.2 and Ie (0) =  —0.4. Thick lines show portions of phase curves 

which ionise later. T he separa trix  curves for th e  R esonance H am iltonian are shown by dashed lines. 

T he horizontal do tted  lines m ark th e  critical ionisation values, Ie =  Ic-

The effect of the switch-on on the quantum mechanics can be shown by plotting the 

probabilities, \a^(Ta)\. In figures 6.30-6.32 the n  =  800 distributions are plotted against 

the equivalent classical orbit density functions at each of the Fs values in figures 6.27-6.29. 

The classical orbit density function is calculated using 4000 equally distributed initial orbits 

comprising Co and calculating the density of orbits in each of 800 equal intervals in the I e 

range (Im — 1,1 — Im). In the figures shown here, the classical orbit density is then scaled to 

match the principal quantum number for the quantal probabilities to be compared with. The 

small fluctuations in the classical orbit densities are due to statistical errors. The classical 

folding of the line Ca is seen in the appearance of peaks in the classical orbit density function 

corresponding to the horizontal sections of the Ca. As the field switch time, Ta, is increased, 

the number of folds generally increases leading to more peaks in the classical orbit density. 

For comparison, figure 6.33 compares the classical orbit density and n =  800 probability for 

the relatively short switch-on time of Na — 8 at Fs =  0.03567. The simpler structure reflects 

the less deformed line, Ca, seen in figure 6.21.

The quantum probabilities, |afc(?re/n ) |,  are seen to fluctuate but have similar underlying 

features to the classical orbit densities. In figure 6.32 an additional curve is depicted with a 

broken dashed line that removes the fluctuations by calculating an averaged \a^\ value using 

a moving window of 9 adjacent k points.
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Figure 6.30 S ta te  probabilities, |afc(nc /n ) | ,  evaluated a t t =  Ta for n  =  800, m  =  160 and ki =  —321 

for th e  quantum  0 ( F 5) Averaged H am iltonian  w ith Fs =  0.03585, F^ =  0.13, Ho =  0.011414, envelope 

31 — 50 — 31 (dashed line). A com parison classical o rbit density  is shown for Im =  0.2 and Ie(0) =  —0.4 

(solid line). For com parison, th e  evolved line Ca is shown in figure 6.27.
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Figure 6.31 S ta te  probabilities, |ofc(ne /n ) | ,  evaluated  a t t =  Ta for n  =  800, m =  160 and ki — —321 

for th e  quan tum  0 ( F 5) Averaged H am iltonian  w ith Fs =  0.03595, =  0.13, Ho =  0.011414, envelope

31 — 50 — 31 (dashed line). A com parison classical orbit density  is shown for Im =  0.2 and Je (0) =  —0.4 

(solid line). T he evolved line Ca is shown in figure 6.28.
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Figure 6.32 S ta te  d istribu tion , \a^(ne/n)\,  evaluated a t t =  Ta for n — 800. m — 160 and ki =  —321 

for th e  quantum  0 ( F 5) Averaged H am iltonian w ith Fs =  0.03605, =  0.13, Qo =  0.011414, envelope

31 — 50 — 31 (dashed line). A com parison classical o rb it density  is shown for / m =  0.2 and / e (0) =  —0.4 

(solid line). T he evolved line Ca is shown in figure 6.29.

For the classical system, some ionisation peaks are missing or very small for particular 

Na values. The effect is also seen for higher quantum numbers, although in some cases the 

probabilities are small rather than zero. As the quantum number is reduced, ionisation by tun

nelling from states below the classical limit, 7C, becomes increasingly important, contributing 

to increased ionisation and lowering the Fs value at which ionisation starts. In figure 6.34 the 

N a =  8 ionisation probabilities are plotted for increasing n. It can be seen that for n =  800, 

Pi(Fs) < 0.013, but as n is reduced the ionisation peaks increase in magnitude. There is also 

a shift in the location of the ionisation probability maximum towards lower Fs as n decreases; 

this is discussed later.
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Figure 6.33 S ta te  probability, |a^.(ne /n ) |,  eval

uated  at t =  Ta for n =  800, m  =  160 and 

ki =  —321 for the  quan tum  0 { F 5) Averaged 

H am iltonian w ith Fs =  0.03567, =  0.13,

flo =  0.011414, envelope 8 — 50 — 8 (dashed line). 

A com parison classical o rbit density  is shown for 

Im =  0.2 and / e (0) =  —0.4 (solid line).

