
VERIFIED PROGRAMMING WITH EXPLICIT COERCIONS

Christopher Schwaab

A Thesis Submitted for the Degree of PhD

at the
University of St Andrews

2019

Full metadata for this item is available in
St Andrews Research Repository

at:
http://research-repository.st-andrews.ac.uk/

Please use this identifier to cite or link to this item:
http://hdl.handle.net/10023/17928

This item is protected by original copyright

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by St Andrews Research Repository

https://core.ac.uk/display/211273567?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://research-repository.st-andrews.ac.uk/
http://hdl.handle.net/10023/17928

Verified programming with explicit coercions

Christopher Schwaab

This thesis is submitted in partial fulfillment for the degree of
Doctor of Philosophy (PhD)

at the University of St Andrews

March 2018

Abstract

Type systems have proved to be a powerful means of specifying and proving
important program invariants. In dependently typed programming languages
types can depend on values and hence express arbitrarily complicated
propositions and their machine checkable proofs. The type-based approach
to program specification allows for the programmer to not only transcribe
their intentions, but arranges for their direct involvement in the proving
process, thus aiding the machine in its attempt to satisfy difficult obligations.
In this thesis we develop a series of patterns for programming in a correct-
by-construction style making use of constraints and coercions to prove
properties within a dependently typed host. This allows for the development
of a verified, kernel which can be built upon using the host system features.
In particular this should allow for the development of “tactics” or semi-
automated solvers invoked when coercing types all within a single language.
The efficacy of this approach is given by the development of a system of
expressions indexed by their, exposing a case analysis feature serving to
generate value constraints. These constraints are directly reflected into
the host allowing for their involvement in the type-checking process. A
motivating use case of this design shows how a term’s semantic index
information admits an exact, formalized cost analysis amenable to reasoning
within the host. Finally we show how such a system is used to identify
unreachable dead-code, trivially admitting the design and verification of
an SSA style compiler with this optimization. We think such a design
of explicitly proving the local correctness of type-transformations in the
presence of accumulated constraints can form the basis of a flexible language
in concert with a variety of trusted solver.

1

Declaration

Candidate’s declaration
I, Christopher Joseph Schwaab, do hereby certify that this thesis, submit-
ted for the degree of PhD, which is approximately 65,000 words in length,
has been written by me, and that it is the record of work carried out by
me, or principally by myself in collaboration with others as acknowledged,
and that it has not been submitted in any previous application for any degree.

I was admitted as a research student at the University of St Andrews
in September 2013.

I received funding from an organisation or institution and have acknowledged
the funder(s) in the full text of my thesis.

Date Signature of candidate

Supervisor’s declaration
I hereby certify that the candidate has fulfilled the conditions of the Resolu-
tion and Regulations appropriate for the degree of PhD in the University
of St Andrews and that the candidate is qualified to submit this thesis in
application for that degree.

Date Signature of supervisor

2

3

Permission for publication
In submitting this thesis to the University of St Andrews we understand
that we are giving permission for it to be made available for use in accor-
dance with the regulations of the University Library for the time being
in force, subject to any copyright vested in the work not being affected
thereby. We also understand, unless exempt by an award of an embargo as
requested below, that the title and the abstract will be published, and that
a copy of the work may be made and supplied to any bona fide library or
research worker, that this thesis will be electronically accessible for personal
or research use and that the library has the right to migrate this thesis
into new electronic forms as required to ensure continued access to the thesis.

I, Christopher Joseph Schwaab, confirm that my thesis does not contain any
third-party material that requires copyright clearance.

The following is an agreed request by candidate and supervisor regard-
ing the publication of this thesis:

Printed copy
No embargo on print copy.

Electronic copy
No embargo on electronic copy.

Date Signature of candidate

Date Signature of supervisor

4

Unerpinning Research Data or Digital
Outputs

Candidate’s declaration
I, Christopher Joseph Schwaab, hereby certify that no requirements to
deposit original research data or digital outputs apply to this thesis and
that, where appropriate, secondary data used have been referenced in the
full text of my thesis.

Date Signature of candidate

Acknowledgements

This work was supported by the University of St Andrews (School of Com-
puter Science); as a part of the University of St Andrews 600th anniversary
scholarship.

Becky, thank you. This work would have never been completed without
your support and love. Esme, thank you for always bringing a smile to me
throughout these years of work and Oran, thank you for not arriving on the
day of my viva.

My great thanks to Professor Jeremy Siek, without your help, patience,
and guidance I would never have embarked on this journey. Thank you for
your continued support throughout my PhD during your visits to Edinburgh.

I would also like to thank the research group and in particular those
who I shared an office with at St Andrews. Matús̆, Adam, Franck, David,
speaking with you was always illuminating and your suggestions have been
invaluable. Thank you also to my supervisors Edwin Brady and Kevin
Hammond for your help during these years.

Thanks to Tom Schrijvers for all the time you spent teaching me and
working with me. I found my time in Ghent very valuable.

Finally, thank you to the wider Scottish programming language com-
munity. I greatly enjoyed the time spent sharing ideas and excitement. In
particular thank you to Conor McBride, I always appreciated your encour-

5

CONTENTS 6

agement.

