
Open Research Online
The Open University’s repository of research publications
and other research outputs

Strategies for Devising Automatic Signal Recognition
Algorithms in a Shared Radio Environment
Thesis

How to cite:

Wagstaff, Adrian John (2011). Strategies for Devising Automatic Signal Recognition Algorithms in a Shared
Radio Environment. PhD thesis The Open University.

For guidance on citations see FAQs.

c© 2011 The Author

Version: Version of Record

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright
owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies
page.

oro.open.ac.uk

http://oro.open.ac.uk/help/helpfaq.html
http://oro.open.ac.uk/policies.html


Adrian Wagstaff

Ph.D. Thesis 

Strategies for devising automatic signal recognition 

algorithms in a shared radio environment

Adrian John Wagstaff

C.Eng, MSc., BSc(Eng)(Hons), MRAeS, MIET, FVCM

Submitted for the Degree of Doctor o f Philosophy 

Faculty o f Mathematics, Computing and Technology 

The Open University

Date o f Submission: June 2011

£>AT€. Or 1 1 H

D A tc  A !% H er! % o \ '



ProQuest Number: 13837573

All rights reserved

INFORMATION TO ALL USERS 
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com p le te  manuscript 
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest
ProQuest 13837573

Published by ProQuest LLC(2019). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C ode

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway 

P.O. Box 1346 
Ann Arbor, Ml 48106- 1346



Adrian Wagstaff

Abstract

In an increasingly congested and complex radio environment interference is to be 

expected, which poses problems for Automatic Signal Recognition (ASR) 

systems. This thesis explores strategies for improving ASR performance in the 

presence of interference.

The thesis breaks the overall research question down into a number of sub

questions and explores each o f these in turn. A Phase-symmetric Cross 

Recurrence Plot is developed and used to show how a radio signal can be 

manipulated to separate information about the modulation from the information 

being carried. The Logarithmic Cyclic frequency Domain Profile is introduced to 

illustrate how a logarithmic representation can be used for analysing mixtures of 

signals with very different cyclic frequencies. After defining a canonical ASR 

system architecture, the concepts o f an Ideal Feature and Interference Selectivity 

are introduced and applied to typical features used in ASR processing. Finally it 

is shown how these algorithmic developments can be combined in a Bayesian 

chain implementation that can accommodate a wide variety o f feature extraction 

algorithms.

It is concluded that future ASR systems will require features that can handle a 

wide range o f signal types with much higher levels o f interference selectivity if  

they are to achieve acceptable performance in shared spectrum bands. Intelligent 

segmentation is shown to be a requirement for future ASR systems unless features 

can be developed that have near ideal performance.
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Nk
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p O Probability o f an event

p(t) Time domain signal o f interest

PhP2 A priori probability o f hypothesis 1 or 2 being true
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R Covariance matrix of x
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t Time

To Fundamental period of a periodic signal

tk Time centre o f kttl filter in constant Q transform

X DFT of x

X Complex, zero-mean, baseband signal

y Detector output, representation or feature

A* Bandwidth o f kth filter in constant Q transform

r1 max Logarithmic form of ymax
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T Transition count

a Cyclic frequency

Page 18 o f 376



Adrian Wagstaff

a Shift parameter

£ Error or recurrence plot threshold level

<j>NL Non-linear phase
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(f\v Wrapped phase
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a Standard deviation

Oa Standard deviation o f amplitude

Oaa Standard deviation o f absolute amplitude

O af Standard deviation o f absolute frequency

Oap Standard deviation o f absolute phase

Odp Standard deviation o f direct phase

T Time lag

Q) Frequency

Selectivity o f a feature
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1 INTRODUCTION

The radio spectrum is becoming ever more complex as it is used for an 

increasingly diverse range o f applications. The advent o f personal, mobile 

communications and home networking has added considerably to the exploitation 

of the spectrum, which is also used for television and radio broadcasting, 

industrial and home automation, radar, radio paging and a plethora o f other 

applications. Many electrical and electronic devices also radiate radiowaves 

which can interfere with the users o f the spectrum. There are now areas o f the 

spectrum where interference is the norm rather than the exception. Radio systems 

working in these bands have to be designed to be robust in the presence o f  

interference.

Automatic Signal Recognition (ASR) algorithms can be used to help people 

understand the state o f the spectrum and can also be built into cognitive radio 

systems that react intelligently to changes in spectrum occupancy and usage. 

Such algorithms are typically designed to recognise one signal at a time and the 

recognition accuracy o f such algorithms is adversely affected by interference.

In the context o f this thesis interference is considered to be any situation in which 

two or more signal types are received simultaneously. This is a deliberately wide 

definition so as to embrace any situation in which, because o f the presence of  

multiple signals, an ASR system is confronted with a non-trivial decision as to the 

type o f signal being received.
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This thesis presents the results of an investigation into ASR systems, with a 

particular emphasis on their behaviour when interference is present. If one wishes 

to produce ASR algorithms that have good recognition accuracy in shared 

spectrum bands, then one must find design strategies that can deliver the 

performance needed by one’s application.

The following paragraphs explain the motivation for working in this subject area 

and the research question itself. In addition the specific contributions o f this 

particular investigation are explained and the main structure of the document is 

outlined.

1.1 Motivation

ASR is an important field of research and development, with both current and 

future applications of the technology. It has uses in the defence and civilian 

worlds, which have some requirements in common but also significant 

differences. The main emphasis o f this project is on non-defence applications as 

the work has been motivated by various programmes of work carried out for the 

UK and Dutch spectrum regulators.

One o f the main non-defence applications o f ASR is in the detecting and 

investigating of radio spectrum interference, which is a major function carried out 

by spectrum regulators around the world. Diagnosing interference problems 

depends on the knowledge o f relatively few domain experts who have learnt the 

readily-observable characteristics of the classic modulation types and have had the 

experience o f identifying many and varied interferers. In the future these tasks
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will be complicated further as the trend towards spectrum liberalisation continues. 

Already the Licence-Exempt (LE) bands are showing a proliferation o f complex 

digital modulations driven by the need to maximise spectrum efficiency and co

existence.

In an increasingly complex radio environment field staff need automated tools to 

assist them with identifying a plethora o f communications and interference 

signals.

Another major non-defence application o f ASR is in cognitive radio (CR) 

systems. At the moment, ASR algorithms do not have the required level o f  

fidelity and robustness needed to be fully integrated into cognitive radio designs, 

but this situation is developing rapidly.

Both o f these applications o f automated signal recognition are driving the research 

into improved ASR systems. The particular interest for this project has been the 

former application, with the emphasis on identifying interference signals as well 

as standard communication signals.

It is recognised that a wealth o f existing techniques exists and that these need to 

be brought together to tackle the complexities o f the modem shared spectmm 

bands. For various reasons then, there is a need to continue to research into the 

algorithms that can be brought to bear on the ASR task.
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1.2 Specific research question

A plethora of algorithmic approaches have been devised for performing the ASR 

task. In general, however, researchers have concentrated on the performance of 

algorithms in the presence o f simple noise, because interference is immensely 

complex and the number of possible types o f interference is unbounded. 

Understanding the performance o f an algorithm in the presence o f all possible 

interferers requires, therefore, considerably more study than an evaluation against 

noise alone.

The research question posed by this thesis is: what strategies can be adopted for 

designing ASR algorithms to deal with modem, complex signal environments? 

This is a complex question and one that needs to be broken down into a series of 

smaller questions if  one is to make progress in this area. Section 3, therefore, 

presents an approach to answering this question that relies on investigating a 

series o f sub-questions.

The importance o f the answer to this research question is that it will help guide 

research into and the development of ASR systems that are more robust in the 

modem radio environment.

1.3 The work of this Ph.D.

The main thread of research has been into the various issues surrounding the 

design o f ASR systems to work in regions o f the spectmm where interference can 

be expected and cannot be ignored.
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This research has led to the following outcomes that contribute to the body of

knowledge in this area:

1. Recurrence plots have, for the first time, been applied to the visualisation of  

communications signals and show potential as an analysis tool to be used 

alongside conventional analysis methods. In particular the thesis introduces a 

modification to the basic recurrence plot called the Phase-symmetric Cross 

Recurrence Plot (PCRP) that shows how it is possible to separate the 

modulation o f a signal from its information content by manipulating a 

received signal prior to applying a transformation;

2. The recurrence plot method shows the separation o f modulation and 

information, but is not well suited to admixtures o f signals with widely 

different time domain characteristics. It is proposed that one approach to 

addressing this problem is to use a logarithmic representation. In order to 

illustrate this approach, a Logarithmic Cyclic frequency Domain Profile 

(LCDP) has been developed. This logarithmic form o f the cyclic frequency 

domain profile promises to be useful in detecting the cyclostationarity 

signatures o f signals o f very widely differing bandwidths and therefore 

handling a wide range o f interference conditions;

3. A canonical processing architecture is introduced that is capable o f describing 

ASR systems in an holistic way, thereby facilitating comparison o f different 

architecture designs without being overwhelmed by the details o f the 

differences between them. This architecture sets a framework via which one 

can reason about the merits o f different algorithms;
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4. A concept called the Ideal Feature is introduced. This is a signal processing 

function with well-defined characteristics with regards to its behaviour in 

interfering environments. The Ideal Feature sets a benchmark against which 

candidate algorithms can be compared;

5. A concept called Interference Selectivity is introduced. This concept allows 

non-ideal features to be compared quantitatively with the Ideal Feature and 

also with other, non-ideal features.

The work presented in this thesis therefore makes significant contributions to the 

body o f knowledge on the strategies that can be used in devising ASR algorithms 

for use in shared radio environments. It opens up new avenues for future research 

in this area and provides a tool whereby progress can be quantitatively assessed.

1.4 Structure of this thesis

The remainder of this document presents the findings of this research. Section 2 

introduces the subject area, giving the necessary background within which the 

remainder o f the document can be understood. Section 3 describes the approach 

to the investigation and section 4 presents the results. The overall conclusions of 

the thesis are given in section 5 along with suggestions for further work in this 

area. The references and bibliography are given in sections 6 and 7 respectively. 

Appendices are attached for detailed information that supports and informs the 

main body o f the document.
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2 BACKGROUND

This section gives the background for the project so that the work can be 

understood in relation to previous and current research. There are a number of 

applications o f the technology and there is a wide variety o f algorithmic 

techniques for detecting widely differing types o f signal.

Section 2.1 looks at applications for this technology, which can be used in 

commercial and military domains. To some extent ASR functionality is not 

dependent on the application, but there are some application demands that can 

influence ASR design. Some applications may, for example, require extremely 

fast processing and tolerate a lower accuracy, whilst others may not be time 

critical but demand very high accuracies. Knowledge o f the intended application 

is, therefore, o f interest to the designer.

ASR algorithms do not exist in isolation as a purely theoretical concept. They are 

embedded within radio systems and depend on radio receiver technology to 

supply them with data on which to act. Section 2.2 discusses the subject area 

within the context o f a generic radio system architecture. It shows where the ASR 

functionality resides and explains that the recognition process seeks to identify the 

modulation and coding o f intentionally transmitted signals and the characteristics 

of phenomena that are not intentionally transmitted. This is an important concept, 

because the information content o f signals is not of interest to an ASR algorithm.
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Section 2.3 identifies a number o f problems that are encountered when designing 

ASR systems. These problems are at the heart o f the motivation for this research 

and are caused by the changing nature o f the radio spectrum. Areas o f shared 

spectrum are home to an increasingly wide variety of signal types that can overlap 

in time and frequency, making the task of recognising individual signal types ever 

more complex.

Signal recognition has been an active area of research for several decades. 

Section 2.4 discusses various approaches to the task that have been developed and 

classifies the techniques as segmentation, transformation, feature extraction or 

decision methods. This taxonomy is helpful in navigating through the large body 

of published literature and is expanded further by the work of this research. The 

canonical architecture developed in section 4.3 is an evolution of the taxonomy 

presented in section 2.4 that adds rigour via the use of the Unified Modelling 

Language (UML). The literature is dominated by the statistical feature methods 

and cyclostationarity, but section 2.4 endeavours to cover a wider variety of 

algorithmic approaches and organise them ready for more detailed analysis in 

section 4.3.

2.1 Applications

There are three primary application areas for ASR, these being the military, 

spectrum enforcement and cognitive radio applications. The research covered by 

this project is targeted primarily at non-military applications, with emphasis on 

spectrum enforcement and cognitive radio.
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2.1.1 Military applications

In the military world, ASR forms a small part o f the Communications Intelligence 

(COMINT) function, itself part of the discipline known as Signals Intelligence 

(SIGINT), which is in turn part o f the world o f Electronic Warfare (EW) 

(Rockwell, 2004). By intercepting and recognising communications signals, 

COMINT systems provide military forces with the ability to control the 

electromagnetic spectrum and deny its use to their opposition. There are two 

objectives to this activity. Firstly, by eavesdropping on and geolocating 

communication links, COMINT activities allow intelligence on enemy operations 

to be gleaned and exploited for tactical and strategic planning. Secondly, 

COMINT enables Electronic Counter Measures (ECM), such as jamming, to be 

carried out. Modem COMINT systems are very sophisticated and often comprise 

networks o f Electronic Support Measures (ESM) sensors that can rapidly detect 

signals, identify and demodulate them and also geolocate the transmitters 

(Ferreira, 1996). Moreover, they have to do this in difficult conditions, often with 

severe interference to the signals o f interest (McGehee, 2008).

2.1.2 Spectrum enforcement applications

Non-military applications o f ASR are very different in nature, but are growing in 

importance as the electromagnetic spectmm becomes increasingly important to 

the daily life o f individuals and industry.

A key part o f spectmm management in the non-military world is the role 

performed by the agencies charged with enforcing spectmm usage. Here the 

emphasis is on reacting to reports o f interference from network operators,
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broadcasters or members of the public. As Andrews (2008) says "..network 

operators are waging their own battle with interference..". The operators have to 

deploy field staff to track down and deal with interference sources in order to 

meet their targets for service performance (Ofcom, 2009).

The sources o f interference are typically many and varied. They include pirate 

radio stations (Ofcom, 2005), radios that have been imported and are operating on 

frequencies for which they are not licensed, electromagnetic noise from 

household, automotive and industrial appliances and many other intentional and 

unintentional sources (section 2.2.4). By way o f example, Wagstaff (2009) 

describes the interference effects of analogue video senders and microwave ovens 

on IEEE 802.11 networks.

Typically priority for such investigations is given to cases where safety-of-life is 

an issue (Ofcom, 2010a) and this may be because the interferer is radiating into a 

channel that is reserved for emergency calls. In such cases there is pressure to 

locate and stop the source of interference as quickly as possible. This means 

getting a team to the site, detecting the signal, identifying it and then carrying out 

direction finding to locate the source. Prosecution o f offenders (Ofcom, 2010b) 

may be appropriate in some cases, so the information collected during this process 

must be treated as potential evidence to be used in court.

A new slant to spectrum enforcement is appearing in the UK as spectrum licence 

costs have soared. In March 2000 the UK government auctioned five licences for 

the 3G phone bands and received £22bn from the companies that won the bidding
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process (Radiocommunications Agency, 2000). Each o f the companies involved 

had invested over £4bn for exclusive usage of these frequency bands. Clearly 

they have a right to expect that interference within these bands would be dealt 

with severely. To do this effectively relies on accurate signal recognition and 

facilities for geolocating interferers. •

Ofcom, the body that replaced the Radiocommunications Agency in 2003, is now 

pursuing more advanced spectrum management methods. Spectrum Usage Rights 

(SUR) are proposed as the way ahead for many future licences (Ofcom, 2006) and 

are intended to control the spectrum by stipulating to what degree a licence holder 

may interfere in neighbouring frequency bands or geographic locations (Aegis, 

2006). In concept this approach will allow licence holders more freedom to 

choose the modulations, protocols, number o f transmitters and radiated powers 

that they deploy around the country. SUR therefore will help to remove the 

barriers that currently exist on modulation types in use in the licensed bands. This 

is seen as being good for business, but it does mean that spectrum enforcement is 

likely to become more complex (Davies, 2008). The responsibility for 

maintaining quality o f service under the SUR scheme will, however, be largely 

the responsibility o f the licensee (Ganley, 2006).

To support spectrum enforcement effectively, ASR needs to provide emitter 

identification at a level that is appropriate. In a military role the ASR may need to 

provide information that is detailed enough to allow jamming to be carried out 

and such information might, for example, include the mode o f transmission. In 

the spectrum enforcement role such detailed information would be superfluous
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and the ASR only needs to try to indicate what kind o f device is involved. The 

operators need to know, for example, whether they are looking for a mobile 

handset or a mast-mounted transmitter. It is also desirable to know whether the 

emitter is radiating intentionally or not, since many causes of interference are 

from machinery and electronics that are not properly suppressed.

2.1.3 Cognitive radio applications

The concept of Cognitive Radio (CR) was proposed as a means o f adding 

intelligent processing to software defined radio to deliver personalised services 

(Mitola III and Maguire Jr, 1999, p. 18). It can also be thought o f in terms of 

improving utilisation o f the spectrum (Haykin, 2005, p. 201). The case for this 

technology appears to be gaining ground, with increasing research activity at the 

time of writing (Steenkiste et al, 2009) (Poole, 2010).

The Wireless Innovation Forum (formerly the Software Defined Radio Forum) 

acts as the main focus for these activities with various universities and companies 

developing new concepts, techniques and tools. This work has led to rapid 

development o f CR architectures and expected to continue to evolve to provide 

greater quality o f service and quality o f information for lower cost (Mitola III, 

2009, p. 639).

In LE bands, such as the 2.4 GHz Industrial, Scientific and Medical (ISM) band, 

there are already a number o f radio systems that co-exist, e.g. Bluetooth and WiFi, 

without any significant cognitive radio functionality being implemented.
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The pressure on some parts o f the spectrum is such that cognitive radio may 

become economically viable and perhaps necessary (Steenkiste et al, 2009). A 

significant example o f this is in the USA, where the FCC has recently released the 

TV "whitespace" regions for use by secondary, unlicensed services (Ghasemi and 

Sousa, 2008) (Reardon, 2008) and Ofcom in the UK is expected to follow suit 

(Chacksfield, 2009). These are regions that lie between the existing analogue TV 

regions and are only currently used for wireless microphones. The wide 

bandwidths and favourable propagation available at these frequencies mean that 

some researchers see a business case for running data access in these bands 

(Martin et al, 2008).

In the USA spectrum sensing is required in the TV whitespace bands (Sherman, 

2009). To be effective, such functionality will require the rapid detection of 

primary signals (Wang and Gaddam, 2009) and the accurate and robust 

identification o f modulation type (Kim et al, 2008).

It is likely that more such applications o f cognitive radio functions will appear in 

the coming years. Cognitive radio depends on a radio being aware of its 

environment, which includes recognising the various signal types present (Le et 

al, 2006). Accurate and robust ASR will be, therefore, one component in 

achieving success in these business areas.

2.2 Radio system architecture

Before examining the analysis methods used for ASR itself, this section presents a 

conceptual radio system architecture. This makes it clear that ASR does not exist
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in isolation, but is part o f a processing chain and that some assumptions have to be 

made about the processes surrounding the ASR itself.

Figure 1 shows the conceptual radio system architecture assumed in this thesis. It 

is not dissimilar to a conventional block diagram of a communication system 

(Ziemer and Tranter, 1995, p. 4) but has been modified to better suit the study of 

the signal recognition process.

Intentionally transmitted

Not intentionally transmitted

Transmitter Channel

Channel

Receiver

Information
source

Recognition

Modulation and 
coding

Phenomenon

Figure 1. Conceptual radio system architecture.

Each o f the components of this processing chain are described below and it is 

generally assumed that most, but not always all, o f these processing blocks exist 

in practical systems.

There are two branches on the left hand side o f Figure 1. The upper branch 

represents intentionally transmitted signals, typically carrying some sort of 

information. The lower branch represents other phenomena which may be natural 

or man-made, but are not intentionally transmitted.

Page 38 o f 376



Adrian Wagstaff

There are three blocks in Figure 1 that are o f particular interest for this thesis. 

These are the Modulation and Coding block and the Phenomenon block, which 

are the processes whose characteristics are to be estimated and the Recognition 

block, which is the process that performs the estimation. Each block in the chain 

is now described and this discussion leads towards the proposal o f a standard 

model for the Recognition block in Section 4.3.

In a real world situation there may be many upper branches and many lower 

branches as illustrated in Figure 2. A receiver could intercept many modulated 

signals from transmitters and also many phenomena. All these signals pass 

through channels, which can distort the signals, and are summed at the receiver. 

The goal o f recognition can be to determine the type o f one or all o f these 

incoming signals. Different applications may require different behaviour from the 

ASR system.

Channel

Channel

Channel

Channel

Channel

Transmitter

Receiver

Information
source

TransmitterInformation
source

Information
source

Transmitter

Recognition

Phenomenon

Phenomenon

Modulation and 
coding

Modulation and 
coding

Modulation and 
coding

Figure 2. In practice the received signal can be a composite of many signals passing 

through many channels.

Noise, in this model, is always unwanted and originates in all the boxes to the left 

of (and including) the receiver. Noise aggregates throughout the processing
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chain. Whilst noise can be suppressed through some kinds o f processing, it can 

never be entirely eliminated (Krauss et al, 1980, p. 9) and the Recognition process 

will always have to deal with some amount of noise at its input.

In this model, interference is defined as any signal present at the input to the 

receiver that is unwanted. Thus interference can be a modulated signal, a 

phenomenon, or a channel effect. Common terms for modelling interference are 

Adjacent Channel Interference (ACI) and Co-Channel Interference (CCI). 

Wagstaff (2007) discusses these terms in relation to other metrics used for 

measuring interference.

2.2.1 Information source

The first block in Figure 3 is the information source process. Many intercepted 

signals are carrying some form of information and this can be represented as a 

single information source. In signal recognition we are not generally interested in 

the information content. Indeed it may be that, by suppressing the information 

content, the performance o f the signal recognition can be improved. One such 

technique (see section 4.1) is proposed as part o f this thesis.
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Information
source

Channel

Channel

Receiver

Transmitter

Recognition

Phenomenon

Modulation and 
coding

Figure 3. Many received signals are carrying some form of information, which is 

modelled as originating in an information source process.

Not all signals carry information, however. These are typically noise and 

interference sources, but there are also some man-made emitters that do not carry 

information. Continuous Wave (CW) emitters are used in a number of 

applications, including RFID tag stimulation (Oduncu, 2008) and as Doppler 

sensors for intruder detection (Singapore Technologies, 2005). In such cases the 

information comes from analysing the response to stimulation from another object 

rather than the signal itself.

2.2.2 Modulation and coding

The modulation and coding block, highlighted in Figure 4, is o f importance to this 

thesis. For intentionally-transmitted signals, it is the set o f characteristics o f the 

modulation and coding process that is to be estimated by the signal recognition 

process.
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Channel

Transmitter

Receiver

ChannelInformation
source

Modulation 
and coding

Recognition

Phenomenon

Figure 4. The modulation and coding block is of particular importance, as signal 

recognition needs to determine the characteristics of this process.

The goal o f an ASR system is to describe the modulation and coding in use. One 

way of doing this would be to report the standard where this is applicable (e.g. 

IEEE 802.1 In, POCSAG, NIC AM, GSM), which is the approach typically used 

by proprietary ASR products (Agilent, 2005), (Tadiran, 2011), (Wavecom, 2007). 

A different way o f describing a communications signal would be to denote the 

modulation parameters using a coding scheme such as that used in SM.1138 

(ITU-R, 1995). Whichever type of description is used, identification typically 

depends on estimating features of a received signal and these features range from 

very simple to very complex.

Early analogue modulations, such as Frequency Modulation (FM), were very 

simple in that they could be characterised by just one or two parameters (e.g. FM 

deviation). Early digital modulations, such as Frequency Shift Keying (FSK), 

were still relatively simple to characterise using parameters such as number of 

tones, frequency spacing and symbol rate.

Modem communications protocols can be far more complex and cannot easily be 

described by a few numbers. A modem protocol stack, such as IEEE 802.1 In, has 

complex, time-varying physical layers that require many parameters for complete
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characterisation, e.g. spatial multiplexing scheme, modulation type and mode, 

symbol rate, number o f subcarriers, etc. Furthermore, modem modulation 

schemes treat the modulation and coding as a single entity (Burr, 2001, p. 208). 

These complexities make the task for the ASR system more difficult than it was, 

say, thirty years ago.

2.2.3 Transmitter

The highlighted block in Figure 5 is the Transmitter which may, for the purposes 

of this thesis, be regarded as perhaps the simplest of the processing blocks.

Transmitter

Channel

Channel

Receiver

Information
source

Recognition

Modulation and 
coding

Phenomenon

Figure 5. The transmitter process is, from the perspective of signal recognition, the 

simplest part of the signal source.

A reasonable model is to consider the functions o f the transmitter to be some or 

all o f the following:

© Conversion to radio frequency from the frequency band at which the 

modulation and coding have been performed (usually real or complex 

baseband);

• Filtering to suppress any unwanted frequencies;

© Power control;

© Radiation into the environment via one or more antennas;
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® Anomalous transmitter characteristics such as overmodulation and 

non-linearities.

Where there are multiple antennas being used in combination (e.g. Multiple Input 

Multiple Output (MIMO) technologies) then we shall consider the processing 

required to be part o f the modulation and coding rather than the transmitter.

2.2.4 Phenomenon

The Phenomenon block is emphasised in Figure 6. It has been included in this 

processing model to highlight the fact that many of the signals received in a real- 

world situation are not intentionally transmitted and are not always well structured 

in that they cannot be decomposed into Information source, Modulation and 

coding followed by a Transmitter. Such signals include natural phenomena and 

electromagnetic radiation emitted unintentionally by man-made devices that were 

not designed to transmit.

Receiver

T ransmitter

Channel

ChannelInformation
source

Phenomenon

Recognition

Modulation and 
coding

Figure 6. The phenomenon process models unintentionally-transmitted signals, 

including natural phenomena and man-made noise.

Ordinarily such phenomena are treated as part o f the noise or interference added 

as part o f the channel process, but the model used here treats them separately. 

When these signals are interfering with desired communications they can also 

become the subject o f the recognition process. In this event the recognition 

process is not looking to identify the modulation and coding, rather it is seeking to 

identify the type o f phenomenon.
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A complete list o f phenomena is not practical, but the following sections give 

indications o f the types o f signals that may be encountered and may, depending on 

the application, need to be recognised.

2.2.4.1 Natural phenomena

The major types o f natural phenomena o f concern to ASR systems are the 

electromagnetic emissions from lightning and the sun.

Lightning emissions (also known as 'sferics' or ’spherics') tend to be impulsive in 

nature, with several different physical mechanisms producing them (Uman, 

1994)(Le Vine and Krider, 1977)(Thomas et al, 2001)(Shao and Jacobson, 2002). 

Lightning discharges are routinely monitored by large-scale monitoring systems 

(Fedoseev and Fedoseev, 2001) and many of the effects o f lightning on electrical 

equipment and structures are well-understood (Rakov and Rachidi, 2009).

Solar radiation is noise-like with variations over time and location (Ward and 

Golley, 1991) and the expected levels are currently recorded in ITU-R P.372.

2.2.4.2 Non-natural phenomena

Non-natural phenomena include both interference and noise sources and are 

typically covered within the spectrum monitoring literature under the general title 

of Man-Made Noise (MMN), some examples o f which are listed in Table 1, 

which is not an exhaustive list.
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Phenomenon Characteristics

Microwave oven 2.4 GHz band, short pulses with fast 
frequency modulation

Automotive ignition Impulsive

Switches Impulsive

Electronic devices Harmonics o f clock frequencies

Mains electricity 50 Hz and harmonics thereof

Neon lighting Impulsive

Fluorescent lighting start up Impulsive

Table 1. Typical Man-Made Noise characteristics.

The most comprehensive model of Man-Made Noise is the Middleton noise 

model (1973, 1975, 1976, 1978a, 1978b). This work uses a mathematical 

description of the underlying physical processes involved in noise generation to 

aggregate the total noise environment present at a particular location. Although 

attractive due to its description of a noise environment in terms o f physically 

significant parameters (such as emitter density), the model is very complex and 

this limits its usefulness in practical applications

Middleton’s model considers electromagnetic noise as comprised o f two main 

components: White Gaussian Noise (WGN) and Impulsive Noise (IN). WGN 

levels for MMN are measured internationally and recorded in ITU-R P.372.

The IN component o f MMN is further classified by Middleton as comprising that 

which could interfere with typical receiver systems in different ways, as listed in 

Table 2 (Wagstaff and Merricks, 2003, p. 12).
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Class A Interference is spectrally comparable to, or less than, the 

measurement bandwidth o f the receiver.

Class B Interference is broadband compared to the measurement 

bandwidth. Class B noise is typically made up o f very short 

impulses that are very wideband and are frequently man-made 

in origin. The class includes impulses from automotive 

ignition circuits, thermostats, lighting, etc.

Class C This is the sum o f class A and class B interference.

Table 2. Middleton’s classes of impulsive noise.

Many other papers have been published casting varying degrees o f light on the 

analytical study of man-made noise, some addressing quite specific aspects o f the 

analysis. Particularly relevant are Spaulding’s paper on bandwidth scaling 

(Spaulding, 1962) and an investigation into frequency dependence o f man-made 

noise in urban environments (Sheikh and Parsons, 1983).

Middleton's model is rather unwieldy for many purposes, so simpler statistical 

models are also in use (Wagstaff and Merricks, 2005). Examples o f other models 

are by Parsons, (1992), Jeruchim et al (1992), Achatz et al (1998) and Shukla 

(2001).

2.2.5 Channel

Figure 7 highlights the channel block. The channel through which the signal 

propagates will adversely affect the signal in several ways. Typically the signal 

itself will be altered by the medium in which it is propagating. Also, noise will be
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added to the signal and interference may be introduced. Generally, one can 

expect the signal to degrade more as the distance between the transmitter and the 

receiver is increased.

Channel

Channel

T ransmitter

Receiver

Information
source

Recognition

Modulation and 
coding

Phenomenon

Figure 7. The channel adversely affects the signal.

This section describes some o f the most important channel effects that are 

encountered. Section 2.2.5.1 introduces the concepts of radio propagation through 

the atmosphere. Section 2.2.5.2 considers multipath and section 2.2.5.3 looks at 

non-multipath effects. Fading models are discussed in section 2.2.5.4.

2.2.5.1 Effects of propagation through the atmosphere

As radio waves pass through the earth's atmosphere a number o f effects are 

encountered. The first o f these to comment on is the Radio Refractive Index 

(RRI), which is not constant, but varies with height (Doble, 1996, pp. 7-8), time 

and location (Winder and Carr, 2002, p.8). This is mainly because o f the varying 

amount o f water vapour, but atmospheric pressure and temperature also affect the 

RRI. This variation in RRI causes radio waves to bend and enables very long 

range communications at lower frequencies.

Propagation through the atmosphere also leads to attenuation and this can be 

simply modelled via the free-space transmission loss formula, which is an 

expression o f the inverse square law for the propagation o f electromagnetic 

radiation. The received power, Pr, is a function of the wavelength, Z, transmitted
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power, Pt, distance between the transmitter and receiver, D, and the gains o f the 

antennas at each o f the link, Gt and Gr. It is given by the following equation, 

which assumes that there is no obstruction between the transmitter and receiver 

(Ziemer and Tranter, 1995, p. 766):

Pr =P,G,Gr
\A 7 rD  j

(i)

Equation (1) is convenient for some applications but is often too simplistic, 

because it assumes lossless propagation in free space. Also the assumption of 

free-space propagation is only valid over short distances or when well above the 

earth's surface.

When a more accurate model o f the propagation characteristics is required then 

one has to consider several factors. These include the centre frequency and 

bandwidth o f the channel, diffraction over terrain, reflections, the relative speed of 

the transmitter and receiver, weather conditions, etc. The net effect o f all o f these 

at the receiver is a variation in the amount of attenuation. This variation is 

commonly referred to as fading when viewed from the receiver's perspective.

The different causes o f fading are commonly grouped into two main types. These 

are multipath effects and non-multipath effects.

2.2.5.2 Multipath Effects

A key concept is that o f multipath which is the effect seen when a signal is 

combined with one or more versions o f itself reflected in some way (Figure 8).
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Such reflections can be from obstacles reflection from nearby structures (Ranade, 

1989) or caused by atmospheric refraction effects.

ID □
ID □ a
ID □ a
ID □ ID
ID □ 1=

n □
Indirect path

\ i /
Direct path

\ i /

Receiver

Transmitter

Figure 8. Multipath is caused by reflections from nearby structures.

When a signal is combined with a time-delayed copy o f itself, the phase shift 

between them is important, because the two signals combine as a phasor sum. 

This combination can be constructive or destructive so the amplitude can be 

increased or decreased in multipath conditions, leading to a form of fading (see 

section 2.2.5.4). In addition to fading the time shift between multiple copies of a 

signal can lead to dispersion in time sufficient to cause Inter-Symbol Interference 

(ISI) (Burr, 2001, p. 243).

In a real world situation, there are usually numerous reflection paths and these 

will vary over time, so the effect on the signal changes over time (Hall et al, 1996, 

pp. 199-200). Patzold (2002, p. 4) describes the effect of multipath on a digital 

impulse as the impulse dispersion, which can be modelled in the frequency 

domain as a transfer function representing the characteristics of the radio channel.
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The channel in modem radio communication frequently contains many stmctures 

that generate multipath effects. The movement o f these reflectors, transmitter or 

receiver will additionally apply Doppler shifts to the components arriving at the 

receiver. It is important to note that, if  the transmitter or receiver is moving, then 

all the signal components will be affected by Doppler shift, not just the direct path 

(Figure 9).

Patzold (2002, p. 5) describes the frequency dispersion o f a channel, which 

depends mainly on the maximum Doppler shift component. The existence of  

frequency dispersion implies that the impulse dispersion is time varying. Patzold 

goes on to state that mobile radio channels are linear, time-variant systems, which 

is an important concept for the basis on which such systems are modelled. That 

they are linear systems means they obey the principles o f superposition (Ifeachor 

and Jervis, 2002, pp. 173), which enables the signal components to be summed 

using phasor representation. However, as the impulse response o f such channels 

is time varying, it is not possible to apply the superposition integral (Ziemer and 

Tranter, 1995, pp. 66-68) approach to obtaining the output in response to an 

arbitrary input and numerical methods o f performance prediction become 

necessary.
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=□ □ nz=□ □ nz=□ □ zz=□ □ c=
zz\ □ \zz
n □ Indirect path

Direct path
Mobile receiver

Transmitter

Figure 9. Doppler shift affects all paths between transmitter and receiver and is 

caused by the movement of the transmitter or receiver.

2.2.5.3 Non-Multipath Effects

The non-multipath effects generally affect the signal over a slower time scale than 

the multipath effects and result in a mean-depression o f the received signal 

strength (Doble, 1996, p. 22).

There is a simplified view o f long-distance propagation which assumes that a 

transmitted ray will, because of the normal variation of the RRI with height, 

follow a path that has a radius o f curvature that is approximately 4/3 times that of  

the earth. The figure o f 4/3 is a median value normally used for communication 

design purposes, but the true value at any particular location will differ from this 

(Samson, 1975). The nominal curvature o f the ray will be affected by any 

changes in the RRI profile. This includes refraction through the atmosphere and 

weather.

Page 52 of 376



Adrian Wagstaff

Other effects include diffraction around terrain and, in built-up areas, attenuation 

caused by obscuration by walls and other obstructions (Figure 10).

N /

z n n n n z
z n n n n z
Z D n n n z
“ □  n  i—
= 1  □  C =

Transmitter

N /

Receiver

Figure 10. In built-up areas obscuration can be a significant factor.

2.2.5.4 Fading

The free-space model given in equation (1) is frequently not adequate to describe 

the attenuation and phase modification that a signal undergoes as it passes from 

the transmitter to the receiver. For a more complete model one has to consider 

other factors affecting the radio system in addition to the free space loss including 

the impact o f multipath effects and non-multipath effects.

As the impact o f these various channel effects is to cause the received signal 

strength to vary, the term fading is applied. Fading is typically classified as slow 

fading or fast fading (Hall et al, 1996, pp. 153-155). These terms express how the 

signal strength varies:

Slow fading (also known as frequency-flat, or large-scale fading) is the slow 

variation in signal attenuation due to non-multipath effects (Tse and 

Viswanath, 2005, p. 10). The signal is assumed to be relatively narrow band 

and so the attenuation affects the whole signal equally. This effect is common
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in mobile communications when the transmitter and receiver are passing 

through built-up areas. Very much slower fading results from variations in 

the RRI (Doble, 1996, p. 17) associated with changes of the water content in 

the atmosphere.

© Fast fading (also known as frequency-selective or small-scale fading) is a 

reduction in the signal strength in part of its spectrum due to multipath effects 

(Tse and Viswanath, 2005, p.10). It results in a variation in signal strength 

that is faster than that observed with frequency-flat fading. With a wideband 

signal there are many frequency components, so there is likely to be phase 

cancellation within a portion of the signal's bandwidth. If the distance 

between the transmitter and receiver is changing then the Doppler shift will 

cause the affected frequency band(s) within the signal to move.

The difference between slow and fast fading can be described in terms o f the 

coherence time of the channel. In slow fading, the channel, the attenuation and 

phase shift o f the channel are assumed to be constant during each symbol (Ziemer 

and Tranter, 1995, p. 637) which is not the case for fast fading.

Fading is normally modelled by multiplying the transmitted signal with a 

stochastic process (Patzold, 2002, p. 33). In the case of slow fading a lognormal 

process is commonly used. Fast fading channels are modelled using either a 

Rayleigh or Rician process. The Rician process is applicable when the direct path 

from the transmitter can be seen at the receiver together with reflected paths, 

whereas the Rayleigh process is used when the direct path cannot be seen and
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only reflected paths are received. The Rayleigh process is, therefore, a limiting 

case of the Rician process.

2.2.6 Receiver

The Receiver is the penultimate processing element in Figure 11. Modem radio 

receivers are complicated devices, often supporting multiple modes o f operation 

and often configurable in real-time.

R eceiver

Transmitter Channel

Channel

Information
source

Recognition

Phenomenon

Modulation and 
coding

Figure 11. The receiver is often the most complex part of a communications system.

The main functions o f the receiver, from the point o f view o f signal recognition, 

are:

® Capture o f the signal via one or more antennas;

• Conversion from radio frequency to real or complex baseband;

® Gain control, which can be adaptive;

® Real-time demodulation o f the signal to recover the original information 

content.

Whilst the receiver provides the demodulated output, it has to also provide access 

to the real or complex baseband signal for most signal recognition schemes to 

work. For the purposes o f signal recognition design, it is a convenient assumption 

that the receiver is specified with sufficient performance that it does not 

significantly impair the signal further. For this to be the case the receiver
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bandwidth must exceed that o f the signal of interest and the dynamic range must 

be sufficient to allow the signal to be captured without incurring any non-linear 

effects due to saturation. The noise figure o f the receiver must also be low 

enough so that the signal is not adversely affected by noise due to the receiver 

itself.

Achieving satisfactory performance in a dynamic spectrum may be helped by use 

of adaptive narrowing of the receiver bandwidth to match the signals o f interest. 

This subject is considered later in this thesis in terms o f the segmentation process 

forASR.

2.2.7 Recognition

The Recognition process in Figure 12 is the main focus of this thesis and is the 

last block in the processing chain.

Receiver

Channel

ChannelTransmitterInformation
source

Recognition

Phenomenon

Modulation and 
coding

Figure 12. The recognition process attempts to determine the characteristics of the 

received signal.

In order to perform recognition automatically, it is frequently assumed that the 

Modulation and Coding process in Figure 12 exists and has characteristics that 

can be estimated by the Recognition process. It is important to note that the 

Information Source is not of particular interest and the Recognition process is
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normally only interested in determining the type of signal being used to carry the 

information.

Not all signals intercepted by a receiver will have clearly identifiable modulation 

and coding processes. Natural processes (e.g. lightning), in particular, carry no 

information and do not have any deliberate modulation and coding process. There 

may still, however be a need to recognise such phenomena. In this case the 

Recognition process has to estimate the characteristics o f the Phenomenon process 

in Figure 12.

2.3 Problems in signal recognition

This section describes some of the major problems encountered in ASR. In 

particular these are:

• Range o f bandwidths and time scales;

• New signal types;

• Noise;

• Channel effects;

• Interference.

In addition to these problems there will be time and processing constraints that 

depend a great deal on the application. Such limitations make it harder to deal 

with the problems as they limit the complexity o f algorithmic solutions that can be 

used.
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2.3.1 Range of bandwidths and time scales

As wider bandwidth signals are used, either to increase the information 

bandwidth, or to decrease the probability o f intercept, the chance o f a wideband 

receiver encountering a relatively narrow band signal increases. Also, the chance 

of intercepting more than one signal increases and this is further increased in the 

shared spectrum bands where different modulation types have to co-exist.

A modem signal recognition system therefore has to contend with detecting a 

range o f signal bandwidths and has to look for features over a correspondingly 

wide range o f time scales. This can place a high load on the available processing 

resources.

By way o f an example, modem spectmm analysers can provide a wide range of 

resolution bandwidths to match the bandwidths o f the signals o f interest. A 

typical example is the Rohde & Schwarz FSQ26 which has six resolution 

bandwidths ranging from 300 kHz to 50 MHz. Furthermore, that particular 

product includes a resampling capability that allows the user to specify any 

integer sampling rate from 20 kSamples/s up to 50 MSamples/s. The samples are 

in I/Q form. The term I/Q data is used throughout this thesis as a shorthand for 

the analytic signal or complex baseband representation. Any band-limited signal 

can be represented as the product o f a sinusoidal complex exponential carrier and 

a complex baseband signal (Burr, 2001, pp. 16-19).

The specification o f such instmments has been driven, to a very large extent, by

the need to test communications equipment. Thus the wide range o f measurement
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bandwidths available reflects the range o f signal bandwidths that are encountered 

in development and test situations. Modem commercial products, such as the 

"WiFi" equipment conforming to IEEE 802.11 Wireless Local Area Network 

standards, have signal bandwidths over 20 MHz. At the same time there are still 

many narrow band signals, often based on 12.5 kHz bandwidths.

It is not just the signal bandwidth that varies widely, however; it is also the time 

scales over which features o f communications protocols are to be seen. As an 

example, consider the time structures o f the Terrestrial Trunked Radio (TETRA) 

standard shown in the table below (Stavroulakis, 2007, p. 192). This protocol 

exhibits stmctures at five main levels over six orders o f magnitude. These levels 

of complexity are seen in many other modem protocols.

Hyperffame duration = 6 1.2s Hyperframe rate = 0.0163 Hz

Multiframe duration = 1.02 s Multiframe rate = 0.98 Hz

Frame duration = 56.67 ms Frame rate = 17.65 Hz

Slot duration = 14.17 ms Slot rate = 70.59 Hz

Symbol duration = 55.56 (is Symbol rate = 18  kHz

Table 3. Periodicities in the TETRA protocol.

The equipment exists to allow very accurate measurements to be made o f any one 

of the parameters and this is indeed done as part of development and test by the 

product manufacturers. Such measurements are, in a spectmm monitoring 

application, affected by many factors including channel effects and component 

ageing. The accuracy achievable in practice outside the laboratory can therefore 

often be limited by factors outside the control o f the receiver designer.
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A practical ASR system should be able to recognise any signal type in a robust 

manner. When considering the sample rate of the receiver and taking into account 

the issues of large time scales, this leads to a problem of representation.

In order to bound the problem further we can consider the timescale parameters of  

typical modulation schemes. Figure 13 is a histogram o f the lengths o f time 

domain features compiled from modulations in use today (see Appendix E for 

source data). It clearly shows the spread o f timescales that occur in real world 

signals.

-8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 

logio(Duration in seconds)

Figure 13. Histogram of time feature lengths in common modulations.

Returning to the capabilities o f the Rohde & Schwarz FSQ26 spectrum analyser 

mentioned above, the shortest feature in time to be analysed, dictated by the 

50 MSamples/s rate will be in the order of 20 ns. Using a single I/Q buffer of 512 

kSamples and the slowest sample rate o f 20 kSamples/s leads to an upper limit on
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the feature time scale o f 26.2 s. This receiver can measure nearly all the time 

scales o f interest, but would not be able to measure the longest intervals.

Processing such a wide range o f parameters within a single algorithm leads to 

excessive demands on memory and processor resources. As an example consider 

the calculation o f a Spectral Correlation Function (SCF) for ten orders o f  

magnitude. This would imply a matrix with 1020 elements, which would be 

impractical to create, manipulate and store with current computing technology 

(Wagstaff, 2008).

There are three main approaches one can follow to avoid this problem:

a) Use a set o f sample rate bands, which is a pragmatic solution. It does 

however mean that the ASR system has to be separately trained for all 

possible modulations in all the bands. The inherent weakness o f this 

approach can be seen by considering how a wide bandwidth signal might 

appear when viewed in a narrow band width analysis band. One such 

example is given by Wagstaff and Merricks (2006) in which an Ultra Wide 

Band (UWB) source was analysed with relatively narrow bandwidths and 

the suppression o f significant features was clearly demonstrated. In general 

it will be difficult to train an ASR system to recognise signals when the 

receiver bandwidth is not well matched to the signal bandwidth as features 

will not be clearly visible;

b) Identify the signal bandwidth and reduce the capture bandwidth down to 

that o f the signal. This is the approach adopted by Hachemani et al (2007), 

who use an iterative reduction o f the captured bandwidth down to the

Page 61 o f 376



Adrian Wagstaff

bandwidth of the signal of interest. This approach will work well when the 

signal bandwidth can be measured easily and when there are no 

complications due to the presence o f interferers;

c) Use a representation that is non-linear so that the time resolution varies at 

different time scales. An algorithm that handles such a representation 

would be attractive as it would easily scale to different bandwidths.