Figure 6.34 Ionisation probabilities, Pi{Fs ), for 

th e  qu an tu m  0 ( F 5) Averaged H am iltonian for 

F m =  0.13, n 0 =  0.011414, envelope 8 - 5 0 - 8  

and various n w ith  m and  ki values chosen to  

best m atch / m =  0.2 and Ie =  —0.4

The envelope effects can also be seen for lower quantum numbers, although the correspon

dence between classical and quantum behaviour becomes less clear as the quantum number 

decreases. Figures 6.35 and 6.36 show ionisation probabilities for n  =  100. The field envelopes 

are chosen for comparison with figures 6.23-6.26 for n =  200 and n =  800.

Although the match between quantal and classical curves is not as good for n =  100 as 

it is for higher quantum numbers, the quantal curves still echo the classical behaviour. For 

example, in figure 6.36 for Nf, — 31 both the classical and quantal curves have two distinct 

maxima. For Nb =  33, there is a gradual increase in ionisation probability for Fs > 0.0359 for 

both the quantal and classical curves.
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Figure 6.35 Ionisation probabilities, Pi(Fs), for th e  quantum  0 ( F 5) Averaged H am iltonian  (solid 

lines) for FM =  0.13, flo =  0.011414, n =  100, m — 20, ki =  —41, envelope Na — 50 — Na and Na as 

m arked. Com parison classical curves for Im =  0.2 and / e(0) =  —0.4 are shown w ith dashed lines. A 

different colour is used for each ATj, value.
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Figure 6.36 As for figure 6.35.

In figures 6.37 to 6.40 ionisation probabilities are shown for the quantum 0 ( F 5) Averaged 

Hamiltonian for — 0.13, Qo =  0.011414, n — 39, m  =  8, ki =  —16, field envelope 

N a — 50 — N a and a selection of N a values in the range (0,40).
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Figure 6.37 Ionisation probabilities, P j(F s ), for 

th e  quan tum  0 ( F 5) Averaged H am iltonian for 

=  0.13, n 0 =  0.011414, n =  39, m  =  8, ki =  

— 16, envelope Na—50—Na and  Na — 0 , 2 , . . . ,  10. 

T he Na — 0 curve is shown by a  dashed line.

Figure 6.38 Ionisation probabilities, P j(F s ), for 

th e  qu an tu m  0 ( F 5) Averaged H am iltonian  for 

F m =  0.13, =  0.011414, n  =  39, m  =  8,

ki =  —16, envelope 7Va — 50 — Na and Na =  

0 , 1 2 , 14 , . . .  , 20. T he Na — 0 curve is shown by 

a  dashed line.
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Figure 6.39 Ionisation probabilities, F j(F s ), for 

th e  quan tum  0 ( F 5 ) Averaged H am iltonian for 

F m -  0.13, Q0 =  0.011414, n =  39, m =  8, 

ki =  —16, envelope Na — 50 — Na and Na =  

0, 22, 23, 24, 26, 28 and 30. T he Na =  0 curve is 

shown by a  dashed line.

Figure 6.40 Ionisation probabilities, Pi(Fs)1 for 

the  qu an tu m  0 ( F 5) Averaged H am iltonian for 

F„ =  0.13, =  0.011414, n  =  39, m  -  8,

ki =  —16, envelope Na — 50 — Na and  Na =  

0, 32,35, 36, 39 and 40. T h e  Na =  0 curve is 

shown by a  dashed line.
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Whilst there is no straightforward correlation between the n = 39 quantum and the classical 

ionisation probabilities there are some broad similarities. For N a <  10, excluding Na = 8, 

the ionisation curves are generally of similar shape with one main peak and a number of 

smaller peaks superimposed on the curves. The main peaks lie at lower Fs values than for the 

corresponding classical ionisation probabilities. As N a is increased, the curve shapes become 

more complex. For Na =  23, as for the classical and high quantum number ionisation curves, 

the maximum Pi value is at a noticeably higher Fs value than for Na =  22 or N a — 24. In 

contrast to the classical mechanics, there are no N a values for which Pi(Fs) = 0 across the 

resonance region.