Contents

Contents 6

1 Introduction 9
1.1 EDSL design with dependent types 13
1.2 Overview . 14
1.3 Contributions . 16

1.3.1 Chapter Outline . 16

2 Programming with Dependent Types 18
2.1 What are dependent types? 19
2.2 Idris . 27

2.2.1 Programming with Idris 28
2.3 Views, existentials, and equality. 31

2.3.1 Notions of equality 32
2.4 Languages with dependent types 35
2.5 Mechanized verification of type-safety 40

2.5.1 Structural operational semantics 41
2.5.2 Natural operational semantics 41
2.5.3 Mechanized type-safety of STLC 42
2.5.4 Verification with dependent types 47

2.6 A brief history of binding strategies 51
2.6.1 Parametric Higher Order Abstract Syntax 51
2.6.2 Name indexed De Bruijn indices 53

2.7 Proof by reflection . 55
2.7.1 Proving equality of monoid expressions 56
2.7.2 First-class reflection 64

2.8 Summary . 64

CONTENTS 7

3 Verified typing with explicit coercions 66
3.1 A language of term semantics 67
3.2 Programs and their semantics 73
3.3 Index expression rewriting 77

3.3.1 Specifying index expression semantics 79
3.3.2 A sound rewriting of index expressions 82

3.4 Constraint contexts . 83
3.4.1 Propositions on index expressions 84
3.4.2 Type-checking with constraint contexts 85

3.5 Expression evaluation . 89
3.5.1 Erasing and recovering semantic indices 98
3.5.2 Canonical indexed values 100
3.5.3 Efficiently evaluating indexed expressions 101

3.6 Reachability testing . 102
3.7 Summary . 106

4 Programming and proving with L 108
4.1 Warm-up: addition . 109

4.1.1 Programming with macros 110
4.2 Head and tail functions . 111
4.3 Functionally correct fibonacci 114

4.3.1 The fibonacci index expression function 114
4.3.2 The semantic indexed fibonacci function 115
4.3.3 A pattern for function soundness. 117
4.3.4 Proving the correctness of fibonacci 121

4.4 Products . 123
4.5 Higher-order functions . 128
4.6 Automated index expression rewriting 131

4.6.1 A monoid of addition 132
4.7 Summary . 135

5 Verified Cost Analysis 136
5.1 A structured statement language 137
5.2 Decomposing semantics indexed expressions 146
5.3 Compilation with dead-code elimination 158

5.3.1 Describing the abstract machine 158
5.3.2 Compiling L with continuations 163
5.3.3 Evaluation and object code emission 169

CONTENTS 8

5.4 Summary . 177

6 Conclusions 179
6.1 Limitations . 180

6.1.1 Supporting side-effects 180
6.1.2 Improving performance 181
6.1.3 Supporting data structures 182

6.2 Further work . 183
6.2.1 Expansion of programming features 183
6.2.2 Proof of sound compilation process 185

A Auxiliary correctness proofs of L programs 188
A.1 Correctness of ixSnd . 188
A.2 Implementation of expListSnd 188
A.3 Specification of fibonacci function 189

B Implementing a monoid of addition 191
B.1 Correctness of plusEval . 191
B.2 Proof of eqMonoidExp . 192
B.3 Definition of the explicit monoid interface 192

C Mechanization of index expression evaluation and correct-
ness 193
C.1 Ix evaluation . 193
C.2 Expressions with constraints 194
C.3 Proof of index erasure isomorphism 195
C.4 Proof of indexed value canonicity 195
C.5 Proof of index expression thinning properties 196

D Specification and compilation of S 199
D.1 Compiling from S to machine code 201

E Equivalence of well-formed De Bruijn indices and context
membership 208

F Definition of the IfNil relation 209

Bibliography 210

Chapter 1

Introduction

Writing correct software is a difficult task. With the increasing ubiquity of
computing devices in our lives and in our pockets, the importance of ensuring
the safe and correct evaluation of programs is only going to grow. These
bugs range from incorrect problem specifications, incorrect transcriptions
of correct specifications, to improper respect for language semantics. In
an attempt to stymie these errors a variety of both “offline” and “online”
strategies exist. “Offline” or static analysis concerns itself with the checking
of program source-code, intermediate forms, and compiled program forms
without the need to execute the code itself. “Online” or dynamic analysis
performs correctness checking as a part of program execution. It is also
possible to combine aspects of both static and dynamic checking into hybrid
strategies, usually involving the dynamic checking of special test code written
alongside the program which is not intended to be compiled into the main
program.

Runtime safety with dynamic checking
Dynamic checking of programs is often built into the runtime system of
the language used for development. For example languages such as Python,
Ruby, and Erlang [AVW93] are well known. Arithmetic operations and
indexing can be checked as they are performed, ensuring problems of overflow
and out of bounds accesses are suitably handled. Additionally, the type of the
data encoded by a variable can be tracked and operations suitably restricted.
For instance, it is unlikely that a string and an integer can be reasonably
added together. Such checks primarily help protect the programmer from

9

CHAPTER 1. INTRODUCTION 10

incorrectly implementing their specifications.

Compile time safety with static checking
Alternatively, errors can be statically checked and indeed primitive type
classification of values in compilers date back to ALGOL [Hab71]. However
statically checking properties of computations such as arithmetic and in-
dexing operations is considerably more difficult and are often implemented
in external tools. Some examples are model-checking [DKW08] whereby
correctness properties are specified as logical formulae and often automati-
cally checked by an internal prover. Another popular form of static checking
is abstract interpretation [CC77], used to check specific properties such as
the validity of pointer dereferences in C by evaluating some subset of the
program in an abstract domain, thus avoiding the need to model side-effects
such as cache, program input output (I/O), etc.

Due to this high difficulty of correcntess checking, many statically typed
languages take a hybrid approach. For example, C# performs type-checking
at compile time but overflow and bounds checking at runtime.