The first two approaches assume that the received signal can be well-matched to 

the receiver in all cases. It is further assumed that some sort of segmentation 

process will ensure that this is the case. Segmentation is introduced here as a 

conceptual processing stage in which the centre frequency and bandwidth o f the 

receiver and the time duration o f the signal capture are arranged such that just one 

signal type enters the rest of the identification chain. This is a non-trivial 

problem, especially where interference is unavoidable. If one has no control over 

the interference (the usual case) then the design of signal separation algorithms 

appears to be a formidable obstacle.

Given that perfect segmentation may not be achievable in all cases and that 

devising suitable algorithms is non-trivial, it is worth considering alternative 

representations that are less reliant on perfect signal isolation by the segmentation 

process. There is a motivation, therefore, for trying to find a non-linear time 

representation that solves some o f the problems encountered with linear 

representations.
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One approach to dealing with the problem has been proposed by the author by 

means o f a logarithmic form of the cyclic frequency domain profile as part o f this 

Ph.D. work (Wagstaff, 2008). This technique was devised to allow narrow band 

signals to be analysed for cyclostationary features without unduly increasing the 

processing required. The alternative would be to employ a segmentation function 

and resample narrow band signals prior to cyclostationary processing. The 

advantage o f the proposed technique is that it does not require the signal to be 

centred in frequency as part o f segmentation. As the cyclostationary processing 

removes much o f the additive noise, the proposed technique offers the potential 

for improving the feature detection performance at low signal to noise ratios. 

More detail on this specific algorithm is given in section 4.2.

2.3.2 New signal types

The world o f radio communications has been changing rapidly over the last few 

decades. New signal types continually appear and this trend does not seem to be 

abating.

Table 4 below lists various radio system types ordered by the decade in which 

they were first introduced. It is not an exhaustive list, but does serve to illustrate 

the rate at which new systems have been developed. It is clear that there has been 

a rapid development o f new systems that started in the 1980s and has continued 

ever since. What is not clear, however, is whether this trend will continue and for 

how long.
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What the list below does not show, however, is that many o f the systems are now 

obsolete, so that there are not as many systems deployed at any one time as it 

would appear. It also does not show the many proprietary radio systems that have 

been deployed and continue to be developed. It is highly likely that a large 

number of systems have been developed and used but not well advertised, either 

for commercial or defence security reasons.

The main problem for recognition systems is that they have to be updated as new 

systems appear and old ones become obsolete. There has to be a mechanism for 

propagating the knowledge about new technologies to devices already in use. It is 

natural to think in terms o f upgrading via the Iiitemet in the same way that 

software such as anti-virus programs and operating systems are kept current via 

periodic updates.

On the reasonable assumption that new signal types will continue to appear for 

some years to come and that no one system can ever be completely up-to-date, 

then there is always some probability that a signal will be seen that must be 

classified as unknown. This particular facet o f the signal recognition problem is 

not well addressed in the literature. The processing architecture should 

incorporate the possibility o f encountering an unknown signal type, for not to do 

so would inevitably lead to misclassification.
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Decade Systems introduced

1930-39 AM broadcast FM broadcast Walkie-Talkie

1940-49 Citizens' Band MTS NTSC

1950-59 NTSC RS-170a

1960-69 ARP IMTS OLT

PAL SECAM

1970-79 Golay pager MTD NMT

1980-89 AMTS AMPS DAB

DECT GSM Jaguar V

Mobitex NICAM PAS

POCSAG PRC-117 SINCGARS

1990-99 APOC CDPD DataTAC

DVB-S DVB-T ERMES

Flex GPRS iDEN

inFlexion IS-54 IS-95

IS-136 pACT PCS

PDC PHS ReFLEX

TETRA WiFi 802.1 la/b Z-Wave

2000 - 2009 6I0WPAN ATSC Bluetooth

DVB-H DVB-SH DVB-T2

EDGE E-UTRA FOMA

GAN(UMA) HSPA+ iBurst

Insteon LTE TD-CDMA

Wibree WiBro WiDEN

WiFi 802.1 lg/n WiMAX Zigbee

Table 4. Brief timeline of radio system types (N.B. Not an exhaustive list)
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2.3.3 Noise

As discussed in section 2.2.4, there are many phenomena that introduce noise into 

the received signal, including lightning, solar radiation and man-made noise. As 

the received signal strength drops compared to the background noise level the 

probability of misrecognition increases. Researchers understand this and are 

always looking for improvements to recognition algorithms that improve the 

performance (i.e. reduce the number of misrecognitions) at low Signal to Noise 

Ratio (SNR).

2.3.4 Channel effects

As well as additive noise, the received signal will also suffer the effects of the 

channel through which it passes (section 2.2.5). When a receiver knows what 

signal to expect it can perform equalisation and matched filtering to counter the 

effects of the channel. A recognition system may not have such a priori 

knowledge and so may have to interpret a received signal's characteristics without, 

in the first instance, being able to compensate for channel impairments. 

Alternatively, blind estimation of the channel characteristics can be carried out to 

perform equalisation within the ASR processing.

Lay and Polydoros (1995) evaluated an algorithm called Per-Survivor Processing 

for blind channel estimation to handle the ISI due to a band-limited channel. The 

algorithm was successfully combined with two modulation classification tests. 

Boutte and Santhanam (2008) also considered the effects of ISI and showed that it 

skewed feature statistics and increased the effective noise power seen by the 

recognition system.
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2.3.5 Interference

When two or more signals overlap in time and/or frequency then they are 

interfering with each other. The recognition system has to deal with this and still 

provide accurate recognition wherever possible. It is the nature o f many real- 

world problems that automatic recognition is most needed when interference 

conditions exist, as human operators find it difficult to separate the signals by eye, 

but need assistance in resolving the interference problem.

Interference in some bands is now rife and should be considered as unavoidable in 

the Licence-Exempt bands. A study for Ofcom by the author showed clearly that 

interference in the 2.4 GHz ISM band is widespread and worsens dramatically in 

urban areas (Wagstaff, 2009).

Dealing with the effects o f interference on ASR systems is an emerging area for 

research. Zaerin et al (2009) proposed a feature based on cumulants that would 

be more robust in the presence o f interference between different modulation types.

Currently there is no generally accepted approach to handling interference in ASR 

systems. This thesis deals with some o f the issues concerned with evolving a 

suitable approach.

2.4 Review of signal recognition methods

The last few decades have seen considerable research into ASR. By identifying 

the modulation types o f communications signals it is possible to provide much of
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the functionality needed by field staff when trying to interpret the outputs of radio 

receivers used in signal interception.

This section reviews some of the methods that have been applied to the ASR task. 

The emphasis is on recognising the modulation characteristics o f communication 

signals, as that is where the bulk o f the research has concentrated. Other signals, 

such as impulsive noise and other interferers, have not been addressed at length in 

the published literature.

When discussing ASR it is difficult to be exhaustive as it is such a wide ranging 

discipline. ASR as a research discipline can be traced back to about 1980 and 

particularly the work on cyclostationarity by Gardner (1986a). This coincided 

with the introduction of the first modem digital communications systems using 

modulations such as FSK and Pulse Amplitude Modulation (PAM).

Work has progressed rapidly with an increasing number o f journal articles and 

conference papers. Figure 14 shows a graph o f the number of articles and papers 

published each year, based on a survey by the author o f 300 publications in the 

IEEE Xplore and Science Direct databases. This rise has coincided with 

development of software defined radio and cognitive radio technologies and does 

not currently shown any sign of abating.
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Figure 14. The number of publications on automatic signal recognition is increasing.

There are a great many types o f algorithm in the literature, but it is possible to 

group them broadly by type. Section 4.3 proposes a detailed taxonomy for these 

algorithms, but at this stage it is sufficient to group them as follows:

• Segmentation methods (section 2.4.1);

• Transformation methods (section 2.4.2);

® Feature extraction methods (section 2.4.3);

• Decision methods (section 2.4.4).

This discussion concentrates on feature-based methods, as this is by far the most 

researched class o f methods. Recognition can, in principle at least, be 

accomplished by other approaches. In a limited environment, for example, it is 

possible to apply all known demodulation and decoding algorithms and inspect 

the outputs to identify the communication system type. Another example is that 

of preparing a library o f all possible signals against which the received signal 

samples can be compared. Such alternative approaches are conceptually possible 

but are not discussed in the research literature as they are seen as generally
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impractical. The feature-based methods are widely applicable and practical to 

implement in real ASR systems.

2.4.1 Segmentation methods

In manually operated systems, the segmentation can be performed wholly by the 

user or can be semi-automated. As a minimum, the segmentation must provide a 

series of waveform samples, either by buffering the input signal or continuously 

feeding samples to other activities. It may, additionally, apply filtering in order to 

restrict the bandwidth o f the signal to be analysed and resampling in order to 

match the sample rate to the signal bandwidth.

There are three problems to be solved by any segmentation system:

1. What are the constituent signals that need to be separated?

2. What algorithm should be used to separate them?

3. Has the segmentation been successful?

To date the author has not found any research results that deal with all of these 

questions, but elements are there, particularly with regard to the second question. 

In automated systems, segmentation can be performed in the time domain, 

frequency domain or both. For example, analysis of a power spectral density plot 

could allow the segmentation process to select a signal based on its centre 

frequency and bandwidth.
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The major functional groups within the segmentation processing are:

1. Time domain segmentation to isolate one or more bursts o f signal 

corresponding to a single emitter;

2. Frequency domain segmentation (filtering) to remove any artefacts o f the 

analogue receiver processing and to isolate a single emitter for analysis;

3. Code domain segmentation is appropriate for those signals that are coded;

4. Resampling to match the sample rate to the bandwidth o f the received signal 

or to align the sample rate with a multiple o f the symbol rate o f the received 

signal. Resampling is a well-documented application o f multirate digital 

signal processing (Ifeachor and Jervis, 2002, pp. 579-640);

5. Removing any centre frequency offset caused by mistuning o f the receiver. 

This process is often referred to as 'despinning', because it removes the 

rotation over time o f the I/Q constellation which is caused by the centre 

frequency offset.

Automatic segmentation could depend on information from the other activities. 

To do this may require more advanced techniques than time/frequency 

segmentation.

More complex methods, such as FREquency Shift (FRESH) filtering may be 

necessary when multiple signals are overlapped in time and/or frequency. FRESH 

filtering requires an adaptive process and can be used for single receiver or 

multiple receiver systems.
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If more than one receiver is available then there are techniques (such as 

Independent Component Analysis and Principal Component Analysis) available to 

separate the signal(s) o f interest. These are not expanded on here.

Time domain segmentation

Splitting received signals into time domain bursts can be performed simply by 

thresholding the instantaneous amplitude. More complex signal detection 

techniques could be used for this task, such as cross-correlation (Ifeachor and 

Jervis, 2002, pp. 242-273), the Wigner-Ville distribution (Pace, 2004, pp. 222- 

235) and subspace methods (Wagstaff, 2007, Appendix A, pp. 14-32). This is a 

very diverse and extensive area with many techniques optimised for detecting 

specific types of signal. This subject area is not expanded further here.

Frequency domain segmentation

When it is clear that the signal o f interest can be separated from others in the 

frequency domain, then it is a straightforward process to produce a filter that can 

isolate the signal o f interest. The design of filters is covered extensively in the 

signal processing literature (Lynn, 1984, pp. 173-216), (Ifeachor and Jervis, 2002, 

pp. 317-341) and so is not addressed further here.

FRESH filtering

Time domain segmentation and frequency domain filtering are useful when the 

signal o f interest is not overlapped by another signal in time or frequency 

respectively. When the signals are overlapped then it becomes necessary to look 

for other ways o f performing the segmentation.
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One such approach is FREquency SHift (FRESH) filtering, which was introduced 

by Gardner as part o f his work on cyclostationarity (Gardner, 1993). The FRESH 

filter is one that exploits the cyclostationarity characteristics o f a signal to remove 

unwanted interference and noise (Adlard, 2000) and does so by varying the filter 

definition in a periodic manner.

The specific form o f FRESH filtering introduced by Gardner for complex signals 

is called Linear-Conjugate-Linear (LCL) filtering, the general form o f which is to 

apply time-invariant filters to a number o f frequency shifted versions o f the input 

signal and then combine the outputs o f the filters to arrive at the estimate o f the 

signal o f interest.

The form of the filter obtained for an estimate of a desired signal, d(t), with an 

input signal, x(t), is:

M N

k t )  = 2X  (0 ® *(0ei2MV +1>„ (0 ® x (t)e ‘2̂ "'
m=\ n=l

(2)

This implementation is illustrated in Figure 15 which shows two sets o f time- 

invariant filters. The upper set o f filters operates on the non-conjugated, 

frequency-shifted version o f the input signal. The lower set o f filters operates on 

the conjugated, frequency-shifted version. The outputs o f all the filters are then 

summed to create the estimate o f the signal o f interest.
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Time-invariant filter, a,

x{t) d(t)

Time-invariant filter, bn

Figure 15. FRESH filter implementation as a bank of time-invariant filters.

The numbers o f filters, M  and N , depend on the number o f cyclic frequencies, 0Cm 

and /?„, present in the signal o f interest. To arrive at the filters themselves, am{i) 

and bm(t), it is necessary to use an optimisation procedure, which is closely related 

to Wiener filtering (Lynn, 1984, pp. 224-228). Gardner (1993) achieves this by 

minimising the time-averaged squared error between the estimate o f the desired 

signal o f interest and the actual signal of interest. The adaptation can be carried 

out using methods such as the least mean squares algorithm or recursive least 

squares algorithm (Ifeachor and Jervis, 2002, pp.654-665). The resulting process 

is called cyclic Wiener filtering and is equivalent to processing the signal with a 

series o f time-variant filters whose characteristics vary periodically with periods 

based on the cyclic frequencies o f the signal o f interest.

The segmentation methods described here are relatively simple in the sense that

they do not include sophisticated adaptation processes to handle rapidly changing,_____
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interfering radio environments. This is an area that will need more research to 

handle the challenges o f the current and future radio spectrum.

2.4.2 Transformation methods

It is common for received signal data to be transformed into one or more different 

representations in an ASR system before features are extracted that can be used 

for identification. This is because many features are not readily identifiable from 

the raw time domain data. A common example is frequency, which can be 

calculated from time domain data but is more easily extracted once converted into 

a representation such as the power spectral density estimate.

It is possible to group the many techniques available into either demodulation 

methods or periodicity transform methods. Figure 16 shows this taxonomy of the 

types o f transformation processing.

Transformation

Periodicity transformsDemodulation

Amplitude demodulation Power spectral density

Phase demodulation Spectral correlation

Constellation analysis Higher order statistics

Spreading code estimation Recurrence plots

Zero crossing Higher order spectra

Figure 16. Taxonomy of Transformation methods.
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There are very many ways o f looking for periodicity and they tend to be generic, 

so such techniques can be applied in a wide variety o f circumstances. Listed in 

Figure 16 are power spectral density, spectral correlation, higher order statistics, 

recurrence plots and higher order spectra.

More specialised than periodicity detectors are the demodulation methods, such as 

the amplitude, frequency and phase demodulators, constellation analysis, 

spreading code estimation and zero crossing methods.

2.4.2.1 Demodulation

Demodulation methods are the 'brute force' approach to ASR. Working on the 

assumption that an information source has been deliberately modulated before 

transmission, one can attempt to perform the demodulation and recover the 

original information. When the spectrum has only a small number o f simple 

modulations present then it is a viable approach. As the spectrum becomes more 

complex it becomes more difficult to implement. Without a priori knowledge o f  

how an information source has been modulated, one is forced to resort to brute 

force search to find the correct demodulator. This approach also assumes that one 

can recognise that demodulation has been successful, which may not always be 

the case.

Even without knowledge of the modulation scheme it can be useful to attempt a 

demodulation. Some o f the simple demodulators, such as amplitude, phase and 

frequency demodulation (described in the following sections), reveal useful 

information about many signal types in a generic way. It is therefore practical to
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use these techniques to reduce the search space. Demodulators used in this way 

are transforming the original signal into a form in which feature extraction is more 

effective.

Amplitude demodulation

A signal can have intentional amplitude modulation, in which case amplitude 

demodulation will reveal the information content. In ASR the information content 

is not o f particular interest, rather one wants to find features o f the signal that can 

lead to identification.

In ASR amplitude demodulation can reveal the start and end o f signal bursts and 

also allow the detection layer to examine how flat the signal is in the time domain. 

Signals with first order cyclostationarity, in particular, will exhibit periodicity in 

their amplitude so obtaining their amplitude envelopes will allow the periodicity 

to be measured.

Amplitude demodulation is a straightforward operation, especially in modem 

receivers that output signals directly in their complex (I/Q) representation. Given 

a complex, baseband, signal sample, x(i), its instantaneous amplitude, a(i), is 

given by:

a(i) = \x(ij

(3)

It is also convenient to define an average o f this parameter. Azzouz and Nandi 

(1996, p. 46) defined the normalised, centred, instantaneous amplitude as:
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ma
(4)

where ma is the average o f a over an analysis segment o f length, Ns.

Nr1

= —

(5)

m a
N  ^ “71 v S 1=1

Phase demodulation

Phase demodulation is particularly germane to those signal types in which some, 

or all, o f the information is encoded in the phase domain.

As with amplitude demodulation, phase demodulation is relatively straightforward 

if  the received signal is in complex baseband representation. The instantaneous 

phase, of a signal sample, xn, is given by:

_ /  R e(x„)'
(j)n =  tan

(6)

It is normally assumed that the arctangent operation produces a wrapped phase 

variable, <pw.

Frequency demodulation

Instantaneous frequency, co(t), is defined as the differential o f phase with respect 

to time (Cohen, 1993), i.e.:

4 t )  =  d/d t 0 j t )

(7)

where (f)uw is the unwrapped instantaneous phase.
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For modulations that encode information in the frequency domain, i.e. FM and 

FSK, the demodulation process is an estimation o f the instantaneous frequency.

Constellation analysis

Constellation analysis is an important subclass o f signal recognition methods. 

This section looks at various types o f constellation analysis used by different 

researchers. It will be seen that different representations have been investigated 

with advantages being claimed for each type o f representation.

Digital transmission techniques are now commonplace and many techniques have 

been developed to classify the various modulation types in terms o f their 

constellation type and size. Such algorithms will typically facilitate the 

recognition o f a number o f constellation types such as BPSK, QPSK and QAM. 

As an example, the algorithms considered by Edinger et al (2007) sought to 

classify 4-QAM, 16-QAM and 64-QAM.

Constellation analysis algorithms usually assume that symbol timing has already 

been achieved, so that an estimate o f the constellation is already available. A 

cyclostationary technique can be used to extract the periodicity corresponding to 

the symbol rate. Synchronising to the symbol rate, removing the centre frequency 

offset and aligning the sample time to the signal phase produces a Coherent 

Synchronous Environment (CSE) (Donoho and Huo, 1997, p. 133). Achieving a 

CSE allows a constellation diagram to be drawn, which, in the absence o f noise 

and/or interference, would clearly show the structure o f the modulation. Equally,
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failure to achieve a perfect CSE is highly likely to adversely impact the 

performance o f an ASR technique that depends on that assumption.

There is a wide variety of algorithms used for constellation analysis. These can 

be broadly grouped by the different representations used:

® Constellation diagram representation;

• Radial probability density representation;

« Radon transform representation;

® Power moment matrix representation;

® Hellinger distance representation.

Each o f these representations assumes that a constellation diagram representation 

exists, but transformations are applied to improve the analysis in some way (e.g. 

increasing robustness, decreasing processing time).

Constellation Diagram Representation

Digital modulations, such as BPSK and QPSK can be conveniently represented 

for many purposes via a constellation diagram. This is a plot o f the complex part 

of the I/Q signal versus the real part (Burr, 2001, p. 19). If it is known that a signal 

can be compactly represented in this way, then analysis o f the constellation 

diagram can reveal information about the modulation type.

The constellation diagram conveniently removes the information in the signal by 

integrating the amplitudes and phases at each o f the symbol periods over multiple 

symbols. Hence, if  one is interested purely in determining the type o f modulation 

being used, then the constellation diagram is a natural choice o f representation.
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Analysis methods using this representation tend to be based on either decision- 

theory or clustering.

A two-dimensional histogram of samples on the I/Q plane can be treated as a joint 

probability density function (PDF). With a model o f the PDFs o f typical 

modulation types, the Bayesian detector methods can be used to determine when a 

modulation is present. This is the basis o f a large family o f techniques that 

includes the following algorithms, all o f which can be considered statistically 

optimal in some sense:

• quasi Log-Likelihood Ratio (qLLR) (Kim and Polydoros, 1988);

• Sequential Probability Ratio Test (SPRT) (Lin and Kuo, 1996);

• Average Likelihood Ratio Test (ALRT) (Lay and Polydoros, 1995);

• Generalised Likelihood Ratio Test (GLRT) (Lay and Polydoros, 1995);

• Hybrid Likelihood Ratio Test (HLRT) (Tadaion eta l, 2005);

• Differential processing (Shi and Karasawa, 2008).

The identification of groups o f samples on the I/Q plane can be thought o f as a 

clustering problem. Each point o f a noisy constellation diagram has a degree o f  

membership to each cluster. In this view the clusters are the areas on the 

constellation diagram corresponding to each o f the main constellation vertices. 

So, for example, a QPSK signal would have four vertices on the constellation 

diagram, which, after WGN has been added, become four clusters. As the SNR 

decreases the clusters grow larger and start to merge.

Page 81 o f 376



Adrian Wagstaff

Mobasseri (1999) treated the constellation diagram as the result of a binomial 

probability distribution contaminated by WGN and then defined a fuzzy-c means 

classifier to group the points. That algorithm then used a Maximum Likelihood 

(ML) detector following the clustering process.

The constellation diagram representation is also affected by IS I due to multipath 

or band-limited channels. Such effects are more easily visualised in terms o f the 

eye diagram (Mathworks, 2011) rather than the constellation diagram. If the 

channel generates IS I as well as noise, then ASR is at a disadvantage compared to 

communications receivers, because, without prior knowledge o f the modulation 

type or blind channel estimation, it is not possible to use an equalisation filter 

(Ziemer and Tranter, 1995, p. 503) to remove the ISI effects.

Radial probability density representation

Wood et al (1990) sought to remove dependency on knowledge of the carrier 

frequency by looking only at the distance of each sample from the origin of the 

I/Q plane. This approach leads to a radial PDF which can be compared against 

the PDFs o f candidate modulation types.

A similar approach was used by Soliman and Hsue (1992), who generalised the 

method by considering moments up to the eighth order. They concluded that 

using higher order moments improved the performance o f such schemes, but that 

there is an optimum order beyond which performance will start to degrade.
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Radon transform representation

The Radon transform (van Ginkel et al, 2004) is a mathematical technique 

typically applied as a method for searching for lines in digital images. The 

transform converts a line in an image into a peak at a single point on a two- 

dimensional histogram. Detecting a peak in the Radon transform output is 

therefore equivalent to, but simpler than, looking for a line in the image.

Whilst constellations are not made up o f lines, they are typically composed o f a 

number o f points arranged in a regular grid pattern. The Radon transform treats 

the grid pattern as a series o f parallel and orthogonal lines, then represents those 

lines in terms o f their angles and distances from the origin o f the I/Q plane. There 

is a simplification here, as the lines are parallel and are therefore at one o f two 

orthogonal angles. The Radon transform, therefore, projects the constellation 

from I/Q space into a simpler Cartesian plane.

Wood et al (1988) applied the Radon transform to the task o f constellation 

analysis. This initial analysis showed the technique to be robust for a range o f  

QAM constellations in the presence o f WGN, incomplete equalisation and carrier 

removal.

Wood et al (1990) then compared this method to a method based on the radial 

probability density function. They concluded that the Radon transform method is 

the more effective method at low SNRs when the carrier frequency is well known. 

This caveat is important, as the Radon transform method depends on detecting
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points in the I/Q plane. Any error in the carrier frequency causes the constellation 

to rotate and severely limits the effectiveness o f any method that depends on 

finding the individual points.

Wood and Treichler (1994) revisited the Radon transform method with a view to 

improving its performance in the presence of large carrier frequency uncertainties. 

Their approach was to sweep a range o f carrier frequency offsets and search for 

that which gave the best fit. Their conclusion highlights the main problem of 

constellation-based recognition algorithms, which is that they need a priori 

knowledge of key parameters. Without that knowledge, one is forced to use 

search algorithms to explore the parameter space looking for parameters that will 

allow the constellation diagram to be constructed correctly.

Power Moment Matrix Representation

Hero et al (1997) presented the power moment method, which was an image 

analysis technique for problems such as character recognition. This method was 

similar to the invariant moments approach (Li, 1992), but more suited to I/Q plane 

constellations. The power moment method relied on forming a matrix from 

higher order moments of the image and performing subspace decomposition.

Hero III and Hadinejad-Mahram (1998) took the constellation analysis method of  

Soliman and Hsue (1992) and generalised it using the power moment method. 

Soliman and Hsue’s algorithm for classifying PSK modulated signals had relied 

on forming histograms o f the phases plotted on the constellation diagram and then 

calculating moments of those histograms, but only up to the eighth order moment.

Page 84 o f 376



Adrian Wagstaff

The new method of Hero III and Hadinejad-Mahram (1998) relied on computing a 

large matrix containing more than 100 joint phase and magnitude moments. The 

resulting matrix could be denoised by eigenanalysis and was invariant to 

amplitude changes and phase rotations.

Hellinger Distance Representation

The Hellinger distance (Beran, 1977)(Gibbs and Su, 2002) is a statistical measure 

of the difference between probability distributions that has shown to be both 

robust and efficient (Lindsay, 1994).

Donoho and Huo (1997) proposed using the Hellinger distance in constellation 

recognition because it would be more robust than ML methods but would achieve 

very nearly the same classification performance. The method assumes a Coherent 

Synchronous Environment (CSE) and treats histograms on the I/Q plane as PDFs. 

The PDF o f a received signal is compared with the PDFs o f candidate 

constellations using a norm, which is the Hellinger distance. Thus the comparison 

with candidates is reduced to a simple comparison o f distances.

Huo and Donoho (1998) developed the Hellinger distance method further. Their 

method was about ten times faster than a comparable ML approach and was 

particularly suitable when there were two candidate digital modulations. To 

extend the method to more than two modulations a hierarchical classification 

scheme was employed.
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In this section it has been shown that constellation analysis has been a major 

research area with many varied algorithmic approaches being investigated. Some 

of the methods require very accurate removal of frequency and phase errors, so 

that the constellation diagram is very clear before analysis commences. Other 

techniques, such as the power moment matrix method, have been designed to 

tolerate errors in the frequency and phase estimation. The constellation diagram 

is such an important means of portraying digital modulations that the author 

anticipates this representation to continue to play a major role in future automatic 

signal recognition systems.

Spreading code estimation

Spread spectrum modulations originated in military communications where they 

offer reduced probability o f interception by hostile forces. Any technique that 

makes a radio signal difficult to detect is likely to make the ASR task more 

difficult. These spread spectrum modulations are now very widely used in non

defence applications, as they allow multiple radios to transmit at relatively low 

power and without interfering with each other. By allocating different spreading 

codes to different transmitters, several users can effectively share the same 

frequency band and not jam each others' communications.

The military need for demodulating low probability of intercept communications 

has driven the technology for detecting spread spectrum radio links and also for 

recovering the spreading code (or 'chip code'). Once the chip rate and spreading 

code are known, it is possible to recover the unspread signal and hence 

demodulate it for interception and intelligence extraction.
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Bouder and Burel (2000) presented a technique that used a neural network to 

estimate a spreading code. They tested this method on a signal that had been 

spread with a Gold code, which is a spreading code with good autocorrelation 

properties (Gold, 1967). They successfully recovered the code at a signal to noise 

ratio of -5 dB. Their method relied on a pre-processing stage in which it was 

assumed that the symbol rate was already known and they asserted that this could 

be achieved via cyclostationarity analysis.

Zero crossing sampling

Zero crossing sampling was a popular technique in earlier systems as it required 

less processing than, for example, I/Q demodulation. A detector circuit simply 

records the time at which an input (real) signal crosses the zero line. Despite 

being a relatively simple sampling method, it can provide very useful statistics for 

signal recognition. If a signal has already been sampled using amplitude 

digitisation, then the zero crossing version can be recreated if  needed.

Hsue and Soliman (1989) proposed and investigated a relatively sophisticated 

modulation classification system using the output o f a zero crossing sampler. 

Their system was tested at 15 dB SNR and successfully discriminated a range of 

PSK and FSK modulations. Furthermore they described how their system could 

be implemented in a parallel processor to further speed up the process o f  

analysing a signal. The method consists o f calculating a number o f statistical 

features from the intervals between zero crossings and estimates o f the symbol 

transition times. This technique is covered in more detail in section 4.3.6.
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2.4.2.2 Periodicity transforms

Many of the representations available are based on trying to reveal periodicity in 

the received signal. This section describes power spectral density, spectral 

correlation, higher order statistics, recurrence plots and higher order spectra. 

These techniques all look for periodicity, but in very different ways and with 

different definitions o f what periodicity is.

Power spectral density

The Power Spectral Density (PSD) reveals the frequency domain structure of a 

signal. Measurements that can be made in the frequency domain include 

estimates o f a signal's:

• centre frequency (or frequencies);

• bandwidth;

• number of peaks.

The centre frequency can be a good indicator of a signal's type, as many signals 

are transmitted on known frequencies in defined geographical areas. Similarly the 

bandwidth is useful as it is possible to eliminate many possible alternatives early 

in the decision process by knowing the bandwidth. The number of peaks is 

relevant to FSK signals that exhibit clear peaks in the PSD. Frequency hopping 

signals also result in multiple peaks, but these are usually clearly separated in time 

and result in quite different PSD patterns from FSK signals.

It is straightforward to estimate the PSD in a practical receiver using any of the 

FFT-based nonparametric techniques (Ifeachor and Jervis, 2002, p. 687-707) or
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by storing the amplitude demodulated output of a scanning receiver (which is the 

principle used by the spectrum analyser).

As well as nonparametric PSD estimation via FFT-based methods, parametric 

estimation is also an option. Typically parametric methods provide better 

resolution than nonparametric methods but depend on having an accurate model 

of the process creating the signal (Ifeachor and Jervis, 2002, p. 682). Both 

approaches have their advantages and disadvantages and the system designer 

needs to understand these in order to obtain satisfactory estimates o f the PSD.

Ghani and Lamontagne (1993) compared the periodogram with the Welch 

periodogram. Their analysis also compared recognition performance using PSD 

estimators to that with a bispectrum estimator, but the Welch PSD estimator was 

the best performing algorithm.

Ghani and Lamontagne concluded that the Welch periodogram was the better 

approach when trying to discriminate between AM, FM, ASK, QPSK, SSB-USB, 

SSB-LSB, two types o f FSK, BPSK and CW. The reason for preferring the 

Welch periodogram was that it gives less variability in the PSD estimates 

compared to the periodogram without averaging. Interestingly they observed that 

the sidelobes o f the PSD were important in classifying signal type correctly. In 

order to make the classification decision these researchers compared a k-Nearest 

Neighbour classifier with an Artificial Neural Network (ANN). They concluded 

that, although it was slow to train, the ANN gave lower error rates and was faster 

in operation than the k-Nearest Neighbour method.
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Rather than calculating the PSD, Assaleh et al (1992) modelled the signal as an 

autoregressive sequence. A second order model allowed them to estimate the 

instantaneous frequency and bandwidth o f the signal. The mean and standard 

deviation of these parameters were then used for recognition using a decision tree. 

These authors modelled the signal using a z-domain polynomial o f the form:

1 — axz~l —a 2 z ~2 — — aNz~N

(8)

The poles o f this polynomial were then used to estimate the instantaneous 

frequency and bandwidth. In their case, Assaleh et al (1992, p.713) chose to 

assume that there was only one signal present and that a second order polynomial 

was therefore appropriate. With such a simplification, there is one pair of 

complex poles in the z-domain and just one o f these is illustrated in Figure 17. 

The pole, Z, can be described in polar form by its magnitude, M  and angle, 9.

Im

Re

Unit circle1

Figure 17. Instantaneous frequency and bandwidth estimation via a single z-domain 

pole representing the spectral peak.
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Given the above description of the spectral peak by a pole in the z-domain and a 

sampling frequency o f f s, the instantaneous frequency, f  and bandwidth, b, are 

given by:

2 K I n vRe(Z)y

(9)

i  = - A 10 logI0 
n

i
Im(Z) + Re(Z) 2

V
(10)

Assaleh ef al (1992) used the time-averaged statistics o f these two parameters as 

inputs to a decision tree.

Hachemani et al (2007) also used the bandwidth o f a signal as one o f the 

recognition discriminators. To do this, they first calculated the PSD. The 

bandwidth was then determined using an artificial neural network trained directly 

on PSD examples; there was no intermediate step at which the bandwidth was 

explicitly measured.

Spectral correlation

Spectral correlation is typically measured using the techniques o f  

cyclostationarity. It is a very significant property as many man-made signals 

display some form of repetition that can be seen as spectral correlations.

Two particular forms of detector are then considered, firstly the SCF, which is a 

generic detector o f second-order cyclostationary features. Then, the Delay-
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Multiply Detector (DMD) is described, which is a simpler mechanism for finding 

second-order cyclostationary features.

Cyclostation arity

The work o f Gardner is particularly relevant to ASR, as he worked extensively on 

the application o f cyclostationarity (CS) theory to the processing of 

communication signals and developed the theory necessary for applying 

cyclostationarity techniques to ASR (Gardner, 1986a), (Gardner, 1991). The 

cyclostationarity approach relies on detecting periodic features in the time domain 

structure of signals. Gardner formalised the concept of cyclostationarity by 

introducing the Cyclic Autocorrelation Function (CAF) and SCF. Gardner (1991) 

gives a good introduction to the concepts of cyclostationarity and describes the 

CAF and SCF in detail.

Cyclostationarity techniques have been applied widely to the problem of 

recognising communication modulation schemes. These techniques enable 

hidden periodicities in man-made and natural signals to be detected and quantified 

(Gardner et al, 1987), (Giannakis, 1999). They have therefore been applied to 

diverse problems, not only in communications, but also in radar (Gini and Greco, 

2002), (Huang and Zhou, 2006), (Pourrostam et al, 2007), marine acoustics 

(Hinich, 2000), (Amindavar and Moghaddam, 2000), mechanical engineering 

(Antoni et al, 2004), (Sabri et al 2006), (Antoni, 2007), medical science (Knaflitz 

and Bonato, 1999), (Girault et al, 2006), etc. A wide body o f research has grown 

up to exploit these cyclostationarity techniques (Serpedin et al, 2005), (Gardner et 

al, 2006). Much of the theory has been developed with communications in mind,

Page 92 of 376



Adrian Wagstaff

because such signals are man-made and frequently exhibit very strong 

cyclostationarity characteristics.

The essence o f this approach is that telecommunications signals nearly always 

have an element o f periodicity and frequently, have several different periods due 

to the different layers of the protocol stack (modulation, coding, access control, 

etc.). Sometimes these periodicities manifest themselves as discrete lines in the 

PSD, but it is frequently the case that there are no lines in the PSD, rather there 

are symmetries in the frequency domain. These symmetries can be detected by a 

number o f related methods, principally:

• Lines in the Autocorrelation Function (ACF);

® Spectral lines in the spectrum of some non-linear transform o f the signal (e.g. 

squaring);

® Spectral lines in the cross-spectrum of the signal and a time-delayed version of 

itself.

In cyclostationarity"theory the CAF and SCF are the most general-purpose o f the 

algorithms that can be employed. They give complementary ways o f analysing 

received signals and can be considered analogous to the ACF and PSD.

Gardner (1991) defined the types of periodicity listed in Table 5, namely first- 

order, hidden and second-order periodicities. Subjectively one can think o f first- 

order periodicity as being more obvious or 'stronger' than the hidden periodicities. 

It is the periodicity we are used to encountering in a wide variety o f physical, 

oscillatory systems.
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Gardner's approach was to say that there are other forms o f periodicity and that 

these are 'hidden' in the sense that they are not revealed by the techniques 

normally used for finding periodicity. Hidden periodicity does not produce 

discrete lines in the PSD.

Gardner went further than this and defined a specific type o f hidden periodicity, 

which he called second-order periodicity. Second-order periodicity is only 

revealed when the signal is subject to a quadratic manipulation, such as a squaring 

function. Second order periodicity can also be thought of in terms of symmetries 

in the PSD (even though the symmetry may be difficult to see by eye).

First-order periodicity Discrete lines in the PSD estimate.

Hidden periodicity No discrete lines in the PSD estimate, but 
periodicity can be revealed by some other function.

Second-order
periodicity

A specific class o f possible hidden periodicities.

Second-order periodicity produces discrete lines in 
the cross-spectral density estimate o f the signal and 
some time-delayed version o f it.

Table 5. Summary of the types of periodicity introduced by Gardner (1991).

Gardner (1986a) based his approach to analysing second-order periodicity on the 

definition of two functions -  the CAF and the SCF. These are essentially the 

cross-spectral density estimates o f the signal for a range o f values o f the time 

delay.
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The CAF and SCF can be defined in various ways. The approach used here is 

based on Gardner's work as this is the form most suitable for analysing 

communications signals.

The definitions start with an autocorrelation estimate for the signal, x, with a 

period To. Given a time lag, r, the autocorrelation estimate at time, t, for a finite 

number o f samples, N, is given by:

K ( t ^ )  = ] \ m - r ~ — T A t  + nT„+T/2)x, (t + nT „-T/2)
N - ^ o o  Zl\ + 1 n=_N

(11)

The CAF is then given by a Fourier series expansion o f the autocorrelation 

estimate. The term a  is introduced here and is referred to as the cyclic frequency.

R:(T) = ± r [ ° R x{ t , * y a,Mdt
0

(12)

Gardner then took the Fourier transform of this to obtain the SCF:

s ? ( f ) =  ^ R ? (t ,r )e -n*dT

(13)

The CAF and SCF can also be defined without the complex conjugate operation 

in (11). There are, therefore, two different CAFs and SCFs for any complex 

signal. The CAFs and SCFs were applied by Gardner to a range o f analogue and 

digital modulations to show how different features are revealed.

The calculation o f these functions is processing-intensive, so different researchers 

have investigated fast implementations. Brown and Loomis (1993) gave a
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summary of two common methods o f calculating the SCF, namely the FFT 

Accumulation Method (FAM) and Strip Spectral Correlation Algorithm (SSCA).

Cyclostationarity is, essentially, a second order statistical method and can be 

thought o f as an extension o f the power spectral density estimate. It is reasonable 

to consider the application o f higher order statistical methods, such as the 

bispectrum and trispectrum. This avenue may need to be explored for some signal 

types if  it is necessary to look for periodicities that cannot be revealed by the 

cyclostationarity approach.

Cyclostationarity is now the dominant method in cognitive radio development. A 

number o f authors (Oner and Jondral, 2007), (Sutton et al, 2007) are developing 

cyclostationary detectors for use in practical cognitive radio systems.

Currently much o f the research emphasis is in using cyclostationarity methods as 

reliable modulation detectors for software-defined and cognitive radio (Oner and 

Jondral, 2004a), (Oner and Jondral, 2004b), (Le et al, 2005), (Kim et al 2007), 

(Maeda et al, 2007). The future success of these particular technologies depends 

on being able to design reliable wireless systems that can operate in areas of 

shared spectrum.

In many applications the cyclostationarity approach can be seen as a complement 

to statistical feature-based approaches to ASR (Le et al, 2005), (Azzouz and 

Nandi, 1996), (Lopatka and Pedzisz, 2000), (Dobre et al, 2007), (Grimaldi et al, 

2007). The cyclostationarity approach is particularly suited to the identification of
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commercial communications (in which relatively few standard protocols 

dominate) via recognition o f well-documented time domain characteristics. The 

feature-based approaches, on the other hand, yield information on the type o f  

modulation itself, thereby facilitating fully non-cooperative interception and 

demodulation.

Communications signals are, in many cases, designed for ease of detection and 

demodulation in conditions of time-varying interference and disturbance due to 

propagation. The features that assist with reception o f such signals frequently 

lead to cyclostationarity. This has facilitated the development o f detectors that 

exploit the cyclostationarity properties in order to achieve robust detection in 

unpredictable environments. Detectors based on cyclostationarity techniques 

have been designed for software-defined radio (Oner and Jondral, 2003), (Oner 

and Jondral, 2007), and also cognitive radio (Kim et al, 2007).

It has been demonstrated (Oner and Jondral, 2003, 2005 and 2007), (Kim et al, 

2007) that cyclostationarity detection can be used for older types o f modulation, 

such as Gaussian Minimum Shift Keying (GMSK) and Phase Shift Keying (PSK) 

and also newer types, such as Code Division Multiple Access (CDMA) and 

Orthogonal Frequency Division Multiplexing (OFDM).

A recent proposal (Maeda et al, 2007) has been for a spectrum sharing scheme for 

systems using OFDM modulations based on deliberately injecting 

cyclostationarity to facilitate modulation recognition.
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Form o f the SCF

Various authors present the theoretical SCF for basic modulation types. Rather 

than repeat this work here, the general form of the SCF is explained here by way 

of simple examples. Using an implementation o f the FAM in Matlab based on 

that by da Costa (1996) we can readily study the form of the SCF for different 

types o f signal.

Starting with a single complex exponential at a relative frequency o f 0.1, the SCF 

will have a single peak at that frequency and at zero a. This is shown as a surface 

plot in Figure 18(a).

In general it is easier to work with a contour plot than a surface plot. This is 

shown in Figure 18(b) for the same signal.
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(b) Contour plot

Figure 18. SCF estimate of a single complex exponential at a frequency of 0.1. 

A f= 1/32, Acx= 1/64.
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Adding a second complex exponential, this time at a frequency of 0.3 reveals the 

basic relationships o f the SCF. The contour plot for this situation is shown in 

Figure 19.

-0.4 ■

-0.8  -0.6 -0.4  -0.2 0
alpha

0.2 0.4 0.6 0.8

Figure 19. SCF estimate for the sum of two complex exponentials with frequencies of 

0.1 and 0.3. Af = 1/64, Aa= 1/128.

Here we can see that both frequencies are visible as points on the frequency axis. 

In addition to these, two new points are created, which are symmetrical about the 

frequency axis and at coordinates ( ±|f2 - fi|, (fi + fi)!! ) where fi and f2 are the 

two frequencies (0.1 and 0.3 in this example).

If we now add a third complex exponential, this time with a frequency o f 0.4, then 

we get the contour plot shown in Figure 20. This has generated three points on 

the frequency axis plus three points on each side.
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The coordinates of these off-axis points are: 

e (± |f2 - f i | , ( f i+ f 2)/2)

• (± |f3 -f2|,(f2 + f3)/2)

• (± |f3 -fi|,(fi + f3)/2)
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Figure 20. SCF estimate for the sum of three complex exponentials with frequencies 

of 0.1, 0.3 and 0.4. Af = 1/64, Aa = 1/128.

There is a relatively simple pattern that develops as frequencies are added to the 

signal and understanding this pattern is useful when interpreting the SCF. The 

off-axis points are generated one for each pair o f frequencies. There are no off- 

axis points due to three or more frequencies.

Each off-axis point has an a  coordinate that is equal to the difference of a pair of 

frequencies. It has a frequency coordinate that is the average of that pair of
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frequencies. All other properties o f the SCF can be visualised in terms o f these 

simple relationships.

Some important observations can be made at this point:

® Each off-axis peak corresponds to a pair o f peaks on the frequency axis. Since 

the frequency axis is an estimate o f the PSD, then we see that the off-axis 

points each correspond to a pair o f peaks in the PSD;

® The two axes are not orthogonal, since the a  coordinates are functions of 

points on the frequency axis. One may wish to perform image processing on 

the SCF contour plot, but one should recognise that, because the axes are not 

orthogonal, the image processing algorithm will be processing a lot of 

redundant data and may therefore be inefficient;

® Any real signal will have an SCF that is symmetrical about the a  axis;

« Adjusting the centre frequency offset will not affect the shape of the SCF for a 

complex signal. Rather it will simply move the SCF up or down the 

frequency axis.

The SCF is a general-purpose transform that can be applied to any signal to search 

for cyclostationary features.

Squaring and delay-multiply detectors

The SCF introduced above can be used as a generic detector of cyclostationary 

features. It is, however, a processing-intensive task to calculate the full SCF. Fast 

algorithms have been devised for this (Simic and Simic, 1999), (Roberts et al, 

1991), but it may not be necessary if  a receiver is searching for known 

cyclostationary features o f a signal. An alternative approach is to use a delay-
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multiply detector (DMD, also known as a Pre-Filter Delay-Multiply detector) 

which can be used when a cyclic frequency is known a priori.

The basic structure o f the delay-multiply detector is shown in Figure 21. An input 

signal, x(t), is multiplied by a time-delayed version o f itself. Optionally, the 

delayed signal can be conjugated. Typically the delay is made equal to the 

reciprocal o f a cyclic frequency that is a known characteristic o f the modulation, 

such as its symbol rate or chip rate. The multiplication is a non-linear operation 

which generates one or more spectral lines in the output, y(t). The presence o f the 

given type of signal is then detected by measuring the height o f the spectral line(s) 

of interest. The specification o f the prefilter typically depends on the pulse shape 

of the signal to be detected.

x(i)
Filter, h(t)

Delay, x

Spectral line detector

Figure 21. Delay-Multiply Detector.

