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ABBREVIATIONS

The standard abbreviations used in this thesis follow IUPAC rules. All the abbreviations 

are defined also in the text when they are introduced for the first time.

aa Amino acid

bp Base pairs

cDNA Complementary DNA

CERES Composite Exonic Regulatory Element o f Splicing

CFTR Cystic Fibrosis Transmembrane conductance Regulator

CF Cystic Fibrosis

DAZAP1 Deleted in Azospermia associated Protein 1

ddH20 Double-distilled water

DNA Deoxyribonucleic acid

dNTPs Deoxynucleoside triphosphate (A, C, G and T)

DTT Dithiothreitol

EDTA Ethylenediamine tetra-acetic acid

ESE Exonic Splicing Enhancer

ESS Exonic Splicing Silencer

hnRNP Heterogenous ribonuclear protein

IPTG Isopropyl-P-d-thiogalactopyranoside

ISE Intronic Splicing Enhancer

ISS Intronic Splicing Silencer

kb Kilobase

kD Kilodalton

N Nucleotide (A or C or G or T)

NE Nuclear Extract

NF1 Neurofibromatosis type I gene
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NMD Nonsense-mediated decay

nt Nucleotides

PBS Phosphate buffer saline

PBS Phosphate buffer saline

PCR Polymerase Chain Reaction

Pu Purine (G or A)

Py Pyrimidine (T or C)

RNA Ribonucleic acid

RNA Pol II RNA polymerase II

RRM RNA Recognition M otif

RT Room Temperature

snRNA Small nuclear RNA

snRNP Small nuclear ribonucleoprotein particles

SRE Splicing Regulatory Elements

SR Arginine-serine rich protein

ss Splice site

SDS N-lauroylsarcosine sodium salt

SELEX Systematic Evolution o f Ligands by Exponential Enrichment

SMN Survival of Motor Neuron

TBE Tris-borate-EDTA (buffer)

U2AF U2 snRNP Auxiliary Factor
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ABSTRACT

Genotype screening in human disease frequently results in the identification of 

exon/intron sequence variations whose direct connection with occurrence of disease is often 

unclear, especially if they occur within exons but do not alter the amino acid coding 

sequence. However, it is now clear that many of these seemingly harmless changes very 

often can exert flaws in the splicing process by affecting splicing regulatory elements 

(SREs). Usually, SREs are classified based on their mode o f action with regards to exon 

inclusion, either positive (enhancer) or negative (silencer). In addition to these clear cut 

definitions, using systematic site directed mutagenesis experiments in previous analyses 

from our lab we have identified a novel type of splicing controlling element that we called 

CERES (for Composite Exonic Regulatory Element of Splicing). The distinguishing feature 

of CERES elements resides in the fact that they represent an extreme physical overlap of 

enhancer and silencer sequence. As a result, the functional effect at the level of exon 

inclusion/skipping of a single nucleotide change in a CERES element is hard to predict.

In this study I have addressed both issues in the context o f the functional CERES2 

element in CFTR exon 12. The result show that CERES2 can bind to a number of SR 

(SF2/ASF and SRp55) and hnRNP (A l, A2, C2, U, DAZAP1) factors in a small stretch of 

RNA in close proximity to each other. In particular, one o f the disease causing mutations, 

G48C and a synonymous substitution next to it (A49G) showed reduced binding with 

SF2/ASF, whereas another natural mutation, A51T showed that the SF2/ASF interaction 

was increased compared to the wild type exon 12 sequences. Functional assays confirmed 

the potential regulatory role of the SF2/ASF and hnRNP A l interactions.

Two synonymous mouse substitutions (T40C and C52T) near the CERES2 region

were observed to cause skipping in human exon 12 but had no effect if the exon was

truncated in a reduced context. Restoration of the truncated sequences restored skipping of

13



the exon. However, if  these flanking sequences were replaced with mouse sequences then 

no skipping occurred. This observation suggested that the human exon 12 sequences have 

ESS regions in both flanks o f the exon whereas in the mouse sequence the flanking exon 

sequences contain ESE elements. Affinity purification of these flanking sequence showed 

that both of the mouse flanking sequences bind to SR proteins (SF/ASF, SRp 75, SRp 55 

and SRp 40) but not in human. The consequences of this situation were then checked at the 

evolutionary level by comparing the distribution of SREs in different species. Altogether, 

our results suggest that in several species other than human the entire sequence of CFTR 

exon 12 is involved in its definition.

14



1 Introduction

1.1 Overview of pre-m RNA splicing process.

Converting the DNA sequence into the amino acid sequence is a fundamental process in 

living organisms. Prior to that, DNA sequences have to be transcribed in pre-mRNAs, 

processed, and finally translated according to the coding sequence. Therefore, in order to 

generate a flawless mRNA, suitable to be transported into the cytoplasm and used for 

protein synthesis, the pre-mRNA processing is an essential step for gene expression.

In higher eukaryotes, the mRNA that enters translation is much shorter than the one 

transcribed. Apart from a few rarities, all protein-coding genes in higher eukaryotes have 

relatively short coding sequences interrupted by longer non-coding sequences. The term 

Intron (mtergenic regions) and Exons (expressed regions) were first employed by Gilbert in 

1978. After the transcription, the introns are censored out of the precursor-messenger RNA 

(pre-mRNA) by a process called splicing. Splicing reaction is an essential RNA processing 

event in eukaryotes. This process is structurally and functionally associated with the 

nucleus and occurs in a complex called the spliceosome (Maniatis and Reed, 2002).

The description o f the event itself first came from two independent groups led by Philip 

Sharp and Richard Roberts respectively attempting to characterize the individual gene 

transcripts of adenovirus 2, in 1977. This finding came out once they incubated the hexon 

polypeptide mRNA (a very abundant component of the viral capside) along with the viral 

DNA and by electron microscopy analysis observed that the RNA sequence, which was 

assumed to have the same base sequence of the DNA from which it was transcribed, had 

not. In particular, they observed stretches of DNA sequences that were not part of the viral 

RNA. These sequences were interspaced between coding sequences therefore interrupting 

the code. On this basis, they suggested the term RNA splicing to describe this process of 

intron removal and subsequent joining together o f the exons (Berget et al., 1977; Chow et 

al., 1977).

15



Historically, the late phase of adenovirus infection was the earliest model used to study 

the mRNA splicing. In this way the presence o f introns was first described in the mRNA 

segment of adenovirus, coding for hexon polypeptide, the major virion structural protein 

(Berget et al., 1977; Chow et al., 1977). Subsequent to the characterization of RNA splicing 

process in viruses, the presence of introns was also reported as a general feature of 

eukaryotic genes. Jeffreys and Flavell in fact described the presence of a “large insert” in 

the coding sequence o f rabbit beta-globin gene in 1977 (Jeffreys and Flavell, 1977). Soon 

after, Chambon and colleagues noticed that the chicken ovalbumin gene contains seven 

coding sequences (exons) are interrupted by six intervening sequences (introns) and 

identified the precise exon-intron junctions in the ovalbumin pre-mRNA (Breathnach et al., 

1978). Moreover, they found that the sequences at exon-intron boundaries carry common 

features, probably with the function of unique excision-ligation common points to all 

boundaries (Breathnach et al., 1978). Interestingly, these consensus sequences were also 

present in vertebrate, plant and yeast suggesting that the splicing process is evolutionarily 

conserved (Padgett et al., 1986).

1.2 Chemistry behind the Splicing reaction.

Splicing reaction of the nascent RNA takes place within a large macromolecular 

complex approximately 60S in size and commonly referred to as the “spliceosome”. In 

order to remove the intron, several small RNAs and a large number of proteins assemble 

within the spliceosome. However, the reaction itself is quite simple and involves a two-step 

trans-esterification reaction involving two sequential nucleophilic attacks on 

phosphodiester bonds at the splice junctions, the concomitant formation of the spliced 

mRNA, and release of the excised intron(Lamond, 1993; Moore and Sharp, 1993). 

Conserved motifs in the nucleotide sequences, at the intron-exon boundaries, act as 

essential splicing signals in the chemical part of the splicing reaction. A “GU” at the exon- 

intron junction defines the 5’splice site (5’ss) and an “AG” at the other intron-exon junction



together with the polypyrimidine tract and the ‘A’ nucleotide at the branch point identify 

the 3’ splice site (3’ss).

Intron

5 —

0 = P —O O — p = 0

—3*

I First
transesterification

O ■ 3' oxygen of 
exon 1

0  = 2' oxygen of 
branch point A

■ T  oxygen of 
intron

0 = P

o- 3’

o-
3' 5*
I Second
transesterification

0

5' O a
I r A  o=p—o \
I \ 3 '  

O" H
Excised lariat 

intron

Spliced exons

F ig u re l.l:

Schematic representation of the RNA splicing reaction. Pink and red boxes represent the 

exons. Light blue line represents the intron. A is the universally conserved adenine in the 

branch site. In the first reaction, the ester bond between the 5' phosphorous of the intron 

and the 3' oxygen of exon 1 is exchanged for an ester bond with the 2' oxygen (dark blue) 

of the branch-site A residue. In the second reaction, the ester bond between the 5' 

phosphorous of exon 2 and the 3' oxygen (light blue) of the intron is exchanged for an ester 

bond with the 3' oxygen of exon 1, releasing the intron as a lariat structure and joining the 

two exons. Curved arrows show where the activated hydroxyl oxygen reacts with 

phosphorous atoms. (Figure taken from the book Molecular cell biology (Lodish et al., 

2000).
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In the first step of primary RNA transcript splicing, the RNA forms a lariat 

structure, then the 2' -O H  on the branch point A usually located 20-40 nucleotide upstream 

of the 3’ splice site attacks the phosphoryl group of the G in the 5' splice site. This leads to 

the breaking of the phosphodiester bond between the 3' end o f the exon and the 5' end of 

the intron and the formation o f a new phosphodiester bond between the branch point A and 

the 5' end o f the intron, which are the intermediates of the splicing reaction. More precisely, 

in the branch point the 5' terminal phosphate is esterifled to the ribose 2'OH group and 

disbranches a free exon. The second trans-esterification step involves cleavage of the 3' 

splice site, ligation of the two exons and release of the intron (in the lariat form) 

(Figure 1.1). A recent study has experimentally proved that under appropriate conditions 

both catalytic steps of the splicing reaction can be efficiently reversed (Tseng and Cheng, 

2008).

1.3 The spliceosome.

The spliceosome is a dynamic complex that is composed o f several small nuclear 

ribonucleoproteins (snRNPs) and a large number o f auxiliary proteins or non-snRNP 

splicing factors (Jurica and Moore, 2003; Rappsilber et al., 2002). The UsnRNPs are known 

as snRNAs-Ul, U2, U4, U5, and U6 and each of them functions as a small stable RNA 

bound by several proteins, plus numerous other less stably-associated splicing factors 

(Nielsen, 2003). Mass-spectrometry analysis of purified spliceosomes has detected 

hundreds o f polypeptides and five uridine-rich small ribonucleoprotein particles 

(UsnRNPs) (U l, U2, U5, and U4/U6) each of which contains the corresponding snRNAs 

and a set o f specific and common proteins (Staley and Guthrie, 1998; Will, 1997; Will and 

Luhrmann, 1997). The spliceosome acts through multiple RNA-RNA, RNA-protein and 

protein-protein interactions to precisely excise introns and join exons in the correct order 

((Madhani and Guthrie, 1992; Nilsen, 1994). The spliceosomal snRNPs (U l, U2, U4/6 and 

U5) consists of one (U l, U2 and U5) or two (U4 and U6) snRNAs associated with a set of
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seven Sm proteins (B/B', D l, D2, D3, E, F and G) and several specific factors (Will and 

Luhrmann, 2001). The U4 and U6 snRNPs are generally found as combined U4/U6 

particle. The sm proteins bind to a conserved sequence called the "Sm site" which is present 

in all snRNAs except U6. The U6 snRNP rather contains a set of Sm-like (Lsm) proteins. 

Some of the proteins in the snRNPs may be directly involved in splicing whereas others 

may be essential in structure formation or just for assembly or interactions between the 

snRNP particles. The Survival Motor Neuron (SMN) protein acts as a key protein for the 

assembly of snRNPs (Pellizzoni, 2007).

In the spliceosome assembly process of higher eukaryotes, exons are usually 

assumed to be defined first because of the fact that the introns are large in size (Sterner et 

al., 1996). Spliceosomal assembly on exons starts with the recognition of a tripartite signal 

(5’, 3’ and branch point) recognition in an ATP independent manner, where the Ul snRNP 

interacts with the 5’, U2AF to the terminal AG of the 3’ splice site as well as the 

polypyrimidine tract and finally the SF1 at the branch point (Berglund et al., 1997; Nelson 

and Green, 1989; Zamore and Green, 1989). This complex is often referred as E (Early) 

complex or, sometimes, the commitment complex. However, in brief, the initial signal of 

5’ss definition from the Ul snRNA is mediated by RNA-RNA, as well as by protein- 

protein and protein-pre-mRNA interaction involving U1-70K and Ul-C proteins (Will et 

al., 1996). Members of the SR protein family stabilize this interaction in higher eukaryotes. 

Another important event of the E complex, definition of the 3’ss, the AG at intron/exon 

junction together with the adjacent polypyrimydine tract is identified through interactions 

with the dimeric U2 Auxiliary Factor (U2AF). The subunit U2AF65 recognizes the 

polypyrimidine tract (Valcarcel et al., 1996a) and the AG dinucleotide at the 3’ss interacts 

with the U2AF35 subunit (Wu et al., 1999). The branch point, usually located 20-40 

nucleotides (nt) upstream the 3’ss within the intron, is recognized by the branch point 

binding protein (BBP/SF1) (Berglund et al., 1997).
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Figurel.2 : Spliceosome assembly. The spliceosome assembles onto the pre-mRNA in a 

stepwise manner. The E complex contains Ul snRNP bound to the 5’ splice site, SF1 

bound to the branch point, and U2AF65 and U2AF35 bound to the pyrimidine tract and 3’ 

splice site AG, respectively. In the A complex, SF1 is replaced by U2 snRNP at the branch 

point. The U4/U6/U5 tri-snRNP then enters to form the B complex. Once both exon and 

introns are defined then finally, a rearrangement occurs to form the catalytically active C 

complex, in which U2 and U6 interact, and U6 replaces Ul at the 5’ splice site. Figure 

adopted from (Chen and Manley, 2009).

The formation of the A complex is characterized by the ATP-dependent recruitment 

of the U2 snRNP to the branch point sequence through replacement o f the BBP/SF1 factor. 

This U2-branch site binding is mediated by U2 snRNA base pairing with the BPS which is
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further stabilized through SF3a and SF3b subunits (Gozani et al., 1996) and also by the 

arginine-serine-rich domain of the U2AF65 (Valcarcel et al., 1996b). However, U2 snRNP 

is also identified as a component o f a purified, functional E complex (Hong et al., 1997). 

The U2 snRNP seems to bind loosely to the pre-mRNA in the E complex via the integral 

U2-snRNP-associated protein SF3b, and then through an ATP-dependent process this leads 

to stable binding to the branch point, replacing SF1 (Das et al., 2000).Then, the ATP- 

dependent addition of U4/U6*U5 snRNPs in which the U4 and U6 snRNAs are base paired 

to the spliceosomal complex characterizes the transition from the A to B complex. 

However, recent studies reported that the tri-snRNPs are able to interact with the 5’ss and 

the upstream 5’ exon at earlier step of spliceosome assembly (Maroney et al., 2000). 

Although B complex contains all o f the snRNPs components required for splicing, it lacks a 

catalytic center. In order to activate the spliceosome, the complex B undergoes marked 

RNA-RNA rearrangements that involves the displacement o f U l by U6 snRNP via base 

pairing at the 5’ss through its highly conserved AC AG AG motif. At the initial step o f the 

reaction the U4 snRNA interacts with the U6 snRNA tightly and more reluctantly with the 

U5 snRNA to form tri-snRNP. As the reaction proceeds further the tri-snRNP undergoes a 

wide structural changes, the U6 snRNA releases the U4 snRNA and interacts with the U2 

snRNA. The U6 and U2 snRNA respectively binds with 5’ ss and branch point and forms a 

lariat for the first catalytic step (Boehringer et al., 2004; Reed, 2000). All these 

rearrangements contribute to the fidelity o f 5’ss recognition and support the contact with 

the branch point generating the activated B complex (Turner et al., 2004). The formation of 

B complex promotes towards catalytic step of splicing in order to generate the free 5’ exon 

and the lariat-3’ exon intermediates. This step is followed by the formation of the C 

complex, in which the second catalytic step o f splicing reaction takes place. The U5 

snRNA, together with the U2 and U6 snRNAs, is involved in aligning the exons for the 

second catalytic step through a highly conserved stem loop (O'Keefe et al., 1996). In 

addition the presence of a large highly conserved component of the U5 snRNP associated
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protein, the Prp8 factor seems to stabilise these interactions. Prp8 had previously been 

shown to crosslink to both the 5'ss and 3'ss, as well as to the exons flanking these two 

splice sites (Umen and Guthrie, 1995). In addition, Collins and Guthrie have reported that a 

specific region o f this factor affects a tertiary interaction between both the 5’ss and 3’ss and 

U6 snRNA (Collins and Guthrie, 1999).

1.4 Alternative splicing.

Alternative splicing is a major mechanism for gene regulation as well as proteomic 

diversity in all metazoan organisms (Maniatis and Tasic, 2002). Initially, in humans, 

splicing was thought to be only a minor processing pathway affecting about 5% of all genes 

(Sharp, 1994). At the present time, it has been estimated that about 95% of the human 

genes show alternative splicing and about 80% of these produce different protein sequences 

in a significant amount (Modrek and Lee, 2002; Wahl et al., 2009). In a typical multi-exon 

mRNA, because of alternative splicing decisions the splicing pattern can be altered in many 

ways, as the exons undergoing this process can be either spliced into the mature mRNA or 

skipped. Alternatively, introns that are normally excised can be retained in the mRNA or 

the position o f either 5' or 3' splice sites can be shifted to make exons longer/shorter. A 

regulated exon that is sometimes included and sometimes excluded from the mRNA is 

usually referred to as a "cassette" exon. In some cases, multiple cassette exons are mutually 

exclusive producing mRNAs that always include one of few possible exon choices. All 

these individual patterns can be combined in a single transcription unit to produce a 

complex array o f splice isoforms ((Black, 2003);(Smith and Valcarcel, 2000).

One o f the most striking examples of alternative splicing complexity to this date is 

represented by the Drosophila Down Syndrome Cell Adhesion Molecule (DSCAM) that 

can potentially generate more than 38,000 different isoforms by alternative splicing 

(Schmucker et al., 2000). In humans, genomic analyses indicate that the brain has the 

highest frequency of alternative splicing, hinting at the correlation between alternative
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splicing itself and complexity of brain function (Yeo et al., 2004). Interestingly, recent deep 

sequencing analysis shows that in brain alternative splicing event even differ within 

individuals (Wang et al., 2008).

The mechanisms that determine which splice sites are utilized and how this 

selection is regulated in different cell types or developmental stages have been heavily 

studied in recent years although it is clear that further studies will be required to fully 

understand these processes. In particular, much effort has been made in identifying the 

“combinatorial code” composed by cis-acting elements and trans-acting factors involved in 

the regulation o f alternative splicing. However, high-throughput technologies like large- 

scale sequencing and microarrays analysis are providing opportunities to address also key 

questions regarding how this process is regulated at the global level (Ben-Dov et al., 2008).
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Figurel.3: Patterns of alternative splicing.

Alternative splicing generates different segments within mRNAs. Alternative promoters: 

selection of one of multiple first exons results in variability at the 5’ end of the mRNA. Red 

indicates variable regions within the mRNA and encoded protein (7). Alternative splicing 

of internal exons: the alternative splicing patterns for internal exons include the cassette 

exon (2), alternative 5’ splice sites (2), alternative 3’ splice sites (4), intron retention (5), 

and mutually exclusive exons (<5). Alternative terminal exons: selection of one of multiple 

terminal exons results from a competition between cleavage at the upstream poly(A) site or 

splicing to the downstream 3’ splice site (7). There are also models of competition between 

a 5’ splice site and a poly (A) site within an upstream terminal exon (8). Inconsistency at 

the 3’ end of the mRNA produces either different C termini or mRNAs with different 3’- 

UTRs. Figure adapted from Faustino and Cooper (Faustino and Cooper, 2003).
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1.5 Exon and intron architecture pose challenges to splicing.

Introns constitute a major fraction of the noncoding DNA, representing over 40% of 

mammalian genomes (Fedorova and Pyle, 2005). The architecture of exon and intron may 

be different across eukaryotic organisms. Short introns and long exons are typical of 

invertebrates while short exons and long introns are common in vertebrates. An standard 

vertebrate gene consists of multiple small exons spliced by introns that are 10 or 100 times 

longer (Hawkins, 1988). In all cases, however, the DNA of introns and exons represents an 

absolute minority in the genome composition. In humans, for example, exons account for 

less than the 4% of the genetic material per chromosome, whilst intronic sequences range 

from the 12% of chromosome Y to the 51.9% of chromosome 22. More than 90% of 

human genes contain multiple exons. The gene containing the highest number of exons is 

the TTN gene, coding for a sarcomeric structural protein named Titin, with 312 exons 

(Sakharkar et al., 2004).
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Figurel.4: D istribution of the num ber of exons per gene in the human genome.

The graph shows the number of genes (y) that contain a given number of exons (x). The 

number above the bars represents the percentage o f genes having a given number of exons. 

(Figure taken from Sakharkar et al.(Sakharkar et ah, 2005).
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In humans, 80% of the exons are shorter than 200 nucleotides, the average size 

being 130 nucleotides. Exons longer than 300 or shorter than 50 seem not to be favoured by 

the splicing machinery (Sakharkar et al., 2004). A probable reason might be that very short 

exons are not efficiently recognized by the spliceosome due to physical obstruction 

between constitutive splicing factors whilst in long exons exon-definiton mechanisms may 

be excessively inefficient. In fact, in vertebrates, exons shorter than 50 nucleotides account 

for only 4% of the total exons (Dominski and Kole, 1991) and very rarely, and mostly in 

lower eukaryotes, exon length can exceed 600 base pairs (Hawkins, 1988).
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Figurel.5: D istribution of intron size in the hum an genome.

Almost 40% of human introns are shorter than 1 kilobase, and approximately 10% are 

longer than 10 kilobases. Just as a curiosity, the longest human intron spans almost 500 

kilobases. Figure taken from Sakharkar et al. (Sakharkar et al., 2005).

The same does not hold true for introns whose length distribution is much wider.

Introns can be as short as 20 bp (even if these short introns are less than 0.01% of the total)

or can be very long, and more than 10% of them are longer than 11000 bp (Sakharkar et al.,

2004). The enormous size o f intron in humans and other vertebrates creates several

drawbacks, such as: 1) considerable waste of energy during gene expression which is
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“unwisely” spent on polymerizing extra-long intronic segments of pre-mRNA molecules; 

2) delay in obtaining protein products (on average it takes about 45 min for RNA 

polymerase II to transcribe a 100,000 bp intron); 3) potential errors in normal splicing, 

since long introns contain numerous false splicing sites (so-called pseudo-exons) (Sun and 

Chasin, 2000). From the splicing point of view, the enormous size of the introns also pose a 

challenge for not only the correct recognition and pairing of the splice sites within a 

multitude of similar sequences but also in the positioning of these splice sites (which may 

lie tens of thousands o f nucleotides apart) within the atomic distance that allows the trans- 

esterification reactions to proceed. Moreover, it is important to note that the sequences that 

match the 5’ss and 3’ss are very common within intron sequences and sometimes even 

stronger than the real splice sites. Given the huge variability in size, discrimination between 

exon and intron sequences is a complex task for the splicing machinery. Even more so since 

splicing is directed by the presence of mostly degenerate consensus sequences at the 

exon/intron and intron/exon junctions. In humans, an intron is generally characterized by 

mostly degenerate signals i.e. a GU di-nucleotide that marks the exon/intron junction at the 

5’ end of the intron (5’ splice site or 5’ ss). At the other end of the intron, the 3’ splice site 

region comprises of three conserved elements: an A at the branch point site (BPS) located 

around 20-50 nucleotides upstream of the 3’ ss, a poly-pyrimidine (pY) tract between the 

BPS and the 3’ss, and a terminal AG at the very 3’ end of the intron (3’splice site or 3’ ss).
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Figurel.6: Schematic representation of exon-intron boundaries.

The two exons are represented by the red and pink boxes respectively. Between them are 

reported the consensus sequences present within an intron. The arrows indicate the position 

of the 5’ (GU) and 3’ (AG) splice site and the branch point (A). The polypyrimidine tract, 

rich in pyrimidines, is highlighted by a blue rectangle. There are several conserved 

nucleotides near the sequences surrounding the intron-exon junctions that act as essential 

splicing signals. The frequency of each nucleotide in an alignment of conserved sequences 

from 1,683 human introns is indicated below. N means any base. To note only the 

universally conserved nucleotides are the dinucleotide cores of the 5’ and 3’ splice together 

with the branch point (A) showed 100% of frequency of occurrence. Figure adapted from 

Lodish (Lodish, 2000)

Although the above mentioned splicing signals at the boundaries are necessary, they 

are often also insufficient to define the correct splice sites due to their degeneracy (Fig. 

1.6). Many matches to each consensus are in fact present along all pre-mRNAs but the vast 

majority of these sequences, known as pseudosplice sites are never selected for splicing. 

For example, a computer search for potential splice sites in the 42kb human hprt 

(hypoxantine phospho-ribose transferase) gene, composed of nine exons and eight introns, 

identifies the eight real 5’ splice sites but also found over 100 5’ pseudosplice sites many of 

which had scores higher than the lowest scoring real internal 5’ splice site. The incapability 

of these few nucleotides to define splice sites was even more evident for the 3’ss where 683 

pseudo-sites were found to have better scores than the worst scoring real site (Sun and 

Chasin, 2000).