Hybrid approaches also exist outside the language runtime, requiring
some amount of setup by the program develop. Unit tests are a prominant
example whereby small “units” of a program or library are specifically
tested. A programmer first implements a test and then compiles and runs
it, checking some expected outputs. These units can be anything from a
single function, to a class in an object-oriented language, or even a module
which for example might consist of several objects and services working in
orchestration. In unit testing a developer usually defines some invariants
or correctness properties and then tests these properties hold, or error
conditions are handled, given a variety of programs states and inputs. Some
unit testing suites additionally provide a means of automatically generating
inputs. Generating somehow “unexpected” inputs and ensuring these are
properly handled by the program is often referred to as “fuzzing”.

While tools exist to perform static control and data flow analysis to
discern a program’s safety, the checks are often incomplete due to the
undecidability of the analyses. One simple solution is to push this problem
onto the developer by providing a system for formally specifying not only
a program’s expected properties, but additionally the proofs that these
properties hold. Isabelle [Wen+17b] and Coq [Tea18] are two prominant
examples of such formal verification systems. Due to the time intensity of

CHAPTER 1. INTRODUCTION 11

manual verification, lightweight checking can be done e.g. by programming
in pairs, or by requiring developers to “check-off” some correctness properties
as a part of a “code-review” a session in which non-authors of a program
look over and comment on the correctness of a piece of code.

As another alternative, program properties can be embedded in types
augmented to inform not only a value’s primary classification but additionally
their distinguished features such as boundedness. Thus types allow the
programmer to arrange and make locally available, any evidence required
to prove the correctness of an operation. Since such evidence is itself a
value whose type depends upon the values it restricts, these types are called
dependent types.

Dependent types

Dependent types allow the programmer to precisely provide the machine
with a specification for a program’s operation. Thus the compiler can
automatically check a program satisfies the specification, statically elim-
inating any number of difficult to find bugs and unusual program states.
The availability of such highly specific type information not only allows
for safety properties to be checked but additionally exposes optimization
opportunities to the compiler. For instance Xi [Xi99]; [XP98] successfully
used type information to eliminate bounds checks and improve dead code
elimination in Dependent ML. However, this comes at the expense of heavily
annotated types [RKJ08]. This strength of generality in the problems that
can be solved is also a weakness since the system cannot be tailored to
any one particular problem domain. Thus as an alternative to the use of a
general theorem prover, Domain Specific Languages (DSL) can be used.

Domain specific languages
Such languages are highly specific and often best suited to solve a single
problem domain; however, this allows the programming paradigm to be
tailored to an area of interest and thus simplifying the task of develop-
ment. DSL’s have become popular in recent years, for example, R [IG96]
allows for the rapid development and prototyping of statistical analyses.
The database BigQuery [Sat12] can operate on datasets that would take
days in another language, including implementations of the SQL DSL such
as MySQL. Theorem provers can also make use of DSLs. The theorem

CHAPTER 1. INTRODUCTION 12

prover Coq exposes a DSL Ltac [Del00] for giving proofs by repeated goal
refinement by the application of “tactics.” DSLs are even used at the kernel
level, for example, Linux makes use of the Berkeley Packet Filter (BPF)
architecture [MJ93] and more recently the nftables project for user-level
packet processing. Linux has even recently gained a Just-in-Time compiler
(JIT) for compiling BPF code on the fly. Another advantage of the restricted
problem domain in which DSLs operate is the ease on the burden of proving
program correctness. Since the scope of allowable terms is more restricted,
the problem of ruling out some “wrong” behavior is simplified.

Exemplifying the need for safety guarantees is the language DAML [Ass16]
of DigitalAssets, a DSL for the development of “smart contracts” seeking
to “ensure legal certainty, distributed execution, privacy, ease of analysis
and ease of use.” This is particularly important given its intended use in
markets with well established legal precedent. In more general languages for
smart contract development such as Solidity [mai18] without any guarantees,
bugs can be incredibly costly. For instance, a bug in the DAO contract cost
investors over 50 million USD and famously resulted in the forking of the
ethereum blockchain [Woo18] into ethereum and ethereum classic. The use
of a restricted DSL is particularly crucial in the area of markets where strict
legal obligations must be fulfilled.

While DSLs present a powerful means of solving problems their develop-
ment is often an intensive task, requiring the construction of a full compiler
stack from the tokenization and parsing of string to optimized machine
code. As a lightweight alternative to such a task, embedded domain-specific
languages (EDSL) can be developed.

Embedded domain specific languages

The “embedded” term indicates that the DSL is embedded within some
existing language. By leveraging an existing language EDSL development
not only avoid the need for a parser, but can additionally rely on the host
for type-checking, optimization, and even object code emission although
this is not strictly necessary. Ivory [Ell+15], a language for real-time critical
systems is implemented within Haskell and makes extensive use of Haskell’s
sophisticated kind system. Ivory gives strong guarantees of type and memory
safety, using kinds to statically reason about memory regions and object
layout within memory. Ivory not only allows for compilation to machine
code but can also emit user declared propositions for verification by external

CHAPTER 1. INTRODUCTION 13

model checkers. The development of Ivory as a DSL has allowed for a careful
crafting of paradigms supporting ease of worst case execution time analysis
(WCET), stack consumption analysis, and pointer validity guarantees. In
particular by taking suitably restricted expressions and looping constructs,
the existence of statically verifiable bounds can be guaranteed, allowing for
both termination checking and precise cost analysis. In this thesis, a similar
strategy is employed.

