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Summary

The aim of this thesis was to further the knowledge on microbial weathering, by looking 

at the effect of model organisms (Acidithiobacillus ferrooxidans and Geobacter 

metallireducens) to natural microbial communities (from basaltic glass).

It was found that the medium water-rock ratio (50:1) provided the optimum conditions 

for A. ferrooxidans growth, whilst the low water-rock ratio (1:1) had a lower release of 

iron because of pH. The pH affected the release of iron and REEs, with less released 

the higher the pH. In addition, it was found that, though localised areas of hematite 

were found on the treated rocks, there were also oxidised layers that did not correspond 

to specific mineralogy. The lack of specific mineral signatures on the rock surface, but 

the apparent oxidation of the surface, suggested that the surface had been passivated 

with Fe binding to the mineral surface. In contrast, G. metallireducens did not affect 

the production of Fe2+ from basalt glass when compared to controls. However, when 

low water-rock ratios and hematite were tested, a difference was observed between 

abiotic and biotic flasks. It was suggested the low water-rock ratio possibly allowed G. 

metallireducens to obtain the iron more easily by affecting the pH of the solution which 

in turn affected the stability of the bound iron.

In terms of studying microbial communities on rocks, it was found that community 

structure in Icelandic basaltic glass changed over time, becoming more diverse, with a 

switch from r- to K-selected microorganisms over the course of the year, similarly to 

results obtained in the field. DGGE results showed each flask had a distinctive 

population -  with no correlation between ratios, and replicates different in composition 

to each other. It is suggested that, though community does change over time (as shown 

by the clone libraries), the ratios do not have an effect and each flask is developing with 

its own ‘microbial island’. However, the results of the chemistry of the flask solutions



indicated that the biological experiments showed differences in pH and elemental 

release between ratios. Elemental release rates were faster in the biological 

experiments. The natural communities affected mineral dissolution, possibly through 

the release of organic acids, which would also account for the drop in pHs observed in 

the biological experiments.

It was noted that there were differences in dissolution rates between the results reported 

in this thesis and previous literature. It is suggested that these are caused by the rock 

surface area as in previous studies the rocks have typically been crushed into powder 

and fine particles. This crushed powder would have provided fresh rock surface for the 

microorganisms and also greater surface area for reactions to take place, accounting for 

generally higher weathering rates in previous literature per unit weight of material.
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Chapter 1: Introduction

Weathering of rocks by microbes can occur in varying conditions. However, one rather 

significant variable has not been studied in relation to microorganisms and weathering: 

the ratio of liquid to rock. Yet, in natural environments, one can find differing ratios, 

from saturated water in rock vesicles to more dilute and varying environments such as 

rocks in a flowing river bed. When microbial weathering experiments are described in 

the literature, there is usually no evident explanation as to why a certain amount of rock 

is added to media. Why are ‘A’ grams of rock added to ‘B’ ml of media, rather than ‘C ’ 

grams to ‘D’ ml?

1. The general aim of this thesis was to study microbial weathering of volcanic 

rocks, with an emphasis on water-rock ratios. The main objective was to gain a 

better understanding of the processes by which microbes contribute to 

weathering and if any knowledge learnt can be put to use in industrial 

applications (e.g. acid mine drainage) and in the field of astrobiology (e.g. life 

on Mars). The aim was to address the following broad questions: Do microbes 

contribute significantly to rock weathering?

2. How do microbial communtities develop under different water-rock ratios?

3. Can they acquire nutrients and energy supplies from volcanic environments?

To meet the aims described above, the objectives were as follows:

1.1. Chapter 4: Weathering with Acidithiobacillus ferrooxidans
1



The first year focused on an experiment to examine the effect of changing liquid to rock 

ratios on weathering of basalt by the bacterium Acidithiobacillus ferrooxidans, a well- 

known and characterised acidophilic iron oxidiser; the experiment is considered in 

Chapter 4. The hypothesis to be tested was that a high water-rock ratio would have an 

effect on release of iron, diluting it as soon as it was released, and thus limiting its 

supply. At the other extreme, a low water-rock ratio, the quenching effect of the rock 

would be increased, causing the pH of the medium to rise above optimum for bacterial 

growth. However, an intermediate water-rock ratio between the two would strike a 

balance between optimum iron concentration and pH. The key effect that changes in 

water-rock ratios might influence is the concentration of bioavailable iron, i.e. iron in 

solution. The ability of the rock to dissolve in the media, to form a solution depends on 

several parameters, including the physical and chemical properties of the rock and 

media, pressure, temperature and pH. The rock, media, temperature and pressure will 

be constant; however, the pH will not be controlled.

Though this study predominantly looked at the iron utilisation from the basalt by the 

bacteria since they require iron as a source of energy, the release and use of other 

elements was also investigated.

1.2. Chapters 7-8 Natural microbial communities and weathering

Following Chapter 4, the effect of changing the water to rock ratios on native microbial 

communities of basalt glass was studied, using a combination of culture and molecular 

techniques. It provided a year-long succession study on microbial communities in 

Iceland basalt glass and the experiment observed a community rather than a single 

organism. In addition, the microbial composition of the rock was known through



previous work, however, it was not known if all the phyla present were active in the 

rock, and if they contributed to the weathering process, which this thesis aimed to find 

out. It was hypothesised that the community would be dominated by microorganisms 

with a broad niche, whilst nutrients were low; however, this would change as time 

passed to microorganisms with more specific needs and narrower niches as they lived 

off other organisms and their by-products.

The work had implications for the rates of rock weathering in natural environments 

where water-rock ratios may affect the balance between optimum energy and nutrient 

supply. The use of ry crushed basalt glass rather than powdered also mimics a more 

natural environment and may be a possible explanation why weathering rates differ 

between the lab and field, as laboratory experiments have usually used crushed rocks.

1.3. Chapter 8: Weathering with Geobacter metallireducens

The final chapter focussed on investigating whether the iron reducer Geobacter 

metallireducens could weather basaltic glass. The thesis began with studying the effect 

of an iron oxidiser, A. ferrooxidans, and ends with the opposite - studying the effect of 

an iron reducer. It followed the astrobiology theme of Chapter 4, whereby if  an 

anaerobic iron reducer such as G. metallireducens could weather basalt, it would open 

up possibilities of life having existed on Mars. The work also acted as preliminary 

work to further studies planned to investigate whether G. metallireducens would be able 

to obtain iron from a Martian meteorite, furthering the astrobiology aspect of the 

chapter.
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Chapter 2: Background

2.1. Introduction to Weathering

Weathering is the breakdown of rocks, soils and minerals through contact with the 

Earth’s atmosphere, biota and waters. It occurs in situ and is not to be confused with 

erosion, which involves the movement of rocks and minerals by water, ice and gravity.

Weathering affects the compositions of ground water, river and lake water, and 

ultimately of oceans (Banfield et aL, 1999). In addition, as a result of microbial attack 

and consequent mineral breakdown, ions are leached out into the surroundings and 

translocated (Lauwers and Heinen, 1974; Leyval and Berthelin, 1991; Brehm et al., 

2005). The ions are then used for growth and metabolism by primary producers such as 

plants and microorganisms (Lauwers and Heinen, 1974; Leyval and Berthelin, 1991; 

Brehm et a l , 2005). Mineral weathering impacts humans, which includes water quality, 

agriculture, architectural stability and landscape evolution (Banfield et al., 1999). 

Weathering reactions have occurred throughout geological time and have shaped the 

compositions of the mantle, crust, hydrosphere, and atmosphere (Banfield et al., 1999).

Rock weathering has a large effect on biogeochemical cycling. Weathering of volcanic 

minerals makes a significant contribution to the global silicate weathering budget 

(Dessert et al., 2003), thus influencing carbon dioxide (CO2) drawdown and climate 

control as CO2 is consumed in mineral weathering reactions. The Deccan Traps in 

India, for example, have an estimated area of 10 km and is thought to account for 

about 5 % of the global silicate weathering flux (Gaillardet et al., 1999). In total, basalt 

rocks may account for over 30 % of the global CO2 drawdown in silicate weathering 

(Dessert et al., 2003). It is not the total weathering of continents that affect the carbon 

cycle, but the weathering of silicates in particular (Garrels and Mackenzie, 1971; Berner



et al., 1983). The process converts atmospheric CO2 into bicarbonate in streams and, in 

the long term, leads to carbonate precipitation and sedimentation in the oceans (Dessert 

et ah, 2003).

2.1.1. The Carbon-Silicate Cycle

Since the work of Urey (1952), it had been postulated that, over geologic time scales, 

the level of atmospheric CO2 was greatly affected, if not controlled by, the 

transformation of silicate rocks to carbonate rocks by weathering and sedimentation, 

and transformation back to silicate rocks by metamorphism and magmatism (Holland, 

1978; Budyko and Ronov, 1979; Mackenzie and Pigott, 1981; Fisher, 1983). The 

carbon cycle is shown in Figure 2 .1 . Carbonic acid is produced from CO2 combining 

with water (the CO2 is taken up by plants and fixed in the soil), and it proceeds to 

weather carbonate and silicate rocks.

2.1.1.1. Carbonate weathering

For each molecule of CO2 drawn down from the atmosphere, one molecule of carbonic 

acid is produced in the soil (Berner and Lasaga, 1989). The acid molecule produces two 

bicarbonate ions from dissolution of carbonate minerals (Berner and Lasaga, 1989). 

These are transported through groundwater to nearby streams, onto rivers and ultimately 

to the oceans. Here, one of these ions is transformed by marine organisms, such as 

plankton and corals, into carbonate to construct calcium carbonate skeletons and shells 

(Berner and Lasaga, 1989). When the organisms die, the calcium carbonate is deposited

5
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onto the ocean floor and buried, eventually to become sedimentary rock. The other ion 

is transformed into CO2 . Ultimately, however, all the CO2 drawn down for carbonate 

weathering is returned to the atmosphere. However, this is not the case for silicate 

weathering.

2.1.1.2. Silicate weathering

Carbonic acid weathers silicates to produce two bicarbonate ions in addition to calcium 

ions (Berner and Lasaga, 1989). As with carbonate weathering, these products are 

washed into oceans and used by marine organisms. However, unlike carbonate 

weathering, only half of the CO2 from the atmosphere is returned to the atmosphere 

(Berner and Lasaga, 1989). Therefore, silicate weathering is extremely important as it 

results in a net loss of atmospheric CO2 (Berner and Lasaga, 1989; Dessert et al., 2003). 

The balance is eventually made up during volcanic eruptions -  calcium carbonate and 

silicon dioxide are heated deep in the Earth until combined, producing calcium silicate 

and CO2 , the latter which is released by the eruptions and returned to the atmosphere 

(Berner and Lasaga, 1989). This is the completing stage in the cycle.

As mentioned previously, the weathering of silicates is a significant CO2 sink (Dessert 

et al., 2003). As a result of the high prevalence of volcanic silicates, Iceland is 

particularly relevant to climate change (Stefansson and Gislason, 2001; Dessert et al., 

2003; Sigmarsson and Steinthorsson, 2007).
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2.2. Iceland

Iceland was formed approximately 60 million years ago, during a massive volcanic 

eruption from the underlying mantle plume o f the mid-Atlantic Ridge (Lauwer and 

Muller, 1994; Korenaga, 2004). The island itself is still volcanically active (Lauwer 

and Muller, 1994), with recent volcanic eruptions including Eyjafjallajokull (in southern 

Iceland, north ofSkogar and to the west o f Myrdalsjokull) in 2010 and Grimsvotn 

(under the Vatnajokull glacier in south-east Iceland) in 2011. Iceland’s major volcanoes 

are shown in Figure 2.2.

□ Mid-Atlantic
Ridge

NORTH AMERICAN 
PLATE

EURASIAN
PLATE

AKrafla

ICELAND
AAskja

Loki-Fogrufjoll a

Reykjavik □

Mid-Atlantic
Ridge

Eyjafjallajokull 
Volcano —

  A—
Vestmannaeyjar 
(Surtsey. Heimaey)

Hekla 
^AVdtftafjoU

AKatla

A  Grimsvotn 
and Laki

AOraefajokull

Atlantic Ocean 
0 50 100km

SOURCE; US G«ological Survey

Figure 2.2. Iceland’s major volcanoes (denoted by triangles) and tectonic boundaries 

(shaded orange) (BBC). Iceland lies on a mantle plume o f the mid-Atlantic, which is 

caused by the diverging Eurasia and North American tectonic plates (Korenaga, 2004). 

The volcanoes highlighted in a red box denote the sampling areas in this thesis.

8



Iceland primarily consists of basaltic lava and tephra from Pleistocene subglacial 

eruptions and Holocene lava flows (Sigmarsson and Steinthorsson, 2007). This thesis 

focussed on crystalline basalt from Eldfell, Heimaey, and basaltic glass from Valafell, 

north East of Hekla. The basalt was fresh basalt formed from the volcano’s eruption in 

1973 and a mixture of olivine, FeTi oxides and plagioclase. The glass was produced in 

a subglacial volcanic eruption during the upper Pleistocene less than 0.8 Myr (Crovisier 

et ah, 2003) and was a mixture of basaltic glass weathered to palagonite which 

incorporates clasts of crystalline basalt (Fumes, 1978). The crystalline basalt was used 

as an iron source for Acidithiobacillus ferrooxidans (Chapter 4), whilst the succession 

of microbial community in volcanic glass was studied (Chapters 5-7). The glass was 

also used as an iron source for Geobacter metallireducens in Chapter 8 .

2.2.1. Iceland and Astrobiology

In addition to being of particular relevance to climate change, Iceland and its volcanic 

silicates also offer significance to the field of astrobiology. Iceland’s unique geological 

setting (on a high-point of the mid-Atlantic Ridge) leads to on-going and often intense 

volcanic activity, much of which is highly analogous to Mars surface processes 

(Cousins, 2011). The current geological features found on Mars are similar to ones 

observed in Iceland (Cavicchioli, 2002; Smellie, 2009; Warner and Farmer, 2010).

As Iceland lies on a near-Arctic latitude, much of the volcanism is in direct interaction 

with glacial activity. For example, Vatnajokull (Europe’s largest glacier) lies over seven 

volcanic centres (Cousins, 2011). This leads to increased glaciation of volcanic centres, 

despite their relatively high heat flow (Cousins, 2011). The large sudden floods of 

glacial melt water produced by subglacial volcanic eruptions can cause catastrophic 

floods (Baker, 2002). These flow waters cut through the landscape, changing it. It is the



topography of these channels that is very similar to that observed in Cerberus Fossea by 

the High-resolution Mars Orbiter Camera (Baker, 2001), as shown in Figure 2.3. In 

addition, on both Mars and in Iceland, volcanic units are interfingered with fluvial units 

(McEwen et al., 2001). Well-preserved flood lavas in SE Elysium Planitia, Amazonis 

Planitia, and portions of the Tharsis rise are dominated by a distinctive morphology of 

plates and ridges, very similar to the ‘apalhraun’ or ‘rubbly pahoehoe’ of Iceland 

(Keszthelyi et al., 2000; McEwen et al., 2001).

similarities, with both environments being

2009).

,,.. ; ‘u . ' - • • •
* V  > 4;. « !! ■* ' ' -tertV

- -‘dL/Ji ~ ' :v

■/ <

Figure 2.3. An example of flood channels found in Iceland (A) (Russell et al., 2010) 

and similar fluvial channel systems observed in Cerberus Fossea (B) by the High- 

resolution Mars Orbiter Camera (Baker, 2001).
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2.3. Microbes and Weathering

2.3.1. Introduction

The weathering of rocks is a complex interaction of physical weathering (temperature, 

wedging, crystallisation), chemical reactions (air pollutants, soil moisture, acid rain), 

and biological processes (Hirsch et al., 1995a,b; Goudie and Parker, 1999). However, 

the majority of geochemical research on mineral weathering has focused on inorganic 

aspects (White and Brantley, 1995; Banfield et a l , 1999). However, understanding the 

weathering process requires an integrated approach of abiotic and biotic analysis 

(Banfield et al., 1999). Although there are experimental variations, the importance of 

biological effects has been shown by the bacterial oxidation of ferrous iron released 

from pyrite (FeS2) surfaces; the rate is up to one million times faster than the inorganic 

oxidation rate at low pH (Singer and Stumm, 1970; Banfield et al., 1999). In addition, 

Wu et al. (2007a), in their characterisation of elemental release during microbe-basalt 

interactions at 28 °C, observed faster rates of release of elements (including Mg and Si) 

when bacteria were present. The authors reported linear release rates for Mg and Si as

19 19  90.54 x 10' and 1.11 x 10' mol/m/s, respectively when bacteria were present, 

compared to 0.09 x 10' 12 and 0.57 x 10' 12 mol/m2/s in the abiotic controls.

The microorganisms involved in rock weathering are lichens (Barker and Banfield,

1998), fungi (Hirsch et al., 1995b), cyanobacteria (Ferris and Lowson, 1997), many 

species of bacteria (Adams et al., 1992), and microalgae (Hirsch et al., 1995b). 

Microorganisms covering surfaces, fissures, and pore spaces of rocks sometimes form 

biofilms (De la Torre et al., 1993; Gorbushina et al., 2002; Puente et al., 2009), 

contributing to the breakdown of rocks. Microbial weathering has been observed in 

both hot (Adams et al., 1992) and cold deserts (Friedmann and Kibler, 1980). However,

11



little is known about weathering mechanisms (current knowledge is summarised in 

Section 2.3.2). It has been reported that iron and sulphides in rocks can be oxidised by 

bacteria at great sea depths and in deserts (Bach and Edwards, 2003; Bawden et al., 

2003; Edwards et a l , 2003; Hossner and Doolittle, 2003; Puente et al., 2009). In 

addition, acids (Section 2.3.2.2.1.) produced by microorganisms, as by-products of their 

metabolism, can dissolve rocks and the resulting minerals can be utilised by 

microorganisms and plants (Hinsinger and Gilkes, 1993, 1995; Illmer and Schinner, 

1995; Illmer et al., 1995; Chang and Li, 1998; Vazquez et al., 2000; Yamanaka et al., 

2003; Puente, 2009). However, though studies have been carried out on microbial 

weathering, precise data on weathering rates in most environments are not abundant 

(Danin and Caneva, 1990; Danin, 1993; Puente et al., 2006).

Early studies on the biological weathering of volcanic rocks focused on the role of 

lichens (Fry, 1927; Jackson and Keller, 1970; Adamo and Violante, 1991, 2000; 

Banfield et al., 1999). Fry (1927) conducted the earliest study of biological weathering 

and showed that lichens could cause etching, fragmentation and weakening of the silica- 

rich volcanic glass, obsidian.

It is these early studies that revealed two important factors in microbial weathering. 

Firstly, changes in the microenvironment induced by microorganisms at the rock 

surface play a role in weathering, with changes including pH, redox state and water 

retention (Blum and Lasaga, 1988; Parasuraman, 1995; Barker et al., 1998). Indeed, 

chemo-organotrophic microbial communities may lower the pH to 2-4, while 

phototrophic communities may increase pH to above 10 due to CO2 utilisation (Golubic, 

1973; Krumbein et al., 1991). The equilibrium of the rock chemistry is affected, 

affecting dissolution and secondary mineral formation, which accelerates weathering.

12



Secondly, minerals have different susceptibilities to weathering by bacteria. For 

example, calcium-containing plagioclase tends to weather faster than minerals such as 

K-feldspars (Burger, 1968). These differences are determined by the susceptibility of 

minerals to weathering agents produced by microorganisms or changes in chemical 

equilibrium.

The effect of microbial weathering is to accelerate both the physical breakdown of rock 

and the chemical breakdown. In addition to accelerating the weathering of all elements 

from volcanic rocks, microbial weathering can cause preferential leaching or 

enrichment of elements. Prokaryotic involvement in volcanic rock weathering has been 

inferred in deep ocean basalt glass in which a diversity of microbial alteration textures 

has been reported (e.g. Thorseth et a l , 1992; Fisk et a l , 1998; Torsvik et a l , 1998; 

Fumes and Staudigel, 1999; Thorseth et a l, 2001; Etienne and Dupont, 2002; Thorseth 

et a l, 2003). In addition, the idea that microbes can influence basalt weathering is not 

new (Staudigel et a l, 1995, 1998; Daughney et a l,  2004).

There have been several studies related to the weathering of minerals and rocks that 

have indicated a complex interaction of not only physical and chemical factors, but also 

of the activity of microorganisms (Thorseth et a l, 1995). In nature, the diversity of 

microorganisms offers a variety of direct and indirect mechanisms that may be 

responsible for basalt weathering (Karl, 1995; Daughney et a l, 2004). Microorganisms 

selectively oxidise, reduce and chelate a large number of elements.

In a study of basaltic glass weathering using a microbial enrichment culture from Loihi 

seamount, Hawaii, Staudigel et a l  (1998) showed that the population of 

microorganisms, which included heterotrophic bacteria, cyanobacteria and diatoms, 

induced an enrichment of calcium in the sediments produced by weathering, but a loss 

of magnesium. In contrast, the controls showed the opposite trend. Herrera et a l
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(2008) examined bacterial communities within obsidian in Iceland. They showed a 

diverse population of bacteria, which were shown to be associated with weathering 

alteration fronts in the rocks. However, Einen et al. (2006) observed that the 

bioalteration of glass with a community of microorganisms present was not different 

from abiotic controls. This difference may be explained by the timescale that the two 

studies looked at. The obsidian studied by Herrera et a l (2008) was approximately 

2000 years old and from the field, whilst Einen et a l (2006) studied weathering of glass 

for one year in the laboratory. It may take centuries for visible alterations to occur 

which may explain why bioalteration in the lab does not always occur. The one 

drawback of Einen et aV  s (2006) work, however, is that they did not study the 

weathering rates of the glass or monitor the pH of the flasks, relying on visual 

observations of alterations instead which would have provided a more comprehensive 

study of weathering. This thesis aims to rectify this by providing further information on 

weathering rates in basalt and basalt glass.

2.3.2. Physical and chemical weathering by microbes

Upon exposure of a rock at the Earth’s surface, communities of bacteria, algae, fungi, 

and/or lichens attach to the newly available solid surfaces (Konhauser, 2007). The fresh 

surfaces offer a rich source of bioessential elements. However, the microorganisms 

must be able to extract them. Certainly, in nutrient-poor terrestrial environments, 

mineral solubilisation and elemental cycling can be a requisite for the survival of the 

communities (Konhauser et al., 1994). The effect of microbial weathering is to 

accelerate both the physical and chemical breakdown of rocks. Colonising 

microorganisms can physically penetrate into the rock, causing disaggregation of the 

minerals they are obtaining, or they can use chemical mechanisms. These latter
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mechanisms include the production of organic acids that act as dissolving agents, 

changing the local pH at the rock surface through the secretion of protons (Blum and 

Lasaga, 1988; Parasuraman, 1995; Barker et al., 1998), and the production of 

complexing ligands such as siderophores, which chelate oxidised iron.

Figure 2.4 shows a zone model developed by Barker and Banfield (1998) for 

microbially mediated mineral weathering. It is based on a correlation of different styles 

of silicate mineral weathering with pore size-controlled microbial distributions (Barker 

and Banfield, 1998; Banfield et al., 1999). Zone 1 consists of the upper lichen thallus 

and is devoid of weathering of substratum-derived mineral particles (Barker and 

Banfield, 1998; Banfield et al., 1999). Zone 2 is a region of extreme mineral 

weathering, characterised by direct contact between cells (in addition to extracellular 

polymers and associated compounds) and the mineral surfaces (Barker and Banfield, 

1998; Banfield et al., 1999). In Zone 3, although accelerated by microbial products, the 

weathering reactions are not mediated by direct microbial contact (Barker and Banfield, 

1998; Banfield et al., 1999). Unweathered minerals and minerals undergoing early, 

predominantly inorganic reactions comprise Zone 4 (Barker and Banfield, 1998; 

Banfield et al., 1999).

2.3.2.1. Physical weathering by microbes

In the case of fungi, the penetration of the rock by hyphae is one primary means by 

which they can invade the interior of a rock and accelerate weathering. The 

microorganisms exploit cracks, cleavages and grain boundaries, causing alteration 

features such as simple surface roughing of etching and pitting, to extreme physical 

disintegration of the minerals (Barker et al., 1997; Konhauser, 2007).
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The biological processes work alongside abiotic physical weathering processes such as 

frost wedging, alternate wetting-drying and thermal expansion. These processes all 

break down the rock into smaller lithic fragments that are more susceptible to 

dissolution by rain and organic acids. As the minerals become loosened, macrofauna 

such as nematodes accentuate the erosional process through mechanical abrasion as they 

graze (Schneider and Le Campion-Alsumard, 1999). Eventually, the original rock has 

been transformed into finer-grained mineral components comprising primitive soils.
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Figure 2.4. A diagram of four zones proposed for biogeochemical weathering by 

Barker and Banfield (1998), illustrating mineral weathering occurring in zones that are 

impacted by microbes to different degrees and ways. Zone 1 is where photosynthetic 

members o f the lichen symbiosis generate fixed carbon and where crystalline lichen 

acids precipitate. Zone 2 is the area o f direct contact between microbes, organic
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products, including polymers, and mineral surfaces. Zone 3 is where reactions are 

accelerated by dissolved organic molecules (predominantly acids) but cells are in direct 

contact with reacting mineral surfaces. Zone 4 includes un-weathered rock and rock 

beginning to be weathered by inorganic reactions (Barker and Banfield, 1998; Banfield 

et al., 1999).

23.2.2. Chemical weathering by microbes

Bacteria produce extracellular polysaccharides (EPS) which cover exposed mineral 

surfaces. The EPS retains water which helps to promote mineral fracturing and 

increases the residence time for water to fuel hydrolysis and other chemical reactions 

(Welch et al., 1999; Konhauser, 2007). The EPS also serves as a substrate for 

heterotrophic bacteria, some of which generate acids that chemically attack the 

underlying minerals (e.g. Ferris and Lowson, 1997).

23.2.2.1. Organic acids

Once microorganisms become established on the mineral surface, they accelerate 

dissolution through the production of organic acids (organic compounds with acidic 

properties). The majority of these acids are by-products of fermentation and/or various 

intermediate steps of the aerobic respiration of glucose (Jones, 1998). However, when 

growth is limited by the absence of an essential nutrient, some microorganisms excrete 

organic acids (Jones, 1998).

Acid production is the most basic mechanism by which microorganisms can affect 

weathering reactions (Banfield et al., 1999). Drever (1994) and Drever and Vance 

(1994) reported that solutions of organic acids in concentrations that were the same or 

slightly higher than ground water showed increases in dissolution rates of less than one 

order in magnitude. Though these are relatively small effects, there may be much larger
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responses in natural systems where local microenvironments may be characterised by 

very high acid concentrations because of cell proximity (Banfield et al., 1999). As 

previously mentioned earlier in this introduction, microorganisms have been shown to 

cause low pH microenvironments at mineral surfaces (Blum and Lasaga, 1988; 

Parasuraman, 1995; Barker et al., 1998; Banfield et al., 1999). Lowering the pH to 3 or 

4 can correspond to a 10- to 1000-fold increase in dissolution rate (Blum and Lasaga, 

1988; Parasuraman, 1995; Barker et al., 1998; Banfield et al., 1999). In addition 

elements such as Fe and Al are relatively insoluble at neutral pH (Banfield et al., 1999), 

but their solubility increases as acidity increases (Banfield et al., 1999). Elemental 

release rates determined under different pHs have been reported in the literature. For 

example, Gislason and Eugster (1987b) determined their rates under pH 9 conditions. 

Here dissolution proceeds more rapidly relative to the pH 4.5-6 Wu et al. (2007a) 

determined their rates at (Oelkers and Gislason, 2001; Brantley, 2003; Gislason and 

Oelkers, 2003).

Figure 2.5 shows the Eh-pH diagram for iron (a plot of oxidation potential for iron 

against pH). Eh-pH diagrams are useful tools for visualising the stability areas of metal 

species in a solution depending on the solution’s redox potential (Eh) and pH. This 

diagram illustrates the general rules for the aqueous geochemistry of iron, where the 

solubility of iron is favoured under acidic, reducing conditions and disfavoured under 

basic, oxidising conditions. In the diagram, it can be seen that the only soluble iron 

species are ferrous iron (Fe2+) and ferric iron (Fe3+). Ferric iron is only stable at a 

limited area at low pH-values and high redox potential while ferrous iron is stable over 

a wider region at lower redox potential and extending to higher pH-values.
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Figure 2.5. This figure shows the Eh-pH diagram for iron (Williamson, 1998). It 

illustrates the general rules for the aqueous geochemistry of iron advanced by 

Goldschmidt (1958), where the solubility of iron is favoured under acidic, reducing 

conditions and more limited under basic, oxidising conditions. The dashed lines 

represent the stability area of water, i.e. the area of relevance for hydrometallurgy. The 

upper dashed line is the equilibrium between water and oxygen gas. If the solution 

potential is increased above this line, water is oxidised forming oxygen and hydrogen 

ions. The lower dashed line shows where hydrogen ions in a solution are reduced to 

hydrogen gas. Metallic iron (Fe(s)) is not stable in water since iron is located below the 

stability region of water. This is why iron corrodes in aqueous solutions. If iron metal is 

placed in water it is oxidised to Fe and if pH is higher than 5-6 the ferrous iron is 

precipitated as Fe(OH)2(s) (Williamson, 1998).
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This pH dependant solubility is seen in particular in industrial applications where 

alkaline precipitation is a commonly used technology for removing of heavy metals 

from water (National Metal Finishing Resource Center, 2009). It is based on the 

occurrence of the following reaction:

+ 2(OH ) M(OH)2(8) Equation j

The represents any divalent heavy metal. The metal ion combines with a hydroxide 

ion to form the insoluble metal hydroxide solid. This reaction is pH dependent; as pH is 

increased, the reaction is driven further to the right to precipitate more of the metals (as 

shown for Fe in Figure 2.5). Conversely, as the pH is decreased, the thermodynamic 

equilibrium moves to the left, causing more of the metals to resolubilise. This reaction 

is fully reversible and results in a solubility curve similar to that shown in Figure 2.6.

Solubility 
of Mela! Hydroxides

iso

«  0 01

0 0 0 3 1

Figure 2.6. A solubility curve for metal hydroxides. As pH increases, the less 

soluble the metals (UniPure Technology, 2012).

In the case of fungal acids, the acids contain multiple carboxyl groups that dissociate at 

circumneutral pH (Berthelin, 1983). For example, citric acid is a tricarboxylic acid with
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three pKa values (tridentate) at pH 3.1, 4.7, and 6.4, and oxalic acid has two (bidentate) 

at pH 1.3 and 4.2 (Drever and Stillings, 1997; Konnhauser, 2007). Lichens also 

produce ‘lichen acids’ which are a suite of compounds synthesised by the fungi from 

carbohydrates supplied by the phycobiont (Easton, 1997); 300 compounds unique to 

lichens have been identified (Konnhauser, 2007).

The majority of organic acids dissociate into organic anions and protons (Drever and 

Stillings, 1997; Konnhauser, 2007). The protons react with the ligands of the mineral 

surface (i.e. protonation reactions), causing a weakening of the metal-oxygen bonds and 

the release of a metal cation from the surface (Drever and Stillings, 1997; Konnhauser, 

2007). The organic anions, on the other hand, react with metal cations on the mineral 

surface, destabilising the metal-oxygen bonds, and promoting dissolution through the 

formation of a metal-chelate complex (Drever and Stillings, 1997; Konnhauser, 2007). 

The eventual detachment of the chelate exposes underlying oxygen atoms to further 

protonation reactions (Drever and Stillings, 1997; Konnhauser, 2007). Systems with 

high concentrations of tridentate or bidentate organic acids tend to contribute to high 

levels of ion release compared to monofunctional groups (e.g. acetic acid) which have a 

lesser effect (Welch and Ullman, 1993; Konnhauser, 2007). Deprotonated organic 

anions, such as oxalate and citrate, indirectly affect dissolution rates by complexing 

with metals in solution (rather than the mineral’s surface), lowering the solution’s 

saturation state (Bennet et al., 1988; Konnhauser, 2007).

2.3.2.2.2. Organic ligands and siderophores

As well as organic acid production, microorganisms can also produce organic ligands to 

catalyse mineral weathering rates (Banfield et al., 1999). Ligands are ions or molecules
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that bind to a central metal atom to form a coordination complex. The ligands complex 

with ions on the mineral surface and can weaken metal-oxygen bonds (Banfield et a l,

1999). In addition, they can form complexes with ions in solution, decreasing the 

solution saturation state and thus indirectly affecting reactions (Banfield et a l, 1999). 

The effect of ligands is somewhat similar to organic acids as the ligands affect silicate 

mineral dissolution stoichiometry by complexing with, and increasing the solubility of, 

less soluble major ions such as Fe and Al (Antweiler and Drever, 1983; Wogelius and 

Walther, 1991; Welch and Ullman, 1993; Banfield et al., 1999).

Siderophores are one example of organic ligands and are important in iron transport to 

cell surfaces (Neilands, 1981, 1982; Banfield et al., 1999; Konhauser, 2007). They are 

by definition Fe(III) specific and, under iron limitation, microorganisms that possess the 

capability produce siderophores that chelate oxidised iron (Banfield et a l, 1999; 

Konhauser, 2007). Mineral weathering experiments with naturally occurring 

siderophores have shown that these compounds can accelerate the rate of iron oxide and 

silicate mineral dissolution by about one order of magnitude and thus impacting iron 

cycling in soils (Watteau and Berthelin, 1994; Hersman etal., 1995, 1996; Stone, 1997).

Siderophores average around 10'6 mol L' 1 in soil pore water (Hersman, 2000). With a 

1:1 binding of a siderophore to Fe (and assuming that each siderophore is used only 

once), these ligands could remove up to 10'6 mol L"1 of Fe from solution. This chelating 

ability will affect the dissolution of Fe(III)-bearing oxyhydroxide and silicate minerals 

(Kraemer, 2004; Konnhauser, 2007). For example, the coordination of the Fe(III) in the 

crystal lattice is altered during the dissolution of ferric oxyhydroxides (Kraemer, 2004;

9  •Konnhauser, 2007). The O ' or OH' ligands are exchanged for water or an organic 

ligand (Stumm and Sulzberger, 1992; Kraemer, 2004; Konnhauser, 2007). This leads to
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a weakening of the Fe(III)-anion bond and the subsequent detachment of Fe into 

solution (Stumm and Sulzberger, 1992).

Although siderophores are generally better able to chelate dissolved Fe(III) species 

because they can form a complete five-member ring, the hydroxamate groups of a 

siderophore can also bind to Fe atoms on mineral surfaces (Kraemer, 2004; 

Konnhauser, 2007). For example, in the case of goethite, a single hydroxamate group is 

adsorped to the mineral’s surface, followed by structural rearrangement, dewatering and 

detachment of a molecule of Fe(III)-hydroxamate (Holmen and Casey, 1996; 

Konnhauser, 2007). Siderophores can also dissolve hematite at rates comparable to 

oxalic and ascorbic acids or dissolution induced by proton adsorption (Hersman et al., 

1995; Konnhauser, 2007). It is likely that siderophores work in tandem with protons 

and other organic ligands to promote ferrix oxyhydroxide mineral dissolution 

(Konnhauser, 2007).