Nonetheless, it is a fact that the splicing machinery is able to accurately recognise 

the real 5’ and 3’ splice sites and thereby neglect the ‘pseudo’ ones. It is now clear that the 

initial splice-site recognition across the exon is also the result of a combinatorial regulatory
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mechanism (Smith and Valcarcel, 2000) that uses additional controlling elements beside the 

splice sites, which can act by increasing or decreasing exon recognition. These cis- 

regulatory elements are, respectively, named exonic or intronic splicing enhancer (ESE, 

ISE) or silencer (ESS, ISS).

1.6 Cis Regulatory elements.

As previously explained, discrimination between exon and intron sequences is a 

complex task for the splicing machinery. Several cis-acting elements, therefore, participate 

in this process (schematically depicted in Fig. 1.7).

<£> © O

ISE , S S ^

Figurel.7.: Regulatory elements in pre-mRNA splicing

The pale blue boxes correspond to exons, separated by intervening sequences (introns) 

shown as lines. Conserved, canonical splice signals GU//AG are present at the 5’ and 3’ 

ends of the exons respectively. These bind the U1 RNA by complementarity and the 

U2AF35 protein, respectively. If mutations are found in these areas, then the effect on 

splicing can be supposed to be aberrant. The effect of mutations on the other classical 

splicing signals upstream of the 3’ splice site, the polypyrimidine tract and the branch 

point, is less certain, but many examples exist where these can cause incorrect splicing. The 

trans-acting factors that bind to these regions are U2AF35/65 and mBBP. Additional 

enhancer and silencer elements in the exons (ESE; ESS) and/or introns (ISE; ISS) allow the 

correct splice sites to be identified out of many cryptic splice sites that have identical signal 

sequences. Trans-acting splicing factors can bind with enhancers and silencers and can be 

subdivided into two major groups: members of the serine arginine (SR) family of proteins 

and heterogeneous nuclear ribonucleoproteins (hnRNPs). In general, but not exclusively, 

SR protein interaction at ESE facilitates exon definition whereas hnRNPs are inhibitory. 

Mutations in any of these sequences may have an effect on the splicing process due to 

disruption of the binding of these factors or indeed the creation of a binding site for them. 

Figure taken from (Baralle and Baralle, 2005).
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1.7 The 5’ splice site (5’ss).

Site directed mutagenesis suggests that the 5’ splice site is moderately conserved 

over nine nucleotides, both upstream and downstream of the exon-intron junction (Hitomi 

et ah, 1998; Wassarman and Steitz, 1992). This 5’ss motif in higher eukaryotes consists of 

nucleotides MAG/GURAGU (M indicates A or C, R indicates purines and the slash the 

exon-intron boundary), spanning from position -3 to +6 (Wieringa et al., 1983; Shapiro and 

Senapathy, 1987). In general, substitution of one of the first two bases (GU) or the last two 

(AG) of an intron completely abrogates splicing (Aebi et al., 1986). However, in the 

context of multiple introns and a complex environment, mutations at these positions can 

give different results: for example, a +1G—*A mutation causes skipping of the associated 

exon, whilst a +2T-+A mutation (generating a GA splice site) can lead to the accumulation 

of lariat-exon intermediate both in vitro and in vivo (Aebi et al., 1987). This suggests that 

+2 mutations are less detrimental than +1 mutation for the initial recognition of the splice 

site by U 1 snRNP. The notion of splice site strength was first introduced and evaluated by 

Eperon and colleagues who designed a system for assessing 5’ splice site strength in the (3- 

globin gene. In their experiments, a Bam HI site, 25 nucleotides upstream of a 

constitutively used 5’ ss was used to insert oligos with various 5’ splice sites that were 

tested for their ability to attract splicing away from the standard site (Eperon et al., 1986). 

Additionally, the choice of the 5’ ss is also dependent on the factors that interact in the 

exonic sequence. For example, SF2/ASF can increase the recruitment of U1 snRNA to 5’ 

ss, whereas the hnRNP Al sterically blocks the occupancy of the U1 snRNA to the 5’ss 

(Eperon et al., 2000). Several studies have shown that the introduction of mutations that 

improve the match o f weak splice sites to the consensus can lead to the constitutive 

recognition of alternatively spliced exons (Del Gatto et al., 1997; Huh and Hynes, 1993; 

Muro et al., 1998).
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During E complex assembly, the 5’ss involves a nearly perfect Watson-Crick base 

pairing with the U1 snRNA (Horowitz and Krainer, 1994). Despite the absolute need for 

the base pairing between U1 snRNA and the 5’ss for splicing, in vitro evidences of U1 

independent U2 type splicing have been recently reported in intron 9 of human FIT gene 

(Fukumura et al., 2009) and in NF-1 gene intron 29 (Raponi et al., 2009). Indeed, even in 

the absence of the 5’ tail of U1 snRNA, the UlsnRNP particle is capable of selecting a 5’ss 

through the U 1 -C subunit. Moreover, in case of Human FGFR exon 10, the used splice site 

was found to be different from the splice site selected by UlsnRNP. The Human FGFR 

exon 10 has two distinct splice sites with a distance o f six nucleotides. One of the splice 

site provided the signal for presence of an exon by U 1 snRNP interaction but the used site 

was selected by U6snRNP, suggesting to the fact that UlsnRNP interaction to the splice 

site is not always mandatory (Brackenridge et al., 2003). Finally, the observation that over

expression of SR proteins could compensate for the absence of UlsnRNP in vitro (Tam and 

Steitz, 1994); (Crispino et al., 1994) provides support to the view that the splicing process 

can be precise even in the absence of UlsnRNP. Thus, the 5’ splice site is not completely 

an U 1 snRNP dependent cis element, it can define the exon with the support of other factor 

involved in splicing (Zhang et al., 2008).

1.8 The 3’ splice site (3’ss).

The 3’ splice site definition comes from two distinct intronic sequence (the branch 

point and the polypyrimidine tract) as well as from a terminal AG (Reed, 1989). These 

elements on the whole contribute to 3 ’ splice site recognition.

1.8.1 The branch site.

In lower eukaryotes, such as in yeast the branch point is highly conserved, which is 

UACUAAC. While the branch point in human introns is highly degenerated. Recent 

characterization o f 20 house keeping genes in human shows that the branch point sequence 

is vUnAy (y= pyrimidine and n=any) and they are mapped 4-24 nucleotide downstream of
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the poly pyrimidine tract (Gao et al., 2008). However, in the case of rat a-tropomyosin 

gene intron 2, the branch point is located 172 nt upstream from the 3’ss and nevertheless is 

essential for the regulation of alternative splicing (Smith and Nadal-Ginard, 1989).The 

proximity of this branch point to the 5’ splice site o f exon 2 causes a mutually exclusive 

regulation of exons 2 and 3, probably because the splicing factors are unable to bind 

productively to the two elements simultaneously and form active spliceosomes (Smith and 

Nadal-Ginard, 1989). The branch point is recognised by the SF1 factor during the early 

spliceosome assembly. Although the sequence specificity o f SF1 is low, it can discriminate 

between sequences with general consensus branch site and sequences missing the highly 

conserved adenosine (Berglund et al., 1997). Possibly this is why the mutation in the 

branch point is not always deleterious. Once the “A “ in the branch point is mutated it 

compensates with nearby “A” to promote splicing (Ruskin et al., 1985).

1.8.2 The polypyrimidine tract.

The polypyrimidine tract is a stretch of 5-20 pyrimidines, located between the 

branch site and the terminal AG at the intron/exon junction. The proximity o f the 

polypyrimidine tract to the 3’ss is important when the pyrimidine length is limiting. 

Shortening the number of continuous uridines requires the localization of these uridines 

immediately adjacent to the 3’ss AG. Vice versa, a polypyrimidine tract containing high 

number of uridines is a competitive pyrimidine stretch regardless of the distance between 

the branch point and polypyrimidine tract itself (Coolidge et al., 1997). The polypyrimidine 

tract binds to several proteins, both o f the constitutive spliceosomal machinery like the 65- 

kD subunit of U2AF (U2AF65) but also repressors of alternative splicing, for example the 

polypyrimidine tract binding protein (PTB) (Gooding et al., 1998);(Wagner and Garcia- 

Bianco, 2001). Normally, U2AF65 binds the polypyrimidine tract during the formation of 

the ATP independent early (E), or commitment, spliceosome complex (Kielkopf et al., 

2004; Zamore et al., 1992). Conversely, the binding of PTB to the CU- rich elements in the 

polypyrimidine tract o f a 3’ss can inhibit splicing by directly occluding the binding of
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U2AF65 (Sauliere et al., 2006). Recently, PUF60 has been implicated in 3’ splice site 

recognition that can function either cooperatively with U2AF65 or without it, and might 

help to recruit or stabilize U2snRNP assembly on to the pre-mRNA (Hastings et al., 2007).

1.8.3 The terminal A G  dinucleotide.

The terminal AG dinucleotide defines the 3’ border of the intron, just downstream 

to the polypyrimidine tract. This site is characterised by the short YAG/G sequence (Y 

denotes pyrimidines; the slash indicates the intron-exon boundary and the underlined 

nucleotides are conserved). Even if it is essential for the second step of splicing catalysis, 

no base-pairing interactions with snRNAs are involved in recognizing this sequence and 

during the early step o f spliceosome assembly. The U2AF35 subunit recognizes this sites 

(Wu et al., 1999).

1.9 Auxiliary splicing signals: enhancers and silencers.

Classical thought of the mechanism was that the exon-intron boundary would be 

defined by 5’ splice site, 3’ splice site and a branch point. However, it soon became clear 

that the fidelity of the exon recognition in higher eukaryotic splicing is not only dependent 

on the tripartite signals. Indeed, these can provide may be half of the signals to define the 

authentic exon-intron junction (Lim and Hertel, 2001). Reason is the splicing signals are 

often in a suboptimal situation, lacking the perfect consensus for binding of the snRNPs. In 

fact, "false" sequences that match the consensus splice site signals as well as, or better than, 

natural splice sites are very common in introns. As a result, these sequences define a set of 

pseudo-exons that greatly outnumber genuine exons but are normally not included in the 

mature mRNAs (Sun and Chasin, 2000). Thus, in addition to the conventional splicing 

signals spanning exon-intron boundaries, higher eukaryotes are more prone to additional 

signal like Enhancer (Exonic Splicing Enhancers /ESEs and Intronic Splicing Enhancers 

/ISEs) or Silencer (Exonic Splicing Silencers/ESSs and Intronic Splicing Silencers /ISSs) 

(Black, 2003; Cartegni and Krainer, 2002; Ladd and Cooper, 2002). The nomenclature of
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these auxiliary elements is depending on their location and their function. In spite o f this, 

these elements are not always well defined and their functions may overlap. In fact, in some 

systems it may be more appropriate to talk about composite exonic regulatory elements of 

splicing (CERES) as described for CFTR exon 9 and 12 (Pagani et al., 2003a; Pagani et al., 

2003b) (see below for additional details).

1.9.1 Exonic splicing enhancer and silencers (ESEs/ESSs).

Prior to incorporate the exon in the final transcript in a suboptimal splicing 

condition Exonic Splicing Enhancers (ESEs) are found to interact with specific trans acting 

factors. The majority of splicing enhancers are located within 100 nucleotides of the splice 

sites and they are not active when located further away (Tian and Maniatis, 1994). Using 

this proximity, the strength o f the ESEs are measured, when a ESE has better functionality 

from a greater distance from the splice sites, is referred as strong ESE (Graveley et al., 

1998a). The initial classification o f ESEs was based on the type of nucleotides present in 

sequence cluster. The first ESE mapped was purine-rich, an alternate run of As and Gs, 

nonetheless a run of either Gs or As doesn’t refer a ESEs (Marcucci et al., 2007; Tanaka et 

al., 1994). Through interactions with a subset of SR proteins, purine-rich ESEs recruit or 

strengthen the binding of basic splicing factors to suboptimal splice sites and stimulate 

spliceosome assembly (Graveley et al., 1998b); (Lavigueur et al., 1993); (Sun et al., 1993); 

(Zuo and Maniatis, 1996); (Roscigno and Garcia-Bianco, 1995). However, an exon 

sequence having one or more SR binding sites does not necessarily function as an ESE 

(Zheng et al., 1999); (Zheng et al., 1998) and some of the exonic splicing suppressors 

(ESSs) also bind SR proteins (Mayeda et al., 1999); (Zheng et al., 1998).

The other class of ESEs is the non-purine-rich ESE. This class comprises the exonic 

AC-rich enhancer and exonic pyrimidine-rich enhancer. The AC-rich enhancers were first 

identified by in vivo selection experiments and were found to stimulate splicing both in vivo 

and in vitro (Coulter et al., 1997). AC-rich ESEs have been shown to be involved in the 

regulated splicing of both viral and cellular genes (Coulter et al., 1997); (Gersappe and
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Pintel, 1999); (Zheng et al., 2000). Recent studies have shown that the AC-rich ESEs 

interact with a cold-shock cellular protein, Y box protein 1 (YB-1), and function in a way 

similar to that o f the purine-rich ESEs (Stickeler et al., 2001). In addition to these classes, 

exonic pyrimidine-rich enhancers have been described in P-globin RNA (Schaal and 

Maniatis, 1999b) and other mammalian RNAs (Dirksen et al., 2003); (Staffa et al., 1997). 

Exonic splicing enhancers (ESEs) were identified and extensively studied as regulators of 

alternative splicing (Black, 2003) but they have also been implicated in some constitutive 

splicing events (Lavigueur et al., 1993; Schaal and Maniatis, 1999a). ESEs, through SR 

proteins binding, drive the exon definition by recruiting splicing factors and/or by 

antagonizing the action of nearby splicing silencer elements (Cartegni et al., 2002).

Therefore, there is not a single consensus sequence that can describe all the ESEs, 

making their identification difficult through sequence comparison or even by their 

interacting factors.

In addition to sequences that promote exon inclusion, there are sequences that 

inhibit splicing called exonic or intronic splicing silencers. The silencers are less well 

characterized: they can be purine or pyrimidine-rich and bind a diverse array of proteins 

(Fairbrother and Chasin, 2000). Recent studies have suggested exon splicing silencers to 

have a fundamental role in preventing pseudoexon inclusion in mature transcripts (Sironi et 

al., 2004). Furthermore, a specific subset of ESSs were also suggested to have distinct 

effects on the regulation of intron retention events in alternative splicing (Wang et al.,

2004). In general, splicing silencers also mediate exon skipping by binding to trans-acting 

factors that interfere with spliceosome activity mostly belonging to the hnRNP family 

(Fairbrother and Chasin, 2000). A well-known factor that inhibits splicing is PTB 

(polypyrimidine tract binding protein). It recognizes pyrimidine-rich elements both in 

introns and in exons and can function either by antagonizing U2AF65 action or by creating 

a region o f silencing across the down regulated exon (Wagner et al., 1999).
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1.9.2 Intronic enhancer and silencers (ISE/ISS).

Along with ESE and ESS sequences a number of intronic splicing enhancers (ISE) 

and silencers (ISS) are also known. Fewer large-scale screens have been conducted for 

intronic elements and many more intronic elements are expected to be identified in future 

studies. One of the best characterized is represented by G triplets (GGG) or G runs (Gna3), 

that acts as ISE elements to enhance recognition of adjacent 5' splice sites or 3' splice sites 

(McCullough and Berget, 1997). For example, G runs in THPO genes shows that the 

intronic G motifs are involved with 3’ splice site definition by a combinatorial effect 

(Marcucci et al., 2006). In this model, precisely the G7 and G10 motifs present in the intron 

2 collectively facilities the recognition of proper 3’ss by interacting with hnRNP H, 

whereas deletion of these two G motifs activates the cryptic 3’ splice site.

The most studied intronic enhancer proteins are Fox-1 and Fox-2 that act at 

UGCAUG motifs of the brain-enriched exons (Fagnani et al., 2007; Minovitsky et al.,

2005). Fox-1 proteins regulated splicing by antagonizing the repressive effect of hnRNP 

proteins or by regulation of the pre spliceosomal complex formation (Zhou and Lou, 2008).

1.9.3 CERES.

The presence of the previously mentioned cis elements (enhancer and silencer) can 

certainly explain most of the impressive flexibility that is widely displayed by the splicing 

system. Mostly these pure ESEs/ESSs are defined by protein based score matrix and 

followed by in silico prediction or in an in vitro system, which hardly reflect the original 

cell environment. Moreover, the pure ESEs/ESSs most of the time behave pretty much like 

the original context even if it is in a heterologous context. As a result, it is very hard to 

explain the effect of overlapping ESEs/ESSs sequences on splicing regulation from a 

classical point of view of ESEs/ESSs. Accordingly, this new types of regulatory sequences 

have been renamed with the acronym of CERES (Composite Exonic Regulatory Element of 

Splicing). In literature, nomenclature CERES has been used so far in human CFTR exon 9
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and 12 (Pagani et al., 2003a; Pagani et al., 2003c) and exon 10 o f Luteinizing hormone 

receptor type 1 and 2 (Gromoll et al., 2007). However, this kind o f dynamic splicing 

regulatory sequences or similar ones are also found in many other exons. Site directed 

mutations in CERES elements show that they are like an overlapping enhancer and silencer, 

rather than individual ESEs or ESSs. These elements are also not predictable in computer- 

assisted systems. Moreover functionality of these elements is not reproducible in a 

heterologous context. However, a little has been explored so far to understand the 

molecular mechanism behind the versatile nature of CERES.

1.10 Proteins involved in splicing: trans-acting factors.

The trans-acting factors that regulate alternative splicing are principally members of 

two protein families: Serine/Arginine-rich proteins family (SR proteins) and heterogeneous 

ribonuclear proteins (hnRNP).

1.10.1 S R  proteins,

Serine/Arginine-rich proteins (SR proteins) are structurally similar RNA binding 

protein, highly conserved in metazoan cells (Blencowe, 2000; Graveley, 2000; Graveley et 

al., 1999; Huang and Steitz, 2005). The term SR proteins refers to at least ten major 

polypeptides ranging from 20 to 70 kD in size that share the ability to modulate the splice 

site choice. These proteins have a common modular structure with one or more RNA 

binding domains (RRMs) at the N-terminus, that provides target specificity, and a domain 

rich in Arg-Ser dipeptides at the C-terminus (RS domain) (Bimey et al., 1993), usually 

involved in protein-protein interactions. However, the RS domain can also interact with the 

RNA. Recent evidence shows that the branch point and the RS domain interacts specifically 

to promote splicing (Shen et al., 2004). SR proteins have been implicated in many steps of 

spliceosome assembly, from recognition o f the 5' splice site at the earliest step of splicing 

(Kohtz et al., 1994; Zuo and Manley, 1994) to binding and regulation o f exonic-enhancer 

sequences that stimulate the usage o f sub optimal splice sites. SR proteins differ for the
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presence or absence o f the second RNP domain and for the length of the RS domain; when 

present, the sequence of the second RNP domain is often divergent from the canonical 

consensus sequence (Fu, 1995; Manley and Tacke, 1996).

SR proteins are generally referred as a positive factor, which facilitates the exon 

definition. For example, once the SR protein binds to the ESE, they recruit UlsnRNP for 

5’ss and U2AF complex and U2snRNP to the 3’ss by interaction through RS domain 

(Bourgeois et al., 1999; Eperon et al., 2000; Feng et al., 2008; Graveley et al., 2001). In the 

regulation o f some exons the two modes of action may co-exist (Cartegni et al., 2002). 

However, similar recruitment through SR protein has also been seen through intronic 

interaction. For example, TIA-1 (T-cell restricted Intracellular antigen-1), a SR family 

protein, binds to the downstream of the 5’ss and recruits UlsnRNP (Forch et al., 2002). 

Similarly, Sam68 has been found in the case o f CD44 V5 exon engaging U2AF to the 3’ss 

from its intronic position (Tisserant and Konig, 2008). SR proteins can also exert their 

effect by interacting with other RS domain containing proteins. In general, SR or SR 

related proteins contain the RS domain but can be with or without the RRM. For example, 

SRml60 and SRm300 have the RS domains but lack the RMM. Therefore in order to 

regulate splicing, these proteins have to interact with other RNA bound RS domain 

containing proteins (Blencowe, 2000). Similarly, for the SR proteins with the RRM 

domain, like Tra2 which interacts directly to the RNA, their RS domain interacts with other 

SR protein RS domains to stabilize binding o f basic splicing factors and antagonize the 

negative elements nearby (Tacke and Manley, 1999).

Generally, SR proteins are considered as a positive factor, yet SR proteins act as 

splicing suppressor depending on their phosphorylation status. For example, SRp 38 

restrains splicing in the dephosphorylated form (Shin et al., 2004), whereas it can act as 

splicing activator once is phosphorylated (Feng et al., 2008). In fact, the activity of SR 

proteins is regulated through phosphorylation/dephosphorylation cycles. SR proteins are 

phosphorylated in vivo at multiple serine residues within the RS domain (Stamm, 2008).
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Phosphorylation and dephosphorylation processes seem to be crucial to define the 

organization o f splicing factors inside the cell nucleus by affecting the RNA-binding 

activity and sub nuclear localization o f RS-domain containing proteins (Misteli et al., 

1997). Phosphorylation is important for specific RNA recognition, since the high positive 

charge of unphosphorylated RS domain masks the specificity of the RNP domains and 

enhances non-specific binding (Tacke et al., 1997; Xiao and Manley, 1997). Protein-protein 

interactions are enhanced by phosphorylation (Xiao and Manley, 1997), which also affects 

the subnuclear localization of splicing factors, causing their release from storage site of 

splicing components (Colwill et al., 1996; Xiao and Manley, 1997).

The interactions between pre-mRNA sequences and SR proteins seem to regulate 

constitutive as well as alternative splicing (Sanford et al., 2005; Tacke et al., 1997). The SR 

proteins have flexibility regarding the RNA targets and their binding specificities and 

consequent differential affinity may play a role both in constitutive and alternative splicing. 

From and evolutionary point of view, the functional interaction between SR proteins and 

exons place a significant constraint on the type of RNA sequences that can be present in 

coding exons, because codons and SR proteins binding sites overlap. It has been suggested 

that the degenerate binding specificity o f SR proteins have evolved to cope this functional 

conflict (Graveley, 2000).
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Figurel.8: Models of SR protein action in exonic-splicing-enhancer-dependent 

splicing.

a) RS-domain-dependent mechanism. An SR protein binds to an exonic splicing enhancer 

(ESE) through its RNA-recognition motifs (RRM) and contacts the splicing factor U2AF35 

and/or U1-70K at the adjacent splice sites through its RS domain. U2AF6:* interacts with the 

polypyrimidine (Y) tract, which here is interrupted by purines (R) and is therefore part of a 

weak 3' splice site. U2AF65 also encourages binding of U2 snRNP to the branch site. The 

U1 snRNP particle binds to the upstream and downstream 5' splice sites through base 

paring of the U 1 snRNA. The three sets of splicing-factor-pre-mRNA interactions (U2AF- 

3' splice site, U1 snRNP-5' splice site and SR protein-ESE) are strengthened by the 

protein-protein interactions (blue arrows) that are mediated by the RS domain, b) RS- 

domain-independent mechanism. Here, the main role of the SR protein that is bound to an 

ESE is to antagonize the negative effect on splicing of an inhibitory protein that is bound to 

a juxtaposed exonic splicing silencer (ESS). The SR protein is shown lacking its RS 

domain, although this domain is generally present and might still promote U2AF binding, 

or other domains might be involved in protein-protein interactions. Inhibitory interactions 

are shown (red), as is a putative stimulatory binding (double-headed arrow). These models 

are not mutually exclusive, and the splicing of some introns might involve a combination of 

these mechanisms. Figure adapted from Cartegni et al. (Cartegni L, 2002).
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1.10.1.1 SF2/ASF.

One of the best-known SR proteins is the alternative splicing factor/splicing factor 2 

(SF2/ASF). This 27kD protein consists of a RS domain and two RRM domains. However, 

several groups have highlighted the two basic properties o f this SR protein. SF2/ASF was 

described as an essential splicing factor necessary for the early step of splicing (Krainer et 

al., 1990) and was also characterized as an alternative splicing factor able to drive splice 

site selection (Ge and Manley, 1990). ASF/SF2 can promote the recruitment of U1 snRNP 

to the 5’ss (Eperon et al., 2000; Kohtz et al., 1994) to help 5’ss and 3’ss bridging across 

introns (Wu and Maniatis, 1993), and plays a role in splicing regulation, through binding to 

exonic splicing enhancers (Sun et al., 1993). The function of SF2/ASF in pre-mRNA 

splicing depends on the context o f the pre-mRNA sequence to which it binds, as shown by 

the fact that SF2/ASF inhibits adenovirus Ilia pre-mRNA splicing by providing sterical 

block to the U2snRNP recruitment at the BPS when bound to or near it at an intronic 

repressor element (Kanopka et al., 1996).

ASF/SF2, together with other SR proteins, is involved in additional roles in gene 

expression. For example, ASF/SF2 remains associated with the spliced mRNA and is able 

to shuttle between the nucleus and the cytoplasm (Caceres et al., 1998), suggesting a role in 

mRNA export (Huang and Steitz, 2005). In addition ASF/SF2 seems to regulate the mRNA 

stability by binding to the 3’UTR and enhancing RNA degradation in the cytoplasm 

(Lemaire et al., 2002). ASF/SF2 can also stimulate translation of reporter mRNAs by 

associating with translating ribosomes (Sanford et al., 2004).

Despite these advances in understanding the functions of ASF/SF2 less is known 

about the physiological roles of this protein. Depletion of ASF/SF2 by RNAi resulted in 

lethality in C. elegans (Longman et al., 2000) and tissue-specific deletion in mice resulted 

in defects in the developing heart (Xu et al., 2005). ASF/SF2 showed also an unexpected 

role in maintaining genomic stability by protecting cells from the deleterious effects o f R- 

loop formation (Li and Manley, 2005). In addition a recent work found that ASF/SF2 is an



oncoprotein with roles in both the establishment and the maintenance of cell transformation 

(Kami et al., 2007). In this respect, SF2/ASF has been found to control alternative splicing 

o f the oncogene Ron which modulates cell motility (Ghigna et al., 2005). Nonetheless, 

posttranslational modification (PTM) like arginine methylation of the SF2/ASF RS domain 

(R93, R97 and R109) has been shown have effect on it’s subcellular localization (Sinha et 

al., 2010). Additive effect o f this methylation provides a significant control to SF2/ASF on 

cellular localization as well as on multiple functions in different cellular compartments. In 

addition to this SF2/ASF has been also found in the splicing independent pathway of miR7 

microRNA processing(Wu et al., 2010).