As observed for the n =  39 curves and in figure 6.34, the ionisation probability maxima 

generally lie at lower Fs values than for the classical dynamics, which is partly a consequence 

of ionisation tunnelling from states below the classical ionisation limit, I c. This also explains 

why classically missing ionisation peaks are present, such as for Na — 8: the state excitations 

required for ionisation are smaller than the corresponding required changes in I e for ionisation 

to occur classically. This can be demonstrated by comparing the quantum ionisation proba

bilities with those generated using the step decay function described in §3.1.3. This excludes 

ionisation tunnelling from states below the classical critical limit, I c. The curves are compared 

for Na — 5 and Na =  8 in figures 6.41 and 6.42. The step decay ionisation probabilities are 

considerably lower when tunnelling is excluded and have peaks at higher Fs values. The start 

of ionisation is also higher for the step decay function. Higher Fs values are required to cause 

excitation to states where ionisation can occur. This parallels classical behaviour for the start 

of ionisation, where ionisation starts when the top of the resonance island meets the critical 

ionisation value, I c. If I c is increased, then Fs must be increased for this condition to be met.
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Figure 6.41 Ionisation probabilities, Pl (Fs). for 

th e  0 ( F 5) Averaged H am iltonian for F M =  0.13, 

f2o =  0.011414, n  =  39, m =  8, ki =  —16 and 

envelope 5 — 50 — 5. Q uantum  curves are  shown 

w ith a black d o tted  line, classical curves for Im =  

0.2 and 7e (0) =  —0.4 are shown w ith a red dashed 

line and  quan tu m  ionisation probabilities w ith a 

step  decay function are shown w ith a black solid 

line.

Figure 6.42 Ionisation probabilities, F j(F s ). for 

the  0 ( F 5) Averaged H am iltonian for F M =  0.13, 

Qo =  0.011414, n  =  39, m  =  8, ki =  —16 and 

envelope 8 — 50 — 8. Q uan tum  Pi(Fs ) w ith a 

sem i-classical decay function is shown w ith a d o t

ted  line and quan tum  F j(F s ) w ith a  step decay 

function is shown w ith a solid line. For th is  field 

envelope, classically Pi(Fs ) =  0 for th e  field val

ues shown.

6.4.3 Conclusions

For slowly switched fields, the classical dynamics for the Averaged Hamiltonian, K m , equation 

(2.24) (page 38), show the same general features seen for the exact Hamiltonian. As the field 

switch duration, Ta , is extended, the structure of the ionisation probability, Pi(Fs), becomes 

more complex and for some switch durations, Ta, ionisation is absent altogether. We have 

shown th a t the ionisation structure is due to the tangling of the phase curve by the separatrix 

and th a t as Ta increases, the slower motion of the separatrix through phase space during the 

field swit.ch-on causes the phase curve to become more tangled.

It was noted at the beginning of §6.4 th a t the separatrix occupies a relatively small region in 

phase space and consequently the quantal dynamics for a slowly switched field may not reflect 

the classical mechanics unless a sufficiently high quantum number is used. We have shown 

th a t for the field parameters considered here, when n > 200, the quantum mechanics closely
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follows the separatrix-induced classical behaviour. As the quantum  number is reduced, the 

correspondence becomes less clear, although for n  =  100 the quantum ionisation probability 

still echoes some of the classical structure. When the quantum  number is reduced to n = 39, 

the relationship between the ionisation probabilities for the classical and quantal dynamics is 

no longer clear; however, the ionisation probability still shows increasing complexity as the 

switch time is increased.



Chapter 7

Conclusions

In this thesis we made a detailed examination of the classical and quantal dynamics of an 

excited hydrogen atom subjected to parallel static and microwave field of frequency, Cl, which 

is low compared to the Kepler period of the unperturbed excited hydrogen atom, u k -

The system has three im portant frequencies: the frequency of the applied field, Cl, the 

Kepler frequency of the excited electron, ojk, and the frequency of precession of the electron 

orbital ellipse. The behaviour of this system is mainly determined by two time scales: the 

ratio, CI/cjk, and the ratio of the frequency of precession of the electron orbital ellipse to 

Cl. Interaction between the microwave field and the Kepler motion of the electron can cause 

resonances for puK = qCl, where p and q are integers. The frequency of precession of the 

electron orbital ellipse depends on the static field strength. This can cause resonances with 

the microwave field for particular values of the static field. The two time scales mean th a t 

the motion is two-dimensional, and cannot be accurately approximated by a one-dimensional 

system as is the case when the static field is zero.

These resonances are manifest in experiments and calculations, with changes in ionisation 

seen for field values in their vicinity. For low scaled frequencies, CIq = CI/ujx <C 1, peaks are 

observed in plots of ionisation against static field strength near the resonances.

For low scaled frequencies, CIq , the system changes adiabatically in response to  the slowly 

changing field. Classically, for the system described in adiabatic action-angle variables, in

creasing field strength reduces the height of the potential barrier separating bound states from
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the continuum. For a slowly switched on field, some states therefore ionise ‘over the barrier’ as 

the barrier height reduces with increasing field strength. Quantally, there is also a significant 

contribution to ionisation due to tunnelling from adiabatic states lying close to the top of the 

barrier.

