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ABSTRACT

Investigating the Behavioural and Molecular Functions of 
Cryl and Cry2 using mouse mutants

Sneha N. Anand
MRC Harwell and The Open University, 2011

Endogenous circadian clocks generate rhythms of physiology and behaviour that are 

synchronised to the environment, principally through the light-dark cycle. In mammals, the 

circadian clock is dependent on interlocked feedback loops that involve several clock elements 

such as cryptochromes (Cryl and Cry2). Post-translational modifications control intracellular 

trafficking, functionality and degradation of CRY proteins which are keys to the functioning 

of the clock. CRY protein levels are dependent upon their timely degradation by F-box 

proteins. This has recently been shown in the afterhours (Afh) mutant carrying a mutation in 

the F-box gene, Fbxl3. Afli has been shown to lengthen circadian period by stabilising levels 

of CRY proteins across the circadian cycle. To understand the specific roles of each of the two 

CRY proteins in circadian regulation, we generated compound mouse mutants to investigate 

the behavioural and molecular consequences of stabilising either CRY1 or CRY2 protein 

levels in mice lacking the alternative form of Cry. The circadian wheel-running activity 

assessed in light:dark and constant environmental conditions for both C ryr/';Fbxl3Âh/Âh and 

Cry2'A;Fbxl3Afll/Afll (stabilising CRY2 and CRY1 protein levels respectively); clearly show a 

gradual increase in period length in constant darkness as the dosage of Fbxl3Â  is increased. 

This would suggest that stabilisation of either CRY protein can lengthen the clock, presumably 

as a result of a prolonged phase of transcriptional repression by either protein. This effect seen 

in the compound mutants was confirmed at the gene and protein levels and it was concluded



that Cryl and Cry2 can both act as transcriptional repressors, but that Cryl plays the 

predominant inhibitory role in the cerebellum and peripheral organs.

Subsequently it has been shown that FBXL21, the closest homologue of FBXL3, also 

binds to CRY1 and impairs its repressive action towards the transcriptional activators, 

CLOCK-BMAL1 presumably by degrading CRYl. Due to differences in their expression 

Fbxl3 and Fbxl21 may have overlapping roles. In-vitro and in vivo analysis in mutants 

generated in Fbxl21; revealed CRY2 as a preferable target of FBXL21 and that this may 

contribute to the lower repressive function of Cry2. Further investigation into the genetic 

interactions between the two F-box genes showed that Fbxl3 is epistatic to Fbxl21.

Finally, Fbxl21 has been shown to be associated with schizophrenia in humans. In our 

hands mutant mouse Fbxl21 showed no such associations, instead indicating an association 

with anxiety and/or defects in sensorimotor gating.
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Chapter 1: Introduction

1.1 INTRODUCTION TO CIRCADIAN RHYTHMS

1.1.1 Circadian rhythms

The study of the temporal organisation of living organisms exposed to dynamic 

changes in the environment is called chronobiology. Many of these changes are rhythmic and 

are called biological rhythms. Under constant conditions, these biological rhythms are 

classified into circadian rhythms -  endogenously generated rhythms with a period of ~24hrs, 

ultradian rhythms -  recurrent periods generated at regular intervals throughout 24hrs eg. 

hormone release, and infradian rhythms -  rhythms with a frequency less than one cycle 

occurring in 28hrs eg. seasonal rhythms and breeding. Amongst the three classified rhythms, 

circadian rhythms are the most characterised and widely studied.

Circadian rhythms exist across a wide range of organisms including vertebrates, plants, 

fungi and prokaryotes. The term “circadian” is derived from the Latin words “circa” meaning 

“about” and “dies” meaning “day”. Thus, circadian rhythms are defined as endogenously 

generated self-sustained rhythms that are synchronised to the external environment with a 

period of ~24hrs. The beauty of these rhythms lies with the endogenous clock, the 

suprachiasmatic nucleus (SCN), which enables the organism to adapt to the external 

environment but still operate under constant conditions and in the absence of external cues 

(Lucas and Foster 1999; Wager-Smith and Kay 2000; Gachon, Nagoshi et al. 2004).

In mammals the circadian clock system is controlled in a hierarchial way, where the 

SCN receives photic (light) and non-photic input (social interaction, availability o f food) from 

the environment. These responses are then processed in the SCN via the core oscillators,

2



Chapter 1: Introduction

involving complex genetic interactions, which are finally relayed into different output 

pathways.

1.1.2 Molecular basis of mammalian circadian core oscillators

Every living organism is able to exhibit rhythms with a period of ~24hrs. The 

molecular basis of circadian rhythms in a variety of species such as fimgi, cyanobacteria and 

mammals have become clearer over the past few years. Although certain genes may have 

specific functions in different species, rhythms are generated with similar mechanisms of 

transcriptional-translational feedback loops (Reppert and Weaver 2001; Ko and Takahashi 

2006).

The mammalian autoregulatory feedback loop is depicted in Figure 1.1. The positive 

regulators of the transcriptional-translational feedback loop are Circadian Locomotor Output 

Cycles Kaput {Clock) (or Neuronal PAS domain protein 2, NPAS2, a functional paralogue of 

Clock) and Brain and Muscle ARNT-like protein 1 (Bmall) (also called Member of PAS 

superfamily, MOP3). The negative regulators are the three period {Perl, Per2 and Per3) and 

two cryptochrome {Cryl and Cry2) genes. During early circadian day the two basic helix- 

loop-helix (bHLH) and PAS (period-amt-single- minded) containing transcription factors, 

CLOCK and BMAL1 heterodimerise and bind to E-box czs-regulatory elements present in the 

promoter regions of clock controlled genes (CCGs), including Per and Cry. The binding of the 

complex facilitates the transcription of Per and Cry. Over the course of the day, PER and CRY 

proteins are translated; heterodimerise and translocate back and accumulate in the nucleus. 

From the beginning of the subjective night, the CRY proteins within the heterodimer, interact
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with the CL0CK-BMAL1 complex and repress Per and Cry, thus creating a negative 

feedback. Since transcription of Per and Cry is inhibited due to the accumulated protein levels 

in the nucleus, translation of PER and CRY proteins is also inhibited. Thus, over time the 

levels of accumulated PER-CRY complex diminish, releasing the negative feedback. As a 

result a new cycle of transcription-translation is inititated (Griffin, Staknis et al. 1999; Kume, 

Zylka et al. 1999; van der Horst, Muijtjens et al. 1999; Shearman, Sriram et al. 2000; Ko and 

Takahashi 2006).

In addition to the above mentioned feedback loop, a secondary feedback loop exists 

which also involves the CLOCK-BMAL1 heterodimeric complex. The complex initiates 

transcriptional activation of retinoic acid-related orphan receptor a {Rora) and nuclear receptor 

Rev-erba (also called Nuclear Receptor Subfamily 1 Group D Member 1, NR1D1). The 

translated RORa and REV-ERBa proteins regulate the activation and suppression of Bmall 

respectively by binding to retinoic acid-related orphan nuclear receptor response elements 

(ROREs) present in the Bmall promoter. Additionally, when CRY proteins from the primary 

feedback loop accumulate in the nucleus, they are also able to inhibit the expression of Rev- 

erba. As a result, there is activation of Bmall transcription (Oishi, Fukui et al. 2000; 

Shearman, Sriram et al. 2000; Preitner, Damiola et al. 2002; Reppert and Weaver 2002; Ueda, 

Chen et al. 2002; Ko and Takahashi 2006) . Thus, the positive and negative transcriptional 

feedback loops are initiated by the CLOCK-BMAL1 heterodimer and are tightly regulated by 

the dynamic levels of clock proteins.
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Figure 1.1: A simplified model describing the molecular mechanisms o f the mammalian circadian 
clock. The circadian oscillations in mammals are composed o f interlocked feedback loops consisting o f the 
positive regulators, Clock and Bm all, protein products o f which (yellow and pink circles respectively) form a 
CL0CK-BMAL1 heterodimer. This heterodimer binds to the E-box elements (black boxes) present on the 
promoters o f the three period {Perl, Per2 and Per3) and two cryptochrome {C ryl and Cry2) genes, activating 
their transcription. The translated PER (orange circle) and CRY (green circle) proteins form a heterodimer in the 
cytoplasm that translocates into the nucleus and inhibits their own transcription forming a negative loop. In 
addition to this loop is a secondary stabilising loop involving the retinoic acid related orphan nuclear receptors, 
RORa and Rev-erba which are E- box regulated clock genes. While RORa (purple circle) activates Bm all, REV- 
ERBa (aqua circle) suppresses the transcription o f Bm all. The timely regulation o f  these clock genes makes the 
mammalian circadian oscillator very robust.

5



Chapter 1: Introduction

1.1.3 Posttranslational modifications

The expression of clock genes, as seen previously, is controlled by interacting 

transcriptional-translational feedback loops. One of the critical processes involved in the 

regulation of these loops is the 24hr oscillating levels of clock gene RNA and proteins that are 

under tight circadian control. In order to maintain the loops at equilibrium, it is necessary to 

maintain the synthesis and degradation of dynamic clock protein levels. There are a number of 

processes that control the translated protein levels to avoid reaching steady state levels. Post

translational control of clock proteins includes processes like phosphorylation followed by 

ubiquitination, acetylation and sumoylation, of which phosphorylation is the most well studied 

in mammals.

Phosphorylation determines the cellular location and contributes to the stability o f clock 

proteins. This is a critical process which is involved in generating time delays in clock 

mechanisms (Edery, Zwiebel et al. 1994; Dunlap 1999; Young 2000; Denault, Loros et al. 

2001; Lee, Etchegaray et al. 2001). This is known from reports showing mutations in clock 

genes in appropriate domains result in either accelerating or delaying the clock.

The transcription of the Per and Cry genes results in the translation of PER and CRY 

proteins in the cytoplasm which form the negative core complex (Figure 1.1). In mammals, 

PER proteins are known to be phosphorylated in the cytoplasm during the day by casein 

kinase Is (CKls), first identified as a homolog of double-time (Dht) in Drosophila. Studies 

carried out in Drosophila show that mutations in Dbt can result in either a shorter (Bao, Rihel 

et al. 2001) or longer circadian period (Price, Blau et al. 1998) by modulating the protein 

kinase activity of CKls. Moreover, in Syrian hamsters, a semidominant spontaneous mutation 

in CK ls results in a significant shortening of circadian period length (Lowrey, Shimomura et
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al. 2000). This was further confirmed in the targeted CKletau/tau mouse mutant that displays a 

significantly short period of ~20hrs. Period shortening was shown to be associated with 

hyperphosphorylation of PER and accelerated destabilisation and degradation of PER in vivo. 

This was in contrast to the mild long circadian period observed in the targeted CK1e /~ null 

mutant mouse (Meng, Logunova et al. 2008).

In-vitro studies by Eide et al. (2005) further confirmed the binding and 

phosphorylation of PER by CKls. Their studies confirmed the basis of the long circadian 

period observed in the CKle'A mice in-vitro. They identified that inhibition of CK ls resulted 

in the inhibition of PER protein degradation, thus lengthening the circadian period. In-vitro 

studies also showed interaction of CRY and CKls, however phosphorylation of CRY only 

took place when both CRY and CKls are bound to PER (Eide, Vielhaber et al. 2002). Based 

on these studies, the following model was suggested. When CKIs-mediated phosphorylation 

of PER proteins take place, the CKls-PER complex is able to interact with CRY. The PER- 

CRY complex thus formed is translocated to the nucleus where the CRY proteins from the 

PER-CRY complex repress their own transcription by inhibiting the binding of CLOCK- 

BMAL heterodimer to the E-boxes (Griffin, Staknis et al. 1999; Eide, Vielhaber et al. 2002). 

This suggests that CK ls promotes nuclear translocation of PER. On the other hand, Eide et al. 

(2005) confirmed that CKls also promotes the recruitment of a ubiquitin ligase necessary for 

PER degradation. Such opposing views suggest that if CK ls regulates degradation of PER 

proteins, there may be other kinases (mentioned below) that are involved in re-localising PER 

from the nucleus to the cytoplasm.

Apart from CKls, there are various other kinases that are involved in the phosphorylation 

of clock proteins. Kinases that may regulate the phosphorylation-mediated degradation of 

clock proteins include mitogen activated protein kinase (MAPK) (Sanada, Harada et al. 2004)
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involved in the phosphorylation of BMALl(Sanada, Okano et al. 2002) and glycogen synthase 

kinase 3p (GSK3p) (Gallego and Virshup 2007) that have several substrates including REV- 

ERBa (Yin, Wang et al. 2006), CLOCK (Spengler, Kuropatwinski et al. 2009), PER2 (Iitaka, 

Miyazaki et al. 2005), and CRY2 (Harada, Sakai et al. 2005). In addition to kinases, 

phosphatases are also important for clock function. It has been shown that protein phosphatase 

5 (PP5) removes the autoinhibitory phosphorylation and activates CKls. PP5 is itself regulated 

by an interaction with CRY (Gallego and Virshup 2007), indicating that PP5, CK ls and CRY 

dynamically regulate the mammalian clock (Partch, Shields et al. 2006). The functions of 

kinases and phosphatases involved in the phosphorylation of CRY need to be investigated as 

phosphorylation is an important process which can affect dimerisation, changes in localisation, 

and degradation of clock proteins, therefore adding more complexity to the regulation of 

circadian clock proteins.

1.1.4 Proteasomal degradation

Apart from phosphorylation, another requirement for efficient and timely reactivation of 

the CLOCK-BMAL1 heterodimer is the degradation of the clock proteins which inhibit their 

own transcription. Eukaryotic proteolysis is regulated by E3 ubiquitin ligases. One class of the 

E3 ubiquitin ligases is the Skp/Cullin-1/F-box protein (SCF) complex as shown in Figure 1.2 

Within this complex, Cullin-1 acts as a scaffold protein that interacts with the RING-domain 

interacting molecule, R o d , through its carboxyl-terminus. On the other hand, the amino- 

terminus of Cullin-1 interacts with Skp that is associated with F-box proteins. The carboxyl- 

terminus of F-box proteins is able to bind to phosphorylated substrates recruiting them to the 

complex. R o d  then recruits Ubiquitin-conjugated E2 enzymes that transfer ubiquitin to the
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substrates. Once the substrates are polyubiquitinated, they undergo proteasomal degradation. 

While this interaction set up remains constant, it is thought that the specificity of the complex 

lies in the F-box protein. The F-box protein itself consists of two motifs, the F-box motif, 

made up of ~ 50amino acids, linking the F-box protein to the SCF complex, and the secondary 

motif involved in binding to the targeted phosphorylated substrates. Based on the secondary 

motifs, F-box proteins are divided into three groups: Fbw (containing Trp-Asp or WD 

repeats), Fbxl (containing leucine rich repeats or LRR) and Fbxo (containing “other” motifs) 

(Kipreos and Pagano 2000). Proline-rich regions, cyclin domains and zinc finger domains are 

amongst those associated with the Fbxo group.

9
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Figure 1.2: A schematic representation o f the mammalian Skp/Cullin-l/F-box complex. Within the 
Skp/Cullin-l/F-box protein complex, Cullin-1 acts as a scaffold protein and interacts with Roc-1 through its C- 
terminus and with Skp through the N-terminus. Skp interacts with the F-box motif of the F-box protein. The C- 
terminus of the F-box protein associates with specific phosphorylated substrates through either WD, leucine rich 
repeats or any other motif. Once bound to the substrate, Roc-1 then interacts with E2 Ubiquitin conjugated 
enzymes and transfers ubiquitin molecules on the substrate. Once is the substrate is polyubiquitinated, it 
undergoes proteasomal degradation.
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One of the first evidences confirming the importance of F box proteins was with the 

identification of zeitlupe (Ztl), an F-box protein found in Arabidopsis, required in the 

degradation of TIMING OF CAB EXPRESSION 1 (TOC1). A mutation in Ztl causes a 

reduced interaction of ZTL and TOC1 resulting in constitutive expression of TOC 1 (Mas, Kim 

et al. 2003). Subsequently an F-box protein in Neurospora, Fw dl, was identified. FWD1 was 

found to regulate degradation of the clock protein FREQUENCY (FRQ) (He, Cheng et al. 

2003). It was after the identification of Fwdl that orthologues of F-box proteins in different 

species were identified. The orthologue of Fwdl in Drosophila, Slimb, was identified as the F- 

box protein required for the timely degradation of PER and TIMELESS (TIM) (Grima, 

Lamouroux et al. 2002; Ko, Jiang et al. 2002). There are two mammalian orthologues of 

Slimb, beta-transducin repeat containing protein 1 (fi-Trcpl) (also called Fbwla) and beta- 

transducin repeat containing protein 2 (Jl-Trcp2) (Ohsaki, Oishi et al. 2008). Since most of the 

genes in the mammalian clockwork were identified as Drosophila homologues, it was thought 

that the P-TRCP proteins would also have a similar function of degrading phosphorylated PER 

proteins in mammals. In-vitro studies involving the mutagenesis of (3-Trcpl resulted in 

stabilisation of PER proteins, thus resulting in a long circadian period (Reischl, Vanselow et 

al. 2007). Thus, a common mechanism of clock protein degradation was found across species. 

However an in-vivo model of an F box protein regulating degradation was not known until the 

identification of the afterhours (Afh) and overtime (Ovt) mutants (both have point mutations in 

Fbxl3) (Godinho, Maywood et al. 2007; Siepka, Yoo et al. 2007). Both these mutants, with 

point mutations in the secondary motif (LRRs), of the F-box protein, Fbxl3, were identified as 

circadian phenodeviants in an ENU based forward genetic screen in mice. Mass spectrometry 

analysis of endogenous FBXL3 associated proteins expressed in HeLa-S3 cells demonstrated 

the F-box-CRY interaction (Busino, Bassermann et al. 2007). Studies showed that when

11
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NIH3T3 cells were infected with retroviruses encoding FLAG-tagged F-box proteins and 

immunoprecipitated, only FBXL3 interacted with the clock proteins, CRY1 and CRY2. This 

interaction was also confirmed by the stabilisation of CRY in the absence of FBXL3 (Busino, 

Bassermann et al. 2007). Expression studies in the Afh mutant showed a reduced interaction 

between FBXL3 and CRY proteins resulting in stabilised levels of CRY across time. 

Consequently, high levels of CRY were found during the daytime leading to an extended CRY 

transcriptional repression which ultimately contributes to the long circadian phenotype in vivo. 

Thus, it was identified that FBXL3 is important for the degradation of CRY, necessary for the 

normal functioning o f the clock (Godinho, Maywood et al. 2007; Siepka, Yoo et al. 2007).

Forty-seven mammalian F-box proteins have been reported in 1999 which are encoded by 

mammalian genes (Jin, Cardozo et al. 2004). Recently another member of the F-box family, 

Fbxl21, the closest paralogue of FbxlS has been shown to have circadian oscillations in the 

SCN with very low expression patterns in peripheral tissues. Similar to FbxlS, it has been 

shown that Fbxl21 is also involved in the interaction with and degradation of CRY proteins, 

suggesting that the two F box proteins may contribute to the opposite phenotypes of CryFA 

(short phenotype) and Cry2'A (long phenotype) mutant mice (Dardente, Mendoza et al. 2008)

1.1.5 Diversity of Clock genes

Systematic approaches to study the circadian clock mechanisms were initiated more than 

20 years ago in the fruitfly Drosophila melanogaster. These studies were fast paced and were 

soon applied to investigate mechanisms in other species. Not surprisingly, the mechanisms of 

the circadian clock in mammals were also formulated based on the Drosophila clock (Hall 

1995; Reppert and Weaver 2002). This was possible only due to the identification of gene

12
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homologues in mammals. With the majority of the core mammalian clock genes identified, it 

can be said that a reasonable diversity in terms of gene functions exists among species. 

However, the backbone of the core oscillator works on the same principle o f interacting 

transcriptional-translational positive-negative feedback loops among different species. With 

the mammalian core oscillator mechanism already described in section 1.2, the diversity 

between specific genes is described below with cryptochromes (Cry) as an example.

1.1.5.1 Cryptochromes

Cryptochromes (Cry) were first identified as photoreceptors belonging to the family of 

DNA photolyases (including both class I and class II photolyases). Photolyases are enzymes 

that use blue light to repair DNA damage induced by ultraviolet rays (Kanai, Kikuno et al. 

1997; Sancar 2003). The Arabidopsis thaliana gene Hy4 was known to encode CRY1. Studies 

carried out in the mutant Hy4 and their human homologues showed that Cry had a similar 

sequence as photoloyases but lacked the repair activity. Hence Cry was classified as a separate 

class of blue light photoreceptor (Ahmad and Cashmore 1993). In addition to the sequence 

similarity between CRY1 and class I photolyases, CRY1 was also found to bind to the same 

co-factors, flavin adenine dinucleotide (FAD) and 5, 10-methenyltetrahydrofolate, as the 

photolyases (Lin, Robertson et al. 1995; Malhotra, Kim et al. 1995)

Cryptochromes have been identified in a range of organisms with high similarity in 

their sequence. Plant, Drosophila and mammalian cryptochromes are described below, 

showing the diversity of a single gene mainly in terms of its function.

13
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1.1.5.2 Plant Cryptochromes

The plant kingdom is very broad and includes ferns, moss, angiosperm and algae. It is 

known that cryptochromes are found in each one of the species belonging to the plant 

kingdom (Lin and Shalitin 2003) and contain two main domains; an N-terminal domain 

related to photolyase function (PHR) and the C-terminal domain that is known to vary in size 

across species (Todo 1999). The PHR domain is involved in the binding of chromophores 

whereas the C-terminal domain is involved in protein-protein interactions and plays an 

important role in the nuclear or cytosolic localisation of CRY. Although cryptochromes are 

present in most of the plant species, and are similar in their PHR domains, there are two 

known Cry genes, Cryl and Cry2, in Arabidopsis thaliana. The number of Cry genes varies 

for each plant species. For example there are five known Cry genes in ferns (Imaizumi, 

Kanegae et al. 2000) and three in tomato (Perrotta, Ninu et al. 2000). The PHR domains are, 

however, very similar with all the differences present only in the C-terminal regions of Cry 

genes. Amongst the Cryl and Cry2 paralogues of Arabidopsis, there is 58% similarity in the 

PHR domain whereas within the C-terminus Cryl and Cry2 have a sequence similarity as little 

as 13%. The C-terminus varies largely amongst species from a 380 amino acid sequence in 

Arabidopsis to no C-terminal region in white mustard (Batschauer 1993; Malhotra, Kim et al. 

1995) indicating that this region may have distinct functional roles in different species.

It has been found that Arabidopsis CRY1 and CRY2 mediate the majority of blue light 

responses and are involved in physiological functions like inhibition of hypocotyl elongation, 

affecting flowering time (Ikegawa, Masuno et al. 1999; Imaizumi, Kanegae et al. 2000) and 

anthocyanin accumulation (Deng and Quail 1999; Banerjee and Batschauer 2005). CRY 

proteins are also known to undergo phosphorylation in the C-terminus in response to blue-

14
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light exposure and this is shown in the Cryl mutant where Cryl fails to be phosphorylated, 

suggesting that CRY1 plays an essential role in photoreception. Arabidopsis CRY1 and CRY2 

are known to interact with phytochromes (red far-red receptors) and together play a role in the 

entrainment of the Arabidopsis clock (Bagnall, King et al. 1996).

1.1.5.3 Drosophila Cryptochromes

For several years now, genetics has provided a lot of insight into the key regulators of 

the circadian oscillations as most of the species studied, such as Drosophila, C. elegans, 

Neurospora crassa, and Cyanobacteria, possess circadian rhythms (Hardin, Hall et al. 1990). 

The first clock gene identified in Drosophila was the period {Per) gene in a mutagenesis 

screen (Konopka and Benzer 1971; Bargiello, Jackson et al. 1984). With data obtained from 

Neurospora crassa, it was predicted that Per participates in a negative feedback regulation 

that was shown to be the central regulatory mechanism (Hardin, Hall et al. 1990; Aronson, 

Johnson et al. 1994; Marrus, Zeng et al. 1996; So and Rosbash 1997). Similarly, the second 

clock gene identified was timeless {Tim) (Myers, Wager-Smith et al. 1995; Sehgal, 

Rothenfluh-Hilfiker et al. 1995). Further studies by Emery et al. (1998) in a Drosophila 

mutant with an ablated eye led to the identification of Drosophila Cry that predominantly act 

as a photoreceptor (Sehgal, Rothenfluh-Hilfiker et al. 1995). Cry regulates the Drosophila 

circadian clock by interacting with and degrading TIM present in the PER-TIM complex, thus 

releasing the negative feedback (Emery, So et al. 1998; Stanewsky, Kaneko et al. 1998; 

Ceriani, Darlington et al. 1999). Being predominantly nuclear, Drosophila Cry is known to 

regulate the circadian clock through light (Emery, So et al. 1998; Stanewsky, Kaneko et al. 

1998). The molecular mechanism of the circadian clock in Drosophila is briefly described
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below. It involves the formation of the CLOCK/CYCLE heterodimer that bind to E-boxes of 

Per, Tim and Cry. PER and TIM form a heterodimer, enter the nucleus and inhibit the binding 

of the clock proteins, forming a negative feedback loop which is in turn suppressed by CRY. 

In the presence of light, CRY binds to TIM and forms a heterodimer which ultimately 

promotes ubiquitination followed by proteasomal degradation of TIM, thus releasing the 

inhibitory effects (Ceriani, Darlington et al. 1999).

The photoreceptor role of Cry was evident from studies in the hypomorphic Cryb 

mutant line that lack Cry function and showed a reduced entrainment in lightidark (L:D) and 

light conditions (Stanewsky, Kaneko et al. 1998; Helfrich-Forster, Winter et al. 2001). This 

was also supported by recent studies where the clock neurons were tested for their ability to 

entrain to out-of-phase light and temperature cycles. The results from these studies show that, 

similar to Cry null mutants, the Cry-negative neurons entrained very slowly to light-dark 

cycles (Yoshii, Hermann et al.).

Thus, Drosophila Cry functions as a transcriptional repressor in addition to being a 

circadian photoreceptor (Krishnan, Levine et al. 2001).

1.1.5.4 Mammalian Cryptochromes

Mammalian cryptochromes, Cryl and Cry2, were also identified as members of the 

DNA photolyase family. Both Cryl and Cry2 were seen to bind DNA affected by UV with a 

high affinity, however they lacked the DNA repair activity unlike other photolyases (Campbell 

and Murphy 1998). Thus, the DNA binding affinity of mammalian Cry is considered as an 

evolutionary artefact (Sancar 2004).
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The role of mammalian Cry involves regulation of circadian oscillations by tightly 

regulated interactions with other clock genes, thus generating interlocked feedback loops (as 

described in section 1.2). However, this function of Cry was identified only after generating 

Cryl~/~ and Cry2~f~ mouse mutants. Although, both these genes showed highly similar 

sequences it was surprising to determine the different and opposing phenotypes of the single 

mutant mice. While the Cryl"A mice showed a shorter circadian period of 22.7hrs, the C ry l/" 

mice displayed a longer circadian period of 24.7hrs compared to the circadian period of 

23.7hrs in wild type mice. Cryl~/~;Cry2~/~ double mutants on the other hand were completely 

arrhythmic under constant conditions, proving the presence of Cry is absolutely essential in 

generating circadian oscillations (van der Horst, Muijtjens et al. 1999). Hence, it was then 

considered that the main role of mammalian Cry was its involvement with other clock genes to 

maintain the autoregulatory feedback loops.

With a prior knowledge of the involvement of Cry as photoreceptors in Drosophila and 

its high expression in the inner retina in mice (Miyamoto and Sancar 1998; Miyamoto and 

Sancar 1999; Thompson, Bowes Rickman et al. 2003), a wide variety of studies were carried 

out to investigate this function of mammalian cryptochromes which has ultimately resulted in 

a debate yet to be resolved. It was with the identification of melanopsin (opsin found in the 

retinal ganglion cells) that the role of Cry as photoreceptors was overshadowed (Provencio, 

Rodriguez et al. 2000). This was because elimination of melanopsin, coupled with the ablation 

of the classical photoreceptor rods and cones, displayed a complete loss o f visual and 

circadian phototransduction (Hattar, Lucas et al. 2003; Panda, Provencio et al. 2003). 

Additionally, with a loss of either Cry, there is a reduced photoinduction of genes. Compared 

to wild-type mice, while a 2-fold reduction in photoinduction of genes is observed in Cry2'A, a 

10-fold loss is observed in Cryl'1'; Cry2'A double mutants (Thresher, Vitatema et al. 1998;
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Selby, Thompson et al. 2000). These results suggest that CRY proteins do have some retinal 

photoreceptor function as there is less photoinduction of genes in the Cry null mutants.

Table 1.1 below shows a few mammalian clock genes, their Drosophila homologues 

and their function in circadian timekeeping

Table 1.1: Diversity o f  Clock genes among mammals and Drosophila melanogaster

Clock Gene (M am m als) Drosophila
Homologue

Function of Clock gene

Clock Clock Positive regulator 
Activates transcription of CCGs 

through E-boxes

B m all Cycle (Cyc) Positive regulator 
Activates transcription of CCGs 

through E-boxes

P erl,2 Per Negative regulator 
Forms a heterodimer with CRY in 
mammals and TIM in Drosophila

Tim- homologous to Tim2 in 
Drosophila

Tim No circadian function of mammalian 
Tim identified 

Drosophila Tim activated by CLOCK- 
BMAL1

Negative regulator of PER, CRY
Caesin kinasele Doubletime (Dbt) Phosphorylates PER,CRY and BMAL1

Glycogen synthase kinase 
(GSK3)

Shaggy 0SGG) GSK3 involved in phosphorylation of 
CRY,REV-ERBa and PER 

SGG phosphorylates and promotes 
nuclear entry of TIM
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1.1.6 The suprachiasmatic nucleus (SCN)

In mammals, the master pacemaker that controls and regulates circadian rhythms resides in 

bilaterally paired suprachiasmatic nuclei embedded in the hypothalamus. A variety of studies 

have been carried out with recordings of SCN neural activity with and without lesions, to 

show the importance of the SCN. One of the early evidences includes lesion studies carried 

out in the rat. It was shown that circadian rhythmicity is restored in a SCN lesioned rat, 

following foetal SCN transplant, suggesting the presence of the SCN is important in 

generating and maintaining circadian rhythms (Moore and Eichler 1972; Moore and Silver 

1998). The SCN is composed of two distinct subdivisions that are both anatomically and 

functionally different. The differences in the subdivisions viz the dorsomedial “shell” and the 

ventrolateral “core” are known to be conserved among mammalian species (Moore 1996). 

Both these subdivisions also seem to have distinct functions; while the core collects inputs 

mainly from the retina and other brain areas, the shell on the other hand is involved in 

generating and relaying the circadian timing signals. Thus, maintaining the synchrony between 

the neurons of these two subdivisions is important.

1.1.6.1 Input to the SCN

Circadian rhythms involve entrainment to the external environment with the help of 

external cues such as light and temperature. While in birds and reptiles the photoreceptor 

molecules that are required to reset the circadian clock are present in various organs such as 

the pineal gland, mid-brain and eyes, in humans and mice only the eyes work as light receptors 

to entrain the circadian clock. With the removal of eyes or ablation of optic nerves, both mice
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and humans cannot entrain to the external light cues (Schwartz, W.J. 1993). With the eye 

playing a role in generation of visual responses and circadian photoreception, the information 

is processed, once the eye receives the light input, by distinct systems. While the visual cortex, 

as the name suggests, processes the information received by the eye in generating visual 

responses, the retinohypothalamic tract (RHT) transmits information to the SCN for circadian 

photoreception.

Several evidences have shown that the RHT is sufficient and necessary to mediate 

circadian photoreception function. This is evident from studies carried out in mice carrying the 

retinal degeneration {rd) mutation. In the presence of the rd  mutation there is inactivation of 

the enzyme, cGMP-phosphodiesterase, specifically found in the classical photoreceptor rods 

located in the outer retina. This in turn blocks the phototransduction signalling cascade of the 

rods and the mice are thus visually blind. However, surprisingly these mice show a normal to 

moderately reduced circadian photoreception (Bowes, Li et al. 1990; Yoshimura and Ebihara 

1998). Similarly, humans with the condition retinitis pigmentosa, where there is a complete 

loss of the classical photoreceptors rods and cones, are blind with no sense o f light but respond 

normally to the external light dark cycle and show normal circadian photoreception (Czeisler 

and Dijk 1995; Wee and Van Gelder 2004). Thus, it is evident that circadian entrainment is 

processed by a dedicated system with inner retinal neurons and central pathways entirely 

different from those mediating the visual perception in the outer retina.

The standard model that is responsible for circadian photoreception via the RHT in 

humans and mice is depicted in Figure 1.3 and is described as follows. The RHT is formed 

from the axons of the retinal ganglion cells (RGCs) present in the inner retina and receive 

signals from rods and cones in the outer retina. Most of the RGCs have their axons projecting 

to brain areas, via the optic nerves, generating visual images. However, a small population of
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the RGCs expressing melanopsin (a classical photopigment) are the neurons that project their 

axons to the SCN (via the optic nerve) and also to other areas of the brain such as supraoptic 

region, anterolateral hypothalamus, subparaventricular zone and the thalamic intergeniculate 

leaflet (IGL) (Levine, Weiss et al. 1991). The melanopsin expressing, intrinsically 

photosensitive retinal ganglion cells (ipRGCs) are stimulated by light which send the signal to 

the SCN core via the RHT, leading to a neurotransmitter signalling cascade. RHT releases the 

neurotransmitter, glutamate (GLU) that activates its excitatory receptors, N-methyl-D- 

aspartate (NMDA) and metabotropic glutamate (mGLU) receptors. This binding of GLU and 

NMDA/mGLU and depolarisation of the RGC neuronal membrane triggers a Ca2+ influx into 

the SCN core neurons. Membrane depolarisation is important as at the membrane resting 

potential, the ion channel is blocked by extracellular Mg2+, which is removed only by 

depolarisation. Intercellular changes in the SCN neurons with an increased Ca2+ influx results 

in the activation of various kinases such as Ca2+/Calmodulin-dependent protein kinase 

(CaMK), mitogen activated protein kinase (MAPK), protein kinase A (PKA). This results in 

the subsequent activation of cAMP response element binding protein (CREB) by 

phosphorylation at amino acid Serl33. This phosphorylated CREB then binds to the 

Ca2+/cAMP response elements (CRE) present in promoters of immediate early genes (IEGs) 

such as c-fos, Perl and Per2, thus activating their transcription (Meijer and Schwartz 2003; 

Antle and Silver 2005; Liu, Lewis et al. 2007). In addition to GLU, the RHT also releases the 

pituitary adenyl cyclase-activating peptide (PACAP) that mimics the effects of GLU by 

binding to G-protein coupled receptors, PAC1 and vasoactive intestinal peptide receptor 2 

(VPAC2) (Liu, Lewis et al. 2007). The above mentioned signalling cascade occurs in the SCN 

core (as mentioned in the previous section that information flow is from the core to the shell). 

Core neurons then communicate with the SCN shell utilising neurotransmitters such as
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vasoactive intestinal polypeptide (VIP), gastrin releasing peptide (GRP) and gamma amino 

butyric acid (GABA). Additonally, the SCN shell neurons that are GABA-ergic contain 

molecular clocks regulated by the autoregulatory feedback loops and communicate to various 

SCN targets through arginine vasopressin (AVP) and GABA (Antle and Silver 2005).

Although the main input to the SCN is received via the RHT, the SCN indirectly also 

receives input from geniculohypothalamic tract (GHT) that is formed from the neurons 

projecting from the intergeniculate leaflets (IGL) to the SCN. Neuropeptide Y (NPY) and 

GABA are released by neurons of the GHT. It has been identified that the presence of IGL is 

not completely essential for photic entrainment, however lesions in the same do result in 

subtle effects in phase change and period control regulation by light (Moore and Card 1994).

Apart from light being the predominant external cue for the SCN to entrain to external 

environment, the SCN has the ability to adapt to other forms of entrainment cues such as 

temperature, food, and social responses. While organisms such as Drosophila and mammals 

entrain to constant daily temperatures (Buhr, Yoo et al.), restricted feeding schedules (Stephan 

1997; Stephan 2002) and repeated social interactions at the same time (Mrosovsky 1988), a 

change in any of the cues can cause a phase shift in the free-running activity of circadian 

rhythms (Ben-Shlomo and Kyriacou 2002).

Finally, in addition to the SCN, co-ordinated molecular rhythms have also been 

identified in a number of tissues and cell types throughout the body including the pituitary, 

olfactory bulbs and pineal gland (Abe, Herzog et al. 2002; Guilding and Piggins 2007).
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Figure 1.3: Input pathway to the suprachiasmatic nucleus via the retinohypothalamic tract.
Light is transmitted via the intrinsically photosensitive retinal ganglion gells (iPRGCs) resulting in the release of 

glutamate (GLU) and pituitary adenyl cyclise activating peptide (PACAP) by the presynaptic retinal ganglion 
cells. Binding of GLU to its NMDA receptors results in the depolarisation of the membrane leading to an 
increase in Ca2+ influx which in turn activates several kinases such as mitogen-activated protein kinase (MAPK), 
Ca2+/Calmodulin-dependent protein kinase (CaMK), protein kinase A (PKA). This results in the phosphorylation 
of cAMP response element binding protein (CREB). The activated phosphorylated CREB then binds to the 
Ca2+/cAMP response element (CRE) present in the promoters of the immediate early genes such as c-fos, Perl 
and Per2, thus initiating their transcription. The SCN core then communicates with neurons in the SCN shell that 
release neurotransmitters such as gamma amino butyric acid (GABA), vasoactive intestinal polypeptide (VIP), 
gastrin-releasing peptide (GRP). Neurons within the SCN shell are able to intiate the molecular loops once they 
receive the input signal from the SCN core. Adapted from Antle and Silver (2005).
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1.1.6.2 Intercellular organisation within the SCN

Synchrony between the neurons of the core and the shell is co-ordinated through 

various neurotransmitters released in specific SCN subdivisions. With gamma-aminobutyric 

acid (GABA) and vasoactive intestinal polypeptide (VIP) being released by a vast majority of 

the SCN neurons, the core and shell also include specific neurotransmitters. The SCN core 

contains one or more neuropeptides that are co-localized with GABA. The two neuropeptides 

synthesized by the core in addition to GABA and VIP are gastrin releasing peptide (GRP) or 

neurotensin (NT). However a small population of cells also produce calretinin (CALR). The 

SCN shell on the other hand which is made of 57% of the total SCN neuronal population 

frequently produce arginine vasopressin (AVP) that is co-localised with GABA. There is also 

a small population of neurons that produce somatostatin (SS) and met-enkephalin (mENK) 

(Moore and Silver 1998; Abrahamson and Moore 2001).

The presence of VIP in the SCN is a pre-requisite for the activation and 

synchronisation of the neurons. VIP produced by -15%  of the SCN neuron population, with 

-60%  of the neurons expressing the VPAC2 receptor encoded by the Vipr2 gene, is important 

for inter and intracellular synchronisation. This observation was made from studies in SCN 

organotypic slices and is also consistent with studies carried out in the Vip1' and Vipr2'/~ mice 

that display arrhythmic behaviour due to their inability to maintain the synchrony between the 

neurons (Harmar, Marston et al. 2002; Colwell, Michel et al. 2003; Aton, Colwell et al. 2005; 

Maywood, Reddy et al. 2006). This is further shown in the Vipr2'/' cells that are transiently 

activated, which are unable to attain synchronisation. These conclusions suggest that for the 

SCN to retain its pacemaker properties, synchronisation of the interceullular molecular
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clockwork via the neuropeptidergic signalling cascade is necessary (Maywood, Reddy et al. 

2006).

While the SCN core neurons project to other neurons located in the core, shell and 

other areas of the brain, the neurons from the shell are confined to the shell region. This 

intercellular organization suggests that the core receives the main input signal from the retina 

(with afferents containing glutamate (GLU) and pituitary adenyl cyclase-activating peptide 

(PACAP)), intergeniculate leaflet of the thalamus (IGL) (with fibres containing neuropeptide 

Y (NPY) and GABA) and raphe nuclei (with 5-hydroxytryptamine (5-HT) containing 

afferents). As compared to this complex organisation of the core, only acetylcholine (Ach), 

norepinephreine (NE) and histamine (HA)-projecting neurons converge into the shell (Moore 

and Silver 1998; Abrahamson and Moore 2001).

1.1.6.3 Output from the SCN

It has been shown that the ouput from the SCN to other brain areas and peripheral 

tissues are via neuronal and/or humoral signalling. The determination of specific SCN efferent 

neurons that are required for transmitting SCN output signals was identified by abolishing the 

output rhythms with tetrodotoxin (TTX) (Schwartz, Gross et al. 1987). Circadian timing 

information from the core and shell of SCN is processed via distinct neuronal projections that 

send signals to brain areas such as the medial hypothalamus that regulate sleep and to 

peripheral organs such as liver and pineal gland via the paraventricular nucleus (PVN) (Buijs 

and Kalsbeek 2001; Kalsbeek, Palm et al. 2006). Humoral signals are known to be mediated 

via prokineticin 2 (PK2), transforming growth factor-a (TGF-a) and cardiotrophin-like 

cytokine (CLC) released by the SCN. PK2 for example has E-box elements in its promoter
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region and is directly regulated by the CLOCK-BMAL1 heterodimer (Albrecht and Eichele 

2003). PK2 is also known to function as an SCN output molecule by transmitting the circadian 

locomotor activity through G-protein coupled receptors (Cheng, Bullock et al. 2002; Lin, 

Bullock et al. 2002; Cheng, Bittman et al. 2005)

As the master pacemaker, the SCN has the ability to synchronise and drive rhythms in 

peripheral organs such as the liver and pineal gland. Synchronisation is achieved via neuronal, 

humoral signals along with the circadian modulation of body temperature (Brown, Zumbrunn 

et al. 2002) and feeding (Damiola, Le Minh et al. 2000; Stokkan, Yamazaki et al. 2001). The 

ability to drive rhythms in peripheral organs is evident from studies in liver. By selectively 

disabling rhythms in the liver, it was evident that circadian gene expression in liver is 

regulated partly by the liver clock and partly by signals received from the SCN (Kommann, 

Schaad et al. 2007)

Thus, the SCN is able to coordinate the activity of individual oscillators present in 

different peripheral tissues with the help of behavioural, hormonal and neuronal pathways. 

However, there are yet a number of gaps in our knowledge in all areas of circadian control that 

remain to be filled. For example there are yet a number of factors to be identified that help in 

synchronisation o f rhythms between the SCN and peripheral organs.
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1.1.7 Wheel-running activity

In mammals, circadian output can be easily measured by assessing their locomotor activity 

using a running wheel. Mice are individually housed in cages equipped with a running wheel 

in order to measure output rhythms. The activity of mice is recorded in a continuous manner 

throughout the circadian screening protocol, after which it is analysed by plotting a double

plotted actogram. A circadian screen usually comprises of a 12hr light: 12hr dark schedule to 

help the mice entrain to the external environment for seven days. After entrainment, the mice 

are now allowed to free-run (no external light input) under constant dark conditions (DD) for 2 

weeks. In this phase, the endogenous clock of the mice will set the activity of the mice. 

Finally, the mice are allowed to free run under constant light conditions (LL) for 2 weeks.

Below is an example of a double-plotted actogram explaining the terminologies often used 

in circadian studies (Figure 1.4).
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Figure 1.4: Example o f  a double-plotted actogram obtained from  a typical circadian screen. A) A
representative actogram which is double-plotted i.e. activity o f mice for two consecutive days are placed next to 
each other. While each horizontal line represents 48hrs o f data collection, data from each day is presented 
beneath and next to the right o f the previous day. Vertical black bars represent the wheel revolutions o f  a mouse. 
The yellow or blue shaded regions in the actogram represent the time when lights are on, while the non-shaded 
regions represent darkness. A typical screen includes a 12hr light: 12hr dark (12hr L:D) cycle for 7 days followed  
by two weeks in constant darkness (DD) and finally two weeks in constant light (LL) conditions. Under LD 
conditions, the onset o f activity co-incides with lights being switched off. The screen shown above also 
incorporates a light pulse, which is presented to mice to assess their ability to mask activity under light. Under 
DD conditions, the slope o f a line drawn through the onset o f activity on consecutive days determines the period 
or tau (x) o f a mouse (red line). Usually, phenodeviants are identified based on the deviation o f t from control 
mice. B) Example o f a double actogram representing a second protocol where 12hrs o f light is presented to the 
mice to delay their onset o f activity for several hours (phase shift o f  activity in mice).
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1.1.8 Mouse as a model organism

The laboratory mouse, Mus musculus, has emerged to be a chosen model organism in 

studying mechanisms underpinning complex behaviours. The reason for this is the similarity 

in the genetic composition between humans and mice. The easy manipulation of the mouse 

genome is an advantage in addition to the quicker reproduction rate. The presence of 

counterparts o f human genes in mice with similar functionalities allows mice to be used as 

models of human diseases (with a hope that similar effects and similar pathogenesis of disease 

are observed). The suitability of using mice further increases with the availability of nearly 

450 inbred strains and transgenic lines (Beck, Lloyd et al. 2000)

Due to the easy modification of the mouse genome, genetically modified mutant mice 

have been used for several years to study gene functions. The advantage of using mutant mice 

is their survival to adulthood, as some disorders are age-related and gene effects are only seen 

then. One is also able to characterize mutant mice at various levels from biochemical to 

behavioural stages.

The mouse genome can be modified in several ways. Gene knockouts (gene is 

inactivated and hence less expression or loss of function) are generated by gene targeting 

techniques and transgenesis, while tissue specific knockouts can be created by conditional 

mutagenesis. By using gene targeting techniques it is possible to obtain a gene with its normal 

functions impaired (Nguyen and Xu 2008). Briefly, this approach makes use of homologous 

recombination (exchange of DNA strands to exchange genetic material) in embryonic stem 

cells (ES cells). The process begins by mapping the genomic sequence followed by 

introducing mutations or alterations into a similar target sequence, forming the targeting 

construct. This construct is then injected into the ES cells, which are then injected into
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blastocysts that are implanted into foster mothers. The chimeras thus produced are then 

screened for germ line transmission (Picciotto and Wickman 1998). Per (.Perl'/', Per2'f~ and 

Per3'A) and Cry {Cryl'1' and C ry l1") mutants were generated by this technique to identify their 

role in circadian mechanisms (Albrecht, Sun et al. 1997; Shearman, Zylka et al. 1997; Zylka, 

Shearman et al. 1998; van der Horst, Muijtjens et al. 1999). Transgenesis is another method 

used usually to switch on gene expression, but can express mutant forms of genes that may 

also switch off gene expression. This involves injecting foreign DNA directly into the nucleus 

of the mouse egg (pronuclear microinjection) or injecting DNA into the embryonic stem (ES) 

cells. The disadvantage of these techniques (gene targeting and transgenesis) is the difficulty 

in achieving germ line transmission.

