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Abstract

Topological embeddings of complete graphs and complete multipartite graphs give 

rise to combinatorial designs when the faces of the embeddings are triangles. 

In this case, the blocks of the design correspond to the triangular faces of the 

embedding. These designs include Steiner, twofold and Mendelsohn triple systems, 

as well as Latin squares. We look at construction methods, structural properties 

and other problems concerning these cases.

In addition, we look at graph representations by Steiner triple systems and 

by combinatorial embeddings. This is closely related to finding independent sets 

in triple systems. We examine which graphs can be represented in Steiner triple 

systems and combinatorial embeddings of small orders and give several bounds 

including a bound on the order of Steiner triple systems that are guaranteed to 

represent all graphs of a given maximum degree. Finally, we provide an enumer­

ation of graphs of up to six edges representable by Steiner triple systems.
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CHAPTER 1

Introduction

In this thesis we are concerned with combinatorial embeddings and combinato­

rial representations. The thesis thus consists of two parts: the five chapters that 

follow investigate problems concerning embeddings of combinatorial structures 

while the last three chapters investigate problems concerning graph representa­

tions. This chapter serves as an introduction to the concept of each part and to 

the terminology that will be used throughout the thesis.

The first part of the thesis falls under the area of Topological Graph The­

ory which is the branch of Graph Theory concerned with surface embeddings of 

graphs, i.e. graphs that can be drawn on a surface with no edge crossings. It is a 

well studied area with many theorems and results, see [34]. However, we will focus 

on triangular embeddings of graphs since this is precisely where the connection 

between embeddings of graphs and embeddings of combinatorial structures arises. 

As such, this area of study can be referred to as Topological Design Theory. More 

details are given later on in this chapter, specifically in Section 1.1.2 .

This connection was first observed by Heffter in his paper “Uber das Problem 

der Nachbargebiete” [35] dated November 1890. In this paper Heffter presents 

a partition of the integers 1 ,2 , . . . ,  12s +  6 , s > 0 into 4s +  2 triples so that for 

each triple {a,b, c}, a +  b +  c =  0 (mod 12s + 7). Then he shows that, under
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some conditions, these triples can be used to construct a twofold triple system of 

order 12s+  7 whose blocks are the faces of a triangular embedding of the complete 

graph K us + 7  in an orientable surface. It is still not known if there are infinitely 

many such values of s but the method is applicable for s =  0 ,1 ,2 ,4 ,5 ,11  and 

14, numbers given explicitly in [35]. Another paper of this nature is the one by 

Emch [18] published in 1929. W hat makes this paper interesting is that it contains 

diagrams of the embedding of the twofold triple system of order 6 in the projective 

plane, the embedding of a pair of Steiner triple systems of order 7 in the torus and 

the embedding of a pair of Steiner triple systems of order 9 in a pseudosurface 

formed by a torus. These diagrams are given in the chapters that follow. For 

more information on Topological Design Theory we refer the reader to a recent 

survey [22].

In the second part of the thesis we will examine when a graph can be repre­

sented by a Steiner triple system or by a topological embedding. Representations 

of graphs has a long and rich history and we refer the reader to the AMS classi­

fication 05C62. Representing graphs by Steiner triple systems relates to finding 

an independent set in a Steiner triple system. Indeed, representation of arbitrary 

graphs is a generalization of independent sets. Independent sets have been widely 

studied in Design Theory, see [8], Chapter 17. In Chapter 7, we will show this 

relation between representations of graphs and independent sets. In Chapter 8 , 

we provide an enumeration of the number of occurrences of a configuration in a 

Steiner triple system and in Chapter 9 we extend this idea to representations of 

graphs by topological embeddings.
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1.1 Prelim inaries

In this section we provide the terminology that will be used throughout the thesis. 

Each chapter investigates a different problem and hence additional definitions will 

be provided where necessary. We will begin with Design Theory terminology and 

conclude with Topological Graph Theory terminology.

1.1.1 D esig n  T h eory

This thesis is mainly concerned with two classes of combinatorial designs, namely, 

triple systems and Latin squares.

A triple system TS(n, A), is a pair (V, B) where V  is a finite set of elements (or 

points) of cardinality n and B is a collection of 3-element subsets (the blocks or 

triples) of V  such that every 2-element subset of V  occurs in exactly A blocks of B. 

A Steiner triple system of order n, STS(n), and a twofold triple system of order n, 

TTS(n), are triple systems with A =  1 and A =  2 respectively. An STS(n) exists, 

if and only if n =  1 or 3 (mod 6) [37]; such values are called admissible.

Example The unique Steiner triple system of order 7, also known as the Fano 

plane, consists of the following collection of blocks: {0,1.2}, {0,3,4}, {0,5,6}, 

{1,3,5}, {1,4,6}, {2,3,6}, {2,4,5}.

A TTS(n) can be obtained by combining the block sets of two STS(n)s which 

have a common point set. Note that two copies of an STS(n) gives a TTS(n) 

with n(n — l ) /6  repeated blocks. A TTS(n) with no repeated blocks is said to be 

simple. A  simple TTS(n) exists if and only if n =  0 or 1 (mod 3), n > 4, [12].

Example The unique twofold triple system of order 6 consists of the blocks: 

{0,1,2}, {0,1, 5}, {0,2, 3}, {0,3,4}, {0,4, 5}, {1,2,4}, {1,3,4}, {1,3,5}, {2,3, 5}, 

{2,4,5}.

A Mendelsohn triple system of order n, MTS(n), is a triple system defined 

as above with the only difference that B is a set of cyclically ordered triples
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of elements of V  which collectively have the property that each ordered pair of 

elements of V is contained in precisely one triple, i.e. a triple (u ,v ,w ) contains 

the ordered pairs (u, i>), (v,w),  (w , u ). Such systems exist for n = 0 or 1 (mod 3), 

n ^  6 [47].

E xam ple  A Mendelsohn triple system of order 7 is given by the blocks: {0,1,2}, 

{0,2,1}, {0,3,4}, {0,4,3}, {0,5,6}, {0,6,5}, {1,3,5}, {1,6,3}, {1,5,4}, {1,4,6}, 

{2,5,3}, {2,3,6}, {2,4, 5}, {3,6,4}.

An i-line configuration in an STS(n) is any collection of I  blocks of the Steiner 

triple system. A configuration is said to be constant if every STS(n) contains the 

same number of copies of the configuration, otherwise it is said to be variable. 

Configurations will be dealt with mostly in Chapter 8 . However, we first need to 

define the well known Pasch configuration which will be used in other chapters 

as well. The Pasch configuration or quadrilateral is a 4-line configuration on six 

distinct points of the form: {a, c, d}, {a, e, /} , {b, c, e}, {6, d, /} .

E xam ple  A Pasch configuration of the Steiner triple system of order 7 in the 

above example is {0,1, 2}, {0, 3,4}, {1,3,5}, {2,4,5}.

A subset S  C  V  in a triple system T  =  (V, B) is an independent set if for all 

B  E B, B <£. 5, i.e. no three points of S  occur as a block of B. An independent 

set S  in T  is maximal if for all x E V \  5, S  U {x} is not an independent set in T. 

On the other hand, it is maximum if it has the largest possible cardinality of any 

independent set in T.

A transversal design TD(3, n), of order n and block size 3, is a triple (V, G, B), 

where V  is a 3n-element set (the points), Q is a partition of V  into three parts 

(the groups) each of cardinality n, and B is a collection of 3-element subsets (the 

blocks) of V such that each 2-element subset of V  is either contained in exactly 

one block of B, or in exactly one group of G, but not both. A Latin square of side 

n determines a TD(3, n) by assigning the row labels, the column labels, and the
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entries as the three groups of the design. The following example demonstrates 

this connection between Latin squares and transversal designs.

Exam ple Let T  =  TD(3, 3) be a transversal design with V = Z9, Q = {0,1. 2}, 

{3,4,5}, {6,7,8} and B =  {0,3,6}, {0,4,7}, {0,5,8}, {1,3,7}, {1,4,8}, {1,5,6}, 

{2,3,8}, {2,4,6}, {2,5,7}. Applying the mappings 0 —» 0r , 1 —> l r , 2 —>• 2r , 

3 —> 0C, 4 —> l c, 5 -» 2C, 6 — 0e, 7 — l e, 8 —> 2e, we obtain the cyclic Latin 

square of order 3.

0 1 2

0 0 1 2

1 1 2 0
CM

2 0 1

Two triple systems, (V, B) and (V7, B ' \  are said to be isomorphic if there exists 

a bijection 0 : V  —» V7, such that for each block B  G 13, 0(B) is a block in B'. 

An isomorphism which maps the system to itself is called an automorphism. The 

set of all automorphisms of a triple system T, with the operation of composition, 

forms a group called the full automorphism group of T  and is denoted by Aut(T). 

Moreover, a TS(n, A) is cyclic if it has an automorphism of order n. Up to 

isomorphism, the STS(n) is unique for n = 3, 7 and 9; STS(7) is cyclic. There are 

two STS(13)s, one of which is cyclic, 80 STS(15)s [9], two of which are cyclic, and 

there are 11,084,874,829 STS(19)s [36], four of which are cyclic. In terms of the 

twofold triple systems, the TTS(3) and TTS(6) are unique and are non-simple and 

simple respectively. There are four TTS(7)s, one of which is simple, and there are 

36 TTS(9)s, 13 of which are simple [8]. Finally, there are up to isomorphism, 1, 1, 

0, 3, 18, 143 and 4905593 Mendelsohn triple systems of order 3, 4, 6 , 7, 9, 10 and 

12 respectively [13, 21]. For n > 12, no exact value of nonisomorphic MTS(n)s is 

known.

Similarly, two TD(3,n)s, {V, { Gi , G 2 ,Gs},B)  and (V7, {G'lt G"2, G'3], B'), are 

said to be isomorphic if for some permutation r  of {1, 2, 3}, there exist bijections 

cq : Gi —> i — L 2, 3, that map blocks of B to blocks of B'. Two Latin squares

are said to be in the same main class if the corresponding transversal designs are
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isomorphic. Up to isomorphism, there is just one main class of each Latin square 

of order 1, 2 and 3. There are two main classes of Latin squares of order 4 and of 

order 5. Finally, there are 12, 147, 283657, 19270853541 and 34817397894749939 

main classes of Latin squares of order 6 , 7, 8 , 9 and 10 respectively [46].

1.1 .2  T opological G raph T h eory

Unless otherwise stated, we will be concerned with closed, connected 2-manifolds 

(surfaces) with no boundary and with graphs with no loops or multiple edges. 

There are two types of closed surfaces, orientable and nonorientable. A surface is 

orientable if the notion of orientation (clockwise or counterclockwise) can be de­

fined consistently on the surface. Any closed orientable surface Sg is topologically 

equivalent to a sphere with g handles attached to it. For example, the surfaces So, 

Si and S2 are the sphere, the torus and the double torus respectively. Similarly, 

a surface is nonorientable if there is no way of consistently defining the notion 

of orientation on the surface and is topologically equivalent to a sphere with 7 

crosscaps attached to it. It is denoted by N7. The surfaces Afi and N2 are the 

projective plane and the Klein bottle respectively.

This thesis will also be concerned with pseudosurfaces. A pseudosurface is 

the topological space which results when finitely many identifications of finitely 

many points each, are made on a given surface. More precisely, distinct points 

{pi - ; i = 1. 2 , . . . ,  k, j  = 0 , 1, . . . ,  } on a given surface are identified to form

points Pi = {pi.j : j  = 0 , 1, . . . ,  m*}, i = 1, 2 , . . . ,  k called singular points or pinch 

points. The number is the multiplicity of the pinch point Pi. It is at these 

pinch points that a pseudosurface fails to be a 2-manifold.

A surface or a pseudosurface can be illustrated by a polygon, usually a rect­

angle, where the sides are pairwise identified and each one has a given direction. 

The surface is obtained by ‘gluing’ together each pair of identified sides in such a 

way so that they have the same direction. For example, the torus and the Klein
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bottle can be illustrated by rectangles as shown in the figure below.

Figure 1.1: The torus and the Klein bottle.

The number of handles g and the number of crosscaps 7  is called the genus 

of the orientable and nonorientable surface respectively, 0 ,7  > 0. An embedding 

of a graph G in a surface Sg (or jV7) is a ‘drawing’ of G in Sg (or Af7) such that 

no pair of edges intersect and where g (or 7 ) is minimum. A graph embedding 

divides the surface into a number of connected regions, called /aces, bounded by 

edges of the graph. Euler gave a formula relating the number of vertices n, the 

number of edges e and the number of faces /  of a polyhedron: n — e + f  = 2 . This 

formula was later generalized by Poincare for any orientable and nonorientable 

surface: n — e +  /  =  x where x is called the Euler characteristic and is given by 

2 — 20 if the surface is orientable and 2 — 7  if the surface is nonorientable.

Given a surface embedding of a graph G with vertex set V(G),  the rotation at 

a vertex v G V(G)  is the cyclically ordered permutation of vertices adjacent to v, 

with the ordering determined by the embedding. The set of rotations at all the 

vertices of G is called the rotation scheme for the embedding. In the case of an 

embedding of G in an orientable surface, the rotation scheme provides a complete 

description of the embedding. This is not generally the case for a nonorientable 

surface because the rotation scheme does not enable the faces of the embedding 

to be unambiguously reconstructed, therefore some additional information is re­

quired. However, in the cases we consider this will not be an issue, since extra 

information which is sufficient to determine the faces will be known.

In [52], Ringel provides a test to determine if a rotation scheme represents a 

triangular embedding and another one to determine if a triangular embedding is 

orientable.
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Rule A: A rotation scheme represents a triangular embedding of a graph G

if, for each vertex a G V(G),  whenever the rotation at a contains the sequence 

. . .  6 c . . . ,  then the rotation at b contains either the sequence . . .  a c . . .  or the 

sequence . . .  c a ....

R u le  A*: If the rotations at each vertex can be directed in such a way that for 

each vertex a G V(G),  whenever the rotation at a contains the sequence . . . b e . . . ,  

then the rotation at b contains the sequence . . .  c a . . . ,  then the embedding is in 

an orientable surface.

E xam ple  The triangular embedding of the complete graph Kj  in the torus is 

given below together with its rotation scheme. An easy examination shows that 

the rotation scheme follows both of Ringel’s rules.

o

o

0: 1 3 2 6 4 5
1: 3 0 5 6 2 4
2: 6 0 3 5 4 1
3: 2 0 1 4 6 5
4: 5 0 6 3 1 2
5: 1 0 4 2 3 6
6 : 4 0 2 1 5 3

To see the connection between design theory and graph embeddings, consider 

the case of an embedding of the complete graph K n in which all the faces are 

triangles. In such a triangulation the number of faces around each vertex is n — 1, 

and so if n — 1 is even it may be possible to colour each face using one of two 

colours, say black or white, so that no two faces of the same colour are adjacent. 

In this case, we say that the triangulation is (properly) face two-colourable. In
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a face two-colourable triangulation, the set of faces of each colour class form an 

STS(n). We then say that the two STS(n)s, Ti and T2, are biembedded in the 

surface and we denote that biembedding by T\ 00 T2.

A complete graph K n has a triangulation in an orientable surface if and only 

if n =  0, 3, 4 or 7 (mod 12) and in a nonorientable surface if and only if n =  0 

or 1 (mod 3), n ^  3,4,7, [52], In the orientable case, for n =  3 (mod 12), the 

triangulations given by Ringel in [52] using bipartite current graphs, are face 

two-colourable. For n = 7 (mod 12), a solution is given by Youngs [58], using 

what he calls “zigzag diagrams” to again construct bipartite current graphs. The 

nonorientable case n =  9 (mod 12) can also be found in [52], and uses another 

class of bipartite current graphs which Ringel calls “cascades” . It is claimed 

that the method also works for n = 3 (mod 12), although no details are given. 

These were later established and presented in Bennett’s Ph.D. thesis [3]. A simpler 

description appears in the survey paper [22]. Somewhat surprisingly, the existence 

of nonorientable face two-colourable triangulations of K n for n  =  1 (mod 6) was 

not identified until more recently and was proved by Grannell and Korzhik [32], 

again using current graphs.

Now consider a face two-colourable triangular embedding of a complete regular 

tripartite graph An n n. In this case, the faces of each colour class can be regarded 

as the triples of a transversal design TD(3,n), of order n and block size 3, or in 

other words a Latin square of side n. Similarly as above, we say that the two Latin 

squares of order n, Li and L2, are biembedded in the surface and we denote the 

biembedding by Lx 1x 1 L2. It is known that a triangular embedding of a complete 

regular tripartite graph n n in a surface is face two-colourable if and only if the 

surface is orientable [23]. More details regarding biembeddings of Latin squares 

will be given in Chapter 5.



CHAPTER 2

Biembeddings using the Bose construction

Recall that in a face two-colourable triangulation of K n, the set of faces of each 

colour class form a Steiner triple system of order n if and only if n =  1 or 3 

(mod 6). In this chapter, we seek to identify pairs of STS(n)s, constructed using 

the well known Bose construction [4], such that the triples of these pairs form a 

surface when ‘glued’ together among common edges. This is an alternative ap­

proach to using current graphs (see Chapter 1) for constructing face two-colourable 

triangulations. Indeed, this approach has been successful. In 1978, Ducrocq and 

Sterboul [17] employed the Bose construction for Steiner triple systems of order 

n  =  3 (mod 6) to obtain face two-colourable triangulations of K n in a nonori­

entable surface. Later, in 1998, Grannell, Griggs and Siran [30] also used the 

Bose construction to do the same in an orientable surface for n = 3 (mod 12). 

Moreover, these face two-colourable triangulations were shown to be isomorphic 

to those obtained by Ringel using current graphs [52].

The impetus for the work presented here however is a more recent paper by 

Solov’eva [54]. In this paper, again using the Bose construction, Solov’eva pro­

duces nonisomorphic biembeddings of pairs of Steiner triple systems in a nonori­

entable surface. The purpose of this chapter is threefold. First, by using in­

formation about the automorphism group of an STS(n) constructed from the

11
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Bose construction, we determine an exact formula for the number of nonisomor­

phic nonorientable biembeddings which can be obtained by Solov’eva’s method. 

Secondly, we extend Solov’eva’s work to biembeddings of pairs of Steiner triple 

systems in orientable surfaces. Finally, our approach provides a uniform frame­

work within which both the biembeddings found by Ducrocq and Sterboul [17] 

and by Grannell, Griggs and Sirah [30] appear.

2.1 B ose construction

In 1939, Bose [4] published a landmark paper on Design Theory in which he 

presented the following construction for Steiner triple systems of order n =  3 

(mod 6). Let G be the cyclic group of order 2t +  1 based on the set {0 ,1 , . . . ,  21) 

with addition modulo 21 + 1. Let X  = G x {0,1,2} and B be the following 

collection of triples

(A) {(a:, 0), (x, 1). (x, 2)}, x G G

(Bl) {(x,0), (y,0), (z, 1)}, x , y e G , x ^  y, z = (x + y)/2

(B2) {(x, 1), (y, 1), (z,2)},  x , y e G , x ^  y, z = ( x  + y)/2

(B3) {(x, 2), (y, 2), (z, 0)}, x, y e G, x ^ y ,  z -  (x +  y)/2

Then (X,  B) is an STS(6t +  3). We will denote this system by B.

The Bose construction is capable of numerous generalizations and variations, 

see for example pages 25 to 27 of [8]. However, the one which is of relevance to 

this paper is the following which appears in [54] and is ascribed to Levin [39]. 

With the same base set X  as above, let the sets of triples be

(A) { ( x - t t . 0 ) , ( i . l ) 1( i  +  /l)2)}, i g G

(Bl) {(x,0), (y,0),(z + a ,  1)}, x , y  e G , x ^ y ,  z = (x + y) /2

(B2) {(x, 1), ijj) 1), (z T /3, 2)}, x , y G C ,  x ^  y, z = (x + y) /2

(B3) {(x, 2), (y, 2) , (z + 7 , 0)}, x , y  e  G, x ±  y, z =  (x +  y) /2

where a  +  /? +  7  =  0 (mod 2t +  1).
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Proving that this is a Steiner triple system is straightforward. First observe 

that the number of blocks is (21 + 1) +  3((2i +  l)2£/2) =  (31 +  l)(2 t +  1), precisely 

the number required. Therefore, it suffices to show that every pair is contained 

in a block. This is clearly true for all pairs {(x, j ) ,  (y, j )},  x , y  E G, i  /  y, j  6 

{0,1, 2}. All pairs {(a:, 0), (z, 1)}, x , z  £ G, z ^  x + a are contained in a block of 

the triples (Bl). Similarly, all pairs {(x, 1), {z, 2)} (respectively {(a:, 2), (z, 0)}), 

x , z  £ G, z ^  x + (3 (respectively 2 / 1  +  7 ) are contained in a block of (B2) 

(respectively (B3)). The remaining pairs {(2 , 0), (x +  a, 1)}, {(x, 1), (x +  fl, 2)}, 

{(x,2),  (x + 7 , 0)} are contained in a block of the triples (A). We will denote 

this system by B a^ n . Clearly, B  is the system F?o,o,o- Solov’eva then proves the 

following theorem.
r. f

T heorem  2.1.1 (Solov’eva) The Steiner triple systems B  and B a>pt7 of order 

6t +  3 biembed in a nonorientable surface if  and only if gcd(o, 2t +  l) =  gcd(/3, 21 +

1) =  gcd(7 , 2t +  1)- =  1.

P ro o f  Consider a point (x, 0). In the system B , it occurs in triples with the pair 

{(x, l ) , ( x , 2)} and also the following pairs:

{(z,0), ((z +  x ) /2 , 1)}, i i- x, {(z,2), { - i  +  2x,2)}, i  ±  x.

In the system Baipn , it occurs with the pair {(x +  a, 1), (x — 7 , 2)} and also the 

pairs:

{(z,0), ( ( 1  +  x ) /2  +  a , l ) } , i ^  x, {(z,2), ( - i  +  2x -  2 7 , 2)}, i ^  x -  7 .

When the two systems are biembedded, if both a  and 7  are relatively prime to 

2t +  1, the rotation about the point (x, 0) is as follows.

(x, 0) : (x, 1), (x, 2), (x -  27 , 2), (x +  27 , 2) , ( x -  4 7 , 2 ) , ( x  +  4 7 , 2 ) , . . .

. . . ,  (x — 2Py, 2), (x +  2 7̂ , 2), (x + a, 1), (x +  2a, 0),

(x +  2a, 1), (x +  4a, 0), . . . .  (x +  2ta, 1), (x +  4ta, 0)

Pairs which are underlined correspond to triples in the system B. Note that

(x +  2Py, 2) =  (x — 7 , 2) and (x +  4ta, 0) =  (x — 2a, 0). Moreover A =  2t is the



14 Biem beddings using the Bose construction

least value of A for which A7  =  —7  and 2Ao =  —2a, which guarantees that the 

rotation is a complete cycle. If either a  or 7  was not relatively prime to 2t +  1, 

then this would not be the case and the point (x, 0) would be a pinch point. The 

proof for the rotation about points (x, 1) and (x, 2) follows similarly.

To prove that the surface is nonorientable assume that the rotation about 

a point (x,0) is as above. Then the rotation contains the pairs (x, 1), (x.2) and 

(z — A a, 1), (z, 0), i ^ x  in that order. Assume that the surface is orientable. Then 

the rotation about a point (z. 0) contains the pair (x, 0), (z — Ao, 1) and therefore 

also the pair (z,2), (z, 1) again in that order. Thus, the order of rotation about 

a point (z,0), i ^  x is in the opposite direction to that of (x,0). Now consider 

another point (y, 0). We have a contradiction and the surface is nonorientable. ■

Extending Solov’eva’s work we can also construct a Steiner triple system by 

reversing the order of the second co-ordinates, i.e. by taking the sets of triples to 

be
(A) {(x — a. 0), (x, 2), (x +  /?, 1)}, x G G

(Bl) {(x, 0), (y, 0), (z +  a, 2)}, x ,y  e G ,  x ^ y ,  z =  (x +  y)/2

(B2) {(x, 2), (y, 2), (z +  /3,1)}, x, y  e G ,  x ^ y ,  z =  (x +  y)/2

(B3) {(x, 1), (y , 1), (z +  7 , 0)}, x , y  e G ,  x ^ y ,  z = (x +  y)/2

again where a  +  j3 +  7  =  0 (mod 2t +  1). We will denote this system by and

with the additional restriction that the cyclic group G is of order At +  1 prove the 

following theorem.

Theorem  2.1.2 If

( 1 ) o  =  0 and gcd(P, At +  1) =  gcd(7 , At -f 1) =  1, or

(2) (3 =  0 and gcd(7 , 4£ +  1) =  gcd(o, At +  1) =  1, or

(3) 7  =  0 and gcd(o, At +  1) =  gcd(/3, At +  1) =  1,

then the Steiner triple systems B  and B*af3l of order 121 +  3 biembed in an ori­

entable surface.
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P ro o f  Consider the first case and assume that a = 0 and gcd(/3,4t +  1) = ' 

gcd(7 , At +  1) =  1. In the system 73, a point (x, 0) occurs in triples with the pairs

{ 0 , 1), (x, 2)}, {(z, 0), ((z 4- x ) / 2 , 1)}, z ^  x , {(z, 2), (-z  4- 2x, 2)}, z ^  x,

and in the system 5*  ̂ , it occurs in triples with the pairs

{(x + P, 1), 0 ,2 )} , {(z, 0), ((z +  x ) /2 , 2)},z ^  x, {(z, 1), (-z4-2x +  2/3, l)},z ^  x + P-

Similarly, a point (x, 1), occurs in the system B  in triples with the pairs

(O>0); 0 0 ) } ,  {O 0)) (-z  +  2x ,0)},z ^  x, {(z, 1), ((z 4- x ) /2 , 2)},z ^  x,

and in the system 73* /3 , in triples with the pairs

( 0  ~P ,  0), O  -  2)}, (O  !)> ((* +  x ) / 2 ~ P ^ ) } B ^  x , (O  2), ( -z  4- 2x -  2/3, 2)},

Z 7  ̂X — P.

Finally, a point (x, 2), occurs in the system 73 in triples with the pairs

{(x, 0 ), (x, 1)}, {(z, 1), ( z +  2x, 1)}, z ^  x, {(z, 2), ((z 4- x ) /2 , 0) } , z ^ x ,  .

and in the system 73*)/3)7 in triples with the pairs

{(x, 0), (x +  P, 1)}, {(z, 0), ( z +  2x, 0)}, z ^  x, {(z, 2), ((z +  x) /2  +  /3, 1)}, z ^  x.

When the two systems B  and B *q43 7 are biembedded, the rotation about the points 

(x, 0), (x, 1), (x, 2) is as follows.

(x, 0) : (x +  p. 1), (x 4- 2/3, 0), (x 4- p, 2), (x -  /3, 2), (x -  2/3, 0), (x -  /3,1),

(x 4- 3/3,1), (x +  6/3,0), (x 4- 3/9, 2), (x -  3/3,2), (x -  6/3,0), (x -  3/3,1), . . .

. . . ,  (x +  (At — l)/3 ,1), (x +  2(At -  l)/3, 0), (x +  (At -  l)/3, 2), (x -  (At -  l)/3, 2),

(x — 2(At — l)/3,0), (x — (At — l)/3 ,1), (x, 1), (x, 2)

(x, 1) : (x +  2/3,1), (x 4- P , 2), (x -  3/3, 2), (x -  6/3,1), (x -  4/3, 0), (x 4- 4/3, 0),

(x 4- 10/3,1), (x 4- 5/3,2), (x — 7/3, 2), (x — 14/3,1), (x — 8/3,0), (x 4- 8/3,0), . . .

. . . ,  (x +  (4* -  7)/3,1), (x +  (4* -  3)/3, 2), (x -  (At -  l)/3, 2), (x -  2(At -  l)/3 ,1), 

p  +  / 3 ,0 ) , (x - / 3 ,0 ) , (x -  /3, 2), (x — 2/3,1) , p  -  2/3,0), p  +  2/3,0),

(x 4- 6/3,1), (x +  3/3,2), (x — 5/3, 2), (x — 10/3,1), (x — 6/3, 0), (x 4- 6/3, 0),

O 4- UP, 1), O  + 7/3, 2) , . . . ,  O  -  (4t -  3)/3, 2), O -  2(4* -  3)/3,1),
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(x — (4£ — 2)/?, 0), (z +  (4t — 2)/3, 0), (x +  2(4t -  l)/3 ,1), (x +  (4t -  l)/3, 2),

( z ,2), (x, 0)

(x ,2) : (x — 2/3, 2), (z — /3, 0), (z +  /3, 0), (x +  2/3, 2) , (z +  2/3,1), (z -  2/3,1),

(z -  6/3, 2), (z -  3/3,0), (z +  3/3,0), (z +  6/3, 2), (z +  4/3,1), (z -  4/3,1), . . .

. . . ,  (z -  (41 -  3)/3,2), (z -  (4£ -  l)/3,0), (z +  (4£ -  l)/3 ,0), (x +  2(4t -  l)/3, 2),

(z — /3,1), (z +  /3,1) , (z, 0), (z, 1).

As in the proof of Theorem 2 .1.1, pairs which are underlined correspond to triples 

in the system B. Note that /3 =  —7  (mod 4£ +  1) since a  =  0. Moreover, A =  At 

is the least value of A for which A/3 =  —/3, which guarantees that the rotation is a 

complete cycle. If either /3 or 7  was not relatively prime to 4t +  1;* then this would 

not be the case and the points (x ,0), ( z , l )  and (z, 2) would be pinch points. 

To prove that the surface is orientable it suffices to show that Ringel’s Rule A* 

holds. An easy but tedious examination shows that the above rotations form an 

orientable triangular biembedding of the systems B  and B*0 ^ r  m

2.2 A utom orphism s

2.2 .1  N on orien tab le  b iem b ed d in gs

In this section, we determine the automorphism group of the nonorientable biem­

beddings obtained using the Bose construction and prove a formula for the number 

of such biembeddings. Recall that we use the notation B  00 B a^ n to denote the 

biembedding, in this case nonorientable, of the system B  with the system B a^ tl 

with the triples of B  coloured black and the triples of B Qtpn coloured white. In 

order to obtain our results we will need to know the automorphism group of B. 

This was determined by Lovegrove [40]. As is well known, in the basic Bose con­

struction the group G need not be cyclic but can be any Abelian group of odd 

order. Lovegrove divides the automorphisms into two types, standard and non­

standard though the distinction between the two need not concern us here. In
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this context, he proves Theorem 2.2.1.

Before we state the theorem we need the following definitions. Given two 

groups G and H  and a group homomorphism 6 : H  —» Aut(G ), the group G xi0 H  

is called the semidirect product of G by H  with underlying set the cartesian 

product G x H  and group operator *: (gi,hi)  * (#2,^ 2) =  (pi^(^-i)(P2) , ^ 1^2), 

where pi, #2 € G , /ii, /12 € if. If H = Aut(G) and 0 is the identity, then the 

semidirect product is called the holomorph of G denoted by Hol(G).

T heorem  2 .2.1  (Lovegrove) The group of standard automorphisms of the

Steiner triple system constructed from an odd order Abelian group G is isomorphic 

to Hol(G)  x C3 and so is of order 3\G\\Aut(G)\.

With regard to nonstandard automorphisms, Lovegrove shows that these occur 

only if the group G is of the form C3 x C™, n +  m ^  0 . Therefore, the only Steiner 

triple systems obtained from the Bose construction using a cyclic group which have 

nonstandard automorphisms are the STS(9) obtained from C3 and the STS(27) 

from C9. These two exceptions will cause us no problems and we will deal with 

them later. Hence, for all other systems obtained from cyclic groups the group 

given in the above theorem is the full automorphism group of the system B. It 

further follows that Aut(-B) is generated by the three following mappings:

1. ( i j )  1  ̂ (z +  l , j ) ,

2- (i-,j) l_* i ^ f j )  where gcd(A,2t +  1) =  1,

3. (i, j)  *-)• {i,j  +  1).

Automorphisms of the biembedding B  cxi Bajpn will be of two types, those that 

preserve the colour classes and those which reverse them. We first consider the 

colour preserving automorphisms. Any such automorphism will belong to Aut(B) 

and therefore we consider the action of the three generators.

1. The mapping (i. j)  1—» (i +  1 , j )  stabilizes the biembedding B  1x 1 B a^ n and 

is therefore a colour preserving automorphism. Denote this automorphism 

by t .
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2 . The mapping (i . j )  i-» (Ai . j )  maps the biembedding B  cxi B a^ n to B m

B  A a , A / 3 , A 7  ■

3. The mapping (i, j)  >-> (i , j  +  1) maps the biembedding B  cxi B a^ n to B  cxi

- ^ 7  , a , / 3 -

Turning now to colour reversing automorphisms, let a be the mapping defined 

by (a) (z, 0) i-» (—z, 0), (b) (z, 1) i-> (—z +  o, 1) and (c) (z, 2) i—>■ (—z — 7 , 2). Then, 

as is easily verified, a maps the biembedding B  od B a^ n to B a$ n txi B. i.e. it 

reverses the colours of the two systems.

In any biembedding, either all automorphisms are colour preserving or there 

are equal numbers which are colour preserving and colour reversing. The mapping 

r  has order 2t +  1 and a has order 2 . Moreover, <t t  =  r 2ta, i.e. r  and a generate 

the dihedral group B2t+i of order At +  2 which is the full automorphism group of 

any biembedding B  txi B a^ n .

Next we investigate the number of nonisomorphic nonorientable biembeddings 

which are obtained from the Bose construction. From the above, we have already 

established that the biembedding B  1x1 BQ)pn is isomorphic to B  txi Bxa,xp,x7 

where gcd(A, 2t + 1) =  1. Therefore, B  1x 1 B a^ n is isomorphic to B m # i l9)r where 

q =  (5a~l and r = 7 a~l . As a first step we count the number of biembeddings 

B  ex] Bi jQjr where 1 +  g +  r  =  0 (mod 2£ +  l) and ged(q, 2£ +  l) =  gcd(r, 2£ +  l) =  1. 

Equivalently we require the cardinality of the set

{q : gcd(g, 2t +  1) =  gcd(g +  1, 2t +  1) =  1, 1 < q < 2t — 1}.

This is a generalization of the well-known Euler’s (^-function. Let > 2 be 

an integer. Then for any integer k such that 1 < k < N  — 1 define <fik{N) 

to be the number of consecutive sequences of k integers q,q + 1 , . . .  .,q + k — 1, 

1 < Q < N - k ,  all of which are coprime to N.  Then 4>k is a multiplicative function, 

i.e. if gcd(A, M)  =  1, then <f>k( NM)  = M N ) M M ) .  Let N  = .. . p ?  be

the prime factorization of N.  Then to compute the value of (j>k(N),  it suffices to 

know the value of (pk{vT) f°r each L This is straightforward: if p is prime then
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4>k{p) — P — k, and if a > 2 then <t>k(pa) = (p ~ k)pa~l if A: < p and 0 otherwise. 

For our purposes, the number of biembeddings B  txi Ri,9)r where 1 +  q +  r =  0 

(mod 2t +  1) is given by <?i>2(2i +  1).

It remains to consider the action of the mapping (i, j) ( i , j  +  1) on this 

collection of biembeddings. Applying the mapping to the biembedding B  do Ri,9,r 

and multiplying the subscripts by q~l in order to restore the first subscript to 

unity, gives the biembedding B  o« B \trq- i tq-\ and applying the mapping again and 

rescaling gives B  do Bi r- If r = q2 so that 1 +  q +  q2 =  0 (mod 2£ +  1), the 

three biembeddings are identical, but otherwise they are not. Define ip(2t + 1) to 

be the cardinality of the set

{q : 1 +  q +  q2 =  0 (mod 21 +  1), gcd(g, 2t +  1) =  1,1 < q < 2t — 1}.

Then the number of nonisomorphic biembeddings B  oo BQ̂ n is

{(p2{2t +  1) — 'ip{2t +  l )) /3 +  ,ijj(2t +  1) =  (02(2t +  l) +  2rijj{2t +  l))/3 .

We now show how to calculate the value of the function 'ijj.

Let N  > 2 be an integer and N  = p ^ p ^ 2 .. .p^r be its prime factorization. 

Then by the Chinese Remainder Theorem, the number of solutions of the congru­

ence 1 +  x  +  x2 =  0 (mod N)  is the product of the number of solutions to the 

same congruence modulo pf* for each dividing N. There are no solutions for 

p = 2 and p2 — 9 but one solution for p =  3. If p > 5 is prime then there are no 

solutions for p =  5 (mod 6) and two solutions for p =  1 (mod 6). Hence there are 

no solutions to 1 +  x +  x 2 =  0 (mod N) for N  = 2°. a > 1; or N  = 3a , a > 2; 

or N  = pa, p =  5 (mod 6) and prime, a  > 1.

It remains to consider the case N  = p ° , p =  1 (mod 6) and prime, a > 1. 

Now by Theorem 68 , page 115 of [49], there are three solutions to the congruence 

x3 =  1 (mod p°) for p =  1 (mod 6), a > 1, one of which is re =  1 and is not 

a solution to 1 +  x +  x2 =  0 (mod pa). As a result, there are two solutions to 

the congruence 1 + x +  x 2 =  0 (mod p°) in this case. Note that all solutions to 

1 +  x +  x 2 =  0 (mod N ) necessarily have gcd(x,7 ) =  1, as any common factor



20 Biem beddings using the Bose construction

of x and 7  would divide x +  x 2 and hence also divide 1. Thus, we now have the 

following theorem.

Theorem  2.2.2 Let n = 6£+3. Then the number of nonisomorphic nonorientable 

biembeddings B  txi B atpn of a pair of Steiner triple systems constructed using the 

Bose construction from the cyclic group € 24+1 is

• 1, i f  n = 9;

• n / 27, if  n = 3Q, a > 3;

• nll{=1(l -  2/pi)/27  +  (3. if  n = 3aUri=1p fi , Pi > 3 is prime, 

where (3 — 0 if  a > 3 or any pi = 5 (mod 6)

and (3 =  27'+1/3  if  a  — 1 or 2 , and all Pi = 1 (mod 6).

