View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by St Andrews Research Repository

DrAFT VERSION MAY 14, 2019
Typeset using I£TEX modern style in AASTeX62

Petabytes to Science

AmanDA E. Baugr,! Eric C. BELLM,>> Apam S. Borton,* SurAJIT CHAUDHURL,?
A.J. ConnoLLy,? KeLLE L. Cruz,% 78 Vanpana DesaL’® ALEX DrLICA-WAGNER, 0" 11
Frossie Economou,! NiaLL GAFFNEY,'2 J. KaveLaars,!? J. Kinney, ! Ting S. L, 10
B. LUNDGREN, !’ R. MARGUTTL'® G. NarAYAN,!” B. NorD, !0 1118 DARA J. NorRMAN,*
W. O’MuLLaNE.,! S. Papur,!® J. E. G. Peek,!”-20 C. Scuarer,?! Mecan E. Scawams,?

ArFON M. SmitH,!” ALEXANDER S. Szaray,? 20 Erik J. ToLLERUD,!? AND

ANNE-MARIE WEDMANSZ4

! Large Synoptic Survey Telescope (LSST/AURA)

2LSST
3DIRAC Institute, Department of Astronomy, University of Washington

*NOAO
>Microsoft Research

Hunter College, City University of New York
TAmerican Museum of Natural History
8 Center for Computational Astrophysics, Flatiron Institute

?Caltech/IPAC
10 Fermi National Accelerator Laboratory

Y Kavli Institute of Cosmological Physics, University of Chicago
2Texas Advanced Computing Center
3National Research Council of Canada
4Google Inc.
SUniversity of North Carolina Asheville
Y Northwestern University
7Space Telescope Science Institute
8Department of Astronomy and Astrophysics, University of Chicago

19 Amazon Web Services
2 Department of Physics & Astronomy, The Johns Hopkins University

2L Carnegie Mellon University
22Gemini Observatory
2 Department of Computer Science, The Johns Hopkins University
24School of Physics and Astronomy, University of St Andrews

arXiv:1905.05116v1 [astro-ph.IM] 13 May 2019

Abstract

A Kavli foundation sponsored workshop on the theme Petabytes to Science was held 12"
to 14" of February 2019 in Las Vegas. The aim of the this workshop was to discuss
important trends and technologies which may support astronomy. We also tackled how
to better shape the workforce for the new trends and how we should approach education
and public outreach. This document was coauthored during the workshop and edited in
the weeks after. It comprises the discussions and highlights many recommendations which
came out of the workshop.
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We shall distill parts of this document and formulate potential white papers for the decadal
survey.

Keywords: Astronomy, Astrophysics, Work Force, Diversity, Inclusion, Software, Al-
gorithms, Data Management, Computing, HPC, HTC, Networking, Machine
Learning, Cloud, Education, Management, Outreach, Workforce
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1. INTRODUCTION
Contributors: William O’Mullane <womullan@Isst.org>, Ting Li <tingli@fnal.gov>

In the Petabyte era the lines between software, technology and science are blurred - the
chance to do science with petabytes without major infrastructure is pretty slim. Therefore
the importance of technology in science exploitation becomes ever more important, which
also implies we pick up the pace in training the workforce and in the areas of education and
public outreach.

The Kavli foundation sponsored a series of workshops on the theme Petabytes to Science',
the second of which was held 12" to 14" of February 2019 in Las Vegas. The aim of the
this second workshop was to formulate potential APC white papers. To facilitate this we
discussed important trends, technologies, approaches to workforce management, education
and public outreach. We took a holistic approach and built a single document encompassing
several broad categories, namely:

* Science drivers (Section 3) - which science cases need new techniques and ap-
proaches?

* Data Management (Section 4) - what data management challenges does this present?

» Software (Section 6) - how should software be developed to meet those challenges?

» Technology and Infrastructure (Section 5) - what technologies and infrastructure is
needed to under pin the services?

» Workforce and Inclusion (Section 8) - what training should we do to prepare ? How
can we improve and diversify the workforce?

* Education and Public Outreach (Section 9) - through EPO can we increase awareness
of the public about astronomy and ensure future finding streams? What are the
challenges and opportunities for EPO?

From each of the sections a number of recommendations were identified, these are sum-
marized in Section 2. For each recommendation we suggest the audiences they are useful to
and the time period in which they should be executed (this may be seen as a sort of priority).
The time periods or terms are short term (1-3 years), medium term (3-5 years) and long
term (5-10 years).

The intention is to extract some decadal survey APC papers from these ideas. If you
are interested in contributing to or endorsing white papers on these topics sign up here? or
contact the authors listed in this document — names followed by an email address are the
leads of each chapter.

Note: This document is a collection of ideas and a record from a workshop - it is not a
polished document. We have made some effort to not have repetitions between chapters
however we do not guarantee a pleasant coherent read.

! https://petabytestoscience.github.io/
2 https://tinyurl.com/y2ksemp2
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2. RECOMMENDATIONS

These tables summarize the recommendations in the document per audience we feel would
be interested. Clicking the label or text will take you to the full recommendation in the
document.? Please note that a recommendation may be aimed at multiple audiences and
therefore may appear more than once in the tables below.

Table 1. Astronomer recommendations.

Recommendation Area Term

REC-1 Adopt common data models throughout the astronomical community Data Short
Management

REC-3 Proprietary data time scales should be limited, and all datasets should Data Short

be eventually made publicly available Management

REC-8 Improve long-term software and service support Technology  Short

REC-11 Funding for sustaining core astronomical “community infrastructure” Software Medium

projects

REC-12 Cultivating a sustainable research software ecosystem Software Short

REC-13 Create funding models and programs to support the development Analysis Medium

of advanced algorithms and statistical methods specifically targeted to the
astronomy domain

REC-14 Build automated discovery engines Analysis Long
REC-15 Promote interdisciplinary collaboration between institutions, fields, Analysis Long
and industry

REC-16 Develop an open educational curriculum and principles for workforce Analysis Medium
training in both algorithms and statistics

REC-17 Encourage, support, and require open publication and distribution of = Analysis Short
algorithms

REC-22 Software training as part of science curriculum Workforce Medium

Table 2. Manager recommendations.

Recommendation Area Term

REC-4 Long-term data preservation of datasets Data Long
Management

REC-12 Cultivating a sustainable research software ecosystem Software Short

REC-15 Promote interdisciplinary collaboration between institutions, fields, Analysis Long

and industry

REC-25 Recognize software as part of the career path Workforce Short

REC-29 Adopt promotion metrics that acknowledge software and other science Workforce Long
support
REC-32 Bring dedicated experts onto astronomy education and outreach teams EPO Medium

Table 3. University recommendations.

Recommendation Area Term

3 In a PDF it may be useful to note that CMD « (CTRL on Windows/Linux) returns you to from whence
you clicked.



REC-22 Software training as part of science curriculum Workforce Medium
REC-26 Partnerships to support data science staff Workforce Medium
Table 4. Agency recommendations.

Recommendation Area Term

REC-2 Eliminate barriers to public data access Data Medium
Management

REC-3 Proprietary data time scales should be limited, and all datasets should Data Short

be eventually made publicly available Management

REC-4 Long-term data preservation of datasets Data Long
Management

REC-5 Develop a community wide architecture supporting Science as a Ser- Technology Long

vice

REC-7 Enable support for full mission life cycle including long-term data Technology  Short

products

REC-8 Improve long-term software and service support Technology  Short

REC-9 Fund cross-mission deployment Technology  Medium

REC-10 Funding for software development in existing grant programs Software Long

REC-11 Funding for sustaining core astronomical “community infrastructure” Software Medium

projects

REC-12 Cultivating a sustainable research software ecosystem Software Short

REC-13 Create funding models and programs to support the development Analysis Medium

of advanced algorithms and statistical methods specifically targeted to the

astronomy domain

REC-15 Promote interdisciplinary collaboration between institutions, fields, Analysis Long

and industry

REC-16 Develop an open educational curriculum and principles for workforce ~Analysis Medium

training in both algorithms and statistics

REC-17 Encourage, support, and require open publication and distribution of ~Analysis Short

algorithms

REC-18 Programs to cultivate the next generation Workforce Long

REC-20 Long-term curation of materials Workforce Long

REC-21 Funding for innovative partnerships Workforce Medium

REC-23 Training activities and materials Workforce Short

REC-27 Support long-term technical capacity Workforce Medium

REC-30 Community prizes for software contributions Workforce Short

REC-33 Fund dedicated or centralized astronomy education and outreach EPO Long

groups

Table 5. Educator recommendations.

Recommendation Area Term

REC-22 Software training as part of science curriculum Workforce Medium

REC-31 Create accessible online Activities for the Public EPO Short

REC-32 Bring dedicated experts onto astronomy education and outreach teams EPO Medium




Table 6. Technologist recommendations.

Recommendation Area Term

REC-1 Adopt common data models throughout the astronomical community Data Short
Management

REC-5 Develop a community wide architecture supporting Science as a Ser- Technology Long

vice

REC-6 Enable new scales of research through data co-location Technology  Medium

REC-8 Improve long-term software and service support Technology  Short

REC-11 Funding for sustaining core astronomical “community infrastructure” Software Medium

projects

REC-14 Build automated discovery engines Analysis Long




3. SCIENTIFIC CONTEXT AND DRIVERS

Contributors: Adam Bolton <bolton@noao.edu>, Eric Bellm, Alex Drlica-Wagner, Ting
Li, Raffaella Margutti, Gautham Narayan, Meg Schwamb

Note: If you have come directly to this chapter we suggest you please read at least the
Introduction in Section 1 before delving further.

The last two decades have seen a significant increase in the prominence of data-intensive,
survey-scale astronomy. Surveys such as Sloan Digital Sky Survey (SDSS), Dark Energy
Survey (DES), Pan-STARRS, and Zwicky Transient Facility (ZTF) have pioneered these
modes. Even more ambitious projects such as Dark Energy Spectroscopic Instrument
(DESI), Large Synoptic Survey Telescope (LSST), WFIRST, and Square Kilometer Array
(SKA) are rapidly approaching, bringing new opportunities and challenges for petascale
astronomical science.

From an experimental design perspective, the development of large survey projects and
facilities has been driven by fundamental scientific questions about the Solar System, our
Milky Way and its stellar populations and satellites, the evolution of galaxies and quasars,
and the nature of dark matter and dark energy. These questions have in common the need
to obtain significant statistics over large population samples or volumes, or alternatively, to
realize significant probabilities for the discovery of rare objects or events.

Big surveys naturally lead to big datasets. These big datasets in turn bring qualitatively
new challenges in data management, computing, software, and professional development
that must be tackled to realize the scientific promise of the surveys themselves.

Big datasets from big surveys also open up diverse opportunities for data-driven science:
research and discovery programs defined entirely on the basis of available datasets, not on the
basis of collecting new data. This approach is especially empowering of exploratory science,
as described in the series of Astro2020 white papers by Fabbiano et al. (2019a,b,c,d,e,f).
Data-driven research can multiply the scientific impact of a survey, and can be especially
effective for broadening participation in forefront astronomical research beyond those groups
with the greatest access to resources. Data-driven science with large surveys calls on many
of the same data-intensive methods as are required for “primary” survey science, while
also presenting new challenges and requirements such as public data release and broad data
accessibility.

In the following subsections, we outline some current scientific opportunities, and their
associated data-intensive challenges, across a broad range of astrophysics and cosmology
drawn from science white papers submitted to the Astro2020 Decadal Survey. In the
subsequent chapters of this report, we address the crosscutting technology, methods, and
professional considerations that will support success in these scientific areas in the next
decade.

3.1. Planetary Systems; Star and Planet Formation


mailto:bolton@noao.edu
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LSST will conduct a 10-year survey across the southern sky, revisiting the same locations
approximately every three days. This time-resolved dataset will detect both transient objects
in the fixed sky and moving objects in the Solar System. Chanover et al. (2019) describe
the promise of LSST for the discovery of dynamic Solar System phenomena such as active
asteroids and small-body collisions. To yield their scientific potential, these objects require
rapid detection, alert, and follow-up observation. This implies the need for a coordinated
real-time software infrastructure beyond the scope of LSST operations deliverables. Simi-
larly, Holler et al. (2019) describe the Solar System science potential of WFIRST, which will
require the deployment of robust moving-object detection algorithms within the WFIRST
data management framework.

A core goal of the WFIRST mission is to conduct a microlensing census of extrasolar
planets. Yee et al. (2019) and Gaudi et al. (2019) describe both core and ancillary science
potential of this aspect of WFIRST, which highlights the algorithmic and software-systems
engineering challenge of addressing diverse microlensing applications within a petascale
dataset with quality comparable to space-based telescopes.

Ford et al. (2019) discuss the essential role of advanced statistical and machine-learning
methodologies for optimal extraction of Doppler signatures of extrasolar planets with high-
resolution spectroscopy in the coming decade. As the experimental forefront approaches
the 10 cms™! precision necessary to detect true Earth analogs around Sun-like stars, new
statistics and algorithms become ever more crucial.

3.2. Stars and Stellar Evolution; Resolved Stellar Populations

Pevtsov et al. (2019) highlight the potential scientific return for stellar astrophysics from
digitizing historical astronomy data and making it available in accessible forms within
modern data-management systems.

Dey et al. (2019) and Kollmeier et al. (2019) describe the potential for data-mining within
large spectroscopic survey datasets (e.g. SDSS, DESI) to discover primordial Population
III stars as well as new, rare, and unexpected stellar types.

Several Astro2020 white papers highlight the scientific potential that arises from combin-
ing multiple large-scale resolved stellar datasets. Asteroseismology results can be sharpened
through the combination of time-series data from TESS, PLATO, and WFIRST with stellar
spectroscopic parameters measured by SDSS-V, Maunakea Spectroscopic Explorer (MSE),
and other surveys (Huber et al. 2019). Our knowledge of the structure, formation, stellar
populations, and cosmological context of the Milky Way will be maximized through the
combination of photometry, astrometry, and spectroscopy from multiple survey missions
(Sanderson et al. 2019; Williams et al. 2019). Joint time-resolved analysis of photometric,
astrometric, and spectroscopic survey data will also enable diverse astrophysical applica-
tions of stellar multiplicity (Rix et al. 2019). For all these scientific goals to be realized, full
interoperability and combined analysis at the scale of millions to billions of stars will be
required across all relevant surveys, which poses significant challenges in data management
and software systems, as described by Olsen et al. (2019).
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3.3. Compact Objects; Time-Domain and Multi-Messenger Astrophysics

Graham et al. (2019) highlight the explosive-transient discovery-space potential for LSST
combined with Extremely Large Telescope (ELT) follow-up, which will only be realized if
detection, filtering, and follow-up can be triggered rapidly by scientifically tuned software
systems. Kirkpatrick et al. (2019) argue for increasing the transient and variable science
return of the NEOCam mission through investment in the software infrastructure needed to
detect, monitor, and alert on non-moving (i.e. non-Solar system) variable sources. This is
an example of how software alone can qualitatively change the scientific opportunity space
of a given survey/mission.

Cowperthwaite et al. (2019) argue for the importance of “target-of-opportunity” observing
with LSST to follow up on LIGO gravitational wave triggers in search of a counterpart.
This points to the need for sophisticated real-time data-management software systems such
as LSST’s to be implemented in ways that are flexible to the development of new and
potentially unanticipated operational modes.

Binary systems with compact-object components provide “astrophysical laboratories” that
will be central to many time-domain and multi-messenger applications in the coming decade.
Maccarone et al. (2019) describe the scientific potential for increasing the sample of known
stellar binaries with a black hole component, and highlight the importance of time-domain
photometric surveys such as LSST, ZTF, ATLAS, PanSTARRS for identifying candidate
systems through analysis of light curves to identify ellipsoidally modulated binaries and
optically-outbursting X-ray binaries. Eracleous et al. (2019) describe the role of LSST and
ZTF in catching the disruption of white dwarf stars by a black hole companion, which can be
further informed by LISA observations when available. Littenberg et al. (2019) and Kupfer
et al. (2019) describe the importance of LSST, ZTF, Gaia, BlackGEM, SDSS-V, and DESI
for identifying ultracompact binaries that will be potential future persistent gravitational
wave sources for LISA. In all these cases, algorithmic time-domain analysis and discovery
implemented through science-driven software systems will be essential.

Palmese et al. (2019) highlight the potential for large spectroscopic surveys to provide
redshifts for hosts of future gravitational-wave inspiral sources, both “bright” and “dark”.
These redshifts will enable “standard siren” cosmology in combination with the inferred
intrinsic parameters of the Gravity Wave (GW) sources. This points to the need for spec-
troscopic surveys to make their data archives fully accessible.

Cutting across several of the scientific topics above, Chang et al. (2019) provide an
overview of “cyberinfrastructure” needs for multi-messenger astrophysics in the coming
decade.

3.4. Galaxy Evolution

Large extragalactic surveys and their associated data archives are a key resource for
advancing our understanding of galaxy evolution. Behroozi et al. (2019) highlight the
importance of large surveys, accessible data archives, and open software for advancing
our knowledge of galaxy evolution through the particular method of empirical modeling.
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Dickinson et al. (2019) envision a future spectroscopic galaxy survey that would provide
a highly complete SDSS-like sample across multiple redshifts, which would enable a
comprehensive study of the coevolution of galaxies and their stellar populations with the
formation of dark matter halos across cosmic time. Additional galaxy-evolution (and
cosmology) science drivers are discussed below in Section Section 3.6 in the context of
combining data from multiple surveys and facilities.

Multiple quasar science opportunities in the next decade will be driven by survey-scale
and data-intensive methodologies. Shen et al. (2019) describe the role of large, time-
resolved spectroscopic surveys to map the structure and growth of quasars through the
method of reverberation mapping. Fan et al. (2019) highlight the prospects for data mining
in LSST and WFIRST for large samples of high-redshift luminous quasars, which can probe
the coevolution of galaxies and their central SMBHs at early times. Pooley et al. (2019)
highlights the role of LSST as a resource for discovery of strongly lensed quasars which can
uniquely probe the dark-matter fraction in the lensing galaxy, while Moustakas et al. (2019)
describe the role that these same systems can play in reconstructing the detailed structure
of quasars themselves.

Lehner et al. (2019) highlight the importance of high-quality spectroscopic reduction
pipelines and accessible data archives to maximize the science potential of high-resolution
spectroscopy on large ground-based telescopes to trace the evolution of the intergalactic
and circumgalactic medium over cosmic time.

3.5. Cosmology and Fundamental Physics

With its goal of understanding the contents and evolution of the universe as a whole, cos-
mology has driven many of the recent advances in “big data” astronomy. This trend is likely
to continue through the 2020s. Many Astro2020 science white papers describe planned
and proposed missions for which robust data-processing and data-management systems will
be essential baseline requirements. These projects require not just basic management of
petascale data, but also the automated execution of sophisticated inference algorithms—for
galaxy shapes, photometric and spectroscopic redshifts, selection functions—across their
entire datasets.