2.3.3. Weathering of minerals

The weathering of volcanic minerals is recognised to make a significant contribution to 

the global silicate weathering budget (Louvat and Allegre, 1998; Dessert et al., 2001; 

Kisakurek et al., 2004). As previously described, this influences CO2 drawdown and 

climate control, since the CO2 is consumed in mineral weathering reactions. 

Approximately 30 % of all minerals are silicates and it is estimated that 90 % of the 

Earth’s crust is made up of silicate-based material (Konnhauser, 2007).

Due to the variation in mineral constituents, texture, and porosity, different types of

rocks are affected in different ways during the weathering process (Chen et a l, 2000).

For instance, in the case of sandstone, Friedmann (1982) and Friedmann and Weed
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(1987) demonstrated a characteristic weathering pattern in which the surfaces of Beacon 

sandstone were exfoliated in the Antarctic cold desert (Chen et al., 2000). Fluid from 

cryptoendolithic lichens had been shown to dissolve the cementing substance between 

sandstone grains, reducing the cohesion of sandstone grains in the upper level of the 

lichen colonised zone, which resulted in surface exfoliation (Chen et al., 2000). In 

addition, iron compounds within the sandstone were mobilised and moved to the surface 

where they were precipitated (Chen et al., 2000).

In terms of granitic rocks weathered by lichens, aluminum silicate minerals appear to be 

the most significantly affected (Chen et al., 2000). Biotite has been shown to be most 

subject to attack by organic acids under laboratory conditions (Song and Huang, 1988; 

Chen et al., 2000), and as a result, flakes of biotite suffer much more extensive 

morphological and chemical alteration (Chen et al., 2000). Varadachari et al. 

(1994) examined weathered biotite residues and revealed that major changes in crystal 

morphology occur during weathering. For example, flakes that show perfect layering in 

the original mineral become smaller in size, the edges etched, the thickness of the layers 

reduced and numerous fragmented particles are present (Varadachari et al., 1994; Chen 

et al., 2000). These morphological features of altered biotite have also been observed in 

granitic rocks naturally colonised by various lichens (Prieto et al., 1994; Wierzchos and 

Ascaso, 1994, 1996; Ascaso et al., 1995; Silva et al., 1997).

The release of structural cations from biotite is also noticeable in weathering of granitic 

rocks, as demonstrated by Purvis (1984) who found that disintegration and surface 

dissolution of feldspar grains was apparent where there was direct contact with lichens. 

Wierzchos and Ascaso (1996) also reported that where the lichen thallus came into 

contact with granitic biotite, a considerable depletion of potassium from the interlayer
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positions occurred, together with removal of other elements, corresponding to a 9.7% 

loss in matter (Chen et al., 2000).

In basaltic rocks (the focus of this thesis), the main rock-forming minerals (pyroxene, 

olivine and feldspar) have been shown to be subject to attack by organic acids (Chen et 

al., 2000). For example, Eick et al., (1996) reported that pyroxene surfaces exposed to 

oxalic acid treatment showed side-by-side etching along the boundaries of basal 

lamellae whilst olivine grains exhibited a pitted or wavy surface. Varadachari et a l 

(1994) also observed that after treatment with oxalic acid of higher concentrations, a 

very large number of small crystals appeared and parts of the original grains became 

amorphous (Chen et al., 2000). With this in mind, it would be expected that the 

dissolution of these minerals would mean that Fe and Mg (major constituents of 

pyroxene and olivine) could be released in the greatest amounts, followed by Ca and Al 

(Iskandar and Syers, 1972; Eick et al., 1996). Indeed, when lichens colonise basalt, the 

weathering process is characterised by mobilisation of Fe and Mg and release of Ca and 

Al from the primary minerals, and by coating of hydrous ferric oxide on mineral 

surfaces and formation of amorphous materials (Chen et al., 2000).

The composition and texture of volcanic rocks has been reported to have an influence 

on weathering rates (Cockell et al., 2009a). Chemical weathering has been shown to be 

faster in natural silicate glasses than their crystalline counterparts in crystalline basalt, 

when the glasses are silica rich (Wolff-Boenisch et al., 2006). This might be due to the 

high silica concentrations impeding rock weathering as the breakdown of SiO bonds 

limits weathering rates (Cockell et al., 2009a). Silica-rich rocks such as rhyolite 

weather more slowly than less Si-rich materials such as andesitic glasses (Fumes, 1975;
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Cockell et al., 2009a). Figure 2.7 shows a Total Alkali Silica (TAS) diagram, 

demonstrating the relationships between combined alkali content and the silica content.
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Figure 2.7. Total Alkali Silica (TAS) diagram, demonstrating the relationships between 

combined alkali content and the silica content (adapted from Le Bas et al., 1986). 

Rhyolite is more silica rich than basaltic andesite, which in turn has higher silica content 

than basalt.

As previously mentioned, prokaryotic involvement in volcanic rock weathering has 

been inferred in deep ocean basalt glass in which a diversity of microbial alteration 

textures has been reported (e.g. Thorseth et al., 1992; Fisk et al., 1998; Torsvik et al., 

1998; Fumes and Staudigel, 1999; Thorseth et al., 2001; Etienne and Dupont, 2002; 

Thorseth et al., 2003). Cockell et al., (2009a) reported that the abundance of alteration
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textures in volcanic minerals is related to the original rock texture, where silica-rich 

rocks were found to lack alteration textures, such as elongate features and had lower 

abundances of pitting textures, compared to basaltic glass. It is not clear, however, 

whether the differences arise because of differences in texture (porosity) or composition 

(silica content).

In the case of the microenvironment, the surface of silica-rich rocks is different to 

basaltic glass. Silica-rich rocks do not have the well-developed palagonitic rinds found 

in weathered basaltic glass (Cockell et al., 2009a). However, organisms have been 

shown by fluorescent in situ hybridization (FISH) to be exclusively associated with the 

rock surface in these materials (Herrera et al., 2008). Due to the water-rich clay-like 

material of palagonite, microorganisms are likely to be able to extract nutrients more 

easily than a solid rock matrix. The rind might also provide a relatively protected 

microenvironment for organisms compared to the relatively exposed surfaces of silica- 

rich rocks (Cockell et al., 2009a). Cockell et al. (2009a) supported this assumption by 

the high numbers of cells they observed in the basaltic glass.

2.4. Summary

To summarise, the weathering of volcanic minerals is recognised to make a significant 

contribution to the global weathering budget (Louvat and Allegre, 1998; Dessert et a l , 

2001, 2003; Kisakurek et al., 2004), influencing CO2 drawdown and climate control. 

Microorganisms are thought to play an important part in rock weathering, and the role 

of lichens in volcanic weathering has received a large amount of attention (Jackson and 

Keller, 1970; Adamo et al., 1993). However, it is only recently that work has begun in 

the laboratory to understand the role of bacteria (e.g. Puente et a l , 2004, 2009; Wu et
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a l, 2007a, 2007b; Lopez et al., 2011). The involvement of bacteria has been inferred in 

deep-ocean basaltic glass in which a diversity of microbial alteration textures has been 

reported (e.g. Thorseth et al., 1992; Fisk et al., 1998; Torsvik et a l , 1998; Fumes and 

Staudigel, 1999; Thorseth et al., 2001; Etienne and Dupont, 2002; Thorseth et al., 

2003). As described in Chapter 1, this thesis aims to further the knowledge into 

microbial weathering, by looking at the effect of model organisms (Acidithiobacillus 

ferrooxidans and Geobacter metallireducens) to natural microbial communities (from 

basaltic glass).
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Chapter 3: Materials and Methods

3.1. Introduction

This chapter describes the material and the methods employed in this thesis. The 

decision to put materials and methods in one chapter rather than in each data chapter 

allows for each subsequent chapter to focus on the data collected and its interpretation.

3.2. Basalt and basaltic glass substrates

This thesis set out to test the effect that bacteria have on basalt and basaltic glass 

through measuring pH and elemental release. The rocks selected were:

Basalt from Eldfell, a volcano on the island of Heimaey in Iceland. It was fresh basalt, 

formed from the volcano’s eruption in 1973. Microprobe (Cameca SX100, Kent, UK) 

data have shown it to be a mixture of olivine, FeTi oxides and plagioclase. The data 

provided the mineralogy of the basalt, allowing one to know what nutrients were 

available for the bacteria to utilise. To determine the surface area of the basalt the 

multi-point BET (Brunauer, Emmett and Teller)-N2 (5-point) specific surface area was

9  1sent off for analysis (Meritics Ltd., Dunstable, UK) and determined as 0.56 m g' ±0.01 

m2 g"1 (Brunauer et al., 1938).

Basaltic glass collected from near Valafell, north East of Hekla volcano at 64°4.83’N, 

19°32.53’W, Iceland (Cockell et al., 2009a). The material was produced in a subglacial 

volcanic eruption during the upper Pleistocene less than 0.8 Myr (Crovisier et al., 2003) 

and is a mixture of basaltic glass weathered to palagonite which incorporates clasts of 

crystalline basalt (Fumes, 1978). The samples came from blocks that lay on the ground 

and were 3-10 cm in diameter (Cockell et al., 2009a). The multi-point BET (Brunauer,
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Emmett and Teller)-N2 (5-point) specific surface area of the glass (109.46 m2 g' 1 ±0.01 

m2 g '1) was determined (Meritics Ltd., Dunstable, UK) (Brunauer et al., 1938).

The locations of the volcanos are shown in Figure 2.2 in Chapter 2.

For both substrates, the material was collected into aseptic bags (Whirlpak, Fisher 

Scientific, Loughborough, UK) and initially maintained at ambient outside temperatures 

(Cockell et a l , 2009a). The samples were frozen at -20°C upon return from the field 

(Cockell et al., 2009a).

3.2.1. Preparation of the substrates

Preparation of the basalt was as follows:

1. The rock was broken into approximately 1 cm by 1 by 0.5 cm pieces.

2. Fine particles resulting from the crushing process were removed by 

ultrasonication in MilliQ water and dried at 60°C (Wu et al., 2007).

3. The dried basalt pieces were sterilised with an autoclave (120 °C for 20 minutes) 

before use.

Autoclaving the rock samples should have no effect at 121 °C as the duration is short 

(15 min). Furthermore, the rocks were dry and sealed in dry bottles (so they did not 

come into contact with the steam).

In the case of the basalt, some of the basalt was set aside for analysis by ICP-MS and 

XANES (as described in section 3.2.2.).

In the case of the glass, it was processed in two ways. Firstly, one batch of rock was 

processed in the same way as the basalt, crushed into approximately 1 x 1 x 0.5 cm 

pieces and sterilised by autoclaving (120 °C for 20 minutes). Another batch was kept in
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a -20 °C freezer until the start of the experiment, when it was thawed in a sterile 

environment before being aseptically broken up into approximately 1 x 1 x 0.5 cm 

diameter pieces. The latter was used as the inoculating material for the experiment.

3.2.2. Analysis of the rock and solutions

3.2.2.1. Scanning electron microscopy (SEM)

Technique adopted in: Chapter 4 and 6 .

Surface morphology of the rocks in Chapter 4 was examined under a Zeiss Supra 55V 

field emission gun scanning electron microscope (FEG-SEM), which provided high 

spatial resolutions. Samples were imaged with a beam size of 15 keV, at a working 

distance of 4-6 mm. This allowed the rock samples, and the microorganisms, to be seen 

on the micron scale. One of the pieces of rock (a polished piece of rock for the 

experiments describe in Chapter 4) placed in each flask was carbon-coated and 

examined under the SEM to see whether the different conditions had an effect on 

surface morphology, details of which cannot be seen accurately with a light microscope. 

In addition, in Chapter 4, the number of Acidithiobacillus ferrooxidans cells per 100 

fields of view were counted for each water-rock ratio to ascertain whether any 

differences in cell numbers between ratios was replicated in solution and on the rock.

In the experiments described in Chapter 6 , SEM was used at the end of the experiment 

to observe whether biofilms had grown on the surface of the rocks.

3.2.2.2. Elemental analysis 

Technique adopted in: Chapter 4 and 6 .
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Inductively coupled plasma mass spectrometry (ICP-MS) and atomic emission 

spectroscopy (ICP-AES) were employed on the samples, using the Agilent 7500s ICP- 

MS with New Wave 213 laser system (Agilent, Berkshire, UK) and the Teledyne 

Leeman Prodigy (Quantitech, Milton Keynes, UK), respectively. These were used to 

measure the concentration of elements leaching out from the basalt into solution. ICP- 

MS was also carried out on the rock.

The kinetics of elemental release was calculated using the linear ( R ! ) release rate, as 

given by the equation:

/ dC*. V0 
R; = ------------- Equation 3.1

dt Am

dC*
R\ is the linear release rate of element i (mol/m2/d), — -  is the slope of the line

dt

describing C*, the corrected elemental concentration, which corresponds to a change in 

C*ji values versus time. V0 is the initial fluid volume, A is the BET-N2 specific surface 

area and m is the mass of the rock particles (Wu et a l , 2007a).

3.2.2.2.1. Analysis o f rock

ICP-MS was used to measure the concentration of rare earth and heavy metal elements 

in the basalt. The basalt was crushed into a fine powder with a mortar and pestle before 

being digested using HF/HNO3 as described by Bailey et al. (2003). After digestion, the 

samples were run on the ICP-MS in a continuous run.

3.2.2.2.2. Analysis o f solution
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ICP-MS was employed to measure the concentration of rare earth and heavy metals in 

solution over the duration of the experiment. One ml was removed from each flask on 

each sampling day and placed into a sterile 4 ml sample tube. To each tube, 1 ml of 

2 % HNO 3 was added and mixed by inverting the tube by hand. The nitric acid 

prevented the elements from adhering to the sides of the tubes, and thus preventing loss 

of elements whilst in storage at 4 °C. The samples for Chapter 4 and 6  were run at the 

end of their respective experiments (after 43 and 213 days). There have been no reports 

on the effects of long term storage on the quality of data acquired from a sample. This 

observation was supported by technical staff in the laboratory that had never had 

problems with degradation of samples during long term storage (i.e. for storage much 

greater than the 213 days of the experiment in Chapter 5). No literature has addressed 

long term storage. If there were some loss, e.g. through binding with sample vessels, 

proportionally it should be the same in all samples, so that whilst there would be an 

overall underestimation of release rates, the relative trends would be the same.

All samples were analysed in one continuous run, and sampled three times by the 

machine, with a mean and standard deviation calculated for each time point and flask 

(accuracy was to ±5 % RSD). In addition, blanks were also run (which consisted of one 

tube containing distilled water, and another containing 2% HNO3). This was to check 

that elemental concentrations detected would not be due to the solutions used to dilute 

the samples. A set of calibration standards was run through the machine at the 

beginning of the run, and a standard was also run after every ten samples to monitor any 

instrumental drift that would affect the results. It is assumed that the drift affecting the 

chosen standard would also affect the samples. Therefore, data can be corrected for 

drift during the data analysis stage. Once the samples were run through and data
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acquired, the data were converted from parts per billion to moles per litre (M) and 

corrected for drift if needed.

ICP-AES was employed to measure Al, Ca, Cr, Cu, Fe, K, Mg, Na, Ni, Si and Zn in 

solution. Preliminary analysis of solutions using ICP-AES showed that 1:5 dilution of 

the samples was needed to fit in the range of the calibration chosen (0 to 7.5 ppm) and 

also to accommodate the limited amount of liquid that could be removed from the 

flasks. One ml was removed from each flask, on each sampling day and placed into 

sterile 15 ml polycarbonate centrifuge tubes (Fisher Scientific, Loughborough, UK). To 

each tube, 4 ml 2% HNO 3 was added and mixed by inverting the tube by hand.

As with the ICP-MS, all samples were analysed in one continuous run. They were 

sampled three times by the machine, with a mean and relative standard deviation (RSD) 

calculated for each time point and flask, accuracy was to 5% RSD. The data were 

corrected for drift if needed and converted from parts per billion to M using the 

following method:

Concentration in ppb 1 000 000 = Concentration in g I' 1

Concentration in g I 1 -s- molar mass of element = M

3.2.2.3. XANES Analysis 

Technique adopted in: Chapter 4.

X-ray near-edge spectroscopy (XANES) was used to study the oxidation state of iron 

present in minerals on the surface of the polished basalts placed in the flasks in Chapter 

4, as described by Cockell et a l (2011). It was hoped that the investigation would show
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effects from the weathering of basalt at the surface. As in the case of the SEM, a piece 

of basalt (previously polished) was removed from the flasks at the end of the 

experiment for analysis. Original basalt (not placed in the flasks) was also analysed.

The work was conducted at the microfocus spectroscopy beamline (118) at the Diamond 

Light Source (Mosselmans et al., 2008; Cockell et al., 2011). The beamline produces a 

focused X-ray beam, typically 3 pm in size, and operates over a 2-20 keV energy range. 

The spectra were collected using a 9-element Ortec Gemonolithic solid state detector 

with XSPRESS2 processing electronics (STFC, UK). The beamline has a cryogenically 

cooled S i( ll l)  monochromator. Data were gathered at the Fe-K edge region, with 

randomly selected areas on the surface analysed to get an overview. The energy range 

for analysis was from 7,000 to 7,200 eV. Data were gathered at 0.3 eV increments until 

7,170 eV and at 3 eV increments thereafter. All spectra were calibrated against the 

spectrum obtained from metallic Fe foil with the first inflection point of the Fe-K edge 

set at 7,111.08 eV.

The polished basalts were attached to aluminium sample holders. Samples of control 

iron oxide minerals and siderite were examined (Richard Tayler Minerals, Cobham, 

UK). FeSCL was obtained from Sigma-Aldrich (Dorset, UK). Ferrihydrite (2-line) was 

prepared in the laboratory by the method of Schwertmann and Cornell (2008). Some of 

the control minerals and oxyhydroxides (hematite, magnetite, ferrihydrite) were 

examined in transmission mode. To prepare samples for transmission mode analysis, 

approximately 2 0  mg of sample was added to 1 0 0  mg of boron nitride and pressed into 

a ~1 mm-thick disc. Two spectra were collected at each point to improve data quality 

and to rule out beam damage to the sample by comparison of the first and second 

spectra.
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Data reduction and XANES analysis was carried out using the program Athena (Ravel 

and Newville, 2005). To determine the closest match of the standards to the surface 

iron oxyhydroxides, Linear Combination fitting was used in the analysis suite of Athena 

using ferrihydrite, goethite, hematite and magnetite as standards.

3.3. Bacteria

The experiments in Chapter 4 were conducted using Acidithiobacillus ferrooxidans, 

obtained from the German Collection of Microorganisms and Cell Cultures (DSMZ). 

The strain used was DSMZ 584, as this is a well characterised iron oxidiser with well 

defined growth requirements.

The experiments in Chapters 5-7 were conducted using a community of microorganisms 

from the volcanic glass used in the experiment. They would later be identified using 

molecular techniques (Chapter 5, Section 5.2).

The experiments in Chapter 8  used a stock culture of Geobacter metallireducens, 

obtained from the German Collection of Microorganisms and Cell cultures (DSMZ). 

The strain used was DSMZ 7210, as, again, this is well characterised with well defined 

growth requirements.

3.3.1. Cell counts

Technique adopted in: Chapter 4.

Cell counts of cells were carried out using fluorescence microscopy. One ml of the 

culture was filtered onto 0.2 pm black polycarbonate film (Whatman, Fisher Scientific, 

Leicestershire, UK) using vacuum filtering equipment to collect any cells present. 

Using the same filtering equipment, the cells were then washed twice, each time with 1
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ml of sterile water to remove any acid present. One ml of a lOOOx diluted DNA-binding 

dye SYBR Green (2 pi SYBR Green stock in 10 ml of distilled water) was added to 

stain the cells. The dye was left on the filter paper for one minute, before being drawn 

through using the vacuum. The filter, with the now dyed cells, was removed from the 

apparatus and placed on a slide, and left in a dark box for 1 0  minutes.

The cells were viewed under a fluorescence microscope (Leica DMRP, Wetzlar, 

Germany), using a blue filter, and magnification of xlOO. Any bacteria that were 

present fluoresce green. For each sample slide, 50 fields of view were counted, and the 

average number of cells was calculated using the following equation:

(Cells/fields counted) x (filter area/field area) x (1/ml filtered) = Cells per ml

9 9Where, filter area is 201.06 mm and field area is 0.0314 mm .

3.4. Media

The media used in the different experiments are described below, in the order that they 

appear in the thesis.

3.4.1. Chapter 4 -  Acidithiobacillus ferrooxidans

For A. ferrooxidans we used Silverman and Lundgren (modified K9) medium, a well- 

characterised medium for this organism (Silverman and Lundgren, 1951). The 

components of the medium are listed in Appendix A.

Through previous experience in the laboratory group, it was noted that adding basalt to

the media produced a precipitate, thought to be a sulphide produced by reactions

between the iron in the rock and sulphate in the medium, which clouded the media (this

was also true when FeSCL was added). This occurred despite the addition of bacteria.
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At the time this was not investigated but future work should analyse this precipitation. 

As the precipitation and clouding might affect the results of mineral leaching by 

increasing the amount of elements present during analysis, steps were taken to prevent 

this. Preliminary experiments were carried out, that aimed to investigate how varying 

the concentration of Solution A of the modified K9 medium affected both precipitation 

and A. ferrooxidans. The concentration of FeSC>4 (Solution B) remained the same. The

i L  i L

concentrations can be found in Appendix A. In short, a 1/10 and 1/100 strength 

solutions were all tested alongside the normal strength (flasks were duplicated). Table 

3.1 summarises the conditions investigated.

Table 3.1. Summary of conditions investigated with regards to finding optimum Sol A 

concentration that prevented precipitation with minimal impact to the bacteria. ‘B’ 

denotes biological flasks (with bacteria added) and ‘C’ denotes controls (no bacteria 

added). Each condition was carried out in duplicate.

Flask label Solution A strength Addition of A. ferrooxidans

B1 Normal +

B2 l/io "1 +

B3 l / 1 0 0 ,h +

Cl Normal -

C2 l / 1 0 ,h -

C3 l/lOO"1 -

The flasks were sampled over 14 days and iron concentrations measured, in duplicate, 

using the ferrozine assay and the averages were calculated (Section 3.5.2). The media 

that showed the least amount or no precipitation, whilst not affecting A. ferrooxidans,
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would be used for the basalt experiments. Cultures were incubated static at 29°C. After

t hthe preliminary experiments, a 1 / 1 0 0  (Solution Aiow) strength solution was selected 

(data described in Chapter 4).

3.4.2. Chapter 5-7 -  Natural communities and volcanic glass

A low yeast extract (LP0021 Oxoid, Cambridge, UK) medium (0.2 g per litre of 

distilled water) was added to each experimental flask before the addition of the 

inoculating rock that contained the native microbial community.

3.4.3. Chapter 8 -  Geobacter metallireducens

The culture media used was DSMZ 579 Geobacter medium, recommended by the 

culture company for this strain, and is described in Appendix A. The media was 

prepared anaerobically and 5 ml was added to Hungate tubes (SciQuip Ltd., Shropshire, 

UK). A 100 pi inoculum of G. metallireducens was added to each Hungate and 

incubated stationary at 29 °C.

3.5. Specific techniques

3.5.1. Measuring pH

Technique adopted in: Chapter 4 and 6 .

To monitor how biotic and abiotic weathering affects the pH of a solution in 

experiments, pH measurements were carried out using a Fisherbrand Hydrus 300 

benchtop pH meter (Fisher Scientific, Leicestershire, UK). One millilitre of sample was
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taken from the solution being measured and was placed in an eppendorf tube. Using a 

thin pH probe, the pH was read.

3.5.2. Ferrozine assay

Technique adopted in: Chapter 4 and 8 .

94- •The iron oxidation by microorganisms was monitored using a Fe specific assay using 

ferrozine (3-(2-pyridyl)-5,6 -diphenyl-1,2,4 triazine-4’, 4” -disulfonic acid sodium salt) 

(Stookey, 1970). Ferrozine is an iron-chelating agent that forms a complex with ferrous 

iron, producing a purple colour and has an absorption peak at 564 nm. The ferrozine 

assay is a standard method used to measure changing iron concentrations in solution. 

The oxidation of iron can be used as a proxy for growth of microorganisms in cultures. 

Abiotic oxidation of Fe2+ can also be monitored using this assay, thus allowing one to 

compare biotic and abiotic oxidation together.

The assay also includes a reduction step which allows one to measure the total iron 

concentration in the sample, that is, the step allowed one to determine how much 

oxidised iron had been removed from solution as precipitates or had yet to be oxidised.

9 4 -  •A modified version of the ferrozine assay was used to measure Fe concentrations over 

time, as described by Viollier et al. (2000). Three reagents were prepared to perform 

the assay:

1. Ferrozine was prepared to a concentration of 0.01 M by adding 24.6 mg 

Ferrozine to 5 ml of 10' 1 mol/1 ammonium acetate (0.38 g ammonium acetate in 

50 ml of distilled water, adjusted to pH 9.9)

2. Reducing agent, 1.4 M hydroxylamine hydrochloride (H2NOH.HCI), was 

prepared by adding 0.97 g of hydroxylamine hydrochloride to 10ml of 2M HC1.
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3. Buffer solution (10 M ammonium acetate) was prepared by adding 7.7 g 

ammonium acetate to 10 ml distilled water and adjusted to pH 9.9 using 30% 

ammonium hydroxide.

The initial concentration of reduced iron (Aj) in solution was determined by adding 100 

pi of ferrozine solution to 900 pi of sample in a cuvette. The absorbance was measured 

at 564 nm using a spectrophotometer (Helios Spectrophotometer, Thermo Scientific, 

UK). After taking the reading, 800 pi of the solution was transferred to a new cuvette 

and 150 pi of reducing agent was added. The solution was left for 10 minutes to allow 

reduction of Fe3+ to Fe2+. After 10 minutes, 50 pi of buffer solution was added and the 

absorbance (A2) corresponding to the total iron (Fe2+ from soluble Fe2+ and reducible 

Fe3+) was then recorded at 564 nm. The quantity of iron in pM was determined using 

calibration curves obtained with standards using FeSC>4 .

3.6. Statistical and data analysis

There are two different types of data in my thesis, each of which requires a different 

type of statistical treatment to gain an idea of the validity of my data. The statistics 

implemented are described below.

The first type of data could loosely be called ‘inorganic’, and includes elemental 

analysis, pH determination etc. The T-test was used for this type of data to compare 

differences in pH and elemental release between different treatments, where a P  value 

of less than 0.05 was considered significant. The T-test is a method that is used to 

determine if two sets of data are significantly different from each other. It is the only 

appropriate statistical method that can be applied when there are only a limited number 

of replicate analyses, as here, where the number of replicates, n, is two.
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The second type of data is that coming from analysis of my microbial community, 

which requires a completely different evaluation technique, such as the system known 

as MOTHUR, version 1.18.0 (Schloss et a l , 2009). This is a code-based software with 

built-in algorithms specifically designed to calculate such things as richness, diversity, 

and rarefaction curves from a molecular data set. Cluster analysis on the DGGE is 

qualitative. These analytical packages are used commonly by molecular biologists 

(Bonetta et al., 2008; Oros-Sichler et al., 2006; Manzano et al., 2013; Schloss et al., 

2009; Walker et ah, 2011; Bik et al., 2010)

Through analysis of papers and from discussion with staff in the laboratory expert in the 

techniques, MOTHUR and Gelcompar analysis were evaluated as the best tools for the 

data set.

In Chapter 5, diversity and richness estimators (Shannon diversity index, Simpson’s 

reciprocal index and Chaol (Chao 1984) on clone libraries were computed. In addition, 

MOTHUR was also used to:

• Assign sequences to OTUs -  this identifies a representative sequence from each 

OTU, allowing for a tree to be constructed with representative OTUs.

• Calculate rarefaction curves -  the curves provide a way of comparing the 

richness observed in different samples.

• Calculate rank abundance curves -  a means for visually representing species 

richness and species evenness.

Clone libraries were compared at species (97 %) sequence similarity levels using the 

Libshuff (Singleton et al., 2001) function available in MOTHUR. The DNADIST 

program of PHYLIP (Felsenstein, 1989), using the Jukes-Cantor (Jukes et al, 1969) for 

nucleotide substitution, was employed to generate the distance matrix analysed by 

Libshuff. Neighbor-Joining phylogenetic trees were constructed in MEGA4 (Tamura et
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al., 2007) using the Jukes-Cantor nucleotide substitution model and 1000 bootstrap 

replicates.

In the case of DGGE, the DGGE patterns were normalised using the software 

GelCompar II v.6.0 (Applied Maths, Belgium). During this processing, the different 

lanes and bands were defined and background was subtracted. A cluster analysis was 

created based on the presence and absence of bands in the community profile, creating a 

dendogram diagram. Distance was calculated using the Jaccard algorithm (Jaccard, 

1908).
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Chapter 4: Effect of Water-Rock Ratios on Basalt Weathering by 

A cidithiobacillus ferrooxidans

4.1. Introduction

4.1.1. Aim of Chapter

The aim of this chapter is to focus on the effect of changing water-rock ratios on 

weathering of basalt by the bacterium Acidithiobacillus ferrooxidans. A. ferrooxidans is 

a well characterised acidophilic iron-oxidiser. This work has implications for the rates 

of rock weathering in natural environments where water-rock ratios may affect the 

balance between optimum energy and nutrient supply, as for example in the case of 

microorganisms in vesiculated basalt (low water-rock ratio) and acid mine drainage 

sites (high water-rock ratio). Water-rock ratio effects may contribute to differences in 

laboratory and field measured weathering rates. From an astrobiological perspective, 

this work has implications for micro-scale conditions for habitability in basaltic 

environments on Mars, where low water-rock ratios have been postulated to be present 

in combination with acidic conditions. Such conditions may also have existed in 

geothermal regions on the Archaean Earth.

The hypothesis to be tested was that a high ratio of water to rock would have a diluting 

effect, diluting the iron as soon as it is released and thus limiting its supply. At the 

other extreme, a low water-rock ratio would cause the acid in the media to be quickly 

quenched by protons being used up in reactions with the rock, raising pH above 

optimum for bacterial growth. However, a ratio between the two would strike a balance 

between optimum iron concentration and pH. Though this study predominantly looked

44



at the iron utilisation from the basalt by the bacteria, since they require iron as a source 

of energy, the release and use of other elements was also investigated.

4.1.2. Iron-oxidising bacteria and weathering

Iron is the fourth most abundant element in the Earth’s crust (5.63 %) (Taylor, 1964). 

On Earth’s surface, it exists naturally as metal and in two oxidation states: ferrous (Fe24) 

and ferric (Fe34) (Madigan and Martinko, 2005). In nature, the oxidation of Fe2+ occurs 

both chemically and as a form of chemolithotrophic metabolism (Madigan and 

Martinko, 2005). Under oxidising conditions, Fe-oxidising bacteria and archaea can 

utilise reduced iron as an electron donor in energy generation (Santelli et al., 2001) 

according to the reaction:

Fe2+ + 'A 0 2 + H+ -> Fe3+ + Vi H20  Equation 4.1

It is known that ferrous oxidation by A. ferrooxidans rapidly decreases at pH greater 

than 2.5 (Nakamura et al., 1986; Pesic et a l , 1989; Kupka and Kupsakova, 1999). In 

most reports of ferrous oxidation by acidophiles, bacterial catalysis is significant only 

up to pH -3.5 (MacDonald and Clark, 1970; Pesic et a l, 1989; Kupka and Kupsakova, 

1999). At neutral pH and under fully aerated conditions, Fe2+ rapidly oxidises to Fe3+, 

which then hydrolyses to form ferric hydroxide (Konhauser, 2007). The kinetic

9 4 -relationship that describes chemical Fe oxidation at circumneutral pH values is:

-4Fe(II)] /  dt = k[Fe(II)][0H']2[02] Equation 4.2

Where k = 8  (± 2.5) x 1013 min' 1 atm' 1 mol'2 F2 at 25°C (Singer and Stumm, 1970). As 

pH and oxygen availability have strong influences on the reaction rate, this explains 

why at low pH or low oxygen concentrations Fe is quite stable (e.g., Liang et a l, 

1993). Thus, not surprisingly, the most efficient way for a microbe to overcome the

45



stability limitations is to either grow under acidic conditions (as an acidophile) or under 

low oxygen concentrations at circumneutral pH (as a microaerophile) (Konhauser, 

2007).

4.1.3. A. ferrooxidans

The bacterium A. ferrooxidans, reclassified in 2000 from Thiobacillus ferrooxidans
^  I

(Kelly and Wood, 2000), is an acidophilic iron- and sulphur-oxidiser that converts Fe 

to Fe . When iron oxidising bacteria such as A. ferrooxidans are present under acidic 

conditions, the oxidation of a wide range of sulphide minerals (Lawrence et al., 1997) 

can be 106 times faster than the abiotic rate (Singer and Stumm, 1970).

A. ferrooxidans is not 100 % efficient in its use of energy from iron oxidation. Baas et 

al. (1927) calculated the AG (change in free energy) for iron oxidation to be around 10 

kCal mol"1. Lees et a l (1969) determined the free energy yield from this oxidation to 

be closer to 6.4 kCal mol'1, a value which is barely enough to synthesise 1 mol of ATP 

(Leduc and Ferroni, 1994). Approximately 18.5 mol of Fe2+ would have to be oxidised 

to assimilate 1 mol of carbon, the assumption being that it requires 120 kCal of energy 

to fix this much carbon at 100 % efficiency (Silverman and Lundgren, 1959; Leduc and 

Ferroni, 1994). Efficiency values as low as 3.2 % (Temple and Colmer, 1951) to as 

high as 30 % (Lyalikova, 1958) have been reported. Thus, the bacteria must oxidise a

9-1-large amount of Fe in order to grow, and even a small number of bacteria can be 

responsible for generating significant concentrations of dissolved Fe3+.

A. ferrooxidans is traditionally regarded as a mesophilic microorganism, with a 

minimum temperature growth near 15°C, an optimum around 30°C, and a maximum of 

approximately 37°C (Leduc and Ferroni, 1994). However, psychrotrophic strains of 

this bacterium have been isolated with a growth range on iron of 2-37°C (Leduc et al.,
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1993; Leduc and Ferroni, 1994). They are also able to grow anaerobically, with ferric 

ions as electron acceptors for the oxidation of reduced sulphur compounds (Pronk et a l , 

1992; Singleton and Sainsbury, 2006).

The bacterium has been generally regarded as a strict acidophile (Madigan and 

Martinko, 2005), its optimum pH range generally given between 1.5 and 2. However, 

there are varying reports on its pH range. Temple and Colmer (1951) described their 

isolate as growing well in the pH range of 2.0-2.5 (Leduc and Ferroni, 1994; Temple 

and Colmer, 1951). However, in 1959, the bacterium was shown to oxidise iron 

optimally in the pH range 3.0-3.6 (Leduc and Ferroni, 1994; Silverman and Lundgren, 

1959). Another strain of the bacterium was shown to oxidise iron optimally at pH 1.6 

(Landesman et a l,  1966; Leduc and Ferroni, 1994). It is now generally agreed that the 

optimal growth and iron oxidation for A. ferrooxidans occurs at approximately pH 2 

(Leduc and Ferroni, 1994), and the bacterium has a range of 1.5 to 6 , with variations in 

the literature resulting from the differences in strain composition and experimental 

conditions (Leduc and Ferroni, 1994). However, a recent study by Mielke et a l (2003) 

reported survival of A. ferrooxidans at pH 7, and an ability to initiate pyrite oxidation 

and localised acidification within two weeks of colonisation. Essentially an acidic 

nanoenvironment is developed between the bacteria and the pyrite mineral surface 

(Mielke et a l, 2003). Meruane and Vargas (2003) also reported ferrous oxidation at pH 

7 for A. ferrooxidans.