1.10.2 hnRNP proteins.

The hnRNP proteins were first described as a major group of chromatin-associated 

RNA-binding proteins. Initially, nearly 30 proteins of this class were identified by two- 

dimensional gel electrophoresis o f human hnRNP complexes with molecular weight 

ranging from 34 (hnRNP A l) to 120 kD (hnRNP U) (Dreyfuss et al., 2002; Dreyfuss et al., 

1993). The structure o f hnRNP proteins is modular and consists of one or more RNA 

binding domains associated with an auxiliary domain often involved in protein-protein 

interactions (Dreyfuss et al., 1993). For instance, the hnRNP A/B proteins contain two RNP 

domains at the N-terminus and a Gly-rich auxiliary domain at the carboxy end whilst 

hnRNP E1-E2 proteins contain three KH domains (Ostareck-Lederer et al., 1998). 

Likewise, the hnRNP H family members contain two (2H9) or three (H, H’ and F) quasi 

RNA recognition motifs (qRRMs) and one or two glycine rich auxiliary domains (Honore 

et al., 1995). In addition, several of these proteins have multiple isoforms produced by 

alternative splicing processes and this diversity can be further increased by post

translational modifications o f potential physiological significance, including 

phosphorylation, arginine methylation and SUMOylation (Dreyfuss et al., 2002; Martinez- 

Contreras et al., 2007). Finally, their abundance can also vary considerably within cells, 

with some hnRNPs being highly expressed, whilst others are present in lower amount
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depending on different tissues (Kamma et ah, 1995; Markovtsov et ah, 2000).

In general, the proposed mode of action for hnRNP proteins in splicing regulation is 

through competition with SR proteins. In brief, hnRNPs block the possession of the 

snRNPs or other positive factors to the splice site or ESEs. For example, polypyrimidine 

track binding protein (PTB or hnRNP I) can antagonize U2AF65 activity in the a- 

tropomyosin and the GABA(A) receptor y2 genes (Lin and Patton 1995; Ashiya and 

Grabowski 1997). Another example is hnRNP A 1 binding to the upstream silencer sterically 

blocks the U2snRNP interaction in HIV Tat exon 3 and interferes with the branch point 

selection (Tange et al., 2001). However, apart from this local competing mode, hnRNPs can 

also function from a distance. For example, hnRNP H can bind on both side o f an exonic 

sequence and "loop it out" from the splicing queue (Chabot et al., 1997). In this way, 

although the splice site might be defined the presence o f the loop sterically blocks any 

further spliceosomal complex formation (Nasim et al., 2002).

From an RNA binding point o f view, hnRNP proteins usually do not recognize 

specific sites exclusively but distinguish different RNAs with a wide spectrum of affinities. 

Preferred sequences tend nevertheless to coincide with sites o f functional significance in 

pre-mRNA processing, suggestive of that hnRNP proteins may form specialized complexes 

or indirectly recruit other factors to such sites. In addition, RNA binding is further 

modulated by mutual protein-protein interactions but even so the array of hnRNP proteins 

bound to a given hnRNA is determined by the RNA sequence (Dreyfuss et al., 1993).

1.11 Combinatorial and Position effect of the trans acting factors.

Whether an exon is included or not it is often determined by the combinatorial 

effect o f the bound positive and negative factors. This combinatorial model is supported by 

the observation that in vivo and in vitro the counteracting activities o f multiple antagonistic 

factors (generally SRs and hnRNPs) can regulate alternative splicing, suggesting that the 

physiological concentration of competing splicing factors is important for regulation of
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splice site selection (Caceres et al., 1994; Hanamura et al., 1998). For example, in a- 

tropomyosin exon 2, SR protein 9G8 and hnRNP H and hnRNP F compete to bind same 

element within the exon for definition (Zhu and Krainer, 2000). Similar kind of 

arrangement has been shown within hnRNP A l, SC35 and SF2/ASF in |3-tropomyosin 

exon 6B (Expert-Bezancon et al., 2004). Initially, this combinatorial effects of the trans

acting factor was thought to be prevalent for most exons but a recent microarray analysis 

has suggested that antagonizing effect of the SR and hnRNPs on the same sequence is 

active on not more than 5% gene in D. melanogaster (Blanchette et al., 2009).

The binding position with respect to the exon may influence their mode of action as 

enhancer or silencer. This has been well studied for hnRNPs H and L that seem to repress 

splicing when bound in an exon, but activate it from the intron downstream (Black, 2003; 

House and Lynch, 2006; Hui et al., 2005). In addition, it has recently been shown that some 

proteins (NOVA1, NOVA2, FOX1, FOX2 and hnRNP F) can have double role on splicing 

depending on their binding position. For example hnRNP H can down regulate the exon 

inclusion by specifically interacting with G rich sequence, if it is present within the exon 

(Caputi and Zahler, 2001), whereas an opposite effect can be seen when the interaction is in 

intron near the 5’ss (Schaub et al., 2007). However, using techniques like CLIP and high 

throughput sequencing a wide spread view of the position effect on splicing have been also 

described for proteins like NOVA1, NOVA2, and FOX2 (Ule et al., 2006; Yeo et al., 

2009).

1.12 RNA secondary structure.

It is now also widely accepted that the local structure of the pre-mRNA can affect 

cis-acting elements accessibility to trans-acting factors. In particular, secondary structure 

can act by hiding or unmasking splice sites, enhancers, and silencers, with the obvious 

relative effects (Buratti and Baralle, 2004). Mostly these effects of RNA structure on 

splicing are based on in silico prediction. However, a number o f experiments have been
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carried out recently combining the in silico prediction and wet lab work to prove the 

importance o f RNA structure in splicing (Buratti et al., 2007a; Buratti et al., 2004b; Dhir et 

al.). For example, a comparative analysis of splicing behaviour o f the human and mouse 

fibronectin EDA orthologous exon revealed that the role o f the ESS element was to 

stabilize the secondary structure o f the ESE in such way as to promote binding of SR 

proteins (Buratti et al., 2004b; Muro et al., 1999).

However, the principal limitation in identifying the role o f secondary structure is 

that our predictive abilities are still rather limited and safe judgement can be made only 

through implementation of additional functional studies and experimental probing.

1.13 Splicing is part of a co-transcriptional process.

A potential link between splicing and transcription was first proposed by showing 

that the folding capacity of the pre mRNA after transcription may expose it’s SREs 

differently and affect splicing (Eperon et al., 1988). However, it is now well known that 

splicing is a cotranscriptional mechanism. Besides the role o f transcribing the RNA, 

polymerase II (Pol II) is involved in cellular mechanism like RNA capping, 

polyadenylation and splicing (Bentley, 2005; Komblihtt et al., 2004). A recent microarray 

analysis shows that 482 genes were affected in Hep3B cell due to UV irradiated Pol II 

manipulation, in fact there were changes in 1408 alternative events within those genes 

(Munoz et al., 2009). However, two models have been proposed in these regards. Firstly, 

the “recruitment model” derived from the observation that several trans-acting factors can 

interact directly or indirectly with the RNA Pol II and other transcription factors (Bentley, 

2005; Das et al., 2007; Moldon et al., 2008). The carboxy-terminal domain (CTD) of the 

RNA Pol II has been shown to play a central role in coupling transcription to pre-mRNA 

processing acting as assembly platform for proteins involved both in transcription and pre- 

mRNA process regulation (Bentley, 2005). In fact, in the efficiency of splicing in this 

model proposed to depend on the factors recruited by the transcription factors. For
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example, in the FN1 pre mRNA differentially recruits SF2/ASF to regulate it’s splicing 

based on the nature o f the promoter (Cramer et al., 1999). In fact, recruitment does not only 

appear with well known splicing factors like SR proteins, transcription co-activators can 

also be recruited and play a role in splicing. For example, transcription co-activator like 

CAPER and COAA are structurally similar to SR and hnRNP proteins, besides the Pol II, 

recruitment of transcription coactivators like CAPER and COAA have been shown to 

regulate alternative splicing in CD44 pre mRNA (Auboeuf et al., 2004). Additionally, the 

presence of enhancer sequences, like SV40 next to the promoter can stimulate RNA Pol II 

elongation while the deletion of this enhancer causes a reduction in exon skipping (Kadener 

et al., 2002).

Secondly, the “kinetic model”, is most likely a race against transcription time and 

spliceosomal assembly (Komblihtt et al., 2004). This model was proposed by experiments 

in which RNA Pol II pausing sites were artificially introduced into a gene, delaying the 

transcription o f a splicing inhibitory element and therefore resulting in higher inclusion 

levels o f an alternative exon (Roberts et al., 1998). Further evidence supported this model 

indicating that transcription can affect splicing acting at different cis- and trans-acting 

levels (Komblihtt et al., 2004). For instance differences in promoter architecture have been 

shown to affect the subsequent selection of the fibronectin EDA alternative exon and the 

CFTR exon 9 (Cramer et al., 1999; Cramer et al., 1997; Pagani et al., 2003d). However, in 

vivo most of the genes have a single promoter and the regulation of splicing through 

transcription is more likely to occur through the binding of different transcription factors. 

In line with this view, it has been described that transcriptional activators can affect 

alternative splicing (Nogues et al., 2002).

A more direct proof for the kinetic model is derived from studies on RNA Pol II 

elongation rate (de la Mata et al., 2003; Roberts et al., 1998). A slow Pol II and/or the 

presence of internal transcriptional stalling sites, results in an increased inclusion of 

alternative exon harbouring a weak 3’ss. By contrast, when a highly processive RNA Pol II
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transcribes the same pre-mRNA, the weak alternative splice site is unable to compete with 

the stronger downstream 3’ss, which results in skipping of the alternative exon (de la Mata 

et al., 2003). Recently a reciprocal coupling between splicing and transcriptional elongation 

has also been reported. In fact, splicing proteins have been involved in transcriptional 

elongation in vitro (Fong and Zhou, 2001) and specific depletion o f SC35 showed RNA Pol 

II accumulation and attenuated elongation in vivo (Lin et al., 2008). Furthermore, it was 

also described that an efficient RNA Pol II transcription is strictly connected with the 

presence of intronic sequences (Furger et al., 2002). Taking these evidences together, a 

complex view has emerged from the studies focused on the coupling between transcription 

and pre-mRNA processing suggesting that both recruitment of factors to the CTD and RNA 

Pol II kinetic are involved in this connection (Komblihtt et al., 2004).
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Figurel.9: Schematic representation of the complex netw ork during mRNA

biogenesis.

The diagram shows the complexity of the regulatory elements that participate in splicing 

control. Figure taken from (Buratti et al., 2006).

1.14 Defective splicing and disease.

In the past, the initial survey by Krawzak and colleagues originally estimated that at 

least 15% mutation that involved genetic disease caused aberrant pre-mRNA splicing 

(Krawzak et al.,1992). Over recent years, the pathological alterations that can be directly 

linked with aberrant splicing processes have grown exponentially, and the study of the 

complex network interactions between defective splicing and occurrence of disease has 

become a central issue in the medical research field (Faustino and Cooper, 2003; Garcia- 

Bianco et al., 2004; Nissim-Rafinia and Kerem, 2005).
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In fact, it is now estimated that up to half of the mutation found in exons are 

anticipated to be affecting the exon inclusion (Lopez-Bigas et al., 2005). Indeed, in the NF- 

1 gene, genomic variations that affect splicing may represent up to 50% of all the mutations 

that cause gene dysfunctions (Ars et al.,2000;Teraoka et al.,1999). Interestingly, within 

disease causing mutations only 9-10% of the single-point mutations affect the standard 

consensus splicing signals (Wang and Cooper, 2007)

Therefore, a large number of disease causing mutations must disrupt auxiliary 

splicing regulatory elements as demonstrated by recent studies (Pagani et al., 2003a). At the 

moment, the unambiguous identification o f this kind of splicing mutations is still hampered 

by the fact that an ever growing variety o f splicing regulatory sequences and proteins are 

being uncovered every year, making even normal splicing pathways almost too complex to 

predict on the basis of the primary sequence alone.

In recent years, the development of numerous methodologies has increased our 

knowledge between splicing and disease. For example, the refinement o f minigene-base 

technology has allowed a relatively fast approach to identify splicing mutation and to study 

their functional behaviour (Baralle and Baralle, 2005; Cooper, 2005). In addition, SELEX 

methodologies to characterize binding specificity of trans-acting factors involved in 

splicing regulation (Buratti and Baralle, 2005; Fu, 2004) represent a good starting point for 

preliminary identification of general splicing regulatory sequences. However, the true 

molecular mechanism underlying many splicing mutations are still poorly understood often 

due to difficulties in modelling the splicing systems, highlighting the complexity of splicing 

(Baralle and Baralle, 2005).

Although this growing complexity makes for very fascinating basic science, in the 

diagnostic and practical clinical setting it is also the cause of several problems. These range 

from the simple identification of putative splicing mutations to the exact evaluation of their 

potential impact upon the normal splicing processing pathways (and thus their effect on 

disease). The result o f all these complexity is that today's task o f identifying splicing
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spoilers from a background o f harmless polymorphisms has become very difficult and all 

that can really be emphasized is the need to consider any genomic variation, even those that 

occur deep within intronic regions, as a potential splicing mutation.

1.15 Correlation of synonymous and non-synonymous mutation and evolution.

In the recent past, evolution was especially concerned with the biochemical 

properties of the protein, dealing with the conception that the domain architecture of the 

protein should be untouched to avoid selection pressure and proteins with dense functional 

domain will evolve slowly than the one with less domains (Pal et al., 2006). However, the 

selection pressure at the protein level comes to consideration once the pre-mRNA is 

processed flawlessly. More precisely, soon after the transcription pre-mRNA is subjected to 

splicing, transportation and finally translation. The initial concept of connecting splicing 

with evolution came from Gilbert’s proposal that the same exon can be present in multiple 

transcripts, which now recognized as alternative splicing (Gilbert, 1978). That concept has 

been delineated by proving that the same exons are not necessarily be spliced constitutively 

in all species (Gilbert, 1978; Pan et al., 2005). In fact, genome wide sequencing as well as 

comparative genomics has made it possible to look back the evolutionary history of exons 

and their mode of splicing (Kan et al., 2005; Nagasaki et al., 2005). As a consequence, 

alternative splicing as opposed to constitutive splicing has been recognized as an 

accelerating force to the rate of evolution. The reason is that, insertion of new constitutive 

exons within the transcript is expected to bring up negative selection pressure (unless the 

new transcript has a positive phenotypic effect). On the other hand, if the new exon is 

alternatively spliced, the selection pressure is more relaxed, because the cell retains a 

fraction of the original transcript.

Nucleotide changes in the coding region that do not change the codon usage are 

referred as synonymous (or silent) mutation. In contrast, nucleotide changes that change the 

amino acid are known as non-synonymous mutations. Non-synonymous mutations can be
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either missense if they change the codon amino acid specificity or non-sense, if they 

introduce a premature stop codon. Synonymous changes in the coding sequence were 

thought to be benign polymorphism and functionally neutral in clinical diagnosis. The only 

consideration regarding their association with pathology was if  the synonymous change 

was affecting the splice sites (Li et al., 1995; Richard and Beckmann, 1995). It is now clear 

that before natural selection can act at the translation level by favouring new amino acid 

sequences, the splicing process has to be preserved. The other way round, a nucleotide 

change that might cause exon skipping would never be selected even if the function of the 

resulting protein might be improved with respect to the original (Pagani and Baralle, 2004; 

Pagani et al., 2005).

In general, the rate o f evolution is measured by calculating the sequence divergence 

within the common ancestors as well as the time has past since the divergence of 

speciation. Most frequently used metrics for measuring evolution at the molecular level was 

based on the ratio of Ka (non- synonymous change) over Ks (synonymous changes) in the 

same protein. A Ka/Ks ratio lower than 1 indicates purifying selection, while a Ka/Ks ratio 

higher than 1 indicates positive selective pressure. Ka/Ks metrics has been widely used to 

measure the selection pressure on amino acids (Yang and Nielsen, 2000). However, for 

measuring sequence divergence, Ka/ Ks ratio often produces ambiguous results in 

alternatively spliced exons (Hurst and Pal, 2001). In fact, alternative exons in the 

alternatively spliced genes show higher Ka/Ks ratio in sequence comparison, which rather 

indicates the importance of local segments like SREs of the gene for selection (Xing and 

Lee, 2005).

In recent years, the presumed neutrality of synonymous mutations has been 

challenged because of the presence of splicing regulatory elements overlapping with the 

amino acid code. Several recent bioinformatics analyses have confirmed this view by 

showing a reduction in the rate of synonymous evolution in regions that contain an ESE 

(Hurst & Pal, 2001; Orban and Olah, 2001). Moreover, it has recently been observed that
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synonymous single nucleotide polymorphisms (SNPs) that disrupt ESEs have also been 

selected against other SNPs (Carlinai and Genut, 2006; Fairbrother et al., 2004). 

Altogether, evolutionary studies represent an important field for investigation of the 

elements involved in splicing regulation as they can give us the chance of finally 

understand the splicing mechanism itself.
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r~1 1 mm UfgAy 1 PH

^  ^
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/  \  ? /  N
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Figurel.10: The prim ary selective pressure on exons is for their inclusion in mRNA.

The selection o f a new amino acid that leads to a better enzyme can occur only if the codon 

substitution caused by a single nucleotide polymorphism (cSNP) and does not affect an 

exonic regulatory element. In this model, assumed that a protein had amino acid changes at 

the catalytic site that will produce a more active enzyme that has a selective advantage. In 

order to gain that, first of all the nucleotide substitution has to be compatible with the 

splicing machinery that identifies the exon. If the inclusion is guaranteed, then the amino 

acid change is favoured. If not, exon skipping will result in a non functional enzyme. 

Adopted from (Pagani and Baralle, 2004)
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1.16 Cystic fibrosis (CFTR).

Cystic fibrosis (CF), also known as mucoviscoidosis is an autosomal recessive 

genetic disease that mostly affects the entire body causing progressive disability and early 

death. The frequency of the disease differs among ethnic groups. However, it is more 

common in the Caucasian with a incidence of 1 in every 3300 whilst within Hispanics the 

occurrence is 1 in 9500 and it is an even rarer disorder in native Africans and native Asians, 

where it is estimated to occur in less than 1 in 50000 individuals (Goss and Rosenfeld, 

2004).

Cystic fibrosis (CF) is an extremely heterogeneous disease both for the age of onset 

and for the clinical features. A number of individuals escape detection in the first decade or 

two of life, often because symptoms are mild. However, the typical patient with CF 

generally shows symptoms like thick production of mucus, which causes an obstructive 

chronic lungs disease, exocrine pancreatic insufficiency, intestinal obstruction of ileum in 

the newborns (meconium ileus) and sterility in 95% of men and in 10% of women (Kerem 

and Kerem, 1996; Koch and Hoiby, 1993). Although several organs are affected in CF, the 

underlying principle mechanism of pathogenesis is considered to be the loss of epithelial 

plasmamembrane chloride conductance. Decrease in salt and fluid secretion is responsible 

for the blockage of exocrine outflow from the pancreas and the accumulation of heavy and 

dehydrated mucus in the airways. Later onset, due to the favourable condition or loss 

antimicrobial activity in the airway surface, causes respiratory infections by pathogens like 

Pseudomonas aeruginosa, Staphylococcus aureus and Aspergillus fumigatus (Goldman et 

al., 1997).

The gene CFTR (Cystic Fibrosis Transmembrane conductance Regulator) that 

encodes the protein is located at the human chromosome 7 (region q31). This was the first 

gene identified by positional cloning (Riordan et al., 1989). The mRNA encoded from the 

gene is of 6kb and contains 27 exons. CFTR is a membrane associated glycoprotein of 169 

kD in size and consists of 1480 amino acid (Gregory et al., 1990). Structurally the protein

53



has two nucleotide binding domains (NBD1 and NBD2), one regulatory domain (R) and 

two hydrophobic transmembrane domain (each consist of six membrane spanning 

segments) (Riordan et al., 1989). The NBD1 subdivision of the protein is encoded by exon 

9 through exon 12. In particular, exon 12 encodes amino acid spanning 560 to 588 towards 

the C terminal of the NBD1 (Lewis et al., 2005). In brief, the protein functions to regulate 

the channel through phosphorylation of the R and NBDs. The proposed mechanism is that 

partial phosphorylation of the R domain cause the dimerization with NBD1, which leads to 

the opening of the gate at the transmembrane domain. Whereas, complete phosphorylation 

of the R domain cause the closing of the gate by interacting with the NBD2 (Bompadre et 

al., 2005). Mutation to any of these functional domains produces defective proteins and 

leads to disease.
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F ig u re l.il:  CFTR  protein and affected regions in the gene.

The CFTR gene is located on the long arm of chromosome 7 in the q31 region, it is 250 

kilobases long and it has 27 exons. Its transcription and translation produce a 6129 

nucleotides long mRNA and a 1480 amino acids long protein respectively. (A) The protein
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is inserted in the membrane and it has five domains: two transmembrane domains (MSD1 

and MSD2), two nucleotide binding domains (NBD1 and NBd2) and a regulatory domain 

(R domain). (B) The figure shows the frequency and pattern of the mutations causing cystic 

fibrosis in the CFTR gene. Adopted from http://www.genet.sickkids.on.ca .

The symptoms among CF patients differ a lot and it is hard correlate the phenotypic 

symptoms with the genotype. However, phenotypic symptoms can be categories in three 

groups. In the first one, we can include the symptoms that are common to most CF patients, 

regardless of the type of mutations. An example is the abnormal electrolyte composition of 

sweat that is common to virtually all patients with classical CF. In the second category 

there are features which show a good correlation between genotype and disease phenotype. 

This category is best represented by the pancreatic function of the patients. The third 

category of phenotypic features includes symptoms that do not show significant correlation 

with genotype, such as the pulmonary status of CF patients, in which the severity o f the 

disease is strongly affected by environmental and secondary genetic factors (CF modifiers) 

(Zielenski, 2000; Zielenski and Tsui, 1995).

The number of mutations in the CFTR gene causing these symptons is growing every 

day. The complete list of mutation identified up to now can be found at the world web 

access http://www.genet.sickkids.on.ca. In most of the cases, the pathological effect of 

single base substitutions in CFTR gene were considered to be based on the change in 

coding sequence (or were mis-classified as benign polymorphism databases). Several 

examples have been shown that many of these changes affect splicing pattern of the gene 

instead changing the specific amino acids (Pagani et al., 2003a; Pagani et al., 2003c; 

Zielenski et al., 1995).
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1.17 Final introductory considerations.

This introduction has attempted to put together a brief summary of RNA processing 

mechanisms and to introduce a model system that is extremely rich in mechanistic and 

functional outcomes o f alternative spicing. There are plenty of data focusing on specific 

regulatory elements in disease genes and on the effect that mutations in their sequence may 

have on the splicing outcome. However, very few o f these works have attempted a 

systematic study on a specific exon to classify all the enhancers and silencers that 

participate in its definition. The chosen CFTR exon 12 is an excellent base to attempt this, 

because of the abundant information on mutation analysis(Pagani et al., 2005; Pagani et al., 

2003b), illustrated RNA secondary structure constrains (Meyer and Miklos, 2005), 

presence of distinctive cis element CERES (Pagani et al., 2003b) and obviously its 

association with disease. As it will be clear in the results section, even a well studied exon 

such as this one displays evident complex changes in the SREs distribution that define its 

inclusion when looked across species evolution.
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1.18 Aim of the project.

A general view of alternative splicing implies focusing on specific sequence 

elements, some interacting predominantly with SR proteins that act in a way as to include 

the exon (splicing enhancers) and some with hnRNPs that promote exon skipping (splicing 

suppressors). In theory, this should be a rather simple task of mutagenizing systematically 

the sequence o f the exon of interest and simply classify the resulting elements in 

enhancers/silencers depending on their effects upon exon inclusion following mutagenesis. 

However, this strategy often produces ambiguous results, particularly in the situation 

where the cis elements are extremely overlapped like the CERES2 element in CFTR exon 

12. Until now, the functional role of CERES elements was only limited to systematic 

mutation analysis and the molecular mechanisms that explained its action still largely 

remained unexplored.

To find some of the answers to these questions, this thesis was aimed to address 

following issues:

• Correlation between codon and amino acid changes with splicing efficiency.

• Regulation of CFTR exon 12 CERES2 in terms of trans-acting factors binding to 

this sequence.

• Effect o f sequence variation across species on splicing regulation.
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2 Results

2.1 Effect of the pathological missense and synonymous mutation on CFTR exon 12

in the CERES2 element and nearby regions.

In normal conditions, the level o f CFTR exon 12 skipping from the full mRNA 

transcript is variable and ranges from 5%-30% (Hull et al., 1994). Loss of this exon 

removes the highly conserved region from the NBD1 and produces non-functional CFTR 

protein. Previous work from our lab showed that two missense mutations (D565G/A15G 

and G576A/G48C) in the CFTR exon 12 causes cystic fibrosis by affecting the splicing of 

the exon and Y577F/A51T by changing the amino acid (Pagani et al., 2003b). Initially 

these pathological mutations were considered as polymorphism in the CFTR mutation 

database.

In order to understand the role o f these mutations in splicing, Pagani et al at first 

analyzed the RNA from patient nasal epithelial tissue and then carried the analysis into a 

minigene system to better understand their effects on splicing regulation. In the minigene 

system, along with exon 12 they inserted 333nt from intron 11 and 270nt from intron 12 to 

obtain a reliable splicing pattern that mimicked the endogenous splicing pattern. The result 

o f the minigene system showed that the G576A/G48C mutation caused 93% exon skipping. 

On the other hand, the adjacent Y577F/A51T mutation resulted in complete inclusion. 