The delay is not always required, as some signal types display amplitude 

modulation at a rate related to the symbol rate. If there is no delay, then the DMD 

becomes the squaring detector shown in Figure 22. A squaring detector is simply 

a DMD with zero delay. This is the technique employed by, for example, Shi and 

Karasawa (2008) for QAM modulated signals.

x(t)
Filter, h(f) |x(t)*h(t)|2

y(t)
Spectral line detector

Figure 22. Squaring detector.
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A non-zero delay is needed, however, for constant amplitude signals which do not 

exhibit periodicity when passed through a simple squarer.

The DMD can be used to look for the presence o f signals in a shared spectrum 

environment. Kuehls and Geraniotis (1990) applied the technique to the detection 

of BPSK and BPSK DSSS signals and compared several possible architectures, 

including the case of a simple squarer (i.e. zero delay) with optimal prefiltering. 

They concluded that, if  the symbol rate were known a priori, then the optimal 

delay-multiply detector would have very similar performance to, and no better 

than, that of the optimal simple squarer.

More recently, Oner and Jondral (2003) applied this technique to a case in which 

a GSM signal was to be detected in the presence of an OFDM signal. By a 

suitable linearisation o f the GMSK modulation used in GSM, the authors 

demonstrated the generation o f spectral lines in the DMD output when the delay 

was set equal to half the reciprocal o f the GSM symbol rate.

Higher Order Statistics (HOS)

It is possible to define a range o f statistics that describe a signal by making use of 

higher order moments and cumulants. Each of these is a measure o f (odd or even) 

symmetry in the power spectral density function and therefore indicates 

something about a signal's periodicity.

The HOS methods differ from the spectral correlation approach in that there is no 

direct reference to the autocorrelation function. Spectral correlation is based on
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the principle that the autocorrelation function is periodic and can be approximated 

by a Fourier series. The HOS methods do not make such an assertion, so are more 

general in their application.

Typical examples o f 'lower order statistics' would be the instantaneous frequency 

and bandwidth o f a signal (Cohen, 2003). Examples o f 'higher order statistics' 

would then be the instantaneous skew and kurtosis. It is possible to define signals 

that have identical frequency and bandwidth but different skew and kurtosis 

(Loughlin and Davidson, 2000). A corollary o f this line o f reasoning is that that 

there may be signal types, either extant or in the future, that can only be 

differentiated by comparing their higher order moments.

A fourth order method o f moments estimator for measuring the Carrier to 

Interference Ratio (CIR) was developed by Kozono (1987). This algorithm has 

been extensively tested by the author o f this thesis (Wagstaff and Merricks, 2006, 

p.21-25) and found to be effective for FM, AM, FSK and GMSK. An example 

from Wagstaff and Merricks (2006) is given in Figure 23, which shows a noisy 

FM signal amplitude (green trace) and the successful measurement o f both the 

signal amplitude level (blue trace) and the underlying noise level (red trace).
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Figure 23. Method of moments analysis of FM signal.

The technique only works where the signal amplitude can be assumed to be 

constant, so does not work for the majority o f modem digital modulations. The 

success o f the algorithm does, however, demonstrate the ability to detect and 

measure signal characteristics from higher order statistics in a real world 

application.

The identification o f OFDM signals was approached by Akmouche (1999) on the 

basis that OFDM is asymptotically Gaussian, unlike single carrier modulations. 

His approach uses fourth order cumulants and is very similar to the Kozono 

(1987) method.
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Recurrence plots

The Recurrence Plot (RP) method has been developed for analysing the behaviour 

of dynamical systems (Eckmann et al, 1987). It is particularly suited for revealing 

behaviour that is only partly periodic, such as that exhibited by chaotic systems.

The development o f recurrence plots has allowed a wide variety o f time domain 

behaviours to be studied. They have been applied in the analysis o f muscle 

flexure (Ahmad and Chappell, 2008), heart rates (Mewett et al, 1999) 

(Cimponeriu and Bezerianos, 1999), neural modelling (Marwan and Meinke, 

2002) and molecular dynamics (Manetti et al, 1999). They have also been used 

for noise reduction of audio signals (Matassini et al, 2002) and for analysing the 

synchronisation between speakers' and listeners' eye movements (Richardson and 

Dale, 2005). In communications the recurrence plot has been applied to the 

analysis o f Internet Protocol (IP) network traffic (Masugi, 2006).

The basic concept o f drawing an RP is simple and is typically expressed via the 

following definition o f a recurrence matrix (e.g. Marwan et al, 2007):

f — > -> \

II £ - Xm Xn
\ J

(14)

The variable o f interest, x, is represented in an appropriate phase space and 

sampled at two points in time, m and n. The 'distance' between these points is 

compared against a threshold, e. The Heaviside function, 0 ,  is then applied purely 

to facilitate plotting as a series o f points.
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An unthresholded form of this expression can be obtained by removing the 

Heaviside function. The resulting form of recurrence matrix must then be plotted 

as a grey scale or colour scale image rather than a monochrome image.

The concept of distance between points in equation (14) can be calculated by any 

suitable norm for the data o f interest. Whichever norm is used, the effect is to 

produce an image that illustrates when the variable o f interest returns to a point in 

phase space that it has nearly passed through at an earlier point in time. This is a 

convenient way of illustrating a trajectory in two dimensions when the variable of 

interest has more than two dimensions. Equation (14) can, therefore, be thought 

of as a projection onto a two dimensional plane from a phase space with a higher 

number of dimensions.

Recurrence plots have not been applied to the signal recognition problem before, 

but they may be o f use in some circumstances. As part o f this investigation the 

use o f recurrence plots has been examined. See sections 3.3 and 4.1.

Higher order spectra

Dandawate and Giannakis (1994) gave examples o f how polyspectra (e.g. 

bispectrum, trispectrum) methods could be applied to the detection o f higher order 

cyclostationarities in signals. In particular they discussed the detection o f cyclic- 

varying channel characteristics for a QAM system and made the point that the 

second-order spectral correlation cannot be used to estimate the channel 

parameters. An application o f the polyspectral approach is in the estimation o f the 

channel for MIMO communications systems (Tugnait and Zhou, 2002).
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Gokmen and Ertiizim (1998) wrote that the polyspectral methods required 

significantly more processing than cyclostationary methods and were therefore 

unsuitable for real-time applications. Le et al (2005) again wrote that such 

methods are processing-intensive and therefore unsuitable for real-time 

processing.

Progress has, however, been made in improving the processing efficiency o f these 

methods, driven by applications such as image processing (Dianat and Raghuveer, 

1990), radar (Du et al, 2005), astronomy (Tyler and Schulze, 2004) and 

communications (Kachenoura et al, 2006). It is therefore reasonable to expect 

these methods to be deployed in the future if  they confer advantages over other 

techniques.

2.4.3 Features

Many ASR systems look for features in the signals they receive. The features 

described in the literature can be grouped into two main types. In this thesis they 

are termed statistical and parametric, although there is no precedent for this in the 

literature.

Parametric features are those that try to detect or estimate a parameter, such as 

symbol rate, chip rate constellation size, number o f subcarriers, etc. Such 

parameters are typically (but not necessarily) discrete values and the features 

reflect the fact that the observed value o f these parameters will converge on the 

discrete values. Unlike statistical features, parametric features do not look at short
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term variations in observation data, but are based on the long term averaged 

values.

Broadly speaking there are two types o f parametric feature processing algorithm: 

detectors and estimators. Detectors assume that a value exists and look for its 

presence in the observed data, whereas estimators try to work out what the value 

of the parameter is from the observed data.

Statistical features depend on estimates of various statistical properties o f a signal. 

They are typically moments of some observable representation o f the signal, such 

as the instantaneous amplitude. These features recognise that parameters of 

interest (e.g. instantaneous amplitude) will often be observed with values that are 

given by probability distributions and that those distributions can be estimated by 

observing the parameter variations over a period of time.

A wide range o f statistical measurements can be calculated from received signals. 

Typically these can be calculated quickly and efficiently and so are suitable for 

real-time processing. There is a large body of literature using this approach, much 

of it dominated by work carried out by Azzouz and Nandi (1996).

2.4.3.1 Statistical features

Azzouz and Nandi published a number of papers on ASR starting in 1995. The 

publication o f these and their book (Azzouz and Nandi, 1996), which summarises 

their work, has clearly had a major impact on ASR research and development. 

Many authors refer to the book and journal papers by Azzouz and Nandi and the
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same techniques appear with minor refinements in many places (Kremer and 

Shiels, 1997), (Arulampalam et al, 1999), (Dubuc et al, 1999), (Lopatka and 

Pedzisz, 2000), (Chin Tan et al, 2001), (Le Guen and Mansour, 2002), (Matsuzaki 

et al, 2003), (Iversen, 2003), (Iversen, 2004). Other authors use significantly 

different statistical features to the Azzouz and Nandi set, but the overall approach 

is similar (e.g. Beidas and Weber, 1998).

A series o f ASR algorithms for both analogue and digital communications signals 

was developed by Azzouz and Nandi. Their work included the use o f decision 

trees and artificial neural networks to determine the modulation type from a 

number of statistical features.

What is immediately apparent about this body o f work is that it was largely 

written before the advent o f modulations such as OFDM and CDMA and at a time 

when spread spectrum techniques were still largely confined to military 

applications. This is a very important point to note when considering applying 

these techniques in a modem spectmm monitoring environment.

The recognisers proposed by Azzouz and Nandi (1996) were classified according 

to the types of signals they were intended for:

« Analogue Modulated signal Recognition Algorithms (AMRA);

• Digitally Modulated signal Recognition Algorithms (DMRA);

® Analogue & Digitally Modulated signal Recognition Algorithms (ADMRA).
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It is apparent that the authors found it difficult to devise a single decision tree to 

handle all possible modulation types and therefore resorted to artificial neural 

networks to try to alleviate these problems.

All three types o f recogniser relied on the same basic feature recognition approach 

with either decision trees or artificial neural networks as the classifiers and were 

designed to use as little processing power as possible to give real-time operation.

It is readily apparent that the situation has now changed quite markedly. In the 

last decade there has been a huge increase in computing power, with technologies 

such as Field Programmable Gate Arrays (FPGA) and Digital Signal Processors 

(DSP) now being extensively used in software radio applications.

Azzouz and Nandi (1996) recommended that the received signal be split into 

frames o f 2048 samples and the key features calculated from these. Overall 

recognition is decided by choosing the most prevalent modulation type across all 

the frames. This approach has an inherent weakness in that it cannot look for 

structure across longer periods of time that may provide important discriminators 

between modulations.

The Azzouz and Nandi approach makes the assumption that the sample rate of the 

receiving system can be set to a value considerably higher than that o f the carrier 

frequency o f the signal. In the examples given they assume a carrier frequency of 

150 kHz and a sample rate o f 1200 kSamples/s. This will work for narrowband 

signals that are either sampled directly or at an intermediate frequency. This is 

not, however, a practical approach for many modem communications systems, in
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which the carrier frequency can be several GHz and the bandwidth is often several 

MHz. In practice, the modem approach to signal acquisition is very often likely to 

be based on downconversion to a complex baseband representation. The ASR 

subsystem therefore needs to be flexible enough to accommodate different 

sampling architectures and particularly those that produce I/Q outputs.

A general class o f ASR methods rely on the calculation o f a number o f key 

features based on various statistical moments and the subsequent use o f a 

classifier, such as a decision tree or an ANN.

A number o f features have appeared over the past few decades, notably those

introduced in Azzouz and Nandi (1996). These authors defined the following

statistical features:

• Constant envelope parameter, ymSLX

® Standard deviation of the absolute phase, aap 

® Standard deviation o f the direct phase, OdP 

® Spectmm symmetry parameter, P  

® Standard deviation of amplitude, oa 

® Standard deviation o f absolute amplitude, <7aa 

® Standard deviation o f absolute frequency, oaf  

® Kurtosis of amplitude, j f  42 

® Kurtosis o f frequency, f t 42

These features were designed to differentiate between a range o f digital and 

analogue modulations. There has been a trend for modulations to become more
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complex and spectrally efficient since Azzouz and Nandi's work. Many modem 

signals resemble noise when considered from a statistical distribution point of  

view, making the ASR task harder. This does not invalidate their work, but does 

mean that statistical methods have to be revisited over time to ensure their 

performance still meets the requirements o f the application.

The following sections consider some of the statistical features defined by Azzouz 

and Nandi (1996) to highlight the main concepts. It should be bome in mind, 

however, that many more statistical features could be proposed and there is 

nothing intrinsically unique about these particular features.

Constant envelope parameter.

This parameter is the maximum value o f the spectral power density of the 

normalised-centred instantaneous amplitude. It is used mainly for recognising a 

constant envelope signal - typically FM, FSK and CW:

m ax\D F T{aJ2
/  max

(15)

where N  is the number of samples in a window of sample data and acn is the 

normalised-centred instantaneous amplitude.

Note that the discrete Fourier transform is being taken of the signal's amplitude 

rather than the signal itself. This means that the parameter will be useful in 

distinguishing signals that exhibit amplitude periodicity from those that have no 

amplitude variation.
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The definition o f ^ ax is such that it cannot be less than zero, which leads to a

skewed distribution. Further investigation as part of the background work to this 

thesis suggests that it can be approximated to a lognormal distribution, but this 

must be done with caution (see Appendix E).

Standard deviations of phase, a , r  a / r

These are two very similar parameters. The first, <7ap, is the standard deviation of 

the absolute value o f the centred, non-linear component o f the instantaneous 

phase, $vz,- By 'non-linear' it is implied that we are only interested in the residual 

phase after any frequency offset has been removed.

For robustness it is calculated using only samples that have amplitudes higher 

than a threshold, at. For C samples above the threshold, the Gap parameter is given

Any parameter that measures the phase deviation o f a signal will be affected by 

the relative sampling rate, so one must be careful o f this when using c ap.

The other, closely related, statistical feature is defined as follows and differs only 

in the absence o f the absolute operator:

by:

2

(16)
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r , \

an{i)>at J

(17)

Spectrum symmetry parameter, P

This parameter is defined as:

P - p  
p  _  L J U

P  + PL ^  r U

(18)

where P i and Pu  are the powers in the lower and upper sidebands respectively.

It is used to identify any asymmetry in the PSD of the signal and so is mainly of 

use in distinguishing the various forms of amplitude modulation, particularly 

LSB, USB and VSB.

Such modulations are not o f particular interest in the VHF and UHF bands 

nowadays. The signals o f this type are the VSB modulation that is used to carry 

the analogue television video signals and the AM air traffic control air-to-ground 

communications. Such signals are not spectrally efficient (Burr, 2001, p. 5) 

compared to "digital" signals and are therefore being phased out. In the UK the 

PAL-I system is currently being replaced by Digital Terrestrial Television (DTT).

Digital modulation schemes rely on complex baseband representations that are 

inherently asymmetrical (Burr, 2001, p21). However, the averaged PSD needs to
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be symmetrical in order to make efficient use o f the available spectrum. From 

this line o f reasoning it is concluded that the spectrum symmetry parameter will 

only be o f very limited use in the frequency bands o f interest.

Standard deviations of amplitude, a „ . o „ „

These parameters are defined as:

Azzouz and Nandi used the cra parameter for differentiating between DSB and 

PSK2 and also between AM or FM and PSK4. They used the (Taa parameter for 

differentiating between ASK2 and ASK4.

Standard deviation of absolute frequency, a „ f

The standard deviation o f the absolute frequency is used for discriminating 

between FSK2 and FSK4, which are commonly used by pager systems, such as 

POCSAG and FLEX.

(19)

(20)

(21)
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The f y  term is a normalised frequency. Azzouz and Nandi chose to normalise this

symbol rate can be clearly observed.

Kurtosis of amplitude and frequency

Azzouz and Nandi also define two kurtosis parameters. The first is based on the 

instantaneous amplitude and is used to discriminate between AM and the ASK 

signal types (ASK 2 and ASK4).

where E {} denotes the expectation operator.

The second kurtosis parameter is based on the instantaneous frequency and is used 

to discriminate between FM and the FSK signal types (FSK2 and FSK4).

Other statistical parameters defined by other authors following similar approaches 

to the above definitions. Each takes some representation of the received signal 

and applies a statistical moment to a set o f samples of that signal. The range of 

possible representations and variety o f statistical moments means that it is not 

practical to produce an exhaustive list o f these statistical parameters. The main 

conclusion to draw is that feature extraction can be based on transforming a signal 

into a suitable representation and then calculating a statistical moment.

with respect to the symbol rate, which can be done only if  one is certain that a

_  E{a4cn(t)}
AM2 ""

(22)

(23)
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Carrier frequency estimation

Azzouz and Nandi (1996) devote an appendix o f their book to this subject as it is 

critical for obtaining reliable statistics o f the type they propose. They put forward 

three main techniques for this:

1. Peak of the periodogram. This method is only appropriate for those 

modulations that have a carrier frequency that can be clearly detected. In 

practice this is not the case for many modulations and is only suitable for 

relatively simple ones.

2. Frequency-centred method. This is recommended for symmetric signals. 

As many modem signals are symmetric (because such modulations are 

spectrally efficient), it is worth considering for general-purpose use.

3. Zero-crossing method. This is based on counting the zero-crossings o f the 

RF signal and is the method recommended by Azzouz and Nandi (1996). In 

their investigations it was found to be accurate, but only if  the weak 

segments o f a signal were removed.

In addition to these methods, the carrier frequency can also be calculated from the 

rate o f change o f the unwrapped phase. This approach is more suitable for signals 

obtained in complex baseband form. The issue o f noise is still very important 

however.

2.4.3.2 Relationships between cyclostationarity and statistical moments

All the key features proposed by Azzouz and Nandi (1996) look at the signal itself 

and do not consider multiplying the signal by a time-delayed version o f itself.
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The authors were aware of cyclostationarity and higher order methods, but only 

mentioned these at the very end of their book when considering future research 

directions. Nevertheless, three o f the features (aap, oaa, Gaf) contain nonlinear 

functions that will act in a similar way to the quadratic transformations described 

in Gardner (1991) and act to reveal hidden periodicities in input signals.

Whilst this would seem to imply that the Azzouz and Nandi approach is weaker 

than Gardner's method, there is an important observation to be made. Gardner 

started the development o f the cyclostationarity theory and based it heavily on the 

CAF and SCF. These exploit only one type o f non-linearity. Azzouz and Nandi's 

second order statistics suggest considering also nonlinear functions of the phase 

and instantaneous frequency. Searching the literature has not revealed any 

research looking at any such alternatives.

Summarising the main characteristics of statistical feature methods:

1. Such methods are appealing because they do not require large amounts o f  

processing and are therefore suitable for use in real-time applications.

2. Determination of the centre frequency is critical to the performance o f any 

statistical feature that incorporates phase or rate o f change of phase in its 

calculation. In practice there are many factors that limit the ability to 

measure the centre frequency correctly. Such factors include the signal to 

noise ratio, multipath effects and relative motion of the transmitter and 

receiver.

3. Experiments with the various features show that they are typically very 

dependent on, not only the centre frequency offset, but also the number of
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samples used and synchronisation. It appears that the many o f the results 

claimed for these techniques are based on the analysis o f simulated signals 

only. It is very hard to remove completely all synchronisation from a 

simulation and this can mean the difference between a technique working in 

the field or not.

4. Unlike research into cyclostationarity, the statistical feature methods are not, 

in general, derived from theoretical representations o f the signals concerned. 

This is a weakness, since features are contrived on the basis o f what can be 

calculated easily rather than what acts as a good discriminator between 

modulation types.

2.4.4 Decision methods

The previous sections have looked at different ways o f obtaining features that can 

be used to distinguish different types o f signal. This section goes on to consider 

the ways in which decisions can be made automatically about the type o f signal 

that has been observed.

Hachemani et al (2007) called this processing the 'fusion layer' and propose 

logical rules, neural networks or Bayesian networks for this task. Their interest 

was in developing the technology for cognitive radio applications and they 

identified a number o f standard detectors as suitable inputs for decision 

processing.

Decision algorithms are, in this thesis, organised into the groups shown in Figure 

24.
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Decisions

Decision-theoretic methods Cluster analysis

Bayesian detector Decision trees

Neyman-Pearson detector ANN

Maximum a Posteriori detector Fuzzy classifiers

Maximum Likelihood detector Clustering

Minimax detector

Multiple hypothesis detectors

Figure 24. Taxonomy of decision methods.

The first group of algorithms in Figure 24 is the decision-theoretic group. The 

algorithms in this group consist o f those algorithms that are conventionally called 

'detectors'. This is because they are usually employed for finding the presence of 

a signal in a noisy environment.

The second group o f algorithms shown in Figure 24 is the cluster analysis group 

containing those algorithms that seek to find regions of similarity in a given 

representation. These regions are the clusters which relate to the identification of 

the emitter being received. The algorithms that work in this way include decision 

trees, Artificial Neural Network algorithms, fuzzy classifiers and clustering 

algorithms.
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2.4.4.1 Decision-theoretic methods

This section considers the decision problem from the probabilistic point o f view. 

The decision as to whether a signal is present in a noisy environment is 

conventionally performed by 'detectors', o f which a number are listed in Figure 

24.

The Bayes detector is introduced first, as this is a generic model that can be 

applied to any situation in which the a priori statistics o f the signal and channel 

are known. Common variations on the Bayes detector are the Neyman-Pearson 

detector, the Maximum A Posteriori (MAP) detector, the Maximum Likelihood 

Detector, the Minimax detector and multiple hypothesis detectors.

Each o f these basic detector types is now introduced. In addition a practical 

approach to employing Bayesian detection in an ASR context is proposed in 

section 4.4.2.

Saves Detector

The derivation o f the Bayes detector is given in Ziemer and Tranter (1995, pp. 

604-608). This is a useful starting point for looking at probabilistic decisions, as 

it forms the basis o f many signal detection algorithms.

The derivation starts from the premise that there is a single measurement, z, and 

there are two hypotheses, Hi and H2 , one o f which must be selected by the 

decision algorithm. A decision is needed that the measurement belongs to one o f  

these two hypotheses. Some a priori information is needed in order to make the
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decision and this information is assumed to be available in the form of a number 

of costs and probabilities.

Four costs are defined a priori. These are: cu, which is the cost of selecting Hi 

when it is true; C12, the cost o f selecting Hi when H2 is true; C21, the cost of 

selecting H2 when Hi is true and, finally, C22, the cost of selecting H2 when it is 

true. No particular criteria are specified for these costs, so they have to be tailored 

to the required application.

Also assumed to be known a priori are the probabilities of Hi being true (pi) and 

H2 being true (p2).

Ziemer and Tranter (1995, pp. 604-607) then showed that the minimum average 

cost decision criteria is given by:

The left hand side of equation (24) is called the likelihood ratio, commonly 

denoted as A, and the right hand side of the equation is the decision threshold.

Ziemer and Tranter (1995, pp. 604-607) also give the following derivation o f the 

Bayes detector for the simple case o f a constant with additive WGN, which is 

summarised here in order to help explain this general class of methods.

f ( Z\Hl) <  Pl(C12—C22)

(24)
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The first hypothesis, Hi, corresponds to the case o f just WGN. The second 

hypothesis, H2 is the case o f WGN plus a constant, k. It is assumed that the 

observation, z, is a random variable with a probability distribution that depends on 

whether or not k is present.

If the signal, k, is not present then the (conditional) probability distribution for a 

WGN variance o f on is:

(25)

If the signal, k, is present, then the distribution is:

f z ^ \ H 2) =  ^ = e ^ nal‘

(26)

The corresponding likelihood ratio is then:

- ( z - k f / l o t  2 kz-k2/

A = — - 2 , =e /2°-"
e ’

(27)

This can be used in equation (24) to perform optimal detection, in the sense of  

minimising average cost. In the example o f Ziemer and Tranter (1995, pp. 608- 

609) the probabilities are assumed to b e p i = p 2 = 0.5 and the costs are cu — C22 = 0 

and C21 = C12. This leads to a simplification o f equation (24) which is:

H „

^2kz — k 2 \̂ > 
e x p   —  1

<

(28)

Page 125 o f 376



Adrian Wagstaff

The natural logarithm can be taken o f both sides o f this expression, which leads 

to:

z  — 
< 2

(29)

Using the above probabilities and costs therefore results in a threshold which 

equals &/2, so the Bayes detector, in this particular case, will choose Hi if  the 

measurement is below half the constant, k, and H2 if  it is above that value. Thus it 

is seen that the Bayes detector yields a "common sense" result in this simple 

example. Note, however, that a simplification has been used and this leads to 

result identical to that for the MAP detector.

It should be emphasised that the full Bayes detector needs values to be specified 

for the four a priori costs and two a priori probabilities. It also requires 

knowledge of the two probability density functions that make up the likelihood 

ratio. Whether all these are available will depend on the application.

Nevman-Pearson Detector

The Neyman-Pearson detector is a simplification of the Bayes detector that can be 

used when not all the a priori costs and probabilities are known. It relies on 

fixing the maximum probability of obtaining a 'false alarm' at an acceptable level 

and then optimising the probability o f obtaining a correct decision (Ziemer and 

Tranter, 1995, p. 613), or, equivalently, minimising the probability o f a 'miss' 

(Bar-Shalom, 1993, p. 66).
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Maximum A Posteriori Detector

This is another variant o f the Bayes detector and is obtained by setting the costs 

cn = C22 -  0 and C21 = cn  (Ziemer and Tranter, 1995, pp. 613-614). With this 

simplification, equation (24) becomes the following equation, which only 

involves a posteriori probabilities:

h 2 

p ( H 2 \ z ) > p { H l \ z )

(30) 

Maximum Likelihood Detector

The ML detector has already been mentioned in section 2.4.2, in which it was 

stated that Mobasseri (1999) used the technique for comparing constellation 

diagrams.

The ML detector (Lathi, 1983, pp. 595-596) is a variant on the Bayes detector, but 

makes the assumption that the hypotheses are equally likely. Under that 

assumption the PDFs are symmetrical and the decision can be represented as 

follows:

h 2

p(z\H2) > p { z \ Hi )

(31)

This simply says that the ML detector will choose the hypothesis to which the 

observation, z, is closest.
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The ML detector is equivalent to the Bayes detector if  all the a priori probabilities 

are equal. It is simpler than the MAP detector as the a posteriori probabilities do 

not need to be calculated.

There are numerous examples in the literature of ML detection applied to the 

signal recognition problem. Shi and Karasawa (2008), for example, used ML 

detection to select from a set o f constellations as part of their constellation 

analysis.

Minimax Detector

The minimax detector is another variant o f the Bayes detector which involves 

choosing the a priori probabilities such that the Bayes risk is maximised (Ziemer 

and Tranter, 1995, p. 614). Lathi (1983, pp. 596-598) explained that the minimax 

detector is equal to the maximum likelihood detector when the a priori 

probabilities are equal.

Multiple Hypothesis Detectors

Ziemer and Tranter (1995, p. 614) stated that the Bayes detector can be 

generalised to handle multiple hypotheses. They then went on to explain that the 

MAP form is easier to visualise. The MAP version calculates p(Hi\z) for each of 

the i hypotheses and the one with the highest probability is selected.

2.4.4.2 Cluster analysis

This section considers the decision problem from a clustering point o f view in 

which a signal is represented by a number of features which are treated as a
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multidimensional space. Decision trees and artificial neural networks are the most 

prevalent o f such techniques in the literature.

Decision trees

Decision trees have been used widely and are relatively easy to construct. They 

do not, however, scale well as the number o f possible signal types increases.

Assaleh et al (1992) used a decision tree to classify a signal as CW, FSK2, FSK4, 

BPSK or QPSK. Their approach achieved a success rate o f 99% at 15 dB SNR. 

The inputs to their decision tree were the statistics o f the instantaneous frequency 

and bandwidth which were estimated by autoregressive spectrum analysis (section 

2.4.2).

Azzouz and Nandi (1996) investigated a number o f different decision trees for a 

variety o f statistical features. They documented the results o f optimising decision 

trees for analogue modulations, digital modulations and combinations o f analogue 

and digital modulations. None o f the trees performed perfectly in all cases and 

the authors moved on to investigate artificial neural networks as a way o f trying to 

get around the limitations o f decision trees. The results o f Azzouz and Nandi's 

work suggested that decision trees are easy to construct when the number of 

signal types is relatively small. As the number o f signal types is increased, 

however, it becomes harder to design a decision tree that can achieve satisfactory 

performance.
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It is noticeable in the literature that the decision tree approach (Dubuc et al, 1999), 

(Ramakonar et al, 1999), (Boudreau et al, 2000), (Matsuzaki et al, 2003), 

(Grimaldi et al, 2007) is more often used than artificial neural networks (Kremer 

and Shiels, 1997), (Arulampalam etal, 1999), (Yaqin eta l, 2003).

The automatic construction of decision trees is discussed by Callan (2003, pp. 

241-252) who quoted the ID3 algorithm as an example o f an algorithm suitable 

for trees where each node can be represented as a simple binary decision. The 

Iterative Dichotomiser 3 (ID3) algorithm is one o f a family o f algorithms designed 

to automatically generate a decision tree from a set o f examples (Quinlan, 1986).

One can envisage similar algorithms being employed to automate the design of 

decision trees where the binary decisions have to be made on the basis o f the 

statistics typically used in signal recognition. Callan (2003, p. 248) went on to 

present some o f the problems with automatic decision tree construction. These 

are very similar to those found in artificial neural network design, namely under- 

leaming, over-learning and the selection of good training data. Just as with 

artificial neural network design, it is recommended that some of the available data 

is excluded from the training set and used for testing the performance o f a 

decision tree. Callan also refers to a process he calls 'post pruning' whereby some 

decision nodes are removed after over-fitting a decision tree. This is similar in 

concept to the artificial neural network pruning proposed in Appendix C.
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Artificial neural networks

Ghani and Lamontagne (1993) used a Welch periodogram to estimate the PSD of  

a signal and then compared the performance o f a k-Nearest Neighbour classifier 

with a perceptron artificial neural network (that is they used a combination of  

back propagation and supervised learning as the basic structure). They concluded 

that the ANN approach was the better o f the two methods.

Louis and Sehier (1994) used the means and first three moments o f the signal 

phase, modulus and frequency as inputs to a perceptron ANN. This approach was 

based on earlier work, with Louis and Sehier's research concentrating on the 

design o f the ANN. They found that a hierarchical ANN was a better solution 

than a single, global network.

Azzouz and Nandi (1996) used a perceptron approach to build their ANN 

algorithms. They explored how this could be applied to their statistical features 

and, when looking at both analogue and digital modulations, achieved a success 

rate o f better than 96% when the SNR was 15 dB or higher. Richterova (2005) 

repeated their work using a similar two stage ANN but used real signals rather 

than simulated ones. The success rate was 75% in this study.

An important outcome from these investigations was that a multi-stage ANN was 

preferred when classifying digital and analogue modulations. This structure is 

shown in Figure 25. Richterova's (2005) structure was virtually identical.
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Figure 25. Azzouz and Nandi (1996, Fig. 5.16) multi-stage ANN structure.

Iversen (2004) also used a perceptron and applied it to a similar set o f statistical 

features. The target set o f modulations was ASK2, ASK4, PSK4, FSK2, FSK4 

and QAM8 and the results were similar to those of the other researchers 

mentioned above.

Le et al (2005) modified this approach by using a One-Class, One-Network 

(OCON) architecture, which is essentially a series o f perceptrons, one for each 

modulation type. They applied this to AM, FM, BPSK, QPSK, QAM8 and 

QAM16. It is interesting that the emphasis in 2005 had shifted towards the PSK 

and QAM modulations, which was driven by the change in radio systems. These 

researchers reported a success probability o f over 80% at an SNR of 20 dB and
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produced diagrams illustrating the clusters o f the statistical features that could be 

recognised by their ANN architecture. As with the previous investigations, they 

observed the reduction in classification success rate as the SNR dropped. They 

also observed that, by increasing the dimensionality o f each classifier, the 

discrimination between modulations was improved.

Le et al (2005) stated that they were interested in finding the minimum number o f  

features needed to identify each type o f modulation. One way o f achieving this is 

via the 'pruning' method which is introduced in Appendix C. Pruning allows the 

least significant inputs to an ANN to be removed, which reduces the processing 

required when the ANN is deployed in a real-time system.

Thus it is seen that there is a history o f applying perceptron ANN architectures to 

statistical features. Such schemes typically produce good results when the SNR is 

higher than 15 dB. It should be noted that these investigations have all 

concentrated on relatively narrow band signals by modem standards. Iversen 

(2004), for instance, used a sampling rate o f 1200 kSamples/s and symbol rates o f

12.5 kBaud, which are much lower than the high data rates currently in use in 

many applications.

None o f these investigations considered the effect o f interference apart from 

WGN. When looking at narrowband signals, there is less opportunity for 

interference, so this is reasonable. This is not a reasonable assumption when 

moving to wider, shared bands.
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Other approaches

Mention must also be made o f clustering (Druckmann et al 1998), Hidden 

Markov Models (HMM) (Schreyogg et al, 1997) and fuzzy classification 

(Lopatka and Pedzisz, 2000), (Sengr and Gldemir, 2005), although these appear 

less frequently in the literature. To date no research has been found that compares 

these various methods, so it is not possible to state whether or not they offer 

significant benefits over the other decision methods discussed above.

2.4.5 Comments on decision methods

Based on the findings o f the literature search, the following observations are made 

about the existing decision processing approaches:

1. All the decision methods encountered to date have operated on a closed 

domain with a finite number o f signal types. In reality the number of 

possible signal types is not known and new types appear regularly. By 

assuming a closed domain, the decision logic cannot inherently handle the 

fact that it may not be able to recognise a signal. Practical systems therefore 

have to be programmed to classify signals as 'unknown' based on some 

appropriate criterion;

2. There is typically very little discussion in the literature o f how signals that 

overlap in time and frequency can be handled;

3. The decision methods do not feed back their results to the segmentation 

function, which must, necessarily, precede the ASR function;
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4. There is usually a probabilistic element to the decision function. This will 

assume typically that the signal is the only one present, so only one 

probability needs to be assigned;

5. Where multiple features are calculated, they are normally treated in the 

literature as statistically independent. This is a simplification that is 

unreasonable, because a change in a signal characteristic may affect many 

features. For example, consider Azzouz and Nandi’s standard deviations of 

phase, Gap and GdP (section 2.4.3). These two features are both functions of 

the instantaneous phase, so will have some form of correlation between 

them. In general, one cannot assume that features are not statistically 

independent unless it is known that they are functions o f statistically 

independent signal parameters;

6. A priori information about the presence o f known emitters in the 

environment is not discussed in the literature.

2.4.5.1 A priori knowledge

No literature has been found that has considered the use o f a priori knowledge 

about the likely distribution o f emitter types. In practice there is considerable 

knowledge available that could be drawn upon in order to improve the 

performance o f an ASR system. In particular the following are especially 

significant:

® Location of signal in the spectrum;

® Geographical constraints;

® Direction o f arrival of the emitter;

® Spectrum occupancy;
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• Transmitter locations.

However the system designer must always be aware that interference incidents 

can be due to such factors as imported equipment and out-of-band transmissions 

from faulty equipment. Any system that includes a priori knowledge to bias 

recognition decisions must still allow such interferers to be identified.

The Bayesian chain method, described in section 4.5.1 is one approach that is 

suitable for incorporating a priori information into a recognition process.

2.4.6 Improving decision processing

It is interesting to postulate that improved decision processing would incorporate 

the following three aspects:

® Probabilistic identification;

® An open domain o f signal types;

® Multiple hypotheses to cater for the overlapping o f signals in time and 

frequency.

An interesting parallel can be drawn between the techniques applied to 

multisensor data fusion and the single sensor ASR problem. If one applied more 

than one technique to the received data and the results were independently 

derived, then the single sensor problem would be directly analogous to the 

multisensor problem.

Techniques such as Bayesian, Dempster-Shafer (Leung and Wu, 2000), Multiple 

Hypothesis Testing (Blackman, 2004) and the Double Bound Test (Wang et al,
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1998) have been applied in the multisensor case so it is interesting to look for 

similar approaches that can extend the capability of ASR processing.

2.5 Summary

This section has reviewed the background literature on the subject o f ASR so that 

the work o f this thesis can be understood in terms o f previous and current 

research. It is a relatively new subject area, having started about thirty years ago, 

but a very large body o f literature has accrued in that time and it has proved 

necessary to structure the literature review to make it manageable.

It has been seen that there are commercial and military applications o f ASR 

technology. In the military world the interest is in communications intelligence 

(COMINT) and the use o f ASR to determine the type o f signal intercepted by a 

passive receiver. In the commercial markets the main interests are in terms o f use 

by the spectrum regulators for identifying signals in the field and also by the 

designers o f cognitive radio systems, for which ASR is a link in the chain of 

processing that allows a radio to adapt to its environment. In all these 

applications there is a common theme that the modem radio environment is 

becoming ever more complex with unintentional interference and intentional band 

sharing making it harder to separate and identify different signals.

A generic radio system architecture has been introduced as a model whereby the 

role and context of ASR processing can be understood. ASR is one link in a chain 

of information processing that starts with an information source and ends with an 

identification of the type o f signal used to carry that information.
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A number of problems in ASR have been identified, the main ones being the 

range o f bandwidths and time scales, the introduction o f new signal types and the 

corruption of the signal by noise and interference. These problems are the main 

themes of the research carried out for this thesis.

There is a wealth of literature concerning techniques applied to different aspects 

of the ASR problems, although there is a distinct bias towards some problem 

areas. This section classified the methods as segmentation, transformation, 

feature extraction and decision methods. The literature tends to concentrate on 

the feature extraction methods. Transformation methods tend to be those used in 

other kinds of signal analysis work, although there are some novel methods used 

for analysing constellations (e.g. power moment matrix). The decision methods 

are, without exception, taken from general purpose decision theory in other 

domains. Segmentation is a much less studied area and one that this author feels 

will need considerably more research for ASR to handle the challenges o f the 

future.

After surveying the available literature it is clear that the focus to date has been on 

developing low-level techniques that can discriminate individual signal types 

presented to the recognition process in isolation. Where signal corruption has 

been considered it has been confined largely to simple noise and channel 

propagation models. Rarely has interference been considered in the research to 

date and rarely have researchers considered the high-level ASR system design.
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It is felt that these issues need to be addressed in order to devise ASR systems that 

can handle the problems encountered in a shared, interfering radio spectrum. 

Accordingly the research documented by this thesis has concentrated on 

addressing the issues o f how to design an ASR system that can handle multiple, 

interfering signals.

It has largely been assumed that it is possible to devise feature extraction methods 

that can be optimised for single signal types and there is a wealth o f existing 

literature that can be consulted when one wishes to delve into the feature 

identification for any specific modulation type. The research approach has 

therefore been tailored to branch away from the existing research themes and 

tackle the wider problems facing ASR in the 21st century. This means considering 

the implications o f wider bandwidth communications in shared spectrum bands.
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3 APPROACH

This section o f the thesis explains how the project was approached. The main 

research question was split into five more manageable sub-questions, each of  

which gave rise to a specific research activity, the results o f which fed into the 

overall conclusions o f the thesis.

The development o f the approach was iterative. As understanding o f the problem 

domain grew it was possible to elaborate the sub-questions more clearly and 

thereby research more effectively in each area. This approach was successful in 

that it led to useful conclusions and a number o f significant contributions to the 

subject area.

3.1 Sub-questions

The research question posed in section 1.2 was what strategies can be adopted for 

designing ASR algorithms to deal with modem, complex signal environments? 

This overall research question was too complex to solve in one project, so a series 

of sub-questions were posed and answers investigated for each in turn. These 

sub-questions promoted several strands o f enquiry which were linked such that a 

logical path could be followed in explaining the conclusions.

The investigation started broadly and then concentrated on the more detailed 

aspects o f the problem. The following series o f sub-questions guided the 

research:
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® Sub-question 1: To what extent to do the users’ problems accord with the 

understanding of the author?

As part o f the prelimary work, it was felt to be important to gain an 

understanding of the users' problems so that the research would be 

appropriate and relevant. In addition to literature search (section 2), a 

short user survey was carried out (section 3.2) to test the author's 

assumptions about user problems.

© Sub-question 2: The information content of a signal is not of interest for 

solving the recognition problem, so to what extent can the signal type be 

separated from the information content?

The research applied the recurrence plot method to communications signals 

and then modified the method to show how it is possible to enhance the 

modulation type o f a communications signal at the expense o f information 

content (section 3.3). The degree to which it can be achieved was 

investigated by considering the relative enhancement of an estimate o f the 

symbol rate.

® Sub-question 3: In situations where interferers have very different time 

scales to those of the the signal of interest, to what extent is it possible to 

use a logarithmic cyclic frequency representation as a basis for easing the 

processing demands of cyclostationarity estimators?

Handling signals with very different bandwidths, symbol rates, etc. is one of  

the issues that ASR algorithms have to deal with in shared spectrum bands. 

An algorithm called the Logarithmic Cyclic frequency Domain Profile was 

devised to show that a logarithmic cyclic frequency representation is
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possible whilst retaining a linear frequency domain representation (section 

3.4).

• Sub-question 4: Given that it is possible to design algorithms with specific

capabilities, such as modulation separation and logarithmic

representation, to what extent can different algorithms be assessed in 

terms of their relative performance in the presence of interference?

A strategy for developing improved algorithms depends on the ability to 

compare them quantitatively. This question was addressed in three main 

steps. First, a canonical model o f ASR processing was designed and shown 

to support all the different types o f ASR system found in the literature 

(section 3.5). Then, theoretical concepts were proposed that would 

facilitate the quantitative comparison required (section 3.6.1). Finally, in 

order to demonstrate the quantitative comparison o f representative feature 

extraction algorithms, a lengthy series o f simulations was executed to the 

point where distinct trends could be identified with a high degree o f  

confidence (section 3.6.2).

® Sub-question 5: Multiple algorithms can be applied to the ASR problem,

each with its own strengths and weaknesses. To what extent can these

algorithms be brought together to produce an accurate result?

No single algorithm was found that could recognise all features o f all 

signals in all environments. Until such an algorithm is found multiple 

algorithms will be needed to meet the users' need for accuracy in the 

presence o f interference.
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A decision-theoretic approach was proposed for combining multiple 

algorithms based on a Bayesian chain (section 3.7).

This series of questions led to results that showed that interference is and will 

continue to be a problem and that ASR algorithms can be developed that exhibit 

specific desirable behaviours in the presence o f interference. It then led to a 

means o f comparing algorithm performance so that better feature extraction 

algorithms can be developed and to an architecture that can combine multiple 

algorithms.

The following paragraphs describe each o f the research methods in more detail 

before the results are presented in section 4.

3.2 User survey

This project stemmed from discussions with various people within the spectrum 

monitoring industry and, in particular, from research projects carried out for the 

UK and Dutch spectrum regulators. It was apparent that there were a number of 

problems with the existing state o f the art in ASR and some of these have been 

described in section 2.3.

Understanding the problem domain was essential before commencing the 

research. There is an extensive body of academic literature in this area and this 

represented a major background to the work. It was felt, however, that it was 

important to confirm with the user community that this was a problem worth
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studying and that the specific area o f investigation is relevant to current and future 

applications o f the technology.

Whilst it was clear to the author that a number o f technical problems existed, it 

was not clear how these related to the user experience. The literature search did 

not reveal sufficient information on user experience at the level required. A  

survey was therefore carried out, which took the form of an online questionnaire. 

The online questionnaire was implemented using the service available from 

www.surveymonkey.com.

The questionnaire was piloted with a few colleagues at first in order to identify 

poorly worded questions and improve the structure. The questionnaire was then 

sent to 62 colleagues in the industry. 16 people responded to this questionnaire, 

which gave a small, but helpful, indication o f the relative importance o f different 

issues. The details o f the questionnaire responses are given in Appendix A.

The following questions were asked of the users:

• Which RF bands do you believe are the most difficult for a human operator to 

analyse?

® Which automated signal recognition systems do you use?

• Do you think that, as more services move towards digital communications, 

signal recognition will become easier or harder for the human operator?

® The fourth question gave a list o f features that might be desirable in an ASR

system and asked the users to rate them by importance for their needs.
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• The last question was an open one, asking the users for any comments they 

would like to make.

These questions struck a reasonable balance between closed and open forms. The 

closed questions allowed a small amount of statistical analysis to be performed. 

The open question at the end allowed the users to express ideas that the author 

may not have considered. In hindsight it may have been possible to extract more 

useful information from the survey by improving the survey method. Should the 

survey be revisited, it is recommended that methods other than online 

questionnaire, such as structured interviews, be considered. With a relatively 

small community of people expert in a specialist area it is probably better to carry 

out more detailed, face-to-face or telephone interviews with individuals to extract 

more information from each participant.

To summarise the detailed results of the survey:

© Spectrum Usage: The author's own work in the 2.4 GHz ISM band suggested 

very strongly that usage o f licence-exempt spectrum is becoming very 

complex, with interference conditions highly likely to be encountered in urban 

areas (Wagstaff, 2008). The survey results supported this with licence-exempt 

bands being areas for concern in the user community and a belief that signal 

recognition will get harder as more digital services are deployed.

® Need for ASR tools: The results of the survey suggested that ASR tools are 

not in common usage and that there are few such tools that are readily 

obtainable by field staff. Lack of tool availability and high price are 

hampering interference investigations and this situation is expected to worsen.
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• Performance requirements: It was clear that recognition accuracy is the 

most important requirement for an ASR tool. Speed, display o f identification 

confidence and display o f signal parameters were given as the next most 

important requirements.

The main outcome o f the user survey was that it influenced the remainder o f the 

research, with an emphasis on the importance o f achieving accurate identification 

in the presence o f interference. It also reinforced the author’s belief that 

interference will continue to be a facet o f the world o f communications in the 

future.

3.3 Phase-symmetric Cross Recurrence Plot

Many methods exist for processing radio signals for the purpose o f signal 

visualisation and recognition and some o f these have been described in section 

2.4. The recurrence plot method has not been applied to communications signals 

previously, but it provides a visualisation o f various phenomena in other domains 

(as described in section 2.4.2) and offers promise for application in ASR.