When a static field is present, the motion remains adiabatic. Near resonances the elec

tric action, 7e, can vary significantly, but for low scaled frequencies, the principal action, 7n , 

remains approximately constant for all field strengths. This fact was exploited in the develop

ment of a classical description of the present problem by Richards [51], allowing, by appropriate 

transformations of the Hamiltonian and averaging methods, an approximate time-dependent 

classical Hamiltonian with one degree of freedom to be derived. This Hamiltonian forms the 

basis for the work we have presented here, which is broadly in two areas. First, we have de

termined some characteristic properties of the classical Hamiltonian and used these to explain 

some of the classical behaviour of the system. Secondly, we have developed a one-dimensional 

quantal approximation and used this to  explore the quantal behaviour of the system.

We have found th a t the classical approximation is a good approximation for the field 

strengths we are concerned with, capturing most of the features seen in calculations using the 

exact classical dynamics for ionisation probabilities and ionisation times. There is a reasonable 

match for the locations of resonances and shapes of the ionisation peaks are also reflected. For 

some fields (e.g. fio =  0.0528) there is a very good match over most of the static field range 

considered; see for example, figure 2.10 on page 52.

For fields near resonance, the behaviour of the system is dominated by the presence of 

resonance islands in phase space and their effect on the classical orbits. We derived expressions 

for the locations and sizes of these resonance islands and used these to explain some of the 

structure seen in plots of ionisation probability against static field strength. A summary of 

the key features and analysis is given here:

1. Calculated resonance locations, Fs = F ^ \  do not always coincide with the locations of 

associated peaks in ionisation probability. For example, for Qq — 0.011414, the ionisation 

peaks are very narrow and many are displaced from the resonance location so th a t the 

ionisation probability is zero at Fs — F ^  (see table 2.5, page 81, and figures 2.35-2.37 on 

pages 82-83). From properties of the resonance island, we have found expressions for the
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start and end field values, F^start  ̂ an(j j?(end) ̂  marking the boundaries of the ionisation 

peak, such th a t the ionisation probability is non-zero for jr(start1 < Fs < Fsend\  and 

shown th a t they have a reasonable match with numerical calculations.

2. For field strengths and initial action, I e(0), such that only librational orbits ionise, the 

start of ionisation, FsStart\  is predicted to  be independent of the initial action. This was 

confirmed for the approximate Hamiltonian and is also seen for a number of resonances 

of the exact classical dynamics.

3. The predicted start of ionisation for librational orbits is independent of the field envelope. 

This is consistent with the numerical calculations.

4. Not all resonances produce ionisation peaks. W hether they arise depends on the reso

nance island width, the initial action and the critical action for ionisation. A reasonable 

prediction of the occurrence of ionisation peaks was obtained for instantaneously applied 

fields. For slowly-switched fields the predictions are less accurate, due to the evolution 

of the initial phase curve during field switch-on.

For fields away from resonance, the electric action, / e, is approximately constant after 

the field has reached a constant amplitude. Using classical perturbation theory we have 

confirmed this, showing th a t Ie(t) makes small fluctuations about a constant value and th a t 

the fluctuations are of order 0 ( F fJiQ,o).

Any quantum  mechanical treatm ent of this problem is challenged by the high quantum 

numbers involved and the need to include interactions between bound states and the contin

uum. A three-dimensional approach using a basis of unperturbed states would probably be 

computationally intractable for the high quantum numbers considered here.

In this thesis we develop a quantal approximation by quantising the Hamiltonian for the 

one-dimensional classical approximation. The choice of basis states makes the quantum  ap

proximation computationally efficient and suitable for application to problems involving large 

quantum  numbers. The system is tri-diagonal and the computational effort for calculating 

the ionisation probability for a system in a single initial state increases approximately as n 1'7, 

where n  is the principal quantum number. In contrast, the computational effort required for
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calculations using the unperturbed states, even for a fixed principal quantum number and 

excluding the continuum interaction, increases as n 3.

The description obtained by quantising the classical approximation includes bound states 

only: ionisation must be included as an additional approximation. For the system described in 

action-angle variables, there is a potential barrier separating the bound states from the contin

uum; the height of this barrier reduces with increasing field strength. There are two principal 

mechanisms for ionisation. Electrons can be excited sufficiently to  reach energies ‘over the 

barrier’, or they can ionise by tunnelling through the potential barrier to the continuum.

