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1.1 Introduction: from System to Synthetic 

biology

’...the pluralism  o f causes and 

effects in biological networks is 

better addressed by observing, 

through quantitative measures, 

multiple components 

sim ultaneously and by rigorous 

data integration with  

m athem atical m odels’ .

pi]

Over the last decades, the standard way of studying a biological function, 

or the underlying molecular mechanisms responsible for a disease, by focusing 

on a single gene has changed; the so called ’reductionist approach’ according 

to which the biological systems are divided into their smallest possible parts, 

analyzed separately, is now taken over by modern biology. Most biological 

functions depends on the interactions among hundreds of different molecular 

species orchestrating the complex processes needed to sustain life.

The advent of new technologies transformed the modern concept of a 

biological process into a ’’system” rather than the sum of its single compo­

nents; thus, one of the main challenges in the post-genomic research era is 

to find methods to interpret and to extract the huge amount of information
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produced by the high-troughput techniques which integrate the single gene 

function to the entire process it belongs to [23].

Two new disciplines, Systems and Synthetic biology work in a comple­

mentary way to advance our understanding of how life works. Systems biology 

aims at developing a formal understanding of biological processes through the 

development of quantitative mathematical models. Systems biology takes ad­

vantage of quantitative sciences such as physics, engineering and computer 

science, and acts in two possible directions; in the ’bottom up’ approach, 

well known biological processes are quantitatively described via mathemat­

ical and logical formalisms; thus the process is represented by a predictive 

model, which is then validated by in silico simulations. For example, this 

approach allows to depict a known biological pathway as a network of in­

teractions between genes, proteins, and metabolites. Describing this ’prior 

knowledge’ using a mathematical model, allows its behavior to be explored 

and analysed via computer simulations and mathematical analysis, and then 

tested in vivo. On the contrary, the ’top down’ approach consists in uncover­

ing the network of gene regulatory interactions (gene networks) of an almost 

unknown biological process. This method is called ’reverse engineering’, and 

is based on high-troughtput gene expression profiling in different conditions 

[28]. The gene network model identified via reverse-engineering is usually 

not a quantitative model, as in the case of the bottom-up approach, but 

a qualitative, graphical representation of the likely regulatory and physical
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interactions occuring among genes and proteins.

The payoff for systems biology is not only a quantitative representation, 

and hence a better undersanding, of how biological pathways work, but also 

the empowerment to design new and improved biological functions via ’syn­

thetic biology’ [23]; this refers to the possibility of engineering and combining 

well characterized biological parts in order to create new synthetic systems 

that overcome the complexity, cross-talking and non-modularity of natural 

systems.
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1.2 Synthetic biology

’The reductionist approach has 

successfully identified most of 

the components and many of the 

interactions but, unfortunately, 

offers no convincing concepts or 

methods to understand how 

system properties emerge...’

pi]

When the Human Genome Project revealed that our genome contains the 

same number of genes of Drosophila melanogaster, this astounding finding 

begged to the question: how it was possible that one organism looks like a 

fly and the other one likes a human? One hypothesis was that non-protein- 

coding sequences were responsible for such a complexity; but a decade of 

research has put forward the rather different idea that the determinant of 

organismal complexity is not the length of ’parts list’, but how these ’parts’ 

fit together [64].

Synthetic Biology can be defined as the engineering of biology. The core 

aim of this discipline is to develop and apply engineering approaches,to build 

new synthetic pathways ( or circuits as they are referred to in this discipline) 

using well characterized biological ’parts’. The aims are two-fold: (1) to un­

cover the design principles of natural biological systems through the design 

of very simple synthetic circuit; (2) to engineer new functions in the cell for
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biotechnological or medical applications.

Up to now, two major goals have been actively investigated: the building 

of new biological networks in the cell that perform a specific task (e.g. periodic 

expression of a gene [38] or genetic switching [40]), and the modification of 

networks that occur in nature in order to achieve some desired functionalities 

(e.g. production of a specific compound useful for medical applications [70]).

The first challenge for synthetic biologists is to assemble a synthetic cir­

cuit with a predictable behavior. In order to achieve this task, there is the 

need to precisely characterise the steps involved in gene expression, such as, 

the processes of transcription and translation, in order to construct the ap- 

prioriate ’parts’, such as a promoter with a given transcription rate, or a 

protein with a given degradation rate.

Earlier studies were focused on the construction of systems in simple 

prokaryotes, in which the qualitative notions of transcriptional activation, 

repression and post-transcriptional regulation could be quantified; these con­

structs were based on the combinatorial promoter libraries driving the ex­

pression of reporter genes [44].

Later on an increasing interests in the post-transcriptional and post- 

translational regulation triggered the design of synthetic circuits harboring 

elements from the RNA interference pathway, aptamers, riboswitches, or mu­

tated ribosome binding sites [13, 88, 82, 30].

All these basic elements were manipulated so that they could work syner- 

gistically toward the desired goal, forming small modules including switches,
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pulse generators, time-delayed circuits, oscillators and so on [40, 51, 7, 87, 

77, 81].

Synthetic Biology is an interdisciplinary area requiring a deep synergy 

between biology, biotechnology and nanotechnology on one side and mathe­

matical modelling, information technology and control theory on the other. 

Such combination of disciplines is needed to construct robust and predictable 

synthetic networks.
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Aim of the project

This thesis focuses on the design, construction and stable integration in mam­

malian cells of a natural microRNA-based genetic oscillator. This will help 

both in better understanding the rules underlying the periodic expression 

of genes observed in major biological processes, such as the circadian clock 

and cell-cycle, as well as, in generating new tools to probe and investigate 

the function of a gene in a cell, by allowing not only its over-expression or 

knock-down, but also its cyclic expression.



Chapter 2

Synthetic Oscillators

2.1 The logic of circadian clocks

’Life is a cyclical chemical 

process... Birth to death, a 

cycle, and there are cycles 

within the cycles- circannual 

rhythms, menstrual cycles, and 

daily 24h or circadian cycles. ’

m

Oscillations can occur when a system is perturbed from its dynamical 

equilibrium and restoration forces try to return the system to the equilibrium 

state [8]. However, oscillations can also be the ’natural’ equilibrium state 

of the system, which mathematician call the ’limit-cycle’, which consists of
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perpertual, robust, periodic oscillations, to which the systems returns to, 

even if perturbations try to drive the system out of it.

Oscillations are everywhere; they can be found in several physiological 

processes such as controlling key repair [52], metabolic and signaling path­

ways [27], somite segmentation during vertebrate embryogenesis [59], the 

cardiac pacemakers [83, 84], the hormone-controlled female reproduction cy­

cle.

The periodic expression of genes underlies the functionality of one of the 

most striking and general processes found also in every mammalian cell: the 

circadian clock.

Circadian clocks are essential for coordinating the physiology of the whole 

organism. Circadian rhythms are driven by biological clocks, with two key 

characteristics: first, they are temperature-compensated, meaning that they 

are not affected by alterations of temperature (they do not run slower at 

lower temperature nor speed up at higher temperature); second, they can 

synchronize to temporally relevant stimuli such as light, temperature or feed­

ing schedules; this is why their definition of internal time becomes predictive 

of external (solar) time.

The molecular basis of this process is a conserved transcriptional-translational 

autoregulatory loop with a product which slows down the rate of the process 

itself with a certain delay (negative feedback loop), and a source of activa­

tion, which keeps the oscillator from winding down (positive feedback loop), 

generating molecular oscillations of ’clock genes’ at the cellular level.
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In mammals, the circadian system is organized in a hierarchical manner 

in which a master pacemaker in the suprachiasmatic nucleus (SCN) regu­

lates downstream oscillators in peripheral tissues. The SCN coordinates in­

dependent peripheral oscillators so that a coherent rhythm is orchestrated 

at the organismal level. The clock mechanisms is, again, based on a combi­

nation of positive and negative transcriptional/translational feedback loops 

that drive rhythmic, 24h expression patterns of core clock components. The 

core clock component consists of genes whose protein products are responsi­

ble for the generation and regulation of circadian rhythms within individual 

cells throughout the organism.

As shown in Figure 2.1, in the primary feedback loop of the circadian 

clock, the positive elements include members of the basic helix-loop-helix 

(bHLH)-PAS (Period-Arnt-Single-minded) transcription factor family, CLOCK 

and BMAL1. CLOCK and BMAL1 heterodimerize and initiate transcription 

of target genes containing E-box cis-regulatory enhancer sequences, including 

Period (in mice, Perl, Per2 and PerS) and Cryptochrome (Cryl and Cry2). 

Then the heterodimerization of PER:CRY and their translocation back to 

the nucleus induces the repression of their own transcription by acting on 

the CLOCK:BMALl complex, thus achieving the delayed negative feedback 

loop.

Another regulatory loop is induced by CLOCK:BMALl heterodimers ac­

tivating transcription of retinoic acid-related orphan nuclear receptors, Rev- 

erba and Rora. REV-ERBa and RORa compete to bind retinoic acid-related
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Figure 2.1: Schematic represen tation  of th e  m am m alian circadian 
clock.

orphan receptor response elements (ROREs) present in Bmall promoter. It 

has been shown that members of ROR (a,/3 and7 ) and REV-ERB (a and 

)3) are able to regulate Bmall through ROREs. RORs activate transcription 

ofBmall , whereas REV-ERBs repress the transcription process. Hence, the 

circadian oscillation of Bmall is both positively and negatively regulated by 

RORs and REV-ERBs [50].

The autoregulatory feedback loops described take 24 h to complete a cy­

cle and constitute a circadian molecular clock. This generation of the 24 h
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molecular clock is governed by post-translational modifications such as phos­

phorylation and ubiquitination, that significantly contribute to the precision 

of the mammalian clock by affecting the stability and nuclear translocation 

of the core clock proteins. A critical role in clock protein turnover is played 

by Casein kinase 1 epsilon and Casein kinase 1 delta (CKle and CK1£) [36]. 

Recently, a small ubiquitin-related modifier protein modification of BMAL1 

has also been proposed as another level of post-translational regulation [19].

It has been recently demonstrated that the circadian clock is active also 

in erytrocytes, which have no nucleus, thus showing that the core clock com­

ponents can work also using just post-translational mechanisms[66].

Inspired by natural devices controlling the circadian clock, synthetic bi­

ologists have arranged standardized biological parts in circuits exhibiting os­

cillatory behavior. As the natural biological design, these circuits are based 

on a combination of positive and negative feedback loops with integrated 

time-delay dynamics, but unlike natural clocks, the synthetic clocks do not 

exhibit robust temperature-compensated stable oscillations.

In the next section, I will provide an overview of the most successful 

results in engineering synthetic biological clocks.
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2.2 Synthetic oscillators: from bacteria to mam­

mals.

2.2.1 The repressilator

The pioneering design of the first synthetic oscillator was published in 2002 

by Elowitz and Leibler [38] and shown in Fig. 2.2. The network is based 

on an engineered transcriptional repressor system (termed repressilator), in 

which three repressors are assembled in a negative feedback loop that induces 

the rhythmic expression of a green fluorescent protein (GFP) in Escherichia 

coli. In the network, the LacI protein from E.coli inhibits the production 

of the second repressor gene tetR from the tetracyclin-resistance transposon 

Tn 10, which in turn represses the production of a third repressor Cl from 

lambda phage. This circuit produced fluctuating levels of each repressor pro­

tein that could be visualized by plugging in a GFP expression unit driven 

by the promoter target of the repressor TetR. Despite the large variability 

in oscillatory behavour among cells as result of biological noise, the average 

period of oscillations was about 150 minutes, that is threefold longer than 

the E.coli doubling time, demonstrating that cell division and repressilator 

cycle were uncoupled. Nevertheless oscillations were not robust and damped 

rapidly, probably because of the missing positive feedback loop, which has 

been shown to increase the robustness to noise of genetic circuits [10, 12]. 

The key features the authors highlighted as necessary for oscillations to ap-
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Figure 2.2: The Repressilator. A negative feedback loop composed by three 
repressors, inhibiting each other. The GFP, used as readout of the network, 
is controlled by the promoter responsive to the TetR repressor.

pear were the use of strong promoters with minimal leakiness coupled to 

efficient ribosome-binding sites, co-operative repression and low, as well as, 

comparable protein and mRNA decay rates.

2.2.2 The first synthetic clock combining positive and 

negative feedback loop

From the repressilator and theoretical speculations, it appeared clear that 

a robust oscillator required the functional combination of two circuits pro­

viding both a positive and a negative feedback loop. In Atkinson et al [7], a 

genetic oscillator is described, which combines the E. coli nitrogen-controlling
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glnALG, and lac operons. Specifically, it consists of a dual-input promoter 

Plac-glnAp2, containing the operator sites for LacI and NRI P, which is re­

pressed by LacI and induced by the (auto-)phosphorylated nitrogen-response 

regulator NRI P (Fig. 2.3). NRI P not only regulates its own transcription 

via Plac-glnAp2 (positive feedback loop) but, by binding the PglnKp pro­

moter (also containing an NRI P operator), it induces the expression of LacI, 

resulting in the Lacl-mediated repression of Plac-glnAp2 (negative feedback 

loop). Oscillations were monitored by /3-galactosidase level produced by the 

Lacl-controlled lactose operon. The circuit was integrated in E. coli strains de­

ficient for the individual clock components and grown in turbidostat cultures. 

By synchronizing the cells with IPTG, damped oscillation were observed with 

a period (20h) much longer than the cell cycle (2h).

2.2.3 The mammalian genetic oscillator.

In 2009, Tigges et al [81] described the first mammalian oscillator. The circuit, 

shown in Fig. 2.4, consists of a sense-antisense expression “pendulum” with 

the tetracycline-dependent transactivator tTA auto-regulating itself, thereby 

forming a positive feedback loop. The tTA drives also the transcription of the 

streptogramin-dependent transactivator, which induces the tTA in antisense 

orientation, thus reducing the tTA levels (negative feedback). The fluctuation 

of tTA levels were monitored via a few-minutes half-life-GFP, whose expres­

sion is driven by the tTA. The different components of the genetic oscillator 

were carried by three different plasmids. The oscillator showed automatic,
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Figure 2.3: Genetic clock by combination of positive and negative 
feedback loop in E. coli. The Plac-glnAp2 promoter drives the expres­
sion of the activator NRI that, upon auto-phosphorilation (NRI-P), regulates 
positively itself (positive feedback loop) and induces the negative feedback 
loop by activating the expression of the repressor Lac I after binding the the 
PglnKp promoter. Lac I represses the Plac-glnAp2 promoter and also the 
expression of /3-galactosidase, whose oscillations occur with a period of 20h.
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self-sustained oscillations with a frequency of about 147 minutes, when cells 

were transfected with the same amount of each expression vector (1:1:1 100 

ng each). The main limit of such an approach is that since the uptake of plas­

mids by mammalian cells is random, only few individual cells that received 

the right mix of each component exhibited oscillations. Moreover plasmids 

transfected in mammalian cells are not maintained as episomes, hence the 

number of oscillations are limited, and oscillations are not sustained.

Beside the biological development of designs for oscillatory networks, a 

fundamental role is played by mathematics. All the circuits described above 

consist not only of an experimental part, but also of a modeling part, where 

mathematical models of these circuits are used to investigate the best com­

bination of biological parts in order to obtain the desired behaviour.

In the next section, I will provided an overview of the general mathemat­

ical formalisms used to describe biological systems.

2.3 M athematical modeling of natural and syn­

thetic gene networks.