Feldspar [Axe+10] is another EDSL in Haskell which first allows Haskell
to heavily optimize its code before performing further optimization and
code emission. Such a “deep-shallow” strategy allows the host to perform
inlining of “macros” that construct Feldspar syntax trees to be consumed
by its compiler. Since the compiler can only operate over syntax trees,
these high-level macros are guaranteed to have been evaluated by the code
emission stage. This strategy allows for the development of “fusion” laws
which merge some classes of operations such as repeated array traversals.
The works developed in this thesis make extensive use of feldspar style
macros eliminating the need for direct function support.

EDSLs have been successfully used to perform everything from high-level
tasks such the CoddFish language supporting database programming [SV06],
all the way down to the level of hardware development via embedded
hardware description languages such as Lava and CλaSH [Gil+09]; [Baa+10].
The use of EDSLs not only support the compiler’s ability to emit performant
code but additionally support the programmer with a natural API directly
suited to the task at hand. This supports both the compiler’s ability to
perform automated correctness checking and the developer’s ability to reason
about the implementation and program state.

1.1 EDSL design with dependent types
Functional languages have long enjoyed natural support for the development
of EDSLs. Their strong type-systems relative to mainstream imperative
languages such as Java—initially lacking basic type-safety [Sar97]—simplify
safety properties whereby the programmer’s mere construction of a term
guarantees its correctness. This “correct-by-construction” style of theorem
proving allows for developers without any formal training in mechanized
theorem proving to work with the machine to prove their code’s soundness.
Dependently typed languages are thus particularly well suited to EDSL

CHAPTER 1. INTRODUCTION 14

construction courtesy of their highly expressive type-system, allowing for the
embedding of sophisticated predicates over terms in the embedded language.
Further, the use of reflection—a paradigm unique to dependent types—
enables information captured by EDSL syntax to be pushed directly into
the type system and reasoned about.

This thesis focuses on exploring the extent to which the affordances
offered by modern dependently typed languages can be leveraged in order
to prove correctness properties about some classes of programs. To this end,
a prototype language L is defined within Idris. Programs in L are indexed
by their semantics, an auxiliary language of index expression (often written
as Ix or Semantics), ensuring that any index respecting transformation
is semantically correct by construction. A key feature of L is that type-
coercions are written explicitly, allowing for an experiment in specifying
coercions semantically using a value’s index. Finally, we explore how the
host’s evaluation facilities can be leveraged to aid in developing L programs,
and performing semi-automated theorem proving.

While this platform is ideal for exploring the extent to which dependent
types simplify this style of correct by construction programming, exploring
how to use these ideas in a DSL with some well-defined domain is an area
of future work.

1.2 Overview
Motivating the design and feature set of L and its analysis is an implemen-
tation of a full compilation stack, in addition to machine checked correctness
proofs where viable. Figure 1.1 gives a high-level overview of the stages in
compilation where dashed lines indicate unimplemented but feasible paths.

At the top of the diagram is L , the language of expressions that is
directly programmed in. Expressions are strongly typed using the type
system found in the simply typed λ-calculus. However, each term also
carries an “index expression,” additional type information capturing the
term’s semantics. The expression language L lacks any primitive operations,
such as arithmetic functions, and thus is not suitable for direct compilation
or analysis as it is too high-level.

Programs written in L undergo a type and index expression preserving
transformation to a statement language S . This transformation decom-
poses the inefficient peano number representation, and low-level addition

CHAPTER 1. INTRODUCTION 15

L Semantics

S SemanticsCost analysis

SSA assemblyValue

CLLVM

verified decomposition

type-safe compilation

evaluation

code emissioncode emission

Figure 1.1: System design and compilation scheme.

operation on numbers into high-level operations suitable for compilation
and analysis. The correctness of this pass seeks to show the viability of
correct-by-construction proofs given by indexing terms by their semantics.

After high-level operations have been extracted, the syntax tree is ideal for
static analysis or the direct compilation to an abstract machine. The analysis
given is a static cost analysis using symbolic evaluation. Alternatively, the
syntax tree can be compiled to machine instructions using a traditional
continuation passing scheme. This scope safe, type-preserving compilation
pass has been mechanized in a correct-by-construction style within Idris.

Finally from a program’s abstract machine code an executable file can be
produced or directly evaluated under the semantics of the abstract machine.
Since the machine’s instruction set is in SSA style LLVM code can be readily
emitted, however for simplicity and proof-of-concept we have decided to emit
plain C. The emitted C code must additionally link against a small RTS
implementing the machine’s intrinsics for list allocating and manipulation.

CHAPTER 1. INTRODUCTION 16

1.3 Contributions
• Explore the engineering challenges of language development with

dependent types.

• Develop and apply a collection of programming patterns for use with
semantics indexed terms in a dependently typed language.

• Develop dependently typed programming patterns for working with
verified type coercions.

• Give a proof of concept language L , along with a compiler down to
an assembly style virtual machine using the semantic index respecting,
correct-by-construction style.

• Show how to integrate a generic monoid solver “tactic” developed
within the host language Idris. This solver is used to aid in performing
explicit type coercions in L .

1.3.1 Chapter Outline
The three primary levels in figure 1.1 are the focus of this thesis, and
partitioned by chapters. The structure of chapter is as follows

Chapter 2 explores the background of successively more powerful type
systems culminating in the three primary forms of dependent types.
Additionally a basic introduction to programming and proving with full-
spectrum dependent types in Idris is given. Finally a small collection of
programming patterns and theorem proving strategies using dependent
types are reviewed, including proof by reflection.