P roof First, we deal with the two exceptional cases n = 9 and n = 27 for which 

the STS(n) has nonstandard automorphisms.

If n = 9, there is a unique biembedding of a pair of STS(9)s, see page 139 of [22], 

It is the biembedding B  1x 1 51 ,1,1-

If n =  27, there are precisely three biembeddings B  ixi 5 i,9,r , namely (q,r) = 

(1, 7), (4,4), (7,1) which are isomorphic by standard automorphisms.

If n =  6 t +  3 =  3a , a > 4. Then <f>2 (2 t +  1) =  3a-2  and ip(2t +  1) =  0. Therefore 

the number of nonisomorphic biembeddings B  txi B a^ n is 02(21 +  l) /3  =  n f  27.

Let n — 6t +  3 =  3aII[=1p°:i, p* > 3 is prime. Then 02(2t +  l) =  3a_2I I ^ 1p“i_1(pi —

2) =  nlll=1(l — 2/pi)/9. In addition to the discussion above ip(2t +  1) =  0 if 

a — 1 > 2 or any Pi = 5 (mod 6) and 2 r otherwise. Put (3 =  2-0(21 +  l)/3 , 

then the number of nonisomorphic biembeddings is (02(21 +  1) +  2ip(2t +  l)) /3  =  

n n[=1(l — 2/pi)/27  +  (3. m

Finally in this section we identify the particular biembedding of Ducrocq and 

Sterboul [17]. The two Steiner triple systems which they give, using the cyclic 

group G of order 2i + 1 based on the set {0,1, . . . ,  21 ] with addition modulo 2 t + 1, 

and with base set X  = G x {0 , 1, 2} consist of the following collections of triples
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(A) {(x, 0), (x, 1), (x +  2t, 2)}. x G G

(Bl) {(x,0), (y,0), (z, 1)}, x , y G G ,  x ^ y ,  z =  (x +  y ) /2

(B2) {(x, 1), (y, 1), (z +  2t,2)}, x ,y  G G, x ^ y ,  z =  (x +  y ) /2

(B3) {(x +  2t, 2), (y +  2t, 2), ( 2 , 0)}, x, y G G, x ^ y ,  2  =  (x +  y)/2

and of the following collections of triples Bi,

(A) {(x, 0), (x +  1,1), (x +  2£ — 1, 2)}, x G G

(Bl) {(x, 0), (y, 0), (z +  1,1)}, x, y G G, x ^ y ,  2 =  (x +  y)/2

(B2) {(x +  1,1), (y +  1,1), (z + 2t -  1,2)}, x, y G G, x / y ,  z =  (x +  y)/2

(B3) {(x +  2t — 1, 2), (y +  2t — 1, 2), (z, 0)}, x ,y  G G, x ±  y, z =  (x +  y)/2

Applying the mapping (a) (z, 0) i-» (z,0), (b) (z, 1) !->• (z, 1), and (c) (z, 2) i-> 

(z +  1, 2) to the set X ,  the Steiner triple system (X,Bo) becomes the system B  

and (X, Bi) becomes the system Hence the biembedding is B  1x 1 i-

2.2.2 O rien tab le b iem bedd in gs

In this section, we apply the same process as in the previous section to determine 

the automorphism group of the orientable biembeddings obtained using the Bose 

construction. We also show that in this case all such biembeddings are in fact 

isomorphic. Thus, the biembedding constructed by Grannell, Griggs and Sir an [30] 

is the unique biembedding of its type. Again we will use the notation B  1x 1 B*. p 

to denote that the system B  biembeds, in this case orientably, with the system 

B*a p , with the triples of B  coloured black and the triples of B*a pn, coloured white.

As before, for colour preserving automorphisms, we consider the action of the 

three mappings which generate Aut(H), i.e. (1) ( i,j)  (i +  1 , j),  (2) (i. j)  i-» 

(Ai . j )  where gcd(A,4t +  1) =  1, and (3) (i . j)  i-» ( i . j  +  1).

1. The mapping (i , j)  »->• (z +  1, j)  stabilizes the biembedding B  txi B*a p 1  

and is therefore a colour preserving automorphism. It is also orientation- 

preserving. Again we denote this automorphism by r.



22 Biem beddings using the Bose construction

2. The mapping (i. j)  (Ai , j )  maps the biembedding B  ixi 5*^  to B  txi 

Ft*Xa,XP, X'y'

3. The mapping (i. j)  i-> (z, j  +  1) maps the biembedding B  cxi B* ^ to B  ixi

B*
/ 3 ,7 ,a '

It now follows immediately that all the orientable biembeddings of Theorem 

2 .1.2 , i.e. B  txi B q^_0, B  ixi £ * 7>0i7, B  ixi B ^ _ a>0 where gcd(a, 4£+l) =  gcd(/3, At+ 

1) =  gcd(7 ,4t +  1) are isomorphic. Hence, the biembedding of Grannell, Griggs 

and Siran in [30] is the unique biembedding of this type and we will represent it 

in the standard from B  txi B [Q _1.

Turning to colour reversing automorphisms, let p be the mapping defined by 

(a) (i , 0) i-» (—2, 0), (b) (i. 1) ■-»'(—2 +1, 2) and (c) (z, 2) i—» (—2 +  1,1). Then, as is 

easily verified, p maps the biembedding B  txi B{ 0j_i to txi B , i.e. it reverses

the colours of the two systems. It also reverses the orientation. Similarly to the 

nonorientable case, p has order 2 and r  and p generate the dihedral group ID^+i 

of order 8 t + 2 which is the full automorphism group of the biembedding. The 

subgroups of all colour preserving and of all orientation-preserving automorphisms 

are both the cyclic group C4t+i-



CHAPTER 3

Recursive constructions of triangulations with one pinch point

This chapter deals with recursive constructions of face two-colourable triangula-- 

tions with one pinch point of the complete graph K n in an orientable surface. As 

already mentioned in the introduction, triangulations of the complete graph K n‘ 

in an orientable surface exist when n = 0 ,3 ,4  or 7 (mod 12) [52] and they may 

be face two-colourable only when n =  3 or 7 (mod 12) [52, 58]. Then, each set of 

faces of each colour in a face two-colourable triangulation of K n forms an STS(n).: 

However, Steiner triple systems of order n exist for all n -= 1 or 3 (mod.6) [37], 

i.e. n =  1,3,7 or 9 (mod 12). Since face two-colourable orientable biembeddings 

of pairs of STS(n)s exist when n =  3 or 7 (mod 12) we focus on the case n =  1 

(mod 12) and consider the question of how close it is possible to biembed a pair 

of STS(n)s of these orders in an orientable surface.

From Euler’s formula, we know that biembeddings of pairs of STS(n)s, where 

n =  1 (mod 12), are nonorientable, i.e. the Euler characteristic is odd. Consider 

the situation where one of the points in such a biembedding is a regular pinch 

point of multiplicity 2 , i.e. the rotation about it will consist of two cycles of equal 

length (n — l)/2 . If such a biembedding exists then it may be orientable since the 

addition of an extra point changes the Euler characteristic to even. In a sense these 

pseudosurfaces are as close to being orientable surfaces as is possible. We prove

23
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the existence of these embeddings for all n =  13 or 37 (mod 72). However, in 

order to prove our general result we first need a biembedding of the smallest value 

n — 13 which we present in the next section together with some computational 

results.

3.1 B iem beddings o f  S T S (13)s

Up to isomorphism, there exist precisely two STS(13)s, [14]. One of these has a 

cyclic automorphism and can be constructed on the base set Z13 by the action 

of the group generated from the mapping % ■-» i +  1 (mod 13) on the two starter 

blocks {0,1,4} and {0,2,7}. Denote this system by S. The system also has a 

further automorphism r  : i  1—>• 3 i  (mod 13) of order 3 giving the full automorphism 

group of order 39. W ithout loss of generality we can assume that the point 0 is the 

pinch point. We applied all 12!/266! =  10395 involutions with no fixed points on 

the set Zi3 \  {0} in turn to S. Each involution produced a Steiner triple system S' 

isomorphic to S. We then tested whether S  biembedded with S' in an orientable 

pseudosurface with 0 as a regular pinch point of multiplicity 2 .

There are only two involutions which produce such biembeddings. These are 

a =  (1 10)(2 8)(3 4)(5 7)(6 11)(9 12) and a ' =  (1 12)(2 8)(3 10)(4 9)(5 7)(6 11). 

The full automorphism group of both of the biembeddings is the cyclic group C6, 

generated by the permutations g — ar  =  ra  = (1 4 9 10 3 12) (2 11 5 8 6 7) and 

g' = a 'r  =  ra ' =  (1 10 9 12 3 4)(2 11 5 8 6 7) respectively. Automorphisms of 

even order are colour reversing and those of odd order are colour preserving. All 

automorphisms are orientation-preserving. However, the two biembeddings are 

nonisomorphic. This can be proved by counting the Pasch configurations in each 

TTS(13): there are 112 and 82 Pasch configurations respectively.

Below we give the rotation schemes of these biembeddings together with the 

voltage graphs from which the biembeddings can be derived from. Voltage graphs 

are used in Topological Graph Theory to represent embeddings of large graphs.
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A voltage graph G is a directed graph whose edges are labelled by elements of a 

finite group H] the labels are called voltages and H  the voltage group. Note that 

edges with no label or direction have zero voltage. Then the derived graph has 

vertex set V(G)  x H  and edge set E(G)  x H.

0 1 4 9 10 3 12 | 2 7 6 8 5 11
1 4 0 12 6 10 11 5 2 8 3 9 7
2 7 0 11 12 9 4 10 8 1 5 6 3

CO 12 0 10 5 4 7 2 6 11 9 1 8
4 0 1 7 3 5 8 11 6 12 10 2 9
5 11 0 8 4 3 10 12 7 9 6 2 1
6 8 0 7 10 1 12 4 11 3 2 5 9
7 0 2 3 4 1 9 5 12 11 8 10 6

00 0 6 9 12 3 1 2 10 7 11 4 5
9 10 0 4 2 12 8 6 5 7 1 3 11
10: 0 9 11 1 6 7 8 2 4 12 5 3

. #
11: 0 5 1 10 9 3 6 4 8 7 12 2

12: 0 3 8 9 2 11 7 5 10 4 6 1 i5*

Figure 3.1: Toroidal embedding of voltage graph of biembedding # 1.

The voltages in the above voltage graph are taken in the group Z3 =  {0,1, 2}. 

Therefore, the embedding derived from the above voltage graph has vertex set 

u j ,  U q ,  u j ,  u \ ,  i t j ,  u ® ,  u \ ,  1*21 w 3 > u l }  ■ Additionally, the embedding has 20 black 

triangular faces, 20 white triangular faces and two open faces bounded by two 

disjoint 6-cycles. The black triangular faces are (u^u^u^), (u®u\u\), (ulQu\u\+2) ,
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(u q U ^u 1̂ 1), (u ^ u ^ u l) ,  (u\u l2 lu3+2), (ul0 u\+1 u2f l), ), the white trian­

gular faces are (u\u\u\), (ulQul2 u\), (ul0 u \u l3+1), (ul0 u\+1u2+2), (?4 ?4+V 2+2),

(?xt1?y,2,?4 +2)) (?4 w3+ln3+2)> anc  ̂th e 6-cycles are (?Zô 2now2no?4 )’ (?yu?/3?/i?4 ?/i?/'3)- Let 

Mq =  1, =  3, ?2q “  9, ?/? =  2, =  6 , u\ = 5, u% =  4, ?4 =  12, ul = 10, u,3 = 7,

= 8 , u3 = 11. Finally, by adding the point 0 to the embedding and connecting 

it to the 12 points gives the biembedding of a pair of STS(13)s in an orientable 

surface with one pinch point with the rotation scheme given above. A similar 

approach gives the second biembedding from the voltage graph below.

0 1 4 3 12 9 10 | 7 2 11 5 8 6
1 4 0 10 11 12 6 8 3 9 7 5 2
2 0 7 9 4 1 5 6 3 8 10 12 11
3 12 0 4 7 10 5 11 9 1 8 2 6
4 0 1 2 9 8 5 12 10 6 11 7 3
5 0 11 3 10 9 6 2 1 7 12 4 8
6 0 8 1 12 3 2 5 9 11 4 10 7
7 2 0 6 10 3 4 11 8 12 5 1 9
8 6 0 5 4 9 12 7 11 10 2 3 1
9 10 0 12 8 4 2 7 1 3 11 6 5
10: 0 9 5 3 7 6 4 12 2 8 11 1
11: 5 0 2 12 1 10 8 7 4 6 9 3
12: 0 3 6 1 11 2 10 4 5 7 8 9

Figure 3.2: Toroidal embedding of voltage graph of biembedding # 2 .
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For the other STS(13) we take the representation given in [44] and for the sake 

of completeness list the triples, omitting the set brackets for clarity.

123,145,167,189, lab, led , 246, 257, 28a, 29c, 2bd, 348, 35c 

36d, 376, 39a, 479, 4ad, Abe., 56a, 586, 59d, 68c, 696, 78d, lac

The full automorphism group is the dihedral group D3 of order 6 generated by 

the permutations (1 2 8)(3 a 9)(4 6 c)(5 d 6) and (1 5)(2 6)(3 a ) (8 d)(b c). The 

automorphism partitioning is {1, 2, 5, 6 , 8 , d}, {3, 9, a}, {4, 6, c}, {7}. Without loss 

of generality, there are therefore four possibilities for the pinch point, namely, 1, 

3, 4, and 7. We considered each of these in turn applying the 10395 involutions 

without fixed points as in the case of the cyclic STS(13) above. The results are 

summarized below.

Pinch point 1.

There are three permutations which give biembeddings. •

These are (2 5)(3 d)(4 c)(6 6)(7 8)(9 a), (2 6)(3 c)(4 6)(5 9)(7 d){8 a), and 

(2 c)(3 9)(4 a)(5 6)(7 6)(8 d). Each TTS(13), obtained by the biembedding, 

contains 78, 82 and 98 Pasch configurations respectively and therefore the biem­

beddings are nonisomorphic.

Pinch point 3.

There are two permutations which give biembeddings.

These are (1 d)(2 8)(4 6)(5 9)(7 c)(a 6) and (1 c)(2 6)(4 7)(5 d)(8 a )(9 6) but the 

two biembeddings are isomorphic under the permutation (1 6)(2 d)(A c)(5 8)(9 a). 

Both contain 106 Pasch configurations.

Pinch point 4.

There are four permutations which give biembeddings.

These are (1 6)(2 c)(3 7)(5 6)(8 d)(9 a), (1 6)(2 7)(3 c)(5 8)(6  a)(9 d),

(1 d)(2 3) (5 c)(6 7) (8 9) (a 6), and (1 2) (3 9) (5 c)(6 6) (7 a) (8 d). They contain 

116, 80, 80 and 116 Pasch configurations respectively. The biembeddings given by
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permutations #1  and #4, and those by permutations # 2  and # 3  are isomorphic 

under the permutation (1 5)(2 6)(3 a)(8 d)(b c).

Pinch point 7.

There are no biembeddings.

These six biembeddings have only the identity and the involution given as 

automorphisms.

Next we give a recursive construction n —> 3n — 2 for these embeddings. This 

construction is a modification of the one given in [27]. Note that we will refer to 

face two-colourable orientable triangular embeddings of the complete graph K n 

instead of biembedded pairs of Steiner triple systems of order n; the two of course 

are equivalent.

Theorem  3.1.1 Let n  =  1 (mod 12). I f  the complete graph K n has a face two- 

colourable orientable triangular embedding in a pseudosurface with one regular 

pinch point of multiplicity 2 , then the complete graph K ^ n - 2  also has a face two- 

colourable orientable triangular embedding in a pseudosurface with one regular 

pinch point of multiplicity 2 .

P roof Let 77 be a face two-colourable triangular embedding of K n in an orientable 

pseudosurface S  with one regular pinch point of multiplicity 2 which we will denote 

by 00 . Let the triangular faces of the embedding be properly coloured black and 

white and let a fixed orientation of the surface be chosen. Consider the restricted 

embedding of the graph G =  K n — 00 ~  K n_ 1 which will be obtained in the 

following way. Firstly, remove from the original embedding 77 of K n the pinch 

point 00 , all open arcs that correspond on the surface to edges incident with 

00 and all open triangular faces of the embedding that correspond to triangles 

originally incident with the point 00 . By doing that, we create two holes in 

our surface. The resulting bordered surface has a face two-colourable triangular 

embedding <f : G —» S. The boundaries of the two holes in S  have the form <fi(Dk), 

k = 0 ,1, where Dk are disjoint cycles in G each of length (n — l)/2 .
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Now take three disjoint copies of the embedding <fi including the proper two- 

colouring of triangular faces inherited from 77. More precisely, for each i E Z3 

we take a complete graph G 1 of order n — 1 and a face two-colourable triangular 

embedding <pl : Gl —» S % of Gl in a bordered clockwise oriented surface S % such 

that the natural mapping f l : G —>• Gl which assigns the superscript i to each 

vertex of G is a colour-preserving and orientation-preserving isomorphism of the 

triangular embeddings <fi and <fil. We assume that the surfaces S % are mutually 

disjoint. The embedding 0 has t = n(n  — l ) /6  — (n — l) /2  = (n — l)(n  — 3)/6 

white triangular faces. Let T  be the set of these faces and let T l = f l (T)  be the 

corresponding set of all white triangular faces in the embedding (fil for i 6  Z3. In 

what follows we describe a procedure which, when carried out successively for each 

T  e T ,  will merge the bordered surfaces S l in a way suitable for our purposes.

Let u, v, w be vertices of G such that u, v, w are corners of a fixed white 

triangular face T  of <j>; we may without loss of generality assume that the chosen 

clockwise orientation of S  induces the cyclic permutation (uvw) of vertices of the 

face T.  For this particular T, consider the auxiliary face-two-coloured embedding 

'ipT of the complete tripartite graph ^ 3 ,3 , 3  in a torus with three holes cut in its 

surface, as depicted in Figure 3.3 where the holes are depicted as the diagonally 

hatched regions. The three vertex-parts of our ^ 3 ,3 , 3  in Figure 3.3 consist of ver­

tices ulT , vlp, and wlT, i 6  Z 3 . The three boundary curves of holes in the torus are 

the three 3-cycles CXT =  {ulTv%Tw'lT) ̂ iG  Z3. We assume that the torus is disjoint 

from all surfaces 5* and that its orientation induces the clockwise cyclic permu­

tations [ulTwlTv'iT) of vertices on the boundary curves C^, respectively. Notice the 

important difference between the cyclic permutations (uvw) on S  and (ulTw‘̂rv̂ r ) 

on the torus.

Now, for each i E Z3, remove from the embedding cjf the open triangular face 

T l =  f l (T). We thus create a new hole in each S l with boundary curve Cl where 

Cl = f l(C) is the 3-cycle (ulvlwl) in cpl. Finally, for i G  Z 3  we identify the closed 

curve Cl in the embedding <pl with the curve C? in the embedding ybT in such a
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Vj* W j' XL'j'

b T

Figure 3.3: The toroidal embedding V>r of ^ 3,3,3-

way that ul =  ulT, vl =  vlT, and wl =  wlT. Applying this procedure successively to 

each white triangular face T  E T  and assuming that the corresponding auxiliary 

toroidal embeddings V>r are mutually disjoint, we obtain from S'0, S’1, and S'2 a new 

connected triangulated surface with boundary, which we denote by S. Roughly 

speaking, S  is obtained from S°, 5 1, and S 2 by adding \T\ toroidal “bridges” 

raised, for each T  E T, above the white triangular faces T l — f l(T ), i E Z 3.

Clearly, S has six holes, and their disjoint boundary curves correspond to the 

cycles Dlk = f l(Dk) in the graphs G \ i € Z3 /c =  0,1. Also, it is easy to see 

that the chosen orientations of (pl and guarantee that the bordered surface S  

is orientable. In fact, S  inherits the clockwise orientation from the embeddings 

cf)\ i € Z3, and V;r ,  T E T . Note that S  also inherits the proper two-colouring of 

triangular faces from these embeddings. Since we have t = (n — l)(n  — 3)/6 black 

triangles in S', and hence in each S \  and for each of the t white triangles T  in S  

we added, in the auxiliary toroidal embedding ipr, another 15 triangles, the total 

number of triangular faces on S  is equal to 31 +  15£ =  3(n — l)(n  — 3). For each 

collection of 15 triangles added, 9 are white and 6 are black; hence it is easy to 

check that exactly half of the triangles on S  are black, as expected.

Let H  be the graph that triangulates the bordered surface S’; we need a precise 

description of H. Let D0 = (uiu2 ■ • p /2) and Di =  (viv2 • • • V(n-i) /2) be our

disjoint cycles in G ~  An_i. Since n is odd, every other edge of Do and D\ is 

incident to a white triangle on S'; let these edges be u 2 u$, u4 u5, . . . ,  U(n_iy2ui and
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V2 V3 , V4 V5 , . . . ,  'f(n-i) /2^i respectively. From the above construction it is easy to see 

that the graph H  is obtained as follows. For 1 < j  ^  /  < (n -  l)/2 , each vertex 

Uj and Vj of G gives rise to three vertices Uj, ra], ra| and t>°, vj, vj of H , each edge 

UjUji and VjVy of G incident to a black triangle gives rise to 3 edges ujuj, and vjvj,, 

and finally each edge UjUy and VjVy of G incident to a white triangle gives rise 

to 9 edges ul-uj, and vjv1'-,, i,i ' G Z3, of H. Since each edge of G , apart from the 

(ra -  l ) /2  edges u iu 2, u 3 u4, . . . ,  u (n_3)/2M(n_i)/2 and v4 v2, v3 v4, . . . .  V(n- 3 )/2 v{n-i) /2i 

is incident to exactly one white triangle, the total number of edges of the graph 

H  is 9(|£(G )| -  (n -  l ) / 2) +  3(n -  l) /2  =  3(n -  1)(3n -  8) / 2 .

For each edge UjUj> and VjVy of G ~  K n_ 1, H  contains all edges of the form 

UjU^ and i .i ' G Z3 except when {uj,Uj>} — {u/,u/+1} and {vj^vyY —

{vi,vi+i } J  = 1, 3, 5 , . . . ,  (n -  3)/2. Specifically, if {uj,Uj>} = {u i,u i+1} and 

{vj, Vj/} =  {vi,vi+1}, I = 1, 3, 5, . . . ,  (n — 3)/2 then H  contains no edges of the form 

uljU%j, and v 'v1-, with i ^  i '. Also, H  contains no edge of the form UjUj and v f t j ,  

1 . i! G Z3. We see that, abstractly, H  is isomorphic to Asn- 3 minus (ra — 1) pairwise 

disjoint 3-cycles of the form (u^UjUj) and (VjVjVj), 1 < j  < (n — l) /2  and minus 

( n -  l ) /2  pairwise disjoint 6-cycles (u^u}+lufuf+1u}u]+1) and {v?v}+iv?vf+1v}v?+1), 

/ =  1,3, 5 , . . . ,  (n — 3)/2.

Let u  : H  -> S  be the embedding constructed above. We recall that the 

boundary curves of the six holes in S  are D l0 and D \ , the images of the cycles 

Do and D\ respectively under the isomorphisms /*, i G Z3. In order to complete 

the construction and obtain a face two-colourable triangular embedding of Ar3n_2 

we need one more modification of the bordered surface S. We build two more 

auxiliary triangulated bordered surfaces So and S\ and paste them to S  so that 

all six holes of S  will be capped. The bordered surfaces So and Si should contain 

the edges which are missing from S  and also the edge sides, white or black, which 

are on the border S; edges of the form UjUj, v)v%-, i ^  i' and rajraf ĵ,

1 . 1! =G Z3, white edge sides of the form u\u\+1, v\v\+l and black edge sides of the 

form ui+1u\+2, v\+lv\+2, I = 1, 3, 5 , . . . ,  (ra -  3)/2.
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Let A0 and Xi be the toroidal embeddings of the multigraphs L0 and Li re­

spectively with faces of length 1 and 3 coloured black and white, as is L0 depicted 

in Figure 3.4: L\ can be obtained by the mapping Uj —> Vj, 1 < j  < (n — l)/2 . 

Our Figure 3.4 also shows voltages a on directed edges of L0, taken in the group 

Z3 =  {0,1,2}. We deliberately use the same letters for vertices of L0 and Li 

as for vertices of the graphs Gi but assume that these graphs are disjoint; such 

notation will be of advantage later. The lifted graphs LJ and LJ have the vertex 

set {ulj\ 1 < j  < (n — l)/2, i  € Z3} and {v]\ 1 < j  < (n — l)/2 , z e  Z 3} respec­

tively. The edge set of LJ and LJ can be described as follows. For each fixed 

I =  1, 3, 5, . . . ,  (n — 3)/2, the 6 vertices uj, u ]+ 1 and the 6 vertices uf+1, i € Z 3, 

induce the complete graphs Ji ~  K q and J[ ~  K q in Lq and L“ respectively. 

Furthermore, two successive complete subgraphs Ji and J /+2 and J[ and J /+2 are 

joined by the three edges u\+lu }+ 2  and vll+lvll+2, i e  Z 3  respectively. Thus we have 

a total of 15(n — l)/4  +  3(n -  l) /4  =  9(n — l) /2  edges in each lifted graph Lq and 

L“ and there are neither loops nor multiple edges there.

2r> 1 k.
1

D i

y u ( n - l ) / 2  \ 1*3
f  ” J) Z' J

2 1

' 1 1 1 ' 1

1 2

r
\ W n - 3 ) / 2  / U 4

Figure 3.4: The plane embedding of the multigraph Lq.

The lifted embeddings A£ : » £*., A: =  0,1 have 2(n — 1) triangular

faces each. The white ones are bounded by the triangles (tijbxjitf),
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(“ iSV l^+ l). (“ iV + X + i) and (v°vlv?), (^ X +)W,2+1), (v}v}+iuP+i), (v?v?+1 v}+i). 

The black ones are bounded by hi!{+lv 2l+]'oll+l) , (u1+1u}uf),  {uj+1ufu^), (uf+1v!fu}) 

and (v?+lv?+1 v}+l), (vf+1vlvf),  (vf+1vfv?), {v?+1 v?vj), where I =  1 , 3 , . . . ,  (n -3 ) /2 .  

In addition, there are four more faces in each embedding; three faces, which we 

denote by Fq and F{, bounded by ((n -  l)/2)-gons of the form (u\u \ ■ ■ • u\n_ iy2) 

and (v\v l2 ■ ■ ■ ^(n_1)/2), i € %3, and one face Fq and F[ bounded by the ((3n —3)/2)- 

gon (u? u\ u\ u\ ■ • ■ ufn_ 3)/2 u°n_1)/2) and (uf v \v \  vj ■ ■ ■ v 2{ n _ i ) / 2  v°(n_1)/2).

Let us now cut out from each S* the three open faces FJ, z G Z3, bounded by 

the above three disjoint (n — l ) / 2-gons, obtaining thereby two orientable bordered 

surfaces Sl, k = 0,1. Let L*k be the graphs obtained from Lk by adding the same 

new vertex 0 0 * in each graph and joining it to each vertex of Lk while keeping all 

edges in Lk unchanged. We construct the embeddings A£ : LI —» Sk from Xk in an 

obvious way. In the embeddings A£, after the removal of the three open faces, we 

insert the vertex 0 0 * in the centre of each face F'k bounded by the ((3n — 3)/2)-gon 

and join this point by open arcs, within each Fk: to every vertex on the boundary 

of Fk. By doing this, instead of Fk we now have (3n — 3)/2 new triangular faces 

on each S l ; they are bounded by the 3-cycles and oo*VjVj+1, i,i! G Z3.

We now colour the new triangular faces as follows: the face of AJ and AJ bounded 

by the 3-cycle oo*uljUl-+l and respectively will be black (white) if the

triangular face of the embedding Xq and A“ containing the edge u%jUj+ 1  and vj vj+i 

respectively is white (black). It is easy to check that this rule indeed well defines 

a two-colouring of the triangular embeddings X*k : L*k —» Sl,  k =  0,1. We thus 

have 2(n — 1) +  (3n — 3)/2 =  7(n — l ) /2 triangular faces on each Sl,  a total of 

7(n — 1), exactly half of which are black.

We are ready for the final step of the construction. Our method of construct­

ing the orientable surface S  guarantees that a chosen orientation of S  induces 

consistent orientations of the boundary cycles of the six holes of S'; we may as­

sume that the orientation induces the cyclic ordering of the cycles D l0 and D\ 

in the form that was used before, namely, D l0 = f l{D0) = (u\u\ ■ • •'^(n_1)/2) and
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D\ = f {{Di) =  (v\v%2 • • -^(n_i)/2)) * £ ^ 3- The bordered surfaces and S{ have 

three holes each, and again, the method of construction implies that an orienta­

tion of each Sq and can be chosen so that the boundary cycles of the holes 

are oriented in the form Dq% = (u^n_1y 2 • • • u\u\) and D { 1 — (ujn_ 1̂ 2 ■'' v2 vi)> 

i e Z3. It remains to do the obvious, that is, paste together the boundary cycles 

Dq, D\ and Dq1, D \l so that corresponding vertices tij and u] get identified and 

furthermore to identify the vertex oo* from Sq and S{. As a result, we obtain 

an orientable pseudosurface S #S*  with one regular pinch point of multiplicity 2 , 

known as the connected sum of the bordered surfaces S  and S*, and a triangular 

embedding o : K  —» SjfS* of some graph K . We claim that K  ~  A 3̂n_2 and that 

the triangulation is face two-colourable.

Obviously, |V(ZT)| =  3n — 2. An edge count shows that \E(K)\ = \E(H)\  +  

2\E(Lq)\ — 6 \E(D)\ = 3 (n— l)(3n —8)/2 +12(n —1) — 3(n — 1) =  (3 n -2 )(3 n -3 ) /2 . 

It is easy to check that, except for edges incident with oo* and edges contained 

in the six (n — 1)/ 2-cycles Dj.*, the graphs LI contain exactly those edges which 

are missing in H.  This shows that there are no repeated edges or loops in K,  and 

thus K  ~  A'3n_2. As far as the face-two-colouring is concerned, we just have to 

see what happens along the identified (n — 1)/2-cycles Dlk and D lk , k =  0,1, since 

both triangulations of S  and SI are already known to be face two-colourable. But 

according to the construction, if I = 1, 3, 5 , . . . ,  (n — 3)/2, a triangular face on 

S  that contains the edge u\u \ + 1  or vM+i is black, while the face on Sq and 

bounded by the triangle and (v!v!+iv!+i) is white. ■

As a consequence of the above theorem, we have the following corollary which 

gives an infinite class of orientable pseudosurface embeddings.

C oro lla ry  3.1.2 For n = 3s • 12 +  1, s > 0, the complete graph K n has a face 

two-colourable triangular embedding on a pseudosurface with one regular pinch 

point of multiplicity 2 .
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3.2 General construction

In this section we present the main result of this chapter. We give a construction 

which is a generalization of the construction given above. This construction is a 

modification of the product construction described as Construction 4 of [29]. As 

a corollary of this more general construction we obtain infinite linear classes of 

orientable pseudosurface embeddings as stated at the beginning of this chapter.

T h eo rem  3.2.1 Suppose that n = 1 (mod 12) and that m  = 1 or 3 (mod 6). 

Then if  there exists a face two-colourable triangular embedding of the complete 

graph K n in an orientable pseudosurface having precisely one regular pinch point 

of multiplicity 2 , then there exists a face two-colourable triangular embedding of 

the complete graph Am(n_i)+1 in an orientable pseudosurface having precisely one- 

regular pinch point of multiplicity 2 . • ;

P ro o f  To facilitate a comparison of the steps carried out here with the original 

proof we will keep to the notation of [29] as much as possible. A rough outline of 

the proof is as follows. We will begin by taking m  copies of a face two-colourable 

triangulation of K n in an orientable surface with one regular pinch point of mul­

tiplicity 2 , removing the m  pinch points together with their incident edges and 

faces, and ‘bridging’ the m  components in an intricate way to obtain a connected 

surface with 2m cyclic boundary components. We will continue by capping the 

2m ‘holes’ created in the previous step by a cap consisting of a bordered pseu­

dosurface with one pinch point and 2m cyclic boundary components. We will 

show that from this construction we obtain a face two-colourable triangulation of 

Arm(n-i)+i, or equivalently a pair of STS(m(n — 1) +  l)s, in an orientable surface 

with one regular pinch point of multiplicity 2 .

Let 7] be a face two-colourable orientable triangulation of K n in a (say, clock­

wise) oriented pseudosurface with a single regular pinch point of multiplicity 2 , 

with faces properly coloured black and white. Let z be the unique vertex of K n 

identified with the pinch point. We remove from p the vertex z, together with all
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open arcs and open triangular faces originally incident with z, obtaining a face 

two-coloured triangular embedding <p of G = K n \  {z} = K n_i in a bordered 

surface S. Observe that S  has no pinch points and the two connected bound­

ary components of S  are two disjoint cycles D\ and D 2 in (S', each of length 

(n — l)/2 . Following our outline, for every i G Zm let (p% : Gl —> S l be m  mutually 

disjoint copies of the embedding (p together with the proper two-colouring of tri­

angular faces inherited from 77. In doing so we assume that the natural mapping 

f l : G —» Gl that endows each vertex of G with the superscript i is a colour- 

preserving and orientation-preserving isomorphism of the embeddings <p and cpl. 

Initially we will assume that m  and (ra — l ) /2 are relatively prime, and we will 

deal with the general case at the end of the proof.

We continue with describing the ‘bridging’ procedure. To do so we need to 

return to the embedding (p whose description uses no superscripts. Let T  be the 

set of the total of t — (ra — l)(ra — 3)/6 white triangular faces in <p and for each 

i G let T l =  f l (T)  be the corresponding set of all white triangular faces in 

(pl . Choose a particular triangular face T  of <p with vertex set {a, b, c} and assume 

that the cyclic permutation (abc) corresponds to the clockwise orientation of the 

boundary cycle C of T. For each such T  take a face two-colourable orientable 

triangulation 'ipr of the complete tripartite graph in a closed surface S t

disjoint from each S l; let {alT}, {blT} and {clT}, i G Zm, be the three vertex-parts 

of this m By Construction 1 of [29], we may select -0T to have a parallel 

class of black triangular faces and we may choose the orientation of

'ipr to ensure that it induces the cyclic permutations (alTc%Tb%T) of the boundary 

cycles Ct of these faces. Note that we have chosen different cyclic permutations 

(abc) on S  and (a%TclTblT) on St -

Next, for every i G Zm we perform the following steps: remove from <pl the open 

triangular face T l =  / Z(T), creating in each S 1 a new hole with boundary curve 

C% =  f l (C) corresponding to the 3-cycle (alb'icl) in </>l , remove from -0T the open 

triangular faces {alT. b%Ti c^}, and identify the closed curve C% in <p% with the curve
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C? in 'ipj' in such a way that a1 = alT, b% =  blT, and cl =  clT. Assuming that the 

embeddings are mutually disjoint, we apply this procedure successively to each 

white triangular face T  E T . Let S  denote the connected triangulated surface S  

with 2m boundary components, obtained this way from the surfaces S l. Roughly 

speaking, S  is obtained from the surfaces S l by adding |T | ‘bridges’, explaining 

the term ‘bridging’ used in the earlier informal outline of our construction.

The 2m boundary components of S  correspond, for i E Zm, to the cycles 

D\ = f %(Di) and D\ — f l(D2) in the graphs G \  the images of the cycles Dj 

and D 2 in G. The chosen orientations of (f) 1 and induce an orientation of S 

by inheriting the clockwise orientation from <pl and V>r, and S  also inherits the 

proper two-colouring of triangular faces from these embeddings. Note that there 

are t =  (n — l)(n  — 3)/6 black triangles in S, and hence in each S \  and for each A 

of the t white triangles T  in S  we added, in V't, another (2m 2 — m) triangles. The 

total number of triangular faces on S  is therefore equal to mt  +  (2m 2 — m)t = 

m 2(n — l)(n  — 3)/3. For each collection of (2m2 — -m) triangles added, m 2 are 

white and (m2 — m) are black; hence it is easy to check that exactly half of the 

triangles on S  are black, as expected.

To proceed, we need an exact description of the graph H  triangulating the 

bordered surface S. Let Di  =  (uiu2 .. •U(n_1)/2) and D 2 = (viv2 .. .U(n_!)/2) be 

the two cycles in G = K n \  {z} introduced earlier. Since (n — l ) /2  is even, every 

other edge of both D\  and D 2 is incident to a white triangle on S : let these 

edges be u2 u3} u4 u5, . . . ,  u (n_1)/2u1 and v2 v3, v4 v5, . . . ,  v ^ i ) / 2 Vi. It may now be 

checked that the graph H  is obtained as follows. For 1 < j  ^  j '  < (n — l)/2 , each 

vertex Uj and Vj of G gives rise to m vertices i/J- and u], i € Zm, of H ) and each 

edge UjUj> and VjVy of G incident to a white triangle gives rise to m 2 edges 

and vftj,, i,i ' G Zm, of H. Since each edge of G except for the (n — l ) /2 edges 

u iu 2i u3 u4: . . . ,  U(n_3)/2U(n_!)/2 and V\V2) v3 v4, . . . ,  U(n_3>/2U(n_1>/2 is incident 

to exactly one white triangle, H  has m2(|E'(G')| — (n — l) /2 )  +  m(n — l ) /2  = 

m ( n — 1) (m(n —3) + 1)/2  edges. To have further insight into its structure, observe
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that for each edge UjUj> and VjVy of G = K n_ i ,  except when {uj,Uj>} =  {ui,ui+1} 

and {vj,Vj>} = {vi, vi+i} , I = 1, 3, 5 , ,  (n—3)/2, H  contains all edges of the form 

u)u%-, and 1 , 1' G Zm. However, if {uj,Uj>} = {uiul+1} or {vj,Vj>} =  {vivi+1} 

for some I =  1, 3 , . . . ,  (n — 3)/2 then H  contains no edge and vljV1-, with 

% 7  ̂ although it does contain the edges u^u1-, and Note also that H

contains no edges of the form UjUj and v^v1- for any i ,i ' G Zm. It follows that 

H  is isomorphic to 1) minus (n — l ) /2  pairwise disjoint copies of {K2m

minus a 1-factor), one on each of the sets {wf, u j , . . . ,  w™-1, u®+1 uj+1, . . . ,  u ^ 1} 

and {uz°, v j , . . . ,  uj71-1, Vi+1 vj+1, . . . ,  u ^ 1} with the missing 1-factor {u\u\+1\ i G 

Zm} and Zm}, respectively, for I = 1, 3, 5, . . . ,  (n — 3)/2.