In the fields of Systems and Synthetic Biolgy, theory and experiments need 

to be viewed in close interplay. In silico predictions of the behaviour of a 

biological system can be used to complement in vivo experimental observa­

tions and accelerate the hypothesis generation-validation cycle of research 

[56]. Modelling a cellular process can highlight which experiments are likely



2.3 Mathematical modeling of natural and synthetic gene networks. 24

tTA

PITphC M V *-l

phC M V *-l

Figure 2.4: M am m alian oscillator. The tetracycline-dependent transacti­
vator tTA is driven in sense orientation by the tetracycline responsive pro­
moter phCMV*-l, and in the antisense orientation by the streptogramin- 
responsive (pPIR) promoter. tTA expression results in increased GFP and 
PIT levels. The PIT induces the expression of antisense tTA via binding to 
the pPIR promoter; thus the levels of tTA, PIR and GFP decrease. The 
whole combination of positive and time-delaying negative feedback loop me­
diate robust oscillations.
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to be the most informative in testing model hypotheses, and allow testing 

for the effect of drugs [34] or mutant phenotypes [72] on cellular processes, 

thus paving the way for individualized medicine.

A mathematical model is the formalization of the biological knowledge 

about a certain system, where each component of the system is described by 

an equation, which represents its behaviour as a function of its regulators. A 

priori knowledge, which derives from experiments and/or literature, is essen­

tial and needs to be formalized for the chosen framework. Unfortunately, even 

for the best-studied systems, the mass of accumulated data still falls short of 

describing, even qualitatively, the variety of elementary processes that each 

molecular species engages in (post-translational modifications, degradation, 

complex formation, and so on); even less known are details of spatial infor­

mation and the timing of events. Consequently, assumptions are necessary 

(for example, that all gene copies of a multi-copy plasmid are transcription­

ally active, or that a certain molecule freely diffuses inside a cell or is always 

monomeric). On the other hand, sometimes it can be beneficial to exclude 

some known data to accommodate available computational power and to 

facilitate the analysis (even at the expense of accuracy).

2.3.1 M odel derivation approaches

Model derivation from experimental data can be carried out following three 

major approaches: white-box, black-box and gray-box.
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In white-box modelling, the model and parameter values are entirely derived 

from first principles; in black-box modeling the model is completely derived 

from input-output data. The gray-box approach [65], combines the two above 

approaches. Specifically, first principles are used to partially derive the model 

structure, while parameters or terms in the model are determined by measure­

ment data. In the following, we will focus on the gray-box approach. Gray-box 

modeling entails three main steps to be executed iteratively: (i) derivation 

of the model equations; (ii) identification of the model parameters from ex­

perimental data and/or literature; (iii) validation (or invalidation [3]) of the 

model. Step (i) requires introducing simplifying hypothesis and choosing a 

proper formal framework. Step (ii) is required to estimate unknown model 

parameters from the available experimental data. A crucial issue that arises 

when estimating model parameters, is the structural identifiability. Identi- 

fiability addresses feasibility of estimating unknown parameters from data 

collected in well-defined stimulus-response experiments [24]. We can distin­

guish between structural non-identifiability and practical non-identifiability. 

The first is related to the model structure independently from experimen­

tal data; the second also takes into account the amount and the quality of 

measured data used for parameters calibration. Of note, a parameter that is 

structurally identifiable may still be practically non-identifiable, due to the 

unavoidable presence of noise in biological experimental data [69]. Unfortu­

nately, while being well assessed in the case of linear dynamical systems, the 

identifiability analysis of highly non-linear systems remains an open problem
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[15],

The parameter estimation problem can be formulated from the mathe­

matical viewpoint as a constrained optimization problem where the goal is to 

minimize the objective function, defined as the error between model predic­

tions and real data. In biological applications, the objective function usually 

displays a large number of local optima as measurements are strongly affected 

by noise. For this kind of problems, classical optimization methods, based on 

gradient descent from an arbitrary initial guess of the solution, can be un­

feasible and show convergence difficulties. The above considerations suggest 

to look at stochastic optimization algorithms, like evolutionary strategies, 

which rely on random explorations of the whole space of solutions, are not 

sensitive to initial conditions and avoid trapping in local optimal points. 

In [63] the performance of both local and global-search optimization meth­

ods is compared in the identification of the 36 unknown parameters of a 

non-linear biochemical network. The authors show that only evolutionary 

strategies are able to successfully solve the parameters estimation problem, 

while gradient based methods tend to converge to local minima. Among the 

stochastic techniques, Genetic Algorithms (GA) [62] provide a very flexible 

approach to non-linear optimization. Their application showed good results 

in the parametrisation of synthetic networks [87, 81].

Finally, step (iii) is required to check the validity and usefulness of the 

model, that is to evaluate its ability in predicting the behaviour of the actual 

physical system. Theoretically, the modeller should be confident that the
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formalism is able to describe all input-output behaviours of the system [76]. 

This condition can be never guaranteed, since it would require an infinite 

number of experiments. However, it is possible to test a necessary condition: 

the model is able to describe all observed input-output behaviours of the 

system [76]. To this aim, one possible approach is to use a cross-validation 

like procedure [4] by splitting the experimental data in two sets: one of them 

is used for the parameter identification, while the other one is used to validate 

the predictive power of the model. If the predictive performance of the model 

is not satisfactory, it is invalidated [3]. Thus, it is necessary to refine the 

model (for example, by increasing the level of detail) and/or to perform new 

experiments, going back to step (i) of the modelling procedure.

2.3.2 M odeling approaches

In general a major distinction can be done between qualitative and quan­

titative models. In qualitative modelling, for simulations to be applied and 

useful in drawing non-obvious conclusions, we need to retrieve from biologi­

cal data at least the information required for the formulation of logical state­

ments describing, for instance, causal relationships between events involving 

model components. On the other side, quantitative modeling have a natu­

ral appeal in that they offer greater detail in mimicking reality. Moreover, 

rich qualitative insights on the system are possible using theoretical tools 

such as bifurcation and stability analysis, which, for example, indicate the 

precise boundaries of parameter ranges to which steady states or sustained
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oscillations correspond, or reveal the stability of the solutions before actu­

ally solving the dynamical equations representing the system. Quantitative 

modeling is further divided in deterministic or stochastic modeling.

Deterministic formalisms are commonly used to describe the average be­

haviour of a population of cells [31]. They have been shown to be viable for the 

analysis of synthetic networks in a number of works (e. g. [38, 40, 51, 81, 78]). 

The reaction mechanism is described by applying the law of mass action: the 

rate of any given elementary reaction is proportional to the product of the 

concentrations of the species reacting in the elementary process (reactants) 

[!]■

When Differential Equations (DEs) are used, the cellular concentration of 

proteins, mRNAs and other molecules are represented by continuous time 

variables with the constraint that a concentration can not be negative. The 

DEs modelling approach is based on the following biological assumptions: the 

quantified concentrations are continuous functions of time. These assump­

tions hold for processes evolving on long time scales in which the number 

of molecules of the species in the reaction volume is sufficiently large. As 

described in Chapter 5 we used the Differential Equation based approach to 

model the synthetic oscillator, since this system satisfies the above assump­

tions.



Chapter 3

Construction and m odelling of 

an inducible positive feedback 

loop stably integrated in a 

mammalian cell-line.
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This chapter concerns the characterization of the positive feedback loop 

motif, which constitutes one of the parts of the oscillatory network described 

in Chapter 5. In particular it focuses on the investigation of the dynamical 

properties determined by the topology of this network motif.

The positive feedback loop is a regulatory motif often found in transcrip­

tional and signalling pathways. This motif exhibits a dynamic behaviour 

which is very different from that obtained when autoregulation is removed. 

This difference is intrinsic to the specific wiring diagram chosen by the cell to 

control its behaviour (feedback versus non-feedback configurations), and can 

be instrumental in understanding the complex network of regulation occur­

ring in a cell. Part of the results described in this chapter have been published
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3.0.3 Rational construction and integration of a PFL  

and of corresponding control network (NOPFL) 

in CHO cells.

Our approach is based on the use of well known and characterised regulators 

of gene expression, in order to achieve a complete control of the network be­

haviour. The positive feedback loop (PFL) is shown in Fig. 3.1 A. In designing 

the PFL, we took advantage of the inducible Tet regulatory system; the ex­

pression of Tetracycline-controlled transactivator tTA is self-controlled by a 

CMV-TET promoter, responsive to the tTA itself unless Tetracycline, or its 

analogous Doxycycline, is added to the medium in which cells are grown. To 

follow the dynamics of the PFL, a destabilised yellow-green variant of the 

enhanced green fluorescent protein (d2EYFP) (Clontech), with a reported 

half-life of approximately two hours, was placed under the control of the 

same promoter. To this end, we constructed a unique cassette with an In- 

tra Ribosomal Entry Sequence (IRES) in between of the transactivator tTA 

and the d2EYFP, which enables a single mRNA to encode for two different 

proteins (Fig. 3.1A).

We embedded the positive feedback loop (PFL) in a lentiviral vector 

[2, 45] in order to infect and select clonal population of Chinese Hamster 

Ovary cells (CHO) cells stably expressing the circuit. We decided not to use 

plasmid transfections, in order to prevent precise quantitative measurements 

due to the unpredictable amount of plasmids that enters each cell, and to
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the transient nature of transfection.

Infected cells were first sorted by Fluorescence Activated Cell Sorter 

(FACS) according to their fluorescent levels (d2YFP) and then a clonal pop­

ulation of CHO cells carrying the PFL was generated by single cell expansion 

(PFL cells).

In order to capture the dynamic properties intrinsic to the PFL, we gen­

erated a control network lacking the positive feedback loop (NOPFL), but 

using the same biological “parts” as in the PFL network. As shown in Fig. 

3.1 B, we constructed a cassette containing the same CMV-TET promoter 

upstream of the d2EYFP. The tTA protein, this time, was placed under the 

control of a constitutive promoter, thus breaking the feedback loop. Using 

the same strategy described above, we generated a clonal population of CHO 

cells carrying the NOPFL network (NOPFL cells). We experimentally veri­

fied that both PFL and NOPFL cells have the same number of tTA/d2EYFP 

DNA integrations (Fig.3.1 inset). Further details about lentiviral vectors we 

designed are provided in Appendix A.
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tTA IRES d2EYFP
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PFLcells <=> NOPFLcells

□ d2EYFP
□CMV pCMv-TET

Figure 3.1: Design of th e  expression system . (A) PFL: the promoter 
CMV-TET consists of seven direct repeats of a 42-bp sequence containing 
the tet operator sequences (tetO), located just upstream of the minimal CMV 
promoter (PminCMV). The Tetracycline-controlled transactivator tTA de­
rives from the addition of the VP 16 activation domain to the transcriptional 
repressor TetR to optimize the expression in mammalian cells. The d2EYFP 
is the destabilised yellow-green variant of enhanced green fluorescent protein. 
(B) NOPFL: the CMV promoter drives the expression of the tTA, which in 
turns drives the transcription of the d2EYFP from the CMV-TET promoter. 
(Inset) RealTime PCR performed on DNA extracted from PFL and NOPLF 
cells shows that the DNA levels of tTA and d2EYFP are comparable among 
the two clonal cell populations.
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3.0.4 Determ ination of the reporter protein degrada­

tion.

Since the degradation rate of the reporter protein is a key parameter in 

determining both the observed fluorescence dynamics and the precision of 

the mathematical model, we experimentally evaluated the half life of the 

d2EYFP. Stably integrated NOPFL cells were treated with Cyclohexamide 

to a final concentration of 10/ig/mL, 50/ig/mL, 100/xg/mL or 500/ig/mL, 

to inhibit protein synthesis[75]. The fluorescence intensity of NOFPL cells 

was followed for 12 hrs and images were acquired at 15 min intervals via an 

optical inverted microscope (Nikon Eclipse T). The resulting d2EYFP dy­

namics are shown on Fig. 3.2 and appear very similar, independently of the 

Cyclohexamide concentrations. The experimental data were fitted to an ex­

ponential curve ke~d3t, and the degradation coefficient d3 was used to obtain 

the half-life (ri) of the d2EYFP protein: ri= log(2)/ d3 (Fig. 3.2 and Table 

1). We estimated n  to be in the range 3.6h-4.4h. (Experimental procedure: 

determination of d2EYFP half-life). The estimated value is about two-fold 

the reported d2EYFP half-life of 2h [85]; we believe that this discrepancy is 

likely due to the fact that cells were grown at a temperature 32 °C, rather 

than the usual 37 °C.
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Figure 3.2: D egradation kinetics of d 2EYFP. CMV-TET-d2EYFP sta­
bly integrated CHO AA8 TET-OFF cells were treated at t=0 with differ­
ent concentrations of Cyclohexamide (CHX): panel A, 10/ig/mL; panel B, 
50/zg/mL; panel C, 100/ig/mL; panel D, 500/ig/mL. Fluorescence intensity 
was followed up to 750 minutes. Sampling time is equal to 15 min. The thin 
line represents the mean over biological triplicates; the shaded area repre­
sents the standard error. Experimental data were used to fit the exponential 
decay of d2EYFP protein levels, and thus to derive its half-life (r).
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3.0.5 M athem atical modeling of the dynamic behavior 

of PFL and NOPFL networks.

We derived a model of the PFL and NOPFL networks using Ordinary Dif­

ferential Equations (ODEs), that, as described in Chapter 2, are suitable 

since we are measuring the average behaviour of a clonal population of cells 

([81, 40, 51, 78]) .

For each species, i.e. each mRNA and correspondent protein concentration, 

we wrote one equation, which expresses the change in concentration of the 

species in a given time interval, as the result of a production term and a 

degradation term. We assumed:

• Hill functions to model the rate of gene transcription, including basal 

activity to describe the leakiness of the CMV-TET promoter;

• linear degradation for all genes and proteins;

• linear dynamics for the translation;

• Hill functions to model the effect of the inducer (Doxycycline);

• distinct dynamics for the unfolded (inactive) and folded (active) forms 

of the reporter protein (d2EYFP).

The last assumption was introduced in order to take into account d2EYFP 

maturation time needed for correct protein folding[81]. Thus, we introduced 

two differential equations as in [81]: one for the translation of mRNA to the 

unfolded d2EYFP protein, and one for the folded protein d2EYFP.
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Letting x\ be the tTA IRES d2EYFP mRNA concentration, X2 the tTA 

protein concentration, xs the unfolded d2EYFP protein concentration and X4 

the folded d2EYFP protein concentration, the PFL network can be described 

as follows:

dx 1 
dt

dx 2
dt 

dx3
dt

dx 4
dt

= v\
(  (  9 h 2

Ol\  T  (l Qu)'

hi

— d\X\ , (3.1)

V +  /

=  v2xi -  d2x2: (3.2)

= v2xi -  (d,3 +  Kf ) x 3, (3.3)

=  KfX-i — d-sx .̂ (3.4)

Note that, due to the presence of the IRES sequence, the concentrations of 

tTA protein and d2EYPF protein depend on the same variable (jci), that is 

the concentration of the single mRNA transcript encoding for both proteins.

For the NOPFL network, we let x\ represent only the d2EYFP mRNA 

concentration, and we assumed a constant level (x2) of the tTA protein, due 

to the constitutive promoter driving tTA expression in the NOPFL cells. The 

equations thus become:
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(  ( ~ \ kl 
- j r  = v i “ i +  (1 -  “ i)------ 9- \ D-2------- r s 7 -  d m ,  (3.5)
dt v * ? • + ( * & * * > )  ;

^  = 1)2*1 -  (ds +  Kf ) x 3, (3.6)

^  = K f x3 - d m .  (3.7)

3.0.6 Experimental observation of dynamics proper­

ties of PFL and NOPFL networks

In order to observe the dynamics of the PFL and NOPFL networks, we per­

formed time-series experiments in which stably-integrated CHO-PFL cells 

and CHO-NOPFL cells were imaged using time-lapse fluorescence microscopy. 