Although gene targeting can be effective in generating knockouts, if  germ line 

transmission is obtained, it could also cause developmental defects. To overcome this, gene 

specific and tissue specific knockouts can be generated. This approach makes use of Cre 

recombinase, which is an E.coli bacteriophage PI enzyme that recognises loxP sites present on 

the floxed DNA (DNA sequence flanked by two loxP sites). Once CRE recognises this site, 

the entire floxed sequence is excised, leaving one loxP site (by recombination). The advantage 

of such a technique over the classical gene targeting approach is to generate mice lacking a 

particular protein in a particular tissue or at a particular time. This approach can also be 

applied to ES cells; once the target DNA is floxed and Cre recombinase is introduced, the ES 

cells are implanted into foster mothers and the litters are then intercrossed. Although used 

widely in various fields of mouse genetics, one disadvantage of this technique is the limited 

availability of tissue-specific Cre lines (Picciotto and Wickman 1998).

All the above mentioned techniques involve modification of the gene sequence, which

can be useful or even have adverse effects such as lethality. In such cases, approaches that
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introduce random mutations throughout the genome are useful. In this case, the gene is still 

present with altered expression (gene may or may not be inactive depending on the mutated 

DNA base). X-irradiation was used initially (Silver, L.M. 1995) but was then replaced by 

chemical mutagens such as chlorambucil (CHL) (Russell, Hunsicker et al. 1989) and 

procabazine (PRC). These chemicals were further replaced by ethyl methanesulfonate (EMS) 

(Russell and Russell 1992; Favor 1998) and TV-ethyl-TV-nitrosourea (ENU) (Russell, Kelly et 

al. 1979). While X-rays results in deletions or inversions (Silver, L.M. 1995), ENU 

predominantly generates point mutations (Russell, Hunsicker et al. 1989). Easy breeding 

procedures coupled with developments in identification methods (new phenotyping screens 

and advanced sensitive techniques for identifiying mutations in genes) ultimately complement 

the use of ENU mutagenesis in mice. ENU mutagenesis is explained in greater detail in the 

following section.

Generating mouse mutants has been of particular importance to circadian research. 

However it is important to consider that circadian mutants may have other far-reaching effects. 

One example includes the known associations of circadian clock genes and anxiety (Easton, 

Arbuzova et al. 2003; Roybal, Theobold et al. 2007), depression (McClung 2007) and 

neurological deficit (Plazzi, Schutz et al. 1997). Mutations in clock genes can also be the 

underlying cause of altered behaviour. Identification of such genes will provide an insight into 

causes of neurobehavioural phenotypes.
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1.1.9 ENU mutagenesis

With the human genome completely sequenced, the challenge remains in identifying 

the functional role of each and every gene in the genome (Brown and Nolan 1998; Acevedo- 

Arozena, Wells et al. 2008). To achieve this goal mice are used as model organisms for 

reasons described in the previous section. Research has come a long way from collecting mice 

spontaneously mutated in colonies around the world, to using techniques developed by W and 

E Russell at Oak Ridge National Laboratory and M. Lyon at Harwell, to use radiation to 

generate mutations. However, the lack of markers to map mutations remained a rate-limiting 

step and there was a need to develop much more powerful methods to identify mouse mutants 

to exploit the full potential of this organism (Balling 2001). To satisfy these needs, the use of 

A-ethyl-A-nitrosourea (ENU) has been and is currently widely used. ENU is a powerful 

chemical mutagen which induces random mutations throughout the genome with a chance of 

achieving 1 mutation in 1.23Mbp of a coding DNA sequence in G1 males (Coghill, Hugill et 

al. 2002; Concepcion, Sebum et al. 2004; Quwailid, Hugill et al. 2004; Michaud, Culiat et al. 

2005; Russell, Hunsicker et al. 2007; Acevedo-Arozena, Wells et al. 2008). Mutant mice that 

are generated can then be identified by screening for behavioural, physiological or 

biochemical anomalies. The structure of this powerful synthetic compound is shown below in 

Figure 1.5
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Figure 1.5: Structure ofN-ethyl-N-nitrosourea (ENU)

1.1.9.1 Properties of ENU

ENU is typically injected intraperitonially in an adult male mouse where ENU induces 

mutations in spermatogonial stem cells. After a period of sterility injected mice are then 

crossed to a wild-type female and the resulting progeny are expected to carry potential 

mutations. However, there are various limiting factors that affect the mutation rate of this 

technique. The important one being the dose of ENU injected, which varies for different 

strains of mice. ENU is toxic and a dose too high may result in lethality. Lower doses 

however, may not be as effective in inducing mutations due to the DNA repair mechanisms of 

the cell itself (Shibuya, Murota et al. 1993; Favor 1998; Godinho and Nolan 2006). One of the 

many advantages of ENU includes mutagenesis resulting in multiple mutations in the same 

gene. For example the gene Fbxl3 itself is not very big (4300bps), yet multiple mutations have 

been found (Godinho, Maywood et al. 2007; Siepka, Yoo et al. 2007). This has been an 

advantage to geneticists in aiding them in identifying the role and functional domains of

FBXL3. Secondly, ENU can also be also be used to mutagenise ES cells (Chen, Yee et al.
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2000; Coghill, Hugill et al. 2002). Mutations once identified in these germ cells, mice can be 

rederived from the sperm carrying independent mutations. An advantage o f using germ cells is 

the optimisation of the ENU dose is possible, unlike in mice.

ENU, being an alkylating agent, acts through alkylation of nucleic acids by transferring 

its ethyl group to the nucleophilic sites on the four deoxyribonucleotides. The result of this is 

that mismatches and base-pair substitutions occur (Justice, Noveroske et al. 1999; Acevedo- 

Arozena, Wells et al. 2008). Although most of the mutations are a result of A to T 

transversions, AT to GC transitions can also occur. ENU mutagenesis can result in number of 

different possible mutations including missense, nonsense and frameshift mutations. With the 

possibility of generating null alleles (mutation leading to the complete loss o f gene function), 

hypomorphs (mutation resulting in a partial loss of function), hypermorphs (mutations that 

result in a gain or increase of normal gene function), neomorphs (resulting in a dominant gain 

of gene function), antimorphs (where a dominant negative function is a result o f the mutation) 

generated using ENU mutagenesis, it is possible to generate an allelic series in any particular 

gene (Noveroske, Weber et al. 2000; Quwailid, Hugill et al. 2004; Godinho and Nolan 2006; 

Acevedo-Arozena, Wells et al. 2008).

ENU mutagenesis is currently widely used in two complementary, yet systematic 

approaches to generate mouse mutants in order to study the mechanisms of gene function 

underlying various human diseases. The first approach is a phenotype-based approach (or 

forward genetics) and the second is a gene-driven approach (or reverse genetics).
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As the name suggests, this approach follows the basic principle of identifying mutants 

based on the phenotype they express without any prior assumptions made about the gene or 

genes involved in the resulting behaviour. Although this is an advantage, this approach also 

faces a number of challenges, one of them being the robustness (including data analysis) of 

appropriate phenotyping screens to identify outliers and second being the identification of the 

relevant locus or loci that contribute to the phenotype of the mutant mice. This breeding 

scheme for dominant and recessive ENU screen is shown in Figure 1.6. Thus within the 

available phenotypic facilities and developed screens, it is possible to generate mouse models 

of almost any known diseases. In brief, the primary phenotyping pipeline conducted at MRC, 

Harwell, first identifies outliers with behavioural screens following which outliers are also 

screened for physiological and biochemical anomalies. Once mutants are identified, they are 

then screened through a much advanced pipeline including screens for identification of 

neurological disorders (SHIRPA, open field, rota rod, acoustic startle and PPI) followed by 

clinical chemistry screens (Acevedo-Arozena, Wells et al. 2008). The Harwell ENU 

mutagenesis program has also incorporated a screen with a particular interest to us is the 

circadian wheel-running screens. Progeny of mice injected with ENU are screened for 

deviations in their wheel-running behaviour (locomotor activity). Details of such screens have 

been previously described in section 1.1.7. It is due to such screens that we have been able to 

identify several mutants, some of which have been cloned. For example, the Afterhours 

mutant was identified in one such screen. Positional cloning and sequencing revealed a point 

mutation in the F-box protein, FbxlS, causative for the Afh phenotype (Godinho, Maywood et
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al. 2007). In summary, these screens have provided new insights into the molecular basis of 

rhythms.
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Figure 1.6: Breeding scheme to screen ENU mutagenised mice for dominant and recessive 
mutations. A) ENU is injected into a male mouse (C57BL/6) which is then mated with a C57BL/6 or C3H 
female (GO). B) Male Gl is screened and backcrossed to C57BL/6J or C3H for inheritance testing. Alternatively, 
for recessive screens, Gl male is crossed to wild-type female. C) The female G2 progeny obtained is mated in 
two different ways, a) The Gl male is mated with the G2 female or b) the G2 female is intercrossed with another 
G2 male. The G3 progeny (male or female) are then screened for recessive mutations.
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1.1.9.3 Reverse Genetics

The reverse genetics or gene-driven approach is where one begins with a candidate 

gene or gene sequence with prior knowledge about its expression patterns and functions and 

then generates a mutant, thus providing the opportunity to completely characterise the gene. In 

this way, a number of genes have been identified that contribute to the genetic basis of a 

complex disease, through the genotype-based approach (Duerr, Taylor et al. 2006; Burton, 

Clayton et al. 2007; Frayling, Timpson et al. 2007; Rioux, Xavier et al. 2007; Sladek, 

Rocheleau et al. 2007; Todd, Walker et al. 2007). This illustrates that in addition to a 

phenotype-based approach, reverse genetics can also be used effectively to identify the genetic 

basis of complex diseases, behaviours. At the gene level, a number of methods can be utilised 

to generate mutants. Some of them include gene-targeting, RNA interference, gene-traps. 

However, ENU mutagenesis can also be effectively used in reverse genetics.

This approach makes use of screening DNA collected from ENU treated mice or from 

mutagenised embryonic stem cells (ES cells) (Chen, Yee et al. 2000; Coghill, Hugill et al. 

2002). For such screens, MRC Harwell has an advantage as it has generated (in parallel) an 

archive consisting of DNA and sperm obtained from 10,000 male G l progeny of ENU 

mutagenised mice that is screened using high-throughput techniques. Using this archive it is 

possible to obtain mutations in any gene of choice. An advantage of such a screen is that 

inheritance of mutation is definitely achieved. This is because mutant mice are re-derived from 

the same Gl mouse using the sperm frozen down at the same time as the extracted DNA in 

which the mutation was identified. Mutation screening to identify a single base pair change 

can be carried out in a number of ways. While techniques such as denaturing high- 

performance liquid chromatography (dHPLC) (Quwailid, Hugill et al. 2004), temperature
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gradient capillary electrophoresis (TGCE) (Gao and Yeung 2000; Li, Liu et al. 2002; Murphy, 

Hafez et al. 2003), and targeted induced local lesions in genomes (TILLING) using the Cell 

endonucleases digestion (Oleykowski, Bronson Mullins et al. 1998; Till, Reynolds et al. 2003) 

have been used in the past to identify ENU-induced mutations, recent developments include 

much more sensitive heteroduplex analysis. The light scanner technique is based on the 

heteroduplex analysis as all the Gl progeny obtained will have mutations only on one 

chromosome, hence making identification easier. Figure 1.7 illustrates the stages involved in 

screening the Harwell ENU archive where following the generation of the DNA and sperm 

archive, a gene specific amplication o f DNA is carried out. The PCR products are then 

analysed using the light scanner that separates outliers from the wild-type samples based on 

the DNA melt curve. Following this, the base pair change is identified by sequencing the 

DNA. Mutant mice are then re-derived using the frozen sperm from the same mouse in which 

the mutation was identified.
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Figure 1.7: A typical ENU archive screening procedure. This procedure is used to identify mutations in 
any gene o f choice. A) For screening, DNA from ENU mutagenised mice is extracted from tissues collected from 
G l offsprings. At the same time, sperm is collected and frozen from the same male offspring to generate a sperm 
archive. B) Once a candidate gene is chosen, a gene specific amplification o f DNA is performed. The light 
scanner then detects outliers isolated in the DNA heteroduplex melting curve analysis. Following this, the DNA  
is sequenced to determine the base-pair change. Finally, mice carrying the same mutation are re-derived using the 
frozen sperm from the same animal.
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It can therefore be concluded that ENU mutagenesis is a powerful tool that can be used 

in both forward and reverse genetics in order to identify new gene functions, novel pathways 

underlying the mechanisms of complex diseases and finally to create new mouse models of 

human diseases. ENU mutagenesis can act as a perfect complement to the large-scale 

Knockout Mouse Project (KOMP), which aims at creating a conditional knockout for every 

gene in the mouse genome. ENU mutagenesis is advantageous for a project such as KOMP as 

it has the ability to induce and generate many types of mutations such as those that lead to 

truncated proteins or increase the level of gene expression, and mutations which lead to 

abnormal protein interactions. The best example in this case is the identification of a mutation 

in the Clock gene, whose role was then defined as the main component in circadian 

pacemaking. An ENU Clock mutant displays a very robust phenotype as compared to the 

subtle phenotype shown by a Clock knockout mouse (Antoch, Song et al. 1997; King, 

Vitatema et al. 1997). Similarly, Af4 was initially identified to be involved in lymphocyte 

development due to work using an Af4 knockout mouse. It was only with the studies carried 

out in the Af4 ENU mutant that this gene was shown to play a role in cerebellar degeneration 

in Purkinje cells (Isaacs, Oliver et al. 2003). Below are a few of the many examples of ENU 

mutants identified using the forward or reverse genetics approach (Table 1.2)
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Table 1.2: Examples o f  gene functions identified in a phenotype-based or genotype-based 
approach using ENU mutagenesis.

Gene Phenotype-based Genotype-based KO available/ Phenotype
Af4 s

Cerebellar degeneration B/T cell developement 
impaired

Evil V
Otitis Media Embryonic lethal

Clock V
Loss of circadian 

rhythmicity in DD
Subtle phenotype

Dnchcl
(Dynein)

S
Motor neuron 
degeneration

Embryonic lethal

Emx2 V
Ear ossicles abnormal

Fbxl3
Long circadian phenotype

Adapted from (Acevedo-Arozena, Wells et al. 2008)

41



Chapter 1: Introduction

1.1.10 In-vitro analysis is complementary to ENU mutagenesis

With the identification of mutations by screening target DNA or ES cell libraries, 

comes the challenge of determining whether the phenotype(s) is a result of the mutation. As 

mentioned earlier, generating mice from ES cells can be quite tricky at times due to the 

difficulties in germline transmission. Hence, performing in vitro assays prior to generating 

mutants is desirable. Such assays would help us determine if the mutation is functional and 

would have a potential phenotypic effect.

In vitro assays in well established cell lines are widely used to determine phenotypes 

and primary effects of mutations in circadian biology. Cell lines such as U20S, NIH3T3 

(Akashi and Nishida 2000) and Rat-1 fibroblasts (Balsalobre, Damiola et al. 1998; Izumo, 

Johnson et al. 2003) are known to express all known clock genes. The protein products of 

these genes are also accumulated in a circadian fashion and are similar to what is observed in 

vivo. In many in-vitro assays, the full length DNA sequence needs to be cloned into a vector of 

choice following which mutations are introduced into the sequence using methods such as 

site-directed mutagenesis. These mutant plasmids are then overexpressed in cell lines, and 

effects such as protein localization or interactions between two proteins can be looked at. Any 

effects observed at this level could be expected to have an effect on the in vivo phenotype.

Real-time luciferase assays have been of great use to chronobiologists in the 

determination of phenodeviants in-vitro. This assay makes use of clock gene promoters such 

Per2, Bmall, Rev-erba driving the expression of luciferase reporters. Phenodeviants that have 

an impaired endogenous clock can be identified based on the bioluminescence readout of the 

circadian oscillations generated by overexpression of mutants (Welsh, Imaizumi et al. 2005; 

Yamazaki and Takahashi 2005). The same methodology has also proved successful when
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genes are knocked out using RNA interference (RNAi) (Maier, Wendt et al. 2009). Figure 1.8 

(adapted from Mair et al. 2009) is an example of real time monitoring of U20S cells stably 

transfected with a Bmall :Luc reporter. The figure shows the difference in oscillations between 

the control (U20S Bmall :Luc) and cells transduced with Cryl, Cry2, Bmall and Clock RNAi 

constructs. As found in vivo, silencing Cryl or Cry2 resulted in a short and long period 

respectively (van der Horst, Muijtjens et al. 1999) and silencing Bmall and Clock resulted in 

complete disruption of rhythms as found in Bmall'1' mice and the homozygous Clock ENU 

mutant which also show arrhythmic behaviour (Bunger, Wilsbacher et al. 2000; Liu, Welsh et 

al. 2007) . This confirms the use of in-vitro assays as a powerful tool to detect circadian 

phenotypes.

In-vitro assays can also be used to identify functions of clock components that are 

believed to play an important role in the regulation of circadian rhythms. This has been 

successfully shown by Maier et al. 2009 where they carried out a large-scale RNAi screen by 

knocking down all the known and predicted kinases, phosphatases and F-box proteins 

individually resulting in alteration of molecular oscillations. Although previously known that 

casein kinase 2 (CK2) is involved in the phosphorylation of the negative regulator PER2, it 

was only in this screen that the importance of the presence of CK2 was identified. Real-time 

monitoring with downregulated levels of CK2 by RNAi displayed disruption o f circadian 

oscillations in-vitro, presumably due to accumulated levels of unphosphorylated PER2, which 

in turn delays the accumulation of the PER/CRY repressor complex, inhibiting their own 

transcription (Maier, Wendt et al. 2009)
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Control
Cry2- construe t l  
Cry 2- con stru et 2
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1.5

0.5
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v V V  V
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Figure 1.8: In-vitro assay confirming the circadian phenotypes o f mutants. Human U20S cells stably 
expressing Bmall: Luc reporter was used as a control. Two RNAi constructs each for Cry2, Cryl, Bmall and 
Clock were transduced into the cell lines using lentivirus. The cells were synchronised with dexamethasone and 
luminescence was measured. As seen, the RNAi constructs for Cry2 (green), Cryl (pink) and Bmall (purple) 
mimic the in vivo phenotype of the respective gene knockouts. The phenotypic effects caused due to the Clock 
RNAi constructs are also the same as observed in the ENU Clock homozygous mice (orange). Adapted from 
Maier, Wendt et al. (2009).

44



Chapter 1: Introduction

1.1.11 Known Circadian Mutants

The last decade has been very exciting for molecular biologists and geneticists 

for identifying genes and their functions and understanding the genetic contribution o f many 

complex diseases. It has been particularly fast paced for circadian biologists, where genes 

regulating circadian oscillations have been identified. All this has been aided by the 

introduction of ENU mutagenesis screens. However, it is worth mentioning that although 

molecular mechanisms underlying the clock have been identified, the exact function of many 

other core components are yet to be identified. The identification of circadian mutants in 

Drosophila melanogaster has been extremely useful in identifying the core clock mechanisms. 

It was in the 1970’s that the Per mutants were identified in Drosophila as part o f the EMS 

mutagenesis screens. Three mutants were isolated by screening flies for their locomotor 

activity: Per°mutant was arrhythmic, Per* displayed a short period o f 19 hours and Per1 had a 

long period of 29 hrs (Konopka and Benzer 1971). Studies over the course of time identified 

the nuclear expression of PER and the function of PER as a negative regulator of its own 

transcription (Hardin, Hall et al. 1990). Soon after uncovering the mechanism of the action of 

PER in Drosophila, a second mutant, Timeless {Tim), was isolated from an independent EMS 

screen. Studies performed on this mutant revealed interactions between PER and TIM, that 

TIM is required for translocation of the PER-TIM complex to the nucleus (Sehgal, 

Rothenfluh-Hilfiker et al. 1995) and that TIM degradation is induced by light (Hunter-Ensor, 

Ousley et al. 1996; Lee, Parikh et al. 1996; Myers, Wager-Smith et al. 1996; Zeng, Qian et al.

1996). Attenuated TIM degradation results in a delay or advance of the clock, depending on 

the light pulse as well as the nuclear translocation of PER which effects the negative feedback 

loop (Young 2000). Since these initial mutants were identified, many other factors have been
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identified in Drosophila and in mammals. And both species have contributed to produce new 

insights.

Below are described some of the known mammalian circadian ENU mutants and their 

contribution to the field of circadian biology

Clock'. The identification of this mutant in the early 90’s was a milestone in the field of 

mammalian circadian biology during the time that the molecular elements of the mammalian 

clock were unknown. The mutant was identified in a semi-dominant screen where 

heterozygous Gl males were screened for their wheel running activity, first in light'.dark (LD) 

conditions, followed by constant darkness (DD) conditions (King, Vitatema et al. 1997). Out 

of 304 Gl offspring, who expressed a period length similar to wild-type animals, between 

23.2-24. lhrs, there was just one outlier which exhibited a gradual lengthening of the circadian 

period in free-running DD conditions, which stabilised at 24.8hrs. The homozygous clock 

mutant however did not show sustained rhythmicity. A long extended period was apparent in 

the first few days in DD conditions after which they become arrhythmic (King, Vitaterna et al.

1997). This ENU mutant led to the conclusion that the Clock gene is necessary for sustained 

circadian rhythms and that at the molecular level the circadian oscillations are determined by 

the presence of the Clock gene.

The contribution of this ENU mutant provided significant information unlike the 

generation of a knockout mouse using the Cre-LoxP system. The Clock knockout, unlike the 

ENU mutant and the null allele of Bmall that have disrupted rhythms (Bunger, Wilsbacher et 

al. 2000), continues to express rhythms in DD with a slight period lengthening o f 20mins. 

However, they do show an alteration to light response during the LD cycle. The homozygous 

Clock null mutant mice initiate their activity ~2hrs before the lights were turned off 

(Debruyne, Noton et al. 2006). Unlike in the Bm airA mice, it was predicted that robust
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rhythmicity in the Clock null homozygous mice was due to the presence of the Clock 

homologue, NPAS2, that takes over Clock function (Hogenesch, Chan et al. 1997; Zhou, 

Barnard et al. 1997). This was later confirmed by performing mRNA and protein studies in 

SCN and liver (DeBruyne, Weaver et al. 2007).

Ultimately, it can be said that if our analysis were to focus purely on the knockout 

phenotype, the exact function o f Clock would not be identified due to redundancy between the 

homologues. However, the importance of Clock gene was confirmed only with the use of the 

ENU Clock mutant, suggesting that ENU mutagenesis makes a contribution to elucidate 

functions of genes underlying diseases or abnormal phenotypes.

Rah3a: In a screen to identify additional genes that may cause abnormal rest-activity 

behaviours in mice, Kapfhamer and his colleagues carried out ENU mutagenesis and screened 

the Gl progeny of ENU mutagenised males. Amongst 500 of the progeny screened, they 

identified one mouse with a short period of 23.08 hrs, which they named earlybird (Ebd). The 

earlybird phenotype was found to be caused by a point-mutation in Rah3a (ras-associated 

binding protein) resulting in a substitution of a conserved amino acid (Aspartic acid 77 

Glycine; D77G) in the GTP-binding domain (Kapfhamer, Valladares et al. 2002). Rab3a, a 

member of the Rab3 family of small G proteins that are functionally redundant, plays a role in 

regulating neurotransmitter release and calcium dependent exocytosis (Takai, Sasaki et al. 

1996; Sudhof 2004; Yang, Farias et al. 2007).

A homozygous earlybird mutant, Ebd/Ebd, expressed a circadian period of 22hrs in 

DD conditions. Expression studies carried out using whole brain extracts from Ebd/Ebd mice 

showed that the protein level of the mutated RAB3A was reduced by -73%  compared to the 

wild-type animals. This may suggest that the instability of the mutant protein causes the short
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circadian phenotype. Similar to the Clock null mutant, unequal observations were made in the 

circadian analysis of the Rab3a'A mice. The Rab3d/' mice (generated by gene targeting) 

showed a shorter circadian phenotype with Rab3a+A mice displaying a period of 23.45hrs and 

Rab3a'A with a circadian period of 23.39hrs, ~40mins shorter than wild-type mice (Kapfhamer, 

Valladares et al. 2002). The phenotype observed in the knockout mice was much more subtle 

than the observed phenotype in the ENU generated Ebd/Ebd. The differences in the behaviour 

were suggested to be an effect of the genetic background of the mice {Ebd/Ebd on 

C3H/HeJ/C57BL/6J Vs Rab3dA on 129/SvJ/C57BL/6J).

Apart from the above mentioned ENU mutants that alter circadian period, there are a 

few more mutants that may have effects on the clock, however, the mechanism is yet to be 

determined. A few of these are listed below.

Rora: The stability and precision of circadian oscillations are characterised due to the presence 

of orphan nuclear receptor proteins REV-ERB-a and retinoic acid-related orphan receptor a  

(Rora). These elements are known to suppress and activate expression of Bm all, a major 

contributor in the regulation of circadian rhythms, respectively.

Staggerer (sg) is an example which has resulted due to a mutation in Rora gene. The 

mutation results in a frameshift deletion leading to a truncated RORa protein (Hamilton, 

Frankel et al. 1996). This mutant is shown to have cerebellar ataxia due to the incomplete 

development of Purkinje cells. Once the role of Rora in circadian regulation was determined, 

the sg/sg mice were screened for identifying deficits in locomotor activity. For this reason, the 

infrared (IR) beam breaking assay was used, as the lack of muscle co-ordination in the sg/sg 

mice was thought to affect the circadian wheel-running activity (Sato, Panda et al. 2004). The 

IR beam breaking assay revealed variable phenotypes from a shortened period (23.44 hrs+/-
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0.078) of daily locomotor activity in the sg/sg mutants to a complete loss of free-running 

period or an extremely weak and undetectable circadian rhythm compared to the wild-type 

control mice (23.79 hrs+/-0.054) (Sato, Panda et al. 2004).

OPA1: Optic atrophy 1 {Opal) is another ubiquitously expressed gene. Mutations in this gene 

are usually associated with autosomal dominant optic atrophy (ADOA) which is the most 

common optic neuropathy (Kjer 1959; Davies, Hollins et al. 2007). In this condition, the 

retinal ganglion cells are depleted resulting in loss of vision (Johnston, Gaster et al. 1979; 

Kjer, Jensen et al. 1983). A similar mutant identified in an ENU mutagenesis screen results in 

Q285STOP in a region which represents the beginning of the central dynamin guanosine 

triphosphatase (GTPase) (Davies, Hollins et al. 2007). This mutation results in a severe 

truncation of the OPA1 protein. Due to this truncation and loss of the retinal ganglion cells, a 

light pulse had no effect on the activity of mice. In normal conditions wheel running activity at 

night is suppressed by an acute light pulse, which was not the case the Opal mutants (Davies, 

Hollins et al. 2007). Further studies in this mutant in turn will help us to identify the 

contribution of this gene in studying circadian oscillations (in terms of input pathways to the 

SCN), even though it is not directly involved in the mechanism of circadian regulation.

As well as the above mentioned mutants, there are a few more mutants which have 

been identified in a phenotype-driven or genotype-driven approach employing ENU 

mutagenesis. However, there are several other mutations identified that are yet to be mapped 

prior to identifying the mutant genes and determining their exact role in regulating circadian 

mechanisms. Below is a table (Table 1.3) listing some of the mutants.
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Table 1.3: List o f  ENU circadian mutants recently identified.

M utant P henotype M apped to R eference
Shiftless 

(Sfl, Play 11)
No phase shift in response to light Chromosome 2

similar to melanopsin 
null mouse

(Hattar, Lucas et al. 2003; 
Panda, Provencio et al. 
2003; Bacon, Ooi et al. 

2004)

Setback 
(Sbc, Play 7)

Circadian period altered from 23.7h 
to 24.3 hrs due to light pulse

Not mapped
Novel

(Bacon, Ooi et al. 2004)

Sluggish 
(Sgh, Play 

14)

Low wheel-running activity record Chromosome 4/16
Novel

(Bacon, Ooi et al. 2004)

Short-circuit 
(Sci, Play 8)

Reduced circadian amplitude; Short 
circadian period in DD (21.5h-23h); 

Reduced or Absent phase shift

Chromosome 8
Novel

(Bacon, Ooi et al. 2004)

Swing-shift Activity in LD conditions 
(entrainment mutant)

Not mapped
Novel

Takahashi, 2007 
(unpublished)

Part-time
(prtm)

Short circadian period in DD Chromosome 10/ 
Cryl

Loss o f function mutation

(Siepka, Yoo et al. 2007)
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1.1.12 Circadian rhythms and other physiological processes

Circadian oscillations that persist in every organism and every tissue are all controlled 

by one master pacemaker, the SCN, through its neuronal and humoral outputs. Circadian 

rhythms are important as they influence the generation of physiological and behavioural 

rhythms together with the generation of environment input. Genetic modification of the 

circadian system results in a wide range of effects depending upon the nature of the mutation 

and the circadian gene that is mutated. Behavioural studies in mouse mutants have been vital 

in providing novel insights on the associations of clock genes and behavioural phenotype. 

However to identify if the genetic basis of altered behaviour and physiology is primarily due 

to the altered SCN oscillator or if the effect secondary to specific neural dysfunction, it is 

necessary to identify more clock genes that will surely help us elucidate the links between 

circadian oscillations and physiological processes much more clearly. Described below are 

recent evidences showing how our body clock may influence the nervous system, metabolism, 

cell cycle regulation and other behaviour.

1.1.12.1 Neurological disorders

A number of evidences have shown that the primary cause of an altered emotional 

behaviour could be a result o f disturbances in the circadian system. This has been shown in the 

ENU Clock mutant that displays various behavioural abnormalities such as mania, low 

anxiety, and hyperactivity (Easton, Arbuzova et al. 2003; Roybal, Theobold et al. 2007). With 

so many effects resulting from a single mutation, it could be hypothesised that the behavioural 

consequences of the Clock mutation are a result o f either a direct effect of the mutated Clock
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gene on core oscillator mechanisms or a secondary effect involving disturbances within the 

central nervous system ultimately altering the circadian clock (Barnard and Nolan 2008). 

Further evidences linking the circadian clock to mood regulation arise from the behavioural 

consequences such as anxiety due to NPY or VIP (major neurotransmitters within the SCN) 

dysregulation (Karl, Bume et al. 2006; Wersinger, Caldwell et al. 2007). Additionally, it has 

been shown that the mood stabilising agent lithium can be used to reverse the behaviour o f the 

Clock mutant (Roybal, Theobold et al. 2007). Lithium is known to be a potent inhibitor of 

GSK3p, a major kinase involved in phosphorylation of many clock proteins. This again 

suggests that using agents that regulate clock proteins can alter behaviour. Another important 

association of circadian rhythms and behaviour is that circadian disturbances often contribute 

to the aetiology of syndromic disorders such as Prader-Willi syndrome (PWS). While patients 

suffering with PWS show sleep and behavioural disturbances (Vgontzas, Kales et al. 1996; 

Nixon and Brouillette 2002; Cotton and Richdale 2006), Magel2 gene knockout mice 

(MAGEL2 is inactivated in PWS) show disrupted circadian rhythms and metabolism (Lee, 

Kozlov et al. 2000; Kozlov, Bogenpohl et al. 2007; Mercer and Wevrick 2009).

Alterations in circadian rhythms are also widely associated with a number o f sleep 

disturbances (Barnard and Nolan 2008). For example a mutation in Clock could result in 

alteration of sleep time; its paralogue Npas2 that takes over circadian function in the absence 

of Clock, alters sleep homeostasis (Naylor, Bergmann et al. 2000; Dudley, Erbel-Sieler et al. 

2003; Barnard and Nolan 2008). Mutations in clock genes such as Cryl and Cry2 also result in 

sleep fragmentation, change in sleep time and atypical responses after sleep deprivation 

(Naylor, Bergmann et al. 2000; Laposky, Easton et al. 2005; Wisor, Edgar et al. 2005). 

Disturbances and polymorphisms in human clock genes have also been shown to have 

associations with sleep and psychiatric disorders. Although polymorphisms contribute to the
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morning or evening preference, extremes in such preferences may be associated with complex 

psychiatric disorders. With the Home-Ostberg questionnaire that has been used for 

associations of clock genes with diurnal preference, studies have also revealed alterations in 

clock protein dynamics as a critical factor (Home and Ostberg 1976). For example, a mutation 

in the CKls-binding domain of Per2 identified in familial advanced sleep phase syndrome 

(ASPS) results in hypophosphorylation of PER2 in-vitro (Toh, Jones et al. 2001). Transgenic 

mice with this mutation show an advance in activity in the LD cycle. They further show a 

short free-running period in DD (Xu, Toh et al. 2007).

All this ultimately confirms the disturbances of circadian rhythms or their parameters 

in a range of CNS disorders, and further investigations into these areas will provide insights to 

identify causes and mechanisms of psychiatric and neurological disorders which can then be 

applied to design specific pharmaceutical targets.

1.1.12.2 Metabolism

Circadian gene expression profiling resulted in an observation that nearly 10% of the 

transcriptome was under circadian control, and the pathways involved were also required for 

basic metabolic processing (Panda, Antoch et al. 2002; Takahashi, Hong et al. 2008). 

Inversely, it has also been shown that genes involved in energy metabolism and cell signalling 

were seen to be under circadian control. For example D-site binding protein {Dbp), considered 

as a component of a circadian output pathway due to a dynamic change in expression levels, 

acts as a transcription factor regulating expression of genes involved in gluconeogenic and 

lipogenic pathway regulation (Lavery, Lopez-Molina et al. 1999; Gachon, Olela et al. 2006; 

Ripperger and Schibler 2006). Additionally, pathways such as glycolysis and cholesterol
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biosynthesis were all seen to be under the regulation of circadian oscillators. Recently, genes 

belonging to the nuclear receptor family which are under circadian control have been shown to 

have diverse functions in regulating metabolic pathways. For example Rev-erba is known to 

regulate bile acid and cholesterol synthesis by the circadian modulation of sterol regulatory 

element-binding protein (SREBP), which in turn leads to the cyclic expression of its 

downstream target genes. Rev-erba activates insulin induced gene 2, Insig2, that encodes a 

protein, INSIG2, retaining SREBP in the endoplasmic reticulum, thus blocking the processing 

of SREBP (Dibner, Schibler et al.; Le Martelot, Claudel et al. 2009).

A clearer example of the role of Rev-erba in regulating hepatic lipid homeostasis 

includes its interaction with histone deacetylase-3 (HDAC3), involved in chromatin 

remodelling. In-vivo studies carried out by Feng et al. (2011) showed a diurnal pattern of 

HDAC3 recruitment to the genome which correlated with the diurnal expression of the nuclear 

receptor, Rev-erba. Although, the recruitment was diurnal, the level of liver HDAC3 protein 

did not vary. In the case of Rev-erb'A mice, there was a repression of HDAC3 recruitment to 

the DNA, suggesting that the presence of REV-ERBa is important for HDAC3 recruitment. 

Further, it was shown that during the daytime, when there are high levels of REV-ERBa 

protein, it is able to recruit HDAC3, and hence a decline in histone acetylation is observed, 

which in turn inactivates genes such as fatty acid synthase involved in lipid biosynthesis. 

These observations were consistent with findings in mice lacking HDAC3. It was found that 

along with the loss of the repression of fatty acid synthase during the night, there were higher 

levels of triglycerides seen in the liver, thus explaining the role of Rev-erba and its interaction 

with HDAC3 in regulating lipid homeostasis in mice (Feng, Liu et al.2011; Moore, 2011).
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1.1.12.3 Cancer

Cell cycle and circadian oscillations are two important systems that are under the 

control of tightly regulated gene expression levels. Sharing similar concepts of periodicity 

(cell cycle and circadian oscillations are regulated with a period of ~24hrs) and regulatory 

processes (both are based on autoregulatory feedback loops), it is not surprising to find both 

these global systems interlinked (Hunt and Sassone-Corsi 2007). The circadian system is 

known to extend its regulatory control further beyond clock genes to genes involved in cell 

cycle regulation. While there is a circadian control over the generation of a cell cycle, 

circadian oscillations are self regulatory and independent of the cell cycle (Matsuo, 

Yamaguchi et al. 2003). Hence, attenuated expression of CCGs can have direct consequences 

such as the inactivation of downstream targets. It could also lead to an increase in the rate of 

cell proliferation with a reduced ability of performing apoptosis, thus promoting tumour 

formation resulting in cancer (Rana and Mahmood, 2010).

An example of a cell cycle component being regulated by the circadian clock is Weel, 

encoding a cell cycle kinase that plays an important role in the transition of a cell from the G2- 

M phase of the cell cycle. Transcription of Weel is activated by the binding of the CLOCK- 

BMAL1 to the E-box elements present in the Weel promoter. In mice with a circadian 

deficiency, like the Cryl 'A; Cry2~f~ double knockouts, there is an elevated level of WEE1, 

presumably due to the lack of inhibition by the transcriptional repressors, CRY. Thus, with 

elevated levels of WEE 1 after partial hepatectomy, there is a delay in the regeneration of liver 

due to the inactivation of a key mitotic regulator, cell division cycle2 (CDC2)/CyclinBl 

complex, that delays the entry of cells into mitosis. Under normal conditions, CDC2/CyclinB 1 

complex is required to be at basal levels until the completion of the G2/M checkpoints. The
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low levels of CDC2/CyclinBl are achieved by phosphorylation of the complex by WEE1, a 

function critical for the completion of the G2/M checkpoints. In addition, the CDC2/CyclinB 1 

complex is activated by CDC25, by dephosphorylating the CDC2/CyclinBl complex. Thus, 

with the activation of WEE1, the inactivation of CDC25 is also essential in promoting cells 

into mitosis (Matsuo, Yamaguchi et al. 2003; Oishi, Miyazaki et al. 2003; Hashimoto, 

Shinkawa et al. 2006).

Thus, it can be concluded that disruptions in circadian clocks could result in 

malfunctions of several physiological processes. Table 1.4 shows the metabolic and cancer- 

related phenotypes in mice with circadian deficiencies.
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Chapter 1: Introduction

1.1.13 Thesis outline

The main aim of the thesis is to establish the regulation of interaction between Cry and 

Fbxl3 genes and proteins. This would help us dissect the circadian functions of important 

clock-controlled genes, Cryl and Cry2, using the Afh mutant. This work has been carried out 

by generating CryA; Fbxl3^h/Â 1 compound mutants. Circadian wheel-running analysis, and 

gene and protein expression studies have been carried out in these mutants.

Secondly, with a new F-box protein, Fbxl21, identified, the thesis includes some 

preliminary work done in-vitro and in-vivo on two mutations identified in an ENU 

mutagenesis screen. With studies such as interactions involving Fbxl21 and the potential effect 

of the mutation carried out in-vitro, circadian wheel-running screens have also been carried 

out.

Finally, the mutants are screened through three commonly used behavioral 

phenotyping tests in order to investigate if they express features of psychiatric and 

neurological disorders known in humans. This would ultimately help identify genes that 

associate with human disorders and could be used as pharmaceutical drug development 

targets.
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2 CHAPTER TWO: Methods and Materials
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Chapter 2: Methods and Materials

2 .1  ANIMALS

2.1.1 Mouse Lines

Mouse studies carried out for this project were conducted under the guidance issued by 

the Medical Research Council in ‘Responsibility in the Use of Animals for Medical Research’ 

(July 1993) and under the authority of Home Office Project License Number 30/2686.

The CryFA and Cry2~A null mutants (both congenic on C57BL/6J backgrounds) were 

imported from the Laboratory of Molecular Biology, Medical Research Council, Cambridge 

(original targeted mutants were generated by Bert van der Horst) (van der Horst, Muijtjens et 

al. 1999). The mice imported were then re-derived and bred on the same backgrounds at the 

Mary Lyon Centre, Medical Research Council, Harwell after appropriate health screens. The 

afterhours (Afh) mutant was identified as a phenodeviant in an A-ethyl-A-nitrosourea (ENU) 

screen for alterations in circadian wheel-running activity. The Afh mice were maintained as a 

homozygous colony congenic on a C57BL/6J background. The genotyping protocols are 

described later in section 2.2.1 and 2.2.2. The Fbxl21 mutants were re-derived from the 

Harwell Frozen Embryo and Sperm Archive and backcrossed to C57BL/6J before testing. The 

Fbxl21V68E mice were re-derived on C57BL/6J and C3H and the colony was later maintained 

as congenic on a C57BL/6J background. On the other hand, the Fbxl21P291Q mice were re

derived on BALB/C and C3H background and were later backcrossed to C57BL/6J. The 

Fbxl21P291Q mice used in studies presented here were on backcross two to the C57BL/6J. The 

genotyping protocols are described later in section section 2.2.2 and 2.2.3. All control mice 

used in studies were congenic on C57BL/6J background.
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Chavter 2: Methods and Materials

All the mice at Harwell were maintained under appropriate husbandry protocols where 

sentinel health screens assured cleanliness of stock in accordance with the Home Office 

guidelines. Mice were housed in Techniplast sealsafe IVC cages containing grade 5, dust-free 

autoclaved sawdust (Datesand Research, U.K.) which were checked daily and cleaned on a 

regular basis. Food and water was available ad libitum unless otherwise stated.

2.1.2 Generating Compound Mutants

Since the main aim of the project was to identify the complexity of circadian 

mechanisms, it was necessary to breed compound mutants. The breeding scheme shown below 

(Figure 2.1) was followed to generate the Cryl'A; Fbxl3Afll/Afll and Cry2'A; Fbxl3Âh/Âh 

compound mutants. Breeding and husbandry protocols were carried out according to the 

guidelines of the Home Office project license.
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Chapter 2: Methods and Materials

2 .2  GENOTYPING ASSAYS

In order to genotype most mice, a crude genomic DNA extraction method was 

performed on ear biopsies collected from every mouse at weaning. lOOpl NaOH solution 

(50mM) was added to the biopsy ensuring it was completely immersed in the buffer, and left 

in the heat block at 95°C for l-1.5hrs to digest following which lOpl Tris (pH5) was added 

and vortexed thoroughly. DNA thus obtained was suitably diluted (1:4) to be used for the 

following assays.

2.2.1 Genotyping Cryl and Cry2 Mice

Cryl and Cry2 knockouts were obtained by deleting a segment of the wild-type gene 

(deleted exon 4 and 5 for Cryl and exon 1 and 2 for Cryl) and replacing with a Neo gene. 

Hence, to genotype these mutants, two forward primers and a shared reverse primer was used. 

Forward primers hybridising to the deleted region were used to detect wild-type animals while 

primers hybridising to the Neo cassette were used to detect knockouts. Following the PCR, 

performed using the conditions and reagents mentioned in Table 2.1 and 2.2 respectively, the 

PCR products were analysed by gel electrophoresis on a 1% agarose gel set at 100V for 

60mins which helped us identify the wild-type and mutant mice.

63



■'tf''sO

Cl,
a

I

§
"53
s53
<0

3
53-

>3

. 5
£
si,
S’•**»

£
©
«5D

<N

5
*53
S!53

$
N

*c>
iS

a>
N
55
■M
u
3

■aos.
CL

COu6JDo
u
CL
OC
u
CL

(U
U
s
<u
3a*
ac/i
u
a>

L.
CL

0)
3
0)

a

w,

A  o  oVO V .  
—< CNs  °  £  nj

O Oin
m

IN CN

H H U U < < u  u  a a u  u  
<  <  o aH Hu  u 
<  <

$ 1 a a < < a a a a < < a a a o < < u  u

u  uH H
u  u  
<  <  
<  <  f— H
o  a  
o  a  
u  uH H< < 
u  u  
<  <  
u  u  
u  u
H  H 
<  <  
u  uH H H H
U  U
a  a

aa < 
o  o

CD
O  9^ 9 < << u
< 2  H  ^G 9
a  <  
o  sH P
U
H
O
H
O

u
H  
Ha
H  
<< _
< u o  a
9  < 
o  uu a< < o  u 
< h

u  o

t?  o  
£  X

u

uo
<N

>n
<n

o
VO

uo
CNr-

o
VO

<+;
U

o
m

Uo

Os

Uo
-d-
Os

B
COin
bO
Os-

CL
cd
U
CL

u

c
Bo

Uo
CN
r -

n
<n

o
Os

uo
INr-

o
m

U

o
<n

U

o
CN

<+S

Uo
-O’
OS

CN

B
c0Li
toOo>-,

CL

u
CL

$
*53
£
53

*■"1

$

§
Cis:
&4D

Hjs:
c
c s

s:
c
5J

8
<N
<N*

•Si
-Cl

£

3

I I  
I I  
s i

l a

O
CM
DC 3 jT3 
T 3 O

CN
Os
,'0 :

o

s  sS' ^  ^  S o oi  N (S
o

o
M

o

cO
0  

- C-(->13
<u

1

Wa
~ o
cd 
0) X5
cr
cd

H

cd
o

'S
<u

cd

U

o
- C

C/3-(->o
K

!



Chapter 2: Methods and Materials

2.2.2 Genotyping Fbxfflfl1 and Fbxl21V68E Mice

The allelic discrimination assay was used to genotype point-mutations in Fbxl3Afll and 

Fbxl21v68E. In this assay, two sets of primer pairs and a unique set of probes overlapping the 

single nucleotide polymorphism (SNP) site were used. Major groove binding (MGB)-Taqman 

probes (Applied Biosystems) were generated with a FAM-labelled wild-type and VIC-labelled 

mutant sequence. Details of the primers, probes, PCR cycling conditions and reagents used are 

described in Table 2.3 and 2.4 respectively. The products were analysed on the real-time PCR 

using the ABI Prism™ 7500 software. The software was used to detect the increase in FAM 

and/or VIC fluorescence which would determine the genotype of the animal.
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Chapter 2: Methods and Materials

2.2.3 Genotyping Fbxl21P291Q Mice

Fbxl21P2m  was genotyped using the LightScanner (Idaho Technology) where a 

standard PCR was performed using a primer pair, a double stranded DNA binding dye called 

LCGreen Plus (Idaho Technology) and a Luna Probe spanning the SNP. The probe was 

designed in a manner that it was complementary to the mutant allele. The PCR was performed 

using unequal amounts of primers so that one primer is completely used leaving several copies 

of the alternate strand with probe attached. Wild-type DNA should have a mismatched probe 

and DNA strand which should result in lower binding of the LC Green dye. Based on this 

principle, the PCR products were analysed by the DNA melting curves using the LightScanner 

and the LightScanner software. The PCR conditions and reagents are detailed below in Table 

2.5 and 2.6.
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Chavter 2: Methods and Materials

2 .3  CIRCADIAN SCREENS

Circadian wheel-running screens were carried out on mice that were at least 6 weeks 

old. For these screens, mice were individually housed in cages equipped with a running 

wheel (Figure 2.2A). 10 such cages were then maintained in light-tight ventilated 

chambers. Timers were attached to every chamber that would control the light timing 

(Figure 2.2B). Even though the mice in the animal house wards were maintained in a 12hrs 

lightidark cycle, once in a circadian screen, the mice were allowed to entrain to a 12hrs 

lightidark (LD) schedule for a week. At the end of the week, the mice were allowed to 

free-run in constant darkness (DD) conditions for 2 weeks, followed by free-running 

conditions in constant light (LL) for 2 weeks. Circadian screens also incorporate 3hr light 

or dark pulses during the dark or light phases of the LD schedule. These pulses measure 

the ability of the mice to suppress activity in the light (light pulse) and measure amount of 

activity in the dark (dark pulse). Although actograms presented in this thesis are generated 

from screens using such light/dark pulses, they have not been considered while analysing 

data presented here. The activity records of mice were collected using the ClockLab 

software (Actimetrics). At the end of the screen, a double-plotted actogram is generated 

for further analysis. Apart from measuring the period length (xau) (red line), the software 

also measures circadian wheel-running parameters such as phase angle of entrainment, 

average wheel revolutions, and amplitude of oscillations.