Chapter 3 motivates and develops the language of index expression and
L the language of expressions indexed by their semantics (given as
an index expression). The chapter iteratively develops a means of
performing safe, explicit coercions using a novel constraint context
reflection mechanism. Then a powerful means of mechanically per-
forming static reasoning about expressions via their far simpler index
expressions is developed, along with a fully automated, mechanized
proof of transporting correctness properties from index expressions to
expressions. Finally the language is extended with support for proving

CHAPTER 1. INTRODUCTION 17

or disproving the reachability of branches in case statements, allowing
for safe dead-code elimination in a correct-by-construction style.

Chapter 4 argues for the feasibility of the approach by exploring the
development of basic functions and how to prove properties about
them. Additionally a pattern for programming and proving with
macros in the “deep-shallow” style of Feldspar is developed.

Chapter 5 shows how index expressions can be used to verify the cor-
rectness of structural transformations on syntax trees. Next a cost
analysis on S is developed showing how the normalizer of the host
language Idris can automatically provide an EDSL with a symbolic
evaluator. The cost analysis is directed by the statements’ index
expressions. Finally a continuation passing compiler which is both
scope and type-safe is developed.

Chapter 6 presents some conclusions in addition to exploring areas of
future work, limitations of the reference implementation along which
potential strategies for improvements.

Chapter 2

Programming with Dependent
Types

One of the significant advantages of implementing an embedded domain-
specific language rather than a concrete DSL is, for example, to take advan-
tage of the host’s compiler optimization as is done by meta-repa [AS13] and
the host’s type-system. For example, the language Ivory [Ell+15] embedded
in Haskell as a safe systems programming language leverages the type-system
to perform checking of memory safety properties and admit the possibility
of statically checked assertions. Embedded domain-specific languages also
come in a much simpler form on a smaller scale, providing a specific API
targeting a highly-specific task rather than a language to be compiled. For
example, the Selda Haskell library performs compile-time checking of SQL
operations but is meant to be used in existing Haskell programs.

We will develop a language L that curiously has no syntactic means of
discerning term equality, instead realying on the host system similar to the
development of Kipling by McBride [McB10b]. It will be shown that the
primary idea required is convertibility via semantic equality. By specifying
convertibility in terms of features of the host, all the existing host features
can be used during coercion of a term’s type. The correctness of this style
of implementation is readily proved correct. A brief overview of the existing
work on dependent types will be covered.

18

CHAPTER 2. PROGRAMMING WITH DEPENDENT TYPES 19

2.1 What are dependent types?
Type systems are a means of decorating program terms or sentences with
information about their intended use or semantics. In his book, Practical
Foundations for Programming Languages Robert Harper describes a type-
system as a means “to impose constraints on the formulation of phrases
that are sensitive to the context in which they are used” [Har12]. Today
type-systems are used for simple tasks such as stratifying values by bit
widths as in C and scale up to general theorem proving as in Coq and
Idris. The features of type-systems found in many modern-day functional
languages and theorem provers can be broadly broken down into three coarse
typing structures: System F, System Fω, and dependent types. Barendregt
identified these three systems along with five others in his work Introduction
to generalized type systems [Bar91] identifying the “fine-structure” of the
systems where moving between any two corresponds to adding or removing
a feature. Barendregt visualized these systems into the “lambda cube”

λω λC

λ2 λP2

λω λPω

λ→ λP

Each corner corresponds to a type system, and each arrow corresponds to
augmenting the source type-system with some quantification, or allowing
for some new form of type/value dependency.

Languages on the top face of the cube have values which can depend on
types. This corresponds to a system with polymorphic functions.

Languages on the back face of the cube have types which can depend
on types. This corresponds to allowing for type-level functions, a feature

CHAPTER 2. PROGRAMMING WITH DEPENDENT TYPES 20

enjoying only limited support in the most popular programming languages of
today. The best example of such a programming language is GHC’s version
of Haskell which has a type family feature, allowing for direct type-level
functions.

Languages on the right side of the cube allow for types to depend on
values e.g. as supported by the Twelf [PS99] programming language. This of
course is the primary feature supported by dependently typed programming
languages such as Idris as used in this thesis.

While the exact type-theory underlying Idris itself does not appear on the
cube due to its great wealth of—sometimes ad-hoc—programming feature,
the top-right corner λC captures the heart of the type system: full-spectrum
dependent types. This corresponds to a system in which types and terms can
be freely mixed. Idris supports a great deal of more features however, such
as type-directed function overloading (i.e. ad-hoc polymorphism), inductive
families, type-classes, and more.

Of primary interest are the simply typed λ-calculus λ→, System F λ2,
System Fω λFω, and the calculus of constructions λC which are now briefly
described.

The simply typed λ-calculus

Early work most closely aligned to what is called type-theory today was
carried out by Church [Chu41] and Curry [CF67] in the 1940’s and 1950’s.
Church sought out a means of freeing the foundations of mathematics from
set-theory, developing the λ-calculus and the higher-order logic (HOL) [Chu40]
which forms the basis of the Isabelle theorem prover [Wen+17b]. The simply
typed λ-calculus extends the raw untyped λ-calculus with some set of ground
types, in addition to constants and a set of primitive functions. The syntax
and typing rules for the simply typed λ-calculus with natural numbers and
additions is given in figure 2.1. In a highly non-standard departure from
the usual notation, context extension is written on the left as in (x, τ), Γ
rather than Γ, (τ, x). This notation mirrors the encoding in Idris where
contexts are represented using lists, and lists are extended on the left as
in (x, tau) :: Gamma. Additionally values x in the context are explicitly
typed using a pair (x, τ) rather than the more usual notation x : τ , again to
mirror the development in Idris where values are typed in the context, with
an explicit pair representation. Finally, the development in Idris includes
natural numbers as a primitive type and thus the theories described here also