Slosar et al. (2019a) provide a broad overview of prospects for ongoing study of dark
energy and cosmology with large-scale surveys. Dore et al. (2019) give an overview of
the cosmological science capabilities of WFIRST via the channels of weak lensing, galaxy
clustering, supernovae, and redshift-space distortions. Wang et al. (2019) describe the
dark-energy science potential of multi-tracer wide-field spectroscopic surveys that achieve
higher completeness and spatial density than existing or planned surveys. Slosar et al.
(2019b), Ferraro et al. (2019), and Meeburg et al. (2019) describe the prospects for con-
straining models of inflation and early-Universe physics through the signatures of primordial
non-Gaussianity in large-scale structure surveys. Pisani et al. (2019) describe the potential
to constrain dark energy, neutrinos, and modified gravity in cosmic voids within densely
sampled redshift surveys. Dvorkin et al. (2019) describe the prospect for measuring the ab-
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solute neutrino mass scale through several large-scale observational channels. Rhodes et al.
(2019b) envision the definitive large-scale structure survey to map the three-dimensional
position of all galaxies and dark-matter halos in the visible universe. Geach et al. (2019)
envision a future wide-field spectroscopic survey in the sub-millimeter which would cover
redshifts 1-10.

Large surveys and their associated software and data systems will likewise be central to
the quest to understand dark matter in the coming decade. Gluscevic et al. (2019) describe
the potential for galaxy and Lyman-alpha forest surveys, in combination with modeling and
simulation of baryonic effects, to constrain the nature of particle dark matter. Bechtol et al.
(2019) describe the dark-matter science potential of LSST on its own and in combination
with spectroscopic facilities. Other channels for constraining particle dark matter with large
spectroscopic surveys of galaxies and Milky Way stars are described by Li et al. (2019).
Grin et al. (2019) describe how a combination of Cosmic Microwave Background (CMB),
optical, infrared, and gravitational wave observations will contribute to our understanding
of ultra-light dark matter candidates.

Survey-scale cosmological science in the 2020s will also leverage machine learning (ML)
supported by large and well-calibrated datasets. Ntampaka et al. (2019) describe recent
applications of ML to a diverse range of applications in cosmology, and highlights some of
the most significant opportunities for ML to increase the scientific return from LSST, SKA,
and other major future projects.

3.6. Combining Multiple Probes of Cosmology and Galaxy Evolution

A central theme of many Astro2020 science white papers at the interface of galaxy evolu-
tion and cosmology—and one that will significantly drive requirements for the computing,
data, and software systems of the 2020s—is the need to combine and co-analyze data from
multiple major surveys. These use cases imply requirements for data accessibility, interop-
erability, and mobility between data-hosting locations. They will also drive the astronomy
and cosmology communities to leverage the capabilities of research-supercomputing and
commercial-cloud computing providers in new ways.

Newman et al. (2019) and Mandelbaum et al. (2019) describe the synergistic potential
for deep and wide-field survey spectroscopy to enhance the dark-energy science return
from LSST. Chary et al. (2019), Eifler et al. (2019), and Rhodes et al. (2019a) describe
joint analysis approaches for LSST, Euclid, and WFIRST that would enhance the resulting
weak-lensing and galaxy-clustering cosmology measurements of these missions. Capak
et al. (2019) describe the scientific benefit from coordination of “deep field” regions across
multiple surveys and multiple wavelengths. (Here, standardized data and metadata formats
will be necessary not only to realize the scientific potential of diverse datasets in common
areas of sky, but also to enable discovery of existing datasets and coordination of planned
future deep-field campaigns.) Furlanetto et al. (2019), Cooray et al. (2019), and Cuby et al.
(2019) describe the potential for combining galaxy surveys (space and ground-based), 21cm
surveys, and other probes to obtain a more detailed picture of the epoch of reionization.
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Mantz et al. (2019) describe the importance of combining multiple large surveys across
wavelength for the selection of uniform and significant samples of high-redshift galaxy
clusters.
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4. DATA MANAGEMENT

Contributors: Anne-Marie Weijmans <amw?23@st-andrews.ac.uk>, JJ Kavelaars
<JJ.Kavelaars @nrc-cnrc.gc.ca>, Surajit Chaudhuri, Vandana Desai, Jamie Kinney,

William O’Mullane, Alex Szalay

Note: If you have come directly to this chapter we suggest you please read at least the
Introduction in Section 1 before delving further.

In this section we recognize two of the main challenges related to data management in the
next decade:

* Big Data: datasets will be of such large volume, that moving them across individual
data repositories is not practical. This will affect the way that we interact with data,
and has the risk that some users will be excluded from access to large datasets. (See
also Section 5.2)

¢ Time Domain: datasets will contain a time domain element, i.e. will contain data of
the same part of the sky obtained at different time intervals. This will put challenges
on current visualisation and discovery tools.

To address these two challenges, we make the following recommendations:

REC-1 Adopt common data models throughout the astronomical community.

Area: Data Management. Audience: Astronomer, Technologist. Term: Short

The astronomical community should work towards a common data model. This will allow
astronomers to concentrate on scientific exploration of datasets, without having to worry
about data formats and structures

REC-2 Eliminate barriers to public data access.

Area: Data Management. Audience: Agency. Term: Medium

Astronomical public datasets should be accessible to everyone, and everyone should have
the opportunity to contribute to astronomical public datasets

REC-3 Proprietary data time scales should be limited, and all datasets should be
eventually made publicly available.

Area: Data Management. Audience: Agency, Astronomer. Term: Short

To maximize scientific output, and allow wider-community access of centralized funded
projects, all astronomical datasets should be made publicly available and accessible after
an appropriate but short proprietary time limit

REC-4 Long-term data preservation of datasets.

Area: Data Management. Audience: Agency, Manager. Term: Long

Long-term data preservation and management should be an integral part of community-wide
project planning

We discuss these recommendations in more detail in the sections below.


mailto:amw23@st-andrews.ac.uk
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4.1. Interoperability

In the 2020s, new datasets such as LSST, WFIRST, and Euclid hold enormous science
promise. Realizing this potential for transformative science presents a number of challenges
for data management. As we outlined above: the main challenges are the volumes of the
data, as well as the additional dimension that time domain observations will bring to these
large datasets.

4.1.1. Common observation models

Data centers should adopt a common observation model (REC-1). A common observation
model is a set of standard metadata parameters that can be used to describe any astronomical
dataset. The widespread adoption of a common observation model has many advantages,
outlined below.

The large volume of data in the 2020s implies that re-processing these data will incur high
cost, thus increasing sharply the importance of a common data model that can serve as the
basis for information exchange and reuse. International Virtual Observatory Alliance [VOA
is on the way to adopting the Common Archive Observation Model (CAOM) for images. It
has already been adopted by a number of large archives, including the Canadian Astronomy
Data Centre (CADC), the European Space Astronomy Centre (ESAC), the Mikulski Archive
for Space Telescopes (MAST), and the NASA/IPAC Infrared Science Archive (IRSA).

Effective re-use of data requires careful, ongoing curation of this metadata model. This
includes both preserving the expertise and context of what the nuances of a particular dataset
are, but also periodically updating metadata to conform to new standards and meet new use
cases. For example, astrometry of old datasets may need to be updated to support real-time
querying/matching/aligning/jointly processing for time domain studies.

4.1.2. Data storage

Data Centers should adopt industry standards for data storage when possible, see also
Section 5.2. Perhaps the most obvious challenge is simply storing the data. The large
volumes mean efficiency in storage representation is important.

We recommend that data centers leverage ‘oft-the-shelf’, open data management services,
tools, and technologies that have been developed by industry. Moving to industry standards
for things like images allow us to leverage new technologies such as the ability to stream
and operate remotely on objects using standard tools. File systems as we know them will
not be the most appropriate storage model at petascale levels. Alternatives include the use
of cloud object stores, cloud compute, ‘big data native’ formats such as Apache parquet
and OpenEXR, and cloud-optimized FITS (see cloud optimized GeolIFF as an example
https://www.cogeo.org). Traditional astronomy file formats (e.g. FITS) should be used as
they were originally intended, for transport only. That being said, one big advantage of FITS
files is their ability to co-package meta-data, while e.g. for Parquet there are only limited
options to have meta-data included directly with the data. Data and meta-data should be
managed together to not lose efficiency in analysis performance.
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4.1.3. Eliminating file systems

The community should develop a flexible suite of application program interfaces to abstract
the file system.

The previous recommendation calls for using storage formats that are optimized for the
cloud, in order to meet the challenge of “Big Data” storage. This also implies that the
current often used practice of storing files and file systems locally on astronomers’ laptops
of analysis will have to change to this more global approach of accessing and analyzing
data remotely. To avoid a difficult transition for many individual astronomers, global file
structures and formats should be abstracted by two layers of application program interfaces
(APIs). The bottom layer consists of a limited set of (Virtual Observatory (VO))-based
APIs implemented by data centers. We recommend that data centers implement a critical
set of core VO APIs, including cone search, image search, spectral search, Table Access
Protocol (TAP), the standardized language used to report observations of astronomical
events VOEvent, and Ephemeris Lookup (still to be adopted by the IVOA). Other VO
standard protocols have become obsolete, and should not be implemented (e.g. VOSpace
in favor of S3). The top layer consists of user-facing APIs developed by the community to
“hide” the file formats from the user. In the 2020s, this top layer should focus on Python.
However, lightweight APIs can be built in other languages as community needs dictate.

4.1.4. Interoperable science platforms

Data Centers should provide a set of interoperable science platforms.

A science platform provides users with access to compute and analytic services close to
the datasets of interest. With new astronomy survey datasets measured in petabytes, it is
quickly becoming infeasible to copy entire datasets to another location for analysis. At the
same time, it is increasingly common for researchers to leverage big data and inefficient
parallel compute technologies to analyze large subsets, if not entire datasets. Cloud services
provided by commercial organizations and Department Of Energy (DOE)/National Science
Foundation (NSF)-funded High Performance Computing (High Performance Computing
(HPC)) centers offer both the scale of compute resources and the networking infrastructure
required to analyze these datasets using modern techniques. Furthermore, by physically
co-locating datasets, we make it possible for researchers to conduct investigations that
incorporate data from multiple mission archives. Therefore, we recommend that the DOE,
NSF, and other funding agencies encourage data archives to be physically stored and perhaps
co-located in facilities which are accessible to the global research community and which
provide the compute and higher-level analytical services that will be used to analyze these
datasets at scale.

4.2. Lowering the barriers to public data access

Projects should eliminate barriers to public data access (REC-2), and limit the propri-
etary data time scale (REC-3). To make maximal use of astronomical datasets, every
astronomer should have access to these datasets, and have the tools available to exploit their
scientific richness. In the sections below we make suggestions that projects should adopt to
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ensure that barriers to work with data are removed: we concentrate here on astronomical
community (including students), and refer to Section 9 for promoting astronomical data
with the general public. We also recommend that although proprietary data has its use
within the astronomical community (e.g. ensuring that the astronomers and students who
invested in collecting and reducing the data have the opportunity to explore the datasets
for their science), that these proprietary times are kept short to maximize over-all science
output.

4.2.1. Computational resources

Projects should make their datasets available for remote data analysis As mentioned in
the previous section, the big datasets of the next astronomical surveys will be too large to
download and store on individual astronomers computing systems (laptops). Projects should
therefore ensure that their data is available for remote analysis, and provide opportunities
for cloud computing. This will ensure that the whole astronomical community will have
access to the data, and that lack of large data storage and/or computing facilities will not
prevent astronomers from taking part in the scientific exploration of large datasets. We
note that cloud computing does require reliable internet connections, which for most of the
astronomical community will be available, but not necessarily for a more general audience
(e.g. schools and individuals in remote areas).

4.2.2. Documentation

Projects should allocate sufficient resources and attention to capturing the expertise on
collection, processing and interpretation of their data products. A dataset is only as strong
as its documentation. Without documenting the expertise needed to work with a dataset,
scientific analysis based on that data has a high risk of being flawed. Including detailed
documentation with data resources is therefore a must. The documentation that captures
the projects expertise should be easily accessible: the documentation should be released at
the same time as the datasets. The documentation should be clearly written, with jargon
explained and with tutorials and examples for clarification. The documentation should
not be aimed at the experts within a project, but be written with inexperienced, new users
in mind (e.g. students). There should be a mechanism (e.g. helpdesk, forum), in place
to collect feedback and errata, and the documentation should be updated and improved
accordingly during the life time of the project. Having excellent documentation does not
only lower the barriers of entry to work with large datasets, but will also be invaluable when
the project has reached the end of its lifetime, and the datasets will (eventually) go into
long-term archiving (see Section Section 4.3).

4.2.3. Professional training

Training resources on the exploration of large public datasets should be made available
for free and on-line. To lower barriers for entry further, there should be training resources
available for the astronomical community, to ensure that they can explore the richness of
large public datasets. These training resources, such as tutorials, demos and notebooks,
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should be aimed at appropriate levels, as the education needs of a beginning students are
different than those of a postdoc or faculty member. These resources should be available and
accessible to a large audience, and therefore should be linked to from dataset documentation
pages.

4.2.4. Education and Public Outreach

Data facilities should invest in collaborations with Education and Public Outreach teams.
Having real astronomical public data available for education and public outreach purposes
is a big advantage for developing resources that closely mimic and can even contribute to
scientific research. As outlined in Section 9 the Education and Public Outreach (EPO)
chapter of this document, we recommend supporting dedicated education and outreach
groups with relevant expertise to maximize the impact of EPO activities. To work closely
with these EPO teams, we recommend that each data facility has at least one team member
to liaise with the EPO team, and provide input on data requirements for EPO activities.

4.3. Long-term data preservation

Long-term data preservation and management should be an integral part of community-
wide project planning (REC-4) Data that is actively used will continue to exist in the
community: there is a sort of Darwinian selection going on constantly. Expertise is
therefore also kept reasonably current while the data are in use. But the implication is
that some data will be getting used less and less over time, and at some point is going to
be compressed (including documentation and possible email archives) and put into cold
storage for long term preservation. Catalogs and derived data products could potentially
persist in regular use for longer than their source data.

The long term preservation of data is a problem that is not unique to Astronomy or Science,
neither in volume nor in characteristics. Such preservation has the following components:

1. Ensuring data integrity (no tampering)

2. Sufficient redundancy so that there is no single point of failure, to ensure data access
3. Packaging of information that provides “recoverability” of essential information

4. Funding for such preservation, as well as data format and software maintenance.

The first challenge (data integrity) is a general problem, and there are many techniques
that have been developed in research and in industry to ensure integrity. These include
tamper-proof logs and signature based comparison of multiple copies of preserved data
including watermarking. We should select a preferred method in astronomy.

The second challenge is met b and perhaps co-located having multiple sites to ensure
that there is no single point of failure. There is a cost vs. “how many failures you can
tolerate” trade-off. Offloading this task to multiple vendors of public cloud companies is
probably the simplest solution. One compelling reason to do that is because they will, due
to market pressure, continue to support changing data formats and media as technology
change. Through all these, the data should remain accessible, even when in cold storage.

The third challenge, which is packaging of information, is most critical and this is where
unique aspects of Astronomy are relevant. A data dump in itself is not easy to interpret,
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especially after several years, when the experts that generated and worked with the data
have moved on to other projects. Therefore, it is critical to have good documentation
and metadata enrichment. We need to capture the expertise so we may want to compress
and store communications such as Slack channels, mailing lists and logs etc. As well as
the actual data. By having such additional catalogs, the “recoverability” of value from
preserved data is much enhanced. However, we need to acknowledge that such often more
informal and unsorted communication does not replace the need for comprehensive and
understandable documentation and tutorials to work with the data. The value of archived
communication would be for the (hopefully) rare instances that an issue occurs that is
not documented probably, but was discussed on communication channels, and for historic
and/or social studies.

Last but not the least, there is the funding question. There are two possible models. First
model is to attach a “service fee” to every funded project to support ongoing high quality
documentation. Alternatively, funding may be requested as we near end of the project. The
payment model, especially to cloud providers, could be fashioned like what is done for title
insurance for home purchases — an one-time payment for a fixed number of years
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5. TECHNOLOGY & INFRASTRUCTURE

Contributors: William  O’Mullane  <womullan@|sst.org>,  Niall — Gaffney
<ngaffney @tacc.utexas.edu>, JJ Kavelaars, Frossie Economou, Surajit Chaudhuri

Note: If you have come directly to this chapter we suggest you please read at least the
Introduction in Section 1 before delving further.

We discussed many of the challenges and potential technological and infrastructure in-
novations which could be future solutions to current problems. In these discussions, we
concluded that the goal was not to predict future problems and unknown technological
solutions, but to unite and align cross mission and research community cyberinfrastructure
needs. We should standardize and establish best practices based on those already found
within missions. These goals are best served with a design that enables common user
identity models, along with common data, software, and infrastructure as services joining
systems in a loosely coupled cyberinfrastructure. This will drive the the field towards a
more interoperable cross mission cyberinfrastructure by design rather than common API
and piecemeal translation layers which we currently have. This will enable developers to
reach velocity more rapidly as they move between projects and missions since they will be
more familiar with the common development practices and reference architecture.

5.1. Commodity services and software based community architecture

The astronomy and astrophysics community community have historically relied on the
development and use of bespoke software and hardware infrastructure to solve challenges
related to the managing and analyzing datasets at a scale that was difficult to find in industry
or other scientific domains. These requirements are no longer unique and we have access
to a wealth of open source software, commodity hardware, and managed cloud services
(offered by commercial providers and federally-funded institutions) that are well positioned
to meet the needs of astronomers and astrophysicists Momcheva et al. (2019); Bektesevic
etal. (2019). By providing documentation and reference implementations of the “astronomy
stack” using these technologies and making it easier for researchers and missions to access
cloud computing services, we can reduce operations costs, accelerate time to science, and
increase the scientific return on Federally-funded research in astronomy and astrophysics.

Such an architecture/system will provide access to new technologies for improved data in-
teroperability. For example to enable a system to recognize transients in multi-observatory
data with more than just the photometry. By housing such data as observing conditions,
instrument bias, and even observation proposals within the system, developers can imple-
ment common layers at higher levels to provide common access missions. This can be done
without having to specify the complete system for gathering, managing, and formatting the
data. Missions can enforce access to either sensitive or proprietary information through role
based access control to the data. With a well designed service oriented Cyberinfrastructure,
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Figure 1. An example a cyberinfrastructure built on an Infrastructure as Code design model. Note
that while this example does not have astronomy-specific tooling, our recommendations highlight
the importance of developing astro-specific layers that are fully accessible to scientists in both the
application and the graphical interface layers. Figure 2 presents an LSST/Astronomy instantiation
of this.

cost can be minimized as less coordination will be needed to implement cross mission
services.

REC-5 Develop a community wide architecture supporting Science as a Service.
Area: Technology. Audience: Agency, Technologist. Term: Long

Agencies should fund the major missions to define and adopt a community wide supported
data and compute service architecture with easy to adopt components leveraging widely
adopted infrastructure standards both in the community and in industry. This "Infras-
tructure as Code" (Morris 2016) approach lowers the bar to entry and allows for easier
adoption of more standardized services that will enable large-scale astronomical research
in ways that are well demonstrated in plant genomics (CyVerse and Galaxy), natural hazards
(Designsafe), and surface water research (Hydroshare).

Many research communities have accelerated their time to discovery and lowered their
cost of integration by adopting a common community wide architecture that is supported
by multiple data and computational service providers. While attempts prior to the past
decade have been moderately successful, the current shift in development across industry
to the support of smaller services rather than monolithic data and compute systems allows
for faster and more cost effective deployment across communities. By encouraging the
definition and production of an astronomy focused, community wide reference architecture,
perhaps by changing the funding structure, we can being to have a menu of services easily
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implementable across service providers. Design and support for this infrastructure should
be community driven, prioritized and funded, to allow for development of features across
missions and science use cases.