Initial investigations concentrated on how different signal types appear when 

analysed with the recurrence plot. It was clear, at a subjective level, that 

repetitive structures could be visualised with this method and that it offered the 

potential o f being a novel representation from which useful measurements could 

be obtained. This line o f enquiry led to a search for ways o f making quantitative 

measurements that could be useful as part o f an ASR system.
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Experimentation with different modifications to the recurrence plot led to a 

variant that could be used to process communication signals in such a way that a 

modulation's characteristics could be emphasised at the same time as the 

information content was suppressed. This variant has been given the name of 

Phase-symmetric Cross Recurrence Plot and has proved to be a useful mechanism 

by which feature enhancement can be demonstrated.

The recurrence plot and the PCRP were tested with simulated sets of known 

symbol patterns, starting with BPSK modulation and then examining QPSK and 

other modulation types. The results o f these investigations are presented in 

section 4.1.

3.4 Logarithmic Cylic frequency Domain Profile

In an interfering environment there is the potential to encounter multiple signals 

with a wide range o f time scales and bandwidths. This is exacerbated by the 

move towards shared, licence-exempt spectrum bands and wider bandwidth 

signals.

With a wide range o f signal properties existing in the time domain, a recognition 

algorithm should be capable of discriminating signals with widely differing 

characteristics. It was postulated that a logarithmic representation would help 

with handling interfering signals.

The literature search did not reveal any algorithms that are couched in terms of 

logarithmic representation. The cyclostationarity methods, however, are widely
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used in signal recognition and attention was therefore drawn to these. Would it be 

possible to modify a cyclostationarity method to operate with a logarithmic 

representation?

It was found that it was possible to combine the cyclostationary representation 

called the Cyclic frequency Domain Profile (CDP), which operates in a linear 

cyclic frequency domain, with ideas taken from the constant Q transform, which 

operates in terms o f logarithmic frequency. This led to the development o f a 

variant o f the CDP that has a logarithmic cyclic frequency, thereby showing that it 

is possible to produce such an algorithm and that such a representation is suitable 

for the ASR task. This algorithm is presented in section 4.2. The LCDP 

algorithm was published in the IET Communications journal (Wagstaff, 2008).

3.5 Canonical ASR architecture

In the absence o f a generic model o f ASR processing, this line o f enquiry started 

by designing a generic processing model based on the methods found via the 

literature search. The model developed is asserted to be a canonical model, in that 

it is the simplest model that fits every ASR system found in the literature to date. 

The usefulness o f this model lies in standardising terminology and facilitating 

reasoning about ASR systems at a high level.

The ASR model is presented in section 4.3 in the form of Unified Modelling 

Language diagrams. UML has become an industry standard method for 

describing software systems and is widely understood across industry. The 

emphasis here is on producing the class and activity diagrams that describe the
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main data structures involved, the relationships between those structures and the 

processing to be performed on them.

The model was developed by applying it to all the types o f ASR algorithm that 

were found in the literature. Each ASR algorithm was compared to the model and 

adjustments were made to the model to ensure that all the algorithms were 

accommodated.

It was found that all the algorithms could be represented using a few classes and 

activity diagrams, even though the mathematical details of those algorithms varied 

widely. After only a few updates to the UML model it was possible to draw all 

the algorithms using the notation introduced in section 4.3.

3.6 Feature performance in the presence of interference

In order to understand how feature extraction algorithms perform when a signal is 

interfered with, it was necessary to deal with a wide variety o f signal types and 

combinations o f types with varying frequency offsets, amplitudes, etc. The 

approach to this involved defining new theoretical concepts and then building a 

simulation to investigate those concepts.

3.6.1 Ideal Feature and Interference Selectivity

One o f the barriers to understanding the performance of ASR systems in the 

presence o f interference is the absence o f suitable terminology. Terms such as 

Co-Channel Interference (CCI) and Adjacent Channel Interference (ACI) are 

widely used within the Electromagnetic Compatibility (EMC) testing community, 

but are relatively simple measures o f interference (Wagstaff, 2007, Appendix C,
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p. 17). In order to improve this situation, a new way o f thinking about interference 

was needed, one that could indicate, quantitatively, how severe the impact o f  

interference would be on an ASR system.

It was conjectured that if  an Ideal Feature exists, it would function correctly under 

all interference conditions. The performance of real features could then be 

evaluated by comparing their characteristics with that o f the Ideal Feature. A 

performance metric was proposed called Interference Selectivity to allow 

quantitative assessment o f the real features.

Given this performance metric, it was then necessary to know how existing, 

typical features might behave. Only then would it become clear whether or not 

improvements were needed. Simulation was used to produce statistics on the 

Interference Selectivity metric, the results o f which could inform the design 

process.

The proposal for a method o f evaluating the performance o f recognition features 

in the presence o f interference led to the need to understand the performance o f  

existing features.

What is the Interference Selectivity achieved by typical features? Is this 

performance sufficient to allow interference to be effectively ignored, or is it 

necessary to look for improvements? If improvements are needed, then what 

Interference Selectivity is required?
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3.6.2 Interference Selectivity investigation by simulation

To answer these questions a Matlab simulation was constructed based on the 

canonical architecture defined previously. The alternative approach would be to 

obtain mathematical definitions of the interference selectivity for a very wide 

range of interference events. The simulation approach was considered to be more 

likely to produce results within the timescales o f the project and, if  necessary, 

could be readily extended to include other signal types and different recognition 

algorithms.

By simulating the interference between a wide variety of signals and a number of 

different recognition algorithms, it was possible to explore the concept of 

interference selectivity. The simulation was based on the types of signal to be 

found in the 2.4 GHz ISM band, which is a licence-exempt band commonly used 

for wireless networking and also used by microwave ovens, wireless video 

senders and other consumer technology.

A total of 63 signal types were simulated with bandwidths ranging from zero (i.e. 

Continuous Wave) to 22 MHz. These were paired in different combinations and 

analysed using 13 features. A total o f 1,339 signal pairings were evaluated, 

requiring the simulation of over 5 million interference events. This gave 

confidence in the statistics o f the Interference Selectivity estimates. The details of 

the simulation parameters are given in Appendix B and the results are described in 

section 4.4.
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This simulation gave valuable insights into the ability o f existing features to 

handle interference. Studying the results led to useful observations on the 

possible ways forward for handling interference in future ASR systems.

3.7 Combining multiple feature extraction algorithms

One of the main items of feedback from the user survey was that identification 

accuracy is the most important characteristic o f an ASR system. This must be 

achieved in an increasingly complex, interfering environment.

The subsequent work led to results that showed that:

® feature extraction algorithms can be developed which remove information 

content from signals to highlight the modulation and the PCRP was developed 

as an example;

• certain desirable behaviours can be built into a feature extraction algorithm, 

with the LCDP being developed as an example o f such an algorithm;

® it is possible to reason about ASR systems at a high-level by considering the 

required functionality in the form of a canonical architecture;

® feature extraction algorithms can be compared quantitatively in terms o f their 

performance in interference.

The last stage in the research considered how these threads might be pulled 

together by devising an architecture for combining the outputs o f the best feature 

extraction algorithms. There are many ways in which this might be done. Rather 

than consider all possible methods, the rationale adopted here was to consider one 

approach in particular and recommend further work where necessary.
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Section 4.5 presents the results of this work, which concentrated on proposing a 

decision-theoretic method based on a Bayesian chain. This method is proposed as 

a means of showing how the earlier strands o f research can be brought together. It 

does not claim to be optimal in any particular sense, but would form a useful basis 

for work in this area.

3.8 Summary

Potential users of ASR systems were surveyed and, in combination with the 

results of the literature search, this provided the motivation for the main direction 

of the research.

The overall approach to the research was to break the overall research question 

(section 1.2) down into a series of more manageable sub-questions (section 3.1), 

each of which was investigated in some detail. The majority of the research was 

algorithmic, with simulation used to provide evidence o f performance where 

needed.

This approach to the research was successful in that it led to useful contributions 

and insights that will help to guide future algorithm development.
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4 RESULTS

This section presents the detailed results of the investigation. The appendices are 

referred to, where appropriate, in order to present more detail than is appropriate 

here.

Section 4.1 presents the PCRP method and its application to communications 

signals o f various types. Section 4.2 describes the results o f the investigation into 

the LCDP algorithm. Section 4.3 presents the proposed canonical architecture for 

describing ASR systems and section 4.4 gives the findings o f the investigation 

into ASR performance in the presence o f interference. Section 4.5 brings the 

various strands o f research together by presenting a way o f combining the outputs 

of multiple feature extraction algorithms.

4.1 Recurrence plots

In section 3.1 the second sub-question that was posed was:

To what extent can the type of modulation be separated from the 

information content of a signal?

This sub-question was addressed by considering the visualisation and analysis o f  

signals via the Recurrence Plot method. The concept o f the RP was introduced 

briefly in section 2.4.2.

This part o f the research concentrated on investigating an effect that had been 

observed by the author when a Cross Recurrence Plot (CRP) was constructed 

from a signal and a phase-rotated version o f that signal. This investigation aimed
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to understand and quantify key aspects of the behaviour o f RP methods insofar as 

they can help answer the research sub-question.

The investigation starts by examining the determination o f symbol rate of a set of 

BPSK signals using the two different types o f recurrence plot. It then extends this 

same analysis to a set of QPSK signals and finally looks at some other 

modulations of interest.

By these investigations it is shown how deliberately removing information from a 

communications signal, in this case information encoded in the phase, it is 

possible to construct a representation that enhances a particular aspect that is 

useful for recognition purposes. In these examples it is the symbol rate that is the 

parameter to be enhanced.

4.1.1 Simulation details

The following sequences o f 24 symbols are used to illustrate the behaviour o f the 

algorithms for different modulations. In all cases the symbol rate is 1 kBaud 

giving a time series 24 ms in duration. The signals are simulated at a sample rate 

of 10 kSamples/s, so there are 10 samples per symbol.

Each simulation is created by concatenating three copies o f the symbol sequence, 

then modulating the longer sequence with the required modulation scheme. The 

bandwidth is then increased by a factor o f 10 by resampling in order to facilitate 

visualisation as recurrence plot images. Finally the leading and trailing samples 

are rejected leaving the centre third to be used in the analysis. This procedure
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eliminates any effects the resampling filter may have had at the start or end o f the 

simulated sequence. The result is a series o f 240 complex baseband (I/Q) samples 

(Burr, 2001, pp. 16-18) starting at the centre o f the first symbol in the sequence.

4.1.1.1 Set A

Set A is a single sequence o f alternating zeroes and ones.

Example Symbol Sequence

A1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

4.1.1.2 Set B

Set B comprises 10 sequences o f the symbols zero and one. Each sequence has 

been taken from a random series but selected such that it has an equal number of 

ones and zeroes.

Using the same number o f ones and zeroes reflects the use o f line codes such as 

Manchester and retum-to-zero (RZ) (Ziemer and Tranter, 1995, p. 557). These 

are used in radio communications systems to aid clock recovery by ensuring there 

are no long periods without a symbol transition and also to remove the DC 

component from the transmitted spectrum (Burr, 2001, p. 112).
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Example Symbol Sequence

B1 0 0 0 1 1 0 1 0 0 0 0 0 1 1 1 0 1 0 1 1 0 1 1 1

B2 0 1 0 1 0 0 0 1 1 1 1 0 0 1 1  1 0 0 0 0  1 1 0 1

B3 0 1 0 1 1 0 1 0 1 0 0 1 1 0  0 1 1 0 1 1 0 0 1 0

B4 0 0 0 1 0 1 0 1 0 1 1 0  1 0 1 0 1 1 1 1 1 0 0 0

B5 0 1 0 0 0 0 0 1 1 1 0 1 0 1 1 1 1 0 0 0 1 1 1 0

B6 1 0 1 0 1 1 0 0 1 0 0 0 0 0 1 1 0 1 1 1 1 0 1 0

B7 0 0 0 0 1 1 1 0 1 1 0 0 0 0 1 1 1 1 1 1 0 0 0 1

B8 0 1 0 1 0 1 1 1 1 0 0 0 0 1 1 0 0 1 1 0 0 1 1 0

B9 0 0 1 1 1 0 1 1 1 0 1 0 0 1 0 1 1 0 1 0 0 0 1 0

BIO 0 0 1 0 1 1 0 1 0 1 0 0 0 0  1 1 1 1 1 1 0 1 0 0

4.1.13  SetC

Set C is a single sequence comprising the symbols 0 to 3 in ascending order and 

repeating.

Example Symbol Sequence

Cl 0 1 2 3  0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

4.1.1.4 SetD

Set D comprises 10 sequences o f the symbols 0 to 3. Each sequence has been 

taken from a random series but selected such that it has an equal number o f each 

symbol.
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As with set B the equal number o f symbols reflects the use o f line coding to aid 

timing recovery and remove the DC component from the transmitted spectrum.

Example Symbol Sequence

D1 1 2 1  1 2 3 3 1 3 3 2 3 2 0 0 1 0 0 0 2 1 0 3 2

D2 21 1 0 2 0 3 3 1 2 3 3 0 3 2 1 0 0 1 3 0 2 1 2

D3 0 0 3 2 1  1 3 3 2 2 3 3 1 2 0 2 3 1  1 0 1 0 0 2

D4 2 0 0 0 3 3 2 0 1 1 1 3 2 0 3 0 2 2 1 3 1 2 1 3

D5 1 3 1  1 1 1 2 3 2 1 2 0 2 3 2 0 0 3 0 2 3 3 0 0

D6 0 1 2 0 3 3 1 0 3 1 1 0 0 2 2 0 2 3 2 1 1 3 3 2

D7 2 1 0 0 2 1 3 2 0 0 3 2 1 1 3 2 1 3 0 3 3 0 1 2

D8 2 1 2 2 2 1 0 3 0 3 0 3 3 3 0 1 1 2 0 2 0 3 1 1

D9 1 0 0 2 1 0 2 1 1 3 1 3 3 0 2 3 3 1 3 2 2 2 0 0

D10 1 0 2 0 3 1 1 2 3 2 3 2 1 1 2 0 3 1 2 3 0 3 0 0

4.1.2 BPSK symbol rate estimation from Recurrence Plots

The first step in this investigation is to demonstrate the estimation o f BPSK 

symbol rate from an RP. This could be done in many ways, but a straightforward 

method is to take the Fourier transform of a single row from one side o f the RP 

and look for a peak corresponding to the symbol rate.

As an example consider the series o f 24 alternating symbols in example A l. The 

RP for this sequence is shown in Figure 26.
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It will be recalled that the RP, as defined in (14) take a threshold, e, as a 

parameter. The choice o f threshold affects the appearance o f the RP and it must 

be set to reveal the characteristics o f interest. For the purpose o f the current 

investigation the threshold has been set at 0.175 (see section 4.1.3 for the rationale 

behind this choice) which allows the the symbol transitions to be seen clearly in 

Figure 26.

Looking along the leading diagonal, known as the Line Of Identity (LOI), there 

are 23 crossings corresponding to the locations of the symbols. At each end o f the 

LOI there are two 'half symbols' so there are 24 symbols in total.

Figure 26. RP ( e = 0.175) of BPSK, example A l (alternating symbols).

The Fourier transform is now calculated of just the first row using a 256 point 

Fast Fourier Transform and this results in the power spectral density plot of 

Figure 27. The symbol rate o f 1 kBaud is seen but is the first harmonic at 1 kHz 

and not the dominant peak. The fundamental frequency is 0.5 kHz, which can be 

understood by remembering that the input sequence consisted o f alternating
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symbols and so the first row of the RP only reveals 12 symbols similar to the first 

on that row rather than 24.
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Figure 27. Fourier transform of first row of Figure 26, BPSK, set A, zero frequency 

term omitted ( e  = 0.175).

Further examples are shown below for the symbol patterns in set B listed in 

section 4.1.1. In each case there is a peak at 1 kHz, but there are other peaks that 

are frequently stronger. These peaks represent the information carried by each 

symbol sequence and so are different for every example.
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Figure 28. RP ( e = 0.175) and Fourier transform of first row for BPSK, example Bl.
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Figure 29. RP ( £ — 0.175) and Fourier transform of first row for BPSK, example B2.
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Figure 30. RP { £ =  0.175) and Fourier transform of first row for BPSK, example B3.
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Figure 31. RP ( £ =  0.175) and Fourier transform of first row for BPSK, example B4.
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Figure 32. RP ( e = 0.175) and Fourier transform of first row for BPSK, example B5.
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Figure 33. RP ( £ =  0.175) and Fourier transform of first row for BPSK, example B6.
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Figure 34. RP ( e =  0.175) and Fourier transform of first row for BPSK, example B7.
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Figure 35. RP ( s=  0.175) and Fourier transform of first row for BPSK, example B8.
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Figure 36. RP (e= 0.175) and Fourier transform of first row for BPSK, example B9.
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Figure 37. RP {e = 0.175) and Fourier transform of first row for BPSK, example B10.
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A Fourier analysis o f one row of the RP can be used to identify the symbol rate. 

One has to be careful, however, to distinguish between the spectral peaks since 

the pattern o f symbols directly influences the position and relative strength o f the 

peaks. In seven o f the ten cases shown above the 1 kHz peak corresponding to the 

symbol rate was not the dominant peak.

One way o f emphasising the spectral peak corresponding to the symbol rate is to 

average the power spectral density estimate over multiple sequences, which 

rejects user data in favour o f information about the modulation.

The result o f doing this for all ten example symbol sequences in set B is shown in 

Figure 38. The peak at 1 kHz is clearly visible and the averaging process has 

suppressed some o f the information content o f the symbol sequences in favour of 

the peak due to the symbol rate, which is the modulation characteristic o f interest. 

It is important to note though, that the 1 kHz peak is not the dominant peak, so 

further work is still needed to suppress the user information.
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Figure 38. Fourier transforms of RP ( e  = 0.175) first rows averaged over 10 examples 

in set B.

This section has demonstrated a means o f determining the symbol rate from the 

RP and considered the use of averaging to emphasise the power spectral density 

peak corresponding to the symbol rate. The averaging method, however, still left 

a number o f strong peaks on the power spectral density estimate so the 1 kHz 

peak was not an unambiguous indicator of the symbol rate.

4.1.3 Choice of threshold for BPSK symbol rate estimation from RP

In the previous section the RP threshold, £, was set at 0.175 without justification. 

This section explains the choice o f threshold.

Figure 39 shows a plot o f the power spectral density at the 1 kHz peak for a range 

of thresholds.
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Figure 39. Effect of varying threshold on estimate of power at 1 kHz, averaged over 

set B symbol sequences and over 50 random symbol sequences

The results have been averaged over all ten set B symbol sequences from section

4.1.1 and also for 50 random symbol sequences in order to indicate the average 

performance more clearly. All sequences used had an equal number o f ones and 

zeroes, reflecting the use o f line codes in practical communications systems.

The difference between the data sets was not great when it came to optimising the 

threshold setting. The ten set B symbol sequences resulted in a peak threshold at 

0.15 and the 50 random symbol sequences peak at 0.2. The maximum value 

appeared to be somewhere between these two, so a threshold 0.175 was chosen 

for the tests in section 4.1.2.
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4.1.4 Phase-symmetric Cross Recurrence Plots

In the form of equation (14) the RP does not take advantage o f the inherent phase 

symmetry of PSK signals. As part o f this Ph.D. the RP concept has been modified 

to exploit the phase symmetry that exists in many digital modulations.

This technique enhances the modulation component o f a received signal at the 

expense o f the information contained in its phase. The approach taken was to 

devise a variant o f the CRP (Marwan et al, 2007) in which the received signal is 

compared with phase-rotated versions o f itself.

The proposed phase-modified variant o f the recurrence matrix is defined as:

2D -I
i k T T l ^x —x em nf lM>,D)=Ue(e-

k=0
(32)

where the signal, x, is compared with a phase-rotated version of itself. The 

Euclidean norm has been used here, but other norms could be explored as further 

research.

The parameter D  is introduced here as an integer parameter called the 'symmetry 

depth'. When the symmetry depth is zero then equation (32) reduces to the 

conventional recurrence matrix (without embedding). Higher values o f D  allow 

this recurrence matrix to take advantage o f the symmetries in phase modulated 

signals.
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The plots from this equation will be called PCRP to distinguish them from 

conventional forms RP and CRP in the literature. The aim has been to manipulate 

the signal prior to analysis such that modulation features can be emphasised, 

which will be explained in the following paragraphs.

Note that it is common in recurrence plot work to use embedding, which is the 

practice o f reconstructing the phase space from a series o f samples. Embedding 

has not been included in the above definition, which simplifies the notation a 

little, as there is no need to consider the vector form. The application of 

embedding will be dealt with as further research, as it has not been found 

necessary to use it in the work to date.

The PCRP has been designed to remove some of the phase information in the 

signal. This can be demonstrated pictorially by considering the meaning o f  

equation (32) in I/Q space.
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It is clear that phase information is lost by this transformation, because it would 

not be possible to examine a dot on the PCRP and work out unambiguously where 

it originated in I/Q space. In the last diagram o f the series above a point within 

the error region around point 1 could have originated at any of points 1, 2, 3 or 4.

4.1.5 BPSK symbol rate estimation from PCRP

This section repeats the investigation of section 4.1.2 replacing the RP with the 

PCRP. The figures below use a symmetry depth, D, o f one and a threshold, £, o f 

0.175 (section 4.1.6) and can be compared directly with those in section 4.1.2.

In Figure 40, which is obtained from example symbol sequence A l, it is clear that 

the spectral peak at 1 kHz corresponding to the symbol rate is the dominant peak. 

Comparing this PCRP with the RP in Figure 26 it will be seen how the PCRP has 

'filled in' the plot with more points. Examining the Line Of Identity (LOI) the 

number of crossing points has doubled and also the number o f points on the first 

row has doubled, which is why the peak at 0.5 kHz has been lost.

2500
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~  1500if}c<D~o
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1 I
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<<J
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Figure 40. PCRP (Z> = 1, £  = 0.175) and Fourier transform of first row for BPSK, 

example Al (alternating symols).
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This 'filling in' behaviour is seen in the all the other examples below. Comparison 

with the previous graphs shows how the PCRP creates points that lie in the gaps 

on the original RP. Also it is clear that the 1 kHz spectral peak has, in all cases, 

been emphasised compared to the set o f graphs in section 4.1.2.
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Figure 41. PCRP ( D  =  1, e  -  0.175) and Fourier transform of first row for BPSK, 

example Bl.
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Figure 42. PCRP ( D  — 1, e =  0.175) and Fourier transform of first row for BPSK, 

example B2.
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Figure 43. PCRP (Z> = 1, e =  0.175) and Fourier transform of first row for BPSK, 

example B3.

Frequency, kHz

Figure 44. PCRP { D  = 1, e — 0.175) and Fourier transform of first row for BPSK, 

example B4.
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Figure 45. PCRP (D  = 1, e =  0.175) and Fourier transform of first row for BPSK, 

example B5.

Frequency, kHz

Figure 46. PCRP (D = 1, e =  0.175) and Fourier transform of first row for BPSK, 

example B6.
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Figure 47. PCRP ( D  =  1, e  -  0.175) and Fourier transform of first row for BPSK, 

example B7.

Time, ms Frequency, kHz

Figure 48. PCRP ( D  = 1, e =  0.175) and Fourier transform of first row for BPSK, 

example B8.
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Figure 49. PCRP ( D  =  1 ,  £ =  0.175) and Fourier transform of first row for BPSK, 

example B9.
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Figure 50. PCRP (D = 1, e  = 0.175) and Fourier transform of first row for BPSK, 

example B10.

In section 4.1.2 averaging was performed to produce a combined power spectral 

density plot (Figure 38). Repeating this averaging, but this time using the spectra 

from the PCRP results in Figure 51. Again the averaging emphasises the 1 kHz 

spectral peak and suppresses the other spectral components, but there has been 

further improvement in the clarity o f the peak compared to the other spectral 

components because o f the PCRP processing.
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Figure 51. Fourier transforms of PCRP ( D  = 1, £ = 0.175) first rows averaged over 10 

examples in set B.

This section has demonstrated a means o f determining the symbol rate from the 

PCRP which produces results that are better than those from the RP, because the 

PCRP removes some o f the information in the time domain leading to greater 

emphasis on the symbol rate. In particular it suppresses the spectral peak at half 

the symbol rate allowing the peak at the symbol rate to be the dominant peak.

4.1.6 Choice of threshold for BPSK symbol rate estimation from PCRP

The above examples o f the PCRP method assumed a threshold, £, o f 0.175, which 

was also the value chosen for the RP method. It is reasonable to question whether 

the same threshold should be used for both methods.
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Figure 52 can be compared with Figure 39 and shows the average height o f the

1 kHz spectral peak for a range o f thresholds.

Results are given for both the ten set B symbol sequences and 50 random symbol

sequences in order to indicate the average performance more clearly. A value of

0.175 was clearly close to the maximal value overall and was chosen for the

examples given here.
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Figure 52. Effect of varying threshold on estimate of power at 1 kHz, averaged over

set B symbol sequences and over 50 random symbol sequences using PCRP (D = 1).
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4.1.7 Comparison of RP and PCRP for BPSK symbol rate detection

The relative heights o f the 1 kHz peaks in the power spectral density graphs have 

been calculated for all examples in set B using BPSK modulation. It was found 

that using the conventional RP (£*= 0.175) led to an average peak that is 7% of the 

total power.

Note that, in order to make the RP and PCRP comparable in this way, the 'DC' 

terms must be removed which is achieved by subtracting the mean o f the RP or 

PCRP before calculating the power spectral density.

Analysing the same ten cases using the PCRP approach (D = 1, £=  0.175) led to 

the average 1 kHz peak height increasing to 16% of the total power. This is a 

significant result as it suggests that the symbol rate detection capability has been 

more than doubled by deliberately removing phase information via the PCRP 

method.

Figure 53 illustrates this result further by showing how the relative 1 kHz peak 

height varies with the threshold parameter, e. The PCRP (D = 1) demonstrates an 

improvement in peak height across all thresholds examined.
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Figure 53. Comparison of 1 kHz peak height for RP and PCRP methods averaged 

over set B with BPSK modulation.

These results have helped to show how, for BPSK, information can be suppressed 

in favour o f the modulation parameter o f interest, in this case the symbol rate. 

The next paragraphs go on to extend this analysis to QPSK and show how the 

same principle also applies to that type o f modulation.

4.1.8 QPSK symbol rate estimation from RP

This section considers QPSK, which is approached in a similar way to BPSK in 

section 4.1.2. Detecting the symbol rate is used to show how the RP and PCRP 

can be analysed.
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The symbol rate can be detected via a 1 kHz peak in the power spectral density 

estimate obtained via a Fourier transform of the first row of the RP. In this case 

the threshold used for the RP was again 0.175, as explained in section 4.1.10

Figure 54 shows the RP and power spectral density plots for the Cl example. The 

first observation to make is that, because this example sequence progresses around 

an I/Q circle there are no sudden phase shifts and the RP in Figure 54 comprises 

only lines parallel to the LOI. Another observation is that, in the corresponding 

Fourier Transform plot, the 1 kHz peak now has three lower subharmonics which 

is a result o f there being four phases in the constellation rather than two.
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Figure 54. RP ( e  = 0.175) and Fourier transform of first row for QPSK, example Cl.

The following plots show the results obtained for the first three example 

sequences in set D. At a subjective level the RPs do not reveal the symbol 

boundaries as clearly in the QPSK examples as they did in the BPSK examples o f 

section 4.1.2.
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Figure 55. RP (£= 0.175) and Fourier transform of first row for QPSK, example Dl.
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Figure 56. RP ( e = 0.175) and Fourier transform of first row for QPSK, example D2.
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Figure 57. RP ( e =  0.175) and Fourier transform of first row for QPSK, example D3.
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As with the discussion on BPSK in section 4.1.2 the 1 kHz spectral peaks can be 

aggregated by averaging over multiple symbol sequences. Figure 58 is obtained 

by averaging over the 10 set D examples.
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Figure 58. Fourier transforms of RP ( e =  0.175) first rows averaged over set D,

QPSK

Some suppression o f the other peaks has occurred but more suppression would be 

needed to make the 1 kHz peak an unambiguous indicator o f the symbol rate.

4.1.9 QPSK symbol rate estimation from PCRP

The PCRP can be applied to the problem o f QPSK symbol rate estimation in the 

same way it was applied in section 4.1.5 for BPSK. The PCRP has been designed 

with a symmetry depth parameter that can be increased to remove more phase 

information. This section presents some examples that illustrate the effect o f  

increasing the symmetry depth and concludes with using this mechanism prior to 

performing averaging of the spectra.
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Consider the first QPSK example, which has already been looked at in the 

previous section in terms of applying the conventional RP. In the PCRP the 

conventional RP is obtained by setting D = 0. The analysis of BPSK above used 

D  = 1. The symmetry depth is now increased further in Figure 59 to Figure 62.

When D  = 0 and D  = 1 the 1 kHz peak has three subharmonics and one 

subharmonic respectively. However, when D  = 2 the 1 kHz peak is dominant and 

there are no significant subharmonics, which indicates that the PCRP is now 

matched to the modulation type. There are four constellation points in QPSK and 

the PCRP with D = 2 maps the four constellation points into the threshold region.

Also shown (Figure 62) is the case where D  = 3. There is no 1 kHz peak showing 

that the PCRP is no longer matched to the QPSK modulation. It has been found 

that increasing the symmetry depth beyond the value at which the PCRP is 

matched to the modulation produces no further improvement in the height of the 

symbol rate peak and will not be considered further in this thesis as it is not a 

useful mode of operation.
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Figure 59. PCRP ( D  = 0, e  = 0.175) and Fourier transform of first row for QPSK, 

example Cl.
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Figure 60. PCRP ( D  = 1, s - 0.175) and Fourier transform of first row for QPSK, 

example Cl.
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Figure 61. PCRP ( D  = 2, e — 0.175) and Fourier transform of first row for QPSK, 

example Cl.
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Figure 62. PCRP (D = 3, e = 0.175) and Fourier transform of first row for QPSK, 

example Cl.

Now consider the PCRPs of the first example from set D in the following three 

figures. It will be seen how increasing the symmetry depth from zero to two 'fills 

in' in the recurrence plots and also how the 1 kHz spectral peak is emphasised 

when the symmetry depth equals two. These same behaviours are seen in all the 

set D examples.
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Figure 63. PCRP ( D  = 0, e  = 0.175) and Fourier transform of first row for QPSK, 

example Dl.
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Figure 64. PCRP (D  = 1, e =  0.175) and Fourier transform of first row for QPSK, 

example Dl.
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Figure 65. PCRP. (D = 2, e  — 0.175) and Fourier transform of first row for QPSK, 

example Dl.

As with the previous examples the power spectral density plots can be averaged 

and this suppresses the frequency components that are not present in all the 

examples. The result is shown in Figure 66 which is directly comparable with 

Figure 58. It can be seen that using the PCRP with D = 2 has resulted in emphasis 

of the 1 kHz spectral peak corresponding to the 1 kBaud QPSK symbol rate.
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Figure 66. Fourier transforms of PCRP ( D  = 2, e  = 0.175) first rows averaged over 

set D, QPSK.
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4.1.10 Choice of threshold for QPSK symbol rate estimation

As with the BPSK analysis the choice o f threshold for the RP and PCRP 

representations for QPSK analysis needs to be justified. Figure 67 shows the 

height o f the 1 kHz spectral peak for a range o f thresholds and for three different 

representations: the conventional RP and the PCRP with D  = 1 and D  — 2. 

Inspection o f Figure 67 suggests that some performance advantages would be 

gained by determining the best threshold for each representation individually.

It was decided, for the purposes o f this exploration o f the technique, to use a fixed 

threshold o f 0.175 for two main reasons:

1. To retain commonality with the BPSK investigation.

2. Practical implementations will either have to use fixed thresholds or adapt 

their thresholds to the received signal. Whichever design were used it 

would be necessary to gain an understanding o f performance with a fixed 

threshold.
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Figure 67. Effect of varying threshold on estimate of QPSK power at 1 kHz, 

averaged across set D examples.

The research to date has not investigated the choice o f thresholds for these 

representations in depth. It is felt that improved understanding will come from 

developing optimisation criteria, so further research is needed in this area. For the 

purposes of this thesis it is sufficient to recognise that the thresholds have to be 

optimised in order to obtain the best performance from RP-based methods.
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4.1.11 Comparison of RP and PCRP for QPSK symbol rate detection

Section 4.1.7 compared the RP and PCRP methods for measuring the symbol rate 

in BPSK. This section carries out a similar analysis for QPSK.

The relative heights o f the 1 kHz peaks in the power spectral density graphs have 

been calculated for all 10 examples in set D with QPSK modulation. It was found 

that using the conventional RP (£=0.175) led to an average peak that is 6% o f the 

total power. Analysing the same ten cases using the PCRP approach (£= 0 .175)  

led to the average 1 kHz peak height increasing to 12% o f the total power when 

D  = 1 and 24% when D = 2. Thus, as with BPSK, the symbol rate peak can be 

significantly enhanced when the PCRP method is used. If the symmetry depth is 

increased further to D  = 3 the 1 kHz peak height reduces to 15% of the total 

power.

Figure 68 shows the results for QPSK and is directly comparable with Figure 53 

which showed the results for BPSK. The figure shows how the relative 1 kHz 

peak height varies with the threshold parameter, £, and symmetry depth, D. The 

PCRP (D = 1 and D = 2) demonstrates an improvement in peak height across all 

thresholds examined but especially so when D  = 2.
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Figure 68. Comparison of 1 kHz peak height for RP and PCRP methods averaged 

over all set D examples, QPSK.

It must be emphasised that, in order get the best performance from the PCRP, the 

symmetry depth parameter, D, must be matched to the modulation type. This is 

not ideal from an ASR point o f view, so further work is needed to determine 

whether other modifications to the PCRP could remove this dependence on a 

priori knowledge o f modulation type.

These results have showed how information may be removed from a 

representation by manipulating that representation deliberately in such a way that 

a modulation characteristic o f interest is emphasised over the information content. 

In the case o f both BPSK and QPSK modulation it has been possible to modify 

the RP representation such that the information content is suppressed and the 

symbol rate is emphasised.
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4.1.12 Application to other modulation types

The detection o f symbol rate via the RP and PCRP methods has been described in 

the above paragraphs. The method can be applied to other modulation types, but 

is most suited to digital modulations where the information is encoded in the 

phase o f the signal. This section lists some examples to illustrate this.

In this section the threshold has been set to 0.175 throughout without considering 

the optimisation in detail. This approach allows the plots to be compared with 

those in the BPSK and QPSK investigation.

4.1.12.1 PSK8

BPSK and QPSK were used to explain the PCRP method and these required 

symmetry depths of one and two respectively to enhance the symbol rate. PSK8 

is the next modulation in this series and, as expected, it requires a symmetry depth 

of three for symbol rate enhancement by the PCRP. The example shown in 

Figure 69 to Figure 72 is for a single sequence of 24 symbols (2 3 1 7 4 5  4 2 3 5  

7 4 5 3 6 0 1 6 1  0 0 7 2  6) with a symbol rate of 1 kBaud and a sample rate of 

10 kSamples/s. It will be seen that the 1 kHz spectral peak is enhanced 

significantly when the symmetry depth, D = 3.
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Figure 69. PCRP (D = 0, e — 0.175) and Fourier transform of first row for PSK8.
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Figure 70. PCRP (D = 1, e — 0.175) and Fourier transform of first row for PSK8.
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Figure 71. PCRP (D = 2, e — 0.175) and Fourier transform of first row for PSK8.
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Figure 72. PCRP (D = 3, e  = 0.175) and Fourier transform of first row for PSK8.

4.1.12.2 Frequency Shift Keying

FSK is shown in the following two figures which use FSK2 and symbol sequence 

A1 with a frequency separation of 2 kHz, a symbol rate o f 1 kBaud and a sample 

rate o f 10 kSamples/s. The 1 kHz peak (and harmonics thereof) is clearly visible 

with no need to use the PCRP. Further investigation shows that the symmetry 

depth needs to be increased to one if  the frequency separation is close to, or less 

than, the symbol rate.

Time, ms Frequency, kHz

Figure 73. RP ( e  = 0.175) and Fourier transform of first row for FSK2, example Al.
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Figure 74. RP (e = 0.175) and Fourier transform of first row for FSK2, example Bl.

FSK4 is similar to FSK2 but there is a subjective difference in the RP. The two 

examples below use the QPSK example symbol sequences as inputs and have the 

same parameters as the FSK2 above.

Time, ms Frequency, kHz

Figure 75. RP { e = 0.175) and Fourier transform of first row for FSK4, example Cl.

Page 196 o f 376



Adrian Wagstaff

Time, ms Frequency, kHz

Figure 76. RP ( e = 0.175) and Fourier transform of first row for FSK4, example Dl.

4.1.12.3 Minimum Shift Keying

Minimum Shift Keying (MSK) requires a symmetry depth o f two for correct 

analysis with the PCRP method. Figure 77 and Figure 78 show two examples of  

MSK PCRPs with D = 0, 1 and 2. The symbol rate is 1 kBaud and the sample rate 

is 10 kSamples/s. It can be seen how the 'filling in' o f points is not complete until 

the symmetry depth has been increased to two.
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Figure 77. PCRP ( D  =  0 ,1 ,2 , e =  0.175) for MSK, example Al.
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Figure 78. PCRP ( D  =  0,1, 2, £ =  0.175) for MSK, example Bl.

4.1.12.4 Pulse Amplitude Modulation

Two level Pulse Amplitude Modulation (PAM2) can be analysed with a symmetry 

depth of one. The following figures show examples of the PCRP for PAM2. The 

symbol rate is 1 kBaud and the sample rate is 10 kSamples/s. Complete ’filling in' 

of the PCRP is achieved when D  = 1. This works for PAM2 but not for PAM4, 

for which no combinations of D  and £ have been found that produce meaningful 

estimates o f symbol rate. The PAM modulation schemes do not encode the 

information in phase so the PCRP is not expected to work.

20 20

15 15
I £
<D 0)
E E
i— 10 P  10

5 5

10 15
Time, ms

10 15
Time, ms

Figure 79. PCRP ( D  = 0,1, e — 0.175) for PAM2, example Al.
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Figure 80. PCRP (.D  = 0,1, € =  0.175) for PAM2, example Bl.

4.1.12.5 Quadrature Amplitude Modulation

Quadrature Amplitude Modulation (QAM) does not lend itself to symbol rate 

analysis by PCRP. This is because information is encoded in amplitude as well as 

in phase.

4.1.12.6 Summary of modulation types

In summary, the following table lists the modulations examined and the symmetry 

depth that should be used to analyse them for the purposes o f enhancing the 

symbol rate.
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Symmetry Depth Modulation Types

0 FSK2, FSK4 (frequency separation > symbol rate)

1 FSK2, FSK4 (frequency separation <symbol rate)

PAM2

BPSK

2 MSK

QPSK

3 PSK8

Not suitable PAM4, QAM

Table 6. PCRP symmetry depths for measuring symbol rate in different modulation 

types.

4.1.13 Conclusions

This section has presented the results o f an investigation into the use o f recurrence 

plots for analysing the time domain structures within a communications signal.

A modified version of the recurrence has been devised that allowed information to 

be suppressed in favour of the symbol rate and this was shown to be effective for 

a number o f modulation types that encode information in phase. This result went 

a long way towards answering the question posed at the start of this section, 

which was to what degree the information about the type o f a modulation can be 

separated from the information content?

Page 200 o f 376



Adrian Wagstaff

The PCRP was shown to behave differently for different modulation types, but 

significantly increased symbol rate peak height for both BPSK and QPSK. For 

other modulation types this technique offers little or no improvement, but the 

principle has successfully been demonstrated that it it is possible to suppress 

information in favour o f modulation characteristics.

One approach to using recurrence plot methods has been presented in this section 

with the intention of using it to explore the research question. It is a novel 

application o f such methods and there may be some merit in investigating such 

methods further. Generally the recurrence plot methods have been applied to 

natural phenomena rather than man-made phenonemena, but this may prove to be 

a useful cross-fertilisation o f ideas from other areas o f science into the field o f 

ASR research, especially when dealing with natural sources o f electromagnetic 

radiation.

At a technical level, further work will be required to determine optimisation 

criteria and find ways of handling modulations that the PCRP cannot cope with. 

Further work is also needed to evaluate the performance o f the PCRP algorithm in 

the presence of noise, interference and centre frequency offset. In addition to the 

technical investigations there is also considerable work to be done in engaging 

with other researchers in the recurrence plot research community in order to bring 

their ideas to bear on the problems o f ASR.
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4.2 Logarithmic Cyclic frequency Domain Profile

In section 3.1 the third sub-question was given as:

To what extent can a logarithmic representation be used to handle 

interferers whose modulation may have very different time scales to 

those of the signal of interest?

This has been investigated by developing a logarithmic form of one of the 

representations from the family o f cyclostationary techniques, which have been 

applied widely to the problem of recognising communication modulation 

schemes. This section describes the transform developed as part of this research 

and illustrates its application to communication signals with widely different time 

domain characteristics.

Cyclostationarity techniques are processing-intensive, so much effort has been 

invested in researching algorithms that can reduce the number of computational 

steps required, with Fast Fourier Transform (FFT) approaches predominating. In 

this work a novel approach to improving the extent o f the cyclic frequency (a) is 

proposed. By using the Constant Q Transform (CQT) a logarithmic form of the 

SCF has been produced. This allows the cyclic frequency, a, axis to be drawn in 

logarithmic form.

Such a representation can be advantageous when the receiver bandwidth cannot 

be well matched to the signal frequency and bandwidth using a priori knowledge 

of spectrum allocation. This is typically the case with interferers, as the receiver 

will be matched to the signal o f interest rather than the interferer. At least one of
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the signals received will not, in general, be well matched to the receiver centre 

frequency and bandwidth.

It is shown that a CQT-based SCF can form the basis o f a Logarithmic Cyclic 

frequency Domain Profile algorithm without loss o f sensitivity compared to the 

conventional, linear form.

4.2.1 Cyclic frequency

A concept fundamental to cyclostationarity analysis is that of cyclic frequency, a. 

A cyclostationary signal is one that contains a hidden periodicity and a  is the 

measure o f the frequency o f this periodicity. The definition (Gardner, 1986a), 

(Gardner, 1986b) is that a time-series, x(t), contains second-order periodicity with 

cyclic frequency, a , if  and only if  there exists some stable Quadratic Time 

Invariant (QTI) transformation o f x(t) into y(t) such that y(t) contains first-order 

periodicity with frequency a.

The cyclostationarity methods seek to estimate the cyclic frequency in much the 

same way that Fourier methods seek to estimate frequency. The processing 

required is not inconsiderable and, as with Fourier processing, fast processing 

algorithms have been developed to speed up the time taken to analyse a buffer o f  

data.

4.2.2 Cyclostationarity characteristics of communications signals

The prime objective o f using cyclostationarity analysis when considering 

communications signals is the determination o f the various periodicities present,
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including symbol rates, frame rates, multiffame rates, etc. When more than one 

signal is present then these periodicities may have to be estimated for all the 

signals, which raises the problem explained in section 2.3.1 of the range of 

bandwidths and time scales.

The SCF is the main cyclostationarity tool used for identifying such periodicities 

(Antoni, 2007). If used in a brute-force way to cover up to 15 orders of 

magnitude in both frequency and cyclic frequency, it would lead to a matrix with 

1030 elements. Such an array would be impractical to create, manipulate and store 

with current computing technology. A wide bandwidth SCF is therefore difficult 

to use in spectral bands in which wide and narrow band emitters coexist.

4.2.3 Logarithmic axes

One way o f circumventing the problem of dealing with a large SCF matrix would 

be to use logarithmic axes for the SCF estimate. The maximum compression 

would be achieved if  both the frequency and cyclic frequency axes were 

logarithmic. This can only be achieved if  the signal is in a complex baseband 

representation and is centred at zero frequency. In many applications one cannot 

guarantee perfect frequency centring o f the signal. A more practical approach is 

therefore to assume a complex baseband signal and allow the signal to be centred 

at any frequency. In this case it is only the cyclic frequency axis that can be 

logarithmic, but this still achieves dramatic reductions in the size o f the SCF array 

required.
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4.2.4

The Logarithmic Cyclic frequency Domain Profile is the name given here to the 

representation obtained by applying a logarithmic transform to the cyclic 

frequency axis. The LCDP is a very compact representation o f the 

cyclostationarity characteristics o f a signal and is therefore suitable for ASR 

processing as well as a wide range o f other scientific applications.

Cyclostationary spectral analysis

Gardner (1986b) defined the CAF for a cyclostationary process, x(t), as a function 

of cyclic frequency, a. This was given in section 2.4.2 as:

RaA t)=^r^K {t^y,2m,dt 
0

The SCF is then the Fourier transform o f the CAF:

The SCF can be normalised, which yields the spectral coherence, Cxa(f):

S ° ( f )

(33)

(34)

C f ( / )  = 11/2[S{f+al2)s{f-al2)]

(35)

The CAF, SCF and spectral coherence are useful depictions o f the hidden 

periodicities in the signal (Gardner et alt 1987) (Asai et al, 2005), but they yield 

large arrays that require significant post-processing in order to extract the features 

of interest. A simpler representation is the CDP which is simply the largest SCF 

component at each value o f a  and this can be represented in the computer as a 

one-dimensional vector rather than a two-dimensional array.
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Kim et al (2007) give a good illustration of how the CDP can be applied to ASR 

in cognitive radio applications. They define the CDP as:

1(a) = max|c“(/)|

(36)

The CDP is not sensitive to tuning offsets, because it is a projection o f the SCF 

onto the cyclic frequency axis. This property is useful as the CDP will be largely 

invariant to tuning errors, providing the error is not large compared to the 

bandwidth of the signal o f interest. The CDP is, therefore, relatively 

straightforward to apply in non-cooperative communications applications such as 

signal interception.