Circadian studies were also carried out in parallel in SCN slices from the C ry7' 

;FbxlSAfll/Afll compound mutants. The circadian wheel-running behaviour in Cry*' 

;Fbxl3^h/Âh mice were then correlated to the data obtained from the SCN slices. This work
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has been carried out by our collaborators Dr.Michael Hastings and Dr.Elizabeth Maywood 

at MRC, Laboratory of Molecular Biology.

Fi ee-i iinnuis  
conditions undei 

constant 
darkness (DD)

Tan (t): the slope of line 
drawn through onset of 
activity on consecutive 

days.

Mu Light: pulse

Free-i Hiinmg 
conditions undei 

constant light
<LL>

A
Cage equipped with running wheel

® Light-tight chambers

Double-plotted actogram

Figure 2.2: Monitoring wheel-running activity in mice. A) Example illustrating a cage equipped with a 
running wheel. B) 10 such cages are placed in light-tight ventilated chambers. Light conditions in the chambers 
are controlled by a timer. C) Example o f a double-plotted actogram generated at the end o f  a circadian screen. 
The actogram shows activity o f mice for 2 consecutive days. The yellow shaded regions in the actogram 
represent light while the unshaded areas represent darkness. The black vertical bars represent activity o f  mice. A 
typical circadian screen includes a week under 12hr L:D conditions, followed by 2 weeks under constant 
darkness (DD) and finally under constant light conditions (LL) for two weeks. Tau or period length (red line) is 
the slope o f line drawn through the onset o f activity on consecutive days. The screen usually also incorporates a 
light or dark pulse in the dark or light phase respectively o f  the L:D cycle. While the light pulse assesses the 
ability o f mice to mask activity under darkness, the dark pulses measures the ability o f  mice to be active under 
light. These pulses have not been used to make any measurements and are not considered during data analysis o f  
studies mentioned in this thesis.
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2 .4  CELL CULTURE

2.4.1 Cell Lines

A number of different cell lines were used during the course of the project. Molecular 

work was carried out on cell lines, namely U20S (human osteosarcoma derivation from 

sarcoma of tibia that was moderately differentiated) (Ponten and Saksela 1967), Cos7 (derived 

from kidney cells of African green monkeys and developed from the CV-1 line by Yakov 

Gluzman in early 1980’s and then transformed with SV40 virus) (Gluzman 1981), and 

HEK293 (derived from human kidney cells by transforming normal HEK cells with 

adenovirus 5 DNA) (Graham, Smiley et al. 1977). Real-time luminescence experiments 

required reporter cell lines. For that, U20S and Rat-1 cells (Lindblad and Flood 1987) were 

stably transfected with a clock gene promoter viz. Per2 or Bmall driving the expression of the 

luciferase reporter. U20S Per2:Luc was a kind gift from Dr. Fillipo Taminini (Erasmus 

University, Netherlands). Rat-1 Per2\Luc and Rat-1 Bmall :Luc were kind gifts from Dr. Qing 

Jun Meng (University of Manchester). Due to the nature of cells, different media types were 

used to culture them. U20S cells were cultured in McCoys 5A- media (PAA laboratories) 

supplemented with 1% L-glutamine (Lonza), 10% Fetal Bovine Serum (FBS) (Gibco) and 1% 

Penicillin-Streptomycin mixture (Lonza). Cos7, HEK293 and Rat-1 cells were cultured in 

Dulbecco’s Modified Eagle’s Medium (DMEM) (PAA laboratories) containing L-glutamine 

and supplemented with 10% FBS and 1% Penicillin-Streptomycin mixture. All media and 

plasticware were kept and used in sterile conditions. Media, Dulbecco’s Phosphate Buffered 

Saline (PBS) (Gibco) and 0.25% Trypsin-Versene (EDTA) (Lonza) were pre-warmed in a 

37°C water bath before they came in contact with any cells.
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Experiments were carried out in Class II biosafety cabinets (Microflow Peroxide) 

cleaned with 70% Ethanol (Fisher Scientific) prior to performing any experiments.

2.4.2 Thawing Cells

lml frozen aliquots of cells were allowed to thaw at room temperature for l-2mins. 

Cell lumps were broken by trituration with a Gilson pipette and cells were seeded into a 

T25cm2 tissue culture flask (Greiner Bio One Ltd.) containing 9mls o f complete media. Cells 

were allowed to grow overnight in a 37°C incubator (Sanyo) maintained with appropriate 

water level and supplied with 5% CO2 . After 24hrs, in order to get rid of DMSO, old medium 

was removed and lOmls of fresh complete medium was added to the cells. Cells were returned 

to the 37°C incubator with 5% CO2 and left to grow until they became 85-90% confluent.

2.4.3 Subculturing Cells

Once the cells were 85-90% confluent, the entire media was removed from the tissue

culture flask and cells were washed twice with 5mls warm PBS. lml of warm trypsin

(GIBCO) was added to the flask, to detach cells from the flask surface, and incubated at 37°C

for l-2mins. To make sure cells were completely detached; the flask was gently tapped on the

sides and viewed under the light microscope (Olympus, CK2). As trypsin is harmful to the

cells, it was inactivated by adding 8mls of complete media. Cell aggregates were broken by

mixing the medium thoroughly by pipetting. Depending upon the extent of subculture

required, an appropriate volume of cells was added to a new T75cm2 tissue culture flask and

the volume was brought up to 20mls by adding complete media. In case of 1:20 dilution, lml
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of cells was added to 19mls of complete media while in the case of 1:10 dilution, 2ml of cells 

was added to 18mls of complete media in a T75cm2 tissue culture flask. Cells were returned to 

the 37°C incubator to grow for two days.

2.4.4 Freezing Cells

A 85-90% confluent flask or tissue culture dish was used to freeze cells. Media was 

removed and cells were washed twice with lOmls warm PBS. Cells were detached in the same 

way as mentioned in section 2.4.3. Cells were collected in a 50ml falcon tube (Greiner Bio 

One Ltd) and centrifuged (Beckman GS-15) at 1,000 rpm for lOmins. The supernatant was 

discarded and the pellet was resuspended in appropriate volumes of freezing media (6mls 

complete medium, 2mls dimethyl sulfoxide (DMSO) (Sigma), 2mls FBS. This was mixed well 

and 5mls of this mixture was added to 5mls of complete medium to make up lOmls freezing 

medium). The pellet was mixed thoroughly with the freezing media without formation of 

bubbles. Once mixed well, lml of the cell suspension was added to each 1.5ml cryovial 

(Nunc) and taken directly to -80°C. From a T75cm2 flask or a 10cm2 tissue culture dish, 

usually, 10 vials of cells were frozen down.

2.4.5 Plating Cells

In order to plate cells for in-vitro experiments, confluent dishes or flasks of cells were

first washed with warm PBS and trypsinised (in a similar way as in section 2.4.3). After the

trypsin was inactivated with media, the cells were collected in a falcon tube. 50pl of cells were

then mixed well with 50pl of trypan blue (diluted in PBS with a ratio of 1:2) and counted on
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the haemocytometer (Neubauer haemocytometer, Fisher). Appropriate number of cells 

(lX106cells/10cm dish; 500,000cells/6cm dish; 200,000cells/35mm dish) were plated in media 

containing FBS a day prior to transfecting them.

2.4.6 Transfections

In-vitro experiments required the introduction of plasmid DNA into various cell lines. 

Due to different plasmid sizes, vectors into which particular full-length DNA’s are inserted, 

differences in transfection efficiencies existed. Transfections in cell lines were carried out 

mainly using FuGENE® 6 transfection reagent (Roche). However, in some cases (e.g. Fbxl3- 

Wt-GFP and Fbxl3-G342V-GFP) transfections were carried out using jetPRIME reagent 

(Polyplus transfection™). Before transfecting cells with either reagents, cells were plated in 

required amounts in media containing FBS only, 24hrs prior to transfections so that the cells 

were 70-80% confluent on the day of transfections. Cells were plated either in 35mm dishes 

(in case of lumicycle experiments), 5cm dishes (for degradation experiments), 10cm dishes (to 

perform co-immunoprecipitations) or 6-well plates to check transfection efficiencies. A list of 

all the plasmids used is shown in Appendix 3.
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2.4.6.1 Transfection using FuGENE® 6

Transfections with FuGENE® 6 were first optimised using different DNA: 

FuGENE®6 ratios. Commonly used ratios were 1:3, 2:3 and 1:6, where the 1:3 ratio would 

produce a satisfactory result with > 80% transfection efficiency. Transfections were carried 

out using the manufacturer’s protocol. Briefly, for transfecting a 10cm dish, the total volume 

of transfection mixture required was 600pi. Calculated amounts of serum and antibiotic free 

media were first pipetted into sterile tubes into which 18pl FuGENE®6 was diluted, vortexed 

and incubated at room temperature for 5mins. 6pg DNA (3|ig of both plasmids in case of co

transfections) was added to the media-FuGENE®6 mixture, vortexed well, centrifuged and 

incubated at room temperature for 15mins. At the end of 15mins, the transfection mixture was 

added dropwise to the dishes while swirling them constantly. The dishes were left in the 

incubator at 37°C for 24-36hrs.

2.4.6.2 Transfection using jetPRIME™

HEK293 cells were transfected using jetPRIME™ transfection reagent. Similar to any 

transfection protocol, the HEK293 cells were plated in required amounts 24hrs prior to 

transfection. A 1:2, DNA:jetPRIME™ ratio was optimised for HEK293 transfections. For a 

10cm dish, 10|ig DNA (5pg each in case of co-transfections) was diluted in 500pl 

jetPRIME™ buffer in a sterile tube, vortexed and centrifuged. 20pl jetPRIME™ reagent was 

then added to the diluted DNA, vortexed, centrifuged, and incubated for lOmins at room 

temperature. At the end of the incubation, the entire transfection mixture was added dropwise 

to the 10cm dishes, incubated at 37°C for 24-36hrs.
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2.4.7 Synchronising Cells

In order to synchronise the circadian clock present in cells, medium containing 10|iM 

Forskolin (final concentration) (Alexis biochemicals) or lOOnM Dexamethasone (final 

concentration) (Sigma) was used. The time when the media containing forskolin or 

dexamethasone was added to the cells was considered as time 0. Cells were collected for 

protein localisation, RNA or protein extractions or prepared for lumicycle experiments at the 

required time points.

2.4.8 Cyclohexamide Treatment

Cyclohexamide (CHX) is a protein synthesis inhibitor. Treatment with CHX (Sigma) is 

particularly important to study degradation of proteins. For example: degradation of CRY by 

F-box proteins. For this, cells were seeded into appropriate culture dishes and transfected with 

desired plasmids (section 2.4.6) 48hrs prior to CHX treatment. At the start of the CHX 

treatment, the old medium from the cells is changed to medium containing 25pg/ml CHX 

(final concentration) and cells were collected at the required time point. The time of addition 

of CHX to the cells is considered as time 0. Cells are then collected as per requirement and 

used for protein extraction.
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2.4.9 Isolation of Mouse Embryonic Fibroblasts

Embryonic fibroblasts were cultured from 14.5 days post coitum (dpc) embryos. 

Before dissecting out the embryos, the tissue culture dishes were prepared. In order to help the 

fibroblasts to adhere to the surface of the dish, each 15cm2 tissue culture dish was first coated 

with a mixture of 5mls PBS and 0.1% Gelatin (Invitrogen). To that, 25mls of complete 

DMEM supplemented with extra glutamine (25mls of 100X stock/ 500ml of media) was 

added and the dishes were left in the 37°C incubator until the cells were plated. The number of 

dishes was dependent on the number of embryos as each embryo was plated individually 

according to their genotype.

Pregnant females were culled by cervical dislocation and their uteri containing the 

embryos were dissected out by making a small incision in the abdomen. Uteri were then 

dissected and embryos were kept in PBS. Embryonic head, internal organs and limbs were 

discarded. The tails were collected for genotyping. The caracass was washed by transferring it 

to a new dish containing PBS and then transferred to another dish containing 5mls trypsin. The 

caracass was then chopped well using sterile surgical scalpel blades (Fisher). This mixture was 

mixed well using a 5ml pipette and then added to a 50ml falcon and incubated for 5-10mins in 

a 37°C water bath while it was constantly being swirled. In order to dissociate the cells further 

from the caracass, the contents were transferred into a clean petri-dish and mixed well with a 

5-10ml syringe (without needle) (Plastipak BD, Fisher). The entire contents o f the dish were 

then transferred to the 15cm2 tissue culture dish with complete DMEM and gelatin. The 

dishes were left in the 37°C incubator supplied with 5%CC>2 for the cells to grow. After 24hrs, 

the cells were washed with 6-lOmls of warm PBS in order to get rid of any debris, following 

which 25mls of fresh complete media was added. The cells were left to grow till they reached
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85-90% confluency, after which they were split in 1:2 or 1:3 dilution in the same way as 

mentioned in section 2.4.3

2 .5  RNA EXTRACTION FROM TISSUES AND CELLS

RNA extraction was performed with Qiazol reagent (Qiagen). To extract RNA from

tissues, the tissue was first homogenised using a sterile pestle (Anachem) using Qiazol

reagent, lml of reagent was used for approximately 50-100mg liver or cerebellar tissue. If

RNA was to be extracted from cells, the cells were first washed twice with PBS (Gibco) and

2mls of qiazol reagent was directly added to a 10cm tissue culture dish. In order to ensure cell

lysis, the cell lysates were passed through a Gilson pipette several times. The cell lysates were

then collected in a 1.5ml eppendorf. The homogenised samples, tissue and cell lysates, were

incubated for 5mins at 15-30°C, following which 200pl chloroform (Fisher Scientific) per ml

of qiazol was added to each sample. The contents of the tube were mixed by shaking

vigorously for 15secs and incubated at 15 to 30°C for 2-3mins. The tissue and cell lysates

were then centrifuged (Beckman Coulter) at 12,000 rpm for 15mins at 4°C. Following

centrifugation, an upper aqueous layer containing RNA, an intermediate layer with DNA and a

lower phenol-chloroform layer was formed. The upper aqueous layer was transferred into a

fresh eppendorf and to this 500pl isopropanol (Fisher Scientific) was added, incubated at room

temperature for lOmins and centrifuged at 12,000 rpm for lOmins. The pellet obtained was

washed with 70% ethanol (Fisher Scientific) first by vortexing it and then by centrifugation at

7,500rpm for 5mins at 4°C. Ethanol was removed completely and the pellet was air-dried

before resuspending in water. The amount of water used for resuspending depended on the

size of the pellet. Once completely resuspended, RNA concentration was determined using the
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NanoDrop apparatus (Thermo Scientific). Prior to quantifying the RNA, the pedestals of the 

nanodrop is are cleaned well to avoid contamination. The nanodrop is then calibrated with 

water. Then ~l-1.5|il of the RNA is placed on the pedestals of the nanodrop and the RNA 

concentration is determined using the NanoDrop 8000 software.

2 .6  REVERSE TRANSCRIPTION

To make complementary DNA (cDNA) from RNA, Superscript™ III First - Strand 

Synthesis SuperMix for qRT-PCR (Invitrogen) was used. The samples from which RNA was 

extracted were brought to a concentration of lpg  (per reaction) to be used for the reverse 

transcription reactions. The following components were added into the tube with RNA on ice: 

2X RT Reaction Mix 1 Opl

RT Enzyme Mix 2pl

DEPC- treated water to 20pl

The contents in the tube were gently mixed and incubated at 25°C for lOmins following which 

it was incubated at 50°C for 30mins. The reaction was terminated at 85°C for 5mins and the 

contents were then cooled on ice. lp l (2U) of E.coli RNase H was added to the mixture and 

then incubated for 20mins at 37°C. cDNA thus prepared was stored at -20°C until further use.
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2 .7  QUANTITATIVE REAL-TIME PCR

Quantitative real-time PCR was performed to determine the expression of clock genes 

across time points in both Cryl'A; Fbxl3Afll/Afll and C ry l/"; F b x l 3 double mutants. For this, 

liver and cerebellum tissues were collected at ZT 3,7,11,15,19 and 23 for both wild-type and 

mutant mice (ZT times or Zeitgeber times are relative to ZT 0 , the time of lights on). RNA 

was extracted from the tissues as described in section 2.5 after which cDNA was prepared as 

described in section 2.6. Real-time PCR was performed using Power SYBR® Green PCR 

Master Mix (Applied Biosystems). cDNA used for real-time PCR was diluted to 1:4. All the 

primers used to amplify clock genes and endogenous controls were designed using the Primer 

Express V3 software (Applied Biosystems) in a way that they would span an intron (so as to 

ensure that contaminating genomic DNA would not be amplified), have 60°C as their 

annealing temperature and were then used at a concentration of 2\xM. For each clock gene, the 

PCR reactions were set up in triplicate for every sample at every time point. Reactions for an 

endogenous control (which are constitutively expressed and do not oscillate), ribosomal 

protein 113a (RPL13a), were set up in the same way. The following components were added to 

the PCR reaction set up in a MicroAmp® Fast Optical 96-Well plates (Applied Biosystems). 

The list of genes and primer sequences used for amplification are mentioned in Appendix 1.
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Table 2,7: Set up with reagents and PCR cycling conditions fo r  qRTPCR

R eag e n ts P r im e r cDNA(pl) ddH 20
(Pi)

T o ta l 
R eac tio n  

V o lu m e (p i)

Power SYBR Green PCR master mix 

(Applied Biosystems)- lOpl

Forward/Reverse
full

F: 1 (2pM)

R: 1 (2pM)

3
(1:4 diluted)

5 20

PCR program: 50°C for 2mins, {95°C for lOmins, 95°C for 15mins}X 40cycles, 60°C for lmin

The plate was sealed well with MicroAmp® Optical Adhesive Films (Applied Biosystems). 

The real time 7500 FAST system (Applied Biosystems) was used to run the PCR using a 

standard program as mentioned in the above table (table 2.7). The cycle threshold (Ct) values 

obtained through automatic detection by the Real time 7500 software were then used to 

calculate the expression of each clock gene relative to the endogenous control, RPL13a. The 

Ct values were used in the following series of calculations for each gene at every specified 

time point:

1. ACt - Ctgene-CtRPL13a
Here, the expression of the housekeeping gene was subtracted from the expression of the 

gene in question.

2. A  ACt — ACtgene_ ACtcaijbrator sample
The expression of every gene was made relative to a calibrator (wild-type ZT 3 sample).
^ ^(-AACt)

This would measure the fold change in expression of the gene relative to the endogenous 

control. This value was plotted on the graph for each gene at each time point.
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2 .8  PROTEIN EXTRACTION

2.8.1 Protein extraction from Tissues

Tissues (Eyes, Brain, Liver, Cortex, SCN, Kidneys, Heart and Lungs) were collected 

and snap-frozen at various ZT times (ZT3,7,11,15,19 and 23) in order to look at the expression 

of circadian proteins. RIPA buffer (1.75gms NaCl, 2mls NP40, lOmls Tris pH 7.5 1M, 2mls 

10% SDS, lOmls 10% Sodium deoxycholate, 176mls H2O) with protease and phosphotase 

inhibitors (Roche) was used for extracting proteins from tissues. The required amount of tissue 

(usually 50-70mg) was added to the FastPrep™ lysing matrix D (MP Biomedicals) that are 

2ml tubes containing 1.4mm ceramic spheres and 500^1- lml of RIPA buffer was added 

directly to the beads (depending upon the amount of tissue). Tissues were lysed in a cold 

centrifuge (settings- between 5-10 for 20-30 seconds) (FastPrep, Bio Thermo). This step was 

carried out 2-3 times until the tissue is completely lysed. This causes the formation of a white 

froth and the entire contents of the tube were transferred to a clean eppendorf. This was further 

centrifuged to aid the separation of the pellet and the protein containing supemantent. 

Centrifugation was carried out by at 12,000 rpm for 20 mins at 4°C. The supernatant thus 

formed was used for the Bradford assay for protein concentration determination (Section 2.9)

2.8.2 Protein extraction for CRY1

CRYl levels were investigated across various time points in cerebellum. Proteins were 

extracted from snap-frozen tissues using 2X Laemelli Buffer (1.2gms SDS, 6mgs 

Bromophenol blue, 4.7ml Glycerol, 1.2ml Tris 0.5M pH 6.8, 2.1ml ddH20  and reducing agent
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(p-mercaptoethanol or DTT). The buffer was made in a concentration of 6X which was first 

diluted to 2X with water. Slices of cerebellum, weighing about 10-20mg, were collected in 

well-labelled eppendorfs and were homogenised on ice (without the buffer) using a sterile 

pestle (Sigma). To this, lOOpl of 2X Laemelli buffer was added and mixed well. The proteins 

were allowed to solubilise by sonicating (Health-sonics) the samples for 30mins. Following 

sonication, the samples were centrifuged for 15mins at 4°C. Required amounts of supernatant 

were collected and the loading buffer and sample reducing agents were added and directly 

loaded on the gel. Details of preparing and running samples are described later in section. It 

should be noted that protein supernatant was not quantified by the Bradford assay due to the 

nature of the lysate preparation; however equal amounts of supernatant was used. The proteins 

were eventually quantified using a reference protein (Actin) on a western blot.

2.8.3 Protein extraction from Cells

RIPA buffer with protease (Roche) and phosphatise (Roche) inhibitors (1 tablet each 

for 10ml cell extract) was used to extract proteins from cells. Media was removed and the cells 

were washed twice with ice-cold DPBS. Depending on the size of the dish, 150-300pd of 

complete RIPA buffer (150[il/6cm dish, 300|il/10cm dish) was added to the cells and was left 

on ice for 30mins. Cells were then scraped off using sterile cell scrapers (Greiner Bio-one), 

mixed well, transferred to a clean tube and centrifuged at 12,000 rpm for 30mins at 4°C. The 

supernatant was used to read protein concentrations.
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2 .9  PROTEIN QUANTIFICATION

The Bradford assay was used to determine the concentration of extracted proteins from 

tissues and cells. A series of bovine serum albumin (BSA) dilutions were used as standards. 

This was done by diluting the lmg/ml BSA stock (NEB) to known concentrations of 2.0, 1.0, 

0.5, 0.25 and 0.125mg/ml. As protein extractions were performed in RIPA buffer with 

protease and phosphatase inhibitors, BSA serial dilutions were also prepared in the same 

buffer. However, due to the presence of detergents in RIPA buffer, the standards were 

prepared in a dilution of 1:5 RIPA: H2 O. Protein lysates from cells were either used 

concentrated or diluted 1:5 or 1:10 in H2O. Protein lysates from tissues were diluted 1:20 in 

H2O. To account for technical variability, each standard and sample were read in triplicate. 5|il 

of BSA standards or protein lysates were added in triplicate into a 96-well flat bottom plate 

(Greiner Bio-One Ltd). Following sample addition, 250pl of the Bradford reagent (Sigma) 

was added and samples were quantified on the spectrophotometer (nQuant Biotek Instruments 

Inc.) using the KC Junior Software.
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2 .1 0  WESTERN BLOTTING

2.10.1 Sample preparation for CRY1 protein gels

Since the protein samples from Cry2~/~; FbxlSA:fh/Â  cerebellum was not quantified due 

to the presence of interfering components with the Bradford reagent, equal amounts of protein 

supernatant was used. To 5|il of protein sample, lp l of Bromophenol blue and 0.4pl of p- 

mercaptoethanol (reducing agent) were added and mixed well by vortexing. The samples were 

brought to 10|il with double distilled water (ddThO). The samples were then denatured by 

heating on the heat block at 70°C for lOmins, centrifuged and left on ice ready to be loaded on 

the gel.

2.10.2 Sample preparation for other protein gels

Once protein samples from cells and cerebellum of Cryl'A; Fbxl3Afll/Afll were quantified, 

they were prepared to be run on the protein gels. Amounts of protein lysates to be loaded 

differed from cells and tissues due to the quality of antibodies used. In case of cell lysates used 

for degradation and immunoprecipitation experiments, 5pg of lysates were used; 10pig of 

protein was used for CRY2 gels that would be used for CRY2 antibody studies. In any case of 

preparation, 2.5pl of 2X LDS Sample loading buffer (Invitrogen) and l|il o f reducing agent 

(Invitrogen) was added to the required amounts of protein lysates. The volume of protein 

lysates were made upto lOpil with ddHhO and then denatured by heating it at 70°C for lOmins 

and left on ice until they are loaded.

85



Chapter 2: Methods and Materials

2.10.3 Running protein gels

The samples prepared with loading buffers and reducing agents were loaded on 10- 

well or 12- well 10-12% Bis-Tris NuPAGE precast gels (Invitrogen). The combs from the gels 

were removed and the gels were rinsed with water in order to get rid of the storage solutions. 

The wells were washed with water so that there were no air-bubbles formed that could 

interfere while loading the samples. The gels were set up in the gel tank according to the 

manufacturer’s protocol (Invitrogen), creating two chambers, the middle chamber and the 

outer chamber. In order to check any leakage that may occur during running the gel, the 

middle chamber was first completely filled with IX Running Buffer (50ml IX MOPS Sodium 

Dodecyl Sulfate (SDS) running buffer (Invitrogen), 950mls distilled water). 500pl NuPAGE 

Antioxidant (Invitrogen) was added to the middle chamber to protect the protein. The outer 

chamber was completely filled with the IX running buffer. lOpl SeeBlue Plus 2 pre-stained 

protein ladder (Invitrogen) was loaded on the gel after which, the samples prepared as 

described in 2.10.1 and 2.10.2 were loaded onto the 10 well or 12-well gels. The gel was 

electrophoresed at 200V for lhr or 115V for 2hrs, depending upon the separation required 

using the NuPAGE power pack (Invitrogen).

2.10.4 Blotting

The proteins separated by electrophoresis were transferred to either Hybond- 

Polyvinylidene Fluoride (PVDF) or Hybond-ECL nitrocellulose membranes (GE Healthcare) 

using a semi-dry blotter (Bio-Rad). The membranes were prepared according to the size o f the 

gels and were first activated using methanol in case of PVDF and by water in case of
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nitrocellulose and left soaked in the transfer buffer (tris base (Sigma) 11.64gms, 

glycine(Sigma) 5.8gms, 7ml of 10% SDS solution (SDS powder-Sigma), methanol (Fisher) 

400mls, water to bring upto 21itres) for lOmins. In the meanwhile, the gel plates were 

separated and the gel itself was trimmed to get rid of the lower tip and the wells. A comer of 

the gel was cut to mark the orientation of the gel. The gel was left in transfer buffer until 

everything was prepared for the procedure. Thick filter papers (Bio-Rad) measuring the size of 

the gel were prepared by soaking them in transfer buffer. The assembly of the semi-dry blotter 

was as follows - a single sheet of filter paper was first placed on the semi-dry blotter and 

excess transfer buffer and air bubbles were removed by rolling with plastic roller. The next 

layer was formed by the activated PVDF or nitrocellulose membrane. The air bubbles were 

removed using the roller. The protein gel was then overlaid on the membrane and ensured that 

no air bubbles were present. Finally, a sandwhich was created by placing the second sheet of 

filter paper soaked in transfer buffer. To completely ensure the absence of air-bubbles, the 

roller is used on the second filter paper. The blotter plate was carefully placed and proteins 

were allowed to transfer at 15V for 90mins. It must be noted that in case of using the odyssey 

fluorescence system, low fluorescence PVDF membrane (Thermo Scientific) was used instead 

of the usual PVDF membrane. However, the assembly of the blotter remained the same as 

described.

2.10.5 Immunodetection of blots

The PVDF membranes and nitrocellulose membranes containing the transferred 

proteins were prepared for immunodetection in the following ways.
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2.10.5.1 Using ECL

At the end of transfer of proteins, the PVDF membrane was removed from the blotter 

and protected from non-specific binding by blocking the membrane in a 5% blocking reagent 

(dried non-fat milk (SLS) prepared in either PBS containing 0.1% Tween-20 (Sigma)(PBST) 

or Tris buffered saline (TBS) (Sigma) containing 0.1% Tween-20 (TBST)). This solution was 

referred to as blocking solution. The membrane was left in a dish with the blocking solution 

either at 4°C for 24hrs or for 2hrs at room temperature on a shaking platform (See-saw rocker, 

Stuart Scientific). At the end of blocking, the membrane was processed for immunodetection. 

The membrane was probed with antibodies specific to the proteins of interest. Antibody 

dilutions were according to the company datasheets and were diluted in 5% blocking solution. 

Antibodies used were obtained from various places. The a-CRYl and a-CRY2 primary 

antibodies were custom made and were a kind gift from Dr. Michael H. Hastings (Medical 

Research Council, Laboratory of Molecular Biology, Cambridge). The other antibodies for 

epitoge tags were commercially available. Details of antibodies used and incubation times are 

described in Table 2.8 below.

At the end of primary incubation, the membrane was washed thoroughly thrice for 

15mins each with PBST or TBST on a belly dancer (Stuart Scientific) so as to remove non

specific primary antibody binding. Depending on the primary antibody used, the appropriate 

secondary antibody was chosen. Both the Anti-mouse IgG peroxide (Sigma) and anti-rabbit 

(Bio-Rad) were HRP conjugated and were used at a dilution of 1:10,000 in PBST. However, 

it must be noted that for CRY1 and CRY2, the secondary antibody, anti-rabbit was used at a 

dilution of 1:3000 in TBST. The membrane was left to incubate with secondary antibody for 1 

hr at room temperature on a shaking platform. At the end of lhr, the membrane was washed
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thrice for 15mins each with PBST or TBST. Amersham™ ECL Plus Western Blot Detection 

Kit (GE healthcare) or Amersham™ ECL Advance Western Blot Detection Kit (GE 

healthcare) for detecting CRY1 and CRY2 were used to detect the secondary antibody on the 

membrane. Detection with ECL Plus solutions was carried out by mixing ECL Plus solution A 

and B in unequal amounts (975|ft solution A and 25|il of solution B), whereas for detection 

using ECL Advance, solution A and B were mixed in a 1:1 ratio and then diluted with water in 

equal volumes. The ECL mixture was then spread evenly on the membrane and left to 

incubate for 3-4mins at room temperature. This would allow the horseradish peroxide, HRP 

(conjugated to the secondary antibody) and the hydrogen peroxide present in ECL solution A 

to oxidise luminol present in solution B which then produced luminescence. Excess ECL was 

drained from the membrane and placed between two acetate sheets which in turn were 

mounted in a dark light-proof cassette. X-ray films were used to develop the membrane. X-ray 

sheets were exposed to the membrane in the dark and further allowed to develop (Xograph 

Compact X4) to view the protein band of interest. X-ray sheets were first exposed for lOsec 

and then adjusted to various exposure times as desired. In some cases, the ECL treated 

membranes were developed using the computerised UVP ChemiDoc-It™ Imaging System for 

Chemiluminescent imaging (UVP) which had integrated dark room settings and used cooled 

CCD camera to capture images which were then stored on the computer.

2.10.5.2 Using the Odyssey System

The Odyssey® Infrared Imaging System (Ll-COR Biosciences) allows one to detect 

two immunoreactivities simultaneously on the same blot. This system was used for 

immunodetection in some cases (Fbxl21 interactions). As mentioned in section 2.10.4, low
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fluorescence PVDF membrane was used with the Odyssey System. Once proteins were 

transferred on the membrane, the membrane was removed from the blotter and placed in 5% 

dried non-fat milk solution prepared in PBS. It must be noted that no Tween-20 was added 

while blocking the membrane. The membrane was blocked for 2hrs at room temperature or 

overnight at 4°C whilst shaking. The primary antibodies were incubated with the membranes 

as described in section 2.10.5.1. Details of the antibody and conditions used are detailed in the 

below Table 2.8. At the end of primary antibody incubation, the membrane was washed well 

three times for 15mins each with PBST. Fluorescent LI-COR secondary antibodies that were 

compatible with the 685 and 785nm wavelength of the Odyssey system were used together. 

The membranes were probed with the LI-COR 680 (red) and/or LI-COR 800 (green) 

antibodies diluted in 1:15000 ratio prepared with the blocking solution containing Tween-20. 

The dishes were covered with silver foil, to protect them from light, and left on the shaking 

platform to get an even spread of the antibody. It must be noted that 0.001% SDS was required 

to be added during the secondary antibody incubation. The secondary antibody was allowed 

to bind to the membrane by incubating the antibody for lhr at room temperature on a shaking 

platform. The membrane was then washed well for 20mins (4 washes for 5mins each) on a 

belly dancer and given a final wash with PBS only. It must be noted that all the steps 

following the addition of the secondary antibody, were performed in the dark. The membranes 

were then left to dry completely in the dark, and once dried, they were analysed using the 

Odyssey software.
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2.10.5.3 Using the Snap i.d. ™ Protein Detection System

In some cases, the membrane with proteins transferred in the same manner as 

described in section 2.10.4 was processed further using the Snap i.d. ™ Protein Detection 

System (Millipore). This system applied vacuum to drive the antibody to bind to the 

membrane unlike the conventional diffusion method. The Snap i.d.™ system was assembled 

as per the manufacturer’s protocol where the single or double blot holders (Millipore) were 

wet with MilliQ water and the excess water was drained. The blotted membrane was placed on 

the blot holder which was then overlaid with the spacer (Millipore). A roller was used to 

remove the air-bubbles and once the holder was shut, it was turned over and placed on the 

Snap i.d. system itself. As this system was vacuum based, a lower concentration of warm 

blocking solution was used. The blocking solution was 0.2% dried non-fat milk prepared in 

PBS or TBS containing 0.1% tween-20. The blocking solution was prepared a day before and 

left in the 37°C water bath overnight to warm. 30mls of blocking solution was applied to the 

membrane placed in the blot holder and vacuum was applied, until the blocking solution was 

completely drained out. Following blocking, the primary antibody was prepared in 3mls of 

blocking solution in the same dilution as used for conventional western blotting, detailed in 

Table 2.8. The primary antibody was left for incubation for lOmins after which it was washed 

with 0.1% PBST or TBST three times. Similar to the preparation of the primary antibody, the 

secondary antibody was incubated for lOmins after which it was washed out with the washing 

buffer, PBST or TBST. The membrane was then treated with Amersham™ ECL Plus Western 

Blot Detection Kit or Amersham™ ECL Advance Western Blot Detection Kit and the protein 

bands of interest were detected using the dark room developer or the ChemiDoc- It™ Imaging
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system for Chemiluminescent imaging (UVP) which had integrated dark room settings and 

used cooled CCD camera to capture images which were then stored on the computer.

Table 2.8: Details o f  antibodies used fo r  immunodetection o f  western blots

l°A n tibod y D ilution /D u ration 2°Antibody D ilu tion /D u ration

a- HA (Covance) 
a- MYC (Invitrogen) 

a- GFP (Roche)

1:1000 O/N 4°C a- Mouse 
(Sigma)

1:10,000 lhr R.T

a- Actin (Abeam) 1:80,000 30mins R.T a- Mouse 
(Sigma)

1:10,000 lhr R.T

a- HA (Sigma) 
a- MYC (Sigma)

1:1000 O/N 4°C a- Rabbit 
(Bio-Rad)

1:10,000 lhr R.T

a- CRY1 (Custom made) 
a- CRY2 (Custom made)

1:500 O/N 4°C a- Rabbit 
(Bio-Rad)

1:3000 lhr R.T

2 .1 1  CO-IMMUNOPRECIPITATIONS

In order to investigate the interaction o f two proteins, cell lines (Cos7 and HEK293)

were doubly transfected with mammalian expression plasmids of interest. Proteins from the

cells were extracted and quantified as described in section 2.8.3 and 2.9. These proteins were

then used to co-immunoprecipitate (Co-ip) protein complexes using protein G Sepharose

beads (Sigma). 20pl of protein G sepharose beads were washed with 500|il RIPA buffer

(without inhibitors) to remove the ethanol in which the beads were stored. To the washed

beads, 250pg- 500pg of protein lysate was added and the total volume was brought upto 250-

500|il. The protein samples and the beads were incubated on a rotor (Stuart Scientific) for lhr
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at 4°C. The protein-bead mixture was centrifuged at 1,000 rpm for 2 mins at 4°C. The beads 

were discarded as they would contain all the non-specific binding. The supernatant was 

transferred into a new tube and the required amount of antibody was added. 2pg of antibody 

(mouse anti-HA (Covance), rabbit anti-Myc (Sigma), mouse anti-myc (Invitrogen), mouse 

anti-GFP (Roche)) was added to the pre-cleared protein lysate and left to incubate overnight at 

4°C on a rotor. The next day, 20pi of fresh protein G sepharose beads were washed with RIPA 

buffer and the protein-antibody complex was added to the freshly washed beads and incubated 

for lhr at 4°C on a rotor. At the end of incubation, the beads were centrifuged at 1,000 rpm for 

2mins at 4°C, and the supernatant was preserved as control. The beads were then washed three 

times with 500pl RIPA buffer complete containing protease and phosphatase inhibitors. The 

supernatant from all the washes was stored as controls. After the final wash, the proteins were 

eluted by adding 50pl NuPAGE 2X LDS Sample Loading Buffer (Invitrogen). The samples 

were then either stored at -20°C without the addition of reducing agent or the western blot was 

performed, in which case 5 pi of NuPAGE Reducing Agent (Invitrogen) was added and the 

samples were heated for lOmins at 70°C. 10-15pi of the eluted protein sample was run on a 

protein gel, blotted and probed and immunodetected with the appropriate antibody in 

appropriate dilutions as described in section 2.10.2- 2.10.5.
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2 .1 2  CLONING

Although several plasmids were used, the only plasmid generated during the course of this 

project is the F&r/i-GFP-Flag in a pIRES-hrGFP-la vector (Stratagene). All the other 

plasmids used are listed in Appendix 3.

2.12.1 Primer Design

A variety of primers were designed to clone full length cDNA sequences of interested 

circadian genes into mammalian expression vectors with epitope tags. The primers were 

designed in a way that they had linker sequences with restriction sites for cloning at the 3’ and 

5’ ends. Also since all the plamids cloned had a C-terminal epitope tag, primers designed 

included the start codon and a Kozak sequence. However, the stop codon was not included. It 

was important to keep in mind that the restriction enzymes chosen would not cut the insert and 

cut the vector only once in the entire sequence so that to avoid several pieces of vector. The

primers were designed manually by including the kozak sequence (CC ACC) and excluding

the native stop codon. Once designed, the primers were synthesised by Sigma Aldrich. Details 

of primers, plasmids and vectors are included in Appendix 2.

2.12.2 Full length amplification

The full-length cDNA amplification was performed using the Phusion™Flash High-

Fidelity PCR Master Mix (Finnzymes) in a 20pi total reaction volume. For each reaction, lOpl

Phusion™ Flash mix, 0.5pl of each primer (both forward and reverse primer were at a

working concentration of 20pM), lpl DNA (cDNA at a concentration between 50-100ng/pl)
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were mixed on ice and the total reaction volume was brought to 20|il with ddH20 . The PCR 

reactions were carried out on a G-storm thermal cycler (GRI) using an initial denaturation step 

at 98°C for lOsec, followed by 30 cycles denaturation at 98°C for lsec, optimised annealing 

temperature (or gradient step) for 5sec and extension at 72°C for 15sec per lkb. At the end of 

the cycles, a final extension step at 72°C for lmin was included in the PCR program. PCR 

products were stored at 4°C until further steps were carried out. Details of PCR programs used 

for each primer pair are stated in the appendix

2.12.3 Gel Electrophoresis

PCR products were analysed by gel electrophoresis using 1% agarose gels containing 

IX gel red nucleic acid gel stain (10,000X, Cambridge Bioscience). 1% agarose gel was 

prepared by dissolving the agarose (Sigma) in IX Tris-acetate-EDTA (TAE) buffer, boiled 

well until the agarose was completely dissolved, sufficiently cooled and poured into a sealed 

gel tray and allowed to solidify for 45mins. PCR products were mixed with a loading buffer 

(IX  Tris-borate-EDTA (TBE) buffer, 25% Glycerol and Orange G) and loaded onto the 

agarose gel. To determine the size of the PCR product, a DNA ladder, 100bps (NEB) or 1Kb 

Plus DNA ladder mix (Invitrogen), was also loaded on the gel. The gel was run at 100V for 

lhour and later analysed using the Ultra Violet (UV) Gel Doc system (Bio-rad).

2.12.4 PCR Purification

Before the PCR products were gel extracted and ligated, they were purified to remove

all the contaminants. The QIAquick PCR Purification kit (Qiagen) was used to purify the
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products. The PCR products were first transferred to a 1.5ml clean eppendorf and to one 

volume of the PCR product, 5 volumes of buffer PB was added and mixed well. The samples 

were then added to the QIAquick spin column placed in a 2ml collection tube and centrifuged 

(Biofuge pico. Heraeus) at room temperature for 30-60sec at maximum speed. The spin 

column was washed by adding 750pl buffer PE and centrifuged for 30-60secs. To get rid of 

the last amounts of solution, the spin column was centrifuged and supernatant was discarded. 

The spin column was then placed in another clean eppendorf, to which 30(4.1 of ddlUO was 

added directly on the membrane and incubated for a minute after which it was centrifuged for 

1 minute. The purified product was quantified using the nanodrop.

2.12.5 Gel Extraction

Once PCR products were purified, they were used as a template to re-amplify the DNA 

(using the same Taq mix) and run on a gel, the DNA bands were gel extracted before they 

were used in the ligation reactions. The QIAquick Gel Extraction kit (Qiagen) was used for 

this purpose. It was essential to bear in mind that the quantity of DNA obtained after a gel 

extraction procedure was very small, and hence, it was essential to set up ten repeats of the 

PCR reaction and run on a 0.8% agarose gel to be used for gel extraction. Using the UV lamp, 

the DNA bands were precisely cut using a sharp scalpel blade. The use of UV was as 

minimum as possible as UV nicks and crosslinks DNA. The gel containing the DNA band was 

cut into pieces and placed into pre-weighed empty eppendorfs, and weighed again. This would 

allow us to calculate the volume of the gel. To one volume of a gel, three volumes o f Buffer 

QG was added and immediately incubated for lOmins at 50°C with intermediate vortexing 

every 2-3mins. This was done until the gel was completely dissolved in the buffer. If  the
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colour of the solution had changed during incubation, lOpl 3M sodium acetate was added and 

mixed well. Similar to the previous step, a 1:1 ratio of isopropanol was added i.e. to one 

volume of the gel, one volume of isopropanol was added to the sample. A maximum of 800pl 

of the mixture was added to the spin column placed in a collection tube, (both provided in the 

kit), and centrifuged for 1 min at room temperature. If the volume of the mixture was more 

than 800pl, the above step was repeated until the entire volume was centrifuged. The flow 

through was discarded, 500pl of buffer QG was added to the spin column and centrifuged for 

lmin at room temperature at maximum speed. The spin column was washed by addition of 

750pl buffer PE followed by centrifugation for lmin at maximum speed. The column was then 

placed in a clean eppendorf and DNA was then eluted by adding 30pl ddF^O, leaving it for a 

minute and centrifuging it for an additional minute. The eluted DNA was quantified using the 

nanodrop.

2.12.6 Ligation

Once the insert (amplified full length sequence) and the vector (pIRES-GFP-Flag) are 

purified and gel extracted, they were digested using the restriction enzymes (designed in the 

primer linker sequences) before they were ligated together. The right conditions for the 

restriction digest were found at the following website developed by New England Biolabs 

http://www.neb.com/nebecomm/DoubleDigestCalculator.asp . The insert and the vector were 

digested separately, however using the same conditions. To 2pg of insert or vector, lp l o f the 

chosen restriction enzymes (NEB) was added. In addition to that, according to the conditions 

described on the double digest calculator page, 2pl of the appropriate NEB buffer and lp l of 

BSA was added. The total volume of the digest was brought upto 15-20pi with ddFbO and left

  97

http://www.neb.com/nebecomm/DoubleDigestCalculator.asp


___________________________________________________Chapter 2: Methods and Materials

to digest at the right temperature (usually 37°C for 24hrs). The digest for the insert and vector 

were run on a 1% agarose gel to check if the insert and the vector were completely digested 

(as in section 2.12.3) and were gel extracted as in section 2.12.5 to ensure the right fragments 

were chosen for ligations.

Before setting up ligations, the exact molar ratios were first calculated using a web 

based program http://www.insilico.uni-duesseldorf.de/Lig Input.html where the sizes of the 

vector and the insert were inserted and the desired ratio was calculated. Usually, molar ratios 

of 1:2, 1:3, 1:4, 3:1, 3:2 were tried to ligate the insert and the vector. The calculated amounts 

o f the vector and the insert were mixed on ice and to that 0.5^1 T4 ligase (NEB) and l\x\ T4 

ligation buffer (10X) were added, mixed well and left at 12°C overnight in a cooling block. 

Ligation reactions were occasionally left at room temperature for 1 hr. The condition would 

differ from every insert and vector used. At the end of the incubation time allowing the insert 

and the vector to ligate, the product was used for transformations as described in the next 

section.

2.12.7 Transformation

Subcloning Efficiency™ DH5a™ Chemically Competent Escherichia Coli (E.coli)

cells were used to transform the plasmid DNA. To ensure the viability o f the cells, the initial

steps of this procedure were carried on ice. 50pl of DH5a cells per transformation reaction

was thawed out on wet ice. 1-1 Ong (l|il) o f plasmid DNA or each ligation reaction was added

to each vial of the competent cells and mixed well using the pipette tip. The cells containing

the DNA are left on ice for 30mins after which they are heat shocked for exactly 20secs in a

42°C water bath. The vial was then placed on ice for 2mins. 950pil of pre-warmed SOC
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medium (Invitrogen) was added to the cells and left on a shaking incubator at 37°C for lhr. 

