
Open Research Online
The Open University’s repository of research publications
and other research outputs

Gene Expression Signature and Pro-Angiogenic
Function of Tie2-Expressing Macrophages
Thesis
How to cite:

Pucci, Ferdinando (2010). Gene Expression Signature and Pro-Angiogenic Function of Tie2-Expressing Macrophages.
PhD thesis The Open University.

For guidance on citations see FAQs.

c© 2010 The Author

Version: Version of Record

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright
owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies
page.

oro.open.ac.uk

http://oro.open.ac.uk/help/helpfaq.html
http://oro.open.ac.uk/policies.html


Ferdinando Pucci, MSc

Gene expression signature and pro-angiogenic function of 

Tie2-expressing macrophages

PhD candidate

In fulfillment of the Open University requirements for the degree of Doctor of 

Philosophy in Molecular and Cellular Biology

Director of studies External supervisor

Michele De Palma Claire Lewis

Vita-Salute San Raffaele University 

Milan, Italy

18 October 2010

p a te  oj. 5ub rw tss iokv : 30 ^DfD

Date oj A w ard * October Tx^io .



ProQuest Number: 13837622

All rights reserved

INFORMATION TO ALL USERS 
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com p le te  manuscript 
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest
ProQuest 13837622

Published by ProQuest LLC(2019). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C ode

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway 

P.O. Box 1346 
Ann Arbor, Ml 48106- 1346



Table of Contents

Illustration Index....................................................................................................... V

Index of Tables....................................................................................................... VII

Abstract 

Introduction

1 Innate immunity: historical perspective.................................................................. 3

1.1 Reticulo-endothelial system............................................................................ 4

1.2 Mononuclear phagocyte system..................................................................... 6

1.2.a Embryonic Mcps and the mononuclear phagocyte system...................... 9

1.3 Local proliferation of resident tissue mononuclear phagocytes....................10

1.4 Monocyte subsets..........................................................................................10

1.5 Heterogeneity of mononuclear phagocytes.................................................. 12

1.6 Acute versus chronic inflammation................................................................13

2 Inflammation, angiogenesis and cancer............................................................... 15

2.1 The hallmarks of cancer................................................................................ 15

2.2 Tumor angiogenesis...................................................................................... 16

2.3 Inflammation and cancer............................................................................... 17

3 Myeloid cells and tumor angiogenesis......................................................  19

3.1 Monocytes/Macrophages.............................................................................. 20

3.2 Polymorphonuclear phagocytes.................................................................... 23

3.3 TIE2-expressing macrophages (TEMs)........................................................ 25

3.3.a TEMs are pre-committed to a angiogenic function................................27

3.3.b Exploiting TEMs to deliver therapeutics to tumors................................29

3.3.C Human TEMs..........................................................................................30

4 TIE2 receptor.........................................................................................................31

4.1 Signalling mechanism.................................................................................. 31



4.2 Regulation of vascular homeostasis............................................................. 32

4.3 Regulation of TEM biology............................................................................34

Aim of the work 

Results

5 Isolation of highly purified tumor macrophage subsets........................................39

5.1 Identification of the best-performing cell sorting formula..............................39

5.2 Validation of sorted tumor macrophage subsets.......................................... 42

6 Tumor TEMs are monocytes/macrophages expressing a distinguishing gene 

signature..................................................................................................................43

6.1 Genes highly expressed in TEMs................................................................. 44

6.2 Morphological analysis of tumor macrophage subsets................................ 45

6.3 Genes differentially expressed between TEMs and TIE2- TAMs................ 46

6.3.a Statistical model.....................................................................................48

6.3.b Validation by FACS and IF staining.......................................................49

6.4 TEMs are refractory to pro-inflammatory stimuli...........................................52

7 Blood TEMs are a subset of monocytes.............................................................. 54

7.1 TEMs express resident monocyte marker profile......................................... 54

7.2 Common gene signature of circulating resident monocytes and tumor- 

infiltrating TEMs...................................................................................................54

8 Tie2 knock down in hematopoietic cells...............................................................56

8.1 Identification of the most effective RNAi sequence against Tie2................. 56

8.2 Constitutive expression of bicistronic amiR impairs cell growth in-vivo and 

in-vitro..................................................................................................................59

9 Conditional Tie2 knock down in mature hematopoietic cells............................... 62

9.1 Tie2 knock down in primary cells.................................................................. 63

9.2 The conditional gene silencing platform is safe in vivo................................ 64

9.3 Tie2 knock down in tumor TEMs impairs angiogenesis........................... ....68



Discussion

10 TEMs are distinct from ECs................................................................................73

11 Overlapping function and phenotype between TEMs and other mononuclear 

subsets.....................................................................................................................74

12 Functional considerations...................................................................................75

12.1 Extra-cellular matrix and TEMs...................................................................75

12.2 Soluble mediators........................................................................................76

12.3 TEMs as cellular chaperones......................................................................77

12.4 Miscellanea..................................................................................................78

13 TEM precursors.................................................................................................. 79

14 Role of TIE2 in TEMs..........................................................................................80

Appendix -  RNA interference

15 The micro-RNA world..........................................................................................85

16 Exploiting RNAi...................................................................................................85

Material and methods

17 Transgenic mice..................................................................................................89

18 Lentiviral vectors................................................................................................. 89

19 Hematopoietic stem/progenitor cell (HSPC) isolation, transduction and 

transplantation.........................................................................................................90

19.1 In vivo doxycycline administration..............................................................91

19.2 Magnetic Resonance Imaging (MRI)..........................................................91

20 Tumor models..................................................................................................... 92

20.1 Spontaneous MMTV-PyMT tumors............................................................. 92

20.2 N202 mouse mammary carcinoma............................................................. 92

21 Flow cytometry....................................................................................................92

21.1 Antibodies.................................................................................................. 93



21.2 Tumors.........................................................................................................93

21.3 Peripheral blood.......................................................................................... 94

22 Flow sorting........................................................................................................ 94

22.1 Tumor-derived TEMs, TIE2-TAMs and ECs.............................................94

22.2 GR1+ CD11b+ myeloid derived suppressor cells (MDSCs).......................95

22.3 Peritoneal macrophages (PMs).................................................................. 95

22.4 Resident and inflammatory monocytes..................................................... .96

23 Immunofluorescence staining (IFS) and confocal microscopy.......................... 96

23.1 In vivo labeling of vascular perfusion.........................................................97

23.2 Quantification of vascular parameters........................................................ 97

23.3 Antibodies......................................................................................  98

24 Colony-forming cell (CFC) assays..................................................................... 98

25 May-Grunwald-Giemsa staining.........................................................................99

26 Gene expression analyses and statistical analysis............................................99

26.1 Comparison of gene expression profiles between tumor-derived cells vs. 

circulating monocytes..........................................................................................99

27 RNA and DNA extraction and qPCR............................................................... 100

27.1 Gene expression (mRNA)......................................................................... 100

27.1.a Freshly isolated TEMs, TIE2-TAMs, MDSCs, PMs and ECs 100

27.1.b In vitro stimulation of TEMs, TIE2- TAMs and PMs with Th1 and Th2 

cytokines...................................................................................................... 101

27.1.C Circulating inflammatory and resident monocytes.............................101

27.2 Small RNA (including artificial micro RNA) analysis.................................102

27.3 Vector copy number analysis....................................................................102

27.4 Collection of raw data and determination of gene expression and LV copy 

number.............................................................................................................. 103

27.5 Calculation of PCR efficiency....................................................................103

IV



27.6.a TEMs vs TIE2- TAMs and Ly6C- vs Ly6C+ monocytes...................104

27.6.b OFP+ vs. OFP- TEMs...................................................................... 105

27.6.c Hematopoietic stem/progenitor cell cultures......................................105

Acknowledgements...............................................................................................106

Acronym Index...................................................................................................... 107

Author's publications.............................................................................................111

Bibliography....................................  113

Illustration Index

Illustration 1: Paul Ehrlich and Ilya Metchnikoff.........................................................3

Illustration 2: The reticuloendothelial system (RES) of Aschoff................................ 4

Illustration 3: The mononuclear phagocyte system in mice...................................... 7

Illustration 4: Acquired Capabilities of Cancer.........................................................16

Illustration 5: The Balance Hypothesis for the Angiogenic Switch.......................... 17

Illustration 6: Model for the link between inflammation, angiogenesis and cancer 18

Illustration 7: TEMs in a tumor section. Immunofluorescence staining..................27

Illustration 8: TEM depletion experiment................................................................. 28

Illustration 9: Schematic representation of the domain organization of the TIE

receptors.....................................................  31

Illustration 10: Model for Angiopoietin-Mediated TIE2 Signaling............................ 33

Illustration 11: Identification of the best-performing cell sorting formula for TEM

isolation.................................................................................................................... 40

Illustration 12: Flow cytometry analysis and sorting of TEMs from N202 tumors

grown in Tie2p/e-GFP transgenic mice................................................................... 4.1

Illustration 13: Validation of sorted TEMs, TIE2- TAMs and ECs by gene 

expression analysis..................................................................................................42

Illustration 14: TEMs robustly express typical myeloid genes, but low to negligible

V



amounts of EC genes............................................... 43

Illustration 15: Genes highly expressed in TEMs and grouped by function 44

Illustration 16: Morphology (May-Grunwald-Giemsa staining) of TIE2- TAMs and

TEMs....................................................................................................................... 45

Illustration 17: One-dot-one-gene representation of the expression profile of TEMs,

TIE2-TAMs, ECs, MDSCs and peritoneal macrophages...................   .46

Illustration 19: Flow cytometric analysis of TAM subsets........................................51

Illustration 18: Confocal immunofluorescence analysis of TAM subsets................50

Illustration 20: In vitro stimulation of peritoneal macrophages, TEMs and TIE2-

TAMs with Th1 and Th2 cytokines...........................................................................52

Illustration 21: Flow cytometry analysis of the blood of Tie2p/e-GFP transgenic

mice......................................................................................................................... 53

Illustration 22: Genes expressed either differentially or not between resident and

inflammatory monocytes...........................................  55

Illustration 23: Design of LV constitutively expressing artificial micro-RNAs and a

marker gene.............................................................................................................56

Illustration 24: Selection of siRNA sequences against TIE2 in vitro....................... 58

Illustration 25: In vivo counter-selection of cells transduced with constitutively

expressing amiR LVs...............................................................................................59

Illustration 26: In-vitro counter-selection of LV carrying amiR155 cassette 61

Illustration 27: Conditional LV platform for amiR expression.................................. 63

Illustration 28: Ex vivo validation of conditional Tie2 gene knock down................. 65

Illustration 29: The conditional gene silencing platform is safe in vivo................... 66

Illustration 30: Efficient de-targeting of amiR expression from BM HSCs in vivo...67 

Illustration 31: Efficient conditional Tie2 gene knock down in tumor-infiltrating

myeloid cells............................................................................................................ 68

Illustration 32: Conditional Tie2 gene knock down in TEMs inhibits angiogenesis

VI



myeloid cells............................................................................................................ 68

Illustration 32: Conditional Tie2 gene knock down in TEMs inhibits angiogenesis

and impairs blood vessel functionality.....................................................................70

Illustration 33: Morphometric analysis of amiR-expressing cells and their

association with blood vessels in tumors................................................................ 71

Illustration 34: Model of ANG2-TIE2 interactions modulating the pro-angiogenic

activity of TEMs........................................................................................................83

Illustration 35: The miRNA processing pathway..................................................... 86

Index of Tables

Table 1: Number of colony forming cells (CFC) arising from sorted TEMs and

TIE2-TAMS............................................................................................................. 43

Table 2: Genes up-regulated in tumor-derived TEMs as compared to TIE2- TAMs.

................................................................................................................................. 48

Table 3: Genes down-regulated in tumor-derived TEMs as compared to TIE2-

TAMs........................................................................................................................ 48

Table 4: Percentages of NGFR+ blood leukocytes measured by FACS at the

indicated time points. U-test: Mann-Whitney test................................................... .60

Table 5: List of antibodies for flow cytometry...........................................................93

Table 6: List of antibodies for IFS............................................................................ 98

Table 7 Primer sequences..................................................................................... 101

VII



Abstract

Chronic inflammation and activation of angiogenesis sustain tumor progression. 

Recent data indicate that tumor-infiltrating myeloid cells support tumor 

angiogenesis by regulating multiple pro-angiogenic pathways. However, the 

functional heterogeneity of myeloid cells -  macrophages in particular -  may be 

greater than currently appreciated, and the relative contribution of distinct myeloid 

cell types to tumor angiogenesis is currently poorly known. Our laboratory 

identified a subset of tumor-associated macrophages (TAMs) that are required for 

tumor angiogenesis -  the Tie2-expressing macrophages (TEMs). TEMs appear 

pre-committed to a pro-angiogenic function already when they circulate as 

monocytes and their elimination from tumor-bearing mice blunts tumor 

angiogenesis without affecting the recruitment of other myeloid subsets to the 

tumors. Yet, both the molecular bases of TEMs pro-angiogenic activity and the 

functional role of the TIE2 receptor in TEM biology are currently unknown. To 

investigate the molecular identity of TEMs, I developed protocols to purify TEMs 

and TIE2- TAMs from tumors and compared the gene expression profile of these 

2 tumor macrophage subsets. I found that the TEM gene signature is consistent 

with enhanced pro-angiogenic and tissue-remodelling activity. From such 

analyses, novel surface markers were established that easily and unambiguously 

identify TEMs in tumors. Furthermore, I found that circulating Ly6C- monocytes 

and tumor-infiltrating TEMs express similar gene signatures, suggesting possible 

developmental relationships between the two myeloid subsets. TEMs, but not 

other tumor-infiltrating myeloid cells, express the angiopoietin receptor TIE2. To 

study the functional role of TIE2 in TEMs, I developed a novel lentiviral vector- 

based, conditional gene knock down platform. Remarkably, Tie2 knock-down in 

TEMs significantly inhibited angiogenesis and microvascular perfusion in a 

spontaneous tumor model, recapitulating several features of TEM elimination. In 

conclusion, these studies provided a molecular characterization of TEMs and 

related myeloid cells and identified TIE2 as a critical regulator of their 

proangiogenic function in tumors.
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Introduction

1 Innate immunity: historical perspective

In 1908, Ilya Metchnikoff (1845-1916) and Paul 

Ehrlich (1854-1915) were jointly awarded the 

Nobel Prize in Physiology or Medicine, in 

recognition of their pioneering work on immunity 

(Mechnikov 1908; Ehrlich 1908). This event led 

to the birth of immunology as an academic 

discipline and the beginning of dichotomous 

thinking regarding innate and adaptive immunity.

Ilya Metchnikoff, the father of cellular immunity, 

described the phagocytic activity carried out by 

macrophages (Mcps) and neutrophils (which he 

called microphages). He reported that Mcps are 

present in different organs, and that 

phagocytosis is used not only for host nutritional 

activity and scavenging of degenerated and 

apoptotic cells (processes that he called 

physiological inflammation), but is also used 

during pathological inflammation, a host defence 

mechanism against invading pathogens (Chang

2009). Similarly, Paul Ehrlich is considered the 

father of the humoral theory of immunity. He hypothesized that living cells express 

side-chains that can recognize a particular toxin, like a key in a lock (Kaufmann 

2008). Ehrlich theorized that a cell under threat can express additional side-chains

Illustration 1: Paul Ehrlich (top) and 

Ilya Metchnikoff (bottom). Source: 

nobelprize.org
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to bind the toxin, and that these can be released from the cell surface to become 

the antibodies that are circulated through the body. It was these antibodies that 

Ehrlich first described as magic bullets in search of toxins. In the early 1900s, 

Ehrlich's magic bullets were used for the first time to treat established tumors 

using an immunotherapy strategy (Chang 2009).

Following Metchnikoff description of M(ps in Metazoans as early as 1892, cell 

types with similar features were reported thereafter. Under the name of 

clasmatocytes, Ranvier gave a histologic characterization of the Mcps in mammals; 

similar cells in the peritoneum were termed by Marschand adventitial cells. 

Maximow found these cells distributed in the connective tissue of mammals and 

termed them resting wandering cells. A similar type of cell was designated by Foot 

as endothelial phagocyte and by Kiyono as histiocyte. It is, therefore, apparent that 

all these terms refer to a similar cell type (Fry 1936).

1.1 Reticulo-endothelial system

Cells sharing a common origin, morphology, and function may be considered as 

belonging to a single entity and as constituting a "system". In 1924, Aschoff 

developed the "Mcp system" concept and, based on functional similarities, he 

grouped several kinds of cells in what he called the reticulo-endothelial system 

(RES) (van Furth et al. 1972). According to Aschoff, the properties which justify

Increase

of

phagocytic

activity

Endothelial cells 

Fibrocytes

Reticular cells of spleen and lymph nodes |  in

Reticuloendothelial cells of lymph and blood |
sinuses, including Kupffer cells j  5enss

Histiocytes

Sptenocytes and monocytes

RES in 
a wider 
sense

Illustration 2: The reticuloendothelial system (RES) of Aschoff (from van Furth et al. 1972)
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inclusion in the RES are best defined as a pre-eminent capacity for ingestion, 

concentration, and storage of foreign and autogenous substances of particulate 

nature, such as micro-organisms, cell debris and body fluids (Fry 1936). The cells 

discussed by Aschoff and ranked in increasing order of phagocytic activity are 

shown in Illustration 2.

The least phagocytic cells are endothelial cells (ECs), which form a thin layer of 

cells that line the interior surface of blood vessels, assembling a non-thrombogenic 

surface between circulating blood in the lumen and the rest of the vessel wall. 

Endothelial tissue is mesoderm-derived and is a specialized type of simple 

squamous epithelium. The presence of vimentin rather than keratin filaments 

allows to distinguish endothelial from epithelial cells.

More phagocytic than ECs are the fibrocytes and reticular cells. Fibrocytes and 

fibroblasts are believed to be two states of a same cell, the latter being the 

activated state. Similar to endothelium, fibrocytes are mesoderm derived and thus 

express vimentin. Fibroblasts produce glycoproteins and glycosaminoglycans, but 

also collagenous, reticular and elastic fibers, found in the extracellular matrix of 

connective tissue. Reticular fibers are composed of type III collagen and are 

produced also by reticular cells, but unlike fibroblasts, reticular cells retain reticular 

fibers intracellularly. This cellular scaffolding is called cytoreticulum, and allows the 

creation of non-fibrillar, wholly cellular stroma (found in thymus and spleen 

germinal centers, where T and B cells develop, respectively).

By far the most phagocytic cells are Mcps (histiocytes) and monocytes, which also 

originate from mesoderm, as do all hematopoietic cells (HCs). Both monocytes 

and Mcps play a central role in inflammation, which is a tightly regulated process 

initiated following tissue injury or infection. The main function of inflammation is to 

eliminate the pathogenic insult and to remove damaged tissue, with the aim of

5



restoring tissue homeostasis. The concerted action of several cell types— ECs, 

neutrophils, monocytes and Mcps — is crucial to the effective elimination of 

intruders and cell debris (Soehnlein & Lindbom 2010). Mouse models with 

genetically depleted Mcps provided functional evidence for the important trophic 

function of Mcps in tissue development and regeneration, namely in ductal 

branching, bone, Langerhans islets and renal development, neural networking, 

angiogenesis and the maintenance of reproductive function (Pollard 2009; 

Ovchinnikov 2008; De Palma et al. 2005).

1.2 Mononuclear phagocyte system

It is now established that there is no direct ontogenic relationship between all the 

cellular components of the RES, especially not between ECs and Mcps (Goerdt et 

al. 1996). For this reason, during a conference on mononuclear phagocytes (MP) 

held in Leiden, The Netherlands, in 1969, a new classification of these cells based 

on ontogeny was proposed for discussion. All highly phagocytic mononuclear cells 

and their precursors were grouped in the Mononuclear Phagocyte System 

(Illustration 3). The functional criteria initially adopted to justify the inclusion of a 

cell type in the MP system were:

1. phagocytosis mediated by immunoglobulins with or without complement 

(i.e. immune phagocytosis by "professional phagocytes", to distinguish them 

from "facultative phagocytic cells" such as fibroblasts, reticular cells, and 

ECs);

2. the ability to attach firmly to a glass surface;

3. belong to the mononuclear phagocyte lineage, i.e. to originate from a 

precursor cell in the bone marrow (BM), to be transported via the peripheral 

blood as monocyte, and eventually to become a tissue M(p (van Furth et al.
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1972).

These criteria (van Furth et al. 1972), together with the knowledge available at the 

time, allowed the inclusion in the MP system of M(ps from many different organs

•Location'

MDP
CDP

co Ly6C+
monocyteLy6C-

monocyte PDCPre-cDC

Ly6C‘
monocyte

Ly6C+
monocyte PDCPreo

1 F1 r

onocMacrophage PDC

Illustration 3: The M P system in mice. Monocyte DCs progenitors (MDP) give rise to Ly6C+ 

monocytes, and to classical DCs progenitors (CDP). It remains to be shown whether MDPs give 

rise directly to Ly6C - monocytes (dotted line). Ly6C+ monocytes convert in the BM  to give rise to 

Ly6C - monocytes. The two monocyte subsets; Ly6C+ and Ly6C - egress from the BM and enter 

the peripheral circulation. Under steady state conditions, Ly6C - monocytes might contribute to 

the tissue M(p compartment. Ly6C+ monocytes can under inflammatory conditions give rise to 

Mcps and dendritic cells. CDPs give in the BM rise to pre-classical dendritic cells and 

plasmacytoid DCs (PDC). Pre-classical dendritic cells (Pre-cDC) circulate in blood and enter 

lymphoid tissue, where they give rise to classical DC. (from Yona & Jung 2010)
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(connective tissue, serous cavities, liver, lung, spleen, bone, brain) under both 

normal and pathological conditions. At the same time, fibroblasts, reticular and 

ECs were excluded. Of note, splenic and lymph node dendritic cells (DCs) were 

excluded from the MP system, mainly because it was believed that DCs do not 

originate from blood monocytes (van Furth et al. 1972). Interestingly, although it 

was recently confirmed that in homeostatic conditions splenic DCs develop from a 

BM progenitor without a monocytic intermediate (Varol et al. 2007), it is now 

accepted that DCs are MP specialized in antigen presentation to T cells (Hume et 

al. 2002).

Although neutrophils are professional phagocytes that can phagocytose opsonised 

bacteria, they are excluded from the MP system because they are not derived 

through a monocytic intermediate. The production and life cycle for MP is more 

complex than for neutrophils. MP of the blood and tissues survive far longer than 

neutrophils (a feature clinically important; patients suffer from a high risk of fatal 

infections following transient interruption of neutrophil production). Monocytes 

have a preserved capacity to augment production of granule proteins through new 

protein synthesis, a feature that is lost in mature neutrophils. Of historical interest 

in this regard, lnterleukin-1 (IL1) -  the endogenous pyrogen thought for many 

years to be primarily a product of neutrophils -  is now known to be predominantly 

produced by MP, because of their greater capacity for protein synthesis and 

cytokine production (Dale et al. 2008). At sites of acute inflammation, monocytes 

accumulate more slowly, but persist longer then neutrophils, which however play a 

central role during initial phase of inflammation (see paragraph 3).

In the last decade, the MP system framework has been further challenged by 

studies on monocyte transdifferentiation (Hume et al. 2002) and ontogeny of 

embryonic M(ps (see paragraph 1.2.a). There has been considerable controversy
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in the literature as to whether monocyte transdifferentiation in non-hematopoietic 

cell types is a significant mechanism in either normal homeostasis or tissue repair. 

At least in vitro, mature blood monocytes and inflammatory M(ps can apparently 

transform into vascular elements, including ECs, myofibroblasts and smooth 

muscle cells. The RES framework, which is based on functional similarities, would 

be more suited to explain these results. However, transdifferentiation is a very rare 

event, and the mechanism probably involves monocyte cell fusion, rather than true 

lineage change (Hume 2006; Wagers et al. 2002).