4.2.5 Constant Q transform

The CQT was introduced by Brown (1991) with the main objective o f aligning an 

analysis frequency scale with that used in western music. It is essentially a filter 

bank, whose centre frequencies follow a logarithmic sequence. The non-linearity 

means that it is difficult to design an inverse CQT (Fitzgerald et al, 2006), but its 

use in the forward sense is well-established for music analysis. Various fast 

implementations based on Fast Fourier Transforms and filter banks have been 

developed (Brown and Puckette, 1992), (dos Santos et al, 2004), (Wang and 

Tong, 2004).

4.2.6 Applying the CQT approach to the CDP

In section 4.2.3 the author proposed the concept o f an LCDP. In order to achieve 

this, the author took the concept of the CQT approach and applied it as a 

modification to conventional linear cyclostationarity analysis. This modification
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involved redefining the a  axis to be a logarithmic quantity rather than a linear 

one.

The required a  axis is defined by the following sequence. Note that base 2 is used 

purely because it is thought to be a convenient form from which to derive a digital 

implementation. Other bases might be appropriate and should be considered for 

further work in this area.

position in the filter bank. The parameter b is the number o f filters per decade and 

so dictates the resolution o f the a  axis.

The Q factor gives the widths o f the filters, which increase as k increases. A 

suitable value for Q is obtained from:

(37)

where (Xo is the minimum value o f a  required and k is an index defining the

b

dk
In 2

(38)
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The length of each filter is then given by:

(39)

With the addition of a window function, W, (e.g. Hamming) to reduce spectral 

leakage, the form of the CQT required can be written as:

This estimate can be used in the calculation of a time-averaged logarithmic SCF 

and hence a Logarithmic Cyclic frequency Domain Profile.

The region of support o f the logarithmic SCF is modified as a result o f using the 

CQT. This is shown in Figure 81, in which the main features to observe are the 

linear scaling of the frequency axis and the logarithmic scaling o f the cyclic 

frequency axis. The power spectral density (i.e. at a  = 0) cannot be represented 

on this form of the SCF and must be calculated separately.

-i2nQn/Nk

(40)

Page 208 of 376



Adrian Wagstaff

0 . 5 — -

- 0 . 5  —

Figure 81. Region of support of the logarithmic SCF, which extends ±1 in cyclic 

frequency and ±0.5 in frequency. The region of support excludes the line of a=0.

The loagrithmic SCF is a smaller data structure than the linear SCF covering the 

same range o f frequencies and cyclic frequencies. This leads to a corresponding 

reduction in the amount o f memory needed to hold the SCF and a reduction in the 

amount of processing needed for its calculation.

Both forms o f the SCF have the same resolution and range o f frequencies and the 

same range o f cyclic frequencies; they differ only in the resolution o f the cyclic 

frequency axis. The size o f the SCF will be linearly related to the product o f the 

number o f frequency points and the number o f cyclic frequency points. As the 

number o f frequency points is the same for both forms o f SCF, the maximum 

memory requirement o f the SCF depends only on the ratio o f the numbers o f  

cyclic frequency points. This ratio is given by:
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Pg_  k + l l
P«  [logfast,(10c)+ l]

(41)

Where P a and P& are the numbers o f cyclic frequency points in the linear and 

logarithmic SCFs respectively. G is the orders o f magnitude to be covered by the 

cyclic frequency axis and base is the logarithmic base.

For values of base between 2 and 9 and orders o f magnitude, G, between 2 and 9, 

equation (41) can be simplified to:

P r i 
Pa'

(42)

As an example, consider an LCDP that is to cover eight orders o f magnitude in 

cyclic frequency. This would require the computation and storage of a 

logarithmic SCF that has 0(1 O'7) times fewer elements than the comparable linear 

SCF, where the 0(.) notation indicates the upper bound on the processing 

requirements (Cormen et al, 1999, p. 26).

4.2.7 Implementation of the SCF

The implementation of cyclostationarity techniques is a significant research area 

in its own right. A well-established body o f papers considers the implementation 

of the SCF, which can be estimated in different ways, with time-smoothing and 

frequency-smoothing being the two main approaches. The time-smoothing 

approach (Gardner, 1986c), (Roberts et al, 1991) is illustrated in Figure 82 which 

assumes time averaging over a period At and a frequency step size of Af.
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exp (~i27i(a/2+f)f)

x(t)

1/A t

Low Pass Filter

Low Pass Filter

Low Pass Filter

exp {-i2n{o/2-f)f)

Figure 82. Implementation of the time-smoothed SCF as a pair of low pass filters.

This is not the only method o f realising a consistent estimator o f the SCF. Antoni 

(2007) has proposed a general quadratic form that allows cyclic spectral 

estimation to be viewed in terms o f other conventional spectrum estimation 

techniques, such as the multitaper periodogram.

The first step towards a logarithmic implementation is proposed in this thesis 

based on modifying the time smoothed estimator o f Figure 82 and is shown in 

Figure 83. It will be seen that this implementation relies on a cascade o f filters 

whose bandwidths halve at each successive division o f the input signal. Halving 

of the bandwidth comes from assuming a base 2 logarithmic series. Other 

logarithmic bases may result in more convenient representations. This is an area 

for further research.

Figure 83 illustrates the first two stages o f this implementation, together with the 

mapping onto the left hand side o f the SCF region o f support (see Figure 81)
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The logarithmic CDP estimate is obtained by finding the maxima o f the computed 

SCF points at each stage, according to equation (36).

Low Pass 
Filter

x(t)

Low Pass 
Filter

Low Pass Filter

Figure 83. Time-smoothed logarithmic SCF implementation as a cascade of low pass 

filter pairs.

4.2.8 Exam ples

The above implementation has been prototyped in the Matlab computing 

environment so the concept can be explored. In this section, two examples are 

given to compare the LCDP with the linear CDP defined by Kim et al (2007).
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Example 1 - Simple tones

The first example is o f two simple tones added together. They have the same 

amplitude and frequencies o f 0.05 and 0.0578 relative to the sample rate. The 

difference in frequency is therefore 0.0078.

The CDP with a resolution o f 256 points is shown in Figure 84 and the LCDP 

with a resolution of 9 points is shown in Figure 85. Note that the magnitudes of 

these plots have been normalised by dividing through by their maximum values. 

It will be seen that the peak in the LCDP is wider than those in the CDP, but this 

is simply because o f the reduction in resolution.
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Figure 84. Linear CDP of two tones (256 a  points).
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Figure 85. Logarithmic CDP of two tones (9 a  points).
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Example 2 - QPSK and BPSK

As a more practical example, consider the combination o f two signals, such as 

might appear within the bandwidth o f a receiver operating in a region o f the 

spectrum that can be shared by different kinds o f service. The receiver has no 

knowledge of the types o f signal it will encounter and has been set to its default 

bandwidth o f 10 MHz.

The first signal is QPSK modulated with a symbol rate o f 1.25 Mbaud and the 

second signal is a BPSK with a symbol rate o f 78 kBaud. The BPSK therefore 

has a significantly narrower bandwidth than the QPSK. The PSD that would be 

seen by a receiver with 10 MHz input bandwidth is shown in Figure 86.

-4 -3 -2 -1 0 1 2 3 4 5
Frequency (Hz) x 106

Figure 86. PSD of QPSK and BPSK for example 2.

The linear CDP for this scenario, with a resolution of 8192 points, is shown in 

Figure 87. Both symbol rates can be detected, but the lower symbol rate is hard to
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discern visually on the left hand side o f the graph. Additional smoothing would 

remove more noise and expose the symbol rate peaks more clearly.

0.8

0.6

0.4

0.2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
a

Figure 87. Linear CDP of QPSK and BPSK (8192 a  points).

If the LCDP method is applied to this scenario using nine points along the 

logarithmic cyclic frequency axis then Figure 88 is obtained. The two symbol 

rates can clearly be seen at approximately 2'3 (QPSK) and 2'7 (BPSK), 

demonstrating that a single cyclostationarity detector can be used in cases where 

the signals in the environment have very different symbol rates. Note that 

approximately the same number o f sample points has been used for the two 

algorithms. For the linear algorithm 8288 samples were used and 8192 samples 

were analysed using the logarithmic version. Comparison o f Figure 87 and Figure 

88 shows that the LCDP can lead to significant reductions in the resolution o f the 

alpha axis.
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Figure 88. LCDP of QPSK and BPSK (9 a  points).

4.2.8.1 Detection probability

Using this same example, the detection probabilities, Pd, of the linear and 

logarithmic algorithms are now compared. In these examples Pd is the probability 

that a signal can be discerned from additive WGN using a MAP detector (section 

2.4.4). The probability has been estimated by simulation of the signals in varying 

levels of WGN.

Figure 89 shows the value o f Pd versus Eb/No (Evans, 1999, p. 161) for the QPSK 

signal and Figure 90 shows the same relationship for the BPSK signal. In both 

cases there is no significant difference between the two algorithms. There is, 

therefore, no loss of sensitivity incurred by the use of the lower resolution 

logarithmic algorithm. The implication o f this result is that the system designer 

can look for an optimal configuration in a specific application by considering only 

the trade-off between processing overhead and cyclic frequency resolution.
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Figure 89. Detection probability versus Eb/No for the QPSK example.
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Figure 90. Detection probability versus Eb/No for the BPSK example.

4.2.9 Application to spectrum sharing

A recent proposal (Maeda et al, 2007) has been for a spectrum sharing scheme for 

systems using OFDM modulations based on deliberately injecting 

cyclostationarity to facilitate modulation recognition. Based on the concept 

introduced in this paper, it is proposed that such a scheme could be extended such
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that the cyclostationarity features are visible across a logarithmic range o f cyclic 

frequencies. This would allow narrow band systems to operate in the same area 

of shared spectrum as wide band systems.

4.2.10 Conclusions

This section has outlined a method for compressing the SCF and CDP estimates 

that are commonly used in the analysis of cyclostationary signals. The use o f a 

technique based on the Constant Q Transform allows the cyclic frequency axis to 

be compressed logarithmically. This significantly reduces the amount o f memory 

needed for processing the signature data. It has been demonstrated, via 

simulation, that there would be no loss o f sensitivity if  a logarithmic algorithm 

were used instead o f a linear one.

Work is now needed to produce efficient implementations tailored for use in 

specific real-time applications. These would have widespread application in 

communication signals analysis for cognitive radio and automatic modulation 

recognition.

A logarithmic CDP algorithm would facilitate non-cooperative identification of 

spectral redundancies over many orders o f magnitude. This would help 

communication systems of widely varying types to co-exist in areas o f shared 

spectrum. Such a capability would be particularly relevant to the sharing of 

wireless systems with widely differing bandwidths.
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4.3 Canonical ASR architecture

In section 3.1 the following sub-question was posed:

Given that it is possible to design algorithms with specific capabilities 

(e.g. modulation separation and logarithmic representation) it is 

reasonable to conclude that algorithms can be devised that possess one 

or more behaviours appropriate for recognising signals in the presence 

of interference. To what extent, then, can different algorithms be 

assessed in terms of their relative performance in the presence of 

interference?

This section addresses the first part o f the answer to this question, which is to 

develop a generic architecture for ASR systems to enable all such algorithms to be 

considered from a high-level perspective. Section 4.4 then continues the answer 

by looking at the performance o f feature extraction algorithms in the presence of 

interference.

It is useful to divide the ASR methods in the literature (section 2.4) into 

identifiable groups and organise them according to a taxonomy that can help with 

understanding the domain. In this section a taxonomy is introduced that can assist 

with this understanding. This draws partly on the work o f other authors (e.g. 

Dobre et al, 2007) but is a more rigorous and abstract framework than other work 

and is therefore more useful for describing the salient aspects o f different 

approaches to recognition processing.
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The taxonomy o f signal recognition methods has been developed using an object- 

oriented approach. The object-orientated approach to analysis allows a single, 

self-consistent model to be created that combines functionality and data structure. 

Older methods o f analysis that were based on separate functional and data 

decomposition lacked the richness o f description that is possible with UML. It is 

assumed that the reader is familiar with object-oriented analysis in general and 

with the UML in particular. Fowler and Scott (2000) offer a good summary o f the 

UML at the level required here.

4.3.1 Top-level package diagram

Figure 91 shows the package diagram used here for describing the major 

components of the problem. There are two packages, one representing the sources 

of the signals to be identified and the other representing the recognition 

processing.

Source

1 1
Emitter Mode Burst* *

Recogniser

Figure 91. Top-level package diagram.
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A relatively simple model is used in order to avoid the complexity of describing 

all possible sources o f radio waves. The justification for this is that this model is 

sufficient for operational purposes and any more complexity is probably 

superfluous. Furthermore, the model fits the types o f processing encountered in 

the literature search (section 2.4).

The Source package is a simplified representation o f a source o f radio waves, 

which may be natural or man-made. It is a simpler model than that described in 

section 2.2, but is more appropriate when the source o f the radiation is not yet 

known.

There are three classes in the Source package, which are:

• Emitter. This class acts as the root class for defining a source o f radio waves. 

The assumption is that there is a single entity that may be considered to be the 

Emitter. In the case o f a device such as a mobile phone it is clear that the 

Emitter will model the entire phone. Other cases are not so straightforward. 

Lightning, for example, is a distributed phenomenon, but in most practical 

applications it is sufficient to model the whole lightning phenomenon as a 

single Emitter object;

• Mode. Many modem radio sources can operate in more than one mode. A 

multimode handset is an excellent example. The Mode class allows such 

behaviour to be modelled;

• Burst. No practical radio system will radiate continuously for an infinite 

time. Radio waves are emitted in a particular mode for a period o f time. The
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Burst class allows each transmission to be represented by a different 

instantiation.

The Source package allows radio sources to be modelled in a compact way. It 

does not contain an explicit description of the physical architecture o f the source. 

The number of antennas, for example, is not modelled. It is with this 

simplification in mind that the development o f a signal recognition system is 

carried out.

A decision has to be made by the designer as to the level at which the recognition 

system is going to attempt to identify the Source. It can attempt to identify it at 

the Emitter, Mode or Burst level. The simplest approach is to identify at the Burst 

level and the most complex approach is to identify at the Emitter level. The 

relationship between the Recogniser and the Source therefore depends on the level 

at which recognition is to be attempted.

The Source package will not be considered further. For the purpose o f this thesis 

the structure o f this package has been elaborated only to the level o f detail needed 

to guide the investigation o f the Recogniser package structure.

4.3.2 Top-level class diagram

Concentrating now on the Recogniser package, the top-level class diagram for that 

package is introduced.
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From an object-oriented analysis point o f view, there are a number o f object types 

that can be manipulated by a signal recognition process. These are shown in 

Figure 92, which has classes corresponding to each object type o f interest.

Source

Recogniser

One or more Signals are received for each 
Burst. Also, each Signal received can contain 
data from multiple Bursts.

Each Signal can be split into one or more 
Segments.

Multiple Representatbns can be created 
from each Segment.

Multiple Features can be extracted from 
each Representation.

By examining the set of Features, the 
probability that the Segment contains one or 
more Types is modified.

BurstEmitter Mode

Type

Signal

Feature

Segment

Figure 92. Top-level class diagram.

The following classes are identified in the top-level class diagram:

® Signal. This is the class for objects holding signals, where a signal is defined 

as a set o f data received over a given period o f time from one or more
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antennas. In this model the Signal class is shown with a relationship to the 

Burst class in the Source package, which is the main relationship between the 

two packages. In general this is a many-to-many relationship;

• Segment. Each Signal object can be split up into one or more segments. In 

this model there is no constraint on how this segmentation is to be done. One 

approach, however, is to assert that a Segment should ideally correspond to a 

Burst of a single type. It is this assertion that is made in this thesis, i.e. that 

the recognition system must seek to achieve a segmentation such that each 

Segment relates to one Burst only. If this is achieved then there is a direct 

relationship between Signal and Burst and the Segment class becomes 

redundant. If, on the other hand, perfect segmentation cannot be achieved, 

then the relationships between the Source and Recogniser packages are more 

complex, leading to uncertainty in the recognition results;

® Representation. Virtually all recognition techniques rely on transforming a

Segment into one or more Representations in order to emphasise particular 

characteristics. Examples of algorithms suitable for producing typical 

Representations were introduced in section 2.4.2;

® Feature. By analysing the Representations it is possible to identify Features

that allow different Sources to be distinguished from each other. Section 2.4.3 

introduced typical Features encountered in the literature;

® Type. Ultimately the goal o f signal recognition is give a decision on the

Source at an appropriate level. The modelling o f the Type class should 

therefore correspond to the Emitter, Mode or Burst class as required by the 

application. The simplest model would equate the Type class with the Burst
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class, ignoring the higher complexities o f the Source. Section 2.4.4 described 

typical decision methods that can be used in the decision processing.

A top-level class diagram has been proposed in this section. This has been 

derived by inspecting the data processing used in a wide range o f signal 

recognition systems. The proposed model asserts that all practical signal 

recognisers can be regarded as manipulators o f information that can be modelled 

using the classes Signal, Segment, Representation, Feature and Type.

This is similar to, but more formally specified than, the statistical pattern 

recognition model in Soliman and Hsue (1992, p. 908) in which the concepts o f  

signal, observation, feature and decision space are used. The same model can 

encompass the decision-theoretic approaches (Soliman and Hsue, 1992, p. 908) by 

recognising that the likelihood ratio typically used in such methods can be 

regarded as a form of feature derived from some representation o f the input signal.

The evidence to support this model is given in section 4.3.6, which gives 

examples o f typical ASR architectures taken from the open literature and 

represented in the form of this model.

4.3.3 Activity Diagram

Sections 4.3.2 presented the generic top-level class diagam of the UML model. 

This section describes the functionality at a similarly generic level.

Figure 93 shows a generic top-level activity diagram that captures the main 

processing required.
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Pre-processing

Segmentation

TransformationTransformation

Decision

Feature extraction

Transformation

Feature extraction Feature extraction

Figure 93. Top-level activity diagram.

Once the Signal has been collected and split into Segments, each Segment can 

then be processed in parallel, transformed into multiple Representations and 

multiple Features. Once all the Features have been calculated the last activity in 

the diagram is the Decision activity which determines the Type.

Figure 93 supports dynamic concurrency, as indicated by the asterisk in the box 

surrounding most o f the activities. The implication here is that the system can 

search for the best identification by repeatedly segmenting and attempting 

identification again. This extension to the model allows multiple hypothesis
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systems to be included to take account o f the complexities o f the modem signal 

environment.

4.3.4 Class hierarchies

The top-level classes were described in section 4.3.2. This section expands on 

each o f these top-level classes by adding class hierarchies to support specific 

types o f information that are handled by typical ASR systems. The various 

classes listed here are grouped into the major types: Signals, Segments, 

Representations, Features and Types.

Using the concept of inheritance allows class hierarchies to be constmcted in 

object-oriented analysis and design. The concept o f inheritance can be applied to 

the classes proposed here by recognising that the various top-level classes given in 

section 4.3.2 are generic. Each class in the top-level class diagram forms the basis 

of a class hierarchy. These hierarchies are now described.

4.3.4.1 Signal class hierarchy

At the start o f the processing chain there are various representations o f Signals 

and these share some general characteristics. Typically in a digital computer they 

will be stored as finite length arrays o f either integer or real numbers.

One possible representation o f a hierarchy based on the Signal class is shown in 

the class diagram of Figure 94. Here the Signal class is shown at the top o f the 

diagram with various other classes derived from it.
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There are three main variants of the Signal class. These are the Signal_real class 

for real sample data, the Signal_iq class for complex baseband (I/Q) data and the 

Signal_zc for zero crossing sample data.

It is possible to identify variants o f these classes. Shown in the figure are the 

Signal_iq_centred class for I/Q data that is frequency centred and the 

Signal_iq_coherent class for I/Q data that is frequency centred and also time 

synchronised such that it is coherent with the symbol rate o f the emitter.

Signal_zcSignal_real S ignaljq

Signal_iq_centred

Signal_iq_coherent

Signal

Figure 94. Signal class hierarchy.
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Further variants o f this class hierarchy are conceivable, but Figure 94 is sufficient 

to illustrate the approach to modelling variants o f the Signal class as a class 

hierarchy.

The following classes are derived from the Signal base class. The last column of 

the table indicates where there is an example o f the given class later in this

section.

Class Description Example

Signal_iq Class for the storage o f sampled, 
complex, baseband data, also known as 
I/Q data.

4.3.6.2,
4.3.6.3

Signal_iq_centred Class for the storage o f frequency- 
centred, sampled, complex, baseband 
data, also known as I/Q data.

Signal_iq_coherent Class for the storage o f I/Q data that has 
been synchronised to the symbol rate 
and is therefore coherent with the 
symbol data.

4.3.6.3

Signal_real Class for the storage o f real (i.e. not 
complex) sampled signal data.

Signal_zc Class for the storage o f zero crossing 
sampled data.

4.3.6.4

Table 7. Example Signal classes.
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4.3.4.2 Segment class hierarchy

The Segment class hierarchy is shown in Figure 95 and is virtually identical to 

that o f the Signal class. For each type o f signal there is a corresponding segment.

Segment_zcSegment_real Segm entjq

Segment_iq_centred

Segment_iq_coherent

Segment

Figure 95. Segment class hierarchy.

The following classes are derived from the Segment base class. References are 

given to examples later in this section.

Class Description Example

Segment_iq Class for the storage of sampled, 
complex, baseband data, also known 
as I/Q data.

4.3.6.1, 4.3.6.2

Segment_iq_centred Class for the storage o f frequency- 
centred, sampled, complex, baseband 
data, also known as I/Q data.
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Class Description Example

Segment_iq_coherent Class for the storage o f I/Q data that 
has been synchronised to the symbol 
rate and is therefore coherent with the 
symbol data.

4.3.6.3

Segment_real Class for the storage o f real (i.e. not 
complex) sampled signal data.

Segment_zc Class for the storage o f zero crossing 
sampled data.

4.3.6.4

Table 8. Example Segment classes.

4.3.4.3 Representation class hierarchy

A subset o f the Representation class hierarchy is shown in Figure 96.

Representation_scf Representation_cdp

Representation_psdRepresentationjfeq Representation_amp

Representation

Figure 96. Representation class hierarchy.

There is an infinite variety o f possible Representation classes, as it is possible to 

transform any given Segment object using any conceivable, valid mathematical 

function. Figure 96 shows only a handful o f derived classes to illustrate the 

concept.
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Table 9 lists examples o f Representations that can be derived from the base 

Representation class.

Class Description Example

Representation_amp Class for the storage o f amplitude 
data

Representation_acn Class for the storage of 
normalised-centred instantaneous 
amplitude, acn

4.3.6.2

Representation_cdp Class for the storage o f Cyclic 
frequency Domain Profile data

Representation_constellation Class for the storage of  
constellation data

4.3.6.3

Representation_freq Class for the storage of 
instantaneous frequency

Representation_$v£ Class for the storage o f non-linear 
phase, ({>nu data

4.3.6.2

Representation_psd Class for the storage o f power 
spectral density data

4.3.6.1,
4.3.6.2

Representation_scf Class for the storage o f SCF data

Representaton_zci Class for the storage o f zci data 4.3.6.4

Representaton_zcid Class for the storage o f zcid data 4.3.6.4

Table 9. Example Representation classes.

4.3.4.4 Feature class hierarchy

A subset o f the Feature class hierarchy is shown in Figure 97.
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Feature oaf Feature_aap

Feature oaaFeature_ymax Feature aa

Feature

Figure 97. Feature class hierarchy.

There is an infinite set of possible Features and only a small number are shown in 

the diagram. The following classes are examples o f those that can be derived 

from the base Feature class:

Class Description Example

Feature_G Class for the storage o f G data 4.3.6.4

Feature_Hellinger Class for the storage o f Hellinger 
distance data

4.3.6.3

Feature_J Class for the storage o f J data 4.3.6.4

Feature_Np Class for the storage o f N f data 4.3.6.4

Feature_P Class for the storage o f spectrum 
symmetry data, P

4.3.6.2

Featurejymax Class for the storage o f ymax data 4.3.6.2

Feature_ca Class for the storage o f o a data

Feature_Gaa Class for the storage o f Gaa data

Feature_aaf Class for the storage o f Ga/data

Feature_aap Class for the storage o f o ap data 43.6.2

Feature_GdP Class for the storage o f OdP data 4.3.6.2

Table 10. Example Feature classes.
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4.3.4.5 Type class hierarchy

The Type class hierarchy has already been illustrated in Figure 92. For

completeness, the following classes are derived from the Type class.

Class Description Example

Type_burst Class for the storage o f burst type 
descriptions

4.3.6.1, 4.3.6.2, 
4.3.6.3, 4.3.6.4

Type_mode Class for the storage o f mode type 
descriptions

Type_emitter Class for the storage o f emitter type 
descriptions

Table 11. Example Type classes.

There is no consensus in the literature as to the list o f Types that are obtained. 

Researchers tend to choose identifications that suit their own purposes, although 

all could be mapped to variants o f the Type_burst class. Examples might be 

called Type_burst_FM, Type_burst_AM, Type_burst_BPSK, etc.

No examples have been found that could be mapped to the Type_mode or 

Type_emitter class. This suggests to the author that ASR research has not yet 

engaged with the complexities o f the modem radio environment.

4.3.5 Activities

The following sections address the analysis activities that could be used within 

each stage o f processing. Each stage of the top-level activity diagram (Figure 93) 

is considered in turn.
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4.3.5.1 Pre-processing

Pre-processing is the set o f processing activities that can be performed within the 

first activity o f Figure 98. It comprises those functions that are needed in order to 

interface the data stream from the receiver into the recognition processing.

Pre-processing 1

Feature extraction

Transformation

Segmentation

Decision

J »Down conversion 

-I/Q conversion 

^•Buffering

Figure 98. Pre-processing activities.

If it is assumed that the analogue output from the receiver has been digitised at an 

appropriate rate and fidelity, then there still remain some basic functions that need 

to be performed and these are grouped here under the heading o f pre-processing 

activities.

The pre-processing includes activities such as:

1. Downconversion from Radio Frequency (RF) or Intermediate Frequency 

(IF) to real or complex baseband;
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2. I/Q conversion, i.e. conversion to complex baseband from real baseband;

3. Buffering the data into memory windows that the hardware architecture can 

accommodate. It is important to note that these memory windows are 

unlikely to be time-aligned with the start and finish times o f signals of 

interest. In this architecture recovering the time-alignment is the 

responsibility of the Segmentation activity and not the Pre-processing 

activity.

The Pre-processing activity will not be covered further here. It is assumed in this 

model that the Pre-processing activities are not dynamically configurable. Where 

changes are needed to, for example, sample rate, then these are to be 

accommodated via Segmentation or other activities. This assumption is not 

fundamental to the model, but reflects the implementations in current usage.

4.3.5.2 Segmentation activities

Segmentation (Figure 99) in this model is, potentially, the first intelligent step in 

all ASR systems. In the view of this thesis its primary objective is to deliver 

Segments, each o f which contains samples o f Signal from a single Source, to the 

activities that come after it.
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Pre-processing

Feature extraction

Transformation

Decision

Segmentation 1

Time domain segmentation 

Frequency domain segmentation 

Code domain segmentation 

Resampling 

Despinning

Figure 99. Segmentation activities.

Historically, the majority o f systems investigated do not apply such intelligence at 

this stage and segment the incoming signal data by time and/or frequency in a 

simple manner. Some examples o f algorithms that could be used in the 

Segmentation activity were given in section 2.4.1. Table 12 lists some examples 

of Segmentation activities, based on those found in the literature. Segmenting by 

time is by far the most common example o f a Segmentation activity.
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Activity Description Input Output Example

S_time Splits a signal into 
segments o f equal 
duration

Signal Segment 4.3.6.2
4.3.6.4

S_frequency Splits a signal into 
separate segments in the 
frequency domain

Signal Segment

S_code Isolates a segment from a 
signal based on 
knowledge of the code 
space

Signal Segment

S_resample Changes the bandwidth of  
the sample data to match 
that of the signal of 
interest

Signal Segment

S_despin Remove the centre 
frequency offset o f the 
sample data so that the 
signal o f interest is 
centred

Signal Segment

Table 12. Example Segmentation activities.

4.3.5.3 Transformation

The Transformation activity (Figure 100) has been introduced into the proposed 

processing model as it provides a clear differentiation between the typical 

operations performed on Segments and the detection of Features in the outputs of 

those operations. A Transformation is an activity that takes a Segment and uses it 

to create one or more Representations.
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Pre-processing

v
Segmentation

cTransformation j

Feature extraction

i
Decision

Demodulation 

Periodicity transforms

Figure 100. Transformation activities.

Examples o f Transformation algorithms in the literature were given in section

2.4.2 and included a variety o f demodulators and periodicity transforms. Table 13 

lists a range o f transformation activities, based on algorithms in the literature.
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4.3.5.4 Feature Extraction

The Feature extraction activities (Figure 101) take as input the Representations 

produced by the Transformation activities. They output Features, which are fed 

into the Decision activities.

Transformation

Decision

Pre-processing

Feature extraction

Figure 101. Feature extraction activities.

The Feature extraction algorithms found in the literature were described in section 

2.4.3. A range o f example activities are listed in Table 14.
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4.3.5.5 Decisions

At this stage it is assumed that the Segmentation activity has isolated the Segment 

of interest in time and frequency, the data has been transformed into the desired 

Representations and the required Features have been extracted. A decision is then 

made on the Type based on one or more Features.

Pre-processing

 ̂ Segmentation

Transformation

Feature extraction

•Cluster analysis 

•Decision-theoretic methods
Decision

/

Figure 102. Decision activities.

Examples o f Decision algorithms were given in section 2.4.4 and included a range 

of decision-theoretic and cluster analysis approaches. Table 15 lists some 

example Decision activities for use within this stage o f the processing.
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Activity name Description Example

D B ayes Uses the Bayes algorithm to make a decision- 
theoretic selection of the Type

D M A P Selects the Type using the Maximum A 
Posteriori approach

D_minimum Makes a decision based on the minimum of a 
parameter

4.3.6.3

D_perceptron Perceptron-type ANN which outputs a vector 
of probabilities following the input o f a vector 
of parameters. It is assumed that the ANN 
will be trained prior to deployment in the 
recognition system

4.3.6.1

D tree Decision tree which provides a decision on 
the most likely signal type for a given input 
set of Features

4.3.6.2,
4.3.6.4

Table 15. Example Decision activities.

4.3.6 Examples

This section contains some examples o f signal recognition algorithm architectures 

drawn using the notation introduced in this appendix. The aim is to demonstrate 

that the notation is capable of depicting the major facets o f different architectures.

4.3.6.1 PSD recognition by Artificial Neural Network ANN

The first architecture to be considered is one o f the simplest to implement and was 

constructed relatively early in the history o f the subject. Ghani and Lamontagne 

(1993) compared the periodogram, Welch periodogram and bispectrum. They 

also compared the k-Nearest Neighbour and ANN methods for performing the 

classification. They decided that combining the Welch periodogram and a 

perceptron ANN gave the best performance o f the configurations they tried.
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This architecture is shown in Figure 103 and Figure 104. It is implemented using 

just two activities to perform transform and decision processing. Starting at the 

top o f the activity diagram, it is assumed that I/Q data is available in a Segment_iq 

object. Ghani and Lamontagne (1993) used a simulation o f 8192 samples at a 

sample rate o f 75 kSamples/s, corresponding to a duration o f 109.23ms. The 

segment is transformed, via a Welch periodogram, into a PSD estimate by the 

T_iq/psd activity. The resulting Representation_psd object is passed to a trained 

ANN, here shown as the D_perceptron activity. The decision processing creates a 

Type_burst object based on the outputs o f the ANN. The Type_burst class 

supports the set {AM, FM, ASK, QPSK, SSB-USB, SSB-LSB, FSK1, FSK2, 

BPSK, CW}.

Type_burst

Segmentjq

Representationjssd

Figure 103. Ghani and Lamontagne algorithm class diagram.
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TJg/gsd

Figure 104. Ghani and Lamontagne algorithm activity diagram.

Notice how, in this architecture, there is no Feature extraction processing and the 

ANN operates directly on the power spectral density estimate. This is quite 

unusual in the literature. This means that the Feature class is missing and is the 

only example found where this is the case. Rather than modifying the main 

model, it was thought best to leave this as a special case and emphasise how it 

differs from all other ASR systems in the literature.

4.3.6.2 AMRA1

The example in this section is the first architecture described by Azzouz and 

Nandi (1996, pp. 45-76). This architecture is called the Analogue Modulated 

Signal Recognition Algorithm number 1 (AMRA 1) and is shown in Figure 105 as 

a class diagram and Figure 106 as an activity diagram.
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This algorithm is inherently suited to parallel processing. Both diagrams show 

clearly how the calculation o f the Features and Representations can be performed 

in parallel, with the Types being decided when all the Features are available.

AMRA 1 starts by segmenting I/Q data (Signal_iq) into fixed duration Segments 

(Segment_iq). Three Representations are then created and, from each o f these a 

Feature is extracted. The decision on a Type is created using a decision tree 

(D_tree). The decision tree outputs the probability o f each o f seven modulation 

types. As a binary decision tree is used, the probabilities will be all zero apart 

from the single modulation selected, which will have a probability o f one.

Feature P

Represents tion_psdRepresents tion_aca

Segm entjq

Signaljq

Type_burst

Featur ejdep

Figure 105. AMRA 1 class diagram.
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D_tree

S_time

T_psd/P

Figure 106. AMRA 1 activity diagram.

4.3.6.3 Hellinger Distance

The Hellinger distance method (Donoho and Huo, 1997) is a form of probabilistic 

detection, similar to Bayes detection, applied to the constellation diagram. The 

processing is summarised in Figure 107 and Figure 108.

The first class in the recognition processing is Segment_iq_coherent. Not shown, 

but assumed to be present, is a Signal_iq object. This could be converted to 

Segment_iq_coherent via any suitable route, e.g. via Signal_iq_coherent or via 

Segment_iq. The route to achieving Segment_iq_coherent is not a significant part 

of the algorithm.

The modulation constellation is prepared using the T_iq_coherent/constellation 

Transform activity. This creates a Representation_constellation object which is
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then converted into a Feature_Hellinger object. Finally the Type_burst object is 

created based on the minimum Hellinger distance.

Type_burst

Segm entjqjcoherent

Representat'onjconstellation

Figure 107. Hellinger distance method class diagram.

T_jg_coherent/constellation
  - -   -

,____________ 4____________ .
F_constellation/He!Jjnaer

D minimum

Figure 108. Hellinger distance method activity diagram.
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4.3.6.4 Recognition by zero crossing detection

Section 2.4.2 described the zero crossing modulation recognition scheme 

proposed by Hsue and Soliman (1989). The process is shown in more detail in 

Figure 109 and Figure 110.

As with AMRA1 the processing is inherently parallel. The Features and 

Representations can be calculated as three separate threads prior to deciding on 

the Type.

0..1 0..1

0..1 0..1

Feature GFeature Nf

Represen tationjzridRepresentation^

Feature J

Type_burst

snr

Figure 109. Zero crossing method class diagram.
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Calculate 6 Estimate f£

[Single tonej

T zcfeci

S time

F zci/NF

Estimate snr

Octree (FSK)D_tree(single tone)

Figure 110. Zero crossing method activity diagram.

Not shown here, but assumed to be present is a Signal_zc class with an 

unspecified relationship to the Segment_zc class. The main recognition process 

starts with zero crossing sampled data, Segment_zc, which comprises a list o f the 

times at which the signal crosses the zero axis. The differences between these 

times are the zero crossing intervals, Representation_zci, which are calculated by 

T_zc/zci. Similarly, the second differences, Representation_zcid, are obtained via 

the T_zc/zcid activity.
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Unlike previous examples there is a need for an explicit intermediate step. The 

parameter G, the centre frequency, fc, and SNR are estimated from the available 

data. These are used to decide whether the segment contains a single tone (CW or 

PSK) or an FSK signal.

If a single tone is detected then the J parameter is calculated, but, if  an FSK is 

detected, a different parameter, N f, is calculated. A different decision tree is used 

depending on which parameter has been calculated.

Whilst this example has required an intermediate step, the class diagram adheres 

to the form of Figure 92 and the activity diagram is consistent with the 

architecture of Figure 93.

4.3.7 Sum m ary

The class and activity diagrams in the above paragraphs form a self-consistent 

model o f a generic ASR system. It is canonical in the sense that it cannot be 

reduced to a simpler form, yet contains all the elements necessary to create a 

complete recognition system.

With this model in mind it is possible to consider the structure as a whole and 

consider to what extent it is suitable for giving accuracy identification estimates in 

a complex, interfering environment. Section 4.4, therefore, presents the results of 

considering the model from this point of view.
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4.4 Feature performance in the presence of interference

In section 3.1 the following sub-question was posed:

Given that it is possible to design algorithms with specific capabilities 

(e.g. modulation separation and logarithmic representation) it is 

reasonable to conclude that algorithms can be devised that possess one 

or more behaviours appropriate for recognising signals in the presence 

of interference. To what extent, then, can different algorithms be 

assessed in terms of their relative performance in the presence of 

interference?

Section 4.3 started addressing this question by proposing a canonical architecture 

that can describe virtually all ASR systems at a high level. At this level it is 

possible to compare algorithms in terms o f their relative performance in the 

presence o f interference.

This section goes on to assert an approach whereby this comparison can be 

performed. It introduces novel concepts, which are the Ideal Feature and a metric 

called Interference Selectivity. It then applies these to a range o f algorithms and 

signal types to show how the interference performance o f different algorithms can 

be compared.

To start the discussion, the concept o f Segmentation needs to be investigated in 

more detail, which is the subject o f the next section.
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4.4.1 Segm entation

The problem of interference was introduced in section 2.3.5. Segmentation is the 

first stage in the recognition processing that has to deal with interference and is, 

therefore, particularly sensitive to it. Subsequent processing stages might assume 

that there is no interference if  the Segmentation activity has isolated individual 

Sources. If the bulk of interference handling can be dealt with by a Segmentation 

activity, then the design of the following stages is considerably eased.

Seen from the point o f view o f interference rejection, Segmentation can be viewed 

as a search process in which the ASR system attempts to identify individual 

Sources for identification.

This section of the thesis considers the information available to the Segmentation 

activity and seeks to start answering the question o f whether or not interference 

rejection is practical via a search process. The means o f interference rejection is 

not specified here and could be by interference cancellation using multiple 

receivers, beam steering, time/frequency domain filtering or any other method.

Given that a received Signal may contain Bursts from more than one Source and 

that these may overlap in time and/or frequency, what is the best strategy for 

determining the Type of each o f those Bursts?

Figure 111 illustrates a case o f two Bursts interfering with each other. In this

simple example with non-specific Types, Burst A is narrowband and long in

duration, Burst B is relatively wide bandwidth and short duration. One example
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of this situation would be where Burst A is a narrowband FM and Burst B is an 

impulsive noise event.

Time

Frequency

Figure 111. Example of two interfering Bursts, one narrowband of long duration, the 

other wideband of short duration.

One can readily envisage a search algorithm that searches through time and/ or 

frequency space to find regions in which it is believed that there is no 

interference. However, before constructing such an algorithm it is important to 

understand under what conditions such a search is beneficial.

The question that arises, when considering this line of enquiry, is, therefore, 

whether or not there is any advantage to be gained by trying to constrain each 

Segment to contain only Burst(s) from one Source.

Starting with a simple case, consider the scenario shown in Figure 112. A Burst 

from Source A exists on its own until it is interfered with by a Burst from Source 

B. Thereafter the received Signal comprises A and B in some combination.
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A A + B

 ►
Tim e

Figure 1X2. Example of simple one-dimensional interference, in which a Burst from 

Source A is interfered with by a Burst from Source B for part of the observation time.

The set of sampled data from such a scenario could be segmented in three 

different ways:

• All the data can be analysed to look for the existence o f Source A;

© A search for the A region could eliminate the A+B region and only the A 

region data used for identification;

• The two regions could be analysed separately and the results combined.

It is not immediately apparent which Segmentation strategy would lead to the best 

results. One way of deciding on the best approach to take, would be to use the 

solution that gives the best detection probability.

4.4.2 D etection probability

Bayes equation (Cooper and McGillem, 1999, p.26) for a set o f A  hypotheses and 

evidence, y/, can be written in the following form, assuming that the probability 

density ofy; for hypothesis Hu is f  (yi\Hh).

Z / ( A
i=l

(43)

Using the above equation it would be possible to evaluate typical cases of 

interference and hence decide whether the data from an interfered region (A+B)
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would be beneficial or not. In general terms, the data from any region, y  i, would 

be worth including in the recognition process if:

P(Hll\ y l) > P ( H ll)
(44)

where Hh is the hypothesis that Source A is present.

Each o f the terms in (43) can be evaluated a priori. The probability density 

functions f[.), in particular, can be estimated readily using simulations o f the 

Sources to be recognised. They will not, however, be available to the 

Segmentation activity, which has no knowledge of the presence o f either Source. 

This observation leads to the conclusion that feeding back the estimate o f Type 

from the output o f the ASR system to the segmentation process may lead to 

improvements in performance. This is an area for further research that has not 

been addressed by this thesis, because it would open up a major new line o f  

enquiry and would depend heavily on the development o f the concepts o f the 

Ideal Feature and Interference Selectivity introduced in this thesis.

Equation (43) permits any probability density function /(.) to be used and this 

would, ideally be a complete and accurate estimate o f the observed Feature data. 

For the sake o f improving compactness o f representation one can use a standard 

distribution, providing such a distribution fits the observed Feature data. It has 

been found experimentally, as part o f the analysis o f many statistical Features 

during this project, that the lognormal distribution is a good fit in many cases for 

individual modulations.
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The lognormal approximation is a pragmatic one. It is not suggested here that this 

approximation is always applicable and the reader is advised to ascertain for 

themselves the degree to which it is suitable for their own ASR system. Such an 

approximation must be made with caution (see Appendix E for more details). If 

no such approximation can be found, then numeric representations of the J[.) 

functions can be used instead.

It is important to note that /(.) represents the distribution for a combination of 

signal and interference. As the relative proportions of these two are not known in 

advance, the probability distribution must be estimated for a range o f admixtures. 

Moreover, because noise will always be present to some degree, this adds a 

further dimension to the estimation.

By evaluating (43) for different interference scenarios, we can ascertain whether 

or not it is worth looking for a Segmentation algorithm. This answer does not, in 

itself, lead directly to an appropriate Segmentation search strategy. To do that, 

there has to be an indication of the presence o f interference, which is a different 

problem.

4.4.3 The Ideal Feature

This section introduces and defines the concept of an Ideal Feature (IF), the 

purpose o f which is to facilitate comparison o f real Features in terms o f their 

performance characteristics within a signal recognition system.
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An Ideal Feature is defined to be one that, when the Segment being analysed 

contains two Sources, it only indicates the required characteristics of the dominant 

Source. This broad definition makes no assumption about the distribution o f the 

two Sources or noise in the time domain, frequency domain or any other 

Representation o f interest. Neither does it make any assumption about the 

meaning o f the word ’dominant' in this context.

A corollary o f the above definition is that, if  a recognition system is constructed 

from a set o f Ideal Features then only the dominant Source will be reported by 

each Feature extraction activity. The Decision activity will then be presented with 

an unambiguous set o f Features on which to base its decision. In such a system 

there is no need for a Segmentation activity to isolate individual Sources.

Conversely, if  a recognition system contains non-ideal Features, then there may 

be ambiguity in the identification. Such systems require intelligent processing 

within the Segmentation activity to handle the ambiguity caused by non-ideal 

Features. The ramifications o f this would be additional complexity and an 

increased probability o f erroneous identification, neither o f which are desirable.

It follows then that, if  a set o f Features can be used that are ideal then the need for 

complex segmentation processing is removed. In practice it may also be possible 

to use Features that are very well-behaved under all expected interference 

conditions and approach the performance o f an Ideal Feature such the the overall 

ASR performance is acceptable for the operational scenario.
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Consider an additive mixture o f two Sources within the received complex 

baseband signal, x(t).

x(t) = Tp(t) + { l -  T})q(t) + n(t)
(45)

Where p(t) is the Source o f interest (i.e. that on which the receiver has been 

centred and is the Source to be recognised), q(t) is an interfering Source and n(t) is 

noise that is present in the receiver output. The amplitude ratio, 77, defines the 

mix o f the two Sources. In this model the amplitude ratio determines which 

Source is dominant and, in order to keep the reasoning simple, it is assumed that 

both Sources are continuous in the time domain over the duration of the Segment 

of interest.

The recognition system will convert x(t) into a number o f Representations and 

then extract a set o f L Features, y ft), 1 <i <L.

The behaviour o f an Ideal Feature is asserted here to be o f the form shown in 

Figure 113 for the case o f two, continuous Sources mixed in an amplitude ratio of 

77. Note that it is assumed that, without loss o f generality, all Features (ideal or 

non-ideal) can be scaled such that they are -1 at 77 = 0 and 1 at 77 = 1. When 

plotted in this form the graph is called the interference selectivity curve, which is 

a term introduced by this thesis as it has proved to be a practical concept for 

evaluating the behaviour of Feature estimation algorithms in the presence of 

interference.
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0.5 1

Figure 113. Ideal Feature interference selectivity curve.