Let cu : H  —» 5 be the resulting embedding of H  in our surface 5* with 2m 

boundary components consisting of the images of the cycles Di and D 2 under the 

isomorphisms / \  i G Zm. To construct the final face two-colourable orientable 

triangulation of ATi(n-i)+i we build two auxiliary triangulated bordered surface 

SI and 5*2 containing m  boundary components each, and paste them to S  so 

that the 2m  holes of S  will be capped. We will focus on in detail and then 

explain how is obtained. The surface SI will be described as a lift of the plane 

embedding /i2 of the multigraph Mi as depicted in Figure 3.5, with voltages a  on 

directed edges of Mi in the group Zm identical with the group from which all our 

superscripts are taken. Edges with no direction assigned are assumed to carry the 

zero voltage.

The lifted graph has the vertex set {uj- : 1 < j  < (n — l ) /2 ,i  G Zm}. 

We are deliberately using the same letters for vertices of M a as for vertices of 

the graphs Gl, but assume that these graphs are disjoint; such notation will be of 

advantage later. The lifted embedding /i“ : M “ —)■ Ri is orientable and has the 

following face boundaries.

(a) (n — l) /4  faces whose boundaries correspond to cycles of length 2m  of the 

form . .. ul2j) for 1 < j  < (n -  l)/4 .
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Ul

• ( n - l ) / 2

U4( n  —3 ) / 2

Figure 3.5: The plane embedding /ipof the graph Mi. ..

(b) m  faces whose boundaries correspond to cycles of length (n — 1) / 2 of the’ 

form (w|n_a)/2«;„_3)/2 • ■ • u\) for * e  Zm.

(c) One face whose boundary corresponds to a cycle of length m (n  — l ) / 2_of the- 

form. (u \u \u \u \u \u \ .. • w°n_1̂ 2). (N ote: This is the only place in this proof 

where we have used the assumption that ra and (n — l ) /2  are relatively?, 

prime; if this were not the case then a multiplicity of faces with shorter, 

boundary cycles would be obtained.)

We now describe a series of modifications of the embedding hi. Firstly, we 

remove all the open faces of type (a) from the surface /?i, leaving an orientable 

surface R° with (n — l) /4  vertex-disjoint boundaries (^27- 1^27 u 2 j~\w2j_1 ■ • • w2j)>

1 < j  < (n — l)/4 . We cap each of these in turn by taking, for each j ,  a face two- 

colourable orientable triangulation of K 2m+i with colour classes black and white 

on the vertex set {oo^, it§ ., u \^  i t^ -u  ■ ■ • , u ^ z \ } 7 in which the rotation at

00 j is the cycle . . .  u™~\) and in which the face corresponding to

the 3-cycle is coloured black. Here also for convenience we are using

the same letters for the vertices of our A^m+i embeddings as for the vertices of 

Mj*, but we assume that the corresponding surfaces are disjoint. Secondly, from
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each embedding of K 2m+1 we remove the vertex ooj, all open edges incident with 

ooj, and all open triangular faces incident with ooj. This results in a face two- 

colourable embedding of K 2m in an orientable surface R\j with a boundary cycle 

(u%U2j_iuljU2 j_i ■ ■ Thirdly, for every j  such that 1 < j  < (n — l) /4  we

glue the surface Rij  to the surface R,°, identifying points carrying the same labels 

on each of the two surfaces, thereby obtaining an embedding fj,[ : M[ —> R[ of a 

graph M[ with m 2(n — l ) /2 edges.

We continue by removing from R!l all the open faces of type (b), obtain­

ing thus an orientable surface S{ with m  vertex-disjoint boundaries of the form

( U \ n - l ) / 2 U \ n - 3 ) / 2  ' ’ ' Wl)>  ̂ ^  ^ r n -

Let M{ be the graph obtained from M[ by adding a new vertex oo(i) and 

joining it to each vertex of M[ while keeping all other edges in M[ unchanged. 

We construct an embedding fi\ : Mx* —> S{ from the embedding of M[ in

by inserting the vertex 00(1) in the centre of the face F\ bounded by the cycle 

of length m(n — l ) /2  and joining this vertex by open arcs within F\ to every 

vertex on the boundary of F\ (that is, to every vertex of M “). This gives rise 

to m (n — l ) /2 new triangular faces on bounded, for 1 < j  < (n — l)/4 , by 

cycles of the forms for j  odd, and (oo(1)it*it*+1) for j  even. The new

triangular faces will be coloured as described in the paragraph that follows.

The edge u \u \ lies in a black triangular face of fi[ because (ooiu\u\) was a 

white triangular face of the i<2m+i embedding employed in the construction of ii[. 

We therefore colour white the face of /ij bounded by the 3-cycle ( o o ^  

is easy to see that, by an extension of this argument, we must colour white those 

alternate triangles with boundary cycles (oo(1)U^u^11) for j  odd. The remaining 

alternate triangles, those with boundary cycles of the form (oo^UjU1*^) for j  

even, do not share an edge with any existing triangular face of ^  and these are 

coloured black.

As a result of this process, the triangular faces of fi\ are properly two-coloured, 

and the number of such faces is
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(n — 1) 2 m (2 m  — 2) | m(n — 1) m ( 2 m  +  l)(n  — 1)
4 3 +  2 =  6 ’

where the terms (n — l)/4 , 2m(2m —2)/3 and m (n — l ) /2 on the left represent the

number of faces of type (a) in R i , the number of triangles in the added K 2m and

the number of triangles added by inserting the vertex oo^), respectively. Note

that exactly half of these faces are coloured black.

The next step is to construct an embedding fi2 of a graph M 2 on a surface S 2

with the extra vertex 00(2), which is done in exactly the same way as described

above for /ij by replacing all occurrences of u with v, keeping all subscripts and

superscripts unchanged. The description would thus start from an embedding fi2

of a graph M 2 with vertices Vi)v2}. . . , ^(ri._1)/2 corresponding to Figure 3.5 and

continue through the intermediate graphs, surfaces and embeddings M2 , # 2, H2 >

R2, M '2, R 2, to M2*, S 2 and //2 as indicated. The embedding /i2 will, of course,

have the same number of triangles as given above, half of which will be black.

We are ready for the final steps. Our method of constructing the orientable

surface S  from the earlier part of the proof guarantees that a chosen orientation of

S  induces consistent orientations of the boundary cycles of the 2m  holes of S. We

may assume that the orientation induces the cyclic ordering of the cycles D\ and

D\ in the form that was used before, namely, D\ =  f l (Di) = (u\u\ .. - u\n-i) /2)

and D\ = f %{D2) = (vjvj - - - v(Tl_i)/2)> * e The bordered surfaces and

S 2 have m  holes each. Our construction again implies that an orientation of

and S 2 can be chosen so that the boundary cycles are oriented in the form

D\* = • • -U2 U\) and D 2 =  (^(n_.1)/2 • • -v2 v\)i i It remains to do

the obvious, namely, for each i to paste together the boundary cycles D\ and

D\* in such a way that the corresponding vertices u%- get identified, and glue the

boundary cycles D\ and D 2 so that the corresponding vertices will be identified.

Finally, we identify the vertex 00(1) with oO(2), creating one regular pinch point

of multiplicity 2 .
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The final result is an orientable pseudosurface S  with a single pinch point, 

regular of multiplicity 2, and a triangular embedding a : K  —» S  of some graph K . 

We claim that K  =  A ^n -ij+ i and that the triangulation is face two-colourable. 

Obviously, |F (A )| = m (n  — 1) +  1. A straightforward edge count shows that

\E(K) \  =  \E(H)\  +  \E(M^)\ +  \E(M^)\ -  m\ E( D\ ) \  — m\E(D2) \

+  (n — l ) (m2 +  ra) — m (n  — 1)

=  |£/(A"m(n_ i)+i) | •

m (ra- l ) (m (n -3 )  + l) ^  _  lU ^ 2

m (n — 1 )(m(n — 1) +  1)

It is easy to verify that, except for edges incident with the vertex obtained 

by identification of oop) with 00(2) and edges contained in the 2m  cycles D\* and 

D l2 of length (n — l)/2 , the graph M l U contains exactly those edges which 

are missing in H. This shows that there are no repeated edges or loops in K , 

and thus K  =  As regards the face two-colouring, we just have to see

what happens along the identified cycles D\ and D \", and D\ and D l2*, since the 

triangulations of S, S l and S% have been face two-coloured. But according to the 

construction, if I = 1, 3, 5 , . . . ,  (n — 3)/2, a triangular face on S  tha t contains the 

edge u\u\+l is black, while the face on containing this edge is white because the 

embeddings of K 2m+i employed had the faces with boundary cycles (oOjUl2jUl2j _1) 

coloured black. This also applies to the way the embeddings S  and S 2 meet.

To finish the proof it remains to deal with the case when m  and (n — l ) /2 

are not relatively prime. To do so we return to Figure 3.5 and generalise the 

construction. Namely, it turns out that the voltages shown in Figure 3.5 as 1 may 

be replaced respectively by voltages xi,  x2, • •., £(n- i )/4 £ provided that

(d) each is relatively prime to m, and

(e) 5^= 7  xi relatively prime to m.

Condition (d) ensures that the embedding /if will have (n —1)/4 faces with bound­

ary cycles of length 2 m  on each of the sets of points of the form -_1, u2-, u 

u\^  . . . ,  tiJJ-Ii, while condition (e) ensures that /if has a single face with
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boundary cycle of length m(n  — l)/2 . In effect, condition (e) replaces the con­

dition that m  and (n — l ) /2  should be relatively prime. Of course, a similar 

conclusion applies to the embedding fif. It is easy to see that there are numer­

ous ways to select the voltages so that Xj G {+ 1 ,-1 } , 1 < j  < (n — l)/4 , with 

^ ( n - p /4 ^  ^ {1. 2}, which is relatively prime to m  since m  is odd. One of these 

ways is to put — 1, Xj =  1 if j  is even and Xj =  — 1 if j  is odd and greater than 

1. The subsequent steps in the proof then proceed as before with the obvious 

changes. ■

We now have the following corollary.

C oro lla ry  3.2.2 For all n =  13 or 37 (mod 72), there exists a biembedding of 

a pair of Steiner triple systems of order n in an orientable pseudosurface having 

precisely one regular pinch point of multiplicity 2.

P ro o f  Put n =  13 in the above theorem and use one of the biembeddings given 

in Section 3.1. ■

R em ark  The existence of such a biembedding of a pair of STS(25)s would extend, 

the existence spectrum to include all n =  25 or 73 (mod 144), i.e. in arithmetic 

set density terms from 1/3 to 1/2  in the set of all n =  1 (mod 12). We have tried 

to construct such a biembedding but have been unsuccessful.



CHAPTER 4

Triple systems of order 9

In this chapter, we consider some topological properties of the twofold triple sys­

tems of order 9, TTS(9)s. Up to isomorphism there are precisely 36 of these, 

which were enumerated in [45, 48]. These are listed in Appendix A, see page 63 

of [8], and it is to this listing that we refer to throughout this chapter. Of these, 

numbers 1 to 23 contain repeated blocks and 24 to 36 are simple, i.e. contain no 

repeated blocks.

By sewing together the triples of a TTS(9) along common edges, a topological 

space is obtained which may be a surface, pseudosurface or generalised pseudo­

surface. A generalised pseudosurface is the connected topological space which 

results when finitely many identifications of finitely many points each, are made 

on a topological space of finitely many components each of which is a surface or a 

pseudosurface. The rotation schemes for these embeddings are listed in Appendix 

B.

In the next section we describe the structure of these 36 topological spaces. 

Then, in the final section we turn our attention to Steiner triple systems of or­

der 9 and in particular to sets of these which are disjoint, again describing the 

topological properties of these sets.

45
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4.1 T T S(9) em beddings

We first consider the 23 TTS(9)s which have repeated blocks. Clearly, when the 

triples are sewn together, these will form generalised pseudosurfaces. The reason 

is because separation at each point of a repeated block {a, b, c} will yield a sphere. 

The table below lists some of the topological properties of each embedding. We 

consider the structure obtained when the generalised pseudosurfaces are sepa­

rated at appropriate pinch points to form surfaces or pseudosurfaces. Orientable 

and nonorientable surfaces are denoted by Sg and TV7 respectively where g and 

7  are the orientable and nonorientable genus. The symbols S' and denote 

pseudosurfaces, which are obtained when certain points of the surfaces Sg and N 7  

respectively are identified to form pinch points. Additionally, Pi denotes a pinch 

point of multiplicity i.

Number of 
pinch points

Structure of 
generalised pseudosurface

Face 
two-colourable

1 9 x p4 12 x S0 V

2 2 x p2 , 6  x p3, 1 x p4 7 x So . V

3 3 x p2,3 x p3 3 x S0, 1 x W2 V

4 8 x p2, 1 x p4 4 x S0, 1 x Si V

5 6 x p2} 2 x p3, 1 x p4 4 x S0, 1 x Sq

6 6 x p2, 1 x p3 2 x S0, 1 x N[ V

7 3 .x p2, 2 x p3 2 x S0, 1 x S[

8 6 x p2, 1 x p3 2 x S0, 1 x

9 6 x p2) 3 x p3 4 x S0, 1 x Ni

10 4 x p2,4 x p3, 1 x p4 6 x S0

11 3 x p2, 2 x p3 2 x S 0, l x S ;

12 5 x p2, 2 x p3 2 x S0, 1 x Sq

13 2 x p2, 3 x p3 2 x S0, 1 x N[

14 4 x p2. 3 x p3 3 x S0, 1 x Ni
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15 3 x p2, 1 x p3 1 x S0, 1 x N'2

16 4 x p2 1 x So, 1 x TVg

17 5 x p2 1 x S0, 1 x N 2

18 5 x p2 1 x So, 1 x N 2

19 3 x p2 1 x So, l  x N4

20 5 x p2 1 x So, 1 x S[

21 9 x p2 3 x So, 1 x Si

22 6 x p2 1 x S0, 1 x N[

23 5 x p2, 1 x p3 2 x £0> 1 x Si

Next, we consider the last 13 TTS(9)s which are simple. Since these systems 

are simple their embeddings do not necessarily form generalised pseudosurfaces. 

In the table below, G, P and S refer to generalised pseudosurface, pseudosurface 

and surface respectively.

Type of 
surface

Number of 
pinch points

Structure of 
surface

Face 
two-colourable

24 G 9 x p2 S x  S0

25 G 5 x p2 1 x 50il  x iVJ

26 P 4 x p2 1 x N[

27 P 2 x p 2 1 x N '

28 P 1 x p2 1 x N f4

29 P 4 x p2 1 x N[

30 P 3 x p2 1 x S[

31 P 3 x p2 1 x S[

32 P 2 x p2 1x7V'

33 P 3 x p2 1—1
 

X V

34 P 1 x p 2 1 X *$2

35 S 1 X  N5

36 S 1 X N5 V
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The most interesting of the above embeddings are probably numbers 30, 31, 

33, 34, 35 and 36 which are either surfaces or orientable pseudosurfaces.

TTS(9) #35 is embedded in the nonorientable surface 7V5. It is not face 

two-colourable and has the block set {012, 018, 023, 034, 045, 056, 067, 078, 

124, 136, 137, 146, 157, 158, 238, 245, 257, 267, 268, 347, 356, 358, 468, 478}. 

The automorphism group is C§ of order 6 and is generated by the permutation 

(0 3 6 2 1 7)(4 5 8). TTS(9) #36 is also embedded in the nonorientable surface 

jY5. However, it is face two-colourable and gives the unique surface biembedding 

of a pair of STS(9)s. A realization is obtained by taking the system with block 

set (012, 034, 056, 078, 136, 147, 158, 238, 245, 267, 357, 468} and the other ob­

tained from this by applying the permutation 6  = (0 2)(1 3) (6 7) (4) (5) (8). It has 

automorphism group C3 x S 3 of order 18 which, in this realization, is generated 

by the permutations 9 and (0 1 8) (2 5 7) (3 4 6). The automorphisms of even 

order exchange the colour classes. These embeddings were found by Altshuler 

and Brehm [1], from which the given realizations and automorphism groups are 

taken, and rediscovered later by Bracho and Strausz [5].

Kramer and Mesner showed in [38] that there are two nonisomorphic pairs of 

disjoint STS(9)s. As such, there is one other face two-colourable embedding of a 

TTS(9). This is #33 and it is embedded in a torus with three regular pinch points 

of multiplicity 2 and seems to have been discovered by Emch [18]. The embedding 

is illustrated in Figure 4.1 below. We will refer to it as the Emch surface.

8  3 4 8

5

3 384

Figure 4.1: The Emch surface.
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However, systems #30 and #31 also embed in a torus with 3 pinch points, 

though of course these are not face two-colourable. These embeddings do not 

seem to have appeared previously in the literature and are illustrated below in 

Figure 4.2 and Figure 4.3 respectively. Finally, system #34 embeds in a double 

torus with one pinch point and it is illustrated in Figure 4.4.

4 7 5 4

3

1

7 5 44

Figure 4.2: TTS(9) #30 embedded in the torus.

8  3 7 ' ' 8

1

383 7

Figure 4.3: TTS(9) #31 embedded in the torus.

4.2 M axim al sets o f disjoint S T S (9 )s

A large set is a collection (V, B i ) . . . .  (V, Bm) of m  Steiner triple systems of order v 

such that every 3-subset of V  is contained in at least one STS(u) of the collection. 

If every 3-subset of V  is contained in precisely one system, i.e. Bi fl Bj =  0, then 

this collection is called a large set of mutually disjoint Steiner triple systems. An 

easy counting argument establishes that large sets of mutually disjoint STS(u)
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1

c
o

i

Figure 4.4: TTS(9) #34 embedded in the double torus.

contain exactly v — 2 systems. They exist for v =  1, 3 (mod 6), v #  7 [41, 42, 43, 

56]. For v = 9, up to isomorphism, there are two large sets of mutually-disjoint 

Steiner triple systems [2], These are,

A B C D E F G
0 1 2 0 1 3 0 1 4 0 1 5 0 1 6 0 1 7 0 1 8
3 4 5 2 7 4 2 5 8 2 3 7 2 5 4 2 4 8 2 5 3
6 8 7 5 6 8 6 3 7 8 6 4 7 8 3 3 6 5 4 7 6

A B C D E F G
0 1 2 0 1 3 0 1 4 0 1 5 0 1 6 0 1 7 0 1 8
3 4 5 2 7 6 2 7 3 2 4 7 2 8 5 2 5 6 2 4 5
6 8 7 8 4 5 5 8 6 6 3 8 4 3 7 3 8 4 7 6 3

Each system is represented in compact notation, e.g. the system with block 

set {012, 345, 678, 036, 147, 258, 048, 156, 237, 057, 138, 246} is represented as

0 1 2 
3 4 5 
6 7 8

The STS(9) is obtained from the three horizontal triples, the three vertical 

triples, the three forward diagonals, and the three back diagonals. In this section 

we are concerned with maximal sets of mutually disjoint STS(9)s. These are 

sets that cannot be extended but are not necessarily large sets. There exist six

nonisomorphic such sets; two of these are the large sets given above and the
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remaining four, which are not large sets, were found by Cooper [10], see also [33], 

and are given below.

3.

4.

5.

A B C D E
1 2 0 1 3 0 1 4 0 1 5 0 1 7
3 6 8 2 7 8 2 6 4 2 7 8 2 4
5 4 6 5 4 5 7 3 8 3 6 3 6 5

A B C D E
1 2 0 1 3 0 1 4 0 1 5 0 1 6
3 6 8 2 7 8 2 6 3 2 7 3 2 4
5 4 6 5 4 5 7 3 8 4 6 5 8 7

A B C D E
1 2 0 1 3 0 1 4 0 1 6 0 1 7
3 6 8 2 7 5 2 3 4 2 3 5 2 4
5 4 6 5 4 8 7 6 7 8 5 3 6 8

6 .

A B C D 
0 1 2  0 1 6  0 1 7  0 1 8  
73  6 5 2 4  4 2.3 7 2 4  
8 5 4  3 7 8  8 6 5  6 5 3

A biembedding of any pair of two disjoint STS(9)s on the same set forms a 

topological space which must either be an orientable pseudosurface corresponding 

to the embedding of the TTS(9) #33, the Emch surface, or a nonorientable surface 

corresponding to the embedding of the TTS(9) #36. We illustrate below how the 

systems of each set biembed between themselves; we do this by using graphs. Let 

the vertices of the graph represent the systems. Two vertices are adjacent if the 

corresponding systems form an Emch surface.

As can be seen, the graph of the intersections in set # 1  is the complete graph 

K 7. Thus the intersection between every pair of STS(9)s gives the Emch surface. 

For set # 2 , the graph is the complete bipartite graph A3 3. The seven STS(9)s 

can be partitioned into three sets R = {A}, S  = {B,C,  F}, T  = {D. E.G}.  The 

intersections between systems in set S  and systems in set T  give the Emch surface, 

but all other intersections give the nonorientable surface N5. The graphs of set # 3  

and # 4  do not distinguish between the two sets. Both graphs are the complete
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graph K 5 with a path of length 2 removed. For set # 5  every pair of STS(9)s gives 

the Emch surface and so the graph of this set is the complete graph K b. Finally, 

for set # 6  again every pair gives the Emch surface with the exception of one pair.

1

B

D

2

E

F

4

A

3

C

5

B
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D



CHAPTER 5

Biembeddings of idempotent Latin squares

A triangular embedding of a complete regular tripartite graph K n n̂ n̂ in a surface 

is face two-colourable if and only if the surface is orientable [23]. In this case, the. 

faces of each colour class can be regarded as the triples of a transversal design 

TD(3, n), of order n and block size 3. Such a design comprises of a triple (V , Q, B), 

where V  is a 3n-element set (the points), Q is a partition of V  into three parts 

(the groups) each of cardinality n, and B is a collection of 3-element subsets (the 

blocks) of V  such that each 2-element subset of V  is either contained in exactly 

one block of B, or in exactly one group of Q, but not both. Two TD(3, n)s, 

(V, {Gi, C?2> G3 }, B) and (I/7, {Gj, G'2, G"3}, B') are said to be isomorphic if, for 

some permutation 7r of {1, 2, 3}, there exist bijections : G{ —> G'n^ ,  i — 1,2, 3, 

that map blocks of B to blocks of B'. A Latin square of side n determines a 

TD(3,n) by assigning the row labels, the column labels, and the entries as the 

three groups of the design. Two Latin squares are said to be in the same main class 

if the corresponding transversal designs are isomorphic. A question that naturally 

arises is: which pairs of (main classes of) Latin squares may be biembedded?

This question seems to be difficult. On the existence side, recursive construc­

tions are given in [15, 25, 29]. Of particular interest are biembeddings of Latin 

squares which are the Cayley tables of groups and other algebraic structures. An

53
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infinite class of biembeddings of Latin squares representing the Cayley tables of 

cyclic groups of order n is known for all n > 2 . This is the family of regular 

biembeddings constructed using a voltage graph based on a dipole with n parallel 

edges embedded in a sphere [55], or alternatively directly from the Latin squares 

defined by Cn(i.j)  = i + j  (mod n), and C'n(iij)  = i + j  — 1 (mod n) [23]. A 

regular biembedding of a Latin square of side n has the greatest possible sym­

metry, with full automorphism group of order 12n 2, the maximum possible value. 

Recently, two other families of biembeddings of the Latin squares representing the 

Cayley tables of cyclic groups, also with a high degree of symmetry, have been 

constructed [15, 16]. Enumeration results for biembeddings of Latin squares of 

side 3 to 7 are given in [23] and for groups of order 8 in [24]. In [31], it was shown 

that with the single exception of the group C |, the Cayley table of each Abelian 

group appears in some biembedding.

5.1 Idem potent Latin squares

In this chapter, we consider a slightly different but related aspect of biembeddings 

of Latin squares. Let L be a Latin square of side n, which we will think of as a set 

of ordered triples (i , j , k) where entry k occurs in row i , column j  of L, /c =  L(z, j). 

Let L' be the transpose of L, i.e. (itj, k) G V  if and only if (j,i, k) G L. Clearly 

no biembedding of L with V  exists because triples (i , i , k ) occur in both squares. 

However, suppose that L is idempotent, i.e. (i, i,i) G L for all i. Denote the set 

of idempotent triples by /. Then it may be possible to biembed the triples L \  I  

with the triples V  \  I  and it is this question which is the focus of what follows.

So, given an idempotent Latin square L of side n, we denote the set of row 

labels by R = {0r , l r , . . . ,  (n — l) r }, the set of column labels by C = {0C. l c, . . . ,  

(n — l ) c}, the set of entries by E  = {0e, l e, • • •, (n —l) e}, and the set of idempotent 

triples by I  = {{ir , ic, ie} : i =  0 , 1 , . . . ,  n — 1}. Now consider the sets of triples 

L \  I  (the black triples) and U \  I  (the white triples) and glue them together
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along common sides, {ir , j c},2 ^  j , { j c , k e} . j  7̂  k , { k e, ir} ,k  ^  i. The resulting 

topological space is not necessarily a surface but is certainly a pseudosurface 

which we will call the transpose pseudosurface of L \  I  and denote by S ( L \ 1 ) .  

Within this framework, the main, interest is when S(L \  I) is a surface, in which 

case we say that the idempotent Latin square L biembeds with its transpose, i.e. 

( L \ 1 ) m ( L ' \ I ) .

From a graph theoretic viewpoint, a biembedding of an idempotent Latin 

square with its transpose, as described above, gives a face two-colourable trian­

gular embedding of a complete regular tripartite graph K n n̂ n̂ with the removal 

of a triangle factor. For the same reason that applies without the removal of a 

triangular factor, the surface is orientable. In such a biembedding, the number 

of vertices, V = 3n, the number of edges, E  =  3(n2 — n),- and the number of 

faces, F = 2(n2 — n). Therefore, using Euler’s formula, V  +  F  — E = 4n — n2 

which is even if and only if n is even. In the next section, we construct biem­

beddings of idempotent Latin squares with their transpose for all doubly even 

values of n. In Section 5.3, we consider the situation when the transpose U  is 

mutually orthogonal to L, i.e. the Latin square L is a self-orthogonal Latin square 

(SOLS). Biembeddings of a self-orthogonal Latin square L with its transpose are 

constructed for all n — 2m, m  > 2.

The rotation about a point ir is defined to be the set of cycles 

^  A  ^  ^ A ^   ̂ A ^ 1̂  | ^  A ^ 1̂  A/^*^”  1 j 1 ^ 7 —1 f c a m —1 sjQ'Tn 1 A/^771

where kse = L ( i , j s) =  Z /(z,;s+1), s G {1, 2 , . . . ,  n — 1} \  {a1 — 1, a2 — 1 , . . . ,  am — 1} 

and k ^~ l =  L ( i , jat~l ) = L'{i, j at~l ), 1 < £ < ra, l < m < n  — 1 with a0 = 1 and 

am =  n. The cycles are the order of vertices adjacent to ir as determined by the 

biembedding. The rotation about a point j c or ke is defined analogously. The two 

Latin squares L and L' are biembedded in a surface if and only if the rotation 

about each point is a single cycle.

To conclude this section, below is an example which illustrates some of the 

ideas presented above.
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E xam ple  There are two idempotent Latin squares of side 4 each of which is the 

transpose of the other.

0 1 to 3 0 1 2 CO

0 0 2 3 1 0 0 3 1 2
1 3 1 0 2 1 2 1

CO 0
to 1 00 2 0 2 00 0 2 1

00 2 0 1 3 3 1 2 0 3

These biembed in the torus as shown.

Oy 1 q 27. lg 0̂

The rotation scheme is

0r : l c2e 3cl e 2c3e 
l r : 2c0e 3c2e 0c3e 
2r : 3c0e l c3e 0cl e 
3r : 0c2e l c0e 2cl e

0C : l e2r 3el r 2e3r 
l c : 2e0r 3e2r 0e3r 
2C : 3e0r l e3r 0el r 
3C : 0e2r l e0r 2el r

0e : l r2c 3r l c 2r3c 
l e : 2r0c3r2c0r3c 
2e : 3r0c l r3c 0r l c 
3e : 0r2c l r0c 2r l c

5.2 D oubly  even  order

In order to construct a Latin square of doubly even order which biembeds with 

its transpose, we use the concept of a near-Hamiltonian factorization of a com­

plete directed graph together with known triangulations of complete (undirected) 

graphs in orientable surfaces. Although the main results are when the side of the 

Latin square n = 4m, m  > 1, some of the theory is more general and so to begin, 

we do not place this restriction on n.
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Let K n (resp. K*) be the complete undirected (resp. directed) graph on a 

set of n  vertices, {0,1. . . .  .n — 1}, with n(n  — l ) /2 undirected (resp. n(n  — 1) 

directed) edges. A near-Hamiltonian circuit of K * is an ordered (n — l)-cycle 

(xi, x2, ■ ■ ■, z n-i)  where x  ̂ ^  Xj if i ^  j . A  near-Hamiltonian factorization F  

of K* is a partition of the directed edges of K* into near-Hamiltonian circuits 

such that every directed edge appears in exactly one circuit. A straightforward 

counting argument shows that F  contains n near-Hamiltonian circuits and that 

each vertex z , 0 < z < n  — 1, is absent from precisely one circuit.

Given a near-Hamiltonian factorization F  of K*, an idempotent Latin square 

Lf of side n can be constructed as follows,

1. LF(i, i) — z, 0 < i < n — 1,

2. LF(i,j)  = k, 0 < i < n — 1, 0 < j  < n — 1, i ^  j ,  where the directed edge 

(i , j )  occurs in the (n — l)-cycle which does not contain k.

Note that the above construction requires F  to be a near-Hamiltonian factoriza­

tion of a complete directed graph since in a near-Hamiltonian factorization of a 

complete undirected graph L ( i , j ) cannot be uniquely defined. We now have the 

following result.

Lemma 5.2.1 Let F  be a near-Hamiltonian factorization of the complete directed 

graph K*, and let LF be the Latin square constructed from F as above. Let S (L F) 

be the transpose pseudosurface of LF. Then the rotation about every entry point 

ke, 0 < k < n — 1, is a single cycle of length 2n — 2, if n is even and two cycles 

each of length n — 1 if n is odd.

Proof Consider the near-Hamiltonian circuit not containing k. Suppose that it 

is (xi, x2, . . . ,  xn_i). Then entry k occurs in the following (row, column) pairs 

of Lf : (x1; x2). (x2, x3) , . . . ,  (xn- i , x i), (k, k) and in the following (row, column) 

pairs of L'F: (x2, x ^ ,  (x3, x2) , . . . ,  (xu x„_i), (k, k).
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The rotation scheme about ke is then

( ^ l ) r  (^'2)c(^'3)r (^-4 ) 0  • • • ( ^ n —2)c(“Ui — l ) r  (^'l)c(*^2)r • • • { ^ n  — 2^)r { ^ n — l ) c

if n is even, and

( ^ l ) r  ( “̂ 2)c(“̂ 3)r (•̂ ■4 ) 0  • • • ( ^ n —2 ) r  (*^n—1 )c | (^1 )c (^ 2 ) r  (^3)c(^ '4)r • • • ( ^ n —2 )c (^ n —1 )r

if n is odd. ■

A source of near-Hamiltonian factorizations of complete directed graphs K* is 

provided by triangulations of the complete graph K n in an orientable surface. Tri­

angulations in nonorientable surfaces determine near-Hamiltonian factorizations 

of complete undirected graphs and so are discarded. It is well-known that trian­

gulations of K n in orientable surfaces exist precisely when n =  0, 3, 4, 7 (mod 12) 

[52]. Given such a triangulation on vertex set {0 ,1, . . .  ,n  — 1}, first choose an 

arbitrary but fixed orientation. A near-Hamiltonian circuit avoiding a point is 

obtained by the rotation about that point in the selected orientation, and the 

set of all such near-Hamiltonian circuits forms a near-Hamiltonian factorization. 

Using this construction, we then have the following result.

Lemma 5.2.2 Let n =  0,3,4, 7 (mod 12), and T  be a triangulation of the com­

plete graph K n in an orientable surface. Let F(T) be the near-Hamiltonian fac­

torization of K*n constructed as above. Let Lp{r) be the Latin square constructed 

from F(T) and S(Lp(T)) transpose pseudosurface of LF(Ty Then the rotation 

about every row point ir, Q < i < n  — l, and every column point j c, 0 < j  <77—1, 

is a single cycle of length 2n — 2, i f  n is even, and two cycles each of length n — 1 

i f n is odd.

P roof The Latin square L constructed from the triangulation T  has the property 

that if L(i, j)  = k then L(j,k)  =  i and L(k,i)  =  j . It follows that the rotation 

about a row point ir (resp. column point j c) can be obtained from the rotation 

about ie (resp. j e) by applying the permutations (e r c) (resp. (e c r)) to the 

suffices. ■
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The example in Section 5.1 shows the biembedding of the idempotent Latin 

square of order 4 with its transpose; this Latin square can be obtained by using 

the rotation scheme of the triangular embedding of K 4 in the sphere which is 

0 : 1 2  3, 1 : 2 0  3, 2 : 30 1 ,  3 : 021 .  An example of the odd case is given below.

E xam ple Consider the triangulation of the complete graph K 7 on vertex set 

{0,1, 2, 3,4, 5, 6} in a torus, where the triangles are given by the sets {z, l +  z, 3 +  z} 

and {i, 3 +  i, 2 T i}, 0 < i < 6 .

The rotation Ci about a point z is (1 +  i) (3 +  i) (2 +  i) (6 +  i) (4 +  i) (5 +  %). The 

Latin square of order 7 formed from this near-Hamiltonian factorization is

0 1 2 3 4 5 6
0 0 3 6 2 5 1 4
1 5 1 4 0 3 6 2
2 3 6 2 5 1 4 0

00 1 4 0 3 6 2 5
4 6 2 5 1 4 0 3
5 4 0 3 6 2 5 1
6 2 5 1 4 0 3 6

Then the rotations about the various points are as follows.

ir : ( l+ z )c (3 -M )e (2 -H )c(6-M )e ( 4 + z ) c ( 5 + f ) e | (6-t-z)c (4-hz)e (5H-z)c (H -z )e (3-rf-z)c (2H-z)e 

ic : ( l  +  i)e ( 3  +  2)7- (2 +  z)e(6-M)r (4 +  i)e (5 +  i ) r I (6-M)e (4-M)r (5 -hz)e (H -z )r. (3-hz)e (2 +  z)r. 

ie : (1-M )r(3-M )c (2+ ^)r(6+^ )c  ( 4 + i ) r- (5 + z )c | (6-t-z)7~(4-(-z)c (5-|-z)r-(l- |-z)c (3-t-z)T.(2-f-z)c

The following theorem is now an immediate consequence of Lemmas 5.2.1 and 

5.2.2.

T heorem  5.2.3 Let n = 0,4 (mod 12). Then there exists an idempotent Latin 

square L of side n which biembeds with its transpose, i.e. ( L \  I) cxi (Z/ \  I).

In the cases where n =  3,7 (mod 12), the transpose pseudosurface S(L f (t )) 

constructed as in Lemma 5.2.2, although not a surface, does exhibit some reg­

ularity in that every point is a pinch point and the rotation about each point 

consists of two cycles each of length n — 1 as can be seen in the previous example.
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Moreover, if we separate each pinch point, the pseudosurface fractures into two 

orientable surfaces having isomorphic triangulations. Let Ci>Qlp, 0 < i < n — 1, 

a, f} e {r} c, e}, a i- (3, represent the cycle (xlti)a(xii2)p . . .  Then

the rotation about a point (xi)e is Citr)CCiiCir, about a point (xi)r is Ci)CjeCiie)C, and 

about a point (xi)c is C i^rC ^e- Now separate each entry point (xi)e into two 

points (3:̂ )° and (xi)\ so that the rotation about (a;*)® is CitTiC and about (a:*)* 

is C't.c.r- The row and column points may then also be separated and labelled 

appropriately so that the rotation about (a;*) 2 is C°rc , (a;*) 2 is C°ce, and (a:*)2 is 

c “e,r and about (xt)l is C ^ rI ( i 4)J is C ^ cl and ( i ()J is

It remains to deal with the case n =  8 (mod 12). We use a triangulation of the 

complete graph K n_i in an orientable surface to first construct a near-Hamiltonian 

factorization F  of K*_x and then augment this to obtain a near-Hamiltonian 

factorization F  of K*.

C onstruction of F

Let n =  8 (mod 12). Then there exists a triangulation T  of the complete graph 

K n_i in an orientable surface, having a cyclic automorphism [52, 57, 58]. Without 

loss of generality assume that the vertex set of K n_ i is N  = {0, l , 2 , . . . , n  — 2} 

and the cyclic automorphism is generated by the mapping i ■-» % +  1 (mod n — 1). 