The experimental design consisted in treating both PFL and NOPFL cells

with different amounts of Doxycycline in order to “switch off’ the circuit, by

preventing the tTA protein from binding the CMV-TET promoter. We tested 

the following Doxycyline concentrations: Ing/mL, lOng/mL, lOOng/mL and 

1/ig/mL and followed the dynamic behaviour of both the PFL and NOPFL 

cells for 43h, collecting images every 15 min, and quantifying the average 

fluorescence intensity of the cell population. In this way, we averaged out 

cell-to-cell variability in the response, since at the beginning of each experi­

ment the tracked microscopy field contained at least 15 cells.

Experiments were carried out at a temperature of 32 °C in order to limit
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Figure 3.3: E xperim ental and sim ulated switch off tim e-course across 
th e  PFL  and N PFL  cell population. Experimental data (thin lines) and 
model simulations (thick lines) were reported for the PFL (left) and NOPFL 
(right) cells. Shaded areas represent standard deviations from replicate ex­
periments.



3.0.6 Experimental observation of dynamics properties of PFL and NOPFL
networks 41

D=1 ng/m L

3

O3

time [min]

D=1 ng/mL

3

o
p

o3c:

2000
time [min]

D=10 ng/mL

3

O3

2500
time [min]

D=10 ng/mL

3

2500500
time [min]

D=100 ng/m L

3

1000 1500 2000 2500
time [min]

D=100 ng/mL

3

O
3

2000 25001000 1500500
time [min]

D=1 ng/m L
3

O

20

D=1 ng/mL15

3

10

o

5

0, 250020001000 15000 500
time [min]

Figure 3.4: Replicates of the  experim ental tim e-courses across th e  
PFL  and N PFL cell population. Replicates of the experimental time- 
courses for the PFL (left) and NOPFL (right) cells. Each line in each panel 
represent the average fluorescence intensity across the cell population in one 
switch-off experiment.



3.0.7 Derivation of the model parameters 42

cell motility and reduce the risk associated to data loss occurring when cells 

exit the tracked field [46]. The average fluorescence intensity of the reporter 

gene across the cell population for both the PFL and NOPFL networks is 

shown in Fig. 3.3 for the different concentrations of Doxycycline indicated. 

In Fig.3.4 replicate time-course experiments are shown for each of the Doxy­

cycline concetrations used.

3.0.7 Derivation of the model parameters

The parameter estimation problem is defined as an optimisation problem, 

where the goal is to minimise a performance measure defined as the error 

between model predictions and observations, which in our case are the time- 

series during the “switch off” experiments in Fig. 3.3and 3.4. Several alterna­

tive strategies can be pursued in order to obtain best estimates of the model 

parameters, ranging from Newton’s method to Genetic Algorithms (GAs). 

Here we employed the Trust Region method (TRM) implemented in Potter- 

sWheel [58]; thanks to the multi—experimental capabilities of this tool, we 

were able to identify the 12 parameters by simultaneously fitting Eqs. (1) 

to (7) to all of the experimental time-courses at once. These time-courses 

include all of the different Doxycycline concentration for both the PFL and 

NOPFL cells for a total of 24 time-courses, when taking experimental repli­

cates into account. Moreover, in order to obtain confidence intervals for each 

parameter, we run multiple identification procedures on the time-series data, 

using parameter perturbation routines to allow extensive sampling in the pa­
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rameters’ space. In order not to introduce any specific bias in our search, we 

only set admissible ranges for the parameter values to be identified, which 

reflected physical and biological feasibility, either obtained from literature 

[51] or directly estimated (degradation rate 62EYFP = d3).

The result of the parameter fitting procedure are reported in Table 1 

along with the estimated standard deviation, which are in most of the cases 

one order of magnitude less than the corresponding parameter value, or at 

most of the same order of magnitude.

We observed that the parameter h2 in Table 1, which affects the strength 

of Doxycycline repression on the tTA protein activity, is much smaller than 1. 

Usually Hill coefficients are greater than 1, therefore we wondered what could 

be a possible biological explanation for this behaviour. We observed that for 

the range of Doxycycline concetration used in the experiment (Ing/mL to 

1/ig/mL), using the parameters’ values in Table 1, the function: 

can be approximated by the function: a + (o: ~  0.4 and 0 & 0.6).

This means that a Michealis-Menten function can also describe the effect 

of Doxycyline on tTA acitivity, but a certain level of leakiness (a) must be 

taken into account; that is even for large concentrations of Doxycycline, the 

activity of the tTA protein cannot be completely shut down.
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Table 3.1: Parameters identified after the fitting procedures: parameters val­
ues as well as standard deviation are reported for each parameter.

Parameter Description Fitted value STD
K i [nM]

ai
v\ [nM min-1] 

v2 [min-1] 
di [min-1] 
d2 [min-1] 
d3 [min-1] 

hi 
6 [nM]

K f  [min-1] 
x2 [nM]

h2

Activation coefficient 
Basal activity CMV-TET promoter 

Maximal transcription rate CMV-TET promoter 
General translation rate 

Degradation rate tTA mRNA 
Degradation rate tTA protein 

Degradation rate d2EYFP protein 
Hill coefficient of the CMV-TET promoter 

Affinity Doxycycline - CMV-TET promoter interaction 
Folding rate d2EYFP 

Steady state tTA in NOPFL 
Hill coefficient for Doxycyline

4.81
1.13E-05
7.54E-02
2.71E-02
1.01E-02
1.00E-02
3.24E-03

3.16
1.00

1.24E-03
13.69

6.03E-02

1.06
3.62E-05
1.97E-02
1.22E-02
1.22E-03
3.42E-03
2.66E-04
1.40E-01
8.85E-03
1.41E-02
7.63E-01
7.19E-03
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The “switch off5 time-series experiments were simulated with both the 

PFL and NOPFL models using the fitted parameters as shown in Fig. 3.3. 

The inferred models are able to recapitulate the observed dynamics in re­

sponse to different inducer concentrations and experimental settings. Observe 

that the parameters for both the PFL and NOPFL models are identical, ex­

cept for X2 in the NOPFL equations, which is not present in the PFL model. 

Hence, the observed differences in the dynamical behaviour of the PFL and 

NOPFL networks are due to the intrinsic differences in their topology.

Dynamic properties of the PFL and NOPFL networks

In order to further investigate the relationship between topology and dy­

namical properties, we first observed that the NOPFL model described by 

Eq.3.5-3.7 is a system of linear time-invariant ODEs, for which the theory of 

liner dynamical systems applies. From the theory, we know that changes in 

Doxycycline concentration in Eq.3.5 will not affect the dynamic behaviour of 

the model, which is governed by the smallest among three degradation terms 

di, ^3, (ds +  Kf) (Model simulations and parameter identification). The con­

centration of Doxycycline affects only the steady-state values, i.e. how much 

the network will switch off, but not its dynamics, i.e. how fast it will switch 

off. Therefore, independently of the values of the parameters, the model of 

the NOPFL network predicts that for any concentration of Doxycycline, the 

network will switch off with the same dynamics, albeit possibly reaching dif­

ferent steady-state levels. Fig. 3.6 reports the “switch off” time, r0fr, for both
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the PFL (dashed) and the NOPFL (solid) networks as a function of Doxycy­

cline concentration, computed via numerical simulations of the two models 

with the parameters estimated in Table 1. r0fr is defined as the time taken by 

the fluorescence intensity to reach 50% of its final steady-state value (OFF), 

following treatment with Doxycycline at a given concentration (Material and 

Methods). In agreement with the experimental observations, the tqq for the 

NOPFL network is constant and does not change with Doxycyline. In Fig. 

3.6, the switch off time for the NOPFL network for the different concentra­

tions of Doxycycline was estimated from the experimental time-series data 

(x in Fig. 3.6) (Model simulations and parameter identification).

On the other hand, the PFL network has a very different behaviour, as 

can be seen in Fig. 3.6. Specifically, for a range of Doxycycline concentra­

tions, the PFL r0ff is considerably longer (+ in Fig. 3.6) that the NOPFL 

counterpart, which again is in agreement with the experimentally observed 

behaviour (Material and Methods). In order to investigate the origin of the 

observed dynamical behavior of the PFL circuit, we analysed the phase por­

trait associated to the d2EYFP—tTA mRNA and the tTA protein, which 

allows to directly observe trajectories of two state variables at once. More­

over, by imposing the steady-state conditions (i.e. X{ =  0), we can derive 

nullclines, as well as, the their intersection points, which correspond to the 

equilibrium points of the network. In Fig. 3.6 the nullclines for different 

Doxycycline concentrations are shown. When no Doxycycline is present, two 

stable points (OFF and ON) and one unstable equilibrium points coexist
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experimental observation time (43h).
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in the same phase portrait, thus providing evidence for the bistability of the 

PFL network, a shared property among positive feedback loops[12]. However, 

as Doxycycline concentration increases, the bistability is lost (Fig. 3.6), and 

the only possible equilibrium point is the “OFF” state.

3.0.8 Conclusions

The most striking feature is the slow down in the switch off time of the PFL 

cells as compared to the NOPFL cells; moreover the switch off time of the 

PFL is affected by Doxycycline concentrations, whereas NOPFL cells always 

switch off with approximately the same dynamics.

The reason for a cell to “choose” a PFL control strategy for transcriptional 

regulation, rather than the NOPFL strategy, could be due to the intrinsic 

robustness of this approach to transient activation of the network. For ex­

ample, in a signalling pathway, a ligand (equivalent to Doxycycline in our 

PFL) could cause a transcription factor to stop transcribing itself, as well 

as, a set of target genes, to initiate a specific response. However, in order 

for the pathway not to respond to a transient concentration of the ligand, 

the PFL strategy has to be chosen, otherwise the response would start im­

mediately (NOPFL case). Moreover, the response time of the PFL network 

can be modulated by the ligand concentration, if this is really high, the sys­

tem will switch off as quickly as possible, alternatively the ligand can be 

present at low, or medium, concentration, but it should persist for a long 

time, in order for the pathway to respond. This kind of behaviour has been
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Figure 3.6: Phase p o rtra it of the  PFL  model.The tTA-d2EYFP mRNA 
concentration (y axis) has been plotted against tTA protein concentration 
(x axis). Varying Doxycycline concentrations (1 ng/mL through 1 /ig/mL) 
were used to investigate the dependence of the two stable equilibria ( “ON” 
and “OFF” in the graph) on the amplitude of the input. The shape and di­
mensions of the two basins of attraction (the set of initial conditions ending 
up in one of the two stable steady states) can be studied with the same tech­
nique: in this figure the grey shaded area represents the basin of attraction 
of the “OFF” equilibrium for Doxycycline= 0 nM.
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recently described as “persistence detection” in cellular signal processing to 

indicate the ability of the genetic circuit to distinguish between transient and 

persistent signals [89].

Moreover we verified that the PFL can exhibit bistability for zero or low 

concentrations of Doxycyline (Fig. 3.6). A bistable genetic network will cause 

a population of cells to divide in two sub-populations, each in one of the two 

possible states (OFF or ON). In yeast, this has been experimentally verified 

using a simple PFL based on the rtTA system[12]. In our system, the PFL 

model is bistable but the basin of attraction of the OFF equilibrium point 

(Fig. 3.6) is much smaller as compared to that of the ON state, when no 

Doxycycline is present. Therefore, just few cells will be in the OFF state and 

these will not be enough to be significantly detected experimentally. We pre­

dict however that for intermediate concentration of Doxycycline (lOOng/mL 

in Fig. 3.6) the basin of attraction will be comparable and bistability should 

be detected experimentally.

Materials and M ethods

Experimental procedure: construction of the circuit

To implement the gene circuit in a lentiviral vector, we used the ViraPower 

Promoterless Lentiviral Gateway Expression System (Invitrogen) which takes 

advantage of the site-specific recombination properties of bacteriophage lambda, 

making the transfer of single DNA sequences faster than the usual cloning



3.0.8 Conclusions 51

strategies.

The pMAtTA-IRES-EGFP vector containing the transactivator tTA, the 

IRES element and the enhanced green fluorescent protein (EGFP) was syn­

thesised by GENE ART together with the recombination sites. The d2EYFP 

was amplified from pd2EYFP-l (Clontech) by PCR with a forward primer 

containing a Nhel recognition sequence

(5’-CATGGCTAGCATGGTGAGCAAGGGCGAGGAG-3’) and a reverse primer 

containing an EcoRV recognition sequence

(5% ATTCGATATCAGTCGCGGCCGCATCTACA-3’). The PCR product 

and pMAtTA-IRES-EGFP were then digested with Nhel-EcoRV restriction 

enzymes and the d2EYFP ligated in place of EGFP, generating a new vector 

termed pMAtTA-IRES-d2EYFP. The pMAtTA-IRES-d2EYFP was then lin­

earised with the Asel restriction enzyme and recombined with the pDONR221 

(Invitrogen) following the manufacturer instruction. In this way we generated 

pENTRtTA-IRES-d2EYFP vector with specific recombination sites.

The CMV-TET promoter was amplified from pTRE2 (Clontech) by PCR.

The PCR was performed with the Taq polymerase provided by Invitrogen 

that adds a single deoxyadenosine (A) to the 3’ ends of PCR products. 

This allows PCR inserts to ligate efficiently with the pENTR5’-TOPO vec­

tor which is supplied linearised with single 3’-deoxythymidine (T) overhangs, 

obtaining the pENTR5’-TOPO-CMF-T£T with specific recombination sites.

Finally we performed a recombination reaction between the pENTRtTA- 

IRES-d2EYFP, pENTR5’-TOPO-CMV-TET and the pLenti/R4R2/V5-DEST
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according to manufacturer instructions.

To generate the lentiviral vector containing the gene expression cassette 

lacking the positive feedback loop (NOPFL), the d2EYFP was amplified 

from pd2EYFP-l with the High-Fidelity Taq Phusion (Fynnzimes) which 

gives blunted-end PCR product. The forward primer 

(S’-CACCGCCACCATGGTGAGCAAGGGCGAGGAG-S’) was designed to 

allow the direct cloning in pENTR directional TOPO vector (Invitrogen), 

generating the pENTR d2EYFP vector. Then we performed a recombination 

reaction between the pENTR d2EYFP, pENTR5’-TOPO- CMV- TET  and 

the pLenti/R4R2/V5-DEST according to manufacturer instructions.

As suggested by the manufacturer, the lentivirus was then produced in 

293FTcells.

Experimental procedure: cell culture, lentiviral trans­

duction, switch-off experim ent

293FT cells were maintained at 37 °C in a 5% C02-humidified incubator, and 

cultured in DMEM (GIBCO BRL) supplemented with 10% heat-inactivated 

fetal bovine serum (FBS) (Invitrogen), 1% L-glutamine, 1% MEM Non- 

Essential Amino Acids, 1% MEM Sodium pyruvate and 1% antibiotic/an- 

timycotic solution (GIBCO BRL). CHO cells were maintained at 37°C in 

a 5% C02-humidified incubator, and cultured in a-MEM (Sigma) supple­

mented with 10% heat-inactivated fetal bovine serum (FBS) (Invitrogen), 1%



3.0.8 Conclusions 53

L-glutammine and 1% antibiotic/antimycotic solution (GIBCO BRL). CHO 

AA8 TET-OFF cell line (Clontech) was maintained a-MEM (Sigma)supplemented 

with 10% TET system approved FBS (Invitrogen), 4mM L-glutamine, 100/ig/mL 

G418 (Sigma), and 1% antibiotic/antimycotic solution (GIBCO BRL).