Both types of ionisation are incorporated by the addition of complex energies. Tunnelling 

ionisation rates were obtained using semi-classical decay rates obtained for low scaled frequency 

microwave fields in the absence of a static field. The complex energy expressions are suitable 

for application over a range of field strengths. The semi-classical decay rates were calculated 

by assuming th a t the field is slowly changing and treating the barrier as fixed at th a t point in 

time. This assumption must become invalid a t some point as the frequency is increased, but 

the dynamics of tunnelling through time-varying barriers is not currently well understood. For 

the scaled frequencies we are concerned with Dando et al [21] has shown that, in the absence 

of static fields, the semi-classical decay rates provide a reasonable match to experiment.

There is limited published data available for the quantum  numbers and scaled frequencies 

of interest to  validate the quantal approximation. However, our calculations are consistent 

with the calculations of ionisation probabilities and ionisation times produced by Robicheaux 

et al [52], calculated using a split operator method with an absorbing barrier for n  =  39, 

Q0 = 0.0730 and =  0.14372.

We have made ionisation probability calculations for a wide range of quantum numbers 

and examined the ionisation contributions due to tunnelling. We have confirmed th a t as the 

principal quantum number is reduced, tunnelling becomes increasingly significant but th a t 

even for n =  100, tunnelling still is im portant for some field strengths.

By examining the ionisation for small resonance islands, we have shown th a t as the island 

size becomes smaller, tunnelling becomes im portant for increasingly high quantum numbers. 

For the island sizes tested, tunnelling has a significant effect on ionisation for up to  n  =  200 

(see for example, figures 6.13 and 6.14 on page 189).
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For the classical dynamics, after the initial field switch-on, there is a distinct separation 

between orbits th a t will ionise and those th a t remain bound. This means th a t after a certain 

time, classically ionisation effectively ceases. In contrast, we have shown numerically th a t this 

is not always the case for the quantal dynamics. For the low quantum  number, n = 10, for 

a field value off-resonance, we demonstrated in §3.4 (page 126) th a t the long-term ionisation 

rate is approximately exponentially decaying, suggesting th a t the rate is proportional to the 

population of remaining non-ionised states: effectively there is a continuous ionisation from 

these states to the continuum.

The difference between the classical and quantal ionisation mechanisms leads to  additional 

structure in plots of quantal ionisation probability against time, not seen in the classical dy

namics. Whereas the classical ionisation rises gradually and then ceases, the quantal ionisation 

shows a rise followed by additional successive steps in the ionisation probability, separated by 

times of lower ionisation rates — this is seen in figure 4.4 on page 136. The quantal system 

takes longer to reach its final ionisation probability than the corresponding classical system. 

The reasons for this are complicated, reflecting both the quantum nature of the ionisation 

mechanism and the effect of the classical separatrix on the quantal dynamics. For the classical 

approximation presented here, all classical orbits reaching sufficient energies ionise, so th a t all 

classical ionising orbits can undergo at most one librational or rotational period (depending 

on their proximity to the separatrix) before ionising. In contrast, the quantal ionisation mech

anism causes only the partial depopulation of states near the ionisation limit. The remaining 

populated states affect the ongoing evolution of the system and lead to further rises in the 

ionisation rate at later times. The time scales for these subsequent occurrences are consistent 

with the classical evolution of the system due to the resonance island.

Near resonance at low quantum  numbers, additional small peaks and troughs are seen in 

ionisation probability plots against field strength near resonance; these are not present in the 

classical dynamics. We have shown th a t they are associated with avoided crossings in the 

quasi-energies for the system, caused by the resonance. These avoided crossings increase in 

number as the quantum number is increased and for high quantum  numbers their combined 

effect on transitions between states becomes increasingly similar to the classical dynamics.

The classical and quantal methods developed are used to explain the detailed resonance
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behaviour seen for two neighbouring resonances, j  = 1 and j  = 2, for the scaled variables 

f l0 = 0.0528 and — 0.13. Classically, for the j  = 1 resonance, only librational orbits can 

ionise, whilst for j  =  2, both librational and rotational orbits contribute to the ionisation, 

leading to different ionisation behaviour. Classically, for short duration fields, two separated 

ionisation peaks are seen near the j  =  2 resonance. The cause of this is shown to be (a) the 

different time scales associated with the librational and rotational orbits and (b) the effect of 

the field switch on the initial evolution of the orbits. We have demonstrated, by comparison 

between classical and quantal ionisation probability plots, th a t the complex influence of the 

separatrix on the classical dynamics is echoed in the quantal dynamics, even for relatively low 

quantum numbers, such as n =  39.