Moreover, the transfection o f these minigenes in different cell lines (HeLa, COS, T84, 

NT2, CFPAC and Hep3B) yielded slightly different levels o f inclusion suggesting th a t . 

there might be a differential expression of tissue specific splicing factors. Further, using 

site-directed mutagenesis to better analyze the effects o f splicing of these mutations they 

characterized two segments within this exon and showed that they are important for CFTR 

exon 12 splicing, naming them CERES 1 and CERES 2. The important feature o f these



CERES elements was represented by the observation that they did not behave as classical 

enhancer or silencer elements, but rather as a composite sequence. Accordingly, it was very 

difficult to predict the effect on the splicing process of single-nucleotide substitutions 

introduced in these regions.

In this study, we have focused on understanding the molecular mechanism of 

CERES2. We have selected four mutations (G48C, A49G, A51T and C52T) that are 

present within the CERES2 regions, and a nearby mutation (T40C) for further detail 

analysis o f their effect and interactions. The missense mutations G576A/G48C 

Y577F/A51T were naturally found in patients and S573S/T40C, G576G/A49G and 

Y577Y/C52T that are synonymous substitution. The T40C and C52T substitutions are 

particularly interesting form an evolutionary point of view as they are naturally present in 

the mouse CFTR exon 12 sequence (without affecting the exon inclusion) and C52T has 

also been reported as a human polymorphism/possible mutation in the Cystic Fibrosis 

Mutation Database (www.genet.sickkids.on.ca). The localization of these mutations in the 

pTB minigene are shown in Figure 2.1 A.
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Figure 2.1: Transient transfection to HeLa cells of CFTR exon 12 minigenes. (A).

Schematic presentation of the hybrid minigene used in transfection experiments. The a- 

globin, fibronectin EDB, and human CFTR Exon 12 are shown as black, white and gray 

boxes, respectively. The sequence of CFTR exon 12 and position of the CERES 1 and 

CERES2 elements is reported in full. (B). Schematic diagram of CFTR Ex 12 construct 

used in the analysis. The vertical superimposed arrows indicate the locations of both natural 

and synonymous mutations. The amplified RT-PCR products stained with ethidium 

bromide are shown in the bottom panels. Spliced transcripts are shown with Ex. 12+ for 

inclusion and Ex. 12- for exclusion of the exon.

Transfection in HeLa cells of these constructs produced the following results (as 

previously reported by Pagani et al., 2003b): the T40C, G48C, A49G and C52T mutation 

carrying minigenes caused exon skipping in the full exon 12 context whilst A51T caused to 

full exon inclusion(Pagani et al., 2005; Pagani et al., 2003b).
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2.2 Functional role of CERES2 in a heterologus context.

In ordered to test the activity o f the CERES2 element, I cloned it within a 

heterologous context. To do this we used the dsx-XH vector. This vector is derived from D. 

melanogaster dsx and contains exon 3 and 4 with a suboptimal 3’ splice site (Tanaka et al., 

1994). Recognition of exon 4 is dependent on presence of an ESE (gray box, Fig.2.2) 

localized in its exonic sequence. We therefore replaced the natural ESE of exon 4 with the 

CERES2 sequence either in the wild-type form or carrying the A51T and G48C mutations. 

As positive control sequence, we used the previously well studied ASLV (avian sarcoma- 

leukosis virus) ESE whilst as negative control we used a well known ISS sequence from the 

CFTR exon 9 gene (AS3 ISS) (Bruzik and Maniatis, 1995; Buratti et al., 2007b).
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Figure 2.2: HeLa cell nuclear extract based splicing assay of CERES2 in a pdsx-HX 

system. (A). Schematic presentation of the dsx-XH construct used in transfection 

experiments. The gray box indicates the location where 14nt of CERES2 were cloned. 

Horizontal arrows with the letter El and E2 are positioned for sense and antisense primer 

respectively. (B). The amplified RT-PCR products after splicing were stained with 

ethidium bromide and shown in the bottom panels. Spliced transcripts (box for exons) and 

unspliced pre mRNA (box for exon and line for intron) are shown at the side.
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PCR amplification o f the splicing assay shows that both WT and A51T are capable 

o f promoting splicing with very low efficiency but G48C doesn’t splice at all. If  we 

compare these results with those obtained with the ASLV ESE (lanes 9-10), it is apparent 

that in a heterologous context the CERES2 element possesses a low enhancing ability, 

which is abolished by the G48C mutation and is not enhanced by A51T. Taken together, 

these results suggest that the activity of CERES2 is strongly context-dependent and for this 

reason we did not pursue this approach any further.

2.3 Functional role of CERES2 in a shortened CFTR 12 exonic context.

For this reason, we therefore wanted to see if  all these substitutions were dependent 

on the context provided by the rest of the exon sequence. To analyze this, the CFTR exon 

12 was shortened by removing the flanking regions near the 3 and 5’s but maintaining 4 

and 3 nucleotides close to the 3' intron-exon and exon-5' intron junctions, respectively. This 

minigene construct was called "mini" exon 12 (Figure2.3 A).
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Figure 2.3: T ransient transfection to HeLa cells of nucleotide substitutions in a 

shortened CFTR  exon 12 minigene. (A). Schematic diagram of CFTR mini Ex 12 

constructs used in the analysis. Dotted line indicates the exonic sequence which was 

removed. The vertical superimposed arrows indicate the locations of both natural and 

synonymous mutations. The amplified RT-PCR products stained with ethidium bromide 

are shown in the bottom panels (B). Spliced transcripts are shown with Ex. 12+ for 

inclusion and Ex. 12- for exclusion of the exon.

When all the previously analyzed mutations are placed in this reduced context, both 

the G48C and A49G were observed to cause the exon skipping observed in the full length 

exon, whereas in A51T it was not possible to distinguish for any enhancing effect due to 

the fact that the wild-type mini exon 12 is fully included in the spliced transcript (as 

opposed to only 80% inclusion of the full length exon 12) (Figure2.3 B). Interestingly, in 

the case of the two mouse-specific synonymous substitutions, T40C and C52T, the mini

exons carrying these mutations were completely unaffected. This observation contrasts the 

complete inhibitory effect of these two substitutions in the full CFTR exon 12 minigene 

context (Fig. 2.1). Notably both T40C and C52T are naturally present in the mouse CFTR
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exon 12 sequence. One possibility was that their silencing effect in the mini-exon 12 

context might have been influenced by mouse-specific splicing factors. In fact, it has been 

previously shown that in many genes, splicing can also be regulated in a tissue specific as 

well as in a species specific manner due to presence of distinct tissue specific factors 

(Caceres et al., 1994; van der Voort et al.; Venables et al., 2004). For example, T-STAR is 

one o f three members of the SAM68 (SR) family protein. Human T-STAR, like its rodent 

orthologues can influence splice site choice and that human, but not mouse, T-STAR- 

dependent alternative splicing is modulated by SIAH1. SIAH-mediated down regulation of 

alternative splicing may be an important developmental difference between highly 

conserved T-STAR proteins (Venables et al., 2004).

2.4 Testing the eventual presence of mouse cell-line specific effects of mouse

substitutions in human CFTR exon 12.

In order to evaluate, if  there is any species specific factor present in mouse but absent 

in humans that can modulate the splicing of T40C and C52T, the full CFTR exon 12 

minigene constructs were transfected in mouse Hepatocyte cell line N-Muli. As shown in 

Figure 2.4, however, transfection o f these constructs in the mouse cell line didn’t make any 

difference with regards to exon skipping and the result was exactly similar to the one 

observed in HeLa cells (Fig. 2.1). This suggests that there are no mouse specific factors, 

which can affect the way these two mutations act on the CFTR exon 12 splicing process.
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Figure 2.4: T ransient transfection to mouse Hepatocyte cells of the mouse base 

substitutions in hum an context. (A). Schematic diagram of CFTR Ex 12 constructs used 

in the analysis. The vertical superimposed arrows indicate the locations of two synonymous 

mouse substitutions. (B) Along with the human CFTR 12 WT, T40C and C52T constructs 

were transfected in to the mouse hepatocyte cell line N-Muli. The amplified RT-PCR 

products were stained with ethidium bromide are shown in the bottom panels. Spliced 

transcripts are shown with Ex. 12+ for inclusion and Ex. 12- for exclusion of the exon.

2.5 Identifying the trans-acting factors whose binding may be affected by 

pathological missense mutation (G48C and A51T).

Previously, only the effects of splicing factor hnRNP Al and SF2/ASF 

overexpression were shown to affect CFTR exon 12 splicing in general (Pagani et al., 

2003c).

For the scope of my thesis, therefore, it was decided to better characterize these

observations in terms of binding to the CERES2 element of a wider range of splicing

factors. To achieve this, a pulldown system was used. This particular methodology has been

previously optimized in our lab to identify specific RNA binding proteins in a variety of

exonic/intronic contexts (Buratti et al., 2004a; Buratti et al., 2001) and is described in detail

in the Material and methods section. Briefly, in this pulldown affinity assay the RNA of

interest was bound to adipic acid dehydrazide beads and was incubated with nuclear extract

to allow the binding of all interacting proteins. Following extensive washings, the beads
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were collected and the bound proteins were separated using SDS-PAGE electrophoresis. In 

order to normalize the pulldown assay, as well as a positive control for the experimental 

procedure, all the RNAs bound to the beads were also tagged with (UG) 8 tails. TDP43 has 

been previously shown to be very specific for UG repeats (at least 6 repeats) (Buratti and 

Baralle, 2001). Once these RNAs carrying (UG)s tails were incubated in NE, the TDP43 of 

the HeLa NE were bound to the 3’ end of the RNA tail. Further in the elution process o f the 

pulldown (see details in 4.30 of materials and methods section) these proteins were also 

harvested along with the other proteins. This additional binding of TDP43 allowed us to 

measure each RNA bound protein band intensity in westemblot analysis and normalize 

them according to the binding levels of the TDP-43 protein of that particular experiment 

(Fig.2.5A).
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Figure2.5: Pulldown analysis of SR proteins for pathological substitutions. Western 

blot analysis o f recovered proteins after pulldown o f two naturally occurring non-sense 

CFTR mutations (G48C/G576A and A51T/Y577F) compared with CFTR Ex 12 wild type. 

In vitro transcribed RNA was used for analysis. (A). Transcribed RNA sequences used for 

pulldown analysis with the mutations (underlined). A (UG)8 repeat specific for TDP43 was 

added at the 3’end of each RNA to normalize the data after western blot. (B) Affinity assay 

for binding of the following SR factors: SRp75, SRp55, SRp40, SC35, Tra2(3 and 

SF2/ASF. Detection o f all these proteins was performed by Western blot using specific 

antibodies. (C) Three independent experiments for SF2/ASF have been quantified relative 

to TDP-43 using an Ultro Scan XL, Pharmacia LKB - laser densitometer at 633nM 

wavelength according to manufacturer's instructions and presented.

To perform this experiment, I have used in vitro transcribed RNA sequences equal

in length to the wild-type mini CFTR exon 12 sequence and two versions of this sequence

carrying the two missense mutations G48C and A51T. Using Western blot, I then tested all

these RNAs for binding to the following proteins: SRp75, SRp55, SRp40, SF2/ASF and
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Tra2b (Figure 2.5) and hnRNP U, PTB, hnRNP H, DAZAP1, hnRNP C2, A l, A2 (Figure 

2 .6).

The result of this analysis shows that there was no binding for the hnRNP H and 

PTB, either in its wild-type form or carrying the G48C or the A51T mutations. Similarly, 

no binding could be observed for SRp75, SRp40, SC35, and Tra2b proteins in the same 

stretch of sequences. On the other hand, hnRNP U, hnRNP A l, hnRNPA2, DAZAP1 and 

SRp55 could bind all these sequences to approximately the same levels, irrespectively of 

the presence or absence of mutations.
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Figure 2.6: Pulldown analysis of hnRNPs for pathological substitutions. Western blot 

analysis of recovered proteins after pulldown of two naturally occurring non-sense CFTR 

mutations (G48C/G576A and A51T/Y577F) compared with CFTR Ex 12 wild type. 

Previously mentioned in vitro transcribed RNA was used for this analysis. (A) Affinity 

assay for binding of the following hnRNPs: U, PTB, H, DAZAP1, C2, A l and A2. 

Detection of all these proteins was performed by Western blot using specific antibodies. (B) 

Three independent experiments for hnRNP C2 have been quantified relative to TDP-43 

using an Ultro Scan XL, Pharmacia LKB - laser densitometer at 633nM wavelength 

according to manufacturer's instructions and presented.
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Interestingly, however, two factors displayed a differential binding ability in the wild- 

type sequence with respect to these mutations.

In particular, for SR proteins the most prominent change could be seen for the 

SF2/ASF protein that bound more efficiently to the A51T mutant with respect to the wild- 

type sequence. In addition, this factor also showed less affinity to the G48C mutant 

compared to the wild-type (Figure 2.5).

In case o f the hnRNPs, the hnRNP C2 factor was observed to bind less efficiently to 

the A51T mutant with respect to wild-type.

Taken together, these SR and hnRNP profiles were very much consistent with the 

observed minigene results. In fact, the G48C mutation that caused exon skipping in the 

reduced context displayed a lower binding efficiency for SF2/ASF (a positive splicing 

factor in most contexts). Whereas in A51T the SF2/ASF bound more and hnRNPC2 (a 

negative splicing factor (Venables et al., 2008) marginally less compared to the wild-type.

2.6 Identifying the trans-acting factors whose binding is affected by synonymous 

substitutions (T40C, A49G, and C52T).

Next we investigated the three synonymous mutations using as template the sequence 

shown in Fig. 2.1 A. In these cases, the pulldown profiles showed a similar result to that 

observed with the non-synonymous mutations. In fact, no binding to any RNA could be 

observed for SRp75, SRp40, SC35, and Tra2b (Figure2.7) and hnRNP H and PTB 

(Figure2.8).
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(A)
32 CERES2

WT UUAGACUCUCCUUUU

67

T40C UUAGACUCUCCUUUU 

A49G UUAGACUCUCCUUUU 

C52T UUAGACUCUCCUUUU

3GAUAC CUAGAUGUUUUAACA- 

3GAUACCUAGAUGUUUUAACA- 

GfiUAC CUAGAUGUUUUAACA- 

GAUAj, CUAGAUGUUUUAACA-

-(UG)8

-(UG)8

-{UG)8

-{UG)8

(B)

±

• ----------------

SRp75

SRp55

SRp40

SC35 

Tra2 (3 

SF2/ASF

TDP43
(C) SF2/ASF

Figure 2.7: Pulldown analysis of SR proteins for synonymous substitutions. Affinity 

pulldown performed for the three synonymous mutations (T40C,A49G and C52T) in CFTR 

exon 12. (A). Transcribed RNA sequences used for pulldown analysis along with their 

mutations (underlined). A (UG)8 repeat specific for TDP43 was added at the 3’end of each 

RNA for pulldown normalization. (B) Affinity assay for binding of the following SR 

factors: SRp75, SRp55, SRp40, SC35, Tra2[3 and SF2/ASF. Detection of all these proteins 

was performed by Western blot using specific antibodies. (C) Three independent 

experiments for SF2/ASF have been quantified relative to TDP-43 using an Ultro Scan XL, 

Pharmacia LKB - laser densitometer at 633nM wavelength according to manufacturer's 

instructions and presented.

Only in case of the A49G mutation less binding of the SF2/ASF protein was

observed than in the wild-type sequence, a situation like G48C and consistent with the

observation that also this mutation has an inhibitory effect on CFTR exon 12 splicing both
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in the full and the mini-context. Interestingly, no changes could be observed in the binding 

profiles of RNAs carrying the T40C and C52T substitutions with respect to the wild-type 

sequence. In this respect, the observation that no changes could be observed for any of 

these proteins was also consistent with the functional assays demonstrating that these two 

substitutions were neutral in the human mini context (see Figure2.3).

(A)

hnRN PU

PTB

hnRNPH

DAZAP1

hnRNP C2

hnRNP A l

hnRNP A2

TDP43

BH
r*“>r+\O

QO

X)

1 
X*

2 

LS
I

as

(B) hnRNP C2

Figure 2.8: Pulldown analysis of hnRNPs for synonymous substitutions. Affinity 

pulldown performed for the three synonymous mutations (T40C,A49G and C52T) in CFTR 

exon 12. Previously described in Figure 2.7 (A), in vitro transcribed RNA sequences used 

for this pulldown analysis along with their mutations (underlined). A (UG)8 repeat specific 

for TDP43 was added at the 3’end of each RNA for pulldown normalization. (A) Affinity 

assay for binding of the following hnRNPs: U, PTB, H, DAZAP1, C2, Al and A2. 

Detection of all these proteins was performed by Western blot using specific antibodies. (B) 

Three independent experiments for hnRNP C2 have been quantified relative to TDP-43 

using an Ultro Scan XL, Pharmacia LKB - laser densitometer at 633nM wavelength 

according to manufacturer's instructions and presented.
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2.7 V alidating the role played by SR factors in CFTR  exon 12 splicing.

As previously shown in the pulldown assays (Fig. 2.5 and 2.7), two positive splicing 

factors SRp55 and SF2/ASF were found to interact with wild-type and mutant CERES2 

regions of CFTR exon 12. In order to validate the functional role played by these two SR 

proteins in splicing, we tested the effects of their overexpression for the G48C and A49G 

minigenes of mini-exon 12 sequences. Together with SF2/ASF and SRp55, we also tested 

SC35 (as an example of a SR protein not interacting with the mini exon). The empty pCG 

plasmid was also used as a negative control.

(A)
G48C m ini A49G  m ini

Exl2 ♦
Exl2 •

SF2/ASF
SApSS

SC35
pCG (em pty)

< -  297 bp 
2S6 bp

inclusion 5% 5 5 *  3554 SX SX

9Ex 12 *
Ex 12 ■

SF2/ASF
SftpSS

SC35
pCG (empty)

297 bp 
2S6 bp

Inclusion 0*  SOX 25X OX

C ERES del m ini

SF 2/ASF 

SRpS5

+ - SC3S
+ pCG (empty)

Figure 2.9: Effect of overexpression of SR proteins in G48C and A49G m utation.

(A). Analysis showing the overexpression of SR proteins (SRp55, SC35 and SF2/ASF) to 

rescue G48C and A49G CFTR exon 12 mutant minigenes in their mini context. In the case 

of the CERESdel mini construct, 6 nt of CERES2 (GGATAC) was removed. The amplified 

RT- PCR product of the spliced/unspliced mRNAs are stained using ethidium bromide and 

run in an agarose 1.8% gel. Exon inclusion and skipping are shown by Exl2+ and Exl2-, 

respectively.

The results shown in Figure 2.9 demonstrate that both SF2/ASF and SRp55 

consistently have a higher enhancing effect on the mini exon 12 inclusion levels than SC35,
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suggesting that direct interaction provides an advantage over the well known generalized 

exon inclusion enhancing effect of SR proteins. Interestingly, however, the enhancement 

observed for the two mutants was not the same, with A49G being less responsive especially 

for SRp55 overexpression than G48C. Finally, it should be noted that deletion of the central 

CERES2 region also abolished completely the response of the mini-exon 12 to all SR 

protein overexpression, demonstrating that their action in the mini-exon context is mediated 

only through the CERES2 sequence. However, we haven’t measured the expression level of 

our exogenous SR proteins after transfection due to the limitation of differentiating them 

from the endogenous protein in a westemblot analysis. This is why in the future tagging the 

exogenous SR proteins (i.e. Flag or Myc) and correlating them according to the exon 

inclusion level will be required to strengthen the evidence.
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2.8 Identification of the domains of SF2/ASF involved in affecting CFTR  exon 12 

inclusion levels.

In addition to the experiments described above, in order to rule out the non-specific 

effect of SF2/ASF overexpression we also performed overexpression analysis with a series 

of SF2/ASF deletion mutants.

(A)
G48C mini

Etx !2  ♦
tx !2  -

Inclusion s%  S5X  30% SX SX

SF2/ASF
ARRM1
ARRM2
ARS

•<- 297 bo Exl2 ♦
256 bp Exl2 -

Inclusion

A49C mini

SF2/ASF
ARRM1
ARRM2
ARS

< -  297 bo 
< -  2S6 bp

Inclusion 0X SOX 30X

CERES del mini

SF2/ASF
+ . . ARRM1

+ .  ARRM2
+ (IRS

Figure 2.10: Effect of overexpression of A SF2/ASF in G48C and A49G mutation.

(A). Analysis showing the overexpression of wild-type SF2/ASF and a series of SF2/ASF 

mutants (ARRM1, ARRM2 and ARS) in the presence CFTR exon 12 mutant minigenes in 

their mini context. The amplified RT- PCR products of the spliced/unspliced mRNAs are 

stained using ethidium bromide and run in an agarose 1.8% gel. Exon inclusion and 

skipping are shown by Exl2+ and Exl2-, respectively.

In this experiment, mutants lacking either the RRM2 region (ARRM2) or the RS

domain (ARS) could not enhance inclusion (Figure 2.10). The positive effect seen in case

of SF2/ASF carrying the ARRM1 deletion suggested that only RRM2 was the RNA

interacting domain of this protein in the case of CFTR exon 12. This is consistent with the

previous observation where it has been shown that the RRM2 of the SF2/ASF is
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responsible for its enhancing ability (Chiodi et al., 2004). Taken together, the results of this 

overexpression experiment further supports the specific role played by SF2/ASF binding to 

the CERES2 sequence.

2.9 Validating the role played by hnRNP factors in CFTR exon 12 splicing.

Several hnRNP proteins identified in our screening analysis (such as A l, A2, C and 

DAZAP1) are well known for being capable of modulating the pre-mRNA splicing process 

in many exons (Goina et al., 2008; Venables et al., 2008). In order to test their functional 

role in CFTR exon 12 splicing we first attempted a similar approach used for the SR 

proteins (overexpression). However, no satisfactory results were obtained due to their 

abundance in the nucleolus (data not shown). For this reason, in order to test the functional 

effects o f the hnRNP interactors found in pulldown analysis, we performed individual 

siRNA-mediated knockdown of each of these well known hnRNP proteins.
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(A)
G-48C mini A49G mini

siRNA hnRNPAl 

.  siRNA hnRNPA2 

+ * siRNA hnRNPC

+ JiRNA DA2AP1

Inclusion Inclusion

siRNA hnRNPA2 

SiRNA hnRNPC 

♦ siRNA 0AZAP1

CERES del mini

siRNA hnRNPAl 

SiRNA hnRNPA2 

sRNAhnRNPC 

siRNA 0AZAP1

2 9 7  b o
256 opEx 1 2 -

(B)

siRNA + sRNA ♦ sRNA * siRNA +

hnR N P A l hnRNPA2 nnRNPCl/C2 CAZAP1

Tubulin T ubulin T ubu lin Tubu n

Figure 2.11: Effect of hnRNPs depletion in G48C and A49G mutation. Analysis 

showing that depletion of hnRNP A l in HeLa cells rescues CFTR exon 12 in mini context, 

irrespective of the G48C and A49G mutations. HeLa cells were treated (shown as +) with 

siRNAs against hnRNP A l, A2, C and DAZAP1 and then were transfected with minigene 

plasmids. Luciferase siRNA treated cells have been used as a control (A) RT PCR of the 

spliced product on 1.8 % agarose gel stained with ethidium bromide. CERES2 Del 

minigene was also used for transfection as a control where the mutations are not present 

due to 6nt deletion (B) Endogenous levels of hnRNP A l, A2, C, DAZAP1 siRNA treated 

(shown as +) and luciferase treated (shown as -) HeLa cells, tubulin control were measured 

by western blotting 48 h after transfection.

As shown in Figure 2.11, the only siRNA knockdown that could rescue both G48C 

and A49G mini-exons inclusion was hnRNP AL Most importantly, knockdown of this 

protein had no effect on the CERESdel minigene, demonstrating that rescue ability in the
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mini exon 12 context was dependent on the presence of this sequence. However, no effect 

could be detected following the hnRNP A2, C2 and DAZAP1 knockdowns. This was rather 

surprising considering that the general role played by these proteins (especially hnRNP A2) 

in the regulation of splicing control. For this reason, simultaneous depletion of hnRNP A l, 

A2, C and DAZAP1 were carried out in different combinations to rule out any 

combinatorial effect between these proteins. However, none o f these experiments could 

confirm their role in the splicing regulation of CFTR exon 12 (data not shown). It should be 

noted, however, that these results do not necessarily mean that only hnRNP A l can 

modulate CFTR exon 12 splicing. It may well be, in fact, that some of these proteins may 

play an active role in the presence of reduced amounts of positive factors (ie. SF2/ASF or 

SRp55). Moreover, siRNA against DAZAP1 failed to deplete the protein completely in 

HeLa cells. Complete depletion o f DAZAP1 or depletion in combination with hnRNP 

A1/A2 and C2 might have an effect on splicing of CFTR exon 12. Additional experiments 

should be carried out to further clarify this issue.

2.10 Recovery of the T40C and C52T inhibitory action through the add back of

human and mouse flanking CFTR exon 12 sequences.

As discussed in Figure 2.3, both T40C and C52T substitution had no down regulatory 

effect in the mini exon context, leading to the hypothesis that either or both human flanking 

sequences were involved in mediating their effect on human CFTR exon 12. In order to 

better characterize this issue the human deleted sequences were added back selectively both 

in their human and mouse forms.
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(A)

Human WT GCAGTATACAAAGATGCTGATTTGTATTTATTAGACTCTCCTTTTGGATACCTAGATGTTTTAACAGAAAAAGAAATATTTGAAAG 
Mouse WT GCAGTATAlAAAGATGCTGATTTGTAMTATTAGA§rC|CCTTTTGGATA|CTAGATGTTTliAC|GAA|AA|AAirATTTGAAAG

A GCAGTATACAAAGATGCTGATTTGTATTTATTAGACTCTCCTTTTGGATACCTAGATGTTTTAACA AAG
B GCAGTATACAAAGATGCTGATTTGTATTTATTAGACTCjCCTTTTGGATACCTAGATGTTTTAACA AAG

C gcagtatacaaagatgctgatttgtatttattagactctccttttggata | ctagatgttttaaca AAG

D gcagtata| aaagatgctgatttgtaB tattagactctccttttggatacctagatgttttaaca  AAG
E GCAGTATA!AAAGATGCTGATTTGTABTATTAGACTC|CCTTTTGGATACCTAGATGTTTTAACA AAG
F GCAGTATAjAAAGATGCTGATTTGTA®rATTAGACTCTCCTTTTGGATA|CTAGATGTTTTAACA AAG

(B)

B C 0  E

Dtl2 * 3 2 S ts

Figure 2.12: HeLa cell specific splicing assays of add back constructs (A to F). (A).