Pictured in Figure 1 is the structure of a cyberinfrastructure (CI) that has been used across
multiple fields from plant and animal genomics (CyVerse) to natural hazards engineering
(DesignSafe). This shows the layers of the CI from the interfaces for service access exposed
at multiple levels, the common domain wide enabled services, and a collection of system
level components that support the higher levels of the CI. The lower down the diagram are
commodity layers based on well established and supported components. As one moves
up from these layers, more abstraction can be done to expose these pieces in domain or
even question level interfaces. By making these abstractions, more universal service can be
developed that can be applied more globally across the entirety of the cyberinfrastructure
as a whole. An example of this would be authentication, where each university or agency
may provide their own authentication method but unifying services like CILogin can bring
those together to give global spaced identity for a wide range of users based on disparate
authentication systems. By providing this structure along with a reference architecture of
these System Services based on well supported software components, providers are easily
able to both deploy and support these common services which enable cross mission and
center interoperability. This structure also reflects how this architecture allows for greater
reusability as one gets closer to the actual implementation of these services while supporting
greater flexibility and general usability as one works further from the core components.
This service architecture should be based on using standard reusable software from many
of the established standards developed outside of astronomy (e.g. common authentication
mechanisms such as CILogin, standard data and metadata management systems). Standard
API interfaces should also be used to expose these components to higher level APIs. Data
formatting and metadata structure can be exposed at the service level, allowing for more
data and metadata reuse.

Such an architecture should be developed in a cloud and vendor agnostic manner. When
needed, vendor specific software or cloud service can be integrated by a mission, but by
isolating them in the cyberinfrastructure at the lowest level, their potential impact on the
overall system is minimized. When possible, standard interfaces should be used to abstract
out these differences (e.g. standard object store access like S3, standard database interfaces
like ODBC) and should be reflected in the reference architecture documentation. Where
practical, computational environment abstraction layers such as container technologies
(e.g. Docker) should be used to associate each applications computational requirements
to the application rather than having to enforce upgrades and updates across the complete
infrastructure. Where specific hardware environments are required (e.g. Google’s Big
Table or Tensor Processors), it must be required that the interface to these services leverage
common API or software layers for access (e.g. SQL or Tensorflow) to allow for simpler
migration to future or separate vendor’s systems.
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Figure 2. An example LSST cyberinfrastructure built analogous to the CI model shown in Figure 1.

Many of the advances in the current data revolution have come about from the broad
adoption of commodity hardware and software services being applied in domain agnostic
ways. While over a decade ago, astronomy was one of the first domains to explore these
technologies, the current momentum in the area is driven outside of the astronomical
field. Current technologies like Spark, Cassandra, Kubernetes, and MongoDB were all
created to support large data problems outside of astronomy but are finding support in the
astronomical community in a piecemeal manner. By shifting the focus from local to a more
distributed cyberinfrastructure, such new technologies could be implemented and leveraged
much quicker than if each center had to support and integrate their own solution, Further, by
embracing and adopting a more commodity base infrastructure will allow current and future
projects to choose and experiment with hardware alternatives such as TPUs, FPGAs, or
Quantum computing as they become more commonplace or to integrate newer architectures
that best suited to the problem.

There is a current tension or incompatibility with the direction of High Performance Com-
puting HPC to many more cores with not much more memory and large image processing
which requires more throughput. Historically, systems designed for HPC were more suited
to simulation as opposed to the embarrassingly parallel yet often memory intensive High
Throughput Computing High Throughput Computing (HTC). While HTC does not get as
much attention, it has been key to missions such as the Human Genome project, LIGO,
and SDSS. While some are moving to bridge this gap (some in support of missions such as
LIGO and others because simulated data analysis is becoming as complex as observational
data analysis), agencies should continue encourage and fund national computing centers
to address the needs of both communities. Further, they should enable simulated datasets
to coexist within the infrastructure with observational datasets to support the full cycle
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of astronomical discovery. Finally, they should formally adopt support for mission long
computational support at these facilities for all major missions.

We note the general idea here especially on the importance of cloud are compatible with
Rob Pike’s thoughts*.

Where ever possible, review of cyberinfrastructure driven proposals should be ranked on
both their immediate impact to the field as well as their ability to sustain such impact through
several technology and vendor cycles. Proposals should also be ranked based on their reuse
and/or integration into the overall cyberinfrastructure developed across the astronomical
community.

5.1.1. Identity and Access Management (IAM)

User identity is key to all data systems to date. In the past, each mission has had its own
IAM system to provide data access for embargoed or otherwise restricted data access and for
accessing services. With a more global CI, this problem must be further abstracted to allow
for the notion of identity of a user (aka authentication) and permissions (aka authorization)
for services and data. By separating these pieces, identity can be brought from multiple
sources (CI-Login, OAuth, ORCID) while the permissions can be enforced by each provider.
All aspects of this CI must embrace role based authorization for both data and services in a
federated manor so that data and services can be effectively orchestrated while not impacting
site or mission specific access restrictions. While the authentication may be global, each
provider will enforce their own access roles for all users. As data analysis moves into
the petabyte and even exabyte scale across multiple missions and multiple computational
environments, it will be paramount to for all members of the cyberinfrastructure to share
a common IAM infrastructure to allow for federated access controls for both data and
computational services.

Proposals and missions should be ranked on their adoption of such an IAM for data and
for software services. Further, by creating a common CI layer for identity, missions and
smaller services will be able to adopt and adapt the common system to their needs, thus
saving development costs for implementing and finally supporting their own system.

5.2. Data co-location and creating data lakes

REC-6 Enable new scales of research through data co-location.

Area: Technology. Audience: Technologist. Term: Medium

We must enable the co-location of data thus enabling large scale cross mission research.
While some research are well supported using specific services, ones which require comin-
gling data to produce new data products or results should be able to schedule access to
co-located data in ways similar to acquiring new data.

Astronomy archives, especially in the USA, are somewhat fragmented. Though TB scale
permanently co-locating all data n one or more centers is technically possible it is probably

4 https://drive.google.com/open?id=1kYsavh9001206z 1 IPfjFFXamyBkoEdCW
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not desirable nor socially possible. In the PB data era permanent co-location becomes
less feasible, yet researchers will require data lakes or reservoirs to house massive datasets
and allow computations to be done across multiple missions and epochs of data at scale.
The data lake concept, where data from multiple missions and schemes are temporarily
co-located so as to allow codes to more tightly integrate with multiple data sources, is the
most attractive for researchers (who have become accustom to immediate data access), the
idea of a reservoir that can be filled and drained of data based on the demand of users is one
that will need to be explored due to the economical viability of any one institution housing
all the data.

Collocation is more than just interoperability but will also mean generating new formats
e.g. parquet files (e.g.) to make dynamic data frames and data services as demands change.
It will also mean generating new data products across missions which are equally valuable
for both preservation and publication. Thus the lake is more than a simple pool of storage,
but should be operated similar to other key infrastructures in the observational astronomical
infrastructure.

Software and technologies change on timescales faster than a decade (see also Section 6.6)
and data centers need to be agile enough to keep up. One approach is to create interoper-
ability interfaces to allow data to be pulled or pushed from managed repositories to dynamic
data lake environments where users can produce their own custom subsets mixing the avail-
able datasets. Data movement will not be simple (see also Section 5.2.1) and to not be
prohibitive specific infrastructure would need to be supported and evolved.

While the immediately obvious argument for co-locating data is the potential for scientif-
ically rich co-processing of heterogeneous data holdings (e.g. Euclid, WFIRST and LSST),
the advantages do not end there. Co-locating large data holdings on a common commodity
computing platform enables bring-your-code-to-the-data capabilities (sometimes referred
to as Science Platforms or server-side analytics) to enable co-analysis of data from a single
service without necessitating data transfer. For example, a single Jupyter notebook can
present an runnable analysis drawing on separate datasets (e.g. a multi-wavelength analysis
of a class of objects). Furthermore, co-locating data holdings allows the co-location and
sharing of services accessing those data holdings. That not only includes the possibility of
collaboration in sharing a single API service between data publishers, but also reducing the
development burden of infrastructural services (for example, documentation infrastructure
could be shared with multiple missions, migration paths to new operating systems are eas-
ier, etc). In an era where Infrastructure as Code engineering paradigms represent emerging
best practice, re-using the code that underwrites common astronomical services because
they are developed within a common underlying infrastructure (such as Docker containers
orchestrated by Kubernetes) provides an avenue for fruitful ongoing collaboration between
data publishers and better value for money for science infrastructure dollars.

5.2.1. Network layer

One area where Infrastructure as Code does not work is networking. While data transfers
can be better optimized depending on the nature of the data being transferred, network as
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a service will require optimizations often at the point to point level. Tools like PerfSonar
and others from Internet2 can help optimize connections. But these have been used to
optimize research done at the terabyte scale today. Where as in the TB scale it was possible
sometimes to move the compute to the data (e.g. SDSS), discovery often comes from the
TB scale data lakes. To meet the demand for petabyte scale data motion as a service in a
terabit network age, systems to support Just In Time data delivery are needed for any large
scale data collocation and must be a part of the support for the overall infrastructure of
repository/cloud/data center collaborations. Computation on large datasets may need to be
scheduled no different than any other instrument used in observational astronomy.

We recommend funding projects in astronomy (and in other research domains) to create
the data management and migration layers and best practices that will enable these new
forms of observation. We also recommend that proposals show how they will develop and
sustain such services over the course of the mission and beyond.

5.2.2. Vendor freedom

When co-location of data holding and services on a cloud platform is discussed, inevitable
there are concerns raised about "vendor lock-in". These objections are often rooted in a
misunderstanding of the nature of these services. First of all, these services often themselves
share common open source technologies between them (for example there are a number
of object store technologies that implement the an interface compatible with Amazon’s S3
service). But more than that, the commercial landscape is designed around low barriers
to change: Google Cloud Platform tries to acquire Amazon Web Services customers by
making its services easy to switch to. Moreover all these platforms drive a service-oriented
architecture that inherently results in more portable systems. In any case if one is concerned
about vendor lock-in, in-house data center infrastructures are the worst possible choice:
the inevitably lead to infrastructure-specific choices that are poor candidates for evolution,
and they typically lack the effort to support ongoing refreshing of the technical stack thus
creating on-going support burdens and a change-averse culture. For example, LSST is
a project that will go into operations in 2022, and yet LSST Data Management (DM) are
frequently called on to support CentOS 6, an operating system released in 2011, because that
is the only Operating System (OS) some university in-house clusters support for researchers.

5.3. Operations

REC-7 Enable support for full mission life cycle including long-term data products .
Area: Technology. Audience: Agency. Term: Short

Agencies should revisit the model separating funding and requirements for development and
operations of large scale missions for which the data and services are key deliverables as
well as steel and concrete. Such services are under continual development and integration
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and, in the current environment, can not simply be maintained in the same way physical
facilities are.

A more operations oriented view of construction by funding organizations would lead to
facilities which are more cost effective to run. Recognizing that software and cyberinfras-
tructure development work is distinct from concrete and physical facilities would also help
to make more maintainable and agile cyberinfrastructure. Current MREFCs funding splits
construction from operations thus limiting support on ongoing work for cyberinfrastructure,
there is little incentive in construction to build easy to operate systems.> If we blur the line
between construction and operations for cyberinfrastructure the issue becomes more one of
long term support.

REC-8 Improve long-term software and service support.

Area: Technology. Audience: Technologist, Agency, Astronomer. Term: Short

Funding should support repositories not just for code and data, but for computational
environments. Use of proven standards in the wider research community for sharing and
discovering runtime-ready software using software container environments like Docker and
DockerHub but with domain specific curation (e.g. BioContainers) is crutical® for both
broader impacts of software products and result reproducibility as compute environments
continue to rapidly evolve with low emphasis given to backward compatibility.

Long term support could be improved by requiring proposals to state how code reuse
and common practices will be used. Looking for proposals which aim to push to the Code
and API communities (AstroGit? AstroContainers? AstroHub) and which aim to build on
common software development practices. Of course we should also foster development of
those best practices based on best practices outside astronomy. Concretely proposals could
have a line item for making software reusable in funding budgets and funding agencies
should see that as a good thing and try to develop metrics for success in the area.

We must also consider how to move to a more self service architecture in astronomy such
as GitOps (Limoncelli 2018) - that requires some rigor but establishment of adhered to best
practices would be a start.

Needless to say all of the code should be available under open licensing such as Apache
(Apache Public License (APL)) or Gnu (GNU Public License (GPL)) public license.

REC-9 Fund cross-mission deployment.

Area: Technology. Audience: Agency. Term: Medium

Missions that develop software that can and should be adaptable to other common goals
in other missions should be funded to develop and support cross-mission resources as part
of this and other cyberinfrastuctures.

Past examples of this success can be found as far back as the IRAF environment and include
now significantly more broadly adopted numpy, the cost of development and support have

5 This is also true for physical facilities e.g. autonomous operation is usually not a requirement.
6 Critical and crucial https://www.urbandictionary.com/define.php?term=crutical
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been paid back multifold across many funded projects and missions which did not have to
develop their own versions of software.

Deployability is part of the problem but service oriented architectures are and will remain
at the forefront for at least the next decade. So we should now be thinking more of software
as a service and defining infrastructure as a service. This would all funding agencies to
push us more toward commodity compute and infrastructure services thus concentrating
efforts on the astronomy problems at hand rather than the computer science problems.

Funding agencies could also favor proposals that use/leverage existing software solution,
it may take time but this would be a positive fundamental change in astronomy software.

5.4. Sustainability and effectiveness

An architecture as laid out in Section 5.1 gives us a framework to start a sustainable
software development in astronomy. Software sustainability is a complex issue, with mixed
results in astronomy — see Section 6.6.2 for more on this complexity. The approach laid
out here, however, presents greater challenges than ever before in sustainability, as larger
datasets and more complex infrastructure means that reinventing the wheel will become
ever more costly.

By providing a reference architecture we can allow for more openness, collaboration, and
when necessary, competition in each component. While competition and alternatives can
be useful in a controlled manner, i.e. funding two approaches for a specific component, by
providing a reference architecture this can be adopted only when needed without interfering
with other layers. We should also consider that this architecture may be good for a decade at
which point it also should be revisited - such a refresh should be built in to our thinking from
the start. This is critical for sustainability because sustainability is much more challenging
if the architecture does not keep up with the technology, as more and more “hacks” become
necessary until the house of cards comes toppling down.

The Astropy project has been successfully fostering a community approach to the user-
facing end of Python astronomy. They do face challenges for funding and are beginning
to tackle some management issue for an organically grown organisation. This has been
successfully because they have worked hard to join the zeitgeist of open software and have
dedicated individuals who believe this is a useful project - and many users who agree. The
project also produces useful tools. The role of the Astropy project in the ecosystem can be
misunderstood i.e. it is not meant to be a data management system or a replacement for a
mission-specific toolchain, rather it is a toolbox that is accessible to astronomers for doing
many of the tasks they want to use or understand. While the re-use and contribution to these
tools by missions or observatories is desirable (see Section 6), without a clear understanding
of where the components lie in a larger architecture, it is almost impossible for astronomers
and projects to understand how they can fit such components into their system. A reference
architecture can thus help define where projects like this belong and how they fit with
other efforts. For example, LSST will not process data using astropy but will make their
data products accessible and usable with particular Astropy project interfaces and tools. It
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has taken both projects a while to understand this delineation because neither LSST nor
AstroPy had a clear reference model to work with.
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6. SOFTWARE

Contributors: Arfon Smith <arfon@stsci.edu>, Erik Tollerud <etollerud@stsci.edu>,
Kelle Cruz, Stuart Mumford, Nirav Merchant, Gautham Narayan, Alex Drlica-Wagner

Note: If you have come directly to this chapter we suggest you please read at least the
Introduction in Section 1 before delving further.

In the Petabyte era, all projects are software projects — that is, sophisticated software is
necessary throughout the system for essentially any scientific output at this scale. That said,
the term software can mean many things to many people. Other Sections (e.g. Section 3,
Section 4, Section 7) discuss the content of this software, and the software “infrastructure”
components and how they fit together are discussed in more detail in Section 5. Here,
by contrast, our focus is on the process by which software distributed to and used by the
astronomy community is built and funded. We particularly focus on community software
as it is the most relevant for the community to be involved in and for funding agencies
to support. Note that that while clearly critical to the process of software development,
relevant career and workforce issues are discussed separately in Section 8.3.

6.1. Recommendations

REC-10 Funding for software development in existing grant programs.

Area: Software. Audience: Agency. Term: Long

Software that enables science should be allowable as a sole deliverable for all existing
funding programs (e.g. NSF AAG, NASA ROSES, postdoctoral prize fellowships). It
should not be necessarily coupled to a specific science effort, as long as the software is of
demonstrable use to the scientific community.

REC-11 Funding for sustaining core astronomical ‘‘community infrastructure”
projects.

Area: Software. Audience: Agency, Astronomer, Technologist. Term: Medium
Funding agencies and the community as a whole should support funding of domain-specific
community-developed software projects e.g. Astropy project, SunPy. Such projects should
be recognized as vital infrastructure and placed on an equal footing to physical facili-
ties such as national observatories. This support should be available for domain-specific
software, rather than funding being primarily tied to interdisciplinary applicability. It
should also be allowed to fund community-development efforts in addition to actual code
development.

REC-12 Cultivating a sustainable research software ecosystem.

Area: Software. Audience: Agency, Manager, Astronomer. Term: Short

Funding agencies should include as part of their review criteria for all astronomy grant
programs: 1) A plan for how software (not just data) will be managed to support the
science of the grant, 2) How proposed software development fits into and supports the wider
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ecosystem of available tools, and 3) Favor programs that propose developing community
software as part of their funded activities. These same goals and considerations should
also be considered and acted on by the broader astronomy science community when e.g.
working as grant review panelists.

Note that cultivating a research software workforce is critical to all of the above. Hence,
while not detailed in this Section, the recommendations of Section 8 are also as critical to
the discussion in this section as the above.

6.2. Why shared software matters, today and in the next decade.

In this chapter, we argue that the Petabyte era of discovery in astronomy means that the
role of software is increasingly important and that well-organized, well-maintained software
serves to shallow the learning curve, enable scientific investigation, and lends confidence
to scientific results. To set scope, though, we emphasize this mainly applies in the context
of shared software. That is, the “throw away” analysis script written, say, by a graduate
student when writing their thesis and never shared with anyone else does not count for
this discussion. However, that changes when the same student shares that script with their
collaborators, makes it available online, or contributes it to The Astropy Project, rOpenSci,
or another open community software resource. Such an act makes the software part of a
community process, and the astronomy community is the target of this discussion. Hence,
in this chapter we are focused on shared software.

6.2.1. Software is everywhere

“Software is a central part of modern scientific discovery. Software turns
a theoretical model into quantitative predictions; software controls an experi-
ment; and software extracts from raw data evidence supporting or rejecting a
theory” - Gaél Varoquaux, scikit-learn” creator, (Varoquaux 2013; Pedregosa
et al. 2011).