The effects of the separatrix also arise in the variation of ionisation times with static field 

strength. Away from resonance, ionisation times are determined primarily by the time taken 

during the field switch-on, for the field to reach a critical ionisation limit determined by the 

initial substate, (7m, I e{0)). At resonance, the librational and rotational periods of ionising or

bits affected by the resonance island determine the ionisation times and lead to sharp peaks at 

the edges of the resonances for systems prepared in an initial substate, (7m, I e(0)). This is seen 

in figures 5.2 and 5.3 on page 149 for the exact and approximate classical dynamics. We have 

calculated classical expressions for the ionisation times and confirmed th a t these accurately 

capture the classical ionisation times numerically obtained for the Averaged Hamiltonian and 

th a t these also reflect the behaviour of the exact classical dynamics.

Richards [51] noted th a t in addition to the peaks at the edges of the resonance, an additional 

peak is present near the centre of the j  = 2 resonance for Qo =  0.0528 and =  0.13. This is 

also seen for the classical approximation and we have shown th a t in this case it is caused by 

the varying ionisation contributions from librational and rotational orbits at this resonance.

We have calculated resonance ionisation times using the quantum approximation. For 

n > 100 the ionisation times show all of the essential features seen for the classical dynamics. 

Even for n = 39, the ionisation time near the centre of a resonance shows similar features 

to the classical ionisation times, w ith longer ionisation times at the edge of the resonance. 

Hence the separatrix manifests itself even at the relatively low quantum  numbers accessible 

to experiment.
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In this thesis we have calculated the ionisation times for microcanonical distributions of 

initial states at resonance. These calculations allow comparison to be made with the calcu

lations of Robicheaux et al [52] as a test of our quantal approximation. These are also of 

interest as they should be measurable experimentally, although this would require significant 

modification to the current experiments. For microcanonical distributions of initial states, 

the averaging over multiple states removes the sharp peaks for single state ionisation times, 

but a clear peak in ionisation time is seen in the region of the resonance. Individual profiles 

of ionisation probability against time were also calculated for particular field values. These 

field values were chosen for comparison with similar calculations by Robicheaux et al [52] (in 

particular, their figure 2), who considered three field values, one at resonance and one on each 

side of the resonance. There is a good match in the general behaviour, with slower ionisation 

a t resonance, consistent with the explanations presented here.

For very slowly-switched fields, calculations using exact classical dynamics show th a t the 

slow motion of the separatrix tangles the phase curves and leads to  complex structures in 

plots of ionisation probability against static field strength. We have confirmed th a t the same 

effects are seen for the classical approximation, including the suppression of ionisation for 

some switch durations.

The effect of the separatrix on the quantum dynamics is expected to be more limited for 

smaller quantum numbers as the number of states near the separatrix will be small. However, 

for increasing quantum  number the separatrix is expected to influence the quantal behaviour. 

We have shown th a t for the high quantum numbers, n  =  200 and n  =  800, the quantal 

behaviour is very similar to the classical behaviour and th a t even for n — 100, the separatrix 

effects are clearly manifest in the quantal dynamics. For the smaller quantum number, n  =  

39, the ionisation behaviour is also shown to become increasingly complex with increasing 

switch time, although there is no obvious connection with the corresponding classical ionisation 

structures.

The results discussed in this thesis are theoretical predictions based upon a variety of 

approximations. Some of the early classical results of Richards [51], involving averages over 

substates, have been compared with unpublished experimental results; in general there is 

quite good agreement for the resonance positions and widths. However, there are currently
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no equivalent experimental results for atoms in specific substates or for principal quantum 

numbers, n < 30 or n > 50. One of the significant findings of the current calculations is 

th a t the envelope shape can have a measurable effect on the ionisation probability. Thus, one 

important future goal must be to obtain detailed experimental results for atoms in particular 

substates over a wide range of principal quantum  numbers and for various field envelopes, all 

other parameters being the same; the latter is a major challenge.

The theory relies on a number of approximations. Averaging methods reduce the effective 

number of degrees of freedom, but generally these are quite robust and usually only introduce 

quantitative errors. Similarly, the derivation of the quantal equations of motion should be 

robust for sufficiently large quantum numbers since the errors are 0 ( n -2 ): only quantitative 

errors are expected to be introduced by this approximation.

In both classical and quantal theories ionisation is introduced via crude approximations. 

For the classical approximation this ionisation mechanism can be checked by comparison with 

accurate numerical solutions of the equations of motion derived from the original Hamiltonian: 

it is found to be accurate for the low scaled frequencies examined here, where Qq < 0.1. 