To transduce cells with the virus produced, 500,000 CHO and CHO AA8 

TET-OFF cells were plated and incubated overnight. On the day of trans­

duction the medium was removed and lmL of the virus was added to the 

cells together with polybrene (Invitrogen) to a final concentration of 6ug/mL. 

After an overnight incubation the medium containing the virus was removed 

and replaced with complete culture medium containing Blasticidin (Sigma) 

to a final concentration of 5/ig/mL to select for stably transduced cells.

Cells were sorted for fluorescence intensity using a BD FACSAria Cell 

Sorting System (Becton Dickinson). d2EYFP was excited at 488 nm, and 

emission was detected using a 525 nm bandpass filter. Serial dilutions of sta­

bly transduced cells (up to 0.05 cells/mL) were plated in 96-well microtitre 

plates, and dilutions containing only one cell per well were selected. Mon­

oclonal colonies were cultured and amplified as described, to obtain mono­

clonal populations.

For the switch off experiment, 500 stably-integrated-CHO and CHO AA8 

TET-OFF cells were plated in chamber slide (lab-Tek) and treated with 

Doxycycline (Clontech) to a final concentration ranging from Ing/mL to 

1/ig/mL). The switch off experiments were repeated twice for the lOng/mL 

and lOOng/mL Doxycycline concentrations, while 3 and 5 replicates were
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obtained for Ing/mL and 1/xg/mL. Experiments were performed in parallel 

for both the PFL and NOPFL cells.

Experim ental procedure: D N A  extraction, RealTim e PC R

1,000,000 PFL and NOPFL cells were plated in a 6-well multiwell plate to 

reach a confluence of 80% at the moment of the DNA extraction. The day 

after cells were collected and resuspended in 200/xL of PBS after centrifu­

gation for five minutes at 300 x g . Then the DNA was extracted using the 

DNeasy Blood and Tissue kit (Qiagen). We compared the DNA levels of 

tTA and d2EYFP in NOPFL cells and PFL cells by RealTime PCR follow­

ing DNA extraction, proving that the both cell populations carry a unique 

copy of the networks in their genome. Quantitative RealTime PCR reaction 

were set up in duplicates using the LightCycler 480 SYBR green master mix 

(Roche) and the amplification was performed using a LightCycler 480 Real- 

Time PCR instrument(Roche). The PCR were carried out using the following 

primers: d2EYFP forward (5’-acgacggcactcaagacc-3’); d2EYFP reverse (5’- 

gtcctccttgaagtcgatgc-35); PFL tTA forward (S’-aaagcagctgaagtgcgagag-S5); 

PFL tTA reverse (5’-gatggtgctgccgtagttgtt-3’); NO PFL tTA forward (5’- 

acagcgcattagagctgctt-3’); NO PFL tTA reverse (5’-acctagcttctgggcgagtt-3’). 

Data analyses were performed using the LightCycler 480 Software (Roche). 

GAPDH DNA levels were used to normalise the amount of DNA and ACts 

were calculated as the difference between the average GAPDH Ct and the 

average tTA and d2EYFP.
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Image acquisition and processing

Images were acquired using an inverted epifluorescence microscope (Nikon 

Eclipse TI-E, Nikon Instruments) equipped with an incubation chamber 

(H201-OP R2 ,Okolab), a digital camera (Andor Clara, Andor), a 20X ob­

jective (Obj. CFI PF DLL 20X Phi, Nikon) and a 512-nm/529-nm (B/G/R) 

d2EYFP-specific excitation/emission filter set. Temperature was maintained 

at a constant level as the experimental setup required, while C02 concen­

tration was set to be 5% of the total air volume injected in the incubation 

chamber. Both phase-contrast images and fluorescent fields were acquired at 

intervals of 15 minutes. Exposure times for the phase-contrast field was set 

to 2 ms (transmitted light lamp voltage was set to 4.5 V) while 300 ms (In- 

tensilight lamp set at 10% of the maximum power) was chosen as exposure 

time for the fluorescent images: this choice was meant to prevent photo- 

bleaching while optimising the ratio between the quality of the images and 

reflected-light-induced stress on the cells. Experiments were carried out using 

NIS-Elements AR v.3.10 644 (Nikon Instruments) software package and the 

Perfect Focus System (Nikon Instruments) to maintain the same focal plane 

during the whole duration of the experiment. At the end of the acquisition 

process, images were extracted as raw data for the fluorescence quantification 

procedures.

The experiments were set up so that at the beginning of each experiment 

the first image contained at least 15 cells and no more than 30 cells, to avoid 

cells exiting the image during the time-lapse experiment due to cell replica-
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tion and “over-crowding”. Image segmentation was carried out in Mathworks 

Matlab R2010b (Mathworks Inc.); the algorithm we implemented to quantify 

fluorescence was meant to distinguish the foreground (living cells) from the 

background in each image of the bright field. We used morphological oper­

ators such as erosion and dilation (imerode and imdilate functions from the 

MATLAB image processing toolbox). Thus two binary masks were built in 

order to compute separately the mean d2EYFP fluorescence of the foreground 

and the background using an element by element matrix multiplication be­

tween the binary images and the fluorescent one. The average fluorescence 

intensity across the cell population was then computed as the difference be­

tween the foreground and the background for each image at each time point 

(i.e. no single cell fluorescence quantification is performed).

Experim ental procedure: determ ination of d2EYFP half- 

life

To evaluate d2EYFP degradation rate, 500 stably integrated CHO tetOFF 

cells were plated in chamber slide (lab-Tek) and, after cell adhesion, Cyclo- 

hexamide (Sigma, stock dilution 10 mg/ml in sterile water) was added to 

the medium to a final concentration of 10^g/mL, 50/xg/mL, 100/ig/mL or 

500 500/ig/mL. Temperature was maintained at 32 °C. Image acquisition and 

analysis was performed as described above. The experimental data were fitted 

into an exponential curve using the curve fitting tool (cftool) from Matlab
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2010b, and the degradation coefficient d$ was used to obtain the half-life (r) 

of the d2EYFP protein: r=log(2)/ ds

M odel simulations and parameter identification

Numerical simulations were run using Matlab 2010b (Mathworks Inc.). We 

used ode23s solver (a detailed discussion of the numerical methods used by 

ode23 can be found in [14]). For the parameter identification, we used the 

Potters Wheel toolbox [58] implemented in MATLAB. Two sets of parameters 

were identified: the dynamical parameters governing the model and a scaling 

factor meant to approximate the transduction contribution of the microscopy 

equipment. Since Doxycycline has been only added at time t =  0 min in our 

experiment we forced the fitting procedures to start from the model predicted 

ON steady state.

We defined the following objective function:

2 _  idJExpi}) ~  UModel{ '0 ) 2 / q  q \

x  ~ h

where N  is the number of experimental data points, yModei are the pre­

dicted values of the mathematical model (using the inferred parameters), 

yexp are the experimental data points and aExp{[i)2 is the sample variance 

computed over the experimental replicates.

As optimisation algorithm we used Trust Region Method (TRM) in a loga­

rithmic parameter space: at the kth iteration of the optimisation procedure
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the TRM approximates the shape of the function /  to be minimised with the 

model rrik thus trying to solve the following problem:

m m m k{xk +Pk) (3.9)
P

being Xk +  Pk the new parameter vector considered as solution at the kth 

iteration. If the model rrik has quadratic form the vector pk can be obtained 

by observing that:

In order to allow an extensive exploration of the parameters’ space, and 

to avoid local minima, we used a quasi-random number generator routine in 

Potters Wheel [58] to select an initial guess of the parameters’ values, and then 

launched the TRM procedure M times (M=100 in our settings), requiring the 

cost function in eq. 3.8 to be x 2/N  < 0.5 [58].

The values in Table 1 represent parameters for which the cost function 

(eq. 3.8) is the smallest across the M runs; whereas the standard devation of 

each parameter in Table 1 is evaluated by considering all of the M runs.

Moreover, in order to compare switch off times among the different ex­

periments, we computed the r0ff defined as the time the circuit needed to

m k{xk +  Pk) = fk + p i  + V /fc +  -rplBkPk (3.10)

and therefore

(3.11)
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achieve the 50% of the mean initial fluorescence M IF  calculated for each 

experiment as follows:
3

E / i
M IF  =  (3.12)

with fi fluorescence of the i th frame in the sequence smoothed by moving 

average filtering.



Chapter 4

Construction of a 

post-transcriptional negative 

feedback loop in mammalian  

cells

This Chapter describes the implementation of a microRNA-based Negative 

Feedback Loop (NFL) in mammalian cells. In the first part, I present a 

work that we recently published in [29], to test experimentally mathematical 

models, so far described in literature, that formalize the effect of silencing 

RNAs on gene expression. The best performing model, was then used for 

outlining of the mathematical model of the NFL which will be detailed in 

Chapter 5. In the second part of the Chapter I will describe the construction
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of the negative feedback loop and the experiments we performed to test its 

efficacy.
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4.1 Introduction

In the last decade, 20-30 nucleotide RNAs have emerged as critical regu­

lators of gene expression in eukaryotic genomes [20], involved in a process 

known as RNA interference (RNAi). RNAi is a cellular mechanism by which 

cells regulate gene expression at the post-transcriptional level [20]. It occurs 

through small RNAs, namely small interfering RNA (siRNA) and microRNA 

(miRNA) that, at the end of a cascade, direct sequence specific cleavage 

of perfectly complementary mRNAs, or translationally repress and degrade 

transcripts for imperfectly complementary targets [49]; nevertheless it has 

been highlighted that RNAi pathways can also induce transcriptional gene 

silencing in the nucleus, although the mechanism is not yet well understood 

[60, 86]. In this chapter I will describe the design, mathematical modeling, 

construction and characterization of a post-transcriptional negative feedback 

loop (NFL) in mammalian cells. The NFL described in this chapter will then 

be used together with the PFL described in Chapter 3, in order to consturct 

the oscillator described in Chapter 5.
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4.2 Mechanism of RNAi-based gene silencing

In nematodes, insects and plants, the post transcription gene silencing func­

tions as an innate defense mechanism. The RNA interference is based on 

the perfect or near perfect Watson-Crick base pairing between the guide (or 

antisense) strand of the siRNA and the mRNA target, ending up with the 

cleavage of the target by the RNA-induced silencing complex (RISC). In 

the cleavage process, the endonuclease Argonaute-2 (AGO-2) has a catalytic 

activity also in mammalian cells. AGO-2 seems to be involved first in the 

cleavage of the passenger (or sense) strand of the double-stranded siRNA, 

thus forming the single-stranded RNA that is used by the RISC complex as 

the guide strand to bind the target mRNA; then RISC can undergo multiple 

rounds of mRNA cleavage, mediating a robust silencing effect on the target 

gene.

In mammals, the endogenous miRNA pathway is involved in the fine- 

tuning gene expression during development and differentiation[ll]. miRNAs 

bind sequences in the 3' UTR of target genes they share partial sequence com­

plementarity with; thus the silencing effect comes through translation repres­

sion, followed by mRNA degradation, which occurs in cytoplasmic compart­

ments known as processing bodies (P-bodies) [55]. When instead the match 

between the miRNA and the 3'UTR of the target mRNA is perfect, again the 

silencing is mediated by RISC, which binds the target inducing its cleavage.

miRNA are generally transcribed by RNA polymerase II as long primary
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transcript (pri-miRNA) and are processed by an RNase III enzyme Drosha, 

that works together with a dsRNA-binding protein of DiGeorge syndrome 

critical region gene 8 (DGCR8), into a 70 nt stem-loop structures known as 

precursor miRNAs (pre-miRNA) [53]. The pre-miRNA is then transported 

into the cytoplasm by the exportin 5; here Dicer and its dsRNA binding 

protein partners TRBP [22] and PACT [54] process the pre-miRNA, and the 

22nt mature product is loaded into the RISC and eventually the silencing of 

target mRNA occurs (Figure 4.1).
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4.3 M odeling RNA interference in mammalian 

cells

Since the discovery of silencing pathway, RNAi has become not only a pow­

erful tool for investigating gene function through the systematic knock down 

of the mRNA of interest using synthetic RNA oligomers, but it has been 

also used as “biological part” to create new synthetic biological circuits in 

synthetic biology, which needs mathematical models to carry out in silico 

predictions of biological processes [18, 37, 32, 80].

In Cuccato et al [29], four different mathematical models that could quan­

titatively describe the effect of different concentrations of siRNA on the 

mRNA target degradation, were compared in their ability to fit the exper­

imental data with in silico predictions. I contributed to the experimental 

design of the RNAi experiments; the experiments were carried out on two 

different cell lines stably expressing the tTA protein or the EGFP protein 

respectively. We performed three sets of experiments. In the first set we 

transfected siRNA directed against the EGFP stably integrated in Human 

Embryonic Kidney (HEK) cells, in the range of 0 to 200 pmol, and evaluated 

the mRNA levels (Fig. 4.2).

In the second set of experiments, we measured the level of EGFP protein 

via FACS analysis 60 h after transfection (Fig.4.3).

Lastly, in the third set we performed the same silencing experiment but 

this time the siRNA was directed against the tetracycline regulated transac-
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Figure 4.2: Ratio of E G F P  mRNA levels between cells transfected 
with the siRNAs specific for EGFP, and negative control cells, 
transfected with a non-specific siRNAs, measured 48 hours after 
transfection. Error-bars represent the standard-error from three biological 
replicates for each point. The x-axis reports the different quantities of siRNA 
oligomers tested. mRNA levels were measured using real-time PCR. The 
error-bars have the length of one standard error.
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Figure 4.4: Ratio of tT A  mRNA levels between cells transfected with 
the siRNAs specific for tTA, and negative control cells, transfected 
with a non-specific siRNAs, measured 48 hours after transfection.
Error-bars represent the standard-error from three biological replicates for 
each point. The x-axis reports the different quantities of siRNA oligomers 
tested. mRNA levels were measured using real-time PCR. The error-bars 
have the length of one standard error.

tivator tTA stably expressed at low level in CHO cells (CHO AA8)(Fig. 4.4).

The four mathematical models are based on the general approach de­

scribed by ordinary differential equations (ODEs), which model the evolution 

over time of the transcriptional and translational processes, as also described 

in Chapter 3:
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[mRNA]:

[protein]:

Where X m,Xp and X s are the mRNA, protein and siRNA concentra­

tions, respectively. The parameter km, represents the transcription rate from 

the promoter that transcribes the mRNA species targeted by the siRNA 

oligomer; dm represents the basal degradation rate of the mRNA species. 

RNAi can be considered as a mechanism that enhances the degradation of 

the targeted mRNA, therefore the function S(Xm, X s) is an extra degradation 

term that represents the rate at which mRNAs are degraded due to RNAi.