Software is an integral, and growing part of the scientific endeavor: It is responsible
for driving the control systems of instruments, the operation of surveys, the processing of
raw data products, the extraction of physical parameters, and the theoretical modeling of
physical systems, software is critical to all parts of modern computational research. Indeed,
‘Software is eating the world’ (Andreessen 2011). This reality is well-recognized by the
scientific community: In a survey carried out in 2009, more than 2000 scientists reported
that software was either important or very important to their research, and that it would be
impractical for them to carry out their research without it (Hannay et al. 2009).

The rapid increase in the size and complexity of astronomical experiments and the data
they produce has led to an increasing demand for astronomical software. An illustration
of this point is the LSST project and their allocation of 25% of the construction budget
($187M) for data management software, infrastructure, and services?.

7 https://scikit-learn.org
8 https://www.nsf.gov/about/budget/fy2018/pdf/30b_fy2018.pdf
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Over the last decade, in a large part driven by broader changes in the cultural ‘norms’
of modern software development and a shift towards open source software being ‘the new
normal’ (LeClair 2016; Gnau 2017), the astronomical software environment has changed
rapidly: Large experimental projects (such as LSST, JWST, DESI, DKIST) are writing
extensive code bases and releasing these tools as open source software® 01112 At the same
time, individuals are becoming increasingly likely to distribute and share their code broadly
with the astronomical community and mechanisms for publishing these software products
have expanded as a result (AAS Publishing 2015; GitHub 2016; Smith et al. 2018; Astron-
omy & Computing 2013). In this data intensive future, where software permeates scientific
investigation, it is critical that the contributions of software developers are recognized and
that individuals are provided with the necessary resources to succeed.

6.2.2. Software encodes knowledge

As datasets become larger and our analysis methods more sophisticated, an increasing
fraction of the scholarly method is expressed in software. This presents opportunities and
challenges. One potential opportunity is that the ‘centralization’ of astronomy (i.e. the
trend towards smaller numbers of large facilities, often with open datasets) means that any
software built (and shared) leveraging these facilities has a higher reuse potential. A major
potential risk, identified by others (Donoho et al. 2009; Yale Roundtable Declaration 2010),
is that as the fraction of our research method is captured in software, if this software isn’t
shared (e.g. as open source), reviewed, or tested, the reproducibility of our science is
increasingly at risk.

6.2.3. Software for reproducibility

As projects become increasingly complex, ever more discrete software components are
combined to produce analyses and data products. However, despite this complexity, much
of the code being used is not documented, let alone complete with unit tests that can
validate performance. These shortcomings can have real-world consequences, as illustrated
by the failed Mars Climate Orbiter mission, where software calculations were carried out
assuming metric units, but navigation software was programmed assuming imperial units,
leading to a premature and fiery end to the mission in the Martian atmosphere. While this
is an extreme case, it is an illustrative bounding case for more subtle problems in analyses
that lead to biases which are not detected. Such problems are surprisingly common even in
the computational science literature (Collberg & Proebsting 2016), much less more applied
fields like astronomy. While progress has been made in developing technologies to improve
this (e.g. easy and widely available software repositories like GitHub, containerization
technologies like Docker, etc), many of these technologies are still aimed at early-adopters
in science rather than the mainstream.

6.3. Progress in the last the decade

® http://github.com/Isst

10 http://github.com/spacetelescope
L http://github.com/desihub

12 https://github.com/DKISTDC
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Many of the issues highlighted in this chapter are not new. In particular, we highlight
a white paper from the Astro2010 decadal review with a similar scope: Weiner et al.
(2009). That paper discussed areas of concern and specific recommendations, some of
which have improved materially, while others have seen little progress. We discuss the
recommendations of that paper here to provide a historical context and guidance for the
future.

1. Weiner et al. (2009): “create a open central repository location at which authors
can release software and documentation”. Enormous progress in this area has been
achieved in the last decade. open source software repositories, chief among them
GitHub!3, have become a defacto standard for storing software in astronomy. The
wider adoption of Python has improved the packaging and release process due to the
Python Package Index!4 and the ecosystem of easy-to-host documentation tools that
support Python, like Sphinx!> and ReadTheDocs'¢. While these are not a perfect
solution for some languages and science domains, the presence of a much larger and
better-funded user base (open source industry software) has made them stable enough
to be adopted for astronomy’s use and can likely continue to do so for the foreseeable
future.

2. Weiner et al. (2009): “Software release should be an integral and funded part of
astronomical projects”. Progress in this area has been mixed. While large efforts
for this decade like LSST, JWST, DESI or DKIST have large first-class software
components, many smaller projects or individual grant-level efforts continue to treat
maintainable or reproducible software as an afterthought to be dealt with in whatever
time is left over by graduate students or postdocs rather than a necessary part of
the scientific endeavour. While funding agencies like the NSF, DOE and NASA
have required data management plans, there has been less progress on establishing
firm requirements or expectations of sustainable software (although a recent NASA-
driven consideration of these issues is available in National Academies of Sciences,
Engineering, and Medicine 2018).

3. Weiner et al. (2009): “Software release should become an integral part of the publi-
cation process.” and “The barriers to publication of methods and descriptive papers
should be lower.”. Considerable progress has been made in this area. The Ameri-
can Astronomical Society (AAS) journals now allow software-only publications on
equal footing with more traditional science publications (AAS Publishing 2015), and
other major astronomy journals like A&A and PASP do as well. New approaches
to publication like the Journal of open source Software!” (Smith et al. 2018) or the
Astrophysics Source Code Library!® are now providing alternate ways to publish
software that are indexed in Astrophysics Data System (ADS). Software archives

13 https://github.com

14 https://pypi.python.org

15 http://www.sphinx-doc.org
16 https://readthedocs.org/

17 http://joss.theoj.org

18 http://ascl.net
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like Zenodo'® now connect with GitHub to make publication of software via DOI
almost frictionless (GitHub 2016). While there are still challenges in identifying
how software citation should work in these areas, tangible progress and recommen-
dation is being made (Smith et al. 2016). The “cultural” elements of ensuring these
publications are viewed with the same level of value as other publications may also
be improving, although concrete data in this area is lacking. While somewhat less
progress has been made in ensuring open software is a truly integral part of publica-
tion, the same resources noted above have made it much easier to preserve software
long-term. More challenging is preserving the environment software has been run
in. While technologies like Docker or virtualization provide a possible path, they
have not been adopted widely across the community thus far, and represent a possible
major area of development for the 2020s.

4. Weineretal. (2009): “Astronomical programming, statistics and data analysis should
be an integral part of the curriculum” and “encourage interdisciplinary cooperation”.
While some progress has been made in this area, there are many challenges remaining.
We defer further discussion of this to Sections Section 8, Section 9, and Section 7.

5. Weiner et al. (2009): “more opportunities to fund grass-roots software projects of
use to the wider community”. While such projects have grown remarkably in the last
decade (see Section 6.4.1, major challenges still remain in funding such projects in a
sustainable manner, and these form the core of some of our recommendations.

6. Weiner et al. (2009): “institutional support for science programs that attract and
support talented scientists who generate software for public release.”. Some of the
elements of this recommendation have grown with the advent of “Big Data” and
“Data Science” academic positions in astronomy. There has also been a growing
recognition of the importance of research-oriented software positions, particularly
in Europe (e.g. Research Software Engineers International 2018). However, there
are very few viable pathways for researchers who develop software of broad use as
part of their research program if it is not considered a “hot” field. Because, as this
book demonstrates, there are likely to be more areas where deep software expertise
is critical to science in the coming decade, the need for the field to nurture such
career paths will only become more acute. Hence this is also a key element of our
recommendations.

There is one final distinction to be highlighted relative to the last decade: it is clear
that software has become more mission-critical than in the past. As the other chapters
of this book highlight, in the coming decade(s) large-scale science will require larger
and more complex software. These generic concerns about software development are
therefore multiplied across the deeper layers of software, making all the issues more broadly
applicable. The urgency in addressing these issues will only grow in the coming decade.

19 https://zenodo.org
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6.4. Community software as a force multiplier

Collaboratively-developed community software has an increasing large impact through-
out the astronomy community. For example, the whole scientific software ecosystem in
Python (the most popular language in astronomy Momcheva & Tollerud 2015) is built on
community-developed software like NumPy (van der Walt et al. 2011), SciPy (Jones et al.
2001-), Matplotlib (Hunter 2007), or other parts of the so-called “NumFOCUS Stack”.
More domain-specific projects such as Astropy project(Astropy Collaboration et al. 2013,
2018) and SunPy (SunPy Community et al. 2015) capture the expertise of a broad range of
astronomers, and have a wealth of features that cannot be reproduced by solitary researchers.
While the mere existence of such software open to all to use are immediately apparent, there
are several ancillary benefits to such community software efforts:

* The more the community participates, the more the project will reflect their specific
needs and applications, even if it is built on a more general framework.

* The code is typically inspected by more people, and many eyes make all bugs shallow
(i.e. code problems and their solutions will be quickly found Raymond 2001).

* There is usually more documentation available because of the free energy to specialize
on such tools, and a larger base to help support new users.

* It is easier to train scientists to help produce professional-quality software if they
are supported by a core of professional engineers. Community projects provide a
larger-scale social understanding of how that interaction can happen.

» These projects speed up the cycle of science by providing useful implementations for
common tasks, freeing up researchers to work on their specific science.

* When built as part of an underlying broader ecosystem, community software often
gains the direct benefit of contributions “upstream” e.g. improvements in core math
libraries made by computer scientists can flow down to astronomy without any direct
effort in astronomy.

Together, these factors mean that the impact of code developed by a community is multi-
plied by further contributions from other sources to the same ecosystem.

We note that the community developed software need not strictly be open source, though
the majority of these projects are. The benefits of community development extend to both
open and closed source projects, the primary difference being that the potential size of an
open project is by definition larger than a closed one, and most of the above scale with
community size.

6.4.1. Open development/Open collaboration

While a substantial fraction of software in Astronomy is now open source software,
and has been for decades, a major development in recent years has been the growth of
open development. This form of collaboration software development accepts and in many
cases depends wholly on contributions from the wider community to the software project.
Development of the code and discussion around that code is conducted in the open using
industry-standard platforms like GitHub or GitLab, and in most cases policy discussions
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and decisions also occur in the open, or example on a public internet mailing list. The chief
examples of projects like this in astronomy are The Astropy project and SunPy.

This kind of development model is not limited to astronomy projects, there are many
examples of large scale software projects which are entirely developed in the open, the
largest example of which is the Linux kernel. Developing software in this way introduces
technical and sociological challenges, which have been met by DVCS tools such as git, online
collaboration tools such as GitHub that enable workflows which scale to many hundreds or
thousands of contributors, and the hard work of organizers and code reviewers to set up and
maintain a positive culture that enables contributions to continue.

These kind of open collaborations enable many different stakeholders (both astronomer-
users and dedicated developers) to collaborate on a software project, often from a diverse
set of perspectives. While this is possible with non-open developed community software, it
is often much harder because it requires an added layer of communication between “users”
and “developers”, while in open development these are the same community. This makes
the software more valuable to both the contributors and the community more than the sum
of the individual contributions, as it reflects the needs of the many rather than the one.
It also means more work can be done with less funding, because the efforts of individual
contributors are pooled into a “neutral” space that can arbitrate via the community process.
Moreover, the open nature of the collaboration means that stakeholders have the ability
to drive the direction and priorities of the project simply by contributing to it. Because
many of these stakeholders are the users themselves, it also can serve to optimize the
applicability-to-effort ratio.

6.5. Community software problems and solutions

With the above in mind, there is incongruity between the increasing importance of com-
munity software, and the funding available for such projects. In particular, the future of
many widely used projects that are effective force-multipliers, including astropy and ser-
vices such as astrometry.net, are uncertain. These major community projects are generally
unfunded despite the vital role they play for astrophysics as a whole. While many feature
“in-kind” contributions from user missions (as discussed above), such support depends on
the vagaries of mission priorities rather than the needs of the community itself (as discussed
below).

Hence, the benefits outlined above cannot be realized if such efforts are not supported
by funding agencies, large missions, and indeed the astronomical community as a whole.
Currently incentives are not in place to encourage community efforts: indeed in some cases
such software development is either not allowed by a grant program, or tacked on as an
afterthought. (“Oh, we’ll probably have my grad student build that reduction pipeline on the
way to their thesis.”) Where software grant programs do exist, they often focus on building
specific applications into interdisciplinary tools (e.g. NSF CSSI and DIBBs), rather than
applying general software to specific domains. They also as a rule do not emphasize
community-building elements like contribution policy documents, documentation of user
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workflows, or community coordination. Hence, while specific recommendations of what
platforms for development are useful are not likely to be relevant in 10 years (and indeed
are often counter-productive - see Section 6.6), our recommendations focus on incentives
for pro-social behavior by missions and individuals. This will be critical to keeping up with
the ever more software-rich Petabyte era, and this is precisely what the recommendations
of this chapter aim to do.

6.6. Software is alive

“This open source stuff is free. But it’s free like a puppy. It takes years of care
and feeding.” - Scott Hanselman on the death of nDoc (Hanselman 2006)

The grant-funding model for academia fosters a picture of all work as limited to a fixed
time horizon, shared astronomical software often lives as long as it is useful. This can be far
longer than any individual researcher or developer, and as a result the software takes on a
life of its own. Like any living thing, however, this software will not survive without proper
care and feeding, and without evolving to adapt to continually changing environment.

6.6.1. The software stack is always changing. We need to be adaptable.

Sustainability is a necessary but not sufficient condition for software to survive. Even
with maintenance, the entire software ecosystem is constantly evolving. A clear example
is Python replacing IDL as the most popular programming language within astronomy
(Momcheva & Tollerud 2015), despite many of the elements of the IDL Astronomy Library
being maintained. Similarly, many of the features of IRAF are now being provided by
widely used community projects such as Astropy project, despite the long history of IRAF.
New software like this generally evolves because they can tackle problems that were not
addressed previously, either by making the coding easier or taking advantage of other
developments in the wider technical world (discussed more above). For example, resasons
for the change from IDL and IRAF to Python are the lack of license fees, the extensive open
source ecosystem of libraries for scientific computing, and the easier learning curve of the
latter (due to more broad usage).

However, the disruption caused by the evolving software ecosystem can be disruptive
because it comes at the cost of requiring significant retraining and refactoring. In this
way, the need to be adaptable to changing developments in software can appear to be in
tension with the need for well-validated software for research. There is indeed always
a cost-benefit analysis for changing technologies that most include this concern as much
as the benefits that may result. But consideration must be made that this disruption can
be ameliorated by continuing education programs for researchers at all levels. Examples
include AAS workshops, introducing astronomers to the up and coming software projects
and to highlight long-term trends, such as which projects are growing in support vs which are
now largely unmaintained. There are further more focused recommendations in Section 8
for keeping the community on top of such changes. Hence, the disruption caused by the
continuous evolution of the software stack should not be feared, but rather welcome for its
potential to improve our own research.
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6.6.2. Software needs to be sustainable

Any software that is meant to be used more than once requires maintenance. Data sets
change (or grow to Petabyte scale), bugs are discovered, computer architectures change, and
users change their understanding of the intent of the software. This leads to the concept of
software sustainability: practices both within the software itself and of those who develop
it that make it practical to maintain the software for an arbitrarily long time. For astronomy
software to be sustainable (Katz et al. 2018; Wilson et al. 2014), it should:

1. Be both testable and tested (i.e. it is correct and that correctness can be checked by
anyone).

2. Be readable and useable by multiple people (i.e. it can evolve to fulfill its intent over
time as development and scientific conditions change).

3. Have a viable pathway to be maintained past the original author (i.e. survives
uncertainty).

4. Be able to respond to users’ needs, even if they change over time (i.e. supports
relevant concerns).

As outlined in Section 6.6.1, even for software that is maintained, for example by a third
party organization (e.g. Harris Geospatial Solutions for IDL) does not guarantee future
usage of this technology within astronomy (Momcheva & Tollerud 2015). As astronomy
shifts towards a more community-developed, open source set of tools, it iss critical that
different constituents of the astronomy community develop an understanding of the origin
of this software and how they might be able to participate in its development, maintenance,
and long term sustainability:

Software consumers (individual astronomers): Most individual researchers are
consumers of community software, that is, they make heavy use of the software tools
developed by their peers but do not routinely participate in the development of the
software. Like most community-developed open source projects, this is the norm and is
acceptable. However, complete ignorance of the origin of the software they are using
creates a risk to the sustainability of the projects and individuals responsible for creating
the software. For example, if they do not realize the software they are using comes
from other researchers, they may not support hiring, tenure, etc of those who build that
software, thereby stopping them from producing and maintaining the software itself. We
believe therefore that even as software consumers, astronomers should increase their
awareness of the origin of the software they are using and realize that they have an
important role to play in the community by 1) providing feedback to software projects
by filing bug reports, feature requests, feedback on existing tools, and perhaps contribute
other resources like documentation if they have relevant expertise; 2) recognizing
that software is created by people, and that supporting the work of their peers (be it
financially, socially, or even emotionally) who spend time creating these tools is necessary
for the tools they use to even exist; and 3) recognizing and advocating for the broader
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concept that using a shared set of community tools can improve all of science for less money.

Individual software creators (individual astronomers and engineers): While these are
the bread-and-butter of these community efforts, they are not without shared responsibility
here. Specifically, the builders of community have a responsibility for being aware of the
community they are building for. E.g. they need to remember that the user community
typically does not have as much technical expertise and therefore requires their help to
both learn how to use the software and understand why it is useful. They also need to
understand the unique responsibility that creating software sustainably is work (see the
above subsections) and must either agree to such work or communicate clearly to their
potential users that they cannot do it without help.

Institutional software creators (projects/missions/facilities): Observatories and mis-
sions (e.g. LSST, JWST, DKIST), especially in development & construction phases, spend
significant resources developing software both for internal operations but also for their
community to analyze and interpret data products from their facilities. These software
creators need to be incentivized to upstream (i.e. contribute back new innovations to
community software packages) their software where possible, thereby contributing to the
large ecosystem of software available to the general astronomy community. As discussed
earlier in Section 6.4, community software can be a force-multiplier when done right, but
in order for this to happen, software projects must recognize their role in the community
software ecosystem and shift towards being active contributors rather than consumers/users
of community software.



41

7. ANALYSIS METHODS: ALGORITHMS AND STATISTICAL FOUNDATIONS

Contributors: Brian Nord <nord@fnal.gov>, Andrew Connolly
<ajc@astro.washington.edu>, Yusra AlSayyad, Jamie Kinney, Jeremy Kubica, Gau-
tham Narayan, Joshua Peek, Chad Schafer, Erik Tollerud

Note: If you have come directly to this chapter we suggest you please read at least the
Introduction in Section 1 before delving further.

7.1. Recommendations

REC-13 Create funding models and programs to support the development of advanced
algorithms and statistical methods specifically targeted to the astronomy domain.
Area: Analysis. Audience: Agency, Astronomer. Term: Medium

The increasingly large and complex datasets resulting from a new generation of telescopes,
satellites, and experiments require the development of sophisticated and robust algorithms
and methodologies. These techniques must have statistically rigorous underpinnings as
well as being adaptable to changes in computer architectures.

REC-14 Build automated discovery engines.

Area: Analysis. Audience: Technologist, Astronomer. Term: Long

New hypotheses are difficult to generate in an era of large and complex datasets. Frameworks
that can detect outliers or new patterns within our data could address many of the needs
of current and planned science experiments. Funding and developing these engines as a
community would lead to broad access to the tools needed for scientific exploration.