50-100|il of the cells and DNA mixture were spread on Luria broth (LB) agar plates that 

contain an appropriate antibiotic (usually ampicillin (Sigma) at lOOpg/ml concentration was 

used). The LB plates were inverted and left in a 37°C incubator overnight for colonies to grow.

LB agar plates were prepared by heating a litre of water with lOgms tryptone (Sigma), 

5gms yeast extract (Sigma), 5gms NaCl (Sigma) and 15gms agar until the ingredients are 

dissolved. The agar was then autoclaved for 25mins. Once cooled, appropriate amounts of 

ampicillin was added to get a final concentration of lOOpg/ml and mixed well. The agar was 

quickly poured into sterile petri dishes and then allowed to cool and set. The plates were 

stored at -20°C.

2.12.8 Plasmid Preparation

A well isolated single E.coli colony from a transformed plate containing the DNA of 

our interest was picked and allowed to grow in LB media (LB broth is prepared in the same 

way as LB agar, without agar) containing appropriate antibiotic (usually ampicillin). The 

volume of growth media in which the colony was grown depended on the amount o f DNA 

required. Thus, it was grown either in 5mls in case of performing a plasmid minipreparation or 

in 25mls in case of performing plasmid midipreparation.

2.12.9 Plasmid Minipreparation

Plasmid minipreparation was performed using the PureYield™ Plasmid Miniprep

System (Promega). The bacterial culture grown was first centrifuged for 5mins at maximum
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speed at 4°C and the supernatant was discarded and the pellet was resuspended in 600pl water 

and mixed well. lOOpl of Cell Lysis Buffer was added and mixed well by inverting 6 times. 

The colour of the mixture should have changed to blue, which ensured that complete lysis of 

cells had taken place. 350pl of cold neutralisation solution was added to the lysed cells, mixed 

well and centrifuged at room temperature at maximum speed for 3mins. The supernatant was 

transferred to a clean PureYield™ minicolumn and centrifuged at maximum speed for 15secs. 

The minicolumn was washed using 200|il Endotoxin Removal Wash and spinning the tubes 

again for 15secs at the maximum speed. A second wash of the minicolumn was performed 

using 400pl Column Wash Solution and centrifuging the columns at maximum speed for 

15secs. The DNA from the minicolumn was then eluted by placing the minicolumn in a clean 

1.5ml eppendorf and adding 30pl of water directly on the filter present in the minicolumn. The 

water added was left for lmin before the DNA was eluted by centrifuging the minicolumn at 

maximum speed for 30secs.

2.12.10 Plasmid Midipreparation

The Plasmid Midipreparation was carried out when greater amounts o f plasmids

(~100|il) was required. A single colony of required plasmid was picked from the LB plate and

allowed to grow in 25ml of LB overnight on a shaking incubator at 37°C. The next day, the

plasmid midipreparation was performed using the Qiagen plasmid purification kit (Qiagen)

according to the company’s datasheet. The bacterial culture was centrifuged for 15mins at

6,000rpm a 4°C. The pellet was resuspended in 4mls o f buffer PI. Once resuspended, 4mls

buffer P2 was added and mixed well by inverting the tube. The culture was incubated at room

temperature for 5mins after which 4mls of chilled buffer P3 was added to the bacterial culture,
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mixed well and immediately added to the pre-arranged QIAfilter cartridge screwed with the 

cap and incubated for lOmins at room temperature. During incubation, the QIAGEN-tip was 

equilibrated with 4mls of QBT buffer. At the end of the lOmins incubation, the cell lysate was 

allowed to flow into the equilibrated tip by inserting a plunger into the QIAfilter cartridge. The 

cell lysate was allowed to flow by gravity. The tip was washed twice with buffer QC, using 

lOmls for each wash, after which the tip was transferred into a new non-polycarbonate 

collecting tubes. The DNA was eluted by adding 5mls of buffer QF to the tip. DNA was 

precipitated by adding 3.5ml isopropanol, vortexed and centrifuged (Beckmann Coulter) at 

15,000g for 30mins at 4°C. The pellet thus obtained was washed with 2mls of 70% ethanol 

followed by centrifuging the tube at 15,000g for lOmins at 4°C. The supernatant was discarded 

and the pellet was allowed to air-dry after which, the pellet was resuspended in appropriate 

volume of water. Usually, lOOpl of water was used to resuspend a good sized DNA pellet. The 

DNA was quantified using the nanodrop.

2.12.11 Sequencing

Plasmids (between 30-100ng/pl) or PCR products (between 10-50ng/pl) along with 

specific primers (lOpmol/pil) for sequencing were sent in separate tubes to GATC where high 

throughput sequencing was carried out to ensure that correct ligation with the insert in the 

correct orientation had taken place. Sequencing results were then analysed using sequences 

from Ensembl and NCBI blast.
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2.12.12 Storage of bacterial cultures as glycerol stocks

For preserving bacterial cultures of a correctly oriented plasmid, glycerol stocks were 

prepared and stored at -80°C. They were prepared by thoroughly mixing 600pil of bacterial 

culture with 400|il of glycerol (Fisher Scientific) into a 1.5 or 2ml well labelled, sterile cryo 

tubes (Nunc) and stored at -80°C immediately.

2.12.13 Isolation of single colonies from glycerol stock

In order to isolate a single colony from a preserved glycerol stock, the glycerol stock is 

first thawed out on ice. In the meanwhile, a LB plate is warmed. To isolate a colony, a sterile 

innoculating loop (Thermo Scientific) is dipped into the glycerol stock and immediately 

spread out in a back and forth motion (in the shape of a quadrant) until the culture is 

completely absorbed by the LB agar. The plate is then left into a 37°C incubator overnight in 

an upside down position.

102



Chapter 2: Methods and Materials

2 .1 3  IN-VITRO  MUTAGENESIS

This technique was used to introduce single base pair changes (mutations) into 

plasmids.

2.13.1 Primer Design

Primers containing desired mutations were designed using the Quick Change Primer 

Design software developed by Stratagene, http://www.stratagene.com/qcprimerdesign . Each 

of the primers were about 25bps in length and had the desired mutation. They were designed 

in a way that they would anneal to the same sequence on opposite strands of the plasmid. The 

oligonucleotides were synthesised by Sigma Aldrich. Details of primers used are mentioned in 

Appendix 2.

2.13.2 PCR

The PCR reagents used are detailed in table 2.13. Once the PCR is set up as 

mentioned, 1 pi of Pfu Ultra HF DNA Polymerase (2.5U/pl) was added to each of the PCR 

reaction. The PCR cycling conditions are given in the table below (Table 2.9). Following 

temperature cycling, the reactions were cooled on ice. The parental supercoiled DNA was then 

digested using 1 pi of restriction enzyme Dpnl which was directly added to the PCR product, 

gently mixed and incubated for 1 hour at 37°C. 2pl of the digested product was used for 

transformation (as in section 2.12.7).
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2 .1 4  IMMUNOFLUORESCENCE

To determine the transfection efficiency of a particular plasmid without a fluorescent

epitope tag or the cellular localisation of genes, it was necessary to perform

immunofluorescence. Immunofluorescence was performed in a 8 -well chamber slide (Fisher)

where 20,000 cells were plated in each well of the chamber (as described in section 2.4.5),

transfected with appropriate amounts of the required plasmids using Fugene6  (as described in

section 2.4.6.1) and incubated in the CO2 incubator for 24-36 hours. To perform

immunofluorescence, the cell culture media was removed completely from the wells of the

chamber slide first by using the pipette followed by inverting it on a blue roll. The cells were

then washed with 200pl PBS which was added on the walls of each well, so that the cells

would remain intact. Cells were fixed with lOOpl cold 4% paraformaldehyde (PFA)(Sigma)

per well of chamber slide and left at room temperature for 30mins. The PFA was removed,

dried by inverting the slide on a blue roll and the cells were washed with 150jil TritonX-100,

that was freshly prepared, and left to dry for 5mins. The cells were washed again with 200pl

PBS twice, blocked with 200pl of 5% freshly prepared blocking solution (BSA diluted in

PBS) and incubated for lhour at room temperature. Similar to immunodetection o f a western

blot membrane, the cells were probed with a primary antibody diluted in 1 % blocking solution

(BSA in PBS). Primary antibody used was usually 10X more concentrated than in western

blots. 5jig o f mouse anti-myc (Invitrogen) antibody was diluted in 1% BSA blocking solution

and incubated for 1 hour at room temperature. At the end of primary antibody incubation, the

cells were washed thrice for 5mins each with 200pl PBS. Fluorochrome-coupled secondary

antibodies {Fluorescein isothiocyanate (FITC), Tetramethylrhodamine-5-(and 6 )-

isothiocyanate (TRITC)} (Sigma) produced in a different animal host (to the primary
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antibody) was used for immunofluorescence. The secondary antibody was diluted in freshly 

prepared 1% BSA blocking solution and incubated in the dark for 1 hour at room temperature. 

At the end of lhour, the cells were washed three times for 5mins each with 200|il PBS. At this 

point, the chamber sealed on the slide was removed carefully and a drop of 4’,6-diamidino-2- 

phenylindole stain (DAPI) (Vector shield mounting medium with DAPI, Vector Laboratories) 

was added to each well. A coverslip (VWR international Ltd.) was carefully overlaid taking 

care not to include any air bubbles and sealed with nail varnish. The slides were preserved in a 

darkened box laid with moist tissue to maintain humidity in the box until the slides were ready 

to be visualised under the confocal microscope (Leica TCS SP5) using appropriate lasers.

2 .1 5  IN-VITRO LUMICYCLE ASSAY

The LumiCycle (Actimetrics) was used to investigate the effect of any mutations in 

any circadian genes on the clock by transfecting recombinant mammalian expression plasmids 

into cell lines and then imaging them in real-time. The U20S and Rat-1 cell lines stably 

transfected with Per2:Luc {Per2 promoter driving luciferase transcription) were used for these 

studies. The stable cell lines were plated (as in section 2.4.5) in 35mm dishes and were 

allowed to grow overnight at 37°C. The cells would approximately reach 70-75% confluency 

the next day when particular plasmids were transfected in a 1:3 (DNA: Fugene6 ) ratio using 

Fugene6  transfection reagent. Transfection was carried out according to manufacturer’s 

protocol (as described in 2.4.6.1). 24hrs after transfection, the cells were synchronised using 

forskolin (lOpM final concentration) and left in the incubator for 2 hours.

During this time, the recording media was prepared in dark sterile conditions by adding

2.5mls FBS and 50pl of 0.1M luciferin (Beetle luciferin, Promega) (50mg of luciferin powder
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was dissolved in 1.57ml nuclease free water in sterile conditions, aliquoted in 50|il and 

preserved in -80°C) to 47.5mls of raw recording media. Raw recording media was prepared in 

sterile conditions by dissolving 1 pot of DMEM low glucose powder (Sigm a), 4gms glucose 

(Sigma), lOmls HEPES (1M, Sigma), 4.7mls sodium bicarbonate (7.5% Sigma) and 2.5mls 

penicillin-streptomycin mixture in 1 litre of milliQ water. Once all the powders were 

dissolved, the raw recording media was filtered using a vacuum pump and preserved in a 

sterile bottle at 4°C. This raw media was used to make the final recording media (mentioned 

above).

2 hrs after synchronisation, the cell culture media was thoroughly removed using a 

Gilson pipette and 2mls of final recording media containing luciferin was added dropwise to 

each lumicycle dish. The dishes were sealed immediately with a coverslip (VWR International 

Ltd.) that was sealed with parafilm. It was important to ensure that there were no gaps left 

between the coverslip and dish itself as the luciferase count would then disrupt readings. Once 

sealed, the dishes were placed in the lumiCycle, and the luciferase counts were monitored over 

5 days using the lumiCycle analysis software (Actimetrics)

2 .1 6  LIGHT SCANNER SCREENING

The light scanner (Idaho Technology) was used to identify mutations in a desired 

candidate gene in FI progeny of ENU-mutagenised mice. The Harwell ENU archive consists 

of a library of -10,000 parallel DNA and sperm samples from male FI progeny of ENU 

mutagenised mice. The DNAs extracted were pooled with DNA from four animals and stored 

in 96-well plates at 4°C. These DNA pools were screened on the light scanner to identify 

mutations in the F-box domain and putative CRY-binding domain of Fbxl21.
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The first step before beginning the archive screening was to optimise the PCR and 

PCR conditions using the light scanner. A gradient PCR with a range of annealing 

temperatures between 55°C-70°C was performed using the PCR reagents in dark framestar 96- 

well plates (Cadema bioscience) as listed in the table 2.10 below. The PCR products were first 

analysed on the light scanner using the light scanner software and they were then analysed on 

a 2 % agarose gel to confirm the exact annealing temperature.

After the temperature and conditions of PCR were optimised, the Harwell ENU 

archive DNA pools were screened to look for mutations in the two interested domains of 

Fbxl21. Based on the heteroduplex analysis, outliers in the DNA pools were identified i.e. if 

the melting curve of a particular DNA pool looked different from the others, the PCR for that 

particular pool was repeated using the DNA from each animal that comprised the interested 

pool. This way, DNA from a single animal was identified to have a mutation in our interested 

candidate gene, Fbxl21. The mutation was finally confirmed by sequencing. Based on the base 

pair change and preliminary in-vitro assays such as the LumiCycle analysis, the mutant mice 

were re-derived. The mice were re-derived from the frozen sperm archive created parallel to 

the DNA archive. A figure describing a typical Harwell ENU archive screen is shown in the 

previous chapter (Chapter 1, section 1.9.3).
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2 .1 7  BEHAVIOURAL TESTS

Wild-type and mutant mice around 8-10 weeks of age were screened for three 

behavioural tests. Although they were age-matched, sex comparisons were not made and the 

data collected was considered as an entire group. 10 animals (5 males and 5 females) of each 

genotype (mutant and wild-type C57BL/6J) were used for each of these tests. Due to time 

constraints, the wild-type mice (C57BL/6J, congenic) used were not littermate controls, thus 

expecting variability in data. The mutants and wild-type mice were first tested in the open- 

field test arena, followed by acoustic startle and pre-pulse inhibition (PPI) and finally were 

measured for their grip strength. The tests were performed on different days giving the mice 

24hrs to recover from previous tests.

2.17.1 Open Field

The open field test (OF) was carried out to investigate activity of mice in a novel 

environment and was used to assess a combination of locomotor activity (movement), 

exploratory drive and other aspects of anxiety. A standard white perspex arena (~44cm long 

by ~44cm wide and ~50cm high) placed one foot above the floor with a video camera fixed 

1.8metres above the centre of the apparatus was used. Each arena was divided into a centre 

zone (~16cm of the total arena) and border area (~8 cm wide border around the edges of the 

arena), creating an intermediate area using the EthoVision software (Noldus Ltd.) The arena 

was illuminated by lighting of 2001ux. Each mouse was gently placed in one comer of the 

arena facing the wall. A stop watch was released as soon as mice were placed in the arena. The

test was carried out for 30mins, giving the mice time to move and freely explore the arena.
110



Chapter 2: Methods and Materials

Parameters such as time spent in the centre, time in the periphery, total distance moved, total 

velocity, and latency of first occurrence in the centre were recorded for the entire arena. 

Measurements of wild-type and mutant mice were compared and statistical significance was 

determined by Student’s t-test.

2.17.2 Acoustic Startle and Pre-pulse Inhibition (PPI)

The acoustic startle response and PPI measures the exaggerated flinching response of 

mice (startle response) when an unexpected acoustic stimulus is presented. It further measures 

its ability to inhibit such a response when a pre-pulse is presented prior to the acoustic stimuli 

(PPI). Deficits in PPI have been associated with known human psychiatric disorders such as 

schizophrenia. Both the acoustic startle and PPI were assessed in a single session that lasted 

for ~lhr. Up to 12 mice at a time were tested in soundproof chambers. The chambers contain 

an inner chamber equipped with a loud speaker and startle platform (accelerometer) linked to a 

computer. To measure the startle response, the mice were given an acoustic stimulus of 

llOdecibels (dB) that was repeated 10 times. To establish the PPI, mice were exposed to a 

range of pre-pulses from 65dB-75dB of lOmillisecond (ms) duration followed by an llOdB 

acoustic stimulus lasting for 20ms. There was a 50ms interval between the pre-pulse and the 

acoustic stimulus. The startle response was expressed by subtracting the response to 

background noise (50dB). The PPI on the other hand was expressed as a percentage of 

inhibiting the startle response. The startle response and PPI are separately compared for wild- 

type and mutant mice and statistical significance was determined by Student’s t-test.

I l l



Chapter 2: Methods and Materials

2.17.3 Grip Strength

As the name suggests, grip strength is a measure of muscle strength of the forelimbs as 

well as the combined fore and hind limbs of mice. Defects in grip strength are usually 

associated with neuromuscular deficits or with defects in the cerebellar region of the brain. 

This test was carried out with a commercially available grip meter (Bioseb) with a single grid 

and was connected to a sensor. Each mouse was subjected to three trials with an interval of 

5mins. The grip strength of the forelimbs was measured. The mice were placed on a platform 

of the grid and then gently pulled across the metal grid (caudal direction). The maximum force 

applied by the mice was recorded in grams at the moment the grasp is released. Although, 

there was no difference between the weights o f mutant and wild-type mice, the data were 

expressed by accounting for the weight of the mice. Grip strength of wild-type and mutants 

were compared and statistical significance was determined by Student’s t-test.
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3 CHAPTER THREE: Investigation of Cry /;  
Fbxl3Afl'/Afh Compound Phenotypes
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3.1  INTRODUCTION

3.1.1 Contribution of mammalian cryptochromes

Mammalian cryptochromes (Cry) are considered versatile in terms of their functions in 

regulating circadian rhythms. While in Drosophila they act as photoreceptors, this function of 

Cry is lost in mammals. However, cryptochromes are integral components of the circadian 

core oscillator in mammals and this was identified when the single Cry mutants were shown to 

have opposite circadian wheel-running activity phenotypes and a complete loss o f rhythmicity 

in the absence of Cryl and Cry2 (van der Horst, Muijtjens et al. 1999).

Although the two mammalian cryptochromes show 80% sequence homology amongst 

each other, they mostly differ in their unique C-terminal sequences (Chaves, Yagita et al. 

2006). Sequence alignment of CRY1 and CRY2 proteins show no similarity between the C- 

terminus. Additionally, it has been recently found that Cryl expression is regulated by a 

combination of E-box elements (morning time elements) and D-box elements within Cryl 

promoter regions (Ukai-Tadenuma, Yamada et al. 2011). This combination of regulatory 

elements has not yet been identified in Cry2, confirming differences at the regulation levels o f 

both Cry genes. However, both CRY proteins function as negative regulators in the 

mammalian clock, whereby their transcription is activated by the CLOCK-BMAL1 

heterodimer.

The other importance of CRY proteins was discovered in co-localization experiments.

As seen previously in Chapter 1, the formation of a PER-CRY heterodimer is necessary for

feedback repression to maintain a functional circadian clock. For the purpose of formation o f
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the heterodimer, reports show the presence of CRY proteins is essential, as it is involved in 

translocation of PER proteins. In-vitro studies suggest that in the absence of CRY, PER is 

trapped in the cytoplasm. On the other hand, in the presence of CRY, 6 8 % of the co

transfected cells had PER localised in the nucleus, thus showing CRY proteins play a critical 

role in nuclear translocation of PER proteins. It is only after nuclear translocation of CRY and 

PER proteins, that feedback repression is initiated (Lee, Etchegaray et al. 2001). This has 

further been shown in studies carried out in CryT/~ and Cry2v~ single knockouts and Cryl^'; 

Cry2'^ double mutant mice. In the single mutants, due to the presence of either CRY protein, 

PER is able to form the heterodimer, resulting in persistent rhythms, although not similar to 

wild-type rhythms. However, in the absence of both CRY proteins, PER proteins are unable to 

translocate to the nucleus and accumulate in the cytoplasm, due to which there is no feedback 

repression resulting in instantaneous arrhythmicity (van der Horst, Muijtjens et al. 1999). 

Hence, to maintain the equilibrium between the positive and negative loops, the regulation of 

Cry genes and subsequent CRY proteins is most important.

Finally, all the above mentioned functions of CRY proteins are tightly regulated by 

posttranslational modifications such as phosphorylation, ubiquitination and subsequent 

degradation to sustain circadian oscillations to a 24hr period. F-box proteins play a vital role in 

this mechanism, as there are specific F-box proteins that target specific substrates for 

proteasomal degradation. The specific F-box proteins targeting CRY as substrates were 

unknown until the identification of the ENU mutants, afterhours (Afli) (Busino, Bassermann et 

al. 2007; Godinho, Maywood et al. 2007) and overtime (Ovt) (Siepka, Yoo et al. 2007). Both 

these mutants were identified by different research groups as circadian phenodeviants with a 

period o f 26.73hrs and 25.8hrs respectively in constant dark (DD) conditions. Mapping 

revealed that the mutations were due to point mutations in the secondary motif, LRRs, o f the

115



Chapter 3: Results

F-box protein, Fbxl3. Expression studies showed that the long period phenotype was a result 

of reduced interaction between CRY and FBXL3, due to which CRY proteins were spared 

from proteasomal degradation. As a result of this, higher CRY protein levels were observed 

during the subjective day compared to low CRY levels in wild-type mice. Consequently, the 

CRY proteins caused an extended transcriptional repression, resulting in a long period 

(Godinho, Maywood et al. 2007; Siepka, Yoo et al. 2007).

3.1.2 Aims of chapter

The aim of this chapter was to identify the effect of the Afh mutation on Cryl and Cry2 

by generating C r y ^ iF b x U ^ ^  compound mutants which should lead to overexpression of the 

alternative CRY proteins. While a null hypothesis would predict equal effects of the Afh 

mutation on Cryl and Cry2, alternatively it could also be that both the cryptochromes are not 

equally affected by Fbxl3. However with prior knowledge of FBXL3 interacting with both 

CRY1 and CRY2, it may be that the Afh mutation would result in period lengthening by 

stabilisation of either CRY proteins in the double mutants. To investigate this, the compound 

mutants were screened for their circadian wheel-running behaviour. Additionally, since the 

Afh mutation was reported to have effects at the transcriptional and translational level 

(extended transcriptional repression due to stabilisation of CRY proteins), we wanted to 

investigate the expression profiles of various clock genes and their protein products in the 

compound mutants. Apart from identifying the effects of the Afh mutation, gene expression 

studies in the compound mutants would also contribute to our understanding of the functions 

of each Cry gene, namely if they have the same ability in repressing clock genes and thus 

controlling the clock through feedback repression.
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This work has been done in collaboration with Dr. Michael H. Hastings, MRC, Laboratory of 

Molecular Biology, Cambridge, United Kingdom. While we carried out the in vivo 

experiments and molecular analysis, SCN slice data was obtained from Dr. Michael Hastings’ 

lab.
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3 .2  RESULTS

3.2.1 Wheel running analysis for Cry /-; Compound Mutants

In order to investigate the effects of the Fbxl3Afh mutation on Cryl and Cry2 

individually, all combinations of CryA; F b x l3 ^  compound mutants were generated as shown 

in section 2 .1 .2 . 1 0  animals for each combination of the genotypes were screened for wheel 

running activity. The complete wheel running protocol that lasted for almost a month 

consisted of animals being kept in a 12hr L:D schedule for 7 days following which they were 

allowed to free run in constant darkness (DD) for 2 weeks and finally allowed to free run in 

constant light (LL) conditions for the last 2 weeks of the screen.

Figure 3.1 and Figure 3.4 show nine representative double plotted actograms 

representing each of the genotypes generated from a Cryl~A to Fbxl3Afll/Â  and Cry2'A to 

Fbxl3Ajh/Afll cross respectively. Each of the actograms is a representation of a group (males and 

females) of 10 animals and the x values mentioned are obtained as a mean±SEM of the 10 

animals. In both the figures the top panels are actograms from animals that are Cry+/+, the 

middle panels are from animals with a heterozygous Cry (Cry+A) background, whereas the 

bottom panels are actograms from animals where both the copies of Cry are absent (C ryA). 

While the graphical representation of x obtained from the CryVA; Fbxl3Â /Afll DD and LL are 

shown in Figure 3.2 and 3.3 respectively, the x from Cry2'A; Fbxl3Afll/Afll in DD and LL are 

graphically representated in Figure 3.5 and 3.6 respectively.

In Figure 3.1 it is clearly seen that, whereas wild-type animals have x D d  of 23.68hrs± 

0.094, we see an increase in period length in the Ajh/Afli mice having a xdd of 26.48 hrs± 

0.161, as reported earlier by (Godinho, Maywood et al. 2007). On the other hand compared to
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the wild-type mice the C ryl+/~ mice have a t Dd  of 23.5hrs±0.103 which increases to 24.17hrs 

±0.098 and 25.3lhrs±0.178 (p<0.001) in Cryl+A;Fbxl3AJh/+ and CtyFA;Fbxl3AJh/AJh mice 

respectively. As reported previously the loss of Cryl accelerates the clock, as seen in Cryl'A 

with a tdd of 22.89hrs±0.07 (van der Horst, Muijtjens et al. 1999). This period is seen to 

lengthen with the addition of Afh mutation to 23.4hrs±0.107 and 24.19hrs±0.164 in Cryl'1' 

;Fbxl3Âh/+ and Cryl'A;Fbxl3Aflt/Afll respectively. A similar increase in period length of the Cryl' 

A ;Fbxl3AjhJAfll compound mutants is seen with the addition of the Afh mutation under LL 

conditions. The trend in the period lengths are clearly seen in the graphical representations of 

t D d  and t Ll  in Figure 3.2 and 3.3 respectively. The decrease in period length (accelerated 

clock) is seen with the gradual loss of Cryl under wild-type Fbxl3 condition and an increase in 

period length is seen with the gradual addition of an Afh mutation. Thus, the combined effects 

of the loss of the Cryl and addition of Afh mutation can be seen in the last three bars of 

Figure 3.2, where under an Afh/Afh background the gradual loss of a copy of Cryl results in a 

significant (p<0 .0 0 1 ) and propotional acceleration of the clock, hence a shorter period, albeit 

with greater tdd than under wild-type Fbxl3 condition. Figure 3.3 shows a similar trend in 

period length of Cryl'A;Fbxl3A;fh/Afll compound mutants under LL conditions.

The same effect of increasing period length with the addition of the Afh mutation is 

seen in the Cry2'Ai F b x B ^ ^  compound mutants. Figure 3.4 shows representative actograms 

of these compound mutants. From a period length of 24.24hrs±0.084 seen in Cry2'A;Fbxl3+/+ 

mice, the period length increases to 24.75hrs±0.112 and 27.83hrs±0.310 in Cry2'A ;Fbxl3Ajh/+ 

and Cry2'A;Fbxl3Ajh/Ajh mutants respectively. The graphical representation of the change in 

phenotypes in DD is clearly seen in Figure 3.5.

Thus by investigating the circadian wheel-running behaviour of the compound mutants 

the null hypothesis assuming equal effects of Afh on Cryl and Cry2 can be accepted.
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However, when the increase in period length between the single Cry1' and Cry1';Fbxl3A:fh/Afll 

double mutants are compared, there is unequal period lengthening in a C ryl-driven and Cry-2 

driven clock. As seen in Figure 3.7, while an increase of 1 hr is observed in Oy2-driven clock 

(Crylm/~;Fbxl3Afll/Afll) (Figure 3.7A), there is a significant period lengthening of 3.59hrs 

(p<0.001) in a C ryl-driven clock (Figure 3.7B), suggesting differential abilities of CRY1 and 

CRY2 in the feeback repression process which is further investigated through gene expression 

studies.

Apart from the increase in period lengths, striking observations were made in the Cry2' 

/';Fbxl3Âh/Âh mutants; one is their free-running activity during the LD schedule of the 

circadian screen. Unlike the wild-types, which show robust activity only during the dark phase 

of the LD cycle, the Cry2'A; Fbxl3Afll/Afll double mutants free-run through the LD cycle (with 

activity in the light phase) and are unable to entrain to the cycle (Figure 3.4). The second 

observation made in these mice, is their variable behaviour under constant light conditions. 

Although Fbxl3Aflx/Â  mice (with wild type Cryl and Cry2 present) show disturbed activity or 

splitting in LL after the first few days in LL, this activity seems to be disrupted gradually with 

the loss of Cry2 (Figure 3.4), unlike with the loss of Cryl under the same conditions. In 

Cry2+/~; Fbxl3Afll/+ mice, there seems to be a decrease in period length for the first few days in 

LL which then increases with time. This activity seems to be lost with the addition of two 

mutated copies of Fbxl3 (Cry2+ / Fbxl3Â /AJh) and these mice seem arrhythmic in LL. 

Similarly, in Cry2'f~; Fbxl3Aflj/+ mice, splitting o f activity is seen LL conditions and behaviour 

becomes arrhythmic with the addition of the second copy of the Afh mutation (Cry2'A; 

Fbxl3AJh/Â ). This is a consistent finding and it is interesting to investigate the potential 

functions of Cry2 in the retina and regulation of the clock under LL conditions.
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Apart from the wheel running activity carried out in vivo, parallel studies were carried 

out in SCN slices, which also show a similar trend in phenotypes, with increasing period 

length in both Cryl'1';Fbxl3Afll/Â  and Cry2'/' i F b x f t ^ ^  compound mutants compared to the 

respective Cry null mice, confirming the effect of the Fbxl3Alh/Alh mutation on both Cryl and 

Cry2 (Appendix4,5). Once the wheel running analysis was performed in vivo, it was interesting 

to see if the same effect as seen in vivo correlates to effects of the Afh mutation in vitro by 

using SCN slices from compound mutants. The data from the independent set o f studies were 

then analysed to determine the Pearsons correlation coefficient (R2). The correlation between 

the data collected in slices in DD and the in vivo behaviour is shown in figure 3.8 and 3.9 for 

Cryl'/~;Fbxl3Âh/A-fh and Cry2'/';Fbxl3A-fh/Â h mutants respectively. When a R2 value lies between 

the range of 0.5 to 1.0, then a strong co-relation between the two data sets is thought to be 

present. It is clear that there is a strong correlation (Cryl^';Fbxl3Ajh/Afll R2=0.82, p>0.05 ; 

Cry2'/'Fbxl3Âh/Âh R2=0.84,p>0.05) observed between the wheel running activity and the SCN 

slice in both the sets of the compound mutants, although not highly significant. Hence, it could 

be said that, by carrying out experiments in- vitro in the SCN slice, the period length of 

animals in vivo could be predicted based on the values obtained from SCN slices.
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Chapter 3: Results
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Figure 3.7: Comparison between the Cry A single knockouts and CryA; Fbxl3AJh/AJh double mutants.
The difference in TauDD is measured to observe the effect of the Afh mutation on the period length in the CryA; 
Fbxl3Afll/AJh double mutant. Additionally, the effect of overexpressing either CRY protein can be clearly observed 
in the above graph. A) Compared to the Cryl'A knockout with a TauDD of 22.89±0.07, the Cryl'A; Fbxl3AJh/Afll 
only shows an increase of period length by 1 hour (TauDD=24.199±0.164) which is not significant. B) Compared 
to the T a u DD of 24.24±0.049 in Cry2'A knockout mice, the addition of the Afh significantly increases the period of 
Cry2'A;Fbxl3AJh/AJh double mutants to 27.83±0.310. Thus, compared to a lhr difference obtained by CRY2 
upregulation, CRY1 overexpression shows a significant increase of 3.59hrs (p<0.001) on the period length, 
suggesting that Cryl is a stronger transcriptional repressor than Cry2. The graph shown above is obtained from a 
mean of 10 animals (males and females). The SEM are represented as error bars. Statistical significance is 
determined by a one-way ANOVA.
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Correlation for CryI 7 ;FbxB^7̂ ' compound mutants
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Figure 3.8: Correlation between period length in-vitro in SCN slices and in vivo wheel-running 
behaviour in the Cryl'A; Fbxl3Âh/Âh compound mutants. Once period lengths are independently obtained 
in-vitro and in vivo, the Pearson’s correlation coefficient (R2) is determined. The R2 value shows that the two sets 
of data can be highly correlated and that a phenotype observed in the SCN slices can also be observed in vivo.
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Figure 3.9: Correlation between period length in-vitro in SCN slices and in vivo wheel-running 
behaviour in the CryIA; Fbxl3Afh/AJh compound mutants. Once period lengths are independently obtained 
in-vitro and in vivo, the Pearson’s correlation coefficient (R2) is determined. The R2 value shows that the two sets 
of data can be correlated and that a phenotype observed in the SCN slices can also be observed in vivo.
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3.2.2 Other circadian parameters

Apart from the wheel running behavioural analysis carried out in the CryA; Fbxl3Aflx/Afl% 

compound mutants, other parameters such as average wheel revolutions, amplitude of 

oscillations in each of the light and dark phases of the circadian screen were analysed. All the 

parameters have been defined in the earlier chapter in section 1.1.7. Broadly, there were no 

significant differences observed (by One-way ANOVA with Bonferroni post hoc test) in many 

of the parameters analysed in each of the combination of the compound mutants.

However, as we saw a lack of entrainment in the Cry2'A; Fbxl3Ajh/Ajh double mutant, the 

phase angle of entrainment could not be measured. Compared to the wild-types, the Cryl'A; 

F b x U ^ ^  and Cry2'A; F b x l 3 compound mutants did show significant differences in 

some of the wheel running parameters measured. Under LD conditions, the compound 

mutants, except Cryl'A; Fbxl3Aflx/Â  and Cry2'A;Fbxl3A:fh/Afll, were similar to the wild-type 

animals. The CryVA; F b x l 3 mice were seen to have a significantly higher mean wheel 

revolutions in the LD phase (p=0.03, One way ANOVA with Bonferroni post hoc analysis) 

(Table 3.2). These animals continued to display higher wheel revolutions even under constant 

light conditions (p=0.03, One way ANOVA with Bonferroni post hoc analysis) (Table 3.6) 

suggesting that the Cryl'A;Fbxl3AAh/Aflx mice may be hyperactive and hence it would be 

interesting to assess their behaviour in the open field test (Chapter 5). The other significant 

difference observed amongst the compound mutants when compared to wild-type mice, was 

the reduction in the percentage of nocturnal activity in Cry2'A; Fbxl3AJh/AJh mice (p=0.04, One 

way ANOVA with Bonferroni post hoc analysis) (Table 3.3). This result was expected due to 

the lack of entrainment and free running phenotype observed in these mice. Parameters such
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as amplitude of oscillations in DD, LL, and average wheel revolutions in DD showed no 

significant differences between wild-type and Cry/";Fbxl3Âh/Âh double mutants.

Phase angle of entrainment LD
Cry+/+;Fbxl3+/+ CryFA;Fbxl3AJ}l/+ C ryZ '-tfbxtfW W

1 8 2 . 1 2 ± 1 . 2 7 1 7 9 . 1 6 ± 2 . 2 7 F r e e  r u n  in  LD

Table 3.1: D ifference o f  the phase angle o f  entrainment between Cry'A; Fbxl3AJlt/Â 1 
compound mutants.  There is no difference in the phase of entrainment between the CryVA; Fbxl3AJh/AJh 
double homozygous mice and wild-type control mice. However, phase angle of entrainment could not be 
measured for Cry2~f~; Fbxl3AJh/AJh mice as they free-run through the LD phase of the circadian phase. Although the 
values shown here for the wild-type controls and the CryA;Fbxl3AJh/AJh compound mutants represent the 
mean±SEM obtained from a group of 10 animals, the free-running condition was observed in every animal 
screened.

Average Wheel Revolution in LD
Fbxl3+/+ Fbxl3AJlt/+ Fbxl3A/h/AJh

Cryl+/+ 2 6 4 9 . 3 0 ± 6 1 8 . 8 9 2 3 6 9 . 7 0 ± 6 4 6 . 7 3 2 8 1 6 . 5 4 ± 1 3 8 5 . 4 3

Cryl+A 3 1 2 5 . 5 2 2 ± 8 0 0 . 8 6 3 0 7 3 . 5 6 ± 7 8 2 . 9 0 2 6 3 0 . 0 1 ± 6 0 9 . 7 5

C rylA 1 7 7 7 . 5 0 ± 4 5 3 . 9 4 2 5 4 8 . 4 3 ± 3 6 7 . 0 1 4544.50±1404.21**
Cry2+/+ 2 6 4 9 . 3 0 ± 6 1 8 . 8 9 2 3 6 9 . 7 0 ± 6 4 6 . 7 3 2 8 1 6 . 5 4 ± 1 3 8 5 . 4 3

Cry2+A 1 8 2 4 . 8 3 ± 5 1 8 . 9 6 2 7 7 2 . 0 4 ± 7 4 5 . 2 3 3 7 7 4 . 3 4 ± 6 8 9 . 6 8

Cry2r/' 1 2 6 2 . 6 7 ± 2 7 3 . 1 7 4 4 9 8 . 1 6 ± 8 9 0 . 3 8 3 4 7 5 . 1 9 ± 1 9 2 3 . 5 2
**p= 0.03

Table 3.2: Comparing the average wheel revolution in LD  between C ryA; Fbxl3Aflt/Aflt 
com pound m utants and wild-type mice. Most of the compound mutants with the exception of CryFA; 
Fbxl3Afl"/Afll double homozygous mice had similar averages of wheel revolutions in LD. The CryVA; Fbxl3AfllfAfll on 
the other hand display a significantly higher number of wheel revolutions (**p=0.03). The values o f wheel 
revolutions mentioned here are the mean±SEM from 10 male and or female wild-type and compound mutants. 
One way ANOVA with Bonferroni post hoc analysis was used to test statistical significance.
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% Nocturnal Acttivity

Fbxl3+/+ Fbxl34Jh/+ Fbxl3AJh/AJh
Cryl+/+ 90 .655± 0 .79 8 9 .64± 0 .84 77 .25±3 .89

Cryl+/' 91 .66± 1 .44 82 .93± 3 .31 84 .71±2.32

CryF' 85 .28± 1 .79 87 .22± 0 .97 87 .24±2.55

Cry2+/+ 90 .655± 0 .79 89 .64± 0 .84 77 .25±3.89

Cry2+/' 90.93±1 .8 85 .34± 0 .96 92 .61±16.4

Cryl'- 86.85±2.02 86 .25± 1 .33 60.65±6.79 **
** p=0.04

Table 3.3: Comparing the nocturnal activity o f  the Cry' '; Fbxl3Afh/AJ1t compound mutants 
with control mice during the LD schedule. It is seen that the Cry2"; Fbxl3AJh/AJh mutants show a 
significant reduction in the percentage o f  nocturnal activity during the LD phase (**p=0.04). This was expected 
as the same animals do not entrain to the LD cycle and free-run through the light and dark phase o f  the 12 hr L:D 
schedule. Apart from these mutants, there were no other significant differences observed between the wild-type 
and Cry '; Fbxl3Afl‘AJh compound mutants. The values shown here represent a group o f  10 animals (males and/or 
females) and are means±SEM. Statistical significance was tested using one way ANOVA with Bonferroni post 
hoc test.

Average Revolution DD

Fbxl3+/+ FbxUiJh/+ Fbxl3Aft,/AJh
Cryl+/+ 3623 .91± 927 .9 4423 .14± 630 .63 3 5 5 1 .64± 1313 .2

Cryl+/- 4 909 .26± 1451 3 5 20 .2± 584 .65 3882 .0 3 ± 6 9 0 .6 5

Cryl'- 4 1 0 4 .48± 1291 .96 4057± 731 .32 7 4 1 7 .6 7 ± 2 1 0 8 .3 0

Cry2+/+ 3623 .91± 927 .9 4423 .14± 630 .63 3 5 5 1 .64± 1313 .2

Cry2+/- 3498 .71± 964 .7 3103± 460 .79 7 7 2 1 .2 4 ± 1 2 7 4 .9 6

CryZ'- 2074±492 6 3 6 0 .7 4 il6 2 1 .0 9 5 1 7 0 .2 4 ± 2 0 6 2 .0 1

Table 3.4: Measuring the average wheel revolution in DD in Cry'A; Fbxl3Af)t/Afll compound 
mutants and wild-type control mice. No significant differences were observed in the average wheel 
revolutions o f mice under DD conditions between wild-type, CryF'; Fbxl3A,h A,h and Cry2"; Fbxl3Afll/Afl> double 
homozygous mice. The value mentioned here are mean±SEM from a group o f  10 animals (mix o f  males and 
females). Statistical significance was tested using one way ANOVA with Bonferroni post hoc test.
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Amplitude DD

Fbxl3+/+ Fbxl34Jh/+ Fbxl3Afh/AJh
Cryl+/+ 909 .208± 138 .43 1073 .63± 74 .96 820 .335± 93 .02

CrVl +/- 3912 .21± 1247 .63 1024 .38± 92 .39 38 8 2 .03± 690 .65

Cryl'- 894 .13± 86 .68 962 .18± 91 .33 1138 .42± 218 .25

Cry2+/+ 909 .208± 138 .43 1073 .63± 74 .96 8 2 0 .335± 93 .02

Cry2+/' 963 .20± 90 .6 653 .96± 99 .5 1345 .41± 81 .91

CryIA 748 .78± 80 .1 1222 .47± 119 .7 8 7 5 .02± 156 .06

Table 3.5: Measuring the amplitude o f  oscillations in DD in Cry' '; Fbxl3Afh/Af]t compound 
mutants and wild-type mice. No significant differences were observed between wild-type, CryF'; 
Fbxl3AfllAfll and Cry2~ / Fbxl3Ajh /1/7i double homozygous mice when comparing their amplitude o f  oscillations 
under DD conditions. The values mentioned here are mean±SEM from a group o f  10 animals (mix o f  males and 
females). One way ANOVA with Bonferroni post hoc test was used to test statistical significance.

Average Revolution in LL

Fbxl3+/+ F b x lfm F b x lfjh/Ajh

Cryl+/+ 2205 .25± 460 .71 2171 .57± 459 .0 17 71 .95± 400 .60

Cryl+/' 950 .29± 316 .06 1681 .94± 348 .97 3 4 7 2 .58± 785 .18

Cryl’'' 2165 .66± 647 .51 5 0 1 7 .29± 1054 .14 4877.36±1034.87**

Cry2+/+ 909 .208± 138 .43 1073 .63± 74 .96 820 .335± 93 .02

Cry2+A 2575 .07± 795 .91 1325± 257 .622 4 8 7 7 .3 6 ± 1 0 3 4 .8 7

C ryl' 1710 .20± 508 .70 44 7 7 .67± 1286 .05 2 4 9 4 .10± 1118 .44
**p=0.03

Table 3.6: Difference in the average wheel running revolution between the Cry'"; 
Fbxl3Afh/A-1h compound mutants and control mice in constant light (LL) conditions. There was 
no significance between the average revolutions in Cry2'7'; Fbxl3AJh Afll double mutants and wild-type mice. While 
the majority o f the C r y F F b x l 3 AfllAfll had no significant differences compared to wild-type controls, the CryF" 
;Fbxl3AJhAfh double mutants show high number o f  revolutions in LL that is significant (**p=0.03). The same 
animals showed a similar significant increase in the LD cycle o f  the circadian screen, suggesting these mice 
might be hyperactive. The values shown here represent a group o f 10 animals (males and/or females) and are 
means±SEM. Statistical significance was tested using one way ANOVA with Bonferroni post hoc test.
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Amplitude LL
Fbxl3+/+ F b x lf^ Fbxl3A*h/AJh

Cryl+/+ 1102.826±104.9 539.24±35.3 613.19±46.7

Cryl+/- 940.97±111.40 877.733±72 548.11±74.64

Crvlv- 766.785±59.57 1014.5±108.6 1122.73±258.9

Cry2+/+ 1102.826±104.9 539.24±35.3 613.19±46.7

Cry2+A 1226.42±246.99 358.5±57.32 Arrhythmic

CrvZ'- 569.01±68.8 655.28±43.22 Arrhythmic

Table 3.7: Comparing the amplitude o f  oscillations in L L  between Cry'A; Fbxl3Ajll/Aflt 
compound m utants and wild-type mice. There were no significant differences observed between wild- 
type, CryF1'; Fbxl3Â /Afll and Cry2'A; Fbxl3Afll/AJh double homozygous mice when comparing their amplitude of 
oscillations under LL conditions. The values mentioned here are the mean±SEM from 10 male and/  or female 
wild-type and compound mutants. One way ANOVA with Bonferroni post hoc analysis was used to test 
statistical significance.
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3.2.3 Gene Expression Analysis in Cry /-; Fbxl3Afl'/Afh Compound Mutants

The wheel running activity carried out in the CryA; Fbxl3Afll/Afll compound mutants 

showed that the Fbxl3Â  mutation has similar effects in both Cryl and Cry2 null mutants 

increasing the period length of their in vivo rhythms. In order to investigate as to how the 

selective stabilisation of CRY proteins due to the Afh mutation affects the gene expression of 

other clock controlled genes, we carried out gene expression studies in the cerebellum 

collected from the double mutants entrained to a 12hr L:D schedule for 7 days. Gene 

expression was investigated at zeitgeber time (ZT) 3, 7, 11, 15, 19 and 23hrs.

Quantitative real time expression studies performed in cerebellum of C ryl’A; 

F b x l 3 double mutants (Figure 3.10) show that with the exception of Cry2 and Per2, the 

other genes Perl, Dbp and Bmall showed robust rhythmicity in the cerebellum albeit with 

reduced amplitude relative to the rhythms of the wild-type mice. Cry2 expression in CryPA; 

Fbxl3Afll/AJh is seen to be constitutive with no rhythmicity compared to wild-type Cry2 

expression. Similarly, a complete reduction of Per2 oscillations in seen in the CryPA; 

Fbxl3Aih/Afll cerebellum. This was surprising and may indicate possible secondary effects of 

Cry2 upregulation. While a phase shift with reduction of amplitude was observed in Dbp, 

(presumably because of the effect on Cry2 and Per2 expression), Bmall was upregulated 

between ZT 3 and 11 in these mice, indicating that Cry2 could be acting as a weak 

transcriptional repressor.

On the other hand, expression of the clock controlled genes at the RNA level in the 

cerebellum of Cry2~A; Fbxl3Afl}/Afll mice (Figure 3.11) shows transcriptional inhibition coupled 

with a phase shift of expression in all of the investigated genes, confirming the strong 

repression ability of Cryl. The expression of Cryl, Perl, Per2, Dbp and Bmall were
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dramatically altered with a reduction in amplitude and change in the peak of expression 

compared to expression in wild-type cerebellum. As mentioned previously circadian 

mechanisms at the molecular level also involve secondary regulatory loops in addition to the 

core oscillator loops (Section 1.1.2). Since most of the investigated genes belonged to the core 

oscillator, expression levels of a component belonging to the secondary regulatory loops of the 

molecular oscillator, Rev-erba, were then determined in the cerebellum of the Cry1'; 

Fbxl3Ajh/AJh mice. It was surprising to see an upregulation o f Rev-erba mRNA due to 

overexpression of Cry2 in the Cryl'A; Fbxl3Afll/Ajh mice (Figure 3.12 A). However, the 

expression of Rev-erba was completely dampened (no oscillation) in the Cry2'A; Fbxl3 

mice (Figure 3.12 B). Again this confirms the ability of Cryl to repress components of the 

secondary feedback loops, whereas the effect of Cry2 upregulation may be secondary to its 

effects on other genes.