4.1.4. The Wider Picture: Implications and Use

Gaining a better understanding on microbial weathering, specifically on how water-rock 

ratios affect it, has implications in two main areas: environmentally and astrobiology
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4.L4.1. Environment: Acid Mine Drainage

Environmentally, the work on microbial weathering can help one understand the rates of 

weathering in natural environments, for example in acid mine drainage sites. In these 

environments, a balance between optimum energy, nutrient supply and pH occurs. 

Although such sites are not generated through weathering of basalts, they are 

environments with a low water-rock ratio, hence understanding the influence of water- 

rock ratios on weathering by A. ferrooxidans may be important in understanding the 

fundamental mechanisms of acid mine drainage.

Acid mine drainage (AMD) refers to the outflow of acidic water from usually 

abandoned metal or coal mines, producing scenes such as the Rio Tinto River in Spain 

(Figure 4.1). AMD is produced when pyrite is oxidised on exposure to oxygen and 

water to form ferric hydroxides and sulphuric acid (Soucek et al., 2000). The acid runs 

off into clean rivers, which dissolves heavy metals, contaminating surface and ground 

water and damaging the surrounding ecosystems, (Roback and Richardson, 1969; 

Soucek et a l , 2000; Madigan and Martinko, 2005). It has been suggested that microbial 

activity accounts for about 75% of the AMD produced (Edwards et ah, 2000; Baker and 

Banfield, 2003).
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Figure 4.1. An example o f acid mine drainage in the Rio Tinto River in Spain (Stoker, 

2003).

4.1.4.2. Astrobiology: Life on Mars?

Through several paleoclimate models, it is known that early Mars was a wet and warm

planet, similar to early Earth, before losing its atmosphere and becoming a cold, dry

planet (Hurowitz and McLennon, 2007; Hurowitz, 2008; Quinn e t  a l ., 2005). From an

astrobiology perspective, this work has implications for microbial habitability in basalt

environments on Mars, where low water-rock ratios have been postulated to be present

with acidic conditions (Hurowitz, 2008). From chemical and mineralogical

composition o f rocks and soils from the sites where landed missions (Viking,

Pathfinder, MER) have operated on Mars and modelling and experimental studies, it has

been suggested that water-limited, acidic weathering conditions have more than likely

been the defining characteristic of the Martian aqueous environment for billions o f years

(Hurowitz, 2008). If  bacteria were to survive in acidic, low water-rock ratio

experiments, this could prove promising in terms o f life having been or currently

residing on Mars. Through understanding the influence o f water-rock ratios on

microbial weathering it may be possible to postulate suitable sites that would or could
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have sustained life. Would rock vesicles be the place to look? River beds? Or impact 

craters?

4.2. Experimental design

4.2.1. Chapter 4: Acidithiobacillus ferrooxidans

4.2.1.1. Overview

The objective of this chapter was to gain a better understanding of the processes by 

which A. ferrooxidans weathers basalt, and how this may (or may not) be affected by 

water-rock ratios. What follows is a detailed description of how the experiments were 

set up, from the preparation of the basalt to setting up the flasks. Table 4.1 summarises 

the experiments carried out in this chapter and their measurements and sampling 

frequencies.

Table 4.1. An overview of the experiments carried out in Chapter 4, including the 

measurements and sampling frequencies.

Experiment M easurements Sampling frequency

Preliminary: Choosing 

culture media strength

Ferrozine assay and cell 

counts

Four points over 14 days

Preliminary: Effect of 

three water-rock ratios 

on pH

pH Seven points over 120 hrs

Experiment 1: Effect of 

water-rock ratios on A. 

ferrooxidans

Cell counts, Ferrozine 

assay, pH, elemental 

analysis, SEM, XANES 

analysis

Eight points over 37 days

Experiment 2: Effect of 

water-rock ratios on A. 

ferrooxidans

Cell counts, Ferrozine 

assay, pH, elemental 

analysis, SEM

Five points over 43 days
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Side experiment: pH Ferrozine assay Per day over eight days

tolerance

Side experiment: heavy Ferrozine assay Five points over eight

metal tolerance days

4.2.1.2. Experimental set up

The aim of this chapter was to look at the effect of changing water-rock ratios on 

weathering by A. ferrooxidans. The setup of the experiment was as follows:

1. Preparation of the rock.

2. A stock A. ferrooxidans culture started to inoculate the experimental flasks.

3. After one week of growth, the cell count was determined in the stock.

4. The stock was prepared for addition to experimental flasks.

5. Experimental flasks were set up with differing ratios of media to basalt, and 

biological flasks were incubated with A. ferrooxidans.

The flasks were incubated stationary, at 29 °C, for 37 days.

4.2.1.2.1. A. ferrooxidans preparation

A  stock culture of A. ferrooxidans was grown up in 1/100th strength modified K9 media. 

A sterile 250 ml conical flask was used, with a 1:1 ratio of Solution Aiow and B (75 ml 

each). The stock was inoculated with 2 ml of a previous A. ferrooxidans culture and 

incubated stationary at 29 °C for one week.
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4.2.1.2.2. Flask preparation (water-rock ratio batch cultures)

Three water-rock ratios were chosen for the experiment, as described in Table 4.2. 

Solution Aiow was made up and sterilised by autoclaving, whilst the basalt was prepared 

as described in Chapter 3.

Table 4.2. The water-rock ratios used in the experiments.

Ratio Basalt (g) Solution Aiow (ml)

High (400:1) 2.001 800

Medium (50:1) 2.004 100

Low (1:1) 50.010 50

Polycarbonate conical flasks were used instead of glass to prevent any possible leaching 

of elements from the flasks because of the acidic pH of the media, and thus affecting 

results. Each condition was carried out in duplicate, and controls were also run 

alongside (no bacteria added). Figure 4.2 summarises the experimental set up of the 

flasks. Figure 4.3 shows photographs taken of the medium water-rock and low water- 

rock flasks when both rock and media were added. With regards to the low water-rock 

ratio, the liquid completely covered the rocks. In addition to the chips of basalt, two 

polished thin pieces (approx. 0.5 by 0.5 by 0.1 cm) of basalt were added to each flask. 

These would be removed at the end of the experiment and used for SEM observation (to 

observe any changes in surface morphology of the basalt) and XANES analysis. The 

addition of the polished rocks may bring up the question of whether this would affect 

the water-rock ratios. As the polished pieces were added to all flasks, including the 

controls, no flask would have had its conditions changed more than any other flask. 

The polished pieces were relatively small, but we can calculate their contribution to the



overall active surface area available for reaction, assuming they have the same surface 

area characteristics (as measured by BET) as the rock chips:

Assuming the active area = 0.56 m2 g' 1 (BET results)

For the polished section:

Volume = 0.5 x 0.5 x 0.1 cm3

<5 <5

Volume = 0.025 cm and Density = 3 g cm'

Mass = 0.075 g

Surface area = 0.56 m2 g' 1 x 0.075 g = 0.042 m2 

For the rock chips:

Mass = 50 g

Surface area = 0.56 m2 g' 1 x 50 g = 28 m2

Polished section accounts for:

(0.042 m2 / 28 m2) x 100 % = 0.15 % of the total active surface area.

However, if these experiments were to be repeated, one should run parallel flasks with 

no polished pieces (but have the identical weight to volume ratio) to ascertain whether 

the addition of the polished pieces would have made a difference.

4.2.1.2.3. Adding A. ferrooxidans

In tandem with preparing the flasks, the stock culture of A. ferrooxidans was being 

prepared for addition to the biological flasks. First, the cell count in the flasks was 

determined using fluorescence microscopy (Chapter 3, Section 3.3.1). From the cell 

counts, it was determined that the number of cells in each flask would be 3.07 x 1 0 4
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cells per ml. This ensured that each flask would have the same number of cells per ml 

regardless of media volume.

The stock culture was filtered onto a polycarbonate membrane filter 25 mm in diameter 

and with a pore size of 0.2 pm (Whatman, Fisher Scientific) and washed with Solution 

Aiow twice. This was to remove any iron sulphate from the bacteria and the solution so 

as not to introduce iron into the experimental flasks; the only iron available should be 

from the basalt. The filter with the cells was then resuspended in fresh Solution Aiow 

and mixed thoroughly. The resuspended bacteria were then added to each flask in the 

required volume. The flasks were incubated stationary at 29 °C.

4.2.1.2.4. Sampling and data analysis

The flasks were sampled over 37 days. Aliquots of 4 ml were collected with sterile 

pipettes. One ml of the sample was used to measure concentrations of Fe2+ and total 

Fe3+ using the ferrozine assay; 1 ml for pH measurements; and 2% nitric acid was added 

to the final two ml for ICP-MS (and ICP-AES for the second experiment) analysis and 

stored at 4°C until use at a later date. Cell counts were performed at the start and end of 

the experiment, when one ml was removed for fluorescence microscopy. In addition, at 

the end of the experiment the polished pieces of basalt were removed and viewed under 

FEG-SEM and for XANES analysis.
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4.2.1.3. Second experiment

After the experiment was completed and data collected and analysed, the experiment 

was repeated to determine if the results could be reproduced. The experiment set up 

was as before, with one exception. The low ratio this time round had its starting pH 

raised from 1.5 to 3.5 using NaOH. The reason for this was to ascertain whether a 

higher starting pH in the low ratio affected the rate of iron oxidation at the beginning of 

the experiment.

XANES analysis was not carried out on the second experiment; however, ICP-AES 

analysis was, in conjunction with ICP-MS.

4.2.1.4. Tolerance experiments

The pH and heavy metal tolerance o f A. ferrooxidans was tested. Table 4.3 outlines the 

different conditions set up.

For the heavy metal tolerance tests, concentrations were based on ICP-MS data obtained 

on the basalt. Table 4.4 lists the heavy metals added to Sol Aiow and the concentrations 

tested. The concentrations were as found in the rock. Untreated flasks were also set up. 

Fifty ml of media and heavy metals were added to 100 ml flasks and 1 ml of A. 

ferrooxidans inoculum was also added. The Ferrozine assay was used to measure iron 

concentrations, which would give an indication if heavy metals would affect iron 

oxidation (which would indicate whether the bacteria were affected).

57



The pH tolerance of the bacteria was determined by growing them on Sol Aiow media 

that had been adjusted to the required pH with HC1 or NaOH. As with the heavy metal 

tests, 1 ml of inoculum was added to 50 ml of media, and the iron concentrations were 

monitored using the Ferrozine assay.

Table 4.3. Set up of pH and heavy metal tolerance experiments. Flasks were in 

duplicate, set up with 50 ml Sol Aiow media and 1 ml A. ferrooxidans inoculum. 

Controls were also set up (no bacteria added). The composition of the heavy metal 

mixtures are shown in Table 4.4.

Flask Tolerance Concentration

Condition 1 Heavy metals Basalt

Condition 2 Untreated -

Condition 3 pH 1 -

Condition 4 pH 2.5 -

Condition 5 pH 3 -

Condition 6 pH 3.5 -

Condition 7 pH 4 -

Condition 8 Normal pH (pH 2) -
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Table 4.4. Heavy metal composition in heavy metal tolerance flasks. They are the 

concentrations as found in the basalt (from ICP-MS data).

Metal Chemical form Basalt concentration (mM)

Copper CuS04.5H20 0.71

Cobalt CoS04.7H20 0.62

Zinc ZnS04.7H20 1.89
Chromium K2Cr04 0.18

Nickel NiS04.6 H20 0.25

Lead Pb(N03)2 0.01

Vanadium voso4 4.98

Tin SnCI2 9.69 xlO'3
Molybdenum Na2M o04 0.02

Manganese MnS04.H20 35.00

4.3. Results

4.3.1. Preliminary experiments

Preliminary experiments were carried out to ascertain the best media concentration to 

use (with minimal or no precipitation without affecting the bacteria), and what ratios

2_f_
would give a range of pH changes. To determine the media strength, Fe 

concentrations and cell counts were analysed. Figure 4.4 shows Fe2+ at three different 

Sol A strengths (normal, 1/10th, and 1/100th). Fe2+ concentrations were different 

between the biological experiments and controls (abiotic oxidation of FeS0 4 ). 

However, in terms of media strength, iron oxidation by A. ferrooxidans did not appear 

to be affected by the concentration of Sol A. Precipitation was noted in both the normal 

strength and 1 / 1 0  concentration, when basalt was added to the media, however, none

tliwas observed in the 1 / 1 0 0  media (Sol Aiow).
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*  100.000 

0.000
0 5 10 15 20

Time (d)

Figure 4.4. Effect o f Sol A concentration on oxidation o f FeSC>4 by A . f e r r o o x id a n s ,  

over time. ‘B ’ denotes biological flasks (bacteria added) and ‘C ’ denotes controls. The 

volume o f liquid available limited the amount o f sampling, thus only four sampling 

points on the graph.

Cell counts (Figure 4.5) also show that decreasing the concentration o f Sol A was not 

detrimental to cell numbers. From these results, a Sol Aiow was decided upon for the 

main experiment -  the concentration did not produce precipitation and it did not 

adversely affect the bacteria.
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Figure 4.5. Average number of cells per ml at day 0 and day 19 with different Sol A 

concentrations.

Figure 4.6 shows how pH changed over time with the three different ratios. The aim of 

this preliminary experiment was to determine suitable ratios for the main experiment, 

specifically for the low ratio. A ratio was wanted that would raise the pH by two or 

more orders of magnitude to provide an environment where quenching of protons would 

occur. From adding basalt to varying volumes of Sol Aiow, a 2 g in 2 ml set up raised 

the pH from 1.75 to nearly pH 4 in ten hours. A 2 g in 100 ml raised pH from pH 1.75 

to pH1.84 after 120 hours. A 1:1 ratio was decided for the low ratio (50 g in 50 ml), 

whilst the medium ratio had 2 g in 100 ml (1:50), and the high ratio had 2 g in 800 ml 

(1:400). The large volume of media for the high ratio was also chosen to mimic the 

more dilute environment of a river bed, and thus possibly limiting iron to the bacteria 

through its diluting effect.
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Figure 4.6. Effect o f three different ratios on the pH o f Sol Aiow-

4.3.2. Experiment 1

Experiment 1 was the first experiment looking at how A . f e r r o o x i d a n s  was affected by 

varying water-rock ratios and how this would affect weathering. Experiment 2 repeated 

Experiment 1 for the most part to ascertain whether the main results could be replicated. 

This section describes the results from Experiment 1.

4.3.2.1. pH  and cell counts

The change in pH over time with the different water-rock ratios is shown in Figure 4.7. 

The starting pH o f the media is around pH 1.5. In all three water-rock ratios the pH 

rose, however, to different degrees depending on the ratio. The high ratio only rose 

slightly in pH over the course o f the experiment, from pH 1.5 to 1.77. The medium 

ratio rose to 2.86 and 2.39 in the control and biological experiment, respectively.
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However, the low ratio showed the largest increase in pH, from 1.5 to 3.88, over three 

times as much. The pH in the low ratio tripled in the first 24 hours before stabilising. A 

similar trend was seen in the high and medium ratios; however, they continued 

increasing over 24 days. Between 0 and 7 days there was a degree of oscillation in pH 

for the medium and high ratios. The pH rose over the first day before dropping by the 

third day, and then rising again by the seventh day. This is addressed in the discussion 

(Section 4.4.1).

The biological experiment and abiotic controls were very similar in the high and low 

ratios, with error bars taken into account (P >0.05). However, the medium control had a 

higher pH than its counterpart biological experiment (P  <0.05).
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Figure 4.7. Experiment 1. The average pH over time for the three ratios, with A .  

f e r r o o x i d a n s  added and sterile conditions. In the legend, ‘B ’ denotes biological flasks 

and ‘C ’ control.

Cell counts (Table 4.5) showed that cell numbers were highest in the medium ratio on 

day 37 at 14,018 cells per ml, and lowest in the low ratio (635.5 cells per ml). Cell 

numbers decreased between day 0 and day 37 for all three ratios. SEM cell counts o f 

cells on the rock surface are also shown in Table 3.5. As with the solution cell counts, 

the medium ratio had the highest number o f cell counts, whilst no cells were observed 

on the surface o f the low ratio rocks.
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Table 4.5. Cell counts of cells in solution at day 0 and day 37 for the three water-rcok 

ratios (standard error 5%), alongside rock surface cell counts using SEM at day 37.

Day 0 Day 37 SEM Day 37 (per 100 fields of view)

High 30700 1278 19

Medium 30700 14018 206

Low 30700 636 No cells

4.3.2.2. Elemental analysis

Elemental analysis in the form of Ferrozine assays and ICP-MS were performed on 

samples from Experiment 1. The average Fe2+ and Fe3+ released per gram of rock over 

time is shown in Figure 4.8. The high control had the largest amount of Fe2+ released 

per gram of rock, whilst the low ratio had the lowest release amount (Figure 4.8C). The 

biological experiment ratios did not show any Fe2+ being released. Fe3+release showed 

a similar pattern, with the high control having the highest release, whilst the low ratio 

had the lowest.

Both high and medium controls had a similar pattern: Fe2+ concentration did not rise 

until day 4, after which it continued to increase to day 24 before plateauing. The low 

control did not rise until day 14, and by day 37 rate increase had reduced. In the case of 

Fe3+, it began to rise by day 4 for Med B and Med C but then reached a plateau. No 

significant difference was observed between the medium biology and the control (P- 

value >0.05). In the case of the high biological flasks, Fe3+ concentration rose rapidly 

from 0 to just above 0.015 M between 25 and 37 days. For the low ratios, there was a
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sharp rise in Fe between 0 and 7 days before concentrations dropped to 0 for the rest

3~F 5o f experiment. More Fe was released in the biology than the control (approx. 5 x 10" 

compared to approx. 3.2 x 10'5). This was a significant difference ( P - v alue <0.05).
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Figure 4.8 continued overleaf.
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Figure 4.8. Experiment 1. Average Fe and Fe concentrations observed in flask per 

gram o f rock in the three ratios. (A) Fe2+ for all ratios, (B) Fe3+ for all ratios, (C) Fe2+ for

9 -1-low biology and control, and (D) Fe for low biology and control. In the legend, ‘B ’ 

denotes biological flasks and ‘C ’ control.

Figure 4.9 shows the concentration o f the rare earth element (REE) Lutetium released 

per gram o f rock. The pattern shown for this element is replicated by all REEs (data in

94 -

Appendix). As in the case o f Fe , the high ratio had the highest amount released whilst
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the low ratio had the lowest. The biological experiment showed an increased release 

over the control in the high ratio. However, T-test statistics show no significant 

difference between the biological experiment and control for both the medium and low 

ratios (P-value >0.05).
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4.3.2.3. XANES Analysis

Figure 4.10 shows X-ray absorption spectra (XAS) of the biological experiment and 

untreated basalt with control compounds. XAS showed localised areas of hematite, but 

the surface of the rock also showed iron oxidation without a change in gross 

mineralogy. An important observation is that the control rocks (in solution without 

organisms) also showed partial oxidation of the surface.

Figure 4.10 (overleaf). X-ray absorption spectra of the basalt from the three ratios with 

bacteria added and from untreated basalt (which had not been placed in media). Control 

compounds are also shown, and expected location of peaks corresponding to Fe2+ and 

Fe3+ are shown with dotted lines. In addition, example spectra are shown, including 

signatures for hematite, basalt glass and palagonite.
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43.2.4. SEM

Figure 4.11 shows a comparison of the rock surfaces of the three biological flasks and 

the high ratio control (representative of all controls). With regards to cell density in the 

biological experiment, numbers were sparse in the high ratio, whilst no cells were 

visible on the low ratio rock surface. Clumps of bacteria, however, were found in the 

medium ratio (Figure 4.1 IB). This trend corresponded with liquid cell numbers 

previously reported. As for surface morphology, it was relatively smooth for all except 

in the case of the medium biological experiment (Figure 4.12), where pitting on the 

surface was observed.

Signal A = InLens 
Photo No. = 25

Date :24 Apr 2008

Figure 4.11 continued overleaf.
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Figure 4.11 continued overleaf.

Sigra A = in Lens 
Photo No =35

EHT = 15.00 kV 
WD = 6 mm

Signal A = InLens 
Photo No = 46
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Signal A = InLens 

Photo No. = 14

Figure 4.11. SEM comparison of the rock surfaces in the (A) High B water-rock ratio 

condition (three cells circled), (B) Med B, (C) Low B, and (D) High C, representative of 

all controls. Surface morphology was relatively smooth except for the biological 

medium water-rock ratio which had pitting.
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Figure 4.12. A SEM picture of the Med B rock surface with evident pitting (examples 

shown by arrows).

4.3.3. Experiment 2

Experiment 2 was a repeat of Experiment 1 for the most part in terms of conditions, 

except for the low ratio which had its starting pH increased to pH 3.50. The analysis 

involved pH and elemental analysis which are detailed in this section.

4.3.3.7. p H

As with Experiment 1, pH had the highest increase in the low ratio and the lowest in the 

high ratio (Figure 4.13). In the low ratio, the pH rose from 3.50 to 5.63 in the control 

and 5.04 in the biological experiment before plateauing for both. The pH was higher in 

the controls in the case of the medium and low ratios; however, the pH in the high ratio 

was similar between the biological experiment and control (the high ratio saw a rise



from pH 1.5 to approximately pH 1.75). This was seen in Experiment 1 as well. In all 

three ratios, pH increased over 6 days before stabilising.

High B
5.5

U  Med B

4.5
High C

a.3.5o
00

2.5

1.5
0 10 20 30 40

Time (d)

Figure 4.13. Experiment 2. The average pH over time in the three ratios, with A . 

f e r r o o x i d a n s  added and sterile conditions. In the legend, ‘B ’ denotes biological flasks 

and ‘C ’ control.

4.33.2. Elemental analysis

2 “bIn a replication o f Experiment 1 results, the high control had the largest amount o f Fe 

released per gram of rock (2.4 mM at 43 days) (Figure 4.14A). The low ratio (control

9 i

and biological experiment) exhibited no release o f Fe when sampled. However, in 

contrast to Experiment 1, the high and medium biological experiment conditions had an

94 -

increase in Fe over 1 and 6 days, respectively (Figure 4.14B). In the case o f

2_|_

Experiment 1, no Fe was released. Both decreased after the increase, with the
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medium biological experiments having the greatest decrease, from 0.31 mM to 0.01 

mM, compared to 0.17 to 0.06 mM in the high biological experiment.

The concentration of the REE Samarium (Sm) released per gram of rock is shown 

Figure 4.15. As with Experiment 1, the pattern of release over time is similar in all 

REEs. Samarium was chosen as an example and the data for all other REEs are 

included in the appendix. In addition, as with Experiment 1, the difference between 

biological experiments and controls is replicated. A greater increase in concentrations 

was observed in the controls compared to the biology-containing flasks in the medium 

ratio experiment, whilst biology-containing flasks were higher in the high and low 

ratios. Again the high ratio exhibited the greatest REE concentrations whilst the low 

ratio had the lowest.

ICP-AES analysis was carried out on samples from Experiment 2 and the linear 

elemental release rates are shown in Table 4.6 (calculated from the slopes of the plotted 

results -  data in Appendix D). The rates show that the high ratios had the greatest 

release of elements for all, except in the case of Na, where the low ratio biological

9  1 9  1experiment had the greatest (0.64 pmol m' d' compared to 0.19 pmol m' d‘ ). The 

low ratios had the slowest rate for all elements (except for Na, as already described). In 

terms of controls versus biological experiments, faster rates are shared almost equally 

between controls and biological experiments. K, Mg and Na have a faster rate in the 

high and medium biological experiments, whilst the low control has a faster rate 

compared its biological experiments counterpart. Ca and Fe have faster rates in the high 

and medium controls in comparison to the biological experiments.
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Table 4.6. Linear elemental release rates (pmol per m2 per day) from ICP-AES 

analysis of Experiment 2. The fastest release rates, when comparing biological 

experiments and controls, are underlined. ‘B’ denotes biological flasks and ‘C’ control.

pm ol/m 2/d Ca Fe K Mg Na Si

High B 175.56 304.16 287.53 183.77 0.19 38.51

High C 221.23 372.19 45.21 151.75 - 63.18

Med B 42.76 197.56 35.54 113.86 0.07 9.59

Med C 48.24 199.43 2.19 99.44 0.05 8.62

Low B 0.36 0.16 0.06 - 0.64 -

Low C 0.72 0.06 0.33 0.06 0.09 0.00

The linear elemental release rates of the REEs shown in Figures 4.9 and 4.15 are shown 

in Table 4.7. In terms of Experiment 1 the rates followed a similar trend as seen with 

Figure 4.9. The high ratio biological experiment and low ratio biological experimental 

conditions had faster rates compared to their controls whilst the medium ratio had a 

greater rate in the control compared to the biological experiment. In addition, the high 

ratio had the fastest rate, whilst the low ratio had the slowest. In controls versus 

biology-containing flasks for Experiment 2, however, biological experiments had the 

faster rates over controls for all three ratios. As with Experiment 1, the high ratio had 

the overall fastest rate whilst low ratio had the slowest.
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Table 4.7. Linear elemental release rates (pmol per m per day) of representative REEs 

(Lu and Sm) for both experiments. The fastest release rates, when comparing biological 

experiments and controls, are underlined. ‘B’ denotes biological flasks and ‘C’ control.

pm ol/m 2/d Experiment 1 (Lu) Experiment 2 (Sm)

High B 1.48 x 10’4 6.18 x 10'3

Med B 7.67 x 10'5 4.80 x 10 3

Low B 7.25 x 10'5 2.05 x 10'5

High C 1.23 x icr4 5.95 x 10'3

Med C 9.85 x 10*5 3.71 x 10'3

Low C 4.71 x 10‘5 4.62 x 10*6

When analysing the rates of Fe2+ by Ferrozine assays, the fastest rates are found in the 

controls (for both Experiment 1 and 2) (Table 4.8). The fastest rate was observed in the 

high ratio, whilst the slowest rate was found in the low ratio. On the whole, this 

matched with the ICP-AES results for Fe. The one exception was the low control had a 

slower rate than the biological experiment in the ICP-AES analysis, whilst the Ferrozine 

assays showed a faster rate in the control (Experiment 1) or no difference (Experiment 

2).
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Table 4.8. Linear elemental release rates (jamol per m2 per day) of Fe2+ as obtained 

through Ferrozine assays for both experiments. ‘B’ denotes biological flasks and ‘C’ 

control.

pm ol/m 2/d Experiment 1 Experiment 2

High B 0.00 0.30

Med B 0.00 1.64

Low B 0.00 0.00

High C 22.32 5.36

Med C 12.09 3.27

LowC 0.11 0.00

4.3.4. Tolerance experiments

4.3.4.1.pH

The effect of pH on A. ferrooxidans is detailed in Table 4.9, which shows the rate of 

Fe2+ removal from solution in biological experiments and controls, over a pH range of 

1.0 to 5.0. pH did not appear to affect iron oxidation by the bacteria, with the rate of 

Fe2+ removal from solution ranging from 4.58 to 4.67 mM per day in the biological

flasks. The controls showed an increase of Fe2+ in solution at pH 1 to 3 (denoted by the

2+plus sign in Table 4.9), and no change at 3.5. The less acidic the solution, the more Fe 

is removed from solution in the controls.
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Table 4.9. Rate of Fe oxidation between the start and end of the experiment at 

different pHs, with A. ferrooxidans added (biological experiments) and sterile flasks 

(controls). The plus signs denote a rate of increase of Fe2+ in solution rather than a rate

94-of removal of Fe . ‘B’ denotes biological flasks and ‘C’ control. Standard error 10%.

Rate of Fe2* oxidation (mM per day)

pH Biological Control

1 4.67 +1.50
1.5 4.65 +0.33
2 4.67 +0.50

2.5 4.58 +1.00
3 4.67 +1.42

3.5 4.62 0.00
4 4.60 0.83

4.5 4.60 1.67
5 4.63 1.83

4.3.4.2. Heavy metals

The effect of heavy metals (at a concentration as found in the basalt) on A. ferrooxidans 

is shown in Figure 4.16, alongside untreated solutions. Both untreated and heavy metal
9 i #

controls have a higher Fe concentration than in biological experiments. However, 

there is no significant difference between the untreated and heavy metal conditions in 

either the biological experiment or control (P-value >0.05). Thus, A. ferrooxidans is not 

affected by the addition of heavy metals.
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Figure 4.16. The effect o f heavy metals on Fe2+ release by A . f e r r o o x i d a n s  over time. 

4.3.5. Summary of results

In summary for the two experiments, pH increased in all three water-rock ratios, with 

the greatest increase seen in the low ratio and the lowest in the high ratio (figures 4.7 

and 4.13). The medium control had a higher pH than the equivalent biological 

experiment, whilst in the high and low ratios the biological experiments and controls 

were very similar to each other. Cell counts (Table 4.5) showed that that the medium 

ratio had the largest number o f cells per ml; the low ratio had the lowest. Release o f 

Fe2+ was greatest in the high control, however, very little to no Fe2+ was released in the 

biological experiments for all three ratios (Figures 4.8 and 4.14). Fe3+release showed a 

similar pattern, with the high control having the highest release and the low ratio had 

the lowest. In the case o f the medium ratio, Fe3̂  began to rise by day 4 for Med B and 

Med C but then plateaud. For the low ratios, there was a sharp rise in Fe3+ between 0

i  i

and 7 days before concentrations dropped to 0 for the rest o f experiment, with more Fe 

released in the biology (Figure 4.8).

84



In terms of REEs, the average release of REEs was greatest in the high ratios and lowest 

in the low ratios (Figure 4.9 and 4.15). Biological experiments showed a greater release 

than their counterpart controls in the case of the high and low ratios. The medium ratio, 

on the other hand, exhibited a greater release in the control.

Linear elemental release rates showed trends when looking at REEs and Fe2+ (Table 

4.7). Rates for Fe2+ were fastest in the controls, with the high ratio being fastest overall 

and the low ratio the slowest. On the whole, REEs showed a faster rate in the biological 

experiments. The rates for trace element releases for Experiment 2 exhibited the fastest 

rates in the high ratios and the lowest in the low ratios. However, compared to biology- 

containing flasks, neither had the majority of faster rates.

XANES analysis showed localised areas of hematite but also iron oxidation without a 

change in gross mineralogy (Figure 4.10). However, the controls also showed oxidation 

of the surface. SEM pictures of the rock surfaces showed pitting in the Med B as well 

as biofilms of A. ferrooxidans (Figure 4.11). No pitting was observed in the controls.

4.4 Discussion

The objective of this chapter was to gain a better understanding of the processes by 

which A. ferrooxidans weathers basalt, and how this may (or may not) be affected by 

water-rock ratios. As previously mentioned in the introduction to this chapter, this work 

has implications from an astrobiological perspective in terms of microbial habitability in 

basalt environments on Mars. Low water-rock ratios have been postulated to have been 

present with acidic conditions (Hurowitz and McLennon, 2007; Hurowitz, 2008; Quinn
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et al., 2005). In terms of the environment, the work could also help to understand the 

rates of weathering in natural environments, such as acid mine drainage sites.

A variety of analytical techniques were used to determine whether A. ferrooxidans was 

affected by water-rock ratios. Ferrozine assays and ICP-MS/AES were used to measure 

the release of elements, whilst the pHs of the solutions were monitored throughout the 

experiment. Cell counts were carried out at the end of the experiment and SEM images 

were taken of the rock surfaces. In addition, XANES analysis was used on the rocks to 

analyse any mineral signatures present.

The hypothesis was that a high water-rock ratio would have a diluting effect, diluting 

the iron as soon as it was released and thus limiting its supply. At the other extreme, a 

low ratio would cause the acid in the media to be quickly quenched by protons being 

used up in reactions with the rocks, raising pH above optimum for bacterial growth. 

However, a ratio between the two would strike a balance between optimum iron 

concentration and pH.

4.4.1. Iron oxidation

A trend seen in both Experiments 1 and 2 was that low to no Fe2+ being released into 

solution in the biological flasks (with bacteria), regardless of water-rock ratio. This was 

most likely because the iron was being used by the bacteria as soon as it was released.
■*> j

For experiment 1, release of Fe was shown in Figure 4.8. This showed that oxidation 

of iron was occurring to some degree in all the ratios. In the case of Experiment 1, and 

for the most part in Experiment 2, the highest release of Fe2+ was observed in the 

controls. However, with respect to the controls, differences between the high, medium
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94-and low water-rock ratios in terms of Fe release can be explained by the pH. Greater

94-release of Fe coincided with a lower pH (i.e. more acidic). The higher the pH, the 

slower the release rate and the less iron was released, as demonstrated by the low water- 

rock ratio control which had the highest pH out of the three. This is supported by 

Santelli et al. (2001) who studied the effect of iron-oxidising bacteria on iron-silicate 

mineral dissolution. They found that, as pH increased, the iron released into solution 

was several orders of magnitude lower than for experiments run at a lower pH.

This is typical of Fe solubility, as it is governed by pH. If pH is defined as the 

concentration of hydrogen ions, this concentration is calculated by the negative 

logarithm of the hydrogen ion (H+) concentration, which means the higher the pH level, 

the less free hydrogen ions. Additionally, this means a change in one pH value 

represents a ten-fold change in the concentration of hydrogen ions. Therefore, there are 

10 times as many hydrogen ions available at a pH of 7 than at a pH of 8 , and 100 times 

as any at a pH of 6 . Solubility refers to the amount of a substance that can be dissolved 

in water and the lower pH level, the more soluble the iron will be.

Santelli et a l (2001) suggest that initial dissolution rates are due primarily to proton 

consumption and preferential dissolution of more reactive material (Santelli et al., 

2001). Slower release rates reflect conditions where solution pH is higher, and 

solutions are supersaturated with respect to several possible secondary phases (Santelli 

et al., 2001). A decrease in rates also occurs over time because 30-50 % of the available 

material reacts within the first few days of experiments (Santelli et al., 2001), which 

would explain the plateauing of elemental release seen with regards to Fe2+, and later 

with the REEs.

As mentioned in the results, there was a small degree of of oscillation in pH for 

Experiment 1 for the medium and high ratios between 0 and 7 days. Here the pH rose
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over the first day before dropping by the third day, and then rising again by the seventh 

day. There is no apparent explanation for this and it is not repeated in Experiment 2. 

The explanation could be equipment drift. The pH probe was changed after pH began 

to oscillate. Because no drift was observed following replacement of the pH probe, it 

was concluded that the oscillations resulted from faulty equipment. Fortunately, the 

oscillations did not affect the overall large-scale trend in the data, so results for 

experiment 1 could still be used.

The effect of the three ratios on A. ferrooxidans cell numbers is not as straightforward 

to explain. It is possible that the numbers in the high ratio (lower than the medium but 

higher than the low water-rock ratio) could be due to the iron being diluted as soon as it 

was released. However, further studies need to be carried out to ascertain the minimum 

levels of iron A. ferrooxidans can survive on. In addition, cell counts at regular 

intervals rather than at the start and end of the experiment should be carried out to 

ascertain whether the medium water-rock ratio always had the highest number of cells 

compared to the other two water-rock ratios.