REC-15 Promote interdisciplinary collaboration between institutions, fields, and in-
dustry.

Area: Analysis. Audience: Agency, Manager, Astronomer. Term: Long

Expertise across multiple domains are required to tailor algorithmic solutions to astro-
nomical challenges. The astronomical community should more heavily and directly engage
researchers from industry and non-astronomy fields in the development and optimization
of algorithms and statistical methods. Agencies and academic departments should develop
funded programs to specifically connect astronomers to these experts through sabbatical
programs, centers, fellowships, and workshops for long-term cross-domain embedding of
experts.

REC-16 Develop an open educational curriculum and principles for workforce train-
ing in both algorithms and statistics.

Area: Analysis. Audience: Agency, Astronomer. Term: Medium

The speed of model and algorithm evolution requires regular training and education for
scientists and for those seeking to enter science. Developing and maintaining open curric-
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ula and materials would enable the teaching of algorithms and methodologies throughout
the astronomical community.

REC-17 Encourage, support, and require open publication and distribution of algo-
rithms.

Area: Analysis. Audience: Astronomer, Agency. Term: Short

The rapid adoption of advanced methodologies and the promotion of reproducible science
would be significantly enhanced if we mandated the open publication and distribution of
algorithms alongside papers.

7.2. Overview

The paradigms for data analysis, collaboration, and training have simultaneously reached
a watershed moment in the context of algorithms and statistical methods. The onset of large
datasets as a scientific norm accentuates this shift, bringing both technical opportunities
and challenges. For example, the development of new algorithms and data modeling
techniques has recently accelerated dramatically, providing new modalities for investigating
large datasets. As this corner has turned in algorithmic development, the incorporation of
rigorous statistical paradigms must keep apace. However, this shift has just begun, and we
still lack the tools to even contend with, much less fully take advantage of, increasingly
complex datasets for discovery.

The paradigm shifts also bring organizational challenges that highlight issues with cul-
tural norms of education and collaboration about development of data analysis techniques.
Discovery often occurs at the intersections of or in the interstices between domains, and
therefore multi-dimensional collaboration has irrevocably become a key component of re-
search. We need improved collaboration paradigms to take advantage of this accelerating
emergence of technologies, thereby increasing the permeability of the barrier between differ-
ent areas of science, and between academia and industry. Moreover, innovation in methods
of education and training in new analysis techniques lag behind the development of the
techniques themselves, leading to growing unequal distribution of knowledge. Similarly,
accompanying software development strategies must keep apace with these developments,
both to ensure results are robust and to make sure the education and training can be equitably
distributed.

We have an opportunity to act as the changes set in and leverage our community’s energy
and inspiration to initiate change in how drive algorithmic discovery in the petabyte era.
There is an opportunity for astronomy to both benefit from and help drive new advances in
the emerging technologies. Below, we discuss the key challenge areas where we can and
provide possible directions for what we can do.

7.3. Discovery in the Petabyte Era

At present the process of hypothesis generation in astronomy has two pathways. One
is theoretical, wherein predictions from theory provide hypotheses that can be tested with
observations. The other is observational, wherein surprising objects and trends are found
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serendipitously in data and later explored. As theory comes to depend on larger and larger
simulations, and observational datasets grow into and beyond the petabyte scale, both of
these pathways are coming under threat. With such large datasets, classical modes of
exploration by a researcher are becoming prohibitively slow as a method to discover new
patterns in data (e.g. finding objects and correlations by plotting up datasets). Without
new hypotheses (and ways to develop them) in the 2020s, there may be no astronomy in the
2030s.

A key example of the challenge lies in explorations of high-dimensional datasets. Long
ago, the discovery that stars fill an approximately 1D space in magnitude-color space led to
a physical model of stellar structure. This is a low-dimensional, non-linear representations
of higher-dimensional data. Indeed, seemingly smooth structures in astronomical data can
have surprising substructure (e.g. the Jao/Gaia Gap (Jao et al. 2018)). 1D gaps in famous
2D spaces are visually discoverable. However, we lack comparable methods to find 2D
gaps in 3D spaces, let alone structures in the extremely high-dimensional data that modern
surveys create. Recently, Suzuki & Fukugita (2018) found 17 pure blackbody stars by eye
amongst the 798,593 spectra in SDSS, nearly two decades after they were acquired. This
result shows both how interesting outliers can be, and how by-eye methods are slow and not
practical at the petabyte scale. With trillions of rows available in upcoming surveys, we’ll
have the ability to find low-dimensional substructure in high-dimensional that has potential
to yield new physical insight — but only if we have the tools to do so.

As an example of such a tool, purpose-built Machine Learning (ML) algorithms coupled
with deep sub-domain knowledge can successfully expose hitherto unknown objects that
can significantly advance our understanding of our universe (e.g. Baron & Poznanski 2017).
Unfortunately, any successful exploration requires a) deep algorithmic and implementation
knowledge b) deep physical and observational domain knowledge and c) luck. Deep
algorithmic knowledge is necessary as off-the-shelf algorithms usually need significant
adaptation to work with heteroscedastic and censored astronomical data. Deep observational
domain knowledge is needed as outlier objects are often artifacts and surprising trends may
be imprints of the data collection method. Deep physical domain knowledge is needed to
make sense of the result, and understand its place in the cosmos. For example, algorithms
to find low-dimensional structures (McQueen et al. 2016, e.g. Manifold Learning;) are only
one piece. Observational expertise is necessary to determine that the observed manifolds
are real, and astrophysical expertise is necessary to formulate physical explanations for the
observations. Finally, not all searches will return results; a modicum of luck is needed.
This trifecta of algorithmic knowledge, domain knowledge, and luck is rare.

Over the next decade, we expect astronomy to require unique, fundamental new devel-
opments in algorithms, statistics, and machine learning. Despite the incredible pace of
innovation within these fields, it will not be enough for astronomy to ride along and adopt
general technologies. Astronomy’s science drivers will bring unique algorithmic and statis-
tical questions, data characteristics, and edge cases that will both require and drive continued
investment and innovation.
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We argue that the path forward is through the construction of intuitive, trustworthy, robust,
and deployable algorithms that are intentionally designed for the exploration of large, high-
dimensional datasets in astronomy. When we consider the current landscape of astronomical
research and the upcoming generation of sky surveys, we can already identify areas where
algorithmic and statistical investment are needed, such as:

1. Online (i.e. close to real-time) alerts and anomaly detection in large sky surveys will
require high throughput algorithms and models in order to keep up with the volume
of data produced.

2. Statistical and learned models need to go beyond black box optimization. Models
should be understandable and interpretable in terms of the physical systems they
represent.

3. Machine learning algorithms may need to be adapted to make effective use of domain
knowledge such as physical constraints and data collection methodology.

4. Machine learning techniques often introduce new parameters that must be recorded
in a standardized form to allow other researchers to reproduce analysis.

Very few researchers have both all the needed skills and the bravery/foolhardiness to
seek out risky avenues of research like these. We therefore propose that funding agencies
fund the creation and maintenance of “discovery engines” — tools that allow astronomers
without deep algorithmic knowledge to explore the edges of data spaces to hunt for outliers
and new trends. These engines should be hosted near the data when needed (Section 5.2),
but should be initiated by the astronomical and methods-development communities.

The development of new statistics and algorithms can be accomplished through a variety
of methods, including: on-boarding dedicated algorithmic/data-intensive science experts
onto astronomy teams, facilitating partnerships (with industry or other academic fields), and
building internal expertise within the community through education and training. Regard-
less of the mechanism, it is important that the development of new statistical and algorithmic
techniques is considered a core part of astronomical missions.

7.4. The state of statistics: statistical methodologies for astrophysics

Statistical methods and principles are the backbone upon which successful estimation,
discovery, and classification tasks are constructed. The tools commonly associated with
Machine Learning (e.g. deep learning) are typically efficient, “ready-to-use" algorithms
(albeit with ample tuning parameters). On the other hand, statistical approaches employ
a set of data analysis principles. For example, Bayesian and frequentist inference are two
competing philosophical approaches to parameter estimation, but neither prescribes the
use of a particular algorithm. Instead, the value (and perhaps the curse) of the statistical
approach is that methodological choices can be tailored to the nuances and complexities
of the problem at hand. Hence, when considering the statistical tools that are crucial for
astronomy in the coming decade, one must think of the recurring challenges that are faced
in data analysis tasks in this field.
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Further, as the sizes of astronomical survey datasets grow, it is not sufficient to merely
“scale up” previously-utilized statistical analysis methods. More precisely, modern data are
not only greater in volume, but are richer in type and resolution. As the size and richness
of datasets increase, new scientific opportunities arise for modeling known phenomena in
greater detail, and for discovering new (often rare) phenomena. But these larger datasets
present challenges that go beyond greater computational demands: they are often of a
different character due to the growing richness, which necessitates new analysis methods
and therefore different statistical approaches. Hence, as the complexity of astronomical data
analysis challenges grow, it is imperative that there be increasing involvement from experts
in the application of statistical approaches.

To ground these ideas, in the following subsections we will consider examples of technical
and organizational challenges that, if advanced over the next decade, would provide the
greatest scientific benefit to astronomy.

7.4.1. Technical Challenges

1. Methods for the analysis of noisy, irregularly-spaced time series. Future time domain
surveys, like LSST, will generate a massive number of light curves (time series) with
irregular observational patterns and in multiple bands. This goes beyond the limits of
classic time series models, which assume regularly spaced observations with a simple
error structure. Areas of need include feature selection for classification, periodicity
detection, and autoregressive modeling,

2. Likelihood-free approaches to inference. Likelihood-based inference is standard in
astronomy, but as the sizes of datasets grows, any flaw in the assumed likelihood func-
tion will result in a bias in the resulting inference. Such flaws result from unwarranted
Gaussianity assumptions, difficult-to-model observational effects, and oversimplified
assumptions regarding measurement errors. Likelihood-free approaches, such as
approximate Bayesian computation, hold promise in astronomy, but much work is
required to develop tools and optimize them for astronomy datasets and therefore
make this computationally-intensive approach feasible.

3. Efficient methods of posterior approximation. Even in cases where a likelihood
function is available, constructing the Bayesian posterior is challenging in complex
cosmological parameter estimation problems, because future inference problems will
push the computational boundaries of current MCMC samplers. Work is needed
to improve the performance of chains, which must adjust to degeneracies between
cosmological parameters, handle a large number of nuisance parameters, and adhere
to complex hierarchical structure that is increasingly utilized in such analyses.

4. Emulators for complex simulation models. 1t is increasingly the case that a simulation
model provides the best understanding of the relationship between unknown param-
eters of interest and the observable data. Unfortunately, these simulation models
are often of sufficient complexity that a limited number of simulation runs can be
performed; the output for additional input parameter values must be approximated
using emulators that interpolate these available runs. Emulation to sufficient accuracy



requires careful selection of both the input parameters for the training sample and
the method of interpolation; both of these must be done with consideration of the
particular application.

5. Accurate quantification of uncertainty. Complex inference problems in astronomy
are often, out of necessity, divided into a sequence of component steps. For example,
classification of Type Ia supernovae, a challenging problem on its own, is just a
step in a larger analysis that seeks to constrain cosmological parameters. Separately,
redshifts and luminosity functions are estimated and then fed into larger estimation
problems. This divide-and-conquer approach requires careful consideration of the
propagation of error through the steps. How does one quantify errors in redshift
estimates in such a way that these uncertainties are accurately accounted for in the
downstream analyses? How is contamination that results from misclassification of
supernovae reflected in the uncertainties in cosmological parameters estimated from
these samples? LSST faces challenges of separating identifying images in which
overlapping objects are “blended"; how is the uncertainty inherent in this problem
incorporated into analyses that use these images? Careful consideration of such
questions is crucial for attaching accurate statements of uncertainty to final estimates.

7.4.2. Organizational Challenges

1. Accessible publishing of methods. Advances in statistical theory and methods abound
in the literature of that field, but it is often presented in a highly formalized mathemat-
ical manner, which obscures the aspects of most importance to potential users. This
creates a barrier to the appropriate use of these methods in astronomy. The greater
involvement of data scientists in collaborations will help to bridge this divide, and
enable these individuals to make significant contributions. This will require appro-
priate professional recognition for this effort, including encouraging the publication
of methodology papers in astronomical journals by data scientists (see Section 8.5.2
for related workforce issues).

2. Avoiding the “algorithm trap.” Astronomical inference problems are of sufficient
complexity that full use of the data requires analysis methods to be adapted and
tailored to the specific problem. For this reason, statisticians prefer to not think of
an analysis as the application of a ready-made “algorithm.” By contrast, astronomers
are generally more interested in the result of the analysis, so are attracted to well-
separated “algorithms” they can apply to a problem. This difference in perspective
only increases the need to have data scientists deeply involved in the collaborative
process.

3. Reducing barriers for statisticians. From the other side, data scientists face challenges
in applying analysis techniques astronomical data. This is partly due to technical
difficulties like unique file formats and data access issues. But it is also because
deeply understanding the science is frequently crucial to building methods tailored
to the problem, as outlined above. More effort needs to be placed on reducing
these barriers. For example, astronomers can work to isolate important statistical
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aspects of larger problems and create user-friendly descriptions and datasets to allow
statisticians to more quickly learn and focus on making a contribution. At the same
time, embedding statisticians and data scientists close to astronomers will help bring
the former to a better understanding of the astronomy perspective.

7.5. The state of algorithms: developments in the last decade

A key development that has enabled science in this past decade has been the development
of a number of general purpose algorithms that can be applied to a variety of problems.
These algorithms, irrespective of what programming language the implementation is in,
have made astrophysical research more repeatable and reproducible, and less dependent on
human tuning.

For example, PSF kernel convolution has enabled time-domain astrophysics, and is a
key component of difference imaging pipelines, but is also used to generate deep stacks
of the static sky, allowing us to find ever more distant galaxies. These developments in
turn have spurred the development of new algorithms. In roughly 20 years, the field has
moved from Phillip Massey’s guide to doing aperture photometry by hand with IRAF
for small, classically scheduled programs, to completely automated surveys that optimize
their observing schedule in real-time, record data, detrend the observations, and perform
automated PSF photometry of billions of deblended sources.

As with statistics, the distinction between algorithms, and the software implementation
of algorithms is blurry within the community. In many situations, we now use algorithms
without any knowledge of how they work For example, we can now expect to sort tables
with millions of rows on multiple keys, without knowing the details of sorting algorithms,
precisely because these details have been abstracted away. We note that the many widely
used algorithms, such as affine-invariant Markov Chain Monte Carlo techniques are widely
used precisely because the algorithm is implemented as a convenient software package.
Community-developed software packages such as scikit-learn, astropy, and the IDL
Astronomy Library have increased the community’s exposure to various algorithms, and the
documentation of these packages has in many cases supplanted implementation-oriented
resources such as Numerical Recipes.

At the same time in the broader world, a class of algorithms is being used to execute tasks
for which an explicit statistical forward model is too complex to develop, and correlations
within the data itself is used to generate actionable predictions. These Al techniques include
machine learning models, which have been used to replace humans for tasks as varied as
identifying artifacts in difference images, to categorizing proposals for time allocation
committees. These Al techniques, in particular deep learning methods, are increasingly
viewed as a solution to specific petabyte scale problems, as they have been successfully
deployed in the commercial sector on these scales. We anticipate increasing adoption of
these algorithms, as user friendly implementations such as pyTorch and Keras become
more well known, and data volumes grow. It is also likely that the algorithms that are
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used to train these machine learning methods, including techniques like stochastic gradient
descent, will find more use within the astronomical community.

Machine learning algorithms are necessary but not sufficient to continue the progress in
astrophysical research that is driven by algorithms. In particular, machine learning methods
are often not-interpretable, and while their output can be used effectively, those outputs are
not true probabilities. The scientific method fundamentally involves the generation of a
testable hypothesis that can be evaluated given data, and is therefore inherently statistical. As
data volumes grow, the dimensionality of models grows, and there is increasing recognition
that the model structure is hierarchical or multi-level. While we see increasing adoption of
hierarchical models for Bayesian inference, there remains much to do to increase awareness
of algorithms to effectively evaluate these models, including probabilistic programming -
algorithms that are used to build and evaluate statistical models in a programmatic manner.

As in the previous section, we now separately consider some of the specific technical and
organizational challenges in the area of algorithms.

7.5.1. Technical challenges

1. Both algorithms and models need to be trustworthy and interpretable. It’s easy to
throw a dataset into a neural net or ensemble classifier and overfit. Tools need to be
developed that recognize these traps and in large-scale datasets, and bring them to
the attention of the user.

2. Many algorithms, especially in the machine learning space, require labeled data that
may not be available at sufficient volumes, or at all.

3. The reproducibility of results derived from algorithms needs to be improved. This
is especially important with machine learning models where black-box optimization
is often used because it is an easy-to-provide feature. Such reproducibility improve-
ments could be as simple as defining standardized formats for how we document the
model learning parameters, but could also be more complex, including building out
tools that are designed specifically for reproducibility (e.g. Data reduction pipelines
with built-in provenance, or Jupyter notebooks that download their own data).

4. Scalability of newly-developed algorithms. With the data volumes of the petabyte
era, efficiency in all parts of the stack is necessary. Such optimizations are usually
possible, but require investment of time (often by different people than those who
develop the first iterations of the algorithm).

5. Astronomy data has some differences that can expand current algorithmic devel-
opment at large. This particularly includes use of measurement uncertainties, as
general-use algorithms often make assumptions that work for other fields that are
homoscedastic or Gaussian which fail in Astronomy. There is also a need for more
algorithms that account for posteriors, a particularly strong need in astronomy be-
cause its domain of “the universe as a whole” means that algorithms applied to one
dataset need their outputs to be considered by another.
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6. Significant work is still needed in adapting and improving the current space of existing
algorithms: optimizing traditional astronomy algorithms, adapting them for a cloud
setting, or even making small accuracy improvements.

7.5.2. Organizational challenges

1. It is difficult to get the necessary expertise onto all missions that will need it both
in terms of developing the expertise internally (due to the fast pace of change in the
space) and hiring in experts.

2. There is currently no established marketplace/mechanism for matching difficult prob-
lems in the astronomy domain to relevant experts outside an astronomer’s network.
This is particularly acute given the discussion above about the growing importance
of statistical and data science expertise.

3. There is a missing component in the conduit of moving new algorithms developed
in academia into robust, usable, finished products. See Section 6 for additional
discussion in this area.

4. We need standardized processes for publishing algorithms and machine learning
models such that the results obtained with these algorithms/models are: broadly ac-
cessible, discoverable, fully reproducible (including archiving the model parameters),
and easily comparable with other algorithms in the problem space.

5. We need to define and fund a process for continually modernizing/upgrading al-
gorithms as the broader environment changes (new languages, new libraries, new
computational architectures, shift to cloud computing, etc). See Section 6.6 for a
broader discussion of mechanisms and recommendations for this.

7.6. Emerging trends in industry and other fields

Over the past two decades, the wider industry has also seen a shift in development ap-
proaches and computational techniques that can be adopted by the astronomical community.
As noted in Section 6 open source software has become a new normal with communities
sharing their investment in software development. When considered along with the in-
dustry’s shift toward cloud computing and software as a service, astronomy can benefit
from the new scale and availability of off-the-shelf solutions for computation and storage.
Astronomers no longer need to focus significant portions of time on the low-level technical
details in running dedicated banks of computers to support each survey.