Schematic diagram of the wild-type and hybrid mouse and human CFTR exon 12 

sequences used to construct a series of minigenes (labeled A to f) were used for 5’ 

regulatory sequence identification. Nucleotide differences in the mouse sequence with 

respect to the human are boxed in red. Blank spaces in the alignment represent the 

sequences removed form the exon. (B). Results of the transfection analysis o f the 

minigenes labeled A to F following transfection in HeLa cells. Exon inclusion is shown by 

Ex 12+ and skipping Ex 12-. RT-PCR samples are stained with ethidium bromide and run on 

a 1.8% agarose gel. (C) A schematic presentation of ESE and ESS distributions, where 

green box presents ESE and red box presents ESS.

As shown in Figure 2.12, the wild type exon 12 constructs that contain the human 

and mouse upstream regions vice-versa displays full inclusion (construct A). However, 

when the upstream human sequence was inserted back at the presence of the T40C and
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C52T mutations the inhibitory effect could be detected (constructs B and C respectively). 

No skipping could also be detected when the mouse upstream sequence was inserted back 

in the wild-type human mini-exon context (construct D). Interestingly, this inhibitory effect 

could also not be detected when the added back upstream sequence was the mouse CFTR 

exon 12 sequences but in the presence of the T40C and C52T mutations (constructs E and 

F).

(A)
G GCA 

H GCA 

I GCA 

J GCA 

K GCA 

L GCA

(B)

TTAGACTCTCCTTTTGGATACCTAGATGTTTTAACAGAAAAAGAAATATTTGAAAG

TTAGACTCjCCTTTTGGATACCTAGATGTTTTAACAGAAAAAGAAATATTTGAAAG

TTAGACTCTCCTTTTGGATAfCTAGATGTTTTAACAGAAAAAGAAATATTTGAAAG

TTAGACTCTCCTTTTGGATACCTAGATGTTTTAACAGAA|AAlAA§rATTTGAAAG

TTAGACTC|CCTTTTGGATACCTAGATGTTTTAACAGAA|AA|AA§rATTTGAAAG

TTAGACTCTCCTTTTGGATAiCTAGATGTTTTAACAGAA|AA|AA§rATTTGAAAG

G H I

E*12 
Ex 12 •

m o o

< -  2 *  Op

(C)
G  I

H I 
I
J c
K C 
L C

[ 1

Figure 2.13: HeLa cell specific splicing assays of add back constructs (G to H). (A).

Schematic diagram of the hybrid mouse and human CFTR exon 12 sequences used to 

construct a series of minigenes (labeled G to L) were used for 3' regulatory sequence 

identification. Nucleotide differences in the mouse sequence with respect to the human are 

boxed in red. Blank spaces in the alignment represent the sequences removed form the 

exon. (B). Results of the transfection analysis of the minigenes labeled G to L following 

transfection in HeLa cells. Exon inclusion is shown by Ex 12+ and skipping Ex 12-. RT- 

PCR samples are stained with ethidium bromide and run on a 1.8% agarose gel. (C) A 

schematic presentation of ESE and ESS distribution, where green box presents ESE and red 

box presents ESS.
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A similar situation to that observed with the upstream regions of CFTR exon 12 

could also be observed with the downstream regions. In fact, Figure 2.13 shows that wild- 

type exon 12 sequences with the added-back human and mouse downstream region display 

full inclusion (constructs G and J, respectively). However, when T40C and C52T are 

inserted back the inhibitory effect could be detected only in the constructs with the human 

but not with the mouse downstream sequence (compare constructs H-I with K-L).

Taken together, these results suggest that the human and mouse flanking regions 

have different splicing regulatory properties. In human CFTR 12, both upstream and 

downstream flanking sequences are predominantly inhibitory, whilst the mouse upstream 

and downstream sequences seem to enhance exon recognition. This assumption is 

graphically presented in both Figure 2.12 and Figure 2.13 C.

(A)

M GCA TTAGACTCTCCTTTTGGATA|CTAGATGTTTTAACAGAA|AAGAAATATTTGAAAG

N GCA t t a g a c t c t c c t t t t g g a t a 1 c t a g a t g t t t t a a c a g a a | aa1 a a a t a t t t g a a a g

O  GCA TTAGACTCTCCTTTTGGATAiCTAGATGTTTTAACAGAA|AAGAAfrATTTGAAAG

(B)
M N O

rnduWon 100% 100H

Figure 2.14: HeLa cell specific splicing assays of add back constructs (M to O). (A).

Schematic diagram of the hybrid mouse and human CFTR exon 12 sequences used to 

construct a series of minigenes (labeled M to O) in aspect of identification of the specific 

nucleotide responsible ESE activity. Nucleotide differences in the mouse sequence with 

respect to the human are boxed in red. Blank spaces in the alignment represent the 

sequences removed form the exon. (B). Results of the transfection analysis of the 

minigenes labeled M to O following transfection in HeLa cells. Exon inclusion is shown by 

Ex 12+ and skipping Ex 12-. RT-PCR samples are stained with ethidium bromide and run on 

a 1.8% agarose gel.
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With regards to the upstream CFTR exon 12 regions in humans and mouse it should 

' be noted that the splicing-enhancing ability o f mouse CC at positions 28 and. 29 with 

respect to the TT nucleotides in human positions 28 and 29 was previously described 

(Pagani et al., 2005). Indeed, in the presence of the C52T substitution it was already 

reported that a T28C substitution alone could recover exon inclusion up to 90%, thus 

disrupting the silencing effect of human upstream sequence. Therefore, in this case, the 

enhancing ability of the mouse upstream sequence was well characterized.

In order to better characterize the mouse polypurinic GAAGAACAAG motif present 

in the downstream region (Figure 2.14) we then performed a further mutation analysis. In 

these experiments, the results that could be noted were that the majority of substitutions 

that tended to restore the mouse sequence could successfully resist the inhibitory action of 

the C52T substitution (constructs N -0  as opposed to M).
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2.11 Evidence of ESEs in both of flanking sequence.

In order to further validate the hypothesis that the flanking upstream and downstream 

mouse sequences act as enhancers in their native context we cloned the entire mouse CFTR 

exon 12 sequence in the pTB minigene system (Figure 2.15).

(A)
mCFTR 

exon 12

Mouse WT AGCAGTATA|AAAGATGCTGATTTGTABTATTAGA|TC|CCTTrrGGATAicTAGATGTTTT|\CiGAA|AA|AAirATTTGAAAG 

A AGCAGTATAlAAAGATGCTGAT TTAGAfrc|CCTTTTGGATA|CTAGATGTTT?|AC|GAA|AAfAA#rATTTGAAAG

B AGCAGTATA|AAAGATGCTGATTTGTA®TATTAGAfrc|cCTTTTGGATAiCTAGATGTTTT|ACl fTATTTGAAAG

C AGCAGTATA|AAAGATGCTGAT TTAGAlTClCCTTTTGGATAlCTAGATGTTTTlACi fTATTTGAAAG

(B) (C)

SO

c

Figure 2.15: HeLa cell specific splicing assays of mouse CFTR  ex 12 and ESEs deleted 

constructs. Analysis o f predicted ESEs in Mouse CFTR exon 12. (A) Mouse sequence is 

aligned along with Fluman CFTR Ex 12. Blank space in the alignment is for sequence 

deleted in the minigene. Sequence A, B and C is nucleotide deletion in Mouse CFTR ex 12 

spanning from 21 to 30, 66 to 75 and both sequence deletions respectively. (B) Mouse 

CFTR exon 12 minigenes (A, B and C) were transfected in HeLa cells for splicing assay. 

Amplified RT PCR products of the splicing assay is presented on 1.8% agarose gels. Labels 

on the top of the gel (A, B and C) represents its correspondent sequences as presented at the 

top (Figure 2.15 A). Exon inclusion is shown by Exl2 + and skipping Exl2-. (C) Three 

independent experiments were quantified and presented.

82



In the mouse CFTR exon 12 sequence then the upstream (23-3 lnt) and downstream 

(68-76nt) were deleted either separately or in combination (Figure2.15 A mutants A-C). 

The ESE activity at the functional level reported in Figure2.15 B showed that deleting only 

the upstream sequence (mutant A) had no effect of mouse CFTR exon 12 inclusion levels. 

On the other hand, deletion o f the downstream sequence (mutant B) resulted in 

approximately 15% exon skipping. Interestingly, if  both regions were deleted at the same 

time (mutant C), the levels of exon skipping increased to 25%, indicating that also the 

polypurinic downstream sequence can function as an ESE once the upstream ESE sequence 

is absent.

2.12 7>a#fs-acting factors binding to the human and mouse 17-38 and 63-81

sequences.

It is well known that the ESEs exert their effect by interacting with specific trans 

acting factors (Graveley, 2000). Based on the deletion mutants in mouse CFTR exon 12, it 

was therefore expected that the mouse flanking sequences would bind a different set of 

protein compared to humans. For this reason, we selected the 17-38 and 63-81 mouse and 

human regions (Figure2.16 A) to perform pulldown assays (as previously described for the 

CERES2 region) with synthetic RNA oligos.

i
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(A)

1 18 39 64 82 87
Human WT AGCAGTATACAAAGATGCTGATTTGTATTTATTAGACTCTCCrrrrGGATACCTAGATGTTTTAACAGAAAAAGAAATATTTGAAAG

Mouse WT AGCAGTATA|AAAGATGCTGATTTGTASTATTAGAtrC|CCTTTTGGATA|CTAGATGT7TT|AC|GAA|AAiAAtrATTTGAAAG

Mouse 18-39/64-82 CUGAUUUGUAUUUAUUAGACUC AACAGAAAAAGAAAUAUUU

Human 18-39/64-82 CUGAUUUGUA®UAUUAGA§UC |AC|GAA|AA^AA^JAUUU

(B)
*

0<F
.V 3 '

&

^ -------------------- SF2/ASF
V

i 5Rp75

SRp55

SRp40 -  —

SF2/ASF

SRp75

SRp55

SRp40

—  — hnRNP A l

hnRNP U -------------------------------

hnRNP A l

hnRNPU

Figure 2.16: Pulldown analysis for trans-acting factors at the flanking SREs of mouse 

and hum an CFTR  ex 12. Comparative analysis o f Human and Mouse splicing factor 

affinity. (A) Both Mouse and Human synthetic RNA Sequences are positioned under whole 

exon sequence. Mouse distinct nucleotides compared to human are labeled with red boxes. 

RNA oligos were immobilized with adipic acid dehydrazide-agarose beads and used for 

affinity purification. (B) Both Human and Mouse CFTR exon 12 sequence spanning from 

17 to 38 were comparatively analyzed for splicing factors. Harvested proteins were targeted 

for SR proteins (SRp 75, SRp 55, SRp 40, SF2/ASF) in western blot analysis. Membrane 

was later probed with hnRNP Al and U antibody. (C) Similar comparative analysis for 

splicing factors was done for both Human and mouse CFTR exon 12 sequences spanning 

from 63 to 81 and normalized against hnRNP Al and hnRNP U instead of TDP43.

The Western blot analysis to check for SR protein binding showed that both mouse 

sequences could bind SF2/ASF, SRp75, and SRp55 more efficiently than the respective 

human sequences. In addition, mouse nucleotides 64-82 are also capable of binding SRp40
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whilst the human 64-82 sequences could not (Figure 2.16 B). With regards to hnRNP 

protein binding, the recognition with antibodies against hnRNP proteins A l and U showed 

that both these factors could bind equally well with the mouse and human sequences, 

substituting TDP-43 as a pulldown and loading control (these oligos were synthetic 

sequences and lacked the UG-terminal tail).

2.13 Possible Jraws-acting factor binding to the human 17-38 ESS sequences.

Unfortunately, selective candidate approach (pulldown followed by western blot 

analysis) did not allow us to detect trans-acting factors that might be responsible for the 

ESS activity in human 18-39 and 64-82 sequences. The reason probably lies in the fact that 

using this approach only a fraction of potential candidates can be tested for, as there are 

many more potential known or unknown proteins that can be interacting in this region. In 

addition, the pulldown assays were checked in a comassie stained gel to look at the 

complete protein profile but unfortunately, again, no differences could be detected (data not 

shown). In order to find the trans acting factor binding in both human ESSs, therefore, the 

synthetic RNA oligos were labelled with p32, incubated in NE at splicing condition, cross 

linked by UV, and finally separated in SDS-PAGE gel (without being subjected by RNAse 

treatment as not to remove the 5' radioactive phosphate). Using this experiment, we 

therefore wanted to check all direct interactions of the 18-39 and 64-82 sequences with 

nuclear extract proteins.

In our UV crosslinking experiments there were no visible difference in case o f 64- 

82 sequences (data not shown). However, a band of 32kD was detected in case of 18-39 

sequence. This suggests that there is a factor of more or less 25 kD (after deducting 7 kD of 

oligo size) interacting with human ESS directly. Competition with unlabeled mouse oligos 

confirmed the specificity of the factor that has not yet been identified.
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(A)

Human WT 
Mouse WT 
Mouse 18-39 

Human 18-39

1 18 39 64 82 87
a g c a g t a t a c a a a g a t g c t g a t t t g t a t t t a t t a g a c t c t c c t t t t g g a t a c c t a g a t g t t t t a a c a g a a a a a g a a a t a t t t g a a a g

AGCAGTATA|AAAGATGCTGATTTGTAHTATTAGAfTC|CCTTTTGGATA|CTAGATGTTTT|AC|GAA|AA|AA|rATTTGAAAG

CUGAUUUGUAUUUAUUAGACUC

CUGAUUUGUAHUAUUAGA|UC

Human 18-39 P32 
Labeied

Mouse 18-39 P32 
Labeled

Cold Mouse Oold Human 
?end 3iend

Cob Human Cob Mouse 
3'end 3'end

175 kD

83 kD

62 kD

47 kD

32 kD

25 kD

Figure 2.17: UV crosslinking analysis of hum an and mouse 17-38 sequences. (A) UV

crosslinking analysis of interacting proteins, compared between human and mouse CFTR 

Ex 12 sequence (18-39 nt). Used Mouse and Human synthetic RNA Sequences are 

positioned under whole exon sequence. Mouse distinct nucleotides compared to human are
32

labeled in red box. Both Mouse and Human synthetic RNA oligos were labeled with y- P- 

ATP, incubated in NE and separated in a 10% SDS gel.
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3 Discussion

Historically, in genotypic screening studies, the pathologic effect of an apparently 

benign polymorphism such as codon neutral variations that did not change the amino acid 

sequence were hardly assessed. Indeed only small subset o f apparently harmless SNPs were 

referred to as disease-causing mutations but these were only based on phenotypic 

correlation. However, the functional impact of these inherited variations within the 

population and* their potential association with the disease often remained unclear. More 

recently, it has been shown that apparently harmless nucleotide changes can substantially 

affect a whole range o f different regulatory pathways such as interaction with microRNAs 

binding sites, RNA secondary structures, and especially splicing regulatory elements. In 

particular, with regards to splicing, it is now an obvious consideration that if  an apparently 

silent nucleotide change occurs in a splicing regulatory region, it is then likely to affect the 

splicing process of the exon by enhancing or inhibiting its inclusion in the final mRNA. At 

the molecular level, the effects of this mutation can be explained either by the disruption of 

a splice site or creation of a cryptic splice site or by creating/destroying the binding site for 

an auxiliary trans-acting factor (Cartegni et al., 2002). In our lab, these kinds of 

investigations have been performed in the past by focusing on alternative splicing events 

described to occur in exons 9 and 12 of the CFTR gene, in consideration its importance in 

the development of cystic fibrosis.

Cystic fibrosis is the most frequent genetic disease within the Caucasian population. In

particular, the inactivation o f a highly conserved region of the NBD1 of the CFTR protein

due to missense mutations (encoded also by exon 12 sequences) has been previously

described to be a causative agent of CFTR (Delaney et al., 1993). Interestingly, among all

the disease-causing mutations in CFTR exon 12, several have been shown to induce
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skipping of the exon through alterations in the splicing process (Hull et al., 1993; Strong et 

al., 1992; Zielenski et al., 1995). In this study, we have combined the functional study of 

CFTR exon 12 natural pathogenic mutations on the splicing process and complemented the 

results with a comparison between human and mouse CFTR exon 12 sequence. This sort of 

combinatorial analysis has facilitated not only the exploration of the splicing regulatory 

elements involved in the pathogenic mutation, but it has also provided an overview o f the 

dynamic interplay of various splicing regulatory elements during the course of evolution.

3.1 Regulation of CERES2.

So far, several checkpoints have been described in literature for splicing regulation 

and especially the extensive role played by ESEs and ESSs sequences (Chen and Manley, 

2009). In splicing, overlapping ESEs and ESSs are often illustrated as two independent 

functional events that act in concert rather than considering them as a potentially single 

sequence. Using systematic site directed mutagenesis experiments, we have previously 

identified a new kind of exonic regulatory element in CFTR exon 12 and described as a 

distinct class of cis element (Pagani et al., 2003). This element was designated as CERES 

(for Composite Exonic Regulatory Element of Splicing). Elements of this kind have the 

characteristic of possessing overlapping enhancer and silencer properties. In practice, what 

this means is that mutation o f single adjacent nucleotides (or in some cases even within the 

same nucleotide position) could either behave as having an enhancing or silencing effect on 

exon inclusion. In keeping with this complexity, splicing outcomes could not be predicted 

by available computer-assisted analysis of potential SR binding sites (ESEfinder) or 

enhancer/silencer elements (Rescue-ESE), further highlighting the functional distinction of 

CERES elements from “pure” enhancer and silencer sequences. Another distinguishing 

characteristic o f the CERES elements identified so far seems to be their strong dependence 

on the context for their proper function and, accordingly, the composite characteristics of 

these elements may also extend to the flanking nucleotides.
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In human CFTR exon 12, two such sequences have been previously characterized at 

the cis-acting level: CERES 1 (spanning nt. 12-18 of this exon) and CERES 2 (spanning nt. 

47-52). However, in these studies the characterization of these elements was limited to 

mapping their cis-acting sequences. Therefore, in order to understand the possible 

molecular mechanism of CERES mediated splicing regulation we carried out an analysis of 

the trans-acting factors that bind the CERES2 element localized in CFTR exon 12. Initially, 

the focus was placed on characterizing its binding properties with regards to the most 

common splicing regulators, and in particular to those belonging to either the SR or the 

hnRNP class of trans-acting factors. The RNA affinity purification assay shows that in 

wild type condition, human CFTR exon 12 CERES2 can bind to a considerable number of 

these factors, which may be rather surprising considering that the CERES2 comprises a 

very short stretch of RNA sequence (<10 nucleotides). The protein binding profile included 

SF2/ASF and SRp55 within the SR protein family, specific binding could be detected for 

hnRNP A/B family members with regards to the hnRNP proteins. Interestingly, differential 

interaction was identified for SF2/ASF and hnRNPC2 in case of pathological missense 

mutations (G576A /G48C and Y577F /A51T) and a synonymous substitution (A49G) that 

were already known to affect CFTR exon 12 inclusion levels. From a basic RNA binding 

protein point of view this finding highlights the great flexibility provided by RRM motifs 

that can recognize a few specific bases at selected positions using their main chains and 

then use side-chain interactions to stabilize binding (Auweter et al., 2006). This probably 

explains why the CERES2 sequence rather than functioning as a binding site for a single 

protein only can function as a kind of aggregation site for many o f these SR/hnRNP factors. 

Evidence of a functional interaction was confirmed only for SF2/ASF, SRp55, and hnRNP 

A l. However, it should be noted that these experiments were performed in a severely 

reduced context (mini-exon 12) and that in a more natural setting many of the additional 

binding of proteins might be able to play a role. Moreover, using our approach we have 

tested only the most common splicing regulatory proteins and hence cannot rule out the
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presence of additional yet unknown factors that might also contribute to define/hinder 

CFTR exon 12.

Ex 11 Ex 12 Ex 13

Loss

SF2

\n

Ex 13Ex 11

Figure 3.1: Regulation of CFTR  exon 12. Schematic representation of wild type CFTR 

exon 12 splicing regulation is shown at the top. CERES2 element in exon 12 seems to be a 

splicing-factor rich region in which relatively many different proteins are presumably 

competing with each other on a very narrow stretch o f sequence. Mutation into CERES2 

(green box) that causes loss of SF2/ASF, in effect, increases the antagonistic effect of 

hnRNPs locally. On the other hand two ESSs (red box) present in flanking sequence inhibit 

to this exon definition. In total, the entire exon 12 sequence participate in its definition.

Taken together, our results suggest that it is this crowding together of many

different factors (both positive and negative in terms of their effect on splicing) may

explain why single-point substitutions within these CERES sequences have such an

unpredictable effect on the exon recognition level. Therefore, and on a slightly wider scale,

the CERES sequence is a situation similar to what has already been found in several small

exons, such as S.MN exon 7, where trans acting factors (SF2/ASF and hnRNP A l) binding

to the same exonic region contribute to exon inclusion/skipping (Cartegni et al., 2006;

Kashima et al., 2007). Actually, this particular layer of Al and SF2 competition in SMN 7
90



is collaboratively effective with the support of adjacent downstream ESE, which exerts its 

effect by interacting with Tra2 (3 directly and then further interaction of other proteins with 

Tra2 ft (Hofmann et al., 2000; Hofmann and Wirth, 2002; Young et al., 2002). Indeed, for 

SMN  exon 7 it has been hypothesized the existence of an Extended Inhibitory Context 

(Exinct) that is caused by overlapping regulatory motifs not all o f which have still been 

characterized in depth (Singh et al., 2004). Other examples o f very complex systems 

include the human c-src exon N1 (Chou et al., 2000; Sharma et al., 2005), CD44 exon v5 

(Cheng and Sharp, 2006; Matter et al., 2002; Matter et al., 2000), HipK3 "T" exon 

(Venables et al., 2005), and chicken cTNT  exon 5 (Ladd et al., 2005) where numerous 

factors have been shown to participate in splicing regulation in close spatial proximity to 

each other. In conclusion, therefore, it is very probable that there are numerous CERES- 

type splicing regulatory sequences existing in human exons. Future research might 

therefore benefit from the identification o f these elements and comparative analyses of their 

behavior/protein binding profiles. The results, besides enhancing our current understanding 

o f the splicing process will also be very useful in improving bioinformatics approaches that 

attempt to predict splicing outcomes.

3.2 Comparative analysis of SREs at the flanking sequence of Human and Mouse

CFTR.

It is clear that alternative splicing is a balance between positive and negative elements 

once the entire exon definition is taken in account (Zhang et al., 2009). Breaking exons 

into small segments for plainness of exon definition may go against its entire natural 

counterparts. Moreover, search of the SREs existence of these numerous SRE sequences 

co-existing together on the same exon has very important implications with regards to 

evolutionary constraints in codon composition.

Our results have shown very clearly that the inhibitory effect on human CFTR exon 

12 inclusion levels of some synonymous nucleotide substitutions, T40C and C52T,
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naturally occurring in the mouse sequence, can be explained by the distribution of different 

splicing regulatory properties of the human and mouse flanking exonic sequences. In 

particular, human flanking sequence have been shown to contain ESS sequences in both the 

5'ss and 3'ss flanking regions whereas in mouse these sequences are ESEs. This finding is 

also supported by previous work where it was shown that the presence o f two mouse 

substitutions (28C and 29C) near the 3’ss alone can compensate for the loss o f CERES2 

caused by mutations like C52T and T40C (Pagani et al., 2005). In addition, in this study we 

have shown that both the mouse ESEs interact with some of the SR proteins (SRp55 and 

SF2/ASF in 17-38 and SRp 40, 55 and SF2/ASF in 63-81), a predominant nature of ESEs. 

Presently, although we couldn’t pull out any specific trans-acting factor for human ESSs 

but UV crosslinking experiments showed a direct interaction o f an unknown factor at the 

17-81 nucleotides stretch. In order to identify the trans acting factor as well as overcome 

this technical shortcoming, a mass spectrometry base sequencing o f the whole harvested 

proteins can be carried out after the pulldown (Schmidt et al. 2010).
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Figure3.2: Sequence comparison for SREs in different species.

Schematic comparison and conservation of the splicing regulatory elements (ESEs in green, 

ESSs in red, CERES 1 in violet and CERES2 in blue) in the Mouse, Ground Squirrel, 

Guinea pig, Rabbit, Cow, Pig, Horse, Lemur and Human CFTR exon 12 sequences based 

on our functional analysis. The comparison is done here is by correlating the functional 

data of this thesis, as well as the functional data available in the literature (Pagani et al., 

2005). In this comparison CERES 1 was conserved in all the nine species whereas CERES2 

carries C52T substitution in case mouse, cow and rabbit. The ESE at the upstream flanking 

sequences of the exon is present in all species apart from human. However, in case of 

guinea pig the C28T could be ESE or a neutral sequence because the T29C substitution in 

human exonic context can compensate with mutation like C52T (Pagani et al., 2005). 

Almost all the non synonymous changes (amino acids labeled in yellow) compared to 

human are centered in the downstream polypurinic ESE present in the mouse. These 

synonymous and non-synonymous substitutions created ESSs in guinea pig, rabbit, horse, 

lemur and human, whereas in cow, pig and ground squirrel possibly neutralized the ESE or 

created an ESS. However, the comparison shows that the CFTR exon 12 requires at least 

one enhancer to get included in the transcript. Moreover, nucleotide substitution can take 

place, as long the there is enough signal exon definition.