Let F(T) = {Co, C i , . . . ,  Cn_2} be the near-Hamiltonian factorization of K * ^  

constructed from T  as above, where C* =  ((zi +  i) (x2 +  i) . . .  (xn _ 2 +  i)), 

0 < i < n — 2, is the near-Hamiltonian circuit which avoids the vertex i. Now 

choose /, 1 < I < n — 2 , relatively prime to n — 1, (in fact we can choose / =  1). 

Then, because T  has a cyclic automorphism, there exists j ,  1 < j  < n — 2, such

that Xj+i — Xj = Z, where if j  = n — 2, Xj+i = x\.  Introduce a new vertex

oo. Let Q  = ((xi +  i) (x2 +  i) . . .  (xj +  i) oo (xj + 1  +  i) . . .  (xn_2 +  i))

and let C ^ =  (0 I 21 . . .  (n — 2)1): arithmetic modulo n — 1. Further, let

F(T)  =  (UJr02C;) U Coo- Then F(T)  is a near-Hamiltonian factorization of K * on 

vertex set N  U {oo}. We can now prove the following theorem.
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T h eo rem  5.2.4 Let n =  8 (mod 12). Then there exists an idempotent Latin 

square L of side n which biembeds with its transpose, i.e. (L \  I) oo {Ll \  I).

P ro o f  Let F(T)  be a near-Hamiltonian factorization of the complete graph K n 

obtained by the triangulation T  of the complete graph K n_i having a cyclic au­

tomorphism, as above. Let L p ^  be the Latin square constructed from F(T)  and 

S(Lp(T)) the transpose pseudosurface. We need to prove that the rotations about 

row points, column points and entry points are all single cycles.

Entry points:

This follows immediately from Lemma 5.2.1.

Row points:

Let xp =  I and xg = n — 1 — I. The rotation about the point 0r is ?

OOc(-£p+l)e ' ' ' 2̂ e (-̂ 1 )c • • • (^p)c^x-)e (^g)c • • • (^n—2)c(^l)e • • • i^q—l)e- .

The rotation about the point ir, i ^  0, is obtained by adding z, modulo n — 1.

The rotation about the point oor is

0c(^g—1 ) e 1 0c(-^g—1 1 2/)c(Xg_i 2/)e . . . Zc(Xg_i T Z)e.

Column points:

With the same definition of p and q as for the row points, the rotation about the 

point 0C is

OQei^q^r • • • (%n—2>)r(zi')e • • ■ {%q — 1 )e<-*-lr(^p+l)e • • • (^n —2)e(^1 )r • • • (^p)r-

Again the rotation about the point ic, i ^  0, is obtained by adding z, modulo 

7i —l. The rotation about the point ooc is

(Xp-)-i )e0r (.Xp-)_i /)e(?2 1 Z)r (Xp-j-i 2/)e(zZ 1 2 Z)r . . . +  Z)e/r . ■

E xam ple  Consider the triangulation of the complete graph K 7 in a torus and 

the rotation C* about a point z as given in the previous example. Choose 1 = 2.

Then the rotation C* is (1 +  z) oo (3 +  z) (2 +  z) (6 +  z) (4 +  z) (5 +  z) and

Coo =  (0 2 4 6 1 3 5). The Latin square of order 8 formed from this near- 

Hamiltonian factorization is
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0 1 2 3 4 5 6 oo
0 0 3 oo 2 5 1 4 6
1 5 1 4 oo 3 6 2 0
2 3 6 2 5 oo 4 0 1
3 1 4 0 3 6 oo 5 2
4 6 2 5 1 4 0 oo 3
5 oo 0 3 6 2 5 1 4
6 2 oo 1 4 0 3 6 5

oo 4 5 6 0 1 2 3 oo

The rotations about the various points are as follows.

ie : ( 1  4 -  i ) r occ(3 4 -  i)r{2 4 - i ) c ( 6 4 - i ) r ( 4 - M ) c ( 5 - M ) r ( l 4 -  i ) coor(3 +  i ) c ( 2  +  i )r(6 +  2 ) c ( 4  +  2)r (5 +  i ) c 

oce . 3c5f0(;2^4(;6f 1C3T.5C

i r  : ( 1  +  i ) c ( 3  +  i ) c ( 2  +  i ) c O O e ( 5  +  z ) c ( l  +  i ) e ( 3  +  i ) c ( 2  +  i ) e ( 6  +  i ) c ( 4  +  i ) e o G c ( 6  +  i ) c ( 4  +  i ) c ( 5  +  i ) e  

ocr • 0 c 4 e 5 c 2 e 3 c 0 e l c 5 e 6 c 3 e 4 c l e 2 c 6 e

ic '■ ( l _l_ i ) e ( 3  +  i ) r ( 2  +  i ) e ( 6  +  i ) r ( 4  +  i)eocr ( 6  +  i ) e ( 4  +  i ) r ( 5  +  i ) e ( l  +  i ) r ( 3  +  i ) e ( 2  +  i )roce(5 4 -  i ) r

OOc . 0 e l r 5 e 6 r 3 e 4 r I e 2 r 6 e 0 r 4 e 5 r 2 e 3 r

5.3 Self-orthogonal Latin squares

In this section, we present a finite field construction to biembed a self-orthogonal 

Latin square with its transpose in an orientable surface. First recall the definitions. 

In a self-orthogonal Latin square, the main diagonal is a transversal and without 

loss of generality, by renaming the entries, it can be assumed that L is idempotent.

The construction is not new, see for example Construction 5.44 in [20], and 

applies for any finite field except those of order 2 or 3. We present it in this more 

general form but by the calculation using Euler’s formula given in Section 5.1, a 

biembedding can exist only for even values.

Let uj {0, —1,1} be a generator of the cyclic multiplicative group of GF(pm). 

Define L(i, j )  = (i + u j ) / ( l  -feu) and consequently =  (j  +o ; i ) / ( l  +<*;).

Then it is easily verified that L is a self-orthogonal Latin square of order n = p171. 

Suppose x =  (i + u j ) / ( \+ u j )  and y =  (j  + u i) /{  1 +cj). Then for every pair (x, y)
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there is a unique pair (i, j).  The rows, columns, and entries of this Latin square 

are indexed by the elements of the Galois field, which in what follows it will be 

convenient to represent by 0.1 =  u)n~1,uj, . . . ,  ujn~2.

We now restrict our attention to Galois fields GF(2m), m  > 2. By consider­

ing the rotations about each of the row, column and entry points we prove the 

following theorem.

T heorem  5.3.1 Let n = 2m , r a  > 2. Then there exists a self-orthogonal Latin 

square L of side n which biembeds with its transpose, i.e. (L \  I) cxi (1/ \  I).

P ro o f Let L be the self-orthogonal Latin square of order 2m,m > 2, obtained 

using the finite field construction given above. Let ( k — ujk/ ( l  +cu), 0 < k < n — 2.’ 

Note therefore that in this context ( k does not have its usual meaning.

(1) Row 0 of L and column 0 of L' are as follows.

0 1 UJ w2 . . u n~3 0Jn~2

0 0 c1 c2 c3 ^ n —2 C°

olumn 0 of L are as follows.

0 i UJ w2 .. a;"-3 wn“2

0 0 c° c1 c2 . . .  C"-3 £-n —2

Clearly the rotation about the points 0r and 0C are single cycles.

(2) Row ujk of L and column uok of L' are as follows.

0 LJ° -  1 UJ UJ2 13

UJk Cfc cfc +  c1 cfc +  c2 c^ +  c3 . . .  c*

oII+

UJk UJk+1 Uln~Z UJn~2

UJk cfc +  c/c+1 _ . .k— UJ £-k k £-n—2 ck +  c°
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Row u k of L' and column u k of L are as follows.

0 U° =  1 LJ UJ2 CJ^ - 1

UJk £ fc + l

U)k u k+1 , ,n—3 , ,n—2 CJ LJ

U)k £ k+1 +  (*k =  UJk ^■fc+l _|_ -̂fc+1 — Q -̂/c+1 _|_ ^ n —̂  +  Cn _ ^

For each k, 0 < k < n — 2, define q$ — qo(k) by the equation =  ( k+1 +  ( qo, 

i.e. luQo =  u k(l —lj). Further, for 1 < i < n — 2, define =  qi(k) by the equations 

( Qi =  ( 90(1 + uj +  • • • +  ljz), i.e. loQi = u k( 1 — u l+1). Note that for 0 < % < n — 2, 

the values u qi are distinct, as are the values ( qi. Moreover u qn~2 =  0.

The rotation about a row point u k is a single cycle as follows.

0 c (Cfc+1 +  C90)e w? (Cfe+1 +  C9l)e U? (Cfc+1 -F C92)e ••• W?"-3 (C*+1 +  C9"_2)e

The rotation about a column point u k is similar and is also a single cycle.

(3) Entry 0 occurs in cells (z, — and in cells (—̂ T) ,  1 =  cj° < z < cjn-2, of L 

and V  respectively. The rotation about the point 0e is therefore,

Ir- ( — ~ ) c  (^2 ) r  ( —^ )c  • • • ( ~ )c (~)r )c • • • ( wn-3 )r ~ =̂2)0

i.e. l r ( - ) c ( ^ ) r  ( ^ )c  • • • (^ ^ 2  )r fc (~)r ( ^ )c  ■ • • (^I=j)r {^= 2 ) 0  

which is a single cycle.

(4) Entry ujk occurs in cells (0,ujk +  and (u)\u)k +  ujk~l — uj1~1) of L and in 

cells (0, luk + ujk+1) and (u k +  u k~l — a;*-1, uj1) of Z/, 0 < z < n — 2.

The rotation about the point u k, where /c is even is

0r (u)k +  UJk~1)c — Uk~2)r (oJk +  UJk~3)c (u)k — UJk~A)r (bJk +  UJk~b)c . . .

(Uk — UJ2)r (ujk +  Lj)c (UJk ~  l ) r (Uk +  LJn~2)c (Uk ~ UJn~3)r . . .

(Uk — UJk+1 =  UJk +  LJk+1)r 0C (LJk +  COk~l = UJk — LJk~1)r(uJk +  Uk~2)c ■ ■ ■

(LJk — Cd)r (iJk +  l ) c (iJk — UJn~2)r (U!k +  UJU~3)c ■ ■ ■ (<jJk +  UJk+1)c

and where k is odd is

0r (tUk +  UJk~1)c (ujk — UJk~2)r (Uk +  CJk~3)c (LJk ~ UJk~4)r (wk +  LJfc_5)c ■ ■ ■
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(Uk — L j ) r  (UJk +  1 ) c (UJk ~  U)n~2)r ( u ) k  +  CJn _ 3 ) c ( u ) k  — UJn ~ 4 ) r  . . .

( i J k ~  UJk + 1  =  L ) k  +  LJk + 1 ) r  0 C ( LJk  +  CJ/C_1 =  U>k ~  UJk ~ 1 ) r ( u j k  +  U k ~ 2 ) c . . .

(iLJk ~  UJ2 ) r  { u ) k +  L ) ) c  ( 0Jk  -  l ) r (0 Jk  +  UJn ~ 2 ) c . . . ( i J k  +  UJk ~ 1 ) c

in either case, a single cycle. ■

It is worth remarking that for a Galois field GF(pm) where p is an odd prime 

and m > 1, except for (p, m) =  (3,1), the rotation about all row points and all 

column points is also a single cycle. The proof is precisely as given above for 

GF(2m), m > 2, except for the observations that ( k +  ( k = ( k+1 +  ( k+1 = 0 which 

in fact play no part in the proof.

However the proof that the rotation about all entry points is a single cycle, 

does rely on the field having characteristic 2. Otherwise, we find that the rotation 

about all entry points is two cycles each of length pm — 1. Thus in these cases, 

although the transpose pseudosurface S ( L \  I) is not a surface, it does exhibit 

some regularity.

The first example of this chapter gives a self-orthogonal Latin square which 

can be biembedded with its transpose. A further example is given below.

E xam ple  Let F = GF(23) with irreducible polynomial x3 = x + 1 and choose 

uj  =  x. Then (x, x 2, x3, x4, x5, x6, x 7) = (x, x2, x +  1, x 2 +  x, x 2 +  x +  1, x2 +  1,1). 

Then the Latin square L, obtained from the construction described in this section 

is,

0 1 x X2 X + 1 X2 + X x 2 + X + 1 X2 + 1

0 0 x2 + X + 1 x 2 + 1 1 X x2 * +1 x2 +  X

1 x 2 +  X 1 X + 1 X2 +  X +  \ x 2 X X2 + 1 0

X X2 +  X + 1 0 X X2 +  X X2 + 1 X + 1 x2 1

X? x2 + 1 X 0 X2 X2 + X +  1 1 X2 + X X + 1

X “h 1 1 X2 + X x2 0 X + 1 X2 + 1 X x2 +  X + 1

X2 +  X X x2 + 1 X2 + X + 1 X + 1 0 X2 + X 1 X'2

X2 + X + 1 x2 X +  1 1 X2 + 1 X2 +  X 0 X2 +  X + 1 X

x 2 +  1 X + 1 x2 X2 + X X 1 x2 + X +  1 0 x2 + 1
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The rotation scheme is

Or : l c ( x 2 4  X 4  l ) eXc( x 2 4  l ) eX2l e ( x  4  l ) cXe( x 2 4  x ) cX2 ( x 2 4  X 4  l ) c ( x  4  l ) e ( x 2 4  l ) c ( x 2 +  x)e 

l r : 0 c ( x 2 4  x)e(x 4  l ) cX2 ( x 2 4  l ) cOeXc(x  4  l ) e ( x 2 4  X  4  l ) c( x 2 +  l ) e ( x 2 +  x ) cXeX2( x 2 4  X  4  l ) e 

XV : (x 4  l )c(x2 +  l ) eOc( x 2 +  X  4  l ) e ( x 2 +  X')c (x  4  l ) e l c0 ex 2 (x-2 +  x ) e ( x 2 +  l ) c l e ( x 2 +  X  4  1 )CX2 

X2 : (x2 +  1 )c(x 4  l ) e ( x 2 4  x ) c l e0 c ( x 2 4  l ) e ( x 2 4 X 4  l ) c( x 2 4  x ) eXcOe( x  4  l ) c( x 2 4 x 4  l ) e l cXe 

(x 4  1),- -■ X'cX'glc(x'2 4  x)e(x2 4  X 4  l ) cx e0 c l e ( x 2 +  l ) c( x 2 4 x 4  l ) eX20 e ( x 2 -f- X')c (x '2 4  l ) e 

(x2 4  x)r : (x2 4 x 4  l ) cl ex 2 ( x  4  l ) ex c( x 2 4 x 4  l ) e ( x 2 +  1 ) cx 20cx e l c ( x 2 4  l ) e (x  4  l ) c0 e 

(x2 4  X 4  l)r : (x2 +  x ) c0 e ( x 2 +  l ) cX'e(x +  l ) c( x 2 4  x ) eX2( x 2 4  l ) e l c( x  4  l ) e0 cX2Xcl e 

(x2 4  1 ) r : X2Xe( x 2 4 X 4  l ) c0 e l cX2( x 2 4  x)c(x2 4 x 4  l ) g ( x  4  l ) c l eXc ( x 2 4  x ) eOc(x  +  l ) e

0C : l r ( x 2 4  x)e(x2 4  l ) r ( x  +  l ) e ( x 2 4 X 4  l ) r X2 ( x 2 4  x ) r Xe ( x  4  l ) r l eX2 ( x 2 +  l ) eXr ( x 2 +  X + l ) e

l c : 0 r ( x 2 4- X 4  l ) ex 2x e ( x 2 +  x ) r ( x 2 +  l ) e ( x 2 4 X 4  1 ) r ( x  4  l ) eXr Oe ( x 2 4  l ) r X2 ( x  +  l ) r ( x 2 4  X’) e

X c : ( x  +  l ) r x 2( x 2 4 X 4  l ) r l e ( x 2 +  l ) r ( x 2 4  x ) eX2 ( x  4  l ) e l r ( x  4  l ) e ( x 2 4  x ) r ( x 2 +  X +  l ) e0 r ( x 2 4  l ) e

X2 : (x2 4  l ) r Xe l r ( x 2 4  X 4  l ) e ( x  4  l ) r 0 eXr ( x 2 +  x)e(x2 4 X 4  l ) r(x2 4  l ) eOr l e ( x 2 + x ) r ( x  4  l ) e

(x 4  l ) c : xr(x2 +  l ) e ( x 2 +  x ) r 0 ex 2 ( x 2 4 x 4  l ) e ( x 2 4  l ) r l e0 r Xe ( x 2 4 x 4  l ) r ( x 2 4  x ) e l r T 2

(x2 4  x)c : (x2 4  x 4  l ) rOe(x +  l ) r(x2 4  l ) el rxe0rx2(x2 4  l ) r(x2 4 x 4  l ) exr(x 4  l ) e£2l e

(X2 4 x 4  l ) c : (X2 + x ) r l eXr X20 r ( x  4  l ) e l r ( x 2 4  l ) eX2 ( x 2 4  x)e(x 4  l ) r Xe ( x 2 4  l ) r 0 e

(x2 +  l ) c : ( x 2 ( x  +  l ) e0 r ( x 2 4  x ) ex r l e ( x  4  l ) r ( x 2 +  X +  l ) e ( x 2 4  X')rX2lrOe(x2 4  X 4  l ) r Xe

0e : l r(x2 4  l ) c(£2 4 x 4  l)r(x2 +  x)c(x 4  l)rX2xrl c(a:2 +  l)r(z2 4 x 4  l ) c(z2 + x)r(x 4  l)cxlxc ■ 

l e : 0rx2(x2 4  x)r(x2 4 x 4  l ) cxr(x2 4  l ) c(x 4  l ) r0cx2(x2 4  x)c(x2 4  x 4  l ) rxc(x2 4  l ) r(x' 4  l ) c 

xe : (x 4  \)r{x2 4 x 4  l)c{x2 +  )̂rX2clr{x2 4  x)cOr(x 4  l ) c(x2 4 x 4  l ) r(^2 +  )̂cxl ĉ{x2 4  x)r0c 

x2 : (x2 4  l ) rl c(x 4  l ) rxc(x2 4 x 4  l ) r0c(x2 4  x)r(x2 4  l ) cl r(.T 4  l)cxr{x2 4 x 4  l ) c0r(x2 4  x)c 

(x 4  l ) e : xr(x2 4  x)cx2(x2 4  l ) c0r(x2 4 x 4  l ) cl rxc(x2 4  x)rx2(x2 4  l ) r0c(x2 4 x 4  l ) rl c 

(x2 4  x)e : (x2 4 x 4  l ) r(x 4  l ) cl ?-0c(x2 4  l ) rxcx2(x2 4 x 4  l ) c(x 4  l )r lc0r(x2 4  l ) cxrx2 

(x2 4 x 4  l ) e : (x2 4  x)rxc0rl ĉ 2(^ 4  l ) c(x2 +  l)r{x2 +  x)cxrOcl rx2(x 4  l ) r(x2 4  l ) c 

(x2 4  l ) e : x20cxr(x 4  l ) c(x2 4  x)rl c(x2 4 x 4  l ) rx20rxc(x 4  l ) r(x2 4  x)cl r(x2 4 x 4  l)c



CHAPTER 6

Maximum genus embeddings of Latin squares

In this chapter we investigate a different problem concerning embeddings of Latin 

squares. We first recall some definitions from the previous chapter. A triangular 

embedding of a complete tripartite graph K n n̂ n̂ is face two-colourable if and only 

if the supporting surface is orientable. In such a case, the faces of each colour 

class can be regarded as the triples of a transversal design TD(3,n), of order n 

and block size 3. A Latin square of side n determines a TD(3,n) by assigning 

the rows, the columns, and the entries as the three groups of the design. The 

two Latin squares are said to be biembedded in the surface. Whenever such a 

biembedding exists, it represents a face two-colourable embedding of An,n,n in a 

surface of minimum genus.

The purpose of this chapter is to investigate the opposite case, namely the 

embeddings of Latin squares in surfaces of maximum genus. To be precise, we 

seek a face two-colourable embedding of An,n,n in a surface in which the faces 

in one of the two colour classes are triangles and so determine a Latin square of 

order n, while there is just one face in the second colour class and the interior of 

that face is homeomorphic to an open disc. We call this an upper embedding of 

the Latin square. These types of embeddings have already been investigated for 

Steiner triple systems in [28].
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6.1 E xisten ce o f upper em beddings

Consider a Latin square of order n. In an upper embedding the number of vertices 

(V) is 3n, the number of edges (E) is 3n2 and the number of faces (F) is n2 + 1. 

So V + F -  E =  l + 3n — 2 n2. For a nonorientable upper embedding the genus 

7 =  (2n -  1 )(n — 1) whilst for an orientable upper embedding the genus g = 

(2n — l)(n — l) /2  which requires that in this case n must be odd. We first 

consider the nonorientable case and prove the following theorem.

T h eo rem  6.1.1 Every Latin square has an upper embedding in a nonorientable 

surface.

P ro o f  Begin with any face two-colourable embedding of K n^ n in which the black 

faces are triangles representing the Latin square. If there is just one white face 

then we have an upper embedding. Otherwise, there exists at least one black 

triangle that is incident to two white faces. With the addition of a crosscap across 

the black triangle we join these two white faces together, reducing the number 

of faces by one and increasing the nonorientable genus by one: this is shown in 

the figure below. By repetition of this procedure we obtain a nonorientable upper 

embedding of the Latin square. ■

b * f c  b *-------f  c

a, d a fd
1 ^

oo : . . .  abed , . . .  oo : . . .  acbd , . . .

Figure 6.1: Joining two white faces.

The process is illustrated in the following example of a nonorientable embed­

ding of the Latin square which is the Cayley table of the Klein group K 4.
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E xam ple
0 1 2

CO

0 0 1 2 3
1 1 0 3 2
2 2 3 0 1

CO 3 2 1 0

Consider the embedding of the above Latin square with the following rotation 

scheme.

0r : 0c0e 3c3e 2c2e l cl e 0C : 0e0r 3e3r 2e2r l el r 0e : 0r0c 3r3c l r l c 2r2c

l r : 0cl e 3c2e 2c3e l c0e l c : l e0r 2e3r 3e2r 0el ,  l e : l r0c 2r3c 3r2c 0r l c

2r : 0c2e 3cl e 2c0e l c3e 2C : 2e0r l e3r 0e2r 3el r 2e : 2r0c l r3c 3r l c 0r2c

3r : 0c3e 3c0e 2cl e l c2e 3C : 3e0r l e2r 0e3r 2el r 3e : 3r0c 0r3c 2,1c l r2c

This embedding has 16 black triangular faces and 4 white faces. The white faces 

are:

W\\ 0e0r3cl e3rl c3el rl cle lr3 c3e2r0cle2r2c3e3r3c2e3r0c2el 7.2c2e2T.3c0elr'0c0e3r.2c 

W2: 0r0c3e0r2cl e 

0rl c2e 

W 4 ’. 0e2rl c

Adding a crosscap across the black triangle {2r ,2c.0e} joins the two white faces 

Wi and W4 . Similarly, adding a crosscap across the black triangle {0r , 2C, 2e} joins 

the white faces W2 and W3. The two new white faces are:

WA: 0e0r3cl e3r l c3eM clelr3c3e2r0cl e2r0el c2r 2c3e3r3c2e3r0c2el r.2c2e2r3c0el T-0c0e3r2c 

Wb- 0r2el c0r2cl e0r0c3e

Finally, the addition of a crosscap across the black triangle {3r ,2c, l e} joins the 

two remaining white faces Wa and Wb together and the resulting embedding is 

nonorientable and of maximum genus with rotation scheme,

0r : 0c0e 3c3e 2e2c l cl e 0C : OeO,. 3e3r 2e2r l cl r 0e : 0,-Oc 3r3c l rl c 2r2c

1, : 0cl e 3c2e 2c3e l c0e l c : l e0, 2e3r 3e2r 0el r l e : l r0c 2r3c 2c3r 0rl c

2r : 0c2e 3cl e 0e2c l c3e 2C : 2e0r l e3r 0e2r 3el r 2e : 2r0c l r3c 3rl c 0r2c

3r : 0c3e 3c0e 2cl e l c2e 3C : 3e0r l e2r 0e3r 2el r 3e : 3r0c 0r3c 2rl c l r2c
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and large face,

0e 0r 3C l e 2C 0r l c 2e 0r 3e 0C 0r l e 3r l c 3e l r l c l e l r 3C 3e 2r 0C l e 2r 0e l c 2, 2C 

3e 3r 3C 2e 3r 0C 2e l r 2C 2e 2r 3C 0e l r 0C 0e 3r 2C

We now turn our attention to orientable surfaces. As we showed in the begin­

ning of the chapter, orientable embeddings require the order of the Latin square 

to be odd. Despite this arithmetic restriction, the proof for the existence of ori­

entable upper embeddings is much more involved compared to the nonorientable 

case.

T h eo rem  6.1.2 Every Latin square of odd order n has an upper embedding in 

an orientable surface.

P ro o f  The triples {ir)j c, /ce}, i , j ,  k E Zn, of the Latin square will be represented 

as the black triangles of the embedding. Choose a fixed row point xr and a fixed 

column point yc. Take the triangle T  containing both of these points together 

with a further (n — l ) /2  triangles containing xr and a further (n — l ) /2  triangles 

containing yc such that, together with T, these n triangles contain all n entry 

points. Represent these triangles on a sphere. Note that the boundary of the 

large face contains all entry points. Now take the (n — l ) /2 row points which are 

not contained in any taken triangle and the (n — l ) /2  untaken column points and 

pair them arbitrarily. Attach the triangles containing these pairs to the spherical 

embedding at the appropriate entry points. This procedure gives a spherical 

embedding containing (3n — l ) /2  black triangles and one white face with every 

row, column and entry point occurring at least once on its boundary. Note also 

that the black triangles can be oriented in such a way that the points on the 

boundary follow the sequence ir j c ke ...

We now proceed to add the remaining (2n2 — 3n +  l ) /2  triples of the Latin 

square, one at a time, increasing the genus by one at each step. Consider at 

any stage the boundary of the white face. We will use the fact that every point 

of the Latin square appears on the boundary at least once. This assumption is
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certainly true for the initial embedding described above. If the next triple to be 

added is {ur, vC: we} then we locate one occurrence of each of these points on the 

boundary of the white face, add a handle to the white face, and paste on the 

triangle (ur,vc,we).

If the points ur)vc,we originally divided the boundary of the white face into 

three sections A, D and C, e.g. AvcBweCur , then it is easy to see that, after the 

addition of the black triangle (ur,vc,iue) there still remains only one white face 

with boundary A (vcwe) C (urvc) B  (weur ) (see Figure 6.2). This face has three 

more edges than at the previous stage and every point of the Latin square still 

appears on the boundary. It is also clear that if the interior of the white face was 

homeomorphic to an open disc prior to the addition of the black triangle, then it 

would remain so after this addition. ■

Figure 6 .2 : Adding a black triangle.

E xam ple  Consider the main class of the non-cyclic Latin square of order 5.

0 1 2 co 4

0 0 1 2

CO 4

1 1 0 3 4 2

2 2 3 4 0 1

co 3 4 1 2 0

4 4 2 0 1 CO

First take the triangles {0r , 0C, 0e}, {0r , l c, l e}, {0r , 2C, 2e}, {3r , 0C, 3e}, {4r , 0C, 4e}, 

{l r ,3c,4e}, {2r ,4c, l e} and represent them in a sphere as shown below.
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4r 0e l c

Then the large face of the initial embedding is:

0r l c l e 2r 4C l e Qr 2C 2e 0r 0C 3e 3r Qc 4e l r 3C 4e 4r 0C 0e

Finally, add the remaining 18 triples of the Latin square, one at a time. At each

stage, we give the boundary of the large face. The underlined sections are the 

sections that divide the boundary in order to accommodate the addition of the 

new triangle.

{0r , 3C, 3e} added; the large face is:

0r Oe Qc 4r 4e 3C 3e 0C 0r 2e 2C Qr l e 4C 2r l e l c Qr 3C l r 4e 0C 3r 3e

{0r ,4c,4e} added; the large face is:

0r 0e 0C 4r 4e 3C 3e 0C 0r 2e 2C 0r l e 4C 4e 0C 3r 3e 0r 4C 2r l e l c 0r 3C l r 4e

{l r , 0C, l e} added; the large face is:

l r 4e 0r 0e 0C le 4C 4g 0C 3r 3e 0r 4C 2r l e l c 0r 3C 1r Oc 4r 4g> 3C: 3e Oc Or 2e 2C0r le

{l r , l c, 0e} added; the large face is:

lr- le Or 2C 2e 0r 0C 3e 3C 4e 4r 0C l r 3C 0r l c 0e Or 4e lr lc le 2r 4C0r 3e 3r Oc 4e

4c le Oc Oe

{l r , 2C, 3e} added; the large face is:

l r lg 0r 2C 3g 3C 4g 4r 0C l r 3C Or l c 0e 0r 4g lr l c 1,e 2r 4C 0r 3e: 3r Oc 4e 4Cle Oc 0e

l r 2C 2g Or Og 3e

{l r , 4C, 2e} added; the large face is,

l r l e 0r 2C 3e 3C 4e 4r Oc lr 3C 0r l c 0e 0r 4e l r lc l e 2r 4C2e 0r Oc 3e lr 4C0r 3e

3r Oc 4e 4C l e 0C 0e l r 2C 2e

By repetition of this technique, add the remaining triangles in this order:

{2r ,0c,2e}, {2r , l c> 3e}, {2r , 2C, 4e}, {2r ,3c;0e}, {3r , l c,4e}, {3r i2c, l e}, {3r ,3C!2e}, 

{3r ,4C)0e}, {4r , l c, 2e}, {4r ,2C)0e}, {4r ,3C) l e} and {4r ,4c,3e}.
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Then the large face of the upper embedding is,

4r 4e 2C 0e l c 2e 3C l e 2C 0r l e l r 2e 0C 0r 2e 4C 3e 0r 4C l r 3e l c 0r 3C 2r 4e 3C 3r l e 

l c l r 4e l c 2r 2e 4r 2C 3r 4e 0r 0e 4r 3C 3e 2C 2r 3e 0C 2r l e 4r 4C 2r 0e 4C 4e 0C 3r 

Oe Oe l e 4C 3r 2e 2C l r 0e 3C l r 0C 4r l c 3r 3e

6.2 A utom orphism s

Throughout the rest of this chapter we investigate possible automorphisms of an 

orientable upper embedding of a Latin square. Each of the three sets of row points, 

column points and entry points will be called a part. We first prove a fairly easy 

theorem.

T heorem  6.2.1 Let f> be an automorphism of an orientable upper embedding'of 

a Latin square of order n. I f  f  is not the identity automorphism then it has fixed 

points from only one part. '

P ro o f  Suppose that <p has two fixed points, a and 6, each from different parts. 

Then there is an edge ab which is fixed by fi. Therefore, by considering the large 

face, fixes every point and is the identity. ■

Automorphisms may be either orientation-preserving or orientation-reversing. 

We will first show that orientation-reversing automorphisms do not exist. Any 

such automorphism will act on the boundary of the large face as a reflection 

across an axis. Since there is an odd number of points on the boundary, this 

axis will pass through exactly one point, say 0r , and exactly one edge; thus the 

automorphism will be an involution having a single fixed point 0r . Now consider 

the triangles containing the point 0r . There is an odd number of these and so 

one of them, without loss of generality {0r ,0c,0e}, must be fixed. Hence, the 

transposition (0C 0e) is part of the involution. Consequently, the automorphism 

will map a row point to a row point, a column point to an entry point and an entry
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point to a column point. Therefore, such an automorphism will be of the form

(Or)  ( ( 2 ' l ) r  ( ^ 2 ) r )  • • • ( ( ^ n —2 ) r  ( ^ n  —l ) r )  (Oc 0 e ) ( ( ? / l ) c  (•2;l ) e )  • • • {{Vn — l ) c  ( ^n —l ) e )

where Xi.yi.Zi 6 ^  Xj if i ^  j.  It further follows that the edge through

which the axis passes is of the form {ac,(de}. However, we show that such an 

automorphism cannot exist.

T h eo rem  6.2.2 Orientation-reversing automorphisms of an orientable upper 

embedding of K n>nin do not exist.

P ro o f  Assume that such an automorphism does exist and that it is of the form 

given above. Now assume that this automorphism maps uc to ve and vice versa, 

where u ^  a  and v ^  p. Then the edge {uc, ve} exists somewhere on the boundary 

of the large face, say on the right side of the axis. Since this automorphism is a 

reflection, the edge {ve, uc} must exist on the left side of the axis. This means the 

same edge appears twice on the boundary of the large face, a contradiction. ■

Figure 6.3: Orientation-reversing automorphism.

So all automorphisms are orientation-preserving and we now consider these. 

Since the action of any such automorphism on the boundary of the large face is 

a rotation, the group is cyclic and its order must divide 3n 2, the number of edges 

in the large face. Orientation-preserving automorphisms will be of three types:

1. those that preserve all three parts,

2 . those that fix one part and interchange the other two,
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3. those that cyclically permute all three parts.

Consider first orientation-preserving automorphisms that preserve all three parts 

(the other two types will be dealt with later). Let G be the group of these 

automorphisms. Then as observed above G =  Zm and m  | 3n2. However, since G 

preserves all three parts m \ n 2. But in fact we can prove that m \ n .

Theorem  6.2.3 Let G =  Zm be the group of orientation and part preserving 

automorphisms of the orientable upper embedding. Then m \ n .

P roof Let n > 1  and denote the orientable upper embedding of K n n̂>n by M. To 

obtain further restrictions on m  we will replace M  with a related map on which 

G will act freely and use elementary theory of regular coverings.

Let T  be the truncation of M. Truncation refers to the substitution of every 

vertex v of the embedding by a cycle of order deg(v). This truncation has 3n 

yellow faces of length 2n that arise by truncating each of the 3n vertices of the 

original map, n2 green faces of length 6 that arise from the n2 triangular faces of 

M, and one white face of length 6n2 arising from the large face of M. The cyclic 

group G clearly acts freely on the vertex set of T. Since G preserves each part 

of K n^ n and no triangle of K n n̂ n̂ has two vertices from the same part, no two 

distinct vertices of a yellow face in T can be mapped onto each other by the action 

of G on T.

Consider now the quotient map M' — T /G  whose vertices, edges and faces 

are G-orbits of the vertices, edges and faces of T. The conclusion of the previous 

paragraph implies that M' has n2/m  green hexagonal faces arising from the n2 

green faces of T. The action of G on the white face of T  leaves one white face of 

length 6n2/m  in M ' . To determine what happens to the 3n yellow faces of length 

2n in T  when passing to the quotient M ', for each vertex v of K n n>n let Gv be the 

stabilizer of v in the action of G on vertices of K n n̂ n̂ and let |GV| =  m v. Being 

a subgroup of a cyclic group, each Gv must be cyclic, and the natural covering 

T  —>• M' maps a G-orbit consisting of m /m v yellow faces in T  onto a single yellow
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face in M' of length 2n /m v. As an aside, observe that m v must be a divisor of n, 

since Gv acts freely as a cyclic group of order m v on the n triangular faces of the 

original map M  incident with v.

By Theorem 2.2.2 of [34] we know that the regular covering T  —> M' induced 

by the free action of G can be reconstructed by means of a lift with the help 

of an ordinary voltage assignment a  on the darts of M' in the group G. In the 

reconstruction process we will use elementary properties of regular coverings as 

listed in [34]. The net voltage on each of the n2/m  green faces of M' must be zero, 

as each of them lifts onto m  green faces of T  of the same length. For each vertex 

v of K n>njn, the yellow face of M' of length 2n /m v lifts onto m /m v yellow faces of 

T  of length 2n. Therefore, the net voltage on such a yellow face of M' must be an 

element of G of order m v. Finally, the net voltage on the white face of M' must 

be an element of G of order m  because this face of length 6n2/m  lifts onto the 

white face of T  of length 6n2. Here and in what follows we assume that all the 

net voltages are calculated with respect to a fixed orientation of the supporting 

surface of the map M ' . Of course, the net voltages in our case do not depend on 

choosing the initial point on a cycle because our voltage group G is Abelian.

Since the sum of the net voltages on all faces of M' is zero, the above analysis 

implies the negative of the net voltage w on the white face is equal to the sum S 

of the net voltages on all yellow faces of M ' . The element w has order m in G, 

hence so has S. Observe that all summands in S  have orders m v where v ranges 

over a set 0  of representatives of the orbits of G on the vertex set of AT,n,n- But 

the elements of G = Zm of order m v have precisely the form (m,/mv)tv where 

gcd(mv, tv) = 1 and 1 < t v < m v.

It follows that S can be expressed in the form

for some tv as above, where v € O. Let m = ac and n =  be with gcd (a, b) =  1.
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Recalling that m v \ n for each v G O, we have

m m n a
/  ^v /  C —jm v n z—' m v bveo v veo v

where j  is an integer mod m. It follows that S  is an a-multiple of an element of 

Zm. The order of S  however ought to be m, and as a | rn, this is possible only if 

a = 1. Consequently, m \ n, as claimed. ■

We now need the following definition. A group G of permutations of a set S  

is semi-regular if for any two elements x. y  E S, there exists at most one element 

g £ G such that y =  gx.

Lemma 6.2.4 The cyclic group Zm, where m \ n, is not semi-regular on all three 

parts of the embedding.

P ro o f  Suppose that Zm is semi-regular on each part of the embedding. The 

quotient of the embedding under the action of Zm is he. embedded

with n2/ m  triangles and one large face of length 3n2/ m.  It follows from Theorem

2.2.2 of [34] that the original upper embedding of An n n can be reconstructed 

by lifting this quotient embedding. To do so we need a voltage assignment on 

Kn/m n/m n/m suc^ the voltages on the triangles sum to zero while the

voltages on the large face sum to an element coprime with m.  Since the large 

face consists of all the edges in the embedding which also form the triangles the 

voltage sum will always be zero. Contradiction. ■

However, the group can act semi-regularly on two of the parts. The following 

is an example. In it both m  and n are equal to 3 and the cyclic group Zn acts 

semi-regularly on two of the parts and fixes the third.