Cell numbers were lowest in the low ratio which also had the highest pH. One could 

postulate that the increased pH affected the cell numbers directly. However, results 

from pH tolerance tests and previous literature suggest that the pH should not have 

affected the bacteria. The tolerance studies have shown no difference in iron oxidation 

at pH 1.5 or pH 5.0. A. ferrooxidans has been shown to oxidise iron at pH 7 (Meruane 

and Vargas, 2003; Mielke et al., 2003). Mielke et al. (2003) found that A. ferrooxidans 

develops an acidic nano-environment between the cells and the pyrite mineral surface 

they were studying. Figure 4.17 is a schematic representation of this process, as drawn 

out by Mielke et a l (2003).
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Figure 4.17. A schematic representation by Mielke et a l (2003) of the colonisation of 

pyrite under circumneutral pH conditions. A. ferrooxidans create an acidic nano

environment under these conditions as follows: in Phase 1 salt bridging occurs between 

the bacterium and the phosphate-enriched mineral surface. In Phase 2 an iron oxy- 

hydroxide matrix around the bacterium is formed as corrosion is initiated. This helps 

maintain the acidic nano-environment at the bacteria-mineral interface by limiting the 

diffusion of acid or iron away from the cell. The continued growth of the bacterium 

outward across the mineral surface and inward as the pyrite is consumed as its source of 

energy, eventually resulting in cell division is demonstrated in Phases 3 and 4 (Mielke



One theory as to why the cell numbers were so low is that iron oxides may have formed 

in the flasks, which coated the rock surfaces. As the acid was quickly quenched under 

the low ratio, the formation of iron oxides would have occurred faster than in the high 

and medium ratios. In addition, as the low ratio had a relatively small area of the flask 

covered in media, the only place for the iron oxides to form was the rock surface. The 

iron precipitation could have prevented further release of Fe2+, starving the bacteria. 

This theory is further supported when looking at Fe concentrations in Experiment 1 

for the low ratios. Fe concentrations peaked between 0 and 7 days before dropping to 

0. The higher concentration was found in the biology which may be explained by the 

addition of A. ferrooxidans increasing the rate. However, as the pH rose rapidly, iron 

oxides could have formed on the rock surface, preventing further oxidation and thus

'l -L .

explain the drop in Fe concentrations.

This theory may explain why no cells were observed on the rocks during SEM cells 

counts -  a coating of iron precipitation may have prevented access of iron from the rock 

and the bacteria were forced to acquire any iron in solution instead. The iron 

precipitation theory is backed by findings by Meruane and Vargas (2003) when they 

studied the iron oxidation by A. ferrooxidans in the pH range 2.5-7.0. Their results 

showed that the inhibition of iron oxidation activity by A. ferrooxidans observed at pH 

values above 3.0 was partially linked to the formation of ferric iron precipitates, which 

apparently hindered transport processes on the cell surface (Meruane and Vargas, 2003).

Another theory was that the leaching of heavy metals into solution affected the bacteria 

in the low water-rock ratio. However, this theory was tested in tolerance tests whereby 

iron oxidation by A. ferrooxidans was monitored when heavy metals were added in the 

concentration as found in the basalt, and compared to untreated conditions. The iron 

oxidation when heavy metals were added was not different from the untreated. This
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would suggest that, even at the maximum of concentrations possible under these 

conditions, A. ferrooxidans was not affected. In addition, according to the literature, A. 

ferrooxidans is capable of resisting high concentrations of heavy metals such as copper, 

zinc, arsenic and uranium (Tuovinen et a l , 1971; Leduc et a l , 1997; Dopson, 2003; 

Cabrera et a l , 2005). Table 4.10 shows the maximum tolerated concentrations (MTC) 

of a selection of heavy metals as found in literature (Cabrera et a l , 2005). The 

concentrations cited in literature are above the concentrations found in the basalt used in 

this experiment (Table 4.10).

Table 4.10. Maximum tolerated concentrations of a selection of heavy metals as found 

in literature (Cabrera et a l , 2005).

Heavy metal MTC(g/l) Reference

0.52 Sisti et a l  (1998)

Cr(lll) 0.78 Wong et al. (1982)

3.9 Baillet etal. (1998)

0.6-10 Leduc eto/. (1997)

19 Boyer etal. (1998)

Cu(ll) 16 Garcia Jr. and Silva (1991)

10 Das et al. (1997)

5 Brahmaprakash etal. (1988)

Cd(ll)
5.6

1.12

Baillet et al. (1997) 

Imai etal. (1975)

Zn(ll)
40

40

Kondratyeva etal. (1995) 

Das et al. (1997)

0.6-9.4 Leduc etal. (1997)

Ni(ll) 6.3 Dopson et al. (2003)

10 Huber and Stetter (1990)
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As heavy metals do not appear to be affecting cell numbers, it is proposed that though 

pH was not affecting cell numbers directly, it was indirectly affecting numbers by 

limiting iron release.

XANES analysis shows some signs in favour of the theory that iron oxides are coating 

the rocks (Cockell 2009). The analysis showed that following weathering of the rocks, 

the basalt surface showed areas of an oxidised layer (Fe3+) that did not correspond to 

any specific mineralogy. Patches of hematite were observed on the surface which 

suggests that some of the rock material is released into solution and oxidised to iron- 

bearing oxides. The lack of specific mineral signatures on the rock surface, but the 

apparent oxidation of the surface could suggest that the surface has been passivated with

I

Fe binding to the mineral surface. This is consistent with speculations advanced by 

Santelli et al. (2001) who observed the passivation of olivines during microbial 

dissolution. This chapter has provided some XANES support for this supposition but 

the analysis was preliminary and more work would need to be carried out to be more 

conclusive.

The work is important because not only has it provided empirical evidence for a 

mechanism by which organisms might weather and oxidise volcanic rocks, but it may 

also explain how microorganisms can reduce weathering rates in some environments. 

Certainly, in addition to studies showing an increase in weathering with microorganisms 

present (e.g. Staudigel et al., 1998; Brehm et al., 2005; Wu et al., 2007a), there have 

also been studies where microorganisms have retarded weathering (e.g. Benedict, 1993; 

Arino et al., 1995; Santelli et al., 2001; Ltittge and Conrad, 2004). Arino et a l (1995), 

who investigated lichen colonisation on the flagstones and sandstones used in some 

historical buildings, revealed that stones without lichen cover showed greater
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deterioration than those colonised by lichens. Luttge and Conrad (2004) found that the 

addition of Shewanella oneidensis MR-1 significantly inhibited the dissolution rate of 

calcite.

An important observation made during the analysis is that the control rocks (in solution 

without A. ferrooxidans) also showed partial oxidation of the surface. Thus, this would 

suggest that the process is not exclusive to microbial activity and occurs naturally when 

fresh basalt surfaces come into contact with water.

It would appear that the medium water-rock ratio was the optimum ratio, providing 

enough iron for the bacteria to reach the highest numbers of the three as neither pH (as 

in the case of the low ratio) nor dilution (as in the case of the high ratio) are adversely 

affecting the release of iron.

4.4.2. Rare earth and trace elements

The analysis of REEs was carried out to ascertain how they were affected with different

conditions. REEs were chosen as they are used in geochemical analysis of weathering

rates; investigations have shown that REEs provide useful information concerning the

origin and genesis of various kinds of geological materials because of their unique

chemical characteristics (e.g., Henderson, 1984; Biinzli and Choppin, 1989, Sholkovitz,

1995). As a result of their similar geochemical behaviour, REEs have been used as

environmental tracers for soil earth, sedimentary and aqueous systems (Nance and

Taylor, 1976; Taylor and McLennan, 1985; McLennan, 1989; Johannesson et a l , 2006;

Welch et a l , 2009). In systems with low water-rock ratios, such as soils and

groundwater, the extent of water-rock ratio interactions has a profound impact on the

geochemistry of the REE in both solution and the solid phase (Johannesson et a l , 1996;

Astrom, 2001; Hannigan-and Sholkovitz, 2001; Astrom and Corin, 2003; Haley et a l,
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2004; Verplanck et al., 2004; Welch et al., 2009). In most other natural waters such as 

rivers and lakes, where there is a high water-rock ratio, the major controls on REE 

composition and concentration are solution variables, predominantly acidity (Elderfield 

et al., 1990; Wood, 1990; Johannesson et al., 1996; Johannesson et al., 2006; Welch et 

al., 2009).

It was predicted that a similar pattern, as seen with Fe2* would be seen with the REEs.

• • o  |

This proved correct. As with Fe , a higher pH in the media coincided with less 

leaching of elements from the rock. As with the iron the difference in rates with pH 

may be a case of solubility, with REEs becoming more soluble the lower the pH.

The biological experiments showed a higher release than the corresponding control for 

all ratios except the medium, where the control was higher. An explanation for this may 

lie in the number of cells.

The medium biological experiment had the highest number of cells at the end of 

Experiment 1. Clumps of bacteria could be seen on the rock surface using SEM. 

Biofilms of A. ferrooxidans covered the medium ratio rocks, something not seen in the 

high and low ratios. It is conceivable that the bacteria were retarding the release of 

REEs by covering the surface of the rocks. This would have prevented the release of 

REEs into solution in the same concentration as the control. The inhibition of elemental 

release has already been touched upon in terms of iron release, and literature has 

examples of inhibition and retardation (e.g. Benedict, 1993; Arino et al., 1995; Santelli 

et al., 2001; Luttge and Conrad, 2004). Benedict (1993) suggested that granodiorite 

weathering in Colorado Front range, USA was retarded in the presence of crustose 

lichens which discouraged granular disintegration by binding the rock surface together. 

In addition, on sites where lichens are removed by snowkill, weathering proceeds 

rapidly (Viles, 1995). Biofilms of bacteria have also been shown to inhibit weathering



of sandstone by restricting penetration of salt water (Mustoe, 2010). In addition, Wu et 

al (2007a) suggested that it is possible that discrepancies between abiotic and biotic 

release rates may in part result from the presence of organic molecules (such as 

extracellular polysaccharides) in biotic experiments that bind to mineral surfaces and 

effectively shield reactive surface sites from dissolution reactions (Sverdrup, 1990; 

White, 1995; Ullman et al., 1996; Welch et a l, 1999; Benzerara et a l, 2004; Benzerara 

et a l, 2005).

In the case of the high and low ratios, where the biological experiments produced higher 

concentrations of REEs, it is more difficult to explain. Two theories are proposed. 

Firstly, the attachment of the bacteria to the basalt may have increased weathering with 

the bacteria destroying the rock as they oxidise iron. The problem with this theory, 

however, is that neither of the ratios had a large enough biomass for this to be plausible; 

SEM cell counts of the rock surface showed no bacteria in the low ratio and a low 

number in the high ratio compared to the medium ratio. The second, and more likely, 

explanation is that as the bacteria oxidised the iron, the saturation state of the solution 

may have been reduced, allowing a greater release of REEs.

As described previously, whilst having faster rates in the high ratios and slowest rates in 

the low ratios, linear elemental release rates for the trace elements showed no overall 

preference towards either the controls or biological experiments. Trace elements were 

analysed only for Experiment 2, thus one cannot say whether the results are true
I

representatives. In terms of Fe and REEs there is a difference between controls and 

biological experiments. The exception of the trace elements may be due to preferential 

uptake of some of the elements by the cells.

A number of studies have shown that biotic weathering can cause preferential leaching 

or enrichment of elements at the weathering front or within the sediments produced by
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volcanic rock weathering. Staudigel et a l (1998), in a study of basaltic glass 

weathering using a microbial enrichment culture from Loihi seamount, Hawaii, showed 

that the population of microorganisms induced an enrichment of calcium in the 

sediments produced by weathering, but a loss of magnesium, in contrast to the controls 

which showed the opposite trend. These results show that microorganisms can cause a 

differential rate of leaching of different elements from rocks. It could be conceivable 

that the lack of preference for either controls or biology-containing flasks could be due 

to uptake of some of the elements by the cells as soon as the elements were released. 

For future work, elemental uptake by cells could be measured by analysing intracellular 

elemental concentrations of the cells as described by Wu et al. (2007a). If elements that 

had faster rates of release in the controls, but found in large concentrations inside the 

cells in the biological experiments, it could be argued that the elements were being 

taken up by the cells as soon as they were released from the rock. This work was not 

carried out for this thesis due to time constraints and availability of the equipment.

4.4.3. Implications

What does this mean in terms of Mars? At the beginning of this chapter, different 

water-rock ratios were mentioned; the low ratio of water in rock vesicles, to the more 

dilute water of a river bed (high ratio). In terms of Mars, would rock vesicles or river 

beds have harboured life? On the basis of the results in this chapter, neither the low nor 

high ratio would be ideal places to look. However, a medium water-rock ratio would, at 

least in terms of the results, provide the optimum conditions for A. ferrooxidans-like 

organisms. Thus, impact craters rather than rock vesicles (low ratios) or river channels 

(high ratio) may be more appropriate sites to search for life that may have been on 

Mars.
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The results from this experiment may also be relevant to a variety of natural processes, 

as well as to reactions that occur in sites impacted by acid rain or acid drainage. 

Though bulk solution pH for most natural environments is typically ‘near neutral’, it is 

not unreasonable that in microbial microenvironments, conditions could be significantly 

more acidic (Barker et al., 1998; Santelli et al, 2001). Indeed, Mielke et al. (2003) 

observed that A. ferrooxidans formed microcolonies which produced acidic nano

environments despite circumneutral conditions. In terms of acid mine drainage, the 

results suggest that the bacteria may need an optimum water-rock ratio (medium) to 

cause serious pollution. Diluting or creating a low water-rock ratio may help to reduce 

the amount of sulphuric acid produced by A. ferrooxidans as these conditions reduce the 

number o f A. ferrooxidans present considerably.

4.5. Conclusions

In conclusion, it has been found that water-rock ratios affect A. ferrooxidans, with the 

medium water-rock ratio (50:1) providing the optimum conditions of those tested for 

growth whilst the low water-rock ratio (1:1) had a lower release of iron due to pH. pH 

affected the release of iron and REEs, with less released the higher the pH.

In the medium biological experiment, it is postulated that bacteria retarded the release of 

REEs through formation of biofilms on the surface of the basalt. In the high and low 

ratios, biology-containing flasks increased the release of REEs, most likely due to the 

bacteria decreasing the saturation state of the solution through iron oxidation.

Linear elemental release rates for the trace elements showed no overall preference for 

controls or biology-containing flasks. It is possible that a lack of preference for either 

controls or biology-containing flasks could be due to uptake of some of the elements by
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the cells as soon as the elements were released. If elements that had faster rates of 

release in the controls, but found in large concentrations inside the cells in the biological 

experiments, it could be argued that the elements were being taken up by the cells as 

soon as they were released from the rock.

Preliminary XANES analysis suggested localised areas of hematite were found on the 

treated rocks in addition to also oxidised layers that did not correspond to specific 

minerals. The lack of specific mineral signatures on the rock surface, but the apparent 

oxidation of the surface, could provide evidence that the surface has been passivated 

with Fe binding to the mineral surface. This is consistent with speculations advanced 

by Santelli et al. (2001) who observed the passivation of olivines during microbial 

dissolution.
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Chapter 5: Molecular Analysis Related to the Microbial Successional 

Changes in a One Year Laboratory Experiment on the Weathering of 

Basalt Glass with Different Water-Rock Ratios

5.1. Introduction

5.1.1. Aim of Chapter

Following the water-rock ratio experiments with A. ferrooxidans in Chapter 4, it was 

decided to look at how a natural microbial community, native to Icelandic basalt glass, 

would be affected by water-rock ratios. The reason for this was two-fold. Firstly, one 

would be looking at a more natural set up -  communities rather than a single organism. 

Weathering studies have typically tended to focus on single microorganisms rather than 

communities (e.g. Santelli et a l, 2001; Ltittge and Conrad, 2004; Song et a l, 2007; Wu 

et al., 2007a; Wu et al., 2008). Secondly, the microbial community was a diverse 

community (Cockell et al., 2009a), the composition of which is depicted in Figure 5.1. 

However, we did not know if all these phyla were active in the rock, and if  they 

contributed to the weathering, and if they were affected by water-rock ratios.

This work has implications for the rates of rock weathering in natural environments 

where water-rock ratios may affect the balance between optimum energy and nutrient 

supply. The chemistry of the flasks might vary depending on the ratio, which could 

then in turn affect the communities. As with Chapter 4, this study also mimics a more 

natural environment as the basalt glass used is crushed rather than powdered; a more 

accurate portrayal of the environment.
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This chapter will focus on the molecular analysis related to this experiment (what 

microorganisms are emerging over the year and how this may or may not vary between 

ratios). It will also allow the observation o f succession over a year-long period. 

Chapter 5 will focus on the chemical analyses and weathering rates related to the 

experiment.

Unclassified
BacteroidetesVerrucomicrobia

Gemmatimonadetes
a-proteobacteria

Phototrophs

Acidobacteria

p-proteobacteria

y-proteobacteria

Actinobacteria

Figure 5.1. Pie chart showing the 16S rDNA phylum composition o f  a subglacial 

basalt sample (Cockell e t  a l ,  2009a).

5.1.2. Weathering of volcanic glass

Volcanic glass is an amorphous product from rapidly cooling magma; it is the speed at 

which it cools that prohibits crystallisation. The glass is abundant in the Earth’s crust 

(Staudigel and Hart, 1983). Due to the concentration o f biologically im portant elements

100



present (including iron), alteration of glass makes it an important process in global 

biogeochemical cycling.

Microbes have been associated with alteration of basalt glass, with microbially- 

mediated alteration textures described in both terrestrial and deep-ocean settings (e.g. 

Thorseth et al., 1992, 1995, 2003; Fisk et al., 1998; Staudigel et al., 1998; Torsvik et 

al., 1998; Fumes & Staudigel, 1999; Etienne & Dupont, 2002; Baneijee & 

Muehlenbachs, 2003; Storrie-Lombardi & Fisk, 2004; Fumes et al., 2005, 2007; 

Staudigel et al., 2006, 2008; Walton, 2008).

5.1.3. The rock and its community

To provide the phylogenetic context for the microbial community in the rock, the 

phylum composition is briefly described below, along with broad characteristics of each 

respective phylum.

Acidobacteria: This is a relatively new phylum. They contain few cultured 

representatives but are believed to be ubiquitous in a number of soil environments 

(Quaiser et al., 2003). The ecological characteristics are poorly understood as its 

members have been difficult to culture and few molecular investigations have focused 

exclusively on this group (Jones et al., 2009). Due to this, we would predict that these 

do not appear in the flasks. However, the phylogenetic diversity, ubiquity and 

abundance of this group, particularly in soil habitats, suggest an important ecological 

role and extensive metabolic versatility (Quaiser et al., 2003). A clear relationship has 

been identified between pH and abundance of acidobacteria (Jones et al., 2009).
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Actinobacteria: In terms of number and variety of identified species, this phylum 

represents one of the largest taxonomic units of the bacteria (Stackebrandt et al., 1997) 

and thus we could expect find them in the cultures. They are the most morphologically 

diverse prokaryotes and are widely distributed in both terrestrial and aquatic 

environments (Embley & Stackebrandt, 1994; Servin et al., 2007). The phylum 

comprises Gram-positive bacteria with a high G+C content in their DNA (Ventura et 

a l, 2007).

It has been suggested that the filamentous growth habit of some Actinobacteria make 

them particularly suitable for colonising rock substrates (Cockell et a l, 2009b). The 

filaments are capable of directionally growing across the rock surface and branching 

into the vesicular pore spaces (Cockell et a l,  2009b).

Bacteroidetes: Formerly known as Cytophaga-Flexibacter-Bacteroidetes, bacteria of 

this phylum are believed to be prevalent in the natural environment. They have 

previously been associated with soil crusts and soils (Shivaji et a l, 2004; Nagy et a l, 

2005; Gundlapally et a l, 2006), but are also prevalent in aquatic environments 

(O’Sullivan et a l, 2006; Stevens et a l, 2005) having been found in freshwater 

(McCammon et a l, 1998; Wu et a l, 2007b), temperate rivers (Bockelmann et a l, 

2000), marine sediments (Humphry et a l, 2001) and sea ice (Brown & Bowman, 2001). 

However, they have also been identified in microbial mats (Abed et a l, 2007), and in 

Arctic environments, such as tundra soil (Nemergut et a l, 2005), where they can 

dominate the population (Mannisto et a l, 2009).

Bacteroidetes have been implicated as major utilisers of high-molecular-mass dissolved 

organic matter in marine ecosystems (Cottrell & Kirchman, 2000) and are often
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abundant in nutrient-rich waters where biomacromolecules accumulate (Reichenbach, 

1989).

Gemmatimonadetes: This is a recently described phylum (Zhang et al., 2003). The 

phylum is present in diverse environments, including arctic permafrost (Steven et al., 

2007), cave soils (Zhou et al., 2007), water treatment plants (Zhang et al., 2003, Qin et 

al., 2007), and the hyper-arid core of the Atacama desert (Drees et al., 2006).

Phototrophs: Phototrophs comprise any organism that uses light as primary source of 

energy for metabolism and growth (Singleton and Sainsbury, 2002), including 

cyanobacteria and algae. The emergence of phototrophs in an environment provides 

additional nutrients, which benefit other microorganisms. We would expect these to 

appear near the beginning of the experiment as in the absence of a large pool of organic 

carbon, carbon-fixing organisms would have a greater advantage.

Proteobacteria: This phylum presently comprises the largest and most diverse group of 

Bacteria and account for the vast majority of the known Gram-negative bacteria 

(Stackebrandt et al., 1988; Gupta, 2000). We would expect the presence of members of 

this phylum due to their diversity and abundance in the environment.

Verrucomicrobia: 16S rDNA sequences from this phylum have been retrieved from 

various soils (Hackl et al., 2004; He et al., 2006), lake mesocosms (Haukka et al., 2005; 

Haukka et al., 2006), lakes (Eiler and Bertilsson, 2004; Lindstrom et al., 2005), marine 

sediments (Polymenakou et al, 2005), and even from hot springs (Kanokratana et al.,

103



2004). They have also been detected in a mesocosm simulating the flooding of an 

unplanted paddy soil (Noll et al., 2005). Their late appearance after flooding suggested 

that they were adapted to low substrate concentrations (Noll et al., 2005). Therefore, if 

this phylum does appear in the flasks, we would expect it to be near the end of the year

long sampling period, when phototrophs in the flasks would have increase carbon 

availability.

5.1.4. Succession

In addition to studying the effect of water-rock ratios on microbial communities, the 

succession of the communities over time was also investigated. Succession is defined 

as the orderly and predictable manner by which communities change over time 

following the colonisation of a new environment (Fierer et al., 2010). However, despite 

most of the phylogenetic diversity on Earth being microbial (Pace, 1997), the majority 

of succession research has focussed on plants.

Fierer et al. (2010) put forward three categories of microbial succession (Table 5.1). 

The categorisation was based on the fact that microbes can be divided into autotrophs 

and heterotrophs. Autotrophs use CO2 as their carbon source, whilst heterotrophs 

require organic carbon compounds as their carbon source. Fierer et a l  (2010)’s 

rationale was that as these physiologies are fundamentally dissimilar, and since the two 

categories may co-occur but are likely to dominate in very distinct type of 

environments, initial stages of succession could be divided into categories determined 

by the source of carbon biosynthesis. The heterotrophic succession is further divided 

into exogenous and endogenous categories. Exogenous succession is fuelled by 

continuous external inputs of organic carbon, whilst the majority of organic carbon
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supplies in endogenous succession are derived from a single initial input contained 

within the substrate itself (Fierer et al., 2010).

The study of microbial succession may provide insight into applied areas such as plaque 

formation on teeth, microbial colonisation and corrosion of pipes, and composting, 

which could all be considered examples of microbial succession (Fierer et ah, 2010). 

With the developments in molecular phylogenetic methods, comprehensive surveys of 

microbial diversity and succession patterns can be thoroughly documented. This was 

not possible previously as the majority of microbial taxa cannot be identified using 

standard culture based methods (Fierer et al., 2010). This study aims to use molecular 

techniques to further understand succession in basaltic glass, as well as the effect of 

water-rock ratios.
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5.2. Experimental design for Chapters 5-7: Natural communities

5.2.1. Overview

The effect of changing the water to rock ratios on native microbial communities of 

basalt glass was studied in Chapters 5 to 7, using a combination of culture and 

molecular techniques. It provided a year-long succession study on microbial 

communities in Iceland basalt glass and the experiment would observe a community 

rather than a single organism. An overview of the methods used in the three chapters is 

shown in Table 5.2.

Table 5.2. An overview of the experiments carried out in Chapters 5-7, including the 

measurements and sampling frequencies. Elemental analysis was only monitored over 

213 days, rather than 12 months because of equipment availability.

Experiment M easurem ents Sampling frequency

Chapter 4: Molecular 

biology

Clone libraries, DGGE, 

isolation and sequencing
Five points over 12 

months (days 5, 76, 160, 

213,371)

Chapter 5: Chemistry pH, elemental analysis, 

SEM
Eight points over 12 

months (pH) (days 0, 5, 39, 

76 ,119,160,188, 213)

Eight points over 213 days 

(Elemental analysis) (days 

0, 5, 39, 76, 119, 160, 188, 

213)

Chapter 7: Isolates Biolog plates, show of 

growth
N/A
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5.2. Ll» Experimental design

Three ratios were set up in duplicate in polycarbonate flasks (Table 5.3).

Table 5.3. The water-rock ratios used in the experiments in Chapters 5-6.

Ratio Basalt (g) Media (ml)

High (400:1) 2 800

Medium (50:1) 2 100

Low (1:1) 100 100

Sterile volcanic glass was weighed and placed in the appropriate flask. As with Chapter 

4, the medium covered the rocks completely. A small amount of carbon was added to 

increase the rate of succession as the time of the experiment was limited to a year. The 

flasks were incubated stationary at 21 °C in Milton Keynes, UK, in natural sunlight with 

a natural diurnal cycle for one year from February 2009 to February 2010. The 

incubation temperature was chosen as during summer in Iceland, the rock temperature is 

usually around this, and can even go higher (Herrera et a l, 2009). Summer would also 

have more water and thus higher water-rock ratios. Higher temperatures might have 

artificially enhanced weathering rates, although they would be applicable to summer. 

However, slower weathering rates might cause a decrease in rates as solubility is 

affected by temperature and so it would be interesting in future to examine this.

It is important to note, as well, that different minerals have different activation energies

which would be affected by temperature changes. For example, activation energies,

based on laboratory measurements, for many silicate minerals are on the order of 60 kJ

mol-1  (e.g. albite (Lasaga, 1995, Chen and Brantley, 1997)), which would yield a sixfold

increase in rate after raising temperature from 5 to 25 °C (Turner et a l 2010).
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Biological activity is also dependent on temperature. Examples are the production of 

acids needed for weathering reactions, including organic acids (e.g. van Wesemael and 

Verstraten, 1993), and CO2 respired from roots and decaying organic matter (e.g. 

Davidson and Trumbore, 1995) (Turner et a l 2010). Ugolini et a l (1977) has 

documented that, in general, upper soil pore waters, where the temperature is higher, 

have higher concentrations of organic acids compared to lower samples which tend to 

be dominated by carbonic acid. Increased biological productivity at higher temperatures 

may result in greater production of these acids (Turner et a l 2010).

Over this period, the flasks were sampled for pH, redox potential and elemental release. 

SEM was carried out on the rocks at the end of the 12 months. DNA was extracted to 

build a community profile over time using denaturing gradient gel electrophoresis 

(DGGE) in combination with 16S rDNA clone libraries and sequencing of isolates.

5.2.1.2. Cultivation and identification o f microorganisms

The cultivation and isolation of microorganisms from the flasks was undertaken to 

provide the physiological and metabolic information required to place the 

microorganisms identified through molecular techniques into context. Isolates obtained 

from culturing allowed further investigations to be carried out (to understand 

adaptations to rock environments). This included the effect of heavy metals and pH (to 

ascertain whether changes in pH and heavy metals could affect communities), and the 

use of Biolog plates to obtain carbon utilisation profiles of the isolates (to increase 

understanding of the nutritional requirements of the isolates).
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5.2.1.2.1. Isolation o f microorganisms from flasks

For the purpose of isolating microorganisms from the flasks, each month 100 pi was 

removed from each flask and spread plated on to 0 . 2  g I"1 yeast extract agar plates and 

incubated at 21°C, under same conditions as the flasks. Once growth had occurred, 

individual colonies were selected and streaked out onto new yeast extract plates and 

grown up again. The cycle was repeated until pure colonies were obtained. A single 

colony was then picked and resuspended in 2 0  pi of sterile distilled water and stored 

at -20°C until further use.

5.2.1.2.2. Extraction ofDNA from cultured isolates

Two extraction protocols were employed for the isolates. For the majority, a ffeeze- 

thaw cycle was used. The resuspended colony was left at -80°C overnight after which it 

was heated to 100°C for 15 minutes using a heat block. The sample was then used for 

downstream applications.

In the case of some isolates, a freeze-thaw cycle did not work. In these instances a 

DNA extraction kit was used -  FastDNA SPIN Kit for Soil (Qbiogene, California, 

USA) according to manufacturer’s instructions.

5.2.1.2.3. Polymerase chain reaction (PCR) amplification

The isolates were amplified using polymerase chain reaction (PCR) using primers that 

were appropriate (Table 5.4). PCR master mixes were prepared in sterile MilliQ water 

(18.2 Q.cm; Millipore, MA, USA), and composed of 5 pi of template DNA; 1 pM 

primers each (Biomers.net); lx  buffer without Mg (Invitrogen, Paisley, UK); 1.5 mM 

MgCl2 (Invitrogen, Paisley, UK); 200 pM dNTP (New England BioLabs, MA, USA)
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and 2.5 units of Taq DNA polymerase (Invitrogen, Paisley, UK). The PCR machine 

used was a G-Storm GS1 Thermocycler (GeneTechnologies Ltd, Essex, UK). The 

amplification program for each primer pair used is summarised in Table 5.5.

The PCR products (total 5 pi) were loaded onto a 0.8% w/v agarose gel (prepared in lx 

TAE buffer) to check if the PCRs had been successful. Electrophoresis was carried out 

at 120 V for 20-40 min (depending on the size of the gel used). The gels were then 

stained with ethidium bromide (0 .2 % v/v) for 2 0  minutes, after which they were 

observed under UV (GeneFlash, Syngene, Cambridge, UK).

Table 5.4. Details of the primers used for microorganisms isolated from flasks using 

plates and their purpose.

Purpose Primer Name Sequence (5' -  3') Target
region

Reference

Bacterial
isolates

pAF AGAGTTTGATCCTGGCTCAG

V1-V9

Bruce e t al.
(1992)
Schwieger

Com2R CCGTCAATTCCTTTGAGTTT and Tebbe 
(1998)

CGCCCGCCGCGCGCGGCGGG Muyzer et 
al. (1993)

Schwieger

338F-GC CGGGGCGGGGGCACGGGGGG

DGGE
ACTCCTACGGGAGGCAGCAG

V3-V9

Com2R CCGTCAATTCCTTTGAGTTT and Tebbe 
(1998)

F: forward primer; R: reverse primer.
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Table 5.5. Summary of PCR programs for each set of primers used on isolates.

Steps Tem perature (°C) pA-Com2 338F-GC-Com2

Initial denaturation 94 10 min ^  m in

Cycles - 30 35
Denaturation 94 1 min 30 s

Annealing 55 40 s 30 s

Elongation 7 2 40 s 30 s
Final elongation 7 2 10 min 10 min

5.2.1.2.4. Purification o f PCR products

The PCR products were purified to remove any unbound nucleotides and primer dimers 

from the target product. The purification was carried out using the illustra GFX PCR 

DNA and Gel Band Purification Kit (GE Healthcare, Buckinghamshire, UK) according 

to manufacturer’s instructions. If no multiple bands were present on the gel, the PCR 

product was purified directly using the protocol for purification of DNA from solution 

or an enzymatic reaction. If multiple bands were found, the total volume of PCR 

product was loaded and run on an electrophoresis gel and the target band extracted 

using a sterile scalpel blade. This was then purified using the protocol for purification 

of DNA from TAE and TBE agarose gels. In both methods, the cleaned products were 

eluted into 50 pi of elution buffer type 4. The purified DNA was stored at -20°C until 

further use.

5.2.1.2.5. Sequencing o f isolates

Isolates were sequenced at Molecular Cloning Laboratories (MCLAB) in San Francisco, 

USA for sequencing. The sequences were classified using the GenBank database and 

the tool Classifier in the Ribosomal Database Project II (RDP II,
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http://rdp.cme.msu.edu/html/) (Cole et al., 2003) and the BLASTN program (Altschul et 

a l 1997).

5.2.I.3. Microbial Community Analysis

5.2.1.3.1. Sampling from flasks and processing

For microbial community analysis, 1 ml was aseptically removed from the biological 

flasks over 12 months (five points) and placed in 1.5 ml eppendorfs. These were spun 

down at 14,000 RPM for 10 min to obtain a pellet. The supernatant was carefully 

removed so as not to disturb the pellet and discarded. The pellet was then resuspended 

in 100 pi of sterile ddF^O. The resuspended samples were subjected to a freeze thaw 

cycle, as described in 4.2.3.3. The samples were stored at -20°C until further use.

At the end of the 12 months, one rock piece was removed from flasks B1A (high ratio, 

replicate A) and B3A (low ratio, replicate A). A clone library was performed on both of 

these to analyse the microbial community composition in the rock. The outside of the 

rocks were blowtorched for 30 seconds to remove any microorganisms on the outside of 

the rock. The rocks were then aseptically crushed into a powder and 500 mg was 

processed with a DNA extraction kit. The extracted DNA was stored at -20 °C until 

used.

5.2.1.3.2. Community analysis by DGGE

The liquid samples collected from the flasks and the isolates cultured were amplified 

using 338F-GC-Com2 primers. After confirming that amplification had worked 

through electrophoresis, the PCR products were separated by DGGE (Muyzer et al., 

1993). DGGE was performed on 6  % w/v acrylamide gel with a gradient of 30 to 65 %
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denaturant (7 M urea and 0.5 M formamide is referred to as 100 % denaturant). To 

establish the gradient, a gradient maker was used and each gel was produced between 

20 cm sandwich plates (BioRad, Hertfordshire, UK). Once the gel had set, it was 

clamped onto the cassette of the DGGE system (DCodeSystem, Biorad, Hertfordshire, 

UK) and immersed into the DGGE tank, which contained lx  TAE that had been 

warmed to 60°C. PCR products (0.5 pg -  measured using a NanoDrop 1000 from 

ThermoScientific, Wilmington, USA) were mixed with a loading dye (ratio 1:1) and 

loaded onto the gel. One of the samples (B1A at 5 days) was used as a marker on all 

gels run (loaded at the beginning, middle and end of the gel) to allow for the gels to be 

compared with each other during the analysis stage. Once all samples had been loaded, 

the buffer was again heated until it reached 60°C and the voltage was switched on. 

Electrophoresis was carried out at 75 V for 17.75 hours.

After electrophoresis, the gel was removed from the system and stained in SYBRGreen 

(Invitrogen, Paisley, UK) for 40 min before being photographed on the UV 

transilluminator. Any bands of interest were stabbed with a sterile pipette, which was 

then dipped into 20 pi of sterile ddH2 0  and swirled around. This solution was 

reamplified with 338F-GC-Com2 primers as before. The products were run on a DGGE 

gel to ensure only the band picked had been amplified. The products were sent to 

MCLAB for sequencing.