This service model is being extended beyond software deployments and starting to push
into algorithms as a service. Cloud machine learning services provide a portfolio of general
algorithms. Instead of worrying about the specifics of the algorithm development, users
focus only on model specification. This requires a shift in how we think about new algorithm
development. Instead of focusing on the details such as implementation, optimization, and
numerical accuracy, the practitioner focuses primarily on the high level model specification.
Due to a series of recent successes, a significant focus within hosted machine learning
services has been on deep neural networks (DNNs). NNs have shown remarkable success
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across a variety of tasks. Further new developments such as convolutional neural networks
and recurrent neural networks have extended the power of this technique.

Another area of focus within the field of machine learning is blackbox optimization.
Techniques such as Gaussian decision processes, allow algorithms to jointly model and
optimize unknown functions. These techniques can be applied to a range of problems
from optimizing real-world, physical processes to optimizing the parameters of a machine
learning system (e.g. AutoML).

The ultimate goal of algorithms as a service can be seen in the advancements in AutoML.
AutoML systems aim to abstract away not just the algorithm’s implementation details, but
also the need to manually tune model parameters. For example, recent work in Neural Ar-
chitecture Search (NAS), allows the AutoML system to handle such development decisions
as choosing the structure of the network (number and width of layers) as well as the learning
parameters. While this automation greatly simplifies the problem of constructing accurate
models, it does move the practitioner one step further from understanding the full details of
the model.

There is an opportunity for astronomy to both benefit from and help drive new advances
in the emerging industries. As noted above, astronomy can benefit from the shift from
individually developed and maintained systems to hosted platforms that allow more effort
to be spent on the data analysis itself. Moreover, the shape and size of science data serve
as a driver for the development of new algorithms and approaches. We expect many of the
upcoming advancements to be driven by real-world problems—machine learning will rise
to the challenge of solving new, open problems. The recommendations in this chapter aim
to ensure some of these problems and solutions are in the astornomy domain.

7.7. Enhancing Interdisciplinary Programs and Collaborations

The past decade has been a period of rapid change in the the multi-dimensional land-
scape of algorithms, computing, and statistics. We have seen the rise of new “standard”
programming languages and libraries (e.g. Python, astropy, scikit-learn). There has
been a proliferation of new algorithmic and statistical techniques — from improvements in
image processing and compression to the rise of deep neural networks as a powerful tool
from machine learning. We have seen the rise of new computational modalities, such as
cloud computing and software as a service. New distributed compute frameworks such as
Dask and Spark are emerging to process and analyze large and complex datasets. Even the
basic mechanics of computation is undergoing a shift with the availability of specialized
hardware such as GPUs and TPUs, requiring a new domain of knowledge to efficiently
deploy solutions. There is no reason to expect the pace of innovation to drop off anytime
soon.

This rapid pace of advancement means that it is no longer possible for a single astronomer
or even a small team of astronomers to build the necessary depth of expertise in all of
these areas. However, these technologies are already proving critical for maximizing the
scientific reach of new research. Robust methodologies that can scale to the expected size
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and complexity of the data from new astronomical surveys and experiments will need to be
accessible and usable by a broad section of our community. As new technologies spring
up quickly, the astronomical community will need to balance the cost of learning the new
technologies with the benefits they provide. It is not reasonable to expect every astronomer
to keep up with all of the advances. A number of new ad hoc collaborations or collectives
have sprung up to bring together astrophysicists and deep learning experts, such as the Deep
Skies Lab?° and Dark Machines?!.

In cases where collaborations exist today, there can be a variety of complicating chal-
lenges. There is currently no established marketplace for matching difficult problems in
the astronomy domain to relevant experts outside an astronomer’s network (see also §7.6).
The resulting in-depth collaborations have start up overhead as the external experts learn
enough about the problem domain to be helpful. Short-term engagements can suffer from a
lack of depth or insufficiently productionized solutions. Even in longer term engagements,
there can be misalignment between the parties due to the different incentives. For exam-
ple, statisticians and computer scientists in academia are primarily recognized for only the
novel contributions to their own fields. Papers that apply existing methodologies to new
problems are not considered significant contributions to their fields. Similarly, members of
the astronomy community are not fully recognized for their algorithmic contributions.

There are many opportunities for astrophysics to benefit from these investments in tech-
nology and computational algorithms. However, requires that we change how astronomy
engages with experts in other fields. The exact shape of this engagement can take a variety
of forms. Examples include:

1. Provide funding for astronomical missions to engage with external experts (academic
or industrial) via consulting, co-funded research, or subcontracting.

2. Encourage a robust community of volunteers via open source contributions and
engagement.

3. Create forums for external methodological experts to engage in astronomical projects
and analyses. Data challenges and hack sessions can be used to encourage engage-
ment, but they require sufficient organization and communication (i.e. funded effort)
to ensure they can engage software engineers at an appropriate level.

4. Encourage recognition of interdisciplinary contributions within academic areas (e.g.
career progression for statisticians that enable new astronomy without necessarily
creating new statistics).

5. Organize workshops that bring together members of these different fields and can
facilitate matching along problem domain.

6. Provide funding for astronomical programs to hire full time experts to be embedded
within the mission. It is important to note that this approach comes with challenges
in recruiting (both these areas are in high demand), costs of attracting high quality
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personnel, and in stability for the team members (the algorithmic / statistical workload
might not be consistent throughout the life of a project).

7. Implement reverse sabbaticals where experts from industry can embed in projects for
short intervals (a few months).

8. Train astronomers in these fields to become resident experts. Encourage mobility of
these experts to provide support for new missions.

9. Establish a center for algorithmic and statistical development in astronomy (central-
ized or virtual) that employs full time experts in fields such as algorithms, statistics,
and machine learning. This center would be a community resource that provides
support to individual programs via deep engagement.

The goals of these interactions are not to provide programming support for projects but
to develop a base of expertise built from academic and industrial experts that can help to
define, design, and guide the development of computational and statistical projects within
astronomy. The form and depth of the engagement will naturally be project dependent.
Experimental and privately-funded interdisciplinary centers e.g. the Moore-Sloan Data
Science Environments at Berkeley, New York University (NYU) and the University of
Washington, or the Simon’s Flatiron Institute have demonstrated how expertise in data
science can advance a broad range of scientific fields. Access to the resources at these
centers is, however, limited to researchers at these privileged institutions. The challenge we
face is how to scale these approaches to benefit our community as a whole.

7.8. Education and training

Training a workforce that can address the algorithmic and statistical challenges described
in this Chapter will require a significant change in how we educate and train everyone in
our field, from undergraduate students to Principle Investigator (PI)’s. The discussion in
this section is complementary to and aligned with that found in Section 8 and Section 9.
The traditional curricula of physics and astronomy departments do not map easily to the
skills and methodologies that are required for complex and/or data intensive datasets. This
is a rapidly changing field, and will remain so for at least a decade. However, a strong
foundation in Bayesian statistics, data structures, sampling methodologies, and software
design principles would enable professional astronomers to take advantage to big data in
the next decade. Bridging this gap between the skills we provide our workforce today and
the ones they might need to succeed in the next decade should be a priority for the field.

In the previous decade there was substantial progress in creating material to support the
teaching of statistics and machine learning in astronomy. This includes the publication of
introductory textbooks (Ivezic et al. 2014; Kohl 2015; Hornik 2018), the creation of common
software tools and environments (Astropy Collaboration et al. 2013), the development of
tutorials, and a growing focus on software documentation (Astropy Collaboration 2019).
The emergence of Jupyter (Kluyver et al. 2016) as a platform for publishing interactive
tutorials and Github and Gitlab for hosting these tutorials and associated code has simplified
the process of sharing material. To date, however, there has been little coordination in this
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effort. The coverage of topics in the available material is not uniform. Moreover, the
underlying principles and foundations of statistics are often not covered in favor of the
introduction of commonly used software tools and algorithms. For the case of algorithmic
design and optimization there has been substantially less progress in training the community.
Instead, the primary focus being the development of introductory materials such as the
Software and Data carpentry (von Hardenberg et al. 2019; Wilson 2013).

We have started to make progress in providing an educational foundation in statistics and
algorithms, but it is not uniformly available across our community — with significantly
less access at smaller colleges and in underrepresented communities. We, therefore, rec-
ommend the development and support of a common and open set of educational resources
that can be used in teaching statistics, and algorithms, and machine or computational learn-
ing. Determining what constitutes an appropriate curriculum will be a balance between
providing the foundations of statistics and algorithmic design appropriate for the broader
science community and teaching specialized skills (e.g. optimization, compilers) that may
benefit a smaller, but crucial, set of researchers who will engage in the development and
implementation of computing and software frameworks.

This will likely require a coordinated effort to integrate current resources within a broader
curriculum and to make them easily accessible — in a manner where anyone, from as-
tronomer to an entire educational institution, can create custom courses tailored to their
needs. Given the rapid evolution in algorithms and in the ecosystem of tools over the last
decade, and looking to the future, this curriculum will need to be able to evolve.
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8. WORKFORCE & CAREER DEVELOPMENT

Contributors: Dara Norman <dnorman@noao.edu>, Kelle Cruz, Vandana Desai, Britt
Lundgren, Eric Bellm, Frossie Economou, Arfon Smith, Amanda Bauer, Brian Nord, Chad
Schafer, Gautham Narayan, Erik Tollerud

Note: If you have come directly to this chapter we suggest you please read at least the
Introduction in Section 1 before delving further.

8.1. The growing importance of a tech-savvy workforce of astronomers

In the rapidly approaching era of large surveys, experiments, and datasets, we will only
reach our scientific goals if we train and retain highly capable scientists, who are also engaged
with technological advances in computing. With the goal of advancing scientific discovery
through the collection and analysis of data, we must commit and dedicate resources to
building both the skills and competencies of this workforce. This includes those in the
workforce that will be using data to advance science as well as, those supporting the
infrastructure that make those discoveries possible. The areas and skill sets in which we
our teams need training are software carpentry, algorithms, statistics, the use of tools and
services (for scientific staff); and software engineering effective practices, data management
and access (for support staff).

In this chapter we discuss the activities needed to build, support, and advance the scientific
workforce that will take the petabytes of data collected to scientific discoveries over the next
decade. In particular, Section 8.2 discusses the current demographics of the data science
support mission, exemplifies the scope of training (Section 8.3) that is needed to build
this workforce. Section 8.4 focuses on training for researchers who are more accurately
described as “users.” In Section 8.5, we discuss modern challenges for these career paths,
as well as how to address them. Finally, in Section 8.6, we identify metrics that we should
be using for training in career development and for reviews in career advancement.

8.2. Demographics - who is this workforce and where are they now

Data support roles permeate the astronomy and astrophysics (hereafter, “astronomy’)
science community, and they encompass people with a variety of job types and descriptions
and at levels from post-baccalaureate to PhD. A range of experience with either topics
of astronomy or computing also differentiate roles. This range of data support positions
requires a diversity of opportunities for training to work at the various levels, as well as
career development and advancement suited to those career tracks. For example, positions
for those with PhDs are significantly different from those that require only a post-bac
degree, and thus the metrics used to support and determine career advancement must also
be different. It has only recently been recognized that this role should be trained for and
tracked independently of scientific interests and other professional duties. Consequently,
the community has not adequately tracked the quantity and demographics of astronomy
researchers currently engaged in science data support roles.
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Instead of quoting statistics here, we present exemplar descriptions of current job titles
and roles. Many of the people engaged in science data support hold PhDs in astronomy,
astrophysics or physics. These researchers may be employed at colleges, universities, data
centers or observatories, national laboratories. They may hold a leveled academic title (e.g.
Professor, Astronomer, Scientist, etc.), as well as an additional functional job position in
centers or programs with names “Data Science Mission Office,” “Community Science and
Data Center,” “Infrared Processing and Analysis Center.” Meeting career milestones to
move up the ladder in these academic titles (i.e. assistant, associate, full, etc.) currently
often only include the same metrics as for other faculty and staff (e.g. numbers of published
papers, h-value, etc.) More discussion is in Section 8.5.

There are also many other science data support roles, in which staff have degrees at the BS,
research and
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MS, or PhD level with position titles like “research and instrument associate,

2% <¢ 29 46

instrument scientist,” “mission systems scientist,” “archive scientist.” These staff are often
responsible for coding and database support. Below, we discuss the resources and cultural
changes needed to support the career trajectories of this workforce, to slow the threat of
“brain drain” from the field, and to develop a workforce that can thrive in academia, industry,

or government lab positions.

8.3. Training to contribute to software development: Building the next generation

Astronomers have a long history of developing useful software, but software development
itself has not been considered a core component of the astronomy training curriculum. The
expectation of petascale datasets in the 2020’s provides a strong motivation to increase famil-
iarity with effective practices in software development, as well as with existing frameworks
that are widely used in the commercial sector. This cultural change will lead to better soft-
ware in astronomy and more innovative scientific discovery. It will also provide astronomers
with invaluable training that will increase their familiarity with (and marketability to) work
in industry.

Currently, effective practices include using version control (e.g. GitHub), maintaining
documentation and unit tests with code, and employing continuous integration methodolo-
gies, in which code is built and executed in shared repositories, allowing teams to identify
issues early. Analysis in the 2020s will involve many pieces of software that are integrated
into complex pipelines, processing ever-larger volumes of data. Astronomical projects are
now comparable in scale to large industrial software development projects. Consequently,
the gap between these effective practices and the modern cultural norm in astronomy and
astrophysics must be reduced as the field transitions to increasingly large collaborations.

The increasingly critical role of software development in astronomy clearly indicates it is
crucial that software development become part of the core graduate curriculum alongside
typical coursework, like mathematics and observing techniques. Such coursework will also
help reduce the disparity between students from diverse backgrounds, some of whom may
never have been exposed to software development, or even coding, as undergraduates. This
course material is distinct from, but complements training in data science and scientific
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computing techniques, which are increasingly being incorporated into Astronomy course-
work. Developing the course material for data science work is likely beyond the scope of
most departments, but vital steps have already been taken by several groups. Notably, the
LSST Data Science Fellowship Program has already developed materials to expose stu-
dents to best practices for software development. Curating these materials, and augmenting
them with information on widely-used platforms will reduce the barrier to adopting such
coursework or integrating it into existing classes.

There are several other challenges for supporting scientific software training in a university
setting. One challenge is lack of access to state-of-the-art technologies: the landscape of
coding and software development changes rapidly as coding languages come and go, work-
flow best practices continually evolve, and new platforms emerge and gain wide acceptance.
For principal investigators and project managers to make informed decisions and guide their
teams, there must be opportunities for them to stay abreast of these developments and to
evaluate their utility even if they are not the ones actually using the various tools.

Another challenge resides in the structure and processes of university departments. Many
computer science departments do not teach the programming skills necessary for scientists.
Thus, the burden of developing more appropriate materials is fractured and currently falls
upon individual instructors. The field needs dedicated staffing to develop curriculum
materials for computational training. A fundamental barrier to the development of reliable,
curated, and widely shared software in astronomy is the lack of incentives for this work and
the dominance of the “publish or perish” mentality. Changing this cultural norm requires
that our community incentivize — both within scientific projects and across the field at
the employment level — work in developing good software and in educating people to
build good software. Recognizing such work in assessing service and research, and valuing
well-written and -documented software that is widely used for scientific work, rather than
only immediate personal results is a vital step in changing this culture and in preparing the
field for the software challenges that will be posed by massive projects in the 2020s. A full
solution cannot be realized through universities alone, and partnerships with data centers,
observatories, national labs, and professional societies are crucial.

The clear successes and popularity of the various existing training programs, which grew
organically out of the community, attest to the need for additional and more advanced
training resources. While there are several successful programs that address some of
these concerns, they are insufficient to meet the needs of the larger community. For
example, the Software Carpentry curriculum (https://software-carpentry.org/lessons/) is
limited to the very basics of version control and collaborative software development but
does not cover topics, like performance optimization, continuous integration and testing,
and documentation. Furthermore, most of these workshops are targeted to senior graduate
students, with a few targeting very early-career scientists, and they are not designed to meet
the needs or concerns of mid-career scientists and managers. Thus, these programs are
currently limited to a very small portion of the community and are currently unable to
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provide the needed training to people in multiple sectors of our community who need and
want these opportunities.

Staff at Data Centers may themselves currently lack data science skills and up-to-date
knowledge. Funding to support career development for current staff and to enable centers
to hire staff that have data science expertise is critical to building workforce capacity in the
2020s.

Fundamental coding and software development skills are becoming increasingly necessary
for success in every aspect of Astronomy. However, acquiring professional training in these
skills is rare and inaccessible or impractical for many members of our community. Students
and professionals alike have been expected to learn these skills on their own, outside of their
formal classroom curriculum or work duties. Despite the recognized importance of these
skills, there is little opportunity to learn and build them — even for interested researchers.
To have a workforce capable of taking advantage of the computational resources and data
coming in the next decade, we must find and support ways to make coding and software
development training widely accessible to community members at all levels.

REC-18 Programs to cultivate the next generation.
Area: Workforce. Audience: Agency . Term: Long
Agencies should fund more and large-scale programs that cultivate the next generation
of researchers versed in both astrophysics and data science, similar to smaller and over-
subscribed programs like Software and Data Carpentry, LSSTC Data Science Fellowship/
La Serena Data School for Science, Penn State Summer School in Statistics for Astronomers.

REC-19 Support to produce training materials.

Area: Workforce. Audience: Agency . Term: Short

Provide funding to data and computational centers to produce modular and re-usable
training resources to the community. These resources should be designed to be used by
individuals, integrated into formal classes, and used as part of professional development
training.

REC-20 Long-term curation of materials.

Area: Workforce. Audience: Agency . Term: Long

Funding must be provided to host and support educational materials in a long-term, stable,
scalable place. Provides stability and improves discoverability if materials can live in a
centralized location.

REC-21 Funding for innovative partnerships.

Area: Workforce. Audience: Agency . Term: Medium

Incentives should be provided to launch opportunities to harness partnerships between data
centers, universities and industry through funding. For example, support for sabbatical
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programs at the data centers where teaching faculty can learn skills, develop educational
materials for community use, and bring back to their home institutions.

REC-22 Software training as part of science curriculum.

Area: Workforce. Audience: Astronomer, Educator, University . Term: Medium
Individuals, departments, and professional societies should encourage educational pro-
grams to incorporate software training skills into their existing courses and programs.

8.4. Training to take advantage of big data for research: Bytes to Science

Astronomers who came of age before the era of Big Data require training to take advantage
of astronomical “Big Data” in the 2020s. They also need these skills to mentor students,
who are simultaneously learning both astrophysics and the uses of data for research. It
is crucial that access to this training be made widely available to professionals who come
from a variety of science backgrounds and are based at a broad range of institutions (e.g.
universities, data centers, etc.). This is especially important, considering these professionals
will be cultivating their students and the next generation of scientists, as well as making
decisions about which technologies to invest in. If access to advancing data skills remains
difficult to obtain, we will fail to build a diverse workforce equipped to answer the most
pressing questions in astronomical research. Data Centers could play an important role in
providing this training.