1.2.a Embryonic Mq>s and the mononuclear phagocyte system

The MP system is largely an ontological definition for vertebrates and is useful for 

classifying Mcps in adults. The embryo seems to contain a Mcp population that does 

not fit in the MP system framework. The primitive embryonic Mcps (peMcps) indeed 

seem to originate from monopotent precursors in the yolk sac mesoderm at 7.5 

days post coitum (dpc), before the development of definitive hematopoiesis. Thus, 

peMcps bypass the monocyte-like stage, and are observed in the yolk sac, and 

later on in the embryo starting at 8 dpc (Ovchinnikov 2008). Whether these peMcps 

persist and/or proliferate in adult tissues is not known. On the other hand, 

definitive embryonic Mcps (deMcps) form as part of the definitive hematopoiesis 

process (i.e. from myeloid precursors and through the monocyte stage) and thus 

share more properties in common with their counterparts found in the adult animal 

than the peMcps (Ovchinnikov 2008). Interestingly, Langerhans cells (LCs) were 

recently shown to develop from deMcps that colonize the epidermis before birth, 

differentiate in situ, and then proliferate during the first week of life to establish the 

LC network. Moreover, adult LCs self-renew in situ and can massively proliferate 

during inflammation (Chorro et al. 2009).
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1.3 Local proliferation of resident tissue mononuclear phagocytes

There is increasing evidence for resident tissue Mcps to be largely maintained 

through local proliferation under steady state conditions. This has been reported 

for Mcps as diverse as alveolar Mcps (Landsman & Jung 2007), the previously 

mentioned LCs (Chorro et al. 2009) as well as brain microglia (Ajami et al. 2007). 

On the other hand, there is evidence suggesting that in the absence of 

inflammation, local proliferation is negligible, if any, for splenic white-pulp and 

metallophilic Mcps (Wijffels et al. 1994) and liver kupffer cells (Crofton et al. 1978). 

However, the proliferation potential of the various MP subsets is largely unknown, 

in particular under inflammatory conditions.

1.4 Monocyte subsets

Almost 30 years ago, two discrete subsets of human blood monocytes were 

identified by morphology, antigen presenting capability and the differential 

expression of the surface markers CD16 and CD14 (Ziegler-Heitbrock et al. 1991; 

Shen et al. 1983). These data provided the first clues to a potential existence of 

differential physiological activities of monocyte subsets. Although the 

discrimination and function of these populations is still a matter of intense 

investigation and controversy (Ziegler-Heitbrock et al. 2010), monocyte 

heterogeneity is now regarded to be a general theme, conserved among 

mammals, with monocyte subsets having been reported in cows, pigs, rats, mice 

and humans (Yona & Jung 2010).

Phenotypic characterization in the mouse identified two discrete blood monocyte 

subsets (Illustration 3), according to their expression of Ly6C, GR1, CCR2, 

CD62L, CD43 and CX3CR1 (Geissmann et al. 2003; Palframan et al. 2001). 

Ly6C+ monocytes were initially referred to as inflammatory monocytes because
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they give rise to M(ps and DCs in a variety of infectious models. Ly6C- monocytes, 

the most mysterious subset, were initially termed resident monocytes because of 

their longer half-life in vivo and their ability to home to both resting and inflamed 

tissues (Geissmann et al. 2003; Geissmann et al. 2010). Recently, it was reported 

that Ly6C+ blood monocytes shuttle efficiently in the absence of inflammation from 

the blood back to the BM (Varol et al. 2007), suggesting that this subset is not 

short lived as previously thought (Geissmann et al. 2003). Intriguingly, intravital 

microscopy revealed that Ly6C- monocytes exhibit long-range crawling on the 

luminal side of the vascular endothelium (Auffray et al. 2007), a feature that led 

these authors to term these cells as patrolling monocytes. Emerging evidence 

suggests that the two monocyte subsets exert distinct functions and have distinct 

fates in vivo (Nahrendorf et al. 2007; Landsman et al. 2007; Varol et al. 2009). 

Although monocytes have long been considered as a developmental intermediate 

between BM precursors and tissue Mcps, it is now clear that many DCs and tissue 

Mcps do not originate from monocytes at steady state, and that monocytes exert 

specific effector functions during inflammation.

Inflammation rapidly mobilizes monocytes from the BM (Serbina & Pamer 2006) 

and the subcapsular red pulp of the spleen, where a major monocyte reservoir 

exists in mice (Swirski et al. 2009). These splenic reservoir monocytes are 

indistinguishable from circulating blood monocytes and appear to be generated in 

the BM (like conventional blood monocytes), rather than locally in the spleen. 

Following injury, both splenic reservoir monocyte subsets are mobilized to the site 

of inflammation in an angiotensin-mediated, CCR2-independent manner (Swirski 

et al. 2009), whereas emigration of Ly6C+ monocytes from BM is CCR2- 

dependent (Serbina & Pamer 2006). However, it is not clear whether inflammation 

elicited monocytes integrate into the steady state resident MP network, functioning 

in an identical manner to resident cells.



1.5 Heterogeneity of mononuclear phagocytes

Over the past 10 years, the main, unresolved controversy inside the MP system 

field regards the heterogeneity versus plasticity issue (Gordon & Taylor 2005). 

Since the discovery of DCs (Steinman et al. 1974) and their inclusion in the MP 

system, distinguishing DCs from Mcps still leads to confusion and debate in the 

field. Several factors contributed to this confusion:

1. the use of non-specific cell surface markers (such as CD11c);

2. the adaptability and plasticity of Mcps to the micro-heterogeneity present in 

different tissue environments;

3. the wrong assumption that what is true for DCs in lymphoid organs is also 

true in non-lymphoid organs and what is true under homeostatic conditions 

is also relevant in inflammation (Geissmann et al. 2010).

Some authors proposed to identify DCs as cells with sufficient migration potential 

to reach draining lymph nodes or T-cell zones and Mcps as tissue resident, sessile, 

trophic cells (Geissmann et al. 2010; Yona & Jung 2010; Pollard 2009). On top of 

this, it has been suggested that the critical contribution of monocytes to the MP 

system lies in their ability to get rapidly mobilized (from BM and splenic reservoir) 

and reach through the circulation any site of the organism (Yona & Jung 2010), 

potentially with different kinetics (Nahrendorf et al. 2007; Hart et al. 2009).

Mcps and DCs may represent two extremes inside the MP system. A similar 

conceptual polarity stems from studies of Mcp activation during inflammation. It was 

initially found that Mcps from Th1 (C57B/6 and B10D2) and Th2 (BALB/c and 

DBA/2) mice respond in a qualitatively different manner to the same stimuli in vitro. 

This Mcp polarization paradigm was referred to as M1/M2, in analogy to the 

Th1/Th2 model (Mills et al. 2000). M1/M2 does not simply describe activated or 

deactivated Mcps, but cells expressing distinct metabolic programs. M1
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corresponds to the IFNg-dependent, classical activation and M2 corresponds to 

IL4/IL13-dependent, altenative activation of Mcps (Gordon & Martinez 2010). Fully 

polarized M1 and M2 Mcps obtained in vitro are believed to be the extremes of a 

continuum of functional states present in vivo (Mantovani et al. 2002). Since the 

heterogeneity and complexity of MP in vivo (both under homeostatic and 

inflammatory conditions) is still largely unknown, Mcp polarization has long been 

attributed to the plasticity and versatility of these cells in response to exposure to 

different micro-environmental signals (Mantovani et al. 2002). However, it should 

be emphasised that the heterogeneity of the MP system is moderately 

recapitulated by in vitro models. Indeed, in vitro generated Mcps and DCs, albeit 

useful to study some aspect of cell biology of phagocytosis and antigen 

presentation, do not represent a model to study the specialized functions of the 

diverse MP subsets that are present in different tissues (Geissmann et al. 2010) 

and that participate in inflammatory responses and tissue regeneration processes 

in vivo (Soehnlein & Lindbom 2010). Monocyte heterogeneity may contribute, at 

least in part, to MP plasticity in vivo. For instance, Ly6C- and Ly6C+ monocytes 

appear to be committed to readily differentiate into M2-like and M1-like MP, 

respectively.

In conclusion, a technological improvement will be required to shed more light on 

the fate of monocyte subsets and on the process of antigen presentation in vivo 

(Cavanagh & Weninger 2008), both in health and disease. The MP field will greatly 

benefit from cell specific tracking studies that use genetically encoded fluorescent 

reporters and intravital microscopy.

1.6 Acute versus chronic inflammation

Neutrophils, monocytes and M<ps are phagocytic cells that cooperate during the 

onset, progression and resolution of inflammation (Soehnlein & Lindbom 2010). In
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the first step, molecular alarm signals generated in response to sterile tissue 

damage and/or microbial invasion are recognized by resident MP (Rock et al. 

2010; Medzhitov 2007). Owing to their strategic location in close proximity to the 

site of injury, tissue-resident cells are the primary inducers of an inflammatory 

reaction. Patrolling monocytes have been proposed to take part to this phase also 

(Auffray et al. 2007). Following the recognition of danger signals, these tissue- 

resident cells synthesize leukotriene B4 (a strong secretagogue of neutrophil 

granule proteins and a powerful inducer of reactive oxygen species production) 

and chemokines, namely CXCL1, CXCL2, TNF and IL6 (phase I). During 

extravasation, neutrophils sequentially release preformed granules, which 

sensitize neutrophils to signals present in the milieu, induce ECs activation and 

permeability and promote Ly6C+ monocytes recruitment (phase II) (Soehnlein et 

al. 2008). Although the recruitment cascade for neutrophils and monocytes is 

similar, the two cell populations differ in their use of cell adhesion molecules and 

chemokines (Ley et al. 2007). After the inflammatory stimulus (e.g. pathogens) has 

been eliminated by the concerted action of neutrophils and MP, to avoid excessive 

tissue damage the healing process is actively triggered. Several mechanisms have 

a role in turning off neutrophil infiltration and promoting the uptake and clearance 

of apoptotic cells: 1) lipid mediator class switch (Serhan et al. 2008; Ravichandran 

& Lorenz 2007); 2) inhibition of neutrophil infiltration (Bournazou et al. 2009; 

Perretti & DAcquisto 2009); 3) chemokine inactivation (Soehnlein & Lindbom

2010); 4) down-regulation of granulopoiesis (Stark et al. 2005). Thus, inflammation 

is a self-limiting process, but under certain circumstances, failure in the resolution 

of inflammation hampers the restoration of tissue homeostasis and chronic 

inflammation ensues. Only recently, the mechanisms involved in this pathological 

diversion of the inflammatory response have started to be investigated. For 

instance, it has been proposed that if an adaptive immune response is activated
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by persistent stimulation (longer than 7 days), a chronic inflammatory loop may 

establish when even adaptive immune responses (which involve T and B cell 

functions) fail to eradicate the stimulus. In such a scenario, the composition of the 

infiltrating leukocytes changes from neutrophils to a mixture of mononuclear 

phagocytes and T cells. Concomitantly, the inflammatory stimulus changes from 

the one sensed by pattern-recognition receptors of innate immune cells to the one 

recognized as an antigen by activating receptors on T and B cells of the adaptive 

immune system. Antigen-activated T cells can enhance effector functions of MP 

and neutrophils (for instance increasing the specificity of action by antibody 

mediated targeting) or recruit alternative effector cells, such as eosinophils. The 

specialized effector cells of adaptive immunity often succeed in eradicating a 

stimulus that resists clearance by innate immunity, which allows for resolution and 

repair. Prolonged antigenic stimulation by resistant microbes or tissue-derived 

auto-antigens leads to chronic inflammation with formation of an inflammatory neo

tissue (Pober & Sessa 2007), which can eventually evolve to malignancy (de 

Visser et al. 2005).

2 Inflammation, angiogenesis and cancer

2.1 The hallmarks of cancer

Several lines of evidence indicate that tumorigenesis in humans is a multistep 

process and that these steps reflect genetic alterations that drive the progressive 

transformation of normal human cells into highly malignant derivatives. Taken 

together, observations of human cancers and animal models argue that tumor 

development proceeds via a process formally analogous to Darwinian evolution, in 

which a succession of genetic changes, each conferring one or another type of 

growth advantage, leads to the progressive conversion of normal human cells into
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cancer cells. The vast catalog of cancer cell genotypes is believed to be a 

manifestation of six essential alterations in cell physiology that collectively dictate 

malignant growth (Illustration 4). These six capabilities are shared in common by 

most and perhaps all types of human tumors (Hanahan & Weinberg 2000).

Whereas acquired

capabilities such as evading 

apoptosis, insensitivity to 

anti-growth signals and 

limitless replicative potential 

are clearly cell autonomous 

(Hanahan & Weinberg 

2000), the remaining three, 

i.e. self-sufficiency in growth 

signals, tissue invasion and 

metastasis and sustained 

angiogenesis can receive a 

direct, variable contributions 

from the micro-environment, 

Pollard 2010). Although it has 

been proposed that inflammation represents the 7th hallmark of cancer (Mantovani 

2009), angiogenesis is intimately linked to chronic inflammation and can account 

for it.

2.2 Tumor angiogenesis

Angiogenesis, a physiological process involving the growth of new blood vessels 

from pre-existing ones, is universally recognized as a hallmark of cancer (see 

paragraph 2.1). Angiogenesis is an obligate and rate-limiting factor for tumor
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Illustration 5: The Balance Hypothesis for the Angiogenic Switch (from

Hanahan & Folkman 1996)

growth (Folkman et al. 2000). Indeed, the oxygen and nutrients supplied by the 

vasculature are crucial for cell function and survival, obligating virtually all cells in a 

tissue to reside within 100 pm of a capillary blood vessel. Because of this 

dependence on nearby capillaries, and since proliferating cells within a tissue do 

not have an intrinsic ability to stimulate blood vessel growth, incipient neoplasias 

must develop angiogenic ability in order to progress to a larger size (Hanahan & 

Weinberg 2000). According to the balance hypothesis (Hanahan & Folkman 1996), 

the switch to the angiogenic phenotype involves a change in the local equilibrium 

between positive and negative regulators of angiogenesis (Illustration 5). The 

ability to induce and sustain angiogenesis seems to be acquired in a discrete step 

during tumor development, in pre-neoplastic lesions, prior to the appearance of 

full-blown tumors (Hanahan & Folkman 1996).

2.3 Inflammation and cancer

Back in 1863, Rudolph Virchow documented the association between the 

lymphoreticular infiltrate present at chronically inflamed tissues and the site of 

origin of human cancer (Plytycz & Seljelid 2003). Such an observation was
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resurrected in recent years with the popular concept that inflammation and cancer 

are causally linked (Balkwill & Mantovani 2001). This concept is based both on 

epidemiological data linking chronic inflammation to a higher cancer risk and 

experimental evidence that certain inflammatory cells, such as TAMs, may 

facilitate tumor development (Mantovani & Sica 2010). It has been estimated that 

a significant proportion of chronic inflammatory diseases (such as inflammatory 

bowel desease, gastric ulcer, hepatitis) progress to cancer in predisposed patients 

(Coussens & Werb 2002). Chronic inflammation can cause initiating mutations in 

susceptible cell populations just like chemical carcinogens do. MP and neutrophils 

can induce DNA damage in proliferating cells, through their generation of reactive 

oxygen and nitrogen species that are produced normally by these cells to fight 

infection (Maeda & Akaike 1998). These species react to form peroxynitrite, a 

mutagenic agent. Hence, repeated tissue 

damage and multiple cycles of tissue 

regeneration of tissue (Illustration 6), in the 

presence of highly reactive nitrogen and 

oxygen species released from inflammatory 

cells, may accelerate the accumulation of 

genetic and epigenetic alterations that affect 

the expression or function of proto

oncogenes and tumour suppressor genes in 

somatic cells (Hussain et al. 2003).

In 1880, seventeen years after Virchow's 

association between cancer and 

inflammation, Julius Cohnheim was the first 

to state that there is no inflammation without 

blood vessels (Doerr 1985). In non-inflamed
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tissues, vascular ECs maintain blood fluidity, regulate blood flow, control vessel 

wall permeability and keep circulating leukocytes quiescent. The activation of ECs 

involves rapidly acting, pre-synthesized and stored molecules (type I activation), in 

addition to a subsequently slower transcriptionally regulated response program 

(type II activation) (Pober & Cotran 1990). The angiopoietin-Tie2 system is 

emerging as a key regulator of EC homeostasis and activation. Angiopoietin-2, 

one of the two main Tie2 ligands, functions as an immediate autocrine switch of 

vascular responsiveness to exogenous stimuli and angiogenesis (see paragraph 

4.2) (Fiedler & Augustin 2006). Activated ECs trigger neutrophil recruitment 

(Fiedler et al. 2006), and thus play a central role in the first phase of inflammation 

(see paragraph 1.6). Thus, ECs activation is not only prerequisite for initiating 

angiogenesis, but also for triggering inflammation and inflammation-associated 

diseases (Illustration 6).

3 Myeloid cells and tumor angiogenesis

Oncogene activation and/or tumour suppressor gene inactivation can alter the 

expression of angiogenesis activators and inhibitors in transformed cells. However, 

these events may not be sufficient to trigger the angiogenic switch. In this regard, 

there is a growing interest in understanding the complex interactions between BM- 

derived myeloid-lineage cells and angiogenesis in tumors. Such interest has been 

revived recently by the observation that tumor-infiltrating myeloid cells convey pro- 

angiogenic programs that can counteract the activity of anti-angiogenic drugs in 

mouse tumor models (Shojaei & Ferrara 2008). Several studies highlighted the 

importance of BM-derived HCs in tumour angiogenesis (Bergers et al. 2000; 

Coussens et al. 2000; De Palma et al. 2003). HC subsets that have been directly 

implicated in tumour angiogenesis include mast cells (Coussens et al. 1999), 

TAMs (Lin et al. 2001), Tie2-expressing macrophages (TEMs) (De Palma et al.
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2003) and Gr1+ CD11b+ myeloid derived suppressor cells (MDSCs) (Yang et al. 

2004a). Other HCs types, such as platelets, neutrophils, DCs, eosinophils and 

hematopoietic progenitors may also participate in the angiogenic process, but it 

remains to be established whether they directly promote angiogenesis, rather than 

having a function in supporting tissue inflammation and remodelling (De Palma & 

Naldini 2006). However, the relative contribution of each of the aforementioned 

myeloid cell types to tumor angiogenesis has been limited so far by our little 

understanding of their developmental, phenotypic and functional identity in the 

context of the tumor micro-environment.

3.1 Monocytes/Macrophages

These cells are released from the bone marrow as pro-monocytes, mature into 

monocytes in the circulation, infiltrate tumors, and differentiate further into TAMs 

(Mantovani et al. 2008; Lewis & Pollard 2006). Once in tumors, M(ps express a 

wide array of pro-angiogenic factors, including vascular endothelial growth factor 

(VEGF)-A and matrix metalloproteinase (MMP)-9 (Coussens et al. 2000; Giraudo 

et al. 2004; Lewis et al. 2000). Evidence for their role in tumor angiogenesis has 

been established by several different experimental approaches. By using MMTV- 

PyMT mammary tumor-prone mice carrying a colony stimulating factor-1 (Csf1) 

null mutation (Csf10P/0P), Lin and co-workers (Lin et al. 2001; Lin et al. 2006) 

demonstrated that the absence of CSF-1 markedly decreased Mcp infiltration in 

pre-malignant tumors, and this, in turn, resulted in inhibition of tumor angiogenesis 

and delayed metastasis. Furthermore, inhibition of tumor-derived TAM 

chemoattractants, ablation of TAMs by DNA vaccination, or pharmacological 

neutralization of TAM-produced pro-angiogenic molecules also impaired tumor 

angiogenesis in various tumor models (Fischer et al. 2007; Luo et al. 2006; 

Giraudo et al. 2004). It should be noted, however, that in Ccr2-deficient, K14-HPV
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cervical tumor-prone mice, the genetic depletion of TAMs unleashed a 

compensatory neutrophil response that rescued tumor angiogenesis and 

progression (Pahler et al. 2008). This interesting observation highlights a certain 

degree of functional redundancy among tumor-infiltrating Mcps and neutrophils, 

that may vary in a tissue- or organ-specific fashion.

TAM depletion from tumors removes all of the many aspects of Mcp involvement in 

tumor progression. These include, in addition to the production of VEGF-A and 

other pro-angiogenic factors, the release of cellular mediators that promote 

immuno-suppression and enhance tumor cell survival, migration and invasion 

(Mantovani et al. 2008; Lewis & Pollard 2006; Condeelis & Pollard 2006). To 

specifically analyse the role of myeloid cell-derived VEGF-A in tumor 

angiogenesis, Stockmann and co-workers (Stockmann et al. 2008) crossed mice 

carrying /oxP-flanked Vegfa alleles to mice carrying a lysozyme M promoter-driven 

Cre recombinase. Interestingly, the authors found that the targeted deletion of 

VEGF-A in myeloid cells failed to inhibit angiogenesis and tumor growth or 

decrease the overall amount of VEGF-A expressed in tumors. Rather, it attenuated 

the vascular abnormalities commonly observed in tumors and improved tumor 

perfusion (a phenomenon previously referred to as "vascular normalization” (Jain 

2005)). These results suggest that VEGF-A production by TAMs promotes the 

formation of chaotic, poorly functional tumor-associated vasculature -  at least in 

the murine tumor models used.

It is rapidly emerging that TAMs may comprise distinct M(p subsets (Coffelt et al. 

2010a; Qian & Pollard 2010). Egeblad and co-workers(Egeblad et al. 2008) 

developed and applied multicolor imaging techniques (Hoffman & Yang 2006) to 

analyze the recruitment and behavior of M(ps and related myeloid cells in different 

tumor microenvironments in live mice. MMTV-PyMT mice were crossed with a
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transgenic mouse line expressing GFP under the control of the promoter of the 

Csflr gene, which is specifically expressed in monocyte/Mcp-lineage cells. The 

movement of GFP+ cells within tumors was then visualized along with 

fluorescently labeled dextran (to label blood vessels and Mcps that endocytose 

dextran) and fluorescently labeled monoclonal antibodies (to better identify the 

myeloid cell subsets involved). Based on their motility, expression of surface 

markers (such as mannose receptor, MRC1/CD206) and ability to phagocytose 

dextran, the Mcps could be classified into distinct sub-populations, including low- 

migratory MRC1+ dextran+ Mcps found in the peri-tumor areas and sessile MRC1- 

dextran- Mcps found within the tumor mass (Egeblad et al. 2008). This real-time 

analysis of myeloid cell location, behavior and gene expression within intact, live 

tumors, showed that the functional heterogeneity of tumor-infiltrating myeloid cells 

-  Mcps in particular -  may be greater than anticipated by the analysis of static 

markers on fixed tissues. As of today, at least four distinct TAM subsets have been 

identified and profiled from tumors (Qian & Pollard 2010; Pucci et al. 2009)

Monocytes are highly plastic cells and it is generally believed that their intra- 

tumoral differentiation toward distinct Mcp subsets is regulated by the contextual 

assortment of cytokines, chemokines and growth factors present in the tumor 

microenvironment. For instance, IL-4, IL-13 and IL-10 are thought to directly 

stimulate the growth-promoting and pro-angiogenic functions of TAMs, a process 

known as alternative Mcp activation or M2 polarization (Mantovani et al. 2002) (see 

paragraph 1.5 on page 12). However, it is also possible that distinct monocyte 

subsets give rise to distinct Mcp sub-populations in tumors (Pucci et al. 2009). 

Whether the different monocyte/Mcp subsets found in tumors (Coffelt et al. 2010a; 

Qian & Pollard 2010) represent distinct lineages (Pucci et al. 2009) or more plastic 

differentiation states (Mantovani et al. 2002), and whether they are related to each 

other by a precursor-to-mature cell relationship, is the object of current
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investigations.

3.2 Polymorphonuclear phagocytes

Granulocytes, neutrophils in particular, and mast cells are regarded as a key 

source of pro-angiogenic factors in certain experimental tumors. An early study 

examining the importance of MMP9 and VEGF-A in pancreatic tumors of RIP1- 

Tag2 mice noted that inflammatory cells are the main producers of these two pro- 

angiogenic molecules in tumors (Bergers et al. 2000). Neutrophils, together with 

monocytes/M(ps, have since been identified as the predominant source of MMP9 

and other pro-angiogenic molecules in RIP1-Tag2 mice (Nozawa et al. 2006; 

Shojaei et al. 2008). Although neutrophils are found in lower frequency than Mcps 

in RIP1-Tag2 insulinomas, their elimination by means of anti-GR1 antibodies 

(which, however, also bind Ly6C+ inflammatory monocytes; see paragraph 1.4 on 

page 10) in this tumor model reduces the levels of MMP9 in the tumors, which in 

turn inhibits the association of VEGF with VEGF receptor-2 (VEGFR-2) on ECs, 

thus suppressing angiogenesis.