5.2.1.3.3. 16S clone library construction and analysis

Clone libraries were carried out on flasks B1A (high ratio, replicate 1) and B3A (low 

ratio, replicate 1 ) every other month, and on the rocks from these flasks at the end of the 

experiment. The libraries were performed using the TOPO TA Cloning Kit for 

Sequencing (Invitrogen, Paisley, UK) according to the manufacturer’s instructions. In
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brief, samples were amplified with pA-Com2 primers. The products were purified. A 

TOPO cloning reaction was set up that consisted of fresh PCR product (4 pi), 1 pi salt 

solution and 1 pi TOPO vector. The reaction was mixed gently and incubated at room 

temperature for 30 min. Five pi of the reaction was then added to 25 pi of OneShot 

Chemically Competent E. coli and incubated for 30 min on ice. Cells were heat- 

shocked for 30 s at 42°C and immediately placed on ice. S.O.C. medium (250 pi; 

Invitrogen, Paisley, UK) was added to the transformed cells and incubated horizontally 

at 37 °C for one hour at 200 rpm. Aliquots of the suspension (50 pi) were spread plated 

onto pre-warmed (37°C) Luria Broth (LB) agar plates (Appendix A) containing 

ampicillin (50 mg ml"1; Sigma-Aldrich, Poole, UK). The plates were incubated 

overnight at 37°C and stored at 4°C until further use.

For each clone library, 96 clones were picked with sterile pipette tips and transferred to 

140 pi LB-Amp in 96-well plates (Fisher Scientific, Loughborough, UK). The 

suspensions were incubated overnight at 37°C, after which the cultures were sent to 

MCLAB for sequencing with T3 primers (forward).

The sequences were edited and aligned using BioEdit 

(www.mbio.ncsu.edu/BioEdit/bioedit.html) and ClustalX, respectively. Chimeras were 

identified in the clone libraries by submitting sequences to the chimera check 

application on the Bellerophon server (Huber et al., 2004). As with the isolates, the 

sequences were classified using RDP and BLASTN (Altschul et al. 1997).

5.3. Results

Over the span of the year-long experiment, microorganisms from the flasks were 

isolated and sequenced, and communities were analysed using DGGE and 16S rDNA 

clone libraries. The following sections will detail the results from these analyses.
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5.3.1. Culturing and identifying organisms

Through plating on yeast extract and BG11 agar plates, it was observed that both non- 

phototrophic and phototrophic organisms (from 76 days onwards) grew. Microscopy of 

the phototrophs showed a highly diverse community of both filamentous and coccoid 

morphology (Figure 5.2).

The flasks were sampled every month and an aliquot was spread onto yeast extract agar 

plates. Microorganisms that grew up were subsequently isolated and sequenced. 

Bacterial isolation proved non-problematic in terms of PCR and sequencing and freeze- 

thaw cycling was sufficient for DNA extraction for amplification. Table 4.5 lists the 

isolates obtained from successful sequencing and their closest matches. All isolates 

were amplified using the pA-com2 primer set.

What is apparent is that a majority of the isolates affiliate closely to bacteria isolated 

from soil. There are also a few that are from cold habitats, such as Microbacterium sp. 

DVS4a2 (Medium-7-213d, 99%) from the Dry Valley, Antarctica, and Streptomyces sp. 

ZS1-2 (Medium-7-213d, 100%) which was also isolated from Antarctica. In addition, 

two isolates affiliate to bacteria that have been reported to associate with phototrophs: 

Arthrobacter sp. DC2a-l (High-11-37Id, 99%) isolated from an algal-bacterial 

consortia, and Sphingomonas sp. AKB-2008-VA4 (Low-16-37Id, 99%) which 

associated with cyanobacterial water blooms (Berg et al. 2009).

The isolates grouped into three different phyla: Firmicutes, Proteobacteria, and 

Actinobacteria (Figure 5.3, Table 5.6). In the case of the Actinobacteria, isolates were 

affiliated to Streptomyces sp., Arthrobacter sp., Microbacterium sp. and Rhodococcus 

erythropolis (Table 5.6). As the clone libraries demonstrate, the diversity shown in the 

plates is less than that seen in the libraries.
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Phototrophs also grew on plates and were subsequently isolated. Table 5.7 shows the 

isolates obtained and their closest matches, whilst Figure 5.4 shows them in a 

phylogenetic tree. All except one (Medium-Pl-76d) matched to the same isolate, 

uncultured bacterium clone QB78 isolated from high-altitude tundra in Central Tibet, 

despite having different colony morphologies. RDP analysis, however, showed that all 

the phototrophs isolated were from the genus Chlorophyta (the green algae).
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Figure 5.2. Representative light microscope images o f phototrophs from the medium

ratio at 213 days (A), low ratio at 213 days (B), and high ratio at 296 days (C).
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Large-4-213d (JN 627970)

Low-17-371d (JN 627983)

Large-3-213d (JN 627969)

L Uncultured P aen ibac illaceae  (FJ608140) 

M edium -8-213d (JN 628006)

Large-12-371 d (JN 627963)

Paen ibacillu s alginolyticus DSM  5 0 5 0  (A B073362) 

Low-11-213d (JN 627976)

Faen ibaciiiu s aiginoiyticus ST7 (FJ982934)

Large-13-371 d (JN 627964)

--------------M edium -11-371d (JN 627993)

1 0 0  | Large-2-39d (JN 627968)

' B acillus sp . D B 88 (HM 566968)

 | M edium -1-5d (JN 627998)

100 I Bacterium  B5B (G U 458352)

• M edium -14-371d (JN 627996)

• B acillus sp . DB161 (HM 566875)

• Large-7-296d (JN 627973)

- Cohnella sp . HY-22R (G Q 214052)

100 | Low-10 -188d (JN 627975)

> Low-9-188d (JN 627991)

8 7  , M edium -16-371 d (JN 627999)

I Bacillus sp . INBio3690C (H M 771097)

Low-12-213d  (JN 627977)

Low-14-371 d (JN 627979)

B acillus ce re u s  LNTW72 (G U 969129)

Low-1-5d (JN 627981)

Low-8-188d (JN 627990)

_________ lo o j  Low-4-39d (JN 627986)
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Low-13-296d (JN 627978)

Low-5-76d (JN 627987)

Low-2-5d (JN 627984)
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L- Uncultured alpha proteobacterium  (D Q 463724)

Low-16-371 d (JN 627982)

S ph ingom onas sp . DCY44 (FJ605269)

O j  Low-15-371 d  (JN 627980)

L Skerm anella sp . VTT E -073090 (EU 438962)

 | Low-6-160d (JN 627988)

100 I Uncultured proteobacterium  (E F 019912)

, |------------------L arge-8-296d (JN 627974)

■ M edium -10-296d (JN 627992) 

I Low-7-160d (JN 627989)

100 1 Brevundim onas sp . pfB9 (A Y 336538) 

I Large-10-371 d (JN 627961)

Rhizobium sp . CCBAU (G U 565534)

■ Large-15-371 d (JN 627966)

100 | M edium -13-371d (JN 627995)

' B o se a  th iooxidans M GV6-VS (A J250799)

I M edium -3-188d (JN 628001)

100 I Bradyrhizobium sp . CCBAU (E U 256466) 

to o l Large-5-213d (JN 627971)

' S axeib acter  sp . R -36686 (FR 682693)

7 5 j -----------------------------Large-14-371 d (JN 627965)

' R h odococcus sp . Y1E (E U 293153)

M edium -4-188d (JN 628002)

B acillus subtilis E1 (H M 560955)
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98 I R h od ococcu s erythropolis GT4 (FN 796872)
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jooj Large-6-296d (JN 627972)

I M edium -2-160d (JN 628000)
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Proteobacteria

100 1 Microbacterium sp . D V S4a2 (A Y 864634) 

10 0  p  M edium -6-188d (JN 628004)

* Arthrobacter sp . N BG D44 (H Q 003442)

9 5 j  Large-11-371 d (JN 627962)

' Large-1-5d (JN 627967)

M edium -15-371d (JN 627997)

9 3 1 Arthrobacter sp . R S -33 (FN 377737)

- Aquifex sp . (A B304982)

Actinobacteria

Figure 5.3. Phylogenetic 

tree (bootstrapped, 1 0 0 0  

replications) constructed 

from bacterial isolates 

obtained from the three 

ratios. The tree is rooted 

using Aquifex sp.. The 

scale bar represents 2 % 

estimated sequence 

divergence.
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81

99

71

Large-P2-188d (JN628010)

Uncultured bacterium QB78 (FJ790633)

Low-P1-188d (JN628011)

Large-P1-188d (JN628009)

Algal-1-160d (JN628008)

Uncultured Chroococcidiopsis sp. (FJ790633)

Medium-P2-160d (JN628013)

-------------------------------------------------------- Uncultured cyanobacterium CARZ26 (FN298128)

94

Medium-P1-76d (JN628012)

Uncultured bacterium C 13 (Dry Valleys Antarctica) (FJ490250)

L- Chlamydomonas reinhardtii CC2931 (FJ458262)

0.1

Figure 5.4. 16S rDNA phylogenetic tree constructed from phototroph isolates obtained 

from the three ratios. The tree is bootstrapped (1000 replicates) and the scale bar 

represents 10% estimated sequence divergence. The tree is rooted using 

Chlamydomonas reinhardtii.
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5.3.2. Community analysis by DGGE

Amplification of 16S rDNA, using primers 338F-GC and com2, was carried out on all 

the samples collected over the year from the different ratios. The obtained products 

were then electrophoresised on DGGE gels. The results are shown in Figure 5.5. A 

cluster analysis based on the presence or absence of bands in the gel is shown alongside. 

It, however, shows no discemable clustering pattern between ratios, or between time 

points.

In an attempt to identify bands, two approaches were taken: approach one observed 

bands picked, amplified and then sequenced; approach two had isolates run on DGGE 

gels to match them with bands; however, both approaches did not prove successful. 

Sequences bands picked showed contamination, with no sequence able to provide a 

clear reading. Running isolates on gels had a low success rate as well, with multiple 

bands appearing in the lanes, despite the isolate being pure (Figure 5.6).
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Figure 5.5. DGGE cluster analysis based on the presence and absence of bands. 

Labelling is as follows: B1 = high ratio, B2 = medium ratio and B3 = low ratio.
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Isolates Isolates

i

Figure 5.6. An example of isolates amplified and run on a DGGE gel. Markers are 

marked with an M.

5.3.3 Community analysis by 16S rDNA clone libraries

16S rDNA clone libraries were also carried out on the high and low ratios every other 

month (except at 160 days for the high ratio where the clone library was not successful). 

The distribution of clones within their respective phyla is represented in Figure 5.7. 

The sequence analysis of clone libraries at 5 days showed that both high and low ratios 

were made up of Firmicutes (such as Paenibacillus sp.) and Betaproteobacteria (such as 

members of the Oxalobacteria family), with Betaproteobacteria making up the majority.
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However, the composition changes and diversifies with time. For example, by 213 

days, Betaproteobacteria still made up a large part of the high ratio but no Firmicutes 

were found. Furthermore, phyla such as Verrucomicrobia, Bacteroidetes and 

Gammaproteobacteria were identified.

In terms of the low ratio at 213 days, Betaproteobacteria and Firmicutes were still 

present. However, there were a large number of unclassified bacteria, as well as 

Acidobacteria, Planctomycetes, Gemmatimonadetes and Deltaproteobacteria. The 

unclassified bacteria make up a large portion of the low ratio at 76, 160 and 213 days. 

However, at 371 days none were present.

A small number of cyanobacteria were sequenced for the high (371 days, and the rock) 

and low ratio (rock) but none were detected in the earlier time points despite the 

presence of phototrophs from 76 days onwards. Another phylum absent in the earlier 

time points was Actinobacteria. Though isolated on plates from as early as 5 days, they 

did not appear in the clone libraries until 371 days and they were also found in the rock.

The most diverse composition was found in the clone libraries from the rocks at the end 

of the experiment (371 days). The high ratio had 12 different phyla, and the low ratio 

had nine.

Libshuff revealed a combined 129 OTUs at 97% sequence identities among the 

libraries. The phylogenetic relationships of these OTUs are demonstrated in Figure 5.8, 

where each OTU is represented by one clone. The sampling time and ratios of the 

clones associated with each of the OTUs are listed in Appendix C.
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Figure 5.7. Stacked bar charts showing the percentage o f community composition o f 

the high ratio (A) and low ratio (B) over time, as found through 16S rDNA clone 

libraries.
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Figure 5.8. Neighbour-joining phylogenetic tree of 16S rDNA clone sequences from 

high and low ratios libraries over one year. (A) full phylogenetic tree, (B) 

Actinobacteria phylum as represented by a wedge in (A), (C) Firmicutes phylum, (D) 

Proteobacteria phylum. Clones are represented at the OTU-level (defined at 97% 

sequence similarities) by one sequence from each Libshuff-indentified OTU. OTU 

designations are followed in parenthesis by the number of clones represented by that 

OUT and its accession number. The tree is bootstrapped (1000 replicates) and the scale 

bar represents 2% estimated sequence divergence. Aquifex sp. was used as an outgroup. 

Accession numbers for clones are JN222427-JN222544, and are listed in Appendix C.
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Figure 5.8. (continued)
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5.3.4 Statistical Analyses on the 16S rDNA clone libraries

5.3.4.1. Clone library comparisons

Results from Libshuff (Singleton et al., 2001) analysis on significant differences 

between the clone libraries is shown in Appendix B. For comparison of multiple 

libraries, the Bonferri correction (Bonferroni, 1935) was used to determine the critical 

p-value at or below which the libraries can be considered statistically different with 

95% confidence (Singleton et al., 2001; Henriksen, 2004). This critical value is 

calculated from the relationship: p = l-(l-a)k(k_1), where ‘p’ is the experiment-wise p- 

value of 0.05, ‘a’ is the critical p-value, and ‘k’ is the number of libraries. The critical 

p-value in this case (with 11 libraries) was 0.00046. For each pairwise comparison, if 

the lower of the two p-values calculated by Libshuff was less than or equal to 0.00046, 

the result indicated a significant difference in the composition of the communities 

sampled by each library (Singleton et a l , 2001; Henriksen, 2004).

All libraries showed significant differences except those shown in Table 5.8. The 

complete Libshuff results are shown in Appendix B.

Table 5.8. Libshuff results for pairwise library comparisons that were not classed as 

statistically different (where the lower of the two p-values calculated by Libshuff was 

>0.00046).

Pairwise Comparison Critical p-value

High 76 d -  High 213 d 0.2376
High 213 d -  High 76 d 0.2803
High rock -  Low rock 0.0038
Low rock -  High rock 0.0367

Low 76 d -  Low 160 d 0.0693
Low 160 d -  Low 76 d 0.0456
Low 160 d -  Low 213 d 0.3915
Low 213 d -  Low 160 d 0.0008
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A phylogenetic tree created by MOTHUR to demonstrate clustering patterns between 

libraries is shown in Figure 5.9. The tree separates into two main clusters: low ratios 

and high ratios. The exceptions are with the rocks (High Rock library clusters with the 

Low Rock in the low ratio branch) and at five days where Low 5 d library clusters with 

High 5 d in the high ratio branch.

 O Low Rock

------------------------ □  Large Rock

-------------------------- : O Low 371 d

--------------------------------------- O Low 213 d

---------------------O Low 160 d

   O Low 76 d

 C Low 5 d

----------------------   □  Large 5 d

------------------------------------------------□  Large 371 d

------------------------□  Large 213 d

 □  Large 76 d

Figure 5.9. MOTHUR-created phylogenetic tree using the Jaccard index, showing high 

and low clone libraries at different time points (cut-off at 97%). Green circles denote 

the low ratios and the red squares the high ratios.
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53.4.2. Richness, Evenness and Diversity

Using MOTHUR, species richness, evenness and diversity were calculated for the clone 

libraries (after sequences were chimera checked). Species richness is the number of 

different species in a given area, whilst species evenness is a measure of the relative 

abundance of the different species making up the richness of an area. As richness and 

evenness increase, so does diversity. The richness is represented here with rarefaction 

curves (Figure 5.10) and Chaol richness estimates in Table 5.6, the evenness with rank 

abundance plots (Figure 5.11) and Simpson’s Evenness Index (Table 5.7), and diversity 

using the Shannon diversity and Simpson's Reciprocal Indices (Table 5.6).

Rarefaction curves (Figure 5.10) were plotted as the number of OTUs as a function of 

the number of 16S rDNA sequences analysed for all the libraries (at species level). The 

analysis showed a high diversity of microbial phylotypes associated with both rock 

libraries in comparison to the solution libraries. However, analysis at species level 

indicated that libraries were not sampled to saturation, as some of the time points only 

had approximately 40 sequences analysed due to problems with sequencing, though 

Low 5 d and Low 371 d libraries were nearing saturation. Though a general trend can 

be elucidated from the rarefaction analysis, the non-saturation of the curves means that a 

complete picture cannot be put forth. The lower number of sequences will have an 

effect on statistics, such as richness, diversity, and evenness analyses.

Though a general trend can be elucidated from the rarefaction analysis, the non

saturation of the curves means that a complete picture cannot be put forth. We do not 

need to have saturation to do statistics; however, we are limited in understanding the 

complete phylogenetic diversity as we do not have full species numbers. The numbers 

of species quoted are not absolute as more clones would need to be sequenced to reach 

saturation to do this. Diversity indices will always be better with more clones as we will
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have sampled the common (larger number) species found as well as the rarer (fewer 

number) species in the community, but one can still extract meaningful results at below 

saturation as it can provide an overview of the differences in species numbers.

Chaol richness estimates (Table 5.9) indicate similar results to the rarefaction curves, 

with the High Rock and Low Rock libraries having higher richness values than the 

solution libraries at 46.43 and 48.00, respectively.
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Figure 5.10. Rarefaction analysis of the diversity of bacterial clones from the high and 

low ratio clone libraries at different time points. The number of OTUs was plotted as a 

function of the number of 16S rDNA sequences analysed. Curves were calculated with 

sequence similarity values of 97% (species level).
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Table 5.9. Richness (Chaol) and diversity estimates for bacterial 16S rDNA clone 

libraries from high and low ratios over time (species level) as calculated by MOTHUR.

__ Index
V.UI IUILIUI1

Chaol (LCI, HCI) Shannon (LCI, HCI) Inv Simpson (LCI, HCI)

High 5 d 22.50 (14.03, 66.19) 1.98 (1.67, 2.29) 5.95 (4.21,10.16)

High 76 d 20.00 (14.34, 49.54) 2.07(1.76, 2.38) 6.28 (4.31,11.61)

High 213 d 35.33 (21.48, 92.08) 1.75 (1.39, 2.11) 2.99 (2.19, 4.72)

High 371 d 17.00 (14.50, 31.95) 2.34 (2.06, 2.62) 10.09 (6.84,19.22)

High Rock 46.43 (33.06, 89.32) 2.67 (2.35, 2.99) 8.42 (5.58,17.20)

Low 5 d 27.00 (21.45, 53.75) 2.50 (2.29, 2.70) 9.48 (7.23,13.78)

Low 76 d 16.00 (13.50, 30.95) 2.04 (1.70, 2.37) 5.73 (3.92,10.64)

Low 160 d 28.00 (16.92, 81.11) 2.20 (1.89, 2.51) 7.50 (5.02,14.80)

Low 213 d 23.00 (17.45, 49.75) 2.50 (2.23, 2.77) 12.78 (8.63, 24.59)

Low 371 d 17.43 (17.03, 22.57) 2.51 (2.29, 2.74) 10.47 (7.33,18.33)

Low Rock 48.00 (31.12,104.89) 2.44 (2.12, 2.77) 6.46 (4.39,12.25)

Evenness for the libraries is shown in Table 5.10 (Simpson’s Evenness Index) and in 

Figure 5.11 (rank abundance curves). Simpson’s Evenness Index ranges between 0 

(low) and 1 (high evenness); high evenness equates to the abundances of different 

species being similar. High 213 d had the lowest evenness at 0.18, whilst Low 213 d 

had the highest evenness at 0.80. The two rock libraries were second and third lowest 

(Low Rock second with 0.27, and High Rock third with 0.31).
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Table 5.10. Simpson’s Evenness Index for bacterial 16S rDNA clone libraries from 

high and low ratios over time (species level) as calculated by MOTHUR. The 

conditions are ranked based on their evenness score; the higher the rank, the higher the 

evenness.

Condition SimpsonEven Rank

High 213 d 0.18 1
Low Rock 0.27 2
High Rock 0.31 3
Low 76 d 0.44 4
Low 5 d 0.47 5
High 76 d 0.48 6
High 5 d 0.5 7
Low 160 d 0.54 8
Low 371 d 0.62 9
High 371 d 0.72 10
Low 213 d 0.80 11

The rank abundance curves offered similar results. High 213 d had the steepest 

gradient, whilst Low 213 d had the shallowest gradient. Both rocks also had steeper 

gradients compared to the rest of the curves, suggesting a larger number of rarer 

phylotypes.

Evenness did not appear to follow a pattern whereby evenness increased or decreased 

over time, nor did either ratio have more libraries with high or low evenness (both were 

equally distributed).
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Figure 5.11. Rank abundance plots for high and low clone libraries over time (species 

level) as calculated by MOTHUR. Rank abundance provides a mean for visually 

representing species evenness. Species evenness is derived from the slope of the line 

that fits the graph. A steep gradient indicates low evenness as the high ranking species 

have much higher abundances than the low ranking species. A shallow gradient 

indicates high evenness as the abundances of different species are similar.

Shannon’s diversity and Simpson’s Reciprocal indices were calculated for the libraries 

using MOTHUR. From Figure 5.7, phyla were becoming more diverse over time for 

both ratios. This is somewhat replicated by the diversity indices in Table 5.8, which 

shows the diversity is lowest at 5 d (Shannon: 1.98; InvSimpson: 5.95) and highest at 

371 d (Shannon: 2.34; InvSimpson: 10.09) in the high ratio. In the low ratio libraries, 

Low 5 d (Shannon: 2.50; InvSimpson: 9.48) is less diverse than 371 d (Shannon: 2.51;

141



InvSimpson: 10.47. In terms of diversity in the rocks, the high ratio (Shannon: 2.67; 

InvSimpson: 8.42) had a higher diversity than the low (Shannon: 2.44; InvSimpson: 

6.46).

Table 5.11 summarises the richness, diversity and evenness results for the libraries, with 

the highest and lowest libraries for each category. High 213 d had the lowest diversity 

and the least abundance. The high water-rcok ratio rock had the highest richness and 

diversity, according to Shannon. However, InvSimpson showed low water-rock ratio 

213 d to have the highest diversity. This condition also had the lowest evenness. The 

difference between Shannon and InvSimpson in terms of the lowest diversity may be 

explained by the error bands previously shown in Table 5.9, which are fairly large. The 

error bands for ‘High Rock’ and ‘Low 213 d’ overlapped, in the case of both diversity 

indeces, thus either could be classed with lowest diversity. The large error bands may 

have been due to the low number of clones sequenced (average of 40 sequences). Had 

more clones been successfully sequenced, the margin for error would most likely have 

been reduced.

Table 5.11. Summary of richness, diversity and evenness, showing the highest and 

lowest libraries for each category.

Rank Chaol Shannon Inv Simpson SimpsonEven

Highest High Rock High Rock Low 213 d Low 213 d

Lowest Low 76 d High 213 d High 213 d High 213 d
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5.4 Discussion

As described in Chapter 2, rock weathering contributes to the carbonate-silicate cycle 

and long-term climate by consuming CO2 in rock weathering reactions (Caldeira, 1995; 

Dessert et a l, 2001, 2003). Due to its importance, studying volcanic glass alteration in 

terms of microbial weathering, a less known contribution, is vital. The addition of 

water-rock ratios provides a broader understanding due to the varying ratios out in the 

field, where water-rock contact can be found with water in rock vesicles (low ratios), to 

rocks in a river bed (high ratios). To the best understanding, no study has been reported 

yet that has addressed water-rock ratios in relation to microbial weathering.

As mentioned in the introduction to this chapter, the bacterial community of the rock 

was known, and proved to be diverse. However, this chapter has demonstrated change 

in community structure over the course of a year and whether ratios would have an 

effect. This study has provided a snapshot of succession in subglacial basalt.

5.4.1. Change in community over time

The microbial activity in the rock is important to ascertain in order to understand

weathering of rocks in more detail. From previous studies, the microbial content was

known but not its activity (Cockell et a l , 2009a). A year-long experiment was decided

upon to give an adequate time period to study changes in community, if any. Einen et

a l (2006) carried out a year-long study on microbial colonisation and alteration of

basalt glass under seafloor conditions. The study used DGGE in combination with

sequencing to provide a fingerprint of bacterial community composition over time. This

chapter has used a similar approach but using terrestrial volcanic glass rather than

seafloor basalt, as though the potential geochemical nutrient and energy availability

from terrestrial and deep-ocean basaltic glass is similar due to similar mineralogy, the
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terrestrial environment is very different from the deep-ocean. Terrestrial basalt is 

exposed to freshwater (snowmelt), acidic rainwater, large temperature fluctuations and 

exposure to light, which probably account for different phylotypes (Cockell et ah, 

2009b). This experiment also employed 16S rDNA clone libraries to increase the 

understanding of succession.

Einen et a l (2006) found Firmicutes and Proteobacteria dominating their microcosms. 

This was a similar case in this chapter, at least in the beginning.

The bacteria isolated from yeast extract plates fell into three phyla: Firmicutes, 

Proteobacteria and Actinobacteria. DNA was also extracted from bands on the DGGE 

where samples were run. However, attempts at sequencing failed as extraction appeared 

to pick up more than one sequence, either from contamination on the gel (which is not 

cast and kept in a sterile environment) or from more than one band being picked and 

sequenced. Sequencing was therefore limited to isolates and clone libraries.

A large number of isolates matched to soil bacteria, an observation also made by Kelly 

et a l (2010). They found that all the phyla identified in their clone libraries on 

terrestrial Icelandic volcanic glass contained clones most similar to sequences from soil 

environments. Actinobacteria and Proteobacteria are important groups in soils and have 

previously been shown to be abundant in endolithic habitats (Cockell et a l , 2009b; de la 

Torre et a l, 2003; Walker and Pace, 2007).

The affiliation to soil bacteria may not be so surprising considering the composition of 

the rock at the microscopic level is very much like soil, as basaltic glass weathers to 

palagonite, which is a soft secondary weathering material whose cations may be more 

amenable to microbial access compared to the solid rock (Kelly et a l, 2010). The 

isolates affiliating to bacteria from cold habitats are also not a surprise considering the 

location of the rock; Iceland’s average temperature between December and February
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is -2°C. Caution, however, must be attached to this statement as there is a small 

percentage difference between the isolates’ sequences and that of the matched 

sequences. Though three phyla emerged through the isolates, the clone libraries showed 

that diversity was much higher than the isolates purported.

By the end of the year, clone libraries showed that phyla numbers totalled five and eight 

in the high and low ratios, respectively. Firmicutes and Betaproteobacteria dominated 

early on. Nemergut et a l (2007) studied microbial community succession in an 

unvegetated, recently deglaciated soil in south eastern Peru, along a chronosequence of 

three early successional soils. They showed that Betaproteobacteria were most 

dominant in the youngest soils, with abundance decreasing markedly with soil age. In 

this chapter’s experiment, Betaproteobacteria made up 94.38% of clones at 5 d in the 

low ratio. However, from 76 days onwards they only accounted for a small percentage 

of the total (the maximum being 21.05% at 213 d). In the case of the high ratio, 

Betaproteobacteria were the dominant phylum (ranging from 83 to 92.54%) up until 371 

d where they made up 2.78% of the total number of clones. Work done by Lysnes et a l

(2004) on microbial community diversity in seafloor basalts from the Arctic spreading 

ridges found that the diversity of sequences retrieved from the basalts was dominated by 

Proteobacteria.

Fierer et a l (2010) described three general categories of microbial succession: 

autotrophic, endogenous heterotrophic and exogenous heterotrophic. Autotrophic 

succession is most likely seen in glacial till, volcanic deposits, and other newly exposed 

mineral surfaces (Fierer et a l, 2010; Hoppert et a l , 2004; Gomez-Alvarez et a l , 

2007; Nemergut et a l, 2007; Schutte et a l , 2009). Its initial colonisers are

predominantly autotrophs using light or the oxidation of inorganic compounds to
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generate energy (Fierer et al., 2010). Little or no organic carbon is initially available 

and the organic carbon supply changes relatively slowly over time (Fierer et a l, 2010). 

Both ratios at 5 d were dominated by Betaproteobacteria, specifically from the family 

Oxalobacteraceae and were heterotrophic, not autotrophs. However, Fierer et a l 

(2 0 1 0 ) restrict their classification to primary succession dynamics, the community 

changes that occur following the colonisation of sterile or nearly sterile environments 

by microorganisms. The basalt glass in this chapter was already colonised with 

microbes and a carbon source was added in the form of the yeast in the media. 

Therefore we are beginning the succession stages with an established community and 

viewing the succession from that point onwards. In addition, as carbon was being 

added with the addition of the yeast and from the existing microorganisms in the rocks, 

the succession stage could be classified as both endogenously and exogenously 

heterotrophic, i.e. a mixture of both.

As time progressed the communities became more diverse; statistics have shown 5 d 

being less diverse than 371 d in both ratios. The increase in phyla diversity has been 

previously reported by Nemergut et a l (2007). They found that diversity was lowest in 

the youngest soils, and increased in the intermediate aged soils, before plateauing in the 

oldest soils. Perhaps if the experiment in this chapter had been run for longer, a plateau 

would have also been seen.

The diversity increase has also been reported in other studies. For example, Nicol et a l

(2005) demonstrated an increase in archaeal diversity along a succession gradient. 

However, a ribosomal fingerprinting study carried out by Sigler and Zeyer (2002b) 

suggested a decrease in microbial diversity with soil age in early successional soils. 

Nemergut et a l (2007), however, puts forward the point that clone library techniques
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are more sensitive to sequence variation in the 16S rDNA molecule, and thus may be a 

more accurate reflection of community dynamics.

The increase in microbial community diversity may be due to an increase in the 

diversity and the amount of energy and carbon inputs into the system (in forms of 

available light and organic material deposition) (Nemergut et a l , 2007). This would 

permit the growth of a more diverse set of microorganisms. The diversity could also be 

affected by changes in microecological interactions, such as competition (Nemergut et 

a l, 2007).

5.4.1.1 Nutrients and Selection

The chemistry of the flasks will be addressed in Chapter 6 , where elemental 

concentrations and pH are discussed. However, inferences may be made already on 

nutrient availability from the microorganisms appearing and current literature.

At 76 days, phototrophs began to appear in all biological flasks, as witnessed by the 

solution turning green, microscopy and isolation on plates. For Nemergut et a l (2007), 

phototrophs appeared to be common in all soil ages. The importance of phototrophs in 

early successional environments is clear; in the absence of a large pool of organic 

carbon, carbon-fixing organisms would have a greater advantage. The emergence of 

phototrophs could mean additional nutrients in the flasks, which would in turn lead to 

the emergence of more microorganisms which would benefit from the extra nutrients. 

One cannot unequivocally say whether phototrophs affected the community. A repeat 

of the experiment should be carried out with flasks in the dark, preventing the growth of
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phototrophs. If phototrophs did have an effect on the community, differences should be 

seen between the bacterial communities grown in the light and in the dark.

The dependence of microbes on others is illustrated in the case of Nitrospirae (found in 

the High Rock at the end of the experiment). They are nitrite oxidisers and are slow- 

growing specialists dependent on the supply of nitrite from ammonia oxidisers (Ehrich 

et al., 1995), such as the Betaproteobacteria Nitrosomonas (Head et a l , 1993; Teske et 

a l , 1994). Nitrosomonas were found at 213 d in the high ratio. One could postulate 

that the appearance of these nitrite oxidisers was only possible due to the appearance of 

ammonia oxidisers such as Nitrosomonas.

Succession studies have predominantly focussed on plants. Though some studies of 

forefield bacterial population diversity and evenness have revealed trends different from 

those of plants (Sigler et a l , 2002a; Sigler and Zeyer, 2002b), categorisation of two sets 

of populations in succession can be extended to microorganisms. The characterisation 

is known as the r- to K-selection.

The r- and K-selection theory was developed by Mac Arthur and Wilson (1967), whilst 

Andrews and Harris (1986) provided a framework to apply the terms of r- and K- 

selection to microbial community succession. The theory proposes that, as communities 

develop, r-selected species with investment of energy mainly in reproduction will be 

replaced by K-selected species with relatively higher energy in maintenance and lower 

energy demands. Sigler and Zeyer (2002b) have shown that late succession bacterial 

population were less opportunistic than early succession bacteria, and Sigler and Zeyer 

(2004) found that there was an apparent shift from r- to K- strategists with successional 

age.
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Ecologists have labelled organisms that are able to rapidly respond and dominate 

following a disturbance event as ‘opportunists’ (Odum, 1985) whereas ‘maintenance’- 

type organisms are characterised by a slower response. If applied in the case of 

microbes, opportunistic microbes (r-strategists) would be able to rapidly take advantage 

of transient alterations in their environment, while less opportunistic types (K- 

strategists) tend to respond relatively slowly.

Early successional communities will be dominated by species with broad niche width, 

rapid growth, and high investment in reproduction (i.e. opportunistic organisms), 

whereas later successional communities will be dominated by species with narrow niche 

width, slower growth, and lower investment in reproduction (i.e. equilibrium 

organisms). These later successional communities may also account for the long tails 

observed in the rank abundance plot (Figure 5.11), seen predominantly in the later 

months of the experiments. The long tails in rank abundance plots account for less than 

0.1% of the abundant species in a particular ecosystem (Sogin et a l , 2006). However, 

at the same time it represents thousands of populations, accounting for most of the 

phylogenetic diversity in an ecosystem. These are known as the ‘rare biosphere’ (Sogin 

et al., 2006) -  low abundance, high diversity groups.

Based on the descriptions of the two successional groups, predictions could also be 

made with regards to culturability of microorganisms in these groups.

5.4.1.2 The unculturables and succession

The diversity between isolates and clone libraries was different; isolates were not as

diverse. The difference between the phyla emerging between the two may be explained

by culturability. In addition phyla present in later stages of the experiment, such as

Acidobacteria, Verrucomicrobia and Gemmatimonadetes, are known to be difficult to
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culture and molecular techniques are relied upon to identify them in samples (Nemergut 

et a l, 2007). The issue of culturability is something that could be related to succession.

Through the r- and K-selection theory, it could be predicted that early successional 

microbial communities would contain a higher proportion of culturable types; the ability 

to grow on non-selective medium requires that an organism directs energy into growth 

and not be overly specialised in its growth environments (i.e. have a broad niche width). 

Conversely, an increasing proportion of non-culturable types may be associated with 

later succession states since these types direct less energy into growth and/or have very 

specific growth requirements that may not be readily provided in artificial media.

The fastidious nature of the non-culturable microorganisms may be a result of the 

specific growth factor requirements, specialised use of a narrow range of carbon 

sources, or susceptibility to high nutrient concentration known to inhibit the ability to 

culture oligotrophic bacteria (Button et al., 1993). Common to all of these mechanisms, 

from the perspective of successional theory, is that these organisms have become 

adapted to narrower, specialised niches. Garland et a l (2000) tested the potential of 

culturability as an indicator of community successional state and found that culturability 

decreased over time. Nemergut et al. (2007) also found that later successional soils 

showed an increase in difficult-to-culture groups including Acidobacteria, candidate 

division WYO, Gemmatimonadetes, and Verrucomicrobia. Similar findings were found 

in this chapter and it may also go some way in explaining why only Actinobacteria, 

Firmicutes and Betaproteobacteria were isolated on plates.