Next, in order to investigate if the repressive actions of Cryl are confined only to the 

cerebellum or if they are able to repress the genes in peripheral tissues such as liver, real-time 

experiments were carried out using the same conditions as for the above experiment. The liver 

tissues were collected from the same animals in which clock gene expression in cerebellum 

was analyzed. It is seen from Figure 3.13 that Cry2 overexpression in Cryl'A; Fbxl34^4# mice 

is not able to inhibit Per2 expression in the liver compared to what was seen in the cerebellum. 

Expression levels of Per2 remain unchanged, whereas a surprising, lower amplitude of Bmall 

and a phase shift o f Perl expression was observed. The fold change (lower amplitude) in 

Bmall expression is ambiguous and cannot be explained on the basis of the expression o f the 

investigated genes. Overexpression of Cryl in Cry2'A; Fbxl3Afll/AJh liver (Figure 3.14) on the 

other hand, showed similar results as obtained with expression in cerebellum. An inhibition of
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transcription with lower amplitude and phase change in the peak of expression was observed 

in the expression of all the clock controlled genes investigated.

The Afh mutation in the F-box protein, Fbxl3, is known to cause a reduced interaction 

of FBXL3 and its substrates CRY1 and CRY2 in vivo, resulting in stabilisation of CRY 

proteins and an extended transcriptional repression (Godinho, Maywood et al. 2007). Hence, 

in order to confirm that the effect on gene transcription observed in the previous section was 

related to the upregulation of the respective CRY proteins, CRY protein levels were 

determined in the cerebellum of C r y ^ iF b x B ^ ^  compound mutants. It was expected that in 

the absence of CRY1, CRY2 levels will be upregulated and stabilised, and in the absence of 

CRY2, CRY1 levels will be upregulated. For this experiment cerebellum from the same 

double mutants collected across various ZT time points for real-time experiments were used. 

The proteins were extracted in the manner that is described in Chapter 2, section 2.8. 

Investigating CRY2 protein levels in CryF/~; Fbxl3AJh/AJh in vivo determined that compared to 

CRY2 levels present in the wild-type, the Afh mutation significantly upregulates and stabilises 

CRY2 across time (p=0.01) (Figure 3.15). Similarly, CRY1 protein levels were also seen to be 

significantly upregulated and stabilised across time in the Cry2'/';Fbxl3Â Afll compared to 

wild-type CRY1 levels (p=0.01) (Figure 3.16). A strong genotype interaction on CRY protein 

levels was determined by a two way ANOVA. These results ultimately show that the effects 

on gene transcription (transcriptional repression) are indeed related to the elevated levels of 

the respective CRY proteins across time.
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Figure 3.10: Gene expression studies in the cerebellum o f Cryl'A; Fbxl3Afh/Afh double mutants. To 
perform real-time quantitative PCR, cerebellum was dissected at various ZT times from Cryl'A; Fbxl3Ajh/Afll 
double mutants and wild-type controls. The expression at each time point was first calculated relative to the 
house-keeping gene, RPL13a, following which the expression of wild-type and mutant was made relative to 
expression of wild-type ZT 3. Each time point is an average of triplicate reactions, obtained from three 
independent samples. The SEMs are represented as error bars. The dampened levels of Cryl confirm the absence 
of the Cryl expression. Cry2 levels in the double mutants are seen to be elevated and compared to the wild-type 
levels, Cry2 levels in the mutant do not oscillate in vivo. While Perl had an elevated expression, Per2 and Dbp 
show a phase shift with reduced amplitude. In contrast, Bmall was seen to be upregulated, although no phase 
shift was observed.

142



Chapter 3: Results

2 .5

5 . 1 5

m 0 . 5
C — ■ .

1 5 2 3 11
Zt times

2 3

Zt times

P erl Per2

1 .5

«  0 .5

1 5

B m all

li 1 5 1 9 2 3

Figure 3.11: Gene expression studies in the cerebellum o f Cry2'/~; Fbxl3Afh/Aflt double mutants. To 
perform real-time quantitative PCR, cerebellum was dissected at various ZT times from Cry2'A; Fbxl3AJh/Afl> 
double mutants and wild-type controls. The expression at each time point was first calculated relative to the 
house-keeping gene, RPL13a, following which the expression of wild-type and mutant was made relative to 
expression of wild-type ZT 3. Each time point is an average of triplicate reactions, obtained from three 
independent samples. The SEMs are represented as error bars. The dampened levels of Cry2 confirm the absence 
of the Cry2 expression. Cryl levels in the double mutants are seen to be downregulated in the double mutants 
compared to Cryl expression levels in wild-type mice. The effect of CRY1 upregulation in these double mutants 
is clearly seen in the figure where expression levels of Perl, Per2, Dbp and Bmall show a reduced amplitude 
with a phase shift in its expression, confirming the strong transcriptional repression ability of Cryl.
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Figure 3.12: Gene expression o f  Rev-erba in CryA ; Fbxl3AJh/AJh double mutants. To perform real-time 
quantitative PCR cerebellum dissected at various ZT times from Cryl~A; Fbxl3AJh/AJh and Cry2'A; Fbxl3Ajh/Ajh 
double mutants and wild-type controls. The expression at each time point was first calculated relative to the 
house-keeping gene, RPL13a, following which the expression of wild-type and mutant was made relative to 
expression of wild-type ZT 3. Each time point is an average of triplicate reactions, obtained from three 
independent samples. The SEMs are represented as error bars. A) Rev-erba levels in Cryl~A; Fbxl3Afll/Afll are seen 
to be upregulated compared to the wild-type Rev-erba levels. This is presumably due to the secondary effects of 
Cry2 upregulation in these mutants. B) It is seen that in the absence of Cry2, with upregulated CRY1 levels in 
Cry2~/~; Fbxl3Ajh/Afll double mutants, there is a complete dampening of Rev-erba oscillations. This result again 
confirms the strong repressive action of Cryl. It is seen that Cryl has an ability to extend its repressive function 
to a component of the secondary regulatory loop as well.
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Figure 3.13: Gene expression studies in the liver o f  Cryl'A; Fbxl3AJh/AJh double mutants. To perform 
real-time quantitative PCR liver was dissected at various ZT times from Cryl'A; Fbxl3Afll/Afll double mutants and 
wild-type controls. The expression at each time point was first calculated relative to the house-keeping gene, 
RPL13a, following which the expression of wild-type and mutant was made relative to expression of wild-type 
ZT 3. Each time point is an average of triplicate reactions, obtained from three independent samples. The SEMs 
are represented as error bars. The above figure shows that overexpression of CRY2 has no effects on the 
expression of Perl and Dbp in the liver. While Perl show a phase shift in expression, Bmall on the other hand 
oscillates with a reduced amplitude. The reason for the altered Perl and Bmall expression is unknown. These 
results show that compared to the effects of Cry2 regulation seen in the cerebellum, the expression of most clock 
genes remain unaltered, suggesting that the secondary effects of Cry2 are tissue-specific.
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Figure 3.14: Gene expression studies in the liver o f CryZA; Fbxl3AJh/Afh double mutants. To perform 
real-time quantitative PCR liver was dissected at various ZT times from Cry2'A; Fbxl3Afll/Afll double mutants and 
wild-type controls. The expression at each time point was first calculated relative to the house-keeping gene, 
RPL13a, following which the expression of wild-type and mutant was made relative to expression of wild-type 
ZT 3. Each time point is an average of triplicate reactions, obtained from three independent samples. The SEMs 
are represented as error bars. The above figure shows that over expression of CRY1 is able to alter the expression 
of clock controlled genes in peripheral tissues as well. While the expression of Cryl, Dbp show a reduced 
amplitude alongwith a phase shift, Bmall show a phase shift, Perl and Per2 only show a reduction in amplitude. 
This again confirms that Cryl is not tissue-specific and is a stronger transcriptional repressor.
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Figure 3.15: Investigating CRY2 protein expression in the cerebellum o f Cryl''; Fbxl3AJ1t/Â 1 double 
mutants. The levels of CRY2 proteins were determined in the cerebellum that was dissected at various ZT times 
from CryC'; Fbxl3AJh/Ajh double mutants and wild-type controls. A) Proteins extracted from wild-type, CryC'; 
Fbxl3Afll/Afil double mutants were loaded on 3-12% Bis-Tris gels in equal amounts. The same amount o f protein 
extracted from C rylA cerebellum at ZT19 was loaded as the negative control. The proteins were then transferred 
onto a nitrocellulose membrane which was probed with the a-CRY2 and a-ACTIN antibodies. B) Quantified 
CRY2 protein levels were first normalised to the endogenous control P-actin. The normalised values were then 
plotted relative to CRY2 levels in the wild-type at ZT3. Each time point shown in the graph is an average of three 
independent samples. The SEMs are represented as error bars. The above figure shows that compared to the 
CRY2 levels in wild-type cerebellum, CRY2 levels are upregulated and stabilised across various ZT times in the 
CryF/';Fbxl3AJh/AJh double mutants, suggesting that the gene transcription effect seen may be due to the 
overexpression of CRY2 in vivo. The effect of the Afh mutation is also clearly seen with higher CRY2 protein 
levels during the subjective day compared to protein levels during subjective night A two-way ANOVA test 
reveals that the CRY2 levels in the mutants are significantly higher than the control levels and that the elevated 
protein levels are a result of the genotype (p =0.01)
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Figure 3.16: Investigating CRY1 protein expression in the cerebellum o f CryZA; Fbxl3Afh/Afh double 
mutants. The levels of CRY1 proteins were determined in the cerebellum that was dissected at various ZT times 
from Cry2'A; Fbxl3AJh/Afll double mutants and wild-type controls. A) Proteins extracted from wild-type, Cry2’A; 
Fbxl3Afll/Afll double mutants were loaded on 3-12% Bis-Tris gels in equal amounts. The same amount of protein 
extracted from CryF!~ cerebellum at ZT 19 was loaded as the negative control, and 5pg of whole cell lysate 
containing Cryl-HA was loaded and used as a positive control. The proteins were then transferred onto a 
nitrocellulose membrane which was probed with the a-CRYl and a-ACTIN antibodies. B) Quantified CRY1 
protein levels were first normalised to the endogenous control p-actin. The normalised values were then plotted 
relative to CRY1 levels in the wild-type at ZT 3. Each time point shown in the graph is an average of three 
independent samples. The SEMs are represented as error bars. The above figure shows that compared to the 
CRY1 levels in wild-type cerebellum, CRY1 levels are significantly upregulated and stabilised across various ZT 
times in the Cry2'A;Fbxl3Afll/Â  double mutants, suggesting that the gene transcription effect seen may be due to 
the overexpression of CRY1 protein levels in vivo. The effect of the Afh mutation is also clearly seen with 
significantly higher CRY1 protein levels during the subjective day compared to protein levels during subjective 
night. A two-way ANOVA test reveals that upregulated CRY1 levels in the mutants are a result of the genotype
(p =0.01).
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3.2.3 Identification of a SNP in human Fbxl3

With similarities between the human and rodent circadian clocks, it is expected that 

mutations in the rodent clock gene might eventually lead to molecular insights into sleep or 

mood disorders in humans. This has been successfully shown previously by association of a 

mutation resulting in altered posttranslational modification of PER2 proteins with Familial 

Advanced Sleep Phase Syndrome (FASPS) (Toh, Jones et al. 2001). Hence, identifying 

polymorphisms in human clock genes still retains its importance as it may continue to improve 

human health. Considering that the Afh mutants in mice show elements o f DSPS, human Fbxl3 

was sequenced to identify polymorphisms in the same. This resulted in the identification of a 

non-synonymous SNP only found in evening type individuals. The SNP was at position 1353 

in exon 5 of the human Fbxl3 resulting in a valine instead of glycine. Genotyping revealed that 

the individuals were heterozygous for the identified SNP and carry one copy o f the wild-type 

Fbxl3. The equivalent of this SNP was G342V in mouse Fbxl3. Constructs using the mouse 

Fbxl3 sequence with the appropriate mutated residue were used for further investigations 

mentioned later in this section. With the identification of this SNP, we tried to determine if 

this polymorphism could affect the rate of CRY protein degradation in humans.

For this reason, we first performed co-immunoprecipitation experiments to investigate 

the interaction between FBXL3-G342V and CRY1 and CRY2, the known substrates of 

FBXL3. The full length mouse Fbxl3 sequence was first mutagenised with the desired 

nucleotide change in a manner described in section 2.13. Cryl or Cry2-RA plasmids were co

transfected with Fbxl3-Wt-GFP or Fbxl3-G342V-GFP plasmids into Cos7 cells using Fugene6  

(section 2.4.6.1). The whole cell lysates were then subjected to co-immunoprecipitations in
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the same way as described in section 2.11 of Chapter 2. Figure 3.17 A shows a representative 

western blot of the co-immunoprecipitation experiment. While Figure 3.17 B shows the 

interaction between FBXL3-G342V-GFP and CRY1/CRY2 when normalised to the 

interaction between FBXL3-Wt and CRY1/CRY2. The graph is plotted using the average 

obtained from three independent experiments. When normalised to FBXL3-Wt-interaction, it 

can be seen that, there was reduced interaction of G342V with either CRY1 or CRY2, but this 

was not significant (Figure 3.17 A, B)

In order to determine the effect o f the Fbxl3-G342V mutation on the period length of 

mice, real time bioluminescence studies using stably transfected U20S Per2:Luc cells were 

performed in vitro. Both the Fbxl3-Wt and Fbxl3-G342V plasmid were transfected into the 

stably transfected cells and their rhythms were monitored for a week using the LumiCycle. 

The period length was then analysed using the LumiCycle analysis software. No difference in 

the period length between Fbxl3-Wt and Fbxl3-G3A2N was seen in-vitro (Figure 3.18). The 

period length of Fbxl3-Wt and Fbxl3-G342V was obtained as an average±SEM of two 

independent experiments, each with two replicates. In U20S Per2:Luc cells, while the period 

length of Fbxl3-Wt was 23.9hrs±0.045, Fbxl3-G342V showed a period length of 

23.75hrs±0.102. The period difference between the wild-type and mutant was 0.15hrs and was 

non-significant (p=0.29). The difference in period was confirmed in Rat-1 Per2: Luc cell line, 

where Fbxl3-Wt had a period length of 22.33hrs±0.02 and Fbxl3-G342V had a period length 

of 22.25hrs±0.063. Due to the differences in cell lines, the Fbxl3-Wi period itself differs 

between the two cell lines.
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Figure 3.17: Investigating the interaction o f F13XL3-G342V and CRY1/CRY2 in-vitro. The Fbxl3 
SNP, G1353T identified in human Fbxl3 was replicated in the mouse FbxB sequence (Fbxl3-G342V). The 
FbxB-Wt-GFF or F&c/3-G342V-GFP plasmid was co-transfected with either Cryl-HA or Cry2-HA in Cos7 
cells. Following transfection, whole cell protein lysates were collected and were subjected to a co- 
immunoprecipitation assay. A) shows a representative western blot. The figure shows the molecular weight 
marker on the left of each blot. Equal amounts (10jigs) of whole cell lysates (Lys.) from each transfection 
mixture was used as an input to show the presence of the FBXL3-Wt or G342V-GFP in the cells. Two negative 
controls were used for this experiment (last two lanes in the blot on left), one being an empty GFP vector (ev- 
GFP) co-transfected with Cryl-HA and the second control was untransfected whole cell lysates. Both the 
negative controls were processed in the same way as the experimental samples. The a-HA antibody was used to 
pull down CRY proteins (IP), while the a-GFP antibody was used to detect co-immunoprecipitated bands (Co-iP) 
showing the interaction between F-box proteins and CRY proteins. B) shows the amount of protein interaction 
normalised to FBXL3-Wt interaction levels. The quantified co-ip bands were first normalised to their respective 
IP bands, which is further normalised to the FBXL3-Wt interaction. Thus, the graph shown here represents the 
amount of FBXL3-G342V protein interaction with CRY1/CRY2 relative to the interaction by FBXL3-Wt. The 
results show no significant differences in the interaction between FBXL3-G342V and CRY1/CRY2 compared to 
the FBXL3-Wt interaction. The values used to plot the graph are means obtained from three independent 
experiments. The SEMs are represented as error bars on the graph. One-way ANOVA was used to determine 
statistical significance.
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Figure 3.18: Determination o f period length o f Fbxl3-G342V in-vitro using the LumiCycle. The
U20S Per2:Luc cells and Rat-1 Per2:Luc fibroblasts were used for this purpose. In both the cell lines, the Per2 
promoter drives the expression of luciferase in-vitro. Hence with the addition of the substrate, the luminescence 
emitted is a read out of Per2 oscillations in-vitro. The period length is then determined by the LumiCycle 
analysis software. The images shown here are representative of two independent experiments, each performed in 
duplicates. A) Fbxl3-Wt and Fbxl3-G342V plasmids were transfected into U20S Per2:Luc cells. No significant 
period difference was observed in the U20S Per2:Luc cell lines. While Fbxl3-Wt (yellow line) had a period 
length of 23.9hrs±0.045, the mutant Fbxl3-G342V (red line) had a period of 23.75hrs±0.102. B) The same 
experiment was carried out in Rat-1 Per2:Luc cell lines, where again no significant differences were identified. 
The Fbxl3-Wt (yellow line) and Fbxl3-G342V (red line) had a period length of 22.3hrs±0.02 and 22.25hrs±0.063 
respectively.
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3.3 DISCUSSION

3.3.1 FbxlSAf11 mutation affects both cryptochromes

It has been known for a long time that the Skp/Cullin-l/F-box protein ubiquitin ligase 

complexes are involved in the timely degradation of clock controlled proteins. Specific F-box 

proteins constituting the SCF complex target specific substrates for degradation. For example, 

P-TRCP1 and p-TRCP2 are known to mediate the degradation of circadian regulators, period 

proteins, PERI and PER2 (Ohsaki, Oishi et al. 2008). It was not until the identification of the 

Fbxl3Afll mutation that specific F-box proteins targeting the important negative regulators 

CRY1 and CRY2 became known. A yeast two-hybrid screen initially identified FBXL3 as an 

interactor o f Skpl, whereas later, immunoprecipitation studies combined with mass 

spectrometry led to the identification of FBXL3 as the ligase that targets CRY1 and CRY2 

proteins for degradation (Busino, Bassermann et al. 2007; Godinho, Maywood et al. 2007). 

Gene and protein expression studies carried out in the SCN and liver of the Afh mutant 

revealed the suppression of C ryl, Perl and Per2 oscillations. It also affected CRY1, PERI 

and PER2 protein levels. Although the levels of the PER protein were low across circadian 

time, CRY1 protein levels were relatively high during the day and remained stable across time 

as compared to the CRY1 levels found in wild-type liver. In order to identify if the Fbxl3Afll 

mutation effects both CRY1/2 proteins in a similar fashion we decided to selectively stabilise 

CRYl or CRY2 by generating C ryF ; Fbxl3AJh/AJh and C ryF ; Fbxl3Amjh compound mutants.

In vivo rhythms of mutants are determined by measuring their locomotor activity using 

running wheels. The animals are screened using a protocol involving an initial 12hr L:D 

schedule for seven days, followed by free-running conditions in DD and LL for 2 weeks each,
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where there is no external cue given to the mice. The results are discussed in detail later in this 

section. For convenience, the discussion of the wheel running activity is split according to 

activity in the three phases LD, DD and LL.

One of the striking differences observed during our wheel running screens was evident 

in the activity of the compound mutants in the LD and LL schedule. In the LD schedule, there 

was no overt phenotype observed in the CryPA; Fbxl3Afll/Afll compound mutants as compared to 

wild-type mice. On the other hand, Cry2'A; Fbxl3A:fh/Afll mice do not seem to entrain and were 

found to be free running in the LD schedule. This was observed in every Cry2'A ; F b x B ^ ^  

mutant screened (n=10). Due to the free running nature of the Cry2'A;Fbxl3Afll/Afll mice in LD, it 

was expected that these animals would have less nocturnal activity and indeed a 2 0 % 

reduction of nocturnal activity was observed in these mice compared to wild-type mice (Table 

3.3). Loss of entrainment usually signifies defects in the photic input pathway that provide the 

SCN with the external cue via the retinohypothalamic tract (RHT). The defect can result into 

two possibilities, one being inability to entrain and second being that the period o f these 

mutants is so long that they are unable to entrain, although the latter is unlikely as Clock/Clock 

homozygous mice which have a long period of 27.36hrs were able to entrain normally to the 

L:D cycle (Antoch, Song et al. 1997). With the majority of circadian mutants displaying 

deviations in period length either in DD or LL conditions, a loss of entrainment phenotype in 

circadian mutants is quite rare. To date there are only two examples of mice which do not 

entrain to the 12 L:D cycle; one being the Math5'A knockout mice and the second is a 

spontaneous mutation identified in the Calfomia mouse, Peromyscus californicus. Math5, 

exclusively expressed in developing retinal ganglion cells, is known to be critical in cell 

differentiation of these cells. Due to the loss of MathS, 80% of the retinal ganglion cells are 

not developed. The development of cells containing melanopsin is also attenuated. These
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conditions result in mice being unable to entrain even if they are kept in LD conditions for 50 

days (Wee, Castrucci et al. 2002). The Peromyscus mice on the other hand, show robust and 

high amplitude rhythms under DD conditions. However, they completely fail to entrain to the 

12hr L:D cycle. With no alterations in visual system, they responded to the visual stimuli and 

also had normal constriction of pupils in response to illumination. It was therefore suggested 

that these mice were unable to modulate the response of light and were only able to partially 

entrain to the 12hr L:D schedule (de Groot and Rusak 2002).

Wheel running activity of Cry1' ; Fbxl3AWAfl1 compound mutants in DD as shown in 

Figure 3.1 and 3.4 reveals that the Fbxl3AJh mutation has a dominant effect on the clock, 

lengthening the period of every animal with the Afh mutation in the F-box protein, Fbxl3. 

Thus, in an animal with a clock that is Cry2-driven and carries the Afh mutation (CryFA ; 

Fbxl3J mutants), period lengthening is observed. The same effect is seen in mice with a 

clock which is purely driven by Cryl in Cry2'A ; Fbxl3A;fh/Afll double mutants. However in the 

Afh mutant mice, it has been shown that there is a reduced interaction between FBXL3 and 

CRY proteins, as a result of which CRY proteins are spared from proteasomal degradation. 

Therefore CRY protein levels that rise during the subjective night remain at high levels even 

during the subjective day resulting in a delay of transcriptional activation. If this mechanism 

was believed to be true in our CryA; Fbxl3A:fh/Ajh, then both the mutants should have had a 

similar period lengthening phenotype. However, while the period length in DD increases only 

by 1.3hrs in Cryl'A; Fbxl3Afll/A:fh double mutants (tdd=24. 19hrs±0.162) compared to the Cryl'A 

mice (tdd= 22.89hrs±0.07), the period length of Cry2'A; Fbxl3Afll/Â  double mutants 

(TDD=27.83hrs±0.310) shows a significant increase of 3.59 hours compared to the Cry2'A mice 

(TDD=24.24hrs±0.084) (Figure 3.7 A,B). This suggests that stabilisation of either CRY 

proteins causes a period lengthening presumably due to the extended transcriptional repression
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because of the Afh mutation (Godinho, Maywood et al. 2007). But the ability of both the 

CRY’s to repress transcription seems to be different.

Considering the Afh/+ and Afh/Afh background under DD conditions, removal of Cryl 

significantly accelerates the clock (Figure 3.2), whereas removal of Cry2 delays the clock 

(Figure 3.5). This effect is only significant in the Cryl'A or Cry2'A background and not in 

C ryl+A or Cry2+/~ background which is consistent with the finding that animals heterozygous 

for either Cryl or Cry2 and carry wild type FbxlS do not show any change in period length 

and are similar to the wild-type mice (van der Horst, Muijtjens et al. 1999). Parallel studies 

were carried out in cultures from the SCN collected from each of the combination of the CryA 

; Fbxl3WW1 compound mutants. The SCN cultures also showed a similar trend of period 

lengthening which correlated well with the in vivo wheel running behaviour (Appendix 4, 5). 

Consolidation of these results leads to a paradoxical situation; compared to mice that are 

homozygous for Cry2 and wild-type for Fbxl3+/+ (Cry2'A ; Fbxl3+/+)  that have a long 

phenotype with a slower clock, the Cryl'A ; Fbxl3Aflx/Afll double mutants where Cryl is absent 

and there is stabilisation of CRY2 (due to the Afh mutation) also slows the clock resulting in 

an increased tdd- Hence, it is intriguing to find out why absence of CRY2 protein in Cry2'A 

mice lengthens the clock, while upregulated and stabilised levels of CRY2 in Cryl'A 

;Fbxl3Â /Aflt double mutants (due to spared proteasomal degradation in the presence of the Afh 

mutation) also lengthens the clock. A possible explanation for this could be attributed to the 

time of CRY2 protein expression. In a normal circadian cycle, clock proteins reach their peak 

during the night and nadir during the day. However, in Cry2'A mice there is no peak of CRY2 

protein at night time, whereas in the Cryl'A; Fbxl3Afll/Afll mice, there is less CRY2 proteins 

during the night and these remain at a higher level even during the daytime. This suggests that, 

the higher CRY2 levels during the day may have an effect on clock mechanisms resulting in a
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period lengthening phenotype in both absence of CRY2 (Cry2'A) and upregulated levels of 

CRY2 (Cryl'A;Fbxl3Afll/Â ) . This finding being specific to Cry2, suggests that the functioning 

of the clock is predominantly dependent on Cryl. This is consistent with findings in Cryl'7" ; 

Cry2~A double mutants (van der Horst, Muijtjens et al. 1999). With no difference observed in 

the period length between the single Cry heterozygous animals (C ryl+A and Cry2+A)  and 

double heterozygous animals Cryl+A; Cry2+A compared to wild-type mice, it was surprising to 

find compound mutants that carried only one Cry2 allele (Cryl'A; Cry2+A) displayed a period 

length that was shorter ( t D d  =21.77hrs) than the single Cryl knockout mice (Cryl~A t D d  =  

22.5 lhrs) in DD conditions. However, this phenotype persisted only for the initial few days, 

after which mice were arrhythmic. This was in contrast to compound mutants which carried 

only one Cryl allele. In these animals (C ryl+A;Cry2~A) an intermediate period between the 

Cryl"7" and Cry2~A single knockout mice was observed. This possibly depends on the presence 

or absence of Cryl and suggests that Cryl is important for the proper functioning of the clock 

(van der Horst, Muijtjens et al. 1999). This in return leads us to think that it is presumably due 

to the presence of other interacting factors that confer different functions to Cry2 or regulate 

Cry2 differently. However, to investigate the roles of Cryl and Cry2 and to dissect their 

individual functions gene and protein expression profiles have to be determined in the 

compound mutants. This is described in section 3.2.3 and 3.2.4.

Activity screens of the compound mutants in LL result in variable phenotypes, from a 

clear phase shift or splitting of activity in animals with an Fbxl3A;7h/+ background, to very weak 

rhythms or arrhythmicity as observed in Cry2~A; Fbxl3Afll/Afll. Phase delays in mice are known 

to be associated with the expression of the clock controlled PER2 levels. It has been shown 

that under constant light conditions in wild-type mice, there is no degeneration of PER2 

resulting in constitutive and elevated levels of PER2, thus contributing to the phase delay
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(Munoz, Peirson et al. 2005). This has been proved in the Per2Brdmlmutant mice (a targeted 

Per2 mutant), where in the absence of PER2 there is no phase delay and hence the mutant 

mice show a shortened endogenous period under LL conditions (Steinlechner, Jacobmeier et 

al. 2002). Hence, it would be interesting to investigate the expression of PER2 in the Cry2~/~; 

F b x l 3 to determine if arrhythmicity observed in our double mutants is associated with 

PER2 protein levels. Although the effects of LL are not very dramatic in Cryl'A ; Fbxl34^4# 

mice, huge variability is observed amongst the Cry2'A ; Fbxl3Ajh/Ajh compound mutants, where 

a complete loss of synchronisation to the LD cycle and arrhythmicity in LL is observed in the 

Cry2'A ; Fbxl3Afll/Afll double mutants and Cry2+A; Fbxl3A:fh/Afll and splitting of activity in LL is 

observed in Cry2'A; Fbxl3A7h/+. Although Cry2 was initially considered as a photoreceptor on 

the basis of its homologue function in Drosophila, the function of mammalian Cry as 

photoreceptors has been a debate for a long time and is far from proven. Cry2 is expressed in 

most tissues, however, it is expressed at the highest level in the ganglion cell layer and inner 

nuclear layer of the retina. In the retinal ganglion cells there are distinct subsets of cells, the 

ipRGCs, that project to the SCN via the RHT and are known to play an important role in 

photic entrainment and may have a role as photoreceptors (Lowrey and Takahashi 2000). It 

may therefore be that Cry2 is involved in the light induced regulatory pathway in the ipRGCs. 

Based on previous reports in Cry2'A mice that show a reduced sensitivity in the photoinduction 

of genes (Thresher, Vitatema et al. 1998; Sancar 2004), it could be that the loss of Cry2 and 

the subsequent reduction in the photoinduction of genes is presumably one of the reasons that 

Cry2'A ; F b x l 3 double mutants free run in LD. However this needs to be investigated. 

Compared to wild-type mice, the Cry2’A single knockout mice that we screened themselves 

showed variability in LL. The period length t l l  25.96 hrs±0.24 of Cry2'A mice is an average o f 

1 0  animals, of which some had an extremely weak rhythm, and some animals did not show
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any lengthening in LL. With the variability observed in Cry2'/' mice it is difficult to predict if 

the phenotype of the C ry lA; Fbxl3Ajh/Afll double mutants is due to the loss of Cry2 in Cry2'A; 

Fbxl3Afll/Afll double homozygous mice or due to the presence of the Afh/Afh mutation. The 

Fbxl3Â  results in stabilisation of CRY1 and CRY2 and the variability observed in the Cry2'A 

mutants might be the cause of the arrhythmic behaviour observed in the Fbxl3Aflt/Afll mice. 

Additionally, while the Cry2+/';Fbxl3Âh/+ show rhythmicity in LL, the loss of sustained 

rhythms in Cry2+/~; Fbxl3Ajh/Afll reveals the importance of the presence of Cry2 for maintaining 

a functional clock in LL. Similar results have also been observed in other mutants such as 

short circuit (Sci), an ENU mutant, which when crossed to Cry2'A mice (Sci+A; Cry2'A), shows 

a phase advance in activity under LD conditions and shows no period lengthening in LL (data 

not shown, personal communication with Jessica K. Edwards). A second mutant identified 

using ENU mutagenesis, results in truncation of FBXL3, with 46 amino acids missing from 

the C-terminal end. Preliminary studies carried out on this mutant have shown it to have a loss 

of entrainment phenotype in LD, similar to the Cry2'A; Fbxl3Afll/Afll mice. While the 

heterozygous animals show an extreme lengthening in LL (difference between tLL and xDD is 

> 2.74hrs), the homozygous animals with truncated Fbxl3 are arrhythmic. In-vitro interaction 

studies in this mutant reveal a significant reduction in both CRY1 and CRY2 interaction (data 

not shown, personal communication with Christine Damrau). All these results together 

suggest the importance of Cry2 that may possibly have a role in photoreception in mice. 

Nevertheless, gene expression studies need to be carried out in these mice housed under LL 

conditions.
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3.3.2 Cryl is a stronger transcriptional repressor

One of the aims of this thesis is to dissect the individual function of the Cry 

paralogues, Cryl and Cry2 using the Afli mutant, the knockouts of which have opposing 

phenotypes. The Fbxl3Afll mutation was seen to affect both the negative regulators of the 

mammalian circadian loop, Cryl and Cry2. Although both the cryptochromes are affected in 

the same way as seen by an increase in the period length in DD conditions, this does not help 

us dissect the functions of the Cry paralogues. It is for this reason we carried out real time 

gene expression studies at the RNA and protein level in the cerebellum of the CryA; 

Fbxl3Afll/AJh double mutants. Our results show that, in the absence of Cryl (in a Cry2-driven 

clock), there is no dramatic change in expression of the clock controlled genes, except for the 

repression of Per2 which presumably leads to a phase shift in the expression of Dbp. The 

expression of Rev-erba is also upregulated in these mutants presumably due to secondary 

effects of CRY2 upregulation discussed later in this section. While on the other hand, in the 

absence of Cry2, in a Cryl driven clock, there is transcriptional repression of the clock 

controlled genes. At the protein level we would expect stabilisation of the alternative CRY 

proteins in Cryl'A; Fbxl3Âh/Âh and Cry2'A; Fbxl3Â /Afll mutants, as a result of the Afli mutation. 

Thus, with stabilisation of either CRY1 or CRY2 proteins we would expect transcriptional 

repression of clock genes (resulting in a long period, as observed). Although we find that in 

CryA; F b x l 3 mutants there is an upregulation of the CRY proteins, with a significant 

effect of the genotype (Cryl'A; Fbxl3Aflt/Afll\ p=0.015 and Cry2'A; Fbxl3AfllJAjh\ p=0.05) both the 

Cryl and Cry2 do not repress transcription of genes to the same degree. This suggests that in 

addition to the stabilisation of CRY proteins, some other unknown factors (maybe the 

presence of secondary effects of other clock genes) also contribute to the transcriptional
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repressor functions of Cry genes. One of major differences between Cryl and Cry2 could be 

attributed to their sequence itself. Although CRY1 and CRY2 show 80% sequence homology 

amongst each other, their differences lie in their unique C-terminal sequences. Alignment of 

CRY protein sequences show no similarity whatsoever in the C-terminal tails. Therefore, it 

could be that the amino acids that constitute the C-terminus of the two CRY proteins may 

confer specific roles to CRY proteins. An interesting observation made in the Cryl'A; 

Fbxl3Afll/Afll mutants is the complete down regulation of Per2 transcription coupled with the 

upregulation of Rev-erba. There are two points of discussion providing a possible explanation 

for the observed result. One is the interaction between Cry2 and Per2, and the second is the 

interaction between Per2 and Rev-erba.

The result obtained with the upregulation of Cry2 coupled with the downregulation of 

Per2 is consistent with previous in vivo report by Oster, Yasui et al. (2002) where they have 

shown that the inactivation of Cry2 is able to restore circadian rhythmicity in the Per2Brdml 

mutant mice (Per2BrdmI mutants loose rhythmicity after a few days in DD). They show that in 

Per2Brdml; Cry PA mutants (Cry2 present), the mice are instantly arrhythmic once under DD 

conditions, while under the same conditions, Per2Brdml; Cry2~A mutants are rhythmic and have 

a period of 23.4hrs. Gene expression studies carried out under LD conditions in the Per2Brdml; 

Cry2'A mutants show the amplitude and expression of Perl, Cryl and Bmall are similar to 

expression found in wild-type mice. This supports the fact that with the inactivation of Cry2, 

in the Per2Brdml mice, circadian rhythmicity can be restored. These results suggest that Cry2 

could act as a suppressor of Per2 in vivo (Oster, Yasui et al. 2002). This is in agreement with 

our gene expression studies performed in the Cryl'A; Fbxl3Afll/AJh mice. However, the reason 

for this interaction between Cry2 and Per2 is unknown and is yet to be investigated.
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Further, in the Cryl'1'; Fbxl3AfldAfll mutants, except for the repression of Per2 

(presumably due to the high expression of Cry2)f all other genes including Bmall are 

rhythmically expressed. This is in contrast to the gene expression observed in the Per2Brdml; 

Cryl~A mice, where there is a loss of rhythmicity in the expression of clock genes, suggesting 

that Cryl and Per2 are the important components of the clock and are essential to maintain 

rhythmicity in-vivo (Oster, Yasui et al. 2002).

As Cryl is considered to be a global repressor of genes belonging to the core and the 

secondary loop, it may be that the Per2 repressive functions are confined to genes belonging 

to the secondary loop viz. Rev-erba. It is already known that Rev-erba is activated by the 

CLOCK-BMAL1 heterodimer, and is involved in feedback repression by inhibiting the 

activity of Bmall (Preitner, Damiola et al. 2002, Oishi, Fukui et al. 2000; Shearman, Sriram et 

al. 2000; Preitner, Damiola et al. 2002; Reppert and Weaver 2002; Ueda, Chen et al. 2002; Ko 

and Takahashi 2006). However, recently it was shown that apart from C ryl, Per2 is also able 

to interact with and repress Rev-erba in-vitro. This is evident from the fact that when Per2 

mRNA is at peak levels, Rev-erba mRNA is at low levels and vice-versa (Schmutz, Ripperger 

et al.). This was also confirmed in-vivo using the PerlBrdml; Per2Brdml and Cryl~A; Cry2'A 

double mutants, where the absence of Per2 and Cryl resulted in elevated Rev-erba levels. 

Thus it can be concluded that the gene expression profiles we see in the CryVA; Fbxl3Alh/Alh 

mice are a result of two dependent interactions. One is the interaction between Per2 and Cry2 

and the second is the interaction between Per2 and Rev-erba. Thus upregulation of Cry2 

results in repression of Per2 as a result of which, Rev-erba is spared from repression. This in 

turn leads to suppression of Bmall finally delaying the activation of Per and Cry genes and 

hence we see period lengthening. This interaction together with the effect of the Afli mutation, 

results in the C r y l^ 'tF b x B ^ ^  phenotype.
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Secondly, with Per2 repression being specific to the cerebellum of C ryrA;Fbxl3Afl,/A:fh 

mice, it is thought that the above interactions are tissue-specific. This is supported by the fact 

that in peripheral tissues such as liver, there are other nuclear receptors like PPARa which 

may take over the function of Rev-erba (Schmutz, Ripperger et al. 2010). However, it is 

possible that PPARa is not able to inhibit clock components and hence, we see no repression 

of clock genes in CryT/~; Fbxl3Afll/Afll liver.

3.3.3 A SNP in human Fbxl3 shows no effects

To investigate the SNP G1353T identified in human Fbxl3, we first introduced the 

mutation in mouse Fbxl3 (Fbxl3-G342V) and carried out co-immunoprecipitation between 

FBXL3 and its known substrates CRY1 and CRY2 following which bioluminescence studies 

were performed in-vitro. With no differences observed between the interactions of FBXL3-Wt 

and CRY1/CRY2 and FBXL3-G342V and CRY1/CRY2, we expected no circadian phenotype. 

This was further confirmed in-vitro in the LumiCycle studies which showed no obvious 

phenotype from the mutation. If the interaction between FBXL3-G342V and CRY1 is indeed 

compromised, high levels of transcription inhibitor CRY1 would be present resulting in a 

slower clock and hence a longer period, similar to the phenotype observed in mice (Busino, 

Bassermann et al. 2007; Godinho, Maywood et al. 2007; Siepka, Yoo et al. 2007).

Though the functions of most clock controlled genes have been characterised in 

mammals, the assumed functions of these genes in generating the molecular rhythms are 

hypothetical in humans as genes are identified on the basis of sequence similarities and there 

is no experimental set up to prove the hypothesis. Hence, phenotypes observed by association 

studies do not take into account the effect of two or more genes and are merely single gene
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effects. This may be the reason that replicating associations that are already known proves 

difficult. Chronotype itself is a polygenetic trait influenced by factors other than the core 

clock components. In addition, they are influenced by combined effects o f the genes that are 

included in the input, oscillator and output pathways (Pedrazzoli, Secolin et al.; Allebrandt and 

Roenneberg 2008). Thus, with variations within human subjects, the determination o f the 

exact role of one gene based on the effect o f one specific SNP identified is very difficult. It 

can be hypothesized that effects seen in Fbxl3-G1353T can be a result of subtle protein 

alterations. This could result in alteration of interaction rates of proteins, affecting their 

dimerisation and in turn altering circadian regulations, finally resulting in a different 

chronotype. In addition, there is a possibility of alterations present in the promoter regions of 

Fbxl3 resulting in differences in phase relationship of the clock and hence differences in the 

daily rhythms. There have also been several reports where novel non-synonymous changes 

identified have had alterations in the protein structure and functions, but have been identified 

only in a single individual, indicating that disruptions may be due to familial inheritance 

(Hawkins, Meyers et al. 2008). Since the Fbxl3 SNP, G1353T, was identified only in 20% of 

the individuals belonging to the eveningness and extreme eveningness category, the 

chronotype obtained could be a possible consequence of familial inheritance. This would have 

to be determined only by sequencing DNA for the particular individuals belonging to one 

family. Thus, combined effects of inheritance along with unknown variations in the non 

coding promoter regions could be the basis of the observed G1353T chronotype.

Finally, disruptions of circadian oscillations and sleep homeostasis are characterised to 

be a part of central nervous system disorders. Examples o f SNP’s in clock genes such as Perl, 

Bmall and Clock are known to be associated with autistic disorders (Nicholas, Rudrasingham 

et al. 2007), bipolar disorders (Nievergelt, Kripke et al. 2006) and impaired cognitive
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performance (Benedetti, Radaelli et al. 2008) respectively. However, it is thought that rather 

than affecting circadian rhythms directly, a SNP may have a secondary effect on behaviour 

and may be associated with anxiety, or depression due to the uncoupling of neuronal circuitry 

(Albrecht). Similarly, the G1353T SNP could also be associated with behavioural disorders 

causing an alteration in the circadian clockwork.

3.4 SUMMARY

While the main aim of the chapter was to identify the effects of Fbxl3AJh mutation, 

in the course of these studies, we have also obtained some other interesting findings. We have 

successfully shown that the Fbxl3Âh/Âh mutation affects both CryVA and Cry2'A in vivo, by 

increasing the period length under DD and LL conditions. This has been confirmed in parallel 

studies carried out in the SCN slices obtained from the Cry1'; Fbxl3Afll/Afll compound mutants.

An observation made during the wheel running recording was in Cry2'f'; Fbxl3 

double mutants, which show a lack of entrainment in the LD phase of the circadian screen. At 

the RNA level, it was seen that both Cryl and Cry2 act as transcriptional repressors, however 

the effects of Cryl overexpression in the Cry2'A; F b x t t ^ ^  mice are much stronger than the 

overexpression of Cry2 in the Cryl'/'; Fbxl3Aflx/Â  mice. While Cryl is able to repress the 

expression of most clock genes in the cerebellum as well as in the liver, the ability o f Cry2 to 

repress transcription lies mainly in the cerebellum and it is seen to be P e r 2 -specific. 

Furthermore its ability to repress Per2 in the liver is lost. Although the suppression of Per2 in 

the cerebellum of Cryl'A; Fbxl3Alh/Alh mice could be attributed to the interaction between Per2, 

Rev-erba and Bmall, it is possible that nuclear receptors such as PPARa, which is liver 

specific, do not alter the interactions between clock components.
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Although the F b x l 3 mutation is known to stabilise its substrates CRY1 and CRY2 

in vivo resulting in an extended transcriptional repression and longer period, it could be that in 

the Cryl’A; Fbxl3Aflt/Afll double mutants, the secondary effects of Cry2 upregulation also 

contribute to the period lengthening.

Along with these studies, a SNP G1353T, previously identified in the human sequence 

of Fbxl3 was seen to have an association with extreme eveningness. It was interesting for us to 

determine if this human polymorphism in Fbxl3 had the same effects as the Fbxl3Âh/Âh 

mutation. We performed all the experiments by replicating the polymorphism in the mouse 

Fbxl3 sequence and obtained a Fbxl3G242V plasmid. There was no evidence of a significantly 

reduced interaction of Fbxl3G342vwith CRY1 and CRY2 in-vitro and there were no significant 

differences in the period length. Hence we would assume that the association with extreme 

eveningness would depend on factors such as gene-environment interactions. In addition, it 

could also be that rather than having a direct effect on circadian regulation, the SNP may be 

associated with behavioural disorders indirectly altering circadian rhythms. However, taking 

into consideration these results, the effects of the polymorphism cannot be concluded as yet.

Finally, we are able to refine the importance of F-box proteins and their role in the 

regulation of the circadian protein levels.
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4 CHAPTER FOUR: Characterisation of 
Mutants in Novel F-box Proteins
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4.1 INTRODUCTION

One of the fundamental goals of biological research is to identify the underlying mechanisms 

of complex behaviour, which is accomplished by determining the physiological function of the 

translated proteins. With innovations made in techniques such as sequencing and mapping, a 

large number of genes that might play a role in the progression of complex diseases and 

behaviours have been identified. However, questions such as how the identified genes act and 

what pathways they are involved in can be answered using a mutant and determining the 

effects when the gene is missing (Picciotto and Wickman 1998). Isolation of mutants is 

achieved by combining a forward and reverse genetics approach.

4.1.1 ENU mutants Versus Knockouts

Although both ENU mutagenesis and generating knockouts have been very useful to 

unveil functions of a number of genes, the contribution of ENU mutagenesis has been 

particularly significant for circadian biologists. One of the major advantages of ENU 

mutagenesis is that generation of mutant mice (re-derivation of mice from frozen sperm or ES 

cell archive) is much easier and faster than generating knockout mice. Further, mutants 

generated via knockouts, may or may not have germline transmission of the mutation. While 

ENU mutagenesis makes uses of the same parental sperm whose DNA carried the desired 

mutation, germline transmission is always achieved. Finally, studying redundancies is easier in 

ENU mutants than in knockouts, as by generating a knockout, there is no expression of 

protein. Hence if a paralogue exists, then the function is taken over by the paralogue of the
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knocked out gene. Since ENU mutagenesis only generates point mutations, the mutant protein 

is expressed. Expression of the mutant form of protein is useful in identifying effects on 

localisation and interactions of protein complexes. One of the best known examples clearly 

showing a difference between the ENU mutant and knockout is the Clock mutant, where 

compared to the homozygous ENU Clock mutant that was arrhythmic in DD, the Clock 

knockout mice sustained rhythmicity. It was later revealed that the presence of rhythms was 

due to a functional redundancy between the Clock and Npas2 paralogue pairs (Antoch, Song et 

al. 1997; King, Vitatema et al. 1997) suggesting that ENU mutagenesis makes a contribution 

to elucidate functions of genes underlying diseases or abnormal phenotypes.