Exam ple Consider the cyclic Latin square of order 3.

0 1 2
0 0 1 2
1 1 2 0
2 2 0 1
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An upper em bedding of the above Latin square has the following rotation  

scheme,

0r : 0c0e l cl e 2c2e 0C : 0e0r l el r 2e2r 0e : 0r0c l r2c 2r l c

l r : 0cl e l c2e 2c0e l c : 0e2r l e0r 2el r l e : 0rl c l r0c 2r2c

2r : 0c2e l c0e 2cl e 2C : 0el r l e2r 2e0r 2e : 0r2c 2r0c l r l c

The large face is,

0e 0 , l c 2e 0r 0C l e 2r 0C 0e l r 0C 2e l r 2C le 0r 2C 0e 2r 2C 2e 2r l c le  l r h

The action of the autom orphism  group is: 

i e i—̂ ze, %r 1—̂ (2 T  1)d A 1—̂ (2 T  2)c, 0 <  2 <  2.

We can generalize the above exam ple to  any cyclic Latin square of odd order 

n.  T he rotation scheme and the large face of the upper em bedding will be as 

follows:

ir : jc(i  +  j ) e ( j  +  l)c(2 +  j  +  l)e

jc ■ ■ ■ ■ ke{k ~ j )r  {k T  l ) e(^ T  1 j )r  ■ • ■

ke : . . .  ir (k — i)c (i +  l ) r (& ~  2 — l ) c • • •, k ̂  — 1

( - l ) e  : • • • i r ( - i  ~  l)c (2 +  t ) r { - i  -  1 -  t )c . . .  , t ±  1, (t, n) =  1, (t -  1, n)  =  1

Such a value of t always exists. For exam ple, we can take t — 2.

The large face is,

(-l)e ir (~0c le (t + 2)r (-/.)c 3e (/. + 4)r (-t)c ... (~3)e (/. -  2)r -t)e .
(—l)e (2/. — l)r (-2/, + l)c le (21. + l)r (-2/, + l)c 3e (21. + 3)r (—2/. + l)c ... ( 3)e (21 -  3)r (—21. + l)c
(-l)e (3/.-2)r (-3/. + 2)c le (3 i)r (-3/. + 2)c 3e (3/. + 2)r (-3l + 2)c ... (-3)e (3/- 4)r (-3i + 2)c

(-l)e lr ■ (-l)c le 3r ( l)c 3e 5r (-l)c ... (-3)e (-l)r (-l)c

The action of the autom orphism  group is:

ze 1—) 2e, ir »-> (2 — t)r, 2C 1  ̂ (2 +  t), 0 <  2 <  n  — 1.

So to summarize the results so far, we have shown that the group G  of

orientation-preserving and part preserving autom orphism s of an orientable up­

per embedding of a Latin square of order n  is cyclic Zm where m  \ n.  Further 

the case m  = n  is achieved. The cyclic group Zm cannot act sem i-regularly on 

all three parts of the em bedding but can act semi-regularly on two of the three
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parts. In the construction given, the action of the group Zn can be described by 

the notation \ nn ln l and when n =  p is prime this is the only possibility.

Now consider the situation of an automorphism, say 0, which fixes one part 

and interchanges the other two. Then 02 fixes all three parts. It follows that 0 has 

even order. But all automorphisms are of odd order. So we have a contradiction 

and there are no automorphisms of this type.

Finally consider the situation of an automorphism, say 9, which permutes the 

parts cyclically. Then 03 fixes all three parts. Suppose that 93 has an orbit of 

length i in one part and of length j  in a second part where j  < i. If x is an 

element of the orbit of length j  in the second part then 93i(x)  =  x. Further 

63i(9(x)) =  9{93i(x)) =  9{x). So 9 stabilizes vertices in different parts. But 9 

is not the identity because j  < i. This proves that all orbits of 93 have the same 

length, say m, which must be the order of 93. Thus the group generated by 93 is 

semi-regular on all three parts which is a contradiction by Lemma 6.2.4, unless 

93 is the identity. Hence, any automorphism which permutes the parts cyclically 

must have order 3.

We assume, without loss of generality, that the automorphism 9 which per­

mutes the parts cyclically is of the form n ^ o 1^  ^  ie) since any other auto­

morphism will give a Latin square isotopic to the Latin square obtained by 9. 

Note that in a Latin square with such an automorphism, if {xr ,yC)ze} is a triple 

then {xc, ye) zrj and {xe,yr,z c} must also be triples. This is equivalent to a 

Latin square obtained from a quasigroup having the semi-symmetric property, i.e. 

xy = z => yz =  x = >  zx = y. An example for n — 5 is the following.

Exam ple Consider the following Latin square of order 5.

0 •1 2 3 4
0 0 3 4 1 2
1 3 2 1 0 4
2 4 1 3 2 0
3 1 0 2 4 3
4 2 4 0 3 1
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An upper embedding of the above Latin square with an automorphism of order 3 

which permutes the parts cyclically has the following rotation scheme,

0r : 0c0e 4c2e 3cl e 2c4e l c3e 0C: 0e0r 4e2r 3el r 2e4r l e3r 0e : 0r0c 4r2c 3r l c 2r4c l r3c

l r : 0c3e 4c4e 3c0e l c2e 2cl e l c: 0e3r 4e4r 3e0r l e2r 2el r l e : 0r3c 4r4c 3r0c l r2c 2r l c

2r : 0c4e 4c0e 2c3e 3c2e l cl e 2C: 0e4r 4e0r 2e3r 3e2r l el r 2e :0r4c4r0c2r3c3r2c l r l c

3r : 0cl e 4c3e 2c2e l c0e 3c4e 3C: 0el r 4e3r 2e2r l e0r 3e4r 3e : 0r l c 4r3c 2r2c l r0c 3r4c 

4r : 0c2e 4cl e 3c3e 2c0e l c4e 4C: 0e2r 4el r 3e3r 2e0r l e4r 4e : Qr2c 4rl c 3r3c 2,-0c l r4c

The large face is,

0e 0r 4C l e 3r 4C 2e 4r 4C 0e l r l c 0e 2r 2C l e 2r 0C 3e 3r 2C 3e l r 4C 3e 0r 0C 4e l r 3C 

4e 2r 4C 4e 0r l c l e 0r 2C 2e l r 2C 0e 3,- 3C 2e 3r l c 4e 3r 0C 0e 4r l c 3e 4r 2C 4e 4r 0C 

le l r 0C 2g 2r l c 2g 0r 3C 3g 2r 3C l e 4r 3C 0e 0r

If the Latin square is also idempotent, i.e. xx = x, the quasigroup corre­

sponds to a Mendelsohn triple system (MTS). There are, up to isomorphism, three 

Mendelsohn triple systems of order 7 [7]. Upper embeddings of each of these with 

an orientation-preserving automorphism which permutes the parts cyclically are 

below.

Exam ple The three nonisomorphic MTS(7) on base set Z7 are:

1. [{0,1,3} {0,3,1}] (mod 7),

2. [{0,1,3} {0,3,2}] (mod 7),

3. [{0,1,2}, {0,2,1}, {0,3,4}, {0,4,3}, {0,5,6}, {0,6,5}, {1,3,5}, {1,6,3}, 

{1,5,4}, {1,4,6}, {2,5,3}, {2,3,6}, {2,4,5}, {3,6,4}].

For each of the following three examples, the Latin square corresponds to the 

respective Mendelsohn triple system. Each Latin square is followed by its upper 

embedding rotation scheme and large face. It is easy to see that each upper 

embedding has an orientation-preserving automorphism which permutes the parts 

cyclically,
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1. [{0,1,3} {0,3,1}] (mod 7)

0 1 2

C
O 4 5 6

0 0 3 6 1 5 4 2

1 3 1 4 0 2 6 5
2 6 4 2 5 1 3 0

C
O 1 0 5 3 6 2 4

4 5 2 1 6 4 0 3
5 4 6 3 2 0 5 1

6 2 5 0 4 3 1 6

0r : 0c0e 6c2e 5c4e 4c5e 3cl e 2c6e l c3e

l r : l cl e 0c3e 6c5e 5c6e 4c2e 3c0e 2c4e

2r : 2c2e l c4e 0c6e 6c0e 5c3e 4cl e 3c5e

3r : 3c3e 2c5e l c0e 0cl e 6c4e 5c2e 4c6e

4r : 4c4e 3c6e 2cl e l c2e 0c5e 6c3e 5c0e

5r : 5c5e 4c0e 3c2e 2c3e l c6e 0c4e 6cl e

6r : 6c6e 0c2e l c5e 2c0e 3c4e 4c3e 5cl e

0C * 0e0r 6g2̂  5g4̂  4g5y* 3gl  ̂ 2g0̂ ' lg3̂

lg . 1 g 1 t 0g3  ̂ 6g5  ̂ 5g6|* 4e2r 3^0  ̂2g4̂ *

2g . 2e2r l e4r 0g6  ̂ 6g0̂  5g3  ̂ 4gly 3g5^

3C . 3e3r 2g5  ̂ lg0̂ ~ 0gly* 6g4y 5g2  ̂4gGy*

4g . 4e4r SgOy- 2el r l e2r 0e5r OgŜ - SgÔ

5g . 5g5  ̂4g0y 3e2r 2g3y lgÔ  0g4y Ogl̂

6C • 6g6y* 0e2r lgGy* 2e0r 3g-4̂  4g3  ̂5g 1,*

Og • Oy’Og Gy2g 5y,4g 4^Gg 3^1g 2y~0g 1̂ 3g

lg * l^lg 0y3g Gy’Gg 5yGg 4r2c 3y~0g 2y4g

2e : 2r2c l r4c 0r6c 6r0c 5r3c 4r l c 3r5c

3g . 3r3c 2yGg l̂ Og 0̂  1 g Ĝ 4g 2g 4̂ ~0g

4g > 4̂ 4g 3yGg 2ylg 17 * OyGg 0̂ 3g Gy'Og

Gg . GyGg 4r0c 3y2g 2r3c l^Gg 0^4g O l̂g

6e : 6r6c 0r2c l r5c 2r0c 3r4g 4r3c 5r l c

Oe Or 6C 3e 3r 2C 4e Or 4C 4e 3r 5C l e 5r 5C 4e 6r 4C 2e Or 5C 3e l r 6C 6e Or l c 2e 3r 4C

5e 6r 2C 6e l r 4C l e l r Oc 2e 5r 2C 2e l r 3C 6e 5r Oc 3e Or Oc 6e 3r 3C 2e 4r Oc 4e 4r 3C

5g \ r 5C 5e 4r 6C 4e 2r Oc 5e 3r lg 6e Qr Oc lg 2r 3C 4e 5r 6C 2e 6r l c 4e l r l c Oe 2r 5g

2e 2r l c 3e 6r 5C Og 3r Oc Oe 6r 3C 3e 2r 4C Oe 4r 4C 3e 5r l c 5e 5r 4C 6e 4r 2C Oe 5,- 3C

l e 6r 6C Oe l r 2C 3e 4r 5C 6e 2r 6C l e 4r l c l e Or 2C 5e 2r 2C l e 3r 6C 5e Or 3C
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2. [{0,1,3} {0,3,2}] (mod 7)

0 1 2 00 4 5 6
0 0 3 6 2 5 1 4
1 5 1 4 0 3 6 2
2 3 6 2 5 1 4 0
3 1 4 0 3 6 2 5
4 6 2 5 1 4 0 3
5 4 0 3 6 2 5 1
6 2 5 1 4 0 3 6

Or :0 c0g 6c4e 3cle 4c5e 3c2e 2c6e lc3e Oc :: OeOr 6e4r 5e l r 4e5r 3e2r 2ehr l e3r

L : Id e 0c5e 6g2g 5c6e 4c3e 3c0e 2c4e l c :■ le lr 0e5r 6e2r he r̂ 4e3r 3e0r 2e4r

2r : 2c2e l c6e 0c3e 6gOe 3c4e 4cl e 3g5e 2C :: 2e2r l e6r- 0e3r heOr 5e4r 4el r 3g hr

3r : 3c3e 2c0g l c4e Ogle 6c5e 5c2e 4c6e 3C :: 3e3r 2e0r l e4r Ogl r 6e5r 5e2r 4ehr

4r : 4c4g 3cl e 2c5e l c2e 0g6e 6c3e 5c0e 4C :: 4e4r 3glr 2e5r l e2r 0e6r he3r hehr

hr :5 c5e 4c2e 3g6e 2c3g IcOg 0c4e 6cl e 5C :: hehr 4e2r 3e6r 2e3r i eor 0e4r 6el r

6 r : 6c6g Ic^e 2cl e 4c0e 0c2e 5c3e 3c4e 6C :: 6e6r le5r- 2elr 4e0r 0e2r he3r 3C4,.

0e : 0r0c 6r4c br\ c 4r5c 3r2c 2r6c l r3c 

lg * 1 j*lg 0y5g 0̂ *2g 4r3c 3^0  ̂2^4^

2e . 2r2c l^Og 0r3c Ô Og 5^4  ̂4^1g 3^5^

3e : 3r3c 2r0c l r4c 0rl c 6r5c 5r2c 4r6c

4e > 4r4c 3r lg 2̂ '3g l r2c Ô-Og 6^3g 5̂ 0g

5g > 5̂ 5g 4y*2g 3yGg 2r3c l̂ Og 0^4g Ô lg 

6e : 6r-6c lr-5c 2rl c 4r0g 0r2c 5r3c 3r4c

0e 0r 6C 0e l r 2C 3e 4r 5C 6e 2r 0C 2e hr 3C 5e l r 6C 4e 6r 6C l e 4r 2C 4e 0r 5C 0e 3r l c

3e 6r 3C 3e 2r 6C 5e 2r 2C l e 5r 5C 4e l r l c 0e 4r 4C 3e 0r 0C 6e 0r l c 2e 3r 4C 5e 6r 2C

0e 2r 5C 3e hr l c 6e 4r 6C 6e l r 4C 2e 4r 0C 5e 0r 3C l e 3r 6C 3e 3r 2C 6e 5r 2C 2e l r hc

he 4r lc le 0r 4C 4e 3r Og 0e hr Og lg 2r 3C 4e 5r 6C 2e 0̂- 2C 5e 3r 5C l e 6̂  4C 6e hr l c

4e 2r 4C 0e hr 0C 3e l r 3C 6e 3r 3C 2e 6r 5C 2e 2r l c 5e 5r 4C l e 1̂  0C 4e 4r 3C
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3. [{0,1,2}, {0,2,1}, {0,3,4}, {0,4,3}, {0,5,6}, {0,6,5}, {1,3,5}, {1,6,3}, 

{1,5,4}, {1,4,6}, {2,5,3}, {2,3,6}, {2,4,5}, {3,6,4}]

0 1 2 3 4 5 6

0 0 2 1 4 3 6 5
1 2 1 0 5 6 4 3
2 1 0 2 6 5 3 4

C
O 4 6 5 3 0 1 2

4 3 5 6 0 4 2 1

5 6 3 4 2 1 5 0

6 5 4 3 1 2 0 6

0r : 0c0e 6c5e 4c3e 2cl e l c2e 5c6e 3c4e

l r : l cl e 0c6e 5c4e 3c2e 2c3e 6c0e 4c5e

2r • 2c2e l c0e 6c5e 4c3e 3c4e 0cl e 5c6e

3r : 3c3e 2cl e 0c6e 5c4e 4c5e l c2e 6c0e

4r ■ 4c4e 3c2e l c0e 6c5e 5c6e 2c3e 0cl e

5r : 5c5e 4c3e 2cl e 0c6e 6c0e 3c4e l c2e

6r : 6c6e 2c3e 4c5e l c0e 0cl e 3c2e 5c4e

Oc • 0e0r 6e5r 4e3r 2el r l e2r 5g6̂ - 3g4,~

lg . 1 g 1 y 0e6r. 5e4r 3e2r 2g3  ̂ 6g0y 4g5̂ *

2C : 2e2r l e0r 6e5r 4e3r 3e4r 0el r 5e6r

3C * 3e3r 2el r 0e6r 5g4y 4g5  ̂ lg2^ 6g0^

4C > 4g4y* 3e2r lgÔn 6e5r 5g6  ̂ 2g3̂ * Ogl̂

5C * 5e5r 4g3r 2el r 0e6r 6g0  ̂ 3g4,~ lg2^

6C » 6e6r 2e3r 4e5r lgÔ* Ogl̂ * 3g2  ̂5g4.r

0e : 0r0c 6r5c 4r3c 2rl c l r2c 5r.6c 3r4c

lg > 1 j' 1 g 0r6c 5r4g 3r2g 2̂ 3g 6^0g 4̂ *5g

2g * 2r2c l̂ *0g 6r5c 4r3g 3^4g O l̂g 5^6g 

3g . 3r3g 2r l c 0^6g 5r4c 4̂ *5g 1̂ 2g 6^0g 

4g . 4̂ -4g 3r2c 1̂ -Og 6r5c 5f-6g 2̂ -3g O l̂g

5g * 5r5c 4r3c 2r lg 0^6g 6<g0g 3^4g 1̂ 2g

6e : 6r6c 2r3c 4r5c l rOc Or l c 3r2c 5r4c

Oe Or 6c Oe 3r 3C 2e 3r 6C 4e 2r Oc 5e 3r l c 6e 3r 5C 2e 4r l c 3e Or 2C 6e 5r 6C l e 5r Oc

4e 6r 6C 2e 2r l c 2e 5r 5C 4e 5r l c l e Or l c 4e 4r 3C 4e Or Oc 6e Or 3C 3e 2r 3C 6e 4r 2C

Oe 5r 3C l e Or 3C 5e 2r 4C l e 3r Oc 2e 6r 5C 6e l r 5C Oe 4r 6C 6e 2r 2C l e 2r 5C 5e 4r 5C

l e l r Oc l e 4r 4C 3e 4r Oc Og Or Og 3e 3r 2C 3e 6r 4C 2e Or 5C 3e l r 6C 3e 5r 2C 4e l r 3C

Oe 2r 6C 5e 6r 1c 5e Or 4C 6e 6r 2C 2e l r 2C 5e 5r 4C 5e l r l c Oe l r 4C 4e 3r 4C



CHAPTER 7

Graphs in Steiner triple systems

In this chapter we investigate when a graph can be represented in a Steiner triple 

system. We say that a Steiner triple system T  = (P, B) represents a graph 

G = (V, E) if there exists a one-to-one function eft : V(G)  —» P{T)  such that the 

induced function (ft : E(G)  —> B(T)  is also one-to-one. In other words, if every 

edge e =  {it, v} of the graph has its image {(ft(u), <ft{v)} in a distinct block of the 

Steiner triple system then the graph is representable in the Steiner triple system. 

We do not allow loops or multiple edges but the graph may be disconnected.

Exam ple Let G be the 7-cycle (0,1, 2, 3,4,5, 6) in Z7. Let T  be the Fano plane 

whose points are also the elements of Z7 and whose blocks are cyclic shifts of a 

starter block {0.1,3}. Mapping vertex i to point % gives a representation of G in 

T.

In the next section we explain how this question of finding representations 

of graphs in Steiner triple systems is closely related to finding independent sets 

in Steiner triple systems. Indeed our question is a generalization of finding such 

independent sets. In addition, we give a bound which ensures that every graph 

of order n is represented in some STS(ra) and a bound which ensures that every 

graph of order n is represented in every STS(m).

85
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7.1 Independent sets  in Steiner trip le system s

An independent set of a Steiner triple system T  =  (P. B) is a subset U of P  such 

that no three points of U occur in a single block of B. Therefore, in order to 

represent K n: an STS(m) with an independent set of cardinality n is required. It 

is easy to see that such an STS(ra) represents any graph of order n. We can state 

the following,

Lemma 7.1.1 If a Steiner triple system T  represents a graph G. then T  repre­

sents any subgraph H of G.

P roof The same f  : V(G)  —» P{T)  representing G also represents H.  ■

We now answer the following questions:

1. Determine f (n)  such that there exists a Steiner triple system of order f (n)  

which represents every graph of order n, and

2. Determine g(n) such that every Steiner triple system of order g(n) represents 

every graph of order n.

Denote the maximal independent set over all STS(m)s by Pmax{m ) and the 

smallest maximum independent set over all STS(m)s by Pmin(m )- To answer 

question 1 it suffices to find the smallest order m of a Steiner triple system with 

Pmaxim) > n. This was done by Sauer and Schonheim [53].

Proposition 7.1.2 The size of the maximal independent set in any Steiner triple 

system of order m  is

Pmax ( m )

(m — l) /2  if r a = 1 .9  (mod 12).
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T heorem  7.1.3 There is a Steiner triple system of every order m  > f (n)  that 

represents every graph of order n where

f (n)  = <

2n — 1 n =  2,4 (mod 6) 

2n +  1 71 =  0,1,3 (mod 6)

2n +  3 n =  5 (mod 6).

P roof We want to find the smallest order m  of a Steiner triple system with 

Pmax(m ) > n • Therefore, from Proposition 7.1.2 we have mi > 2n — 1 where 

77ij =  3, 7 (mod 12) and m2 > 2n +  1 where m2 =  1,9 (mod 12).

If 7i =  0 (mod 6), then m\ > 125 — 1 and m2 > 125 +  1 where 5 > 0.

Clearly in this case, the smallest admissible order of a Steiner triple system is, 

m2. Thus, for n  = 0 (mod 6), f ( n )  =  2n +  1. Similarly, for 71 =  2,4 (mod 6), 

f (n)  =  2ti — 1. If 77 =  1,3 (mod 6), the smallest order of m will be the same as 

for n +  1 =  2,4 (mod 6), i.e. f ( n )  = 2 (71 +  1) — 1 =  2n +  1. Finally, if n  = 5 

(mod 6), the smallest order of m will be the same as for n  +  1 =  0 (mod 6), i.e. 

f ( n )  = 2( n  +  1) +  1 — 2n  + 3. ■

To answer question 2 we need /3min(rn). The following was proven, using a

probabilistic argument, by Phelps and Rodl [50].

Proposition 7.1.4 There exists an absolute constant c > 0 such that every

Steiner triple system of order m  has an independent set of size n > C y / m  log m.

As a consequence, the inverse of the function in the previous proposition is 

the desired g(n). However, this inverse cannot be expressed using elementary 

functions. Therefore, to obtain an explicit g(n) we can use a weaker result, by 

Erdos and Hajnal [19], with a much simpler non-probabilistic proof, see [8], page 

305.

P ro p o sitio n  7.1.5 Every Steiner triple system of order m  has an independent 

set of size at least [y/2m \.
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T heorem  7.1.6 Every Steiner triple system of order m  > g(n) represents every 

graph of order n where

g(n) = <

(n2 + l) /2 n =  1,5 (mod 6) 

(n2 +  2)/2 n =  0 ,2 ,4  (mod 6) 

(n2 +  5)/2 n =  3 (mod 6).

P ro o f  From Proposition 7.1.5 we have m > n2/2. The table below gives the 

smallest order m  such that every STS(t7i) can represent a graph of the corre­

sponding order n.

n n2/2 m

6 s 18s2 n 2/2  4-1

6s +  1 18s2 4~ 6s 4~ 1/2 n2/ 2 4-1/2

6s “I- 2 18s2 4~ 12s 4~ 2 n 2/2  4-1

6s 4- 3 18s2 4- 18s 4- 9/2 n2/2  4- 5/2

6s +  4 18s2 4- 24s 4- 8 n 2/ 2 4-1

6s +  5 18s2 4- 30s 4- 25/2 n 2/ 2 4-1/2

7.2 Sm all order Steiner trip le system s

In this section we investigate representations of graphs in Steiner triple system s of 

small order. A graph may only be represented in an STS(tti) if it has at m ost m  

vertices and 771(771 — l ) /6  edges. The following lem m a gives som e other necessary 

conditions.

L em m a 7.2.1 I f  G has either of the following properties, then it cannot be rep­

resented in any STS(m):

1. two non-adjacent vertices of degree (777, — l ) /2 ;
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2. two non-adjacent vertices of degree (m — 3)/2 with common neighbours in a 

graph with m (m  — l ) /6  edges.

P ro o f  Suppose that G has two non-adjacent vertices, u and v, of degree (m —1) / 2 . 

The (m —1)/2  blocks through 4>{u) represent (m — l) /2  edges and together contain 

all m  points of the Steiner triple system. The same is true for <f(v). Now the block 

containing 4>{u) and <f>(v) either represents two separate edges, or an edge joining 

u and v. Both are contradictions.

Now suppose that G has two non-adjacent vertices, u and v , of degree (m — 

3)/2. Let 2 be the third point in the block containing 4>{u) and 4>(v) and B  =  

{0(u), (p(v), z}. If z represents one of u, u ’s common neighbours, then B  represents 

two edges, a contradiction. However, B  cannot represent the non-existent edge 

{u,u}, so it represents no edge at all. Since G has m(m — l ) /6  edges, it cannot 

be represented. ■

If we have a graph represented in an STS(m) and it has fewer than m  vertices 

then isolated vertices can always be added to the representation. If it has fewer 

than m (m  — l ) /6  edges, unused blocks can then be used to add edges in the 

representation. After applying this procedure the graph has at most one isolated 

vertex; if there were two isolated vertices u, v then the block containing the points 

4>(u), 4>(v) could represent no edge. It will be convenient to ignore an isolated 

vertex, if it exists, and therefore say that a graph representable in an STS(m) is 

maximal if it has m  or m  — 1 vertices and m (m  — l ) /6  edges.

A non-representable graph in an STS(ra) is said to be minimal if by removing 

any of its edges or any of its vertices gives a new graph which is representable. 

The complete set of minimal graphs, that cannot be represented in an

STS(m) is a set of obstructions: G cannot be represented if and only if it contains 

a subgraph H  6 Any such obstruction has at most m  +  1 vertices and at

most m (m  — 1 ) /6  -T 1 edges.
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Proposition 7.2.2 There is exactly one maximal graph that can be represented 

and two minimal graphs that cannot be represented in the STS(3). These are given 

in Figure 7.1 below, using the Steiner triple system {0,1, 2}.

Figure 7.1: The maximal and minimal graphs in the STS(3).

Proposition 7.2.3 There are exactly 16 maximal graphs that can be represented 

in the Fano plane. These are illustrated in Figure 7.2.

P roof A complete catalogue of graphs with 7 vertices and 7 edges is given in [51], 

pages 13 and 14. In what follows the references are to this listing. There are 34 

graphs with maximum degree 3, one of which (G293) has two isolated points and 

can be eliminated, ten of which (G298 to G299, G305 to G308, G310 to G313) 

have an isolated point and twenty-three of which (G327 to G330, G336 to G354) 

are connected. Of these, G298, G305, G308, G311, G327, G329, G341 to G343, 

and G347 cannot be represented using criterion 1 of Lemma 7.2.1, and G308, 

G311, G341, G344, G346 to G347, G350, and G354 cannot be represented using 

criterion 2 of Lemma 7.2.1.

This leaves 19 graphs to consider. The graphs G312, G337, and G348 can 

also be eliminated since each one contains a minimal obstruction as a subgraph. 

All minimal obstructions are given in Proposition 7.2.4 below. The remaining 

16 graphs, G299, G306 to G307, G310, G313, G328, G330, G336, G338 to G340, 

G345, G349, and G351 to G353 can be represented. These are illustrated in Figure

7.2 below, using the Steiner triple system on elements of Z7, obtained by cyclic 

shifts of {0,1, 3}. ■

Proposition 7.2.4 There are exactly 8 minimal graphs that cannot be represented 

in the Fano plane. These are illustrated in Figure 7.3.
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2 .

Figure 7.2: The 16 maximal Fano planar graphs.

P ro o f The first of these graphs is on 8 vertices with no edges. A8, and the next 

is the star K 44. Each of these is obvious: there are too many vertices or a vertex 

of too high a degree. Any other minimal graph must have

(i) 7 or less vertices,

(ii) 8 or less edges,

(iii) no vertex of valency greater than 3.

Consider first the graphs with 5 edges. There is one on 4 vertices (G17), five 

on 5 vertices (G34 to G38), nine on 6 vertices (G77 to G85) and six on 7 vertices 

(G243 to G248). Some of these have a vertex whose valency is greater than 3 and 

so can be eliminated. All others are representable; they are subgraphs of the 16 

maximal Fano planar graphs.

Now consider graphs with 6 edges. There is one on 4 vertices which is K 4 

(G18), five on 5 vertices (G40 to G44), fifteen on 6 vertices (G92 to G106) and 

twenty on 7 vertices (G270 to G289). Most of these graphs are either subgraphs 

of the 16 maximal Fano planar graphs, which makes them representable, or have
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a vertex of degree greater than 3. However, five of them cannot be represented 

and are minimal obstructions; these are G44, G98, G99, G278 and G288.

Next consider the graphs with 7 edges. The only one on 5 or less vertices with 

no vertex of valency greater than 3 is G48 which is not representable but is not 

minimal because it contains K 2)3 (G44). On 6 vertices, there are twenty graphs 

(G il l  to G130) half of which have a vertex of valency greater than 3 and five 

of which can be represented. The remaining five graphs cannot be represented 

but are not minimal because they contain a minimal obstruction with 6 edges. 

Finally, on 7 vertices, there are forty-one graphs (G314 to G354). Eighteen of 

them have a vertex of valency greater than 3 and eleven of them are subgraphs 

of the maximal Fano graphs. This leaves twelve graphs eleven of which cannot 

be represented and contain a minimal obstruction with 6 edges. Therefore, the 

remaining graph G348 is the only minimal obstruction with 7 edges.

Finally, consider the graphs with 8 edges. There are two on 5 or less vertices 

(G49, G50), twenty-two on 6 vertices (G133 to G154) and seventy three on 7 

vertices (G379 to G451). Each of these graphs contains at least one of the minimal 

obstructions found above.

Consequently, there are 8 minimal obstructions. We’ve already stated why 

the first two, K$ and i f  1,4, cannot be represented. We will now give a short proof 

for each of the remaining six obstructions. Let the STS(7) be defined on the set 

{0,1, 2, 3,4,5, 6}.

In Figure 7.3 below, the third graph is K 2̂  (G44), the fifth graph (G99) is 

a 4-cycle with 2 non-adjacent pendant edges, and the seventh graph (G278) is 

a path of length 4 with pendant edges from the 2nd and 4th vertices. All these 

graphs have two non-adjacent vertices of degree 3 and so cannot be represented 

by criterion 1 of Lemma 7.2.1.

The fourth graph (G98) is a 4-cycle with 2 non-adjacent pendant vertices at a 

distance 3 between them. First consider the 4-cycle and represent it by (0,1, 2, 3). 

Then the six pairs {0,1}, {0,2}, {0,3}, {1,2}, {1,3}, and {2,3} have to appear
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in six distinct blocks, forcing the seventh block to be {4, 5,6}. The remaining two 

edges of the original graph must be represented by the blocks containing the pairs 

{0, 2} and {1,3}. However, the blocks containing these pairs will have a common 

third point x e {4,5,6} which makes the representation impossible.

The sixth graph (G288) is a 4-cycle disjoint from a path of length 2. Let 

the 4-cycle be represented by (0,1, 2, 3). Then the six pairs {0,1}, {0, 2}, {0, 3}, 

{1,2}, {1,3}, and {2,3} have to appear in six distinct blocks. This forces the 

seventh block of the system to be {4,5,6}, which makes the representation of a 

path of length 2 impossible.

The last graph (G348) is a 6-cycle with a pendant edge. Represent the 6-cycle 

by (1, 2, 3,4, 5, 6). Then the blocks containing the pairs {1,2} and {3,4} will have 

a common third point x which cannot be either 5 or 6. Therefore, x = 0 and the- 

blocks containing 0 are {0,1,2}, {0, 3, 4}, and {0, 5, 6}. To get a representation of 

the original graph, an edge (0, y), where y is a vertex in the cycle, has to be added. 

But all three blocks through 0 have been used. Thus, it cannot be represented.. ■

o
Figure 7.3: The 8 minimal non-Fano-planar graphs.

The above calculations for the STS(7) are infeasible for the STS(9). Consid­

ering only connected graphs, there are 4495 graphs on 9 vertices with 12 edges 

and 1169 graphs on 8 vertices with 12 edges, see [51], page 7. But there are just 

5 connected regular graphs of valency 3 on 8 vertices. These are C4 to C8 given 

in [51], page 127. There is also one disconnected graph consisting of two copies of 

the complete graph K 4. We find that C5, C6, and C8 cannot be represented.
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For C5, the reason is that it contains two non-adjacent degree-3 vertices with 

common neighbours; criterion 2 in Lemma 7.2.1.

The argument to rule out C6 is more involved but straightforward. W ithout 

loss of generality let the blocks through the point 0 be {0.1,2}, {0, 3, 4), {0. 5, 6}, 

{0, 7. 8} and assume the graph is represented in the following way,

1 2

7 8

Consider the blocks through 1, {1, 3, a}  and {1,4, /3}, that represent the edges 

{1,3} and {1,4} respectively. Note that a  (resp. 0) cannot be 4 (resp. 3) since 

the pair {3,4} is already in a block. Moreover, a  (resp. (5) cannot be 7 since the 

edges {1, 3} and {3, 7} (resp. {1,4} and {4, 7}) have to be represented in different 

blocks. Therefore, the remaining three blocks through 1 can be completed in one 

of the following ways:

(i) {1,3,5}, 1,4,6}, 1,7,8}

(ii) {1,3,5}, 1—
1 

C
O 1,6,7}

(iii) {1,3,6}, 1,4,5}, 1,7,8}

(iv) {1,3,6}, 1,4,8}, 1,5,7}

(v) {1,3,8}, 1,4,5}, 1,6,7}

(Vi) {1,3,8}, 1,4,6}, 1,5,7}

But {1,7,8} cannot be a block since there exists a block {0,7,8} in the system, 

so (i) and (iii) can be discarded. Furthermore, the blocks {1,5,7} and {1, 6,7} 

cannot represent any edge; the representation is thus impossible. Contradiction.

Graph C8 is bipartite. Let the bipartition be {A4, A 2, A 3, A4], {Bi, B 2, B 3. B 4} 

and the 9th point of the STS(9) be 0. Then without loss of generality four triples 

of the STS(9) can be taken to be {0, A 1; B 4 j , {0, A 2, B 2 j,  {0, A 3, B 3 j, {0, A 4, B 4 j. 

Now there are 6 pairs AiAj,  1 < i < j  < 4 and 6 pairs BiBj,  1 < i < j  < 4, so
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there must be a block {Ai, Aj ,Ak}  or {£ * , Bj, B k ) , i  ^  J ^  k  ^  i .  in the Steiner 

triple system which cannot be used to represent the graph.

Representation of the graphs C4 and C7 are given in Figure 7.4 below, using 

the STS(9) with block set {0,1,2}, {3,4,5}, {6,7,8}, {0,3,6}, {1,4,7}, {2,5,8}, 

{0,4,8}, {1,5,6}, {2,3,7}, {0,5,7}, {1,3,8}, {2,4,6}. The disconnected graph 

consisting of two copies of K 4 can be represented by labelling the vertices of one 

of the K 4 s with the points 1, 2, 3, 6 and the other with the points 4, 5, 7,8.

3 0 1 0

Figure 7.4: Representation of two connected cubic graphs on 8 vertices.

Finally, in this section, it would be remiss to not mention the Petersen graph. 

This has 10 vertices and 10 edges, so any representation in a Steiner triple system 

must have at least 10 points and 10 blocks. By modulus constraints, the smallest 

order of such a Steiner triple system must have 13 points and 26 blocks. There

are exactly two Steiner triple systems of this order, one cyclic and the other not.

The Petersen graph can be represented in both of these but in fact we can prove 

more.

Lem m a 7.2.5 Every cubic graph of order 10 can be represented in both Steiner 

triple systems of order 13.

P ro o f  These are the graphs C9 to C27 given in [51], page 127 as well as the

disjoint union of with either of the two cubic graphs on 6 vertices: 21 graphs 

in total.

Let the points of the cyclic Steiner triple system be elements of Z13, and let 

the blocks be the cyclic shifts of {0,1,4}, {0, 2, 8}. The non-cyclic STS(13) can be 

obtained by choosing any Pasch configuration in the cyclic STS(13) and replacing
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it with the opposite Pasch configuration. We will choose the blocks {2,3,6}, 

{2,4,10}, {3,4,7}, {6,7,10}; replacing them with the blocks {2,3,4}, {2,6,10}, 

{3,6,7}, {4,7,10}.

Thus, the cyclic and the non-cyclic STS(13) have 22 blocks in common. Below 

we give representations of the 21 graphs using just the 22 common blocks. For 

each graph we list the 15 edges: it is easy to check that they give the required 

graph and that each edge pair is contained in a different block.