MDSCs are a heterogeneous population of myeloid cells that encompasses 

immature monocytes, granulocytes, DCs and their precursors. The defining 

characteristics of MDSCs are largely based on their ability to suppress innate and 

adaptive immunity and expression of CD11b and GR1 (Gabrilovich & Nagaraj 

2009; Capuano et al. 2009), whereas expression of other phenotypic markers by 

MDSCs varies due to their diversity and inclusion of myeloid cells at various 

stages of differentiation. Recent attempts at narrowing down specific subsets of 

these cells conclude that this group of ceils can be divided into monocytic 

(mononuclear-MDSCs) and neutrophilic (polymorphonuclear-MDSCs) and DC 

subsets, which express phenotypic markers characteristic of each respective 

subset (Umemura et al. 2008; Youn et al. 2008). There is also some evidence
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indicating that these subsets may have different functions in tumors (Movahedi et 

al. 2008), but the predominant phenotype and differentiation status of these cells 

once they migrate into premalignant tissue and tumors is unclear and is likely 

dependent on the tumor model and tumor type. While MDSCs are believed to 

promote tumor progression through immunosuppression and other mechanisms, 

these cells (or subsets of them, such as neutrophils) may also influence 

angiogenesis (Shojaei et al. 2007; Yang et al. 2004b) an effect mediated, at least 

in part, by their release of pro-angiogenic factors. In this regard, Shojaei and co

workers (Shojaei et al. 2007) found that tumor refractoriness to anti-VEGF therapy 

correlates with the marked accumulation of CD11b+ GR1+ myeloid cells within 

certain mouse tumors. This finding suggests that some tumors may co-opt VEGF- 

independent, pro-angiogenic programs that are executed by the tumor-infiltrating 

myeloid cells. Yet, an immuno-suppressive function has not been conclusively 

demonstrated for the pro-angiogenic CD11b+ GR1+ cells, raising the question of 

whether or not they can truly be referred to as MDSCs.

A number of experimental animal models have shown mast cells to be important 

for tumor angiogenesis (Criveilato et al. 2008). Mast cells accumulate during the 

pre-malignant stages of tumor progression and at the periphery of invasive tumors. 

They have direct pro-angiogenic activity due to their production of MMPs, 

particularly MMP-9, and secretion of other pro-angiogenic molecules such as basic 

fibroblast growth factor (FGF), VEGF, and IL-8. In addition, mast cells indirectly 

stimulate angiogenesis by secreting mast cell-specific serine proteases that 

activate pro-MMPs and stimulate stromal fibroblasts to synthesize collagens (De 

Palma & Coussens 2008). Tumors grown in transgenic mice deficient in mast cells 

exhibit delayed tumor vascularization and progression. For instance, premalignant 

angiogenesis is abated in a mast cell-deficient, skin tumor-prone K14-HPV 

transgenic mouse (Coussens et al. 1999), as well as during pancreatic islet cell
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carcinogenesis (Soucek et al. 2007), melanoma progression (Starkey et al. 1988), 

and adenomatous colon polyposis (Gounaris et al. 2007).

In conclusion, the promiscuous cell markers routinely used to identify myeloid cells 

in tumors, together with the limited availability of mouse models and experimental 

tools that allow dissecting the contribution of each of the distinct myeloid cell types 

potentially involved, have confounded the interpretation of the role of myeloid cells 

in tumor angiogenesis. High-resolution, single-cell live imaging analysis of tumor- 

infiltrating myeloid cells is unraveling an unexpected degree of functional 

heterogeneity (Egeblad et al. 2008). Whereas further studies will likely establish 

the developmental and functional overlap of some of the aforementioned pro- 

angiogenic myeloid cell types, it is increasingly appreciated that TAMs comprise 

functionally and perhaps developmentally distinct subsets.

3.3 TIE2-expressing macrophages (TEMs)

While the origin and growth pattern of tumor cells differ enormously from tumor to 

tumor, angiogenesis involves genetically stable host tissues and follows recurrent 

patterns. Moreover, angiogenesis occurs under few physiological conditions of 

adult individuals and angiogenic vessels display different features from those of 

established blood vessels. Indeed, it is well known that tumor vessels appear 

structurally immature, exhibit poor association between ECs and supporting cells 

and are often leaky and haemorrhagic (Hashizume et al. 2000). In addition, ECs of 

tumor vessels display distinctive protein expression profiles, such as the specific 

expression or the up-regulation of matrix proteases, adhesion molecules and 

receptor tyrosine kinases (St Croix et al. 2000). For these reasons, newly forming 

tumour vessels have long been regarded as a target that could be exploited for the 

delivery of cancer therapeutics (Folkman 1971).

To specifically target exogenous genes to tumor angiogenesis, De Palma et al.
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generated lentiviral vectors (LVs) with EC-specific expression (De Palma et al.

2003). LVs containing promoter and enhancer sequences from the mouse Tie2 

gene (Tie2p/e) proved to be the most EC-specific in vitro. Direct injection of 

Tie2p/e-GFP LVs into mammary tumor allografts resulted in targeted and efficient 

expression of the Tie2p/e vector in tumor ECs. Unexpectedly, the Tie2p/e vector 

also targeted gene expression to a subset of stromal cells expressing the pan

leukocyte marker CD45 and mostly localized at the tumor periphery (De Palma et 

al. 2003). The transplant of BM cells transduced ex vivo with Tie2p/e-GFP LVs into 

irradiated mice showed that only a small fraction of blood leukocytes and marrow 

cells are weakly Tie2p/e-GFP+. The circulating Tie2p/e-GFP+ cells are myeloid- 

lineage (CD45+, CD11b+, CD19-) cells, and were initially termed Tie2-expressing 

mononuclear cells (TEMs) (De Palma et al. 2003). Once recruited to the tumors, 

TEMs express a CD45+ CD31- CD11b+ F4/80+ phenotype and mostly localize at 

the tumor periphery and/or associate with small blood vessels dispersed within the 

tumor parenchyma (Illustration 7). Remarkably, GFP expression is detected only in 

tumors but not in non-angiogenic organs such as spleen, lung, liver, heart or brain. 

However, TEMs are also recruited to sites of non-tumor angiogenesis, namely in 

the granulation tissue surrounding regenerating hepatic lobules following 

hepatectomy and during wound healing. Of note, the Tie2p/e LVs is very weak in 

leukocytes, indicating minimal expression of TIE2 in the circulating monocytes. 

Thus, alternate surface markers that easily and unambiguously identify TEMs are 

highly desired.

At the time of these studies (De Palma et al. 2003), a new concept in the field of 

tumor biology was emerging. BM derived endothelial progenitor cells (EPCs) were 

reported to contribute substantially to tumor vessels by vasculogenesis, the 

process of de novo formation of blood vessels from angioblast-like EPCs (Lyden et 

al. 2001). Although TEMs do not incorporate into newly formed tumor vessels, they
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Illustration 7: TEMs in a tumor section. Immunofluorescence staining of a tumor 

section from a Tie2p/e-GFP BM chimera mouse. O f note, the perivascular 

position of Tie2p/e-GFP+ TEMs, which contrast to the widespread distribution of 

CD11b+ myeloid cells (in blue). Blood vessels are in red. De Palma et al. 2008.

share several surface markers with ECs, TIE2 in primis (Prater et al. 2007; De 

Palma & Naldini 2006). This, together with the close proximity between tumor ECs 

and TEMs, may have erroneously led several authors to regard TEMs as BM- 

derived ECs, i.e. EPCs. Thus, to study TEM biology, the choice of markers 

employed to identify them is of paramount importance.
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3.3.a TEMs are pre-committed to a angiogenic function

The peculiar peri-vascular localization of TEMs suggests a potential role in the 

regulation of tumor angiogenesis. Indeed, conditional TEM depletion by employing 

the Tymidine Kinase (TK) suicide gene abates the recruitment of TEMs to the 

developing tumors and markedly inhibits tumor angiogenesis (De Palma et al.

2005). Interestingly, TEM elimination does not affect the overall number of TAMs 

and granulocytes, making it unlikely that TEMs comprise precursors of TAMs 

(Illustration 8). Rather, these studies suggest that TEMs represent a distinct TAM

-  g c v  + GCV

Illustration 8: TEM depletion experiment. Tumor-bearing Tie2p/e-TK-GFP BM 

chimera mice were treated (right panels) or not (left panels) with Gancyclovir (GCV) 

in order to deplete TEMs. Of note, after virtually complete TEM depletion, the 

presence of tumor-infiltrating CD11b+ myeloid cells is not affected. De Palma et al. 

2005.

28



subset with inherent, non-redundant pro-angiogenic activity. TEMs hold this pro- 

angiogenic activity already when they circulate in the peripheral blood, before 

reaching the tumour site (De Palma et al. 2005). Recent data confirmed that 

human TEMs, similar to their murine counterpart, are already pre-committed to a 

pro-angiogenic function in the circulation (Coffelt et al. 2010b). Thus, TEMs are a 

pre-committed MP subset with innate pro-angiogenic activity. In this regard, the 

identification of pro-angiogenic TEMs among the heterogeneous TAM population 

challenges the notion that transition of tumour Mcp phenotype between growth- 

inhibitory and growth-promoting activity is exclusively and contextually modulated 

by the tumour micro-environment (Mantovani et al. 2002). Nevertheless, the 

molecular bases of the pro-angiogenic activity of TEMs and the role of TIE2 in 

TEM biology need to be elucidated.

Regarding putative TEM precursors, it has been reported that TIE2 is expressed 

by long term repopulating hematopoietic stem cells (HSC) and mediates their 

quiescence in the BM niche (Arai et al. 2004). This may explain why TK-based 

TEM depletion did not cause obvious myelotoxicity in mice, as this conditional Cell 

elimination system only kills proliferating cells (De Palma et al. 2005). However, 

the BM progenitor/precursor of circulating and tumor-infiltrating TEMs remains to 

be identified.

3.3.b Exploiting TEMs to deliver therapeutics to tumors

Based on the unique tumor-homing specificity of TEMs among myeloid-lineage 

cells and the selective expression of the Tie2 gene in TEMs among the progeny of 

BM-derived HSCs, our laboratory explored the possibility of targeting an anti-tumor 

cytokine (i.e. IFNa) to tumors by exogenously expressing it in TEMs (De Palma et 

al. 2008). Whereas HSCs constitutively expressing IFNa failed to engraft, Tie2p/e- 

IFNa transduced HSCs were able to successfully reconstitute mice long-term.
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Although IFNa was not detectable in the plasma of Tie2p/e-IFNa mice, when 

challenged orthotopically with human glioma cells, these mice were resistant to 

tumor growth. Interestingly, by exploiting the species difference between the tumor 

and the host (human and mouse, respectively), we were able to show that the 

IFNa response of host-derived components of the tumor is sufficient to inhibit 

human glioma growth (De Palma et al. 2008).

In mice developing spontaneous metastatic mammary tumors (MMTV-PyMT), 

TEM mediated delivery of IFNa substantially (50%) reduced tumor volume. Tumor 

specific activation of type I IFN inducible genes was the molecular evidence for the 

selective targeting of the IFN response to mammary tumors but not to other 

organs. TEM-mediated IFNa delivery enhanced the recruitment and promoted the 

activation of both innate and adaptive immune cells. Finally, effective metastasis 

suppression in Tie2p/e-IFNa BMT mice was observed (De Palma et al. 2008).

In summary, TEM-mediated delivery of bioactive peptides is a safe, specific and 

effective way to contrast tumor growth and metastasis. Of note, the tumor 

microenvironment, if properly elicited, is able to reject the tumor.

3.3.c Human TEMs

Recently, our and other laboratories reported the existence of TEMs in human 

blood and cancer (Murdoch et al. 2007; Venneri et al. 2007; Pulaski et al. 2009; 

Coffelt et al. 2010b). In human cancer specimens, TEMs are a minor proportion of 

the bulk of tumor-infiltrating leukocytes -  which mostly comprise TAMs and 

granulocytes. TEMs are found both in peri-vascular and avascular viable (hypoxic) 

areas of human tumors and are largely missing in non-neoplastic tissues adjacent 

to tumors. In addition to tumors, TEMs can be detected at low frequency in the 

human peripheral blood (Venneri et al. 2007; Murdoch et al. 2007; Coffelt et al. 

2010b). Similar to murine cells, human TEMs isolated from peripheral blood also
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have pro-angiogenic activity (Venneri et al. 2007; Coffelt et al. 2010b). Lewis and 

co-workers showed that circulating human TEMs are already pre-programmed in 

the circulation to be more pro-angiogenic than TIE2- monocytes. Additionally, 

angiopoietin-2 markedly enhanced the pro-angiogenic activity of human TEMs by 

up-regulating their expression of the pro-angiogenic gene thymidine 

phosphorylase.

4 TIE2 receptor

In the mouse and human system, the 

TIE2 receptor is almost exclusively 

expressed by ECs, HSCs and TEMs.

The Tek gene encodes for the TIE2 

protein. TIE2 is a receptor tyrosine 

kinase which possesses a unique

extracellular domain containing 3 

immunoglobulin-like loops which fold 

together with 3 epidermal growth

factor-like repeats and three fibronectin type III repeats (Illustration 9) (Barton et al.

2006). Studies with dominant-negative and null mice reveal that loss of Tie2 gene 

function results in embryonic death at 9.5 dpc as a consequence of an

underdeveloped vasculature (Sato et al. 1995; Dumont et al. 1994). TIE2 is

expressed at high levels in blood and lymphatic ECs, whereas HSCs and tumor- 

infiltrating TEMs express much lower levels (up to 100-fold less).

4.1 Signalling mechanism

Initially described as an orphan receptor (Dumont et al. 1992), TIE2 was 

subsequently shown to interact with all four of the angiopoietins (ANG1 -  ANG4)

Illustration 9: Schematic 

representation of the 

EGF2 domain organization of

EGF3 ^  the TIE receptors. (From

Barton et al. 2006)
FNIll ^

Kinase*
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(Valenzuela et al. 1999). The different angiopoietins, although having high 

sequence homology, elicit different responses from the TIE2 receptor. Indeed, 

ANG1 is a constitutive receptor agonist, while ANG2 is a context-dependent one 

(Ward & Dumont 2002). The four known angiopoietins each contain an N terminus 

that modulates angiopoietin clustering and a C terminus that mediates the 

interaction with TIE2 (Davis et al. 2003). Ligand oligomerization is necessary for 

receptor activation. Indeed, all angiopoietins exist primarily as tetramers, 

hexamers and higher order oligomers in solution (Ward & Dumont 2002; Seegar et 

al. 2010). Ligand-induced oligomerization of the extracellular regions of TIE2 leads 

to activation of the intracellular tyrosine kinase domain, which creates binding sites 

for Src homology 2 and phosphotyrosine binding domain containing proteins 

(Lemmon & Schlessinger 2010).

TIE1, although a close homolog of TIE2, does not interact directly with the 

angiopoietins, and its in vivo ligands are yet to be identified. A recent study using 

catalytically inactive TIE2 demonstrated that TIE1 phosphorylation is dependent on 

a functional TIE2 (Yuan et al. 2007). Recently, it has been proposed that TIE1 is 

an inhibitory co-receptor. Specifically, in cells expressing both TIE1 and TIE2, the 

receptors form heterodimers that inhibit Tie2 activation and clustering. Binding of 

ANG1 to TIE2 promotes heterodimer dissociation, TIE2 clustering, and signalling 

initiation. On the other hand, ANG2 is unable to dissociate the inhibitory TIE2-TIE1 

complexes upon binding TIE2 and, therefore, does not induce TIE2 clustering and 

signaling, yet behaves as a competitive antagonist by blocking further binding of 

ANG1. Indeed, both ANG1 and ANG2 bind to the same region of Tie2 (Barton et 

al. 2006). Alternatively, in cells that do not express TIE1, all angiopoietins promote 

TIE2 clustering and activation (Seegar et al. 2010). This model proposes that the 

balance of TIE1 and TIE2 expression modulates the functional potential of ANG2, 

and by analogy, vascular homeostasis. However, this model is based on studies
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Illustration 10: Model for Angiopoietin-Mediated TIE2 Signaling. Left: expression of TIE2 in the 

absence of TIE1 at sites of vessel quiescence and maturity. In the absence of TIE1, TIE2 can be 

activated with either ANG1 orANG 2. Both ligands stimulate receptor clustering, tyrosine kinase 

activity, and downstream signaling events, effectively become unresponsive to vessel sprouting 

and branching cues. Middle and right: within sites of active angiogenesis, TIE1 and TIE2 

associate to form a complex prior to ligand stimulation. Upon addition ofA N G 2 (right), TIE1 and 

TIE2 association and localization remain unchanged. Under these conditions, ANG 2 fails to 

activate the TIE2 receptor and opposes the activation of downstream signaling generated by 

ANG1. However, upon addition of ANG1 (middle), the opposite is observed. ANG1 stimulates 

TIE2 clustering, tyrosine kinase activity, and downstream signaling events similar to those 

observed in the absence of Tie1. Angiopoietins are depicted as dimers for illustration purposes, 

although they are known to exist as higher-order clusters, (from Seegar et al. 2010)

performed in ECs and it is not known if it holds true also in HCs.
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4.2 Regulation of vascular homeostasis

ANG1 is constitutively expressed by many different cell types such as pericytes, 

smooth muscle cells and fibroblasts (Sundberg et al. 2002). Constitutive ANG1 

expression and low level TIE2 phosphorylation in the adult vasculature suggest 

that ANG1-mediated TIE2 signaling functions as the default pathway to control 

vascular quiescence. ANG1 exerts a protective effect on the endothelium, limits its 

ability to be activated by exogenous cytokines and growth factors and inhibits 

vascular leakage. For these reasons, it has an anti-inflammatory action.

On the other hand, ANG2 is almost exclusively expressed by ECs (Fiedler et al.

2004). Angpt2 mRNA is almost undetectable in the quiescent vasculature and 

dramatically upregulated in tumor blood vessels (Stratmann et al. 1998). ANG2 

expression is regulated by several different cytokines (FGF2, VEGFs and TNF) 

and environmental cues (hypoxia, high glucose levels and superoxides) (Fiedler & 

Augustin 2006). ANG2 protein is stored in EC Weibel-Palade bodies and thus is 

readily available following endothelial stimulation. The release of ANG2 results in 

rapid destabilization of the endothelium, suggesting that ANG2 functions as an 

autocrine negative regulator of the quiescent resting endothelium (Scharpfenecker 

et al. 2005). In contrast to ANG1, ANG2 triggers an inflammatory response by 

activating the endothelium and inducing vascular permeability (Roviezzo et al.

2005).

4.3 Regulation of TEM biology

Although it has been shown that TIE2 mediates quiescence in HSCs (De Palma et 

al. 2005; Arai et al. 2004), the significance of TIE2 expression by TEMs is currently 

unknown, but it is possible to speculate on the possibility that TEMs are recruited 

to tumors via ANG2/TIE2 interaction. Of note, expression of ANG2 is known to be
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up-regulated in tumors and inflamed tissues as compared to normal, quiescent 

tissues (Nasarre et al. 2009), and activated ECs appear to be a major source of 

ANG2, at least in the mouse (Fiedler et al. 2004). In support of a putative 

chemoattractant role of ANG2, Lewis et al. showed that human peripheral blood- 

derived monocytes respond to ANG2 with both chemotaxis and altered cytokine 

release (Murdoch et al. 2007). Similarly, work from our laboratory suggests that 

human peripheral blood mononuclear cells enriched in TIE2+ monocytes migrate 

towards ANG2 in vitro. Because ANG2-induced chemoattraction of monocytes is 

inhibited by anti-TIE2 neutralizing antibodies (Venneri et al. 2007), it is likely that 

this response is mediated by engagement of the TIE2 receptor. Recently, to 

investigate the effects of ANG2 on the phenotype and function of TEMs in tumors, 

Lewis and co-workers (Coffelt et al. 2010b) used a transgenic mouse model in 

which ANG2 was specifically over-expressed by endothelial cells. Syngeneic 

tumors grown in these ANG2 transgenic mice were more vascularized and 

contained greater numbers of TEMs than those in wild-type mice. However, it is 

currently unknown whether ANG2 directly regulates TEM homing/function in 

tumors, and whether targeting ANG2 or its receptor, TIE2, could represent a 

therapeutic strategy to impair TEM activity in tumors.
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Aim of the work

In this work, I studied monocyte and macrophage heterogeneity in blood and 

tumors, in order to identify molecular pathways regulating the pro-angiogenic 

activity of TEMs and their lineage relationships with distinct monocyte and TAM 

subsets. Furthermore, I investigated the role of TIE2 receptor in TEM biology and 

pro-angiogenic activity.

The first aim of this work was to identify the best-performing TEM purification 

protocol. Flow sort is the gold standard to isolate highly purified cell subsets in 

case multiple markers are required for their isolation (Dirks 2008). I flow sorted 

TEMs, TIE2- TAMs and ECs from tumors grown subcutaneously in Tie2p/e-GFP 

transgenic mice. In this model, GFP expression can be conveniently used to 

discriminate TEMs from other tumor-infiltrating myeloid cells. However, the low 

frequency of TEMs among tumor-infiltrating CD11b+ cells and their weak GFP 

expression level represent technical challenges for the purification of GFP+ TEMs 

from tumors grown in Tie2p/e-GFP transgenic mice. Moreover, in Tie2p/e-GFP 

transgenic mice both TEMs and ECs express GFP. These factors together 

contribute to increase the risk of contamination from other cell types, ECs in 

particular. Consequently, I compared different sorting strategies to test the 

presence of contaminating ECs in TEM preparations and identified the best sorting 

formula to isolate EC-free, tumor-derived macrophage subsets.

The second aim of this work was to determine the gene expression signature of 

tumor-infiltrating TEMs. To gene profile TEMs, TIE2- TAMs and ECs I employed a 

quantitative PCR (qPCR) approach because it allows for identifying low- 

abundance transcripts from small amounts of mRNA. I used low-density qPCR 

arrays with standardized fluidics, which ensure reproducibility, inter-sample
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comparison and high-throughtput analysis. I analysed ~300 genes previously 

implicated in angiogenesis, tissue remodeling, immune response, cell adhesion, 

chemotaxis, neural guidance and vascular morphogenesis. TEM specific markers 

have been validated by FACS analysis and immunofluorescence staining in two 

different tumor models: N202 tumors grown subcutaneously in Tie2p/e-GFP 

transgenic mice (De Palma et al. 2005) and mammary tumors spontaneously 

arising in MMTV-PyMT transgenic mice previously transplanted with Tie2p/e-GFP 

BM cells (De Palma et al. 2008).

The third aim of this work was to investigate the phenotypic and functional 

relationships between tumor-infiltrating TEMs and circulating monocytes. Blood 

monocytes are considered the precursors of tumor-infiltrating macrophages. I then 

analysed the surface marker and gene expression profiles of blood monocyte 

subsets and compared them with those of tumor-infiltrating TEMs and TIE2- 

TAMs.

Finally, the fourth aim of this work was to study the in vivo role of the TIE2 receptor 

in TEM biology. To investigate this, I implemented a LV platform, recently 

developed in our laboratory (Amendola et al. 2009), that allows for stable and safe 

delivery of siRNA sequences to primary cells. I selected a highly effective siRNA 

sequence, which I employed to knock down TIE2 in vivo. Since hematopoietic 

stem/progenitor cells require TIE2 for their maintenance in the stem cell niche 

(Arai et al. 2004), I implemented advanced features in the LV platform, including 

conditional expression and post-transcriptional regulation of the siRNA expression 

cassette. Such modifications of the LV platform enabled highly efficient Tie2 gene 

knock down in TEMs in vivo and helped to unveil the role of the angiopoietin/TIE2 

pathway in the regulation of tumor angiogenesis by TAMs.
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Results

5 Isolation of highly purified tumor macrophage subsets

To gene profile TEMs and TIE2- TAMs, I chose a quantitative PCR (qPCR) 

approach because it allows for identifying low-abundance transcripts from small 

amounts of mRNA. I used low-density qPCR arrays with standardized fluidics, 

which ensure reproducibility, inter-sample comparison and global analysis. I sorted 

TEMs, TIE2- TAMs and ECs from N202 mammary tumors grown subcutaneously 

in Tie2p/e-GFP transgenic mice (De Palma et al. 2005); in this model, GFP 

expression can be conveniently used to discriminate TEMs from other tumor- 

infiltrating myeloid cells.