4.1.2 Identification of Fbxl21

The F-box protein family comprises of over 40 members, which are mainly involved in 

the post-translational modification processes of circadian proteins. They first undergo 

phosphorylation followed by ubiquitination and finally proteasomal degradation through the 

SCF complex (Kipreos and Pagano 2000). The F-box protein FBXL21 is one such protein 

found to be involved in the timely degradation of circadian proteins which is required to 

maintain a balance between the interlocked feedback loops. Fbxl21, the closest paralogue of 

Fbxl2, was first identified in sheep (Jin, Cardozo et al. 2004). It was also found that the 

rhythmic expression of Fbxl21 is thought to be due to the combined effect o f transactivation 

by E-box elements through ClockJBmal and the PAR-bZIP transcription factor family 

(Dardente, Mendoza et al. 2008).

In comparing both the F-box proteins, FbxU and Fbxl21, the striking difference 

identified between the two is their spatial and temporal expression in tissues. Fbxl3 seems to
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be expressed ubiquitously in almost all the tissues including liver. Fbxl21, in contrast is found 

to be highly specific in the SCN followed by expression in neuroendocrine structures like 

hypothalamus and adenohypophysis with no expression in liver (Dardente, Mendoza et al. 

2008). Similar to FBXL3, FBXL21 was also shown to be capable of interacting with and 

degrading CRY1, the important negative regulator of circadian function (Dardente, Mendoza 

et al. 2008). However, the role of Fbxl21 in circadian mechanisms is still unknown and 

investigations into it will be a major contribution to this field. For this reason, we used the 

ENU mutagenesis approach to look for mutations in Fbxl21. As the mechanism of Fbxl21 

regulation is not yet known, it is possible that, Fbxl21 is regulated by its paralogue and they 

may or may not be functionally redundant. Thus, in order to avoid the opposing phenotypes as 

observed in the Clock mutants, the reverse genetics approach was chosen.

4.2. AIMS OF CHAPTER

The broad aim of the chapter is to identify the role of the second F-box protein Fbxl21 in 

circadian time-keeping. For this reason, instead of generating a knockout mouse, we used the 

reverse genetics approach using ENU mutagenesis to identify mutants in Fbxl21. Various 

other questions about the expression of FBXL21, its interaction with CRY1 and CRY2 and 

their ability to degrade the same are some of the aspects we studied. The other important 

question was the redundancies between the two F-box proteins, and if one or both F-box 

proteins are necessary to maintain the circadian balance.
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4.3 RESULTS

4.3.1 Harwell ENU archive screening

FBXL21 is a F-box protein of 434 amino acids with leucine rich repeats (LRR) as their 

secondary motifs. FBXL21 is the closest relative of the 428 amino acid protein FBXL3, with 

similarities between their domains. Like FBXL3, FBXL21 has a putative CRY-binding 

domain, which is 80% identical to that of the FBXL3 domain. This similarity in domains gives 

rise to questions regarding the function of FBXL21. For this reason, the reverse genetics 

approach was chosen and the Harwell ENU archive was screened to look for mutations in the 

gene Fbxl21.

Because of the similarities in the F-box domains and CRY-binding domains of FBXL3 

and FBXL21, specific primers for the respective domains in Fbxl21 were designed to screen 

the archive for mutations. The archive consisted of DNA samples collected from 9600 male 

progeny of animals treated with ENU. PCR was performed on this DNA and analysed using 

the light scanner which identifies heteroduplexes based on the DNA melting curve.

Several DNA pools which were outliers in their DNA melting curve in both the F-box 

and CRY-binding domain screens were identified. A second PCR with individual DNA 

samples along with wild-type DNA was repeated and analysed in the same way in order to 

confirm the DNA melts for the outliers. Four mutations were identified in the F-box domain, 

all of which were confirmed by sequencing. In the putative CRY-binding domain screen, only 

one mutation was identified (Figure 4.1 A). Out of the four F-box mutations, one, 

Histidine77Histidine (H77H) was a silent mutation. Leucine36Proline (L36P) and 

Serine28Phenylalanine (S28F) were mutations identified close to the F-box domain and the
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Valine6 8 Glutamic acid (V6 8 E) mutation was positioned in the middle o f the F-box domain 

(Figure 4.1 A, B). Proline291 Glutamine (P291Q) was the only mutation identified in the 

putative CRY-binding domain screen (Figure 4.1 A, B). The melting curves and sequence 

traces for the V6 8 E and P291Q mutations are shown in Figure 4.2A, B. While the V6 8 E was a 

T to A transversion, a C to A base pair substitution resulted in the P291Q mutation. Due to the 

fact that the exact position of the CRY-binding domain in FBXL21 is only predicted, it might 

be that the P291Q mutation may still affect FBXL21 interaction with CRY proteins (Figure 

4.1).

Once sequencing confirmed the base pair change in the five mutations, we looked at 

the conservation of regions containing these mutations across different species. Of the five 

mutations, we chose only two mutations to work with. As one was a synonymous mutation, 

and from the remaining three mutations, L36P and S28F did not lie within the F-box 

consensus, these mutations were eliminated. On the other hand, the V6 8 E and P291Q 

mutations were in highly conserved F-box and CRY-binding domains respectively across 

multiple species (Figure 4.3A). The mutations were also in regions o f high conservation 

between the two F-box proteins, FBXL3 and FBXL21 (Figure 4.3B, C).
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Figure 4.1: Mutations identified in the Harwell ENU archive screen. A) Representation of FBXL21 
protein domains. The ENU archive was screened to identify mutations in the F-box domain and the CRY-binding 
domain using DNA melting curve analysis. While the green stars denote identified mutations, the red stars denote 
potentially functional mutations. In a total of 5 mutations, two mutations were identified in the F-box domain 
(H77H and V68E) and two in its vicinity (S28F and L36P). A P291Q mutation was identified in the putative 
CRY-binding domain. B) Amino acid changes due to identified mutations.
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Figure 4.2: Identification o f  outliers in the E N U  archive screen. A) PCR with specific primers for 
screening the F-box domain o f Fbxl21 was performed, o f  which there were two interesting pools o f  DNA. 
Individual DNA’s (X89D12 and X92F6) were used to repeat the PCR and confirm the outliers (a). Mutations in 
these individual DNA’s were confirmed by sequencing. V68E was identified in the X92F6 animal (b). B) The 
screen for identifying mutations in the CRY-binding domain was performed in the same way. a) shows X 36G 11 
as the outlier amongst the random DNA samples. The individual was sequenced to reveal the P291Q mutation in 
the predicted CRY-binding domain.
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Figure 4.4: Conservation o f  mutations identified in the EN U archive screen. Out o f the four mutations 
identified in the F-box domain o f Fbxl21, only one mutation, V68E was in the middle o f  the F-box domain o f  
FBXL21. The other mutations, L36P, S28F and H77H were identified in the vicinity o f  the F-box domain. 
However the sequence alignment o f the mutations identified shows that the serine in S28F and histidine in H77H 
substituted are highly conserved across different species. The Leucine in L36P is conserved only in mice and rats 
and not in other species. While L36P is not thought to result in a potential functional change o f  FBXL21, the 
S28F and H77H substitutions may or may not affect FBXL21 function.
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4.3.2 Localisation of FBXL21 in-vitro

Once mutations were identified in the F-box and CRY-binding domains of Fbxl21 the 

effect of these mutations on the localisation of FBXL21 was investigated. This was done by 

immunofluorescence performed on U20S cells (section 2.14). Full length Fbxl21 cDNA was 

cloned into the pCSII-Myc vector (a kind gift by Dr.Hughes Dardente from the University of 

Aberdeen). The desired mutations, V6 8 E and P291Q were then introduced into the Fhxl21- 

wildtype (Wt) sequence using the Stratagene mutagenesis kit (Section 2.13). Wild-type and 

mutant Fbxl21 plasmids were transfected into U20S cells using Fugene6  transfection reagent 

(section 2.4.6). After 24hrs, the cells were synchronised with forskolin at a final concentration 

of lOpiM (section 2.4.7). Following forskolin shock, cells were collected at various time 

points, washed with PBS, immediately fixed with PFA and then stored at 4°C until all the time 

points were collected and immunofluorescence was performed (section 2.14).

Figure 4.5 shows the localisation of FBXL21 by transfecting Fbxl21-VJt or mutated 

Fbxl21, V6 8 E and P291Q. It can be seen that 6 hrs after forskolin shock, FBXL21-Wt remains 

cytoplasmic. However, both mutant proteins V6 8 E and P291Q are nuclear and cytoplasmic at 

this time (Figure 4.5A). After 12hrs of shock, this difference in FBXL21 localisation is 

eliminated and both FBXL21-Wt and mutated forms are nuclear as well as cytoplasmic 

(Figure 4.5B). The same result is obtained even after 18hrs of shock, where FBXL21-Wt and 

its mutated forms are both nuclear and cytoplasmic (Figure 4.5 C). Although FBXL21-Wt is 

restricted to the cytoplasmic compartment after 6 hrs, the mutant FBXL21 is nuclear as well as 

cytoplasmic. Thus there appears to be an alteration in the dynamics of nucleocytoplasmic 

shuttling in both mutant forms of the FBXL21 protein.
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FNT
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181n s

Figure 4.5: Localisation o f  FBXL21 in-vitro. Fbxl2l-wild-type and mutated forms, V68E and P291Q were 
overexpressed in U 20S  cells. While the green area in merge represents localisation in cytoplasm, aqua area in 
merge denotes nuclear localisation. A) After 6hrs o f forskolin shock, FBXL21-Wt is retained in the cytoplasm, 
whereas V68E and P291Q appear to promote nuclear localisation at this time point. B) FBXL21-Wt moves into 
the nucleus whilst expressed in the cytoplasm as well after 12hrs o f shock. Both the mutated versions are nuclear 
and cytoplasmic at this stage. C) There was no difference in localisation between the mutants even after 18hrs of 
forskolin shock.
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4.3.3 Interaction of FBXL21 with CRY1 and CRY2

FBXL21 was predicted to play a role in circadian mechanisms due to its interaction 

with the key circadian protein, CRY1 (Dardente, Mendoza et al. 2008). However, the 

interaction between FBXL21 and CRY2 has not been studied. Hence, it was interesting to 

determine if FBXL21 interacted with both CRY1 and CRY2.

These experiments were carried out in-vitro using Cos7 cells. Fbxl21-Myc plasmids 

were co-transfected along with either Cryl-HA  or Cry2-HA plasmid into a dish with 70-80% 

confluent cells using Fugene6  in a manner as described in section 2.4.6.1. 36hrs after 

transfection, proteins extracted from the cells were quantified (section 2.9). The protein lysates 

were then subjected to co-immunoprecipitations. In this experiment, the a-HA antibody was 

used to pull down CRY1-HA or CRY2-HA with protein G sepharose beads. The eluted 

proteins from the co-immunoprecipitated complexes were run on a protein gel and then probed 

for FBXL21 using a-Myc antibody (Invitrogen)

The results as shown in Figure 4.6A and B are a representation of five independent 

experiments performed that clearly show an interaction of FBXL21-Wt with both CRY1 and 

CRY2. Whole cell lysates (Lys) were used as an input that shows the presence of FBXL21- 

Myc in the protein lysates. Quantification of the blot is shown in Figure 4.6C, where the 

FBXL21 interactions are first quantified relative to the amount of CRY 1/2 pulled down using 

a-HA antibody (the bands on the right hand side of both Figure 4.6 A and B). Further for easier 

understanding, the FBXL21-Wt and CRY interactions (normalised to CRY) are set at 100% 

and the interactions of FBXL21-V68E/P291Q and CRY1/2 are plotted as amounts of protein 

present normalised to FBXL21-Wt-CRYl/2 interaction (Figure 4.6C). It can clearly be seen in 

the plotted graph (Figure 4.6 C) that the interaction of mutated FBXL21 with both CRY 1/2
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proteins is significantly reduced by -80% in-vitro (One-way ANOVA with Bonferroni post 

hoc analysis, FBXL21 -V6 8 E-CRY1, FBXL21-P291Q-CRY1 p<0.01, FBXL21-V68E- CRY2, 

FBXL21-P291Q-CRY2 p<0.001). Thus it can be concluded that both V6 8 E and P291Q 

mutations affect FBXL21-CRY interactions.

In some lanes, particularly those with cell lysates, white speckles can be observed. This 

is due to overexposing these bands while imaging. Due to the weak bands of FBXL21-V68E- 

Myc and FBXL21-P291Q-Myc, the cell lysates were overexposed. The negative controls used 

in this experiment should also be noted. Two negative controls, subjected to exactly the same 

protocol as with the experimental samples, were used. The first negative control was the 

protein lysate obtained from co-transfecting an empty Myc vector (evMyc) with CRY1-HA 

which is the same plasmid used in co-transfections with Fbxl21-Myc. This shows that in the 

absence of FBXL21 in the empty Myc vector, CRY1 is unable to bind to anything and hence, 

there is no band in the lane with this sample (Figure 4.6 A). The second negative control used 

was the protein lysate obtained from untransfected cells, which again was processed in the 

same way, and since no complex formation takes places, there is no band present, which 

ultimately proves that all the other bands present are true and not false positives (Figure 4.6 

B).
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Figure 4.6: Interaction o f recombinant FBXL21 with CRY1 and CRY2 in-vitro. A and B) Both these 
images are representative western blots performed using co-immunoprecipitated lysates. The molecular weight 
markers are shown on the left of each blot. The first three bands in both the blots are whole cell lysates (Lys.) that 
show the presence of the F-box proteins (FBXL21) in the transfection complex. The next three are co- 
immunoprecipitated (Co-iP) bands showing the interaction of FBXL21-Wt, V68E and P291Q with CRY1 (A) 
and CRY2 (B). The last three bands are the CRY proteins that are pulled down using protein G sepharose beads 
and a-HA antibody (IP). For performing the experiments, first CRY proteins were immunoprecipitated by using 
a-HA antibody following which, their interaction with FBXL21 was probed by using a-Myc antibody. The 
amount of interaction was first normalised to amount of CRY proteins immunoprecipitated following which, the 
interactions are quantified relative to FBXL21-Wt and CRY interaction. Both A and B show that FBXL21 
interactions with both CRY1 and CRY2 are affected by mutations in the F-box domain and CRY-binding 
domain. C) Quantification of the interactions plotted as normalised to interaction of FBXL21-Wt and CRY1/2 
proteins. Both the mutants show significantly reduced interaction of -80% with both CRY1 and CRY2 proteins 
(One way ANOVA with Bonferroni post hoc analysis, FBXL21-V68E-CRY1 and FBXL21-P291Q-CRY1 
p<0.01, FBXL21-V68E-CRY2 and FBXL21-P291Q-CRY2 p<0.001).
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4.3.4 Degradation of CRY1 and CRY2

F-box proteins target phosphorylated substrates for polyubiquitination followed by 

proteasomal degradation. p-TRCP 1 and 2 are known F-box proteins that degrade PER 

proteins (Ohsaki, Oishi et al. 2008) and it was recently shown that FBXL3 degrades CRY 

proteins (Busino, Bassermann et al. 2007; Godinho, Maywood et al. 2007; Siepka, Yoo et al. 

2007). Hence, due to the close homology between FBXL3 and FBXL21 and interaction of 

FBXL21 and CRY1/2 (as shown in Figure 4.3 and Section 4.3.3), it was necessary to 

determine if CRY proteins are targeted by FBXL21 as well.

For this reason, we performed in-vitro experiments in Cos7 cells by co-transfecting 

Fbxl21-Myc and Cry 1/2-HA. We first determined if FBXL21-Wt is able to degrade CRY 1/2 

proteins. 24hrs after transfection, we treated the cells with the protein synthesis inhibitor, 

cyclohexamide (CHX) at a concentration of 25 ng/ml and collected the cells for protein 

extractions at Ohrs, 2.5hrs and 5hrs after the treatment. The time CHX was added to the cells 

was considered as Ohrs (section 2.4.8). Once the proteins were quantified, 5\xg o f the protein 

lysates were western blotted. The levels of CRY proteins were determined by probing with a- 

HA antibody followed by normalisation with P-ACTIN levels (control) determined by probing 

with a-P-ACTIN antibody. Figure 4.7 is a representative image of five independent 

experiments. It can be seen from the figure that FBXL21-Wt indeed degrades both CRY1 and 

CRY2 proteins with different efficiencies. CRY1 protein levels do not seem to be reduced as 

much (-25% reduction) by FBXL21-Wt after 5hrs of CHX treatment (Left panel in Figure 

4.7A, B). In contrast to this, CRY2 levels are very low (-70% reduction) after 5hrs of CHX 

treatment (Right panel in Figure 4.7A, B). When normalised, the above result can be clearly 

seen in the graph plotted where CRY protein values are normalised to CRY protein level at
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Ohrs (Figure 4.7 B). CRY2 protein levels are halved after 2.5hrs of CHX treatment and further 

halved by 5hrs of CHX treatment, unlike CRY1 proteins. This shows that CRY2 is a better 

target for FBXL21 mediated proteasomal degradation than CRYl.

A
Oh 2.5h 5h Oh 2.5h 51i

a-HA
64 64 -------

a-Actin 51 51

Fbxl21 W t +C R Y 1-H A Fbxl21 W t +C R Y 2-H A

Degradation of CRYl and CRY2 by 
FBXL21-\Vt

uo
U2.5

US

C R Y 1 C R Y 2

Figure 4.7: Degradation o f  CRY proteins by FBXL21-Wt in-vitro. A) Representative western blots 
showing CRY1 (left panel) and CRY2 (right panel) degradation. Protein lysates were collected from Cos7 cells 
co-transfected with Fbxl21-Wt and Cryl-HA or Cry2-HA followed by treatment with 25pg of CHX. Cells were 
collected at Ohrs, 2.5hrs and 5hrs after CHX treatment. The molecular weight markers are shown on the left of 
each blot. CRY levels were first determined by probing the membrane with a-HA antibody and were then 
normalised to P-ACTIN levels. B) Normalised CRY levels are plotted as values relative to CRY1 and CRY2 
levels at Ohrs of CHX treatment plotted on a logarithmic scale. It shows the CRY2 levels are halved by 2.5hrs 
(-50% reduction) of CHX treatment and degraded even further after 5hrs (-70% reduction), which is in contrast 
to CRY1 levels, showing that CRY2 is a much better substrate for FBXL21-Wt than CRYl.
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Once the pattern of degradation of CRY 1/2 by FBXL21-Wt was identified, it was 

necessary to identify the degradation pattern of CRY1 and specifically CRY2 by the Fbxl21 

mutants, V6 8 E and P291Q. The same experiment as described above was performed where 

Fbxl21-Wt or the mutant V6 8 E and P291Q plasmids were co-transfected either with Cry/-HA 

or Cry2-HA. The cells were treated with CHX and proteins were extracted in the same manner 

(Figure 4.8A). Figure 4.8B shows that the mutated FBXL21 proteins degrade CRY1 in a 

similar nature as to FBXL21-Wt. When quantified and normalised to the CRY1 protein levels 

at Ohrs, it can be seen that both the mutations,V6 8 E and P291Q, do reduce amounts (-30- 

40%) of CRY1 proteins after 2.5hrs of CHX treatment, after which there is a negligible 

difference in the CRY1 levels after 5hrs of CHX treatment (Figure 4.8 B Left panel). Thus, it 

can be said that the V6 8 E and P291Q mutant proteins have very little effect (no statistical 

significance) on degradation of CRY1 proteins 2.5hrs after CHX treatment. As expected, the 

degradation of CRY2 by the Fbxl21 mutants was interesting. The V6 8 E mutation present in 

the F-box domain, show a very slight, non-significant difference in CRY2 protein degradation. 

The difference in CRY2 levels was observed after 2.5hrs of CHX treatment, where compared 

to 60% CRY2 degradation by FBXL21-Wt, only 40% of CRY2 was degraded by V6 8 E 

protein. The CRY2 levels after 5hrs did not vary between FBXL21-Wt and V6 8 E (Figure 4.8B 

right panel). An interesting observation made was the degradation of CRY2 by the P291Q 

mutation. Comparing CRY2 degradation (Figure 4.8B Right panel) by FBXL21-Wt, it can be 

seen that, the levels of CRY2 are not as low as they should be at 2.5hrs after CHX treatment. 

CRY2 levels seemed to be high even after 5hrs of CHX treatment (very slight degradation, 

-10%) (Figure 4.8 B Right panel), suggesting an attenuation in the degradation o f CRY2. 

Although not significant due to variability observed, the experiment shows the trend o f
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degradation of CRY proteins by the mutants, suggesting that the mutants may slow the rate of 

CRY2 degradation in vivo.
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Figure 4.8: Effect o f  Fbxl21 mutations on CRY1 and CRY2 degradation in-vitro. A) Western blot 
showing degradation of CRY1 by FBXL21-Wt and the two mutants, V68E and P291Q. Cells were co-transfected 
with Fbxl21 plasmids and CRY1 or CRY2, treated with 25pg CHX and collected at Ohrs, 2.5hrs and 5hrs after 
CHX media was added to the cells. CRY proteins were detected by probing with a-HA and P-actin was used as a 
control and probed with a-P-actin. B) Amounts of CRY proteins were first normalised to P-actin, following 
which they are plotted relative to CRY levels at Ohrs on a logarithmic scale. In the left panel, it can be seen that, 
compared to the FBXL21-Wt, the mutants degraded CRY1 within 2.5hrs of CHX treatment, however they did 
not degrade them further. In case of CRY2, V68E mutation had little effect and did not degrade CRY2 as 
strongly at 2.5hrs as FBXL21-Wt did. However, the CRY2 levels were maintained at a higher level in the 
presence of P291Q mutant. Only -10% of CRY2 protein was degraded after 5hrs of CHX treatment, suggesting 
that the P291Q mutant stabilises CRY2 protein in-vitro.
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4.3.5 Determining the period length of mutants in-vitro

Mutations that were identified in the ENU archive screening were cloned into the 

pCSII vector containing a Myc epitope tag. After carrying out interaction and degradation 

studies, we wanted to identify alteration in the period length due to the presence of mutations 

in the F-box domain and CRY binding domain. For this reason, real-time bioluminescence 

studies were carried out using the LumiCycle (Actimeterics). The U20S Per2:Luc and Rat-1 

Per2:Luc cell lines were used for this purpose. These cell lines are stably transfected with 

Per2:Luc, where a Per2 promoter drives the expression of luciferase reporter gene. Hence, 

when the luciferin substrate is added to the samples, the luminescence given out will mimic 

Per2 oscillations in the cells. Thus, when a mutant plasmid is transfected into these cells, the 

mutant protein that is produced may affect the circadian core oscillator which reveals 

circadian rhythms in luminescence by reporting oscillations of Per2. The deviation of Per2 

oscillations in the presence of a mutant plasmid from wild-type Per2 oscillations determines 

the period length of mutants.

In our experiments, the Fbxl21-Wt, Fbxl21-V6$E and Fbxl21-E291Q plasmids were 

transfected into U20S Per2:Luc cell lines. Whilst Fbxl21-Wt plasmid generated a period of 23 

hrs±0.08, transfection of Fbxl21-P291Q resulted in a period of 22.4hrs±0.09 (difference of 

0.6hrs, Student’s t-test p=0.05) (Figure 4.9A). The difference in period was confirmed by 

transfecting these same plasmids in Rat-1 Per2:Luc cells, which work on the same principle. 

Similar results were obtained by transfecting these plasmids; transfection of Fbxl21-Wt 

generated a period length of 23.7hrs±0.05, while with Fbxl21-P291Q a period of 22.9hrs±0.06 

was determined (Student’s t-test p=0.01) (Figure 4.9B).
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Figure 4.9: Real time bioluminescence imaging in U20S Per2:Luc and Rat-1 Per2:Luc stably 
transfected cell lines using the LumiCycle. 2 dishes each of U20S Per2\Luc (A) and Rat-1 Per2:Luc (B) 
cell lines were transfected with 3pg of wild-type and mutant forms of Fbxl21 plasmids using Fugene6. Following 
transfections, the cells were synchronised using lOjuM forskolin after which luciferin substrate was added and the 
dishes were placed into the LumiCycle to record the luminescence that represent the oscillations of the circadian 
gene Per2. The period length was calculated for each plasmid (wild-type and mutant) transfected and the 
difference in period length determines the effect of the mutants using the LumiCycle software. The Student’s t- 
test was used to calculate statistical significance. A) In U20S Per2: Luc cells, while Fbxl21-Wt generated a 
period of 23.0hrs±0.08, Fbxl21-V68E generated a period of 22.8hrs±0.155 and Fbxl21-P291Q showed a 
significantly shorter period of 22.4hrs±0.09 (difference of 0.6hrs, p=0.05). This phenotype was confirmed in Rat- 
1 Per2:Luc cells, where on transfecting Fbxl21-Wt, the period length obtained was 23.7hrs±0.05 and when 
Fbxl21-P291Q was transfected, a significantly shorter period length of 22.9hrs±0.06hrs was generated (p=0.01).
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4.3.6 Circadian Wheel-running activity of Fbxl21 mutants

All the in-vitro studies were carried out whilst the animals carrying the identified 

mutations were being re-derived using the Harwell ENU sperm archive. The animals were 

derived using the sperm frozen down from the same animal whose DNA carrying the mutation 

was identified during ENU archive screening. Once re-derived, the animals were backcrossed 

to C57BL/6J in order to generate the animal colony on the C57BL/6J background. 

Backcrossing was carried out for 9 generations to eliminate traits (coat colour, behaviour etc.) 

of a mixed genetic background, to remove linked mutations and generate a congenic colony on 

the C57BL/6J background. Although the Fbxl21V68E/v68E mice used in our analysis were 

congenic the Fbxl21p291@/p291@ were only in the second backcross, and hence were expected to 

show traits of other genetic backgrounds. Both the Fbxl21V68E/v68E and Fbxl21p29IQ/p291Q 

mutants were subjected to the circadian wheel-running screen as described in section 2.3, 

where mice were subjected to a protocol where they were kept in a 12hr light: 12hr dark (LD) 

schedule for 7 days where their entrainment to LD cycle was assessed, following which they 

were left in free running conditions in constant darkness (DD) for 2 weeks followed by 

constant light (LL) conditions for 2 weeks. Period length, and tau (x) in DD ( x D d )  and LL ( t Ll )  

conditions was then analysed using the Clock lab software.

Mice that were wild-type, heterozygous and homozygous for V6 8 E and P291Q were 

screened in order to identify phenotypes associated with mutations in highly important 

domains of FBXL21. In case of Fbxl21v68E+/~ and Fbxl21v68E/V68E animals, the tdd was 

23.62hrs±0.06 and 23.83hrs±0.029 respectively (Figure 4.10A). This was not significantly 

different from the wild-type animals whose tdd was 23.68hrs±0.096. However, the 

Fbxl21V68E/V68E mutants seem to have a significant increase in period while free-running in LL

189



Chapter 4: Results

conditions, where the period increases from 23.83hrs±0.029 in DD to 25.67hrs±0.086 in LL 

(p<0.005, One-way ANOVA with Bonferroni post hoc test). Thus, the V6 8 E mutation in the 

F-box domain of FBXL21 seems to have an effect in constant light. The right and left panel in 

figure 4.1 OB confirms that there is no significant difference between Fbxl21+/+, Fbxl21V68E/+ 

and Fbxl21V68E/v68E animals in DD (left panel) and shows the significant difference between 

Fbxl21v68E/V68E and wild-types in LL (p<0.005, One-way ANOVA with Bonferroni post hoc 

test) (right panel).

Mice with the P291Q mutation in the CRY-binding domain of FBXL21 were then 

screened to look at the effects of this mutation in vivo. These mice were subjected to the same 

protocol as the Fbxl21v68E mutants. The wild-type mice showed a Tdd of 23.68hrs±0.096. The 

period length of Fbxl21P291Q/+ was slightly but not significantly larger at 23.86hrs±0.034. A 

significantly shorter phenotype was observed in the Fbxl21p29IQ/P291Q mice ( t d d  =  

23.1hrs±0.073) compared to the wild-type mice in DD conditions (p<0.005, One-way 

ANOVA with Bonferroni post hoc test) (Figure 4.11A and 4.1 IB left panel B). The 

Fbxl21p291Q/P291Q mutants also had a significantly longer period length of ~25.87hrs±0.095 as 

compared to 25.1hrs±0.045 in wild-type animals in LL conditions (p<0.005, One-way 

ANOVA with Bonferroni post hoc test) (Figure 4.11 B right panel).
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Chapter 4: Results

4.3.7 Investigated Circadian Parameters

Apart from the period length, t, measured during the circadian screens, other circadian 

parameters such as percentage of nocturnal activity, amplitude of oscillations in DD and LL 

and average wheel revolution in LD, DD and LL were measured for every animal using the 

Clocklab software. The parameters are the same as described previously (Chapter 1). All the 

animals were put through the same screen of 7 days in 12hrs L:D schedule followed by 2 

weeks in DD and finally 2 weeks in LL conditions. Tables 4.1 and 4.2 show the parameters 

measured in Fbxl21V68E and Fbxl21P291Q mutants respectively. Most of the parameters 

measured, except the average wheel revolutions in DD, were similar in Fbxl21+/+ and 

Fbxl21V68E/+ animals. The Fbxl21V68E/V68E mutants show a significantly higher wheel 

revolution in LD, DD and LL conditions than the wild-type animals. The Tdd of 

Fbxl21V68E/V68E did not show any significant differences, whereas t l l  was significantly higher 

with a high amplitude than Fbxl21+/+ and was 1.81hrs longer than tdd as compared to 1.42hrs 

lengthening in wild-type animals (One way ANOVA with Bonferroni post hoc test p=0.018).

The same parameters were measured for the Fbxl21p291Q mutants (Table 4.2). The 

period length, tdd of Fbxl21P29IQ/P291Q animals was significantly shorter than in Fbxl21+/+. The 

homozygous mice were also seen to have significant differences in the mean wheel 

revolutions in DD conditions, Fbxl21p291Q/p291Q showing higher revolutions compared to the 

wild-type mice. Although there was no significant difference in the period length between 

Fbxl21p291Q/+ and Fbxl21 +/+mice under DD, these same animals showed a significantly longer 

period length with a low amplitude in LL conditions compared to Fbxl21+/+ animals. A 

striking result is seen in Fbxl21P291Q/+ where their percentage of nocturnal activity is 

significantly lower than the wild-type and Fbxl21P291Q/p291Q animals. This could be a result of
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Chapter 4: Results

the background o f the mice. Since they are not congenic, we would expect some heterogeneity 

associated with the mixed genetic background in these mice.

Circadian wheel-running param eters for Fbxl21v68E mutants
F b x l2 1 +/+ F b x l2 1 V68E/+ F b x l2 1 y68E/V6SE

Avg. Revolution in LD 2649 .301± 618 .89 33 6 2 .2 4 1 8 1 1 .7 8 8054.2611073.99***

% of Nocturnal Activity 90 .65± 0 .79 88 .9412 .09 9 4 .7611 .17

Avg. Revolution in DD 3 62 3 .9 1 1 9 2 7 .9 9 5148.371902.72** 10188.491999.75***

Tau DD 2 3 .68410 .09 23 .610 .05 23 .7910 .03

Amplitude in DD 9 0 9 .201138 .43 1339 .3 6 5 1 1 0 0 .9 9 1440.68192.43**

Avg. Revolution in LL 2 2 0 2 .251460 .71 34 9 2 .1 3 1 8 8 7 .9 0 5864.7911150.27**

Tau LL 25 .110 .045 25 .1110 .16 25.60+0.17*

Amplitude in LL 1102 .826 1 1 0 4 .9 7 1080 .391103 .95 105 4 .6 2 1 9 2 .9 2

Table 4.1: Comparison o f  various wheel running parameters in Fbxl2l , Fbxl21v68E/+ and
E68E/V68 EFbxl21 animals. Most o f the parameters measured were similar between the wild-type and

Fbxl21V()Hh mice except for average wheel revolutions in DD, which was significantly higher than in the wild- 
type mice. Significant differences were observed in the average wheel revolution in the LD, DD and LL phases o f  
the circadian screen between Fbxl21V68hV68L and Fbxl2F +. In addition to the significantly higher wheel 
revolutions in Fbxl21V68E V68h, i LL was also seen to be significantly higher in the homozygous mice 
(xLL=25.60hrsl0.17). All the values represent mean+/- standard errors from 10 animals which were a mix o f  
sexes. One way ANOVA with Bonferroni post hoc test was used to test statistical significance where *p<0.05, 
**p<0.005, ***p<0.001.
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Circadian wheel-running param eters for Fbxl21P291Q mutants
Fbxl21+/+ Fbxl21P29IQ/+ Fbxl21P291Q/p29ie

Avg. Revolution in LD 2649.301+618.89 3156.5111048.83 5590.9311426.62

% of Nocturnal Activity 90.65±0.79 77.2214.44 *** 91.9211.06

Avg. Revolution in DD 3623.91±927.99 8168.9812143.64 11216.0912597.49**

Tau DD 23.684±0.09 23.8610.034 23.1010.07***

Amplitude in DD 909.20±138.43 772.79173.20 1053.94186.20

Avg. Revolution in LL 2202.25±460.71 5093.60+1659.50 6380.5412551.06

Tau LL 25.1±0.045 25.3310.06** 25.8510.12***

Amplitude in LL 1102.826±104.97 845.79153.47 398.59152.72***

Table 4.2: Comparison o f  the investigated circadian parameters in Fbxl21+/+, Fbxl21P29lQ/+
P291O/P2910and Fbxl21 * mice. Most o f the parameters measured were similar in the wild-type and

Fbxl21P29IQ/+ mice except for significantly higher percentage o f  nocturnal activity (which may be associated with 
the mixed genetic background o f these mice) and t LL. The Fbxl21P29IQP291Q on the other hand, showed a 
significantly shorter period in DD (TDD=23.10hrs±0.07) compared to wild-type control mice (TDD=23.64hrs±0.09). 
Although with a low amplitude the t LL was also seen to be significantly higher in the heterozygous 
(TLL=25.33hrs±0.06) and homozygous (TLL=25.85hrs±0.12) mice. All the values represent meanlstandard errors 
from 10 animals which were a mix o f  sexes. One way ANOVA with Bonferronni post hoc test was used to test 
statistical significance where *p<0.05, **p<0.005 and ***p<0.001.

197



Chapter 4: Results

4.3.8 Cross with Afh mutation to study genetic interaction

After determining the effects of Fbxl21 mutations on the interaction of FBXL21 with 

CRY1 and CRY2, similar to the effect seen with the Afh mutation, and after determining the 

phenotypes of the two Fbxl21 mutations individually, the next step was to investigate if there 

was a genetic interaction between the two Fbxl paralogues. This was done by generating 

FbxBAmlh\ Fbxl21V68E/V68E and Fbxl3AJh/AJh; Fbxl21P29,Q/P29,Q compound mutants and 

screening them to analyze their phenotypes. We screened double heterozygous and double 

homozygous animals for the Afh mutation and V6 8 E or P291Q in the same manner as 

mentioned previously. The same LD, DD, LL protocol was used for this cohort of animals.

In the Fbxl3Aflt/Afll; Fbxl21V68/V68Ecompound mutants, the double heterozygous animals 

showed a significant lengthening of period in DD conditions, tdd =24.22hrs±0.04 (p<0.005 

One way ANOVA with Bonferroni post hoc test) relative to wild-type mice ( t d d  =23.68hrs+/- 

0.09 ) which lengthened even more in LL with a t Ll  of 25.74hrs±0.119 (p<0.001, One way 

ANOVA with Bonferroni post hoc test) (Figure 4.12 A, B). This result can be attributed to the 

presence of the Afh allele itself. Although lengthening of period was seen in the double 

homozygous animals in DD ( t d d  =26.22hrs±0.06), their percentage of nocturnal activity 

during the LD schedule was significantly lower than the other genotypes (Table 4.3). 

Surprisingly, these animals were seen to be arrhythmic in LL (Figure 4.12 A).

In Fbxl3Âh/+; Fbxl21p29IQ/+ double heterozygous mice, under the same conditions, the 

period lengthened to 24.22hrs±0.06 (p<0.001, One way ANOVA with Bonferroni post hoc 

analysis) (similar to the Afh X V6 8 E mice), which again lengthened with a similar period of 

25.86hrs±0.22 in LL conditions (p<0.001, One way ANOVA with Bonferroni post hoc 

analysis). These animals were seen to have splitting of activity in LL, which is not found in

198



Chapter 4: Results

the Afh/+ mice alone. Not surprisingly, the Fbxl21Âh/Âh; Fbxl21P291Q/P291Q mice too showed an 

increase in period to 27.5hrs±0.173 in DD conditions and further become arrhythmic in LL, 

suggesting a role for Fbxl21 under light conditions (Figure 4.13 A and B).. The fact that the 

period of the double mutant is even longer than that of the Afh/Afh alone shows that the Afh 

mutation has a significantly stronger effect on output rhythms (locomotor activity) than the 

Fbxl21 mutation.

Circadian wheel-running parameters were also measured in the Fbxl3Afll/Ajh\ 

Fbxl21v68E/v68E and Fbxl3Afll/Afll\ Fbxl21P291Q/P291Q compound mutants. Considering the 

parameters for Fbxl3Âh/Âh; Fbxl21V68E/V68E compound mice (Table 4.3), it is seen that 

compared to the wild-type animals, the double heterozygous and double homozygous animals 

show a significant increase in period length compared to wild-type mice. While the double 

heterozygous animals show a period length of 24.31 hrs±0.02 in DD (***p<0.001), the double 

homozygous mice show a TDD26.41hrs±0.23 (***p<0.001). These phenotypes are similar to 

the Afh/Afh mutant mice alone, suggesting an epistatic role of Fbxl3. On the other hand, these 

animals showed a completely different phenotype to the Afh/Afh mice in LL conditions. While 

significant period lengthening (xDD25.741hrs±0.119) (***p<0.001) along with a low 

amplitude of oscillations and splitting of activity was observed in the double heterozygous 

mice, the double homozygous mice were arrhythmic in LL. Apart from the period lengthening 

phenotype in the double homozygous mice, they were seen to show a reduced percentage of 

nocturnal activity in the LD phase of the circadian screen. The double homozygous 

Fbxl3Afll/Afll; Fbxl21v68E/v68E also showed a significant increase in the average wheel 

revolutions (6684.067±3111.89)(*p<0.05) in LL which would suggest that these mice are 

hyperactive and hence it would be interesting to observe their behaviour in the open field test 

(Chapter 5)



Chapter 4: Results

Similar to the Fbxl3AJh/AJh;Fbx!21V6SE/V6SE phenotypes, the Fbxl3Aih/AJh;Fbxl21P29,Q/p29IQ 

also showed sim ilar differences in the w heel-running param eters (Table 4.4). W hile, the 

double heterozygous Fbxl3Âh/+;Fbxl21P291Q/+ and double homozygous 

Fbxl3Ajh/Afll;Fbxl21P291Q/p291Q m ice showed a significant increase in period length in DD 

(.Fbxl3AJh/+;Fbxl21P29le/+ TDD24.28hrs±0.06; Fbxl3Afh/Afi,;Fbxl21P29,0/P29,Q TDD27.52hrs±0.167) 

compared to the w ild-type anim als , the double heterozygous m ice show an increase in period 

length (TLL25.86hrs±0.22) w ith a reduced amplitude in LL. They also show splitting o f  activity 

in the LD phase o f  the screen. The double hom ozygous mice, on the other hand were 

arrhythmic in LL. Similar to the Fbxl3A:fh/Afll; Fbxl21v68E/v68E mice, the 

Fbxl3A:fh/A:fh;Fbxl21p291Q/p291Q mutants also showed a reduction in nocturnal activity along with 

hyperactivity in LL.

2 0 0



Ch
av

te
r 

4: 
Re

su
lts <u CN 4;

.p  b S

<l> <2

O<N

p-H

*-i *G j-o- o- c

I ® 'tfl O

&,£ 
CO ***4

"O

o— «s
2  cj T3
p  5! 2

.« c**» .ss

"J .ti

a -2 2
£ 2 TS

Cd

*—' c/5i- Cd 
°  ^  oU  _ ,  O<*> ?2 *5rt C rtx  S "d, •« <D 
k> h

•P -P

+1 <

rt .2

<D

& § j* > a
■s's e

« ‘S

o

( NCN

( N

M-rt \  0

<L>

IT -C>. bp

<D

§ c§



Ch
ap

te
r 

4: 
Re

su
lts

ao
E
Q
M * * * ‘| i j

'  1
‘ j i </*.  

*■
' i 1 i i 1 *,;i
i i v i  i«-:«*'.:

i ' l l ! * 1-i j 1 1 M» ' •

1 ’' ; '« • j j ' i i i 
' , j !  I 1' ' .At i t  | H  l h l l l l _______ JLUJJ

VO ©
©Hl/lu 
J S  N <N
vd
II
Q 
Q
s  srl n H H

’ * ; : > . i j i * 1 i J ' t 11

! Hi ih I!

i i l i i l r '  ■

/-N
h
£W'
£
tH

J
J

+■>

w
(J
«
00

<u<vA
£

Q
Q

o
«
Oil

0/
&
■S
£

oo
o
v
a

*

(s.n|)

VIoo
o
a

(**!)( l(P1,!.t

20
2



Ch
av

te
r 

4: 
R

es
ul

ts <D U

3 <8 
§ QT3 Q
<lT

f s
J-H flj

O  ̂<2
/-- v O
CQ +■»

S ’S

■I
a<5
b

T3d)
C M O

■ «  (U
*o fc 2  x  ^ ̂ ^ eS

3  . f s . f ,  s  S  |  g> *
3 * 1 !
C « > +3 

fO {3 O 
«h • £  >  o^ 2 o &

©>
Os

I

4)
<3
£>><D
'B
o
t

I
k<
$T 
I

î
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Chapter 4: Results

F b x l3 +/ +;F b x l2 1 +/ + F bx l3Afh/+;F bxl21 V68E/+
F b x l3 AF/Afh;
F b x \2 1 V6SE/ V6SE

Avg. Revolution in LD 2649 .30± 618 .89 2 5 3 5 .82± 1136 .78 4 7 0 8 .9 7 ± 5 7 9 .0 0

% of Nocturnal Activity 9 0 .6 5 i0 .7 9 86 .27± 1 .94 80.76±2.31*

Avg. Revolution in DD 3623 .91± 927 .99 3 4 8 8 .8 3 i l  257.45 8 6 8 1 .4 3 ± 1 9 1 5 .2 8

Tau DD 23 .684± 0 .09 24.31±0.02*** 26.41i0.23***

Amplitude in DD 909 .20± 138 .43 835 .37± 102 .92 1 1 3 7 .58± 152 .37

Avg. Revolution in LL 2202 .25± 460 .71 1861 .99± 605 .06 6684.067i3111.892 *

Tau LL 25.1±0 .045 25.74±0.119** Arrhythmic

Amplitude in LL 1102 .826± 104 .97 589.661±46.90*** Arrhythmic

Table 4.3: Wheel running parameters investigated in Fbxl3Afh/AJh;Fbxl21 V6HI':/V68E compound 
mutants. Parameters measured for Fbxl3Afl‘ ;Fbxl21V68k double heterozygous and Fbxl3Afil Afll;Fbxl21V68h V68k 
double homozygous mice were compared to those measured in wild-type animals. Apart from the period length 
in DD and LL, the parameters (except amplitude in LL) were similar in wild-type and Fbxl3Afll v; Fbxl21V68k 
animals. The double heterozygous mice showed a significant increase in period length 
(TDD=24.31hrs±0.02)(***p<0.001) with a high amplitude. However, under LL, these mice show splitting o f  
activity and hence although they show a significant period lengthening (TLL=25.74hrs±0.119)(**p<0.005) 
compared to wild-type mice ( iLL=25.1hrs±0.045), their amplitude o f  oscillations in LL is significantly low  
(589.661± 46.90)(***p<0.001). In the case o f Fbxl3Â ’AJh; Fbxl21V68k V68k double homozygous mice, they show a 
reduced percentage o f nocturnal activity during the LD phase o f the circadian screen (* p<0.05). In DD, the 
double homozygous mice show a period length o f 26.41hrs±0.23 (***p<0.001) that is similar to the period length 
o f Afh/Afh mutants alone. Further under LL conditions these mice were seen to be more active than the double 
heterozygous and wild-type mice. However, they were seen to be arrhythmic in LL, suggesting a potential role o f  
Fbxl2I in light responsiveness. All the values represent mean±standard errors from 10 animals which were a mix 
o f  sex. One way ANOVA with Bonferronni post hoc test was used to test statistical significance with *p<0.05, 
**p<0.005, ***p<0.001.
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F b x l3 +/ +;F bxI21 +/ +
F bx l3AF / f
F b x l2 1 P291Q/+

F b x t tW /W ;
F b x l2 1 p291(i /p291(i

Avg. Revolution in LD 2 6 4 9 .301± 618 .89 3 8 2 2 .76± 1866 .70 2616 .7 2 3 ± 7 2 2 .9 6

% of Nocturnal Activity 90 .65± 0 .79 8 8 .6 1 i l .5 3 67.181±4.54***

Avg. Revolution in DD 3623 .91± 927 .99 5014 .69± 1845 .01 1 1 0 4 7 .19± 6626 .041

Tau DD 23 .684± 0 .09 24.28±0.06*** 27.52±0.167***

Amplitude in DD 909 .20± 138 .43 928 .67±125.67 1 2 0 7 .2 7 ± 173 .054

Avg. Revolution in LL 2202 .25± 460 .71 4 3 7 5 .225± 1486 .11 10233.59±6938.307*

Tau LL 25 .1±0 .045 25.86±0.22*** Arrhythmic

Amplitude in LL 1102 .826± 104 .97 716.31±98.93** Arrhythmic

Table 4.4: Circadian wheel-running parameters determined in the Fbxl3Afh/Afh; 
Fbxl21P291Q/P291Q compound mutants. Significant differences were observed in the period length, t , in 
DD and LL conditions in both Fbxl3Afl1 ; Fbxl21P29IQ and Fbxl3Afll/Afll; Fbxl21P29IQP291Q animals. While a 
significant period lengthening was observed in Fbxl3Afll v; Fbxl21P29IQ~ (t d d =24.28± 0 .006) and Fbxl3A,h A,h; 
Fbxl21P29IQP29IQ (t d d =27.52±0.0167)(***p <0 .001) under DD conditions, this was similar to the phenotype o f  
Afh/Afh mutant mice alone. The double homozygous mice also showed a reduction in the percentage o f nocturnal 
activity during the LD phase (67.181±4.54). Unlike the similarities between the Afh/Afh mutants and 
Fbxl3AflvAfll;Fbxl21P29lQ,P29lQ compound mutants in DD and although there was an increase in period length o f  the 
double heterozygous animals in LL (xLL=25.86±0.022)(***p<0.001), these animals were seen to show splitting 
o f activity in LL and the double homozygous mice were arrhythmic. The values mentioned here are a meaniSEM  
o f  10 wild-type and double heterozygous animals and 3 double homozygous animals. Significance is tested using 
one way ANOVA and Bonferronni post hoc analysis where *p<0.05, **p<0.005 and ***p<0.001.
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4.4 DISCUSSION

4.4.1 Fbxl21 V68E and P291Q are potentially functional

Although forward and reverse genetics approachs using ENU mutagenesis have their 

share of advantages and disadvantages, they are still widely used to identify roles o f particular 

genes in day to day mechanisms. This has been shown using the Harwell Mutagenesis 

Program on several occasions in various fields from development to metabolism and 

behaviour. It has also played a vital role in unveiling novel circadian loci that result in an 

abnormal circadian phenotype (Bacon, Ooi et al. 2004).