Previous studies have reported a decrease in culturability along the successional 

gradient (Sigler et a l, 2002a; Nemergut et a l, 2007). Nemergut et al. (2007) showed 

an increase in difficult-to-culture groups such as Acidobacteria, Gemmatimonadetes,
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and Verrucomicrobia in later successional soils. These three phyla were also found in 

this study, and only in later stages for the majority, but only through clone libraries and 

not isolation. It is possible that these organisms utilise complex carbon substrates that 

would be more common in older and more developed soils, as suggested by Nemergut 

et a l (2007), and would not be replicated on plates. Another possibility is that the 

bacteria from these phyla require interactions with other bacteria which would also 

make it difficult to obtain pure cultures.

The question of culturability can also be extended to the phototrophs. Several were 

isolated on plates and matched to the phylum Chlorophyta. Five isolates matched to the 

same uncultured bacterium clone, despite colony morphologies being dissimilar enough 

to warrant sequencing. However, microscopy on the samples has shown both 

filamentous and coccoid phototrophs, but attempts to isolate filamentous organisms 

have proven unsuccessful. Perhaps, as described previously, they require nutrients that 

are not available in a defined medium or need the interaction with other 

microorganisms.

5.4.2. Rock vs. Liquid

There were several differences in community composition between rock and liquid. 

Chloroflexi and Nitrospirae were only detected in the rocks, whilst Bacteroidetes, 

Candidate division OD1, Chlorophyta and Verrucomicrobia were only found in the 

liquid. The distinction between rock and liquid has been previously noted by Lysnes et 

a l (2004). They demonstrated that seafloor basalt harboured a distinctive microbial 

community, as the majority of the sequences differed from those retrieved from 

surrounding seawater (Lysnes et a l , 2004). It was found that seawater was dominated 

by Proteobacteria, in contrast to the basalt samples which had several main
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phylogenetic groups (Firmicutes, Chloroflexi, Actinobacteria, Bacteroidetes,

Proteobacteria and Crenarchaeota) (Lysnes et a l, 2004). The seawater also contained 

Verrucomicrobia which, as in this experiment, was not detected in the basalts (Lysnes et 

a l, 2004).

A possible reason for the difference may be due to possible nutrient differences between 

the rocks and liquid. The rock may provide greater or different nutrients than the liquid 

or the bacteria require attachment to the rock. Certainly surface-active particles in soil 

and sediment do adsorb and bind organic and inorganic materials (Stotzky, 1986). 

Another explanation is that not enough clones were sampled for the flasks and therefore 

the libraries are not showing all phyla that were present. Certainly the rarefaction 

curves (Figure 4.10) were not saturated. Had more clones been sampled, it may be that 

Chloroflexi and Nitrospirae would have been detected in the liquid samples as well. 

However, even with partial clone libraries, rocks were more diverse as observed in the 

rarefaction curves. Therefore, it is likely that direct contact with the rocks provided 

more nutrients for the bacteria, or the bacteria required attachment to the rocks to obtain 

nutrients.

One issue that may arise from analysing the DNA in the flasks may be whether some of 

the DNA detected by the clone libraries, especially in the rock, may be due to dead 

cells. PCR does not discriminate viable cells from dead cells.

Extracellular DNA released from lysed and by growing bacteria has been recovered

from soil (Steffan et a l, 1988), sediment (Ogram et a l, 1987), and fresh and marine

waters (DeFlaun et a l, 1986). The primary mechanism for extracellular DNA

degradation in soil is believed to be bacterial DNases (Blum et al., 1997). Soil bacteria
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actively secrete nucleases into the soil to increase the rate at which the nutrients in 

extracellular DNA become accessible, and production of DNase in soil occurs rapidly 

following DNA entry (Levy-Booth et al., 2007). Blum et a l (1997) found that the 

number of viable microorganisms increase one order of magnitude 12 hours after DNA 

entry to loamy soil. In addition, during this time about 6 8  % of the 50 pg DNA added 

to the soil was degraded (Blum et al., 1997). Though it appears naked DNA may not be 

an issue if it is degraded quickly, this is something that needs to be addressed in future 

work.

Rudi et al. (2005) have found a solution to this, whereby the viable/dead stain ethidium 

monoazide (EMA) was used in combination with real-time PCR. EMA inhibits the 

amplification of DNA from dead cells, penetrating the dead cells and binding to the 

DNA (Rudi et a l , 2005). A similar process has been reported by Lin et al. (2011) 

where they used propidium monoazide (PMA) in conjunction with PCR. PMA is a 

DNA-intercalating dye that only penetrates dead cells with compromised cell membrane 

integrity, but not viable cells with intact cell membranes (Lin et al., 2011). The PMA 

cross links to DNA strands and forms stable covalent nitrogen-carbon bonds which 

prevent the DNA PCR amplification (Nocker et a l , 2006; Lin et al., 2011).

5.4.3. Comparison of communities between high and low ratios

In terms of ratios and the microorganisms emerging, isolate sequencing did not show a 

clustering of isolates based on ratios. All phyla were represented in each of the three 

ratios obtained through isolation. However, when looking at the clone libraries on the 

low and high ratios, specifically at the MOTHUR-created tree (Figure 5.9), there is 

clustering of the two ratios, with exceptions for the rocks, that clustered together, and 

for 5 d, which cluster together also. The MOTHUR tree would suggest that the two
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ratios, in terms of the liquid sampling, take different routes after five days; however the 

rocks are similar at the end of the experiment. Libshuff results also show that the rock 

communities are not significantly different from each other; however, the libraries of 

the liquid samples between the two ratios are significantly different. From this, one 

could suggest that communities are affected by ratios. However, it is important to note 

that the clone libraries were only carried out on one replicate in both high and low ratio 

conditions, and no libraries on the medium ratio. Thus, more concrete conclusions 

could be drawn if libraries were also carried out on the replicates, and whether results in 

the libraries could be replicated.

DGGE was performed for all samples. As Figure 5.5, however, demonstrates, the 

DGGE results give conflicting viewpoint as no clustering pattern emerges. As all 

samples were run, one might prefer the DGGE results over the clone libraries due to a 

more complete sampling. However, if the clustering analysis is only performed on the 

samples that were used in the clone library (Figure 5.12) one does see a similar 

clustering pattern as with the MOTHUR tree. The matching, though, may be just down 

to chance as similar clustering is not seen when other ratios are analysed. Perhaps if 

clone libraries had been done in all replicates and the medium ratio (as with the DGGE) 

a similar clustering pattern would have been observed.

As was the case with the clone libraries, the need for caution and more replicates is 

amplified when looking at the DGGE bands between replicates. Though replicates were 

run, differences in replicates were observed on the gel. Bands that were seen in one 

flask did not always show in its replicate. Cluster analysis based on the presence and 

absence of bands also showed no clustering of replicates. It is not inconceivable to 

think that if replicates were done on the clone libraries, differences might also be seen 

there.
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The cluster analysis also showed no discemable pattern between ratios, or between time 

points. It appears that water-rock ratios do not exert an influence on community 

succession. One may go even as far as saying that, based on the differences between 

replicates, each rock has its own unique successional story - a microbial island so to 

speak. Perhaps, in contrast to a single species such as with A. ferrooxidans, a natural 

community is too complex in structure to be influenced by water-rock ratios, and also 

gives rise to differences between replicates.

The DGGE cluster analysis is, however, qualitative, in that the program GelCompar 

creates a dendogram based on the presence and absence of bands. A future analysis 

could possibly be on the intensity of bands and how these compare and change over 

time and between ratios.

155



Low 371 Days
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Figure 5.12. DGGE cluster analysis (A) based on the presence and absence of bands on 

same samples that clone libraries were carried out on. The MOTHUR tree seen first in 

Figure 5.9 is shown alongside (B) to compare clustering. Red colouring denotes the 

high ratio, whilst green is the low ratio.

5.5. Conclusions

Plant succession has been documented by ecologists for centuries. However, the 

successional patterns of microbial communities have received very little attention in 

comparison. In addition, the role microorganisms may have in weathering make them a 

group worthy of investigation. This chapter looked at succession in a one year-long 

experiment with different water-rock ratios, using molecular and culturing techniques. 

It was found that community structure changed over time, becoming more diverse, with 

a switch from r- to K-selected microorganisms over the course of the year, as reported
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by previous literature. At later time points, phyla that were not culturable using 

conventional culturing techniques emerged. DGGE results would suggest each flask 

has a distinctive population - there is no correlation between ratios, and replicates also 

do not conform to each other. Therefore, though community does change over time as 

witnessed by the clone libraries, DGGE suggests that ratios do not have an effect and 

each flask is developing with its own ‘microbial island’.
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Chapter 6: Microbial Successional Changes in a One Year Laboratory 

Experiment on the Weathering of Basalt Glass With Different Water- 

Rock Ratios -  Chemical Analyses and Weathering Rates1/ o

6.1. Introduction

6.1.1. Aim of Chapter

The aim of this chapter was to focus on the chemical analyses and weathering rates 

related to the natural community experiment first discussed in Chapter 5. In addition, a 

number of isolates from Chapter 5 were chosen for further experiments.

Microbes have been associated with alteration of basalt glass, which is abundant in the 

Earth's crust. Due to the concentration of biologically important elements present, 

alteration of glass makes it an important process in global biogeochemical cycling. As 

previously discussed, rock weathering by microbes can be influenced by varying 

conditions, and though variables such as temperature and pH have been investigated, 

water-rock ratios have not. In natural environments one can find differing water-rock 

ratios, from low ratios of water in rock vesicles to high ratios, such as rocks in a flowing 

river bed.

Though Chapter 5 allowed one to know what was in the rock and how this changed over 

time and with different water-rock ratios, it did not provide information on what was 

happening with the chemistry in the flask. With elemental release rates we should be 

able to correlate the microbiology to weathering conditions; were the communities 

accelerating weathering of the glass? As described in Chapter 5, this work has 

implications for the rates of rock weathering in natural environments where water-rock 

ratios may affect the balance between optimum energy and nutrient supply.
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6.1.2. Weathering of volcanic glass

As previously described in Chapter 2, the weathering of volcanic minerals is recognised 

to make a significant contribution to the global silicate weathering budget (Louvat and 

Allegre, 1998; Dessert et al., 2001; Kisakurek et al., 2004). This influences carbon 

dioxide drawdown and climate control, since CO2 is consumed in mineral weathering 

reactions. Prokaryotic involvement in volcanic rock weathering has been inferred in 

deep ocean basalt glass in which a diversity of microbial alteration textures has been 

reported (e.g. Thorseth et al., 1992; Fisk et al., 1998; Torsvik et al., 1998; Fumes and 

Staudigel, 1999; Thorseth et al., 2001; Etienne and Dupont, 2002; Thorseth et al., 

2003).

The idea that microbes can influence basalt weathering is not new (Staudigel et al., 

1995, 1998; Daughney et al., 2004). Indeed, weathering by A. ferrooxidans was studied 

in Chapter 3. However, the majority of studies have focussed on single species and 

their effect on weathering of rocks. A community is a more complex matter, and a more 

natural set up for studying weathering rates.

6.1.3. Effect of communities on weathering

Several studies related to the weathering of minerals and rocks have indicated a

complex interaction of not only physical and chemical factors, but also of the activity of

microorganisms (Thorseth et al., 1995). Weathering studies have typically tended to

focus on single microorganisms rather than communities (e.g. Santelli et al., 2001;

Liittge and Conrad, 2004; Song et al., 2007; Wu et al., 2007a; Wu et al., 2008). In

nature, the diversity of microorganisms offers a much greater variety of direct and

indirect mechanisms that may responsible for basalt weathering than single organisms

would (Karl, 1995; Daughney et al., 2004). Microorganisms selectively oxidise, reduce
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and chelate a large number of elements. In addition, during microbial activity 

inorganic/organic acids and alkalies resulting from metabolism will appear (Thorseth et 

al., 1995). This will cause changes in the pH of the original environment. Chemo- 

organotrophic microbial communities may lower the pH to 2-4, while phototrophic 

communities may increase pH to above 10 due to CO2 utilisation (Golubic, 1973; 

Krumbein et al., 1991). As observed in Chapter 4, phototrophs began appearing in 

flasks from 76 d onwards. It would be expected that this would affect pH. The 

emergence of phototrophs would also provide a new carbon source which would 

encourage more microorganisms to grow, which could change the weathering rates.

In a study of basaltic glass weathering using a microbial enrichment culture from Loihi 

seamount, Hawaii, Staudigel et al. (1998) showed that the population of 

microorganisms, which included heterotrophic bacteria, cyanobacteria and diatoms, 

induced an enrichment of calcium in the sediments produced by weathering, but a loss 

of magnesium. In contrast, the controls showed the opposite trend. Herrera et al. 

(2008) examined bacterial communities within obsidian in Iceland. They showed a 

diverse population of bacteria which were shown to be associated with weathering 

alteration fronts in the rocks. However, Einen et al. (2006) observed that the 

bioalteration of glass with a community of microorganisms present was not different 

from abiotic controls. This difference may be explained by the timescale that the two 

studies looked at. The obsidian studied by Herrera et al. (2008) was approximately 

2000 years old and from the field, whilst Einen et a l (2006) studied weathering of glass 

for one year in the laboratory. It may take centuries for visible alterations to occur 

which may explain why bioalteration in the lab does not always occur.

As with this experiment, Einen et a l (2006) incubated their flasks for one year whilst 

studying the colonisation of seafloor basalts and alteration of the glass. However, they
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did not study the weathering rates of the glass or monitor the pH of the flasks, relying 

on visual observations of alterations instead. This chapter attempts to further 

information on weathering rates of glass with a succeeding natural community.

6.2. Results

6.2.1. pH measurements

The pH of the flasks was monitored every month for the entirety of the experiment. The 

results are depicted in Figure 6.1 and Table 6.1. The starting pH for all three ratios, 

control and biology, was pH 7.0. Whilst the pH of the abiotic ratios rose over time, the 

biotic ratios decreased in pH. By the end of the experiment, pH in the biological 

experiment had dropped to 5.98 for the low ratio, 6.00 for the medium and 5.27 in the 

high ratio. On the other hand, the controls rose from pH 7.0 to 7.33 (high ratio), 7.08 

(medium ratio) and 7.03 (low ratio).
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Figure 6.1. The change in average pH for the three ratios under abiotic and biotic 

conditions over one year. The end values are also show in Table 6.1. ‘B’ denotes 

biological flasks and ‘C’ denotes controls. The average pH is calculated from two 

replicates.

Table 6.1. Average pH values at the start and end of the one year experiment (standard 

deviation in brackets).

Time (d) 0 371

High B 7.00 5.27 (±0.12)

High C 7.00 7.33 (±0.17)

Medium B 7.00 6.00 (± 0.30)

Medium C 7.00 7.08 (± 0.08)

Low B 7.00 5.98 (±0.15)

Low C 7.00 7.03 (±0.01)
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6.2.2. Elemental analysis

ICP-MS and -AES were carried out on the flasks to analyse REEs and trace elements. 

As with Chapter 4, the REEs all followed a similar pattern. A representative for REEs 

is shown in Figure 6.2. This shows the average release of the REE Cerium per gram of 

rock at the start and at day 216 of the experiment. The high ratios had the highest 

release whilst the low ratios had the lowest. Between the abiotic and biotic conditions, 

the biological experiment released more Ce than the controls in the medium and low 

ratios (Figure 6.2b). In the case of the high ratio, the concentration of Ce at 216 d for 

the high ratio was 9.25 x 10'8 g (biological experiment) and 9.37 x 10' 8 g (control). 

However, the error bars for the two overlap, and a T-test of the means showed no 

significant difference (P-value >0.05). The rates of release are shown in Table 6.2.

The average release of Si and Mg are shown in Figure 6.3 and 6.4, respectively. For 

both elements, similar trends were observed. The average release was highest in the 

high ratios and lowest in the low ratios. The biological experiments had an increased 

release over controls for all ratios and both elements, with the exception of the low ratio 

for Si. In this instance, the control had a higher rate in the first 5 days (Figure 6.3b). 

After this, control and biological experiments were very similar in their release of Si. 

The linear elemental rates (Table 6.2) replicate this. In terms of Mg, the rates were 

fastest in the biological experiment. With Si, biological experiments had the fastest 

release rate in the high and medium ratios, whilst the low ratio had the fastest rate in the 

control. The fastest rates were found in the high ratio and the slowest in the low ratio.

The other elements analysed using ICP-AES (Ca, Fe, Na and K) were found not to 

produce reliable data, possibly due to concentrations being below detection limits by the 

machine.
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Table 6.2. Linear elemental release rates (pmol per m2 per day) from ICP-MS and - 

AES analysis over 213 days. The fastest release rates, when comparing biological (B) 

and control experiments (C), are underlined.

pmol/m 2/d Ce Mg Si

High B 3.31 xlO'7 9.28 x 10’6 1.79 x 10'3
High C 3.36 x 10'7 3.58 x 10’6 6.91 x 10'4
Med B 3.72 x 10'8 1.19 x 10'5 6.99 x 10'4
Med C 2.13 x 10'8 6.27 x 10'6 4.00 x 10'4
Low B 1.36 x 10'9 2.13 x 10’8 1.51 x 10'6
Low C 2.03 x 1010 1.42 x 10’8 2.02 x 10'6
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Figure 6.2. Average release of REE Ce per gram of rock at start of the experiment and 

at 216 d for all three ratios, controls and biology.
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Figure 6.3. Average release over 261 d of Si per gram of rock in biotic and abiotic 

conditions, for high, medium and low ratios.
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6.2.3. Volcanic glass surface morphology using SEM

At the end of the experiment, SEM analysis was carried out on the rocks from the flasks 

to observe whether biofilms had formed on the surface of the rocks. Representative 

images are shown in Figure 6.5. Rod-shaped cells were observed in the medium and 

low ratios (Figure 6.5b and c), covering approximately 30 and 65% of the surface, 

respectively. That, however, was the extent of microbial attachment to the rock 

surfaces. Vesicles in the rock surfaces were observed in all three ratios, approximately 

20 pm in diameter (Figure 6.5a, b and c) but appeared to be naturally-occurring rock 

features rather than biologically influenced.

Figure 6.5. Continued overleaf.
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Signal A = SE1 

Photo No. = 16

Figure 6.5. SEM images of the rock surfaces, taken at the end of the experiment. 

Biological experiments are shown in A-C (A: high ratio, B: medium ratio, C: low ratio) 

and representative controls in D-E (D: high ratio, E: medium ratio). Rod-shaped cells 

are seen in B and C (as shown by arrows).

6.3. Discussion

The molecular biology of the natural community experiment (Chapter 5) had drawn up 

a picture of what microorganisms are present in the glass and how this changes over 

time. Chapter 6  has gone one step further and analysed the chemistry over time and 

how this may be linked to the microorganisms present. At the same time as the flasks 

were sampled for molecular analysis, samples were also taken for elemental analysis 

with ICP-AES. ICP-MS analysis was also carried out at the start and at 216 d. pH was 

also monitored for all flasks.
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6.3.1. pH

There is a large amount of evidence from observations of naturally weathered minerals 

(Barker and Banfield, 1996, 1998; Thorseth et al., 1992, 1995a), in situ field 

experiments (Bennet et al., 1996; Hiebert and Bennett, 1992; Ullman et al., 1996), and 

in vitro experiments (Berthelin, 1983; Vandevivere et al., 1994, Thorseth et al., 1995b) 

that microorganisms accelerate the degradation rates of rocks and minerals by both 

physical and chemical processes.

Results from the study described here show that pH decreased in the biotic conditions, 

with the greatest drop in the high water-rock ratio flask (from pH 7 to 5.27), whilst 

rising slightly in the abiotic. The pH decreased despite the growth of phototrophs, 

which began to appear from 76 d onwards (noted by the flasks turning green). 

Phototrophs produce bicarbonate ions during photosynthesis, which acts to increase pH. 

It is possible that the phototrophs were overwhelmed by other organisms, which 

microorganisms may have produced strong acids that counteracted the bicarbonate ions. 

It is also possible that the phototrophs are not playing as large a part in the community 

as other microorganisms, which would also explain why they did not have a noticeable 

impact on pH. Interestingly, phototrophs were present even at the lowest pH observed 

(Flask B high water-rock ratio at 371 d -  pH 5.27). As the pH is decreasing in the 

flasks over time, it would be interesting to examine whether they are healthy during this 

time or under stress by measuring Fv/Fm (the maximum quantum efficiency of 

photosystem II). It is a measure of how healthy phototrophs are in the sense of 

efficiency of photosynthesis (Genty et al., 1989).

The microorganisms appeared to be influencing the pH, rather than water-rock ratios: if 

the latter had been the case, then the control (abiotic) flasks would have seen similar 

decreases in pH. The decrease in pH is in contrast to the results in Chapter 3 with A.
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ferrooxidans, where pH increased. However, Chapter 3 dealt with the effect of only one 

organism instead of a community, and A. ferrooxidans does not produce organic acids. 

With communities there are more possibilities for obtaining minerals from the rocks or 

influencing the surrounding environment, as described in the literature review at the 

beginning of this thesis (Chapter 2). The production of organic acids may have 

influenced the environment in the flasks. It is possible that the pH decrease resulted 

from production of organic acids.

Barker et al. (1998) observed that microbial colonisation of surfaces, production of 

inorganic and organic acids, and extracellular polymers greatly accelerated mineral 

weathering reactions and released up to two orders of magnitude more material to 

solution than abiotic controls. Indeed, Wu et al. (2007a) suggested that lowered pH in 

the presence of microorganisms resulted from production of organic acids. Previous 

literature has shown that bacteria as well as fungi can acidify the surrounding medium 

through an ionic exchange involving the uptake of N H / and extrusion of H+ with a 1:1 

stoichiometry (Roos and Luckner, 1984; Gyaneshwar et al., 1998; Reyes et al., 1999). 

Many dissolution and precipitation reactions result in a decrease in the pH of the 

solution phase, although the extent of the pH change depends on which minerals are 

dissolving, which (if any) secondary minerals are forming, and the kinetics of the 

reaction(s) (Langmuir, 1997).

6.3.2. Elemental analysis

REEs rose from day 0 to day 216, with the high control and high ratio biological 

experiment showing similar values. However, the medium and low biological 

experiments showed higher releases than their control counterparts. In terms of trace 

elements, only Si and Mg were above detection levels for the ICP-AES (due to the
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dilutions carried out on the samples in order to run them). On the whole, release rates 

were fastest in the biological experiments with the exception of Low B for Si, in which 

case the control had the fastest rate. SEM images appear to show no continuous biofilm 

is established on the rock surface. This would refute the theory put forward in Chapter 

3 that the bacteria would contribute to the retardation of leaching of elements in this 

case.

One may raise the question as to whether the increased release rates in the biology are 

due to the microorganisms weathering the rocks directly or due to the increased acidity 

increasing dissolution rates, or a combination of the two. Wu et a l (2007a) attributed 

the accelerated elemental release during microbe-basalt interactions at 28°C to pH 

lowering during biomass production.

Releases of major structural elements such as Si, Al and Fe have been used as indicators 

of mineral dissolution (Barker et al., 1998). Several previous experimental weathering 

studies have shown that release of these framework elements is most sensitive to 

changes in solution chemistry (Acker and Bricker, 1992; Welch and Ullman, 1993). 

The drop in pH in the biotic flasks may have directly affected the release of elements. 

For example, the dissolution rates of other, principally basaltic constituent minerals, 

such as olivines and pyroxenes, increase at acidic pH, which can be associated with 

organic acids produced by heterotrophic bacteria, fungi and plants (Wogelius and 

Walther, 1991; Knauss et al., 1993; Drever and Stillings, 1997; Oelkers and Schott,

2001). This is in contrast to some cases where alkaline conditions will increase the 

dissolution of some of the key rock-forming silicate components, such as feldspars 

(Chou and Wollast, 1984; Schweda, 1989). Si becomes more soluble as pH becomes 

more basic.
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Future work should involve changing the pH in abiotic flasks and observing whether 

there is a similar increase in release of these elements. If there is, one could also 

suggest that the microorganisms present are causing the mineral dissolution through 

affecting the pH of the solution rather than attacking the rock through other means (as 

described in Chapter 2). In contrast, Na, Ca, and K are preferentially leached from the 

mineral (Barker et al., 1998). There is often no systematic variation in cation leaching 

with changes in solution chemistry (Welch and Ullman, 1993). Barker et al. (1998) 

studied the effects of bacteria on aluminosilicate weathering and observed that non

metabolising bacteria released Si at a factor of two higher compared to abiotic controls. 

They suggested that the increase in mineral dissolution may reflect complexing of 

mineral ions by microbial cell surfaces (Barker et al., 1998). It could also be the result 

of lysis of microbial cells, which release low molecular weight ligands to solution, 

thereby catalysing mineral dissolution (Barker et al., 1998).

The effect of microbially derived chemicals is amplified by increases in the amount of 

reactive surface area due to physical disruption by micro- and macro-organisms (Barker 

and Banfield, 1996, 1998). Experimental weathering studies have demonstrated that 

microbial extracellular polymers can react chemically with mineral surfaces and mineral 

ions, increasing dissolution by up to several orders of magnitude (Welch et al., in 

preparation). With this in mind, it is not surprising that faster rates of elemental release 

are observed in the biological flasks. Uptake and enrichment of silica by different 

species of bacteria and cyanobacteria have been reported earlier by several authors 

(Lauwers and Heinen, 1974; Krumbein and Werner, 1983; Heinen and Lauwers, 1988). 

Bacteria acting as a sink for elements lost during dissolution of the glass are important 

when considering the chemical budget for the alteration of basaltic glass. Thus, even 

when the chemical/physical conditions are unsuitable for precipitation of dissolved
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compounds, they may not be lost but housed in bacteria or extracellular polymers (Fyfe, 

1987; Thorseth et al., 1995b). As discussed in Chapter 4, intracellular elemental 

71 analysis should be carried out to ascertain whether elements are being housed in 

bacteria. There was not enough sampling liquid in this experiment to analyse both cell 

content and solution content but future work should aim to analyse both.

6.3.2.1. Rates

In their characterisation of elemental release during microbe-basalt interactions at 28 °C, 

Wu et al. (2007a) observed faster rates of release of elements (including Mg and Si) 

when bacteria were present. This is consistent with what was found in this chapter.

7  7The authors reported linear release rates for Mg and Si as 1.01 x 10 and 1.65 x 10' 

mol/m /d, respectively. Table 6.3 lists weathering rates found in literature for Si and 

Mg in glass and other rocks, both in the field and laboratory.

Many previous studies have reported that weathering rates in the laboratory are as much 

as five orders of magnitude faster than those determined from field-based studies (e.g. 

Swobada-Colberg and Drever, 1993; Yokoyama and Banfield, 2002; White and 

Brantley, 2003). For example, Yokoyama and Banfield (2002) studied the rates of 

rhyolite dissolution and compared them with lab measurements. Despite the authors’ 

attempts to keep the laboratory experiment as closely comparable to field conditions as 

possible (not vigorously agitated), the experimental dissolution rate of the powder was 

approximately 84 times faster than the field rate (Table 6.3). Dahlgreen et al. (1999), 

when looking at field weathering rates of Mt. St. Helens tephra (fragmentary volcanic 

materials, such as ash, dust, cinders and volcanic bombs, given off during an eruption), 

found weathering rates of Si ranging from 8.64 x 10' 10 to 8.64 x 10"11 mol/m2/d. These

o

rates were one to three orders of magnitude less than for glass (Si = 8.64 x 10' to 8.64
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x 10'9 mol/m2/d) (White and Claasen, 1980; White, 1983) in laboratory dissolution 

experiments at pH 5-7 and 25 °C. The one to three orders of magnitude discrepancy is 

consistent with other estimates of natural weathering rates from soils, watersheds, and 

groundwater aquifers (e.g. Claasen and White, 1979; Sverdrup, 1990; Swodoba- 

Coldberg and Drever, 1993; Velbel, 1993; White, 1995; White et al., 1996). Indeed, the 

maximum rates in this chapter are faster than field observations in Table 6.3.

The studies on weathering rates have focussed on chemical processes (dissolution) and 

the slow rates in the field have mostly been attributed to uncertainties in estimations of 

the reactive surface area and reaction time in the field, differences in solution chemistry, 

and differences in surface reactivity of minerals. Dahlgreen et a l (1999) state that the 

principal factors contributing to the discrepancy between field and laboratory rates are 

availability of water, temperature, and the extent of solution-solid mixing which serves 

to reduce the influence of solute diffusion on the rates. Dissolution studies in the 

laboratory typically involve vigorous mixing and high solution/solid ratios to minimise 

the influence of diffusion (Dahlgreen et al., 1999). In contrast, field rates may be 

limited by the lack of mixing and low solution/solid ratios (< 1 ), so that solutions 

approach equilibrium with secondary phases (Dahlgreen et a l , 1999). Previous studies 

examining the effects of precipitation and temperature on field rates have shown a linear 

increase in rates with precipitation and an exponential increase with temperature (Jenny, 

1941; White and Blum, 1995). Despite the numerous studies on laboratory rates being 

faster than field rates, the opposite has been shown as well.

Yokoyama and Matsukura (2006) showed that, in some cases, the overall weathering 

rate in the field can be faster than in the laboratory if physical processes are taken into 

account. In this instance, the weathering of granodiorite in an aquifer was inferred to 

proceed by initial dissolution of the mineral grain boundary (chemical process) and
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subsequent detachment of the mineral grain (physical process) (Yokoyama and 

Matsukura, 2006). To evaluate the amount of weathering caused only by the chemical 

process, a laboratory dissolution experiment was conducted on granodiorite. The 

obtained rates were approximately 50 times slower than the field rate in the aquifer 

(Yokoyama and Matsukura, 2006). The authors proposed that this showed that the 

contribution of the physical process to granodiorite weathering in the aquifer is very 

large compared to that of the chemical process (Yokoyama and Matsukura, 2006).
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There are discrepancies between rates in the literature which may results from different 

to experimental conditions. For example, Gislason and Eugster (1987b) determined 

their rates at pH 9, whereas Wu et al. (2007a) determined their rates at pH 4.5-6 

(Oelkers and Gislason, 2001; Brantley, 2003; Gislason and Oelkers, 2003). Another 

example may be because of the rock surface area. In previous studies, the rocks have 

typically been crushed into powder and fine particles - Wu et al. (2007a), for example, 

used 45-850 pm size fractions. This would have provided fresh rock surface for the 

microorganisms. Bacterial access to elements, presence of fresh surfaces, and higher 

dissolution rates of elements could be increased with use of powder rather than crushed 

rock. The activity of the surfaces is important: weathered surfaces are frequently 

covered with oxide layers which provide a protective layer and passivate reaction and 

leaching. Less crushed rock is more representative of nature because the surfaces are 

less fresh and will weather at rates more comparable to natural rocks that are weathered.

The topic of rock surface area is further illustrated by Yokoyama and Banfield (2002). 

As shown in Table 6.3, the dissolution rates of silica in rhyolite was fastest in the 

powdered rhyolite (53-106 pm) compared to the block of rhyolite (height - 8  cm, radius 

~1.5 cm) and field based rhyolite. Yokoyama and Banfield (2002) concluded that the 

difference between the powdered rate and field rate were probably due to the state of the 

samples (e.g. changes induced by crushing, in the case of powdered samples) and the 

conditions under which field and lab weathering reactions occur. This chapter’s use of 

roughly crushed rock, with less fresh surface available may be more indicative of rates 

in the environment, where basalt is not routinely found finely crushed, with fresh 

surfaces available. The rates for Mg and Si in this chapter were 9.28 x 10' 11 and 1.79 x
o  ^

10' mol/m /d, respectively as observed in the high biological experiment and 3.58 x 10"

11 and 6.91 x 10'9 mol/m2/d, respectively as observed in the high ratio control
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experiment. The values are lower than reported by Wu et al. (2007a). The difference 

between the controls and biological experiment are approximately 1.5-fold for Si and 

2.6-fold for Mg. The Si values are similar to Wu et al. (2007a) who observed a 2-fold 

increase in the biological experiment; however, they also observed a 6 - to 9-fold 

increase for Mg, which is lower than what was observed in this chapter. The 

discrepancy in Mg may be because of the distribution of Mg in basalt and basalt glass. 

The element is homogenously distributed across glass but in basalt it is located in 

minerals, and not evenly distributed. The difference in rates is may also be due to the 

rock surface. In addition, the difference in rates between the rhyolite powder and 

rhyolite block observed by Yokoyama and Banfield (2002) is particularly relevant.

To investigate the effects of water absorption ratio on dissolution rates and whether this 

may be the cause of differences between powder and block dissolution rates, Yokoyama 

and Banfield (2002) vacuum treated one block to completely saturate the block with 

water, whilst the other was just soaked in water. The same dissolution rates were 

obtained for samples with and without vacuum treatment (Yokoyama and Banfield,

2002). This would indicate that water penetrates into all pores - the complete surface 

area was wet to some extent and all pore water was connected to the external bulk 

water. Thus, it is unlikely that the main reason for the difference between powder and 

block experiments is due to restricted access of water to the reactive surfaces 

(Yokoyama and Banfield, 2002).

The dissolution of glass proceeds by many complicated reactions such as ion exchange, 

hydration, and hydrolysis of the glass framework (Yokoyama and Banfield, 2002). As a 

result of this, an alteration layer composed of allophane-like material and/or secondary 

minerals forms at the surface and a hydration layer (or diffusion layer) moves into the 

glass (Casey and Bunker, 1990; Bourcier, 1994; Yokoyama and Banfield, 2002). From
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observations of weathered rhyolites, the thickness of both the alteration and hydration 

layers increase as the reaction proceeds (Yokoyama and Banfield, 2002). In the case of 

Yokoyama and Banfield (2002), they carried out dissolution experiments with powder 

and block samples of lava that had undergone weathering over 1 1 0 0  years, and the 

surface of the glass had approximately a 6  pm wide alteration (hydration) layer 

(Taniguchi, 1980; Yokoyama and Banfield, 2002). In the case of the block samples, 

most reactive surfaces of block samples were unaffected by sample preparation. 

However, fresh surfaces were created for the powder by crushing. The authors suggest 

that it is possible that the freshly broken surfaces dissolve faster than those with an 

alteration/hydration layer, explaining the differences between powder, block, and field 

rates (Yokoyama and Banfield, 2002). This would also explain why the results in this 

chapter are slower than observed in other papers that used finely crushed rock. It has 

been suggested by Techer et a l (2001) that the formation of an alteration film on 

basaltic glass decreased the dissolution rate. In hindsight, this chapter could have been 

improved by running parallel flasks that had powdered rock instead of blocks of rock. 

If fresh surface area is the key, one would have seen faster dissolution rates in the 

powdered flasks compared to the flasks with larger pieces of glass.