5.1 Identification of the best-performing celi sorting formula

Purification of GFP+ TEMs from tumors grown in Tie2p/e-GFP transgenic mice 

presents with several technical challenges, due to the low frequency of TEMs 

among tumor-infiltrating CD11b+ cells and their weak GFP expression level. 

Moreover, in Tie2p/e-GFP transgenic mice both TEMs and ECs express GFP. 

These factors together contribute to increase the risk of contamination from other 

cell types, ECs in particular. To address this issue, I first developed a model to test 

the presence of contaminating ECs in TEM preparations. I sorted TEMs as GFP+ 

CD45+ CD11b+ cells (n=2) and ECs as GFP+ CD45- CD11b- cells (n=2), and 

analyzed a panel of genes by qPCR analysis. To test for ECs contamination, I took 

into account only the genes whose expression was up-regulated more than 4-fold 

in ECs as compared to TEMs {Agtr2, C3, Cell9, Cd34, Csf1, Ece1, Edn1, Fn1, 

1112b, 116, 117, Nos2, Smad7, Angptl, Angpt2, Tie2, VEGFR1, VEGFR2) and found 

a striking correlation in the expression level of such genes in the two cell
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Angpt2

Angpt2

CD11b-CD31+ GFP+ ECsCD11b- CD45- GFP+ ECs

Illustration 11: Identification of the best-performing cell sorting formula for TEM isolation. qPCR  

analyses of a gene panel (see heading 5.1 for details) in TEMs sorted as Tie2p/e-GFP+ CD45+ 

CD11b+ (left) or Tie2p/e-GFP+ CD11b+ CD31-/low (right) cells. Gene expression in TEMs was 

compared with that of tumor-derived ECs sorted as Tie2p/e-GFP+ C D 45- CD11b- (left) or 

Tie2p/e-GFP+ CD31+ CD11b- (right). In the graph on the left, the slope of the regression line 

was approximately equal to one, suggesting that ECs substantially contaminated the TEM  

sample. The graph at right shows that inclusion of CD31 as a negative (TEMs) or positive (ECs) 

gating marker eliminated the source of EC gene contamination in the TEM sample, thus 

providing for accurate isolation of TEMs from tumors.

populations (Illustration 11). The slope of the regression line was approximately 

equal to one, which suggested that either these genes were coordinatedly 

expressed at a constant ratio by the two cell types, which is very unlikely, or that 

ECs substantially contaminated the TEM sample. By assuming that TEMs and 

tumor ECs contain the same amount of mRNA per cell, the extent of contamination 

estimated by the intercept value of the regression line corresponded to 23 32 (about 

10% ECs in the TEM preparation).

I then implemented the sorting strategy by introducing a dump channel to exclude 

PECAM1/CD31+ ECs. After vital staining and exclusion of 7-Amino-Actinomycin 

D+ (7AAD) cells, I sorted TEMs as Tie2p/e-GFP+ CD11b+ CD31-/low cells. The 

improved sorting strategy eliminated the source of EC gene contamination in the 

TEM sample (Illustration 11) and provided for accurate isolation of TEMs from 

tumors. Concerning the potential contamination of the two cell fractions by other
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Illustration 12: A. Flow cytometry analyses of N202 tumors grown subcutaneously in wild-type 

FVB mice (n=4) and made into single cell suspensions shows that the vast majority of tumor- 

infiltrating myeloid cells (gated as CD11b+ cells, dot plot on the left) are highly enriched in 

F4/80+ or CD48+ macrophages (dot plots on the right). One representative experiment is shown. 

To sort TEMs, N202 mammary tumors were grown subcutaneously in Tie2p/e-GFP transgenic 

mice and made into single-cell suspensions. Before cell sorting, CD11b+ myeloid cells were 

magnetically enriched (shown in panels B and C after magnetic enrichment). The sorting 

procedure is shown in the dot plots at left. The GFP+ 7A AD - CD11b+ C D 31- TEMs were then 

sorted (E; panel D shows cells obtained from tumors inoculated in wild-type mice and processed 

as above). Right panels show re-analysis of sorted TEMs (F), that were virtually all 7A AD - (G), 

CD11b+ C D 31 - (H) and GFP+ (open black line in I; open blue line indicates sorted 7A AD - G F P - 

CD11b+ C D 31- cells, i.e. T IE 2 - TAMs).

cell types, the cytospin data confirmed the flow cytometry data (Illustration 16 on 

page 45) that sorted TEMs are >94% pure monocytes/macrophages and TIE2-
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TAMs are >93% monocyte/macrophage cells, with rare neutrophils/eosinophils 

accounting for up to 5-6% of the total cells.

5.2 Validation of sorted tumor macrophage subsets

In N202 tumors, the vast majority of the tumor-infiltrating CD11b+ cells were 

F4/80+ and CD48+ (77±6% and 88±5%, respectively; mean frequency of marker 

positive cells ± SD; n=4), thus representing myeloid cells highly enriched in TIE2- 

TAMs (Illustration 12A). I sorted TEMs as Tie2p/e-GFP+ CD11b+ CD31low/-, 

TIE2- TAMs as Tie2p/e-GFP- CD11b+ CD31low/- and ECs as Tie2p/e-GFP+ 

CD11b-CD31+ cells (Illustration 12B-I). To validate the sorted cell populations, I 

measured the expression of the hematopoietic lineage-specific marker 

Ptprc/Cd45, the macrophage-specific marker F4/80, the EC-specific marker 

Vegfr2 (Flk1), and Tie2, in TEMs, TIE2-TAMs and ECs (n=2-4 biological samples) 

by qPCR (Illustration 13). Both TEMs and TIE2- TAMs expressed high-level Cd45 

and F4/80, which confirmed their hematopoietic origin and monocyte/macrophage 

identity. Of note, Tie2 expression was significantly higher in TEMs than in TIE2- 

TAMs (~20-fold; t-test: p<0.05; n=4).

To analyze the presence of hematopoietic progenitors in sorted cell populations, I

Cd45

o  4< !

F4/80

H-i
q I
<  «

TIE2-
ECs TEMs TAMs

TIE2-
ECs TEMs TAMs

Vegf(2

m  P I

Tie2 
p< 0.05

J 3htz—
ECs TEMs TAMs

TIE2-
ECs TEMs TAMs

Illustration 13: Gene expression analysis of FACS-purified TEMs (n=4), T IE 2- TAMs (n=4) and 

ECs (n-2). Results show A C T values (mean ± SEM) over reference gene Gapdh. The lower the 

ACt, the higher the expression level. TEMs and T IE 2 - TAMs express Cd45 (pan- 

hematopoietic-specific marker) and F4/80 (macrophage-specific marker) to similar extent 

Vegfr2 (endothelial-specific marker) is expressed robustly only by ECs. TEMs express Tie2 to a 

significantly higher extent than T IE 2 - TAMs (p<0.05).
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Number of plated cells
5,000 20,000 100,000

TEMs 0 0 0
TIE2-TAMS 0 0 3
Unfractioned BM cells 3 19 112
lineage negative BM cells 36 132 confluent

Table 1: Number of colony forming cells (CFC) arising 

from sorted TEMs and TIE2- TAMs

studied the clonogenic activity of TEMs and TIE2- TAMs in colony-forming cell 

(CFC) assays. Sorted TEMs did not generate hematopoietic colonies (Table 1), 

indicating that they are virtually devoid of hematopoietic progenitors. Exceedingly 

few colonies formed upon seeding of TIE2-TAMs (Table 1).

6 Tumor TEMs are monocytes/macrophages expressing a 

distinguishing gene signature

To investigate the nature of TEMs, I measured the expression of 280 genes 

previously implicated in angiogenesis, tissue remodeling, immune response, cell 

adhesion, chemotaxis, neural guidance, vascular morphogenesis, in TEMs (n=3), 

TIE2- TAMs (n=3) and ECs (n=1). I extended the gene expression analysis to

EC genes Hematopoietic cell genes

f— 15
Q  io-

TIE2-
=  ECs —  TEMs —  TAMs

Illustration 14: qPCR-based, multi-gene array analysis of TEMs (n=3), T IE 2 - TAMs (n=3) and 

ECs (n=1) showing the expression level (ACT vs. (32m) of relevant EC (left panel) and 

hematopoietic/myeloid (right panel) genes. TEMs and T IE 2- TAMs robustly express classic 

hematopoietic/myeloid genes, but not EC genes.
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resting peritoneal macrophages (PMs; sorted as 7AAD- CD11b+ F4/80+ CD31L0W 

cells; n=2) and neutrophils/MDSCs isolated from the spleen of N202 tumor-bearing 

mice (sorted as 7AAD- CD11b+ GR1+ cells; n=2).

6.1 Genes highly expressed in TEMs

The expression profile of TEMs clearly indicated that they belong to the 

monocyte/macrophage lineage and are distinct from ECs. Indeed, TEMs robustly 

express typical myeloid genes, but low to negligible amounts of EC genes 

(Illustration 14). A list of the genes highly expressed in TEMs and grouped by 

function is shown in Illustration 15. Among the highly expressed monocyte- 

macrophage genes, were CSF1 receptor (Csf1r/Cd115), Fc receptors (Fcgrl] 

Fcgr2b; Fcgr3), fractalkine receptor (Cx3cr1), macrosialin (Cd68), F4/80, Cd14, 

scavenger receptors (mannose receptor Mrc1; macrophage scavenger receptors 

Msr1 and Msr2\ hemoglobin-haptoglobin scavenger receptor Cd163; membrane- 

bound scavenger receptor/cytokine Cxcl16), endopeptidases (metalloproteases,

cathepsins) and several integrins. In addition, TEMs express

Myeloid
markers Endopeptidases Scavenger

receptors
Cytokines Chemokines Adhesion Transcription

factors
Gene ACt Gene ACt Gene ACt Gene ACt Gene ACt Gene ACt Gene ACt

Cd68 2.5 Ctss 0.8 Mrc1 3.0 111b 2.4 Ccl4 1.8 ItgbS 4.7 Statl 3.7
Cd14 2.9 Ctsb 2.0 Msr1 4.1 Tnf 4.0 Ccl2 2.4 Itgbl 5.0 Stat3 5.1
Fcgr3 3.1 Ctsz 2.3 Msr2 4.4 Tgfbl 4.2 Cxcl10 2.9 Itgam 5.2 Nfkb2 5.9
C sflr 3.2 Ctsl 3.8 Cxcl16 4.7 1110 4.4 Cxcl9 4.3 Itga5 7.6 Ski 6.1
Ptprc 3.7 Mmp14 5.7 Cd163 6.3 Vegfa 4.5 Ccl5 4.3 Itgav 7.8 Nfkbl 6.4
Fcgr2b 3.9 Adam17 6.0 II6 5.1 Cxcl16 4.7 Itga6 8.1 Fli1 6.8
Fcgrl 4.2 Adam 15 6.1 I11 a 5.2 Cxcl13 5.1 Itgax 8.1 Ikbkb 7.9
Cd86 4.4 Mmp12 6.5 Sema4d 6.1 Ccl3 5.4 Itga4 8.8 Smad7 8.2
Itgam 5.2 Mmp13 8.4 Pdgfb 7.2 Cxcl11 6.6 Pecaml 9.8 Smad3 9.0
Cx3cr1 5.2 Mmp2 8.5 Ifnbl 7.7 Cxcl14 7.7 Sell 10.3 Stat4 10.7
Emr1 5.3 Mmp9 9.6 Csf1 7.8 Cxcl12 10.6
Cd4 7.9 Mmp3 9.9 1118 8.2

Vegfb 8.2
Mfge8 8.4
1115 8.6
Csf3 9.1
Igf1 9.3
Ecgfl 9.5
Pgf 10.5

Illustration 15: Genes highly expressed in TEMs and grouped by function. A C T was measured vs. 

B2m. The lower the ACr the higher the expression level.
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Tie2- TAMs TEMs

Illustration 16: Morphology (May-Grunwald-Giemsa staining) of TIE2- TAMs (left panel) and 

TEMs (right panel) FACS-sorted from N202 tumors grown in Tie2p/e-GFP transgenic mice (n=2). 

Arrows indicate large macrophages containing conspicuous cytoplasmic phagosomes. Scale 

bar: 30pm. Photos are representative of n -25  photos/sample.

monocyte/macrophage-derived cytokines {111 a] 111 b] 116; Tnf; Tgfbl), chemokines 

(Cc/4; Ccl3/Mip1alb; Cxc/70; Cxc/9; Cxcl11) and classic pro-angiogenic factors 

{Vegfa\ Vegfb; Sema4d\ Pdgfb; lactadherin Mfge8; thymidine phosphorylase 

Ecgf1\ placental growth factor Pgf).

6.2 Morphological analysis of tumor macrophage subsets

Morphological analysis of FACS-sorted cells (n=2; Illustration 16) showed that 

TEMs are a homogeneous cell population with typical monocyte/macrophage 

morphology (>94% of the cells with bean-shaped nucleus and large cytoplasm). 

On the other hand, TIE2- TAMs displayed a greater extent of morphological 

heterogeneity and contained both monocyte-like cells and large macrophages with 

features of activated phagocytes (rounded nucleus; large cytoplasm with 

numerous vacuoles). The cell morphology corroborated the gene expression data 

that both TEMs and TIE2- TAMs belong to the monocyte/macrophage lineage.
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6.3 Genes differentially expressed between TEMs and TIE2- TAMs

A comparison between the gene expression profile of TEMs and TIE2- TAMs 

revealed that the two monocyte/macrophage subsets were highly related 

(Illustration 17). However, TEMs differed significantly from spleen-derived GR1 + 

CD11b+ neutrophils/MDSCs, PMs and tumor-derived ECs.

Statistical analysis of the data (see heading 6.3.a for details) revealed several 

differentially expressed genes between TEMs and TIE2- TAMs (29% at p<0.05; 

Table 2 and Table 3). Among these, Arginasel (Arg1) and several scavenger 

receptors (Cd163; stabilin-1 (Stabl); MrcT, Msr2 (Taylor et al. 2005)) were up- 

regulated, while Nos2, pro-inflammatory and anti-angiogenic molecules (111b;

TEMs
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Illustration 17: One-dot-one-gene representation of the expression profile (280 genes analyzed) 

of tumor-derived TEMs (n=3), T IE 2 - TAMs (n=3) and ECs (n=1), 

GR1+CD11b+ neutrophils/MDSCs (n=2; isolated from the spleen 

of tumor bearing mice) and peritoneal macrophages (PMs; 

n=2), analyzed by qPCR. Each one-dot-one-gene plot 

compares two cell types, as indicated. The data 

show that TEMs are highly related to T IE 2- 

TAMs (Pearson linear correlation: 

0.926), but sharply differ from
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Ptgs2/Cox2; U12a\ Tnf; Cc/5; Cxc/10; Cxcl11) were down-regulated in TEMs vs. 

TIE2- TAMs. With reference to the M1-M2 polarization paradigm proposed by 

some authors (Mantovani et al. 2002), the enhanced expression of scavenger 

receptors and the down-regulation of inflammatory mediators by TEMs would 

place them at the M2-extreme of the polarization window (i.e. TEMs are 

significantly more M2-skewed that TIE2- TAMs), consistent with their marked pro- 

angiogenic and pro-tumoral activity (De Palma et al. 2005; De Palma et al. 2007). 

Among the most differentially expressed genes were also the hyaluronan receptor- 

1 (Lyvel), neuropilin-1 (Nrp1), stromal cell derived factor-1 (Cxcl12/Sdf-1), insulin 

growth factor-1 (Igf1) and Toll-like receptor-4 (Tlr4), all of which were upregulated 

in TEMs. The finding of several differentially expressed genes strongly suggests 

that TEMs represent a distinct subset or differentiation state of TAMs.

Up-regulated genes
Fold more ACt p value Fold more ACt p value

Cd163 15.8 6.3 *** Timp2 2.8 4.5 **

Lyvel 14.1 6.1 *** Plxndl 2.8 6.2 **

ig fi 8.2 9.3 *** Efnal 2.7 12.6 **

Stabl 6.4 5.5 *** Slamfl 2.6 14.6 *

Mrc1 5.3 3.0 *** Fcgr3 2.6 3.1 *

Sema6d 5.2 15.2 kkk Angptl 2.6 14.2 *

Nrp1 4.6 6.3 *** Sema3c 2.6 12.3 *

Cxcl12 4.4 10.6 •kick Timp3 2.5 12.2 *

Thbs3 4.3 12.1 kkk Kit 2.5 14.9 *

Cxcl13 4.3 5.1 kkk Sdc2 2.5 9.1 *

Efnb2 4.2 12.9 kk Efnbl 2.5 12.0 *

Neo1 4.1 15.1 kk Cdh5 2.4 11.6 *

Plxna3 4.1 12.8 kkk Plxnb2 2.4 6.3 *

Itga2 4.0 16.3 k Il4ra 2.3 5.1 *

Plxnal 3.6 8.1 kkk 111 Ora 2.2 6.5 *

Msr2 3.5 4.4 kkk Arg1 2.2 5.7 *

Tlr4 3.5 7.8 kk Hpse 2.1 5.6 *

Plxna4 3.1 10.9 kk Serpinb2 2.1 9.8 *
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Up-regulated genes
Fold more ACt p value Fold more ACt p value

Edg1 3.0 8.1 
Fcgr2b 2.9 3.9

Itgbl 2.1 5.0

Table 2: Genes up-regulated in tumor-derived TEMs as compared to TIE2- TAMs.

Down-regulated genes
Fold less ACt p value Fold less ACt p value

111 b -6.6 2.4 *** Ptprc -2.7 3.7 **

Ptgs2 -5.0 5.5 •kick Ctss -2.7 0.8 kk

114 -4.0 12.0 kkk Tgfbl -2.6 4.2 k

Nos2 -3.9 8.8 k kk 1118 -2.6 8.2 k

Ccrl -3.8 7.6 k kk Sell -2.5 10.3 k

1112a -3.6 16.2 kk Ccr2 -2.5 5.8 k

Smad7 -3.6 8.2 kkk 1112b -2.5 11.8 k

Bcl2l1 -3.2 6.6 kk Nfkb2 -2.5 5.9 k

Stat4 -3.1 10.7 kk Fas -2.4 9.8 k

Tnf -3.1 4.0 kk Gusb -2.4 4.9 k

1113 -3.1 12.8 kk Smad3 -2.4 9.0 k

Actb -3.0 1.0 kk Socsl -2.4 6.6 k

Edn1 -3.0 11.0 kk Bax -2.4 6.2 k

Ccl5 -3.0 4.3 kk Pgk1 -2.4 4.1 k

H2-Ea -3.0 5.1 kk Ski -2.3 6.1 k

Vegfa -2.9 4.5 kk Csf1 -2.3 7.8 k

111 a -2.9 5.2 kk Ctla4 -2.2 12.9 k

Cxciio -2.8 2.9 kk Statl -2.1 3.7 k

Cd80 -2.8 9.1 kk Tnfrsf18 -2.1 12.0 k

Ece1 -2.7 13.1 k Tbx21 -2.1 12.1 k

Cxcl11 -2.7 6.6 kk

Table 3: Genes down-regulated in tumor-derived TEMs as compared to TIE2- 

TAMs.

6.3.a Statistical model

To rigorously identify differences between TEMs and TIE2-TAMs, in collaboration 

with the institutional center for statistics at the Vita-Salute San Raffaele university,
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I implemented in R (http://www.R-project.org) a multivariate regression model, 

similarly to the model implemented in sas (Yuan et al. 2006), which computes over 

the whole dataset and estimates the fold-change in gene expression for each 

single target gene. This model jointly evaluates the role of different variables of 

interest providing for: (i) statistical significance of the observed differences in 

expression level across the whole set of experimental samples; (ii) identifying the 

experimental variables that significantly contribute to explain the differences in 

expression levels; (iii) subtracting experimentally introduced biases to obtain a 

stringent estimate of the actual biological differences. Detailed statistical methods 

are presented in material and methods section.

6.3.b Validation by FACS and IF staining

I then validated the gene expression results by protein analysis, either by 

immunofluorescence staining (IFS) and confocal microscopy of tumor sections 

(Illustration 18) or by flow cytometry of tumor-derived cell suspensions (Illustration 

19). I employed two different tumor models: N202 tumors grown subcutaneously in 

Tie2p/e-GFP transgenic mice (De Palma et al. 2005) (n=5 for IFS; n=3-7 for flow 

cytometry); and mammary tumors spontaneously arising in MMTV-PyMT 

transgenic mice (Lin et al. 2003) previously transplanted with Tie2p/e-GFP BM 

cells (n=4 tumors from 4 mice for IFS), as described (De Palma et al. 2008). 

Whereas in Tie2p/e-GFP transgenic mice both TEMs and ECs express GFP 

(Illustration 18A), in Tie2p/e-GFP BM-transplanted mice only TEMs are GFP+ 

(Illustration 18B). GFP+ F4/80+ TEMs were frequently located in stromal tumor 

areas, whereas GFP- F4/80+ TAMs were evenly distributed throughout the tumor 

mass (Illustration 18B).

IFS and/or flow analyses showed differential expression of LYVE1, MRC1, TLR4, 

interleukin-4 receptor-alpha (IL4RA), CD163 and STAB1 -  but not of F4/80, TLR2,
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A
Cd68

B

Illustration 18: Confocal immunofluorescence analysis o f mouse tumors. (A) N202 mammary 

tumors (n=5) grown s.c. in Tie2p/e-GFP transgenic mice. The left panels show GFP+ blood 

vessels and abundant CD68+ macrophages (scale bar: 120pm). High-magnification photos (right 

panels) show perivascular Tie2p/e-GFP+ CD68+ TEMs (arrows); scale bar: 60pm. For each 

tumor, at least 3 sections were analyzed. (B) Mammary tumors spontaneously arising in MMTV- 

PyMT transgenic mice (n=4) previously transplanted with Tie2p/e-GFP BM cells. Abundant 

F4/80+ macrophages are evenly distributed within the tumor mass, whereas Tie2p/e-GFP+ 

LYVE1+ or Tie2p/e-GFP+ MRC1+ or Tie2p/e-GFP+ STAB1+ TEMs are mainly found in stromal 

septa surrounding tumor cell nests. Virtually all the Tie2p/e-GFP+ cells express LYVE1, MRC1 

and STAB1. Note that some of the Tie2p/e-GFP- LYVE1+, MRC1+ or STAB1+ cells may 

represent host-derived, non-transgenic TEMs. Scale bar: 60pm. For each tumor, at least 10 

sections were analyzed for each marker.
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Illustration 19: Flow cytometric analysis of N202 mammary tumors identifies a distinguishing 

TEM signature. A) Flow analysis of some of the genes that were either differentially expressed or 

not differentially expressed between TEMs and T IE 2 - TAMs, gated as Tie2p/e-GFP+ CD11b+ 

7AAD- and Tie2p/e-GFP- CD11b+ 7AAD- cells, respectively. In agreement with the mRNA  

data, TEMs but not T IE 2- TAMs robustly and uniformly express TLR4, MRC1, IL4RA and CD 163 

(left panels, n=3). Genes not differentially expressed by qPCR are similarly expressed by TEMs 

and T IE 2 - TAMs (right panels, n=3). B) Further phenotypic characterization of TEMs and T IE 2- 

TAMs. Note that TEMs do not express KIT, granulocyte (LY6G), inflammatory monocyte (LY6C), 

dendritic cell (CD11c), mast cell (FCER1) and megakaryocyte/platelet (CD41) markers (n=3).