Since the reverse genetics approach supported by ENU mutagenesis is a quicker way 

than generating knockouts to identify underlying roles and mechanisms of genes, the Harwell 

ENU archive was screened for mutations in the recently identified F-box protein, Fbxl21. 

Though there was a total of five mutations identified in the two main domains, F-box domain 

and putative CRY-binding domain o f Fbxl21 (Figure 4.1 A), the two mutations V6 8 E and 

P291Q were thought to be potentially functional; as reasoned below (Figure 4.1 A and 4.2).

H77H, L36P and S28F were some of the other mutations identified in the F-box 

domain screen, however P291Q was the only mutation identified in the putative CRY-binding 

domain. One of the reasons both the mutations, V6 8 E and P291Q were important was the 

amino acid conservation in the immediate region of the mutations across different species and 

especially between the two F-box proteins, FBXL3 and FBXL21 (Figure 4.3B, C). Also, the 

structural changes in the substituted amino acids made these mutations interesting to study 

further (Figure 4.1 B). For example, in the V6 8 E mutation, the non-polar amino acid valine 

has been substituted with a negatively charged polar amino acid, thus changing the properties

207



Chapter 4: Results

of the side chain. Also the substitution of P291Q makes this mutation structurally interesting 

because the loss of proline results in the loss of an aliphatic side chain. Proline plays an 

important role in formation of beta turns in the secondary structure of proteins and hence the 

loss of proline may result in a change of FBXL21 protein structure and hence the change is 

likely to be functional.

The V6 8 E mutation lies in the middle of the F-box domain that is important in protein- 

protein interactions (Feldman, Correll et al. 1997; Skowyra, Craig et al. 1997). F-box proteins 

have an important function of associating substrates, via their secondary motifs, to other 

components of the SCF complex where the substrates are polyubiquitinated and finally 

degraded.

Thus, a mutation in F-box proteins would potentially disrupt this entire process 

resulting in dysregulation of protein turnover mechanisms leading to an abnormal circadian 

phenotype. There are several known examples of this, a classic one being a point mutation in 

the leucine rich repeat domain of the F-box protein, Fbxl3, due to which there is reduction of 

interaction between the F-box protein and the substrate, resulting in stabilisation of protein 

levels and hence an abnormal phenotype (Godinho, Maywood et al. 2007; Siepka, Yoo et al. 

2007). Another instance revealing the importance of F-boxes is F bxoll, a mutation in which 

causes chronic otitis media (Hardisty-Hughes, Tateossian et al. 2006) where the ubquitination 

and protein turnover mechanisms are impaired. To our knowledge the V6 8 E mutation is the 

first example of a mutation in the F-box domain of a mammalian circadian F-box protein 

rather than in a secondary domain. A potential consequence of this V6 8 E mutation could be 

disrupting interactions between components of the SCF complex and also impaired 

interactions between the F-box protein and its substrates.
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Cry genes are the key regulators of circadian oscillations. Both Cryl and 2 are known 

to be involved in negative regulation of transcription. There is not much information about the 

exact roles of these genes in the negative feedback mechanisms, however it is a known fact 

that they are substrates of the F-box protein, FBXL3 and due to the homology between the 

Fbxl3 and Fbxl21 in the putative CRY binding domain, the mutation P291Q was thought to be 

potentially functional (Busino, Bassermann et al. 2007; Godinho, Maywood et al. 2007; 

Siepka, Yoo et al. 2007). In-vitro studies have identified that a stop codon resulting in the loss 

of the CRY-binding domain can impair the interaction between the substrate and the 

proteasomal degradation pathway (Dardente, Mendoza et al. 2008). CRY proteins have the 

ability to inhibit the CLOCK-BMAL1 activation, and CRY’s ability to inhibit activation is 

reduced in the presence of F-box proteins. However, it was predicted that a mutation in the F- 

box motif did not reduce the inhibitory effects of CRY resulting in abnormal circadian 

rhythmicity (Dardente, Mendoza et al. 2008).

A second reason the P291Q mutation was potentially interesting was the results of an 

in-vitro assay carried out by our collaborator Dr. Hugues Dardente at the University of 

Aberdeen (Appendix 6). They introduced the mutation in the full-length Fbxl21 sequence 

cloned into a pCSII-Myc tagged vector and performed an in-vitro luminometry assay. The 

assay was analysed as the luminescence readout of Rev-erba:Luc reporter. In addition to 

activation of Per and Cry genes, CLOCK-BMAL1 is also able to regulate the transcription of 

Rev-erba and Rora, components belonging to the secondary regulatory loops in mammals. In 

the presence o f CRY1, this activation of Rev-erba and Rora is inhibited and hence a lower 

luminescence is obtained. On the other hand, when Fbxl21-Wt is co-transfected with C ryl, the 

inhibitory function of CRY1 is diminished due to the degradation of CRY1 by FBXL21, 

resulting in higher luminescence. However, this was not the case with the P291Q mutant

209



Chapter 4: Results

where the F-box protein was not as efficient in diminishing the inhibitory effects of CRY1 

resulting in a lower luminescence readout. Hence, this mutation was thought to be a 

hypomorph.

In addition to this lies another complexity related to CRY1 function. Although 

FBXL21 binds to CRY1, it has been seen that CRY2 is a preferable target of FBXL21. 

However in our in-vitro luminometry assay when recombinant Cryl is co-transfected with 

Fbxl21-Vft, it has been seen that FBXL21-Wt has been able to inhibit CRY1 regulation of 

transcription. This leads us to think that the presence of an unknown mechanism (may be 

absence of Fbxl3) confers a role to FBXL21 in inhibiting CRY1 function. One of the reasons 

might be sequestration of CRY1 in the cytoplasm by FBXL21. This can be further 

investigated by co-transfecting Fbxl21 and Cryl in vitro and determining the localisation of 

CRY1 across circadian time.

4.4.2 FBXL21 shuttles between the nucleus and cytoplasm

Localisation studies help obtain a partial assessment about the function of a particular 

gene and regulatory events that control this localisation are crucial in maintaining the 24-hr 

circadian clock (Kipreos and Pagano 2000). In our localisation studies, we transiently 

transfected the wild-type and mutant (V6 8 E and P291Q) Myc tagged forms o f Fbxl21 in 

U20S cells, synchronised them using lOpM forskolin following which we collected the cells 

at specific times and performed immunofluorescence using an anti-Myc antibody.

Our results show that FBXL21-Wt is mainly cytoplasmic after 6 hrs of forskolin shock 

whereas the mutants are nuclear and cytoplasmic at the same time (Figure 4.5A). After 12hrs, 

FBXL21-Wt translocates into the nucleus and is distributed between the nucleus and the
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cytoplasm whereas the mutant FBXL21 remains nuclear and cytoplasmic (Figure 4.5B). 

There have been several evidences that the use of serum or compounds such as forskolin 

activate multiple signalling pathways which result in activation of the expression of circadian 

genes which enforce nuclear localisation of the genes (Balsalobre, Marcacci et al. 2000; 

Yagita, Tamanini et al. 2001). Serum shock influences intracellular pathways where the 

mitogen activated protein kinases, p42/44, activate the phosphorylation of Ca2+/cAMP 

responsive element binding protein (CREB) which in turn enforces the nuclear localisation of 

the PER proteins. Forskolin on the other hand, directly activates the phosphorylation of CREB 

by elevating the cAMP levels and activating the protein kinase A pathway (Balsalobre, Brown 

et al. 2000; Yagita and Okamura 2000). Thus, this mechanism of synchronisation of cells with 

forskolin may have an effect on the mutant FBXL21 localisation.

Another possibility for differences observed in localisation studies could be due to the 

epitope tag (Myc) used to tag FBXL21. Discrepancies have been reported in localisation of 

CRY proteins due to the different epitope tags being used. When localisation of CRY-GFP 

was studied, CRY appeared to be mitochondrial (Kobayashi, Kanno et al. 1998). However the 

same protein, CRY, when tagged with V5 or HA, was seen to translocate into the nucleus 

(Kobayashi, Kanno et al. 1998; Thresher, Vitatema et al. 1998). Thus, it was would be 

interesting to perform the immunofluorescence of FBXL21 Wt and mutant recombinant 

protein with different epitope tags or even by using a-FBXL21 antibody.

The difference in the localisation between the Wt and mutants may not cause any 

effect on the interaction of the F-box protein with its substrates. The nature of F-box proteins 

is such that they are found to be normally distributed equally in both the nucleus and 

cytoplasm and that even if the localisation of the Wt and mutant is different or identical, the 

binding of the F-box protein with the Skpl component of the SCF complex is not affected as
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ultimately the proteasomal degradation occurs in the cytoplasm (Kipreos and Pagano 2000). 

Hence, we cannot state whether there may be an effect of FBXL21 localisation on substrate 

interaction.

4.4.3 FBXL21 interacts with cryptochromes, CRY1 and CRY2

Circadian oscillations that involve complex inter-relating networks are maintained by a 

balance of protein synthesis and degradation. This is very tightly regulated by the E3 ubiquitin 

ligases which transfer ubiquitin (Ub) molecules on substrates that are targeted for proteasomal 

degradation. A very well known E3 Ub ligase complex is the Skp-Cullin-F-box protein (SCF) 

complex, where the F-box is responsible for identifying and targeting specific substrates for 

proteasomal degradation (Ho, Tsai et al. 2006). Although there are several known F-box 

proteins, none except p-TRCP (that degrade PER proteins) (Ohsaki, Oishi et al. 2008) was 

known to target any circadian clock proteins until the Fbxl3A{fll mutant was identified where it 

was shown that the F-box protein, FBXL3, interacts with the key regulators o f the negative 

feedback, CRY1 and CRY2 (Busino, Bassermann et al. 2007; Godinho, Maywood et al. 

2007). With the identification of the second F-box protein, Fbxl21, it was shown that in 

addition to FBXL3, FBXL21 is also able to interact with CRY1 in-vitro (Dardente, Mendoza 

et al. 2008). To investigate the interaction of FBXL21 with both CRY1 and CRY2 further, in- 

vitro studies were carried out. The interaction of the V6 8 E and P291Q mutants with both CRY 

proteins was also determined.

In-vitro experiments were performed using Cos7 cells, where Fbxl21-VJt and mutants 

were transiently co-transfected with Cryl or Cry2, after which the whole cell extracts were 

subjected to co-immunoprecipitations as described in section 2.11. The results in Figure 4.6
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show that FBXL21-Wt interacts with both CRY1 and CRY2. When the interaction of the 

mutants is normalised to the FBXL21-Wt interaction, it can be seen that, the interaction 

between the mutant FBXL21 and CRY1 and CRY2 is greatly reduced (Figure 4.6B), with 

significant reduction in interaction between FBXL21-V68E and P291Q and CRY2 (Figure 

4.6B right panel). Considering this result along with the localisation of FBXL21 we 

considered whether the interaction between the FBXL21 and CRY2 is more likely to occur in 

the cytoplasm than in the nucleus. Further experiments such as co-localisation of FBXL21 and 

CRY2 across circadian time could be investigated.

Reduced interactions were expected with FBXL21-P291Q protein which is a result of a 

mutation in the CRY-binding domain of FBXL21. It has already been shown that an FBXL21 

recombinant protein lacking the CRY-binding domain is unable to bind to CRY1, indicating 

that an intact CRY-binding domain is necessary for interactions with CRY proteins (Dardente, 

Mendoza et al. 2008). In this study, the FBXL21-P291Q mutant protein shows a rather weak 

interaction with both CRY1 and CRY2 when compared to the interaction with FBXL21-Wt 

and this is consistent with findings with the Fbxl3Afll mutation. Fbxl3Afll was a result of a 

mutation in the secondary motifs (leucine rich repeats) of the F-box protein, Fbxl3. This 

domain is mainly involved in binding the substrate to the F-box protein, which in turn interacts 

with the Skp-Cullin complex. Due to this mutation, there was reduced interaction between the 

FBXL3 and CRY proteins. As a consequence, CRY is spared from proteasomal degradation 

resulting in the lengthening of the circadian clock (Busino, Bassermann et al. 2007; Godinho, 

Maywood et al. 2007). In the interaction studies as shown in Figure 4.6B, it can also be seen 

that there is a reduced interaction between FBXL21-V68E and CRY 1/2, which is surprising. 

V6 8 E is a mutation in the F-box domain, which functions as an adapter to bind the F-box- 

substrate complex to the Skp-Cullin complex. The reason why the reduced interaction is
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surprising is due to the fact that it is the secondary motif viz. LRR that recognises and binds to 

the specific phosphorylated substrate and hence a mutation in the F-box domain would be 

expected not to have any effect. However, one possibility could be that the V6 8 E mutation 

would have an indirect effect through the Skp-Cullin complex on the interaction between 

FBXL21 and CRY1/2 in-vitro, which needs to be investigated and is beyond the scope of this 

body of work.

4.4.4 CRY2 is targeted for degradation by FBXL21

It is evidently known that post-translational modifications are important and control 

aspects of clock mechanisms by modulating protein-protein interactions. One such process is 

the timely degradation and protein turnover of the negative regulators such as the PER and 

CRY proteins, failure in which results in abnormal period lengths and circadian oscillations, as 

seen in thsAfli mutant (Godinho, Maywood et al. 2007; Siepka, Yoo et al. 2007). Degradation 

takes place via the F-box complex, a component of the E3-Ub ligase complex, that targets 

phosphorylated substrates, interacts with the SCF complex, polyubiquitinates the targeted 

substrate which is finally degraded via the proteasome.

It is known that F-box proteins target specific phosphorylated substrates. For example 

P-TRCP1 and 2 targets mammalian PER proteins (Ohsaki, Oishi et al. 2008), SLIMB and 

JETLAG are F-box proteins that target Drosophila PER (Ko, Jiang et al. 2002) and TIM (Koh, 

Zheng et al. 2006) proteins respectively (Ko, Jiang et al. 2002) and FWD1 targets the clock 

protein FREQUENCY in Neurospora (He, Cheng et al. 2003). With previous knowledge 

about the function of FBXL3 and due to sequence homology and interaction between the 

second F-box protein, FBXL21 and CRY1/2, it was thought that FBXL21 also targets CRY.
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In-vitro studies carried out in Cos7 cells co-transfected with Fbxl21-Wt and Cryl/2-HA  

followed by CHX treatment shows that FBXL21-Wt tends to target CRY2 rather than CRY1 

for degradation (section 4.3.4 and figure 4.7). This complements the previous finding by 

Hugues Dardente et al. (2008) showing that more than FBXL21, FBXL3 tends to target CRY1 

protein degradation. Levels of CRY1 are reduced drastically after 8 hrs of CHX due to the 

presence of FBXL3, unlike in the presence of FBXL21 when there is a significantly higher 

amount of CRY1 (higher than with FBXL3) present at the same time. FBXL3 is known to 

target not only CRY1 but is also shown to degrade CRY2 in the same manner in-vitro 

(Busino, Bassermann et al. 2007). Thus, it is possible that the two FBXL paralogues target 

CRY2 proteins for degradation; however, CRY1 seems to be a unique substrate for FBXL3. It 

is worth mentioning that the initial conclusions from these studies are purely due to 

overexpression of F-box and CRY plasmids and the cells used for this (Cos7 cells) do not 

contain any clock components (Yagita, Yamaguchi et al. 2000), which rules out the possibility 

of interactions with other endogenous clock proteins.

The importance of F-box proteins are well understood with the help of mutations in the 

proteins which result in differences in protein localisation or abnormal circadian activity, p- 

TRCP1 and 2 are known to target phosphorylated PER2 proteins for degradation. When these 

p-TRCP proteins are suppressed in-vitro with siRNA they lead to dampening of the circadian 

clock. Moreover, a mutation in both (3-Trcp’s results in an increase o f unphosphorylated PER2 

levels due to a lack of interaction between the mutated P-TRCP and the Skpl component of 

the SCF complex (Ohsaki, Oishi et al. 2008).

Another example as stated earlier is the Fbxl3 mutation resulting in the Afh phenotype 

in mice. When the Fbxl21-V68E and P291Q mutants were used to investigate their effects on 

CRY2 degradation, as expected, the P291Q mutation had a significant effect on CRY2
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degradation, whereas V6 8 E had only a very slight effect (Figure 4.8). The CRY2 proteins 

were spared from proteasomal degradation and their levels were stabilised when 

overexpressed and treated with CHX in-vitro. These results suggest that there might be a 

specific sequence in CRY2 that enables the binding of either F-box protein, which is absent in 

CRY1 thus having different interactions and functional consequences. It has previously been 

identified that although CRY 1 and CRY2 have highly similar amino acid sequences, their C- 

terminals remain very unique (Harada, Sakai et al. 2005), which may account for their 

different affinity for the two F-box proteins.

Secondly, one must also consider the fact that CRY2, being sensitive to the proteasome 

degradation pathway, also undergoes dual phosphorylation by two different protein kinases in 

a sequential manner at positions four residues apart. Thus, it could be possible that, once 

phosphorylated by a kinase, CRY2 undergoes degradation mediated by one F-box protein, and 

due to the second phosphorylation event a few residues away, it is targeted by the second F- 

box protein (Kurabayashi, Hirota et al.)

The V6 8 E mutation having an effect on interaction with CRY1 and CRY2 and little 

effect on CRY2 degradation is consistent with the idea that the mutation will affect circadian 

mechanisms in an indirect manner. For example, the mutation may well affect the 

phosphorylation states of CRY2 (as is the case with PER2 due to the p-Trcp mutation) apart 

from the earlier mentioned possibilities of effects within the Skp-Cullin complex. However, all 

these predictions will only be valid after determining the in vivo phenotype of these mutant 

animals by investigating their circadian wheel-running behaviour.
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4.4.5 FbxI21P291Q/p291Q mice show a short circadian phenotype

Although in-vitro studies prove extremely useful in explaining or predicting in vivo 

mechanisms or behaviour, it has been essential to verify the conclusions gathered from in-vitro 

studies in vivo. Thus, the typical circadian wheel running screen was carried out on the mice 

which were wild-type, heterozygous and homozygous for V6 8 E and P291Q mutations for the 

second F-box protein, Fbxl21.

The wheel running screen was based on a standard protocol, where the mutant mice 

with all the genotypes were allowed to entrain in a 12hr LD schedule for 7 days, following 

which they were allowed to free-run in DD conditions for 2 weeks.

Not surprisingly, the Fbxl21v68E/+ and Fbxl21V68E/V68E mice were no different from the 

wild-type Fbxl21+/+ mice (Figure 4.10A, B). A circadian phenotype (short or long period) 

usually arises from quicker degradation or slower rate of degradation of proteins such as PER 

or CRY that act as negative regulators of transcriptional activation (Godinho, Maywood et al. 

2007; Siepka, Yoo et al. 2007; Ohsaki, Oishi et al. 2008). In case of the V6 8 E mutation in the 

F-box domain of FBXL21, the only effect seen in-vitro was the reduced interaction between 

FBXL21 and CRY 1/2, which had no significant effect on the degradation of the negative 

regulators, hence ruling out the possibility of expecting a phenotype. Thus, the reduction in 

interaction can be interpreted as an indirect effect of the mutation where there is an intact C- 

terminal domain to bind to the substrate. The effect the mutation may have is in terms of the 

interaction with the Skp-Cullin complex itself which needs to be investigated. FBXL21 

interaction with the SCF complex might be necessary for CRY interaction. However, even 

reduced interaction with the SCF complex might be sufficient for CRY protein degradation.
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This can be explained well with an example that has been studied well in Neurospora in 

which the F-box protein, FWD1, interacts with and degrades phosphorylated FREQUENCY 

(FRQ) protein. Mutagenesis studies in FRQ identified that this protein had several 

phosphorylation sites that are important for regulating FRQ functions. These sites were 

identified to be spread across different regions of FRQ protein that suggested that 

phosphorylation followed by ubiquitination and degradation is not solely dependent upon one 

phosphorylation event, and that it may be a dynamic process that is required for the fine and 

timely regulation of the FRQ, which in turn fine tunes the circadian clock (He, Cheng et al. 

2003).

On these similar lines, the Fbxl21p291Q/p291Q mutant mice show a period 0.58hrs shorter 

in DD conditions (Figure 4.11 A and B). This mutation has been shown to have a reduced 

interaction with CRY1 and CRY2, further stabilising CRY2 levels in-vitro. The Cry2'A mice 

on the other hand have no CRY2 protein which results in a longer period and is consistent 

with our Fbxl21p291Q/P291Q phenotype (van der Horst, Muijtjens et al. 1999). The effects of the 

mutations in-vitro and consequently on the in vivo clock could be due to dual phosphorylation 

of CRY2 proteins and consequent differences in degradation mechanisms.

It is has been known that mammalian CRY2 undergoes sequential events of 

phosphorylation by two different kinases. CRY2 proteins are first required to be 

phosphorylated at the Ser557 site by a newly identified kinase, dual-specificity tyrosine- 

phosphorylated and regulated kinase 1A (DYRK1A). This acts as a priming phosphorylation 

for glycogen synthase kinase-3 p (GSK-3P) that phosphorylates CRY2 at Ser553. In-vitro 

studies detect no phosphorylated CRY2 levels in the absence of DYRK1A (Harada, Sakai et 

al. 2005). However, it is worth mentioning that the Ser557 site is specific to CRY2 and is 

present in the C-terminus region of CRY2, which is unique and different from the CRY1 C-
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terminus. Hence, taking this into account, the following model can be hypothesised to explain 

the phenotype of the Fbxl21P291QIP291Q mutant due to dual phosphorylation of CRY2.

As shown in Figure 4.14, PER and CRY proteins are translated in the cytoplasm, 

where during the CRY2 protein accumulation stage, it undergoes phosphorylation by 

DYRK1A at Ser557. Ser557 phosphorylated CRY2 could then be immediately targeted by the 

F-box protein, FBXL21, for proteasomal degradation. DYRKlA-phosphorylated CRY2 could 

also be able to form a complex with PER2. The CRY2-PER2 complex then translocates into 

the nucleus to undergo the second phosphorylation event by GSK-3p. At the same time, it is 

assumed that DYRK1A phosphorylation speeds up the second phosphorylation event by GSK- 

3p at Ser553, which is assumed to take place in the nucleus, following which it is degraded by 

FBXL3. This is in agreement with the lack of nuclear function of CRY2 (as shown in Chapter 

3) which has been shown to have very limited transcriptional repressor function (as CRY2 is 

degraded twice, once by FBXL21 in the cytoplasm and further targeted for degradation by 

FBXL3). It should further be noted that in the presence of CRY proteins, PER2 proteins are 

stabilised and spared from proteasomal degradation (Yagita, Tamanini et al. 2002). Under 

wild-type conditions, with the degradation of CRY2, PER2 is also degraded initiating the next 

transcriptional-translational feedback loop. This may also account for Per2 repression 

observed in CryF/_; Fbxl3Afll/Afll double mutants, where CRY2 levels are upregulated and 

stabilised. Due to the higher CRY2 levels in the double mutants, PER2 levels are also 

stabilised (hence lower Per2 mRNA levels) resulting in an increase in period length.

The events that are thought to regulate CRY2 levels take place along with the 

phosphorylation and degradation of CRY1 by GSK-3p and FBXL3 respectively. Translated 

CRY1 proteins are able to interact with FBXL21 in the cytoplasm but do not undergo 

degradation as it is not phosphorylated by DYRK1A. The CRY1 proteins are instead thought
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to be sequestered in the cytoplasm by FBXL21 through some unknown mechanisms. 

Alternatively, CRY1 proteins are also able to form a complex with PER2 which then 

translocates into the nucleus where it gets phosphorylated by GSK-3p followed by degradation 

by FBXL3. In case of the Cry2'A mice, since CRY1 is not targeted by DYRK1A, CRY1 

proteins have to be accumulated in the nucleus, where they can get phosphorylated by GSK- 

3P; since this is a slower process, there is slower degradation of CRY1 proteins, and hence the 

Cry2'A phenotype (longer period). This is in contrast to CryVA, where CRY2 proteins, as 

described earlier, undergo dual phosphorylation which may be quicker due to the presence of 

DYRK1 A, which degrades CRY2 proteins quicker and hence the shorter phenotype in CryVA 

mice.

In the case of Fbxl21p291QIP291Q mice, since CRY2 levels are stabilised, there may be 

accumulation of CRY2 in the cytoplasm where it first gets phosphorylated by DYRK1A 

followed by the faster second phosphorylation event by GSK-3p and is finally degraded by 

FBXL3, hence expressing a shorter circadian phenotype. It is worth mentioning that DYRK1A 

levels are found to be at a higher level during the increasing accumulation of CRY2 levels. On 

the contrary, GSK-3p levels start increasing from late night until early morning (ZT/CT 22-2).

If this hypothesis is considered true, then it will be interesting to investigate the 

redundancies between the two F-box proteins, FbxlS and Fbxl21.
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Figure 4.14: Hypothesis model o f  CRY2 phosphorylation. This figure is based on a hypothesis, showing 
dual phosphorylation o f CRY2, first in the cytoplasm by DYRK1A (pink circle), that is assumed to speed up the 
subsequent phosphorylation by GSK-3P (yellow circle), which is then targeted by FBXL3 (orange diamond) for 
proteasomal degradation. DYRKlA-mediated phosphorylated CRY2 may be a target o f  the second F-box 
protein, FBXL21 (light pink diamond), for proteasomal degradation in the cytoplasm. DYRKlA-phosphorylated 
CRY2 is also able to form a complex with PER2 which then translocate into the nucleus to undergo GSK-3P- 
mediated phosphorylation followed by FBXL3 targeted degradation o f  CRY2. In case o f  the Fbxl21P29IQP29IQ 
(dark pink diamond), there is stabilisation o f CRY2, due to which, it does not undergo degradation in the 
cytoplasm; while on the other hand, the GSK-3p-mediated phosphorylation is quicker, degrading CRY2 quickly, 
thus explaining the short period length phenotype. Flowever, since the DYRK1A phosphorylation site is specific 
to CRY2, CRY1 is thought to form a complex with PER2 to translocate into the nucleus where it then undergoes 
phosphorylation by GSK-3P followed by FBXL3-mediated degradation. Although CRY1 is able to interact with 
FBXL21, it is thought that CRY1 is sequestered in the cytoplasm by some unknown mechanisms due to which 
FBXL21 is able to inhibit CRY1 mediated transcriptional repression.
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4.4.6 Functional redundancy between the Fbxl paralogues

Most of the important mammalian circadian genes are present as paralogous pairs e.g 

Perl, Per2\ Cryl, Cry2; Clock and Npas2 in which each of the genes in every pair would have 

to be knocked out in order to confer arrhythmicity. However, not every gene in the pair is 

functionally similar; one gene may be more essential in regulation than the other. Also the 

effect of knockout of one gene from the pair may differ. The functional similarities that could 

vary between paralogues can be explained with the example of Bmall and its paralogue 

Bmal2. It was hypothesized that if Bmall (Mop3) and its paralogue Bmal2 (Mop9) were not 

redundant then any mutations or complete absence of Bmall would cause significant changes 

in the circadian clock. However this hypothesis was partly proved right when Bmall'f~ {Mop3'/~ 

) mice were found to be arrhythmic in DD, showed no activity with no changes in the 

behaviour after a light pulse was administered. Thus, it was concluded that Bmall and Bmal2 

did not have a redundant function. However, Bmall positively regulates transcription of 

Bmal2 and so in the absence of Bm all, transcription of Bmal2 is also inactivated, hence the 

arrhythmicity in Bm airA mice also expressing an epistatic interaction between the Bmal 

paralogues (Shi, Hida et al. 2010; Bunger, Wilsbacher et al. 2000). On the other hand it was 

shown that when Bmal2 was constitutively expressed, it was able to rescue the phenotype of 

Bmal r A mice.

In our Fbxl3AJh/AJh; Fbxl21V68E/V68E and Fbxl3AJh/Ajh;Fbxl21P291Q/P291Q mutant mice, it 

was seen that under constant darkness (DD) and constant light (LL) conditions, the effect of 

the Afli mutation appears to be stronger than that of Fbxl21 (Figure 4.12 and 4.13). Although 

the animals are seen to entrain well to the LD schedule, once allowed to free-run in DD 

followed by LL, the double heterozygous and double homozygous mice show a phenotype
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similar to the Afli heterozygous and homozygous mice with Fbxl3AJh/+; Fbxl21v68E/+, 

Fbxl3A*h/+\Fbxl21P291Q/+ with a period length of 24.22hrs±0.06 for both in DD (Figure 4.12, 

4.13 ). Under the same conditions (DD), the period length further increases to 26.22hrs±0.06 

in F b x B ^ ^ ;  Fbxl21v68E/v68E mice and becomes even longer to 27.5hrs±0.173 in Fbxl3Afll/Afll\ 

Fbxl21p291Q/p291Q mice (Figure 4.12, 4.13). From these results, it can be said that under DD 

conditions there exists an epistatic interaction between the two Fbxl paralogues, where Fbxl3 

modifies the effects of Fbxl21. However, to test redundancies, analysis of complete gene 

knockouts will be necessary.

Secondly, in order to investigate if the F-box genes are regulated by their paralogues, 

F-box gene expression must be investigated in vivo. Based on the phenotype observed in the 

Fbxl3Am/l'; Fbxl21V68E/V6SE and Fbxl3AJh/AJh;Fbxl21P29,Q/p29,Q compound mutants that mimic 

the Afh mutation, it is thought that Fbxl3 is involved in the regulation of Fbxl21 and that 

Fbxl21 transcription is Fbxl3-dependent. To determine this, endogenous gene expression 

studies will have to be carried out first in the Fbxl3 ^ ^  mice and Fbxl21 mutant mice 

followed by expression analysis in the double mutants. These studies will be similar to those 

carried out by Bunger et al. (2000) and Shi et al. (2010) in which it was shown that in the 

absence of Bm all, the mRNA levels of Bmal2 were at basal levels. Hence it was thought that 

in wild-type mice, Bmal2 expression is regulated by Bmall and so knocking out Bmall 

essentially results in a BmalFA; Bmal2'A condition resulting in an arrhythmic wheel running 

phenotype.
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4A.7 Behavioural consequences of constant light conditions

Light acts as a major circadian entraining agent in various organisms due to which 

under normal circumstances, the endogenous oscillations are entrained to the environmental 

light/dark conditions. Light is transmitted through the eye to the master pacemaker, the 

suprachiasmatic nucleus (SCN) which controls the autoregulatory feedback loops involving 

various clock genes (Reppert and Weaver 2002). The importance of light is clearly understood 

when an animal, if given a light pulse during early circadian night, has a delayed onset of 

activity while shows advanced onset o f activity if given a light pulse during late circadian 

night. The SCN is connected to the retina through the retinohypothalamic tract (RHT) that 

directly reacts to the light input and hence, when the SCN-retina path is disrupted, there is a 

complete loss of entrainment in the LD cycle (Dijk and Archer 2009). Thus, it is interesting to 

find behavioural differences in LL conditions in various circadian mutants in order to find the 

underlying mechanisms of the light input pathway or varied functions of clock genes.

All our animals were screened using the same circadian protocol consisting of a 12hr 

LD schedule followed by two weeks in DD and LL conditions. While the Fbxl21p291Q/p291Q 

mutants seem to show a shorter circadian period in DD, they show a significantly longer 

period in LL compared to wild-type animals. The striking difference in these animals between 

the DD and LL phenotypes is the period lengthening in Fbxl21p291Q/+ (Figure 4.11 A, B). 

Although the heterozygous and homozygous animals showed a varied phenotype in DD 

(slightly higher in heterozygotes), the lengthening seems to be dose dependent. A similar 

lengthening phenotype was also observed in the second Fbxl21 mutant, V6 8 E, where the 

animals with two copies of the mutated F-box domain (Fbxl21v68E/v68E) show a significantly 

longer period length in LL suggesting that Fbxl21 and their domains or their interacting
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partners are light responsive and may play a role in the light input pathway of the circadian 

system (Figure 4.10 A, B). Saying this, it should be noted that both the Fbxl21 mutants that 

are homozygous are well entrained to the 12hr LD schedule, making it difficult to predict their 

function, as a defect in the input pathway would result in loss of entrainment or changes in 

phase angles or phase shifts, which is not apparent in these mice.

An even more complex situation arises when Fbxl3Âh/Âh; Fbxl21y68E/V68E and 

Fbxl3 ^ ^ ;  Fbxl21p291Q/p291Q mice are screened for their circadian activity and parameters 

using the previously described protocol. The behaviour of these animals in LD and DD 

conditions are detailed in the previous section 4.4.6 and Figure 4.12, 4.13. However, in LL, 

the double heterozygous animals show extreme lengthening with a difference of ~2.5hrs 

between Tdd and Tll- The double homozygous animals on the other hand are arrhythmic in LL. 

When analysed on a scale of 3 lhrs, there appears to be a very weak rhythm with a x of ~31hrs, 

with low amplitude. When considered on 24hr scale, they both appear arrhythmic.

Previously studies have been carried out to understand the behaviour of mice housed 

under constant light conditions where it has been shown that, at the molecular level, 

expression of the clock genes, Perl and Per2, are affected by light (Shearman, Zylka et al. 

1997). Both these genes were found to be highly expressed in the SCN and the eye in LL 

conditions. Further Shearman et al. (1997) showed that although both the genes were 

expressed in the two most important controlling regions of the circadian system, differences in 

expression of Per genes were observed. At the molecular level, the expression of Perl and 

Per2 RNA are high during subjective day at CT3, 6 , 9 and 15 in the SCN. However, this was 

not the case with the gene expression of Per2 analysed in the eye, where high levels o f Per2 

were found at CT 9, 15, 18 and 21 (Shearman, Zylka et al. 1997). Apart from differences in 

their expression, Perl and Per2 were also thought to be regulated differently; Perl was
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thought to cause phase delay, whereas differences in Per2 regulation was thought to result in 

phase advance, showing that differences lay in the regulation of Per gene expression at the 

molecular level (Yan and Silver 2002; Munoz, Peirson et al. 2005). In-situ hybridisation, 

carried out in the SCN to determine gene expression of P erl, Per2, Cryl and Cry2 under LL 

conditions show that all the genes and their protein products were rhythmic and showed 

circadian rhythmicity in LL. The exception to these results was the expression of Cry2 and its 

protein product CRY2 which showed altered expression pattern in LL. PER2 protein levels on 

the other hand were also reported to be at an elevated and stabilised level across circadian time 

under LL, which was hypothesized to be a result o f the inhibition of a kinase that is 

responsible for the degradation of PER2 (Munoz, Peirson et al. 2005). Thus, it was thought 

that the degeneration of PER2 is the contributing factor in lengthening the period in LL and 

that the rhythmic expression of clock genes such as Cryl, Cry2 and Perl are PER2- 

independent in LL. Hence investigation of PER and CRY levels in the retina of Fbxl3A:fh/A:fh; 

Fbxl21v68E/v68E and Fbxl 3 ^ ^ ;  Fbxl21P291Q/p291Q compound mutants would help us explain 

the phenotype better.

Abnormal circadian activity in LL also indicates the role o f important photoreceptors 

and photopigments. Surprisingly it has been identified in humans and mice that rhodopsin and 

the other colour opsins are not essential for circadian photoreception. For example retinal 

degeneration (rd) mutant mice are visually blind but respond normally to circadian 

photoreception (Yoshimura and Ebihara 1998). Similarly human patients who lose all rods and 

cones have no consciousness of light, respond normally to environmental LD conditions 

(Czeisler and Dijk 1995; Wee and Van Gelder 2004). Hence, there may be one or more 

photopigments in the retina that may be involved in photoreception.
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The other component that might attenuate the behaviour or play a role in regulation of 

circadian oscillations in LL is cryptochromes that act as photoreceptors in Drosophila. Cry 

belongs to the photolyase family and is not only expressed in photosensitive organs but is also 

expressed in most mouse and human tissues. It is found to be highly expressed in the retinal 

ganglion cells and the inner nuclear layer of the inner retina (Miyamoto and Sancar 1998). In 

order to identify the role of photopigments, Selby et al. (2000) generated triple mutant mice, 

rd/rd; CryPA; Cry2'A , that lack all the rods and most of the cones, and lack both cryptochrome 

genes. They then carried out a number of behavioural and molecular tests. At the behavioural 

level, it was shown that although CryPA ; Cry2'A double mutants are arrhythmic in DD, they 

seem to entrain normally in LD conditions. In addition, oscillating Per2 gene expression 

observed in the SCN of the double mutant mice under LD conditions suggested the presence 

of a phototransductive pathway. The triple mutants on the other hand were found to be 

arrhythmic in LD and DD. Photoresponsiveness could arise from colour opsins present in the 

surviving cone cells. It could also be due to incomplete retinal degeneration and/or due to the 

presence of a photoreceptor. For example, melanopsin, an opsin recently identified in the inner 

retina (Provencio, Rodriguez et al. 2000). At the molecular level, although high levels o f Per 

gene were identified in the SCN of the triple mutants, a marked reduction in the light induced 

c-fos transcription was also observed. This reduction in c-fos levels was thought to be a 

compromise due to the lack of cryptochromes. It was then suggested that a functional 

redundancy between cryptochromes and the classical opsins exists in transducing information 

in the presence of light. This is thought to modulate the behaviour of mice (Selby, Thompson 

et al. 2000). Hence, it may be for this reason there was no difference in the F b x l S • 

Fbxl21V68E/V68E mice in LD, and mice entrained normally to the LD cycle.
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Since both the F-box mutations, Fbxl3AJh and Fbxl21V68E/Fbxl21p291Q have an effect on 

the interaction and subsequently on degradation of CRY proteins, it would be essential to 

determine the expression of Cry and Per in the double mutants. The reason for arrhythmicity 

in LL could be contributed to expression of Cry which could result in elevated levels of CRY 

protein that in turn lead to extended additional inhibition itself, as Cry is a much stronger 

transcriptional repressor than Per (Langmesser, Tallone et al. 2008). To date, there is not 

much known about the effect of constant light on clock gene expression, mainly Cry and Per, 

which are important regulators of the feedback loop. The two contradictory evidences show 

that Per2 RNA levels are low with reduced amplitude in LL that result in altered phase of 

PER2 (Sudo, Sasahara et al. 2003). On the other hand, another study by Munoz et al. (2005) 

show that, although Per2 is rhythmic with high amplitude, there is a constitutively elevated 

expression of PER2 in the SCN of mice maintained under LL conditions (Munoz, Peirson et 

al. 2005). Hence, due to these discrepancies, there is no definite evidence of the actual 

mechanism that regulates expression of clock genes in mice. Thus, determining the expression 

of these genes in appropriate mutants will help us identify vital mechanisms and hopefully 

help explain the observed phenotypes under LL.

Finally, changes in the SCN cannot be ruled out as a result o f constant illumination. It 

has been known that light stimulates the retinal ganglion cells that form the RHT and the 

transmitters they release affect the SCN. Histological evidence shows the RHT is widely 

spread throughout the ventral and dorsal side of SCN and the light responsive neurons o f the 

SCN are located ventrally. Outside the SCN, there are very few neurons that respond to light 

(Meijer and Schwartz 2003) Thus, any changes in the circadian behaviour may result in 

functional changes of these neurons or vice-versa. Ohta et al. (2005) carried out single cell real 

time studies using Perl promoter driven GFP fluorescence to identify the changes in the SCN
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when mice are exposed to LL. They reported robust individual cellular rhythms within the 

SCN dissected from mice that were arrhythmic in LL. However, the neuronal rhythms from 

the same mice were significantly desynchronised, suggesting that constant light changes the 

phase organisation of neurons within the SCN and does not abolish the function of the neurons 

per se. Thus, arrhythmic behaviour can be a result o f damping of circadian oscillation due to 

the loss of cellular synchrony (Ohta, Yamazaki et al. 2005)
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4.5 SUMMARY

In summary, although the exact role of Fbxl21 is not completely understood yet, these 

studies have given us a deeper insight into the recently identified clock controlled gene. 

Having screened the Harwell ENU DNA archive, two mutations in two highly conserved 

domains, the F-box domain and the putative CRY-binding domain, were identified. V6 8 E, a 

valine to glutamic acid substitution was identified in the F-box domain and P291Q, a proline 

to glutamine substitution, was identified in the predicted CRY-binding domain of Fbxl21.

In-vitro studies were carried out using full length Fbxl21 sequences (both wild type 

and mutated) cloned into the pCSII-Myc vector. Localisation experiments showed that the 

mutations retained FBXL21 in nuclear and cytoplasmic compartments across circadian time, 

as opposed to shuttling between the nucleus and cytoplasm in wild-type conditions. The 

mutations also resulted in a significantly reduced interaction between CRY1 and CRY2 due to 

which it was predicted that degradation of these proteins would be affected, ultimately 

resulting in a circadian phenotype. It was surprising to see that FBXL21-Wt targeted CRY2 

more than CRY1 for degradation. While the V6 8 E mutation did not show any difference in 

degrading CRY1 and CRY2, the P291Q mutation led to stabilisation of CRY2, which 

ultimately not surprisingly resulted in a circadian phenotype in vivo. The Fbxl21P29IQ/p29IQ 

mice showed a significantly shorter period length with tDD of 23.10hrs±0.073 compared to 

Fbxl21+/+ with a period length of 23.68hrs±0.094. Fbxl21v68E/V68E mice showed no differences 

in circadian phenotype in the wheel running screen.

As Fbxl21 is the paralogue of a well characterised F-box gene, Fbxl3, which is also 

known to be involved in CRY degradation, it was interesting to investigate the redundancies 

between the two F-box paralogues. Compound mutants were generated by crossing the

230



Chapter 4: Results

Fbxl3Afll/Aflx and Fhxl21V68E/V68E or Fbxl21P291Q/p291Q mice. Double heterozygous and double 

homozygous mutant mice were screened for their wheel running activity, which consisted of a 

12hr L:D schedule for 7 days, followed by 2 weeks in DD and finally for 2 weeks in LL 

conditions. It was clearly seen from these screens that these mutants mimic the phenotype of 

the Fbxl3Âh/Âh. mutant alone in DD. The effect of the Fbxl3Afll mutation is much stronger than 

the mutations in Fbxl21 and there exists an epistatic interaction between the two Fbxl 

paralogues. It is thought that the ideal way to investigate the redundancies between these two 

paralogous pairs is by generating complete gene knockouts rather than generating mice with 

point mutations.

Finally, having determined these results there a number of studies yet to be carried out 

to understand completely how Fbxl21 plays a role in circadian time keeping. Studies such as 

the modification of phosphorylation sites (specifically Ser557 targeted by DYRK1 A) of CRY2 

to look at the interaction between FBXL21 and CRY2/1 are needed. If the interaction is 

attenuated further, it is clear that FBXL21 interaction is DYRK1A dependent. Further studies 

also include carrying out gene expression analysis in the Fbxl21P291Q/P291Q and Fbxl3 ^ ^  

homozygous mice in addition to gene expression studies in the Fbxl3 ^ ^ ;  Fbxl21V68E/V68E and 

Fbxl3 ^ ^ ; Fbxl21P291 Q/p291 Q compound mutants.
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5 CHAPTER FIVE: Behavioural Analysis of 
F-box Mutants
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5.1 INTRODUCTION

Circadian rhythms existing in the majority o f organs, such as liver, kidney, heart and 

other brain regions, are all under the control of the SCN. It has been known that the SCN is 

able to influence and control various aspects of physiology and behaviour mainly through its 

humoral response and neuronal circuitry. It is due to this control that any disturbances in the 

circadian system can have adverse effects on the behaviour of an organism. Thus, mutants 

with disturbed circadian oscillations may have an effect on the functioning of the central 

nervous system. This could be either due to primary deficits in the master pacemaker itself or 

deficits in the functioning of the oscillators in other areas of the brain. There have been several 

evidences that show associations of several neurological and psychiatric disorders with 

disturbances in sleep. For example, abnormal rapid eye movement (REM) sleep is observed in 

patients suffering from schizophrenia (Zarcone, Gulevich et al. 1968; Zarcone, Azumi et al. 

1975). Various parameters of sleep are under the control of circadian timing, and behavioural, 

psychiatric and neurological disorders may in turn be under the indirect control of the 

circadian clock.

Circadian gene polymorphisms are widely studied in humans in order to identify exact 

clock gene functions. In humans, people with clock gene polymorphisms either have morning 

or evening preference that are associated with differences in response to the Home-Ostberg 

questionnaire (Home and Ostberg 1976). Additionally, people with an extreme morning or 

evening preference often also have complex behavioural phenotypes that are associated with 

psychiatric and mood disorders. Xu et al. (2005) reported that out of five patients suffering 

from familial advanced sleep phase syndrome (FASPS), four of these have a history or clinical
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features of depression (Xu, Padiath et al. 2005). Similarly, patients suffering from the delayed 

sleep phase syndrome (DSPS) also show symptoms of depression (Drennan, Klauber et al. 

1991; Shirayama, Shirayama et al. 2003; Xu, Padiath et al. 2005). Examples of clock gene 

polymorphisms occurring in core oscillator genes not only show deficits in oscillator 

mechanisms, but they are also linked to depressive disorders. For example the circadian clock 

regulator Cry2 has been found to be associated with bipolar disorder and depression. Studies 

have shown that variation in Cry2 expression levels can be associated with depression. Cry2 

RNA levels are found to be low in the blood collected from patients suffering with bipolar 

disorder compared to healthy controls (Lavebratt, Sjoholm et al. 2010).

It addition to the effects of circadian disturbances resulting in behavioural disorders, it 

could also be that dysfunctional clock mechanisms could merely be symptoms of various 

diseases. Evidences report the disturbances in circadian and sleep mechanisms are secondary 

to the primary brain circuitry deficits in the neurodegenerative Alzheimer disease (Wisor, 

Edgar et al. 2005; Ambree, Touma et al. 2006). Similarly, in the transgenic model of 

Huntington’s disease, Huntington R6/2 mutant mice, altered clock gene expression and 

rhythms were observed (Morton, Wood et al. 2005). Examples of other disease conditions 

with circadian disturbances include schizophrenia, bipolar disorders and unipolar depression.