An Ideal Feature for the model o f equation (45) is defined by the relationship:

It is reasonable to ask whether an Ideal Feature can exist or is it only a theoretical 

concept? If the Segment is represented in a digital form then there are always a 

finite number o f permutations o f the bits in the sequence. In the absence o f noise 

it is possible to conceive o f an algorithm that assigns each possible bit 

permutation to an appropriate member o f the set o f Types that it supports. Hence, 

although this may not be a practical algorithm, it is possible to define an algorithm 

that implements the Ideal Feature when the signal representation is digital and 

there is interference but no noise.

A practical algorithm is unlikely to be straightforward and must be designed to 

trade off performance in interference selectivity against other requirements, such 

as speed o f computation, memory limitations, ease o f update, etc. A practical 

algorithm must also contend with noise. The addition o f which will tend to lead 

to sequences o f bits that cannot be assigned unambiguously to a single Type.

(46)
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Equation (46) defines the IF for a single pair o f Sources, but a practical ASR 

system must contend with many Sources. A Globally Ideal Feature (GIF) is 

defined here as one that satisfies equation (46) for all Sources. From a theoretical 

perspective there is an infinite set o f possible Globally Ideal Features, as there are 

an unlimited number of wanted Sources, p(t). Each wanted Source is a discrete 

entity defined by a set o f discrete parameters (e.g. symbol rate, chip rate, 

frequency deviation). However, there is also an unlimited number o f unwanted 

Sources, q(t). The unwanted Sources are defined by infinite, continuous 

parameters, so there are more unwanted Sources than wanted Sources. Putting 

this argument another way, once a wanted Source has been selected as being of 

interest, there are an infinite number o f unwanted Sources that could interfere 

with it. Therefore, whilst the set of Globally Ideal Features is infinite, the region 

of support o f each is vanishingly small.

From a practical point o f view, any given signal recognition system will be 

designed to handle a finite set o f Types. For this reason (and despite the difficult 

theoretical concepts outlined above) the concept of the IF and GIF is meaningful 

in a practical system. Any given Feature can be designed to approach the 

behaviour of an Ideal Feature with respect to one, more than one or all undesired 

Types. The latter case would result in a Feature that can be considered to be an 

approximation to a GIF within the given recognition system. This is a useful 

concept, even i f  it is not proved that a Feature is a GIF for all possible Types. For 

this reason, a more relaxed term is defined and this is the Complete Ideal Feature 

(CIF). A CIF is a Feature that, in the limit, as SNR increases towards infinity, 

approaches the IF behaviour for all Types o f interest for the application.
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It is possible to conceive o f an algorithm that implements CIF functionality in the 

same way as the theoretical IF algorithm conjectured above. Again, such an 

algorithm may not be practical, but the implication is that a practical algorithm 

may be designed to maximise interference selectivity. There is no similar 

argument for GIF functionality, however, as the number o f Types is not 

constrained.

4.4.4 Interference Selectivity of a Feature

Real Features, i.e. those that can be realised in a practical, real-world system, do 

not exhibit the properties o f the Ideal Feature. Some may, however, approach this 

behaviour under certain circumstances and particularly as the SNR increases. It 

can be assumed that the presence o f noise will introduce ambiguity that prevents 

true Ideal Feature behaviour from occurring in real Features.

The interference selectivity graph shows graphically how well a given Feature 

approaches the Ideal Feature. It is also useful to have a single metric that 

indicates 'how ideal' a Feature is. To address this a term is introduced called the 

Interference Selectivity o f a Feature.

The Interference Selectivity is defined as follows and measures how closely a 

given Feature approaches the properties o f the Ideal Feature for a single 

interfering Source.

j
(47)
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This definition has been scaled such that the value o f ^ will be one if  the Feature 

is ideal, but it will fall and approach zero the more that the Feature performance 

varies from that o f the Ideal Feature.

The variance o f the Feature, y, is averaged separately over each of the two ranges 

of tj. The left hand term gives the average variance over the left hand region of the 

interference selectivity curve (0 < tj <0.5) and assumes that the mean o fy  is -1. 

Similarly, the right hand term gives the average variance over the right hand 

region o f the interference selectivity curve (0.5 <77 < 1) but assumes that the 

mean o fy  is 1 rather than -1. The more the measured performance of the Feature 

diverges from that of the Ideal Feature, the higher these variance terms will be.

The two variance terms are then scaled such that the Interference Selectivity, £  is 

one when the Feature exactly matches the behaviour o f the Ideal Feature and 

approaches zero as the variance terms increase. There is no upper bound on the 

variance terms so the scaling has been based on an exponential decay, which 

means that the value o f % will tend towards zero as either or both o f the variance 

terms approach infinity.

Hence we now have a metric that allows the performance of any Feature to be 

measured and compared with that of any other Feature. The region o f support of 

£ has been scaled to be (0,1] and Features that have higher values o f £ will be 

better at rejecting interference than Features with lower values o f £
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Before examining examples o f the Interference Selectivity metric it is worth 

explaining the choice o f the term Interference Selectivity, because the term is 

introduced by this thesis as a part o f the original contribution to the subject. In 

radio engineering the term selectivity is applied to the ability o f a receiver to tune 

into a desired station and reject unwanted signals (Krauss et al, 1980, p.267) 

which are normally considered to be close in frequency, but not overlapping. 

Selectivity is, from the point o f view o f this thesis, the ability o f a receiver to 

separate closely spaced Sources (Ziemer and Tranter, 1995, p. 163). The metric 

described in this section similarly describes the performance o f a receiver system, 

but, in this case, the unwanted Sources are interferers that may overlap the wanted 

Source in time and/or frequency, so the term Interference Selectivity has been 

used to clarify the difference.

4.4.5 Examples of Feature behaviour

This section presents examples o f Feature behaviour obtained by simulation o f a 

single test scenario. It demonstrates that some Features have relatively good 

performance (i.e. they approach the performance o f the Ideal Feature to some 

degree) and others have relatively poor performance (i.e. they deviate 

significantly from the desirable characteristics o f the Ideal Feature).

Figure 114 shows a simulation o f two types o f Source at the same frequency. The 

Source o f interest is IEEE 802.11 'WiFi' operating in its 2 Mbps mode, which uses 

DSSS and DQPSK. The interferer is a Bluetooth emitter operating in its DPSK8 

mode. The plot is the power spectral density for one o f the many cases included 

in the simulation. The receiver bandwidth has been set at 40 MHz to allow both
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Signals to be captured correctly. Each simulation case comprises a Signal of 

interest (black trace), an interferer (red trace) and an additive combination o f the 

two (blue trace) with varying amplitude ratios.

2400 2410 2420 2430
Frequency, M Hz

Figure 114. Power spectral density for combination (blue) of DSSS+DQPSK 2Mbps 

WiFi (black) and DPSK8 Bluetooth (red), both at 2412 MHz.

Figure 115 shows the results o f simulating the above test case and estimating the 

(jap Feature (section 2.4.3). The left hand plot shows the estimate of the 

interference selectivity curve for a range o f SNRs from -10 dB to +30 dB. On this 

plot the Ideal Feature characteristic is shown as a black dotted line for comparison 

with the actual results.

The right hand plot shows the interference selectivity, £, against the SNR. It will 

be seen that the Interference Selectivity settles down to a value of about 0.56 as 

the SNR is increased.
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Figure 115. Interference selectivity of <jap for DSSS+DQPSK 2Mbps WiFi and 

DPSK8 Bluetooth, both at 2412 MHz (500 runs per case).

Gap has an Interference Selectivity, for this scenario, o f about 0.56. Whilst not 

ideal, its interference selectivity curve at high SNR is 'well-behaved' in that it 

tangentially approaches the lower and upper ends o f the rj range and does not 

diverge significantly from the +/-1 range between these extremes.

In contrast, consider the example shown in Figure 116 which gives the graphs for 

Gaa, a Feature that has an Interference Selectivity approaching zero in this scenario 

and diverges significantly from the Ideal Feature. In this case the divergence 

appears to worsen as the SNR increases.
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Figure 116. Interference selectivity curves of oaa for DSSS+DQPSK 2Mbps WiFi and 

DPSK8 Bluetooth, both at 2412 MHz (50 runs per case).

A similar example is ji%2 which has an Interference Selectivity o f about 0.1 in this 

scenario and results in the graphs shown in Figure 117. Again the Interference 

Selectivity is approaching zero as the SNR increases. There is a small rise at 30 

dB, but this does not represent a significant change in performance and can be 

considered to be noise in the results.
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Figure 117. Interference selectivity curves of \ i ° 4 2  for DSSS+DQPSK 2Mbps WiFi 

and DPSK8 Bluetooth, both at 2412 MHz (50 runs per case)

There are many examples such as these. In general it appears as though the 

probability distributions o f the Features are being 'pulled away' from those of the 

Source o f interest and the interferer. It is conjectured that all such cases of poor
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Interference Selectivity are caused by artefacts generated by the additive 

combination o f the two Sources. A simple example o f such an artefact is the well- 

known phenomenon o f the 'beat frequency' caused by the summation of two 

sinusoids that are closely spaced in frequency (Daintith and Nelson, 1989, pp. 

30-31). Typically such artefacts are maximised when the two Sources are of  

similar amplitude. For Source recognition in the presence o f interference, such 

artefacts are not desirable.

4.4.6 Interference Selectivity statistics

It is useful to have an understanding o f how typical Features behave in the 

presence o f interference. A simulation was constructed to obtain statistics o f 

some Features based on those commonly used in the literature.

In this simulation the Interference Selectivity was calculated for each Feature over 

a wide range o f interference scenarios. In total 1,000 scenarios were evaluated for 

13 Features allowing the probability distribution of the Interference Selectivity to 

be estimated for each Feature. The SNR was 30 dB throughout. Further details 

on this simulation are given in Appendix B.

The first set o f Features to be considered were those used by Azzouz and Nandi 

(1996). The results are shown in Figure 118 as a series o f boxplots ordered by 

median values. Each boxplot shows the minimum, maximum, median and 

interquartile range.
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Figure 118. Interference Selectivity distributions of Azzouz & Nandi Features.

By way o f comparison another set o f Features was tested. These Features were 

based on the delay-multiply algorithm described in section 2.4.2 with delays set to 

the reciprocals of 100kHz, 200kHz, 250 kHz, 500kHz and 1MHz. The boxplots 

for these results are shown in Figure 119, again ordered by median values.

Page 270 of 376



Adrian Wagstaff

Delay Multiply 250kHz

Delay Multiply 200kHz
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Figure 119. Interference Selectivity distributions of delay-multiply features.

Inspection o f these two sets o f boxplots leads to the following observations:

1. All the Features examined exhibit Interference Selectivities, £  very close to 

zero under some circumstances. The closer the value o f % is to zero, the 

further its interference curve is from that o f the Ideal Feature. All these 

Features, therefore, are potentially liable to perform very badly at times. With 

over 5 million interference events being simulated, it is not practical to 

examine them all and. arrive at a definitive explanation o f why the poor 

performance occurs. The key result is, however, that all the Features do 

perform badly in some cases;

2. None o f the Features tested achieved an Interference Selectivity, o f one. If 

£  equals one then the feature performance matches that o f the Ideal Feature. 

In a few cases for the aap and <% Features, the Interference Selectivity
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exceeded 0.9. It is therefore possible to produce a practical Feature that can 

have a performance near to that o f the Ideal Feature in some cases;

3. The median values o f grange from just below 0.4 to just above 0.6. These are 

not values that are close to one indicating significantly non-ideal performance 

with regards to Interference Selectivity in most cases. None of these Features 

were designed for good Interference Selectivity, but were taken from the 

literature and were originally used by their designers to make measurements in 

the presence o f simple noise models but not interference. The implication is 

that, unless Interference Selectivity is used as one o f the design criteria, good 

Interference Selectivity performance cannot be assumed;

4. The interquartile ranges o f the two kurtosis parameters are narrow compared 

to the other parameters. The implication o f this is that kurtosis has a more 

predictable response to interference than the lower order moments and 

therefore offers better performance. If one can use a higher order moment as a 

Feature and improve its median Interference Selectivity, then this is a better 

approach than trying to improve the median performance of a lower order 

moment. This is an interesting route for further research;

5. The medians o f the delay-multiply Feature Interference Selectivities are close 

to each other and most are approximately 0.5. This is attributed to the 

structure o f these algorithms, which are identical. Comparing these 

distributions to the statistical Features, which vary considerably more, leads 

towards the thought that Interference Selectivity might be related to the 

algorithm structure. The ability o f an algorithm to reject interference is 

probably related to the way in which it looks for correlations in the input
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Signal. Further research is required to determine the characteristics o f an 

algorithm that lead to good Interference Selectivity;

6. The maximum values obtained for the delay-multiply features were all below

0.7. None of these Features, therefore, approached the Ideal Feature for any 

of the cases simulated. Some o f the statistical Features did approach an 

Interference Selectivity o f 1.0 in some cases, so there is an implication that the 

parametric Features may not be capable o f achieving values as high as those 

of the statistical Features. This conjecture would need considerable research 

to confirm.

This section has shown that Interference Selectivity can be estimated and that it is 

different for different Feature extraction algorithms. The corollary o f this is that it 

is possible to choose Feature extraction algorithms that have better Interference 

Selectivity. Selecting Features that have better Interference Selectivity will lead 

to improved robustness in the presence o f interference and hence improved 

identification accuracy.

4.4.7 Options for handling interference

It was shown in section 4.4.5 that typical Features can be affected badly by 

interference. Furthermore it was shown in section 4.4.6 that, unless they have 

been designed to give acceptable Interference Selectivity, Features cannot be 

guaranteed to behave well in the presence o f interference. A number o f options 

can be considered for dealing with these problems:
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1. Remove the interference by filtering

Segmentation by filtering in the frequency and/or time domain is a practical 

option, provided the interference can be recognised and the Sources are not 

overlapping. If there is a human in the loop then an ASR system can depend 

to some degree on their input to guide the filtering process. In a fully 

automatic system the filtering will be have to be automated. This is practical 

in cases where the interference can be clearly distinguished in some way. It 

does, however, add another layer o f complexity to the system and may not 

handle all possible interference cases.

Option 1 requires an intelligent Segmentation activity that can identify and 

separate multiple signals. If any o f the Features are non-ideal then this 

approach is preferred, as it means that minimal interference is introduced into 

the Decision activity.

2. Improve the Interference Selectivity of Features

It was shown in section 4.4.6 that different Features have different 

Interference Selectivity characteristics. In many cases it can reasonably be 

expected that Features could be modified to make them more robust in the 

presence of interference. With the definition o f Interference Selectivity in this 

thesis, it is now possible to quantify what is meant by robustness. A Feature 

with a higher Interference Selectivity than that of another Feature is more 

robust to interference. This is seen as a useful step forward, as designers can 

now consider robustness to interference as well as detection probability and 

thereby improve the Features they devise. Similarly, it is now possible to
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conjecture new Features that are designed specifically for good Interference 

Selectivity.

Option 2 requires elimination o f the susceptibility o f a Feature to corruption 

by interference. This is a hard problem, but solving it implies easing the 

pressure on the Decision activity. Removing ambiguity from the inputs to the 

Decision activity will make the identification more accurate and it was 

accuracy that was determined to be the most important factor to users.

3. Multiple hypothesis techniques

A refinement o f the filtering approach is to use a multiple hypothesis 

approach. Here a search strategy is required that can look for the optimum set 

of hypothesised signals that match the observed data. This is a plausible 

approach, but the search must be guided by an appropriate metric.

One problem with the multiple hypothesis approach is that o f overlapping 

Sources, which may not be amenable to separation by time or frequency 

domain filtering. Another problem, which is not expected to be trivial, is that 

of finding a suitable metric on which to base the search algorithm.

Option 3 is a strategy for dealing with Features that have been corrupted by 

interference, which the results to date suggest is likely to be the case. If one 

can avoid getting into the situation where this is the case, then this is an 

approach that would not be necessary.
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4. Pre-spreading the probability distributions

The probability density functions o f Features can be modified to incorporate 

some o f the loss o f confidence due to interference. This can be achieved by 

increasing the spread (i.e. standard deviation) o f the probability density 

functions used in a Bayesian decision process. Doing this tells the decision 

process that one has less confidence in a Feature because one suspects that 

interference may have corrupted it. The net effect would be a lower 

confidence in the identification, so more observations would be needed to 

achieve higher confidence.

As with option 3, this option is a way o f handling the fact that the Features 

may be corrupted by interference. If it can be avoided by using more robust 

Features then this would yield improved identification confidence.

5. Do nothing.

If interference is ignored in the design, the probability o f successful 

recognition will be impaired when interference is encountered. There may be 

situations where it is arguable that recognition accuracy is only needed at high 

signal to interference ratios, in which case it may be acceptable to ignore the 

effects o f interference. This cannot be assumed generally, however, so the do 

nothing option is not advisable.

A fully workable ASR system may have to include elements o f more than one of 

the options above. A suggested approach is to start designing the ASR system 

with option 2 and aim to find Ideal Features, but recognise that this goal may not
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be completely achievable. A practical system may, therefore, have to provide an 

intelligent Segmentation activity (i.e. option 1) and then use ideas from options 3 

and 4 to deal with the residual interference effects.

4.5 Combining multiple decision-theoretic algorithms

The previous sections have mainly considered individual Feature extraction 

algorithms. Section 4.1 looked at the PCRP method to show that an algorithm can 

be devised that emphasises modulation characteristics over information content. 

Section 4.2 introduced the LCDP as an algorithm that can handle a wide range of 

time scales to separate interferers with very different modulation characteristics. 

Section 4.4 proposed a means whereby the performance o f different Feature 

extraction algorithms in the presence o f interference could be compared. These 

are all elements of the problem o f finding algorithms for use in ASR processing, 

but they do not, in themselves, lead to an overall processing architecture.

In an interfering environment the set o f candidate modulations cannot be known 

in advance. There may be a single Feature extraction algorithm that works for all 

modulations, but such an algorithm has not been found during the literature 

search. The natural conclusion is, therefore, that an effective solution is most 

likely to require the combination o f multiple algorithms.

This section considers the last sub-question in section 3.1, which was:

Multiple algorithms can be applied to the ASR problem, each with its 

own strengths and weaknesses. To what extent can these be brought 

together to produce an accurate result?
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There is not a large body o f extant research in this area and it will not be possible 

to completely solve the problem within a single thesis, so the approach is taken of 

asserting a method and using this to produce ideas for further work.

4.5.1 Bayesian chaining

In this thesis it is proposed that a probabilistic approach to combining Features is 

preferred over both decision trees and artificial neural networks. The primary 

motivation for this comes from the experience gained in trying to train an artificial 

neural network for the ASR task. Subjectively it is relatively easy to train an 

artificial neural network to recognise signals that have high signal to noise ratios. 

It is not so easy, however, to train an artificial neural network on signals that have 

low signal to noise ratios. This problem has been known for some time (Yaqin et 

al, 2003). The ambiguities that arise because o f noise tend to fragment the regions 

of parametric hyperspace assigned to each modulation. This can be overcome by 

increasing the complexity o f the artificial neural network, but this leads to 

overtraining and a reduction in the effectiveness o f the resultant artificial neural 

network when subjected to signals that it was not trained on. Similar arguments 

apply to the design o f decision trees where the specification of decision thresholds 

poses problems analogous to those encountered in artificial neural network 

design.

A further issue with the existing techniques is that they do not provide a means of  

including a priori knowledge about the likely presence o f different Sources in the 

environment.
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The concept proposed is therefore to use Bayesian chaining, which promises to 

alleviate some o f these problems. Figure 120 illustrates the concept.

Feature
extraction
activityi

Feature
extraction
activity2

Feature
extraction
activityL

Bayes Bayes Bayes

Figure 120. Bayesian chaining of probabilities.

Assume that the total number of Source types in the environment is known to be 

Wand that the corresponding Types form a finite set. For practical expediency 

one of these can be elected to be the 'unknown' Type and another to represent a 

'noise' Type. These allow us to include the situations where the Source is o f a 

Type not seen before and no Source is present respectively.

h = { h „ h 2 , . . . h n }
(48)

For each Type, Hh, there is an a priori probability, p(Hh). If no a priori 

information is available then all the probabilities can all be set equal to UN. 

However these probabilities are assigned they must describe a marginal 

probability distribution and must therefore obey:
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N

(49)

When a Segment o f a Signal, x, is to be analysed, it is transformed and the 

Representations are applied to a set o f Feature extraction activities. The resulting 

Features yj, y 2 , . . .y i  are used to update the a priori probabilities using the chaining 

scheme shown in Figure 120 to produce a set o f a posteriori probabilities, 

p{Hh\yiy2 ,---yi}- These a posteriori probabilities can be interpreted by the client 

application as required.

At each stage in the chain the discrete form o f Bayes rule (Cooper and McGillem, 

1999, p26) is used to update the probabilities. If all the probabilities required 

were discrete, then the first stage in the chain would be:

However, in general the conditional probabilities, P(yi\H), are not available in 

discrete form. A Representation applied to a Feature extraction activity typically 

produces a continuous variable, y, so there is a mixture of continuous and discrete 

probabilities that must be taken into account when formulating the chaining 

algorithm. Equation (50) must therefore be modified to use the probability 

density function o f the Feature rather than a discrete probability.

P(Hh\ yi) = -
P{y i \ H h)P{Hh)

1=1

(50)
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The modified chaining equation is then:

P ( H h \ y i ) = - £
f ( y 1 \ H h)Ay.P(Hh) _  f ( y ,  \ H h)P(Hh)

N NN

Z / 0 \  I H , ) A y . P ( H t )  ^ / ( A  I
i = 1

(51)

where f{.) are the PDFs and Ay is the interval over which the probability is 

determined.

Figure 121 illustrates this concept for a Feature, y. It shows the joint probability 

density function for one Feature and three signal types, Hi, H2 and H3 . Notice how 

the Feature axis is continuous, but the Type axis is discrete.

Figure 121. Schematic illustration of joint probability density function for a single 

Feature,^, and three Types, H i ,  H 2  a n d H3.

4  f ( y W

T y p e ,  h

F e a t u r e ,  y
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As this is a joint probability density function the total volume enclosed must be 

one, so the following relation must hold:

h=1 _oo
(52)

The individual probability density functions, can be found by testing each

Feature for each o f the Types in the set selected for recognition.

After the above calculation o f the a posteriori probabilities has been carried out, a 

Decision must be made as to which hypothesis is the most likely. A  

straightforward way o f doing this is to use the MAP approach (section 2.4.4). 

This gives the most likely hypothesis at the end of stage i as:

(53)

This process can be repeated for any number of Features and leads to a means of 

combining the results of different Feature extraction activities.

The process can also be repeated when further buffers o f I/Q data are received. 

This leads to the concept of a 're-identification' function in which the a posteriori 

probabilities are updated each time a Feature extraction activity produces a result. 

Providing the receiver's parameters are not changed and, if  the assumption is 

made that the Source characteristics have not changed, then it is possible to apply 

a re-identification function for as long as Signal data is made available. Such re

identification processing would enable the confidence in a Type to be increased as 

more Signal data is taken into account.
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4.5.2 Probability density function modelling approach

There are three different approaches to modelling the probability density functions

for the purposes o f calculating decision thresholds:

1. Assume that the received Signal has a high SNR and use a single probability 

distribution (e.g. lognormal) for each Feature. This is the approach used by 

Azzouz and Nandi (1996, p. 56);

2. Accept that the SNR is not known and that the actual PDF will be a 

combination o f that for the Feature at high SNR and that produced when the 

Feature extraction activity processes noise only. There is a mixing region in 

which the two PDFs have to be combined;

3. Store the PDF obtained by experimentation across a wide variety o f SNR 

conditions.

The table below summarises the advantages and disadvantages o f these

approaches.

Advantages Disadvantages

1. High SNR, single PDF Readily amenable to 
decision-theoretic methods

Inherently weak at low 
SNR

2. Combined high and low 
SNR PDFs

Handle wider range of 
operational conditions

Multi-mode distributions 
not easily modelled as 
standard unimodal 
distributions

3. Stored PDFs Most representative model Cannot make extensive use 
of probability theory.

Table 16. Advantages and disadvantages of different approaches to probability 

density function modelling.
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4.5.2.1 High SNR, single PDF

Assume that a decision has to be made between two hypotheses, Hi and H2 . By 

way o f example the Feature being used is ym&x (section 2.4.3).

From Ziemer and Tranter (1995, pp.607-608) the Bayes detector is:

Assume that the Sources have high SNRs and that the Feature can be modelled as 

a random variable with a lognormal distribution (Cooper and McGillem, 1999, 

p86). Appendix E gives notes on the applicability o f the lognormal distribution in 

this context. For ymax the conditional probabilities, depending on which 

hypothesis is correct, are:

max

(54)

where the likelihood ratio is:

max

(55)

(?m ax )
F y J r ^ \ H t ) = @ ^ ( ] n { y max))

(56)

fo n a x  I H , )  :=  r r ~  «*P
Ymax 1 v 2 7 r

(57)
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\h 2) = e  ^  (in(rmax))= 1 H n ( ? m a x )

<j: ^ 2 n fJ-o exp
(iu - j u 2)2 \

V 2<T2
du

(58)

f y m  { Y ™A h i ) = -------- = exp
7 U 0 -2 V 2 * V

N r ma x )-A 2) 
2<x?

2 'N

(59)

If both distributions are assumed to be lognormal then the likelihood ratio 

becomes:

r

exp

Mrm „ ) =
2(7?

2 A

a .
exp N r ma x ) ~ ^ ) 

2cr,2

2 A

y
(60)

O',
r

exp M r ma x )-A )2 (ln(rma x )-^ )
2 A

V
2 <7, 2(7; y

(61)

Taking the natural logarithm of this gives:

ln(A(rmax))-ln(g-J-ln(c7j+(lll(r- )2 &) ^
2 a x 2<7n

(62)

We could assume that the two hypotheses are equally probable and use the 

minimum probability o f error criteria (Ziemer and Tranter, 1995, p.613), i.e.:

p{H, )  =  p { H 2) 

cn = c22 =0

c n  “  c i \
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With these simplifications the Bayes' detector criterion becomes:

f m̂ax (̂ max I ^2 ) < fvraax (?max I H\ )

(63)

With a single lookup table to store a lognormal distribution this operation could 

be performed readily and efficiently. It is therefore attractive from a processing 

point of view.

The major problems with this approach are that:

®. The lognormal distribution assumption may not always hold (see Appendix 

E) so the full a priori distribution may need to be used;

® The assumption of a high SNR may not be appropriate. Many Sources of 

interest will have low SNRs (section 2.3.3);

® The extension to three or more signal types requires further work. In the 

above form, this is not a practical Decision method.

4.5.2.2 Combined high and low SNR PDFs

If, rather than being a single lognormal distribution, each Feature is assumed to 

approach the combination of two lognormals (one for the high SNR signal and 

one for a noise term), equation (58) becomes:

w.21

A (rm J =
ya 2 j 2j t

11

4 2 m

exp

exp

(ln(rmax ) - / 0
2 \

2 o i
+

w.20 exp M /m a x ) - /0
2 'N

2 a i

2  a \

2 'n

+ ■
10

42m
exp (In(rmax)-Ao)

2 A

2<Jn

(64)
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where w\o, W20, W21 and W22 are weighting factors that allow the pairs of 

distributions to be combined in different ratios.

The main advantage o f (64) over (55) is the compactness o f the representation. It 

allows the likelihood ratio to be expressed in terms o f twelve parameters rather 

than requiring the full PDFs to be described in vector form.

Given that a representation such as (64) is desirable for compactness of 

description, it is reasonable to search for a better representation. Initial 

investigations suggest that one approach to this is to consider the means o f the 

Feature PDFs to be sigmoidal. This is an area requiring further research, but the 

concept is illustrated in Figure 128 and Figure 129 in Appendix E.

4.5.3 Conclusions on combining multiple algorithms

A number o f standard detectors were described in section 2.4.4. These form the 

basis for a decision-theoretic solution to the identification problem. If all the 

required a priori information is available, then a Bayes detector would give an 

optimal decision and allow the system designer to assign the relative costs of 

correct and incorrect decisions. In practice, some o f the required information may 

be unavailable and a fast decision may be required, so it may be necessary to 

adopt the approach of one o f the other detectors in section 2.4.4. Alternatively, a 

simplification may be possible by means o f assuming a standard probability 

distribution that can be summarised with a limited number o f parameters.
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A Bayesian chain approach has been proposed that combines a discrete Type 

probability with a set o f continuous Feature PDFs. It has been shown that regard 

must be given to the expected range of signal to noise ratios to be encountered. If 

it can be assumed that the SNR will always be high then the Bayesian chain can 

be simplified, as the probability density functions aproximate to lognormal (see 

Appendix E for more details). If, on the other hand, the ASR system has to 

handle a wide range of SNRs, which is more likely, then the SNR variation must 

be taken into account when modelling the probability density functions o f the 

Features.

This section has addressed the question o f how multiple Feature extraction 

algorithms can be brought together to produce robust identification in the 

presence o f interference. It has given one example o f how this might be achieved, 

thereby showing that an appropriate method exists. There are, however, many 

more possible ways o f fusing Features and it will only be by carrying out 

considerably more research in this area that the best architecture will be 

determined.

4.6 Summary

This section has described the results of the research work carried out for this 

Ph.D. project.

Recurrence plots have been investigated and these promise to be an interesting 

area for further work in their own right. The method has been shown to be a 

novel method for visualising communication signals. It has also been shown to
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yield quantitative measurements that relate directly to the features o f interest to 

ASR processing. The particular examples given illustrated measurement o f the 

symbol rate for basic digital modulation schemes. More importantly the 

recurrence plot approach was used to explain how the information content in a 

received signal can be suppressed in favour of the modulation type, which is felt 

to be a useful concept in constructing improved ASR algorithms. As an example 

of this, a novel variant o f the recurrence plot, called the PCRP, was devised and 

shown to be effective at enhancing symbol rate detection.

A novel form of cyclostationarity transform, called the LCDP, was devised as a 

way o f dealing with the wide range o f bandwidths and time scales seen in the 

modem communications environment. Techniques such as this are seen to be 

important in allowing ASR systems to cope with the characterisation o f radio 

signals in shared, interfering spectral bands.

A generic architecture was constmcted based on examining the results o f the 

literature search and organising the various techniques into a canonical form. 

Applying this rigour to the description o f algorithms allows one to research high- 

level aspects o f ASR system design and apply reasoning to whole classes o f  

algorithms rather than individual algorithms.

The performance o f Feature extraction algorithms in the presence o f interference 

has been investigated. This required the development o f a metric for measuring 

the relative performance o f different algorithms and this metric was the 

Interference Selectivity. The Interference Selectivity was based on the concept o f
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deviation from an Ideal Feature, which is a feature that works perfectly in the 

presence o f interference. This approach to handling the complex issue of 

performance in interference proved successful as it allowed a very complicated 

situation to be reduced to a quantitative comparison o f a single metric that could 

be applied to any Feature extraction method.

Finally the investigation looked at how different algorithms could be assembled in 

a Bayesian reasoning chain. This is an area that will need considerable further 

work and linkage with the Segmentation processing, however the investigation 

here showed that multiple algorithms could be brought together in a way that can 

make use of well-developed probability theory.
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5 CONCLUSIONS

This section summarises the main conclusions o f this research and identifies areas 

where further work is required.

The initial research question asked what strategies can be adopted for designing 

ASR algorithms that can deal with complex, interfering signal environments. The 

approach to answering this question was detailed in section 3 and involved 

breaking the main research question down into a series o f five sub-questions that 

were more manageable. Section 4 then detailed the results o f the investigations 

into each o f these sub-questions. The general approach proved to be successful 

and productive. It resulted in useful, sometimes novel, outcomes. It also 

generated more questions that need further research to resolve.

5.1 Main conclusions

The following conclusions have been arrived at from this research:

1. The review o f the literature in section 2 showed that, despite the large amount 

of research carried out into signal recognition over the last few decades, there 

is still considerable need for innovation. All the evidence gathered suggests 

that the spectrum is becoming more complex and is likely to carry on doing so 

for the foreseeable future. Some parts o f the radio spectrum, such as the 

2.4 GHz ISM band, are Licence-Exempt and the interference in these bands 

can be considerable. To date, ASR systems have not been designed to handle 

such complex, interfering environments and research is needed to enable 

improvements in system performance;
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2. Novel representations have been introduced as part o f this work, as 

conventional representations were found to be inadequate for the modem radio 

environment. In particular the PCRP (section 4.1) and LCDP (section 4.2) 

have been proposed. Limited study has been performed in these areas, but 

they have shown that there is ample scope for innovation;

3. Addressing the problem of interference necessitated the introduction o f a 

generic processing architecture that can represent a wide range o f ASR 

systems (section 4.3). This model facilitates high-level discussions on the 

nature of the ASR process. Reasoning about the architecture resulted in the 

observation that Segmentation, which is a complex activity, is only necessary 

for removing interference if  there is ambiguity in the Features used for 

recognition. This is an important result for the future study of ASR 

techniques;

4. An abstract concept called the Ideal Feature was introduced (section 4.4.3). It 

was argued that, if  all Features were ideal then there would be, by definition, 

no need for Segmentation. The CIF and GIF were additional concepts that can 

be used when applying the IF concept to sets o f signal types. A metric was 

devised, called Interference Selectivity (section 4.4.4), that allowed real 

Features to be compared to the Ideal Feature;

5. It was observed that none o f the Features examined were ideal (section 4.4.6). 

The corollary o f this is that there is a need for a strategy for dealing with non

ideal Features and options for this were proposed in section 4.4.7. One 

possible approach to combining Features was explained in section 4.5. The 

best route would be to use Ideal Features, but as this is not yet possible, the 

next best route is to filter out interference as the first stage in the processing
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(i.e. intelligent Segmentation). This is a difficult problem to solve, especially 

when an interferer overlaps the Source o f interest in time and/or frequency. 

There is then, a strong motivation for developing Features that have good 

Interference Selectivity and alleviate, as much as possible, the need for an 

intelligent Segmentation process.

This last point is the overall conclusion reached after investigating the research 

question in some detail. The goal o f an Ideal Feature is a laudable one and is the 

first priority for research, but is probably not completely achievable in practice. 

Using non-ideal Features forces the ASR system designer to incorporate other 

interference mitigation measures in order to improve identification accuracy in the 

presence o f interference.

5.2 Recommendations for further work

1. Two novel representations have been introduced in this thesis, namely the 

PCRP (section 4.1) and LCDP (section 4.2). These have been investigated but 

more detail is required.- Further experimentation and theoretical development 

are needed if  these are to lead to practical representations from which useful 

Features can be extracted efficiently;

2. Section 4.4 compared the Interference Selectivity performance o f a range o f  

Features. It is not possible to examine every conceivable Feature within a 

single research programme. Extending the investigations to more kinds o f  

Feature and more interference scenarios is expected to lead to further insights 

that will help to design ASR systems that operate in densely populated 

spectral bands. Techniques such as higher order spectra, higher order
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statistics, beamforming, etc. may all form part o f future ASR systems. The 

relative performance o f Features generated by such techniques can be 

compared with the concept of Interference Selectivity introduced in this thesis;

3. In section 4.4.2 it was noted that feeding back initial estimates o f Type from 

the output of the ASR to the Segmentation activity may improve the quality of  

Segmentation and thereby result in an overall accuracy improvement. This 

improvement would be due to the enhanced interference rejection 

performance o f the Segmentation activity once given an indication o f the 

Source of interest. Whether such a feedback loop would be stable and the 

degree to which improvements would be possible have not been investigated 

here;

4. It was observed in section 4.4.6 that different types o f algorithm appear to 

have different Interference Selectivities. It is not yet possible to say what it is 

about the structure o f a Feature extraction algorithm that gives it good 

Interference Selectivity. There was some suggestion that the statistical 

Features might be inherently capable of higher Interference Selectivities than 

parametric Features. By comparing the behaviour o f a range o f algorithms in 

the presence o f different kinds of interference it is hoped that certain structural 

components can be identified that need to be present or absent in order to 

improve performance;

5. The work to date has identified a number o f tools and techniques, plus an 

overall framework for automatic radio signal recognition. There will be 

applications in other domains to which these concepts can be applied. These 

include audio and music analysis, radar signal analysis and any other domain 

in which a signal needs to be recognised in the presence o f noise and
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interference. In hindsight the work carried out has been important in terms of 

generating concepts for the holistic processing o f signals in recognition 

applications. The concept of an Ideal Feature, in particular, appears to be a 

strong one that should be widely applicable to other areas.

Page 295 o f 376



Adrian Wagstaff

This page intentionally blank

Page 296 o f 376



Adrian Wagstaff

6 REFERENCES

Achatz, R.J., Lo, Y., Papazian, P.B., Dalke, R.A. and Hufford, G.A. (1998) Man- 

Made Noise in the 136 to 138-MHz VHFMeteorological Satellite Band, NTIA, 

Report 98-355.

Adlard, J.F. (2000) Frequency shift filtering fo r cyclostationary signals [online], 

PhD thesis, University o f York,

http://www.yorkcomms.org/theses/adlard_thesis.pdf (Accessed 27 June 2010).

Aegis (2006) Spectrum Usage Rights. Final Report - Case Studies, Aegis 

Spectrum Engineering, 1721/TNR/FR2/1 [online], http://www.aegis- 

systems.co.uk/download/1721/casestudies.pdf (Accessed 4 October 2011).

Agilent (2005). Agilent N6820E-MR1 modulation recognition capability fo r  

E3238S/N6820E signal survey systems. Technical overview [online], 

http://cp.literature.agilent.com/litweb/pdf/5989-3081EN.pdf (Accessed 4 October 

2011).

Ahmad, S.A. and Chappell, P.H. (2008) 'Moving approximate entropy applied to 

surface electromyographic signals', Biomedical Signal Processing and Control, 

vol. 3, pp. 88-93.

Page 297 o f 376

http://www.yorkcomms.org/theses/adlard_thesis.pdf
http://www.aegis-
http://cp.literature.agilent.com/litweb/pdf/5989-3081EN.pdf


Adrian Wagstaff

Akmouche, W. (1999) ‘Detection o f multicarrier modulations using 4th-order 

cumulants’, IEEE Military Communications Conference Proceedings, Atlantic 

City, New Jersey, USA, 31 October -  3 November 1999, vol.l, pp. 432-326.

Amindavar, H. and Moghaddam, P.P. (2000) 'Estimation o f propeller shaft rate 

and vessel classification in multipath environment', Proceedings o f the 2000 IEEE 

Sensor Array and Multichannel Signal Processing Workshop, Cambridge, 

Massachusetts, USA, 16-17 March 2000, pp. 125-128.

Andrews, J. (2008) 'The signal hunters', Engineering & Technology, 5 July - 

18 July 2008, pp. 78-79.

Antoni, J., Bonnardot, F., Raad, A. and El Badaoui, M. (2004) 'Cyclostationary 

modelling o f rotating machine vibration signals', Mechanical Systems and Signal 

Processing, vol. 18, no. 6, pp. 1285-1314.

Antoni, J. (2007) 'Cyclic spectral analysis in practice', Mechanical Systems and 

Signal Processing, vol. 21, no. 2, pp. 597-630.

Arulampalam, G., Ramakonar, V., Bouzerdoum, A. and Habibi, D. (1999). 

'Classification of digital modulation schemes using neural networks', Proceedings 

o f the Fifth International Symposium on Signal Processing and its Applications, 

Brisbane, Australia, 22-25 August 1999, vol. 2, pp. 649-652.

Page 298 of 376



Adrian Wagstaff

Asai, T., Benjebbour, A. and Yoshino, H. (2005) 'Recognition o f CDMA signals 

with orthogonal codes using cyclostationarity', IEEE 6th Workshop on Signal 

Processing Advances in Wireless Communications, New York, USA, 5-8 June 

1995, pp. 480-484.

Assaleh, K., Farrell, K. and Mammone, R.J. (1992) 'A new method o f modulation 

classification for digitally modulated signals', IEEE Military Communications 

Conference, Communications - Fusing Command, Control and Intelligence', San 

Diego, California, USA, 11-14 October 1992, vol. 2, pp. 712-716.

Azzouz, E.E and Nandi, A.K. (1996) Automatic modulation and recognition o f  

communication signals. The Netherlands, Kluwer Academic Publishers.

Bar-Shalom, Y. and Li, X-R. (1993) Estimation and Tracking: Principles, 

Techniques and Software, Norwood, Massachusetts, USA, Artech House Inc.

Beidas, B.F. and Weber, C.L. (1998) 'Asynchronous classification o f MFSK 

signals using the higher order correlation domain', IEEE Transactions on 

Communications, vol. 46, no. 4, pp. 480-493.

Beran, R. (1977) 'Robust location estimates', The Annals o f  Statistics, vol. 5, no. 3. 

pp. 431-444.

Page 299 o f 376



Adrian Wagstaff

Blackman, S.S. (2004) 'Multiple hypothesis tracking for multiple target tracking', 

IEEE Aerospace and Electronic Systems Magazine, vol. 19, no. 1, part 2, 

pp. 5-18.

Blankertz, B. (SA) The constant Q transform [online], Westfalische Wilhelms- 

Universitat Munster, http://wwwmath.uni-

muenster.de/logik/Personen/blankertz/constQ/constQ.pdf (Accessed 5 October 

2011).

Bouder, C. and Burel, G. (2000) 'Spread spectrum codes identification by neural 

networks' Systems and Control: Theory and Applications [online], Universite de 

Brest, http://www.univ-brest.ff/lest/tst/publications/pdf/mastorOOestim.pdf 

(Accessed 5 October 2011).

Boudreau, D., Dubuc, C., Patenaude, F., Dufour, M., Lodge, J. and Inkoi, R.

(2000) 'A fast automatic modulation recognition algorithm and its implementation 

in a spectrum monitoring application', 21st Century Military Communications 

Conference Proceedings, Los Angeles, California, USA, 22-25 October 2000, 

vol. 2, no. 2, pp. 732-736.

Boutte, D. and Santhanam, B. (2008) 'ISI effects in a hybrid ICA-SVM 

modulation recognition algorithm', 42nd Asilomar Conference on Signals, Systems 

and Computers, Pacific Grove, California, USA, 26-29 October, 2008, pp. 26-29.

Page 300 of 376

http://wwwmath.uni-
http://www.univ-brest.ff/lest/tst/publications/pdf/mastorOOestim.pdf


Adrian Wagstaff

Brown, J.C. (1991) 'Calculation o f a constant Q spectral transform', Journal o f  the 

Acoustical Society o f  America, vol. 89, no. 1, pp. 425-434; also available online at 

http://www.wellesley.edu/Physics/brown/pubs/cql stPaper.pdf (Accessed 5 

October 2011).

Brown, J.C. and Puckette, M.S. (1992) 'An efficient algorithm for the calculation 

of a constant Q transform', Journal o f  the Acoustiscal Society o f  America, vol. 92, 

no. 5, pp. 2698-2701; also available online at

http://www.wellesley.edu/Physics/brown/pubs/effalgV92P2698-P2701.pdf 

(Accessed 5 October 2011).

Brown, W.A. and Loomis, H.H (1993) 'Digital implementations o f spectral 

correlation analyzers', IEEE Transactions on Signal Processing, vol. 41, no. 2, 

pp. 703-720.

Burr, A. (2001). Modulation and coding for wireless communications. Padstow, 

T.J. International.

Callan, R. (2003) Artificial Intelligence. Basingstoke, UK, Palgrave MacMillan.

Chacksfield, M. (2009) Ofcom to turn TV white space into mobile broadband? 

[online], http://www.techradar.com/news/television/ofcom-to-turn-tv-white- 

space-into-mobile-broadband-652138 (Accessed 5 October 2011).

Page 301 o f 376

http://www.wellesley.edu/Physics/brown/pubs/cql
http://www.wellesley.edu/Physics/brown/pubs/effalgV92P2698-P2701.pdf
http://www.techradar.com/news/television/ofcom-to-turn-tv-white-


Adrian Wagstaff

Chin Tan H., Sakaguchi, K., Takada, J. and Araki, K. (2001) 'DOA based signal 

combining aided automatic modulation recognition/demodulation for surveillance 

system', Proceedings o f  the IEICE General Conference 2001, pp. 541-542.

Cimponeriu, L. and Bezerianos, A. (1999) 'Simplified recurrence plots approach 

on heart rate variability data', Computers in Cardiology 1999, Hannover,

Germany, 26-29 September 1999, pp. 595-598.

Cohen, L. (1993)' Instantaneous "anything"', IEEE International Conference on 

Acoustics, Speech and Signal Processing, Minneapolis, Minnesota, USA, 27-30 

April 1993, vol. 4, pp. 105-108.

Cooper, G.R. and McGillem, C.D. (1999) Probabilistic methods o f signal and 

system analysis, New York, Oxford University Press.

Cormen, T.H., Leiserson, C.E. and Rivest, R.L. (1999) Algorithms, London, The 

MIT Press.

da Costa, E.L. (1996) Detection and identification o f  cyclostationary signals 

[online], MSc Thesis, Monterey, California, USA, Naval Postgraduate School, 

http://www.dtic.mil/cgi-

bin/GetTRDoc?AD=ADA311555&Location=U2&doc=GetTRDoc.pdf (Accessed 

5 October 2011).

Page 302 of 376

http://www.dtic.mil/cgi-


Adrian Wagstaff

Daintith, J. and Nelson, R.D. (1989) Dictionary o f Mathematics, London, Penguin 

Books Ltd.

Dandawate, A.V. and Giannakis, G.B. (1994) 'Statistical tests for presence o f 

cyclostationarity', IEEE Transactions on Signal Processing, vol. 42, no. 9, 

pp. 2355-2369.

Davies, P. (2008) Re: Spectrum Usage Rights — Licence verification approaches 

[online], IET, http://www.theiet.org/publicaffairs/submissions/sub795.pdf 

(Accessed 5 October 2011).