ITGA4 (CD49d) and CD86 -  between TEMs and TIE2- TAMs, in agreement with 

the RNA data (Illustration 18B, Illustration 19). Although the Itgax (Cd11c) mRNA 

was expressed similarly in TEMs and TIE2- TAMs (not present in Table 2 and 3), 

TEMs were CD11c- and TIE2- TAMs markedly CD11c+ by flow cytometry and IFS

51



(Illustration 19B). TEMs were KIT- and did not express FCER1, LY6G, LY6C and 

CD41, which are mast cell-, neutrophil-, inflammatory monocyte-, and 

megakaryocyte/platelet-specific markers, respectively (Illustration 19B). Together 

with the mRNA data, these results identify a unique TEM surface marker profile, 

which distinguishes them from TIE2-TAMs and related myeloid-lineage cells.

6.4 TEMs are refractory to pro-inflammatory stimuli

The gene expression data indicated that TEMs have a Th2/M2 phenotype. I 

wondered whether Th1 stimulation could modulate this phenotype. To this aim, I 

stimulated (or left unstimulated) tumor-derived TEMs, TIE2- TAMs and PMs with

PMs TIE2- TAMs TEMs
40 10000
-g 0) 1000

Nos2 1112a

(0 1000-I
<DT3*—mra 100-
oCL

(0co 10 ■CO
£ S

£ 1 . J
T—
szH 0.1 1

Nos2

1000

10 0 -j

10

1112a

g  1000
•§ <u 100Co !  10 <|
S- « 1
£ 1 1
CM ^  0.1 t x:
I -  0.01

M 1000 
<D
*o g, 1005 c O *o Q. ■§ 10
<D

0.1

1000

100

o Ctrl 
■ Th1 
d Th2

Nos2
■  U

1112a

■3h Q- ■§ 10 - _x_ t 10 - [*■

Arg1 Cd17 Arg1 Cell 7 Arg1 Ccl17

Illustration 20: TEMs, like T IE 2- TAMs, are refractory to pro-inflammatory stimuli. In vitro 

stimulation of PMs, TEMs and T IE 2- TAMs with Th1 (LPS + IFNg; black bars) and Th2 (IL4; red 

bars) cytokines, or the same cells left unstimulated (Ctrl; grey bars). Upper and lower panels 

show the expression of Th1 (Nos2,1112a) and Th2 (Arg1, Cell 7) responder genes, respectively. 

The expression of each gene is indicated as fold-change (mean ± 2*SD, n=3) over its expression 

in unstimulated PMs (for PMs) or unstimulated T IE2- TAMs (for TEMs and T IE 2- TAMs). Note 

that TEMs and T IE 2- TAMs are much less responsive than PMs to Th1 cytokine treatment. 

Conversely, Th2 cytokine stimulation elicits a greater response in TEMs and T IE 2- TAMs than in 

PMs. Error bars represent a 95% confidence intervals (Cl = 2*SD), thus non-overlapping Cl 

denote a statistically significant difference (p < 0.05).
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either Th1 (LPS + IFNg) or Th2 (IL4) cytokines (n=3 independent experiments) 

and evaluated the expression of established responder genes (Mantovani et al. 

2002) (Nos2 and 1112a for Th1 responses; Arg1 and Ccl17 for Th2 responses). Th1 

stimulation elicited minor responses in TEMs and TIE2- TAMs, as compared to 

PMs (Illustration 20). Conversely, TEMs and TIE2- TAMs were more responsive 

than PMs to Th2 stimulation. These results indicated that both tumour-derived 

TEMs and TIE2- TAMs display defective Th1 responses but can respond to Th2 

stimuli. Of note, both unstimulated and Th2-stimulated TEMs had higher Arg1 and 

lower Nos2 expression than TIE2- TAMs, in agreement with the gene profile data.
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Illustration 21: Flow cytometry analysis of the blood of Tie2p/e-GFP transgenic mice. A) Virtually 

all the Tie2p/e-GFP+ TEMs (green gate in the dot plot on the left; n=16) are CD11b+ CD115+ 

7AAD- monocytes (dot plot on the right). B) Only a fraction (~30%; n=13) of the CD11b+ 

CD115+ 7AAD- monocytes (dot plot on the left) are Tie2p/e-GFP+ (dot plot in the middle). 

Monocytes from wild-type mice (n=5) were used to set the gate for GFP+ events (dot plot on the 

right). C) Dot plots show the expression of surface markers that can distinguish resident from 

inflammatory monocytes (n-7-10). The CD115+ GFP+ 7AAD- cells were gated and the 

expression of CD43, GR1 and L-selectin (CD62L) analyzed. The vast majority of Tie2p/e-GFP+ 

CD 115+ 7AAD- TEMs are CD43+ G R 1- C D 62L- resident monocytes.
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7 Blood TEMs are a subset of monocytes

Blood monocytes are commonly considered the natural precursors of 

macrophages. To investigate the origin of tumor-infiltrating TEMs, I analysed 

circulating TEMs, which may be the precursors of their tumor-infiltrating 

counterpart (De Palma et al. 2005). We previously speculated that circulating 

TEMs belong to the myeloid lineage based on their expression of CD11b and 

CD14 in mice and humans, respectively (De Palma et al. 2005; Venneri et al.

2007). However, some cell surface-associated markers are co-expressed by 

endothelial- and hematopoietic-lineage cells (De Palma & Naldini 2006).

7.1 TEMs express resident monocyte marker profile

To better characterize the phenotype of circulating TEMs, I extended the 

phenotypic analysis to the most specific monocyte marker (i.e. CSF1R/CD115, 

(Hume et al. 2002)) and to markers able to distinguish between the two monocyte 

subsets (Sunderkotter et al. 2004). The vast majority of circulating GFP+ cells in 

Tie2p/e-GFP mice were positive for CD115 (84±5%, mean ± SD; n=16; Illustration 

21 A). Of note, only 30±6% (n=13) of the total CD115+ monocytes were GFP+, 

indicating that TEMs represent a subset of circulating monocytes (Illustration 21B). 

The GFP+ TEMs were mostly GR1- (84±5%, n=10), CD62L- (74±6%, n=7) and 

CD43+ (80±6%, n=10), thus expressing a resident monocyte marker profile 

(Illustration 21C).

7.2 Common gene signature of circulating resident monocytes and 

tumor-infiltrating TEMs

I then analyzed gene expression (39 genes of interest, selected among those 

analyzed in tumor-derived cells) in CD115+ GR1- resident and CD115+ GR1 + 

inflammatory monocytes obtained from the blood of tumor-free mice (n=4), and
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Up-regulated Down-regulated
Fold more ACt o value Fold less ACt o value

Arg1 58,7 11,5 : A** Chi3l3/Ym1 -18 0 6,4
Cxcl12 20,5 15,1 A # # \Seli -95 8,1 ***
Lyvel 14,7 12,8 \Ccr2 -56 7,6
Stabl 14,1 16,7 ’> - * * * [Ptg§2.___  -4 5 18,1
Igf1 13,6 15,3 ' : AA A

Cd163 5,2 13,3 . Not differentially expressed
Edg1 4,7 9,0 Angptl \Cx3cr1 Itga4 ,Tbx21
1110 4,4 16,0 ■ . A A A |Angpt2 Egf .114 Tgfbl
Mmp9 3,1 12,3 - A V Ccr7 \Fgf2 Vegfr2 " ■ Tir4
Mrci 2,7 9,9 [CsflR  ’ Flt1A/egfr1 M m pl2 J n f
1112a 2,6 14,0 Cd80 j Ifng \Nos2 Tnfrsf18
Mmp2 2,5 17,6 ; *  ■■ !Cd86 \tl1b N rp i

L  _ J=  Concordant expression inresident ys: inflamrnatory mbn^ytes arid TEMs vs; TAMs
= Significantly upreg./downreg. either in res. vs. inflam, monocytes or TEMs vs. TAMs 

[ = Discordant expression in resident vs. inflammatory monocytes and TEMs vs. TAMs

Illustration 22: Genes expressed either differentially or not between resident and inflammatory 

monocytes. The concordant (or less) gene expression in blood-derived resident vs. inflammatory 

monocytes and tumor-derived TEMs vs. T IE 2 - TAMs is shown by a colour code, as indicated. 

***: p < 0.001; **; p < 0.01; *: p <  0.05

compared the results with those obtained with tumor-derived TEMs and TIE2- 

TAMs (Illustration 22). Remarkably, 22 out of 39 genes displayed concordant 

expression in resident vs. inflammatory monocytes and TEMs vs. TIE2- TAMs 

(exact binomial test p=0.003). These included Arg1, Igf1, Cxcl12, Lyvel, Stabl, 

Cd163, Edg1, Mrc1 (up-regulated in resident monocytes and TEMs vs. 

inflammatory monocytes and TIE2- TAMs, respectively) and Sell, Ccr2, 

Ptgs2/Cox2 (down-regulated). Only one gene, 1112a, displayed discordant 

expression, whereas the remainder genes were differentially expressed in either 

resident vs. inflammatory monocytes or TEMs vs. TIE2- TAMs. The association of 

the TEM gene expression signature, which enriches for tissue remodeling vs. pro- 

inflammatory genes, with resident monocytes suggests that resident and 

inflammatory blood monocytes represent two functionally distinct subsets that may 

be differentially committed to generate tumor-infiltrating TEMs and TIE2- TAMs, 

respectively.
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8 Tie2 knock down in hematopoietic cells

The function of the TEM distinguishing marker, Tie2, is still unknown. To 

investigate the role of TIE2 receptor in TEMs I employed a lentiviral platform 

recently developed in our laboratory (Amendola et al. 2009). This platform enables 

the expression of one or more artificial micro-RNAs (amiR) together with a reporter 

gene from polymerase-ll promoters. By replacing the stem sequence of a primary 

micro-RNA (pri-miR) with a sequence targeting the gene of interest (i.e. a siRNA 

sequence, in red in Illustration 23), it is possible to obtain robust expression of the 

amiR in several cell types and to reach the concentration and activity typical of 

highly expressed natural miR without perturbing endogenous miR maturation or 

regulation. Moreover, the option to co-express two amiR in a single LV allows the 

targeting of two different sites in the target transcript, which increase the 

repression of the protein at single vector copy number (VCN) (Amendola et al. 

2009).

SD amiR223 SA

I I——J I—— I '■ ;R1
aA-

Pri-miRNA

B .<?
so ^  ^  SA

***********aaffiata
Pri-miRNA f

ALNGFR Wpre

 -
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miR223 loop

5’ miR223

C/3
%z>
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3’ miR223

Illustration 23: Design of LVs constitutively expressing either a monocistronic (A) or a bicistronic 

(B) artificial micro-RNA cassette and a marker gene (NGFR) from the EF1a promoter. C: 

Detailed structure of the amiR223(Tie2) showing endogenous sequences from pri-miR223 

(dotted lines), siRNA sequence against Tie2 (red line) and the passenger strand (blue line).
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8.1 Identification of the most effective RNAi sequence against Tie2

Selection of an efficient siRNA sequence still requires empirical validation 

(Takasaki 2009). In order to find a siRNA sequence able to consistently knock 

down the murine TIE2 receptor, I tested five candidate sequences targeting Tie2 

suggested by The RNAi Consortium, a public-private consortium based at the 

Broad Institute of MIT and Harvard (http://www.broadinstitute.org/rnai/trc), and five 

candidate sequences designed against Tie2 using the on-line tool from Invitrogen 

Inc. (http://rnaidesigner.invitrogen.com). No overlapping sequences were present 

between the two groups. To improve gene knock down, I also generated bicistronic 

amiR. I then selected two different pri-miR backbones, because recombinations 

within the LV genome are frequent when tandem repeats longer than -200 bases 

(like pri-miR) are present in the same LV genome (Amendola et al. 2009). I chose 

pri-miR-223 (Amendola et al. 2009) and pri-miR-155 (Chung et al. 2006) 

backbones to clone the selected Tie2 siRNA sequences and generated the 

amiR223(Tie2) and amiR155(Tie2) cassettes, respectively. As control, I employed 

siRNA sequences targeting unrelated genes (amiR223(Luc) and amiR155(LacZ), 

targeting luciferase and p-galactosidase, respectively). Finally, these amiR 

constructs were separately cloned into the intron of an expression cassette made 

of the elongation factor 1a (EF1a) promoter and first intron, and a cDNA for the 

truncated form of the low affinity nerve growth factor receptor (NGFR; Illustration 

23).

To select the best performing anti-Tie2 sequence, I transduced brain endothelial 

cells (bEnd), which express the TIE2 receptor endogenously, with amiR223(Tie2) 

and control amiR223(Luc) LVs. The most effective amiR223(Tie2) LV almost 

completely shut off Tie2 expression as shown by FACS, and reduced its mRNA 

level by 7-fold as compared to the amiR223(Luc) LV (Illustration 24A). To quantify
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Illustration 24: Selection of siRNA sequences against TIE2 in vitro. bEnd (A) and U937-TIE2 (B) 

cells expressing the best performing amiR223(Tie2) (or control sequence, Luc). Right plot in A 

shows Tie2 transcript repression, right plot in B shows TIE2 receptor repression. C) Comparison 

at single LV copy of the best performing amiR223(Tie2) (red) with the best performing 

amiR155(Tie2) (blue) and with the bicistronic amiR223(Tie2)_amiR155(Tie2) (pink) in U937-TIE2

the extent of protein suppression of the different siRNA sequences, I performed 

additional experiments using U937 myelomonocytic cells over-expressing the 

murine TIE2 receptor (U937-TIE2) from a LV cassette containing the phospho- 

glycerate kinase 1 (PGK1) promoter and the Tie2 cDNA. In these cells, the high 

expression level of TIE2 ensures a wide dynamic range of gene expression to 

measure gene knock down. The TIE2 receptor was down-regulated by -10 fold 

(vs. amiR223(Luc)) when the best performing amiR223(Tie2) LV was used at 

multiple copies per genome (Illustration 24B). To compare the best performing 

amiR223(Tie2) LV with the best performing amiR155(Tie2) LV, I monitored cells 

transduced at single LV copy over a long period of time. Both amiR223(Tie2) and 

amiR155(Tie2) LVs achieved a 3 to 4 fold repression in U937-TIE2 cells 

(Illustration 24C).

In order to improve gene knock down even at single VCN, I finally generated 

bicistronic LVs encoding for the two most effective amiR(Tie2) cassettes. I
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compared the performance of this bicistronic amiR223(Tie2)_amiR155(Tie2) LV 

with that of each monocistronic amiR(Tie2) and monocistronic or bicistronic 

amiR(Ctrl) LVs. U937-TIE2 cells were transduced with these vectors at single VCN 

and analysed by FACS. The bicistronic amiR223(Tie2)_amiR155(Tie2) LV 

repressed TIE2 expression about 10 fold, twice as much as the best monocistronic 

amiR(Tie2) LV, at single VCN (Illustration 24C).

In summary, I have identified two highly efficient siRNA sequences against Tie2, 

each allowing 4-fold repression of TIE2 at single VCN, and up to 10-fold 

repression of TIE2 at single VCN when employed in conjunction.

8.2 Constitutive expression of bicistronic amiR impairs cell growth 

in-vivo and in-vitro

To study the effect of down-regulating Tie2 in hematopoietic cells, I performed a 

BM transplantation experiment. To conveniently track TEMs, Tie2p/e-GFP

■ Total VCN □  GFP VCN ■  NGFR VCN
LCdaylO  5 weeks 9 weeks 13 weeks

—, "  ™T-™— 0 ™ - 1—r Q~“ — 0 -"—1— ™ ■
amiR(Tie2) amiR{Ti®2) amiR(Ti®2) amiR(Ti®2)

Tie2p/e-GFP amiR(Ctrl) Tie2p/e-GFP amiR(Ctrl) Tie2p/e-GFP amiR(Ctri) Tie2p/e-GFP amiR(Ctrl)

Illustration 25: Vector copy number analysis on day 10 after transduction and on blood 

leukocytes at different time points after transplant. Tie2p/e-GFP group of mice (n=5) received 

untransduced Tie2p/e-GFP BM lineage negative cells. amiR(Tie2) group of mice (n=5) received 

Tie2p/e-GFP BM lineage negative cells transduced with bicistronic amiR(Tie2) LVs. amiR(Ctrl) 

group of mice (n=5) received Tie2p/e-GFP BM lineage negative cells transduced with bicistronic 

amiR(Ctrl) LVs. Blue bars: qPCR for H IV  (total VCN); yellow bars: qPCR for GFP (donor Tie2p/e- 

GFP BM); brown bars: qPCR for NGFR (bicistronic amiR LVs). Note that inconsistencies 

between blue and yellow bars in Tie2p/e-GFP group may be due to differences in qPCR assay 

efficiencies.
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transgenic mice were used as BM donors. BM lineage negative cells were 

transduced with the bicistronic amiR223(Tie2)_amiR155(Tie2) or 

amiR223(Luc)_amiR155(LacZ) LVs, and transplanted into lethally irradiated hosts. 

After hematopoietic reconstitution, the progeny of transduced cells can easily be 

identified by the expression of the marker gene NGFR. Although the VCN of 

bicistronic amiR LVs (measured by qPCR for NGFR sequences) was ~1 in liquid 

culture, it dropped to almost undetectable levels in blood leukocytes of both 

groups of mice already at 5 weeks after the transplant (Illustration 25).

This trend was further confirmed by FACS analysis for NGFR expression on blood 

leukocytes at 11 weeks (bicistronic amiR(Tie2): 8.7% SD=1.3% n=5; bicistronic 

amiR(Ctrl): 10.7% SD=4.2% n=5) and 15 weeks (bicistronic amiR(Tie2): 2.7% 

SD=1.5% n=5; bicistronic amiR(Ctrl): 4.7% SD=2.4% n=5) post-transplant. (Table

4). Since the chimerism of donor BM (measured as GFP VCN) remained stable 

throughout the time window of analysis, an engraftment failure can be excluded. 

Rather, these results suggested the presence of a counter-selection process 

against bicistronic amiR-transduced cells in vivo, regardless of the targeted 

sequence.

To investigate the long term effect of amiR expression on cell fitness, I transduced 

U937-TIE2 cells with LVs expressing various combinations of amiR (including 

mono- and bicistronic LVs), targeting either Tie2 or unrelated sequences (Luc and 

LacZ). During a six weeks period, I measured a steady decrease in the percentage

Bicistronic
amiR(Tie2)

% at 11 
weeks

% at 15 
weeks

Bicistronic
amiR(Ctrl)

% at 11 
weeks

% at 15 
weeks

Average 8.7 2.7 Average 10.7 4.7

SD 1.28 1.54 SD 4.18 2.39

U-test 0.0120 U-test 0.03

Table 4: Percentages of NGFR+ blood leukocytes measured by FACS at the 

indicated time points. U-test: Mann-Whitney test
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Illustration 26: In-vitro counter-selection of LVs carrying amiR155 cassette in U937-TIE2 cells. A) 

Time course analysis of cells transduced with the indicated amiR LVs. Percentages of 

transduced cells (left panel) and TIE2 fold repression (right panel) are reported. Note that cells 

expressing amiR155 either against Tie2 sequence or control sequence (LacZ) lose the 

competition with untransduced cells over time (left plot). Fold repression (right plot) is calculated 

dividing the mean fluorescence intensity (MFI) of T IE2+N G FR - (untransduced) cells by the MFI 

of TIE2+NGFR+ cells in the same sample (internal control). B) Average fold change in VCN at 6 

weeks after transduction as compared to VCN at 10 days after transduction (set equal to 1). A 

value smaller than 1 indicates a decrease in VCN with time.

of NGFR+ (i.e. transduced) cells carrying a pri-miR155 backbone inside the 

expression cassette, independently of the target sequence (Illustration 26). 

Interestingly, Tie2 gene knock down (measured as fold repression) was very high 

one week after transduction with the bicistronic amiR155(Tie2)_amiR223(Tie2) LV 

(19.5 fold vs. amiR223(Luc)_amiR155(LacZ) LVs at multiple LV copies), but 

dropped down to the same level obtained with monocistronic amiR223(Tie2) LV at 

3 weeks after transduction (9.2 fold, Illustration 26A). To discriminate between cell
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counter-selection and LV silencing, I compared the VCN at 10 days after 

transduction with that at 6 weeks after transduction, and found that the VCN 

decreased, on average, by 3-fold in cells carrying bicistronic amiR cassettes, 

whereas it remained stable in monocistronic, amiR223 containing cells (Illustration 

26B). Overall, these results indicate that amiR155 is detrimental to cell 

fitness/viability, and the cells which express it are rapidly counter-selected both in- 

vitro and in-vivo.

9 Conditional Tie2 knock down in mature hematopoietic cells

Although it is reported that the amiR design neither saturates miR pathway 

(Castanotto et al. 2007; Boudreau et al. 2009) nor triggers type I IFN responses 

(Ely et al. 2009), some authors suggest that when very high concentrations of 

RNA duplexes are present inside the cell (whatever method is used to 

introduce/generate it), nonspecific off-target effects, including activation of the 

interferon response, become likely (Cullen 2006; Fish & Kruithof 2004). Moreover, 

hematopoietic stem cells chronically stimulated with type I interferon are 

functionally compromised (Essers et al. 2009). To overcome toxicity and in vivo 

counter selection of amiR-expressing cells (see paragraph 8.2), I implemented two 

features in our LV platform:

1. Conditional expression;

2. Post-transcriptional regulation;

in order to finely tune amiR expression level and de-target its expression from 

HSCs, respectively.

To achieve conditional expression (feature 1) we employed a Tetracycline based 

genetic switch (Vigna et al. 2005). This switch is composed of a proteinaceous 

transactivator (reverse Tetracycline transactivator, rtTA) and a synthetic promoter
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' S2_
1 Pri-miRNA L marker jWpre

Illustration 27: Conditional LV platform for amiR expression. Prom: promoter of choice; rtTA: 

reverse Tetracycline transactivator; Wpre: Woodchuck hepatitis virus post-transcriptional 

regulatory element; miR126T: micro-RNA-126 target sequence; TRE: Tetracycline regulated 

element; SD/SA: splice donor/acceptor. Red stems inside the primary micro-RNA (pri-miRNA) 

represents artificially inserted sequences against Tie2 or Luc.

(Tetracycline responsive element, TRE) (Urlinger et al. 2000; Gossen & Bujard 

1992). Upon Doxycycline treatment, rtTA binds to TRE and switches on the 

transcription of the downstream gene silencing cassette (Illustration 27).

In order to suppress rtTA expression (feature 2) and, consequently, 77e2 gene 

knock down in HSCs, which require TIE2 for their maintenance in the stem cell 

niche (Arai et al. 2004), I modified the rtTA expression cassette by incorporating 

target sequences for miRNA-126 (miR-126T) in the UTR (Illustration 27). By this 

strategy (Brown & Naldini 2009), rtTA expression is suppressed specifically in 

HSCs via miRNA-mediated mRNA degradation, as only HSCs express high-level 

miR-126 among hematopoietic-lineage cells (Gentner and Naldini, unpublished 

data).

9.1 T\e2 knock down in primary celis

To obtain inducible gene silencing, I placed the rtTA-m2 under the control of the 

ubiquitously active PGK promoter and generated FVB/PGK-rtTA-miR-126T (LV2; 

Illustration 27) transgenic mice by LV-mediated transgenesis, as previously 

described (De Palma et al. 2005). LV2-transgenic mice carrying more than 3
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vector copies per genome were then used as donors of BM cells in all subsequent 

experiments. We transduced LV2-transgenic, BM-derived lineage-negative cells 

(BM-Lin- cells, which comprise cKIT+ SCA1+ long-term repopulating HSCs; 

Illustration 28A) with LV1 (Illustration 27) either expressing amiR(Tie2J or 

amiR(Lucj, together with a marker gene (orange fluorescent protein, OFP), 

enabling the identification of the induced cells. I cultured a small aliquot of the 

transduced cells in vitro for 2 weeks, or transplanted them into irradiated FVB 

mice, to obtain amiR(Tie2) and amiR(Luc) mice (n = 3/group), respectively.