It has recently been shown that the clock gene Fbxl21 is associated with schizophrenia 

in humans (Chen, Wang et al. 2008). Linkage analysis of chromosome 5q resulted in the 

possibility that interleukin 9 (IL 9) and Fbxl21 could be associated with schizophrenia. Further 

analysis reported that there was no association of IL-9. However, out of 14 samples, 6  

consecutive SNPs present in and around Fbxl21 showed a significant association (Chen, Wang 

et al. 2008). On the other hand, Fbxl21, as seen in the previous chapters, is a clock gene with 

its protein product presumably playing a role in regulating CRY2 proteins in mice (Dardente,
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Mendoza et al. 2008). Hence, it will be interesting to investigate the behavioural effects of 

Fbxl21 mutations in mice.

Interestingly, studies have shown that by treating circadian disturbances, a diseased 

condition can also be reversed. For example, the mutant Per2 mice that show an increased 

consumption of alcohol can be reversed by glutamate transporters such as Eaatl that alter 

circadian gene expression and reduce the glutamatergic activity, suggesting that 

neurotransmitters are able to modulate the expression and regulation of circadian genes which 

in turn modulate the functions of the neural circuitry processing information to other brain 

areas (Spanagel, Pendyala et al. 2005). Similarly, lithium that is an inhibitor of GSK3P activity 

is able to reverse behavioural disturbances observed in the Clock mutant. Lithium is able to 

promote the nuclear entry of clock proteins, which in turn undergo proteasomal degradation 

and result in activation of the positive regulators of the circadian clock (Martinek, Inonog et 

al. 2001; Iitaka, Miyazaki et al. 2005; Yin, Wang et al. 2006).

Hence continuous research in the field of circadian rhythms and identification of new 

clock genes involved in major neurological, psychiatric and other behavioural disorders will 

help to develop drugs that are predominantly circadian based. This in turn will contribute to 

the improvement of public health.
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5.1.1 Aims of chapter

With associations known between circadian clock genes and behavioural and neurological 

disorders, the CryV/'; Fbxl3Âh/ĵ h9 Fbxl21V68E/V68E and Fbxl21P29IQ/p291Q mutants were screened 

through a primary phenotyping pipeline. A selection of tests, namely the open field, acoustic 

startle response, pre-pulse inhibition (PPI) and grip strength, were carried out to investigate if 

the mutants suffered from anxiety, sensorimotor gating deficits and motor deficits.

With CryFA;Fbxl3Âh/Âh showing a significantly higher number of average wheel revolutions 

in LL during the circadian wheel running analysis (Chapter 3, section 3.2.2) and with known 

associations of human Fbxl21 and schizophrenia (Chen, Wang et al. 2008), it was interesting 

to see the behaviour of the mutant mice in the above mentioned tests.
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5.2. RESULTS

5.2.1 Open field

In order to test the exploratory, locomotor and anxiety-like behaviour o f mice in a 

novel environment, mice are put through the open field test. Mice have a natural tendency to 

avoid brightly illuminated and novel open areas, thus the open field arena is an anxiogenic 

stimulus to the mice. By measuring parameters such as time spent by the mice in the centre 

and periphery of the testing arena, the anxiety induced behaviour of the animal can be 

assessed. This test is also useful for clinicians measuring the effects of anxiogenic and 

anxiolytic drugs. As anxiety levels depend on environmental conditions, while performing this 

test it is important to maintain constant and appropriate temperature, lighting, humidity and 

ventilation conditions.

The open field test is carried out in an arena virtually divided into a periphery and 

centre with homogenous lighting intensity of 150-2001ux in the centre of the arena. The mice 

are then allowed to explore the arena for 30mins, during which several parameters are 

recorded by the EthoVision software (Noldus Ltd.). Parameters measured were the time spent 

by the mice in the centre (sec), time spent in the periphery (sec), latency of first occurrence of 

mice in the centre of the arena, the total distance travelled (cm), the average speed (cm/s) and 

the percentage of total time spent in movement.

Mutants CryFA; Fbxl3A:fh/Afll; Fbxl21V68E/V68E and Fbxl21P291Q/P291Q were assessed for 

their anxiety levels and exploratory behaviour in the open field arena. A group o f 10 animals 

(mix of males and females) for each mutant were tested and compared to the behaviour of 1 0  

congenic C57BL/6J controls that were age matched, however were not littermate controls.
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Student’s t-test was used to determine any statistical significance. The Cryl'/"; Fbxl3Âh/A'̂h 

mutants spent significantly more time in the centre (p=0.007) than in the periphery (Figure 

5.1). Although the distance moved and the velocity of control mice and the mutant CryFA; 

Fbxl3Afli/Afll mice were similar, the mutants spent more time moving around the arena. The 

mutants also appeared in the centre within 30secs of the start o f the test compared to the 

controls which appeared in the centre after ~1.5mins, suggesting a hyperactive behaviour in 

the Cryl'1'; Fbxl3AJh/AJh mice.

There were no significant differences observed between Fbxl21V68E/v68E and control 

mice (Figure 5.2). Although the mutants spent less time in the centre, they appeared in the 

centre of the arena (latency of first occurrence) earlier than the control mice. The 

Fbxl21V68E/V68E mice also moved less in terms of distance moved, duration and velocity of 

movement.

The Fbxl21P291Q/P291Q mutants were significantly different from the wild-type controls 

in each of the measured parameters (Figure 5.3). These mice spent significantly more time in 

the periphery (p=0.003) than in the centre (p=0.002), with a greater latency to appear in the 

centre (p=0.01). Although this suggests that these mice are more anxious, they also spent less 

time moving and hence a lower distance was covered with a reduced velocity (total moving 

duration, distance and velocity p=0 .0 0 2 ).
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Chapter 5: Results

5.2.2 Acoustic startle and Pre-pulse inhibition (PPI)

This test is used as a measure of sensorimotor gating in which a weak external 

stimulus (pre-pulse) reduces or inhibits the whole body startle response that is generated by 

an external stimulus (pulse). The stimuli presented are usually acoustic but tactile and light 

stimuli can also be given. Pre-pulse inhibition (PPI) is a neurological phenomenon that is 

found in several species from mice to humans. The test reflects the ability o f an organism’s 

nervous system to adapt to a stronger stimulus when a prior warning stimulus is presented. 

However, this ability is known to be attenuated not only in schizophrenic patients but also a 

number of other conditions. On the other hand, while a decrease in startle response reflects 

sensorineural deafness, an increase in startle response could be an indication of psychotic 

disturbances.

The test was performed in a single session where the mice were placed in sound 

proof chambers containing an inner chamber connected to a loud speaker and a startle 

platform. This chamber was connected to the computer where the startle responses o f mice 

were recorded and finally analysed using the EthoVision software. To begin with, startle 

responses of mice were recorded by exposing them to acoustic stimuli at 110 decibels (dB). 

In the second part of the procedure, pre-pulse acoustic stimuli ranging from 65-75 decibels 

was presented to the mice prior to the startle pulse of 110 decibels. The percentage 

inhibition of startle response by a pre-pulse was then calculated.

C ry f';  Fbxl3AJh/AJh double mutants, Fbxl21V6smm  and Fbxl21P29' Q/P29,Q 

homozygous mice were assessed for their startle response before and after a pre-pulse is 

presented. A group of 10 animals (mix of males and females) for each mutant were tested 

and compared to the behaviour of 10 congenic C57BL/6J controls that were age matched.
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Student’s t-test was used to determine significant differences. Compared to the control 

mice, the CryVA; Fbxl3Afll/Afll double mutants (Figure 5.4) showed a significantly reduced 

startle response (CryTA; Fbxl3Afll/Afll p=0.04). While no differences were observed between 

wild-type controls and Fbxl21V68E/V68E (Figure 5.5), the Fbxl21P291Q/P291Q (Figure 5.6) 

mutants showed a significantly reduced startle response (Fbxl21P291Q/p291Q p= 0.019). On 

presenting the pre-pulse before the acoustic startle, the percentage of inhibition of startle 

response was measured. Both the CryVA; Fbxl3Afll/Afll and Fbxl21P291Q/p291Q mutants showed 

a significantly greater inhibition of startle response compared to the control mice (CryFA; 

Fbxl3Ajh/Ajh and Fbxl21p291Q/p291Q p< 0.005) (Figure 5.4 and 5.6).

However, the differences in the PPI levels of the wild-type control mice should be 

noted. While the PPI levels of wild-type mice used to test CryF/~; Fbxl3Afll/Â  and 

Fbxl21P291Q/p291Q mice range between 18-35% (Figure 5.4 and 5.6), the PPI levels of 

controls used for Fbxl21V68E/V68E mice range between 40-50% (Figure 5.5). Although the 

reason for this difference is unknown, it could be that if proper littermate controls are used, 

the Fbxl21Y68E/v68E mice would show a similar behaviour as the CryFA; Fbxl3Afll/Afll and 

Fbxl21P291Q/P291Q mutants.
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Startle Response
1 6 0 0  -

1 4 0 0

P = 0 .0 41200

1000

8 0 0  -

6 0 0  -

200  - □  WT

Pre-pulse Inhibition

Figure 5.4: Acoustic startle response and pre-pulse inhibition in Cryl'A; Fbxl3AJ7t/AJ1‘ double 
homozygous mice. These mutants showed a significantly reduced acoustic startle response at llOdB 
(p=0.04). However, these mice were able to significantly inhibit the startle response after the presentation of a 
pre-pulse ranging from 65-75dB (p<0.005) compared to the C57BL/6J wild-type mice that were of the same 
age. A total of 10 mutants and 10 controls (males and females) were tested. Student’s t-test was used to 
determine statistical differences.
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Startle Response

WT
F b x l 2 1 V68E/V6S£

Pre-pulse Inhibition

Figure 5.5: Assessing the acoustic startle response and pre-pulse inhibition in Fbxl21y68E/V68E 
mutants. There was no significant difference between the mutants and wild-type mice (C57BL/6J) in the 
acoustic startle response and their ability to inhibit the startle response after a pre-pulse. A total o f 10 mutants 
and 10 controls (males and females) were tested. Student’s t-test was used to determine statistical differences.
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StartteRe.spon.se

□  WT
Q  S h ^ n P291̂ p291Q

P= 0.003

Pre-pulse Inhibition

* B,P =  0.005

U
‘ ,P =  0.005

70dB 75dB

Figure 5.6: Assessment o f the acoustic startle response and pre-pulse inhibition in 
Fbxl21P291Q'P291Q mutants. These mutants showed a significantly reduced acoustic startle response at 
llOdB (p=0.019). Further after a range of pre-pulses (65-75dB) was presented, these mice were able to 
significantly inhibit the startle response (p< 0.005) compared to the C57BL/6J wild-type mice that were of the 
same age. A total of 10 mutants and 10 controls (males and females) were tested. Student’s t-test was used to 
determine statistical differences.
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5.2.3 Grip strength

Grip strength test is used as an indicator of neuromuscular function. The test can 

either be performed by measuring the grip strength of the two forelimbs or all the four 

paws.

The Fbxl21v68E/v68E mutants were tested for their grip strength using the Bioseb grip 

meter. Each animal was tested thrice with an interval of 5mins.

Since the muscle strength of the animal could vary with the weight of the animal, the 

animals were weighed and the mean grip was then calculated. There was no significant 

difference between the 2 paw grip strength of the Fbxl21v68E/V68E and C57BL/6J mice 

(Figure 5.7)
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□  WT
H  Y h \\n V68E/V68E

Figure 5.7: Two paw grip strength o f Fbxl21V68E/V68E mice. There was no significant difference 
observed between the two paw grip strength of the Fbxl21V68E/V68E and C57BL/6J wild-type mice. The 
represented graph is an average of three trials of each animal. Although there were no differences in body 
weights, they were taken into consideration during the grip strength test. The error bars represent the SEM. A 
cohort of 10 animals with a similar age, each for wild-type and mutant were tested. The cohort consisted of a 
mix of males and females. Student’s t-test was used to determine statistical significance.
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5.3 DISCUSSION

With several evidences showing direct or indirect associations of dysfunctional 

clock mechanisms with neurological and psychiatric disorders, we carried out three primary 

phenotyping tests in our mutant lines. The Cryl'A; F b x B ^ ^  double homozygous mice 

and two Fbxl21 mutants, Fbxl21V68E/V68E and Fbxl21P291Q/p291Q, were tested for their anxiety 

levels and were assessed for symptoms of schizophrenia (measuring their acoustic startle 

response and pre-pulse inhibition). While there were no significant differences observed 

between the control and Fbxl21V68E/V68E mice in the open field and PPI test, behavioural 

differences were observed in the other two mutants.

The Fbxl21p291Q/p291Q mutants displayed anxiety-related behaviour by spending 

significantly higher time in the periphery of the open field arena (p=0.0003 ). The mice 

were less exploratory and hence spent significantly less time moving (p= 0.002). The CryF 

A;Fbxl3Afll/A:,h mutants on the other hand, were opposite to Fbxl21 mutants. These mutants 

show reduced anxiety levels. Although the mice spent significantly more time in the centre 

that is the anxiety-provoking area (p=0.007), parameters measured to assess the exploratory 

behaviour of the mice such as the latency of first occurrence was non-significantly lower 

than the wild-type. In order to exclude the possibility of increased locomotor activity 

contributing to the reduced anxiety levels, parameters such as distance travelled and total 

duration of movement were measured, and these remained unchanged in the mutant 

compared to control mice. These results were similar to the Clockil9/A19 mutant generated 

using ENU mutagenesis, which shows reduced anxiety levels by spending more time in the 

centre (open field) and unprotected arm of an elevated platform (elevated plus maze) 

(Roybal, Theobold et al. 2007). A second clock mutant displaying low anxiety levels in an
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elevated plus maze is earlybird (Ebd), a mutant due to an ENU-induced point mutation in 

the gene Rab3a which regulates neurotransmitter release in the brain (Kapfhamer, 

Valladares et al. 2002; Yang, Farias et al. 2007).

Anxiety is a complex emotion that involves a physiological protective function to 

any threatening situation and involves complex interactions between different brain 

regions. With the brainstem nuclei being the most prominent structure playing the central 

role in regulating levels of arousal, the noradrenergic locus coeruleus and serotonergic 

nuclei are structures playing an important role in anxiety. Neurotransmitters such as 

GABA, serotonin (5-hydroxytryptamine (5-HT)), NPY and intracellular mediators such as 

adenyl cyclase type VIII are reported to be mediators of stress and anxiety related 

behaviour (Wood and Toth 2001). Pharmalogical studies have shown that maintaining 

GABA level is important in anxiety inducing situations and that upregulated GABA levels 

can have anxiolytic effects. This is consistent with studies carried out in mice deficient in 

glutamic acid decarboxylase (GAD) that regulates the synthesis of GABA. In the GAD65'a 

mice (where an isoform of GAD is deleted), there is a reduction in the release of GABA 

which results in anxiety (Kash, Tecott et al. 1999). Interestingly, the projections from the 

serotonergic nuclei and locus coeruleus converge onto the SCN in the hypothalamus and 

serve as an input for synchronisation to the external environment. In addition, the above 

mentioned neurotransmitters (GABA, 5-HT, NPY) are involved in regulating the signalling 

cascade of the SCN. Hence, it is not surprising to observe anxiety related phenotypes in our 

circadian mutants, Fbxl21P291Q/P29le and C ryF ; Fbxl3Aflt'AIh.

Studies have shown the involvement of the GABAergic system in the modulation o f 

acoustic startle response as well by regulating the neuronal circuitary in the brainstem 

(Davis, Gendelman et al. 1982; Meloni and Davis 1999). An acoustic startle response is a
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stereotypic involuntary contraction of the facial and skeletal muscles in response to a 

sensory stimulus. This startle response is reduced when a pre-pulse is presented prior to the 

stimulus. However, defects in the reduction of the startle response due to pre-pulse 

inhibition deficits have been reported to be associated with defects in sensorimotor gating 

mechanisms (transmission of sensory information to motor systems) and are known to be a 

feature of schizophrenia and neurological disorders like Huntington’s disease. In a recent 

report published in 2008, it was shown that the F-box gene Fbxl21 is associated with 

schizophrenia in an Irish family (Chen, Wang et al. 2008). Hence, it was interesting to 

determine any association of Fbxl21 and schizophrenia in mice particularly in the 

Fbxl21P29,Q/P29,e mutant mice. These mice on the other hand, along with the CryFA; 

Fbxl3Afll/Afll mice, instead showed a significant increase in PPI (CryFA; Fbxl3Afll/Afll , 

Fbxl21P291Q/p291Q p<0.005) between 65 and 75dB before the 1 lOdB stimulus was presented, 

suggesting that the mice had no sensorimotor gating deficit.

While increase in startle response could be a reaction due to stress or fear (Zhang, 

Hu et al.), an decrease in startle response (as in CryFA; Fbxl3Afll/AAh and Fbxl21p291Q/P29IQ 

mutants) can be indicative of deafness or sensorineural deficits. Inner ear defects are 

usually associated with sensorineural hearing loss (Knaus, Garcia-Calvo et al. 1994; 

McManus, Helms et al. 1995). It could be that the CryFA; Fbxl3Afll/Afll and Fbxl21p291Q/p291Q 

mouse mutants do not have the ability to process the conversion of sound into any neural 

signals in regions of the brain. There have been reports showing that circadian disturbances 

contribute to the aeitology of various syndromic disorders possibly due to the oscillating 

molecular circuits which are regulated by the clock (Barnard and Nolan 2008). One 

example of a mouse mutant displaying this is the Ca2+-activated potassium (BK) channel 

knockout SloFA. The a-subunit of this channel is encoded by a gene Slol, that is
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ubiquitiously expressed (Knaus, Garcia-Calvo et al. 1994; McManus, Helms et al. 1995). 

The SloFA line, generated by deleting the pore forming exon, displays various aspects of 

cerebellar dysfunction including loss of motor function co-ordination, reduction in the 

activity of the Purkinje cells and hearing loss that progresses with age (Ruttiger, Sausbier et 

al. 2004). Surprisingly, the regulation of this Slol gene is known to be under circadian 

control (Panda, Antoch et al. 2002).

Although hearing loss could be attributed by age, in the case of the Cryl'A 

;Fbxl3AJh/Afll mutants, age-related hearing loss cannot be considered. A study evaluating 

hearing loss in inbred strains has shown that while most of the inbred strains develop age- 

related hearing loss before three months of age, strains such as BALB/cByJ and C57BL/6J 

do not develop hearing loss until 10 months of age (Erway, Willott et al. 1993; Willott, 

Turner et al. 1998; Zheng, Johnson et al. 1999). As the control mice and CryFA;Fbxl3Âh/Â 1 

double mutants used were ~51 days of age and on a C57BL/6J congenic background, 

hearing deficits in these mice cannot be due to age. However, in the case of 

Fbxl21p291Q/p291Q mice (~51 days) as they are on a mixed background (backcross 2), it is 

possible that these mice would have developed hearing loss at an early age. However, no 

conclusion about the progressive hearing loss condition can be made as yet, as it will need 

to be investigated once the colony is congenic.

One of the factors contributing to an increase in PPI is the neurotransmitter, 

serotonin, modulating the startle response (Dulawa, Gross et al. 2000; Dulawa, Scearce- 

Levie et al. 2000). With studies carried out in wild-type and 5-HTm knockout mice (5- 

HT1BKO), it has been shown that the serotonin system (5-HT) is a modulator o f PPI. 

Although most studies carried out investigate reasons causing a decrease in PPI, there are 

evidences showing the role of the 5-HT system causing an increase in PPI. In the late
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1990’s Dulawa et al. (2000) reported the activation of multiple 5-HT receptors as a 

consequence of 5-HT release, out of which some of the activated receptors lead to an 

increase in PPI while some others cause a decrease in PPI. Thus, an increase in PPI is 

expected when receptors causing a decrease in PPI are absent, which might be one of the 

reasons for the observed phenotype in Fbxl21p29IQ/P291Q mice (Dulawa, Gross et al. 2000; 

Dulawa, Scearce-Levie et al. 2000). In studies carried out in wild-type and 5-HT1BKO 

mice treated with 5-HT releasing compounds such as (+)3,4-methylenedioxy-N- 

methylamphetamine (MDMA) or (±)N-methyl-l-(l,3-benzodioxol-5-yl)-2- butanamine 

(MBDB), it was shown that an increase in PPI in the 5-HT1BKO mice (similar to the 

Fbxl21p291Q/P291Q mice) is due to the lack of the 5-HT1B receptors. Similar studies in mice 

lacking the 5-HT1A receptors (1AKO) report that the 5-HT1A receptors are involved in 

increasing PPI (Dulawa, Gross et al. 2000). Thus, although the lack of 5-HT1B receptors 

could be the possible reason for an increased PPI in Fbxl21P291Q/P291Q mutants, the reason 

behind either the loss of receptors or the modulations that result in loss of receptor function 

is yet to be identified.

A second possibility explaining the difference in Fbxl21P291Q/P291Q phenotypes is the 

time of testing. It has been previously reported that the acoustic startle response of mice is 

affected by the circadian clock, where mice being nocturnal animals show an increase in 

startle response during darkness (Chabot and Taylor 1992). Earlier reports show that the 

ability of animals to inhibit startle reflex by a prepulse is greatly increased during the 

activity phase of the animal (i.e during the night) and the reduction in prepulse inhibition 

during the active phase was thought to be due to the reduced processing of sensory 

stimulus. An increased inhibition of the startle response during the time of the test, i.e. 

during the light phase in the Fbxl21p291Q/P291Q is surprising (Delius 1970). However, the
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increase in PPI in the C ry l^ ^ -F b x B ^ ^  is not surprising, as these animals tend to be active 

even during the day as compared to the wild type animals. Another study carried out in rats 

shows that there is no effect of circadian time on the amplitude of startle response or on the 

ability to inhibit the startle reflex by a prepulse. This was confirmed by using apomorphine 

(compound that is used to induce PPI defects) that shows no difference in the startle reflex 

and PPI across circadian time (Weiss, Feldon et al. 1999). Hence, this point of difference 

remains to be a debate which is yet to be resolved.

Finally, differences in PPI observed in Fbxl21P291Q/P291Q mutants could be attributed 

to the mixed genetic background (C57BL/6J and C3H, backcross 2) of the mice. In a study 

involving three inbred strains, C57BL/6J, BALB/cByJ and 129S2, it has been shown that a 

clear difference between the amplitude of startle response to the prepulse inhibition and the 

level of PPI exists. The results showed that although the C57BL/6J mice had a low level of 

PPI, these mice showed the largest amplitude of startle response. They suggested that strain 

differences could be due to differences in the neurotransmitter signalling cascade (by 

involving strain dependent neurotransmitters) or due to the involvement of different 

neuronal circuitary within regions of the brain changing with the strains of mice (Aubert, 

Reiss et al. 2006). Hence it can be concluded that similar results in PPI cannot be obtained 

amongst different strains as several physiological variants contribute to final amplitude of 

PPI obtained.
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5.4 SUMMARY

As described previously, circadian mutants are often associated with other 

neurological and behavioural abnormalities. For this reason, the Cryl'1'; Fbxl3^h/Âh double 

mutants and the two Fbxl21 mutants, Fbxl21V68E/V68E and Fbxl21P291Q/P291Q, were subjected 

to a preliminary battery of phenotyping tests. While the Fbxl21V68E/V68E mice showed no 

significant differences compared to the wild-type control mice, the other two mutants 

revealed some interesting results.

The Cryl~A; Fbxl3A:fh/Afll mice tend to have an increased exploratory behaviour in the 

open field test. Hence, they were seen to spend more time in the centre than in the 

periphery of an open field arena, which is a novel environment to these mice. On the other 

hand in the acoustic startle response test the Cryl'A;Fbxl3Afll/Â  mice showed a significantly 

reduced startle response after an acoustic startle of llOdB was presented to them. In order 

to test their ability to inhibit the startle response, a prepulse ranging from 65db-75db was 

presented to the mice. The CryFA; F b x U ^ ^  mice were able to inhibit the startle response 

better than the control mice.

Since FbxUl is a known candidate for schizophrenia in humans, the 

Fbxl21p291Q/p291Q mice were expected to have a PPI deficit in inhibiting the acoustic startle 

response. However, these mice showed no significant deficits in sensorimotor gating and 

inhibition of startle response was greater than in the wild-type mice. This is similar to the 

findings in the mutants in Disrupted-in-Schizophrenia (Disci). Q31L and LI OOP are two 

missense mutations identified in Disci, the human form of which is a genetic risk factor for 

schizophrenia (Clapcote, Lipina et al. 2007). Although both these amino acids were not 

conserved between humans and mice, Q31L displayed a recessive major depression
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phenotype, while the LI OOP proved to be a dominant schizophrenia mouse model 

(Clapcote, Lipina et al. 2007). This shows that the behaviour of mice could depend on the 

exact mutation in the gene being investigated.

The open field test showed that the Fbxl21p291Q/p291Q were significantly more 

anxious and hence spent more time in the periphery of the open field arena than in the 

centre which is an anxiety provoking area. Additionally, these mice moved less in terms of 

duration and distance, suggesting a depression phenotype and/or a motor function deficit.

It would be useful to subject the Cryl"A; FbxlSAfll/Afll and Fbxl21p291Q/P291Q mutants 

with appropriate genetic background and littermate controls to the tests already performed 

(Open-field, PPI). They could also be screened for additional behavioural tests such as 

forced swim test that is used to investigate the effects of antidepressants (Porsolt, Bertin et 

al. 1977), rota-rod which measures balance and motor co-ordination in rodents (Dunham 

and Miya 1957; Crawley 1999) and the marble burying test that is used to measures 

anxiety-related behaviours (Deacon 2006).
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6.1 DISCUSSION

The aim of this project was to understand and identify the genetic and molecular 

basis of circadian rhythms. A particular focus was to dissect the functions of the two 

mammalian cryptochrome genes, Cryl and Cry2, using mutants previously identified in our 

lab. Additionally, ENU mutagenesis resulted in the identification of new mutants which 

have additionally been used to dissect functions of Cryl and Cry2 in vivo.

6.1.1 Summary of Results

The previous identification of the Afh mutation in the F-box protein, Fbxl3, revealed 

the specific F-box proteins that target CRY proteins for proteasomal degradation. The 

mutation results in a longer circadian period in vivo compared to the control mice (Busino, 

Bassermann et al. 2007; Godinho, Maywood et al. 2007). It was intriguing to determine if 

the Afh mutation results in a similar increase in period in the single Cryl'1' and Cry2'A 

knockout mice. For this reason, Cryl'A; Fbxl3Afll/Aflx and Cry2'A ;Fbxl3Ajh/Afll compound 

mutants were generated and were first screened for their circadian wheel-running 

behaviour. It was successfully shown that the Fbxl3Âh/Âh mutation affects both Cryl'A and 

Cry2'A in vivo by increasing their period length under DD and LL conditions o f the 

circadian screen. However when compared to the single Cry1' mutants (Cry'A; Fbxl3+/+), 

the increase in period length in the Cryl'A/Cry2'A; Fbxl3Â Afll double mutants was not 

equal, which was thought to be due to the individual Cry gene function. Gene expression 

studies further revealed Cryl as a stronger transcriptional repressor than Cry2 in vivo. It is
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thought that the role of Cry2 as a repressor is confined to Per2 specifically in the 

cerebellum. Furthermore, the Afli mutation is also able to upregulate and stabilise either 

CRY protein levels in vivo which presumably contribute to the extended transcriptional 

repression resulting in a long circadian phenotype.

Additionally the circadian screens provide an insight into the role o f Cry2 in the 

retina. This is due to fact that with the loss of Cry2 in vivo, the mice are unable to entrain to 

the LD cycle and are arrhythmic in constant light conditions.

The ability of ENU mutagenesis to identify mutations in a candidate gene of choice 

was assessed in Chapter 4. DNA from ENU mutagenised mice was screened to identify 

mutations in a recently identified Fbxl2 paralogue, Fbxl21 (Dardente, Mendoza et al. 2008). 

Two mutations identified in this screen, V6 8 E (in the F-box domain) and P291Q (in the 

putative CRY-binding domain) were selected for the in vivo and in-vitro analysis carried 

out during the course of study for this thesis.

Potential functional changes were identified in the in-vitro analysis. The localisation 

of FBXL21 was seen to be affected in the presence of the mutations. In addition the 

mutations also resulted in a reduction of interaction between the FBXL21 and their 

substrates CRY1 and CRY2. Interesting conclusions were made while studying the 

degradation of CRY1 and CRY2 by FBXL21 in-vitro. It was shown that while CRY1 did 

interact with FBXL3, CRY2 was preferentially degraded by FBXL21. The mutant 

FBXL21-P291Q on the other hand spared CRY2 from proteasomal degradation in-vitro.

In vivo circadian wheel-running analysis further confirmed no change in the 

Fbxl21V68E/V68E phenotype, whereas a shorter circadian phenotype was observed in the 

Fbxl21p291Q/p291Q homozygous mice. The shorter phenotype that was a result of stabilised
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CRY2 levels was found to be consistent with the Cry2'A knockout mice, where a complete 

absence of CRY2 results in a longer period.

Since Fbxl21 is the closest relative of Fbxl3, genetic interactions between the two 

Fbxl paralogues were then investigated by generating Fbxl3Âh/AJh;Fbxl21P291Q/p291Q and 

Fbxl3Afll/AAh;Fbxl21V68E/V68E compound mutants. Interestingly it was seen that an epistatic 

interaction between the two F-box proteins existed and that Fbxl3Afll/Afll was epistatic to 

Fbxl21. This effect o f Fbxl3Ajh/Afll was seen in vivo by analysing the wheel-running activity 

of the compound mutants which largely mimicked the Fbxl3Aflt/Afll phenotype. In addition to 

this finding two differences were observed in the compound mutants: a further increase in 

period length in the F b x B ^ ^ ;  Fbxl21p291Q/P291Q double mutants in DD, and the 

arrhythmic behaviour of the double mutants in LL conditions. However, the genetic 

interactions resulting in these observations are unknown and are beyond the scope of this 

work.

Finally, Chapter 5 covers the behavioural phenotyping of the CryVA i F b x B ^ ^  

double mutants, Fbxl21v68E/v68E and Fbxl21P291Q/P291Q mutants. As expected from a higher 

number of wheel revolutions in LL during the circadian screen, the CryFA;Fbxl3Afli/Afll 

double mutants were seen to be hyperactive and show a greater tendency to explore in a 

novel environment during the open field test. In contrast to these, the Fbxl21P291Q/p291Q mice 

were seen to be anxious and spend more time in the periphery rather than the centre o f an 

open field arena. These mice, however, were also seen to move less than the control mice. 

The mutants were also assessed for their ability to inhibit their response to an acoustic 

startle after a pre-pulse is presented. While the CryVA;Fbxl3Aflt/Afll and Fbxl21p291Q/p291Q 

showed a lower startle response and an increase in the pre-pulse inhibition, it could be 

proposed that these mutants may possibly have a hearing deficit.
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6.1.2 Contribution to the field

The project on the whole has contributed significantly to understand some of the 

interactions required to maintain circadian rhythms. It has particularly emphasised on the 

generation o f compound mutants and how they contribute to our knowledge in unveiling 

complex mechanisms of the circadian clock.

One of the significant evidences from the study carried out is the role of Cry2 in 

mammals in the presence of light. Although it has not been classified as a photoreceptor, 

there has been a debate about this function of Cry2. The consistent results obtained in 

previous chapters show that Cry2 certainly has an important role in the retina and in the 

processing of information in the presence of light. However to gather conclusions regarding 

this function of Cry2, further investigations will have to be carried out.

The ability and contribution of ENU mutagenesis to generate circadian mutants 

have been shown a number of times in the past. The mutants were either identified in a 

forward genetics screen or were generated using a gene knockout approach (van der Horst, 

Muijtjens et al. 1999; Godinho, Maywood et al. 2007). However, the Fbxl21 mutants that 

have been used in Chapter 4 and 5 are first evidences of circadian mutants that have been 

identified using the reverse genetics gene screening approach. Furthermore we have 

successfully been able to show the power of ENU in first identifying the mutation and 

further observe a circadian phenotype in vivo.

The study has also contributed significantly in understanding the importance of 

mechanisms such as clock gene redundancies and epistasis. With the core clock genes 

previously identified it is evident that most of these genes exist as paralog pairs. Although 

they may have similar functions in the regulation of rhythms, redundancy between the
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paralogues may or may not exist. For example, redundancy exists between negative 

regulators of the secondary interlocked feedback loop, Rev-erba and Rev-erbfi, where it 

was shown that the disruption of either Rev-erb alone does not have an effect on the 

transcriptional activator, Bmall and hence is unable to attenuate the circadian clockwork 

(Liu, Tran et al. 2008). Similarly, wheel-running analysis followed by gene expression 

studies in the Clock‘d; N p a sl1' compound mutants revealed that Npas2 (also called as 

Mop4) is able to substitute the function of its paralogue Clock in mice in order to maintain 

rhythmicity (DeBruyne, Weaver et al. 2007). While the above mentioned examples show 

redundancies, it is not always the case. With arrhythmicity observed in C r y l C r y 2 ' f~ 

mice, the presence of a single functional Cryl copy restores rhythms in these mice. This 

was not the case with the expression of one copy of Cry2, suggesting that both Cryl and 

Cry2 act independently (van der Horst, Muijtjens et al. 1999). This has also been shown by 

the circadian wheel-running analysis and gene expression studies carried out in the Crylv~ 

t F b x B ^ ^  double mutants that have been generated during the course of the study 

presented in this thesis.

The investigations carried out in the Fbxl2Aflt/Afll; Fbxl21v68E/V68E and 

Fbxl3Afll/Afll;Fbxl21P291Q/P291Q compound mutants have resulted in the identification of 

epistatic interactions between the two F-box proteins rather than redundancies. This has 

been the first in vivo evidence of epistatic interactions between two F-box proteins involved 

in similar functions of degrading CRY proteins.

The phenotyping analysis carried out in Cryl'A; Fbxl3AJh/AJh and Fbxl21 mutants 

have further shown the evidence of circadian mutants being associated with behavioural 

abnormalities such as hyperactivity and anxiety.
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6.1.3 Future work

Although the effects of stabilising either CRY proteins under DD conditions have 

been successfully understood using the Afh mutant in vivo, the effects under LL require 

further investigations. The circadian wheel-running activity carried out in the CryA 

;Fbxl3AJh/Ajh mice have revealed period lengthening in LL compared to control mice. 

However, the genetic basis resulting in the period change is not clear. Hence, gene 

expression study will have to be carried out in the Cry A;Fbxl3 ^ ^  to fully understand the 

role of clock genes and in particular Cry2, under LL conditions.

To determine the reason behind the reduced interaction of FBXL21-V68E and CRY 

proteins in-vitro without causing a change in the circadian period, the indirect effects of the 

V68E mutation will have to be taken into consideration. As mentioned previously, it is 

possible that the V68E mutation actually affects interaction with the SCF components 

which ultimately results in a reduced interaction with CRY proteins. Furthermore, gene 

expression studies at the RNA and protein level will also have to be carried out in vivo in 

the Fbxl21V6SE/V6SE, Fbxl21P29,Q/p29IQ, Fbxl3Am/h;Fbxl21V68E/V6SE and 

Fbxl3AihAlh;Fbxl2 I F29,®/P29,Q mice under both DD and LL conditions. The expression 

profiling in the double mutants will provide an insight into the interactions that may be 

taking place between Fbxl3 and Fbxl21. However, to study redundancies between the F- 

box proteins generating complete knockouts for each of the F-box proteins will be ideal.

Since the ability of FBXL21 to degrade CRY2 is thought to be regulated by a 

specific kinase, DYRK1 A, it will be interesting to investigate the outcome of modifying the 

DYRKlA-specific phoshophorylation sites in-vitro. The phenotype obtained after the 

modifications would be of particular interest especially if we assume the hypothesis
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mentioned in Chapter 4 is true, where phosphorylation by DYRK1A speeds the nuclear 

entry of CRY. Further, it will also be interesting to investigate the localisation of CRY1 and 

CRY2 in the Fbxl21 mutants over the course of circadian time. This would further confirm 

the ability of FBXL21 to sequester CRY1 in the cytoplasm.

Finally as we have already seen associations of Cryl and hyperactivity it would be 

interesting to screen the Cry2'/~ ;Fbxl3Afll/Afll double mutants through the phenotyping 

pipeline. Any associations found between clock genes, behavioural and neurological 

disorders are beneficial as the clock genes could then be used as targets for drug 

development by pharamaceutical industries.

6.1.4 Concluding remarks

In this thesis the genetic interactions between the negative regulators of the 

mammalian circadian clock, Cry and F-box proteins, Fbxl3 and Fbxl21 have been studied 

by generating compound mouse mutants. While the circadian effects o f CRY protein 

upregulation was studied in the Cry/";Fbxl3Âh/Âh compound mutants, the gene expression 

profiling carried out in these mutants also confirmed the importance and role of Cry in 

regulating circadian oscillations in vivo. Further the ability of ENU mutagenesis to generate 

mutations was exploited and mutations in Fbxl21 were identified. Analysis carried out 

using these mutants revealed the important role of FBXL21 to degrade CRY2. Unknown 

epistatic interactions between Fbxl3 and Fbxl21 were identified during the circadian wheel- 

running analysis of the Fbxl3; Fbxl21 compound mutants. All these observations have 

contributed largely to our knowledge and will aid in understanding the genetic basis of the 

mammalian circadian clock.
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Appendix 1: Genes amplified with Real time quantitative PCR

Gene Amplified P rim er Sequence
Perl Fw CCC CTG CCT CCC AGT GA
Perl Rv CTG AAA GTG CAT CCT GAT TGG A
Per2 Fw AGC TAC ACC ACC CCT TAC AAG CT
Per2 Rv GAC ACG GCA GAA AAA AGA TTT CTC
Cryl Fw GCT ATG CTC CTG GAG AGA ACG T
Cryl Rv TGT CCC CGT GAG CAT AGT GTA A
Cry2 Fw TGA CCT AGA CAG AAT CAT CGA ACT G
Cry 2 Rv GGC TGA TGA GGG CCT GAA

Bm all Fw CCG TGC TAA GGA TGG CTG TT
Bm all Rv TTG GCT TGT AGT TTG CTT CTG TGT
Dbp Fw GAG CCT TCT GCA GGG AAA CA
Dbp Rv GCC TTG CGC TCC TTT TCC

Rev-erba Fw CGT TCG CAT CAA TCG CAA CC
Rev-erba Rv GAT GTG GAG TAG GTG AGG TC
RPL13a Fw GGA AGC GGA TGA ATA CCA AC
RPL13a Rv GGA TCC CAT CCA ACA CCT T
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Appendix 2: Details fo r  cloning Fhxl3- GFP-Flag

Full length Fbxl3 was amplified and inserted into the pIRES-hrGFP-la (Stratagene) vector 

(Section 2.12.2). The details o f primer sequences used to amplify Fbxl3 are listed in the 

table below. Following amplification, the insert and the vector were digested with two 

restriction enzymes (Section 2.12.6) and then ligated using various molar ratios. Following 

ligation and successful sequencing confirming the orientation o f the insert into the plasmid, 

the Afh and human polymorphism mutations, Fbxl3G3A2\ were introduced into the same 

plasmid. Details of primers used for mutagenesis are also listed in the table.

Primers fo r  full-length amplification:

Primer name Primer Sequence
Notl Fbxl3 F GCGG CCG CCC ACCATGAAACGAGGAGGAAGA
Bam HI_Fta/J_R GGAT CCGCCAAGTAGGCATCATGTC

NEB Double digest screen: Fbxl3 insert and pIRES-hrGFP-la vector digest conditions:

NotI-HFTV V S e le c t  2nd e n z y m e : BamHI-HF™ V | GO

E nzym e C a t# Tem p
Supplied S u p p le m en ts o/o A ctiv ity  in N E B uffer
N E B uffer BSA SAM 1 2 3 4 EcoRI

N otl-H F" R 3 1 3 9 37°C NEBuffer 4 Y es No 25 t o o 25 100 50

B am H I-H F "  t J J f l R 3 1 3 S 37°C NEBuffer 4 No No 100 50 10 100 25

D ou ble  D ig e s t  R e c o m m e n d a tio n (s )  for  N otl-H F  " + Bam H I -HF":

■ D iges t  in NEBuffer 4  + BSA a t  3 7 CC.
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Primer sequences used for Fbxl3 mutagenesis:

Primer name Primer Sequence
Fbxl3_G342V_F 
Fbxl3_ G342V_R 
Fbxl3_Afh_F 
Fbxl3_Afh_R

GTAGTGTGTGCCAATGTGTTGCGGCCTCTTGAT
ATCAAGAGGCCGCAACACATTGGCACACACTAC
GCGGAACGTAGCAAAAATTTGTC
GACAAATTTTTGCTACGTTCCGC

Vector map of pIRES-hrGFP-la (Stratagene) showing sites of Notl and BamHl used to 
clone Fbxl3:

The pIRES-hrGFP-la Vector
P C M Vp U C  ori

M C S 

r 3x  FLAG

r IRES

pIRES-hrG FP-la
5 . 0  k bam p ic illin

h rG F PLoxP

fl ori
S V 4 0  pA

pIRES-hrGFP-la Multiple C loning  Site Region 
( s e q u e n c e  s h o w n  6 5 1 - 7 2 7 )

Srf I
Sac I* Sac II* N ot I* I Sma lAma I BamH I EcoR I
I I I I I I I

GA GCT CCA CCG CGG TGG CGG CCG CTC TAG CCC GGG CGG ATC CGA A TT C . . .
STOP*

Sph I Sal I Xho I start o f  f la g  ta g
I I I |

. . . GC ATG CGT CGA CTC GAG GAC TAC AAG GAT
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Appendix 3: List o f  Plasmids used

Plasm id 3'Tag V ector
Cryl (kind gift from Dr.Michael H.Hastings) HA pcDNA 3.1
Cry2 (kind gift from Dr.Michael H.Hastings) HA pcDNA 3.1
Fbxl3 GFP pcDNA3.1/CT-

GFP-TOPO
Fbxl3-Afh GFP pcDNA3.1/CT-

GFP-TOPO
Fbxl21 (kind gift from Dr.Hugues Dardente) Myc pCSII-Myc
Fbxl21-\6HE  (kind gift from Dr.Hugues 
Dardente)

Myc pCSII-Myc

Fbxl21-P291Q (kind gift from Dr.Hugues 
Dardente)

Myc pCSII

ev-GFP GFP pcDNA3
ev-Myc GFP
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Appendix 4: Period analysis of Cryl~A; Fbxl3Â l/Â 1 compound mutants in-vitro

gal ga.I Gin >7?

|  | Ctyl+/+;FbxB+/+

□  Ctyl+/-;FbxB+/+

H  Ciyl-/-;FbxB+/+

| |  Cryl+/+;Fbxl3Afh/+

■  Cryl +/-; FbxBAfh/+

El Cryl-/-;FbxBAfh/+

□  Ciyl +/+; FbxBAfh/Afh 

f ~ ]  Ctyl +/-; FbxBAfh/Afh 

f ~ ]  Ctyl-/-;FbxBAfh/Afh

Figure 8.1: Period analysis in Cry1'/m;Fbxl3Afh/Afh compound mutants in-vitro. The compound 
mutants were crossed to a PER-driven Luc mouse line. These mice were entrained to a 12hr 
L;D cycle for 1 week and were then kept in constant dark conditions (DD) . The SCN from 
each genotype generated during the Cry?1';Fbxl3?fh/Afh intercross, were collected in constant 
darkness and organotypically cultured. The SCN slices alongwith the luciferin susbstrate 
were placed in the LumiCycle to measure the PER-driven bioluminescence. The figure above 
shows us that the period of SCN from the Cry1'/';Fbxl3Afh/Afh mice follow a similar trend in- 
vitro to what is found in vivo. With the loss of a copy of Cry (Left to right), there is 
acceleration of the clock. With the addition of the Afh mutation, although there is period 
lengthening compared to the CryT/m SCN, in the CryT/m; Fbxl3?fh mice, there is 
accereleration of the clock.

The above work was carried out by Dr. Michael Hasting and Dr. Elizabeth Maywood, 
MRC, Laboratory of Molecular Biology, Cambridge.
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Appendix 5: Period analysis of Cry 2^; FbxlSAfll/Â 1 compound mutants in-vitro
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Figure 8.2: Period analysis in Cry2m/'; Fbxl3Afh/Afh compound mutants in-vitro. The compound 
mutants were crossed to a PER-driven luc mouse line. These mice were entrained to a 12hr 
L;D cycle for 1 week and were then kept in constant dark conditions (DD) . The SCN from 
each genotype generated during the Cry2'/';Fbxl3Afh/Afh intercross, were collected in constant 
darkness and organotypically cultured. The SCN slices alongwith the luciferin susbstrate 
were placed in the LumiCycle to measure the PER-driven bioluminescence. The figure above 
shows us that the period of SCN from the Cry2'/m; Fbxi3?fh/Afh mice follow a similar trend in- 
vitro to what is found in vivo. With the loss of a copy of Cry (Left to right), there is delay of 
the clock, hence period lengthening. As the dose of the Afh mutation increases, there is a 
considerable increase in the period length. Due to the Afh mutation, there is overexpression 
of CRY1 which is a strong transcriptional repressor, thus contributing to the period 
lengthening phenotype.

The above work was carried out by Dr. Michael Hasting and Dr. Elizabeth Maywood, 
MRC, Laboratory of Molecular Biology, Cambridge.
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Appendix 6: In-vitro luminescence assay showing effect of Fbxl21 mutants
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Figure 8.3: In-vitro luminescence assay showing the potential effects of mutant Fbxl21 on 
the circadian clock. In this experiment, the Rev-erba promoter (from sheep) is used to drive 
luciferase expression. This assay is used to measure the luminescence of Rev-erba:Luc that 
is activated by the CL0CK-BMAL1 heterodimeric complex. The measure of luminescence 
used to plot this graph is normalised to the Rev-erba:Luc expression that is driven by 
CL0CK-BMAL1 heterodimer (first bar).On the addition of Cryl, a transcriptional repressor, 
the CL0CK-BMAL1 heterodimeric activity is suppressed, as a result there is very low Rev- 
erba: Luc read-out (second bar). Further, when Fbxl21 is added to the CRY1-CL0CK-BMAL-1 
complex, CRY1 is degraded. Hence there is an inhibition of CRY1 repression activity. As a 
result, the Rev-erba:Luc is activated. Compared to the transactivation of Rev-erba:Luc by 
Fbxl21-\Nt, there is no difference in function caused by the S28F and L36P mutation. The 
third mutation, Fbxl21-P291Q shows an approximate 20% reduction in the activation of Rev- 
erba: Luc, suggesting that this mutant is not able to degrade CRY1 as much as Fbxl21-\Nt. 
Hence, this mutant is considered to be a hypomorph.
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