C9: {0,1}, {0,2}, {0,3}, {1,6}, {1,9}, {2,5}, {2,7}, {3,5},

{3,10}, {5,7}, {6,9}, {6,11}, {7,11}, {9,10}, {10,11}

CIO: {0,1}, {0,2}, {0,3}, {1,2}, {1,11}, {2,12}, {3,5}, {3,8},

{4,8}, {4,11}, {4,12}, {5,6}, {5,12}, {6,8}, {6,11}

C ll: {0,2}, {0,3}, {0,7}, {1,6}, {1,7}, {1,9}, {2,5}, {2,9},

{3,5}, {3,8}, {4,6}, {4,8}, {4,9}, {5,6}, {7,8}

C12: {0,2}, {0,3}, {0,6}, {1,3}, {1,4}, {1,6}, {2,5}, {2,7},

{3,5}, {4,8}, {4,9}, {5,7}, {6,9}, {7,8}, {8,9}

C13: {0,2}, {0,3}, {0,4}, {1,3}, {1,8}, {1,11}, {2,5}, {2,7},

{3,5}, {4,5}, {4,11}, {7,8}, {7,12}, {8,12}, {11,12}

C14: {0,1}, {0,2}, {0,3}, {1,2}, {1,9}, {2,9}, {3,5}, {3,8},

{4,8}, {4,9}, {4,12}, {5,7}, {5,12}, {7,8}, {7,12}

C15: {0,2}, {0,3}, {0,4}, {1,2}, {1,11}, {1,12}, {2,12}, {3,9},

{3,10}, {4,5}, {4,11}, {5,10}, {5,11}, {9,10}, {9,12}

C16: {0,1}, {0,2}, {0,10}, {1,3}, {1,7}, {2,7}, {2,11}, {3,10},

{3,12}, {5,8}, {5,11}, {5,12}, {7,8}, {8,12}, {10,11}

C17: {0,1}, {0,2}, {0,12}, {1,2}, {1,9}, {2,9}, {4,5}, {4,6},

{4, 9}, {5, 6}, {5, 7}, {6,11}, {7,11}, {7,12}, {11,12}

C18: {0,1}, {0,2}, {0,3}, {1,6}, {1,11}, {2,5}, {2,12}, {3,5},

{3,8}, {4,8}, {4,11}, {4,12}, {5,6}, {6,11}, {8,12}
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C19:

C20:

C21:

C22:

C23:

C24:

C25:

C26:

C27:

K 4 U C2:

I<4 UC3:

{0

{3

{0

{5

{0

{5

{0

{3

{0

{3

{0

{3

{0

{4

{0

{4

{0

{4

{0

{3

{0

{3

3}, {0,4}, {1,2}, {1,8}, {1,9}, {2,7}, {3,5}, 

9}, {4,12}, {5,9}, {5,12}, {7,8}, {7,12}

2}, {0,3}, {1,2}, 

9}, {7,12}, {8,11

2}, {0,3}, {1,2},

12}, {7,11}, {7,12}, {9,10}, {10,11}, {11,12}

1), {0,2}, {0,3}, {1,2}, 

6 }, {5 , 12}, {6 , 8}, {6,11

2}, {0,3}, {1,5}, 

12}, {6,9}, {6,11

2}, {0,3}, {1,5}, 

8}, {6,9}., {6,11} 

2}, {0,3}, {1,2}, 

9}, {4,12}, {8,10 

3}, {0,4}, {2,9}, 

6}, {5,7}, {6,8}, 

3}, {0,4}, {2,7}, 

7}, {5,9}, {6,8}, 

2}, {0,7}, {1,2}, 

12}, {5,8}, {5,9}, {5,11 

1}, {0,2}, {0,7}, {1,2},

1,9}, {2,7}, {3,5}, {3,8},

, {8,12}, {9,11}, {11,12}

1,9}, {2,9}, {3,5}, {3,10}

1,9}, {2,9}, {3,5}, {3,8}

, {8,12}, {9,11}, {11,12}

1,8}, {2,9}, {2,11}, {3,5},

, { 6 , 12}, {8 , 11}, { 8 , 12}

1,12}, {2,9}, {2,11}, {3,5}, 

{6,12}, {8,11}, {8,12}

1,11}, {2,11}; {3,9}, {3,11}, 

, {8,12}, {9,10}, {10,12}

2,12}, {3,5}, {3,9}, {4,8}, 

6,12}, {7,8}, {7,12}

2,11}, {3,8}, {3,9}, {4,5}, 

6,11}, {7,8}, {9,11}

1,7}, {2,7}, {3,8}, {3,9},

, {8,12}, {9,11}, {11,12}

1,7}, {2,7}, {3,9}, {3,11},

12}, {6,9}, {6,11}, {6,12}, {9,10}, {10,11}, {10,12}

Note that C27 is the Petersen graph.
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7.3 Graphs o f bounded degree

Representing the complete graph K n in a Steiner triple system is equivalent to 

finding an independent set. There are interesting things to say about represent­

ing other classes of graphs. We consider graphs of a given maximum degree A, 

beginning by representing cycles.

In a Steiner triple system let t (x , y) denote the third point in the block con­

taining x and y. We first prove an easy result.

Theorem  7.3.1 Every cycle Cn can be represented in every Steiner triple system  

of order m > n +  3.

P roof The proof is by induction on n. To start the induction at n = 3, pick any 

two points x ,y  and 2 ^  t{x >y)- These three points represent C 3 .

For the inductive step, suppose that we have a representation of Cn, say by 

points 1 , 2 , . . . , n  in cyclic order. Pick a point x tha t is not equal to any of 

{1,2, . . . , n}  U  £(1,2) U  £(n—l , n ) U £(l,n).  Such a choice is possible provided 

m > n +  3. Now remove the edge {l ,n} from Cn and add the edges {1, 2 }, {2 , n).  

Using the blocks with these edges gives a representation of Cn+1, in particular since 

x 7  ̂ £(1, 2), the block containing 1,2 and the block containing 1,2  are distinct, 

the same holds for the blocks containing the pairs 2 , n  and n, n — 1. Furthermore, 

the blocks containing 1, 2 and 2 , n are also distinct. Note that the inductive step 

breaks down when m  = n  +  3. ■

However, we can do much better but there are some exceptions which we give 

first in the following proposition.

. Proposition 7.3.2

1 . C3 cannot be represented in the STS(3).

2. C3 U  C4 cannot be represented in the STS(7).

P roof

1. The STS(3) contains only one block; therefore it is impossible to represent the
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three edges of C 3 .

2. Suppose that there exists a representation of C 3 U C 4  in the ST S(7). Then each 

block represents an edge since \B\ = \E\. Now suppose that C4 is represented by 

(2 , u, y, u). There exists a block {x , y , z }  where z ^  u or v but this block cannot 

represent any of the pairs {x,y}.  {x.z}  or {y,z}.  Contradiction. ■

W ithout loss of generality, let the blocks containing the point 0 be {0, 2i — 1, 

2z}, 1 < z < (ra — l ) / 2 .  Let G =  (V, E)  be a disjoint union of cycles where the  

total number of vertices is n. The cycles will be of three types:

(i) even cycles CXl, CX2, . . . ,  CXp

Theorem  7.3.3 Every disjoint union of cycles G where the total number of ver­

tices is n can be represented in every Steiner triple system of order m  > n except 

for ( G ,  m )  =  ( C 3 ,  3)  and ( G 3  U  G 4 ,  7) .

Proof If m  > n +  1 then the following algorithm gives the representation,

input : Disjoint union of cycles G, Steiner triple system of order m  
output: A representation of the cycles by the Steiner triple system

C i— 0

for i <— 1 to  p do
represent Cx. by (c +  1, c +  2 , . . . ,  c +  X i )

C i— C f  I j

(ii) triangles T\, T2, . . . ,  Tq

(iii) odd cycles Cyi, Cy2). . . ,  Cyr of length > 5.

v r

end

for i i— 1 to  q do
represent 2* by (c +  1, c +  2, c +  3)
c i— c T 3 

end
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for i i— 1 to  t do
if c is even th e n

if {c +  1, c +  yi, c +  yi — 1} ^ B  th en
represent Cy. by (c +  1, c +  2 , . . . ,  c +  t/*)

else
represent CVi by (c +  2, c +  1, . . . ,  c +  t/*) 

end 
end

if c is odd th en
if {c +  1, c +  2, c +  iji, } ^ B  th e n

represent Cyi by (c +  1, c +  2 . c +  3 , . . . ,  c +  y*)
else

represent CVi by (c +  1, c +  3, c +  2 , . . . ,  c +  y*) 
end 

end
c c +  yi 

end

To complete the proof, we show that a union of cycles can be represented in a 

Steiner triple system of order m = n. We will consider two cases,

(i) Union of cycles where at least one cycle has length > 5.

Take the longest cycle and remove one of its vertices. Denote that cycle 

by T. Apply the algorithm to get a representation of the graph o n m - 1  

vertices. It remains to add the vertex, which is 0, back to T.

If T is of length 4, the cycle will be represented by (c +  1, c +  2, c +  3, c +  4). 

Replace T with the cycle (c +  4, c +  2 , c +  3, 0, c +  1).

If T is of even length 2s, s > 3, the cycle will be represented by (c +  1, c +  

2 , c +  3, c +  4, c +  5 , . . . ,  c +  2s) for some value of c which is even. Replace 

T by the cycle (c +  4, c +  2, c +  3, 0, c +  1, c +  5 , . . . ,  c +  2s) which is valid 

provided {c +  2s, c +  4, c +  2} is not a block. If it is a block, swap c +  2s and 

c -|- 2s — 1.

If T is of odd length 2s — 1, s > 3, the cycle will be represented by (ex, (d, 

c +  3, . . . ,  c +  2s — 2, c +  2s — 1), {a, (5) =  {c +  1, c +  2} for some value of c 

which is even or represented by (c +  1, a, f3, c +  4, . . . ,  c +  2s — 2, c +  2s — 1), 

{ce,/3} =  {c +  2,c +  3} for some value of c which is odd. In the former case,
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replace T by the cycle (a, /?, c +  3 , . . . ,  0, c +  2s — 1, c +  2s — 2) and in the 

latter by the cycle (c +  2s — 1, a , /3, c +  4 , . . . ,  c +  2s — 2, 0, c +  1).

(ii) Union of q triangles and p squares.

(a) q = 1, p > 2

Working modulo m  apply the above algorithm. The triangle will be 

represented by (m — 2, m  — 1,0) which is a block and hence the repre­

sentation is not valid. Pick 1 and 4 from the square (1, 2, 3,4) and swap 

them with m  — 1 and m  — 2. If {2, 3, m — 1} and {2, 3, m  — 2} ^ B  then 

we have a valid representation. Otherwise we make a further modifi­

cation. Pick 7 and 8 from the second square (5, 6, 7, 8) and swap them 

with m — 1 and m  — 2 in the first square.

(b) q > 2, p > 0

Working modulo m  apply the above algorithm. The last triangle will 

be represented by (m — 2,m  — 1,0) which is a block and hence the 

representation is not valid. Pick a point x from a different triangle 

(x. y, z) such that t (x , y) = 0 or t ( x , z) =  0 and swap it with 0. ■

We next turn our attention to representing a graph of maximum degree A.

Theorem  7.3.4 Let G be any graph of order n and of maximum degree A. Then 

G can be represented in any Steiner triple system of order m  > n+ (3 /2 )A (A  — 1).

P roof We find points, one at a time, to represent vertices in a technique rem­

iniscent of Theorem 7.3.1. Let v be as yet not represented. There are at most 

A(A — 1) edges not incident with v but incident with vertices adjacent to v. Call 

these edges {n^,^}. Select a point x  not currently representing any of the at 

most 7i — l  other represented vertices, and not equal to any of the t((f)(ai) , ^{bf)) 

(provided that both vertices have already been represented). In addition, for each 

of the possible deg(v)(deg(v) — l ) /2 pairs of edges {v. Ui}, {u, Uj} incident with u,
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then t(x, 4>(uj)) ^  4>{uf), i.e. x ^  t((p(ui). <f{uj)) (again provided that the vertices 

Ui,Uj have been represented).

This can be done provided m  > n — 1 +  A(A — 1) +  A(A — l)/2 . Represent v 

by an available point x and the edges incident with v by the appropriate blocks 

(provided that a neighbour of v has already been represented). The result is a 

one-to-one function on the vertices represented, and the blocks representing edges 

are disjoint by our restriction on t(<fi(ai), (fibf)) and t(<j)(ui), 4>(uj)). Continuing in 

this manner, we finish with a representation of G. ■

C oro llary  7.3.5 I fG is 2-regular of order n, then G is represented in any Steiner 

triple system of order m  > n +  3.

Note that this result is more general than Theorem 7.3.1 in that G need not be 

a single cycle. It also has a different proof. But Theorem 7.3.3 is a much stronger 

result. However, for A =  3, we get the following,

C oro lla ry  7.3.6 I f  G is cubic of order n, then G is represented in any Steiner 

triple system of order m  > n +  9.

For small A, Theorem 7.3.4 is stronger than Proposition 7.1.4. For large A, 

Proposition 7.1.4 is stronger. The change over occurs at A «  y/ l /3n.  The reason 

for this is as follows. As mentioned earlier, the value of the function g(n) from 

Proposition 7.1.4 cannot be expressed using elementary functions. Therefore, as 

an approximation use n 2/ 2 from Theorem 7.1.6. For large A, the value given in 

Theorem 7.3.4 is approximately (3/2)A2. Comparing these two values gives the 

required result.
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7.4 C om plete b ipartite  graphs

The last section relates to complete bipartite graphs and specifically the maximal 

complete bipartite graphs that can be represented in a Steiner triple system of 

some order. A complete bipartite graph K itj which can be represented in an 

STS(m) is said to be maximal if the complete bipartite graphs Ki+i,j and 

cannot be represented in the same STS(ra). We start by proving a rather easy 

result.

Lemma 7.4.1 The complete bipartite graphs iC ,(m +i) /2  and K 2̂ m-i) / 2  cannot be 

represented in any Steiner triple system of order m.

Proof The complete bipartite graph K i^m+iy 2 cannot be represented in an 

STS(m) since the valency of the vertex in the left partition is (m +  l) /2  which is 

greater than (m — l)/2 , the replication number of the STS(ra).

Assume that K 2 ^rn-\)j2 is represented in an STS(m). Let x  and y be the 

representation of the two vertices in the left partition of K 2 ^m-i)/2 - The total 

number of blocks through x and through y is m  — 2 since they have one block in 

common. But the number of edges in i^2,(m-i)/2 is m — 1. Contradiction. ■

Corollary 7.4.2 The complete bipartite graph K i^m- i y 2 can be represented in 

every STS(m) and is maximal.

I t’s easy to see that A'i;(m_1)/2 can be represented in the STS(m): represent 

the vertex of maximum valency by any point of the system and the edges by the 

blocks through that point.

Next, we give the maximal representable bipartite graphs for the Steiner triple 

systems of order 7, 9, 13, and 15.

Proposition 7.4.3 The maximal complete bipartite graphs that can be repre­

sented in the STS(7) are K i^ and K 2t2.
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Proof In order for A 2;2 to be maximal, we must show that A 2j3 cannot be 

represented in the STS(7). This follows from the second part of Lemma 7.4.1. 

The graphs are illustrated below, using the Steiner triple system on elements of 

Z7 obtained by cyclic shifts of {0,1, 3}. ■

Figure 7.5: The two maximal complete bipartite graphs in the STS(7).

Proposition 7.4.4 The maximal complete bipartite graphs that can be repre­

sented in the STS(9) are Ah,4 and Ah,3.

P roof In order for A3,3 to be maximal, we must show that A3j4 cannot be 

represented. Assume the converse. Since A3j4 has 12 edges, each block represents 

an edge. Consider any two vertices x, y from the same partition. The block 

{ x . y . z j  containing the two vertices cannot represent an edge since if it represents 

the edge (x, z) then the edge (y, z) is impossible to be represented and vice versa. 

Contradiction.

The graphs are illustrated below, using the Steiner triple system with block set 

{0,1,2}, {3,4,5}, {6,7,8}, {0,3,6}, {1,4,7}, {2,5,8}, {0,4,8}, {1,5,6}, {2,3,7}, 

{0,5,7}, {1,3,8}, {2,4,6}. -

Figure 7.6: The two maximal complete bipartite graphs in the STS(9).

Proposition 7.4.5 The maximal complete bipartite graphs that can be repre­

sented in an STS(13) are A 1)6; A 2;5 and A3)4.
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Proof To prove that K 2§ is maximal we must show that K 2.q and cannot 

be represented in either STS (13). The former follows from the second part of 

Lemma 7.4.1. Let X  =  {0,1,2},Y  =  {3,4,5,6,71 and Z = {8,9,10,11,12}. 

Assume that A 3 5 is represented in the STS(13) as follows: the three vertices 

in the small partition by the elements of X , and the five vertices in the large 

partition by the elements of Y. Therefore, there are 15 blocks of the form {x , y , z), 

x  G X .y  G Y, z G Z, representing the edges of the graph. Since five blocks through 

each point 0,1 and 2 have been used, the block {0,1, 2} is forced as the sixth. The 

remaining blocks of the system contain elements from the sets Y and Z only. The 

minimum number of blocks formed by pairs of elements of Y is six; for example 

{3,4, 5}, {3, 6 , 7}, {4, 6 , zi),  {4, 7, z2j, {5, 6 , 2 :3 }, {5, 7, z4}, zi G Z.  The minimum 

number of blocks formed by pairs of elements of Z  is also six. This brings the 

total number of blocks to 28. But an STS (13) has only 26 blocks which leads to 

a contradiction. •

Next, we prove that is maximal. has already been proven impos­

sible to represent in both STS(13)s above. We must show that A4j4 cannot be 

represented. Let X  — {0,1, 2, 3} and Y =  {4, 5, 6 , 7}. Represent one partition of 

4 by elements of X  and the other by elements of Y. Then the 16 blocks con-' 

taining the pairs {x, y}, x G X,  y G Y are represented. Now consider the blocks 

containing any two elements from the same partition. The blocks containing the 

elements of X  should be one of the following,

(1) {0,1, 2), {0, 3, z}, {1,3, z j ,  {2, 3, zj,  z $ X . Y ,  without loss of generality, or

(2 ) {0 ,1 ,z}, {0,2, zj ,  {0,3, z), {1, 2 , z}, {l,3 ,z} , {2,3 , z } , z $ X , Y .

The replication number of an STS(13) is 6 . In both of the above possibilities, at 

least one element appears more than 6 times in the system. Contradiction.

The graphs are illustrated below, using the 22 blocks the two Steiner triple 

systems of order 13 have in common. As noted before, the cyclic STS(13) can be 

obtained by cyclic shifts of {0,1,4} and {0 , 2 , 8} on elements of Z13. The non- 

cyclic STS(13) can be obtained by choosing any Pasch configuration in the cyclic
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STS(13) and replacing it with the opposite Pasch configuration. We will choose 

the blocks {2, 3,6}, {2, 4.10}, {3,4, 7}, {6, 7,10}: replacing them with the blocks 

{2,3,4}, {2,6,10}, {3,6,7}, {4,7,10}. ■

Figure 7.7: The three maximal complete bipartite graphs in the STS(13).

The two Steiner triple systems of order 13 can represent the same maximal 

complete bipartite graphs. However, this is not true for the Steiner triple systems 

of order 15. There are 80 nonisomorphic Steiner triple systems of order 15. The 

graphs Ki j ,  K 2.q, 7C3i5, and K 4j4 can be represented in all 80 systems. However, 

more than half, 54 to be precise, can also represent K 3jq. These graphs, i.e. K i j ,  

^ 3,5, ^ 4,4 or ^ i ,7, ^ 3,6) ^ 4,4 are the maximal bipartite graphs. To prove 

maximality we need to show that K 4>5 cannot be represented.

Proposition 7.4.6 The complete bipartite graph K 4 5  cannot be represented in 

any STS( 15).

P roof Assume that K 4^ is represented in an STS(15) and without loss of gen­

erality assume that the four vertices in the small partition are represented by 0, 

1, 2 and 3. The blocks containing the pairs {x4, Z2}, x 4, x 2 G {0,1, 2, 3}, x\ ^  x 2, 

are not used in the representation. These pairs can occur in four or six blocks. If 

they occur in four blocks then one of the points appears in three of these blocks. 

Since the replication number of an STS(15) is 7, then there are four more blocks 

through that point in the system. But this is a contradiction since the valency of 

the vertex represented by that point is five. If they occur in six blocks then every 

point appears in three of these blocks. The same argument applies as above. ■

Using the standard listing of the STS(15)s given in [44], Appendix C gives the 

number of representations of the complete bipartite graphs AT7, A"2,6> ^ 3,5j ^ 3,6
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and K 4>4. Below we illustrate the graphs using system #11 which is the first in 

the list that represents all five.

Figure 7.8: Complete bipartite graphs in the STS(15) #11.



CHAPTER 8

Enumerating graph representations

An i-lin t configuration in an STS(m) is any collection of £ blocks of the Steiner 

triple system. For some configurations, the number of occurrences in an STS(m) 

can be expressed as a rational polynomial in m. Thus, for any admissible m  

this number is the same regardless of the structure of the STS(ra). Such con­

figurations are called constant whereas other configurations are called variable. 

Configurations and their occurrences in Steiner triple systems have been studied: 

the articles [11, 26] are some examples.

" In this chapter we extend this study to graphs. In other words, we consider 

the following question: Given a Steiner triple system of order m  and a graph G 

on n < m  vertices what is the number of occurrences of G in the STS(ra)? This 

question arose during the study of representing graphs in Steiner triple systems. 

Consequently, the number of occurrences of a graph in a Steiner triple system is 

the number of the different representations of that graph by that Steiner triple 

system. As with configurations, we will refer to a graph as constant or variable. 

The first section involves the enumeration of graphs with up to three edges.

109
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8.1 One, tw o and th ree-ed ge graphs

There is only one one-edge graph, i.e. a single edge. In any STS(m) there are 

=. m (m  —1)/2 single edges. A different way of counting the one-edge graphs is 

by using the one-line configurations; in any STS(m) there are m ( m — l ) /6  one-line 

configurations and every one-line configuration contains a single edge three times 

which gives the same result.

There are two two-edge graphs; a pair of disjoint edges denoted by B\ and 

a path of length 2 denoted by B 2. The graph B\ can be obtained by adding an 

extra edge to the one-edge graph. The number of choices for the extra edge is 

(m2~2) =  (m — 2)(m — 3)/2. But the graph B\ can arise in two ways, hence

bx =  [m(m — l)(m  — 2){m — 3)/4]/2 =  m (m  — 1 )(m — 2 )(m — 3)/8.

The graph B2 can be obtained by adjoining an extra edge through one of the 

two vertices of the one-edge graph. The number of choices for the extra edge is 

4[(m — l) /2  -  1] and again the graph B 2 can arise in two ways, hence

b2 =  4[(m — l) /2  — l]m(m — l) /4  =  m (m  — l)(ra  — 3)/2.

Similarly as above, we will give an alternative way of counting the graphs. There 

are two two-line configurations; a pair of disjoint blocks denoted by B[ and a pair 

of intersecting blocks denoted by B'2. These configurations are constant and the 

number of occurrences is given by

b[ =  m (m  — 1 )(m — 3)(m — 7)/72, b2 = m (m  — l)(m  — 3)/8.

The graph B\ occurs in B[ in nine ways and in B 2 in five ways. Therefore,

bi = 9 b\ + 5 b2 = m (m  — 1 )(m — 2)(m — 3)/8.

Similarly, the graph B 2 cannot occur in B[ but occurs in B 2 in four ways. There­

fore,

b2 =  4 b2 = m{m — l)(m — 3)/2.
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/X / \
Ci c 2 C3 c 4 C5

Figure 8.1: The three-edge graphs.

Finally, there are five three-edge graphs; these are given in Figure 8.1 and are 

denoted by Ci, C2, . . . ,  C5. The graph C\ can be obtained by adding an extra 

edge to the graph B\. The number of choices for the extra edge is (m̂ 4) =  

(m  — 4){m — 5)/2. The graph C\ can arise in three ways, so

C\ =  [&i(ra — 4 )(m  — 5)/2]/3 =  m (m  — 1 )(m — 2 )(m — 3)(m — 4 )(m — 5) /  48.

The graph C2 can be obtained by adding an extra edge to the graph B 2. The 

number of choices for the extra edge is (m̂ 3) =  (m — 3)(m — 4)/2 and so

c2 =  b2(m — 3 )(m  — 4)/2 =  m (m  — 1 )(m — 3)2(m — 4)/4.

The graph C3 can be obtained by adjoining an extra edge to the common vertex 

of graph B2. There are 2 [(m — l) /2  — 2] = m — 5 different ways to adjoin the 

extra edge and the graph can arise in three ways, so

C3 =  b2(m  — 5)/3 =  m (m  — 1 )(m — 3)(m — 5)/6.

To obtain the graph C4 we start with the graph B2 and add an extra edge to one 

of its vertices of valency one. This can be done in 2 [2 [(m—1)/2  — 1] — 1) =  2(m — 4) 

ways. The graph can arise in two ways, therefore,

c4 =  2 b2(m  — 4)/2 =  m (m  — 1 )(m — 3)(m — 4)/2.

Finally, consider the graph C5. To obtain it, start again with the graph B 2 and 

add the edge joining the two vertices of valency one. But the graph can arise in 

three ways. Hence,

C5 =  62/3 =  m (to — l)(m — 3)/6.
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y \ A
Cl Q C'b

Figure 8.2: The three-line configurations.

We will now check the above results using configurations. There are five three- 

line configurations; these are given in Figure 8.2 and are denoted by C{, C'2) ■ • ■, C'b.

The number of occurrences of each five-line configuration in an STS(m) is,

c\ =  m (m  — 1 )(m — 3)(m — 7)(m2 — 19m +  96)/1296

c'2 =  m (m  — 1 )(m — 3)(m — 7)(m — 9) /  48

c 3  — m(m — l)(m  — 3)(m — 5) /  48

c4 =  m (m  — l)(m  — 3)(m — 7)/8

c'5 =  m(m — l)(m  — 3)/6

In the table below we list the number of occurrences of every graph in each of 

the five configurations.

c ! c 2 c 3 c 4 c 5

Cl 27

C'2 15 12

C's 7 12 8

Ci 7 16 4 •

C5 2 15 9 1

Hence, the number of occurrences of each five-edge configuration in an STS(m)

is,

c i  =  2 7  c '4 +  1 5 c 2 +  7  c '3 +  7 c '4 +  2 c '5 =  m ( m  —  l ) ( m  — 2 ) ( m  — 3 ) ( m  — 4 ) ( m  — 5 )  /  4 8

C2 =  1 2 c 2 - 1-  I 2 C3 +  1 6 c 4 +  15c'5 =  m ( m  —  1 ) ( m  — 3 ) 2 ( m  — 4 ) / 4

C3 =  8 C3 =  m ( m  — l ) ( m  — 3 ) ( m  — 5 ) / 6

c 4 =  4 C4 -1-  9 c '5 =  m ( m  —  1 ) ( m  — 3 ) ( m  — 4 ) / 2

C5 =  C5 =  771 (771 -  l ) (m  — 3)/6.
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We have now shown that the number of occurrences of every n-edge graph, 

when n < 3, in a Steiner triple system of any order m  is constant. This is not a 

surprise since the number of occurrences of every £-line configuration, when t  < 3, 

in a Steiner triple system of any order m  is constant as well. However, we know 

from [26] that not all four-line configurations are constant. Indeed this is also the 

case for five-line and six-line configurations. In the next sections we investigate if 

this is also true for graphs on 4, 5 and 6 edges.

8.2 Four-edge graphs

There are 16 four-line configurations. These are shown in Figure 8.3 and are 

denoted by D[, D '2, . . .  D[6. We know from [26] that five of them are constant-and 

all the others are variable. The constant four-line configurations are D4, D'7) D '8, 

D'n , and D'l5. .

Figure 8.3: The four-line configurations.

Note that D'l6 is the Pasch configuration denoted by p. The formulae for the 

numbers of four-line configurations in an STS(m) are given below.
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d\ = m

d'2 - m

d3 =  m

d'4 •= m

d'5 =  m  

d'6 = m

d'7 -- m

d'Q =  m

d'9 = m  

d[o — m  

d'u  = m

d'12 m

d\3 — 771 

^14 =  171

d[ 5 =  m

m  — 

m  — 

m  — 

(m

( 7 7 7  —

( m  — 

(m — 

(m — 

(m — 

(m — 

(m — 

(m — 

(m — 

(m — 

(m  —

1 ) ( m  — 3 ) ( m  — 9 ) ( m  — 1 0 ) ( m  — 1 3 ) ( m 2 — 2 2  m  +  1 4 1 ) / 3 1 1 0 4  +  p  

1 ) ( m  — 3 ) ( m  — 9 ) ( m  — 1 0 )  ( m 2 — 2 2 m  +  1 2 9 )  / 5 7 6  — 6 p  

1 ) ( m  — 3 ) ( m  — 9 ) 2 ( m  — 1 1 ) / 1 2 8  +  3  p 

1 ) ( m  — 3 ) ( m  — 7 ) ( m  — 9 ) ( m  — 1 1 ) / 2 8 8  

l ) ( m  — 3 ) ( m  — 9 ) ( m 2 — 2 0 m  +  1 0 3 )  / 4 8  +  1 2 p  

l ) ( m  — 3 ) ( m  — 9 ) ( m  — 1 0 )  /  3 6  — 4  p 

l ) ( m  — 3 ) ( m  — 5 ) ( m  — 7 ) / 3 8 4  

l ) ( m  — 3 ) ( m  — 7  ) ( m  — 9 ) / 1 6  

l ) ( m  — 3 ) ( m  — 9 ) 2 / 8  — 1 2  p 

1 ) ( m  — 3 ) ( m  — 8 ) / 8  +  3  p  

) ( m  — 3 ) ( m  — 7 ) / 4  

) ( m  — 3 ) ( m  — 9 ) / 4  +  12p 

, ) ( m  — 3 ) ( m 2 — 1 8 m  +  8 5 )  / 4 8  — 4p 

) ( m  — 3 ) / 4  — 6 p  

) ( m  — 3 ) / 6

d16 = P

The number of occurrences of the Pasch configuration in an STS(m), together 

with the order m, determines the number of occurrences of all the other variable 

configurations. It will be interesting to see if this is true for the four-edge graphs. 

There are 11 four-edge graphs and these are shown in Figure 8.4 and are denoted 

by Du  £>2, • • •, ^ li-

Figure 8.4: The four-edge graphs.
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The table below gives the number of occurrences of every four-edge graph in 

each of the four-line configurations. These results were obtained by hand and 

were later checked computationally.

D, d 2 D3 d a d 5 D6 d 7 d 8 Dg

81

D'2 45 36

D's 25 40 16

D'a 21 36 24

d !5 21 48 12

D'e 6 45 27 3

D' 9 24 32 16

D's 9 32 8 16 8 8

Df9 9 40 12 16 4

D'io 2 28 18 20 12 1

P a 2 23 12 10 15 1 12 4 2

D[2 2 25 8 35 3 8

D'is 9 36 36

D’u 10 10 34 6 20 1

d '15 9 12 6 21 3 12 12 6

6 24 12 36 3

Using the formulae for the four-line configurations we can easily obtain the 

formulae for the numbers of four-edge graphs in an STS(m). 

di = m (m  — 1 )(m  — 2 )(m — 3)(m — 4 )(m — 5)(m — 6)(m — 7)/384 

d2 = m (m  — 1 )(m  — 3 )2(m — 4)(m — 5)(m — 6)/16 

d3 = m{m  — l)(m  — 3 )(m3 — 13m2 + 57 m  — 87) /  8 

d4 =  m (m  — 1 )(m — 3)(m — 4)(m — 5)2/ 12 

d5 = m (m  — 1 )(m — 3)(m — 4)2(m — 5)/4
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g?6 =  m ( m  — 1 ) ( m  — 3  ) 2 { m  —  4 ) / 1 2

d 7 =  m ( m  —  1 ) ( m  — 3 ) ( m  — 5 ) ( m  — 7 ) / 2 4

d 8 - m ( m  — 1 ) ( m  — 3 ) ( m  — 5 ) 2 / 2

d g  =  m ( m  — 1 ) ( m  — 3 ) ( m 2 — 9 m  +  2 1 ) / 2

c?io =  m ( m  — l ) ( m  — 3 ) ( m  — 6 ) / 8

d n  - m ( m  -  1 ) ( m  — 3 ) ( m  — 5 ) / 2

The results show that the number of any four-edge graph in an STS(m) is 

constant and thus independent of the number of occurrences of the Pasch config­

uration in the Steiner triple system.

8.3 Five and six-edge graphs

We now consider five-edge graphs. There are 26 five-edge graphs denoted by £ i, 

£ 2, . . .  # 2 6 • For each of these five-edge graphs we list the edges in Table 8.1. 

They are listed by ascending order of the number of vertices in each graph.

E1 : 01 02 03 13 23 E2 : 01 04 12 23 34 £ 3  : 01 02 03 24 34

E4 : 01 02 03 14 23 £ 5  : 01 02 03 04 34 £ 6 : 01 02 03 23 34

E7 : 01 02 12 34 35 E8 : 01 02 13 23 45 Eg : 01 02 03 23 45

E i q  : 01 02 03 04 05 Eu  : 01 02 03 04 15 E12 : 01 02 03 14 15

£ 1 3  : 01 02 13 14 45 E14 : 01 02 03 14 45 £ 1 5  : 01 12 23 34 45

Eie : 01 02 03 45 46 £ 1 7  : 01 02 13 45 46 £ 1S : 01 02 12 34 56

£ 1 9  : 01 02 03 04 56 £ 2 0  : 01 02 13 24 56 £ 2 1  : 01 02 03 14 56

£ 2 2  : 01 02 34 35 67 £ 2 3  : 01 02 03 45 67 £ 2 4  : 01 02 13 45 67

£ 2 5  : 01 02 34 56 78 £ 2 6  : 01 23 45 67 89

Table 8.1: The five-edge graphs.

Similarly, in Table 8.2 we list the blocks of each of the 56 five-line configurations 

denoted by E[, E'2) . . .  E'56. These are ordered, as in [11], by ascending order of 

the number of points in each.
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E'a : 012 034 135 236 457 E'b : 012 034 135 245 067 E'& : 012 034 135 246 257

E '7 : 012 034 135 246 567 E '8 : 012 034 135 067 168 Eg : 012 034 135 067 268

^ 0 : 012 034 135 067 568 E'u : 012 034 135 236 078 E i 2 : 012 034 135 236 378

^ 3 : 012 034 135 236 478 Ei 4 : 012 034 135 245 678 E[ 5 : 012 034 135 246 078

: 012 034 135 246 178 E{ 7 : 012 034 135 246 578 ^ 8 : 012 034 135 267 468

E[ 9 : 012 034 156 357 468 £ 2 0 : 012 034 056 178 379 £ 2 1 : 012 034 135 067 089

E *22 : 012 034 135 067 189 £ 2 3 : 012 034 135 067 289 E 24 : 012 034 135 067 589

E '25 : 012 034 135 067 689 E'26 : 012 034 135 236 789 E ’v : 012 034 135 246 789

E*28 : 012 034 135 267 289 E'29 : 012 034 135 267 489 E 30 : 012 034 135 267 689

E 31 : 012 034 156 357 289 E 32 : 012 034 156 378 579 E'ss : 012 034 056 078 09a

£ 3 4 :: 012 034 056 078 19a £ 3 5 : 012 034 056 178 19a E'se : 012 034 056 178 29a

£ 3 7 :: 012 034 056 178 39a E '38 : 012 034 056 178 79 a £ 3 9 : 012 034 135 067 89a

E '40 : 012 034 135 267 89a E i  1 : 012 034 135 678 69a £ 4 2 : 012 034 156 278 39a

£ 4 3 :: 012 034 156 357 89a £ 4 4 : 012 034 156 378 59a E i  5 : 012 034 056 078 9 ab

E 4 Q ■: 012 034 056 178 9 ab E i 7 : 012 034 056 789 7 ab ^ 4 8 : 012 034 135 678 9 ab

E 49  •: 012 034 156 278 9 ab E'w : 012 034 156 378 9 ab : 012 034 156 789 lab

£ 5 2 :: 012 034 056 789 abc £ 5 3 : 012 034 156 789 abc E 54 : 012 034 567 589 abc

E'5 5 --: 012 034 567 89a bed EU : 012 345 678 9 ab cde

Table 8.2: 'The five-line configurations.

From the above configurations only five are constant: the formulae are given in

[11]. N ote that E[ is the Mitre configuration and E'2 is the M ia configuration. The 

number of Mitre and Pasch configurations, together with the order m , determ ine 

the number of a variable five-line configuration in an ST S(m ). The Tables 8.3 and 

8.4 below give the number of occurrences of every five-edge graph in each of the 

five-line configurations together with the coefficients of u2p, vp, the M itre (/i) and 

the Pasch (p ) configuration taken from the formulae.