Both amiR(Tie2)- and amiR(Luc)-transduced BM-Lin- cells efficiently upregulated 

OFP expression (> 80% OFP+ cells) as early as 2 days after doxycycline 

treatment in vitro (Illustration 28B). To detect if the primary amiR(Tie2) is not only 

expressed, but also correctly processed inside the cells, I employed a custom 

qPCR-based assay, which detects the 21 nucleotide long ncRNA corresponding to 

the mature form of amiR(Tie2). Two days after doxycycline treatment, amiR(Tie2)- 

transduced cells up-regulated the mature amiR(Tie2) sequence by > 30-fold by 

qPCR (vs. untreated, amiR(Tie2)-transduced cells; Illustration 28C) and 

concomitantly down-regulated the endogenous Tie2 mRNA by > 4-fold 

(corresponding to a 75% reduction) as compared to untranduced or amiR(Luc)- 

transduced cells (Illustration 28D). These results indicate efficient and inducible 

expression, as well as correct maturation, of the primary amiR(Tie2) that 

generates siRNA sequences against Tie2 inside the cells.

9.2 The conditional gene silencing platform is safe in vivo

I then tested if cell counter-selection occurs upon induction of amiR expression. 

Three weeks after BM-Lin- cell transplant, I treated amiR(Tie2) and amiR(Luc) 

mice with doxycycline every third day in order to activate LV1 in BM-derived cells. 

One week and 4 weeks after the first doxycycline administration, I collected the
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blood of the mice from the tail vein and analyzed their blood to score for OFP 

expression and potential hematopoietic counter-selection of OFP+ cells 

(Illustration 29A). At both time points, I measured very similar percentages of 

OFP+ monocytes and granulocytes of both amiR(Tie2) and amiR(Luc) mice 

(indicated by a time ratio equal to 1; Illustration 29B). As expected, at 4 weeks 

after BM-Lin- cell transplant, the chimerism of lymphocytes is not yet complete,
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Illustration 28: Ex vivo validation of conditional Tie2 gene knock down. A: Flow cytometry of LV1- 

transduced BM-Lin~ HSPCs. Panels show freshly isolated, LV2-transgenic, BM-Lin~ HSPCs 

stained with 7AAD, lineage markers (B220; Gr1; Ter119; CD11b), c-KIT, and SCA1. Note that 

viable (7AAD-) BM-Lin~ cells contain bona fide HSCs (Lin~ C-KIT+ SCA1+) at the expected 

frequency (ca. 2-4%). B: Panels show LV2-transgenic, BM-Lin~ HSPCs analyzed 5 days after 

transduction with LV1 (carrying the amiR(Tie2)/OFP expression cassette). Cells were treated 

with doxycycline (or left untreated) starting at day 1 post-transduction. Note that OFP is robustly 

induced in doxycycline-treated cells. C: Doxycycline-mediated induction of the amiR(Tie2) 

sequence in LV2-transgenic, BM-Lin~ cells at day 2 post-transduction with LV1, measured by 

qPCR (fold-change vs. untreated cells). Let7a (a ubiquitously expressed miRNA) was used to 

normalize gene expression. Note that the amiR(Tie2) sequence is not detected in untransduced 

cells (UT) and amiR(Luc)-transduced cells either treated with doxycycline or left untreated. D: 

Tie2 gene knock down in LV2-transgenic, BM-Lin~ cells at day 2 post-transduction with LV1, 

measured by qPCR (fold-change vs. amiR(Luc)-transduced cells treated with doxycycline (*)). 

Error bars represent 95% confidence interval (1.96*SEM).
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Illustration 29: The conditional gene silencing platform is safe in vivo. A: Representative flow 

cytometry analysis of OFP in blood monocytes from mice transplanted with LV2-transgenic, BM- 

Lin- HSPCs transduced with LV1. From left to right: CD115+ monocytes are gated from total 

viable leukocytes and are further analyzed for GR1 and OFP expression; monocytes from a 

mouse transplanted with LV2-transgenic, untransduced BM-Lin~ HSPCs; mouse transplanted 

with LV2-transgenic, BM-Lin~ HSPCs transduced with LV1 and left untreated ( -  doxy); mouse 

transplanted with LV2-transgenic, BM-Lin~ HSPCs transduced with LV1 and treated with 

doxycycline for one week in vivo before analysis (+ doxy; right). B: Flow cytometry analysis of 

blood leukocyte subsets (monocytes: 7AAD- CD115+; granulocytes: 7AAD- C D 115- GR1+; 

lymphocytes: 7AAD- C D115- G R 1-) from amiR(Tie2) and amiR(Luc) mice. The ratio between 

the percentages of OFP+ cells in the indicated leukocyte subset at T2 (7 weeks after transplant; 

3 weeks after doxycycline administration) and T1 (4 weeks after transplant; 1 week after 

doxycycline administration) is shown. Note that lymphocyte chimerism is not yet complete at 4 

weeks after transplant. C: Blood monocyte subsets (inflammatory monocytes: 7AAD- CD11b+ 

GR1+ CD115+; resident monocytes: 7AAD- CD11b+ G R 1- CD115+) in MMTV-

PyMT/amiR(Tie2) and MMTV-PyMT/amiR(Luc) mice 3 weeks after doxycycline treatment (7 

weeks of age).
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since they require at least 6 weeks to develop from donor HSCs. Thus, amiR 

expression is safe for hematopoietic cells in vivo.

As shown in paragraph 7.1, circulating TEMs are bona fide resident monocytes. To 

test if Tie2 knock down affects monocyte subset ratios, I measured blood 

monocyte subsets by flow cytometry in amiR(Tie2) and amiR(Luc) mice, 3 weeks 

after doxycycline treatment (7 weeks of age). I found that Tie2 knock down did not 

change the percentages of monocyte subsets (Illustration 29C). Moreover, 

expression of the amiR(Tie2) did not perturb cell counts and leukocyte composition
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I/lustration 30: Efficient de-targeting o f amiR expression from BM-Lin~ cKIT+ SCA1+ HSCs in 

vivo. Flow cytometric analyses of cKIT and SCA1 expression in either OFP+ or OFP- BM-Lin~ 

cells obtained from amiR(Tie2) and amiR(Luc) mice 7 weeks after BM -Lirr transplantation and 1 

week after the first doxycycline administration. Note that OFP- but not OFP+ BM-Lin~ cells 

contained cKIT+ SCA1+ HSCs at the expected frequency (2-4%), whereas both OFP- and 

OFP+ BM-Lin~ cells contained cKIT+ SCA1- HPCs at the expected frequency (ca. 50%). Error 

bars in the scatter plots represent SEM (n = 6).
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in the blood of transplanted mice (vs. amiR(Luc) mice; data not shown).

To assess if the miR126T-mediated post-transcriptional regulation was effective in 

vivo, I measured OFP expression in BM-Lin- HSPCs from amiR mice. I found that 

OFP expression was virtually absent in primitive HSCs, identified as cKIT+ SCA1 + 

BM-Lin~ cells, but not in cKIT+ HPCs and their prospective progeny (Illustration 

30). These data suggest that rtTA is efficiently suppressed in HSCs but not in 

HPCs, closely recapitulating the expression pattern of miR126.

Overall, these findings indicate robust, safe doxycycline-mediated expression of 

the amiR/OFP expression cassette in the mature progeny of BM-Lin~ cells, but not 

bona fide HSCs, in the transplanted mice.

9.3 Tie2 knock down in tumor TEMs impairs angiogenesis

In order to assess doxycycline-mediated OFP expression and Tie2 knock down in 

TAMs, we challenged both amiR(Tie2) and amiR(Luc) mice with N202 tumor cells 

subcutaneously. Three weeks post-tumor injection, we harvested the tumors and
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Illustration 31: Efficient conditional Tie2 gene knock down in tumor-infiltrating myeloid cells. 

Percentages of A: TAM subsets (TEMs: 7AAD- CD11b+ G R 1- M RCIhigh CD11c~; T IE 2- TAMs: 

7AAD- CD11b+ G R 1- M R C Ilow  CD11c+); B: OFP+ cells within TEMs in MMTV- 

PyMT/amiR(Tie2) and MMTV-PyMT/amiR(Luc) mice at 15.5 weeks of age. C: Conditional Tie2 

gene knock down in MRC1high/CD11c- TEMs infiltrating N202 tumors. TEMs from doxycycline- 

treated amiR(Tie2) mice (fold-change vs. doxycycline-treated amiR(Luc) mice) were fractionated 

into O F P - (left panel) and OFP+ (right panel) cells. Note that Tie2 is silenced only in OFP+ but 

not in O F P - TEMs.
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measured by flow cytometry the percentages of TAM subsets. As shown in 

Illustration 31 A, the relative amounts of TEMs (MRC1HIGH CD11c-) and TIE2- 

TAMs (MRC1L0W CD11c+) were unaffected by Tie2 knock down. Importantly, TEMs 

from both amiR(Tie2) and amiR(Luc) mice expressed similarly high levels of OFP 

(Illustration 31B), indicating comparable expression of the amiR in either groups of 

mice. To quantify the level of Tie2 gene knock down in TEMs, I isolated the OFP+ 

and OFP- fractions of TEMs (CD31L0W MRC1HIGH CD11c-) by cell sorting. 

Statistical modeling of qPCR data (Pucci et al. 2009) showed that the Tie2 mRNA 

was specifically knocked-down in the OFP+ TEMs of amiR(Tie2) mice (Illustration 

31C; 4-fold vs. OFP+ TEMs of amiR(Luc) mice; p < 0.01). These results represent 

molecular evidence for efficient in vivo Tie2 gene silencing in tumor-infiltrating 

TEMs and suggest that Tie2 gene knock down do not detectably alter TEM 

recruitment to the tumors.

To study the effects of Tie2 gene knock down in a model of spontaneous 

tumorigenesis, I generated MMTV-PyMT/amiR(Tie2) and MMTV-PyMT/amiR(Luc) 

mice by BM transplantation (2 independent experiments; n = 12-14 mice/group). 

We treated the mice with doxycycline starting at 4 weeks post-transplant (9.5 

weeks of age), when the angiogenic switch and malignant conversion occur in this 

tumor model (Lin et al. 2006). At 15 weeks of age we euthanized the mice and 

analyzed tumor angiogenesis by flow cytometry and IFS of frozen sections. I 

observed significant differences between MMTV-PyMT/amiR(Tie2) and MMTV- 

PyMT/amiR(Luc) mice. The CD31+ blood vessels of amiR(Tie2) tumors appeared 

smaller, fewer and less perfused (lectin+) than in the controls (Illustration 32A). To 

quantify these observations, we measured the CD31+ or lectin+ area in the 

tumors. Both the relative CD31+ vascular area and the relative lectin+ (perfused) 

vascular area, measured by IFS of tumor sections, were significantly lower in 

amiR(Tie2) than amiR(Luc) mice (Illustration 32B). Flow cytometric analyses
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Illustration 32: Conditional Tie2 gene knock down in TEMs inhibits angiogenesis and impairs 

blood vessel functionality in spontaneous breast tumors. A: Lectin (green), OFP (red) and CD31 

(blue) immunostaining of representative tumor sections of MMTV-PyMT mice transplanted with 

BM-Lin~ cells either transduced with amiR(Tie2) or amiR(Luc) LV1 and analyzed at 15 weeks of 

age. Note the presence of several perfused (lectin+) CD31+ blood vessels in the control, 

amiR(Luc) tumor; the lectin+ CD31+ blood vessels are fewer in the amiR(Tie2) tumor. Note that 

abundant OFP+ cells are present in both amiR(Luc) and amiR(Tie2) tumors; Scale bar: 150 pm. 

Results are representative of 2 independent experiments and 10 tumors/group analyzed. For 

each tumor, multiple sections (3-5) were analyzed. B: Morphometric analyses of the vascular and 

perfused tumor area in sections obtained from same tumors as in A. C: Flow cytometry analysis 

of lectin+ CD31+ C D 45- ECs in same tumors as in A. Each dot in B and C indicates one 

individual tumor analyzed; for each tumor, multiple sections (3-5) were analyzed. Scatter plots 

show mean values ± SEM. Statistical analyses by Mann-Whitney U test. Results combine 2 

independent experiments.
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confirmed the lower frequency of lectin+ CD31+ CD45- ECs in the tumors of 

amiR(Tie2) mice (Illustration 32C). I observed decreased angiogenesis also in 

FVB/amiR(Tie2) mice challenged with subcutaneous N202 mammary tumors (data 

not shown).

I noted that the distribution of OFP+ and OFP- tumor-infiltrating cells differed in 

MMTV-PyMT/amiR(Tie2) and MMTV-PyMT/amiR(Luc) mice. Indeed, there were 

fewer OFP+ (i.e., Tie2 knocked-down) cells associated with perfused (lectin+ 

CD31+) tumor blood vessels in amiR(Tie2) than amiR(Luc) mice (Illustration 33A), 

whereas similar amounts of OFP+ cells surrounded the non-perfused (lectin- 

CD31+) immature vessels in either group of mice. These findings suggest that the 

association of OFP+ myeloid cells (i.e. Tie2 knocked-down TEMs) with newly
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Illustration 33: A: Morphometric analysis of OFP+ cells and their association with CD31+ or 

lectin+ CD31+ blood vessels in tumors of MM TV-PyMT mice transplanted with BM-Lin~ cells 

either transduced with amiR(Tie2) or amiR(Luc) LV1 and analyzed at 15 weeks of age. Results 

combine 2 independent experiments. 611 individual OFP+ cells from 10-11 digital images/group 

acquired at x200 magnification were scored, and their association with blood vessels analyzed. 

Bars show mean value ± SEM. Digital images were obtained from 5-6 tumors from 2 

independent experiments. B: Mammary tumor growth (mean volume ± SEM  at 14.5 weeks of 

age, shown as fold-change vs. tumor volume at 11.5 weeks of age in each individual mouse) by 

MRI-based volumetry of the 10 mammary glands. One experiment is shown. Statistical analyses 

in A and B by Mann-Whitney U test.
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forming blood vessels impeded their maturation to functional (i.e., perfused) tumor 

blood vessels. It should be noted that the frequency of OFP+ TEMs ranged from 

50% to 90% in the tumors of both amiR(Tie2) and amiR(Luc) mice (Illustration 31B 

on page 68), indicating that Tie2 gene knock down occurred in the majority but not 

all tumor-infiltrating hematopoietic cells. Nevertheless, Tie2 gene silencing in 

TEMs produced statistically significant tumor growth inhibition in 1 of the 2 

independent experiments performed (26% inhibition measured by MRI-based 

volumetry at 11.5 and 14.5 weeks of age; p < 0.05; Illustration 33B), supporting the 

relevance of the observed vascular changes. In summary, Tie2 knock down by 

RNAi reduced tumor angiogenesis and blood vessel functionality in MMTV-PyMT 

spontaneous breast tumors. Thus, TIE2 represents a crucial effector of the pro- 

angiogenic activity of TEMs.
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Discussion

10 TEMs are distinct from ECs

Our gene expression data demonstrate that TEMs are distinct from endothelial- 

lineage cells and represent a subset of tumor infiltrating macrophages expressing 

a distinguishing gene signature, which is consistent with enhanced pro-angiogenic 

and tissue-remodeling activity and lower pro-inflammatory activity. The carefull 

choice of surface markers which made it possible to highly purify TEMs was 

instrumental in the identification of their gene expression signature. In particular, a 

negative selection marker for ECs was crucial to avoid EC contamination in the 

TEM preparation. This apparent link between TEMs and ECs can be explained by 

the reported close association of TEMs with blood vessels (De Palma et al. 2003).

Several studies have reported that mononuclear cells expressing a reporter gene 

from Tie2 transcription regulatory elements are recruited to tumors and ischemic 

tissues (De Palma et al. 2003; Asahara et al. 1997; Ahn & Brown 2008). Based on 

the assumption that Tie2 expression is specific for ECs, these TIE2+ cells were 

often interpreted as EPCs, even if they expressed hematopoietic or myeloid 

markers (Modarai et al. 2005) and were often found outside of the vessel wall 

(Asahara et al. 1999). By implementing stringent combinations of gene marking 

and imaging approaches, previous work from our lab showed that these TIE2+ 

mononuclear cells indeed represent myeloid cells (De Palma et al. 2005). Here, I 

conclusively demonstrate that Tie2 expressing cells recruited to tumors do not 

belong to the EC lineage and are bona fide monocytes/macrophages. By 

comparing tumor-derived TEMs, TAMs and ECs, I show that the gene expression 

profile of TEMs is similar to that of TAMs but clearly distinct from that of ECs. 

Further data support the non-EC nature of TEMs. Indeed, TEMs (i) robustly
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express hematopoietic-specific markers (e.g. CD45, F4/80 and miR-142, the latter 

shown by using a microRNA-regulated reporter transgenic mouse line); (ii) 

express low-to-negligible levels of EC-specific genes (e.g. Vegfr2 and VE- 

Cadherin/Cc//75); (iii) do not incorporate in the tumor endothelium and often reside 

in perivascular spaces. These findings strongly support the notion that BM-derived 

Tie2 expressing cells repeatedly observed in tumors are not EPCs. Whether true 

EPCs contribute to tumor angiogenesis is still a matter of debate, with recent 

reports showing a contribution limited to selected experimental conditions, such as 

tumors treated by vascular-disrupting agents or chemotherapy (Shaked et al.

2008).

11 Overlapping function and phenotype between TEMs and 

other mononuclear subsets

Although TEMs do not physically incorporate in the tumor endothelium, they seem 

required for tumor angiogenesis (De Palma et al. 2007). Within the panel of 

interrogated genes, many genes previously implicated in tumor angiogenesis were 

among the most differentially expressed between TEMs and TAMs. One such 

gene is Lyvel (14-fold up), which encodes for the hyaluronan receptor-1 

expressed on lymphatic ECs and subsets of macrophages. Because TEMs also 

express Stabl (stabilin-1, a hyaluronan receptor (Politz et al. 2002); 6.4-fold up) 

and Cd163 (hemoglobin/haptoglobin scavenger receptor; 15.8-fold up), it is likely 

that the previously described LYVE1+ STAB1+ CD163+ macrophages observed in 

tumors, wounds, placenta and remodeling adipose tissue (Schledzewski et al. 

2006; Cho et al. 2007; Bockle et al. 2008), indeed represent TEMs. In these 

reports, a common feature of the described LYVE1+ STAB1+ CD163+ 

macrophages is the juxtaposition with sprouting ECs, which suggests a functional 

role as cellular chaperones for endothelial tip cells (Fantin et al. 2010).
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In the last months, a very interesting paper reported that the tumor 

microenvironment hosts functionally distinct TAM subsets (Movahedi et al. 2010). 

The Authors identified 2 subsets among CD11b+ F4/80+ TAMs based on MHC-II 

expression. MHC-IIL0W TAMs have striking similarities with TEMs when compared 

with the other TAM subset (MHC-IIHIGH TAM and TIE2- TAMs respectively); indeed 

both 1) show a superior pro-angiogenic activity; 2) share the same gene 

expression signature (high levels of Lyvel, Cd163, Stabl, Mrc1, Arg1, Il4ra, and 

low levels of Mhc-ll (alias H2-Ea), 111b, Nos2, Ptgs2, Ccl5, CxcHO, Cxcl11)’, 3) can 

be distinguished from the other respective subset by the same surface marker 

profile (MRC1+ CD11c- MHC-IIL0W); 4) are bigger (as measured by light scatter);

5) accumulate during progression of several cancer. Unfortunately, the Authors did 

not find differences in Tie2 expression levels between MHC-IIL0W and MHC-IIhigh 

TAMs. It is very likely that, since the FACS panel employed by the Authors to 

isolate the TAM subsets did not include a negative selection marker for ECs (which 

express high levels of Tie2), a small contamination of ECs in both MHC-IIL0W and 

MHC-IIHIGH TAMs may have masked the difference in expression of Tie2. Still, an 

independent lab fully reproduced and expanded my work on TAM subsets.

12 Functional considerations

The identification of a TEM gene signature allows us to formulate some 

hypotheses on the molecular mechanisms of TEM pro-angiogenic activity.

12.1 Extra-cellular matrix and TEMs

As stated before, Lyve-1 and Stabl are up-regulated in TEMs. Tlr4, a toll-like 

receptor implicated in tumorigenesis (Chen et al. 2008), is also preferentially 

expressed by TEMs (3.5-fold up). Whereas LYVE1 and STAB1 binds hyaluronic 

acid (HA), TLR4 binds to its low-molecular weight fragmentation products (Termeer
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et al. 2002; Politz et al. 2002). Interestingly, Tlr4 expression by macrophages has 

been found to mediate remodeling of the lung microenvironment and favor 

subsequent colonization by tumor cells (Hiratsuka et al. 2008). Moreover, HA 

fragments stimulate MMP production, cell migration and angiogenesis in tumors 

(Toole 2004), and up-regulate Irak-M expression by monocytes, deactivating them 

and down-regulating their expression of the anti-angiogenic molecules Tnfa and 

1112a (del Fresno et al. 2005). The preferential expression of Lyvel, Stabl and 

Tlr4 by TEMs among tumor macrophages suggests a role of TEM-HA interactions 

in tumor angiogenesis (Genasetti et al. 2008).

12.2 Soluble mediators

Another gene upregulated in TEMs is Cxcl12 (4.4-fold up), encoding for the 

stromal cell derived factor-1 (SDF1). SDF1 released by TEMs may promote 

angiogenesis by attracting CXCR4+ ECs and other pro-angiogenic cells in the 

tumor microenvironment (Petit et al. 2007). Interestingly, unpublished work from 

our lab indicates that ANG2 neutralization by a novel ANG2-specific monoclonal 

antibody (Brown et al. 2010) impedes the transcriptional up-regulation of Cxcl12 in 

tumor-infiltrating TEMs (Pucci, Mazzieri). Thus, it is possible that the TEM specific 

expression of Cxcl12 may increase their ability to support tumor blood vessel 

morphogenesis in an ANG2-dependent manner.

Angptl (angiopoietin-1, a Tie2 ligand; 2.6-fold up) expressed by TEMs may also 

promote tumor angiogenesis, as Angptl-expressing hematopoietic cells stimulate 

EC sprouting in embryonic tissues (Takakura 2006).

Interestingly, the CXC chemokines Cxcl10 and Cxcl11 were down-regulated in 

TEMs (2.8- and 2.7-fold down, respectively). These chemokines are transcribed 

upon Irf3/Stat1 activation and are potent inhibitors of angiogenesis (Strieter et al. 

2005). Overall, the enhanced expression of several pro-angiogenic molecules by
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TEMs, together with the down-regulation of potent anti-angiogenic mediators (also 

including 1112a, 3.6-foid down; 1112b, 2.5-fold down; Tnfa, 3.1-fold down), may 

account for their non-redundant pro-angiogenic activity in tumors (De Palma et al. 

2007).

12.3 TEMs as cellular chaperones

Vegfa, which is among the most expressed genes in TEMs, was however down- 

regulated in TEMs vs. TAMs (2.9-fold down). This apparent paradox can be 

explained by taking into consideration the preferential localization of TEMs in 

peritumoral areas and their exclusion from necrotic, avascular regions (De Palma 

et al. 2005), suggesting that TEMs are exposed to a less hypoxic 

microenvironment in tumors. Of note, the targeted deletion of Vegfa alleles in all 

myeloid cells (including TAMs) did not decrease the overall amounts of VEGFA 

expressed in the tumors and failed to inhibit tumor angiogenesis and growth 

(Stockmann et al. 2008). These results may thus challenge the notion that TAMs 

represent a non-redundant source of VEGFA in experimental tumors and that the 

cellular localization may be more crucial then the total amount of VEGFA. Indeed, 

it is likely that TEMs exert a requisite pro-angiogenic function by supporting tumor 

blood vessel morphogenesis downstream to VEGF-induced vascular activation 

and EC tip formation. One can envision that TIE2 expression by TEMs regulates 

blood vessel formation in tumors by non-canonical angiogenic mechanisms, such 

as cell-to-cell adhesive interactions (Illustration 34 on page 83). Indeed, the finding 

of a poor association between Tie2 knocked down (i.e., OFP+) TAMs and 

functional (i.e., Iectin+) tumor vessels in MMTV-PyMT tumors supports this view. 