This function, 8(Xm, X s), depends on both the mRNA and siRNA levels, 

X m and X s respectively. The parameter kr is the protein translation rate, 

whereas dp represents the basal protein degradation rate. We then fitted the 

four models to the experimental data, by searching for the parameter values 

for which the fitting was the best according to a squared error measure. We 

found that the best model proposed in literature was a phenomenological 

one, in which the post-transcriptional effect of the microRNA on the gene 

expression is described with a standard Hill-kinetic model[48]. In particular, 

considering a Hill-type enzymatic model with a Hill coefficient hi, the model 

can also be extended to account for multiple binding sites of the siRNA on the 

target mRNA, or for cooperativity of protein complexes involved in RNAi.

dXm
dt

dX,
dt

km dmX m 5(Xm, X s) 

=  kj'Xm dpX p, (4.1)
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This model is described by the following equation:

6(X „ X m) = <ke^ x i t X m (4.2)

The kinetic parameters d4 and 6 4  depend on the efficiency of siRNA bind­

ing to its sites on the target mRNA [48]: d4 represents the maximal degra­

dation rate of the mRNA due to RNA interference; 6 4  the concentration of 

siRNA oligomers needed to achieve half of the maximal degradation rate. The 

above equation implies that for X s «  64, the increase in the RNAi medi­

ated degradation is linear with 4 , while it saturates at higher levels of X s, 

reaching the maximal degradation rate d4. The fitting results for the mRNA 

and protein levels of EGFP are shown in Fig. 4.5 and Fig. 4.6; finally we 

observed that the experimental error for the third set, was larger compared 

to the EGFP experiment. This is probably due to the relative low expression 

of the tTA in the CHO TET-OFF cell lines, which made the measurements 

more noisy (figure 4.7).

The superior performance of the phenomenological model has been proven 

also by the ” leave-one-out” cross validation strategy, where for each model 

and for each dataset, the parameter identification procedure was repeated 

each time removing one of the experimental points and then predicting the 

missing point with the identified parameters; the phenomenological model 

(Model 4) is again the one with the smallest prediction error. One signif­

icant feature of Model 4 is that it can predict the saturation effect of the
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Figure 4.7: Numerical fitting of the model on the in vitro experi­
mental results on mRNA tTA.

RNAi process that we observed experimentally. We considered the possibil­

ity that this saturation could be in fact due to the inability of the cell to 

uptake high concentration of siRNA oligomers, however the experiments in 

[67], prove that uptake of siRNA oligomers in cells is linear with the concen­

tration of siRNA oligomers transfected, in the concentration range we used. 

Additionally, Khan et al in [47], observed upregulation of mRNA targets of 

endogenous micro-RNA when transfecting siRNA oligomers in mammalian 

cells. As an explanation of this effect, they suggested a saturation of the 

RISC complex (or other components necessary for small RNA processing or 

transport machinery).
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4.4 Design of a microRNA-based negative feed­

back loop

Commonly, siRNA are transiently transfected within the cells, which is a dra­

matic limit for the long term knock-down of a gene of interest. Hence other 

strategies have been developed; one is the use of shRNAs that mimic the 

pre-miR structure and are processed by Drosha to be functional. The stable 

expression of shRNAs is driven by polymerase-III promoters[17] which have 

also been engineered for inducible expression[79], but they lack the tissue 

specificity which is instead possible to achieve with polymerase-II promoters. 

Moreover it has been reported the potential toxicity of this approach, possi­

bly due to the saturation of miR processing steps, thus interfering with the 

endogenous miR pathway [61, 42, 21].

In order to create a post-transcriptional negative feedback loop (NFL), 

we used a natural microRNA (miR223), which is expressed to high levels 

only in myelomonocytic cells, and almost undetectable in other cell lines[16]. 

Furthermore, as shown in Naldini et al [2] the miR223 was inserted in the 

EFla  intron such that the microRNA is spliced out, and so the cleavage of 

pre-miRNA by Drosha does not affect the integrity of the whole mRNA that 

otherwise would lose the 5'-cap or the poly-A tail thus compromising the 

protein production [2].

The lentiviral platform we developed is therefore composed by the tTA- 

induced promoter CMV-TET driving the expression of a unique mRNA con-
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sisting of the EFla  intron containing the miR223, of the mCherry coding 

sequence codifying a stabilised fluorescent protein as readout of microRNA 

expression and of a woodchuck hepatitis virus post-transcriptional element 

(WPRE) sequence needed to stabilize the viral mRNA, as shown in Fig. 4.8). 

We named this inducible microRNA construct, the Negative Feedback Loop 

(NFL) because of its ability to repress a target mRNA in an inducible way, 

thanks to the presence of the CMV-TET inducible promoter.

Following the same experimental procedure as for the construction of the 

PFL described in Chapter 3, we took advantage of the Gateway Technology 

(Invitrogen) optimized for lentivirus production (Materials and Methods).

Specifically, I produced two different lentiviral vectors: one containing the 

inducible NFL and another in which the miR223 expression is controlled by 

the constitutive CMV promoter(C'MF-miR223 plasmid). The latter plasmid 

was built to test the efficacy of the miR223.

I performed two set of experiments; the first was a co-transfection in 

HEK cells in which, together with the lentiviral plasmid, I transfected a 

vector containing the EGFP coding sequence fused with four tags responsive 

to the miR223, or a vector containing only the EGFP, respectively. In the 

second set, I transfected PFL HEK293 cells, described in Chapter 3, with the 

CMV-miR223 plasmid. The miR223 was able to knock down the expression 

of the EGFP, as well as the d2EYFP, by more than 80% as shown following 

quantitative RealTime PCR, whose results are in Fig. 4.9, and in Fig. 4.10).
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W P R E

Figure 4.8: Schem atic represen tation  of th e  m iR223-based negative 
feedback loop. The expression of the EFla  intron including miR223 and 
of the mCherry is driven by the CMV-TET promoter. WPRE, woodchuck 
hepatitis virus post-transcriptional element; SD, splice donor site; SA, splice 
acceptor site.
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4.4.1 Conclusion

In this chapter I proved that the miR223 is suitable for our synthetic network, 

and that it is able to strongly repress the transcription of a target mRNA 

where four repeats of a perfectly complementary microRNA seed-sequence 

are present.

I also contributed to derive a mathematical model to quantitatively de­

scribed the effects of RNAi on mRNA degradation.

In Chapter 5 ,1 will describe how the positive and negative feedback loops 

were integrated in mammalian cells to generate the synthetic clock.
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Materials and M ethods

R N A  interference by small interfering oligonucleotides 

(siRNA)

The sequence of the 21-mer siRNA double-stranded oligomers targeting EGFP 

was identical to the one reported in[?]. This siRNA targets the coding se­

quence of the EGFP gene starting at position 237 from the ATG, on the 

target sequence AAGCAGCACGACTTCTTCAAG. The siRNA HPLC pu­

rified, with sequence GCAGCACGACUUCUUCAAGtt (concentration 100 

[iM) was synthesized by Ambion. As a negative control we used, in all ex­

periments a shuffled sequence non targeting siRNA from Dharmacon.

Cell culture and transfection

HEK 293 stably expressing EGFP (kindly provided by Mara Alfieri) were 

maintained at 37°C in a 5% C02-humidified incubator. HEK 293 cells were 

cultured in Dulbecco’s modified Eagle’s medium (DMEM, GIBCO BRL) 

supplemented with 10% heat-inactivated fetal bovine serum (FBS, Invit- 

rogen) and 1% antibiotic/antimycotic solution (GIBCO BRL). Cells were 

seeded at a density of 300.000 per well in a 6 wells multi-well and trans­

fected 1 day after seeding using Lipofectamine 2000 (Invitrogen) accord­

ing to manufacturer’s instructions with siRNA (Silencer Custom siRNA, 

100/iM, Ambion) in a range of quantities from 0.001 pmol to 200 pmol
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(total concentration). The amounts of transfected siRNA oligomers were: 

0,0.001,0.01,0.05,0.1,0.5,1.0,10.0,20.0,40.0,60.0, 80.0,100.0 and 200.0 pmol 

in a total of 2 mL of medium (so the final concentrations of siRNA oligomers 

were 5xl0-4, 5xl0-3, 2.5xl0-2, 5xl0~2, 2.5xl0-1, 5xl0_1, 5.0,10.0,20.0,30.0, 

40.0,50.0, and 100 nM respectively). Each experiment was performed in bio­

logical triplicates, and the resulting standard deviations were computed and 

reported in each graph. One day post-transfection, the media and ligand were 

replaced. Transfected cells were collected 48 hours post-transfection for RNA 

extraction and subsequent analysis. FACS analysis was performed 60 hours 

after transfection. Plasmid transfections were performed in 6-well plates at 

the same conditions described above using Lipofectamine 2000 (Invitrogen) 

according to manufacturer’s instructions.

R N A  extraction and Real-tim e PC R

Total RNA extraction from 35mm culture plates was performed using the 

Qiagen RNeasy Kit (Qiagen) according to manufacturers instructions.

Retro-transcription of 1 fig of the total RNA extracted was performed us­

ing the QuantiTect®Reverse Transcription Kit (Qiagen), according to man­

ufacturers instructions.

Quantitative real-time PCR was performed using a LightCycler (Roche 

Molecular Biochemicals, Mannheim, Germany) to analyze the amplification 

status of EGFP and tTA. Amplification of the genes was performed from the 

cDNA obtained from the total RNA and using the LightCycler DNA Mas­
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ter SYRB Green I kit (Roche Molecular Biochemicals). Primer sequences 

for Human GAPDH used as reference genes, were designed by Primer 3.0 

http://frodo.wi.mit.edu/ (Forward primer Human: GAAGGTGAAGGTCG- 

GAGTC; Reverse primer Human: GAAGATGGTGATGGGATTTC). Primer 

sequences for EGFP were also designed with Primer 3.0 (Forward primer 

EGFP: ACGACGGCAACTACAAGACC; Reverse primer EGFP: GCATC- 

GACTTCAAGGAGGAC); d2EYFP forward (5’-acgacggcactcaagacc-35); 

d2EYFP reverse (5’-gtcctccttgaagtcgatgc-3’); 

mCherry forward (5’-cactacgacgctgaggtcaag-35);

mCherry reverse (5’-gtagtcctcgttgtgggaggt-3’). The relative amounts of mR- 

NAs were compared with the reference gene GAPDH and calculated using 

the Principle of Relative Quantification Analysis according to the standard 

formula 2~DCt. To confirm the specificity of the amplification signal, we con­

sidered the primer dissociation curve in each case.

FACS analysis

Cells from 35mm culture plates were trypsinized, filtered and subjected to 

Fluorescence-Activated Cell Sorting (FACS) analysis 60 hours posttransfec­

tion in a Becton Dickinson FACSAria.

http://frodo.wi.mit.edu/
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Experim ental procedure: construction of the Amplified  

N egative Feedback loop

The generation of the Negative feedback loop is described in chapter 5. The 

control in which the miR223-mCherry is under control of a CMV promoter 

has been developed following the same procedures. To integrate the CMV 

promoter in the pENTR5’-TOPO vector, the sequence was amplified by a 

pCMV-Myc vector (Clontech). The The PCR was performed with the Taq 

polymerase provided by Invitrogen that adds a single deoxyadenosine (A) to 

the 3’ ends of PCR products. This allows PCR inserts to ligate efficiently 

with the pENTR5’-TOPO vector which is supplied linearised with single 3 - 

deoxythymidine (T) overhangs, obtaining the pENTR5’-TOPO-CMP with 

specific recombination sites.

M odels

In the context of the specific in vivo experiments we carried out, we can make 

the following assumptions to derive the mathematical model:

1. The HEK293 cells express mRNA EGFP at a constant rate km which 

corresponds to the maximum transcription rate of the promoter.

2. We assume that the siRNA oligomers will be quickly loaded into the 

RISC and that this step takes place in much shorter time scale than 

targeting and degrading the cognate mRNA.
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Therefore, the entire RNA interference cascade can be described by Equations 

4.1.

The negative control experiments involved the addition of non-specific 

siRNA oligomers, which are not complementary to the mRNA EGFP and 

therefore are not able to trigger the RNA interference mechanism. Namely, 

5(Xm, X s) = 0. Therefore, the equations corresponding to the negative con­

trol experiments are:

dX
[mRNA]: - ^  = km - d mX m,

[protein]: =  kTX m -  dpXp, (4.3)

Steady-state equations

For the numerical fitting of the in vivo experiments we used the steady state 

equations for the mRNAs or proteins. For example, for the in vivo experi­

ments on RNA levels, the experimental period of 48 hours before extracting 

the RNA is considered long enough for the mRNAs to approach their equi­

librium value. In order to solve for the mRNA or protein steady state we 

assume that siRNA concentration remains constant through the 48 hours of 

the in vivo experiments. In general, the siRNA-RISC complex, is considered 

very stable and one can assume that the degradation of siRNA is so slow 

that it does not have any effect on the overall dynamics.

The steady state equations for the mRNA concentrations of the four
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models are:

Model 1: X m
dm 4“ k \X s

Model 2: X m
krvm

Model 3: X m
- B  +  y/B2 -f ^C2,kzhzkmdm 

2 k3 h3 dm
where B = (c3dm + c3k3h3X s -  k3h3km)

Model 4: X m
km{eh* + x *  *)

6h4 dm +  (^4 +  dm)Xs4
(4.4)

The corresponding mRNA equilibrium of the negative control experi­

ments is simply X m =  km/dm  (for all the models since 5(Xm,X s) =  0). 

Therefore, when fitting the ratio of the mRNA levels between positive and 

negative control, we multiply equations (4.4) by dm/k m.

Through numerical optimization, the degradation rate of mRNA EGFP 

was fixed at the value of dm =  0.0173mm-1, which corresponds to a half- 

life of 40 minutes. This value was taken from a recent paper on synthetic 

biology [80] in which the degradation rate of GFP mRNA was experimentally 

determined. In order to optimize Model 3 with the smallest possible number 

of parameters, we clustered its 4 different parameters (fc3, h3, c3, km) in order 

to have only two optimized quantities: k3 • h3 and c3/k m.

For the in vivo experiments in protein levels, we fitted numerically the 

protein steady-state equations. The equilibrium concentration of protein is 

given by:

X  — —  X  v — j  ’ dp
(4.5)



4.4.1 Conclusion 85

where X m is the mRNA equilibrium, which is different for each model (equa­

tions 4.4). Additionally, the protein steady-state of the negative control model 

is:

=  T T '  ( 4 6 )U p  U m

For the numerical fitting of the ratio of protein levels between negative and 

positive control, one needs to divide equation (4.5) by equation (4.6).

Cost error functions

For the numerical fitting of the mRNA levels from in vivo experiments, we 

used the following cost error function:

N /  Y i — Y i \  2

E l model data A /a

V S &  ) y ]
i

where N  is the number of experimental points, YJlata is the experimental 

measurement of experiment i, Y^dei the model prediction for experiment 

i and S E l is the standard error of experiment i. The absolute value errors of 

each model were then normalized against the largest error.



Chapter 5

Synthesis and Analysis of an 

amplified negative feedback 

loop oscillator in mammalian  

cells

In this chapter I will portray the construction of the genetic oscillator via 

systematic integrations of the positive and negative feedback loop in CHO 

cells and HEK 293 cells. First, I will give an overview of the attempts reported 

in literature to achieve an oscillatory behavior, based on different types of 

repressions. Then, I will detail the rational implementation of our amplified 

negative feedback loop oscillator.



5.1 Construction of the oscillator in mammalian cells. 87

5.1 Construction of the oscillator in mam­

malian cells.

Over the past few years numerous designs to achieve oscillatory behavior 

have been proposed and analyzed in silico and in vivo both for prokaryotic 

and eukaryotic systems [41, 38, 10, 25, 81]. Although natural genetic oscilla­

tors, involved in the regulation of cell cycle, circadian rhythms, and signaling 

pathways are based on the interaction of many components forming complex 

regulatory networks [43], also simpler oscillator architectures have been found 

in different biological processes; in Xenopus laevis embryos i.e. it has been 

shown that the regulation of cell cycle is given by an oscillator consisting 

of negative and positive feedback loops; the combining of a two-component 

negative feedback loop between cdc2 and the anaphase promoting complex, 

and a positive feedback centered on cdc2, leads to robust oscillations [68]. 