Using the formulae for the five-line configurations, com putational results for 

the number of occurrences of a five-edge graph have shown that the coefficients 

of the M itre and Pasch configuration in the graph formulae sum to zero. Hence, 

the number of any five-edge graph in an ST S(m ) is constant.
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E i E 2 E 3 E 4

E [ • 6  • 12
E> 2 4  4  16

E '3 1 1 2  8
E'4 • 2 • 6

E '3
. 4

E'e 1 6  4

E '7 • 2 •

00 
^ 1 - 2 4

F '-̂ 9 1 • 4

0 • 4  2

E'n • 2

E'n

CO • '2

E'u
E'u
E'16

^8

E'2Q
E '21 

2̂2 
E '2 3

e '24
E '2

E '2

EL

29e >2

E'3Q
E$i
E '32

E '33

E'm
E 3 5

E33

E'v
E'3
F 'J-IO

38

39

40F '4
E '
E '42

43K
E '
E'k
K  6 
K  7 
E48 
E\, 
E'w 
£51
E '52

E '33

E34

E'5
EL

55
56

12

10

e 7 E 9 E 10 E n E \ 2 E\3 2v  p vp P F
12 9 24  • 24 1
12 3 24 2 24 3
6 16  • 5 20 - 1 2
6 3 18 20 - 6 - 1 2
8 5 12 • 12 3 - 2 1
8 3 8 10 - 1 2
8 9 - 6 - 3
2 4 9 20 6
4 8 16 36 6
2 2 4 8 24
2 12  - 8 12 12

12  • 24
2 16  • 12 24 6

9 1 /6 - 1 9 /6 14
3 12  • 16 - 3 27 3

4 1 6 6 - 1 2 108
4 3 - 6 66 6
4 3 48 12

9 6 2
4 24
4 12 8 - 1 2
6 8 12 - 1 5 6 - 1 2
6 6 - 6 6
4 • 12 - 6 0 - 6
18  • - 1 2 - 2

3 - 1 22 - 1 2 3 - 3
6 - 9
12 - 1 4 4 - 1 2
12 - 1 9 2 - 1 8

1 6 - 7 8
3 6 - 1 3 8 - 1 8

16

-36  - 6

3
- 6 66 3
- 6 114 6

- 1 2 132
- 6 102 6

- 5 6 414 18
- 6 90 6

- 2 4 324 24
1 /2 - 2 5 /2 108 6

- 2 4 432 36

12 - 1 6 8 - 6
3 - 3 3

- 2 /3 5 6 /3 - 1 4 6 - 6
- 2 /3 7 4 /3 - 2 1 2 - 1 0

- 2 8 0 ' - 8 1 0 - 4 2
30 - 4 4 4 - 2 7
- 3 39 1

2 - 7 4 690 30
1 /2 - 6 7 /2 384 18
- 1 40 - 3 8 1 - 1 5
1 /6 - 3 7 /6 56 2

Table 8.3: Number of occurrences of graphs E \  to £ 1 3  in the five-line configurations.
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E\4 En En En En £19 £20 £21 £22 £23 £24 £25 £26 2v p vp P P
E[ 66 30 6 42 12 • 1
E'2 24 40 4 24 4 28 16 3

£3 20 17 10 35 3 27 32 14 4 12 - 1 2

K 34 42 6 46 26 14 2 18 —6 - 1 2

£ 5 24 24 4 24 16 64 16 6 24 3 - 2 1

E'e 20 27 6 41 7 51 16 15 2 18 - 1 2

E'7 46 50 10 78 16 24 - 6 - 3

E's 12 '6 18 34 10 36 43 16 10 10 6

£ 9 15 45 2 25 36 39 8 29 11 36 6

E[ 0 16 12 12 40 1 32 18 42 8 29 11 24

E'n 16 4 16 24 3 20 42 26 12 27 9 12

E'n 24 24 .12 3 12 24 24 24 12 27 9

E'n 12 32 7 44 34 26 8 39 9 24 6

E'n 36 108 18 72 1/6 - 1 9 /6 14

E'n 16 32 6 36 40 22 4 46 10 - 3 27 3

E'n 20 8 10 28 8 42 24 24 4 46 10 - 1 2 108
F' 16 36 14 76 26 58 10 - 6 66 6

E'n 23 49 5 57 41 48 12 48 12

E'n 24 48 60 42 48 12 6 2

E'20 8 24 4 1 20 8 32 32 28 21 31 2
E'n 8 24 12 1 8 40 40 28 21 31 2 - 1 2

E'22 4 24 3 20 44 32 14 53 33 2 12 - 1 5 6 - 1 2
F''-J23 16 16 16 3 28 20 36 14 53 33 2 6 —66

E'2, 4 32 1 12 34 58 20 25 35 2 - 6 0 - 6

E'25 9 36 36 36 18 63 27 - 1 2 - 2 '

F'
■'-'26 18 • 60 30 102 30 - 1 22 - 1 2 3 - 3
FJu27 16 16 20 5 16 32 28 8 61 35 2 6 - 9

E'2S 4 24 9 52 32 85 35 2 12 - 1 4 4 - 1 2

E'2, 8 36 5 32 52 65 39 2 12 - 1 9 2 - 1 8

E'zo 12 4 18 24 18 20 56 14 28 38 2 6 - 7 8

E'u 8 32 44 54 60 40 2 6 - 1 3 8 - 1 8

E'z2 15 45 25 75 35 45 2 - 3 6 - 6

E '33 80 80 40 11

£34 16 32 24 24 56 12 52 11

E'33 32 32 32 48 16 56 11 3

E '33 16 48 16 24 68 60 11 - 6 66 '3

E'zy 16 4 32 52 32 24 64 11 - 6 114 6

E'33 8 24 8 ' 8 16 48 24 28 68 11 - 1 2 132

£39 3 12 36 36 30 45 69 6 - 6 102 6

E',o 9 24 24 105 75 6 - 5 6 414 18

E'n 36 5 60 45 83 1 0 - 6 90 6

E'n 16 24 40 80 72 11 - 2 4 .324 24

E'n 36 54 60 84 6 1/2 - 2 5 /2 108 6

K  4 24 16 68 40 80 11 - 2 4 432 36

E'n 48 96 72 27

E'n 24 24 48 24 96 27 1 2 - 1 6 8 - 6

K  7 32 48 40 88 35 3 - 3 3

E'n 9 81 135 18 - 2/3 5 6 /3 - 1 4 6 - 6
F'^49 108 108 27 - 2/3 7 4 /3 - 2 1 2 - 1 0

F'5̂0 1 2 36 48 1 2 0 27 - 2 80 - 8 1 0 - 4 2
F,' 16 64 20 108 35 30 - 4 4 4 - 2 7

E'32 72 108 63 - 3 39 1

E'33 36 144 63 2 - 7 4 690 30

EL 48 120 75 1/2 - 6 7 /2 384 18

E'33 108 135 - 1 40 -3 8 1 - 1 5

E'33 243 1/6 - 3 7 /6 56 2

Table 8.4: N u m b e r  o f  o c c u r r e n c e s  o f  g r a p h s  E \ ^  t o  F 26 i n  t h e  f i v e - l i n e  c o n f i g u r a t i o n s .
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Finally, we consider graphs on six edges. There are 68 six-edge graphs and 

282 six-line configurations. Computational results have shown that the number 

of any six-edge graph is also independent of the STS(m). However, we will not 

give any details of our calculations, the methods used to obtain the results are as 

above.

Based on the above results, we state the following theorem.

T h eo rem  8.1 Let G be any graph with \E(G)\ < 6 and let T  be any Steiner triple 

system of order m. Then the number of occurrences of G in T  is independent of 

T.

To summarize, the number of times a graph with up to six edges occurs in a 

Steiner triple system is constant even though variable configurations with four, five 

and six lines exist; indeed most four, five and six-line configurations are variable. 

Naturally, this gives rise to the following question: W hat is the smallest number 

of edges of a variable graph? Clearly, it is greater than six but less than or equal 

to twelve since K 2Q is variable (see Appendix C). However, an investigation on 

the number of occurrences of K 2,4 in the two STS(13)s and in the 80 STS(15)s 

shows that in fact it is less or equal to eight. K 2̂  occurs 1989 times in the cyclic 

STS(13) and 1974 times is the non-cyclic STS(13); the results for the STS(15)s 

are given in Appendix D. Hence, the smallest number of edges of a variable graph 

is seven or eight.



CHAPTER 9

Topological representations

In this chapter, we consider a topological variation of the problem discussed in 

the last two chapters. Let G =  (V, E) be a simple graph and let T  =  (P, B) be 

a triangulation of the complete graph K m in a surface or pseudosurface, where P  

is the vertex set of K m and B  is the set of triangles. The surface, or indeed the 

pseudosurface, can be either orientable or nonorientable. Let <j> be a one-to-one 

function from V(G)  to P(T).  This induces a one-to-two relation, which we will also 

call (/>, from E(G)  to B(T).  Now consider the inverse relation </>-1 : B(T)  —» E(G).  

If <p~x is a two-to-one function, i.e. two adjacent triangles represent at most one 

edge, then we say that the triangulation T  represents the graph G. This is the 

same concept as before in that no two edges of G are represented by the same 

triangle.

If the triangulation is face two-colourable, i.e. the triangles of each of the 

two colour classes form Steiner triple systems (P, Bi) and (P, B2), then the above 

definition can be rephrased in the following way: there exists a one-to-one function 

(f) : V(G)  —> P  such that both the induced functions cf) : E{G) —» B\  and <f> : 

E(G)  —> B 2 are also one-to-one. Throughout this chapter, we denote U(x.y), 

i = 1, 2, as the third points in the blocks containing x and y.

A  graph may only be represented in a triangulation of Km if it has at most m

121
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vertices and at most m( m  — l) /6  edges. As in Chapter 7, we consider maximal 

representable and minimal non-representable graphs. Additionally, in this chap­

ter, we consider maximum representable graphs since the triangulations impose 

extra restrictions to representations thus reducing the number of representations 

compared to Chapter 7. A representable graph in a triangulation of K m with 

at least m  — 1 vertices and m(m  — l) /6  edges is said to be maximum. A repre­

sentable graph is maximal if it is not a subgraph of a representable graph and 

it is not maximum. A representable graph with m  — 2 vertices cannot be maxi­

mum since the two points which are not used in the representation and the edge 

joining them in the triangulation can always be added to the representation. A 

non-representable graph in a triangulation is said to be minimal or an obstruction 

if all of its subgraphs are representable in the triangulation. These graphs can 

have at most m  +  1 vertices and at most m (m  — l) /6  +  1 edges.

This chapter consists of two parts. In the first part, we investigate the maximal 

and maximum representable and the minimal non-representable graphs in the 

triangular embeddings of the complete graph K m, where m < 7. In the second 

part, we are concerned with cycles in the triangulations and seek to prove that 

every cycle of order at most m  can be represented in the triangulation of K m.

9.1 Triangulations o f sm all order

We start with the first two trivial cases, i.e. the triangulations of the complete 

graphs K 3 and K 4 which both have unique embeddings in the sphere. The figure 

below shows the embedding of the STS(3) = {0,1, 2} and the MTS(4) '= (0,1,2), 

(0,3,1), (0,2,3), (1,3,2).

It is easy to determine the maximum representable graphs and the obstructions 

in these triangulations and so we state the next two propositions without proof. 

The given representations of the graphs are based on the embeddings of Figure 

9.1.
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11

Figure 9.1: Embeddings of the STS(3) and the MTS(4) in the sphere.

P ro p o sitio n  9.1.1 There is exactly one maximum graph that can be represented 

in the triangular embedding of the complete graph K 3. The embedding has two 

minimal obstructions and maximal representable graphs do not exist.

Figure 9.2: Maximum graph and minimal obstructions of the K 3 triangulation.

P ro p o sitio n  9.1.2 There is exactly one maximum graph that can be represented 

in the triangular embedding of the complete graph K 4. The embedding has two 

minimal obstructions and maximal representable graphs do not exist.

0 1

•  •

•  •  
• A

2 3

Figure 9.3: Maximum graph and minimal obstructions of the K 4 triangulation.

The next case is the unique twofold triple system of order 6. The TTS(6) =  

{0,1,2}, {0,1,5}, {0,2,3}, {0,3,4}, {0,4,5}, {1,2,4}, {1,3,4}, {1,3,5}, {2,3,5}, 

{2,4,5} has a unique embedding in the projective plane as shown in Figure 9.4. 

We take a thorough approach to find all minimal obstructions. We start by 

examining the smallest non-trivial graphs, i.e. with two edges, and continue up 

to graphs with m(m — l) /6  edges. In what follows, the graph references are to 

the listing in [51].
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c

Figure 9.4: Embedding of the TTS(6) in the projective plane.

P ro p o sitio n  9.1.3 The triangular embedding of the complete graph K§ has ex­

actly four minimal obstructions.

P ro o f  The first minimal obstruction is trivial; it is the graph on 7 vertices and 

no edges, Kj, since it has too many vertices. There is just one graph with one 

edge and two graphs with two edges: all of these can be represented. Similarly, 

four of the five graphs with three edges can be represented while the fifth cannot. 

This graph is K 13 and it is non-representable since it has a vertex of valency 3.

Now consider the graphs with four edges. There are two on 4 vertices, G15 and 

G16 (4-cycle). G15 has K \ t3 as a subgraph and thus cannot be represented. The 

4-cycle is a minimal obstruction and the proof is as follows. Assume that the 4- 

cycle can be represented by (0.1, 2, 3) without loss of generality. Then the system 

contains the blocks {0, 2,4}, {0, 2,5}, (1, 3,4} and {1, 3, 5} since t*(0,2) ^  1,3 and 

ti( 1, 3) 7  ̂ 0, 2, i =  1, 2. This means the pairs {0,1}, {0, 3}, {1, 2} and {2, 3} have 

to appear twice in distinct blocks. But this would give 12 blocks, contradiction. 

On 5 vertices, there are four graphs (G29 to G32); G29 and G30 contain A13 and 

so are not minimal and the other two, G31 and G32, are representable. Finally, 

on 6 vertices there are three graphs (G68 to G70); G68 contains A 13 and so is 

not minimal and G69 is representable. However, G70 is a minimal obstruction 

and the proof is as follows. G70 consists of two disconnected paths of length 

2. Assume they can be represented by (0,1,2) and (3,4,5) so that the vertices 

of valency 2 are represented by 1 and 4. Then the system has to contain the 

8 blocks: {0,1, a*}, {1,2,6*}, {3,4,c?;} and {4,5, d*}, where a*, 6* E {3,4,5} and
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Ci,di E {0.1,2}, i — 1,2, and a\ ^  a.2 , b\ ^  62, c\ ^  C2, d\ ^  d,2 . None of these 

blocks contain the pairs {0, 2} and {3, 5} which also have to appear twice in the 

system in distinct blocks. This brings the number of blocks to 12. Contradiction.

Next consider the graphs with five edges. There are six graphs on 5 or less ver­

tices: five of them (G33 to G37) contain AS,3 and the sixth (G38) is representable. 

All the graphs on 6 vertices contain a minimal obstruction as a subgraph; G77 to 

G82 contain G83 and G84 contain G70 and G85 contains the 4-cycle. Finally, 

consider the graphs with six edges. Each of these graphs contains at least one of 

the minimal obstructions found above and thus cannot be represented. Hence, the 

triangular embedding of the complete graph K q has four minimal obstructions. 

These are illustrated below and denoted by A\  to A4. m

• •

y k
Ai A 2 ^ 3

I>

Figure 9.5: The minimal obstructions of the K q triangulation.

To find all maximal and maximum graphs we do the opposite of what we did 

above. More specifically, we start by first examining the graphs on six edges and 

continue down to graphs with two edges.

P ro p o s itio n  9.1.4 There are exactly two maximal graphs and one maximum  

graph representable in the triangular embedding of the complete graph K q .

P ro o f  There are nine graphs on 5 edges and 6 vertices, all of which cannot be 

represented; six of these have a vertex of valency greater or equal to 3 (G77 to 

G82), i.e. K i$  is a subgraph of those graphs. Similarly, G83 and G84 contain 

obstruction A 4 and G85 contains A 3.

There are five graphs on 5 edges and 5 vertices, four of which (G34 to G37) 

cannot be represented since they contain A 13 as a subgraph but the remaining
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graph G38, which is the 5-cycle, can be represented and is maximum. The only 

graph on 5 edges and 4 vertices, G17, contains the minimal obstructions K i i3 and 

A 3.

From the three graphs on 4 edges and 6 vertices only G69 can be represented 

and is maximal; G68 contains Ah,3 and G70 is the minimal obstruction A 4. Finally, 

there are four graphs on 4 edges and 5 vertices. Two of these, G29 and G30, 

contain Ah,3 and so cannot be represented whilst G31 is a subgraph of the 5- 

cycle and so is neither maximum nor maximal. The remaining graph G32 is 

representable and maximal.

All other graphs of smaller size are either subgraphs of the maximal or max­

imum graphs or they are non-representable. The maximal and maximum graphs 

and their representation in the embedding of K q are illustrated below. ■

Figure 9.6: The maximal and maximum representable graphs in the K q triangulation.

Finally, consider the unique toroidal embedding of the two cyclic Steiner triple 

systems of order 7 whose blocks are cyclic shifts of the starter blocks {0,1, 3} and 

{0,2,3} respectively. We follow the same procedure as above to determine the 

minimum, maximal and maximum graphs.

o

o

Figure 9.7: The unique toroidal biembedding of the STS(7)s.
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P ro p o sitio n  9.1.5 The toroidal biembedding of the STS(7)s  has exactly seven 

minimal obstructions.

P ro o f  The first minimal obstruction is the graph on 8 vertices and no edges, K 8: 

it is quite clear that this graph cannot be represented because it has too many 

vertices. Also, it is very easy to see that all the graphs with one, two and three 

edges are representable.

Now consider the graphs with four edges. There are two on 4 vertices, G15 

and G 16; the former is representable but the latter, which is the 4-cycle, is non- 

representable and minimal. The proof is as follows. Suppose the 4-cycle is repre­

sented by (a, b. c, d). Then there are blocks {a, b ,x i}, {c, d ,x i }, {b, c,yi},  {d, a. yi} 

in the first system and blocks {a, b, x2}, {c> d, x 2}. {b. c, 7/2}, {d, a, y2} in the second 

system. The first system is uniquely completed by the blocks {a,c,zi},  {b,d,zi},  

{x i , y i , z i }  and the second system by the blocks {a,c ,z2}, {b.d,z2}} {x2)y2, z2}. 

But {£1, 2/1, 21} =  {x2,y2, z2} since in each system these are the three points dif­

ferent from a, b, c, d. Contradiction. The remaining graphs with four edges are on 

5 vertices. There are four of these graphs, G29 to G32. The first is the star K i 4 

which is non-representable and minimal since it has a vertex of too high a degree. 

The remaining three are representable.

There are 21 graphs with five edges. The graphs G17, G37 and G85 are 

non-representable but not minimal since they contain the 4-cycle as a subgraph. 

Similarly, G34, G77, G78 and G243 are non-representable but not minimal because 

they contain K 1)4. Out of the remaining 14 graphs, 12 can be represented and 2 

cannot (G79 and G245) and are minimal. The graph G79 is a path of length 3 

with pendant edges from the 2nd and 3rd vertices. Suppose it can be represented 

and suppose that the 2nd and 3rd vertex of the path are represented by x and 

y respectively and the remaining vertices by a, 6, c and d. Therefore, t j fx.y) ^  

a,b,c,d , i =  1,2. Consequently, ti(x.y) = z, i = 1,2, where 2: is the remaining 

point not represented, a contradiction. The graph G245 is K \ p  U Represent
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the vertex of valency 3 by 0. Then there are two ways to represent K \ :3, either 

with 1, 2,4 or 3, 5, 6 as the other vertices. In both cases the remaining three points 

not represented form a block in one of the systems. Since the systems are cyclic, 

this will be true for any representation of the vertex of valency 3.

Next, consider the 41 graphs with six edges; 30 of these graphs are non- 

representable but only two are minimal (G94 and G104). The graph G94 is a 

triangle with 3 non-adjacent pendant edges. Again, suppose the vertices of the 

triangle are represented by x, y and z and the vertices at the end of the pendant 

edges from x, y and z are represented by a, b and c respectively. Let d be the 

seventh point. Then, £ j ( x , y )  ^  a.b, z, i = 1,2, so the triangulation must contain 

the triangles {x.y .c}  and {x,y,d}. Similarly, it contains the triangles {y.z .a},  

{y, 2 , d}, (x, 2 , b} and {x, 2 , d}. But now the three blocks containing d cannot be 

partitioned between two STS(7)s. Contradiction.

The graph G104 is a pentagon with a pendant edge. First consider a path of 

length 5. Represent it by a,b,c.d.x,y.  In order to construct the given graph, the 

edge {a, x} or {b, y} has to be added. Let 2 be the seventh point. Try to add the 

edge {a, x}. Now ti {x) d) ^  a, c.y, i = 1, 2. The two triangles containing the edge 

{x,d} are thus {x,d, 2} and {x,d, b}. Consider the STS(7) containing the block 

{x, d, zj .  Since U(x: a) ^  b.y, i = 1, 2 , the remaining two blocks containing x are 

{x, a, c} and {x, 6, y}. This system, call it the black system, has two completions, 

(Bl) {x, d, 2}, {x, a, c}, {x, 6, y}, {d, a, &}, {d, c, y}, {2 , a, y}, {2 , c, 6}, or 

(B2) {x, d, 2}, {x, <2, c}, {x, 6, y}, {d, a,y},  {d,c, 6}, {2 , a, 6}, {z , c , y }.

But ti(b,c) 7̂  d, i =  1,2, so only (Bl) is a possibility. Now consider the STS(7) 

containing the blocks {x,d, 6}, the white system. Since ti(x,a) ^  y, i =  1,2  and 

the block {x,a,c} is in (Bl) the other two blocks containing x are {x . a . z } and 

{x.c.y}.  Again there are two completions,

(W l) {x, d, 6}, {x, a. 2}, {x, c, y}, {d, a,c}, {d, 2 , y}, {6,a ,y}, {b,z,c},  or 

(W2) {x,d, 6}, {x . a . z }, {x,c, y}, {d, a,y}, {d, z .cj ,  {b.a.cj,  {b.z .y j .
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Again U(b, c) ^  a, i =  1, 2, so only (W l) is a possibility. But both (Bl) and (Wl) 

contain the block {b, z, c}. The same argument applies for the edge {b, y}.

Finally, consider the graphs on seven and eight edges. The non-representable 

graphs contain at least one of the minimal obstructions found above and so are 

not minimal. Therefore, the biembedding of the STS(7)s has seven minimal ob­

structions. These are illustrated below and denoted by Bi  to B 7. m

Figure 9.8: Minimal obstructions of the toroidal biembedding of the STS(7)s.

P ro p o sitio n  9.1.6 There are exactly seven maximal graphs and two maximum 

graphs that can be represented in the toroidal biembedding of the S T S (7)s.

P ro o f  There are 65 graphs with seven edges. Proving that each graph is repre­

sentable or not is a laborious task and quite unnecessary in this case. We only need 

to consider the 16 maximum graphs representable in the STS(7), which we already 

found and proved in Chapter 7, since if a graph is represented in the biembedding 

of the two STS(7)s then it is also represented in the STS(7). Using the listing in 

[51], these graphs are G116, G123, G124, G127, G130, G328, G330, G336, G338, 

G339, G340, G345, G349, G351, G352, G353. Apart from the graphs G338 and 

G353, the rest are non-representable in the K 7 triangulation. The graphs G116, 

G123, G124, G330 and G345 contain the 4-cycle as a subgraph, the graphs G130 

and G339 contain the minimal obstruction F?4, the graphs G336, G349 and G352 

contain B 5, the graph G328 contains B6 and finally the graphs G127, G340 and 

G351 contain B 7. Therefore, there are just two maximum representable graphs 

and these are illustrated in Figure 9.9.
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In order to find the maximal representable graphs we must first consider the 

graphs on six edges; there are 41 such graphs. We know from the proof of Propo­

sition 9.1.5 that 30 of these graphs are non-representable so we may only consider 

the remaining 11: G97, G102, G105, G106, G277, G279, G283, G284, G286, 

G287 and G289. However, the graphs G97, G279, G283 and G286 are subgraphs 

of G338 which is maximum, and therefore are not maximal. The other 7 graphs 

are maximal. Similarly, there are 12 representable graphs with five edges: G35, 

G36, G38, G80 to G84, G244, G246, G247 and G248. All of these are subgraphs 

of the maximal and maximum graphs found above; G35 and G80 of G338, G36, 

G81, G82 and G83 of G102, G38 and G246 of G289. G84 of G106, G244 of G277 

and G247 and G248 of G287. Finally, representable graphs with edges less than 

five are subgraphs of the maximal and maximum graphs found above. Hence, 

there are only seven maximal graphs. These are illustrated in Figure 9.10. ■

Figure 9.9: Maximum representable graphs in the triangulation of K 7.

4.

5.

Figure 9.10: Maximal representable graphs in the triangulation of K 7.

We mentioned in the beginning of the chapter that the triangulations impose 

extra restrictions to representations. The previous proposition is a very clear 

example of this statement. There are 16 maximum graphs representable in the 

STS(7) but only two of these are representable in the triangulation of K 7.
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We now turn our attention to regular graphs and specifically of regular graphs 

of degree 2 .

9.2 Cycles in triangulations

In Chapter 7, we proved that every cycle of order n can be represented in a 

Steiner triple system of order m > n except for (n.m ) =  (3.3). In this section 

we prove a similar result for triangulations of K m. To be exact, we prove that 

every cycle of length n is representable in a triangular embedding of K m, m  > n, 

i.e. no two edges in the cycle are incident with the same triangular face, except 

for (n .m ) =  (3, 3), (3,4), (4, 4), (4, 6), (4, 7), (6 , 6). We start with the easy case, 

n =  m — 1.

Lemma 9.2.1 Every cycle Cn, n > 4, can be represented in a triangulation of 

K m, where m  = n +  1.

P roof Consider the rotation about any point of K m. The points in this rotation 

form a cycle of length m — 1. Clearly, each edge of this cycle is incident to distinct 

triangles and therefore a valid representation is achieved. Note that the proof fails 

if n  =  3. ■

The next case is cycles of length up to m  — 6 . To prove this we use the same 

technique used in Theorem 7.3.1.

Lemma 9.2.2 Every cycle Cn can be represented in a triangulation of K m, where 

m > n  +  6 .

P roof The proof is by induction on n. To start the induction at n = 3, pick any 

three points x ,y  and z which do not form a surface triangle. These three points 

represent C3.

For the inductive step, suppose that we have a representation of Cn, say by 

points 1,2, . . . , n  in cyclic order. Pick a point x that is not equal to any of
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{1,2, . . . ,  n} U ti( 1, 2) U ti(n — 1, n) U £,(1, n), 2 =  1,2. Such a choice is possible 

provided m > n +  6 . Now remove the edge {l ,n} from Cn and add the edges 

{l ,x},  {x, n). Using the blocks with these edges gives a representation of Cn+i, in 

particular since x ^  £*(1 , 2), the blocks containing 1, 2 and the blocks containing

l .x  are distinct. The same holds for the blocks containing the pairs x .n  and 

n , n —l. Furthermore, the blocks containing 1 ,2  and x ,n  are also distinct. Note 

that the inductive step breaks down when m  =  n  +  6 . ■

The cases left to consider are m  = n and m — b < n < m  — 2 . The proofs for 

both of these cases use similar techniques but we require the extra assumption 

that 77i > 12.

L em m a 9.2.3 Let n > 12. Then every cycle Cn can be represented in a triangu­

lation of K n.

P roof Consider the cycle (0,1, 2 , . . . ,  m  — 2) of length m  — 1 forming the rotation 

at any vertex oo. From this we may represent a cycle C ^o of length m: (0, 1, 5, 

oo, 2, 4, 3, 6 , 7, . . . ,  m — 2) (Figure 9.11) which will fail to satisfy our requirement 

if and only if one or more of the following triples form a face in the embedding: 

{0,1,5}, {3,4, 6}, {3, 6 , 7}. We call these the critical triples of the cycle C^o.

Now consider the effect of rotating the cycle Cq^o- If we rotate one place we 

get the cycle C ^ i  =  (1 ,2 ,6 , oo, 3, 5,4, 7, 8 , . . . ,  0). This also fails if one of the 

following critical triples forms a face: {1, 2, 6}, (4, 5, 7}, {4, 7, 8}. Note that these 

triples are distinct from the previous ones. By repeating the rotation we fail to 

achieve a representable cycle if in each position one of the three critical triples 

forms a face.

In addition to rotating the cycle we may reflect it to get C '^q = (0, m  — 2, 

m — 6 , oo, m — 3, m  — 5, m  — 4, m — 7, m  — 8 , . . . ,  1). Again there are three 

critical triples, each of which may form a face. By rotating we get further cycles 

and we fail to achieve a representable cycle if in each position one of the three 

critical triples forms a face.
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The cycles Coo,* and C ^ ,  i G Zm_i, will give distinct critical triples if and only 

if m > 12. The reason for this is simple. Without loss of generality consider the 

critical triples of Coo,o and C'^ q. {0,1, 5}. {3,4. 6}, {3, 6 , 7} and {0, m — 2, m  — 6}, 

{m — 4. m — 5, m  — 7}, {m — 4,ra — 7,m  — 8} respectively. These lie in orbits under 

Zm_i with base blocks {0,1, 5}, {0,1,3}, (0,1, m  — 4}, {0.1, m — 5}, (0,1, m  — 3} 

and {0,1,4} which are all distinct if and only if m > 12. Therefore, assuming 

m  > 12, all the 2(m — 1) cycles C^,* and give distinct critical triples. For 

none of these cycles to be representable, at least 2 (m — 1) of the critical triples 

must form faces. If none of these cycles is representable, we say that the vertex 

oo is bad.

Now consider the effect of varying the vertex oo. There are m  choices for 

this vertex. If all vertices were bad then we should have a collection of at feast 

m  x 2(m — 1) critical triples that form faces. A face can appear as a critical triple 

at most once for each of its three edges. So there would be at least 2m(m — l)./3. 

distinct faces in the embedding. But the number of faces in the embedding is 

m (m  — l ) / 3 which is a contradiction. Hence, not all vertices can be bad, and 

hence there is at least one representable cycle. ■

l

oo
0

Figure 9:11: The cycle C ^o

Lemma 9.2.4 Assume m  > 12. Then every cycle Cn can be represented in a 

triangulation of K m, where m — b < n < m  — 2.

P roof Similarly to the proof of Lemma 9.2.3, we consider the cycles CUti and C'u i , 

u G V (K m), i G Zm_i, for each case and reach a contradiction by counting the 

number of critical triples. However, in this proof the cycle C'u i is not a reflection
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of the cycle Cu%i but a different way of representing the cycle of that order. Below 

we give the cycles C ^o  and and their respective critical triples and base 

blocks for each case.

• n = m — 5

Coo.o = (0,4,oo,6,8,9,10,... ,771-2) /  {0,4, m -  2}, {6,8,9} /  {0,1,5}, {0,1, m -  3}

C^ >0 = (0J3>oo>5J8>9,10 , . . . , m - 2 )  /  {0,3, m -  2}, {5,8,9} /  {0,1,4}, {0,1, m -  4}

• n = m — 4

Coo,o = (0,4,5,6,7,8, . . . ,  m -  2) /  {0,4,m -  2}, {0,4,5} /  {0.1.5}, {0, l,m  -  5}

^ 00,0 = (0> 1,4,00,6,8,9,10... ,m -  2) /  {0,1,4}, {6,8,9} /  {0,1,4}, {0, l,m  -  3}

• n = m — 3

Co0,0 = (0,3,4,5, . . . ,m -  2) /  {0,3, m -  2}, {0,3,4} /  {0, 1,4}, {0, 1, m -  4}

C ^o =  (0,1,5, oo, 2,7,. . .  ,m -  2) /  {0,1, 5}, {2,7,8} /  {0,1,5}, {0, l,m  -  6}

• n = m — 2

C'oo1o =  (0, 2,3,4,. /  {0,2, m -  2}, {0,2,3} /  {0,1,3}, {0,1, m -  3}

^oo,0 = (0) 1j 5, cx d , 2,6, . . .  , m — 2) /  {0,1,5}, {2,6,7} /  {0,1, 5}, {0,1, m -  5}

Assuming m > 12 for each case, all the 2(m — 1) cycles Coo  ̂ and give

distinct critical triples. Using the same argument as in the proof of Lemma 9.2.3, 

we deduce that there is at least one representable cycle for each case. ■

Based on the above four lemmas we can state the following theorem.

T h eo rem  9.2.5 Every cycle Cn can be represented in a triangulation of K m,

where m  > 12 and n < m.

To conclude this section we need to consider triangulations of order less than 

12. Triangulations of Am, m < 12, exist for m = 3,4,6,7,9,10.  From the 

first section of this chapter we know that no cycle can be represented in the 

triangulations of K 3 and K A. We also know that the 4-cycle and the 6-cycle cannot 

be represented in the triangulation of Kq and the 4-cycle cannot be represented 

in the triangulation of K 7 . So this leaves only the triangulations of Kg and K \0
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to consider. There are precisely two triangulations of Kg in a surface. These 

correspond to the twofold triple systems #35 and #36 of the listing in [8] of the 

36 nonisomorphic TTS(9)s; #35 is not face two-colourable whereas #36 is face 

two-colourable. The two systems and the representable cycles are given below.

#35:
0 0 0 0 0 0 0 0 1 1 1 1 1 1 2 2 2 2 2 3 3 3 4 4
1 1 2 3 4 5 6 7 2 3 4 5 6  73 345 64 5655  
2 3 4 5 6 7 8 8 5 4 6 8 7 8 7 8 7 6 8 8 6 7 7 8

C3 : 0 1 4 
CA : 0 1 4 5 
C5 : 0 1 4 5 6 
C6 : 0 1 4 5 6 7 
C7 : 0 1 4 2 3 5 8 
C8 : 1 2 4 6 8 7 5 3 
C9 : 0 1 6 8 7 5 2 3 4

#36:
0 0 0 0 0 0 0 0 1 1 1 1 1 1 2 2 2 2 2 3 3 3 4 4  
1 1 2 3 4 5 6  7 2 3 4 5 6 7 3 3 4 5 6 4 5 6 5  5
2 345 6 788 54 6 8 7 8  7886  7768 78

C3 0 1 4
c 4 0 1 4 5
c 5 0 1 4 5 6
C6 0 1 4 5 6 7
C7 0 1 4 2 3 5 8
Cg 1 2 4 6 8 7 5 3
C9 0 1 6 8 7 5 2 3 4

Finally, there are 394 nonisomorphic TTS(10)s without repeated blocks [6] 14 

of which can be embedded [1, 5]. Using the listing in [1], Appendix E lists the 

cycle representations.

Therefore, considering all of the above results, we state the main theorem.

T heorem  9.2.6 Every cycle Cn, n > 3, can be represented in every triangulation 

of Km, m  > n, except for  (n, m) = (3,3), (3, 4), (4, 4), (4, 6), (4, 7), (6 , 6).
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The 36 nonisomorphic TTS(9)s

I.
0 0 0 0 0 0 0 0 1 1 1 1 1 1 2 2 2 2 2 2 3 3 4 4
1 1 3 3 5 5 7 7 3 3 4 4 6 6 3 3 4 4 5 5 6 6 5 5
2 2 4 4 6 6 8 8 5 5 7 7 8 8 8 8 6 6 7 7 7 7 8 8

3.
0 0 0 0 0 0 0 0 1  1 111 1 2 2 2 2 2 2 3 3  44 
1 1 3 3 5 5 6 7 3 3 4 4 6 7 3 3 4 4 5  56 655 
2 2 4 4 6 7 8 8 5 5 6 8 7 8 7 8 6 7 6 8 7 8 7 8

5.
0 0 0 0 0 0 0 0 1 1 1 1 1 1 2 2 2 2 2 2 3 3 4 4
1 1 3 3 5 5 7 7 3 3 4 4 6 6 3 3 4 4 5 5 5 6 5 6
2 2 4 4 6 6 8 8 5 7 5 8 7 8 6 8 6 7 7 8 7 8 8 7

7.
0 0 0 0 0 0 0 0 1 1 1 1 1 1 2 2 2 2 2 2 3 3 4 4
1 1 3 3 5 5 6 7 3 3 4 4 6 7 3 3 4 4 5 5 5 6 5 6
2 2 4 4 6 7 8 8 5 6 5 8 7 8 7 8 6 7 6 8 7 8 8 7

9.
0 0 0 0 0 0 0 0 1 1 1 1 1 1 2 2 2 2 2 2 3 3 4 4  
1 1 3 3 5 5 6 7 3 3 4 4 6 6 3 3 4 4 5 5 5 7 5 6  
2 2 4 4 6 7 8 8 5 8 5 8 7 7 6 7 6 7 8 8 6 8 7 8

I I .

0 0 0 0 0 0 0 0 1 1 1 1 1 1 2 2 2 2 2 2 3 3 4 4
1 1 3 3 5 5 6 7 3 3 4 4 5 7 3 3 4 4 5 6 5 6 5 6
2 2 4 4 6 7 8 8 5 6 7 8 6 8 7 8 5 6 7 8 8 7 8 7

2 .

0 0 0 0 0 0 0 0 1 1 1 1 1 1 2 2 2 2 2 2 3 3 4 4  
1 1 3 3 5 5 7 7 3 3 4 4 6 6 3 3 4 4  5 5 6 6 5 5  
2 2 4 4 6 6 8 8 5 5 7 8 7 8 7 8 6 6 7 8 7 8 7 8

4.
0 0 0 0 0 0 0 0 1 1 1 1 1 1 2 2 2 2 2 2 3 3 4 4
1 1 3 3 5 5 7 7 3 3 4 4 6 6 3 3 4 4 5 5 5 6 5 6
2 2 4 4 6 6 8 8 5 7 5 8 7 8 6 7 6 8 7 8 8 8 7 7

6 .

0 0 0 0 0 0 0 0 1 1 1 1 1 1 2 2 2 2 2 2 3 3 4 4  
1 1 3 3 5 5 6 7 3 3 4 4 6 7 3 3  44 5 5 5 6 5 6  
2 2 4 4 6 7 8 8 5 6 5 7 8 8 7 8 6 8 6 7 8 7 8 7

8 .

0 0 0 0 0 0 0 0 1 1 1 1 1 1 2 2 2 2 2 2 3 3 4 4  
1 1 3 3 5 5 6 7 3 3 4 4 6 7 3 3  44 5 5 5 6 5 6  
2 2 4 4 6 7 8 8 5 6 5 8 7 8 7 8 6 7 6 8 8 7 7 8

10 .

0 0 0 0 0 0 0 0 1 1 1 1 1 1 2 2 2 2 2 2 3 3 4 4  
1 1 3 3 5 5 7 7 3 3 4 4 5 6 3 3 4 4 5 6 5 6 5 6  
2 2 4 4 6 6 8 8 5 7 6 8 7 8  6 8 5 7 8 7 7 8 8 7

12 .