Such scenario is in agreement with a recent study that shows that perivascular, 

TIE2+ macrophages physically interact with the tip cells of nascent blood vessels, 

which also express TIE2, and are essential to promote vascular anastomosis

77



during embryonic development (Fantin et al. 2010). Furthermore, it was previously 

shown that, during embryonic development, TIE2 expression by hematopoietic 

cells promotes their adhesion to TIE2+ ECs, and that such interaction stimulates 

angiogenesis in para-aortic splanchnopleural mesoderm explant cultures 

(Takakura et al. 1998).

12.4 Miscellanea

The expression of Nrp1 (Neuropilin-1, a VEGF co-receptor; 4.6-fold up) by TEMs 

might enhance angiogenesis by clustering VEGF in contact with VEGFR2+ ECs, 

as previously described (Takakura 2006). Efnb2 (Ephrin-B2; 4.2-fold up) encodes a 

transmembrane ligand of Ephrin receptors expressed on ECs; the bidirectional 

signaling between ephrin-B2 and Ephrin receptors modulates angiogenesis and 

the development of arteries and veins (Carmeliet & Tessier-Lavigne 2005). 

Semaphorin 6D (Sema6d; 5.2-fold up), a transmembrane protein that binds to 

membrane-bound PlexinBI, may also have pro-angiogenic activity in tumors, as it 

activates VEGFR2-mediated signal transduction (Neufeld & Kessler 2008). The 

enhanced expression of Nrp1, Efnb2 and Sema6d by TEMs may suggest 

activation of ECs by cell-to-cell contacts.

TEMs display up-regulated expression of Edg1 (sphingosine-1-phosphate 

receptor; 3.0-fold up). Edg1 null embryos are hemorrhagic and die in utero, a 

phenotype associated with impaired vascular maturation and defective recruitment 

of perivascular cells to angiogenic blood vessels (Liu et al. 2000). Moreover, 

sphingosine-1-phosphate induces macrophages to acquire an anti-inflammatory 

phenotype (high Arg1, low Nos2 activity (Hughes et al. 2008)), which is consistent 

with TEM phenotype.
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13 TEM precursors

Both mouse and human monocytes can be grouped into functional subsets 

(Geissmann et al. 2010). I found that circulating TEMs belong to the GR1- 

CD62L- CD43+ resident monocyte subset. In addition to previous data from our 

lab showing that TEMs are pro-angiogenic (De Palma et al. 2005; De Palma et al.

2007), a recent report indicated that resident monocytes promote tissue 

angiogenesis in the post-ischemic myocardium (Nahrendorf et al. 2007). Together, 

these data may suggest a developmental and functional relationship between 

circulating resident monocytes and tumor-infiltrating TEMs. New findings described 

here further show that resident monocytes isolated from the blood of tumor-free 

mice and tumor-derived TEMs display a coordinated expression profile, which 

points to a commitment of TEM phenotype/function in the peripheral blood. Arg1, 

Cxcl12, Lyvel, Igf1, Stabl, Cd163, Mrc1 and Edg1, all significantly up-regulated in 

tumor-derived TEMs vs. TIE2- TAMs, were markedly up-regulated in resident vs. 

inflammatory monocytes. Expression of 1112a (an anti-angiogenic molecule) was 

down-regulated in TEMs vs. TIE2- TAMs but unexpectedly up-regulated in 

resident vs. inflammatory monocytes. However, two recent reports have shown 

that both mouse and human resident monocytes rapidly down-regulate 1112 

expression upon their extravasation in vivo (Auffray et al. 2007) or when exposed 

in vitro to experimental conditions mimicking the hypoxic tumor microenvironment 

(Murdoch et al. 2007). The coordinated expression profiles of resident 

monocytes/TEMs and inflammatory monocytes/TIE2- TAMs suggest that 

monocyte heterogeneity in the peripheral blood may reflect the existence of 

precursor populations that are committed to distinct, non-redundant functions in 

tumors and growing/regenerating tissues. Of note, this commitment is present 

even in the absence of tumor burden, as monocyte subsets were isolated from
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tumor-free mice.

The developmental relationship between the two main monocyte subsets remains 

to be clarified. It has been proposed that resident monocytes derive from GR1 + 

inflammatory monocytes (Varol et al. 2007), implying that the two phenotypes may 

represent distinct developmental stages along the monocyte lineage. However, 

neither a genetic defect in nor antibody-mediated depletion of GR1+ monocytes 

affected the generation of GR1- monocytes (Mildner et al. 2007; Alder et al. 2008; 

Scatizzi et al. 2006), suggesting that a direct developmental pathway from a 

multipotent precursor to GR1- monocytes may exists (Yona & Jung 2010). 

Therefore, a better characterization of monocyte precursors and new lineage 

tracking studies will be needed to establish the developmental relationship 

between monocyte subsets and to clarify whether TEMs represent a distinct 

resident monocyte subset.

Taken together, our findings suggest that TEMs represent a circulating reservoir of 

monocytes actively recruited to extra-vascular tissues by non-inflammatory signals 

produced not only by tumors, but also by developing or regenerating tissues. 

Future studies will identify the signals that govern the lineage determination of 

TEMs and their recruitment to sites of active tissue morphogenesis. Live imaging 

analysis (Egeblad et al. 2008) of monocyte/macrophage subsets expressing the 

newly identified cell surface markers (e.g. MRC1, CD11c, LYVE1, TLR4, MHC-II) 

may better clarify macrophage heterogeneity and dynamics in tumors.

14 Role of TIE2 in TEMs

To knock down Tie2 in BM-derived hematopoietic cells, I developed a novel gene 

knock-down platform that effectively protects the hematopoietic compartment from 

potential toxicity consequent to Tie2 silencing in HSCs. Indeed, our previous
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attempts to knock down Tie2 using constitutive LVs did not allow for efficient and 

stable gene silencing in BM-derived cells because of counter selection of 

transduced cells. By using inducible LVs and HSC de-targeting, I demonstrated 

that Tie2 knock-down in BM-derived cells significantly inhibited angiogenesis and 

microvascular perfusion in MMTV-PyMT mice, but did not affect hematopoiesis 

detectably. Remarkably, by targeting the TIE2 receptor in TEMs, I recapitulated 

several features of TEM elimination (De Palma et al. 2005), including: 1) reduced, 

although not drastically, tumor growth; 2) decrease in tumor vascular area; 3) 

unaltered myeloid cell infiltration in tumors. Together, these results suggest that 

TIE2 is a pivotal biological effector and therapeutic target in TEMs.

TIE2 is expressed at very low level in circulating monocytes, but is strongly 

upregulated (up to 100-fold) specifically in perivascular TEMs (De Palma et al.

2008). Unpublished work from our lab indicates that ANG2 neutralization by a 

novel ANG2-specific monoclonal antibody (Brown et al. 2010) impedes the 

transcriptional up-regulation of Tie2 in tumor-infiltrating TEMs (Pucci, Mazzieri). By 

using a conditional genetic knock down strategy, I show here that the up-regulation 

of the TIE2 receptor in peri-vascular TEMs is required for the functional maturation 

of angiogenic blood vessels. ANG2 may thus signal both autocrinally on ECs 

(Augustin et al. 2009) and juxtacrinally on peri-vascular, TIE2+ macrophages, the 

latter scenario being supported by experimental evidence that ANG2 agonistically 

enhances the pro-angiogenic activity of human blood-derived TIE2+, but not TIE2- 

monocytes in vitro (Coffelt et al. 2010b). One can envision that ANG2 expression 

by angiogenic blood vessels (such as those of expanding tumors or developing 

tissues) mediates a self-reinforcing signal on peri-vascular TEMs via the up- 

regulation of the TIE2 receptor, and that such feedback may be essential for the 

execution of productive angiogenesis (Illustration 34 on page 83). Although it 

cannot be excluded that TIE2 up-regulation in TEMs is mediated indirectly by
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ANG2, the specific modulation of the Tie2 mRNA among other angiogenic genes 

observed in TEMs upon ANG2 blockade (Pucci, Mazzieri, unpublished data) 

supports the view that this response is intimately linked to TIE2 signalling. Of note, 

several growth factors -  including ANGs -  can regulate the expression of their 

receptor tyrosine kinases at the transcriptional level via auto-regulatory feedback 

loops (Hashimoto et al. 2004).

Tie2 silencing in TEMs, although consistently inhibiting angiogenesis and tumor 

vessel function by almost 50%, did not reproducibly inhibit tumor growth in MMTV- 

PyMT mice. In this regard, previous reports have shown that the genetic deletion 

of pro-angiogenic factors in ECs or myeloid cells may reduce angiogenesis in 

tumors without decreasing tumor growth rates (Nasarre et al. 2009; Stockmann et 

al. 2008). It should be noted that in my Tie2 silencing studies, as a consequence of 

the chimeric nature of repopulating cells in a BM transplantation setting, a 

significant proportion of the tumor blood vessels were surrounded by enough TIE2- 

competent (OFP-) TEMs to enable sufficient blood vessel growth and consequent 

tumor perfusion in the tumors of amiR(Tie2) mice, thus allowing for unimpeded 

tumor growth. Thus, it cannot be excluded that fully exhaustive Tie2 targeting in 

tumor-infiltrating macrophages would impair angiogenesis and tumor vessel 

functionality to an extent critical for tumor oxygenation, nourishment and growth.

In summary, Tie2 gene silencing data indicate that the TIE2 receptor expressed by 

peri-vascular TEMs is a critical regulator of ANG2-mediated pro-angiogenic 

programs in tumors (Illustration 34 on page 83). Because tumor infiltrating myeloid 

cells are known to convey pro-tumoral and pro-angiogenic programs that can 

counteract the efficacy of anti-angiogenic treatments (Bergers & Hanahan 2008), 

the combined targeting of angiogenic ECs and pro-angiogenic TAMs by selective 

ANG2/TIE2-pathway inhibitors may significantly extend the reach of anti-
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Illustration 34: Model of ANG2-TIE2 interactions modulating the pro-angiogenic activity of TEMs. 

Circulating TEMs express low-level TIE2, but the receptor is up-regulated upon their 

extravasation in the tumor microenvironment Once in the tumor stroma, TEMs adhere to 

sprouting blood vessels, which secrete high-level ANG2. In the presence of ANG2, TEMs 

promote vascular growth and anastomosis. Upon genetic knock-down of Tie2, TEMs fail to 

promote vascular morphogenesis. Because blocking ANG2-TIE2 interactions in TEMs 

phenocopies the anti-angiogenic effects obtained by depleting TEMs, it is suggested here that 

the ANG2-TIE2 signaling axis mediates juxtacrine interactions between TEMs and ECs that are 

required for sprouting angiogenesis.

angiogenic therapy in cancer patients.
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Appendix -  RNA interference

15 The micro-RNA world

RNA interference (RNAi) is endogenously mediated by microRNA (miR), 21-24 

nucleotides non-coding RNA which fine-tunes expression of a large numbers of 

target genes (Bartel 2004). miRs are generated from primary transcripts (pri-miRs) 

generally transcribed from polymerase-ll (Pol-ll) promoters. The genomic location 

of pri-miRs normally is an intronic sequence of either a coding or non-coding gene, 

or an intergenic region (Morlando et al. 2008). Pri-miRs are processed in the 

nucleus by Drosha, an RNase III like enzyme, to -60-70 nucleotides stem-loop 

molecules with two-nucleotide 3' overhangs (pre-miR) (Illustration 35). Drosha 

cleavage occurs during transcription acting on both independently transcribed 

(intergenic) and intron-encoded miRNAs (Morlando et al. 2008). Pre-miRs are 

shuttled by exportin-5, a Ran-GTPase, to the cytosol where Dicer, another RNase 

III like enzyme, releases a 21-24 double-stranded RNA from the stem. This is 

loaded into the RNA-induced silencing complex (RISC), which generally selects 

one of the two strands as the guide strand (mature miR), according to 

thermodynamic properties. RISC targets mRNA with complementary sequence to 

the miR and down-regulates their expression decreasing transcript translation and 

stability by a variety of molecular mechanisms (Eulalio et al. 2008). Because most 

miR::mRNA pairing in mammalian cells is not perfect, direct RISC-dependent 

mRNA cleavage is unusual.

16 Exploiting RNAi

RNAi has proven essential for gene function studies and holds promise for the 

development of new molecular medicines (Chang et al. 2006; Kim & Rossi 2007).
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Illustration 35: The miRNA processing pathway. The vast majority of primary miRNA transcripts 

(pri-miRNA) are synthesized by RNA polymerase II and then cleaved by the microprocessor 

complex Drosha-DGCR8 (Pasha) in the nucleus. The resulting precursor hairpin, the pre- 

mi RNA, is exported from the nucleus by Exportin-5-Ran-GTP. In the cytoplasm, the RNase Dicer 

in complex with the double-stranded RNA-binding protein TRBP cleaves the pre-miRNA hairpin 

to its mature length. The functional strand o f the mature miRNA is loaded together with 

Argonaute (Ago2) proteins into the RNA-induced silencing complex (RISC), where it guides 

RISC to silence target mRNAs through mRNA cleavage, translational repression or 

deadenylation, whereas the passenger strand (black) is degraded. From Winter et al. Nat Cell 

Biol 2009.

Several hurdles still prevent full exploitation of the biological and therapeutic 

potential of RNAi. Selection of an efficient siRNA sequence still requires empirical
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validation, and safe and effective delivery of RNAi molecules remains an active 

area of investigation (McBride et al. 2008; Li et al. 2007). RNAi off-target effects 

result from one of three mechanisms: 1) stretches of dsRNA can activate non

specific cellular innate immune responses, such as the interferon and toll-like 

response (Bridge et al. 2003; Fish & Kruithof 2004; Kleinman et al. 2008); 2) 

saturation of the cell RNAi machinery and thereby inhibit the function of 

endogenous miRNAs (Grimm et al. 2006); 3) complementarity to other, non-target 

mRNAs (Birmingham et al. 2006). Ongoing efforts aim to identify which approach 

guarantees the best balance between efficacy and off-target effects, toxicity and 

which expression cassette and delivery vehicle best fit the requirements of stable 

RNAi delivery (Kim & Rossi 2007). Commonly siRNA are transiently delivered to 

target cells by transfection approaches, a constraint that limits the possible 

applications. Hence, other strategies have been pursued to express RNAi 

precursors from within the target cells. Short hairpin RNA mimic the pre-miR 

structure and require Dicer processing in order to be functional. A crucial 

advantage is the possibility to use polymerase-lll promoters for high-level 

expression and stable gene knockdown (Brummelkamp et al. 2002). Although 

polymerase-lll promoters have also been engineered for inducible expression 

(Szulc et al. 2006), they lack the tissue and developmental specificity of Pol-ll 

promoters. Furthermore, concerns about the potential toxicity of this approach 

have been reported due to the possible saturation of miR processing steps and 

consequent interference with endogenous miR regulation (Kleinman et al. 2008; 

Grimm et al. 2006).

Artificial miRs (amiRs) are natural pri-miR in which the stem sequence of an miR 

has been substituted with a sequence targeting the gene of interest. In target cells, 

amiR undergoes the same processing steps of the parental pri-miR (Zeng et al. 

2002). Importantly, amiR can be also transcribed by Pol-ll promoters, like
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endogenous pri-miR, which allows exploitation of state-of-the-art gene expression 

cassettes and may alleviate concerns for over-expression (Boudreau et al. 2009). 

Although many examples in the literature of functional amiR and many of the 

details for making amiR have been worked out, the choice of an optimal pri-miR 

backbone for robust and versatile amiR expression and the criteria for its 

validation are still actively pursued (Aagaard et al. 2008; Ely et al. 2009; Chung et 

al. 2006). In order to co-express RNAi and a selector or therapeutic gene, amiRs 

have been introduced into the 5 - or 3'-untranslated region (UTR) of the transgene 

(Stegmeier et al. 2005). This modification, while improving amiR expression, 

impairs expression of the linked transgene. More recently, amiRs were inserted 

within an intron to maintain expression of the transgene unaltered (Chung et al. 

2006). However, these features of the expression cassette may interfere with 

delivery by y-retroviral and lentiviral vectors (LVs), the preferred systems for stable 

expression in proliferating cells and tissues. Thus, optimization of vector design is 

still required to perform knock down studies in challenging settings, such as 

primary cells.
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Material and methods

17 Transgenic mice

FVB mice were purchased from Charles River Laboratory (Calco, Milan, Italy). 

FVB/Tie2p/e-GFP and FVB/Pgk-rtTA-miR-126T transgenic mice were previously 

generated by lentiviral vector (LV)-mediated transgenesis and established as a 

colony in 2003 at the San Raffaele animal facility (De Palma et al. 2005). 

FVB/MMTV-PyMT mice were obtained from the NCI-Frederick Mouse Repository 

(MD) and established as a colony at the San Raffaele animal facility. Five to 6- 

week-old female MMTV-PyMT mice were transplanted with BM cells from Tie2p/e- 

GFP mice, as described (De Palma et al. 2008), and the tumors analyzed 4 or 6 

weeks after the transplant. Transgenic mice were screened by qPCR of vector 

sequences. Tie2p/e-GFP transgenic mice had LV copy number ranging from 5 to 

10 LV copies/cell. All animal procedures were performed according to protocols 

approved by the Animal Care and Use Committee of the Fondazione San Raffaele 

del Monte Tabor and communicated to the Ministry of Health and local authorities 

according to the Italian law.

18 Lentiviral vectors

To generate the rtTA-m2 encoding vector (LV2), I cloned four tandem copies of a 

21-bp sequence with perfect complementarity to miR-126 (mir-126T) downstream 

to a PGK-GFP LV, as previously described (Brown et al. 2006). I then replaced the 

GFP sequence with the rtTA-m2 cDNA, to obtain the PGK-rtTA-m2-mir-126T LV. 

To generate the amiR encoding vectors (LV1), I replaced the EF1a core promoter 

of the EF1a-amiR(Tie2)-NGFR and EFIa-amiR(Luc)- NGFR LVs (Amendola et al.

2009) with a tetracycline-responsive element (TRE)-containing promoter, and
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further replaced NGFR with OFP, to obtain the TRE-amiR(Tie2)-OFP and TRE- 

amiR(Luc)- OFP LVs, respectively. In these vectors, the amiR sequence is lodged 

in the EF1a intronic sequence downstream to the TRE-containing promoter. The 

siRNAsequences used are: amiR223(Tie2), 5-TTTGCCCTGAACCTTATAC CG-3'; 

amiR155(Tie2): 5'-TACAGGTCCTGCCAAAT GT GT-3'; amiR223(Luc), 5'-

TATTCAGCCCA TAT CGTTT C A-3'; amiR155(LacZ), 5'-

AAATCGCTGATTTGTGTAGTC-3'. The LVs used in this study and cloning strategy 

used for their construction will be available upon request. Concentrated VSV.G 

pseudotyped, third-generation LV stocks were produced and titred as described 

previously (De Palma & Naldini 2002).

19 Hematopoietic stem/progenitor cell (HSPC) isolation, 

transduction and transplantation

Six to 12-week-old female FVB/PGK-rtTA-miR-126T (LV2) transgenic mice were 

killed with C02 and their BM was harvested by flushing the femurs and the tibias. 

Lineage-negative cells (BM-Lin- cells) enriched in HSPCs were isolated from BM 

using a cell purification kit (StemCell Technologies) and transduced by 

concentrated LVs. Briefly, 106 cells/ml were prestimulated for 4-6 hours in serum- 

free StemSpan medium (StemCell Technologies) containing a cocktail of cytokines 

(IL-3 (20 ng/ml), SCF (100 ng/ml), TPO (100 ng/ml) and FLT-3L (100 ng/ml), all 

from Peprotech) and transduced with amiR-expressing LVs (LV1) with a dose 

equivalent to 108 LV Transducing Units/ml, for 12 hours in medium containing 

cytokines. After transduction, 106 cells were infused into the tail vein of lethally 

irradiated, 5.5-week-old, female FVB or FVB/MMTV-PyMT mice (radiation dose: 

1150 cGy split in 2 doses). To induce the expression of the amiR(Tie2) and OFP, 

the transduced cells were cultured in vitro for 2 days in the presence or absence of 

doxycycline (1 pg/ml; Sigma). Transduced cells were also cultured for 5 days to

90



measure OFP expression by flow cytometry, or for 9 days to measure the number 

of integrated LV copies/cell genome.

19.1 In vivo doxycycline administration

Starting at 4 weeks after HSPC transplant (i.e., at 9.5 weeks of age), FVB or 

MMTV-PyMT mice were moved to doxycycline-containing food (Charles River) and 

received intra-peritoneal injections of doxycycline (0.5 mg/mouse) every third day, 

until the end of the experiments (12.5 weeks of age for FVB and 15 weeks of age 

for MMTV-PyMT mice).

19.2 Magnetic Resonance Imaging (MRI)

MRI examinations of MMTV-PyMT transgenic mice were performed on a 3.0 Tesla 

human scanner (Achieva 3T, Philips Medical Systems, the Netherlands), equipped 

with 80 mT/m gradients and a 40 mm volumetric coil (Micro-Mouse 40, Philips 

Medical Systems, the Netherlands). The mice were anaesthetized with Avertin and 

maintained on Sevoflurane (2% for maintenance), in a 95-98% 02 mixture. During 

acquisition, mice were positioned prone on a dedicated temperature control 

apparatus to prevent hypothermia. For mammary gland imaging, a Turbo Spin 

Echo T2 (TR = 2500; TE = 80; turbo-factor = 9; FOV = 65x65mm; zero-filled 

voxelsize 100 x 100 x 800 micron) was acquired at 10.5 and/or 14.5 weeks of age. 

The larger field of view allowed evaluation of all five couples of mammary glands. 

Tumor volumes were calculated on a separate workstation (ViewForum 2.0) after 

manual segmentation of the lesion on the basis of signal intensity variation and 

enhancement characteristics, by summing individual volumes (calculated as lesion 

area x slice thickness) in each slice.
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20 Tumor models

20.1 Spontaneous MMTV-PyMT tumors

For Tie2 gene knock-down experiments, HSPC transplantation was performed at 

5.5 weeks of age, as described above. To induce OFP and Tie2 gene knock-down, 

the mice received doxycycline administrations (see paragraph 19.1) starting at 4 

weeks post-HSPC transplantation (i.e., 9.5 weeks of age). Mammary tumors were 

monitored at weekly intervals and either measured by magnetic resonance 

imaging (MRI)- based volumetry (performed 10.5 and/or 14.5 weeks of age; see 

below) or tumor weight measurements performed at necropsy (15 weeks of age). 

At the end of the experiments, mice were anesthetized by Avertin and euthanized 

by intracardiac perfusion of PBS.

20.2 N202 mouse mammary carcinoma

The N202 mammary carcinoma cell line was cultured under standard conditions 

and 5x106 cells were implanted subcutaneously in 9.5-week-old, female FVB mice 

transplanted 4 weeks earlier with transduced HSPCs (see above). To induce OFP 

and Tie2 gene knock-down, the mice received doxycycline administrations (see 

paragraph 19.1) starting 2 days after tumor cell injection. Tumors were analyzed 3 

weeks post-tumor cell injection.