Further, it has been recently shown that oscillation of a single monomolec- 

ular CDK module is sufficient to trigger cell cycle events even in absence of 

many of known regulatory inputs and feedbacks in yeast [26]

Among the variety of oscillators described the most common architecture 

is based on an amplified negative feedback loop, as shown in Fig. 5.2.

So far, three different possible kind of repressions have been considered 

for the amplified negative feedback loop: repression at transcriptional level 

[7], repression by dimerization [10] and repression due to proteolytic degra­

dation [43, 25].
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5.1.1 Repression by transcriptional control

In Atkinson et al a genetic clock, shown in Fig.5.1, has been obtained in 

E.Coli by combining two modules: the Ntr and Lac systems. Both these 

systems originate from Escherichia coli.

The Ntr regulon of Escherichia coli consists of genes and operons that 

are regulated by the availability of ammonia and whose products facilitate 

survival under nitrogen limiting growth conditions. The most important en­

zyme for the assimilation of ammonia under nitrogen-limiting conditions is 

glutamine synthetase (GS), the product of the glnA gene. Under nitrogen- 

excess conditions, a low intracellular concentration of this enzyme results, 

regulated by the glnApl promoter. Under nitrogen-limiting conditions, a 

much higher intracellular concentration of this enzyme results from activation 

of the glnAp2 nitrogen-regulated promoter from the phosphorylated form of 

NRI (NRI P); the same NRI P controls the glnK promoter whose protein 

product GlnK also is required to regulate expression of Ntr genes [6, 5, 39]. 

The lac operon comprises three genes required for the uptake andmetabolism 

of lactose and related sugars : lacZ, lacY and lacA. Lactose in converted into 

allolactose by an enzyme, b-galactosidase, encoded by lacZ. lacY encodes 

for the lactose permease (LacY), which facilitates the uptake of lactose and 

similar molecules. lacA codify for an acetyltransferase, which is involved in 

sugar metabolism. The operon has two transcriptional regulators: a repressor
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(LacI) and an activator (the cyclic AMP receptor protein, CRP). Inducers, 

among them allolac- tose, bind to and inhibit repression by LacI, whereas 

cAMP binds to and triggers activation by CRP.

The operons were engineered in order to obtain an oscilatory network. 

In particular, the activator module consists of the control region of the glnA 

promoter (glnAP2) upstream the glnG gene encoding the NRI thus creat­

ing an auto-activated circuit; additionally two ’’perfect” LacI operators, one 

downstream of the promoter and one immediately upstream of the enhancer 

were placed in order to be responsive to the LacI repressor.

The repressor module was constructed by placing the lacl repressor gene 

under the control of the glnK promoter. Therefore, the glnK promoter is 

fully activated at high NRIp levels. The oscillatory behavior is achieved by 

the antagonism between the activator and repressor to form, in a mutual 

exclusive way, a DNA loop; during activation NRIp binds the enhancer and 

interacts with the RNA polymerase by means of an activation of a DNA 

loop; when instead LacI is bound to the two operators it also forms a loop 

repressing the system [7] (Figure2.3).

Mathematical analysis

In [7], a Hopf bifurcation, is proposed to explain the onset of oscillatory be­

haviour. The Hopf bifurcation can arise from significantly faster activator 

than repressor dynamics, causing the activator concentration to reach a sig­

nificant amplitude before the repressive effect becomes too great, ending up
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Figure 5.1: Genetic clock by combination of activator and repressor 
modules in E.coli.
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with sustained oscillations. For the same topology, in [43], the oscillations 

are mathematically explained in terms of a saddle-node bifurcation on an 

invariant circle (SNIC), while under different parameters value oscillatory 

behavior can originates from a SNIC or a subcritical Hopf bifurcation [25].

5.1.2 Repression by dimerization

In this second type of repression, the gene x encoding a transcriptional activa­

tor, is self-regulated, and also induces the expression of the repressor Y. Once 

the repressor is produced, by dimerizing with the activator X, it prevents it 

by binding its own promoter, thus inhibiting the transcription (Fig. 5.2) [10]. 

For this topology, a mathematical analysis has been proposed together with 

in silico simulations, but it has never been implemented in vivo.

M athem atical analysis

Although this network has never been implemented in vivo, mathematical 

modelling was studied by using ODEs. In order to justify the existence of 

oscillations, the Poincare’-Bendixon theorem was used on a simplified model 

that describes only the evolution of the repressor and the activator-repressor 

complex. This model was able to capture qualitatively the main features of 

a more complete model, and the oscillatory behaviour was detected over a 

broad range of parameters value, demonstrating its robustness, but it requires 

an intermediate repressor degradation rate.
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5.1.3 Repression by proteolysis

The third kind of repression is repression by proteolysis (5.2); the repression 

occurs through the degradation of the activator (gene#), by a protease (gene 

y), whose expression is driven by the activator X. As in the previous case 

this concept has been studied mathematically and in silico experiments have 

been carried out, but it has never implemented in vivo.

M athematical analysis

As for the repression by transcriptional control, oscillations occur through 

a subcritical Hopf bifurcation; this requires faster dynamics of the activator 

compared to those of repressor (faster activator degradation and translation 

rates) [43]. In [25] it was shown that in this topology oscillation arise through 

a SNIC, and that these oscillations exist for a significant range of values of 

the ratio between the activator and repressor degradation rate rates [43].

5.2 A microRNA based oscillator.

The genetic circuit, which we developed, is an amplified negative feedback 

oscillator where repression happens at the post-transcriptional level; it con­

sists of two modules: an auto-catalitic loop with a transcriptional activator 

amplifying its own transcription, and a repressor whose expression is driven 

by the transcriptional activator, and represses it, as depicted in (Figure 5.2).
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Figure 5.2: Amplified negative feedback loop topology. Gene X ac­
tivates itself and geneY, while gene Y represses transcription from X. The 
topology is conserved for the respression by dimerization, and repression by 
proteolysis.
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In order to construct the genetic oscillator with the features defined above, 

I combined the PFL and NFL previously described in Chapter 3 and 4.

The tTA transcriptional activator binds the CMV-TET promoter auto­

regulating itself, together with the expression of the d2EYFP fluorescent 

protein; at the 3’ end of the construct, I inserted four tags, 21 nt long, with 

perfect complementarity to the miR223 seed. A second CMV-TET promoter 

was placed upstream of the miR223 and mCherry reporter gene; following the 

mRNA production, the microRNA is spliced out of the intron, and once pro­

cessed, the mature product is loaded into the RISC, and the tTA-d2EYFP- 

223TAG mRNA gets degraded. The entire cycle should induce an oscillatory 

dynamics Fig.5.3.

Human Embryonic Kidney 293 (HEK 293) and Chinese Hamster Ovary 

(CHO) cells were infected with the PFL virus and sorted according to the 

green fluorescence as described in Chapter 3.

As reported in Chapter 3, we generated monoclonal populations of the 

PFL-infected CHO and also of HEK 293 cells; the clones were then infected 

with the virus carrying the NFL.

To test all of the possible combinations, we also performed the same 

’’cross-infection” but this time starting from a NFL-CHO (or NFL-HEK 293) 

clonal cells, and infecting them with the virus carrying the PFL.

A representative scheme of making clonal populations carrying both the 

PFL and NFL is shown in Fig.5.4

Since double infected cells could not be selected via antibiotic resistance
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IRES d2EYFPtTACMV-TET

miR223CMV-TET
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Figure 5.3: Mammalian oscillator. (A) Scheme of the genetic oscilla­
tor. The tTA transcriptional activator binds the CMV-TET promoter auto­
regulating itself, together with the expression of the d2EYFP fluorescent 
protein (positive feedback loop). The activation of the CMV-TET promoter 
triggers the miR223-mCherry production and the consequent degradation of 
the tTA-d2EYFP mRNA through the binding to four tags placed at the 3’ 
end of the construct. (B) Autoregulated CMV-TET promoter-driven tTA ex­
pression triggers d2EYFP production (1). As the tTA and d2EYFP reach the 
peak (2) the miR223 is transcribed together with the mCherry (3) resulting 
in the downregulation of tTA and d2EYFP (4).
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Figure 5.4: Selection of CHO cells stab ly  expressing th e  positive and  
negative feedback loops. (l)CHO cells were infected with a virus carrying 
the positive feedback loop (CMV-TET-tTA-d2EYFP). (2) CHO cells positive 
to viral infection were selected either with blasticidine antibiotic or with 
FACS sorting. (3)Serial dilution of CHO PFL cells were made to generate 
monoclonal population (CHO-PFL cells). (4-5) CHO-PFL clonal population 
number 2 was infected with the lentivirus harboring the NFL; double infected 
cells were sorted via FACS according to the contemporary expression of green 
and red fluorescence . For simplicity they were called Red on Green cells (RoG 
cells). (7-8) Following serial dilutions, clonal populations of RoG cells were 
generated.
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(both the PFL-carryng virus and the NFL-carrying one include the same 

blasticidine resistance gene), positive cells were sorted via FACS analysis 

according to their level of red and green fluorescence (CHO-Osc).

Monoclonal populations were then generated from the mixed population 

through single cell expansion. In order to check the quality of the result­

ing clones, we extracted genomic DNA and mRNA in order to evaluate the 

construct integration and its expression.

After clonal population selection, we then analyzed clones via fluorescence 

microscopy (Fig.5.5).

In order to keep track of the different clonal populations, we adopted a 

simple nomenclature, according to the sequence of infections. For example, 

the CHO-PFL monoclonal population number 2, infected with the NFL virus, 

were called RoG2 (Red on Green) cells; the clonal populations deriving from 

the double infection done on RoG2 cells were called RoG2-1, RoG2-2 and so 

on 5.4.

We obtained several clones of RoG2 CHO cells but no working clones of 

GoR (Green on Red) CHO cells, probably because despite the comparable 

number of integration events, the expression of miR223 from the NFL was 

much higher than the d2EYFP from PFL, thus completely repressing its 

expression.

Similarly, we were able to obtain GoR HEK 293 cells (Materials and Meth­

ods section). Experiments were performed, according to DNA integration, 

mRNA expression and fluorescence microscopy analysis, with HEK GoR-B
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Figure 5.5: Real-time PCR of genomic DNA (gDNA) and mRNA  
(cDNA) extracted from the monoclonal population of double in­
fected RoG CHO cells.

clonal population (figure 5.6).
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Figure 5.6: Real-tim e P C R  of genomic DNA (gDNA) and m R N A  
(cDNA) ex trac ted  from th e  m onoclonal population  of double in­
fected G oR HEK 293 cells.

5.3 M athematical modeling of synthetic os­

cillator

As for the PFL motif, also for the genetic clock the mathematical model is 

based on ODEs, since we are considering the average behavior of a population 

of cells ([38, 40, 51, 81, 78]). We integrated in the previous model describing 

the dynamics of the auto-regulatory PFL, new equations to take into account 

the effect of the NFL on the whole system;

We assumed:

• Hill functions to model the rates of gene transcription, including basal
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activity to describe the leakiness of the promoter (CMV-TET);

• linear degradation for all genes and proteins;

• Michaelis-Menten like function to model the miR silencing on tTA ;

• linear dynamics for the translation process;

• Michaelis-Menten like modelling of the effect of the inducer (Doxycy- 

cline);

• distinct dynamics for inactive and active form of the microRNA to take 

into account maturation time. Thus, we used two separate variables 

to model the microRNA concentration: the first (x^) represents the 

unprocessed miR , while the second (#4) reflects the concentration of 

the active form after the miR has been cleaved by Dicer and is bounded 

to the RISC complex at rate K d ;

• distinct dynamics for the unfolded (inactive) and folded (active) forms 

of the reporter proteins.

Thus the resulting model looks like:
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where

x\ is the tTA mRNA,

x 2 is the tTA protein,

X3 is the miR223 mRNA,

£4 is the miR223 mRNA in the active form

x 5 is the d2EYFP unfolded protein,

• xe is the d2EYFP folded protein,
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• X7 is the mcherry unfolded protein,

• Xg is the mcherry folded protein.

Parameters estim ation and Bifurcation Analysis

Table 5.1 reports parameter values for which in silico simulations give rise 

to undamped oscillations. Parameter values have been chosen based on: 

knowledge of the experimental system (i.e. the Hill coefficient describing the 

miR223 silencing strictly related to the number of tags); fitting of experimen­

tal results (Chapter 3); bifurcation analysis results (Fig.5.7, 5.8,5.9,5.10,5.11, 

5.12).

Bifurcation analysis were carried out considering parameters for which 

certain ranges of values are physically and experimentally feasible, in order 

the system to behave with undamped oscillations.

In silico simulations are reported in Fig.5.13 and 5.14. For this parame­

ters choice the model shows a period of 1000 minutes.

We also ran simulations using a similar mathematical model (described 

below) that uses a unique differential equation to describe the dynamics of 

the miR223. As shown in Fig.5.15, using the same set of parameters of the 

previous model, oscillations do not occur anymore, stressing the importance 

of a sufficient time delay to get the oscillatory behavior.
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Figure 5.7: B ifurcation diagram  for basal activ ity  of C M V - T E T  p ro­
m oter (oi) versus  degradation ra te  of miR223 ($).
Big stars in the diagram correspond a longer period of the oscillations.
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Period : vs X

Figure 5.8: Bifurcation diagram for basal activity of C M V -T E T  pro­
m oter (oi) versus m aximal rate of silencing of m iR223 (A) .Big stars
in the diagram correspond a longer period of the oscillations.
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Period : 8 vs X

2.5

0.5

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

Figure 5.9: Bifurcation diagram for degradation rate of m iR223 (#)
versus m axim al rate of silencing of miR223 (A). Big stars in the dia­
gram correspond a longer period of the oscillations.
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Figure 5.10: Bifurcation diagram for hill constant for d2EY FP equa­
tion (Ks) versus hill costant for m iR223 equation (K\).  Big stars in
the diagram correspond a longer period of the oscillations.
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Figure 5.11: B ifurcation diagram  for hill costant for d2E Y FP equa­
tion  (Ks) versus folding ra te  for miR223 (K £>). Big stars in the diagram
correspond a longer period of the oscillations.
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Period : K_ vs X

0.05 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Figure 5.12: B ifurcation diagram  for folding ra te  for miR223 (KD)
versus m axim al ra te  of silencing of miR223 (A). Big stars in the dia­
gram correspond a longer period of the oscillations.
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Figure 5.13: Zoom of the folded and unfolded form of mCherry on the  
simulation of all equations for the second model with parameters 
of Table 5.1. Due to the stability of the protein, mCherry levels 
are up to 40 times more than d2EYFP protein levels.
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Table 5.1: Parameter for the mathematical model; undamped oscillations. 
Parameters Definition unit Value

Vl maximal transcription rate for CMV promoter [nMmirT1] 0.075432
V2 translation rate for tTA protein [mm-1] 0.027131449
V3 maximal transcription rate for CMVTET promoter [nM m in -1] 0.075432026
V4 translation rate for mcherry [mm-1] 0.0271
d i degradation rate for tTA mRNA [mm-1] 0.01012906
d>2 degradation rate for tTA protein \min~1] 0.010016646
d% degradation rate for miR223 mRNA [mm-1] 0.0004814
d4 degradation rate for mcherry protein [mm-1] 0.003236
d$ degradation rate for d2EYFP [min-1] 0.00048135
8 degradation rate for miR223 mRNA [mm-1] 0.007

Oil basal activity for CMVTET promoter 0.015
A maximal rate of silencing [mm-1] 0.073879
Kx Hill constant for miR223 equation [nM] 3
k 3 Hill constant for d2EYFP equation [nM] 2
Kd folding rate for miR223 [nM] 0.025
h2 Hill constant for miR223 equation 2
h Hill constant for d2EYFP equation 4
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where

• x\ is the tTA mRNA,

• x2 is the tTA protein,

• xs is the miR223 mRNA,

• £4 is the d2EYFP unfolded protein,

• £5 is the d2EYFP folded protein,

• x6 is the mcherry unfolded protein,

• X7 is the mcherry folded protein.
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First model
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Figure 5.15: In silico sim ulation of a m athem atical m odel lacking of
the  equations th a t d iscrim inate the  inactive and active form of th e
miR223. The network does no more behave as an oscillator.
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5.4 Experimental investigation of dynamic prop­

erties of the network.