0 0 0 0 0 0 0 0 1 1 1 1 1 1 2 2 2 2 2 2 3 3 4 4  
1 1 3 3 5 5 6 7 3 3 4 4 5 7 3 3 4 4 5 6 5 6 5 6  
2 2 4 4 6 7 8 8 5 6 7 8 6 8 7 8 5 6 8 7 7 8 8 7
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13.
0 0 0 0 0 0 0 0 1 1 1 1 1 1 2 2 2 2 2 2 3 3 4 4  
1 1 3 3 5 5  6 7 3 3 4 4 5 7 3 3 4 4 5 6 5 6 5 6  
2 2 4 4 6 7 8 8 5 8 6 7 6 8 6 7 5 8 7 8 8 7 8 7

15.
0 0 0 0 0 0 0 0 1 1 1 1 1 1 2 2 2 2 2 2 3 3 4 4
1 1 3 3 4 6 6 7 3 3 4 5 5 7 3 3 4 4 5 5 5 6 5 6
2 2 4 5 5 7 8 8 4 6 7 6 8 8 7 8 6 8 6 7 7 8 8 7

17.
0 0 0 0 0 0 0 0 1 1 1 1 1 1 2 2 2 2 2 2 3 3 4 4  
1 1 3 3 4 5 6 7 3 3 4 5 6  73 3 4 4 5 5 5 6 5 6  
2 2 4 5 6 7 8 8 4 8 5 6  78 67  78 6 8 7 8 8 7

19.
0 0 0 0 0 0 0 0 1 1 1 1 1 1 2 2 2 2 2 2 3 3 4 4
1 1 3 3 4 5 6 7 3 3 4 5 6 6 3 3 4 4 5 5 5 6 5 7
2 2 4 5 6 7 8 8 4 8 5 7 7 8 7 8 6 7 6 8 6 7 8 8

21 .

0 0 0 0 0 0 0  0 1 1 1 1 1 1 2 2 2 2 2 2 3 3 4 4  
1 1 3 3 4 5 6 7 3 3 4 5 5 6 3 3  44  5 7 6 6 5 5  
2 2 4 5 6 7 8 8 4 8 7 6 7 8 5 8 6 7 6 8 7 7 8 8

23.
0 0 0 0 0 0 0 0 1 1 1 1 1 1 2 2 2 2 2 2 3 3 4 4  
1 1 3 3 4 5 6 7 3 3 4 5 5 6 3 3  44  5 6 5 7 5 6  
2 2 4 5 6 7 8 8 4 8 7 6 7 8 6 7 5 8 8 7 6 8 8 7

25.
0 0 0 0 0 0 0 0 1 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3  
1 1 2 4 4 5 6 7 2 4 4 5 6 7 4 4 5 5 6 4 4 5 5 6  
2 3 3 5 6 7 8 8 3 5 6 8 7 8 7 8 6 7 8 7 8 6 8 7

27.
0 0 0 0 0 0 0 0 1 1 1 1 1 1 2 2 2 2 2 3 3 3 3 4  
1 1 2 4 4 5 6 7 2 3 4 5 6 7 3 4 5 5 6  44  5 6 5  
2 3 3 5 6 7 8 8 4 5 6 8 7 8 7 8 6 8 7 7 8 6 8 7

29.
0 0 0 0 0 0 0 0 1 1 1 1 1 1 2 2 2 2 2 3 3 3 3 4  
1 1 2 4 4 5 6 7 2 3 4 5 6 7 3 4 5 5 6 4 4 5 6 5  
2 3 3 5 6 7 8 8 4 5 7 6 8 8 6 8 7 8 7 7 8 8 7 6

14.
0 0 0 0 0 0 0 0 1 1 1 1 1 1 2 2 2 2 2 2 3 3 4 4  
1 1 3 3 5 5 6 7 3 3 4 4 5 7 3 3 4 4  5 6 5 6 5 6  
2 2 4 4 6 7 8 8 5 8 6 7 6 8 6 7 5 8 8 7 7 8 8 7

16.
0 0 0 0 0 0 0 0 1 1 1 1 1 1 2 2 2 2 2 2 3 3 4 4  
1 1 3 3 4 5 6 7 3 3 4 5 6 7 3 3  44  5 5 6 6 5 5  
2 2 4 5 6 7 8 8 4 5 8 6 7 8 7 8 6 7 6 8 7 8 7 8

18.
0 0 0 0 0 0 0 0 1 1 1 1 1 1 2 2 2 2 2 2 3 3 4 4  
1 1 3 3 4 5 6 7 3 3 4 5 6 6 3 3  44  5 5 5 7 5 6  
2 2 4 5 6 7 8 8 4 8 5 7 7 8 6 7 7 8 6 8 6 8 8 7

20 .

0 0 0 0 0 0 0 0 1 1 1 1 1 1 2 2 2 2 2 2 3 3 4 4  
1 1 3 3 4 5 6 7 3 3 4 5 5 6 3 3 4 4 5 6 6 7 5 5  
2 2 4 5 6 7 8 8 4 8 7 6 7 8 5 6  78  8 7 7 8 6 8

22 .

0 0 0 0 0 0 0 0 1 1 1 1 1 1 2 2 2 2 2 2 3 3 4 4  
1 1 3 3 4 5 6 7 3 3 4 5 5 6 3 3  44  5 7 5 6 5 6  
2 2 4 5 6 7 8 8 4 7 8 6 8 7 6 8 5 7 6 8 7 8 8 7

24.
0 0 0 0 0 0 0 0 1 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3  
1 1 2 4 4 5 6 7 2 4 4 5 6  74  4 5 5 6 4 4  5 5 6  
2 3 3 5 6 7 8 8 3 5 6 7 8 8 7 8 6 8 7 7 8 6 8 7

26.
0 0 0 0 0 0 0 0 1 1 1 1 1 1 2 2 2 2 2 3 3 3 3 4  
1 1 2 4 4 5 6 7 2 3 4 5 6 7 3 4 5 5 6 4 4 5 6 5  
2 3 3 5 6 7 8 8 4 5 6 7 8 8 8 7 6 8 7 7 8 6 7 8

28.
0 0 0 0 0 0 0 0 1 1 1 1 1 1 2 2 2 2 2 3 3 3 3 4
1 1 2 4 4 5 6 7 2 3 4 5 6 7 3 4 5 5 6 4 4 5 6 5
2 3 3 5 6 7 8 8 4 5 6 8 7 8 8 7 6 7 8 7 8 6 7 8

30.
0 0 0 0 0 0 0 0 1 1 1 1 1 1 2 2 2 2 2 3 3 3 3 4
1 1 2 4 4 5 6 7 2 3 4 5 6 7 3 4 5 5 6 4 4 5 6 5
2 3 3 5 6 7 8 8 4 5 7 6 8 8 8 6 7 8 7 7 8 6 7 8
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31.
0 0 0 0 0 0 0 0 1 1 1 1 1 1 2 2 2 2 2 3 3 3 3 4  
1 1 2 4 4 5 6 7 2 3 4 5 6 7 3 4  5 5 6  44  5 6 5  
2 3 3 5 6 7 8 8 4 5 8 6 7 8 7 7 6 8 8 6 8 8 7 7

33.
0 0 0 0 0 0 0 0 1 1 1 1 1 1 2 2 2 2 2 3 3 3 4 4  
1 1 2 3 5 5 6 7 2 3 4 4 6 7 3 3 4 5 6 4 5 6 5 5  
2 3 4 4 6 7 8 8 5 5 6 8 7 8 7 8 6 8 7  76 8 7 8

35.
0 0 0 0 0 0 0 0 1 1 1 1 1 1 2 2 2 2 2 3 3 3 4 4
1 1 2 3 4 5 6 7 2 3 4 5 6 7 3 3 4 5 6 4 5 6 5 5
2 3 4 5 6 7 8 8 5 4 6 8 7 8 7 8 7 6 8 8 6 7 7 8

32.
0 0 0 0 0 0 0 0 1 1  111  12 2 2 2 2 3 3 3 3 4  
1 12 44  5 6 7 2 3 4 5 6  7 3 4 5 5 6 4 4 5 6 5  
2 3 3 5 6 7 8 8 4 5 8 6 7 8 8 7 6 8 7 6 7 7 8 8

34.
0 0 0 0 0 0 0 0 1 1 1 1 1 1 2 2 2 2 2 3 3 3 4 4
1 1 2 3 5 5 6 7 2 3 4 4 6 7 3 3 4 5 6 4 5 5 5 6
2 3 4 4 6 7 8 8 5 6 5 8 7 8 6 7 7 8 8 8 7 8 6 7

36.
0 0 0 0 0 0 0 0 1 1 1 1 1 1 2 2 2 2 2 3 3 3 4 4  
1 1 2 3 4 5 6 7 2 3 4 5 6  73 3 4 5 6 4 5 6 5 5  
2 3 4 5 6 7 8 8 5 4 6 8 7 8 7 8 8 6 7 7 6 8 7 8



APPENDIX B

Rotation schemes of the TTS(9) embeddings

l.
0 : 1 to C

O 4 5 6 7 00

1 : 2 0 3 5 4 7 6

00

2 : 0 1 3
oo 4 6 5 7

CO 0 1 5 2 oo 6 7
4 : 0 3 1 7 2 6 5

00

5 : 6 0 1 3 2 7 4

00

6 : 0 5 1

oo 2 4 3 7oo 0 1 4 2 5 C
O 6

o00 7 1 6 2 3 4 5

3 .

0 : 1

CN] | C
O 4 | 5 6

oo 7
1 : 2 0 3 5 |

00 7 6 4
2 : 0 1 | 3 7 4 6 5

00 |

C
O 4 0 | 1 5 | 00 6 7 2

4 : 0 C
O j 1 6 2 7 5

00 |

5  : 6 0 7 4 oo 2 1 1 co |

6 : 0 5 2 4 1 7 C
O oo

7 : 0 5 4 2 3 6 1 oo00 0 6 C
O 2 5 4 1 7

5 .

0 : 1 2 3 4 | 5 6 | 7 8
1 : 2 0 3 5 4 8 6 7 1
2 : 0 1 8 5 7 4 6 3 |
3 : 4 0 7 5 1 | 2 6 8 |
4 : 0 3 1 5 8 7 6 2
5 : 6 0 1 3 7 2 8 4  1

6 : 0 5 8 3 2 4 7 1
7 : 8 0 6 4 2 5 3 1 j
8 : 0 7 1 4 5 2 3 6 1

2 .
0 1 2 C

O 4 , 5 6 | 7
1 2 0 3 5 4 7 6 8
2 0 1 3 7 5 8 | 4 6

C
O 4 0 1 5 |. 8 6 7 2

4 0 3 8 5 7 1 | 2 6
5 6 0 1 3 | 2 7 4 8
6 0 5 1 7 3 8 | 2 4
7 8 0 1 4 5 2 3 6 |00 0 7 6 3 2 5 4 1 |

4 .

0 1 2 C
O 4 , 5 6 1 7
1 2 0 3 5 4 8 6 7
2 0 1 7 5 8 4 6 300 4 0 7 2 6 8 5 1

4 0 3 1 5 7 6 2 8
5 6 0 1 3 8 2 7 4
6 0 5 8 3 2 4 7 1

7 8 0 6 4 5 2 3 100 0 7 1 4 2 5 3 6

6 .
0 : 1 2 1 3 4 | 5 6 8
1 : 2 0 1 3 5 4 7 8 6

to 0 1 1 8 4 6 5 7 3

00 4 0 1 6 7 2 8 5 1
4 : 0 3 1 7 6 2 8 5 1
5  : 6 0 7 2 | 1 3 8 4
6 : 0 5 2 4 7 3 1 8
7 : 0 5 2 3 6 4 1 8

oo 0 6 1 7 1 2 3 5 4

141



142 R otation schem es of the TT S(9) em beddings

7. 8.
0 1 2 1 3 4 | 5 6 8 7 1 0 1 2 1

CO 4 | 5 6

00

1 2 0 1 6 7 8 4 5 3 | 1 2 0 1 3 5 4 8 7 6
2 0 1 1 3 7 4 6 5 8 2 0 1 1 3 7 4 6 5 8CO 4 0 1 1 5 7 2 8 6 3 4 0 1 6 7 2 8 5 1
4 0 3 1 8 5 1 | 7 6 2 1 4 0 3 1 1 5 7 2 6 8
5 6 0 7 3 1 4 8 2 5 6 0 7 4 1 3 8 2
6 0 5 2 4 7 1 3 8 6 0 5 2 4 8 | 1 3 7
7 8 1 6 4 2 3 5 0 7 8 1 6 3 2 4 5 0oo 0 6 3 2 5 4 1 7 8 0 6 4 1 7 1 5 3 2

9. 10.
0 1 2 _3 4 5 6 8 7 1 0 1 2 | 3 4 | 5 6 7 8
1 2 0 1 3 5 4 8 | 6 7 1 1 2 0 | 3 5 7 | 4 6 8 1
2 0 1 1 3 6 4 7 5 8 2 0 1 3 6 7 4 5 8 |
3 4 0 1 8 7 2 6 5 1 | 3 4 0 7 5 1 | 8 6 2 1
4 0 3 1 1 5 7 2 6 8 4 0 3 8 5 2 7 6 1 |
5 6 0 7 4 1 3 | 2 8 | 5 6 0 j 1 3 7 | 2 4 8 1
6 0 5 3 2 4 8 1 7 6 0 5 1 4 7 2 3 8 |
7 8 3 2 4 5 0 1 6 7 8 0 5 3 1 | 6 4 2 |
8 0 6 4 1 3 7 1 2 5 1 8 0 7 1 6 3 2 5 4 1 1

11. 12.
0 1 2 1 3 4 | 5 6 8 7 1 0 1 2 | 3 4 | 7 8 6 5 1
1 2 0 1 6 5 3 | 4 7 8 1 2 0 3 5 6 | 8 7 4
2 0 1 1 8 6 4 5 7 3 | 2 0 1 8 5 4 6 7 3 |
3 4 0 1 1 5 8 2 7 6 3 4 0 6 8 2 7 5 1 |
4 0 3 1 8 5 2 6 7 1 4 0 3 1 7 6 2 5 8
5 6 0 7 2 4 8 3 1 5 1 3 7 0 6 | 8 4 2 j
6 0 5 1 3 7 4 2 8 6 8 3 1 5 0 2 4 7
7 8 1 4 6 3 2 5 0 7 0 5 3 2 6 4 1 8
8 0 6 2 3 5 4 1 7 8 7 1 4 5 2 3 6 0

13. 14.
0 1 2 1 3 4 | 5 6 8 7 1 0 1 2 1 3 4 | 5 6 8 7 1
1 2 0 1 8 7 4 6 5 3 | 1 2 0 1 8 7 4 6 5 3 |
2 0 1 1 3 6 8 4 5 7 2 0 1 1 3 6 7 | 4 5 8 1
3 4 0 1 1 5 8 | 2 6 7 1 3 4 0 1 8 6 2 7 5 1 |
4 0 3 1 7 6 1 8 5 2 4 0 3 1 7 6 1 | 2 5 8 1
5 6 0 7 2 4 8 3 1 5 6 0 7 3 1 | 2 4 8 |
6 0 5 1 4 7 3 2 8 6 0 5 1 4 7 2 3 8
7 8 1 4 6 3 2 5 0 7 0 5 3 2 6 4 1 8
8 7 1 3 5 4 2 6 0 8 0 6 3 1 7 1 2 4 5 1
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u
0 1 2 | CO 4 5 | 6

00

1 2 0 6 5 8 7 4 3 1
2 0 1 j 3 7 5 6 4 8 1
3 4 0 5 7 2 8 6 1
4 0 3 1 7 6 2 8 5
5 4 8 1 6 2 7 3 0
6 4 2 5 1 3 8 0 7
7 0 6 4 1 8 | 2 3 5 1oo 0 6 3 2 4 5 1 7

16
0 1 2 | 3 4 6 00 7 5
1 2 0 5 6 7 8 4 3
2 0 1 8 5 6 4 7 3

C
O 4 0 5 1 | 2 7 6 8

4 0 3 1 8 5 7 2 6
5 7 4 8 2 6 1 3 0
6 0 4 2 5 1 7 3 8
7 8 1 6 3 2 4 5 0

00 0 6 3 2 5 4 1 7

17. 18
0 1 2 | 3 4 6 8 7 5 1 0 : 1 2 | 3 4 6 8 7 5
1 2 0 j 8 7 6 5 4 3 1 1 : 2 0 8 6 7 5 4 3
2 0 1 j 7 4 8 5 6 3 1 2 : 0 1 3 6 5 8 4 7
3 4 0 5 7 2 6 8 1 3 : 4 0 5 6 2 7 8 1
4 0 3 1 5 8 2 7 6 4 : 0 3 1 5 8 2 7 6
5 7 3 0 | 6 2 8 4 1 | 5 : 7 1 .4 8 2 6 3 0
6 8 3 2 5 1 7 4 0 6 : 0 4 7 1 8 | 2 3 5
7 8 1 6 4 2 3 5 0 7 : 8 3 2 4 6 1 5 0
8 7 1 3 6 0 1 2 4 5 1 8 : 0 6 1 3 7 1 2 4 5

19. 20
0 1 2 | 3 4 6 8 7 5 1 0 : 1 2 | 3 4 6 8 7 5
1 2 0 j 8 6 7 5 4 3 | 1 : 2 0 •j 8 6 5 7 4 3
2 0 1 3 7 4 6 5 8 1 2 : 0 1 3 5 8 4 7 6
3 4 0 5 6 7 2 8 1 3 : 4 0 5 2 6 7 8 1
4 0 3 1 5 8 7 2 6 4 : 0 3 1 7 2 8 5 6

'5 7 1 4 8 2 6 3 0 5 : 7 1 6 4 8 2 3 0
6 8 1 7 3 5 2 4 0 6 : 0 4 5 1 8 | 7 3 2
7 8 4 2 3 6 1 5 0 7 : 8 3 6 2 4 1 5 0
8 0 6 1 3 2 5 4 7 8 : 0 6 1 3 7 1 5 4 2

21 . 22 .

0 1 2 | 3 4 6

oo 7 5 1 0 1 2 |

CO 4 6

00 7 5
1 2 0 | 8 6 5 7 4 3 1 2 0 j 7 6 5 8 4 3
2 0 1 3 5 6 4 7 8 1 2 0 1 •| 8 7 4 5 6 3
3 4 0 5 2 8 1 1 6 7 3 4 0 5 7 1 | 2 6 8
4 0 3 1 7 2 6 1 5 8 4 0 3 1 8 5 2 7 6
5 7 1 6 2 3 0 1 4 8 5 0 3 7 | 1 6 2 4 8
6 0 4 2 5 1 8 1 3 7 1 6 0 4 7 1 5 2 3 8
7 8 2 4 1 5 0 1 3 6 7 0 5 3 1 6 4 2 8
8 0 6 1 3 2 7 1 4 5 | 8 0 6 3 2 7 | 5 4 1
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23. 24.
0 1 2 | 3 4 6 00 0 1 2 3 | 4 5 7 8 6 1
1 2 0 8 6 5 7 4 3 1 1 2 0 3 6 8 7 5 4
2 0 1 3 6 7 | 4 5 8 | 2 0 1 3 4 7 6 5 8
3 4 0 5 6 2 7 8 1 3 2 1 0 8 5 6 7 4
4 0 3 1 7 6 | 8 5 2 | 4 5 0 6 1 1 8 3 7 2 |
5 7 1 6 3 0 2 4 8 5 0 4 1 7 1 2 6 3 8 1
6 0 4 7 2 3 5 1 8 6 8 1 4 0 1 7 3 5 2 |
7 8 3 2 6 4 1 5 0 7 0 5 1 8 1 2 4 3 6 1
8 0 6 1 3 7 | 5 4 2 | 8 7 1 6 0 1 5 3 4 2

21
0 1 2 C

O | 4 5 7

oo

6  1 o 
to ►

1 2 C
O | 4 5 7

0
0

1 2 0 3 6 7 8 5 4 1 2 0 3 5 7 8 6 4
2 0 1 3 4 7 5 6 8 2 0 1 4 7 6 5 8 3
3 0 1 2 4 7 6 5 8 3 2 8 4 7 6 5 1 0

4 5 0 6 1 | 2 7 3 8 4 8 3 7 2 1 6 0 5
5 0 4 1 8 3 6 2 7 5 7 1 3 6 2 8 4 0

6 8 2 5. 3 7 1 4 0 6 0 4 1 8 | 7 3 5
7 0 5 2 4 3 6 1 8 7 8 1 5 0 2 4 3

0
0 . 0 6 2 4 3 5 1 7 8 0 6 1 7 2 3 4

27.
0 1 2 3 | '4 5 7 8
1 2 0 3 5 8 7 6 4
2 0 1 4 8 5 6 7 3
3 2 7 4 8 6 5 1 0
4 7 3 8 2 1 6 0 5
5 0 4 7 | 1 3 6 2
6 0 4 1 7 2 5 3 8
7 0 5 4 3 2 6 1 8
8 7 1 5 2 4 3 6 0

28.
0 1 2 3 | 4 5 7 8
1. 2 0 3 5 8 7 6 4
2 0 1 4 7 5 6 8 3
3 2 8 4 7 6 5 1 0
4 8 3 7 2 1 6 0 5
5 0 4 8 1 3 6 2 7
6 0 4 1 7 3 5 2 8
7 0 5 2 4 3 6 1 8
8 7 1 5 4 3 2 6 0

29
0 1 2 3 | 4 5 7 8 6
1 2 0 3 5 6 8 7 4
2 0 1 4 8 5 7 6 3
3 2 6 7 4 8 5 1 0
4 5 0 6 | 7 3 8 2 1
5 0 4 6 1 3 8 2 7
6 8 1 5 4 0 | 2 3 7
7 0 5 2 6 3 4 1 8
8 7 1 6 0 1 2 4 3 5

30.
0 1 2

00 | 4 5 7 00

1 2 0 3 5 6 8 7 4
2 0 1 4 6 7 5 8 3
3 2 8 4 7 6 5 1 0
4 5 0 6 2 1 7 3 8
5 0 4 8 2 7 | 1 3
6 8 1 5 3 7 2 4 0
7 0 5 2 6 3 4 1 8

00 7 1 6 0 1 5 4 3
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3]
0

L .

1 2 3 | 6

00 7 5 4 1
3S
0 1 2

CO | 4 5 7

00
1 2 0 3 5 6 7 8 4 1 2 0 3 5 6 7 8 4
2 0 1 4 7 3 | 8 6 5 1 2 0 1 4 7 6 5 8 3CO 2 7 6 4 8 5 1 0 3 2 8 6 4 7 5 1 0
4 7 2 1 8 3 6 0 5 4 5 0 6 3 7 2 1 8
5 7 4 0 | 1 3 8 2 6 1 5 0 4 8 2 6 1 3 7
6 0 4 3 7 1 5 2 8 6 0 4 3 8 | 1 5 2
7 8 1 6 3 2 4 5 0 7 8 1 6 2 4 3 5 0oo 0 6 2 5 3 4 1 7 8 0 6 3 2 5 4 1 7

33. 34.
0 1 2 4 G

O | 5 6

oo 7 1 0 1 2 4 0
0 | 5 6

0
0

1 2 0 3 5 j 4 6 7 8 1 2 0 3 6 7 8 4 5
2 0 1 5 8 3 7 6 4 2 0 1 5 8 6 3 7 4

0
0 4 7 2 8 6 5 1 0 3 4 8 5 7 2 6 1 0

4 0 2 6 1 8 5 7 3 4 0 2 7 6 5 1 8 3
5 6 0 7 4 8 2 1 3 5 6 0 7 3 8 2 1 4
6 0 5 3 8 | 1 4 2 7 1 6 0 5 4 7 1 3 2 8

7 8 1 6 2 3 4 5 0 7 8 1 6 4 2 3 5 0

0
0

0 6 3 2 5 4 1 7 8 0 6 2 5 3 4 1 7

35. 36.
0 : 1

CM 4 6 oo 7 5 3 0 1 2 4 6 00 7 5 00
1 : 2 0 3 4 6 7 8 5 1 2 0 3 4 6 7 8 5

to o 1 5 6 8 3 7 4 2 0 1 5 6 7 3 8 4
3 : 5 6 7 2 8 4 1 0 00 5 6

00 2 7 4 1 0
4 : 0 2 7 5

00 CO 1 6 4 0 2

00 5 7 3 1 6
5 : 7 4 00 1 2 6 3 0 5 7 4

00 1 2 6 oo 0
6 : 0 4 1 7 3 5 2

oo 6 0 4 1 7 2 5 3 8
7 : 8 1 6 3 2 4 5 0 7 8 1 6 2 3 4 5 0o00 6 2 oo 4 5 1 7 00 0 6 3 2 4 5 1 7
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Maximal complete bipartite graphs in the STS(15)s

# #  1,7 # 2 ,6 # 3 ,5 K 3,6 k aa

1 1920 840 840 0 1050
2 1920 648 528 0 570
3 1920 552 372 0 330
4 1920 504 356 0 306
5 1920 504 368 0 370
6 1920 432 324 0 306
7 1920 408 360 0 450
8 1920 432 276 0 206
9 1920 396 268 0 170

10 1920 396 274 0 202
11 1920 356 264 4 178
12 1920 410 272 2 166
13 1920 408 268 0 194
14 1920 432 270 0 174
15 1920 360 258 0 202
16 1920 504 294 0 210
17 1920 360 264 0 234
18 1920 360 252 0 170
19 1920 320 272 8 238
20 1920 338 248 2 130
21 1920 344 254 2 130
22 1920 326 260 8 142
23 1920 324 231 0 104
24 1920 334 232 2 100
25 1920 338 230 2 112
26 1920 356 231 2 114
27 1920 304 229 2 108
28 1920 314 230 4 104
29 1920 332 230 2 100
30 1920 306 231 4 108
31 1920 320 234 0 136
32 1920 306 236 4 96
33 1920 298 228 4 86
34 1920 302 231 4 86
35 1920 308 227 2 82
36 1920 278 218 0 80
37 1920 270 246 0 96
38 1920 290 237 4 100
39 1920 302 232 2 86
40 1920 302 224 2 82

# # 1 ,7 # 2 .6 # 3 ,5 # 3 ,6 # 4 .4
41 1920 298 228 2 86
42 1920 298 255 8 104
43 1920 282 225 0 96
44 1920 274 227 0 72
45 1920 288 234 2 84
46 1920 280 240 4 76
47 1920 288 233 2 78
48 1920 278 230 4 72
49 1920 276 237 4 76
50 1920 270 245 4 112
51 1920 294 239 6 84
52 192  0 288 230 4 68
53 1920 288 231 4 78
54 1920 302 239 8 90
55 1920 294 239 6 84
56 1920 282 233 4 72
57 1920 262 241 4 84
58 1920 272 234 4 86
59 1920 320 239 8 82
60 1920 288 253 10 108
61 1920 308 266 14 154
62 1920 266 230 2 58
63 1920 266 239 2 106
64 1920 290 236 8 94
65 1920 280 240 4 76
66 1920 274 242 4 80
67 1920 272 249 4 84
68 1920 268 234 2 64
69 1920 268 244 6 84
70 1920 288 234 4 84
71 1920 262 237 2 68
72 1920 272 249 6 84
73 1920 288 266 8 128
74 1920 272 230 0 88
75 1920 282 249 8 108
76 1920 280 220 0 80
77 1920 252 246 2 48
78 1920 272 250 8 128
79 1920 264 258 0 192
80 1920 240 270 0 120
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APPENDIX D

Number of occurrences of K 2.4 in the STS(15)s

# K 2A
1 11340
2 11244
3 11196
4 11172
5 11172
6 11136
7 11124
8 11136
9 11118
10 11118
11 11094
12 11121
13 11124
14 11136
15 11100
16 11172
17 11100
18 11100
19 11076
20 11085
21 11085
22 11076
23 11079
24 11082
25 11085
26 11094
27 11067
28 11070
29 11082
30 11067

# k 2A
31 11079
32 11064
33 11061
34 11061
35 11064
36 11055
37 11043
38 11052
39 11061
40 11064
41 11061
42 11049
43 11055
44 11049
45 11052
46 11046
47 11055
48 11049
49 11046
50 11043
51 11052
52 11052
53 11055
54 11058
55 11052
56 11049
57 11040
58 11049
59 11064
60 11046

# ^2,4
61 11067
62 11046
63 11046
64 11055
65 11046
66 11043
67 11040
68 11043
69 11040
70 11052
71 11040
72 11040
73 11043
74 11049
75 11046
76 11055
77 11031
78 11043
79 11043
80 11025
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APPENDIX E

Cycle representations in the 14 TTS(IO) embeddings.

1 . C3 0  1 2

c4 0  1 2  3

0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 2 2 2 2 2 3 3 3 4 4 4 4 5 5 C5 0  1 2 3 6

1 1 2 2 3 3 4 6 8  2  2  3 3 5 7 8 3 3 5 6 7 4 6 7 5 5 6 7 6 6 C6 0 1 2 3 6 7

4 5 7 8 5 7 6 9 9 4 6 6 8 7 9 9 4 5 9 8 9 9 9 8 8  9  7 8 7 8 c 7 0 1 2 3 6 7 8

C8 0 1 2 5 4 3 6 7

C9 0 1 2 5 4 3 6 7 8

C i o  : 0 1 2 5 4 3 6 8 9 7

2 . c 3 0  1 2

c 4 0  1 2  3

0 0 0 0 0 0 0 0 0 1  1 1 1 1  1 1 2 2 2 2 2 3 3 3 4 4 4 5 6 7 c 5 0  1 2  3 4

1 1 2 2 3 3 4 5 6 2 2 3  3 4  5 7 3 3 5 5 6 4 4 6 5 5 6 7 8 8 0  1 2 3 4 5

6  7 4  7 5 8 8 9 9 4 8 5 6 9 8 9 8 9 6 9 7 7 9 7 6 7 8 8 9 9 c 7 0  1 2 3 4 5 8

C* 0 1 2 3 4 5 8 9

c 9 0 1 2 3 4 6 9 5 8

C i o  : 0 1 2 3 4 6 7 5 9 8

3. c 3 0  1 2

c 4 0  1 2  3

0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 2 2 2 2 2 3 3 3 4 4 4 5 5 7 c 5 0 1 2 3 9

1 1 2 2 3 3 5 6 8 2 2 3 3 4 6 6 3 3 4 5 6 4 4 5 5 6 7 6 7 8 C6 0 1 2 3 9 6

4 5 4 7 6 7 9 8 9 5 7 8 9 8 7 9 6 8 9 8 9 5 7 9 6 8 9 7 8 9 c 7 0  1 2  3  9  6  7

c 8 0 1 2 3 9 6 7 8

C 9 0 1 2 3 9 6 7 4 8

C i o  : 0 1 2 3 9 6 7 4 5 8
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4. c 3 0  1 2

c 4 0  1 2  3

0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 2 2 2 2 2 3 3 3 4 4 4 5 5 5 c 5 0 1 2 3 9

1 1 2 2 3 3 4 5 6 2 2 3 3 4 4 7 3 3 4 5 8 6 6 7 6 6 7 6 7 8 c 6 0 1 2 3 9 4

6 8 7 8 4 7 5 9 9 6 7 5 9 5 8 9 4 5 9 6 9 8 9 8 7 8 9 7 8 9 c 7 0  1 2  3  9  8  4

c 8 0 1 2 3 9 8 7 4

c 9 0 1 2 3 9 5 6 8 7

C i o  : 0 1 2 3 9 5 6 8 7 4

5 . c 3 0  1 2

c A 0  1 2  3

0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 2 2 2 2 2 3 3 3 4 4 4 5 5 5 c 5 0  1 2  4  3

1 1 2 2 3 3 5 6 6 2 2 3 3 4 6 6 3 3 4 5  7 4  4 8 6 7 8 6 7 7 c 6 0 1 2 4 3 9

4 5 4 8 7 8 9 7 9 7 8 5 7 9 8 9 6 9 5 6 9 5 6 9 7 8 9 8 8 9 c 7 0  1 2 4 3 9 7

c 8 0 1 2 4 3 9 7 8

c 9 0 1 2 4 3 9 7 8 6

C 1 0 : 0 1 2 3 4 7 5 6 9 8

6 . c 3 0  1 3

c 4 0 1 3 6

0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 4 4 4 5 6 c 5 0 1 3 2 5

1 1 2 3 3 4 4 5 7 2 3 3 4 5 6 8 3 3 4 5 6 7 5 6 7 5 5 7 6 8 c 6 0  1 3  2  5  4

2 7 9 5 8 6 9 6 8 5 4 8 6 9 7 9 4 6 8 8 7 9 7 9 9 7 9 8 8 9 c 7 0 1 3 2 5 4 8

c 8 0 1 3 2 5 4 8 6

c 9 0 1 3 9 2 5 4 8 6

C i o  : 0 1 3 2 5 4 8 6 7 9

7. c 3 0  1 2

c 4 0  1 2  3

0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 2 2 2 2 2 3 3 3 4 4 4 5 6 7 c 5 0  1 2 3 4

1 1 2 2 3 3 4 5 7 2 2 3 3 4 5 6 3 3 4 5 5 4 5 5 6 6 7 6 8 8 C* 0 1 2 3 4 6

8 9 4 6 6 7 5 9 8 6 7 4 7 5 8 9 8 9 9 7 8 8 6 9 7 8 9 7 9 9 C 7 0 1 2 3 4 5 6

c 8 0 1 2 3 4 5 8 6

C 9 0 1 2 3 4 9 5 8 6

C i o  : 0 1 2 3 4 9 5 8 6 7
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8 . C 3 0  1 3

0  1 3  7

0 0 0 0 0 0 0 0 0 1  1 1 1 1  1 1 2 2 2 2 2 2 3 3 3 3 4 4 6 7 c 5 0  1 3  7 8

1 1 2 3 4 5 5 6 8 2 3 3 4 5 6 7 3 4 4 5 5 6 4 4 5 6 5 5 7 8 c 6 0 1 3 7 6 5

2 4 3 6 9 7 8 7 9 8 5 9 7 6 8 9 7 6 8 7 9 9 7 8 8 9 6 9 8 9 c 7 0 1 3 7 6 5 9

Cs 0 1 8 3 7 6 5 9

C 9 0 1 5 2 3 4 6 7 9

C l o : 0 1 8 5 2 3 4 6 7 9

9 . c 3 0  1 2

c 4 0  1 2 3

0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 2 2 2 2 2 3 3 3 4 4 4 5 6 7 C 5 0 1 2 3 5

1 1 2 2 3 3 5 5 8 2 2 3  3 4  6 6 3 3 4 5 7 4 4 5 5 5 6 6  7 8 c 6 0 1 2 3 4 5

4 9 4 7 6 8 6 7 9 5 9 5 8 7 7 8 6 9 6 8 8 7 9 7 8 9 8 9 9 9 c 7 0 8  1 2 3 4 5

c 8 0 8  1 2 3 4 6 7

c 9 0 8 1 2 3 4 5 6 7

C j o  : 0 1 3 2 4 8 9 5 7 6

1 0 . c 3 0  1 2

c 4 0 1 2 3

0 0 0 0 0 0 0 0 0 1  1 1 1 1 1 1 2 2 2 2 2 3 3 3 4 4 4  5 6 6 a . 0  1 2 3 4

1 1 2 2 3 3 4 5 6 2 2 3 3 4 5 7 3 3 4 5 7 4 5 6 5 5 8 8 7 7 C6 0 1 2 3 4 5

6  7 4  5 8 9 8 7 9 8 9 4 5 9 6 8 6 7 6 8 9 7 9 8 6  7 9  9 8 9 c 7 0  1 2 3 4 5 8

c 8 0  1 2 3 9 4 5 8

C 9 0 1 3 2 4 8 5 7 9

C m  : 0 1 3 2 4 8 6 5 7 9

1 1 . C 3 0  1 2

c 4 0  1 2  3

0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 2 2 2 2 2 3 3 3 4 4 4 5 5 6 0  1 2 3 5

1 1 2 2 3 3 4 4 7 2 2 3 3 4 5 6 3 3 5 6 6 4 5 5 6 7 8 7 8 7 C6 0  1 2 3 6 8

7 9 5 8 6 9 5 6 8 4 9 7 8 5 6 8 4 7 7 8 9 9 6 8 7 8 9 9 9 9 c 7 0 1 2 3 6 4 8

C 8 0  1 2 3 6 4 5 8

c 9 0 1 2 3 9 6 4 5 8

Cw  : 0 1 3 2 9 4 5 8 7 6
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1 2 . c 3 0 1 2
c 4 0 1 2  3

0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 2 2 2 2 2 3 3 3 4 5 5 5 6 6 c 5 0 1 2 3 4
1 1 2 2 3 3 4 4 5 2 2 3 3 4 4 6 3 3 4 4 7 4 4 8 5 6 7 7 7 8 C6 0 1 3  2 6 7
5 8 8 9 6 7 7 9 6 6 9 5 9 7 8 7 5 7 5 6 8 6 8 9 9 8 8 9 9 9 c 7 0 1 4 3 2 6 7

C8 0 1 4 3 2 6 5 7
C9 0 9 1 4 3 2 6 5 7
Cl o : 0 8 9 1 4 3 2 6 5 7

13. c 3 0 1 2
c 4 0 1 2  3

0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 2 2 2 2 2 3 3 3 4 5 5 5 6 7 C5 0 1 2 3 4
1 1 2 2 3 3 4 4 5 2 2 3 3 4 4 6 3 3 4 4 5 4 4 6 7 6 6 8 7 8 C6 0 1 3 2 4 9
6 8 6 9 7 9 5 7 8 7 9 5 7 5 8 9 5 8 6 8  76  9 8 9 7 9 9 8 9 . C7 0 1 3 2 4 5 9

C8 0 1 3 4 5 6 8 2
C9 0 1 3 4 5 6 8 2 7
Cl o : 0 1 3 4 5 6 8 2 7 9

14. c 3 0 1 2
c 4 0 1 2  9

0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 2 2 2 2 2 3 3 3 3 4 4 4 5 5 C5 0 1 2 9 5
1 1 2 2 3 4 5 7 7 2 2 3 4 5 6 8 3 3 4 6 6 4 5 6 7 5 6 8 6 7 C6 0 1 2  9 5 4
3 6 5 8 4 9 6 8 9 4 7 7 5 9 8 9 5 9 8 7 9 6 8 8 9 7 7 9 9 8 C7 0 1 2 9 5 4 8

C8 0 1 2 9 5 3 4 8
C9 0 1 9 2 4 3 5 6 7
C10: 0 1 9 4 3 5 6 8 2 7
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