6.3.3. Chapter 5 and chemistry

It was noted in Chapter 5 that the increase in microbial community diversity may be due 

to an increase in the diversity and amount of energy and carbon inputs into the system, 

in forms of available light and organic material deposition (Nemergut et al., 2007). An 

increase in energy would permit the growth of more diverse sets of microorganisms. As 

suggested in Chapter 4, further work should involve the analysis of intracellular 

concentrations of the elements (Wu et a l , 2007a). This would allow one to analyse
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whether there is a preferential uptake of some elements and would also provide more 

information on the nutrient requirements of the different communities emerging in the 

flasks, as would the concentration of carbon in the flasks over time. Knowing if there 

was a change in carbon over time would allow one to dispel or corroborate the r/K 

selection theory put forward in Chapter 5 to explain the succession patterns. Biolog 

plates on some of the isolates were carried out and described in Chapter 7, which offer 

some insight into the carbon utilisation in the flasks.

The molecular results, specifically DGGE, in Chapter 5 suggested no correlation 

between ratios, with each flask possibly developing its own distinctive population. 

However, results in this chapter would indicate that the biological experiments showed 

differences in pH and elemental release between ratios. This is a similar trend as 

observed in Chapter 4, where the high ratio had the lowest pH and fastest rates, and the 

low ratio had the higher pH and the slowest rates. As discussed in Chapter 4, pH affects 

the dissolution of minerals. For example, Blum and Lasaga (1988) showed that as 

acidity increases, below pH 5.5, the rates of silicate mineral dissolution increases. 

Biology was certainly affecting pH, which was affecting elemental release rates; 

however, the populations between replicates may not be so distinct from each other that 

they do not affect the solution chemistry in a similar way. Succession may be different 

between replicates, which may overwhelm the ratios; however, the chemistry they 

produce is similar, suggesting that the community profile differences between replicates 

are not enough to overpower the chemistry in the flasks.

6.4. Conclusions

In conclusion, pH decreased in the biotic flasks and rose or stayed near the starting pH 

in the abiotic flasks. On the whole, elemental release rates were faster in the biological



experiments, with the high ratio having faster rates and the low ratios the slowest, as 

observed in Chapter 4. The natural communities affected mineral dissolution, possibly 

through the release of organic acids, which would also account for the drop in pHs 

which would affect mineral dissolution in itself. The difference in dissolution rates 

between the results in this chapter and previous literature is possibly due to using 

crushed rock rather than powder. In previous studies, the rocks have typically been 

crushed into powder and fine particles which would have a combination of effects. 

Bacterial access to elements, presence of fresh surfaces, and a better ability of chemicals 

to be dissolved could be increased with use of powder rather than crushed rock.

Though Chapter 5 suggested no correlation between ratios, and that each flask was 

developing its own distinctive population, results in this chapter indicate that chemistry- 

wise, the biology showed differences in pH and elemental release between ratios, a 

similar trend as observed in Chapter 4.
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Chapter 7: Microbial Successional Changes in a One Year Laboratory 

Experiment on the Weathering of Basalt Glass With Different Water- 

Rock Ratios -  Physiological Profiles

7.1. Introduction

7.1.1. Aim of Chapter

The aim of this chapter was to focus on some of the microorganisms isolated from the 

natural community experiment first described in Chapter 5. Microbial communities 

from basalt glass were observed under different water-rock ratios for one year. Chapter 

4 dealt with the community composition over time through isolation, 16S rDNA clone 

libraries and DGGE, whereas Chapter 6  analysed the chemistry in the flasks. This 

chapter selected a number of isolates from Chapter 5 and carried out further 

investigations on them. Carbon utilisation profiles and tolerance to pH and heavy 

metals were carried out. On one isolate (Medium-4-188d), the possibility of 

magnetotaxis was also analysed.

7.1.2. Individual isolates

The isolates picked for further analysis are shown in Table 7.1, alongside their closest 

relative matches on BLAST. These were selected because bacteria matching to 

Paenibacillus sp., Arthrobacter sp. and Bacillus sp. were isolated in all three ratios at 

various time points. The Firmicutes, Actinobacteria and Proteobacteria were found in 

all three ratios (Chapter 5). The isolates tested in this chapter were found in a range of 

pHs, from pH 7.35 to 5.25. The pH of the medias ranged from pH 7.59 (maximum) to 

pH 5 .27 (minimum) (Chapter 6 ).
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Table 7.1. Isolates used for pH and heavy metal tolerance tests, alongside their closest 

relative matches on BLAST. The isolate naming system is as follows: ratio-isolate 

number-day of experiment. Algal-1-160d was found in all three ratios from 76 d 

onwards, however, the isolate used in this chapter was from 160 d (the pH given for this 

isolate is the range it was found at, from 76 d to 371 d).

Isolate (Accession #)
pH of flask 

when sampled
Closest relative (BLASTn)

High-5-213d (JN627971) 5.39 Humicoccus sp.

High-7-296d (JN627973) 5.27 Cohnella sp.

Medium-3-188d (JN628001) 6.31 Bradyrhizobium sp.

Medium-4-188d (JN628002) 6.31 Rhodococcus erythropolis

Medium-6-188d (JN628004) 6.31 Arthrobacter sp.

Medium-7-213d (JN628005) 6.35 Streptomyces sp.

Medium-12-371d (JN627994) 6.00 Microbacterium sp.

Medium-13-371d (JN627995) 6.00 Bosea thiooxidans

Low-4-39d (JN627986) 7.37 Variovorax paradoxus

Low-8-188d (JN627990) 6.89 Bacillus cereus

Low-ll-213d (JN627976) 6.79 Paenibacillus alginolyticus

Low-15-371d (JN627980) 5.98 Skermanella sp.

Low-16-371d (JN627982) 5.98 Sphingomonas sp.

Aigal-l-160d (JN628008) 6 .3 0 -7 .3 5 Uncultured bacterium clone QB78

7.2. Experimental design

The isolates chosen for further investigation are shown in Table 7.2. Pure cultures were 

obtained as described in Chapter 5. Colonies were picked from each of the pure 

cultures and transferred to 250 ml Erlenmeyer conical flasks containing 100 ml 0.2 g T1 

yeast extract medium. The cultures were incubated at 21 °C in Milton Keynes, UK, in 

natural sunlight with a natural diurnal illumination cycle. The cultures were monitored
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for growth, and after approximately 5 days of growth, the cultures were ready for 

downstream applications.
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7.2.1 Biolog plates

Carbon source utilisation profiles were constructed for the isolates listed in Table 7.3 

using Biolog-GN2 and -GP2 Microplates (Biolog Inc., Hayward, California, USA). 

The Biolog-GN2 was designed for Gram-negative bacteria and the GP2 for Gram- 

positive. Isolates were removed from growing culture by pelleting cells gently for five 

minutes at 2000 rpm. Cells were then re-suspended in sterile distilled water. The 

microplates were then inoculated by adding 1 0 0  pi of suspended cells into each well 

and incubated at 21 °C. The plates were monitored over three days by observing colour 

change (whether the well changed from colourless to purple).

Table 7.3. Isolates used for Biolog plates and the type of Biolog plate used for each.

Isolate (Accession #) Biolog plate

Low-4-39d (JN627986) GN2

Medium-3-188d (JN628001) GN2

Medium-13-371d (JN627995) GN2

Low-15-371d (JN627980) GN2

Low-16-371d (JN627982) GN2

Low-ll-213d (JN627976) GP2

Low-8-188d (JN627990) GP2

High-5-213d (JN627971) GP2

High-7-296d (JN627973) GP2

7.2.2. Tolerance experiments

The pH and heavy metal tolerances of the isolates were tested. The heavy metal 

tolerance of the isolates was tested to ascertain whether the heavy metal concentrations 

observed in the experiment may have had an effect on isolate growth or the absence of 

isolates later in the timeline. Table 7.4 outlines the different conditions set up.
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Table 7.4. Outline of different conditions tested with the isolates.

Flask Tolerance Concentration

Condition 1 Untreated -

Condition 2 Heavy metals Maximum leach

Condition 3 pH 5 -

Condition 4 pH 6 -

Condition 5 pH 7 -

Condition 6 pH 8 -

As with Chapter 5, for the heavy metal tolerance tests, concentrations were based in 

ICP-MS data obtained on the leach solution at the end of the experiment. Table 7.5 lists 

the heavy metals added to 0 . 2  g I"1 yeast extract agar plates and the concentrations 

tested. Isolates were streaked onto plates and incubated at 21 °C. If growth occurred, 

the isolate was recorded as tolerant to the condition, and no growth as negative 

tolerance. In addition to the isolates, samples were directly taken from the flasks and 

inoculated into liquid yeast media which had had the heavy metals added. Untreated 

liquid cultures were also run. The reason for sampling the flasks directly was to record 

phototroph tolerance as some of the phototrophs would only grow in liquid culture and 

could not be isolated for individual tests.

Similarly to the heavy metal tolerance tests, pH tolerance was tested by streaking the 

isolates onto yeast extract with pH altered. The pH of the agar was adjusted with HC1 

or NaOH prior to autoclaving. In addition to the isolates, samples were again taken 

directly from the flasks and added to liquid yeast media that had had its pH altered. 

Growth was recorded as tolerance, no growth as negative tolerance.
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Table 7.5. Heavy metal composition in heavy metal tolerance flasks. They are the 

maximum concentrations as found in solution at the end of the experiment (from ICP- 

MS data).

Metal Chemical form Leach concentration (mM)

Copper CuS04.5H20 2.00 x 10'3
Cobalt CoS04.7H20 1.36 x 10'5
Zinc ZnS04.7H20 5.01 x 10'3
Nickel NiS04.6 H20 9.69 x 10'5
Lead Pb(N03)2 1.21 x 10'5
Tin SnCI2 2.02 x 10'6

7.2.3. Magnetotaxis with Medium-4-188d

From sequencing matching, isolate Medium-4-188d matched 100% to Rhodococcus 

erythropolis strain cmmbl (GU120079.1), a strain which was reported by its submitting 

authors as exhibiting magnetotaxis. A small experiment was devised to test whether this 

was true for the isolate.

Four petri dishes were set up on the lab bench: two would be controls (no magnet), and 

two would have a magnet attached, either with a South polarity or a North polarity (if 

the isolate had a polarity preference). The yeast extract media was made up with

0.25 % agar and autoclaved. Thirty ml of media was added to each petri dish along 

with 3 ml of culture and mixed. The petri dishes were set up as in Figure 7.1. The 

marked distances were drawn into onto the bottom of the petri dishes and these acted as 

the sampling points. For five days the points were sampled, with one ml removed and 

filtered stained with SYBR green (Chapter 3) and viewed under the fluorescence 

microscope. Fifty fields of view were counted for each point and plate and converted to 

cells per ml. If the isolate was magnetotactic, one would expect more cells nearer the
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magnet and less further away. However, if  they were not magnetotactic, one would 

expect no difference between the distances.

Sample 

markers at 0, 

4 and 8 cm 

from the 
magnet

Polarity: S Polarity: N No magnet - Control

L

Figure 7.1. Set up o f magnetotaxis experiment with petri dishes for isolate Medium-4- 

188d. The strength o f the magnet decreases the further away the magnet is.

7.3. Results

7.3.1. Biolog plates

The carbon utilisation o f selected isolates is shown in Table 7.6 (Gram-negative plates) 

and Table 7.7 (Gram-positive plates). The isolates were all capable o f  degrading 

numerous common sugars and amino acids. On the whole, the isolates shared a number 

o f carbon sources between each other, and also utilised a great number. The exception 

was isolate Medium-3-188d, which utilised 8.42 % o f the carbon substrates available. 

In comparison, the rest o f the isolates utilised 22-51.56 % o f the carbon substrates 

available (Table 7.8).
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Table 7.6. Carbon utilisation of Gram-negative isolates on Biolog GN2 microplates. A 

positive marker denotes utilisation of the carbon (by way of a change in colour), and the 

negative sign denotes no use.

Carbon Source Low-4-39d
Medium-3-

188d
Medium-
13-371d

Low-15-
371d

Low-16-
371d

Tween 40 + - + + -

Tween 80 + - + + -

N-Acetyl-D
Galactosamine

T

N-Acetyl-D Glucosamine + - - + +

Adonitol + - - - +

L-Arabinose + - + - -

D-Arabitol + - + + -

i-Erythritol - - - - +

D-Fructose + - + + +

L-Fucose + - - - -

D-Galactose + - + + -

Gentiobiose - - - - -

a-D-Glucose + - + + -

m-lnositol + - + - +

a-D-Lactose - - - - +

Maltose - - - - +

D-Mannitol + - + + -

D-Mannose + - - - -

D-Raffinose - - + + -

L-Rhamnose - - - - +

D-Sorbitol + - + + -

Sucrose - - + + -

D-Trehalose - - + + -

Turanose - - - + -

Xylitol + - - -

Pyruvic Acid Methyl
4-

Ester
T

Succinic Acid Mono- i

Methyl-Ester
T

Cis-Aconitic Acid - + + + -

Citric Acid - + + + -

Formic Acid + - - - -

D-Galactonic Acid I i

Lactone
T T +

D-Galacturonic Acid - + + + -
D-Gluconic Acid + + + + -

D-Glucosaminic Acid - - + + -

D-Glucuronic Acid - + + + -

a-Hydroxybutyric Acid + - - - +

(3-Hydroxybutyric Acid + - + + -

Itaconic Acid - - - +

a-Keto Butyric Acid + - - - -
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a-Keto Glutaric Acid + - + + -

D,L-Lactic Acid + - + + -
Malonic Acid - - + - -
Propionic Acid + - + - +
Quinic Acid + - + + -
D-Saccharic Acid - + + - -
Sebacic Acid + - - - +
Succinic Acid + - + - -
Bromosuccinic Acid + + + + -
Succinamic Acid + - - - -
Glucuronamide - - - - +
L-Alaninamide + - - - -
D-Alanine + - + + +
L-Alanine + - + + -
L-Alanylglycine + - - - -
L-Asparagine + - + + -
L-Aspartic Acid + - + + +
L-Glutamic Acid + + + +
Glycyl-LAspartic Acid - - - - +
Glycyl-LGIutamic Acid + - - - -
L-Histidine + - + + -
Hydroxy-LProline + - - - -
L-Leucine + - - - -
LPhenylalanine + - - - +
L-Proline + - + + +
L-Pyroglutamic Acid + - + + -
D-Serine - - - - +
L-Serine - - + + +
D,L-Carnitine + - - - -
y-Amino Butyric Acid - - + - -
Urocanic Acid + - + + -
Inosine + - + + -
Uridine - - - - +
Phenyethylamine + - - - -
Putrescine - - + + -
Glycerol - - + + -
D,L-a-Glycerol
Phosphate

T T

Table 7.7. Carbon utilisation of Gram-positive isolates on Biolog GP2 microplates. A 

positive marker denotes utilisation of the carbon (by way of a change in colour), and the 

negative sign denotes no use.

Carbon Source Low-ll-213d High-5-213d Low-8-188d High-7-296d
Dextrin +
Glycogen +
Inulin +

193



Tween 40 + + - -

Tween 80 + + + -
N-Acetyl-D Glucosamine + + - +
N-Acetyl-0-D Mannosamine - - - +
L-Arabinose + + + -
D-Arabitol + + + +
D-Cellobiose - - - +
D-Fructose + + + -
L-Fucose - - + +
D-Galactose - - + -
D-Galacturonic Acid + + + -
Gentiobiose - + - -
D-Gluconic Acid + + + -
a-D-Glucose + + + +
m-lnositol - + +
Maltotriose - - - +
D-Mannitol + + +
D-Mannose + + + +
D-Melezitose - - - +
D-Melibiose - - - +
3-Methyl Glucose - - - +
a-Methyl-DMannoside - - - +
Palatinose - - - +
D-Psicose + - - -
L-Rhamnose - - - +
D-Ribose - - - +
Salicin - - - +
Sedoheptulosan - - - +
D-Sorbitol + + + -
Stachyose - - - +
D-Trehalose + + + -

Xylitol - + + +
Acetic Acid - + + +
p-Hydroxybutyric Acid + + + -
y-Hydroxybutyric Acid - - - +
p-Hydroxy-Phenylacetic Acid - - - +
a- Ketoglutaric Acid + + + -
a-Ketovaleric Acid - - + -
Lactamide - + + +
D-Lactic Acid Methyl Ester - - - -

L-Lactic Acid + + + -

D-Malic Acid - - - -
L-Malic Acid + + + +
Pyruvatic Acid Methyl Ester - + + +
Succinic Acid Mono-methyl + +
Ester
Propionic Acid _ + _ +
Pyruvic Acid + + - -
Succinamic Acid - - + +
Succinic Acid + + - -

N-Acetyl-Lglutamic Acid - + + -

L-Alaninamide + - + +
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D-Alanine + + - -
L-Alanine + + - -
L-Alanyl-Glycine - + - -
L-Asparagine + + - -
L-Glutamic Acid + + + +
Glycyl- LGIutamic Acid - + - +
L-Pyroglutamic Acid + + + -
L-Serine - + - +
Glycerol + + - -
Adenosine - - - +
2'-Deoxy Adenosine - - - +
Inosine - + + -
Uridine
Adenosine-5'-

- - + -

Monophosphate
+ +

D-Fructose-6-Phosphate - - - +
D-Glucose-6-Phosphate - + + -
D-L-a-Glycerol Phosphate + + + -

Table 7.8. Utilisation of carbon in percentage by the isolates tested (calculated by 

dividing the number of carbon substrates tested positive by 95 and converting to 

percentage, where 95 is the number of wells in the Biolog microplate containing a 

carbon source).

Isolate (Accession #) Carbon utilisation (%)

High-5-213d (JN627971) 43.16
High-7-296d (JN627973) 40.00
Medium-3-188d (JN628001) 8.42
Medium-13-371d (JN627995) 47.37

Low-4-39d (JN627986) 51.56
Low-8-188d (JN627990) 33.68

Low-ll-213d (JN627976) 31.58
Low-15-371d (JN627980) 41.05

Low-16-371d (JN627982) 22.11

7.3.2. Tolerance tests

Heavy metal and pH tolerance of the isolates was tested by plating them onto yeast 

extract plates that either contained different pHs (5-8) or the maximum heavy metal 

concentrations as found in the leach samples at the end of the natural community



experiment. The results are shown in Table 7.9. All isolates showed growth at pHs 5, 

6 , 7 and 8 . In addition, liquid cultures at these pHs which contained samples from the 

high and medium ratios at 371 d showed growth of phototrophs. This suggested that the 

phototrophs viewed under the microscope but unable to be isolated were tolerant at 

these pHs. The same case was true for the heavy metal leach test. All isolates showed 

growth, and liquid cultures of the flasks also showed phototrophic growth.

7.3.3. Magnetotaxis

Isolate Medium-4-188d matched 100 % to Rhodococcus erythropolis strain cmmbl. 

According to the submitting authors to BLAST (Accession number: GUI20079.1), this 

strain exhibited magnetotaxis. Tests were set up to see whether this was the case for 

Medium-4-188d. The results for the test with petri dishes are shown in Table 7.10. 

There was no difference observed with the presence of a magnet. The number of cells 

per ml was similar regardless of distance from the magnet, polarity or no magnet 

present.
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Table 7.10. Number of cells per ml at different distances from magnet and with no 

magnet present.

Magnet and 

polarity
Distance Number of ceils per mi

S 0 2.5 x 104

S 4 2.4 x 104

S 8 2.4 x 104

N 0 2.8 x 104

N 4 2.8 x 104

N 8 2.5 x 104

No magnet 0 2.3 x 104

No magnet 4 2.5 x 104

No magnet 8 2.4 x 104

7.4. Discussion

As companion work to Chapters 5 and 6 , several isolates were chosen for physiological 

studies to better understand what was being observed in the flasks. Chapter 5 reported 

increased diversity as time progressed, shifting to more non-culturable organisms, 

whilst Chapter 6  reported decreases in pH and increased elemental release rates where 

biotic conditions were concerned. The physiological tests on the isolates in this chapter 

aimed to understand what type of conditions the isolates could tolerate.

Regarding the matching of Medium-4-188d to a strain of R. erythropolis that had been 

linked to magnetotaxis by the submitting authors to BLAST, the isolate itself did not 

exhibit magnetotaxis. However, the submission to BLAST is unpublished data and so 

far there is no further literature to support these claims, nor any information that any 

strain of R. erythropolis exhibits magnetotaxis.
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The isolates tested in this chapter were found in a range of pHs, from pH 7.35 to 5.27. 

The pH of the media ranged from pH 7.59 (maximum) to pH 5.27 (minimum) (Chapter 

6 ,). Icelandic rain water is acidic and previously measured as 5.1-5.6 (Gislason and 

Eugster, 1987a). Cockell et al. (2009b) reported, through their study on bacteria in 

weathered Icelandic basaltic glass, that the growth of many microorganisms is retarded 

at the pH of Icelandic rain water (pH 5.6), compared with neutral and alkaline pH. The 

authors suggest that this raises two possibilities:

1. The pH changes due to rock weathering may change the community of active 

microorganisms.

2. Through their metabolic activity, the microorganisms may change the rate of 

weathering and therefore the rate of pH change (Cockell et al., 2009b).

Results from the natural community experiment show that the lowest pH in the 

experiment was 5.27 and the communities were still thriving and becoming more 

diverse. pH tolerance tests on the isolates have shown them to grow at pH 5 to 8 , 

though growth rates would need to be observed to ascertain whether the pH are 

retarding growth in any way.

To be active in the rock, microorganisms must also be able to tolerate numerous heavy 

metals; these include copper, cobalt and nickel (Carmichael, 1964; Walsh and Clarke, 

1982). Using the highest concentrations found in solution at the end of the experiment, 

all isolates were found to be able to tolerate the heavy metal concentrations tested. The 

concentrations were over ten times lower than what Cockell et al. (2009b) examined, 

and were at least 1 0 0  times lower than that recorded for some microorganisms from 

metal-contaminated industrial soils (e.g. Bopp et al., 1983; Malik and Jaiwal, 2000). 

However, for this experiment, it appears that heavy metals do not have an influence on 

the community composition on the basis of the results in this chapter. There, however,
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is a caveat to this. The physiological tests were not able to be carried out on the non- 

culturables emerging at later stages due to inability to grow them outside the flasks. As 

described in Chapter 5, according to the r/K selection, microorganisms emerging in later 

succession stages are increasingly non-culturable types, which may be a result of a 

narrow niche width they inhabit. It is possible that these microorganisms may be 

influenced to a larger degree by pH and heavy metals compared to the isolates in this 

chapter.

The r/K selection theory is also relevant to the carbon profiles obtained using Biolog 

plates. Though the majority of the isolates showed similar percentages for carbon 

utilisation and shared a number of carbon sources between each other, preferences for 

certain types of carbon sources were observed. Medium-3-188d, High-5-213d and 

Low-8-188d were poor at utilising sugars, whilst Medium-3-188d did not utilise many 

amino acids but Low-4-39d did. This suggests there is a cross-community use of 

carbon sources in the community, with the microorganisms utilising different carbon 

sources when other microorganisms die or release carbon.

The similar precentages for carbon utilisation is not surprising considering the isolates 

belonged to Actinobacteria, Firmicutes and Proteobacteria. Their presence throughout 

the experiment would suggest that they are able to utilise a variety of carbon sources to 

thrive. Indeed, it has been shown that Actinomycetes can use a variety of organic 

nutrients, even though special media are often preferable (Rahman et ah, 2000; Sultan et 

al., 2002). Carbon utilisation data can provide a valuable measure of potential 

microbial activity. For example, reduced carbon utilisation activity has been observed 

previously in systems disturbed by elevated metals and thus microbial communities are 

affected (Knight et al., 1997; Kelly and Tate, 1998; Dobler et al., 2000, Moynahan et 

al., 2002). Had some of the non-culturable organisms that had emerged later in the
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succession been able to be cultured and analysed using Biolog plates, one may have 

observed less broad carbon utilisation profiles. If following the r/K selection theory, 

being K-strategists, the non-culturables would have lower energy demands (Chapter 5). 

Indeed, Button et a l (1993) suggested that the fastidious nature of non-culturables may 

be due to a specialised use of a narrow range of carbon sources.

7.5. Conclusions

In conclusion, physiological tests were carried out on a selection of isolates obtained in 

Chapter 5. The isolates all showed tolerances to pHs 4-8. And to the maximum heavy 

metal concentrations found in solution. The carbon utilisation profiles for the isolates 

showed a variety of carbon sources were used, and shared amongst the isolates. The 

isolates were composed of Actinobacteria, Firmicutes and Proteobacteria, which 

emerged early in the succession stages and could be classified as r-strategists -  

inhabiting a broad niche. However, non-culturables emerging later on may have shown 

less broad carbon utilisation profiles and narrow pH tolerance ranges that would fit with 

the K-strategist profile. It would appear that at least these three phyla are able to 

colonise the rock throughout the succession period due to their broad tolerances. This 

may be why they may dominate early on and persist even when K-strategists begin to 

thrive.
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Chapter 8: Geobacter metallireducens and Using Basaltic Glass as an 

Iron Source

8.1. Introduction

8.1.1. Aim of Chapter

The aim of this chapter was to investigate whether the iron reducer Geobacter 

metallireducens could weather basaltic glass. The thesis began with studying the effect 

of an iron oxidiser, A. ferrooxidans, and ends with the opposite, studying the effect of 

an iron reducer. The work also acts as preliminary work to further work that is planned 

to investigate whether G. metallireducens would be able to obtain iron from Martian 

meteorite. As mentioned in Chapter 4, iron is the fourth most abundant element in the 

Earth’s crust (5.63 %) (Taylor, 1964). It exists naturally as a metal and in two oxidation 

states on Earth’s surface: ferrous (Fe2+) and ferric (Fe3+) (Madigan and Martinko, 2005). 

Chapter 4 focussed on iron oxidation (Fe2+ to Fe3+).

8.1.2. Iron reduction

The environmental relevance of Fe(III) has been well documented (Thamdrup, 2000; 

Lovley, 1991). Geochemical and microbiological evidence suggests that the reduction 

of Fe(III) may have been an early form of respiration on Earth (Vargas et al., 1998), and 

is a candidate for the basis of life on other planets (Nealson and Cox, 2002). On modem 

Earth, Fe (III) can be the dominant electron acceptor for microbial respiration in many 

subsurface environments (Lovley and Chapelle, 1995). As such, Fe(III)-reducing 

communities can be responsible for the majority of the organic matter oxidised in such 

environments (Lovley, 1993). The cycling of iron in the environment is to a large
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extent controlled by dissimilatory iron (III) reducing microorganisms (Burdige, 1993; 

Thamdrup et at., 1994; Krebs et at., 1997). In a process termed dissimilatory iron 

reduction (Lovley, 1991), the bacteria couple hydrogen and organic carbon oxidation to 

the reduction of Fe(III). Iron reducing bacteria utilise Fe(III) from a wide variety of 

oxyhydroxide and clay minerals (Lovley et at., 2004). Such microorganisms have a 

great geological impact in terms of biomineralisation as they reduce and solubilise iron 

(III) present in many minerals in nature, e.g. ferrihydrite (Fe5H0H8.4H20), goethite (a- 

FeOOH), hematite (a-Fe2 0 3 ) or clay minerals (Roden and Zachara, 1996, Zacchara et 

at., 1998; Kostka et at., 1999; Zachara et at., 2002; Dong et at., 2003). In marine 

ecosystems, iron reduction in marine sediments is the contribution to the cycling of iron, 

carbon, sulphur, phosphorus and trace elements, which is an important influence 

regarding, for example, the growth of phytoplankton which strongly influences global 

food chains (Burdige, 1993; Thamdrup et at., 1994; Morel and Price, 2003).

8.1.3. Geobacter metallireducens

Dissimilatory iron-reducing microorganisms are found throughout the phylogenetically 

distinct kingdoms Archaea and Bacteria (Nealson and Little, 1997; Lovley et at., 2004) 

and are widespread in many different marine or freshwater environments (Coates et ah, 

1996; Venkateswaran et al., 1999). Microbial reduction has been known of since the 

1920s, but only after the isolation of the first Geobacter strain, Geobacter 

metallireducens, was this metabolic group studied in more detail (Lovley et al., 1987; 

Lovley and Phillips, 1988).

G. metallireducens, an obligate anaerobe, was first isolated from freshwater sediment, 

and was able to gain energy through dissimilatory reduction of iron, manganese, 

uranium and other metals (Lovley et al., 1993). The bacteria is also able to oxidise
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short chain fatty acids, alcohols and monoaromatic compounds such as toluene and 

phenol using iron as its electron acceptor (Lovley et al., 1993). This has stimulated a 

great deal of interest in the possibility of using iron reducing bacteria for bioremediation 

(Lovley et al., 1993; Nealson et a l, 1994).

Although Fe(III) oxides are often abundant, the bacteria are faced with the problem of 

how to effectively access an electron acceptor that cannot diffuse to the cell. G. 

metallireducens specifically expresses flagella and pili (Figure 8.1) when grown on 

insoluble Fe(III) oxide, and is chemotactic towards Fe(II) under these conditions 

(Childers et al., 2002). These results suggest that the bacteria sense when soluble 

electron acceptors are depleted and then synthesise the appropriate appendages to 

permit it to search and establish contact with insoluble Fe(III). This approach may 

explain why the Geobacter species predominate over other Fe(III) oxide-reducing 

microorganisms in a wide variety of sedimentary environments (Childers et a l, 2002).

Figure 8.1. SEM images showing the absence of flagella on cells grown with Fe(III)- 

citrate (top left), in contrast to cells grown with Fe(III) (top right) or Mn(IV) (bottom 

left) oxides as the terminal electron acceptor. Scale bars, 1 mm (Childers et a l,  2002).
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8.1.4. Implications

Microbes interact with nearly every metal on Earth, the interaction often leading to 

oxidation and/or reduction of the metal ions with changes in solubility of the altered 

product. Given that iron is the fourth most abundant element in the Earth’s crust, iron 

redox reactions have the potential to support substantial microbial populations in soil 

and sedimentary environments (Weber et a l , 2006). As such, biological iron 

distribution has been described as one of the most ancient forms of microbial 

metabolism on Earth, and as a possible extraterrestrial metabolism on other iron- 

mineral-rich planets such as Mars (Weber et a l , 2006). Mars is an iron-rich planet, 

with a mantle more concentrated in iron relative to Earth’s (Boynton et a l , 2008;
^ I

Bruckner et a l , 2008). Though the dominant oxidation state of the iron is Fe , 

spectroscopic data have indicated presence of Fe3+ across numerous mineral phases, 

with hematite, goethite and magnetite having been detected (Christensen et a l , 2001; 

Klingelhofer et a l , 2004; Morris et a l , 2006; Christensen et al., 2008; Bruckner et a l , 

2008). Knowing this, it was decided to study if Martian meteroites could be used by 

bacteria as a food source.

This chapter acts as a precursor to further work to be carried out to observe whether G. 

metallireducens is able to utilise the iron in a Martian meteorite. Microorganisms that 

metabolise anaerobically on Earth are the most plausible candidates for understanding 

potentially analogus metabolisms on Mars. The iron-rich nature of Mars raises 

important questions as to whether the planet could support energy acquisition by iron 

reducing microorganisms. If the bacteria can use basaltic glass as their iron source, it is 

possible that they are able to utilise iron from Martian rock which could mean life was 

or still is present on Mars.
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8.2. Experimental design

8.2.1. Overview

The aim of this chapter was to investigate whether the iron reducer Geobacter 

metallireducens could weather basaltic glass. In addition, work in this chapter was also 

aimed as groundwork for a future experiment that is planned (outside of this thesis’ 

timeline) to examine if the bacteria can use Martian meteorite. This was in the form of 

studying three different iron sources (basalt glass, vesicular basalt and hematite) and 

three different ratios (high, medium and low). The three different iron sources were 

tested to ascertain whether the bacteria could utilise iron from different sources. The 

ratios were tested as only a small amount of meteorite would be available to use -  

40 mg for biology and a control, along with duplicates. Thus, the optimum volume of 

media was needed so that optimum results could be achieved from the Martian 

meteorite experiment once underway.

8.2.2. Set up of hungates and cultures

To observe the effect of G. metallireducens on volcanic glass, Hungate tubes were set as 

shown in Figure 8.2. Each Hungate had 2 g of powdered volcanic glass added; the glass 

was powdered using a disc mill (TEMA, Woodford Halse, UK). DSMZ 579 media was 

prepared without the addition of iron citrate (579 Fe- media). Powdered rock was used 

in this experiment (rather than crushed rock as in previous chapters) as time was 

limited. Powdered rock allowed for a greater surface area for reactions to take place 

and for organisms to access Fe3+ for iron reduction.

Ten ml of 579 Fe- media was added to each Hungate. One hundred pi of Geobacter 

stock culture (4 x 106 cells per ml) was added to three Hungates. The inoculum had
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previously been centrifuged gently and the pellet re-suspended in 579 Fe- media to 

remove residual iron from the culture. Three other Hungates acted as the control, with 

no addition of bacteria. The Hungates were incubated at 29 °C for approximately 50 d. 

All manipulations were carried out in an anaerobic cabinet (H2 :C0 2 iN2 at a ratio of 

10:10:80).

B1 -B 3

Bacteria + 
basalt + media

B1

c

B2 B3

n
V

r G. metallireducens 
inoculation

Basalt (sterile) 
‘Food’ source.

C1 -C 3

Basalt + media 
[no bacteria]

C1 C2 C3

Figure 8.2. The experimental set up of the Hungates to study the effect of G. 

metallireducens on basaltic glass.

8.2.3. Sampling

At intervals, the Hungates were sampled in the anaerobic cabinet and Ferrozine assays 

(Chapter 3) were carried out. Sampling frequency was limited by the volume of liquid 

present. Future experiments should be scaled up so more liquid can be removed.
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XRD (X-ray diffraction) was carried out on the glass at the start and end of the 

experiment, the work was carried out by the Natural History Museum, London, UK 

using an INEL X-ray diffractometer (XRD) (Inel, Strasbourg, France) with a curved 

position sensitive detector. Two hundred mg of the powdered rock was removed from 

the abiotic and biotic tubes and placed in eppendorfs and sent for analysis.

8.2.4. Effect of different iron sources and ratios

Preliminary tests were set up in order to observe the effect of different iron sources and 

water-rock ratios on G. metallireducens. Three iron sources were used: vesicular basalt 

(as used in Chapter 4), basaltic glass (as used in Chapter 5-7) and hematite, due to its 

high iron content. In 20 ml glass tubes, 40 mg of rock was added. Three ratios were set 

up for each rock type: 2 ml, 4 ml and 6  ml of 579 Fe- media (Table 8.1). As before, 100 

pi of inoculum, which had been centrifuged to remove residual iron, was added to biotic 

tubes whilst controls were also set up. The tubes were in triplicate and incubated 

stationary at 29 °C for 20 days. Ferrozine assays were carried out at intervals during the 

time period.

Table 8.1. Conditions to test different iron sources and ratios on G. metallireducens.

Ratio
Volume of media 

(ml) Mass of rock (mg)

High (0.15) 6 40
Medium (0.1) 4 40
Low (0.05) 2 40
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8.3. Results

8.3.1. Basalt glass and G. metallireducens

3_j_

G. m e ta l l i r e d u c e n s  reduced Fe obtained from the basalt glass as indicated by the 

production o f Fe2+ in Figure 8.3. The production o f Fe2+ was higher in the biology than 

the control up until 31 days where, when taking into account error bars, the two were

T4-
almost identical. Fe reduction was still occurring in the controls as indicated by the 

production o f Fe2+. The initial rate o f Fe2+ production was 1.83 pM per day for biology 

and 0.67 pM  per day for the control.