Since CHO cells are easy to track as single cells for image analysis, the first 

set of time lapse experiments were carried out with these cells.

To capture the dynamic properties of the circuit, and to distinguish os­

cillatory events due to cell cycle rather than the interaction of positive and 

negative feedback loops, we generated a negative control lacking the features 

typical of an oscillatory network. In particular we stably expressed via lentivi- 

ral infection the NFL in CHO NOPFL cells. Therefore the network lacks both 

of the autoregulatory loop because the tTA expression is controlled by the 

CMV constitutive promoter, and of the four miR223 tags (Fig.5.16) (CHO- 

nOsc). As described in Materials and Methods section the double infected 

cells were sorted by FACS and clonal population were generated by single 

cell expansion.

We then performed time-series experiments in which CHO-Osc e CHO- 

nOsc were imaged using time-lapse fluorescence microscopy every 15 minutes 

for up to four days, quantifying the average fluorescence intensity of the 

population of cells Experiments were carried out at a temperature of 32 °C 

in order to limit cell motility and reduce the risk associated to data loss 

occurring when cells exit the tracked field [46].

20% of the time lapse experiments showed oscillations with a period of 

1000 minutes Fig.5.17; three out of thirteen clones of CHO cells exhibit oscil-
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m iR 223friC herr^d2EYFP

pCMV pCMV_TET

Figure 5.16: Negative control of the  oscillator in CHO cells. CHO NO
PFL cells were infected with the virus carrying the negative feedback loop. 
The resulting cell line was used as control in our experiments since cells lack 
of the tag for the miR223; therefore, variances in the level of fluorescence, 
are due only to the intrinsic cell variability.
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latory behavior (RoG 7-l;RoG 7-2; RoG 2-8) compared to controls. Although 

the amplitude of oscillations is low, and the system is not as robust as ex­

pected, for the first time a complex synthetic network stably integrated in 

mammalian cells produces cyclic expression of a gene of interest.

We performed the same experiments using HEK GoR clones. Only the 

HEK GoR-B showed oscillations 6 out of 10 times. Differently from CHO 

cells, in this case we used as negative control HEK PFL cells. As is observed 

in fig 5.18 oscillations occur with a period of 1000 minutes.

In order to increase the robustness and the amplitude of the oscillations, 

we focused on the possibility to amplify the time delay between the activation 

of positive feedback loop and the response of the negative feedback loop. We 

ended up with a new design in which we added an intermediate step which 

comprises a new transcription factor. The design and implementation of the 

three steps genetic oscillator, will be discussed in Chapter 6.
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d2EYFP

«

Figure 5.17: CHO RoG cells show oscillatory behavior. d2EYFP fluo­
rescence was detected for up to 4000 minutes using a time lapse microscopy. 
Oscillations occur with a period of about 1000 minutes. (A) CHO-Osc. (B) 
CHO-nOsc.
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Figure 5.18: HEK 293 GoR cells show oscillatory behavior. d2EYFP 
fluorescence was detected for up to 4000 minutes using a time lapse mi­
croscopy. Oscillations occur with a period of about 1000 minutes. (A) HEK 
GoR cells. (B) HEK PFL cells.
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Materials and M ethods

Experim ental procedure: construction of the Amplified  

N egative Feedback loop

As described in Chapter 3, to implement the negative feedback loop in a 

lentiviral vector, we used the ViraPower Promoterless Lentiviral Gateway 

Expression System (Invitrogen). The pMA-miR223-destRFP-WPRE vector 

containing the microRNA, and the destabilized form of RFP element was 

synthesised by GENE ART together with the recombination sites. mCherry 

fluorescent protein coding sequence was amplified from the pmCherry (Clon- 

tech) by PCR with a forward primer containing a Nhel recognition sequence 

(5’-catg GCTAGC atggtgagcaagggcgaggag-3’), and a reverse primer contain­

ing a Notl restriction site (5’-attc GCGGCCGC tta  ctt gta cagctc gtc ca 

tgcc-3’). The PCR product and pMA-miR223-destRFP-WPRE were then di­

gested with Nhel-Notl restriction enzymes and the mCherry ligated in place 

of destRFP, generating a new vector termed pMA-miR223-mCherry. The 

pMA-miR223-mCherry was then linearised with the Asel restriction enzyme 

and recombined with the pDONR221 (Invitrogen) following the manufac­

turer instruction. In this way we generated pENTR-miR223-mCherry vector 

with specific recombination sites.

Finally we performed a recombination reaction between the pENTR- 

miR223-mCherry, pENTR5’-TOPO-CMV-TET (see Chapter 3 for details 

on construction) and the pLenti/R4R2/V5-DEST according to manufacturer
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instructions.

As suggested by the manufacturer, the lentivirus was then produced in 

293FTcells.

Experim ental procedure: cell culture, lentiviral trans­

duction, tim e lapse experim ent

293FT, CHO, and CHO AA8 TET-OFF cells were maintained as described 

in Chapter 3. HEK 293 and HEK-PFL were maintained at 37°C in a 5% 

C02-humidified incubator. HEK 293 cells were cultured in Dulbecco’s mod­

ified Eagle’s medium (DMEM, GIBCO BRL) supplemented with 10% heat- 

inactivated fetal bovine serum (FBS, Invitrogen) and 1% antibiotic/antimy- 

cotic solution (GIBCO BRL). Clonal Populations of CHO-PFL, CHO-NoPFL 

and HEK-PFL cells were handled as described above, plus 6ug/mL of blas- 

ticidine to maintain the selection .

HEK 293 cells were infected with the virus containing the PFL as de­

scribed for CHO cells in chapter 3, and then were sorted via BD FACSAria 

Cell Sorting System (Becton Dickinson). d2EYFP was excited at 488 nm, 

and emission was detected using a 525 nm bandpass filter. Then HEK-PFL 

cells were kept in blasticidine at a final concentration 8ug/mL. Serial di­

lutions of stably transduced cells (up to 0.05 cells/mL) were plated in 96- 

well microtitre plates, and dilutions containing only one cell per well were 

selected. Monoclonal colonies were cultured and amplified as described, to
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obtain monoclonal populations of HEK.

To transduce cells with the virus produced, 500,000 of each clone of 

CHO-PFL, CHO-NoPFL, and HEK-PFL cell lines were plated and incu­

bated overnight. On the day of transduction the medium was removed and 

lmL of the virus was added to the cells together with polybrene (Invitro­

gen) to a final concentration of 6ug/mL. After an overnight incubation the 

medium containing the virus was removed and replaced with complete cul­

ture medium. HEK 293 cells were infected with the virus containing the PFL 

as described for CHO cells in chapter 3.

Cells were sorted for contemporary green and red fluorescence intensity 

using a BD FACSAria Cell Sorting System (Becton Dickinson).

Serial dilutions of stably transduced cells (up to 0.05 cells/mL) were 

plated in 96-well microtitre plates, and dilutions containing only one cell 

per well were selected. Monoclonal colonies were cultured and amplified as 

described, to obtain monoclonal populations of CHO-Oscillator cells (CHO- 

Osc), CHO-NoOscillator cells (CHO-NoOsc) and HEK-Oscillator (HEK-Osc).

For the time lapse experiment, 500 CHO-Osc, CHO-NoOsc, HEK-PFL 

and HEK-Osc cells, were plated in chamber slide (lab-Tek)and mantained in 

a-MEM/D-MEM (for CHO and HEK cells respectively), (Sigma)supplemented 

with 5% TET system approved FBS (Invitrogen), 4mM L-glutamine, and 1% 

antibiotic/antimycotic solution (GIBCO BRL).
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Experim ental procedure: D N A  extraction, m RN A ex­

traction RealTim e PC R

1,000,000 CHO-Osc, CHO-NoOsc, HEK-PFL and HEK-Osc cells were plated 

in a 6-well multiwell plate to reach a confluence of 80% at the moment of 

the DNA/mRNA extraction. The day after cells were collected and resus­

pended in 200//L of PBS after centrifugation for five minutes at 300 x g . 

Then the DNA was extracted using the DNeasy Blood and Tissue kit (Qi- 

agen), the mRNA was extracted and retro-transcribed using the RNeasy 

mini kit and the Quantitec reverse transcrption kit (Qiagen), respectively. 

We compared the DNA levels of tTA, d2EYFP and mCherry all cell lines 

by RealTime PCR following DNA extraction, proving that the both cell 

populations carry a unique copy of the networks in their genome. We mea­

sured the mRNA levels to see the effect of the silencing due to the mi- 

croRNA by Realtime PCR. Quantitative RealTime PCR reaction were set 

up in duplicates using the LightCycler 480 SYBR green master mix (Roche) 

and the amplification was performed using a LightCycler 480 RealTime 

PCR instrument (Roche). The PCR were carried out using the following 

primers: d2EYFP forward (5’-acgacggcactcaagacc-35); d2EYFP reverse (5’- 

gtcctccttgaagtcgatgc-3’); PFL tTA forward (5’-aaagcagctgaagtgcgagag-3’); 

PFL tTA reverse (5’-gatggtgctgccgtagttgtt-3’); NO PFL tTA forward (5’- 

acagcgcattagagctgctt-3’); NO PFL tTA reverse (5’-acctagcttctgggcgagtt-3’); 

mCherry forward (5’-cactacgacgctgaggtcaag-3’);
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mCherry reverse (5’-gtagtcctcgttgtgggaggt-3’).

Data analyses were performed using the LightCycler 480 Software(Roche). 

GAPDH DNA/mRNA levels were used to normalise the amount of DNA/m- 

RNA and ACts were calculated as the difference between the average GAPDH 

Ct and the average tTA, d2EYFP, and (mCherry).

Image acquisition and processing

Please refer to Chapter 3

M odel simulations

Numerical simulations and bifurcation diagrams were run using Matlab 2010b 

(Mathworks Inc.). We used ode23s solver (a detailed discussion of the nu­

merical methods used by ode23 can be found in [14]).



Chapter 6

Synthesis and Analysis of a 

delayed amplified negative 

feedback loop oscillator in 

mammalian cells
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In this chapter I will describe an alternative topology of the network 

that we are currently developing in order the oscillation to be ensured. For 

this design we made new experimental analysis, mathematical model and 

simulations, which will be detailed in the following sections.
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6.1 Design of a three stage genetic oscillator.

It has been shown that a time delay in the dynamics of negative feedback 

loops is required to get sustained and stable oscillations .

We designed a three stage genetic oscillator which allows us to increase 

the time elapsing between the auto-activation of the positive feedback loop 

and the repression of the microRNA on the tTA.

The new topology is shown in Figure 6.1. The PFL is conserved, but the 

tTA drives the expression of a gene expression cassette consisting of:

• destabilized artificial activator (dGAL4-VP16) whose expression has 

been optimized for mammalian cells [84].

• IRES sequence

• destabilized cyan reporter (dCyan).

The NFL was modified so that the miR223 can be regulated by a GAL4 

responsive promoter ( UAS). This promoter is composed by a minimal cy­

tomegalovirus promoter (CMVmini) fused with four tandem repeats of the 

galactose upstream activating sequence [84]. Once the dGAL4-VP16 is pro­

duced, it binds the responsive promoter (UAS) driving the expression of 

miR223 , thus giving rise to a new Negative Feedback Loop (UAS-NFL), 

that will silence the tTA-d2EYFP mRNA expression.

In order to construct the network, we first constructed vectors carrying 

the three constructs and then we used the Gateway Technology (Invitrogen)
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Figure 6.1: Three stage genetic clock.
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to produce lentiviral vectors and finally the viruses (Materials and Methods).

We infected CHO and HEK 293 cells with the virus carrying the dGAL4- 

VP16 and we selected for blasticidine selection positive cells. Unfortunately 

only CHO cells survived the selection, therefore all the experiments were car­

ried out on this cell line.

As shown in Fig.6.2, we extracted the genomic DNA to confirm the in­

tegration; to confirm that the promoter CMV-TET was activated by tTA, 

we transfected cells with a plasmid expressing constitutively the transcrip­

tional factor, and compared the mRNA levels of dGAL4~VP16 in absence 

and presence of tTA by Real Time PCR (Fig.6.2).

We then co-transfected CHO-GAL4 cells with the lentiviral vector carry­

ing the PFL and the UAS-NFL to test whether the regulation of the complete 

system worked as expected. Since the activation of the system is induced by 

tTA, in the negative control, we transfected a plasmid carrying another gene 

not involved at all in our system (namely grn). Results are shown in Fig.6.3.

We then generated four clonal populations of CHO cells and performed 

the same transfection described above, by evaluating the expression of ( dGal4- 

VP16) upon the induction by tTA activator (figure 6.4). The clonal popula­

tion were called CHO-G1, CHO-G2, CHO-G3, CHO-G4.

In order to implement the entire genetic oscillator in CHO cells, we in­

fected CHO-G clones with the PFL virus and we sorted positive cells via 

FACS analysis for the green fluorescence. Also in this case we adopted a
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simple nomenclature; for example the clonal population 2 of CHO cells inte­

grated with GAL4 infected with the PFL is called CHO-G2-P. Moreover from 

FACS analysis (data not shown) we recognized two different populations of 

CHO cells infected with the PFL, based on higher, or lower d2EYFP levels 

of expression. We isolated both populations and we checked from RealTime 

PCR the different mRNA levels of tTA, and d2EYFP, confirming a differ­

ent expression level(Fig.6.5). These cell lines were termed CHO-G-P(+), and 

CHO-G-P(++). Of note, at DNA levels (Fig. 6.6), tTA , and d2eyfp are com­

parable in CHO-G-P (+), and CHO-G-P (++) cells; different expression levels 

could be explained by the random points of integration which are typical of 

lentiviral infections.

We are currently isolating clonal populations of CHO-G-P cells. Next, 

we will infect clones of CHO-G-P cells with the UAS-NFL virus to generate 

a stable integrated system that will be tested via time lapse microscopy as 

described in Chapter 5.

As described in the next section, also for this network a mathematical 

model, based on ordinary differential equations, has been developed.
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6.2 M athematical modeling of three step os­

cillator.