In the quantum approximation it is necessary to introduce the additional, and sometimes 

dominant, mechanism of tunnelling through a moving barrier using time-dependent decay 

factors. This approximation needs a thorough theoretical investigation to  determine how its 

accuracy depends upon the scaled frequency and the principal quantum number.

The field configuration considered here conserves the electron angular momentum in the 

field direction; in other words, the quantum number, m,  is constant. For large |m| the electron 

does not orbit close to the nucleus, which suggests th a t effects similar to those described here 

might be seen for other Rydberg atoms.

For hydrogen it would be interesting to  investigate the effects of making the periodic 

component of the electric field elliptically polarised, which would increase the number of 

degrees of freedom of the system and hence the complexity of the dynamics.

In summary, I have derived an efficient quantal method for computing the ionisation proba

bility of an excited hydrogen atom in parallel static and microwave fields, which is valid at low 

scaled frequencies. The method can be applied to fields with slowly varying field envelopes. I 

have tested the approximation where possible and shown it to accurately describe the general



behaviour of the system. I have used it to explore the differences in behaviour of classical and 

quantal ionisation probabilities. I have shown th a t there are significant qualitative differences 

at low principal quantum number, n  «  10, but th a t as n increases these differences decrease, 

although there are still significant quantitative, but not qualitative, differences for n  as large 

as 100. Even in the cases where the classical separatrix dominates the classical structure, we 

see convergence between the classical and quantal probabilities as n  increases and even for 

n  =  39, which is accessible to experiment, the effect of the separatrix is seen in the quantal 

ionisation probabilities.



A ppendix A

Ionisation Dependence upon  

Step Decay Size

For the step decay function, equation (3.17), the magnitude D  determines the rate of decay 

for ionising states. It is clear th a t if D  is too small, ionisation will be suppressed because the 

decay rate will be too small. However, perhaps less intuitively, large values of D  also sup

press ionisation. To understand this behaviour, we start by writing the quantum mechanical 

equations of motion, (3.9)-(3.11), in the vector form

a =  — iE(t )a  — iG(t)a. (A .l)

where E(t)  is a diagonal m atrix with elements E(t)kk — n ER.{k, t) ~  ^Ts(/c, t ) / 2 and G(t) is an 

Hermitian matrix containing the off-diagonal coupling terms given by equation (3.19), page 

92.

If we restrict our attention to times for which A(t) = 1, then the energy matrix elements are 

time-independent. To simplify the analysis, it is assumed th a t the microwave field strength, 

F^, is sufficiently weak th a t only ionisation from upper k states need to  be considered. From 

equation (3.17) ionisation occurs for states k > kc. The rate of change of the ionisation
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probability can be seen to depend only on the population of the states k > kc, as

d |a |2 d + A . + +.
' =  — (a^a) =  a*a 4- a Ta
d£ dt

and from equations (A.l) and (3.16)

d |a 12
=  ia + ( £ f -  E )a  +  iaP (G (t)f -  G(t )) a

dt
( N  — k c ) / 2

— D  ^   ̂ |<2fcc -̂2m| > (A.2)
m =0

as G(t) is Hermitian and E kk is real for k < kc.

Hence, if the values D\a,k\2 are small for the ionising states k >  kc, then the overall 

ionisation rate will also be small, with the ionisation rate limited by

d|a|
<  D. (A.3)

dt

Returning to the equations of motion (A .l), we have

dfc +  iEkk^k =  ~i(G(t)k ,k-2 ak- 2  + G(t)k,k+2 ak+2 )- (A.4)

Limits can be derived for |afc| by treating the right hand side of this equation as a driving 

function, suggesting a solution of the form

a>k(t) =  Pk(t) exp ( - i E kkt ).

Substituting this into equation (A.4) gives the formal solution

Pk(t) = - i  (  [G{s)k,k-2^k-2{s)  +  G{s)k>k+2ak+2{s)\ elEkkS ds.
Jck

If we assume th a t the initial conditions are always of the form ak (0) =  1 for some k satisfying
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k < kc then fik (0 ) =  0 for all k > kc and it follows th a t

P M  = ~ i  f [G(s)k>k- 2 CLk-2 (s) +  G(s)k,k+2 ak+2 (s)] elEkkS ds V k > kc.
Jo

Hence

\Pk{t)\< f [|Gf(s)fc,/e-2 ||afe-2(s)| +  \G(s)kjk+2 \\ak+2 (s)\] eD s / 2 ds for k > kc.
Jo