CHAPTER 2. PROGRAMMING WITH DEPENDENT TYPES 21

Types τ ::= Nat | τ → τ

Expressions e ::= n ∈ N | x | e + e | λx.e | e e

Γ ` e : τ (well-formed expressions)
WfLit Γ ` n : Nat

WfVar
(x, τ) ∈ Γ
Γ ` x : τ

WfAdd
Γ ` e1 : Nat Γ ` e2 : Nat

Γ ` e1 + e2 : Nat

WfLam
(x, τ1), Γ ` e : τ2

Γ ` λx.e : τ1 → τ2
WfApp

Γ ` e1 : τ1 → τ2
Γ ` e2 : τ1

Γ ` e1 e2 : τ2

Figure 2.1: The syntax and semantics of the simply typed λ-calculus.

include natural numbers following later developments. Given its simplicity
the simply typed λ-calculus is surprisingly expressive; however it notably
allows only for quantification over values, and not over types.

System F

In the 1970’s and 1980’s one of the earliest languages with a “modern”
type system was independently developed by Jean-Yves Girard [Gir72] and
John Reynolds[Rey74]: System F, or the polymorphic λ-calculus. System
F corresponds to moving up along the lambda cube, extending the simply
typed λ-calculus by allowing for quantification over types and formalizing
the notion of parametric polymorphism. Reynolds sought to develop a means
of allowing safe, checked languages to define valid programs whose type-
correctness does not rely on the particular encoding of its primitive values.
In his seminal work, Reynolds gives the example of a sorting function made
parametric in the underlying list value type by abstracting over a comparison
function. Girard was interested in proof theory, studying constructive proofs,
and a means of expressing second-order theorems [Wad01]. The syntax and
typing rules of System F are presented in figure 2.2 with α ranging over type
variables. One of the brilliant insights of System F is to not only introduce
type-variable quantification via ∀α. . . . but to extend the term language of
the simply typed λ-calculus with a type binder Λ. The secondary binder Λ
introduces a new type variable at the term level which can only take part

CHAPTER 2. PROGRAMMING WITH DEPENDENT TYPES 22

Types τ ::= α | τ → τ | ∀α.τ

∆ ` τ (well-formed types)

WfTyVar α ∈ ∆
∆ ` α

WfAll
α, ∆ ` τ

∆ ` ∀α.τ

WfArrow
∆ ` τ1 ∆ ` τ2

∆ ` τ1 → τ2
Expressions e ::= x | λx.e | Λα.e | e e | e[τ]

∆; Γ ` e : τ (well-formed expression)

WfVar
(x, τ) ∈ Γ

∆; Γ ` x : τ

WfLam
∆; (x, τ1), Γ ` e : τ2

∆; Γ ` λx.e : τ1 → τ2
WfApp

∆; Γ ` e1 : τ1 → τ2
∆; Γ ` e2 : τ2

∆; Γ ` e1 e2 : τ2

WfLamTy
α, ∆; Γ ` e : τ

∆; Γ ` Λα.e : ∀α.τ
WfAppTy

∆ ` τ
∆; Γ ` e : ∀α.τ

∆; Γ ` e[τ ′] : τ [α 7→ τ ′]

Figure 2.2: System F syntax and typing rules.

in type-level operations, allowing for its safe erasure at compile time. This
partitioning is enforced by a clever stratification of terms and types, where
a type can only be placed in a term at type instantiation sites, a secondary
form of application e[τ].

As an example the polymorphic identify function can be written as

id : ∀α.α → α

id = Λα.λx.x

then to apply this function, it must be instantiated at a concrete type.
Supposing some ground type Nat were introduced, the following could be
written

fortyTwo : Nat
fortyTwo = id[Nat] 42

CHAPTER 2. PROGRAMMING WITH DEPENDENT TYPES 23

This notion of stratifying classes of objects into two phases—those stat-
ically evaluated and those which must be delayed until runtime—using
distinct binders has been used across many areas since it readily gives a
guarantee that some quantified value cannot take part in runtime computa-
tions.

Remarkably the type-level quantification of System F induces a para-
metricity result discovered by Wadler [Wad89] which by interpreting types
as propositions allows for the mechanical derivation of theorems about poly-
morphic functions. The idea is founded on the restrictions placed upon a
function over some abstract type a. Since the function knows nothing about
values in a, inspection and direct manipulation are not possible; thus the
function is restricted to shunting the value through existing structures.

The polymorphic λ-calculus adds considerable expressive power to the
simply typed λ-calculus; however, types in this system are single kinded.
The type of a type is often called the kind of that type e.g. the kind of Nat
is ?. The natural extension to System F expands the available kinds.

System Fω

Moving along the lambda cube to the back face to λω yields System Fω,
extending System F with type-level abstractions. Thus System Fω has at
least two kinds, the kind ? of “vanilla” types, and the kind κ1 → κ2 of
type-level functions, extending the power of System F with support for
type-level computation. The syntax and typing rules for System Fω are
given in figure 2.3.

Barendregt credits Girard with the development of System Fω during
his work in 1972 on his doctoral thesis. System Fω is the kernel used by
many modern compilers and is powerful enough to represent Haskell98 type
classes [WB89] and GADTs [Atk12]; [VW10]. To see how type-classes are
captured, consider that type-class constraints can be reduced to dictionary
passing, or simply a collection of type-specific methods. For instance the
function

Show a => a -> String
might reduce to

f o r a l l a . Show a -> a -> String
where Show is the collection of methods exposed by the Show typeclass.
Type classes are captured The primary change from System F introduced

CHAPTER 2. PROGRAMMING WITH DEPENDENT TYPES 24

Kinds κ ::= ? | κ → κ

Types τ ::= λα : κ.τ | ∀α : κ.τ | τ τ | τ → τ

∆ ` τ : κ (well-formed types)

WfTyFn
(α, κ1), ∆ ` τ : κ2

∆ ` λα : κ1.τ : κ1 → κ2

WfAll
(α, κ), ∆ ` τ : ?