Dianat, S.A and Raghuveer, M.R. (1990) 'Fast algorithms for bispectral 

reconstruction o f two-dimensional signals', International Conference on 

Acoustics, Speech, and Signal Processing, Albuquerque, New Mexico, USA, 3-6 

April 1990, vol. 5, pp. 2377-2379.

Doble, J. (1996) Introduction to Radio Propagation for Fixed and Mobile 

Communications, Norwood, Massachusetts, USA, Artech House.

Dobre, O.A., Abdi, A., Bar-Ness, Y. and Su, W. (2007) 'Survey o f automatic 

modulation classification techniques: classical approaches and new trends', IET 

Communications, vol. 1, no. 2, pp. 137-156.

Page 303 of 376

http://www.theiet.org/publicaffairs/submissions/sub795.pdf


Adrian Wagstaff

Donoho, D. and Huo, X. (1997) 'Large-sample modulation classification using 

Hellinger representation', First IEEE Signal Processing Workshop on Advances in 

Wireless Communications, Paris, France, 16-18 April 1997, pp. 133-136.

Druckmann, I., Plotkin, E.I. and Swamy, M.N.S. (1998) 'Automatic modulation 

type recognition', IEEE Canadian Conference on Electrical and Computer 

Engineering, Waterloo, Ontario, Canada, 24-28 May 1998, vol. 1, pp. 65-68.

Du, L., Liu, H., Bao, Z. and Xing, M. (2005) 'Radar HRRP target recognition 

based on higher order spectra', IEEE Transactions on Signal Processing, vol. 53, 

no. 7, pp. 2359-2368.

Dubuc, C., Boudreau, D., Patenaude, F. and Inkol, R. (1999) 'An automatic 

recognition algorithm for spectrum monitoring applications', IEEE International 

Conference on Communications, Vancouver, British Columbia, Canada, 6-10 

June 1999, vol. 1, pp. 570-574.

Eckmann, J-P., Kamphorst, S.O. and Ruelle, D. (1987) 'Recurrence plots of 

dynamical systems', Europhysics Letters, vol. 4, no. 9, pp. 973-977.

Edinger, S., Gaida, M. and Fliege, N.J. (2007) 'Classification of QAM signals for 

multicarrier systems', 15th European Signal Processing Conference, Poznan, 

Poland, 3-7 September 2007, pp. 464-468.

Page 304 of 376



Adrian Wagstaff

Evans, B.G. (1999) Satellite Communication Systems, 3rd edition, London, The 

Institution o f Electrical Engineers.

Fedoseev, S.A. and Fedoseev, A.S. (2001) Tropical lightning stroke data 

collected and analyzed by computer based lightning detection system', IEEE 

International Symposium on Electromagnetic Compatibility, Montreal, Quebec, 

Canada, 13-17 August 2001, vol. 2, pp. 845-848.

Ferreira, R.R. (1996) COMINT Analysis in a Littoral Environment [online], MSc 

Thesis, Monterey, California, USA, Naval Postgraduate School, 

http://www.dtic.mil/cgi-

bin/GetTRDoc? AD=ADA321460&Location=U2&doc=GetTRDoc.pdf (Accessed 

5 October 2011).

Fitzgerald, D., Cranitch, M. and Cychowski, M.T. (2006) 'Towards an inverse 

constant Q transform' [online], Audio Engineering Society Convention Paper. 

120th Convention, Paris, France, 20-23 May 2006,

http://homepage.eircom.net/~derryfitzgerald/AES120.pdf (Accessed 5 October 

2011).

Fowler, M. and Scott, K. (2000) UML distilled, 2nd edition, New Jersey, USA, 

Addison-Wesley.

Ganley, M. (2006) Introduction to PSSTG. ERA Report 2006-0552.

Page 305 o f 376

http://www.dtic.mil/cgi-
http://homepage.eircom.net/~derryfitzgerald/AES120.pdf


Adrian Wagstaff

Gardner, W.A. (1986a) Statistical Spectral Analysis: A Nonprobabilistic Theory, 

Upper Saddle River, New Jersey, USA, Prentice Hall Inc.

Gardner. W.A. (1986b) The role of spectral correlation in design and performance 

analysis o f synchronizers’, IEEE Transactions on Communications, vol. 34, 

no. 11, pp. 1089-1095.

Gardner, W.A. (1986c) 'Measurement o f spectral correlation', IEEE Transactions 

on Acoustics, Speech and Signal Processing, vol. 34, no. 5, pp. 1111-1123.

Gardner, W., Brown, W.A. and Chen C-K. (1987) 'Spectral Correlation of 

Modulated Signals', IEEE Transactions on Communications, 1987, vol. 35, no. 6, 

pp. 584-601.

Gardner, W.A. (1991) 'Exploitation o f spectral redundancy in cyclostationary 

signals', IEEE Signal Processing Magazine, vol. 8, no. 2, pp. 14-36.

Gardner, W.A. and Spooner, C.M. (1992) 'Signal interception: performance 

advantages o f cyclic-feature detectors', IEEE Transactions on Communications, 

vol. 40, no. 1, pp. 149-159.

Gardner, W.A. (1993) 'Cyclic Wiener filtering: theory and method', IEEE 

Transactions on Communications, vol. 41, no. 1, pp. 151-163.

Page 306 of 376



Adrian Wagstaff

Gardner, W.A., Napolitano, A. and Paura, L. (2006) 'Cyclostationarity: Half a 

century of research', Signal Processing, vol. 86, pp. 639-697.

Ghani, N. and Lamontagne, R. (1993) 'Neural networks applied to the 

classification o f spectral features for automatic modulation recognition', IEEE 

Military Communications Conference, 1993, Conference Record,

'Communications on the Move', Boston, Massachusetts, USA, 11-14 October 

1993, vol. l,pp . 111-115.

Ghasemi, A. and Sousa, E.S. (2008) 'Spectrum sensing in cognitive radio 

networks: requirements, challenges and design trade-offs', IEEE Communications, 

vol. 46, no. 4, pp.32-39.

Giannakis, G.B (1999) 'Cyclostationary Signal Analysis', in Madisetti, V.K. and 

Williams D.B. (Ed.): Digital Signal Processing Handbook, CRC Press LLC.

Gibbs, A.L. and Su, F.A. (2002) On choosing and bounding probability metrics 

[online], Harvey Mudd College Department o f Mathematics, 

http://www.math.hmc.edu/~su/papers.dir/metrics.pdf (Accessed 5 October 2011).

Gini, F. and Greco, M. (2002) 'Texture modelling, estimation and validation using 

measured sea clutter data', IEE Proceedings Radar, Sonar and Navigation, 

vol. 149, iss. 3, pp. 115-124.

Page 307 o f 376

http://www.math.hmc.edu/~su/papers.dir/metrics.pdf


Adrian Wagstaff

van Ginkel, M., Hendriks, C.L.L. and van Vliet, L.J. (2004) A short introduction 

to the Radon and Hough transforms and how they relate to each other [online], 

Delft University o f Technology, Quantitative Imaging Group Technical Report 

QI-2004-01,

http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=4DC1670B0EFB747CD 

22D9C79C0ElD097?doi=l 0.1.1.2.9419&rep=repl&type=pdf (Accessed 5 

October 2011).

Girault, J.-M., Biard, M., Kouame, D., Bleuzen, A. and Tranquart, F. (2006) 

'Spectral Correlation of the embolic blood Doppler signal', IEEE International 

Conference on Acoustics, Speech and Signal Processing, Toulouse, France, 14-19 

May 2006, vol. 2, pp. 1200-1203.

Gokmen, B. and Ertuziin, A. (1998) A comparative study on higher order 

statistics and cyclostationarity in the context o f identification and equalization. 

[online], Bogazi^i University, Turkey,

http://www.busim.ee.boun.edu.tr/~ertuzun/publications/ICT98.pdf (Accessed 5 

October 2011).

Gold, R. (1967) 'Optimal binary sequences for spread spectrum multiplexing', 

IEEE Transactions on Information Theory, vol. 13, no. 4, pp. 619-621.

Grimaldi, D., Rapuano, S. and De Vito, L. (2007) 'An automatic digital 

modulation classifier for measurement on telecommunication networks', IEEE 

Transactions on Instrumentation and Measurement, vol. 56, no. 5, pp. 1711-1720.

Page 308 of 376

http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=4DC1670B0EFB747CD
http://www.busim.ee.boun.edu.tr/~ertuzun/publications/ICT98.pdf


Adrian Wagstaff

Hachemani, R., Palicot, J. and Moy, C. (2007). A  new standard recognition 

sensor for cognitive radio terminals', 15th European Signal Processing 

Conference, Poznan, Poland, 3-7 September 2007, pp. 856-860.

Hall, M.P.M, Barclay, L.W. and Hewitt, M.T. (1996) Propagation o f  radiowaves, 

London, The Institution o f Electrical Engineers.

Haykin, S. (2005) ‘Cognitive radio: brain-empowered wireless communications’, 

IEEE Journal on Selected Areas in Communications, vol. 23, no. 2, pp. 201-220.

Hero, A.O, O'Neill., J. and Williams, W.J. (1997) 'Moment matrices for 

recognition of spatial pattern in noise images', Proceedings o f  the 1997 

International Conference on Image Processing, Santa Barbara, California, USA, 

26-29 October 1997, vol. 2, pp. 378-381.

Hero III, A.O. and Hadinejad-Mahram, H. (1998) 'Digital modulation 

classification using power moment matrices', Proceedings o f  the 1998 IEEE 

International Conference on Acoustics, Speech and Signal Processing, Seattle, 

Washington, USA, 12-15 May 1998, vol. 6, pp. 3285-3288.

Hinich, M .J. (2000) 'Statistical theory of signal coherence', IEEE Journal o f  

Oceanic Engineering, vol. 25, no. 2, pp. 256-261.

Page 309 o f 376



Adrian Wagstaff

Hong, L. and Ho, K.C. (1999) 'Identification o f digital modulation types using the 

wavelet transform' Military Communications Conference Proceedings, Atlantic 

City, New Jersey, USA, 31 October 31 -  3 November 1999, vol. 1, pp. 427-431.

Hsue, S-Z. and Soliman, S.S. (1989) 'Automatic modulation recognition of 

digitally modulated signals', Military Communications Conference. Conference 

Record. Bridging the Gap. Interoperability, Survivability, Security, Boston, 

Masachusetts, USA, 15-18 October 1989, vol. 3, pp. 645-649.

Huang, Z.-T. and Zhou Y.-Y. (2006) 'Multi-cycle estimator for time-difference- 

of-arrival (TDOA) and its performance', IEE Proceedings - Radar, Sonar and 

Navigation, vol. 153, no. 5, pp. 381-388.

Huo, X. and Donoho, D. (1998). 'A simple and robust modulation classification 

method via counting', Proceedings o f the 1998 IEEE International Conference on 

Acoustics, Speech and Signal Processing, Seattle, Washington, USA, 12-15 May 

1998, vol. 6, pp. 3289-3292.

Ifeachor, E.C. and Jervis, B.W. (2002) Digital Signal Processing, London, 

Prentice Hall.

ITU-R (1995) Recommendation ITU-R SM.1138. Determination o f necessary 

bandwidths including examples for their calculation and associated examples for  

the designation o f  emissions.

Page 310 of 376



Adrian Wagstaff

ITU-R P.372-8. Radio noise.

Iversen, A. (2003) The use o f artificial neural networks fo r automatic modulation 

recognition, Technical Report HW-MACS-TR-009 [online], 

http://www.macs.hw.ac.uk:8080/techreps/docs/files/HW-MACS-TR-0009.pdf 

(Accessed 3 February 2008).

Iversen, A. (2004) Classification o f  digital modulation schemes using multi

layered perceptrons, Technical Report HW-MACS-TR-0016 [online], 

http://www.macs.hw.ac.uk:8080/techreps/docs/files/HW-MACS-TR-0016.pdf 

(Accessed 3 February 2008).

Jeruchim, M.C, Balaban, P and Shanmugan, K.S. (1992) Simulation o f  

Communication Systems. New York, Plenum Press.

Johnson, J. and Picton, P. (1995) Designing Intelligent Machines. Volume 2. 

Concepts in artificial intelligence, Oxford, Butterworth-Heinemann Ltd.

Kachenoura, A., Albera, L. and Senhadji, L. (2006) 'The PEP Approach: A New  

Family o f Methods Solving the Phase Estimation Problem', IEEE International 

Conference on Acoustics, Speech and Signal Processing, Toulouse, France, 14-19 

May 2006, vol. 3. pp. 628-631.

Page 311 of 376

http://www.macs.hw.ac.uk:8080/techreps/docs/files/HW-MACS-TR-0009.pdf
http://www.macs.hw.ac.uk:8080/techreps/docs/files/HW-MACS-TR-0016.pdf


Adrian Wagstaff

Kim, K., Akbar, I.A., Bae, K.K., Um, J-s., Spooner, C.M. and Reed, J.H. (2007) 

'Cyclostationary approaches to signal detection and classification in cognitive 

radio', 2nd IEEE International Symposium on New Frontiers in Dynamic 

Spectrum Access, Dublin, Ireland, 17-20 April 2007, pp. 212-215.

Kim, K., Min, J., Hwang, S., Lee, S., Kim, K, and Kim, H. (2008) 'A CR platform 

for applications in TV whitespace spectrum', International Conference on 

Cognitive Radio Oriented Wireless Networks and Communications, Singapore,

15-17 May 2008, pp.1-6.

Kim, K. and Polydoros, A. (1988) 'Digital modulation: The BPSK versus QPSK 

case', IEEE Military Communications Conference. Conference Record, ‘21st 

Century Military Communications -  What’s Possible? San Diego, California, 

USA, 23-26 October 1988, vol. 2. pp. 431-436.

Knaflitz, M. and Bonato, P. (1999) 'Time-ffequency methods applied to muscle 

fatigue assessment during dynamic contractions', Journal o f Electromyography 

and Kinesiology, vol. 9, no. 5, pp. 337-350.

Kozono, S. (1987) 'Co-channel interference measurement method for mobile 

communications', IEEE Transactions on Vehicular Technology, vol. 36, iss. 1, 

pp. 7-13.

Page 312 o f 376



Adrian Wagstaff

Krauss, H.L., Bostian, C.W. and Raab, F.H. (1980) Solid State Radio 

Engineering, London, John Wiley & Sons Ltd.

Kremer, S.C. and Shiels, J. (1997) 'A testbed for automatic modulation 

recognition using artificial neural networks', IEEE 1997 Canadian Conference on 

Electrical and Computer Engineering, St. Johns, Newfoundland, Canada, 25-28 

May 1997, vol. 1, pp. 67-70.

Kuehls, J.F. and Geraniotis, E. (1990) 'Presence detection o f binary-phase-shift- 

keyed and direct-sequence spread-spectrum signals using a prefilter-delay-and- 

multiply device', IEEE Journal on Selected Areas in Communications, vol. 8, 

no. 5, pp. 915-933.

Lathi, B.P. (1983) Modern Digital and Analog Communication Systems, New  

York, USA. CBS College Publishing.

Lay, N.E. and Polydoros, A. (1995) 'Modulation classification o f signals in 

unknown ISI environments', IEEE Military Communications Conference, San 

Diego, California, USA, 5-8 November 1995, vol. 1, pp. 170-174.

Le, B., Rondeau, T.W., Maldonado, D. and Bostian, C.W. (2005) 'Modulation 

identification using neural networks for cognitive radios', SDR Forum Technical 

Conference, Anaheim, California, USA, 14-18 November 2005 [online], 

http://groups.winnforum.Org/d/do/2662 (Accessed 6 October 2011)

Page 313 of 376

http://groups.winnforum.Org/d/do/2662


Adrian Wagstaff

Le, B., Rondeau, T.W., Maldonado, D., Scaperoth, D. and Bostian, C.W. (2006) 

'Signal Recognition for cognitive radios', in SDR Forum Technical Conference, 

Orlando, Florida, USA, 15 November 2006 [online], 

http://groups.winnforum.Org/d/do/2076 (Accessed 6 October 2011).

Le Guen, D. and Mansour, A. (2002) 'Automatic recognition algorithm for 

digitally modulated signals', Proceedings o f the IASTED International 

Conference, Signal Processing, Pattern Recognition & Applications, Crete, 25-28 

June 2002, pp. 32-37.

Le Vine, D. and Krider, E.P. (1977) ‘The temporal structure of HF and VHF 

radiations during Florida lightning return strokes’, Geophysical Research Letters, 

vol. 4, no. 1, pp. 13-16.

Leung, H. and Wu, J. (2000) 'Bayesian and Dempster-Shafer target identification 

for radar surveillance', IEEE Transactions on Aerospace and Electronic Systems, 

vol. 36, no. 2, pp. 432-447.

Li, Y. (1992) 'Reforming the theory of invariant moments for pattern recognition', 

Pattern Recognition, vol. 25, iss. 7, pp. 723-730

Lin, Y-C. and Kuo, C-C. J. (1996) 'Sequential modulation classification of 

dependent samples', IEEE International Conference on Acoustics, Speech and 

Signal Processing, vol. 5, pp. 2690-2693.

Page 314 of 376

http://groups.winnforum.Org/d/do/2076


Adrian Wagstaff

Lindsay, B.G. (1994) 'Efficiency versus robustness: the case for minimum 

Hellinger distance and related methods', The Annals o f  Statistics, vol. 22, no. 2, 

pp. 1081-1114.

Lopatka, J. and Pedzisz, M. (2000) 'Automatic modulation classification using 

statistical moments and a fuzzy classifier', Proceedings 5th International 

Conference on Signal Processing, Beijing, China, 21-25 August 2000, vol. 3, 

pp. 1500-1506.

Loughlin, P.J. and Davidson, K.L. (2000) 'Instantaneous spectral skew and 

kurtosis', Proceedings o f  the Tenth IEEE Workshop on Statistical Signal and 

Array Processing, Pocono Manor, Pennsylvania, USA, 14-16 August 2000, 

pp. 574-578.

Louis, C. and Sehier, P. (1994) 'Automatic modulation recognition with a 

hierarchical neural network', IEEE Military Communications Conference, Fort 

Monmouth, New Jersey, USA, 2-5 October 1994, vol. 3, pp. 713-717.

Lynn, P. A. (1984) An Introduction to the Analysis and Processing o f Signals, 

London, Macmillan Publishers Ltd.

Maeda, K., Benjebbour, A., Asai, T., Furono, T. and Ohya, T. (2007) 'Recognition 

among OFDM-based systems utilizing cyclostationarity-inducing transmission', 

2nd IEEE International Symposium on New Frontiers in Dynamic Spectrum 

Access Networks, Dublin, Ireland, 17-20 April 2007, pp. 516-523.

Page 315 o f 376



Adrian Wagstaff

Manetti, C., Ceruso, M-A, Giuliani, A., Webber Jr., C.L. and Zbilut J.P (1999) 

'Recurrence quantification analysis as a tool for the characterization o f molecular 

dynamics simulations', Physical Review E. vol. 59, iss. 1, pp. 992-998.

Martin, F.L., Correal, N.S., Ekl, R.L., Gorday, P. and O'Dea, R. (2008) 'Early 

opportunities for commercialization o f TV whitespace in the US', 3rd 

International Conference on Cognitive Radio Oriented Wireless Networks and 

Communications, 2008. Singapore, 15-17 May 2008, pp. 1-5.

Marwan, N. and Meinke, A. (2002) Extended Recurrence Plot Analysis and its 

Application to ERP Data [online],

http://arxiv.org/PS_cache/physics/pdf/0212/0212082vl.pdf (Accessed 6 October 

2011)

Marwan, N., Romano, M.C., Thiel, M. and Kurths, J. (2007) 'Recurrence plots for 

the analysis o f complex systems', Physics Reports, vol. 438. iss. 5-6, pp. 237-329.

Masugi, M. (2006) 'Recurrence plot-based approach to the analysis of IP-network 

traffic in terms o f assessing nonstationary transitions over time', IEEE 

Transactions on Circuits and Systems-I: Regular Papers, vol. 53, iss. 10, 

pp. 2318-2326.

Matassini, L., Kantz, H., Holyst, J. and Hegger, R. (2002) 'Optimizing of 

recurrence plots for noise reduction', Physical Review Review E, vol. 65, iss. 2.

Page 316 of 376

http://arxiv.org/PS_cache/physics/pdf/0212/0212082vl.pdf


Adrian Wagstaff

Mathworks (2011) Communications system toolbox [online], 

http://www.mathworks.co.uk/products/communications/demos.html?file=/product 

s/demos/shipping/comm/scattereyedemo.html (Accessed 6 October 2011)

Matsuzaki, E., Ichige, K. and Hiroyuki, A. (2003) 'An automatic recognition 

algorithm of analogue modulated signals for disturbance rejection', Proceedings o f  

the Seventh International Symposium on Signal Processing and its Applications, 

Paris, France, 1-4 July 2003, vol. 1, pp. 165-168.

McGehee, J. (2008) 'Multi-site spatially diverse demodulation o f HF propagated 

signals', IEEE Military Communications Conference, San Diego, California,

16-19 November 2008, pp. 1-6.

Mewett, D.T., Reynolds, K.J. andNazeran, H. (1999) 'Recurrence plot features: 

an example using ECG', Proceedings o f  the Fifth International Symposium on 

Signal Processing and its Applications, Brisbane, Queensland, Australia, 22-25 

August, 1999, vol. l,pp . 175-178.

Middleton, D. (1973) 'Man-made noise in urban environments and transportation 

systems: Models and measurements', IEEE Transactions on Vehicular 

Technology, vol. 22, iss. 4, pp. 148-157.

Middleton, D. (1975) Statistical-physical models o f  man-made and natural radio 

environments -  Part I: First-order probability models o f  the instantaneous 

amplitude, Office o f Telecommunications Report OT 74-36.

Page 317 o f 376

http://www.mathworks.co.uk/products/communications/demos.html?file=/product


Adrian Wagstaff

Middleton, D. (1976) Statistical-physical models o f man-made and natural radio 

environments -  Part II: First-order probability models o f the envelope and phase, 

Office o f Telecommunications Report OT 76-86.

Middleton, D. (1978a) Statistical-physical models o f man-made and natural radio 

environments — Part III: First-order probability models o f  the instantaneous 

amplitude o f class B interference, NTIA Contractor Report 78-1.

Middleton, D. (1978b) Statistical-physical models o f man-made and natural radio 

environments -  Part IV: Determination o f the first-order parameters o f class A 

and class B interference, NTIA Contractor Report 78-2.

Mitola III, J. (2009) ‘Cognitive radio architecture evolution’, Proceedings o f the 

IEEE, vol. 97, iss. 4, pp. 626-641.

Mitola III, J. and Maguire Jr, G.Q. (1999) ‘Cognitive radio: making radios more 

personal’, IEEE Personal Communications, vol. 6, no. 4, pp. 13-18.

Mobasseri, B.G. (1999). ’Constellation shape as a robust signature for digital 

modulation recognition', Proceedings o f IEEE Military Communications 

Conference, Atlantic City, New Jersey, USA, 31 October -  3 November 1999, 

vol. 1, pp. 442-446.

Page 318 of 376



Adrian Wagstaff

Oduncu, H. (2008) Use o f  RFID in healthcare settings and electromagnetic 

interference o f  RFID devices with medical equipment: Review o f  current 

standards and case reports [online], University o f Glamorgan, 

http://fat.glam.ac.uk/media/files/documents/2008-05- 

06/RFID_Healthcare_Report.pdf (Accessed 6 October 2011).

Ofcom (2005) O f com Tackles Illegal Broadcasting [online],

http ://media.ofcom.org.uk/2005/11/03/ofcom-tackles-illegal-broadcasting/

(Accessed 6 October 2011).

Ofcom (2006) Spectrum usage rights. Technology and usage neutral access to the 

radio spectrum [online], http://www.ofcom.org.uk/consult/condocs/sur/spur.pdf 

(Accessed 6 October 2011).

Ofcom (2009) Enforcement Report [online],

http://www.ofcom.org.uk/enforcement/enforcement_report/enforcement_report.pd 

f  (Accessed 27 February 2010).

Ofcom (2010a) Outline o f  the role o f  Field Operations [online], 

http://www.ofcom.org.uk/radiocomms/ifi/enforcement/ops/ (Accessed 6 October 

2011).

Ofcom (2010b) Prosecution Statistics [online],

http ://www.ofcom.org.uk/radiocomms/ifi/enforcement/pstats/ (Accessed 6 

October 2011).

Page 319 o f 376

http://fat.glam.ac.uk/media/files/documents/2008-05-
http://www.ofcom.org.uk/consult/condocs/sur/spur.pdf
http://www.ofcom.org.uk/enforcement/enforcement_report/enforcement_report.pd
http://www.ofcom.org.uk/radiocomms/ifi/enforcement/ops/
http://www.ofcom.org.uk/radiocomms/ifi/enforcement/pstats/


Adrian Wagstaff

Oner, M. and Jondral, F. (2003) 'Extracting the channel allocation information in a 

spectrum pooling system using a prefilter delay and multiply nonlinearity', IEEE 

Workshop on Statistical Signal Processing, St. Louis, Missouri, USA,

18 September -1  October 2003, pp. 46-49.

Oner, M. and Jondral, F. (2004a) 'Cyclostationarity-based methods for the 

extraction o f the channel allocation information in a spectrum pooling system', 

IEEE Radio and Wireless Conference, Atlanta, Georgia, USA, 19-22 September 

2004, pp. 279-282.

Oner, M. and Jondral, F. (2004b) 'Cyclostationarity based air interface recognition 

for software radio systems', IEEE Radio and Wireless Conference, Atlanta, 

Georgia, USA, 19-22 September 2004, pp. 263 -  266.

Oner, M. and Jondral, F. (2007) 'Air interface identification for software radio 

systems', International Journal o f Electronics and Communications, vol. 61, 

iss. 2, pp. 104-117.

Pace, P.E. (2004) Detecting and classifying low probability o f intercept radar, 

Norwood, Massachusetts, USA, Artech House.

Parsons, D. (1992) The Mobile Radio Propagation Channe, London, Pentech 

Press Ltd.

Patzold, M. (2002) Mobile Fading Channels, New York, USA, John Wiley & 

Sons Inc.

Page 320 o f 376



Adrian Wagstaff

Poole, I. (2010) Future o f  cognitive radio -  an interview with Dr. Joseph Mitola 

[online], http ://www.radio-electronics.com/analysis/receivers/2010-03/j oe-j oseph- 

mitola-cognitive-radio-future.php (Accessed 7 October 2011).

Pourrostam, J., Zekavat, S.A. and Tong, H. (2007) 'Novel Direction-of-Arrival 

Estimation Techniques for Periodic-Sense Local Positioning Systems', IEEE 

Radar Conference, Waltham, Massachusetts, USA, 17-20 April 2007, pp. 568-573

Quinlan, J.R. (1986) 'Induction o f decision trees', Machine Learning, vol., no. 1,

pp. 81-106.

Radiocommunications Agency (2000) RA 3G Auction [online], 

http://www.ofcom.org.Uk/static/archive/spectrumauctions/auction/auction_index.h 

tm (Accessed 7 October 2011)

Rakov, V.A. and Rachidi, F. (2009) 'Overview of research progress in lightning 

research and lightning protection', IEEE Transactions on Electromagnetic 

Compatibility, vol. 51, iss. 3, pp. 428-442.

Ramakonar, V., Habibi, D. and Bouzerdoum, A. (1999) 'Automatic recognition of 

digitally modulated communications signals', Proceedings o f  the Fifth 

International Symposium on Signal Processing and its Applications, Brisbane, 

Australia, vol. 2, pp. 753-756.

Page 321 o f 376

http://www.radio-electronics.com/analysis/receivers/2010-03/j
http://www.ofcom.org.Uk/static/archive/spectrumauctions/auction/auction_index.h


Adrian Wagstaff

Ranade, A. (1989) 'Local access radio interference due to building reflections', 

IEEE Transactions on Communications, vol. 37, iss. 1, pp. 70-74.

Reardon, M. (2008) FCC opens free 'white space' spectrum [online], 

http://news.cnet.com/8301-1035_3-10082505-94.html (Accessed 7 October 

2011).

Richardson, D.C. and Dale, R. (2005) 'Looking to understand: The coupling 

between speakers' and listeners' eye movements and its relationship to discourse 

comprehension', Cognitive Science, vol. 29, iss. 6, pp. 1045-1060.

Richterova, M. (2005) 'Signal modulation recognizer based on method of artificial 

neural networks', Progress in Electromagnetics Research Symposium, Hangzhou, 

China, 22-26 August 2005, PIERS Online, vol. 1, no. 5, pp. 575-578..

Roberts, R.S., Brown, W.A. and Loomis, H.H., Jr. (1991) 'Computationally 

efficient algorithms for cyclic spectral analysis', IEEE Signal Processing 

Magazine, vol. 8, iss. 2, pp.38-49.

Rockwell, D.L. (2004) 'SIGINT: The New Electronic Warfare' [online], 

Aerospace America, June 2004, pp. 22-25,

http://www.aiaa.org/aerospace/images/articleimages/pdf/eyejune04.pdf (Accessed 

7 October 2011).

Page 322 of 376

http://news.cnet.com/8301-1035_3-10082505-94.html
http://www.aiaa.org/aerospace/images/articleimages/pdf/eyejune04.pdf


Adrian Wagstaff

Sabri, K., El Badaoui, M., Guillet, F., Adib, A. and Aboutajdine, D. (2006) 'Gear 

Signal Separation by Exploiting the Spectral Diversity and Cyclostationarity', 

IEEE International Conference on Acoustics, Speech and Signal Processing, 

Toulouse, France, 14-19 May 2006, vol. 3, pp. 1200-1203.

dos Santos, C.N., Netto, S.L., Bescainho, L.W.P. and Graziosi, D.B. (2004) 'A 

modified constant-Q transform for audio signals.' IEEE International Conference 

on Acoustics, Speech and Signal Processing, Montreal, Quebec, Canada, 17-21 

May 2004, vol. 2, pp. 469-472.

Samson, C.A. (1975) Refractivity gradients in the northern hemisphere, Institute 

for Telecommunications Services, Office o f Telecommunications, OT Report 

75-59.

Schreyogg, C., Kittel, K., Kressel, U. and Reichert, J. (1997) 'Robust 

classification o f modulation types using spectral features applied to HMM', 

MILCOM97 Proceedings, Monterey, California, USA, 2-5 November 1997, 

vol. 3, pp. 1377-1381.

Sengr, A. and Gldemir, H. (2005) 'An educational interface for automatic 

recognition o f analog modulated signals', Journal o f  Applied Sciences, vol. 5, 

iss. 3, pp. 513-516.

Serpedin, E., Panduru, F., Sari, I. and Giannakis, G.B. (2005) 'Bibliography on 

cyclostationarity', Signal Processing, vol. 85, iss. 12, pp. 2233-2303.

Page 323 o f 376



Adrian Wagstaff

Shao, X-M and Jacobson A.R. (2002) ‘Polarization observations o f lightning- 

produced VHF emissions by FORTE satellite’, Journal o f Geophysical Research 

vol. 107, no. D20, pp. 7-1 -  7-16.

Sheikh, A.U.H. and Parsons, J.D. (1983) ’The frequency dependence of urban 

man-made noise', The Radio and Electronic Engineer, vol. 53, no.3, 

pp. 92-98.

Sherman, M. (2009) TV Whitespace Tutorial [online], 

http://www.ieee802.org/802_tutorials/2009-03/2009-03- 

10%20TV%20Whitespace%20Tutorial%20r0.pdf (Accessed 7 October 2011).

Shi, Q. and Karasawa, Y. (2008) 'Maximum likelihood based modulation 

classification for unsynchronized QAMs', IEEE Global Telecommunications 

Conference, New Orleans, Louisiana, USA, 30 November - 4 December 2008, 

pp. 1-5.

Shukla (2001) Feasibility Study Into the Measurement o f Man-Made Noise, 

DERA, Report DERA/KIS/COM/CRO10470.

Simic, D.C. and Simic, J.R. (1999) 'The strip spectral correlation algorithm for 

spectral correlation estimation of digitally modulated signals', 4th International 

Conference on Telecommunications in Modern Satellite, Cable and Broadcasting 

Services, Nis, Yugoslavia, 13-15 October 1999, vol. 1, pp.277-280.

Page 324 of 376

http://www.ieee802.org/802_tutorials/2009-03/2009-03-


Adrian Wagstaff

Singapore Technologies (2005) HB 110 Microwave Sensor Module [online], 

http://www.agilsense.com/pdf/x-band%20sensor/DS_HB 110_vl 02.pdf (Accessed 

7 October 2011).

Soliman, S.S. and Hsue, S-Z. (1992) 'Signal classification using statistical 

moments', IEEE Transactions on Communications, vol. 40, iss. 5, pp. 908-916.

Spaulding, A.D, Roubique, CJ. and Crichlow, W.Q. (1962) 'Conversion o f the 

amplitude-probability distribution function for atmospheric radio noise from one 

bandwidth to another', Journal o f  Research o f  the National Bureau o f  Standards - 

D. Radio Propagation, vol. 66D, no. 6, pp. 713-720.

Stavroulakis, P. (2007) Terrestrial trunked radio -  TETRA: a global security tool, 

New York, Springer-Verlag.

Steenkiste, P., Sicker, D., Minden, G. and Raychaudhuri, D. (2009) Future 

directions in Cognitive Radio Research [online], Carnegie Mellon School of 

Computer Science, http://www.cs.cmu.edu/~prs/NSF_CRN_Report_Final.pdf 

(Accessed 7 October 2011).

Sutton, P.D., Nolan, K,E. and Doyle, L.E. (2008) 'Cyclostationary signatures in 

practical cognitive radio applications', IEEE Journal on Selected Areas in 

Communications, vol. 26, iss. 1, pp. 13-24.

Page 325 o f 376

http://www.agilsense.com/pdf/x-band%20sensor/DS_HB
http://www.cs.cmu.edu/~prs/NSF_CRN_Report_Final.pdf


Adrian Wagstaff

Tadaion, A.A., Derakhtian, M., Gazor, S. and Aref, M.R. (2005) 'Likelihood ratio 

tests for PSK modulation classification in unknown noise environment', Canadian 

Conference on Electrical and Computer Engineering, Saskatoon, Saskatchewan, 

Canada, 1-4 May 2005, pp. 151-154.

Tadiran (2011) HF & VHF/UHF signal classifiers [online], 

http://www.tadsys.com/images/Signal%20Classifiers.pdf (Accessed 7 October 

2011).

Thomas, R.J., Krehbiel, P.R., Rison, W., Hamlin, T., Harlin, J. and Shown, D. 

(2001) ‘Observations o f VHF source powers radiated by lightning’, Geophysical 

Research Letters, vol. 28, no.l, pp. 143-146.

Tse, D. and Viswanath, P. (2005) Fundamentals o f Wireless Communication 

[online], Cambridge University Press,

http://www.eecs.berkeley.edu/~dtse/book.html (Accessed 7 October 2011).

Tugnait, J.K. and Zhou, Y. (2002) 'Identification o f closed-loop MIMO systems 

from time-domain data using polyspectral analysis', Proceedings o f the American 

Control Conference, Anchorage, Alaska, USA, 8-10 May 2002, vol. 4, 

pp. 3319-3324.

Tyler, D.W. and Schulze, K.J. (2004) 'Fast phase spectrum estimation using the 

parallel part-bispectrum algorithm', The Publications o f  the Astronomical Society 

o f the Pacific, vol. 116, iss. 815, pp. 65-76.

Page 326 of 376

http://www.tadsys.com/images/Signal%20Classifiers.pdf
http://www.eecs.berkeley.edu/~dtse/book.html


Adrian Wagstaff

Uman, M.A. (1994) Natural lightning', IEEE Transactions on Industry 

Applications, vol. 30, iss. 3, pp.785-790.

Wagstaff, A. J. (2003) Automatic Music Transcription, Unpublished MSc Thesis, 

Cranfield University.

Wagstaff, A. J. and Merricks, N.P. (2003) Man-made noise measurement 

programme (AY4119). Final report [online], Mass Consultants Ltd.,

MC/CC0251/REPO 12/2,

http://www.mass.co.uk/technology/MMN%20Measurement%20Programme%20F 

inal%20Report.pdf (Accessed 7 October 2011).

Wagstaff, A.J. and Merricks, N.P. (2005) 'Man-made noise measurement 

programme', IEE Proceedings - Communications, vol. 152, iss. 3, pp. 371-377.

Wagstaff, A.J. and Merricks, N.P. (2006) Autonomous Interference Monitoring 

System, Final Report [online], Mass Consultants Ltd., MC/SC0526/REP020/2, 

http://www.mass.co.uk/technology/spectrum.htm (Accessed 7 October 2011).

Wagstaff, A.J. (2007) Autonomous Interference Monitoring System. Phase 2, 

Final Report [online], Mass Consultants Ltd., MC/SC0585/REP017/1, 

http://www.mass.co.uk/technology/spectrum.htm (Accessed 7 October 2011).

Wagstaff, A.J. (2008) 'Logarithmic cyclic frequency domain profile for automatic 

modulation recognition', IET Communications, vol. 2, iss. 8, pp. 1009-1015.

Page 327 o f 376

http://www.mass.co.uk/technology/MMN%20Measurement%20Programme%20F
http://www.mass.co.uk/technology/spectrum.htm
http://www.mass.co.uk/technology/spectrum.htm


Adrian Wagstaff

Wagstaff, AJ. (2009) Estimating the utilisation o f  key licence-exempt spectrum 

hands. Final report [online], Mass Consultants Ltd., MC/SC0710/REP003/3, 

http://www.mass.co.uk/technology/Estimating%20the%20Utilisation%20of%20K 

ey%20LE%20Spectrum%20Bands.pdf (Accessed 7 October 2011).

Wang, C. and Tong, Y-C. (2004) 'An improved critical-band transform processor 

for speech applications', Proceedings o f  the 2004 International Symposium on 

Circuits and Systems, Vancouver, British Columbia, Canada, 23-26 May 2004, 

vol. 3, pp. 461-464.

Wang, J. and Gaddam, V. (2009) 'Feasibility Study of Sensing TV Whitespace 

with Local Quiet Zone', IEEE International Conference on Systems, Man and 

Cybernetics, San Antonio, Texas, USA, 11-14 October 2009, pp. 2287-2292.

Wang, X-g, Shen, H.C. and Qjan, W-h (1998) 'A hypothesis testing method for 

multisensory data fusion', Proceedings o f the 1994 IEEE International Conference 

on Robotics and Automation, Leuven, Belgium, 16-20 May 1998. vol. 4, 

pp. 3407-3412.

Ward, B.D. and Golley, M.G. (1991) 'Solar cycle variations in atmospheric noise 

at HF', Fifth International Conference on HF Radio Systems and Techniques. 

Edinburgh, Scotland, 22-25 July 1991, pp. 327-331.

Page 328 of 376

http://www.mass.co.uk/technology/Estimating%20the%20Utilisation%20of%20K


Adrian Wagstaff

Wavecom (2007). Data decoder/analyser W61PC W61LAN W61BV W61 SAT 

W61 CL [online],

http://www.phaisan.com/docs/productsAV 6 l_Family_Brochure.pdf (Accessed 7 

October 2011).

Winder, S. and Carr, J. (2002) Radio and RFEngineering Pocket Book, Oxford, 

UK, Newnes.

Wood, S.L., Ready, M.J. and Treichler, J.R. (1988) 'Constellation identification 

using the Radon transform', International Conference on Acoustics, Speech, and 

Signal Processing, New York, USA, 11-14 April 1988, vol. 3, pp. 1878-1881.

Wood, S.L., Larimore, M.G. and Treichler, J.R. (1990) 'Modem constellation 

identification: A performance comparison o f two methods', International 

Conference on Acoustics, Speech and Signal Processing, Albuquerque, New  

Mexico, USA, 3-6 April 1990, vol. 3, pp. 1651-1654.

Wood, S.L. and Treichler, J.R. (1994) 'Computational and performance analysis 

of Radon transform based constellation identification', IEEE International 

Conference on Acoustics, Speech and Signal Processing, Adelaide, South 

Ausatralia, 19-22 April 1994, vol. 3, pp. 241-244.

Page 329 o f 376

http://www.phaisan.com/docs/productsAV


Adrian Wagstaff

Yaqin, Z., Guanghui, R., Zhilu, W. and Xuemai, G. (2003). 'Automatic digital 

modulation recognition using artificial neural networks', IEEE International 

Conference on Neural Networks & Signal Processing, Nanjing, China, 14-17 

December 2003, vol. 1, pp. 257-260.

Zaerin, M., Seyfe, B. andNikoofar, H.R. (2009) Multiuser Modulation 

Classification Based on Cumulants in AWGN Channel [online], Cornell 

University Library, http://arxiv.org/ftp/arxiv/papers/0908/0908.2117.pdf 

(Accessed 7 October 2011).

Ziemer, R.E. and Tranter, W.H. (1995) Principles o f Communications, New York, 

USA, John Wiley & Sons, Inc.

Page 330 of 376

http://arxiv.org/ftp/arxiv/papers/0908/0908.2117.pdf


Adrian Wagstaff

7 BIBLIOGRAPHY

Antoni, J. (2007). 'Cyclic spectral analysis in practice', Mechanical Systems and 

Signal Processing, vol. 21, iss. 2, pp. 597-630.

Beidas, B.F. and Weber, C.L. (1995) 'General framework for the higher-order 

correlation domain', IEEE Military Communications Conference, San Diego, 

California, USA, 5-8 November 1995, vol.l, pp. 180-185.

Beidas, B.F. and Weber.C.L. (1995) 'Modulation classification o f MFSK signals 

using the higher-order correlation domain', IEEE Military Communications 

Conference, San Diego, California, USA, 5-8 November 1995, vol. 1, pp. 186- 

191.

Beidas, B.F. and Weber, C.L. (1995) 'Higher-order correlation-based approach to 

modulation classification o f digitally frequency-modulated signals', IEEE Journal 

on Selected Areas in Communications, vol. 13, iss. 1, pp. 89-101.

Beidas, B.F. and Weber, C.L. (1996) 'Higher-order correlation-based 

classification o f asynchronous MFSK signals', IEEE Military Communications 

Conference, MacLean, Virginia, USA, 21-24 October 1996, vol. 3, pp. 1003- 

1009.

Page 331 o f 376



Adrian Wagstaff

Burel, G. and Bouder, C. (2000). Blind estimation of the pseudo-random sequence 

of a direct sequence spread spectrum signal, 21st Century Military 

Communications Conference Proceedings, Los Angeles, California, USA, 22-25 

October 2000, vol. 2, pp. 967-970.

Cullers, D.K., Linscott, I.R. and Oliver, B.M. (1985) 'Signal Processing in SETT, 

Communications o f the ACM, vol. 28, iss. 11, pp. 1151-1163.

Davy, M., Doncarli, C. and Toumeret, J-Y (2000) 'Supervised classification using 

MCMC methods', IEEE International Conference on Acoustics, Speech and 

Signal Processing, Istanbul, Turkey, 5-9 June 2000, vol. 1, pp. 33-36.

Eisner, R.F. (1982) 'Rusty bolt demonstrator', IEEE Transactions on 

Electromagnetic Compatibility, vol. EMC-24, iss. 4, pp. 420-421.

Fitzgerald, W.J., Godsill, S.J., Kokaram, A.C. and Stark, J.A. (1998) 'Bayesian 

methods in signal and image processing', Bayesian Statistics 6, Oxford University 

Press, pp. 239-254; also available online at

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=l0.1.1.30.8249 (Accessed 7 

October 2011).

Gardner, W.A. (1987) 'Spectral Correlation of Modulated Signals', IEEE 

Transactions on Communications, vol. 35, iss. 6, pp. 584-601.

Page 332 of 376

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=l0.1.1.30.8249


Adrian Wagstaff

Horowitz, P., Matthews, B.S., Forster, J., Linscott, I., Teague, C.C., Chen, K. and 

Backus, P. (1986) 'Ultranarrowband searches for extraterrestrial intelligence with 

dedicated signal-processing hardware', Icarus, vol. 67, iss. 3, pp. 525-539.

ICS (2006) Spectrum Explorer. Interactive automatic modulation recognition 

(AMR) software fo r sophisticated spectrum monitoring and analysis. The RF 

spectrum at your fingertips. AN-SR-8 [online],

http://www.radstone.com/uploads/Notes_862303.pdf (Accessed 30 December 

2006)

Jeffrey, A. (2002) Advanced Engineering Mathematics, London, 

Harcourt/Academic Press.

Maritz, J.S. and Lwin, T. (1989) Empirical Bayes methods, 2nd edition, New York, 

Chapman and Hall.

Marwan, N. and Kurths. J. (2002) Nonlinear analysis o f bivariate data with cross 

recurrence plots', Physics Letters A , vol. 302, iss. 5-6, pp. 299-307.

Marwan, N. and Kurths, J. (2005) 'Line structures in recurrence plots', Physics 

Letters A, vol. 336, iss. 4-5, pp. 349-357.

Marwan, N., Kurths, J. and Saparin, P. (2007) 'Generalised recurrence plot 

analysis for spatial data', Physics Letters A, vol. 360, iss. 4-5, pp.545-551.

Page 333 o f 376

http://www.radstone.com/uploads/Notes_862303.pdf


Adrian Wagstaff

Nolan, K.E., Doyle, L., O'Mahony, D. and Mackenzie, P. (2007) Modulation 

scheme recognition techniques fo r software radio on a general purpose processor 

platform [online], Scientific Commons,

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=?doi=l0.1.1.22.2786 (Accessed 

7 October 2011).

Okunev, Y. (1997) Phase and Phase-Difference Modulation in Digital 

Communications, Norwood, Massachusetts, USA, Artech House.

Polydoros, A. and Kim, K. (1990). 'On the detection and classification of 

quadrature digital modulation in broad-band noise', IEEE Transactions on 

Communications, vol. 38, iss. 8, pp. 1199-1211.