New, freely accessible open source code and Jupyter frameworks like SciServer.org and
NOAO Data Lab enable anyone with a web browser to quickly and easily analyze vast
stores of professional astronomy datasets via web-based notebooks. These cloud-based
platforms can democratize educational access by providing a scale of computing power and
data storage that was previously reserved for students and faculty at well-resourced research
institutions, where high-performance computing access and support are abundant. A small
number of astronomers in higher education are already developing instructional activities
for these platforms. These instructional materials train students and other users to explore
and analyze large professional astronomy datasets with ease and to equip users with the
computational foundation needed to pursue advanced independent research projects.

Jupyter notebooks in particular hold enormous potential for training the current and next
generation of astronomy professionals. However, currently, the development of standardized
curricular activities is performed in an entirely ad-hoc manner. Limited resources (funding
and time) lead to very little deliberate coordination amongst various astronomy faculty who
produce such materials, and these products are not sufficiently discoverable (e.g. accessible
through a common repository).

The establishment of Community Science Centers hosted by Data Centers (like NOAO)
can be a hub (clearing house) to bring information to the community about opportunities
for the kind of resources and training that allow a broad group of researchers to go from
petabytes to publications.
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In order to provide the most useful training, data centers need a clear view of user needs.
This information is provided by advisory committees, like “User Panels.” However, these
panels are traditionally populated by astronomers based at R1 institutions and other data
centers. Data Centers should ensure that their User Panels include representatives from
small and under-resourced institutions; this will provide a clearer picture of the unique
training needs and challenges that must be addressed for these researchers. In addition
community surveys that reach astronomers who do not currently use data centers should be
undertaken to better understand what barriers exist.

REC-23 Training activities and materials.

Area: Workforce. Audience: Agency . Term: Short

Agencies must ensure that big data science training activities and materials for PROFES-
SIONALS (as well as students) are included as part of the federally funded data center’s
mission and deliverables.

REC-24 Change advisory board representation.

Area: Workforce. Audience: Agency . Term: Medium

Federally (and privately?) funded science centers should include representatives from
small and under-resourced institutions to provide a broad and clear picture of need in the
community. The collection of information, perhaps through surveys, to better understand
the barriers to access that exist for astronomers at these institutions should be undertaken
by data centers and others.

8.5. Identifying career paths around scientific software development & big data science

The key skills necessary for data-intensive scientific research are also highly valued in
industry, government, and media/communication sectors. Astronomy training can serve as
a stepping stone to fulfilling careers in a wide variety of fields, and astronomers should
support and encourage those who transition to jobs in non-academic science, because ties
with industry can strengthen and leverage our partnership opportunities. However, we need
informed people on both sides: in many cases, challenging and uncertain career paths in
astronomy push the best and brightest towards careers where their contributions are more
readily appreciated. This “brain drain” siphons away the very researchers most needed to
tackle the most pressing science questions of the 2020s.

8.5.1. Universities

In the university context, tenure-track faculty positions remain the gold standard for
stability, compensation, and prestige. However, despite the fundamental role of software in
scientific discovery, it remains difficult to receive credit towards tenure and promotion for
developing software and services. Section 8.6 offers more specific recommendations for
improving recognition for these contributions.

Even with appropriate credit for software contributions, faculty positions will continue
to carry expectations of leadership, grant-writing, teaching, mentorship, and service, as is
appropriate. Furthermore, driven by ongoing changes in the landscape of higher education,
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tenure-track hiring continues to flatten. To benefit from the opportunities of large datasets,
universities also need the ability to support and retain technically capable faculty and
staff, who have expertise and a longevity that typically cannot be matched by graduate
students or postdocs. These “Research Software Engineers” (Research Software Engineers
International (2018)) would provide a technical core for data-intensive research groups, just
as opto-mechanical and electrical engineers are vital to the success of instrumentation labs.

Stable funding is the largest need for the success of staff Research Software Engineers
(Geiger et al. 2018). A patchwork of 2-3-year soft-money grants is insufficient to retain
highly-capable professionals, especially when industry salaries are significantly higher.
Universities should explore means of providing internal support for data science staff,
perhaps sharing capacity between academic groups or departments. Long-term vision and
leadership in the field are needed to recognize and measure relevant metrics and make them
part of advancement/career ladders.

8.5.2. Science/Data centers

At data centers, project data management (DM) teams need to cover a wide range of
expertise such as astronomical domain knowledge, strong astronomical data understanding,
deep software engineering skills and what is often referred to as “dev-ops” skills (engineer-
ing, deploying and operating production services). Given the broad areas of competency
required, a team with a couple of people (or worse, sub-teams) in each area of expertise
quickly exceeds the "optimal team size" which means the team gets mired in communi-
cation overheads, has difficulty forming a common purpose and loses agility (including
over-planning, inability to respond to shifting requirements or technologies, and makework
to compensate for inhomogeneities in the division of labor). A hybrid team is one that is
not only multi-disciplinary in constitution but consists of generalists with fluency in more
that one domain.

By assembling hybrid teams that not only bring domain specialty but share a common
understanding of other areas in the team’s competence sphere, it is possible to constrain a
team to a manageable size; avoid over-division of labor and the fractioning of individuals
work assignments, and reap the ability of multi-disciplinary teams to reach new, overarching
insights into their problem space. Developing these hybrid teams includes supporting tech
savvy researchers who have expertise in both the domains of astrophysics and software
engineering or other data support skills.

Ultimately, supporting these hybrid teams requires investment in job stability. Longer-term
grants aimed at building and supporting abiding, professional (non-student) data science
capacity.

REC-25 Recognize software as part of the career path.

Area: Workforce. Audience: Manager . Term: Short

Software should be recognized in hiring and career development as a core product of
modern astronomical research. Software outputs should be considered in all aspects of
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academic performance appraisals, career applications, and promotion and tenure review

cases.

REC-26 Partnerships to support data science staff.

Area: Workforce. Audience: University . Term: Medium

Universities should explore means of providing support for data-science faculty and staff,
perhaps sharing capacity between academic groups or departments internally or partner-
ships outside the university.

REC-27 Support long-term technical capacity.

Area: Workforce. Audience: Agency . Term: Medium

Funding agencies should explore longer-term grants aimed at building and supporting
professional (non-student) data science capacity.

8.6. Elevating the role of software as a product of the research enterprise

Software is a critical part of modern research and yet there is generally poor support across
the scholarly ecosystem for its acknowledgment and citation, and in turn, for measuring its
impact. The majority of academic fields rely on a one-dimensional credit model whereby
academic articles (and their associated citations) are the dominant factor in the success of
a researcher’s career.

In the petabyte era of astronomical science, making it possible to easily cite software and
measure its impact is going to be critical for maximizing the scientific return of these large
datasets and retaining those individuals who specialize in developing the tools to turn them
into publications.

Evolving beyond the one-dimensional credit model requires overcoming several key chal-
lenges including the current scholarly ecosystem and scientific culture issues. Career paths
for staff, including scientific staff, in these technical roles need to have clearly defined
metrics and requirements that take into account how they are required to spend their time
in support of the scientific enterprise.

The ecosystem around the publishing of scholarly work has not been set up to properly
account for contributions to scientific discoveries made through tools, services and other
infrastructure. Changes for the modern way in which science is done need to be made.
Publications, like ApJ and AJ, are run by the AAS, a professional society, and are answerable
to their boards that are elected by and comprise the membership of professional researchers,
who also publish in them. Therefore, it is important to educate the larger community on
changes that need to be made to support modern recognition standards for software services
and then advocate for these changes with professional societies.

Social and cultural issues within the field also must be changed to normalize the appropriate
acknowledgment of those who write software and support other science infrastructure tools.
We need academics in positions of power (e.g. on promotion and tenure review committees,
recruitment teams, grant review panels) to value software as an important product of
research. Although change takes time, it is important that we begin making those changes
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with concrete and practical suggestions that can be incrementally introduced into accepted
procedures and communal norms. These suggestions include the identification of metrics
that support proper assessment of the impact of software on achieving scientific results. In
recent years, substantial improvements to enable the citation of software and tracking of
these citations has been made in astronomy and astrophysics.

8.6.1. Measuring/citing the impact of software

One key factor for improving the recognition of software within academia is to enable
native software citation, that is, make it possible and required for authors to cite the software
packages they have used in the process of carrying out their research, and to then count these
citations in tools such as the Astrophysics Data System (ADS). Enabling software citation
is both a technical challenge and a cultural one: recommendations for what software should
be cited and when to cite it have been explored in community-wide effort at FORCEI 1
(Smith et al. 2016), and follow-on efforts are exploring some of the more technical aspects
of how to implement these recommendations (11 (2019)).

Within astronomy and astrophysics, the Asclepias project?? — a collaboration between
AAS publishing, ADS, and the Zenodo data archive (hen 2017) — is working to enable first-
class support for software citation in AAS journals as well as support for indexing (counting)
these citations within ADS. While this project is currently scoped to AAS journals only, the
changes being made to support the citation and indexing of software serve as an example
for other journals to follow suit.

8.6.2. Strategies for elevating the role of software

Part of the challenge of elevating the role of software within academia is to find actionable
changes that improve the career prospects of those individuals writing research software.
In this section, we outline a number of possible approaches.

Software papers: One approach gaining traction across a number of research disciplines
is to allow papers about software to be published in “conventional” journals alongside
other research papers, thereby making software more visible to the academic community,
and giving software engineers a citable “creditable” entity (a paper) to include on their
resume. Examples of journals within astronomy that demonstrate a willingness to follow this
approach include PASP23 and AAS publishing, which recently changed its editorial policies
to explicitly allow software papers in their publications (AAS Publishing 2015). More
recently AAS publishing has announced a partnership with another journal specializing in
software review (Vishniac & Lintott 2018).

Enabling support for software citation and indexing: Another key factor in raising
the visibility of research software is to enable software citation, count these citations, and
then make these metrics visible to the world. As part of the work of the Asclepias project,
software citations are not only being counted in the astronomical literature, they are also
being made visible on the ADS website next to the paper record on ADS.

22 http://adsabs.github.io/blog/asclepias
23 https://iopscience.iop.org/journal/1538-3873
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Inform and educate the community about software contributions: Organizations play
a critical role in improving the career prospects of those writing research software as they are
responsible for hiring these individuals, evaluating their performance, and making decisions
about possible promotions/career advancement. One immediately actionable approach is to
encourage prospective employees and current staff to list software they have developed on
their resumes and performance appraisals. This would allow review committees to include
software as part of their evaluations.

Community prizes: AAS has a collection of prizes for scientific merit, instrumentation,
education, and service to the field. As itis an important part of scientific discovery, software
contributions that have had a lasting positive impact on the field, should also be recognized
with a new dedicated prize and/or as a recognized example of merit within these other prize
categories.

Grants: The amount of research funding secured is an established metric for evaluating an
individual. As recommended in Section 6, allowing existing funding streams to be utilized
for software development provides a simple mechanism for funding research software, but
also signaling community recognition for the impact and relevance of the individual writing
this software. Furthermore, widespread availability of grant funding in support of software
development would provide a strong incentive for universities to hire technical astronomers
into tenure track positions.

REC-28 Adopt best practices for software citation.

Area: Workforce. Audience: Astronomer . Term: Short

Journals and reviewers should adopt best practices for assuring that software and other
science support infrastructure is properly referenced and cited in articles. Referees and
other reviewers should be trained to recognize when such acknowledgement is necessary
and ask authors to provide that information.

REC-29 Adopt promotion metrics that acknowledge software and other science sup-
port.

Area: Workforce. Audience: Manager . Term: Long

Departments and other members of the community should adopt and use suggested metrics
for promotion and tenure reviews of those scientists whose work and contributions involve
software and science infrastructure.

REC-30 Community prizes for software contributions.

Area: Workforce. Audience: Agency . Term: Short

Professional astronomy societies should create dedicated prizes and allow for software
contributions to be recognized as a criteria of merit within existing prizes.



64

9. ANEED FOR DEDICATED EDUCATION AND OUTREACH EXPERTISE

Contributors: Amanda E. Bauer <abauer@Isst.org>, Britt Lundgren, Meg Schwamb,
Brian Nord, Dara J Norman

Note: If you have come directly to this chapter we suggest you please read at least the
Introduction in Section 1 before delving further.

We need to capitalize on positive trends in digital literacy, the increasing use of mobile
devices, and a discovery space driven by social media, through the progressive development
of online resources in astronomy education and public outreach (EPO). The goal for this
chapter is to clarify and bolster the multitude of opportunities that exist to develop newly
accessible online tools to engage fellow citizens in the era of petabyte-scale astronomy.

Maintaining support for astronomy research relies on our ability to effectively commu-
nicate our science and cultivate public excitement and engagement. Historically, strategic
programming for astronomy EPO in science projects has been an afterthought: the work has
primarily been undertaken by astronomers who are passionate about EPO but may lack the
specific professional skills required to do it effectively at scale. Moreover, most astronomers
are not compensated for their time or rewarded by their efforts in EPO. To maximize the
public impact of large projects in the petabyte era, we must give professional credit to
astronomers who do outreach work and also dedicate resources to full-time personnel to
develop, execute, and evaluate modern EPO activities.

Traditional means of public engagement (e.g. classroom visits, online videos, public
lectures and panels, etc.) have demonstrated their importance and value, and have carved
a niche in the landscape of public engagement. However, we have entered a new era
of technology and social interaction, which necessitates new modalities for innovative
pedagogical techniques, communication, and even scientific exploration. Taking advantage
of opportunities of modern technology requires putting in place the appropriate professionals
to create and develop the interfaces and connections to curricula that maximize adaptability
and use. For example, connecting non-experts with ever larger datasets requires educators
who have astronomy domain expertise (to curate and work with datasets) as well as expertise
in innovative pedagogical practices.

In this new era of engagement, EPO teams who develop ground-breaking activities
and pedagogical frameworks will have started the design process as early as possible
(including during construction of new facilities) and will have drawn on a number of
areas of expertise: astronomical research methods, educational theory and practice,
web development and design, software engineering, and multi-modal communication.

In this chapter, we discuss recommendations and effective practices for advancing astron-
omy in society through data-driven education and outreach activities for maximizing the
impact large observing facilities and data centers will provide. We begin by discussing the
creation of accessible online activities (Section 9.1), then identify a range of skills needed
to create such activities (Section 9.2), and finally, we establish the benefits of resourcing
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dedicated EPO groups from the earliest stages of astronomy facility planning and including
EPO as part of the mission of projects (Section 9.3).

9.1. Create accessible online activities for the public

REC-31 Create accessible online Activities for the Public.

Area: EPO. Audience: Educator, Astronomer. Term: Short

To maximize the impact of astronomy in society in the rapidly approaching petabyte and
exabyte eras, we recommend that projects and data centers develop accessible web interfaces
and tools that enable the public to access, explore, and analyze authentic astronomical data
at unprecedented scale.

Many good arguments have been made for enabling non-professionals and students to
access and engage with authentic data and professional tools. However, in practice, the
increasing complexity of interfaces to large datasets can become a barrier to access and use.

User interfaces need to be attractive and intuitive for non-specialists and usable from
mobile devices and platforms commonly used in schools (such as chromebooks and tablets).
Interfaces created for professionals do not necessarily work for non-specialists, because they
tend to have the following characteristics: 1) offer too many options; 2) do not offer a clear
path toward a learning outcome; 3) too slow, unresponsive, or burdensome for the internet
connections. Effort should be spent on user interfaces for public audiences, and ideally, on
creating introductory activities as preparation for more complicated tasks.

Surveying users to assess their needs and interests helps the content design process and
continues to improve the quality of an experience for users when a program in running.
User testing is a regular practice for many companies that deliver a product to the public
and is a process that should be adapted within astronomy EPO programs to ensure activities
remain relevant and useable.

9.1.1. Examples of online activities

Several examples of existing and planned infrastructures illuminate avenues for online
public engagement: below, we discuss Sloan Digital Sky Survey’s (SDSS) SkyServer,
Zooniverse’s Citizen Science, NASA’s Universe of Learning, and the EPO program of
LSST.

For over 15 years, the SDSS has made its vast database of imaging and spectroscopic data
(~200 TB) freely available to the world. The web-based SDSS data browser, SkyServer24,
provides a public entry point for navigating the data online. The numerous and diverse
query and analysis tools available through the SkyServer are designed to meet the needs of
astronomers and non-professionals alike. The benefit to this design is that any interested
student or member of the public has unrestricted access to research-grade inquiries and
applications of the data. However, the large number of available features and the tech-
nical jargon that accompany them often overwhelm non-experts, as well as professional
astronomers who are external to the SDSS collaboration.

24 http://skyserver.sdss.org
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In order to better support audiences who may be put off or overwhelmed by the
professional-grade access points to the SDSS database, the SDSS Education and Public
Outreach team developed activities with simplified query tools and smaller, curated datasets
to facilitate activities for pre-college educators and students (e.g. SDSS Voyages?3). For
non-specialist audiences, these activities lower the barrier to accessing the same authentic
data, while providing an introduction to concepts related to both astronomy and data struc-
tures. For students and educators who may be interested in using the data for more advanced
explorations, SDSS Voyages provides a helpful stepping stone. The next two sections of this
chapter suggest avenues to promote this transition in other ongoing and planned astronomy
projects and facilities.

Citizen science represents an example of successful use of the modern age of web connec-
tivity by directly engaging the public in scientific research. Online citizen science enables
scientists to work with the general public to perform data-sorting and analysis tasks that
are difficult or impossible to automate, or that would be insurmountable for a single person
or for small groups of individuals to undertake (Marshall et al. 2015). Highly accessible
citizen science activities can advance both science and learning in the era of large astro-
nomical datasets. Moreover, most participants from the public claim that the main reason
they participate is the contribution they are making to fundamental science research (Cox
2017). Through online citizen science portals such as the Zooniverse2¢ (Lintott et al. 2011),
millions of volunteers have participated directly in this collaborative research experience,
contributing to over 70 astronomy-based research papers. Another reason for the continued
success of the Zooniverse platform in particular, is that it looks good and feels modern, even
after a decade of activity. While professional astronomers are the PI’s of citizen science
projects, Zooniverse employs 13 developers, one designer, and two postdocs to lead the
infrastructure development of the platform between the Adler and Oxford locations.

Members of the Zooniverse team have furthered the project’s educational impact by
developing a college-level data science curriculum around their crowd-sourced data. The
NSF-funded Improving Undergraduate STEM Education (Improving Undergraduate STEM
Education (IUSE)) Project: “Engaging Introductory Astronomy Students in Authentic
Research through Citizen Science" (PI: L. Trouille) is a particularly successful example of
scoping big-data astronomy for a college non-major audience. This innovative curriculum
equips students with the essential tools to explore the intrinsic and environmental properties
of 20,000 low-redshift SDSS galaxies that have morphological classifications from Galaxy
Zoo. This project utilizes a curated dataset in Google Sheets and a simple, plug-in tool that
enables intuitive data cropping and visualization. Instead of learning about galaxies and
cosmology through traditional readings and lectures, students are challenged to discover
key patterns and properties of the universe themselves, through first-hand explorations of
authentic astronomical data. In the process, they gain skills in quantitative analysis, improve
their overall data literacy, and practice science communication. The curriculum specifically

25 http://voyages.sdss.org
26 http://www.zooniverse.org
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provides an opportunity to discuss the complications and limitations of authentic data, and
the challenges of framing a question that can be effectively tested with the data one has
in hand. The project is a great case study of delivering specific, high-impact learning
outcomes through an analysis of authentic data, without requiring students to navigate
full-scale datasets or jargon-rich professional tools for visualization and analysis.