Biology

Control

0 10 20 30 40 50
Time (d)

94-Figure 8.3. Fe release from basalt glass over time for control and biology.

XRD on the weathering o f basalt glass by G. m e ta l l i r e d u c e n s  showed no difference 

between the rock at time zero and the end o f the experiment (Figure 8.4), and between 

the control and biology (Figure 8.5). The general ‘hum p’ shape o f the curve is typical 

o f a glassy material and the high background intensity indicates high iron content in the 

samples. The samples appear to contain feldspar, as indicated by the pink lines in 

Figure 7.3b. The samples at day zero and biology at the end o f the experiment appear
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Powder Diffraction System

(0.0

20 0

0.0 2 00 40 0 600

STOE Powder Diffraction System

2 0 0

oo
40 0 800 100.0

Figure 8.4. XRD analysis on (A) the glass at day zero and the biology at the end o f the 

experiment, indicated by blue and pink lines, respectively. Also shown is day zero on 

its own (B) with pink lines indicating feldspar signatures.
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identical. This is replicated when the control and biology samples from the end of the 

experiment are compared. The shape of the curve at low angles might reflect perhaps a 

development of very early phyllosilicates. However, overall no discemable differences 

have been observed.

8.3.2. Iron sources and water-rock ratios

In terms of water-rock ratios and basalt glass, Fe2+ production rates are shown in Table

8.2. The fastest rate was observed in the hematite biological low ratio, whilst the 

slowest rate was observed in the basalt control high ratio. On the whole, biological 

rates were faster in the biology compared to the control, and low ratios tending to be 

faster and high ratios slower.
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94- •Table 8.2. Rate of Fe production with different iron sources and water-rock ratios. 

‘B’ denotes biology and ‘C’ indicates controls. The rate was calculated from Figure 8.3 

and normalised for volume of liquid and mass of rock used (no BET data was available 

on the rocks used and thus the rate equations used for Chapters 4 and 6  cannot be used 

in this case).

Ratio Rock Fe2+ (pM) release rate (m g/m l/d)
Basalt glass B 5.00 x 10'4
Basalt glass C 3.75 x 10'4
Basalt B 1.00 x 10'3

Low
Basalt C 3.75 x 10'4
Hematite B 8.00 x 10'3
Hematite C 1.25 x 10'4
Basalt glass B 6.25 x 10'5
Basalt glass C 6.25 x 10’5
Basalt B 1.25 x 10'4

Medium
Basalt C 1.88 x 10*
Hematite B 1.25 x 10'4
Hematite C 6.25 x 10'5
Basalt glass B 4.17 x 10'5
Basalt glass C 4.17 x 10'5
Basalt B 8.33 x 10'5

High
Basalt C 1.39 x 10'5
Hematite B 8.33 x 10*5
Hematite C 4.17 x 10'5

8.4. Discussion

The aim of this chapter was to investigate whether G. metallireducens was able to

utilise Fe(III) in basaltic glass. Though basalt glass contains primarily Fe2+, the Fe3+ is

present in the palagonite that the glass is weathered to. In addition, work in this chapter

was also aimed as groundwork for a future experiment that is planned (outside of this

thesis’ timeline) to examine if the bacteria can use Martian meteorite. This was in the

form of studying three different iron sources (basalt glass, vesicular basalt and hematite)
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and three different ratios (high, medium and low). The three different iron sources were 

tested to ascertain whether the bacteria could utilise iron from different sources. The 

ratios were tested as only a small amount of meteorite would be available to use -  40 

mg for biology and a control, along with duplicates. Thus, the optimum volume of 

media was needed so that optimum results could be achieved from the Martian 

meteorite experiment once underway.

With regards to the results from the effect of G. metallireducens on basaltic glass, the 

bacteria showed a faster initial rate of Fe2+ production compared to the control but when 

both reached a steady state they were almost identical in Fe2+ production. XRD analysis 

showed no discemable difference between the biology and control, or a change from 

day 0. This, however, only means that any mineralogical changes are not resolvable by 

XRD. Activity may still be affecting nano-scale mineralogy which may not be able 

distinguished from the glass pattern (both nano-phases and glass produce ‘hump’ like 

reflections as seen in the patterns in this chapter). It is possible that the bacteria needed 

longer than the 50 or so days the experiment ran for to make a noticeable difference to 

the glass. Future work should let the experiment for several months to a year to see 

whether this would make a difference. It is also possible that in this short time scale, 

changes in glass are not different between abiotic and biotic conditions (as evidenced by

2"bthe Fe production) but a longer timescale would allow the bacteria to establish 

themselves and begin to weather the rocks more than abiotic conditions. Differences 

between controls and biology were certainly seen when testing different ratios; perhaps 

the ratio used for the basalt glass experiment ( 2  g in 1 0  ml) was too large.

In terms of ratios and different iron sources, G. metallireducens appeared to favour the 

low ratios and hematite. The preference for low ratios may be explained by the way G. 

metallireducens obtains its iron. As described in the introduction to this chapter, Fe(III)
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oxides are abundant but bacteria face the problem of how to effectively access an 

electron acceptor that cannot diffuse into the cell. Childers et al. (2002) reported that G. 

metallireducens overcomes this problem by expressing flagella and pili when grown on 

insoluble Fe(III) oxide (and not when grown on dissolved iron citrate), and is 

chemotactic towards Fe(II) under these conditions. The bacteria sense when soluble 

electron acceptors are depleted and to search and establish contact with insoluble 

Fe(III), they synthesise the appropriate appendages to do this. A low ratio would mean 

that any iron being released into solution is not being diluted, as in the high ratio, 

making it more difficult for the bacteria to sense ‘food’. It would mean less distance for 

the bacteria to move to find more iron. The preference for hematite may be due to the 

higher iron found in this iron source. This, however, is contradicted in the literature.

A significant portion of the Fe(III) in soils and sediments may be in crystalline forms 

such as hematite which Fe(Ill)-reducing microorganisms may only poorly reduce, if at 

all (Lovley 1991; Phillips et al., 1993). When Lovley et a l (1998) incubated hematite 

in cell suspensions of G. metallireducens there was little Fe(III) reduction. Only the 

addition of soil humic acids or the humic analogue, anthraquinone-2 ,6 ,-disulfonate 

allowed significant reduction Fe(III) from hematite. No humic acids were added in the 

experiments in this chapter. This raises the question of whether the results in this 

experiment may have been a fluke or if the low water rock ratio may have played a part 

in allowing the bacteria to obtain the iron more easily, perhaps by affecting the pH of 

the solution that affected the stability of the bound iron.

The pH was not monitored in the experiments due to the small volumes being used, but 

future work could involve a larger scale repeat that monitored pH in case it deviated 

from the starting pH of 7. Indeed, pH has had a role to play in the dissolution of jarosite 

(Bridge and Johnson, 2000) and schwertmannite (Kiisel et a l , 2002) where iron
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reducing bacteria under acidic (pH <2.5) conditions has been demonstrated. 

Experimental evidence indicates that at low pH, Acidiphilium spp. can accelerate the 

dissolution of ferric iron minerals by way of an indirect mechanism in which bacterial 

reduction of dissolved Fe3+ results in a shift in equilibrium between solid phase Fe(III) 

and dissolved Fe3+, thereby driving dissolution of the mineral phase (Jones et al., 2006).

The preference for hematite would bode well in implications for Mars. As mentioned in 

the introduction to this chapter, crystalline iron oxides such as hematite, goetjite and 

magnetite have been detected on Mars through spectroscopic data from orbital and 

ground-based missions, with hematite being the dominant mineral (Christensen et al., 

2001; Klingelhofer et al., 2004; Morris et al., 2006; Christensen et al., 2008; Bruckner 

et al., 2008). G. metallireducen's preference and ability to acquire iron from hematite, 

in addition to its preference to low-water rock ratios could provide could prove hopeful 

on the search for life is or having been present on Mars. More work, however, would 

need to be carried out to provide more concrete implications.

8.5. Conclusions

In conclusion, it was found that G. metallireducens did not greatly affect the production 

of Fe from basalt glass when compared to controls. However, when the ratio of rock

• • i

to media was altered, an effect in Fe production was seen, especially in the case of 

hematite. Low ratios were also favoured by the bacteria. This may be due to the iron 

being released being less diluted and allowing the bacteria to sense the presence of iron 

and produce pili/flagella enabling them to move towards the iron source. In Chapter 4, 

it was found that low ratios inhibited weathering by A. ferrooxidans, however, this
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thesis ends with the opposite -  G. metallireducens preferred a low water-rock ratio 

when it came to obtaining iron. The low ratio possibly allowed G. metallireducens to 

obtain the iron more easily by affecting the pH of the solution which in turn affected the 

stability of the bound iron. In addition, the low ratio would mean that any iron being 

released into solution was not being diluted, as in the high ratio, which would have 

made it more difficult for the bacteria to sense ‘food’. The low ratio would have meant 

less distance for the bacteria to move to find more iron.

217



Chapter 9: Concluding Remarks

The weathering of volcanic minerals is recognised to make a significant contribution to 

the global weathering budget (Louvat and Allegre, 1998; Dessert et al., 2001, 2003; 

Kisakurek et al., 2004), influencing CO2 drawdown and climate control. It is thought 

that microorganisms play an important part in rock weathering. However, it is only 

recently that work has begun in the laboratory to understand the role of bacteria (e.g. 

Wu et al., 2007a, 2007b). The involvement of bacteria has been inferred in deep-ocean 

basaltic glass in which a diversity of microbial alteration textures has been reported (e.g. 

Thorseth et al., 1992; Fisk et al., 1998; Torsvik et al., 1998; Fumes and Staudigel, 

1999; Thorseth et al., 2001; Etienne and Dupont, 2002; Thorseth et al., 2003).

Chapter 4 aimed to investigate what effect water-rock ratios would have on the iron- 

oxidiser A. ferrooxidans. It was found that the medium water-rock ratio (50:1) provided 

the optimum conditions for growth whilst the low water-rock ratio (1:1) had a lower 

release of iron because of pH. The pH affected the release of iron and REEs, with less 

released the higher the pH. Bacteria retarded the release of REEs through formation of 

biofilms on the surface of the basalt in the medium water-rock ratio biological 

experiment. In addition, XANES analysis suggested localised areas of hematite on the 

treated rocks, as well as oxidised layers that did not correspond to specific mineralogy. 

The lack of specific mineral signatures on the rock surface, but the apparent oxidation 

of the surface, would provide some evidence that the surface had been passivated with

"7 I

Fe binding to the mineral surface. This was consistent with speculations advanced by
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Santelli et al. (2001). They observed the passivation of olivines during microbial 

dissolution.

Linear elemental release rates for the trace elements showed no overall preference for 

controls or biology-containing flasks. It is possible that a lack of preference for either 

controls or biology-containing flasks could be due to uptake of some of the elements by 

the cells as soon as the elements were released.

On the opposite side, Chapter 8 studied the effect of an iron reducer (Chapter 8). 

Chapter 8 was a preliminary investigation as whether the iron reducer G. 

metallireducens could weather basaltic glass. The work also acted as preliminary work 

to further that is planned to investigate whether G. metallireducens would be able to 

obtain iron from Martian meteorite. It was found the bacteria did not affect the

2_j_

production of Fe from basalt glass when compared to controls. However, when low 

water-rock ratios and hematite were tested, a difference was observed between abiotic 

and biotic flasks. The low ratio was favoured by the bacteria, the opposite to what was 

seen in Chapter 4 with A. ferrooxidans. It was suggested the low water-rock ratio 

possibly allowed G. metallireducens to obtain the iron more easily by affecting the pH 

of the solution which in turn affected the stability of the bound iron. In addition, the low 

water-rock ratio would mean that any iron being released into solution was not being 

diluted, which would have made it more difficult for the bacteria to sense ‘food’. The 

low water-rock ratio would have meant less distance for the bacteria to move to find 

more iron.

The pH was not monitored in the experiments due to the small volumes being used, but 

it is suggested that future work would involve a larger scale repeat that monitored pH in 

case it deviated from the starting pH of 7, as pH has been shown to play a role in 

dissolution of minerals (Bridge and Johnson, 2000; Ktisel et al., 2002). It is also
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suggested that a longer experiment is run (longer than the 50 or so days this experiment 

was run for) to ascertain whether the bacteria would make a more noticeable difference 

to the glass (analysed through XRD), preferably for several months to a year. It is 

possible that in the short time scale of the experiment, changes in glass were not 

different between abiotic and biotic conditions but a longer timescale would allow the 

bacteria to establish themselves and begin to weather the rocks more than abiotic 

conditions. Once this future work is carried out, it is also suggested that Martian 

meteorite is used in place of the basalt to ascertain whether the bacteria can weather the 

meteorite.

Though work in Chapters 4 and 8 provided information on how one organism affected 

weathering of volcanic rocks, it was not representative of a natural environment where 

microbial communities exist. In addition, succession occurs in the environment as 

communities change with changing nutrient profiles. The successional patterns of 

microbial communities have received very little attention. The aim of the work in 

Chapters 5-7 was to shed more light on this area, alongside how weathering rates are 

affected in community-based weathering, and how water-rock ratios may affect the 

communities.

It was found that community structure changed over time, becoming more diverse, with 

a switch from r- to K-selected microorganisms over the course of the year, similarly to 

results obtained in the field. DGGE results showed each flask had a distinctive 

population -  with no correlation between ratios, and replicates different in composition 

to each other. Though the molecular biology in Chapter 5 suggested no correlation 

between ratios, and that each flask was developing its own distinctive population, the 

results of the chemistry of the flask solutions in Chapter 6 indicated that the biological
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experiments showed differences in pH and elemental release between ratios, a similar 

trend as observed in Chapter 4.

Elemental release rates were, on the whole, faster in the biological experiments, with the 

high water-rock ratio having faster rates and the low water-rock ratios the slowest, as 

observed in Chapter 4.

Though this experiment provided further information on microbial succession in 

volcanic rocks, and weathering rates by communities, future work is suggested to obtain 

a better understanding. It is recommended that the experiment is repeated but with a 

larger number of replicates. Clone libraries would be carried out on all the replicates 

(and all water-rock ratios) to be able to better understand the successionsal changes in 

the different water-rock ratios, and also conclusively identify whether each replicate 

develops into its own ‘microbial island’. In addition, as with Chapter 4, it is suggested 

that further ICP-AES work should be carried out to measure the intracellular 

concentrations of elements to provide more information on what elements were being 

utilised. The organic acid concentrations in the flasks should also be measured over 

time to ascertain whether they are being produced and link them with the clone library 

data.

It was proposed that differences in dissolution rates between previous literature and the 

work in this thesis were caused by the state of the rock surface area (powder with its 

fresh surface area vs crushed rock). To ascertain whether this assumption is corrected, 

it would be prudent to run an identical experiment alongside the repeat experiment, but 

with one difference: the use of powdered rock instead of crushed rock. Thus, one could 

monitor release rates and succession when crushed rock and powdered rock are added 

and analyse whether there is a difference.
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The general aim of this thesis was to study microbial weathering of volcanic rocks, with 

an emphasis on water-rock ratios, by looking at the effect of model organisms 

(Acidithiobacillus ferrooxidans and Geobacter metallireducens) to natural microbial 

communities (from basaltic glass). The main objective was to gain a better 

understanding of the processes by which microbes contribute to weathering and if any 

knowledge learnt can be put to use in industrial applications (e.g. acid mine drainage) 

and in the field of astrobiology (e.g. life on Mars). The aim was to address to some 

degree three broad questions.

1. Do microbes contribute significantly to rock weathering?

This question was investigated specifically in Chapters 4, 6 and 8. In Chapters 4 and 8, 

no overall preference between biology and controls was seen for elemental release rates. 

The bacteria, however, were still surviving so they must have been were living off 

nutrients from the rocks. Despite no real difference between controls and biology in 

Chapters 4 and 8, work carried out with natural communities in Chapter 6 showed faster 

rates in the cases where there were microorganisms present. It is possible that the 

natural communities affected mineral dissolution, possibly through the release of 

organic acids, which would also account for the drop in pHs observed in the biological 

experiments. This by itself would affect mineral dissolution. The community working 

together seems to have a greater influence on weathering than just one species.

It was noted that there were differences in dissolution rates between the results reported 

in this chapter and previous literature. It is suggested that these are caused by the state 

of the rock surface area as in previous studies the rocks have typically been crushed into 

powder and fine particles. This crushed powder would have provided fresh rock surface 

for the microorganisms and also greater surface area for reactions to take place,
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accounting for generally higher weathering rates in previous literature per unit weight of 

material.

2. How do microbial communities develop under different water-rock ratios?

This question was answered specifically in Chapter 5. It was found that the 

communities showed no correlation between ratios and rise of different community 

profiles. It was found, however, that that community structure changed over time, 

becoming more diverse, with a switch from r- to K-selected microorganisms over the 

course of the year. It is suggested that, though community diversity does change over 

time (as shown by the clone libraries), the ratios do not have an effect and each flask is 

developing with its own ‘microbial island’.

3. Can they acquire nutrients and energy supplies from volcanic environments?

This question was broached in Chapters 4, 6 and 8. To answer this question, it is 

suggested that future work would examine the intracellular element concentrations of 

the cells to ascertain whether elements were being taken up by the cells as soon as they 

were released from the rock. If elements that had faster rates of release in the controls 

were found in high concentrations inside the cells in the biological experiments, it might 

be argued that the elements were being taken up by the cells as soon as they were 

released from the rock. In addition, doping the flasks with labelled elements could also 

be used to track concentration inside and out of the cell.

A larger experiment should also be set up which would include more replicates and cell 

counts throughout the experiment rather than just at the beginning and end (as carried 

out in this thesis because of volume constraints). The additional cell counts at regular
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intervals would be paired to iron and other element release rates, allowing one to 

monitor how cell numbers change and attempt to relate this to elemental release rates 

more thoroughly and to know whether they were acquiring elements.

It is hoped that the findings in this thesis will contribute on some level to the knowledge 

of microbial weathering of volcanic rocks, and will provide groundwork for further 

investigations to be carried out.
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Appendix A: Growth Media Recipes

Chapter 4: A. ferroGxidans (modified K9 medium)

Solution A -  per 500 ml dH20

NH4 SO4 3 g

KC1......................................................................................................... 0.1 g

K2HPO4 0.5 g

MgS04 .7H20 ......................................................................................... 0.5 g

Ca(N03).................................................................................................. 0.01 g

IONH2 SO4 ...............................................................................................1 ml

Solution A was autoclaved for 15 min at 15 psi pressure, 121°C.

Solution B -  per 500 ml dH20

FeS04.7H20 ...........................................................................................44 g

Solution B was prepared fresh before use and filter sterilised.

Solutions A and B are mixed together in a 50:50 ratio.

Chapters 5-7: Natural Community Experiments

0.2 g I"1 yeast extract -  per 11 dH20 :

Yeast extract (Oxoid LP2001) 0.2 g 1

The media was autoclaved for 15 min at 15 psi pressure, 121°C.



0.2 g I'1 yeast extract agar -  per 11 dH20:

Yeast extract (Oxoid LP2001)................................................ 0.2 g I"1

Agar Bacteriological (Oxoid LP0011)................................... 10 g I'1

The media was autoclaved for 15 min at 15 psi pressure, 121°C.

BG-11 (Stanier et al., 1971):

Stocks per litre

(1) NaN03.................................................................................15.0 g

Per 500 ml

(2) K2HPO4 ...............................................................................2.0 g

(3) MgS04.7H20.......................................................................3.75 g

(4) CaCl2.2H20 ..........................................................................1.80 g

(5) Citric acid............................................................................0.30 g

(6) Ammonium ferric citrate green.........................................0.30 g

(7) EDTANa2............................................................................0.05 g

(8) Na2C 03................................................................................l.OOg

(9) Trace metal solution: per litre

H3B 03........................................................................................2.86 g

MnCl2.4H20 ..............................................................................1.81 g

ZnS04.7H20 ............................................................................. 0.22 g

Na2M o04.2H20 ........................................................................0.39 g

CuS0 4.5H20 .............................................................................0.08 g

Co(N0 3)2.6H20 ........................................................................ 0.05 g

Medium per litre

Stock solution 1 .....................................................................................100.0 ml

Stock solutions 2-8 10.0 ml each
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Stock solution 9 1.0 ml

Agar........................................................................................................15 g

This medium was made up to 1 litre with dH20  and adjusted to pH 7.1 with 1M NaOH
c\t urMV I  A 1 W 1 .

The medium was autoclaved for 15 min at 15 psi pressure, 121°C, before being poured 

into plates.

Luria Broth (LB) agar plates -  per 11 dH20 :

Tryptone.................................................................................................10 g

Yeast Extract......................................................................................... 5 g

NaCl.......................................................................................................10 g

Agar........................................................................................................15 g

The components were dissolved in 950 ml dH20  and the pH adjusted to 7.0 with NaOH. 

The volume was brought up to 1 1. The medium was autoclaved for 15 min at 15 psi 

pressure, 121°C. The medium was then cooled to ~55°C, the antibiotic ampicillin added 

(50 mg ml'1) and the plates poured. The plates were stored at 4 °C until needed.

Chapter 8; Geobacter metallireducens

DSMZ 579. Geobacter medium

Fe(III) citrate..................................................... ....................................13.70 g

NaHC03................................................................................................ 2.50 g

NH4C1....................................................................................................1.50 g

NaH2P 04................................................................................................0.60 g

KC1.........................................................................................................0.10g

Na-acetate.............................................................................................2.50 g

Vitamin solution (see below)...............................................................10.00 ml

227



Trace element solution (see below)

Na2W 04.2H20 .................................

dH20 .................................................

10.00 ml 

0.25 mg

980.00 ml

DSMZ 579 medium was prepared and dispensed medium under an oxygen-free 80% N2 

4- 20% C 02 gas mixture. The ferric citrate was dissolved in 900 ml dH20  by heating 

and adjusting to pH 6.0. The other components were added, except the vitamin 

solution, to dH20  and the volume brought to 990 ml. The media was sparged with 80% 

N2 + 20% C 02 and autoclaved for 15 min at 15 psi pressure, 121°C. The media was 

cooled to 25°C and 10 ml vitamin solution was added aseptically and anaerobically.

Trace element solution:

Nitrilotriacetic acid................................................................................1*50 g

MgS04.7H20 .........................................................................................3 00 8

MnS04.H20............................................................................................°-50 8

NaCl........................................................................................................10° g

FeS04.7H20 .......................................................................................... 010  8

CoS04.7H20 ......................................................................................... 018 8

CaCl2.2H20 ........................................................................................... 010 g

ZnS04.7H20.......................................................................................... 018 g

CuS04.5H20 ......................................................................................... 001 g

KA1(S04)2.12H20................ ................................................................. 0 02 g

H3 BO3 ........................................................................................................0 0 1  8

Na2M o04.2H20..................................................................................... 001 8

NiCl2.6H20 ........................................................................................... 0 03 g

Na2Se03.5H20 ...................................................................................... °-30 m8
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  1000 ml

Nitrilotriacetic acid was first dissolved and adjusted to pH 6.5 with KOH. The 

remaining components were then added. Final pH was 7.0 (with KOH).

Vitamin solution:

Biotin......................................................................................................200 mg

Folic acid............................................................................................... 2 mg

Pyridoxine-HCl..................................................................................... 1000 mg

Thiamine-HC1.2H20.............................................................................5 00 mg

Riboflavin.............................................................................................500 mg

Nicotinic acid.........................................................................................^ mg

D-Ca-pantothenate.........................................................   mg

Vitamin B12.......................................................................................... 010 mg

p-Aminobenzoic acid...........................................................................mg

l.ipoic acid............................................................................................... 5 0 0  mg

dl l ;0 ......................................................................................................1000 ml
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Appendix B: Libshuff Statistics for Chapter 5

Figure B .l. Libshuff comparisons for clone libraries.

Comparison Significance Comparison Significance Comparison Significance
A-B 0.0002 E-C <0.0001 J-E <0.0001
B-A <0.0001 F-l <0.0001 E-K 0.0038
A-C <0.0001 l-F <0.0001 K-E 0.0367
C-A <0.0001 F-J <0.0001 F-G <0.0001
A-D <0.0001 J-F <0.0001 G-F <0.0001
D-A <0.0001 F-K <0.0001 F-H <0.0001
A-E 0.0784 C-F <0.0001 H-F <0.0001
E-A <0.0001 F-C <0.0001 K-F <0.0001
A-F <0.0001 C-G <0.0001 G-H 0.0693
F-A <0.0001 G-C <0.0001 H-G 0.0456
A-G <0.0001 C-H <0.0001 G-l 0.0319
G-A <0.0001 H-C <0.0001 l-G <0.0001
A-H <0.0001 C-l <0.0001 G-J <0.0001
H-A <0.0001 l-C <0.0001 J-G <0.0001
A-l 0.0004 C-J <0.0001 G-K <0.0001
l-A <0.0001 J-C <0.0001 K-G <0.0001
A-J <0.0001 C-K <0.0001 H-l 0.3915
J-A <0.0001 K-C <0.0001 l-H 0.0008
A-K <0.0001 D-E <0.0001 H-J <0.0001
K-A <0.0001 E-D <0.0001 J-H <0.0001
B-C 0.2376 D-F <0.0001 H-K <0.0001
C-B 0.2803 F-D <0.0001 K-H <0.0001
B-D 0.0017 D-G <0.0001 l-J <0.0001
D-B <0.0001 G-D <0.0001 J-l <0.0001
B-E <0.0001 D-H <0.0001 l-K <0.0001
E-B <0.0001 H-D <0.0001 K-l <0.0001
B-F <0.0001 D-l <0.0001 J-K <0.0001
F-B <0.0001 l-D <0.0001 K-J <0.0001
B-G <0.0001 D-J <0.0001
G-B <0.0001 J-D <0.0001
B-H <0.0001 D-K <0.0001
H-B <0.0001 K-D <0.0001
B-l <0.0001 E-F <0.0001
l-B <0.0001 F-E <0.0001
B-J <0.0001 E-G <0.0001
J-B <0.0001 G-E <0.0001
B-K <0.0001 E-H <0.0001
K-B <0.0001 H-E <0.0001
C-D 0.0076 E-l <0.0001
D-C <0.0001 l-E <0.0001
C-E <0.0001 E-J <0.0001
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Appendix D: ICP-AES Rates
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Figure D .l. Chapter 4, Experiment 2. The average release o f trace elements over time 

for all ratios. The slopes were used to calculate the linear elemental release rates in 

Table 4.6.
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Appendix F: Published Abstracts

Oral Presentation: Astrobiologv Society of Britain Conference (2008)

Weathering with Thiobacillus -  The effect of changing liquid to rock ratios on 

microbial weathering of basalt

Simpson. A.E.1. Grady, M.M.1, Cockell, C.S.1

1 The Open University, Geomicrobiology Research Group, CEPSAR, Walton Hall, Milton Keynes, 

Buckinghamshire, MK7 6AA, United Kingdom, a.e.simpson@open.ac.uk

Rock weathering has a large effect on biogeochemical cycling. It controls nutrient flux 

in the biosphere and long term climate. However, weathering does not only occur by 

chemical and physical factors. Microorganisms play a central role in the weathering of 

rocks. This, however, is little understood and one major mystery is why weathering 

rates are so different in the laboratory compared to the field. The aim of this work is to 

understand the influence of the water-rock ratio on the rate of microbial rock 

weathering.

To investigate how pH and rates of elemental release were affected by changing the 

liquid to rock ratio, batch cultures of the acidophilic, iron-oxidising bacterium 

Thiobacillus ferrooxidans were set up in polycarbonate flasks, with the iron required 

provided by basalt from the volcano Eldfell in Heimaey, Iceland. Three different liquid 

to rock ratio conditions were used: high, medium and low ratios. Controls to compare 

abiotic effects were set up, with flasks containing only media and basalt.

An optimum liquid to rock ratio was found to be the medium volume condition. The 

large volume diluted the released iron, potentially limiting its supply. In the low volume
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flasks, which had a low liquid to rock ratio, the acid in the media was quickly quenched, 

with pH increasing nearly two-fold after the first 24 hours, which in natural closed 

environments might increase the pH to above the optimum for growth. The medium 

volume flask achieved a near optimum balance between iron concentration and proton 

quenching by rock weathering.

Work is ongoing using inductively coupled plasma mass spectrometry (ICP-MS) to 

determine the concentration of other elements being released from the basalt. In 

addition, the basalt from the different conditions is being examined by SEM to record 

the abiotic and biotic effect of weathering on the rock’s surface.

This work has implications for the rates of rock weathering in natural environments 

where a balance between optimum energy and nutrient supply and pH conditions for 

growth occurs including, for example, in acid mine drainage sites. From an 

astrobiological perspective, this work has implications for micro-scale conditions for 

habitability in basaltic environments on Mars, where low water to rock ratios have been 

postulated to be present in combination with acidic conditions. Such conditions may 

also have existed in geothermal regions on the Archaean Earth.

Oral Presentation: Goldschmidt Conference (20091

The effect of water-rock ratios on microbial weathering of basalt

Simpson. A.E.1. Grady, M.M.1, Mosselmans J.F.W.2, Cockell, C.S.1

’CEPSAR, Open University, Milton Keynes, MK7 6AA, UK (a.e.simpson@open.ac.uk)

2Diamond Light Source, Didcot, 0X11 ODE, UK
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Rock weathering has an important influence on biogeochemical cycling. It controls 

nutrient flux in the biosphere and long term climate through CO2 drawdown. However, 

weathering does not only occur by chemical and physical factors. Microorganisms play 

a role in the weathering of rocks. This, however, is little understood and one major 

question is why weathering rates are so different in the laboratory compared to the field.

This work aimed to understand the influence of water-rock ratios on the rate of 

microbial weathering of basalt.

To investigate how pH and rates of elemental release were affected by changing the 

water-rock ratio, batch cultures of the acidophilic iron-oxidising bacterium 

Acidithiobacillus ferrooxidans were set up in polycarbonate flasks and monitored for 37 

days. The iron required was provided by basalt from the volcano Eldfell in Heimaey, 

Iceland. Three different water-rock ratios were used: high (800ml media, 2g basalt), 

medium (100ml, 2g) and low (25ml, 25g).

An optimum water-rock ratio was found to be the medium ratio, which achieved the 

highest cell numbers,. Additional experiments showed that in the low ratio case neither 

an increase in pH due to rock weathering reactions or high heavy metal concentrations 

present in rocks was the cause of cell death. XANES at the Fe-K edge analysis showed 

localised areas of heamatite but the surface of the rock also showed Fe oxidation 

without a change in gross mineralogy. It is proposed that Fe3+ ions bind to the rock 

surface and preventing the release of reduced iron to provide energy for the bacteria, 

which might cause rapid reduction in Fe availability in the low water rock ratio 

environment.

This work has implications for the rates of rock weathering in natural environments 

where water-rock ratios may effect the balance between optimum energy and nutrient 

supply, as for example in the case of organisms in vesiculated basalt (low water-rock



ratio) and acid mine drainage sites (high water rock-ratio). Water-rock ratio effects may 

contribute to differences in laboratory and field-measured weathering rates.

Oral Presentation: Astrobiology Society of Britain Conference (2010)

Effect of Water-Rock Ratios on Microbial Weathering: A Strategy for Site 

Selection on Mars?

Simpson. A.E.1. Cockell, C.S.1, Olsson-Francis, K.1, Grady, M.M.2,

1 The Open University, Geomicrobiology Research Group, CEPSAR, Walton Hall, Milton Keynes, 

Buckinghamshire, MK7 6AA, United Kingdom, a.e.simpson@open.ac.uk

2 The Open University, Planetary and Space Sciences Research Institute, CEPSAR, Walton Hall, Milton 

Keynes, Buckinghamshire, MK7 6AA, United Kingdom.

Several paleoclimate models have shown early Mars to have been a wet and warm 

planet, similar to early Earth, before losing its atmosphere and becoming a cold, dry 

planet. Elemental and mineralogical data from the Mars Rover Missions have revealed 

both low and high water-rock ratio alterations on Mars. The aim of this work is to, 

through understanding the influence of water-rock ratios on microbial rock weathering, 

find suitable sites that would or could have sustained life.

The experiment investigated how pH and rates of elemental release were affected by 

changing the water-rock ratio. Batch cultures of the acidophilic iron-oxidising 

bacterium Acidithiobacillus ferrooxidans were set up in flasks and monitored for 37 

days using Icelandic basalt as the iron source. Three different water-rock ratios were 

used: high (2g in 800ml), medium (2g in 100ml) and low (25g in 25ml).

The optimum water-rock ratio was found to be the medium ratio, which achieved the

highest cell numbers. Experiments showed that in the low ratio case neither an increase
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in pH due to proton quenching in rock weathering reactions or high heavy metal 

concentrations present in rocks was the cause of cell death. XANES at the Fe-K edge 

analysis showed localised areas of heamatite but the surface of the rock also showed Fe 

oxidation without a change in gross mineralogy, it is proposed that Fe3" ions bind to the 

rock surface and preventing the release of reduced iron to provide energy for the 

bacteria. High water-rock ratios create too dilute an iron source for energy acquisition. 

This suggests that sites on Mars of medium water-rock ratios would be more likely to 

support or have supported microbial life.

Oral Presentation: International Society for Microbial Ecology Conference (2010)

Microbial successional changes in a one year laboratory experiment on the 

weathering of basalt glass with different water-rock ratios

Simpson. A.E.1. Cockell, C.S.1, Olsson-Francis, K.1, Grady, M.M.2,

1 The Open University, Geomicrobiology Research Group, CEPSAR, Walton Hall, Milton Keynes, 

Buckinghamshire, MK7 6AA, United Kingdom, a.e.simpson@open.ac.uk

2 The Open University, Planetary and Space Sciences Research Institute, CEPSAR, Walton Hall, Milton 

Keynes, Buckinghamshire, MK7 6AA, United Kingdom.

Microbes have been associated with alteration of basalt glass, which is abundant in the 

Earth's crust. Due to the concentration of biologically important elements present 

(including iron), alteration of glass makes it an important process in global 

biogeochemical cycling. Rock weathering by microbes can be influenced by varying 

conditions, and though variables such as temperature and pH have been investigated, 

water-rock ratios have not. In natural environments one can find differing water-rock 

ratios, from low ratios in rock vesicles to high ratios, such as rocks in a river bed.
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To gain a better understanding of the process of microbial alteration of basalt glass, 

three water-rock ratios were established (high - 2.5 x 10'3 g/ml, medium - 0.02 g/ml and 

low - 1 g/ml) and inoculated with basalt glass that contained a natural microbial 

community. For 12 months, the flasks were sampled for pH, elemental release, and to 

build a community profile over time using denaturing gradient gel electrophoresis 

(DGGE) in combination with 16S rDNA clone libraries and sequencing of isolates. 

Preliminary DGGE analysis has shown different community profiles emerging with the 

varying ratios, as each condition brings about different solution chemistries.

Cyanobacteria and algae appeared at 76 days and at 12 months were present under all 

conditions, even at pH 5 (pH of high ratio flask after one year). Representatives of the 

Actinobacteria and Firmicutes are some of the dominant organisms. pH dropped in all 

biological flasks, with the greatest drop in the high ratio flask (from pH 7 to 5.2). With 

elemental release rates we are able to correlate the microbiology to weathering 

conditions.

This work has implications for the rates of rock weathering in natural environments 

where water-rock ratios may affect the balance between optimum energy and nutrient 

supply.
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