∆ ` ∀α : κ.τ : ?

WfTyApp
∆ ` τ1 : κ1 → κ2 ∆ ` τ2 : κ1

∆ ` τ1 τ2 : κ2
WfArrow

∆ ` τ1 : ? ∆ ` τ2 : ?
∆ ` τ1 → τ2 : ?

∆ ` τ ≡ τ : κ (type conversion)

Refl ∆ ` τ : κ
∆ ` τ ≡ τ : κ

Sym
∆ ` τ1 ≡ τ2 : κ
∆ ` τ2 ≡ τ1 : κ

Trans
∆ ` τ1 ≡ τ2 : κ ∆ ` τ2 ≡ τ3 : κ

∆ ` τ1 ≡ τ3 : κ

App

∆ ` τ1 ≡ τ ′
1 : κ1 → κ2

∆ ` τ2 ≡ τ ′
2 : κ1

∆ ` τ1 τ2 ≡ τ ′
1 τ ′

2 : κ2

Beta
(α, κ1), ∆ ` τ1 : κ2

∆ ` (λα : κ1.τ1) τ2 ≡ τ1[α 7→ τ2] : κ2

Eta
(α, κ1), ∆ ` τ : κ2

∆ ` (λα : κ1.τ α) ≡ τ : κ2

Expressions e ::= x | λx : τ.e | Λα : κ.e | e e | e[τ]

∆; Γ ` e : τ (well-formed expressions)

WfConv
∆ ` τ ≡ τ ′ : ? ∆; Γ ` e : τ

∆; Γ ` e : τ ′ WfVar
(x, τ) ∈ Γ

∆; Γ ` x : τ

WfLam
(x, τ1), Γ ` e : τ2 ∆ ` τ1 : ?

∆; Γ ` λx : τ.e : τ1 → τ2
WfApp

∆; Γ ` e1 : τ1 → τ2 ∆; Γ ` e2 : τ1
∆; Γ ` e1 e2 : τ2

WfLamTy
(α, κ), ∆; Γ ` e : τ

∆; Γ ` Λα : κ.e : ∀α : κ.τ
WfAppTy

∆; Γ ` τ1 : κ ∆; Γ ` e : ∀α : κ.τ2

∆; Γ ` e[τ1] : τ2

Figure 2.3: System Fω syntax and typing rules

CHAPTER 2. PROGRAMMING WITH DEPENDENT TYPES 25

by System Fω is the addition of the WfConv rule which allows for terms to
be coerced between provably equal types τ1 and τ2. While these declarative
rules are a convenient means of specifying the system, they are not well
suited to implementation on a machine. The crux of the problem lies in the
potential use of the WfConv rule at any point and the term e to convert
is in a sense too “bare,” i.e. there is not enough information to give a
syntax directed means of typing terms since a WfConv can potentially be
inserted at any point. The usual solution to this problem is to transform
the rules so that they can be applied in an algorithmic, syntax-directed
way (see e.g. the introduction given by Weirich [Wei02] to making rules
algorithmic, along with how the correctness of the transformation is proven)
by removing WfConv and bundling a conversion check into the application
rule since application sites are the only places requesting a particular type.
Unfortunately, this is still problematic because checking type equality is
unclear from the conversion rules. The solution to this final problem is
usually to compute a term’s “normal form,” a form which is somehow as
reduced as possible e.g. by repeated application of Beta. This transformation
moving type conversion directly into the application rule can be seen in
figure 2.4 of the dependently typed λ-calculus.

The work on the type and index expression systems of L developed
in this thesis are most closely related to System Fω exploring a system in
which no explicit equations on syntactic forms are required. Additionally we
take the approach of explicit applications of a WfConv style rule and show
how the use of dependent types make such an approach tractable.

Despite the great expressive power of System Fω, types can still only
depend on types. By moving along to the upper right corner of the lambda
cube λC, the system is extended with types that can depend on terms,
yielding full dependent types.

Dependent types

Dependent types extends the ideas of System Fω to their conclusion, allowing
for computation in types which depend on values. Curry did some of the
earliest formalizations of dependent types as a combinatory logic [CF67],
Coquand [CH88] who developed the calculus of constructions, and Per
Martin-Löf [MS84] who developed Intuitionistic type theory. The usual rules
associated with a dependently typed λ-calculus are given in figure 2.4. This
type system while only adding value dependency in types, represents a great

CHAPTER 2. PROGRAMMING WITH DEPENDENT TYPES 26

Expressions e, t ::= ? | x | λx : t.e | Πx : t.e | e e

Γ ` e : t (well-formed expression)

Γ ` ? : ?

(x, t) ∈ Γ
Γ ` x : t

(x, t1), Γ ` e : t2 Γ ` Πx : t1.t2 : ?

Γ ` λx : t1.e : Πx : t1.t2

(x, t1), Γ ` t2 : ? Γ ` t1 : ?

Γ ` Πx : t1.t2 : ?