NASA’s Universe of Learning?’ offers a variety of individual online web pages that are
well presented. A potential challenge for a typical user who finds one of these pages is
knowing what to do next. Beyond exploring the beautiful multi-wavelength images space
telescopes provide, there is not a clear path for a user to navigate toward specific learning
outcomes or experiences.

LSST’s EPO program??® is unique among ground-based telescope projects: not only is it
being constructed in tandem with the physical observatory itself, but the outreach program
is funded at 2% of the project cost. EPO products will go live when the LSST Survey
begins in 2022. EPO products were included from the beginning as part of the construction
Project deliverables, because they faced similarly unique challenges as the data resulting
from the survey itself. During its design phase, the EPO team selected specific audiences
and invested in user needs assessments to examine what these audiences want, and cannot
find elsewhere. Some major findings include the necessity for mobile-friendly interfaces,
a clear path toward learning goals, and educators needing no new software to download in
order to introduce classroom activities. This has shaped the overall strategy for LSST EPO
development and the skill sets needed on the EPO Team, which is a small, interdisciplinary
team of astronomers, writers, designers, educators, and developers. The mission of LSST
EPO is “to offer accessible and engaging online experiences that provide non-specialists
access to, and context for, LSST data so anyone can explore the Universe and be part of the
discovery process.”

The operations website will feature news about LSST discoveries, profiles of LSST
scientists and engineers and their work, and will be optimized for use on mobile devices.
The EPO team is also developing online, data-driven classroom investigation activities for
students in advanced middle school through college. The topics cover commonly-taught
principles in astronomy and physics, and each investigation is designed for use with Next
Generation Science Standards (NGSS) in the United States and the Curriculum Nacional in
Chile. All investigations come with support and assessment materials for instructors and no
special software is needed to access the investigations, which will be available in English
and Spanish. LSST EPO will maintain an easy-to-use gallery of high-quality multimedia
visualizations that can be downloaded and integrated into exhibits and presentations. Finally,
LSST EPO will provide support to researchers who create Citizen Science projects using
LSST data, including a dedicated project-building tool on the Zooniverse platform. The
infrastructure to host these activities is being built during construction and will take several
years. Another critical task during construction is building prototypes and performing

27 https://www.universe-of-learning.org/
28 https://www.Isst.org/about/epo
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user testing, which has continually proven to improve the user experience and usability of
interfaces.

A consistent theme that emerges when examining these examples is that well-defined
learning outcomes for activities, curated access to authentic data, and simple, intuitive
design are important to prepare for the EPO response to the large data we will collect in
the 2020s. The remaining sections identify areas of expertise EPO teams can employ to
achieve these outcomes.

9.2. Bring expertise to astronomy education and outreach teams

REC-32 Bring dedicated experts onto astronomy education and outreach teams.
Area: EPO. Audience: Manager, Educator. Term: Medium

To create the accessible online interfaces that maximize public impact in the next decade, we
recommend supporting dedicated education and outreach teams that pair astronomers with
technical and education specialists to increase relevance, adoptability, and accessibility of
activities.

The large-scale data challenges that face astronomy described in this paper also represent
challenges and opportunities for formal education, public outreach, and science communica-
tion. A natural instinct for astronomers may be to adapt their new computational experience
to outreach efforts. This is a noble goal, but astronomers are not be expected to know effec-
tive practices around mobile-friendly development, intuitive user interfaces for the public,
marketing through social media, or how to connect astronomy activities to formal education
curriculum standards. A team of EPO experts can advise and assist with these areas, which
are essential to build successful activities that are discoverable and adoptable.

We recommend astronomy organizations support creating EPO teams with expertise in
relevant areas. It is understood that to reach maximal impact of outreach activities, these
individuals work with astronomers to combine astronomy and data science expertise with
specific EPO expertise and experience. This section describes options for areas of expertise
and roles that can be brought on to achieve specific goals.

Educators in the United States (US) are currently required to submit paperwork to demon-
strate that they are teaching specific topics related to curriculum standards. An EPO
education specialist or instructional designer brings knowledge of relevant curriculum
standards and rubrics (for example, the Next Generation Science Standards?®) and is able
to connect astronomy activities to topics educators must cover. This is the most relevant for
K-12 formal education in a traditional setting or homeschooling. An educational special-
ist can build professional development programs to increase confidence for bringing such
activities into their classrooms if there is not an expert available to join in person.

An education specialist can also tap into educator networks to advertise existing programs
and perform professional development. An example is the National Science Teachers
Association (National Science Teachers Association (NSTA)) annual meeting and AAS.

29 NGSS: https://www.nextgenscience.org/
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An education specialist working with an astronomer can create curate datasets to achieve
specific learning outcomes without overwhelming non-specialists (Rebull et al. 2018).

An Information Officer or Communications Manager can act as a primary contact
for a facility and also set overall communication strategies and implementation plans.
Topics covered in such strategies could include audiences, content priorities, communication
channels, messaging, procedures, and more.

An Outreach Specialist could serve a range of purposes depending on the needs of the
group. This could be a science writer, someone who responds to and directs questions
received from audience groups, or contributes to social media presence. or an astronomer
trained in science communication. If this person has astronomy training, he/she could work
with astronomical datasets to curate options for the public.

Social Media is becoming increasingly important as a source of news and information in
society. Dedicating a full-time equivalent (or more) to the role of social media engagement
specialist increases awareness of EPO activities and engages various audiences to participate
with activities that exist.

Overall branding, the look and feel of online activities, and developing interesting graphics
and images to support press releases or other activities are the role of a Graphic Designer.

An evaluation specialist informs methods for understanding the impact of programs on
specific audience groups. The most benefit occurs when the method for evaluating the
success of a program is built into the development of the program itself. Metrics could
include and are not limited to web analytics, short or long surveys, interviews, login requests,
focus groups, web submission forms, and social media interactions.

A web developer considers the user interface and experience when visiting a site. Mobile-
friendly accessibility is a requirement for non-specialists since most users of an online
interface will discover the materials via social media and will access them from a mobile
device, not a desktop platform. In addition, the most common machines used by schools are
chromebooks and potentially weak internet connections, which require lightweight design.
Development needs to satisty these requirements are best implemented by experts in the
field.

A Software Architect designs, deploys, and maintains production services for an online
program. Itisimportant to not overburden internet systems that can be common in classroom
settings or non-urban areas.

A Project Manager oversees the detailed budget, schedule, contracts, documentation,
and reporting. This role is important for programs being built during the construction of an
astronomical facility.

9.3. Fund dedicated astronomy education and outreach groups

REC-33 Fund dedicated or centralized astronomy education and outreach groups.
Area: EPO. Audience: Agency. Term: Long

We recommend that funding agencies supporting the development and operation of large
astronomical observing and data facilities fund professional education and outreach groups
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who can provide strategy, oversight, and best practices to maximize the impact of outreach
efforts, and encourage EPO efforts to be part of a project’s mission.

Having a dedicated individual or team to develop the EPO program for a specific facility
can improve efficiency, impact, and cost effectiveness. Strategic planning provides an
opportunity to emphasize the identity of a particular large facility; to identify non-specialist
audiences who could benefit the most from dedicated engagement; put into place best
practices in outreach and communication programs; and complement the overall landscape
of astronomy EPO efforts. It is important that the EPO professionals are employed directly
at professional telescope facilities in order to emphasize the uniqueness of the program,
build and maintain relationships with those doing the technical and scientific work, and
help handle the astronomy-specific data products that currently require a reasonable level
of understanding to interpret and use (see Section 4).

A dedicated EPO team also serves as a resource for enabling astronomers working with
large datasets and data facilities to do more impactful and wide-reaching outreach. Groups
that are specifically charged to do EPO can improve the impact of the existing NSF Broader
Impacts investment by supporting astronomers to tap into existing programs. This improves
discoverability of the EPO work astronomers are doing increases the likelihood of achieving
Broader Impact goals at both the individual and NSF levels.

An EPO team could provide any of the following benefits:

* Conducting science communication and media training sessions for astronomers
doing these activities.

* Providing introductions to various social media platforms that can be used for unique
outreach experiences.

* Marketing and promoting activities through established social media and common
online training resources (e.g. Code Academy).

 Creating or tapping into a centralized repository for people looking for resources

* Creating opportunities for collaboration between astronomers and existing outreach
infrastructure that will promote success and provide wide-reaching impact. Examples
include Journey Through the Universe in Hawai’i or AstroDay in Chile, both led by
Gemini EPO.

» Performing user needs assessments and user testing to improve the quality of existing
activities and to develop new programs that meet the needs of specific audiences.

* Evaluating and reporting on the impact of EPO activities. Evaluation methods can
and should be built into program design.

* Providing guidance for astronomers when developing science drivers and use cases
for educational materials and public interfaces related to their research expertise.

* Broadening participation to non-traditional audience groups.

The timing for building expert EPO teams should occur during the construction of a
new facility and be included as part of the project’s mission. Starting early affords time
to implement appropriate strategy and infrastructure. Educational materials, supplemental
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professional development materials, striking visualizations and images and communications
strategies should be ready at the start of a project to maximize the public impact of the
facility.

In this chapter, we discussed recommendations and effective practices that can be employed
to maximize the impact of large astronomy facilities and data centers in the next decade.
We prefaced the need for creating accessible online astronomy activities for the public and
identified a range of skills needed to create such activities. Finally, we established the
benefits of resourcing dedicated EPO groups from the earliest stages of astronomy facility
planning and even including EPO as part of the mission of projects.

These recommendations are based on two main things: trends seen elsewhere on the
web that successfully respond to this new era of technology and social interactions on the
web, and case studies within astronomy that demonstrate appropriate avenues for increasing
engagement and accessibility through online activities.

Note: This chapter is the basis for an Astro2020 Decadal Survey APC white paper which
will go into detail on resourcing and prioritizing recommendations. If you are interested in
commenting or constributing, please contact Amanda E. Bauer <abauer @lIsst.org>.
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10. CONCLUSION

We had a good opportunity to think about a range of topics which have been detailed in
this document. Several APC white papers will be published using this as a basis. If you
are interested in contributing to or endorsing https://tinyurl.com/y2ksemp23° or contact the
authors listed in this document. We do not intend this to be the solution to all issues rather
a discussion of potential ways forward for the next decade. We shall host a third and final
workshop?3! in October 2019 which will explore practical approaches to dealing with some
of the recommendations raised here.
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Glossary

1D: One-dimensional. 43
2D: Two-dimensional. 43, 74
3D: Three-dimensional. 43

AAG: Astronomy and Astrophysics Research Grants, an NSF program. 31

AAS: American Astronomical Society. 34, 38, 61, 62, 63, 68

ADS: Astrophysics Data System. 34, 62

Al: Artificial Intelligence, used to cover many machine learning algorithms. 47, 75

AJ: The Astronomical Journal. 61

APC: activities, projects, or state of the profession considerations - wrt. the decadal survey.
71

API: Application Programming Interface. Usually this is either

n

web API" (meaning
how you access/update data via http) or "software API" (meaning how you call the
function/class/etc in a particular programming language or library), although often
only "API" is used and the prefix is implicit.. 17, 21, 23, 26, 28, 75

APL: Apache Public License. 28

ATLAS: The Asteroid Terrestrial-impact Last Alert System. 11

CADC: Canadian Astronomy Data Centre. 16

CAOM: Common Archive Observation Model http://www.opencadc.org/caom?2/. 16

CI: cyberinfrastructure. 23, 25, 73

Citizen Science: - Amanda, Arfon, Meg?,. 65, 67

cloud: A visible mass of condensed water vapor floating in the atmosphere, typically high
above the ground or in interstellar space acting as the birthplace for stars. Also a way
of computing (on other peoples computers leveraging their services and availability)..
16, 17, 18, 19, 20, 21, 23, 25, 27, 48, 49, 50

CMB: Cosmic Microwave Background. 13

cold storage: Data moved to cold storage means data moved to cheaper slower storage such
as tape. The assumption is this is no longer accessed frequently.. 19, 73

community software: Software developed for and shared among a large group of relatively
like-minded users (e.g. astronomers). Typically, but not necessarily, open source
software and open development-based.. 31, 32, 36, 37, 39, 40

container: A container is a software package that contains everything the software needs
to run. This includes the executable program as well as system tools, libraries,
and settings. ... For example, a container that includes PHP and MySQL can run
identically on both a Linux computer and a Windows machine.. 28, 73, 74

CSSI: Cyberinfrastructure for Sustained Scientific Innovation https://www.nsf.gov/pubs/
2019/nsf19548/nsf19548.htm. 37
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cyberinfrastructure: Sometimes denoted CI, A term first used by the US National Science
Foundation (NSF), and it typically is used to refer to information technology systems
that provide particularly powerful and advanced capabilities.. 21, 23, 25, 27, 73

DES: Dark Energy Survey. 9

DESI: Dark Energy Spectroscopic Instrument. 9, 10, 11, 32, 34

DIBBs: Data Infrastructure Building Blocks. 37

DKIST: Daniel K. Inouye Solar Telescope (formerly the Advanced Technology Solar
Telescope, ATST). 32, 34, 40

DM: Data Management. 27, 60

Docker: A popular implementation of container technology.. 23, 26, 28, 33, 34

DOE: Department Of Energy. 17, 34

DOI: Digital Object Identifier https://www.doi.org/. 34

DVCS: Distributed Version Control System, a form of version control where the complete
codebase - including its full history - is mirrored on every developer’s computer. 37,
74

ELT: Extremely Large Telescope. 11

EPO: Education and Public Outreach. 19, 64, 65, 67, 68, 69, 70, 71
ESA: European Space Agency. 75, 76

ESAC: European Space Astronomy Centre. 16

FITS: Flexible Image Transport System, is an open standard defining a digital file format
useful for storage, transmission and processing of data. Files are formatted as tables
or 2D images. 16

FORCE11: FORCEI11 is a community of scholars, librarians, archivists, publishers
and research funders interested in the Future of Research Communications and e-
Scholarship. 62

FPGA: Field Programmable Gate Array, an integrated circuit which is fairly easily config-
urable.. 23

git: The most widely used DVCS software. 37
GPL: GNU Public License. 28
GW: Gravity Wave. 11

HPC: High Performance Computing. 17, 24
HTC: High Throughput Computing. 24

IAM: Identity and Access Management. 3, 25
IDL: Interactive Data Language, a programming language used for data analysis. Harris
Geospatial 33. 38, 39, 47

33 https://www.harrisgeospatial.com/Software- Technology/IDL
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interoperability: the ability of systems or software to exchange and make use of informa-
tion between them.. 10, 13, 21, 23, 26

IPAC: No longer an acronym; science and data center at Caltech. 16

IRAF: Image Reduction and Analysis Facility, a collection of software written at the
National Optical Astronomy Observatory (NOAO) geared towards the reduction of
astronomical images in pixel array form.. 28, 38, 47

IRSA: Infrared Science Archive. 16

IUSE: Improving Undergraduate STEM Education. 66

IVOA: International Virtual-Observatory Alliance. 16, 17

JWST: James Webb Space Telescope (formerly known as NGST). 32, 34, 40

LIGO: The Laser Interferometer Gravitational-Wave Observatory. 11, 24

LISA: Laser Interferometer Space Antenna - European Space Agency (ESA) mission for
2030’s. 11

LSST: Large Synoptic Survey Telescope. 9, 11, 12, 13, 16, 23, 26, 27, 29, 32, 34, 40, 45,
55, 65, 67

LSSTC: LSST Corporation, a not for profit organisation associated with LSST. 57

MAST: Mikulski Archive for Space Telescopes. 16

MCMC: Markov Chain Monte Carlo, a class of algorithms for sampling from a probability
distribution.. 45

ML: Machine Learning (see also Al). 13, 43

MSE: Maunakea Spectroscopic Explorer. 10

NAS: Neural Architecture Search. 50

NASA: National Aeronautics and Space Administration. 16, 34, 65, 76

NASA ROSES: Research Opportunities in Earth and Space Science. 31

NGSS: Next Generation Science Standards https://www.nextgenscience.org/. 67
NOAO: National Optical Astronomy Observatories (USA). 58, 75

NSF: National Science Foundation. 17, 31, 34, 37, 70, 73

NSTA: National Science Teachers Association. 68

NYU: New York University. 52

ODBC: Open DataBase Connectivity, a standard API for SQL databases.. 23

open development: A process for developing software that emphasizes all code contribu-
tion and decision-making be done in the open, available to as wide a group as possible
(This usually means anyone with internet access).. 36, 37, 73,75

open source software: Open source software is a type of software in which source code
is released under a license in which the copyright holder grants users the rights to
study, change, and distribute the software to anyone and for any purpose. Note that

this is not necessarily the same as open to contribution (see open development).. 32,
34, 36, 73
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OpenEXR: a high dynamic range raster file format, released as an open standard along
with a set of software tools created by Industrial Light & Magic (ILM) http://www.
openexr.com/index.html. 16

OS: Operating System. 27

Pan-STARRS: Panoramic Survey Telescope and Rapid Response System. 9

parquet: Parquet File Format Hadoop. Parquet, an open source file format for Hadoop.
Parquet stores nested data structures in a flat columnar format. Compared to a
traditional approach where data is stored in row-oriented approach, parquet is more
efficient in terms of storage and performance.. 16, 26, 76

PASP: Publications of the Astronomical Society of the Pacific. 34

PB: PetaByte. 25

PHP: a popular general-purpose scripting language that is especially suited to web devel-
opment.. 73

PI: Principle Investigator. 52, 66

PLATO: PLAnetary Transits and Oscillations of stars, the third medium-class mission in
ESA’s Cosmic Vision programme.. 10

PSF: Point Spread Function, describes the response of an imaging system to a point source
or point object.. 47

reproducibility: (this one should have many definitions and we have to say WHICH version
we are talking about) The ability to combine the same code and data and get the same
result, or the ability to use the same code with different data to enforce a result, or
there may be others. 33, 48

S3: Structured, imperative high level computer programming language, used as implemen-
tation language for the Virtual Machine Environment (Virtual Machine Environment
(VME)) operating system. 17, 23, 27

SDSS: Sloan Digital Sky Survey. 9, 10, 24, 26, 43, 65, 66

SKA: Square Kilometer Array. 9, 13

software: The programs and other operating information used by a computer.. 3, 4, 5, 6,
7,9, 10, 11, 13, 19, 21, 23, 25, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 42,
47,49, 50, 51, 52, 53, 54, 55, 56, 57, 59, 60, 61, 62, 63, 64, 67, 73,74, 75

SQL: Structured Query Language, for interrogating relation databases. 23, 75

STEM: Science, Technology, Engineering and Math. 66, 75

TAP: Table Access Protocol. 17

TB: TeraByte. 25, 26, 65

TESS: Transiting Exoplanet Survey Satellite, a space telescope for NASA’s Explorer pro-
gram. 10

TPU: Tensor Processing Unit , a proprietary type of processor designed by Google in 2016
for use with neural networks and in machine learning projects. 23

US: United States. 68, 73
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version control: The management of changes to documents, computer programs, and other

collections of information. Changes are usually identified by a number or letter code.
Each revision is associated with a timestamp and the person making the change.

Revisions can be compared, restored, and merged. 55, 56, 74

VME: Virtual Machine Environment. 76
VO: Virtual Observatory. 17

WFIRST: Wide Field Infrared Survey Telescope. 9, 10, 12, 13, 16, 26

ZTF: Zwicky Transient Facility. 9, 11
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