In this section we propose a mathematical model close to the previous one 

used to describe the amplified feedback loop, but that takes into account the 

slowing down of the repression process due to the intermediate step. Since the 

delay obtained seems to be sufficient enough to get the oscillatory behavior, 

the inactive and active forms of miR223 are no longer considered separately, 

but we just describe the active form of the microRNA.
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where

£1 is the tTA mRNA,

x 2 is the tTA protein,
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• xz is the dGal4 mRNA,

• X4 is the dGal4 protein,

• x$ is the miR223,

• xq is the d2EYFP unfolded protein,

• X7 is the d2EYFP folded protein,

• xg is the mcherry unfolded protein,

• xg is the mcherry folded protein,

• aqO is the cyan unfolded protein,

• X\1 is the cyan folded protein,

All the parameters are the same as for previous model. Some of the new 

parameters have been chosen from literature, in particular the half-life of the 

protein dGAL4 is known to be of 3.76 hours [84], while the half-life of mir223 

is supposed to be of 25 hours [9] (table.6.1).

From preliminary simulation (Fig.6.7) and qualitative analysis, a long 

oscillation period and a different amplitude can be predicted by this model; 

some diagrams of period are reported as function of the new parameters like 

the degradation of gal4 mRNA (d3) (Fig.6.8) or the Hill constant for the 

GAL4-UAS promoter (K-UAS) (Fig.6.9).
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Figure 6.7: Sim ulation for th e  th ree  stage oscillator.
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Table 6.1: Parameter for the first model; undamped oscillations.
Parameters Definition unit Value

Vi maximal transcription rate for CMV promoter [:nMmin~l] 0.075432
v2 translation rate for tTA protein [rain-1] 0.027131449
v3 maximal transcription rate for CMVTET promoter [nMmrn-1] 0.075432026
v4 translation rate for mcherry [ram-1] 0.0271
d i degradation rate for tTA mRNA [rain-1] 0.01012906
d2 degradation rate for tTA protein 0.010016646
d3 degradation rate for miR223 mRNA [ram-1] 0.0004814
C?4 degradation rate for mcherry protein [ram-1] 0.003236
C?5 degradation rate for d2EYFP [ram-1] 0.00048135
Oil basal activity for CMVTET promoter 0.015
A maximal rate of silencing [ram-1] 0.073879

K i Hill constant for miR223 equation [nM] 3
k 3 Hill constant for d2EYFP equation [nM] 2
h 2 Hill coefficient for miR223 equation 2
h 3 Hill coefficient for d2EYFP equation 4

OCUAS Basal activity for Gal4UAS promoter 0.008
K u a s Hill constant for Gal4UAS promoter 3
huA S Hill coefficient for Gal4UAS promoter 4
dpG degradation rate for dGal4 protein 0.003086
dG degradation rate for dGal4 mRNA 0.0458

VUAS maximal transcription rate for Gal4UAS promoter 0.055
Vp g translation rate for dGal4 protein 0.02

Materials and M ethods

Experim ental procedure: construction of the three step  

oscillator.

To implement this new topology of the network we took advantage of the 

ViraPower Promoterless Lentiviral Gateway Expression System (Invitrogen) 

as detailed in Chapter 3. The pDonR-dGAL4-VP16-dCyan, and the pMA- 

cPPT-UAS vectors containing specific recombination sites were synthesised 

by GENEART.
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The cPPt-UAS cassette was amplified from pMA-cPPT-UAS by PCR. 

The PCR was performed with the Taq polymerase provided by Invitrogen 

that adds a single deoxyadenosine (A) to the 3’ ends of PCR products. This 

allows PCR inserts to ligate efficiently with the pENTR5’-TOPO vector 

which is supplied linearised with single 3’-deoxythymidine (T) overhangs, 

obtaining the pENTR5’-TOPO-C/>15 with specific recombination sites.

Finally we performed a recombination reaction between the pDonR-dGAL4- 

VP16-dCyan, pEm R^-TO PO -CM V-TET  and the pLenti/R4R2/ V5-DEST 

according to manufacturer instructions, to generate the CMV-TET-GALA- 

VP16 lentiviral vector. We also performed the same recombination reac-
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tion but using the pENTR5’-TOPO- UAS, pENTR-miR223-mCherry and the 

pLenti/R4R2 /  V5-DEST.

As suggested by the manufacturer, the lentivirus was then produced in 

293FTcells.

Experimental procedure: cell culture, lentiviral trans­

duction, transfections.

293FT, and CHO cells were maintained as described in Chapter 3. To trans­

duce cells with the virus produced, 500,000 CHO cells were plated and incu­
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bated overnight. On the day of transduction the medium was removed and 

lmL of the virus carrying the CMV-TET-GAL4-VP16 was added to the cells 

together with polybrene (Invitrogen) to a final concentration of 6ug/mL. Af­

ter an overnight incubation the medium containing the virus was removed 

and replaced with complete culture medium containing Blasticidin (Sigma) 

to a final concentration of 5//g/mL to select for stably transduced cells. Se­

rial dilutions of stably transduced cells (up to 0.05 cells/mL) were plated in 

96-well microtitre plates, and dilutions containing only one cell per well were 

selected. Monoclonal colonies were cultured and amplified as described, to 

obtain monoclonal populations. 500,000 CHO-G cells were transduced as de­

scribed above with the PFL virus, and sorted according to green fluorescence 

using a BD FACS Aria Cell Sorting System (Becton Dickinson). CHO-G cells 

were seeded at a density of 300.000 per well in a 6 wells multi-well and trans­

fected 1 day after seeding using Lipofectamine 2000 (Invitrogen) according 

to manufacturer’s instructions

Experim ental procedure: D N A  extraction, m R N A  ex­

traction RealTime PC R

1,000,000 CHO-G, and CHO-G-P cells were plated in a 6-well multiwell plate 

to reach a confluence of 80% at the moment of the DNA/mRNA extraction. 

The day after cells were collected and resuspended in 200/zL of PBS after cen­

trifugation for five minutes at 300 x g . Then the DNA was extracted using the
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DNeasy Blood and Tissue kit (Qiagen), the mRNA was extracted and retro- 

transcribed using the RNeasy mini kit and the Quantitec reverse transcrp- 

tion kit (Qiagen), respectively. The PCR were carried out using the following 

primers: d2EYFP forward (5’-acgacggcactcaagacc-3’); d2EYFP reverse (5’- 

gtcctccttgaagtcgatgc-35); PFL tTA forward (S’-aaagcagctgaagtgcgagag-S5); 

PFL tTA reverse (5’-gatggtgctgccgtagttgtt-3’); NO PFL tTA forward (5’- 

acagcgcattagagctgctt-3’); NO PFL tTA reverse (5’-acctagcttctgggcgagtt-3’); 

GAL4 forward(5’-GGACGAGCTCCACTTAGACG-3’)

GAL4 reverse (5,-GTCCCCCAACATGTCCAGAT3,).

Data analyses were performed using the LightCycler 480 Software(Roche). 

GAPDH DNA/mRNA levels were used to normalise the amount of DNA/m- 

RNA and ACts were calculated as the difference between the average GAPDH 

Ct and the average tTA, d2EYFP, and fGAL4).

M odel simulations

Numerical simulations and qualitative analysis diagrams were run using Mat- 

lab 2010b (Mathworks Inc.). We used ode23s solver (a detailed discussion of 

the numerical methods used by ode23 can be found in [14]).



Chapter 7

Conclusion

The main challenge in synthetic biology is to develop a deeper understanding 

of the biological design principles using a bottom-up approach by construct­

ing synthetic networks and studying their behavior in cells. Researchers have 

begun to design circuits using design principles derived from endogenous 

cellular processes. This thesis focused on the investigation of the biological 

mechanisms involved in cyclic gene expression (e.g. circadian clocks) by syn­

thesizing a genetic oscillator and integrating it in mammalian cells. The oscil­

lator creates a temporal structure that serves to anticipate what is needed by 

the cell and the organism, and when. Even though the molecular circadian 

network is described as interlocked loops formed by transcription factors, 

it has been recently shown that also non-trascriptional events can sustain 

circadian rhythms. For example the peroxiredoxins, a family of high con­

served antioxidant proteins, under constant conditions (light, temperature),
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are subjected to 24-hour redox cycles in human red blood cells.

We built a synthetic network in which classical motives, positive and neg­

ative feedback loop, are mutually connected to sustain periodic expression of 

a gene. We first investigated the cellular behavior upon the integration of a 

positive feedback loop (PFL). We have demonstrated that a transcriptional 

positive feedback loop can slow down the “switch off” times, as compared 

to an equivalent network without auto—regulation. The reason for a cell 

to “choose” an auto-regulation control strategy for transcriptional regula­

tion, could be due to the intrinsic robustness of this approach to transient 

activation of the network. For example, in a signalling pathway, a ligand 

(equivalent to Doxycycline in our PFL) could cause a transcription factor to 

stop transcribing itself, as well as, a set of target genes, to initiate a specific 

response. However, in order for the pathway not to respond to a transient 

concentration of the ligand, the PFL strategy has to be chosen, otherwise the 

response would start immediately. Moreover, the response time of the PFL 

network can be modulated by the ligand concentration, if this is really high, 

the system will switch off as quickly as possible alternatively the ligand can 

be present at low, or medium, concentration, but it should persist for a long 

time, in order for the pathway to respond. This kind of behaviour has been 

recently described as “persistence detection” in cellular signal processing to 

indicate the ability of the genetic circuit to distinguish between transient and 

persistent signals.

Interestingly, it has been shown in E. coli, that the transcriptional nega­
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tive feedback loop (NFL) has an opposite effect, that is, it can significantly 

speed up the rise-times of transcription, but has very little effect on the 

switch-off times. The duality between positive and negative feedback has 

been predicted in a biological setting, and it is a well established concept in 

“control engineering”, a branch of engineering which deals with the design 

of automated mechanisms to control a variable of interest (the altitude of an 

airplane, or more simply, the temperature of a room via thermostat). Specif­

ically, the negative feedback loop is a classic control engineering approach 

to speed up the response times of a sytem, thus quickly achieving a desired 

value of a variable of interest. Positive feedback loops, instead, can slow down 

the response of the system to external input, and are used by control engi­

neers to build “memory” elements, also known as switches, which are able to 

be in one of two steady-states (OFF or ON), and which are robust against 

unwanted transient perturbations that may inadvertently switch off (or on) 

the system. We indeed verified that the PFL can exhibit bistability for zero 

or low concentrations of Doxycyline A bistable genetic network will cause a 

population of cells to divide in two sub-populations, each in one of the two 

possible states (OFF or ON). In our mammalian PFL, this behaviour was 

not detected experimentally. This can be easily explained by observing that 

the PFL model is bistable but the basin of attraction of the OFF equilib­

rium point is much smaller as compared to that of the ON state, when no 

Doxycycline is present. Therefore, just few cells will be in the OFF state and 

these will not be enough to be significantly detected experimentally. We pre­
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diet however that for intermediate concentration of Doxycycline (lOOng/mL) 

the basin of attraction will be comparable and bistability should be detected 

experimentally.

Moreover we showed that mathematics and biology are a ’winning com­

bination’ ; for example, from mathematical simulations, we found that to fit 

the experimental results, the half-life of d2EYFP should have been longer 

than the one previously estimated in literature. In fact at our experimental 

conditions (32 °C) we estimated this half-life to be around 4 hours instead 

of 2 hours.

In (Chapter4) we were able to model mathematically the effect of siRNA on 

gene expression. We evaluated the performance of 4 different models to fit 

the experiments we carried out in our lab. Then we integrated this mathe­

matical approach to model the effect of microRNA in our system as described 

in (Chapter5).

Since obtaining sustained oscillations is no trivial, mainly because a con­

sistent time delay is needed between the activation of positive and negative 

feedback loop, we are currently investigating an improved version of the syn­

thetic network which is based on three stages, conserving the basic design of 

a auto—regulating loop, and of a negative one (Chapter6).

Compared to previous attempts [81], with this work we addressed the 

issue of the stably integration of mammalian cells, a critical point to study 

the long-term effect of the circuit. The only investigation on the effect of such
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a synthetic network in a mammalian system is based on transient transfec­

tion of three different plasmids, where only the right combination of each 

DNA vector will give rise to oscillations. Furthermore, we realized a sys­

tem as close as possible to the biological pathways within the cells, using as 

negative repressor a natural microRNA that enters in the endogenous inter­

ference cascade. Such a synthetic network will be useful in studies requiring 

the periodic perturbation of a target genes to evaluate the related-pathway 

alterations. In a future perspective , the improvement of the system to fine 

tune the period of the oscillations, will allow also to design therapeuthic ap­

proaches for diseases in which the mutated gene codifies for a protein whose 

expression should occur periodically (i.e. insulin in diabetes).

Oscillations have been observed in major signaling pathways; p53 protein 

levels have been shown to be crucial in controlling sensitivity and tolerance to 

DNA damage responses; hesl expression in neural progenitor cells are essen­

tial for patterning of the vertebrate embryo during development [73, 33, 57]. 

One hypothesis is that one of the roles of cell signaling is to allow ‘mutual syn­

chronization’ and ‘entrainment’ of these oscillations across a tissue for robust 

coordination of biological processes at the tissue-level. The next goal will be 

to use the cell autonomous oscillator, which we have contructed, to test the 

role of entrainment and mutual synchronization in cell-cell signalling, and to 

characterize them mathematically via dynamical and numerical simulations.
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a ttR lv

pENTR-TOPO_CMV_TET

Figure A.l: pE N T R -C M V -T ET  vector. Flanking are the attL4 and attR l
recombination sites.
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CMV

a t tR l ,

pENTR-TOPO_CMV

Figure A.2: pEN TR -C M V  vector. Flanking are the attL4 and attR l re­
combination sites.
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ju n c tio n  M rk s r

attl

attRl

pENTR_GAL4_UAS

Figure A.3: pEN TR-U A S vector. Flanking are the attL4 and attR l re­
combination sites.
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a t t L l

pENTR-tTA_IRES_d2EYFP_WPRE_4X223TAG

tTA-1RES-d2EYFP-WPRE-4X22 3TAG,

ka t t L 2

Figure A.4: pE N T R -PFL  vector. Flanking the tTA-IRES-d2EYFP-
WPRE-223TAG are the attLl and attL2 recombination sites.
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attLl

pENTR_mlR223_mCherry

mi R2 2 3_mCh e r r y

.attL2

Figure A.5: pEN TR -N FL vector. Flanking the miR223-mCherry are the
attLl and attL2 recombination sites.
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attLl

d 2EYFP_WPRE

Figure A.6: pE N T R -d2EY FP vector. Flanking the d2EYFP are the attL l
and attL2 recombination sites.
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ju n c t io n  m arker

attLl

IRES

dCyanpENTR_dGAL4-VP16_dCyan

attL2

Figure A.7: pEN TR-G A L4-V P16 vector. Flanking the gene cassette are
the attLl and attL2 recombination sites.
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CMV_TET

tTA_IRES_d2EYFP_WPRE_4X22 3TAG

pDEST_PFL

Figure A.8: pD EST-PFL vector. From the recombination reaction between 
three vectors we obtained the positive feedback loop
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CMV_TET

miR223_mCherry

pDEST_NFL|

Figure A.9: pD EST-N FL vector. Obtained from recombination reaction
between the plasmids carrying promoter, gene expression cassette e viral
backbone.
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dGAL4-VP16_dCyan

pDEST_C MV_T ET_d G AL4-VP16_dCyan

jfthclioa tarker

Figure A. 10: pDEST-G AL4 vector. Obtained from recombination reaction
between the plasmids carrying promoter, gene expression cassette e viral
backbone.
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UAS

pUAS_miR223_mCherry
(HIM t*)

Figure A.11: p D E S T - U A S - m iR 2 2 3 - m C h e r r y  v e c t o r .  Obtained from re­
combination reaction between the plasmids carrying promoter, gene expres­
sion cassette e viral backbone.
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