From the original Hamiltonian it can be seen th a t the off-diagonal matrix elements Gij (t ) are 

bound such th a t |G ^(t) | < G ^  for some time-independent values, Gij. If the terms ak±2 (t) 

are also bound such th a t \ak±2 (t)\ < C, then

\Pk{t)\ < CFk [  eD s / 2  ds where Fk =  Gk t k - 2 + Gk}k+2,
Jo

which can be integrated to give

\Pk{t)\ < —j p 1  e D t / 2  ~  1 and hence \ak{t)\ < —J p 1  1 “  e~ D t / 2  •

We therefore have the limit

la fc(OI — k  ô r  a d  ^  ^ c ■ (A -5 )

The constraint |<2 fc| < 1  gives the limit C  =  1; applying this to equation (A.5) and defining T 

as the largest Fk for k > kc — 2 provides the limit

2T
|«fc(t)| <  —  for all k > kc. (A.6)

Condition (A.5) can be applied repeatedly to obtain limits for each of the terms, 

akc,akc+2, . . . ,  aw- Applying condition (A.5) to the states k > kc +  2 with the limit C  taken 

from equation (A.6) obtains the next inequality,

4 5 F 2

|ofc(*)| < -Q2 for ad k >  kc + 2.
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Repeating this process, we obtain the conditions

2T
D

m+1
for all k — kc + 2m, (A.7)

where m is zero or a positive integer. Substituting these limits into equation (A.2), provides 

the ionisation rate limit,

d | a | -  ^
m = 0

dt

( N —kc)/2 2 ^ r  \  2^71+2

(A.8)

and if D > 2T,

It follows that

d |a |
dt

<
4 J 2
~D~

- l
(A.9)

d |a |
dt

—> 0 for D -> oo.

The effect th a t extreme values of the decay constant has on the quantal dynamics is in 

contrast to the classical dynamics where the ionisation mechanism has no influence on the 

dynamical evolution of the system. For the quantal system we have shown th a t for D ^  oo, 

Gfc(t) —> 0 for k > kc. This changes the equations of motion (3.10)-(3.16) by removing the 

transition terms to any of the ionising states, effectively changing the upper limit from k — N  

to  k =  kc and the system is equivalent to a bound system with fewer states.



A ppendix B

Calculation of Tim e above 

Ionisation Limit

In §5, the theory is developed for the calculation of theoretical ionisation times using the 

approximate Hamiltonian given by equation (5.5). In this section further detail is provided in 

the calculation of Tc, the time within each period for which I e(t) > / c, where I c is the critical 

ionisation limit.

From equations (5.6-5.8) the time, Tc, can be calculated. There are four cases to consider, 

depending on whether the phase curve is librational or rotational and whether the critical 

ionisation limit is above or below the I e value for the separatrix nodes at 9 =  0 and 6  =  tt. 

In figures B.1-B.4 the four different cases are identified. In each figure a resonance island is 

shown with a number of phase curves shown and the ionising phase curve highlighted in bold, 

with a line connecting the separatrix nodes a t 6  =  0 and 6  =  7r and the intersection of the 

critical ionisation line with the phase curve marked as 6 C. The figures were created for the 

0 ( F 5) Dynamic Averaged Hamiltonian with Qq — 0.0528, F^ =  0.13, Fs =  0.03393 and a 

field envelope of 0-50-0; the value for the ionisation limit, I c, is chosen artificially to  exhibit 

the different cases.
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From equation (5.6), the time, t, shown in each figure is,

t =  2
ddt

tt/2 \ / a cos2 26ft + bcos26ft +  c

From the figures it can be seen that

Tr — <

t ,

T i - 1,

t ,

Tr -  t,

for case 1, 

for case 2, 

for case 3, 

for case 4,

(B .l)

where 7} and Tr are the librational and rotational time periods and are given by equations 

(5.7) and (5.8) respectively.

0.6

0.4

C

- 0 . 2 -

-0 .4 -

0.80.60 0.2 0.4
0/7T

Figure B .l  Case 1: L ibrational ionising m otion 

w ith critical ionisation lim it lying above th e  sep

a ra trix  nodes.

■ I i I i I i L i  i_______

0 0.2 0.4 0.6 0.8 1
9/Jt

Figure B.2 C ase 2: L ibrational ionising m otion 

w ith critical ionisation lim it lying below separa

trix  nodes.
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0.6

0.4

e

- 0.2

-0.4

0.2 0.4 0.6 0.80
8 /n

Figure B.3 Case 3: R o tational ionising m otion 

w ith critical ionisation lim it lying above separa

tr ix  nodes.

0.6

0.4

C

- 0.2

-0.4

0.4 0.6 0.80 0.2
0/7t

Figure B.4 Case 4: R otational ionising m otion 

w ith critical ionisation lim it lying below separa

trix  nodes.
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