From an evolutionary point of view, by comparing the ESE, ESS, and CERES 

elements in different species, some important considerations can be made. Looking at the 

sequence comparison in Fig. 3.2, in fact, it can be hypothesized that the creation of the
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CERES2 element in CFTR exon 12 has relieved the selection pressure to keep the two ESE 

elements loosely localized in the 17-38 and 63-81 flanking regions that are present in the 

mouse sequence. Only after the creation o f CERES2 element these two regions could thus 

accumulate nucleotide substitutions that either weakened these elements (ie. in the Ground 

squirrel and Guinea pig 63-81 region, see Figure 3.2) or even changed them to functionally 

silencer sequences (in human 17-38 and 63-81). It is also interesting to note that a 

comparison of these sequence elements also in other species does not contradict the 

conclusions we have drawn from mouse versus humans. In fact, for example, both the cows 

and rabbit sequences that do not contain the CERES2 element have absolutely conserved 

ESE sequences. Of course, additional experiments will need to be performed before we can 

draw firm conclusions on this issue. Nonetheless, in our work, we show that an integrated 

analysis o f cis- and trans-acting factors binding to exonic elements can also provide a 

substantial wealth of information on potential evolutionary mechanisms.

3.3 Selection pressure on CFTR exon 12 sequence due to synonymous and non

synonymous substitutions.

The consequence of sequence evolution in splicing is usually considered more with 

the exonic regulatory elements rather than the tri partite splicing signals (Fairbrother et al., 

2004; Fairbrother et al., 2002; Wang et al., 2004; Zhang et al., 2009). Possibly the reason is 

that the splicing in metazoans is more dependent on the exonic definition rather than the 

Intronic signal and tends to keep the biased splice sites (although this is not exclusively 

constrained) and several of the trans acting factor have equally evolved over time (Ram and 

Ast, 2007; Wamecke et al., 2008). Moreover, dependency on the exonic sequence is a way 

o f avoiding large sets of amino acid changes (Wamecke et al., 2008). Several bioinformatic 

and comparative genomic approaches have been carried out to understand the role of 

exonic regulatory elements in evolutionary mechanisms (Chamary et al., 2006; Parmley et 

al., 2006; Parmley and Hurst, 2007b). Instead of being fully dependent o f in silico
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predictions, here in this study we took the initiative of understanding the effect of 

synonymous and nonsynonymous substitutions in exon selection by a wet lab approach in 

CFTR exon 12 (Fairbrother et al., 2004; Parmley and Hurst, 2007a). However, our result 

suggests that new genomic variants that are selected need to be compatible with the splicing 

process. This is especially true also for changes that should be neutral with regards to the 

coding capacity.

Selection towards codon optimization has been shown to act on silent sites in bacteria 

since a long time. Around 47% of silent substitutions in bacteria can be accounted for by 

codon usage whilst 14% by their distance from Ori C (Sharp et al., 1989). In bacteria, the 

basis of this selection appears to be the optimization of translation that is largely achieved 

by the use of codons for particular tRNAs that are most/least abundant or with certain 

binding characteristics. Of course, this may not be the only reason, and the potential also 

exist for silent selection to act on other features such as DNA folding or RNA secondary 

structures which may account for the remaining 39% of cases. In mammals, the evidence 

for any o f these kinds o f selection with respect to codon bias is more difficult to obtain and 

a few studies have tended to downplay this possibility (Eyre-Walker, 1991; Smith et al., 

1999) with the notable exception of the maintenance of conserved RNA secondary 

structures at the start o f mammalian genes (Nick and Hurst, 1999). However, a frequently 

used method for investigating sequence evolution was based on the Ka/Ks ratio (non 

synonymous/ synonymous) due to their correlation with protein function. Ka/Ks ratio in 

CFTR exon 12 is relatively high because synonymous changes are expected to be 

translationally silent. Comparative analysis within human and mouse CFTR exon 12 shows 

that a high large number of synonymous differences (9 positions within 87nt) are present 

but not all of them are silent in aspect o f splicing regulation. This sort of inappropriate 

Ka/Ks ratio has been also reported for alternatively spliced BRCA1 (Hurst and Pal, 2001). 

In fact, alternative exons in the alternatively spliced genes show higher Ka/Ks ratio, which 

indicates the importance of local segments of the gene (Xing and Lee, 2005). Moreover,



this observation is consistent with the genome wide analysis showing that most of the 

synonymous substitutions are ESE neutral but the substitutions that create or remove ESEs 

are less frequent (Carlini and Genut, 2006). Besides, in sequence evolution synonymous 

substitutions in ESEs were either counted as a loss of functional ESE or gain of a new ESE 

(Carlini and Genut, 2006; Fairbrother et al., 2004; Parmley et al., 2006; Parmley and Hurst, 

2007b). Our functional analysis adds a caution to this fact by showing that two synonymous 

changes (28th and 29th nt) in fact created ESS. It is true that ESEs are more vulnerable to 

synonymous changes in the alternatively spliced exon, which might bring in selection 

pressure on the exon (Parmley et al., 2006). Our result suggests synonymous changes can 

also be either disruptive to the ESSs or can create new ESSs.

Non synonymous substitution are largely expected to be deleterious because of their 

ability to affect proteins (Fay and Wu, 2003), although 20-45% of the non synonymous 

changes have been suggested as advantageous changes (Bieme and Eyre-Walker, 2004). In 

fact protein evolution is more concern with the factors like expression, protein importance, 

pleiotropy, structural constrain rather than genomic influence. Within human and mouse 

CFTR exon 12 there are four amino acid changes, out of which three amino acids are 

neutral in their side chain charge. One possibility could be that over time these amino acids 

substitution within neutral charge optimized the metabolic efficiency rather than protein 

structural optimization. Indeed, in bacteria this type of selection pressure based on 

metabolic efficiency o f the amino acid exits (Rocha and Danchin, 2004). Interestingly a 

negatively charged glutamic acid in mouse is replaced by positively charged lysine 

(E584K) in human might have given a better structural stability or function to human 

CFTR, in fact this change is also conserved in other species we tested for, except mouse 

(see fig. 3.2). This change might be a little contribution to a large protein like CFTR when 

the whole protein is considered but one has to wonder that the way the splicing regulation 

and protein evolution is interlinked. Moreover, this picture of sequence evolution becomes 

more complex once concomitantly the evolution of trans acting factor is accounted (Ram
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and Ast, 2007).

However, the amino acid change for fine-tuning of the protein might be gradually 

acclimatized under positive selection but before that persistence of the splicing regulatory 

sequence is essential for exon inclusion. This means, the amino acid change must not cause 

the exon skipping which will create a non-functional protein, otherwise they will be 

subjected to negative selection. Novel amino acids can be integrated in the protein for 

better function only if the selection of the exon is preserved.

3.4 Conclusion.

In conclusion, it is clear from this work that the CFTR exon 12 sequence is literally 

covered by regulatory elements that we probably still consider (rather mistakenly) as 

separate elements. Proof of this is the observation that the activity of many of these splicing 

regulatory elements (especially the CERES) cannot be exported in different contexts 

(Pagani et al., 2003c). Indeed, our results point towards a situation where in exons like 

CFTR exon 12 we should virtually consider every nucleotide as potentially capable of 

affecting splicing inclusion levels.

The analysis carried out in my work focussed only on a selected number of trans

acting factors interacting with the exonic sequences with respect to the mutations in a

minigene system in vitro. Our “selective candidate” approach to study the trans acting

factors for the CFTR exonic sequence limits our view on the other splicing factors that

might play role in splicing of the exon. Indeed, the effect of many other factors on the

intronic regulatory sequence has not been analyzed. This is why in the future a possible

follow up o f the study might consider a mass spectrometry based proteome analysis to

identify all the binding factors. Also the RNA-based pull-down analysis I have carried out

in this thesis has some technical pitfalls because the nuclear extracts from HeLa cells often

doesn’t reflect the exact binding conditions for the splicing factors since most of the

splicing factors interact with the RNA with a very low affinity. Therefore, any variation of

the concentration of the factors in the extract may change their binding affinity in vitro. In
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order to overcome this limitation, a RNA IP in different cell lines can be performed against 

the known factors we have already defined.

Splicing is extremely cell-type and tissue-type dependent. Therefore it will be 

important to extend our observations in a more physiological context (Barash et al., 2010). 

Indeed, several o f the splicing factors and their posttranslational modifiers are expressed 

differently in different tissues. In this thesis we have performed cell based splicing assays 

that constrained our understanding o f the effect o f mutations in vivo. In order to overcome 

this limitation our analyzed mutations may be studied in an animal model. Previously, the 

effect o f the SMN splicing mutation has been successfully studied in a mouse model. 

However, this approach for studying CFTR will be rather challenging due to the fact that 

mouse has an additional Calcium dependent ion channel. This calcium dependent ion 

channel can compensate the conductance regulatory mechanism in the cell in absence of 

chloride channel. Possibly a double knock out mouse model will overcome this limitation. 

On the other hand the effect o f general splicing factors (i.e. SRs and hnRNPs) in an animal 

model has not been carried successfully till now. There are several reason for this but in 

general a splicing factor interacts with RNA with low affinity and depletion or low 

expression of a splicing factor in an animal model often shows no effect because the 

function of that particular trans acting factor is replaced by other factors with same 

functionality. Nevertheless, animal models with the CFTR exon 12 mutations will be useful 

for therapeutic purposes.

From a clinical point of view, increased importance will have to be given at analyzing 

RNA transcripts directly from patient tissues or, routinely, through a minigene based 

systems that will mimic this kind o f global splicing regulatory networks (Baralle et al., 

2009). This will be essential for further therapeutic development. Many approaches have 

been explored so far and many more can be envisioned to modify the splicing pattern of a 

mutant pre mRNA or eliminate an mRNA that bears a disease-causing mutation to achieve 

therapy. Increasing knowledge o f RNA biology and chemistry is stimulating efforts to

98



target the RNA itself or the splicing and translational machinery as entry points for 

therapeutic intervention. For example strategies like antisense oligonucleotides, antisense 

snRNAs, trans-splicing, and small molecules have been proposed to be effective for 

diseases like DMD, SMN, CF and ALS (Bonetta, 2009). Although, our incomplete 

knowledge of splicing regulation limits our understanding of several factors, such as 

individual disease susceptibilities or therapeutic responses in the presence of local 

nucleotide polymorphic differences (Cooper et al., 2009; Wang et al., 2008), a complete 

interpretation of the splicing code in future will pave the way to the personalization of the 

drug.

Secondly, this increased awareness will be useful for the development of novel 

bioinformatics methods aimed at predicting splicing outcomes that, until now, have been 

primarily focused at considering enhancer and silencer elements as distinct entities, with 

rather limited success (Hartmann et al., 2008; Houdayer et al., 2008). Moreover, the tissue 

specific splicing prediction has been poorly understood. Recently a splicing code predicting 

approach has been carried out to clarify this issue by analyzing transcripts from different 

mouse tissues and considering all possible factors involved in tissue specific splicing 

(Barash et al., 2010). However, this newly developed code prediction is rather limited due 

to the fact of evolutionary conservation o f alternative-splicing regulation (estimated to be 

around 20% between humans and mice) and opens up the question of species-specific 

codes (Tejedor and Valcarcel).

Finally, our results should help to gradually shift our view of splicing from one in 

which exon inclusion levels are viewed as the straightforward algebraic sum of 

enhancer/silencer elements to one where exons are rather considered as an integrated unit, 

where silencing and enhancing functions may functionally overlap to a degree that has 

often been underestimated.
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4 Material and Methods

4.1 Chemical reagents.

Commonly used chemicals were purchased from Sigma Chemical Co., Merck, Gibco 

BRL, Boehringer Mannheim.

4.2 Standard solutions.

Frequently used solutions were made according to the following recipes:

a) TE: 10 mM Tris-HCl (pH 7.4), 1 mM EDTA (pH 7.4)

b) PBS: 137 mM NaCl, 2.7 mM KC1, 10m M N a2HPO4, 1.8 mM KH2P04, pH 7.4

c) 10X TBE: 108 g/1 Tris, 55 g/1 Boric acid, 9.5 g/1 EDTA

d) 6X DNA sample buffer: 0.25 % w/v bromophenol blue, 0.25 % w/v xylene cyanol 

FF, 30 % v/v glycerol in H20.

e) 10X protein sample buffer: 20 % w/v SDS, 1 M DTT, 0.63 M Tris-HCl (pH 7), 

0.2% w/v bromophenol blue, 20 % v/v glycerol, 10 mM EDTA (pH 7).

4.3 Enzymes.

Restriction enzymes were purchased from New England Biolabs, Inc (NEB). DNA 

modifying enzymes such as Taq Polymerase, DNasel RNase free, and T4 DNA ligase were 

obtained from Roche Diagnostic and NEB. Klenow fragment o f E. coli DNA polymerase I 

and T4 polynucleotide Kinase were from New England Biolabs, Inc. RNase A was 

purchased from Sigma Chemicals Ltd. A 10 mg/ml solution of RNase A was prepared in 

sterile water and boiled for 10 minutes to reduce the trace amounts o f DNase activity. All 

enzymes were used following manufacturer’s instructions.
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4.4 Synthetic DNA oligonucleotides.

Synthetic DNA oligonucleotydes were purchased from Sigma-Genosys Ltd and 

MWG Biotech (Germany).

4.5 Radioactive isotopes.

Radioactive [y-32P]ATP nucleotides (each with 10 mCi/ml) 3000 Ci/mmol were 

supplied by Amersham U.K. Ltd.

4.6 Nucleotides.

Nucleoside-5’-Triphosphate (ATP, CTP, GTP, UTP; 100 mM each and dATP, dCTP, 

dGTP, dTTP; lOOmM each). m7G(5’)ppp(5’)G cap (7-Monomethyl-diguanosine 

Triphosphate). Enlisted nucleotides were provided from Promega (USA), m7G 

(5’)ppp(5’)G cap was supplied by New England BioLabs (UK).

4.7 Bacterial culture.

The E coli K12 strain DH5a was transformed with the plasmids described in this 

study and used for their amplification. Plasmids were maintained in the short term as single 

colonies on agar plates at 4 °C but for long term storage they were kept on glycerol stocks 

made by adding sterile glycerol to a final 30% v/v concentration to liquid bacterial cultures. 

Glycerol stocks were stored at -80°C. When necessary, from the glycerol stocks an 

overnight culture of bacteria was grown in Luria-Bertani medium [LB medium: per litre: 10 

g Difco Bactotryptone, 5 g Oxoid yeast extract, 10 g NaCl, (pH 7.5)]. LB media was 

sterilized before use by autoclaving. When appropriate, ampicillin was added to the media 

at a final concentration of 200 pg /ml.
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4.8 DNA preparation.

4.8.1 Small scale preparation of plasmid DNA from  bacterial cultures.

Rapid purification of small amounts of recombinant plasmid DNA was performed 

with the method previously described by Sambrook (Sambrook et ah, 1989). Briefly, 

alkaline lysis o f recombinant bacteria was performed by resuspending the bacterial pellet in 

200 pi o f ddH20; 150 pi of solution II (0.2 M NaOH, 1 % w/v SDS) were then added and 

the contents mixed by inversion. 250pl of solution III (3 M potassium acetate pH 5.2) were 

then added and the contents mixed by inversion. The bacterial lysate was then centrifuged 

in an Eppendorf microcentrifuge at maximum speed and the supernatant transferred to a 

new tube. An equal volume of 1:1 v/v phenol’.chloroform solution was added to the 

supernatant. The tube was then vortexed and centrifuged as above. The aqueous phase 

containing the DNA was transferred to a new tube. An equal volume o f chloroform was 

added to the supernatant. The tube was then vortexed and centrifuged as above. The 

aqueous phase containing the DNA was then recovered and the DNA pelleted by ethanol 

precipitation. The final pellet was resuspended in 50 pi of ddH20 and 5 pi o f such 

preparation were routinely taken for analysis by restriction enzyme digests. Along with it, 

very often Promega MiniPrep kit was used according to manufacturer’s protocols.

4.8.2 Large scale preparations o f plasmid DNA from bacterial cultures.

In order to get a good amount of plasmid, a single colony was grown in 50 ml of TB 

medium at 37°C for overnight. Following morning, bacterial cells were pelleted down at 

4000rpm for 5 minute. Then JetStar purification kit (Genomed) was used according to the 

manufacturer’s instructions.

4.8.3 Genomic DNA isolation.

In order to get clean genomic DNA for further amplification in PCR reaction, cell

were treated with lysis buffer (0.32M sucrose, lOmM Tris HC1 p 7.5, 5mM MgC12 and 1%

Tritom X I00). After lysis supernatant were incubated with proteinase K for over night.
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Following morning a phenol chloroform purification step was carried out using standard 

protocol.

4.9 RNA preparation from cultured cells.

Cultured cells were washed with PBS and then 500 pi of TRIreagent, purchased from 

Ambion was added for every p35 mm plates. Then, 100 pi of chloroform was added and 

incubated for 10 minutes followed by addition o f RNAse free water 250pl. Supernatant was 

precipitated with 500pl o f isopropanol. The pellet was resuspended in 100 pi o f ddH20 and 

digested with 1U of DNase RNase free (Invitrogen). The mix was incubated at 37 °C for 30 

minutes, and then the RNA was purified by acid phenol extraction. The final pellet was 

resuspended in 20 pi o f ddH20 and frozen at -80  °C. The RNA quality was checked by 

electrophoresis on 1% agarose gels or on a RNA gel if  required.

4.10 Quantification of nucleic acid concentration.

An optical density of 1.0 at 260 nm is usually taken to be equivalent to a 

concentration of 50 pg/ml for double stranded DNA, 40 pg/ml for single stranded DNA 

and RNA, and approximately 20 pg/ml for single-stranded oligonucleotides samples. The 

ratio of values for optical densities measured at 260 nm and 280 nm is considered as 1.8 for 

pure sample of DNA and 2 for RNA and these are reduced by protein contaminants 

(Sambrook et al., 1989). Therefore, these values were used to determinate not only the 

concentration but also the purity of the samples.

4.11 Restriction enzymes.

Restriction endonucleases were used in the construction and analysis o f recombinant 

plasmids. Each restriction enzyme functions optimally in a buffer of specific ionic strength. 

Restriction enzymes were purchased from NEB UK. The company supplied the enzymes 

with the buffers and were used according to the manufacturer’s instruction. For analytical
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digests 100-500 ng of DNA were digested in a volume of 100 pi containing 10 U o f the 

appropriate restriction enzyme. The reaction was incubated for 2-3 hours at 37 °C. In case 

o f Ndel, a 2x buffer condition were proved to be efficient regardless of manufacturer’s 

instruction. Prior to inactivate enzymatic activity, digested product was purified by phenol 

chloroform extraction or gel purification kit (JetStar, Genomed).

4.12 Large fragment of E. coli Polymerase I and T4 Polynucleotide Kinase .

These enzymes were used to treat PCR products for blunt-end ligation during 

construction of recombinant plasmids. The large fragment of DNA Polymerase I (Klenow) 

is a proteolytic product o f E. coli DNA Polymerase I. It retains polymerization and 3’->5’ 

exonuclease activity, but has lost 5’->3’ exonuclease activity. This was useful for digesting 

specific residues added by Taq DNA polymerase at the 3’ terminus to create compatible 

ends for ligation. T4 Polynucleotide Kinase catalyses the transfer of phosphate from ATP 

to the 5’ hydroxyl terminus o f DNA. It was used for example in the addition o f 5’- 

phosphate to PCR products to allow subsequent ligation. Klenow fragment (2.5 U) was 

added to 23 pi of PCR product in 5 mM MgCh buffer. The mixture was incubated at room 

temperature for 10 minutes. EDTA to a final concentration of 0.2 mM, ATP to a final 

concentration of 1 mM, 10 U of T4 Polynucleotide Kinase and the proper quantity of 

Kinase buffer were added to the above mixture and incubated at 37 °C for 30 min. The 

enzymes were inactivated by incubation at 80 °C for 20 min.

4.13 T4 DNA ligase.

T4 DNA ligase catalyses the formation of a phosphodiester bond between adjacent 3’ 

hydroxyl and 5’ phosphoryl termini in DNA, requiring ATP as a cofactor in this reaction. 

This enzyme was used to jo in  double stranded DNA fragments with compatible sticky or 

blunt ends, during generation o f recombinant plasmid DNAs.
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20 ng o f linearized vector were ligated with a 5-10 fold molar excess of insert in a total 

volume o f 20 pi containing IX  ligase buffer and 1U of T4 DNA ligase. Reaction was 

carried out at room temperature for 6-12 hours or at 37°C for an hour.

4.14 Agarose gel electrophoresis of DNA.

DNA samples were size fractionated by electrophoresis in agarose gels ranging in 

concentrations from 0.8 % w/v (large fragments) to 2 % w/v (small fragments). The gels 

contained ethidium bromide (0.5 pg /ml) and IX TBE. Horizontal gels were routinely used 

for fast analysis of DNA restriction enzyme digests, estimation o f DNA concentration, or 

DNA fragment separation prior to elution from the gel. Samples of 20 pi containing IX 

DNA loading buffer were loaded into submerged wells. The gels were electrophoresed at 

50-80 mA in IX TBE running buffer for a time depending on the fragment length expected 

and gel concentration. DNA was visualized by UV transillumination and the result recorded 

by digital photography.

4.15 Denaturing polyacrylamide gel electrophoresis (SDS-PAGE).

Protein samples were added to protein sample buffer (2X final). Conventional slab 

gel SDS PAGE (Laemmli, 1970) was performed in vertical gels with the required 

percentage of polyacrylamide (37,5:1 acrylamiderbis-acrylamide, ProtoGel, National 

Diagnostics), depending on each case. The gels were run at 40 mA in IX SDS-PAGE 

running buffer (50 mM Tris, 0.38 M glycine, 0.1 % w/v SDS). After running, gels were 

either stained with coomassie Blue R250 in methanol-water-acetic acid 45:45:10 (v/v/v).

4.16 Elution and purification of DNA fragments from agarose gels.

This protocol was used to purify small amounts (less than 1 pg) of DNA for sub

cloning. The DNA samples were electrophoresed onto an agarose gel as described

previously. The DNA was visualized with UV light and the required DNA fragment band
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was excised from the gel. This slab was cut into pieces, and the JETquick Spin Column 

Technique (Genomed) was used according to the manufacturer’s instructions. Briefly, 600 

pi o f gel solubilisation solution LI (NaC104, Na acetate and TBE) were added for each 100 

mg of the gel slice pieces and incubated at 55 °C for 15 min vortexing every 5 min. The 

mixture was loaded into a prepared JETquick column and it was centrifuged at maximum 

speed for 1 min. The flowthrough was discarded. 700 pi o f washing and reconstituted 

solution L2 (ethanol, NaCl, EDTA and Tris-HCl) were added into the spin column and after 

5 min, the column was centrifuged in the same conditions twice. The flowthrough was 

again discarded both times. To elute the bound DNA, 30-50 pi of pre-warmed sterile water 

was added onto the centre o f the silica matrix o f the spin column and the system was 

centrifuged for 2 min. The amount o f DNA recovered was approximately calculated by UV 

fluorescence of intercalated ethidium bromide in an agarose gel electrophoresis.

4.17 Preparation of bacterial competent cells

Bacterial competent cells were prepared following the method described by Chung 

and Niemela (Chung et al., 1989). E. coli strains were grown overnight in 3 ml o f LB at 

37°C. The following day, 300 ml of fresh LB were added and the cells were grown at room 

temperature for 4-5 h until the OD600 was 0.3-0.4. The cells were then put in ice and 

centrifuged at 4 °C and lOOOg for 15 min. The pellet was resuspended in 30 ml of cold TSS 

solution (10% w/v PEG, 5% v/v DMSO, 35mM MgCl2, pH 6.5 in LB medium). The cells 

were aliquoted, rapidly frozen in liquid nitrogen and stored at -80°C. Competence was 

determined by transformation with 0.1 ng of pUC19 and was deemed satisfactory if  this 

procedure resulted in more than 100 colonies.

4.18 Transformation of bacteria

Transformations of ligation reactions were performed using 1/2 of the reaction 

volume. Transformation of clones was carried out using 20 ng of the plasmid DNA. The
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DNA was incubated with 60 pi of competent cells for 20 min on ice and at 42°C for 1.5 

minutes. At this point 60 pi o f LB were added and the bacteria allowed to recover for 10 

min at 37 °C. The cells were then spread onto agarose plates containing the appropriate 

antibiotic. The plates were then incubated for 12-15 hours.

When DNA inserts were cloned into p-galactosidase-based virgin plasmids, 25 pi of 

IPTG 100 mM and 25 pi of X-Gal (4 % w/v in dimethylformamide) were spread onto the 

surface o f the agarose before plating to facilitate screening o f positive clones (white 

colonies) through identification of [3-galactosidase activity (blue colonies).

4.19 Amplification of selected DNA fragments.

The polymerase chain reaction was performed on genomic or plasmidic DNA 

following the basic protocols o f the Roche Diagnostic Taq DNA Polymerases. The volume 

o f the reaction was 50 pi. The reaction buffer was: IX Taq buffer, dNTP mix 200 pM each, 

oligonucleotide primers 1 nM each, Taq DNA Polymerase 2.5 U. As DNA template, 0.1 ng 

o f plasmid or 100-500 ng of genomic DNA were used for amplification. The amplification 

conditions are described for each particular PCR. The amplifications were performed on a 

Cetus DNA Thermal Cycler (Perkin Elmer) or on a Gene Amp PCR System (Applied 

Biosystems).

4.20 The pTB minigene system.

A mutation that affects splicing can be identified using transient transfection of 

minigenes or in vitro splicing assays, comparing the splicing patterns of mutant and wild 

type exons.

A minigene, as its name indicates, is a simplified version of a gene. In this thesis the

minigene used is a hybrid construct containing exons from a-globin and fibronectin, under

the control of the a-globin promoter. The intronic region between the two fibronectin exons

contains a unique Ndel site in which the exon along with its flanking regions with and
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without the nucleotide substitution under study can be inserted. In fact this system allows 

us to insert a single exon with its intronic flanking regions, which could contain splicing 

regulatory elements, and analyse its splicing outcome. In the presence of a wild type 

context the exons of the minigene together with the one under study should be correctly 

spliced. On the other hand in presence of a mutation which affect the 5’ splice site of the 

exon we could basically have four different outcomes: normal splicing pattern if the 

mutation is neutral; exon skipping, intron retention or activation of a cryptic 5’ splice site if 

the mutation affects the mRNA processing.

-> Ndel

I 1 1

IVS Exon IVS

Figure4.1: Schematic representation of minigene splicing assay. It contains at the 5’ end

a a-globin gene promoter and SV40 enhancer sequences to allow polymerase II 

transcription in the transfected cell lines. The reporter gene is composed by a-globin (black 

boxes) and fibronectin exons (shaded boxes) while at the 3’ end a functionally competent 

polyadenylation site, derived from the a-globin gene, is present.