21 Flow cytometry

Flow cytometry either used a CyAn ADP (DAKO) or a BD FACSCanto (BD 

Bioscience) apparatus.
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21.1 Antibodies

Official Alias Origin Purchased by Conjugation / Secondary
name

Tek Tie2 Rat eBiosciences
antibodies

PE
Csflr CD115 Rat Serotec PE
Itgam CD11b Rat BD FITC, PE, APC
Sell CD62L Rat BD APC
Tlr4 Ly87 Rat BD Biotinylated / Streptavidin-PE
Mrc1 CD206 Goat R&O Unconj. / Donkey anti-goat

Xlkdl Lyvel Rat MBL
Alexa633
PE

Ly6c1 Ly6C Rat SouthernBiotech PE
Ly6g Ly6G Rat BD PE
Emr1 F4/80 Rat Serotec PE, APC
GR1 Ly6C/G Rat BD PE, APC
Pecaml CD31 Rat BD APC
CD 163 Rabbit Santa Cruz Unconj. / Donkey anti-rabbit

CD48 SLAMF2 Rat BD
Alexa647
PE

114ra CD 124 Rat BD PE
Itgax CD11c Rat BD PE
CD86 B7.2 Rat BD PE
Itga4 CD49d Rat BD PE
Fcerla FceRI Rat eBiosciences PE
Spn CD43 Rat BD PE
Tlr2 Ly105 Rat BD Biotinylated / Streptavidin-PE
Itga2b CD41 Rat BD PE
c-kit CD117 Rat BD APC
c-kit CD117 Rat eBiosciences APC-Alexa750
Sca-1 Ly-6A/E Rat BD PE
lgG1 Rat eBioscience PE, APC
lgG2a Rat BD PE, APC
lgG2a Rabbit Molecular Unconj. / Donkey anti-rabbit

lgG2a Goat
Probes 
Santa Cruz

Alexa647
Unconj. / Donkey anti-goat

Alexa633
Table 5: List of antibodies for flow cytometry

21.2 Tumors

N202 mammary tumors were grown subcutaneously for 4-6 weeks in the right 

flank of 6-8-week old Tie2p/e-GFP transgenic or control FVB mice. For each 

analysis, 3-5 tumors were excised and made into single cell suspensions by
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collagenase IV (0.2 mg/ml, Worthington), dispase (2 mg/ml, Gibco) and DNasel 

(0.1 mg/ml, Roche) treatment in IMDM medium supplemented with 5% fetal calf 

serum (FCS), glutamine and antibiotics. After 1h at 37°C in a shaking bath, the cell 

suspension was 40 pm-filtered and washed in phosphate buffered saline (PBS) 

containing 2mM EDTA and 0.5% bovine serum albumin (BSA). Cell suspensions 

were incubated with rat anti-mouse FcylM/ll receptor (CD16/CD32) blocking 

antibodies (4 pg/ml), labeled with 7-amino-actinomycin D (7AAD) to stain 

nonviable cells and then stained using the antibodies listed in Table 5. To gate 

GFP+ cells, I used cells isolated from wild-type FVB mice.

21.3 Peripheral blood

Peripheral blood was collected from the tail vein of Tie2p/e-GFP transgenic or 

control FVB mice. After lysis of red blood cells using the TQ-Prep workstation 

(Beckman-Coulter), leukocytes were stained with 7AAD, incubated with rat anti

mouse Fcylll/ll receptor (CD16/CD32) blocking antibodies (4 pg/ml) and then 

stained using the antibodies listed in Table 5. To gate GFP+ cells, I used cells 

isolated from wild-type FVB mice.

22 Flow sorting

22.1 Tumor-derived TEMs, TIE2- TAMs and ECs

TEMs and TIE2- TAMs were isolated from N202 mammary tumors grown 

subcutaneously for 4-6 weeks in the right flank of 6-8-week old Tie2p/e-GFP 

transgenic mice. For each cell sorting session, 10-30 tumors were excised and 

made into single-cell suspensions by collagenase IV (0.2 mg/ml, Worthington), 

dispase (2 mg/ml, Gibco) and DNasel (0.1 mg/ml, Roche) treatment. Cell 

suspensions were then stained with PE-conjugated anti-CD11b and APC-
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conjugated anti-CD31 monoclonal antibodies (BD Pharmingen), and the CD11b+ 

myeloid cells magnetically enriched using anti-PE microbeads and LS columns 

(Miltenyi). After magnetic enrichment, the vast majority of the cells were 

CD11b+CD31-. To isolate tumor-derived ECs, N202 tumors were processed as 

above, but the CD11b+ cell enrichment step was omitted. To sort cells, I used a 

Vantage DiVa apparatus (Becton-Dickinson). Before sorting, single-cell 

suspensions were labeled with 7-amino-actinomycin D (7AAD) to stain nonviable 

cells. I isolated TEMs as 7AAD- CD11b+ CD31- GFP+ cells (n=7 independent cell 

sorting) and TIE2- TAMs as 7AAD- CD11b+ CD31- GFP- cells (n=7). As 

fluorescence minus one (FMO) sample I used CD11b-enriched cells obtained from 

tumors grown in wild-type FVB mice. Tumor-derived ECs were sorted as 7AAD- 

CD11b- CD31+ GFP+ cells (n=3).

22.2 GR1+ CD11b+ myeloid derived suppressor celis (MDSCs)

MDSCs were isolated from the spleen of N202 tumor-bearing Tie2p/e-GFP 

transgenic mice as GR1+ CD11b+ cells. For each cell sorting session, 3 spleens 

were made into single-cell suspensions by mechanical treatment and then stained 

with PE-conjugated anti-CD11b and APC-conjugated anti-GR1 antibodies.

22.3 Peritoneal macrophages (PMs)

PMs were obtained from tumor-free FVB mice by peritoneal lavage with 10 

ml/mouse serum-free RPMI. For each cell sorting session, I used 15, 6-to-8-week 

old mice. Recovered cells were stained with FITC-conjugated anti-CD11b, APC- 

conjugated anti-CD31 and PE-conjugated anti-F4/80 antibodies before cell sorting. 

PMs were sorted as F4/80+ CD11b+ CD31-cells (n=2).
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22.4 Resident and inflammatory monocytes

For each experiment, blood was collected by cardiac puncture from 20 deeply 

anesthetized (Avertin) FVB mice. Peripheral blood mononuclear cells were purified 

with Lympholyte-Mammal (Cedarlane Labs, Canada). After staining with PE- 

conjugated anti-CD115 and APC-conjugated anti-GR1 antibodies and 7AAD vital 

staining, resident and inflammatory monocytes were sorted as 7AAD- CD 115+ 

GR1- and 7AAD- CD 115+ GR1+ cells, respectively, to a purity > 95% (n=4).

23 Immunofluorescence staining (IFS) and confocal 

microscopy

Tumors, liver samples and whole embryos (see below) were made into 12-16 pm 

cryostat sections, as described (Venneri et al. 2007). Briefly, tumors, embryos and 

organs were fixed for 1-4 hr in paraformaldehyde, equilibrated for 12 hr in PBS 

containing 15% sucrose, 24 hr in PBS/20% sucrose, and eventually 48 hr in 

PBS/30% sucrose. The samples were then embedded in O.C.T. compound for 

quick freezing in liquid nitrogen. Cryostat sections were laid on slides and 

immediately stained; when required, slides were frozen at -80°C. For 

immunofluorescence staining, sections were blocked with 5% serum (Vector 

Laboratories, Burlingame, CA) in PBS containing 1% bovine serum albumin (BSA) 

and 0.1% Triton X-100 (PBS-T). For staining, I used the antibodies listed in Table 

6. Both unconjugated and directly conjugated antibodies were used; secondary 

antibodies were used to reveal unconjugated antibodies. Nuclei were stained by 

TO-PRO-3 (Molecular Probes). Confocal microscopy used an Axioskop 2 plus 

direct microscope (Zeiss) equipped with a Radiance 2100 three-laser confocal 

device (BioRad, Segrate, Italy). Axioskop 2 microscope used Zeiss W-PI 10x/0.23 

or Zeiss Plan-Neofluor 20x/0.5 numerical aperture objective lens. Fluorescent
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signals from the individual fluorophores were sequentially acquired from single 

optical sections and analyzed by Paint Shop Pro X (Corel, Ottawa, Canada), as 

described previously (Venneri et al. 2007).

23.1 In vivo labeling of vascular perfusion

To detect perfused blood vessels, 10 min. before anesthesia (Avertin) I intra

venously injected 50 pg/mouse of FITC-conjugated, Lycopersicon esculentum 

lectin (Vector Labs Inc., Burlingame, CA). Once anesthetized, the mice were 

perfused by intra-cardiac infusion of 10-15 ml of PBS containing 2% Eparin to 

wash out blood cells and excess lectin.

23.2 Quantification of vascular parameters

To analyze angiogenesis/vascular perfusion in transgenic MMTV-PyMT models, 3- 

6 tumors/group, 8-15 sections/tumor and 1 -3  images/section were analyzed. 

Images were scanned at x400 or x100 magnification by a confocal microscope 

(Radiance 2100; BioRad) and digitally processed with ImageJ (NIH) to measure 

the marker-positive area. Counts were averaged to determine the relative vascular 

area or the marker-positive area. Error bars represent SEM.
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23.3 Antibodies

Official
name

GFP

GFP

Alias Origin
Rabbit

Purchased Conjugation I Secondary 
by antibodies

Molecular Unconj. / Donkey anti-rabbit

Probes 
Chicken Abeam

Alexa488
Unconj. / Donkey anti-chicken 

Alexa488
Tek Tie2 Rat eBiosciences PE
CD68 Rat Serotec Unconj. / Goat anti-rat Alexa546
Ptprc CD45 Rat BD PE
Pecaml CD31 Rat BD PE, APC
Emr1 F4/80 Rat Serotec PE, APC
Mrc1 CD206 Goat R&D Unconj. / Donkey anti-goat

Alexa546
Xlkdl Lyvel Rabbit MBL Unconj. / Donkey anti-rabbit

Alexa488 / 546
CD163 Rabbit Santa Cruz Unconj. / Donkey anti-rabbit

Alexa488
Stabl Mouse NA Biotinylated / Streptavidin-PE
lgG1 Rat eBioscience PE, APC
lgG2a Rat BD PE, APC

Table 6: List of antibodies for IFS 

24 Colony-forming cell (CFC) assays

CFC assays were performed from either FACS-sorted cells (tumor-derived TEMs 

and TIE2- TAMs; Tie2p/e-GFP+ CD11b+ and Tie2p/e-GFP- CD11b+ embryonic 

macrophages), unfractioned BM cells or BM-derived lineage-negative (Lin-) cells. 

Unfractioned BM cells were obtained from 6 week-old mice by flushing their 

femora and tibiae. Lin- cells were isolated from unfractioned BM cells using a kit 

from StemCell Technologies. I plated 5 x 103, 2 x 104 and 1 x 105 cells in a 

methylcellulose-based medium (MethoCult M3434, from StemCell Technologies) 

and allow the colonies to grow for 15 days before scoring them under an inverted 

microscope.
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25 May-Grunwald-Giemsa staining

May-Grunwald-Giemsa staining was performed on flow sorted cells (tumor-derived 

TEMs and TIE2- TAMs; Tie2p/e-GFP+ CD11b+ and Tie2p/e-GFP- CD11b+ 

embryonic macrophages). Briefly, I prepared 3 slides for each cell population, by 

centrifuging 1 x 105 (2 slides) and 5 x 104 (1 slide) sorted cells onto the slide. After 

cytospin, cells were stained using a standard May-Grunwald-Giemsa staining 

protocol. For each cell population, at least 25 photos were randomly acquired 

under a direct microscope (Zeiss) and morphologic analysis of the cells performed 

with the advice of a professional pathologist.

26 Gene expression analyses and statistical analysis

26.1 Comparison of gene expression profiles between tumor-derived cells 

vs. circulating monocytes

The expression of a panel of 39 genes (selected among those analyzed in tumor- 

derived cells) was analyzed in both resident and inflammatory monocytes by 

qPCR, as described above. The 39 analyzed genes were either upregulated, 

downregulated or not differentially expressed between tumor TEMs and TIE2- 

TAMs. Twenty-two out of 39 genes displayed coordinated expression in tumor 

TEMs/TIE2- TAMs vs. resident/inflammatory monocytes (n=4 independent 

experiments). To test whether this outcome results by chance, I performed an 

Exact binomial test. Since the case to have a concordant expression is 1 out of 3 

possible situations (upregulated, downregulated, not differentially expressed), the 

null hypothesis is assumed H0: p=1/3, p being the probability of a random 

occurrence of concordant events. The two-sided test for 22 successes in a 

sequence of 39 independent experiments, with the hypothesized probability of 

success explained above, is computed, leading to a p-value = 0.003. Thus, I reject
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the null hypothesis and consider the “concordance” as not random.

27 RNA and DNA extraction and qPCR

27.7 Gene expression (mRNA)

Sorted cells obtained from N202 tumors were lysed for long RNA extraction using 

the RNeasy Micro kit (Qiagen). Briefly, after cell sorting, 2.5-10 x 104 cells were 

obtained from each independent cell sorting (see above) and washed in low- 

protein buffer. Long RNA was purified following the RNeasy Micro kit guidelines 

(Qiagen). RNA was retrotranscribed with Superscript III (Vilo kit, Invitrogen). All 

qPCR analyses were performed with TaqMan probes from Applied Biosystems. 

qPCR was run for 45 cycles in standard mode using an ABI7900HT apparatus 

(Applied Biosystems).

27.1.a Freshly isolated TEMs, TIE2- TAMs, MDSCs, PMs and ECs

To obtain adequate amounts of cDNA for each gene profiling experiment 

(interrogating 280 individual genes), 1 to 3 cell sorting sessions were performed. 

All qPCR analyses were performed with TaqMan probes from Applied Biosystems, 

apart from Th1-Th2 in vitro stimulation experiments, which used Sybrgreen 

mastermix from Applied Biosystems and designed primers (see paragraph 27.1.b 

below). I either used individual TaqMan gene expression assays to analyze 

expression of individual genes, or multi-gene TaqMan low density arrays. I used 2 

custom and 1 pre-made (Immune Panel) TaqMan low density arrays, each 

measuring the expression of 96 genes in 4 technical replicates. One hundred ng -  

1 pg of cDNA was loaded on each array. qPCR was run for 35 (low density arrays) 

or 40-45 cycles (individual gene analyses) in standard mode using an ABI7900HT 

apparatus (Applied Biosystems).

100



27.1.bln vitro stimulation of TEMs, TIE2- TAMs and PMs with Th1 and Th2 

cytokines

Adherent PMs (purity >95% after cell sorting) and tumor-derived TEMs were 

incubated for 30 minutes at 37° in complete RPMI with 10% fetal calf serum. Th1 

polarization was stimulated by priming cells with IFNg (0.05U/ml, Sigma) for 30 

minutes, followed by stimulation with LPS (100ng/ml). Th2 responses were 

induced by stimulating cells with IL4 (20ng/ml, Peprotech). After 4 hours of 

stimulation, cells were washed and lysed for RNA extraction and qPCR analysis. 

qPCR used Sybrgreen mastermix from Applied Biosystems and the primers listed 

in Table 7.

Gene Fw Rv
Arg1 CAGAAGAATGGAAGAGT CAGT G GCAGCTATGCAGGGAGTCACCC

Cell 7 AGTGCTGCCTGGATTACTTCAAAG CTGGACAGT CAGAAACACGATGG

Nos2 TGGTCCGCAAGAGAGTGCT CCTCATTGGCCAGCTGCTT

1112a GGAAGCACGGCAGCAGAATA AACTT GAG G G AG AAGTAG G AAT G 

G

B2m CATGGCTCGCTCGGTGACC AATGTGAGGCGGGTGGAACTG

Table 7 Primer sequences

27.1.c Circulating inflammatory and resident monocytes

To perform multiple qPCR assays on the limited amount of starting material 

obtained from circulating monocyte subsets, a pre-amplification step was done on 

cDNA using TaqMan PreAmp MasterMix (AppliedBiosystems). Briefly, up to 100 

TaqMan assays were pooled and diluted 1:100 in water. This mix has been used to 

pre-amplify the genes of interest in a PCR as follows: 10 min 95°, 14 cycles of 15 

sec at 95° and 4 min at 60° in a 50pl reaction volume. After pre-amplification, the 

samples were diluted 1:5 and used as template to quantify the genes of interest in
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a standard TaqMan-based qPCR. I validated this procedure on non-limiting 

samples (data not shown) and found that >92% of the genes gave a AACT value 

within ±1.5 with respect to the non-amplified sample. These results indicate that 

the pre-amplification step did not bias the mRNA composition (i.e. the relative 

proportion of each mRNA) in our samples.

27.2 Small RNA (including artificial micro RNA) analysis

To purify small RNA from BM-derived, LV2-transgenic/LV1- transduced HSPCs, I 

followed miRNeasy Mini kit guidelines (Qiagen). Two days after LV1 transduction 

in the presence or absence of doxycycline, the cultured cells were collected, 

extensively washed and lysed for total RNA extraction using the miRNeasy Mini kit 

(Qiagen). To retrotranscribe small RNAs, I used High Capacity cDNA Reverse 

Transcription Kit (Applied Biosystems) and a custom, small RNA reverse 

transcription primer specific for the mature form of amiR(Tie2) sequence (Applied 

Biosystems). To perform qPCR on retrotranscribed small RNAs I used inventoried 

(for miR-16 and Let7a) or custom (for amiR(Tie2)) TaqMan small RNA assays 

(Applied Biosystems).

27.3 Vector copy number analysis

For vector copy number (VCN) analysis, I purified genomic DNA from circulating 

blood or BM cells using a Maxwell-16 instrument (Promega) and performed qPCR 

using custom TaqMan assays specific for pactin, rtTA-m2 or OFP sequences 

(Applied Biosystems). Standard curves for the rtTA-m2 and OFP sequences were 

obtained from PGKrtTA- miR-126T transgenic mice and a cell line transduced with 

an OFP-expressing LV, respectively. The VCN of genomic DNA standard curves 

was determined using custom TaqMan assays specific for LVs (Applied 

Biosystems).
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27.4 Collection of raw data and determination of gene expression and LV 

copy number

The SDS 2.2.1 software was used to extract raw data (CT) and to perform gene 

expression or VCN analysis. In the Sybr-based qPCR experiment (see paragraph

27.1.b), after the qPCR run I performed a dissociation curve. Wells with more than 

one amplicon were discarded. To determine gene expression, the difference (ACT) 

between the threshold cycle (CT) of each gene and that of the reference gene 

(B2m for multi-gene arrays and in vitro stimulation experiments; Gapdh for 

individual gene assays; both B2m and Gapdh for analyses of circulating 

monocytes; Let7a for small RNA analysis) was calculated by applying an equal 

threshold (0.02 for all the genes inside the TaqMan low density arrays, 0.1 for all 

the pre-amplified genes). The ACT of different genes can be compared only when 

an equal threshold is applied to calculate the CT. The lower the ACT, the higher the 

gene expression level.

To calculate VCN I used the following formula: VCN = VCN(standard curve) * ng of 

"LV of interest" / ng of pactin; where "LV of interest" is either rtTA-m2 or OFP.

27.5 Calculation of PCR efficiency

The SDS 2.2.1 software was used to extract raw data (C t and raw fluorescence). 

For multi-gene arrays, I calculated PCR amplification efficiency using Miner 

algorithm (http://www.miner.ewindup.info/miner/) and non-baseline subtracted 

fluorescence data. For each gene, I used the mean PCR efficiency calculated 

throughout the samples (TEMs, TIE2- TAMs, PMs, MDSCs). Before averaging, 

single amplification runs that met one of the following conditions have been filtered 

out, because they could represent background amplification: (i) less than 5 

regression windows; (ii) LogA value less than 0.5; (iii) LogPvalue equal to 0; (iv) CT 

greater than 35.
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27.6 Statistical analysis of gene expression data (fold change)

To calculate the fold-change of gene expression, I implemented an analysis of 

covariance model (ANCOVA). This multiple regression approach is aimed at 

modelling jointly the impact of different explicative covariates on the outcome of 

interest. The implemented model leads to a procedure equivalent to test the AACT 

(Yuan et al. 2006). The advantage of this procedure with respect to two-by-two t- 

test comparisons lies in the joint nature of the modeling of all covariates, which 

allows minimizing type I errors (false positive results). Estimation technique is 

based on Likelihood Ratio Test. The model is implemented in R-statistical software 

(version 2.6.1; see http://www.R-project.org). Significance level is chosen at a =

0.05.

27.6.a TEMs vs TIE2- TAMs and Ly6C- vs Ly6C+ monocytes

In this case, the outcome variable is eCt, the efficiency-corrected CT, and the 

covariates are the Sample type (i.e. TEMs or TIE2- TAMs; XSamPie), the Experiment 

(i.e. biological replicates; XExp), the Card (i.e. individual array; Xcard), the Gene 

(Xgene) and the pre-amplification (only for the analysis of gene expression in 

monocytes; Table 2 in the main text). The multiple regression formula is CT ■ 

log2(1+E)=ECT = l3o + pi ' XsamPle $2 ' XExP ft3 ’ Xcard ($4 ' XGene @5 ’ XGene’SamPle 

€, where CT is the threshold cycle, E is the gene-specific PCR efficiency, ECr is the 

efficiency-corrected CT, /3, are the coefficients calculated by the model that 

represents the impact of the respective qualitative variable X, £ is the residual 

error. X  is set to zero when Sample=TIE2- TAMs, Exp = “first replicate”, Card = 

“first array” and Gene = B2m. I chose B2m as the most stable gene by GeNorm 

analysis.
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27.6.bOFP+ vs. OFP- TEMs

In this case, I measured the Tie2 and /32m (reference gene) mRNA in 2 

(amiR(Tie2)) or 3 (amiR(Luc)) biological samples and 6 (for Tie2) or 3 (for (32m) 

technical replicates/biological sample. Being the CT the outcome variable, the 

covariates are the sorted subset (TEMs and TIE2- TAMs), the mouse (i.e., 

biological replicate), the qPCR plate (multi-plate experiment), the gene ( Tie2 or 

B2m) and the amiR (i.e., amiR(Tie2) or amiR(Luc)). The multiple regression 

formula reads as follows:

C t  Po P i ' Xsubset’*" P2 ' Xiviouse P3 ' Xp|ate (̂ 4 " XGene*amiR £

where CT is the threshold cycle, pi are the coefficients calculated by the model that 

represents the impact of the respective qualitative variable Xj, with j being each of 

the covariates, and z the residual error.

27.6.C Hematopoietic stem/progenitor cell cultures

In these cases the analyses were performed using qBase excel macro 

(BioGazelle). Calculation of amiR(Tie2) levels in HSPC liquid cultures, either 

treated with doxycycline or left untreated (calibrator). Let7a was used as a 

reference miR. Calculation of Tie2 mRNA levels in HSPC liquid cultures, either 

treated with doxycycline or left untreated (calibrator). p2m was used as reference 

gene. In these experiments, doxycycline was added after washing out LV1; cells 

were analyzed 2 days after transduction. Error bars represent 95% confidence 

interval (1.96*SEM).
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Acronym Index

7AAD -  7-Amino-Actinomycin D 

amiR -  artificial micro-RNAs 

ANG -  angiopoietin 

bEnd -  brain endothelial cells 

BM -  bone marrow

BM-Lin—  BM-derived lineage-negative cells

CFC -  Colony-forming cell

Csf1 -  colony stimulating factor-1

DCs -  dendritic cells

deM(ps -  definitive embryonic Mcps

dpc -  days post coitum

ECs -  endothelial cells

EF1a -  elongation factor 1a

EPCs -  endothelial progenitor cells

FGF -  fibroblast growth factor

GCV -  Gancyclovir

HA -  hyaluronic acid

HCs -  hematopoietic cells

HSC -  hematopoietic stem cells

HSPCs -  hematopoietic stem/progenitor cells

IFS -  immunofluorescence staining

LacZ -  Beta-galactosidase

LCs -  Langerhans cells

Luc -  luciferase

LVs -  lentiviral vectors
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MDSCs -  myeloid derived suppressor cells

miR -  microRNA

MMP -  matrix metalloproteinase

MMTV-PyMT -  mouse mammary tumor virus promoter-polyoma virus middle T 

antigen

MP -  mononuclear phagocytes 

MRI -  Magnetic Resonance Imaging 

Mcps -macrophages

NGFR -  low affinity nerve growth factor receptor

OFP -  orange fluorescent protein

peMcps -  primitive embryonic Mcps

PGK1 -  phospho-glicerate kinase 1

PMs -  peritoneal macrophages

pre-miR -  precursor miR

pri-miR -  primary micro-RNA

RES -  reticulo-endothelial system

RISC -  RNA-induced silencing complex

RNAi -  RNA interference

rtTA- reverse Tetracycline transactivator

SDF1 -  stromal cell derived factor-1

siRNA- short interfering RNA

TAMs -  tumor-associated Mcps

TEMs -  Tie2-expressing macrophages

Tie2p/e -  promoter and enhancer from the Tie2 gene

TK -  Tymidine Kinase

TRE -  Tetracycline responsive element

VCN -  vector copy number
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VEGF -  vascular endothelial growth factor
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