Rai, S.S. and Pande, D.C. (2003) 'Prediction & modelling of EMI in 

communication systems due to non-linearities', 8th International Conference on 

Electromagnetic Interference and Compatibility, Chennai, India, 18-19 December 

2003, p p .207-212.

Ramakonar, V., Habibi, D. and Bouzerdoum, A. (2001) 'Classification o f band 

limited FSK4 and FSK8 signals', Sixth International Symposium on Signal 

Processing and its Applications, Kuala Lumpur, Malaysia, 13-16 August 2001, 

pp. 398-401.

Page 334 of 376

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=?doi=l0.1.1.22.2786


Adrian Wagstaff

Reichert, J (1992) 'Automatic classification o f communication signals using 

higher order statistics', IEEE International Conference on Acoustics, Speech, and 

Signal Processing, San Francisco, California, USA, 23-26 March 1992, vol. 5, 

pp. 221-224.

Sapiano, P.C. and Martin, J.D. (1996) 'Maximum likelihood PSK classifier', IEEE 

Military Communications Conference, MacLean, Virginia, USA, 21-24 October 

1996, vol. 3, pp. 1010-1014.

Schreyogg, C. and Reichert, J. (1997) 'Modulation classification o f QAM schemes 

using the DFT of phase histogram combined with modulus information', 

MILCOM 97 Proceedings, Monterey, California, USA, 2-5 November 1997, 

vol. 3, pp. 1372-1376.

Sills, J.A. (1999) 'Maximum-likelihood modulation classification for PSK/QAM', 

Military Communications Conference, Atlantic City, New Jersey, USA,

31 October -  3 November 1999, vol. 1, pp. 217-220.

Swami, A. and Sadler, B.A. (2000) 'Hierarchical digital modulation classification 

using cumulants', IEEE Transactions on Communications, vol. 48, iss. 3, 

pp. 416-429.

Page 335 o f 376



Adrian Wagstaff

Taira, S. and Murakami, E. (1999) 'Automatic classification of analogue 

modulation signals by statistical parameters', IEEE Military Communications 

Conference, Atlantic City, New Jersey, USA, 10-11 March 1999, vol.l, 

pp. 202-207.

Thiel, M., Romano, M.C. and Kurths, J. (2004) 'How much information is 

contained in a recurrence plot', Physics Letters A, vol. 330, iss. 5, pp. 343-349.

Tkachenko, A., Cabric, D. and Brodersen, R.W. (2007) 'Cyclostationary feature 

detector experiments using reconfigurable BEE2', 2nd IEEE International 

Symposium on New Frontiers in Dynamic Spectrum Access Networks, Dublin, 

Ireland, 17-20 April 2007, pp. 216-219.

Wang, X-g. and Shen, H.C. (1999) 'Multiple hypothesis testing method for 

decision making', IEEE International Conference on Robotics and Automation, 

Detroit, Michigan, USA, 10-15 May 1999, vol. 3, pp. 2090-2095.

Webb (2007) 'Viewpoint - Steady as she goes', IET Engineering & Technology, 

vol. 2, iss. 1, p. 35.

Wong, M.L.D. and Nandi, A.K. (2001) 'Automatic digital modulation recognition 

using spectral and statistical features with multi-layer perceptrons', Sixth 

International Symposium on Signal Processing and its Applications, Kuala 

Lumpur, Malaysia, 13-16 August 2001, pp. 390-393.

Page 336 of 376



Adrian Wagstaff

Zeng, Y. and Liang, Y-C. (2007) 'Covariance based signal detections for cognitive 

radio', 2nd IEEE International Symposium on New Frontiers in Dynamic 

Spectrum Access Networks, Dublin, Ireland, 17-20 April 2007, pp. 202-207.

Page 337 o f 376



Adrian Wagstaff

This page intentionally blank

Page 338 of 376



Adrian Wagstaff

APPENDIX A USER SURVEY 

A.l Introduction
This appendix details the findings o f an investigation carried out as part o f the 

author's Ph.D. project. The aim of the investigation was to try to test some o f the 

assumptions that the author had about the needs o f users with regards to signal 

recognition problems.

In February 2008 a questionnaire was sent by email to 62 people that had been 

identified as potentially knowledgeable in the area o f signal recognition. Some of 

the people were very well known to the author and others were not. The aim here 

was to try to cover a wide range o f organisations likely to have interests in signal 

recognition tools. Of the people targeted, 16 returned the questionnaire and this 

report presents the analysis o f those responses. Four o f these worked for 

government organisations, eleven for industry and one in academia.

A mixture o f open and closed questions was used in order to try to let people 

express themselves as well as obtaining material that could be statistically 

analysed (although it must be noted that the sample size was small). This report 

therefore presents the statistical results and also includes direct quotes from some 

of the questionnaires received. Names o f individuals have been deliberately 

excluded in order to maintain confidentiality. Similarly, whilst some products 

were mentioned in the replies, these have not been disclosed.
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The following sections present the results o f analysing each of the questions in 

turn. Section A.7 contains the conclusions from this investigation.

A.2 Question 1

"Which RF bands do you believe are the most difficult for a human operator to

analyse?"

This question was posed in order to see whether any particular part of the 

spectrum is perceived as more difficult to deal with than others. Any one person 

will normally have more experience working in certain bands. By canvassing 

opinions from other people, this bias may be alleviated to some degree. The 

questionnaire gave options for:

© Licensed Bands;

© Licence-Exempt bands;

© Specific bands;

© Don’t know;

© Prefer not to disclose.

The specific bands option allowed the respondents to indicate whether they have 

concerns over any particular frequency bands. A number of different bands were 

mentioned and the answers have been grouped as:

© Below 30 MHz (HF);

• 30 MHz -1  GHz (VHF/UHF);

© Above 1 GHz (UHF/SHF);

© UWB.
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UWB could, arguably, be incorporated into the above 1 GHz band, but this would 

not affect the results significantly.

Figure 122 shows the results from question 1. The LE bands and those above 

1 GHz are seen as those giving more concern. This can be explained by the 

growth in licence-exempt wide bandwidth services, typified by the 2.4 GHz ISM 

band, in which a very wide range o f signal types can be seen ("WiFi", 

"Bluetooth", microwave ovens, video senders, presentation controllers, etc.).

Respondents 

0 2 4 6 8 10

Licensed bands
________ 1------------ 1------------■- —......... *...........

LE bands

Below 30MHz (HF) liuj

30MHz- 1GHz (VHF/UHF) 3̂
Above 1 GHz (UHF/SHF)

UWB

Don't know

Figure 122. Summary of responses to question 1.

Specific replies:

© "I would have thought it depended on what you were looking for, but the 

higher you go in frequency, the more difficult it must be because the potential 

data carrying rate increases."

• "Licence exemption by definition requires that usage, standards and licensing 

information is difficult to ascertain."
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•  "Proliferation o f users and uses in unlicensed bands makes signal 

identification difficulty grow exponentially."

® [Licence-exempt] "Because it's very difficult to identify the source of the 

emission and the localisation of the unlicensed station."

• [2.4 GHz ISM] "Variety o f modulation and coding schemes permitted."

« [108 MHz -136 MHz] "Because o f strong RF carriers in the commercial FM

band (88 MHz -108 MHz)."

® "Difficult to monitor over-air above 1 GHz and often encounter proprietary or 

multiplexed modulation not exactly matching anticipated theoretical spectral 

appearance."

® "The unlicensed bands such as the ISM bands operate a free-for all policy with 

unregulated use o f modulation schemes. At the moment everyone is flooding 

into the 2.4 GHz band (e.g. radio control transmitters are the latest to move 

there). There is potential for a true interference nightmare in these bands."

® [HF] "Proprietary waveforms, sun spots, other ionospheric impact, co-channel 

interferences."

® [Don't know] "It is difficult in any o f the above cases. Higher frequencies have 

wider bandwidth but more local coverage. The human operator needs tools 

(antennas, receivers, spectrum analysers, etc.) appropriate to the band."

• [Most microwave bands] "Most emissions in this band are machine-generated 

and intended for machine reception, i.e. fixed links, radar and point-to- 

multipoint. This tends to make them all look and sound similar. They're also 

most removed from anything that a human operator may have encountered in 

the past."
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A.3 Question 2

"Which automated signal recognition systems do you use?"

This question was posed in order to see whether people were actually using such 

systems. It was felt, following the preliminary literature search, that automated 

signal recognition systems are not widely used in the context o f interference 

recognition and location, but there was no evidence to support this.

As well as giving space for people to list the systems they used, the questionnaire 

also gave options for:

• Do not use;

• Don't know;

• Prefer not to disclose.

Twelve o f the respondents did not use any kind o f automated system in their work 

and relied on spectrum analysers for signal recognition.

The remaining four respondents reported a variety o f systems ranging from free 

products to high-end SIGINT systems.
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A.4 Question 3

"Do you think that, as more services move towards digital communications, signal recognition 

will become easier or harder for the human operator?"

After performing a reasonably extensive literature search, the perception had been 

formed that the signal recognition problem will get harder in the future, as new 

and varied digital modulation schemes are introduced and as spectrum bands are 

liberalised. This view needed to be challenged, however, as it was important not 

to bias the research at an early stage.

The questionnaire gave options for:

® Easier;

® Harder;

® Don't know;

® Prefer not to disclose.

Sixteen o f the replies said that the problem would get harder and only one that it 

would get easier. Three o f the replies were "don't know".

Most o f the explanations given were for the case o f the task becoming harder. 

The first two quotes in the list below were notable however, because they made 

cases for the task becoming easier in one way but harder in another.
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• "Easier: DSP/FPGA technology becomes low cost and widely available... 

Harder: complex waveforms are selected for new digital communication 

technologies."

• "I assume signal recognition techniques can advance at the same pace as 

services increase."

• [Harder] "With analogue or quasi-analogue systems, a skilled operator can 

recognise the characteristic sounds (e.g. fax set up tones, GSM phone 

registration pulses, dial-up modem training sequence, etc.)."

® "As the number o f possible transmission standards increases, the ability to

discern between them will obviously become more difficult. There is a trend 

(in terms o f "liberalising" spectrum management) towards more "unlicensed 

bands" in these bands very little is known of the usage and this lack of 

knowledge leads to an increase in difficulty."

® "I think signal i.d. is going to get more difficult because o f the increase in the

number of unlicensed devices not because they are likely to use digital 

modulation as opposed to analogue."

® [Harder] "Mainly because there are many kinds o f modulation, codifications 

and services operating in the same band."

® "Most digital modulation approximates to noise-like spectrum: much less

structure than analogue. You have to "guess" the basic modulation mode and 

configure the receiver to do a correlation over time. Requires a lot o f  

algorithm development."

« "Digital transmissions are effectively coded using a universal modulation

technique that can be easily encrypted. Can be detected but not 'recognised'
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easily by humans. Digital techniques also lend themselves to complex coding 

/ wide spectrum use."

® "Discontinuous digital emissions are the hardest when using swept-tuned 

spectrum analysers because signal probability o f intercept is very low."

® [Harder] "Because o f the large number o f different systems in use."

® [Harder] "Operator can't hear the raw channel."

® "The advanced digital modulation schemes that are in operation, or proposed, 

may well use LPI techniques to aid their assimilation into an unlicensed band

(e.g. the use o f direct sequence transmissions or burst mode transmissions in

the unlicensed band allow overlaid bandsharing) These methods require 

extremely advanced detection methods to de-interleave the various digital 

signals."

® [Harder] "Analogue can be demodulated and processed by ear/ eye, but digital 

signals appear just as a stream of digits."

® [Harder] "One anonymous lump of QPSK-derived mush sounds very much 

like another. The more there is the more we're going to have to use diagnostic 

tools to identify the modulation scheme, possible source and use being made 

of it."

Overall, the results o f this question supported the author's view that signal 

recognition will become more difficult in future. There is a need for signal 

recognition technology to be developed to meet the problems arising from the 

increasing complexity and density o f emitters.
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A.5 Question 4
Question 4 provided a list o f thirteen features that are desirable in a signal 

recognition system. The respondents were asked to grade their importance for 

their needs on a scale o f 1 (most important) to 5 (least important).

Figure 123 shows a set o f box plots, one for each feature listed. These have been 

sorted by the medians.

Each box plot shows the extent o f the lower and upper quartiles using a 

rectangular box. Also shown are the minimum and maximum values as 'whiskers' 

and the medians, which are shown as vertical lines inside the boxes.

Accuracy 

Wide range of modulations 

Repeatability 

Ability to add new modulations 

Ability to train system 

Speed

Display of identification confidence 

Display of signal parameters 

Ability to select the signal interactively 

Ease of use 

Display of alternative identifications 

Explanation of identification 

Ability to select geographic region

1

Figure 123. Histogram summarising responses to question 4.
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The following observations are made concerning these results:

1. For every feature, apart from speed, opinions from 1 to 5 were expressed, so 

there was a wide variety of perceived importance;

2. Accuracy was seen as the most important feature, with a median o f 1. This 

was not surprising and could have been predicted. What was surprising was 

that one o f the respondents scored this feature with a 5;

3. The least important feature was that of being able to select the geographic 

region and this is understandable. This particular feature is arguably more 

of importance to developers than users. Typically users work in one 

geographic region so just need a system that works in their area. Developers 

need to ensure that their products will work in any region.
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A.6 Question 5
Question 5 simply asked people to express any other comments they had. The

following comments are representative o f those received, but exclude references

to specific organisations, people's roles or particular products.

• "The problem for commercial organisations is cost justifying any form of 

complex analysis tools when the need and opportunity to use them is very 

limited."

• "Automated signal detection is a necessary pre-cursor to the advent o f 

advanced radio technologies such as cognitive radio and much work is being 

done in this field."

® "Signal recognition and its localisation is a big problem for the human 

operator."

• "In my experience the radio and TV broadcast bands suffer predominantly 

from man-made sources o f interference."

• "The widespread use o f digital wireless technology is certainly putting severe 

strains on the RF spectrum. The increasing use o f advanced modulation 

schemes in the unlicensed bands could soon create havoc. The proposed 

answer is self-regulating systems and cognitive radio. If this happens the 

control o f the spectrum could reduce to a free-for-all where the largest power 

wins. However, there would appear to be little other alternative since the 

pressure on the spectrum is so great."

• [A tool should] "list all active frequencies the exact waveform/waveforms 

(simultaneously) are currently on, requires detection o f the signal energy and

___________identification o f the waveform parameters, e.g. modulation, baudrate,
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interleaving settings, data terminal modes (for serial port, number of start/stop 

bit, data bits), special data preamble, tone sets (in case of OFDM-like signal), 

etc."

A.7 Conclusions
The following conclusions have been drawn from the responses received:

1. The questionnaire produced a wider range of responses than expected, but 

generally supported the belief that improved signal recognition algorithms, 

software and tools will be needed to deal with an increasingly complex and 

densely populated spectrum. This complexity is seen as inevitable and is 

being driven by the increasing demand for spectrum. The human operator 

can no longer identify all signals with a spectrum analyser and needs other 

tools to resolve interferers and wanted signals.

2. The current research in cognitive radio is expected to produce some of the 

algorithms required and ongoing progress in signal processing hardware will 

allow ever more advanced techniques to be used in real-time. The 

expectation is that signal recognition tools will continually evolve to meet 

the complexities o f the radio environment.

3. Most respondents were concerned with the higher frequencies and the 

Licence-Exempt bands, with expressions such as 'free for all' indicating the 

general mood.

4. Only 25% of the respondents indicated that they used signal recognition 

products. The cost o f these was the one factor that was explicitly mentioned 

for not using them.
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5. Above all, people want such tools to be accurate. They are aware that such 

systems can never be 100% accurate and so need to be presented with the 

detailed parameters that were used for the automatic decision.

All the respondents were very supportive o f the survey and the author is 

extremely grateful to all concerned.
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APPENDIX B SIMULATION DETAILS

This appendix describes the simulations used to explore the concepts introduced 

in this thesis.

The results presented in sections 4.4.5 and 4.4.6 are based on a simulation created 

in Matlab. This simulation was based on the UML model o f section 4.3 and used 

the object-oriented features o f Matlab to implement the major class structures.

It was decided that a good example o f a shared spectrum band is the 2.4 GHz ISM 

band, which is one o f the LE bands in the UK. Interference in this band is 

widespread and increases in urban areas (Wagstaff, 2009), so there is a motivation 

for concentrating on this region o f the spectrum for the purposes o f simulation.

A total o f 63 signal types were modelled, as listed in Table 17 and Table 18. 

Parameters for each o f the first 23 types were taken from the open literature for 

devices that might be encountered in the 2.4 GHz ISM band. The remaining 

signal types are based on the standard modulations available in the MATLAB 

Communications Toolbox.
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Index Signal type
1 CW
2 DPSK8 (Bluetooth)
3 DSSS+DBPSK (WiFi 1Mbps)
4 DSSS+DQPSK (WiFi 2Mbps)
5 DSSS+OQPSK (ZigBee)
6 FM video
7 FSK2 (AMIC A7301 4.8kbps)
8 FSK2 (AMIC A7301 9.6kbps)
9 FSK2 (AMIC A7301 19.2kbps)
10 FSK2 (AMIC A7301 64kbps)
11 FSK2 (ML2724 1.536Mbps)
12 FSK2 (Motorola Canopy)
13 GFSK (Bluetooth)
14 GFSK (TRF-2.4G 250kbps)
15 GFSK (TRF-2.4G 1Mbps)
16 GFSK (nRF24L01 2Mbps)
17 Microwave (inverter type I)
18 Microwave (inverter type II)
19 Microwave (transformer type)
20 OFDM+BPSK (WiFi 6Mbps)
21 OFDM+QPSK (WiFi 12Mbps)
22 OFDM+QAM16 (WiFi 24Mbps)
23 OFDM+QAM64 (WiFi 48Mbps)

Table 17. Simulated signal types -  2.4 GHz ISM band specific types.
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Index Signal type
24 BPSK (100kBaud)
25 BPSK (250kBaud)
26 BPSK (500kBaud)
27 BPSK (1 MBaud)
28 DBPSK (100kBaud)
29 DBPSK (250kBaud)
30 DBPSK (500kBaud)
31 DBPSK (1 MBaud)
32 QPSK (100kBaud)
33 QPSK (250kBaud)
34 QPSK (500kBaud)
35 QPSK (1 MBaud)
36 DQPSK (100kBaud)
37 DQPSK (250kBaud)
38 DQPSK (500kBaud)
39 DQPSK (1 MBaud)
40 PSK8 (100kBaud)
41 PSK8 (250kBaud)
42 PSK8 (500kBaud)
43 PSK8 (1 MBaud)
44 DPSK8 (100kBaud)
45 DPSK8 (250kBaud)
46 DPSK8 (500kBaud)
47 DPSK8(1 MBaud)
48 OQPSK (100kBaud)
49 OQPSK (250kBaud)
50 OQPSK (500kBaud)
51 OQPSK (1 MBaud)
52 PAM4 (100kBaud)
53 PAM4 (250kBaud)
54 PAM4 (500kBaud)
55 PAM4 (1 MBaud)
56 QAM16 (100kBaud)
57 QAM16 (250kBaud)
58 QAM16 (500kBaud)
59 QAM16 (IMBaud)
60 QAM64 (100kBaud)
61 QAM64 (250kBaud)
62 QAM64 (500kBaud)
63 QAM64 (IMBaud)

Table 18. Simulated signal types -  generic types.
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The simulation works on one pair of signal types at a time, adding them in varying 

amplitude ratios, using equation (45) and using WGN for the noise component at 

30 dB SNR. At each amplitude ratio thirty runs are performed and the mean 

feature output is calculated. This enables the interference selectivity curve to be 

drawn and, from that, the Interference Selectivity is estimated.

This estimation was carried out for different combinations o f signal types and for 

each o f the features studied. It allowed the statistics of each feature's Interference 

Selectivity to be visualised using the box plots in Figure 118 and Figure 119.

A total of 1,339 signal pairings were used in the simulations. This required 

5,827,250 simulation events to be run over a period of approximately three 

months.
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APPENDIX C NEURAL NETWORK PRUNING

This section introduces a specific technique for reducing the amount o f processing 

required in an artificial neural network o f the multilayer perceptron type. As 

discussed in section 2.4.4, Le et al (2005) were interested in optimising the 

performance o f their OCON architecture by minimising the number o f statistical 

features needed to recognise each modulation. The pruning technique described 

in this section achieves this for any general perceptron and is therefore applicable 

in other domains in which perceptrons are applied.

Consider the diagram of a perceptron with a single hidden layer shown in Figure 

124. This shows a hidden node and an output node, the output o f each o f which is 

influenced by the outputs o f the preceding layers. The final output is assumed to 

be shaped using a sigmoid function o f the logistic curve type (Johnson and Picton, 

1995, p. 116).
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Figure 124. Perceptron influence diagram.

The output element, yv, is produced by the sigmoid function and influenced by the 

two preceding layers, i and i-1 with respect to the input element xe. At each o f the 

nodes a set o f weights, W, is applied and these weights dictate the sensitivity of 

the output to the selected input.

Define the sensitivity o f the output by its partial derivative with respect to 

variations in the selected input element.

_ . . Sy
Sensitivity =

&cE

(65)

Now consider the outputs o f the two layers, S,-.j and £/.

(66)
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'Sv,i = 0̂,i+^A,M+Z^A,M
(67)

The final output is:

yv l +  e S"J

Now, by the chain rule the sensitivity defined in (65) is given by:

(68)

» y ssVJ asrM 
&E < » v,  < ® V,M  &E

(69)

Which leads to the result that the sensitivity is:

axT7
(70)

The sensitivity o f the perceptron output is therefore proportional to the product o f 

the weights along the path from the input element concerned. It is also, however, 

a non-linear function and depends on the current value o f the output, y v. This 

result makes it less useful than it might otherwise be if  it were only dependent on 

the weights.

It is proposed that a more useful measure o f sensitivity can be based on the output 

stage prior to the sigmoid function, which simplifies the analysis considerably. 

This simpler measure is:

ss .
Sensitivity  =  — 1— =  WE lW E M 

ScF
(71)
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Using this definition the sensitivity is simply the product o f the weights between 

the output node and the input. This result can be generalised for a perceptron of 

any number of hidden layers. For a single output node this definition generalises, 

then to:

asv{ r-T
Sensitivity  =  — -  =  ] |  WEi 

$ c E V
(72)

The final step in this analysis is to define the sensitivity across all output vector 

elements for a single input node as the squared sum of the weights across all 

output elements. The squaring operation allows negative and positive weights to 

be handled.

(  Y
Sensitivity =  £  I K

E  V i J
(73)

where E  is the input vector element and i is the layer number.

Either (72) or (73) can be used as part of an adaptive algorithm. The form of (72) 

lends itself to application in the OCON architecture proposed by Le et at (2005) 

as described in section 2.4.4.

Experiments to date have used the sensitivity in form given by (73). This form is 

appropriate for perceptrons with multiple outputs, such as that shown in Figure 

25. The approach taken has been to run the training sequence once and then plot 

the value o f the sensitivity parameter versus the statistical features. The 

sensitivity can then be thresholded and all input vectors falling below the
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threshold removed from the training sequence. In this way, the amount of 

processing required by the real-time perceptron is reduced. The saving is in the 

order of the number o f statistical features removed.

This pruning technique has some similarities to the Optimal Brain Damage (OBD) 

algorithm described by Ghani and Lamontagne (1993). Further work is needed to 

determine if  the OBD method would give any significant advantage over the 

algorithm presented here.

This section has introduced a practical method for estimating the sensitivity o f a 

perceptron to its inputs. This parameter can be used as part o f the training 

sequence to remove less relevant inputs from the calculation and thereby reduce 

the real-time processing requirements.
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APPENDIX D MODULATION TIME SCALES

In section 2.3.1 it is stated that ASR systems have to deal with a wide range of 

signal bandwidths and time scales. This can be seen by looking at the 

characteristics o f typical modulations.

This appendix lists 200 time domain characteristics compiled from public domain 

literature for a variety o f modulation types in the HF, VHF and UHF bands. The

object o f this is to show that there is a very wide range of time scales in use.

Modulation Parameter Rate (Hz) Duration (s) Logio (Duration/s)
GSM Hyperframe rate 3.07E-07 3.26E+06 6.51
UMTS Superframe rate 1.39E-06 7.20E+05 5.86
GSM Superframe rate 6.28E-04 1.59E+03 3.20
TETRA Hyperframe rate 1.63E-02 6.12E+01 1.79
GSM Multiframe rate 1.92E-02 5.20E+01 1.72
GSM Multiframe rate 3.77E-02 2.65E+01 1.42
TETRA Multiframe rate 9.80E-01 1.02E+00 0.01
Microwave - Inverter Duty cycle 1.00E+00 1.00E+00 0.00
Emergency beacon Chirp period 3.00E+00 3.33E-01 -0.48
EV-DO Data rate 3.10E+00 3.23E-01 -0.49
DVB-T Superframe rate 3.28E+00 3.05E-01 -0.52
DVB-T Superframe rate 3.65E+00 2.74E-01 -0.56
DVB-T Superframe rate 3.86E+00 2.59E-01 -0.59
DVB-T Superframe rate 3.98E+00 2.51 E-01 -0.60
DAB Frame rate 1.04E+01 9.60E-02 -1.02
DVB-T Frame rate 1.31E+01 7.62E-02 -1.12
DVB-T Superframe 1.31E+01 7.62E-02 -1.12
DVB-T Frame rate 1.46E+01 6.85E-02 -1.16
DVB-T Superframe 1.46E+01 6.85E-02 -1.16
DVB-T Frame rate 1.54E+01 6.47E-02 -1.19
DVB-T Superframe 1.54E+01 6.47E-02 -1.19
DVB-T Frame rate 1.59E+01 6.28E-02 -1.20
DVB-T Superframe 1.59E+01 6.28E-02 -1.20
TETRA Frame rate 1.76E+01 5.67E-02 -1.25
DAB Frame rate 2.08E+01 4.80E-02 -1.32
PAL-I Vertical rate 2.50E+01 4.00E-02 -1.40
DAB Frame rate 4.17E+01 2.40E-02 -1.62
MDM Q9604 Data rate 4.80E+01 2.08E-02 -1.68
Microwave - 
Transformer Duty cycle 5.00E+01 2.00E-02 -1.70
MDM Q9604 Data rate 5.00E+01 2.00E-02 -1.70
DVB-T Frame rate 5.25E+01 1.90E-02 -1.72
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Modulation Parameter Rate (Hz) Duration (s) Log10 (Duration/s)
DVB-T Frame rate 5.84E+01 1.71E-02 -1.77
DVB-T Frame rate 6.18E+01 1.62E-02 -1.79
Clover-2000 
DSP4100 2K Symbol rate 6.25E+01 1.60E-02 -1.80
DVB-T Frame rate 6.37E+01 1.57E-02 -1.80
MDM Q9604 Data rate 6.40E+01 1.56E-02 -1.81
TETRA Slot rate 7.06E+01 1.42E-02 -1.85
MDM Q9604 Data rate 7.50E+01 1.33E-02 -1.88
RTTY Symbol rate 7.50E+01 1.33E-02 -1.88
DECT Frame rate 1.00E+02 1.00E-02 -2.00
UMTS Frame rate 1.00E+02 1.00E-02 -2.00
ART Symbol rate 1.50E+02 6.67E-03 -2.18
MDM Q9604 Data rate 1.50E+02 6.67E-03 -2.18
GSM Frame rate 2.17E+02 4.61 E-03 -2.34
Link 1 Data rate 2.40E+02 4.17E-03 -2.38
WRM2 Symbol rate 3.00E+02 3.33E-03 -2.48
MDM Q9604 Data rate . 3.00E+02 3.33E-03 -2.48
AX.25 Symbol rate 3.00E+02 3.33E-03 -2.48
POCSAG Symbol rate 5.12E+02 1.95E-03 -2.71
Link 11B Data rate 6.00E+02 1.67E-03 -2.78
MDM Q9604 Data rate 6.00E+02 1.67E-03 -2.78
MBDL Data rate 7.50E+02 1.33E-03 -2.88
DAB Symbol rate 8.03E+02 1.25E-03 -2.90
DVB-T Symbol rate 8.93E+02 1.12E-03 -2.95
DVB-T Symbol rate 9.92E+02 1.01 E-03 -3.00
DVB-T Symbol rate 1.05E+03 9.52E-04 -3.02
DVB-T Symbol rate 1.08E+03 9.24E-04 -3.03
POCSAG Symbol rate 1.20E+03 8.33E-04 -3.08
Link 1 Data rate 1.20E+03 8.33E-04 -3.08
MDM Q9604 Data rate 1.20E+03 8.33E-04 -3.08
AX.25 Symbol rate 1.20E+03 8.33E-04 -3.08
D-Star Data rate 1.20E+03 8.33E-04 -3.08
Xstream Symbol rate 1.28E+03 7.81 E-04 -3.11
Link 11 Data rate 1.36E+03 7.33E-04 -3.13
Bluetooth Slot rate 1.60E+03 6.25E-04 -3.20
FLEX Symbol rate 1.60E+03 6.25E-04 -3.20
DAB Symbol rate 1.61 E+03 6.23E-04 -3.21
GSM Slot rate 1.73E+03 5.77E-04 -3.24
Link 11 Data rate 1.80E+03 5.56 E-04 -3.26
Link 11 Data rate 2.25E+03 4.44 E-04 -3.35
POCSAG Symbol rate 2.40E+03 4.17E-04 -3.38
Link 11B Data rate 2.40E+03 4.17E-04 -3.38
MDM Q9604 Data rate 2.40E+03 4.17E-04 -3.38
FLEX Symbol rate 3.20E+03 3.13E-04 -3.51
MDM Q9604 Data rate 3.20E+03 3.13E-04 -3.51
DAB Symbol rate 3.21 E+03 3.12E-04 -3.51
DVB-T Symbol rate 3.57E+03 2.80E-04 -3.55
Link 11B Data rate 3.60E+03 2.78E-04 -3.56
DVB-T Symbol rate 3.97E+03 2.52 E-04 -3.60
DVB-T Symbol rate 4.20E+03 2.38E-04 -3.62
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Modulation Parameter Rate (Hz) Duration (s) Log10 (Duration/s)
DVB-T Symbol rate 4.33E+03 2.31 E-04 -3.64
ARF29 Symbol rate 4.80E+03 2.08E-04 -3.68
A7301 Symbol rate 4.80E+03 2.08E-04 -3.68
AS3977 Symbol rate 4.80E+03 2.08E-04 -3.68
WRM2 Symbol rate 4.80E+03 2.08 E-04 -3.68
Link 11B Data rate 4.80E+03 2.08E-04 -3.68
MDM Q9604 Data rate 4.80E+03 2.08E-04 -3.68
AMIC A7301 Symbol rate 4.80E+03 2.08E-04 -3.68
D-Star Data rate 4.80E+03 2.08E-04 -3.68
MDM Q9604 Data rate 6.40E+03 1.56 E-04 -3.81
DAB Symbol rate 6.41 E+03 1.56 E-04 -3.81
MDM Q9604 Data rate 7.68E+03 1.30E-04 -3.89
MDM Q9604 Data rate 8.00E+03 1.25E-04 -3.90
WRM2 Symbol rate 9.20E+03 1.09E-04 -3.96
LonWorks Symbol rate 9.60E+03 1.04 E-04 -3.98
Z-Wave Symbol rate 9.60E+03 1.04 E-04 -3.98
ART/ZRT Symbol rate 9.60E+03 1.04 E-04 -3.98
MDM Q9604 Data rate 9.60E+03 1.04 E-04 -3.98
AMIC A7301 Symbol rate 9.60E+03 1.04E-04 -3.98
AX.25 Symbol rate 9.60E+03 1.04E-04 -3.98
ISO 18000-6 Symbol rate 1.00E+04 1.00E-04 -4.00
Xstream Symbol rate 1.00E+04 1.00E-04 -4.00
MDM Q9604 Data rate 1.28E+04 7.81 E-05 -4.11
WRM2 Symbol rate 1.52E+04 6.58E-05 -4.18
PAL-I Horizontal rate 1.56E+04 6.40E-05 -4.19
MDM Q9604 Data rate 1.60E+04 6.25E-05 -4.20
TETRA Symbol rate 1.80E+04 5.56E-05 -4.26
LonWorks Symbol rate 1.92E+04 5.21 E-05 -4.28
ARF29 Symbol rate 1.92E+04 5.21 E-05 -4.28
WRM2 Symbol rate 1.92E+04 5.21 E-05 -4.28
MDM Q9604 Data rate 1.92E+04 5.21 E-05 -4.28
AMIC A7301 Symbol rate 1.92E+04 5.21 E-05 -4.28
ZigBee Symbol rate 2.00E+04 5.00E-05 -4.30
Xstream Symbol rate 2.00E+04 5.00E-05 -4.30
NADC Symbol rate 2.40E+04 4.17E-05 -4.38
IS-54 Symbol rate 2.40E+04 4.17E-05 -4.38
ISO 18000-6 Symbol rate 2.67E+04 3.75E-05 -4.43
ISO 18000-4 Symbol rate 3.00E+04 3.33E-05 -4.48
PADIL Data rate 3.20E+04 3.13E-05 -4.51
ISO 18000-6 Symbol rate 3.30E+04 3.03E-05 -4.52
One-Net Symbol rate 3.84E+04 2.60E-05 -4.58
ARF29 Symbol rate 3.84E+04 2.60E-05 -4.58
ZigBee Symbol rate 4.00E+04 2.50E-05 -4.60
ISO 18000-6 Symbol rate 4.00E+04 2.50E-05 -4.60
Z-Wave Symbol rate 4.00E+04 2.50E-05 -4.60
ISO 18000-7 Symbol rate 5.56E+04 1.80E-05 -4.74
WE2408 Symbol rate 5.76E+04 1.74E-05 -4.76
ZigBee Symbol rate 6.25E+04 1.60E-05 -4.80
A7301 Symbol rate 6.40E+04 1.56 E-05 -4.81
AMIC A7301 Symbol rate 6.40E+04 1.56E-05 -4.81

Page 365 o f 376



Adrian Wagstaff

Modulation Parameter Rate (Hz) Duration (s) Log10 (Duration/s)
Insteon Symbol rate 7.68E+04 1.30E-05 -4.89
AC4486 Symbol rate 7.68E+04 1.30E-05 -4.89
Link 16 Hop rate 7.78E+04 1.29E-05 -4.89
AS3977 Symbol rate 1.00E+05 1.00E-05 -5.00
HIDL Data rate 1.00E+05 1.00E-05 -5.00
EnOcean Symbol rate 1.20E+05 8.33E-06 -5.08
ISO 18000-6 Symbol rate 1.28E+05 7.81 E-06 -5.11
1xRTT Data rate 1.44E+05 6.94 E-06 -5.16
EV-DO Data rate 1.50E+05 6.67E-06 -5.18
Common Data Link Data rate 2.00E+05 5.00E-06 -5.30
One-Net Symbol rate 2.30E+05 4.35E-06 -5.36
Link 16 Data rate 2.38E+05 4.20E-06 -5.38
ANT Symbol rate 2.50E+05 4.00E-06 -5.40
TRF-2.4G Symbol rate 2.50E+05 4.00E-06 -5.40
GSM Symbol rate 2.71 E+05 3.69E-06 -5.43
ZigBee Chip rate 3.00E+05 3.33E-06 -5.48
NICAM Symbol rate 3.64E+05 2.75E-06 -5.56
ZigBee Chip rate 6.00E+05 1.67E-06 -5.78
EDGE Data rate 9.00E+05 1.11 E-06 -5.95
Bluetooth Symbol rate 1.00E+06 1.00E-06 -6.00
WiFi Symbol rate 1.00E+06 1.00E-06 -6.00
ANT Symbol rate 1.00E+06 1.00E-06 -6.00
TRF-2.4G Symbol rate 1.00E+06 1.00E-06 -6.00
DECT Symbol rate 1.15E+06 8.68E-07 -6.06
IS95 Chip rate 1.23E+06 8.14E-07 -6.09
ML2724 Symbol rate 1.54E+06 6.51 E-07 -6.19
Tactical Common 
Data Link Data rate 1.54E+06 6.48E-07 -6.19
Flash-OFDM Data rate 1.80E+06 5.56E-07 -6.26
EV-DO Data rate 1.80E+06 5.56E-07 -6.26
EDGE Data rate 1.90E+06 5.26E-07 -6.28
ZigBee Chip rate 2.00E+06 5.00E-07 -6.30
ANT Symbol rate 2.00E+06 5.00E-07 -6.30
Go-Link Symbol rate 2.00E+06 5.00E-07 -6.30
Link 16 Data rate 2.00E+06 5.00E-07 -6.30
nRF24L01 Symbol rate 2.00E+06 5.00E-07 -6.30
EV-DO Data rate 2.45E+06 4.08E-07 -6.39
EV-DO Data rate 3.10E+06 3.23E-07 -6.49
UWB Symbol rate 3.20E+06 3.13E-07 -6.51
Flash-OFDM Data rate 3.60E+06 2.78E-07 -6.56
UMTS Chip rate 3.84E+06 2.60E-07 -6.58
WiFi Symbol rate 4.00E+06 2.50E-07 -6.60
UMTS Chip rate 4.10E+06 2.44 E-07 -6.61
WM450 Symbol rate 5.30E+06 1.89E-07 -6.72
Flash-OFDM Data rate 5.30E+06 1.89E-07 -6.72
Flash-OFDM Data rate 5.40E+06 1.85E-07 -6.73
WiFi Chip rate 5.50E+06 1.82E-07 -6.74
GNS-1142 Symbol rate 7.50E+06 1.33E-07 -6.88
PTP 24100 Symbol rate 1.00E+07 1.00E-07 -7.00
Canopy Symbol rate 1.00E+07 1.00E-07 -7.00
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Modulation Parameter Rate (Hz) Duration (s) Log10 (Duration/s)
Flash-OFDM Data rate 1.06E+07 9.43E-08 -7.03
Tactical Common 
Data Link Data rate 1.07E+07 9.35E-08 -7.03
Common Data Link Data rate 1.07E+07 9.34E-08 -7.03
WiFi Chip rate 1.10E+07 9.09E-08 -7.04
Flash-OFDM Data rate 1.59E+07 6.29E-08 -7.20
WiMAX Data rate 3.50E+07 2.86E-08 -7.54
iBurst Data rate 3.60E+07 2.78E-08 -7.56
Tactical Common 
Data Link Data rate 4.50E+07 2.22E-08 -7.65
UWB Data rate 5.50E+07 1.82E-08 -7.74
HIPERMAN Data rate 5.69E+07 1.76E-08 -7.76
LTE Data rate 8.00E+07 1.25E-08 -7.90
iBurst Data rate 9.50E+07 1.05E-08 -7.98
UWB Data rate 1.10E+08 9.09E-09 -8.04
Tactical Common 
Data Link Data rate 1.27E+08 7.87E-09 -8.10
Common Data Link Data rate 1.37E+08 7.30E-09 -8.14
WiMAX Data rate 1.44E+08 6.94E-09 -8.16
UWB Data rate 2.00E+08 5.00E-09 -8.30
Common Data Link Data rate 2.74E+08 3.65E-09 -8.44
Tactical Common 
Data Link Data rate 2.74E+08 3.65E-09 -8.44
LTE Data rate 3.60E+08 2.78E-09 -8.56
UWB Data rate 4.80E+08 2.08E-09 -8.68

Note that symbol rates have been used, where available, but data rates have been 

used otherwise. As the main interest here is in the order o f magnitude the 

difference does not affect the conclusions significantly.

These data are summarised in Figure 125 in the form of a histogram. It will be 

seen that the bulk o f the parameters are spread over approximately six orders of 

magnitude but that the total range is sixteen orders o f magnitude.

To some extent these data are biased by the fact that the easiest parameters to 

glean from the open literature is usually the symbol rate provided by a particular 

chip set. There are frequently longer time scale structures, such as frame times, 

but these tend to be more proprietary and decided by the application designers.
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Figure 125. Histogram of time feature lengths in common modulations.
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APPENDIX E LOGNORMAL APPROXIMATION TO A 

STATISTICAL FEATURE

The output o f a Feature may be sometimes approximated by a lognormal 

distribution. It should be emphasised, however, that different features will have 

different characteristics and, if  an approximation is used, then the type o f  

approximation must be selected for the individual feature concerned. It is 

important to be able to justify when this approximation can be made and to look 

out for conditions where it is not valid.

The lognormal distribution arises in the case o f random variables that are defined 

as the logarithms o f other random variables (Cooper and McGillem, 1999, p.85- 

86). It has a probability density function given by:

f x(x) = <
1

exp
7TOX

( l n x - / / )  

2 a :

2 'N

0

X >  o  

x  <  0
(74)

where the values o f / /  and (Tare the parameters that define the distribution's shape.

This appendix examines the applicability o f this particular distribution to 

statistical features when presented with WGN and FM. Other features and signals 

have been found to exhibit similar behaviours and the conclusions are generally 

applicable, i.e. that the researcher should be cautious when assuming standard
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probability distributions. In ASR work it is safer to assume that a standard 

distribution will not work unless evidence can be produced to show otherwise.

E.l White Gaussian Noise

Azzouz and Nandi (1996) proposed a series o f statistical Features, one o f which 

was called ymax (see section 2.4.3). The output o f the ymax Feature when WGN is 

applied is shown in Figure 126 in the form of a probability plot.

The probability plot is a standard function provided by Matlab for evaluating the 

fit o f measured data to a probability distribution. It will be seen that the output of 

this Feature approaches the lognormal over the probability range 0.1 to 0.9, but 

diverges from it outside that region.

Probability plot for Lognormal distribution
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Figure 126. Probability plot of ymax with WGN as an input.
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Gardner developed the theory o f cyclostationarity, which explains the function of 

the DMD, in which a signal is multiplied by a time delayed version o f itself (see 

section 2.4.2). This is a non-linear operation which produces spectral lines in its 

output and these lines facilitate the detection of a signal with a cyclostationary 

feature corresponding to the time delay.

If WGN is presented to a DMD feature then the resulting probability plot is shown 

in Figure 127. Comparing this with Figure 126 we see that the divergence from 

lognormal is somewhat less at the extreme probabilities but that the region o f fit is 

again between 0.1 and 0.9.

Probability plot for Lognormal distribution
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Figure 127. Probability plot of DMD feature with WGN as an input.

This is the general finding with statistical features, i.e. that their outputs can be 

reasonably well described by a lognormal distribution for WGN input. Other
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distributions, such as the normal or Weibull are expected to be suitable when the 

lognormal is inappropriate. One example is the spectrum symmetry statistic, P, 

(see section 2.4.3) which can take negative values as well as positive values and 

the normal distribution is a reasonable fit in that case.

E.2 Frequency Modulation

FM is simulated using the following definition (Ziemer and Tranter, 1995, 

p. 167).

t
2j f ct + 27fd jm(a)da

(75)

where y  is the modulated signal, a is the amplitude,/! is the carrier frequency,/? is 

the frequency deviation constant, t is time and m is the modulating (or message) 

signal. After simulating as a real signal, the resulting samples, y(t), were then 

moved to complex baseband representation via a Hilbert transform.

A number o f simulations were run with different value of /  and SNR. The carrier 

frequency was kept constant a t /  = 0.1 and the number of samples was also kept 

the same throughout the tests.

When the ymax feature was evaluated for FM with a relatively high frequency 

deviation constant,/ = 0.05, the following observations were made:

1. At very low SNR the distribution of ymax tends towards that o f WGN, as 

expected.

2. At high values o f SNR the mean value of ymax decreases but the distribution 

still resembles a lognormal, as it did with WGN alone.

y( )̂ = acos
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3. Figure 128 and Figure 129 show how the mean and standard deviation of  

ymax change with the SNR. It will be seen that both parameters start to drop 

once the SNR increases above approximately -5 dB. There is a region 

between about -5 dB and 20 dB where the mean and standard deviation are 

changing and neither the WGN nor the FM dominates the distribution. In 

this intermediate region it is not safe to assume that the lognormal 

approximation can be used overall, but the mean and standard deviation 

change with a sigmoidal characteristic between two values.

2.5

o
c(0
£

0.5

-30 -20 -10
SNR. dB

Figure 128. Mean of ymax with FM as input.
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Figure 129. Standard deviation of ymax with FM as input.
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4. It is found that a lognormal distribution approximation can be used for some 

values o f the frequency deviation, but not all. To demonstrate the way in 

which the probability distribution changes, Figure 130, Figure 131 and 

Figure 132 show how the assumption o f a lognormal distribution breaks 

down at certain values offd but not others.

Probability plot for Lognormal distribution
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Figure 130. Lognormal plot, SNR = 50 d B ,  f d  =  0.0001.

Probability plot for Lognormal distribution
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Figure 131. Lognormal plot, SNR = 50 d B ,  f d  = 0.001.
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Probability plot for Lognormal distribution
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Figure 132. Lognormal plot, SNR = 50 d B ,^  = 0.05.

5. Such effects have been observed with experiments on other features and 

signal types and should be expected to arise in any ASR system.

E.3 Conclusions

In general it is found that the assumption o f a lognormal distribution can 

sometimes be made and is a useful simplification when it is valid. The 

assumption does, however, break down because of:

® the mixing o f a signal with noise, as shown in the WGN example above, or 

® the sensitivities of particular Features to certain signal parameters, as in the 

case o f FM frequency deviation above, or 

® the mixing o f a signal with an interferer.

It was this last observation that led to the work on Interference Selectivity in this 

thesis. A statistical Feature can sometimes be modelled as a single lognormal 

distribution, but the effects o f interference typically have an adverse effect on any 

such assumption.
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In the cases where the lognormal assumption breaks down, it can be possible to 

produce a fit to the combination two or more standard distributions, but this must 

be done carefully and on a case by case.
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