4.21 Generation of minigenes and Expression Vector for SR proteins.

In this thesis several minigenes have been created Human CFTR exon 12 minigene

constructs (T40C, G48C, A49G, A51T, C52T and WT) have been previously described

(Pagani et al., 2005; Pagani et al., 2003c). Further modification of the exon were introduced

by PCR-directed mutagenesis using specific primers and cloned inside the Ndel restriction

site of the pTB plasmid. The DNA fragments were cloned into pUC19 plasmid using the
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blunt Smal enzyme restriction site and through sequencing using oligonucleotides 

Universal For and Rev we checked for the absence of any other nucleotide variation in the 

entire amplified fragments. Then, in order to study the splicing outcome we subcloned the 

two DNA fragments into the pTB minigene using the Ndel enzyme restriction site. The 

orientation of the inserted fragment was checked through colony PCR using, respectively, 

specific oligonucleotides heads and pTB1950as that recognized respectively the inserted 

fragment and the pTB plasmid; thus the amplification o f the product could have been 

possible only in presence of a fragment with the correct orientation. Subsequent positive 

clones were further controlled through sequencing using oligonucleotide pTB 1698s. The 

splicing assay was performed by transfecting each minigene into HeLa cells.

Mouse CFTR Exon 12 along with the mouse introns (297 nt of intron 11 and 219 nt 

of intron 12) was amplified from genomic DNA (Mus musculas strain C57BL/6) using 

primers MCF12 F and MCF12 R. Mouse CFTR exon 12 modifications were also 

performed by PCR-directed mutagenesis with specific primers.

The amplifications for the generation of the fragments to clone in the minigene were 

performed using the following oligonucleotides.

Name of the prim er Sequence of the prim er 5’ to 3’

MINIEX12WTAS T AGGT ATCC A A A AGG AG AGT CT A AT GCT CT AAA A AG A 

AAATGG

MINIEX12WTS ACT CTCCTTTT GG AT ACCT AG AT GTTTT A AC A A AGGT A 

TGTTC

MINIEX12G48CAS S T AGGT ATGC A AA AGG AG AGT CT A AT GCT CT A A A A AG A 

AAATGG

MINIEX12G48C ACTCTCCTTTTGCATACCTAGATGTTTTAACAAAGGTA
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TGTTC

MINIEX12A51TAS T AGG A ATCC A A A AGG AG AGT CT A AT GCT CT A A A A AG A 

AAATGG

MINIEX12A51TS ACT CTCCTTTT GGATTCCT AG AT GTTTT A AC A AAGGT AT 

GTTC

MINIEX12T40CAS TAGGT ATCC A AAAGGGG AGT CT AAT GCT CT A AA AAG A 

AAATGG

MINIEX12T40CS ACTCCCCTTTT GGAT ACCT AG AT GTTTT AAC A AAGGT A 

TGTTC

MINIEX12A49GAS T AGGT ACCC AAAAGG AG AGT CT AAT GCT CT A AAA AG A 

AAATGG

MINIEX12A49GS ACT CTCCTTTT GGGT ACCT AG AT GTTTT A AC A A AGGT A 

TGTTC

MINIEX12C52TAS T AG AT AT CCA A A AGG AG AGT CT AAT GCTCT A A A AAG A 

AAATGG

MINIEX 12 WTS ACT CTCCTTTT GGAT ATCT AG AT GTTTT A AC A A AGGT A 

TGTTC

CERES DEL F AG ACTCTCCTTTT CT AG AT GTTTT AA

CERES DEL R TT A A A AC AT CT AG AAA AGG AG AGT CT

MCF12 F: 5’ GGCTCC AGGCTT G AGC AT AT GT ACT AAT CT G

MCF12 R: 5’ C A AG A A ATT GGCTT CAT AT GT GAT CAT C AG A

MCF12 5 DEL F CT AG AT GTTTTT ACT GT ATTT G AA AGGT
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MCF12 5 DEL F ACCTTTCAAATACAGTAAAAACATCTAG

MCF12 3 DEL F CAAAGATGCTGATTTAGATTCCCCTTT

MCF12 3 DEL R AAAGGGGAATCTAAATCAGCATCTTTG

PTB2400S GT GCTTTT G A AT GGC AC AT

PTB3161 AS CT AC AC AC AGT ACT GTT AGGC

Plasmids containing the cDNA of SRp 55 and SC35 were previously cloned in to 

pCG by Cristiana Stuani in the Lab. Plasmid encoding the SF2/ASF, ARRM1, ARRM2 and 

ARS were kind gifts from Dr. J Caceres.

4.22 M aintenance and analysis of cells in culture.

Both HeLa and N-muli cell line was grown in Dulbecco’s Mem with Glutamax I 

(Gibco) (Dulbecco’s modified Eagle’s medium with glutamine, sodium pyruvate, 

pyridoxine and 4.5 g/1 glucose) supplemented with 10% foetal calf serum (Euro Clone) and 

Antibiotic Antimycotic (Sigma) according to the manufacturer’s instructions.

Plates containing a confluent monolayer of cells were treated with 0.1% w/v trypsin 

as follows. Cells washed with PBS solution, were incubated at 37° C with 1-2 ml of 

PBS/EDTA/trypsin solution (PBS containing 0.04% w/v EDTA and 0.1% w/v trypsin) for 

2 minutes or until cells were dislodged. After adding 10 ml of media, cells were pelleted by 

centrifugation and resuspended in 5 ml pre-warmed medium. 1-2 ml of this cell suspension 

was added to 10 ml medium in a fresh plate and was gently mixed before incubation.
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4.23 Plasmid Transfections.

The DNA used for transfections were purified using phenol-choloroform extraction 

followed by a sephacryl S-400 (GE healthcare) column purification step. Liposome- 

mediated transfections of 80-90% confluent plates were performed using Effectene reagent 

(Quiagen). 0.5 pg of construct DNA was mixed with 4 pi o f Enhancer for each transfection 

and the mixture was incubated at room temperature for 5 minutes to allow the condensation 

of the DNA. Then, 5 pi of Effectene were added to the mixture and an incubation o f 10 

minutes has been performed. After the addition o f 500 pi o f complete culture medium the 

mixture was added to the cells in 2 ml of the as described above.

4.24 Small interfering RNA (siRNA) transfections.

siRNA transfections were performed in HeLa cells using Oligofectamine Reagent 

(Invitrogen). One day before siRNA transfection, 0.7 X 105 cells were plated to achieve 30- 

40% confluences. The next day, 3 pi Oligofectamine (Invitrogen) was combined with 15 pi 

o f Opti-MEM medium (Invitrogen) and 3 pi of 40 pM siRNA duplex oligonucleotides was 

diluted in a final volume of 180 pi of Opti-MEM medium. The two mixtures were 

combined and left for 20 min at room temperature. Finally, this mixture was added to the 

cells, which were mantained in 0.9 ml of Opti-MEM only. After 6 hour 500 pi of 30% FBS 

(Foetal bovine serum, Invitrogen) was added. Six to eight hours later Opti-MEM was 

exchanged with Dulbecco’s modified Eagle medium and the cells were transfected with the 

minigene of interest (500ng) using Qiagen Effectene transfection reagents. On the third 

day, HeLa cells were harvested for protein and RNA extractions. RT-PCR from total RNA 

was performed as for the transfection protocol described above. Whole-protein extracts 

were obtained by cell sonication in lysis buffer (IX  PBS and IX Protease inhibitor 

cocktail) and analyzed for hnRNPAl, A2, C1/C2 and DAZAP1 endogenous protein 

expression by immunoblotting using the antibodies described above. Tubulin was used as 

total protein loading control. Sequence of the siRNA is given bellow



Human hnRNPA1 - cagcugaggaagcucuuca (Sigma)

Human hnRNPA2- ggaacaguuccguaagcuc (Sigma)

Human hnRNP C1/C2- gcaaacaagcaguagagau (Sigma)

Human DAZAP1 - gagacucugcgcagcuacu (Dharmacon)

Luciferase no. 2 gccauucuauccucuagaggaug (Dharmacon).

4.25 cDNA synthesis.

In order to synthesize cDNA, the 1 pg of total RNA extracted from cells were mixed 

with random primers (Pharmacia) in a final volume of 20 pi. After denaturation at 70°C the 

RNA and the primer were incubated for 1 hour at 37 °C in the following solution: IX First 

Strand Buffer (Gibco), 10 mM DTT, 1 mM dNTPs, RNase inhibitor 20 U (Ambion) and 

Moloney murine leukemia virus reverse transcriptase 100 U (Gibco). 3 pi of the cDNA 

reaction mix was used for the PCR analysis.

4.26 cDNA analysis

PCR analysis of cDNA was carried out for 35 cycles (94 °C 1:30 min, 55 °C 1:30 

min, 72 °C 1:30 min) in 50 pi reaction volumes using the following oligonucleotides which 

recognize specific regions of the minigene.

Name o f the primer Sequence of the primer 5’ to 3’

ALFA-2,3 CAACTTCAAGCTCCTAAGCCACTGC

BRA-2 T AGG ATCCGGT C ACC AGG A AGTT GGTT AA AT C A
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4.27 In  vitro Splicing assay

Splicing reactions were performed in vitro using m7G capped, SP-6 transcribed cold 

RNAs. Standard reactions were carried out in a 25 ql volume at 30°C for 2 hours. Each 

reaction contained 15ml of Nuclear Extract from HeLa cells (CilBiotech, Mons, Belgium, 

approx. concentration 10 pg/pl), 5 ql of 13% (w/v) polyvinyl alcohol, 1 ptl of 80mM MgCfi, 

lp l of 12.5 mM ATP, 1 pi of 0.5 M creatine phosphate and 1.25 pi of 0.4 M Hepes-KOH 

pH=7.3 and 2 pi of in vitro transcribed pre-mRNA at 200mg/ml. Therefore, the final 

concentrations of the various components in a standard processing reaction were as 

follows:- 3.2mM MgCfi, 500mM ATP, 20mM creatine phosphate, 2.7%(w/v) PVA, 20mM 

Hepes (pH=7.3), 6pg/pl of Hela nuclear extract, and 16mg/ml of in vitro transcribed pre- 

mRNA.

The processed RNAs were then extracted from the reaction mix using acid phenol: 

chloroform (1:1) and chloroform only. The precipitated RNAs were analyzed by RT-PCR 

using the antisense primer followed by PCR with primers at the beginning and end of the 

exons. The primers used were as follows:

Name of the primer Sequence of the primer 5’ to 3’

El CTATTAGAAAATTCCGCTATCCTTG

E2 CACATACGATTTAGGTGACAC

4.28 In  vitro transcription and synthetic RNA oligo.

RNA was transcribed from PCR templates amplified from the respective plasmids. A 

T7 promoter sequence was added towards the 5’ end of the template using primer carrying 

T7 sequence and, similarly, a (TG)8 repeated sequence was used to tag the 3’ end. Every
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time, 5 pg of DNA template was used in a 60 pi T7 polymerase (Stratagene) transcription 

reaction. The RNA was then purified using standard Acid-Phenol purification method 

followed by Ethanol precipitation. Synthetic RNA oligos corresponding to Mouse 17-38, 

Human 17-38, Mouse 63-81 and Human 63-81 sequences were purchased from Eurofins 

MWG Operon, Germany.

Name of the primer Sequence of the primer 5’ to 3’

T7EX12S T AAT ACG ACT C ACT AT AGGTT AGACT CT CCTTTT G

Exl2ASTag C AC AC AC AC AC AC AC AT GTT AAA AC AT CT A

T7EX12T40CS T AAT ACG ACTC ACT AT AGGTT AGACT CCCCTTTT G

3’ T7S T AAT ACG ACT C ACT AT AGGGT AT AC A A AG AT GCT G A

3’ Tag AS CACACACACACACACAGGAGAGTCTAATAAATAC

3’ tag T40C AS CACACACACACACACAGGGGAGTCTAATAAATAC

5’ T7S TAAT ACG ACTC ACT AT AGGT GTTTT AAC AG A AA AAG

5’ Tag AS C AC AC AC AC AC AC AC AT C A A AT ATTT CTTTTT CT

Name of the RNA oligo Sequence of the RNA oligo 5’ to 3’
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Mouse 18-39 CUGAUUUGUACCUAUUAGAUUC

Human 18-39 CUGAUUUGUAUUUAUUAGAUUC

Mouse 64-82 ACUGAAGAACAAGUAUUU

Human 64-82

ACAGAAAAAGAAAUAUUU

4.29 UV Cross linking

RNA oligos were labeled with y- P32 in an T4 polynucleotide kinase reaction. After 

acid phenol standard purification step labeled RNA oligos were incubated in splicing mix 

(final concentration of 3.2mM MgCb, 500mM ATP, 20mM creatine phosphate, 2.7%(w/v) 

PVA, 20mM Hepes (pH=7.3) and 6mg/ml of Hela nuclear extract). Splicing mix were then 

UV cross linked at 0.800 KHtz. Cross linked samples were then separated in an 10% SDS 

gel and dried on a blotting paper. Dry gel were then exposed to X-Ray film for signal.

4.30 Affinity purification of RNA binding proteins and W estern Blot analysis.

10 pg of synthetic RNA oligo or 15 pg of transcribed RNA were oxidized in the 

dark for an hour with sodium m-periodate in a 400 pi reaction mixture (100 mM Sodium 

acetate pH 5.2 and 5 mM Sodium m-periodate). RNA was then ethanol precipitated and 

resuspended in 200 pi of 100 mM sodium acetate. Approximately 350 pi of prewashed 

equilibrated adipic acid dehydrazide-agarose beads (50% slurry; Sigma) were added to each 

oxidized RNA volume and placed in the rotor at 4°C for overnight incubation. This RNA- 

Bead covalent link formation was also performed in the dark. The immobilized RNA were 

then washed once with 1 ml of 2 M NaCl and twice using washing buffer (5.2 mM HEPES 

pH 7.5, 1 mM MgC12, 0.8 mM Mg acetate). Meanwhile 200 pi of Nuclear extract was 

mixed with 900 pi RNAse free water, IX binding buffer (5.2 mM HEPES pH 7.9, 1 mM
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MgC12, 0.8 mM Mg acetate, 0.52 mM dithiothreitol, 3.8% glycerol, 0.75 mM ATP, 1 mM 

GTP) and Heparin at the final concentration of 0.5 pg/pl). The RNA-bound beads were 

then equilibrated in 300 pi of NE mix and incubated for 25 min on a rotor at room 

temperature. Beads were then washed four times with 1.5 ml washing buffer. In every 

washing step beads were gently precipitated by gravity on ice. Finally, 50pl of 3X SDS 

loading buffer was added and samples were heated for 5 min before loading on a 10% SDS- 

polyacrylamide denaturing gel.

1. In vitro transcription and treatment 

o f the R N A  with sodium-m-periodate

2. Binding to adipic acid dehydrazide 

beads

3. Incubation with nuclear extract

4 Repeated cycles o f  centrifugation  

and washing

(Coomassie staining and/or 

Western blot)

Figure4.2: Schematic representation of the pull down analysis. All the steps of the 

experimental procedure are specified.

linearized DNA sequence
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The gel was then electroblotted onto a polyvinylidene difluoride membrane according to 

standard protocols (Amersham Biosciences) and blocked with 10% skimmed milk (Non fat 

dry milk in lx  PBS). Membranes targeted for SR protein recognition were blocked using 

Western blocking reagent (Roche) in order to detect the phosphorylated form of the protein. 

All the antibodies were diluted in to 1:1000 ratio in their blocking solution at 0.5X 

concentration. After incubation for 1 hour in room temperature with the antibodies and 3 

constitutive washes with IX PBS, proteins in the membrane Were detected with a 

chemiluminescence kit (ECL; Pierce Biotechnology). Purified glutathione 5-transferase 

(GST)- hnRNP A1/A2 protein was used to immunize 2 rabbit (New Zealand strain) 

according to standard protocols to obtain polyclonal anti-hnRNP A1/A2 antibodies. 

Polyclonal antibodies for hnRNP C1/C2 and TDP43, H, I/PTB and DAZAP1 was 

previously produced in the lab by Dr. E. Buratti, Dr. R. Marcucci, Dr. M. Romano and Dr. 

N. Soko respectively. Antibodies against hnRNP U and Tra2 (3 were kind gifts from G. 

Dreyfiiss and I.C Eperon, respectively. Monoclonal Anti-ASF/SF2, SC35 and 1H4 (against 

SRp 75, 55,40) antibodies were purchased from Zymed Laboratories Inc.
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ABSTRACT
In general, splicing regulatory elements are 
defined as Enhancers or Silencers depending on 
their positive or negative effect upon exon 
inclusion. Often, these sequences are usually 
present separate from each other in exonic/ 
intronic sequences. The Composite Exonic 
Splicing Regulatory Elements (CERES) represent 
an extreme physical overlap of enhancer/silencer 
activity. As a result, when CERES elements are 
mutated the consequences on the splicing process 
are difficult to predict. Here, we show that the func
tional activity of the CERES2 sequence in CFTR 
exon 12 is regulated by the binding, in very close 
proximity to each other, of several SR and hnRNP 
proteins. Moreover, our results show that practically 
the entire exon 12 sequence context participate in 
its definition. The consequences of this situation 
can be observed a t the evolutionary level by 
comparing changes in conservation of different 
splicing elements in different species. In conclusion, 
our study highlights how it is increasingly difficult to 
define many exonic sequences by simply breaking 
them down in isolated enhancer/silencer or even 
neutral elements. The real picture is close to one 
of continuous competition between positive and 
negative factors where affinity for the target 
sequences and other dynamic factors decide the 
inclusion or exclusion of the exon.

INTRODUCTION
Only a few years ago, mutations in the protein-coding 
section o f  genes that did not affect amino acid coding 
capacities were considered to be neutral with regards 
to the protein functional properties (and thus the

evolutionary fitness o f the gene). Since then, advances in 
both the pre-mRNA splicing and the translational 
research fields have severely challenged this assumption, 
especially with regards to its implications in the occur
rence o f human disease and on evolutionary mech
anisms in general (1-3). With regards to the pre-m RNA  
alternative splicing process (4), this assumption was 
first challenged by the discovery that splicing regula
tory elements (SRJEs) could be found embedded within  
exonic coding sequences both in alternative and consti
tutive splicing (5,6) and that these elements and the 
strength o f  the basic splicing consensus motifs (7) could 
regulate exon inclusion levels. More than 20 years since 
these discoveries, the importance o f splicing regula
tory regions within exon coding sequences has, if  
anything, greatly increased. In fact, global analyses 
o f splicing events (8,9) and the search for these splicing 
regulatory motifs embedded within exons has received 
considerable attention, especially through the use o f  
high-throughput and bioinformatics approaches (10,11). 
The results o f  all these analyses clearly indicate that 
SRE elements represent important players in control
ling both alternatively and const! tutively splicing pro
cesses (12,13).

In general, SRE elements are individually referred to as 
Exonic and Intronic Splicing Enhancers (ESEs and ISEs) 
or Exonic and Intronic Splicing Silencers (ESSs and ISSs) 
sequences depending on their localization and func
tional effects (14-18). The way in which SRE elements 
exert their action is through the binding o f  /ran.v-acting 
factors, predominantly belonging to the SR and hnRNP  
protein families (19-23). It should be noted, however, 
that the list o f  proteins capable o f modulating splicing is 
growing every year (24) and much still remains to be 
uncovered in this area o f  research. Nonetheless, aside 
from individual identities, it has been determined long 
ago that the balance between antagonistic factors 
binding to a particular SRE element is one key factor 
in discriminating exon inclusion/exclusion levels (25,26).
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The possibility of controlling this balance has provided a 
great advantage to the eukaryotic cell because, whenever 
necessary, it can be shifted in one direction or the other 
through several mechanisms. In fact, beside the intrinsic 
affinity o f  splicing factors for their respective m -targets, 
the binding level o f  each factor can be easily modified by 
variations in its relative expression levels (27-29), 
posttranslational modifications (30-33) or local R N A  
folding arrangements that limit/enhance their availability 
(34-39).

Studying these issues also makes for fascinating insights 
with regards to the potential relationships between coding 
and splicing regulatory regions during the course o f  evo
lution. It is now clear, in fact, that synonymous or even 
advantageous substitutions at the protein level may still be 
selected against if they end up to be harmful with regards 
to splicing decisions. On the other hand, suboptimal 
codon usage arrangements may be maintained to 
preserve correct splicing functionality (1,40). In keeping 
with this concept, recent analyses have uncovered the 
presence o f  extensive purifying selection against sub
stitutions in ESE elements as determined by the reduced 
single nucleotide polymorphism density in these regions 
(41) and by the fact that codon usage at the exon-intron  
boundaries may be considerably affected by the need to 
maintain SRE sequences (42). It should also be men
tioned, however, that these kind o f analyses are still 
hampered by our limited knowledge o f  SRE sequences 
and caution should be employed when making these 
kind o f  comparisons on the basis o f  bioinformatic 
studies (43). For this reason, it is advisable to back up 
any eventual conclusion with functional experiments 
that might either support or not the bioinformatics 
considerations.

Am ong the known SRE sequences, a particularly 
interesting class of elements is represented by the discov
ery o f  the Composite Exonic Regulatory Elements o f  
Splicing (CERES), that were first identified in human 
C FTR  exon 12 and exon 9 (44,45). Unlike the classical 
exonic regulatory elements, that tend to predomi
nantly possess either enhancing or silencing properties, 
the effect o f  mutagenesis in CERES elements is very 
unpredictable with regards to splicing outcomes. This 
makes it very difficult to evaluate the potential patho
logic effect o f apparently benign substitutions in these 
regions. In this work, we have combined the analysis 
o f  natural pathogenic mutations with a comparative 
hum an-m ouse genomic approach to  better understand 
the characteristics o f one o f  these CERES elements 
in CFTR exon 12 (CERES2). The results o f  this analysis 
have reinforced the emerging concept that in many 
cases dividing exonic sequences in well defined enhancer/ 
silencer or neutral splicing regulatory elements does 
not satisfactorily explain anymore the effects o f  artificial 
and natural substitutions. It is only by adopting a more 
global view o f splicing regulatory codes that will allow  
us to understanding many dynamic sequence interplays 
aimed at preserving splicing definition o f  eukaryotic 
exons.

MATERIALS AND METHODS
Hybrid minigcnc constructs

Human CFTR exon 12 minigene constructs (T40C, G48C, 
A49G, A 5IT, C52T and W T) have been previously 
described (40,44). Further modification o f the exon were 
introduced by PCR-directed mutagenesis using specific 
primers and cloned inside the N del restriction site of the 
pTB plasmid. Primer sequences for each described 
mutants can be provided up on request. M ouse CFTR  
Exon 12 along with the mouse introns (297 nt o f  intron 
I I and 219 nt o f  intron 12) was amplified from genomic 
D N A  (M as musculas strain C57BL/6) using primers 
M CF12 F: 5'-ggctccaggcttgagcatatgtactaatctg-3' and
M C FI2 R: 5 '-caagaaa ttggct teata tgt ga tea teaga-3'. M ouse 
CFTR exon 12 modifications were also performed by 
PCR-directed mutagenesis with specific primers.

CFTR exon 12 sequences o f different animals were 
recovered using NCBI BLASTN search. Accession 
numbers o f  the sequences are Human (Gene Bank acces
sion number NM _000492.3 Homo sapiens), Guinea pig 
(Gene Bank accession number A F I33216.1 Ca via 
porcellus), Ground Squirrel (Gene Bank accession number 
AC184040.3 Spermophilus iridecemlineatus), M ouse (Gene 
Bank accession number N M _021050.2 Mus musculus), 
Rabbit (Oryctolagus cuniculus) GenBank accession no. 
NM_001082716, Cow (Bos iorius) GenBank accession 
no. NM _174018, Pig (Sus scrofa) GenBank accession no. 
AY585334, Horse (Equus cahallus) GenBank accession 
no. N M _001110510, Lemur (Lemur catta) GenBank acces
sion no. AC 123543.

Cell culture, transfections and R T-PC R  analysis

HeLa cells were cultured in Dulbecco’s modified Eagle's 
medium with Glutamax (Invitrogen) in standard 
conditions. The minigenes used for transfection were 
purified using phenol-choloroform  extraction followed 
by a sephacryl S-400 (GE healthcare) column purification 
step. HeLa cells were plated at a concentration o f  
2.8 x l  O5 to achieve 80-90%  confluence. The following 
day, 500 ng o f plasmid D N A  were transfected in the 
cells using Effectene transfection reagents (Qiagen). In 
case o f  in vivo overexpression o f SR proteins (a kind gift 
from J. Caceres), Ipg o f  expression vector was mixed with 
500 ng of minigenes. Finally, after 2 4 h total R NA  was 
extracted using TRIreagent solution (Ambion). One 
microgram o f total R N A  was used in the retrotran- 
scription reaction with random primers and M oloney 
murine leukemia virus enzyme (Invitrogen). Spliced 
products from the transfected minigene were obtained 
using primers Bra2 5'-taggatccggtcaccaggaagttggttaaat 
ca-3' and a 2-3 5'-caacttcaagctcctaagccactgc-3'. PCR 
conditions were the following: 94°C for 5min.; 94°C for 
30s, 55°C for 30s, and 72°C for 30 s for 3 0 cycles; and 
72°C for 7m in for the final extension. PCRs were 
optimized to be in the exponential phase o f amplification 
and products were routinely fractionated in 1.8% (wt/vol) 
agarose gels.
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In vitro transcription and synthetic RNA oligo

R N A  was transcribed from PCR templates amplified from 
the respective plasmids. A T7 promoter sequence was 
added towards the 5'-end o f the template using primer 
carrying T7 sequence and, similarly, a (TG)8 repeated 
sequence was used to  tag the 3'-end. Every time, 5pg  o f  
D N A  template was used in a 60 pi T7 polymerase 
(Stratagene) transcription reaction. The R N A  was then 
purified using standard Acid-Phenol purification method  
followed by Ethanol precipitation. Synthetic R N A  oligos 
corresponding to M ouse 17-38, Human 17—38, M ouse
6 3 -8 1 and Human 63—81 sequences were purchased from  
Eurofins M W G Operon, Germany.

Affinity purification of RNA binding proteins and 
western blot analysis

Ten micrograms o f synthetic RNA oligo or 15 pig o f  
transcribed R NA  were oxidized in the dark for an hour 
with sodium m-periodate in a 400 pi reaction mixture 
(lOOmM Sodium acetate pH 5.2 and 5m M  Sodium  
m-periodate). R N A  was then ethanol precipitated and 
resuspended in 2 0 0 pi of lOOmM sodium acetate. 
Approximately 350 pi of prewashed equilibrated adipic 
acid dehvdrazide-agarose beads (50% slurry; Sigma) 
were added to each oxidized R N A  volume and placed in 
the rotor at 4°C for overnight incubation. This RNA-Bead  
covalent link formation was also performed in the dark. 
The immobilized R N A  were then washed once with 1 ml 
o f 2M  N aCl and twice using washing buffer (5.2 mM  
HEPES pH 7.5, 1 mM MgCL, 0.8 mM M g acetate). 
Meanwhile, 200 pi o f nuclear extract was mixed with 
9 0 0 pi R N A se free water, l x  binding buffer (5 .2mM  
HEPES pH 7.9, Im M  M gCl2, 0.8 mM M g acetate, 
0 .5 2 mM dithiothreitol, 3.8% glycerol, 0 .7 5 mM ATP, 
1 mM GTP and Heparin at the final concentration o f  
0.5 pg/pl). The R NA-bound beads were then equilibrated 
in 300 pi o f N E  mix and incubated for 25 min on a rotor at 
room temperature. Beads were then washed four times 
with 1.5 ml washing buffer. In every washing step beads 
were gently precipitated by gravity on ice. Finally, 5 0 pi 
o f 3 x  SDS loading buffer was added and samples 
were heated for 5 min before loading on a 10% S D S -  
polyacrylamide denaturing gel. The gel was then 
electroblotted onto a polyvinylidene difluoride 
membrane according to standard protocols (Amersham  
Biosciences) and blocked with 10% skimmed milk (N on  
fat dry milk in l x  PBS). Membranes targeted for SR  
protein recognition were blocked using Western blocking 
reagent (Roche). Proteins were probed with different 
antibodies and detected with a chemiluminescence kit 
(ECL; Pierce Biotechnology). Antibodies against hnR NP  
U and Tra2 p were kind gifts from G. Dreyfuss and I.C  
Eperon, respectively. M onoclonal A nti-ASF/SF2, SC35 
and 1H4 (against SRp 75, 55, 40) antibodies were 
purchased from Zymed Laboratories Inc. Changes o f 
protein binding levels have been quantified relative to 
TDP-43 using an Ultro Scan XL, Pharmacia LKB—  
laser densitometer at 633 nM wavelength according to 
manufacturer’s instructions.

siRNA knockdown of splicing factors

si RNA sense sequences used for silencing the different 
target proteins were the following: human hnR N P A l—  
cagcugaggaagcucuuca (Sigma), and human hnRNPA2—  
ggaacaguuccguaagcuc (Sigma); human hnRNP C1/C2- 
gcaaacaagcaguagagau (Sigma), human DAZAP1- 
gagacucugcgcagcuacu (Dharmacon) and luciferase no. 2 
gene control, gccauucuauccucuagaggaug (Dharmacon). 
HeLa cells were plated at 0.7 x  105 cells per well in 
35-mm plates to achieve 30-40%  confluence. The next 
day, 3 pi Oligofeciamine (Invitrogen) was combined with 
15 pi o f  Opti-MEM medium (Invitrogen) and 3 pi o f 
40 pM siR N A  duplex oligonucleotides was diluted in a 
final volume of 180 pi o f Opti-MEM medium. The two 
mixtures were combined and left for 20 min at room tem
perature. Finally, this mixture was added to the cells, 
which were mantained in 0.9 ml o f Opti-MEM only. 
After 6h , 500 pi o f  30% FBS (Foetal bovine serum, 
Invitrogen) was added. Six to eight hours later Opti- 
MEM was exchanged with D ulbecco’s modified Eagle 
medium and the cells were transfected with the minigene 
o f interest (500ng) using Qiagen Effectene transfection 
reagents. On the third day, HeLa cells were harvested 
for protein and R NA  extractions. R T-PC R  from total 
R N A  was performed as for the transfection protocol 
described above. Whole-protein extracts were obtained 
by cell sonication in lysis buffer (1 x PBS and I x  
Protease inhibitor cocktail) and analyzed for hnR N P A l, 
A2, C1/C2 and DAZAP1 endogenous protein expression 
by immunoblotting using the antibodies described above. 
Tubulin was used as total protein loading control.

RESULTS

In order to better characterize the CERES2 element in 
CFTR exon 12 we selected two pathological missense 
mutations (G48C, A51T) and three samesense
substitutions (T40C, A49G and C52T) that were already 
known to affect CFTR exon 12 splicing when inserted in 
the pTB minigene (Figure 1). In particular, transfection in 
HeLa cells o f  the G48C and A49G substitutions caused 
exon skipping in the full exon 12 context whilst A51T  
caused full exon inclusion, as previously reported (44). 
In addition, to widen the number o f mutations under 
study we also chose the T40C and C52T synonymous 
substitutions that were already known to cause total 
exon skipping when inserted in the human context (40). 
These substitutions are particularly interesting form an 
evolutionary point o f view as they are naturally present 
in the mouse CFTR exon 12 sequence and C52T has 
also been reported as a human polymorphism/possible 
mutation in the Cystic Fibrosis Mutation Database 
(www.genet.sickkids.on.ca). The position and con
sequences o f all these substitutions when inserted in a 
CFTR exon 12 minigene are summarized in Figure 1A 
and B, respectively.

First o f  all, we were interested to see whether the func
tional effects of these substitutions were dependent on 
the context provided by the rest o f  the exon sequence. 
To study this, we have analyzed their functional effect in

http://www.genet.sickkids.on.ca
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Figure 1. (A) Schematic presentation o f the hybrid minigene used in transfection experiments. The a-globin, fibronectin EDB, and human C FI R 
exon 12 are shown as black, white and gray boxes, respectively. The sequence o f CFTR exon 12 and position o f the CERES1 and CERES2 elements 
is reported in full. (B and C) Schematic diagram o f  both full and mini CFTR Ex. 12 constructs used in the analysis. The vertical superimposed 
arrows indicate the locations o f both natural and synonymous mutations. The amplified RT-PCR products stained with ethidium bromide are shown 
in the bottom panels. Spliced transcripts are shown with Ex. 12 + for inclusion and Ex. 12— for exclusion o f the exon.

a shortened CFTR exon 12 sequence obtained by 
removing the regions near the 3 and 5's and downstream  
regions but maintaining 4 and 3 nts close to the 3' intron- 
exon and exon-5' intron junctions, respectively. We called 
this construct ‘mini’ exon 12 (Figure 1C, upper panel). 
When all the mutations analyzed in Figure IB were 
inserted in this reduced context both the G48C and 
A49G were still capable o f  inducing exon skipping as 
observed in the full length exon 12, whilst the enhancing 
effect o f A51T could not be observed owing to the fact 
that the wild-type mini exon 12 is fully included in 
the spliced transcript (as opposed to only 80% inclusion 
o f  the full length exon 12) (Figure 1C, lower panel). 
Interestingly, both mouse-specific T40C and C52T 
substitutions lost the ability to induce exon skipping, sug
gesting that their effect on the CFTR exon 12 splicing 
process necessitated the presence o f  either one or both 
human flanking regions (Figure 1C, lower panel and 
Figure 6).

Identifying the trans-acting factors whose binding is 
affected by these substitutions

Considering that overexpression o f  the classical splicing 
factors hnRNP A1 and SF2/A SF was already described 
to  affect CFTR exon 12 splicing (44) it was decided to 
better characterize the effect o f these substitutions in 
terms o f  binding to a wide range o f  SR and hnRNP

splicing factors. To achieve this, we have used a 
pulldown system previously used in our lab to identify 
specific R N A  binding proteins in a variety o f  exonic/ 
intronic contexts (46,47). The transcribed R N A s carry a 
(UG)g tail that functions as a loading control for the 
TDP-43 protein (48) (Figure 2A).

In the first analysis, we tested the mini wild-type CFTR  
exon 12 sequence and two versions carrying the two 
missense mutations G48C and A51T for binding to the 
following proteins: hnR N P U , PTB, hnR NP H, 
DAZAP1, hnR N P C2, A l, A2 and SRp75, SRp55, 
SRp40, SF2/A SF and Tra2p. The results o f this analysis 
are reported in Figure 2B. This figure shows that no 
binding could be observed for the hnRNP H, PTB, 
SRp75, SRp40, SC35 and Tra2(l proteins to the mini
exon 12 sequence, both in its wild-type form and 
carrying either the G48C or the A51T mutations. On the 
other hand, some o f the proteins tested could bind all 
these sequences, irrespectively o f the presence or absence 
o f  mutations (hnR NP U and SRp55). Interestingly, a few 
displayed a differential binding ability in the wild-type 
sequence with respect to these mutations. In particular, 
the most striking change could be observed for the SF2/ 
ASF protein that could better bind the A51T mutant with 
respect to the wild-type sequence. At the same time, it 
could also bind less efficiently to the G48C mutant than 
to the wild-type. Finally, hnRNP C2 could also bind less 
efficiently to the A51T mutant. It is worth noting that
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specific antibodies. Quantification of SF2/ASF and hnRNP C2 binding levels as determined by densitometric analysis are reported in Figure 2C 
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these changes are not all or nothing effects, but they are 
small changes then amplified by the combinatorial effect 
o f all the other elements involved. On the other hand, the 
A51T mutant that in the whole exon 12 context has 
an exon inclusion enhancing effect, displayed increased 
SF2/A SF binding levels than the wild-type sequence. 
Quantification o f  hnRNP C2 and SF2/A SF binding 
levels in these experiments (normalized against TDP-43) 
are reported in Figure 2C as determined using 
densitometric analysis from three independent exper
iments.

In the case o f  the three synonymous mutations (T40C, 
A49G and C52T), the pulldown experiments yielded less 
varied results (Figure 3B). In fact, no changes could be 
observed in the binding profiles o f RNAs carrying the 
T40C and C52T substitutions with respect to the wild- 
type sequence. However, in the case o f the A49G  
mutation we observed less binding o f  the SF2/A SF  
protein than in the wild-type sequence and increased 
binding o f  hnR NP C2 (quantification o f  these proteins 
are reported in Figure 3C), a situation that made the 
effects o f  this mutation very similar to those observed 
for G48C (Figure 2B). Furthermore, it was also consistent 
with its inhibitory effect in the mini-exon 12 minigene 
(Figure 1C). In this respect, the observation that no 
changes could be observed for any o f these proteins 
in the case o f T40C and C52T was also consistent with 
the functional assays demonstrating that these two

substitutions were neutral in the human mini-context 
(Figure 1C).

Validating the role played by SR factors in CFTR exon 
12 splicing

In order to validate the role played by the SR proteins, we 
tested the response of both the G48C and A49G minigenes 
to overexpression of the specific interactors o f the mini
exon 12 sequence, SF2/ASF and SRp55 and o f  SC35 
(as an example o f  a SR protein not interacting with the 
mini exon). The results shown in Figure 4A  demonstrate 
that both SF2/A SF and SRp55 consistently have a higher 
enhancing effect on the mini exon 12 inclusion levels than 
SC35, suggesting that direct interaction provides an 
advantage over the well known generalized enhancing 
effect o f SR proteins. Interestingly, however, the enhance
ment observed for the two mutants was not the same, 
with A49G being less responsive especially for SRp55 
overexpression than G48C. Finally, it should be noted 
that deletion o f  the central CERES2 region also abolished 
completely the response o f the mini-exon 12 to  all SR  
protein overexpression, demonstrating that their action 
in the mini-exon context is mediated only through the 
CERES2 sequence. In parallel, to further rule out non
specific effects o f SF2/A SF overexpression, we also per
formed overexpression analysis o f a series o f  deletion 
mutants (Figure 4B). Also in this case, mutants lacking 
either the RRM 2 region (A R R M 2) or the RS domain
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(ARS) could not enhance inclusion, further supporting the 
specificity of this SR protein functional interaction with 
the CERES2 sequence.

Validating the role played by hnRNP factors in CFTR 
exon 12 splicing

Because o f  their abundance in the nuclear extract, 
overexpression studies for the different hnRNP proteins 
did not yield satisfactory results (data not shown). For 
this reason, in order to test effectively the functional 
effects o f  the hnRNP interactors found in pulldow'n 
analysis we performed individual siRNA-mediated knock
down o f the well known hnR NP A l, A 2 and C2 proteins 
(Figure 5A). As shown in Figure 5B, the only siRN A  
knockdown that could rescue both the G48C and A49G  
mini-exons inclusion was hnR N P A l. Importantly, 
knockdown o f this protein had no effect on the 
CERESdel minigene. Finally, no effect could be detected 
following hnRNP C2 knockdown which is rather surpris
ing considering that the role o f  this protein in the regula
tion o f  splicing control has been recently re-evaluated in 
high-throughput studies (23). In addition, as there are 
many hnRNPs with redundant functions we have also 
tried the simultaneous depletion o f  A l, A2 and C2 in dif
ferent combinations but could not confirm their role in the 
splicing regulation o f CFTR exon 12 (data not shown). 
It should be noted, however, that these results do not 
mean that only hnR N P A l can modulate CFTR exon 
12 splicing. In fact, some o f these proteins could still 
play an active role in the presence o f reduced amounts

o f  positive factors (i.e. SF2/A SF or SRp55) and further 
work will be needed to clarify this issue.

Recovery of the T40C and C52T inhibitory action 
through the add back of human and mouse 
flanking CFTR exon 12 sequences

In order to better characterize the mode o f  action o f these 
substitutions to the mini-exon 12 minigene, we selectively 
added back the missing upstream and downstream  
sequences (both in their human and mouse forms) and 
observed which mutant was able to recover the inhibitory 
effect o f  the T40C/C52T substitutions (Figure 6A). 
As shown in Figure 6B, right panel, the wild type exon 
12 constructs that contain the added-back human and 
mouse upstream regions display full inclusion (constructs 
A and D). However, when we inserted back the T40C and 
C52T mutations the inhibitory effect could be detected 
only in the constructs with the added back human 
sequence but not with those with the mouse sequence 
(compare constructs B -C  with E -F). A similar situation 
could also be observed with the downstream regions. 
In fact, Figure 6B, middle panel, shows that wild-type 
exon 12 sequences with the added-back human and 
mouse downstream region display full inclusion 
(constructs G and J). However, when T40C and C52T  
were inserted back it was observed that the inhibitory 
effect could be detected only in the constructs with the 
human but not with the mouse downstream sequence 
(compare constructs H -I with K -L). Interestingly, the 
integrity o f  maintaining the mouse polypurinic G A A G A  
A C A A G  m otif present in the mouse sequence (underlined
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sequences removed form the exon. (B) Results o f  the transfection analysis of the minigenes labeled A to O following transfection in HeLa cells. Exon 
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in Figure 6A, bottom) is particularly important. In fact, 
the majority o f substitutions that tend to restore the 
mouse sequence can successfully withstand the inhibitory 
action o f the C52T substitution (construct N -O  as 
opposed to M).

Taken together, these results suggest that the human 
and mouse flanking regions have different splicing regula
tory properties: human sequences, both upstream and 
downstream o f the central exon 12 region containing 
CERES2, may be predominantly inhibitory. On the 
other hand, the mouse upstream and downstream  
sequences seem to enhance exon recognition.

The hypothesis that mouse sequences enhanced exon 
recognition was thus tested at the functional level by 
amplifying a mouse CFTR exon 12 sequence and inserting 
it in the pTB minigene system (Figure 7A). In this 
sequence, we then deleted the upstream and downstream  
regions, either separately or in combination (mutants A -C). 
The results o f  this analysis are reported in Figure 7B and 
show that deleting only the upstream sequence (mutant A) 
had no effect o f  mouse CFTR exon 12 inclusion 
levels. On the other hand, deletion o f the downstream  
sequence (mutant B) resulted in ~15%  exon skipping. 
Interestingly, if both regions are deleted at the same 
time (mutant C) the levels o f  exon skipping increase to  
25%, indicating that also the polypurinic downstream  
sequence can function as an ESE once the upstream  
ESE sequence is absent.

7>a/tf-acting factors binding to the human and mouse 
17-38 and 63-81 sequences

Based on these results, it was thus likely that mouse and 
human flanking sequences could bind a different set o f  
proteins. For this reason, we selected the 17-38 and
63-81 mouse and human regions (Figure 8A) to perform 
pulldown assays as previously described for the central 
region (Figures 2-3). The Western blot analysis to check 
for SR protein binding showed that both mouse sequences 
could bind SF2/A SF, SRp75 and SRp55 more efficiently 
than the respective human sequences. In addition, mouse 
nucleotide stretch 64-82 is also capable o f binding SRp40 
whilst the human 64-82 sequence is not (Figure 8C). As 
control, the recognition with antibodies against hnRNP  
proteins A l and U showed that both these factors could  
bind with equally well with the mouse and human 
sequences. Unfortunately, using this approach we were 
unable to determine which factors are responsible for 
the ESS activity o f  the human 18-39 and 64-82 sequences. 
O f course, the most probable reason is that we have tested 
only a fraction o f the candidates and there are many 
potential known or unknown proteins that could exert 
an effect on splicing regulation. Further work is currently 
under way to better define this point. In any case, these 
results were consistent with the in vivo results that detected 
different functional properties between the mouse and 
human flanking regions.
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DISCUSSION

Missense mutations in human CFTR exon 12 have been 
described to be the causative agent o f  Cystic Fibrosis 
through the inactivation o f  a highly conserved region

that encodes part o f the first nucleotide binding fold o f  
the protein (49). In particular, among all disease-causing 
mutations known to affect this exon, several have been 
described to induce its skipping during the splicing
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Figure 9. Schematic comparison and conservation o f the splicing regulatory elements (ESEs, ESSs, and CERES) in different species based on our 
functional analysis.

process (50-52). In our lab, we originally defined within 
CFTR exon 12 two regions, named CERES1 and 
CERES2 (Figure 9), that functioned in a highly context- 
dependent manner to regulate the splicing process o f this 
exon (44). In fact, the effect o f  natural and artificial 
mutations within these regions could not be predicted 
easily using current bioinformatics approaches (44), high
lighting recent recommendations that these programs 
should be used with caution when they are used as a diag
nostic tool (53,54). Indeed, successive experimental com 
parison between human and mouse CFTR exon 12 
sequences demonstrated that about one quarter o f  all arti
ficial combinations o f  m ouse-hum an same sense 
substitutions resulted in exon skipping (40). Taken 
together, these findings suggested that the whole coding 
sequence o f  CFTR exon 12 is under strong selective 
pressures not only for functional reasons at the protein 
level, but also for the maintenance o f  proper exon recog
nition by the splicing machinery.

Up to now, however, the detailed molecular bases o f  
CERES action were not known. We have performed an 
analysis o f the trans-acting factors that bind the CERES2 
element localized in CFTR exon 12. Our analysis was 
preliminarily focused at characterizing the binding 
properties o f  the most com m on splicing regulators, and 
in particular those belonging to either the SR or the 
hnRNP class o f /rum-acting factors. The results o f our 
analysis have demonstrated that in normal conditions 
human CERES2 can bind a substantial number o f these 
proteins, something that may be rather surprising since the 
core CERES2 element represents a very short stretch of 
R N A  sequence (<10  nucleotides). Am ong SR proteins, we 
have found SF2/ASF and SRp55 whilst regarding hnRNP  
proteins specific binding could be detected for most 
hnRNP A /B family members. M ost importantly, the

relative binding capacity of some o f  the factors was 
modified following the introduction o f  disease-associated 
missense mutations or o f samesense substitutions that 
were already known to affect CFTR exon 12 inclusion 
levels. From a basic R NA  binding protein point o f  view, 
this finding highlights the great flexibility provided by 
RRM motifs that can recognize a few specific bases at 
selected positions using their main chains and then use 
side-chain interactions to stabilize binding (55). This 
probably explains why the CERES2 sequence rather 
than functioning as a binding site for a single protein 
only can function as a kind o f  aggregation site for many 
SR /hnR N P factors. Evidence o f a functional interaction 
was confirmed only for SF2/ASF, SRp55 and hnR N P A l.  
However, it should be noted that these experiments were 
performed in a severely reduced context (mini-exon 12) 
and that in a more natural setting many o f  these 
proteins will be able to play a role, especially considering 
the fact that the exonic flanking regions also can bind 
several SR /hnR NP factors (see below). At the moment, 
o f course, we have tested only few regulatory proteins 
and hence cannot rule out the presence o f additional yet 
unknown factors that might also contribute to define/ 
hinder CFTR exon 12. Another possibility is that our 
substitutions may affect the R N A  secondary structure o f  
CFTR exon 12. However, an evolutionary-based model o f  
CFTR exon 12 R N A  secondary structure has already been 
previously published by Meyer and Miklos (56). In their 
work, they have also analyzed the potential impact o f  
some splicing mutations including substitutions in the 
40T and 52C positions. The conclusion is that there are 
only marginally significant changes in the R NA  structure 
o f  the mutants with respect to the predicted wild-type 
sequence. It is for this reason that we decided to concen
trate on analyzing trans-acting factors rather than taking



Nucleic Acids Research, 2010, Vol. 38, No. 2 657

into consideration structural changes following our sub
stitutions.

Taken together, our results suggest that this crowding 
together of many different proteins (both positive and 
negative in terms o f  their effect on splicing) may explain 
why single-point substitutions within the CERES2 
element have such an unpredictable effect on the exon 
recognition levels. Up to now, on a slightly wider scale 
the CERES sequence situation is similar to what has 
already been found in several small exons, such as SM N  
exon 7, where //Yw?.v-acting factors (SF2/A SF and hnRNP  
A l)  binding to the same exonic region contribute to exon 
inclusion/skipping (57,58). Other examples of very 
com plex systems include the human c-src exon N1 
(59,60), CD44 exon v5 (61-63), HipK3 ‘T ’ exon (64), and 
chicken cTN T  exon 5 (65) where numerous factors have 
been shown to participate in splicing regulation in close 
spatial proximity to each other. Indeed, for SM N  exon 7 it 
has been hypothesized the existence o f an Extended 
Inhibitory Context (Exinct) that is caused by overlapping 
regulatory motifs not ail o f  which have still been 
characterized in depth (66).

On a more general note, the existence o f these numerous 
splicing factor binding sites co-existing together on the 
same exon has very important implications with regards 
to evolutionary constraints in codon composition. For 
example, our results have shown very clearly that the 
inhibitory effect o f  some synonymous nucleotide 
substitutions (A40T and C52T) naturally occurring in 
the m ouse sequence can be explained by the different 
splicing regulatory properties o f the human and mouse 
flanking exonic sequences (summarized in Figure 9). 
In particular, by comparing the ESE, ESS, and CERES 
elements several considerations can be made with regards 
to the sequence changes that have occurred in the mouse 
to human transition during the course of evolution. In 
fact, as shown in Figure 9 it can be hypothesized that 
the creation of the human CERES2 element in CFTR  
exon 12 has relieved the pressure to keep the two weak 
ESE elements loosely localized in the mouse 18—39 and
64-82  flanking regions. Only after the creation of 
CERES 2 element these two regions could thus undergo 
nucleotide substitutions that either weakened these 
elements (i.e. in the Ground squirrel and Guinea pig
64-82 region) or even changed them to functional 
silencer sequences (in human 18—39 and 64-82 region). 
The advantage o f these coding region changes can be 
only hypothesized at this stage, but it may involve 
further steps beyond m RNA processing such as enzymatic 
activity or protein stability. Irrespective o f  their signifi
cance, however, the important issue is that sequence 
changes could only be introduced through the creation 
o f  the CERES2 element (the importance o f  which is 
highlighted by the observation that many o f the mouse 
to human substitutions analyzed in this study lead 
directly to total exon skipping). It is also interesting to 
note that a comparison o f these sequence elements also 
in other species (Figure 9) does not contradict the 
conclusions we have drawn from mouse versus humans. 
In fact, for example, both cows and rabbits that do not 
contain the CERES2 element have absolutely conserved

ESE sequences. Of course, additional experiments will 
need to be performed before we can draw firm conclusions 
on this issue. Nonetheless, in our work, we show that an 
integrated analysis o f cis- and trans-acting factors binding 
to exonic elements can provide a substantial wealth o f  
information on potential evolutionary mechanisms.

Looking at the splicing regulatory elements in Figure 9 
it is also possible to draw som e additional conclusions 
with regards to our understanding of splicing regulation 
in general. It is clear that, the CFTR exon 12 sequence is 
literally covered by regulatory elements that we probably 
still consider (rather mistakenly) as separate elements. 
Proof o f  this is the observation that the activity o f  many 
o f these splicing regulatory elements (especially CERES) 
cannot be exported in different contexts (44). Indeed, 
our results point towards a situation where in exons like 
CFTR exon 12 we should virtually consider every 
nucleotide as potentially capable of affecting splicing 
inclusion levels. The only question that might then 
remain to us is the direction o f this change (whether 
increased inclusion/skipping) and its extent. It is very 
probable that as our knowledge of splicing systems 
increases this kind o f  situations will be more and more 
common. From a practical point o f  view, this will have 
several consequences. From a clinical point o f view, 
increased importance have to be given at analyzing 
R N A  transcripts directly from patient tissues or, 
routinely, through minigene based systems that will 
mimic this kind o f  global splicing regulatory networks 
(67). Second, this increased awareness will be useful for 
the development o f novel bioinformatics methods aimed 
at predicting splicing outcomes that, until now, have been 
primarily focused at considering enhancer and silencer 
elements as well distinct entities with rather limited 
success (53,54). Finally, it should gradually shift our 
view o f splicing where exon inclusion levels should not 
always be viewed as the straightforward algebraic sum 
o f enhancer/silencer elements but as rather as an 
integrated unit, where silencing and enhancing functions 
may functionally overlap to a degree that has often been 
underestimated.
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