Γ ` e1 : Πx : t1.t2
Γ ` e2 : t′

1 Γ ` t1 ' t′
1

Γ ` e1 e2 : t2[x 7→ e2]

Figure 2.4: Syntax and typing rules of the dependently typed λ-calculus.
.

simplification and departure from System Fω. For instance we now have just
a single syntactic category—that of terms—rather than distinct categories
for values, types, and kinds. Instead we simply use the extra meta-variable t
to express the intended interpretation of a term as either a “computational”
expression or a type.

Another note to make is that the system presented includes the incon-
sistent rule ` ? : ? subjecting it to Girard’s paradox [Gir72]; [Coq86]. A
possible solution necessitates complicating the system with a hierarchy of
types ` ?i : ?i+1 [HP91]. These types are called “universes” and capture
the idea that we might wish to define functions which operate over some
entire type. For instance we might like to write a function which takes a
list of types and produces an N -ary product, i.e. transporting [A, B, C] to
A × B × C. The list of such a function consists of types, i.e. ?; however it
too must have some type. The type of such a type must be somehow “larger”
than the types it contains, thus if A, B, and C are in ? then [A, B, C] must
have type ?1 to avoid Girard’s paradox. The idea behind such a paradox
is similar to Russel’s paradox in set theory where the set of all sets not
members of themselves produces the contradition A ∈ A ⇐⇒ A 6∈ A.

To better understand how to create a simple, dependently typed lambda
calculus—without a hierarchy of types—refer to Löh, McBride, and Swier-
stra [LMS10] who provide a thorough presentation using Haskell.

Due to the potentially complicated form types may take as was the

CHAPTER 2. PROGRAMMING WITH DEPENDENT TYPES 27

case in System Fω, a notion of convertibility is introduced. However rather
than include an explicit WfConv rule, here conversion is only allowed at
application sites. This allows for a relatively simple type-checking scheme
if term convertibility can be automated. Adapting Luo’s definition of
convertibility for the Extended Calculus of Constructions:

Definition 2.1.1 (reduction and conversion). Two terms are convertible
e1 ' e2 iff there exists some e′

2 α-equivalent to e2 obtained by performing a
sequence of β expansions and contractions on e1 where the β relation is

(λx : t.e1) e2 β e1[x 7→ e2]

In practice this definition allows for a relatively natural means of con-
version checking by performing reduction on both sides and checking α
equivalence.

Perhaps unsurprisingly, the size and complexity of heavily dependently
typed terms grows rapidly. Modern languages with a focus on dependent
types attempt to manage this complexity by providing high levels of au-
tomation and inductive data types which were first precisely formalized
in Martin-Löf’s type theory by Dybjer [Dyb94]. In Coq, the calculus of
constructions was extended with inductive data types, yielding the calculus
of inductive constructions (CIC) by Coquand [CP90]. However Coq does
not provide much support for dependent pattern matching, thus often care-
fully hand-crafted elimination functions for walking over data-types and
introducing values with the correct types are required. In our work the
language Idris is used which is based on Luo’s Universal Type Theory, often
abbreviated as UTT. In the next section we present a discussion of the
language Idris and how to use it.

2.2 Idris
Idris is a language with dependent types allowing for rich type-level compu-
tation and for terms to be indexed by arbitrary terms. Idris aims to support
the development of real-world applications using dependent types. Idris,
therefore, exposes support for (optionally unquantified, or “very”) implicit
arguments, pattern unification, partiality, ad hoc function overloading, type-
classes, and elaborator reflection [CB16] which will be briefly covered in this
section along with an introduction to the language itself. For a full exposition

CHAPTER 2. PROGRAMMING WITH DEPENDENT TYPES 28

on the design, implementation, and usage of Idris see Brady [Bra13b] or refer
to the recent book on type-driven program development with dependent
types by Brady [Bra16].

As presented by Brady [Bra14a], Idris at its core mostly follows the
specification of dependent types given in figure 2.4. To avoid Girard’s
paradox as described in section 2.1 on page 26 Idris uses a hierarchy of
types. However to avoid the tedium of specifying the exact level of each
type defined, Idris using constraint solving [HP91] to figure out which level
each type should exist at. Thus in Idris program expressions have types,
and types have types, without any need to explicitly mention levels, kinds,
etc.

2.2.1 Programming with Idris
Following the Curry-Howard correspondence [How80]; [CF67] in Idris one
way of expressing propositions is to define a series of relations over terms by
constructing a new type. For example given the usual definition of peano
numbers having type Nat, even parity can be captured by the following type

data IsEven : Nat -> Type where
ZeroEven : IsEven Z
SucSucEven : IsEven n -> IsEven (S (S n))

The line data IsEven : Nat -> Type where declares a new type IsEven
which is indexed by a natural number and inhabits the universe Type. This
type captures the following judgments that zero is even and that if a number
n is also, then so is the number n + 21.

ZeroEven IsEven 0 SucSucEven IsEven n
IsEven (n + 2)

Constructing a proof of a given number’s even-ness is reduced to finding a
sequence of IsEven constructors. For example to show that four is even it
can be shown that zero is even, and that zero plus two is even, and finally
that because zero plus two is even, zero plus two plus two is even.

total fourEven : IsEven 4
fourEven = SucSucEven (SucSucEven ZeroEven)

1Note that we assume that addition is defined recursively, i.e. (n+1)+m = (n+m)+1
and as a notational convenience may write constants on the right as in n + 2 when in
reality a theorem prover might only reduce the term 2 + n.

CHAPTER 2. PROGRAMMING WITH DEPENDENT TYPES 29

Note the decorator total attached to the definition fourEven. This is
necessary because Idris supports partial functions, i.e., functions which are
not defined for every input because e.g., they diverge or merely have a
definition omitted. These annotations are necessary because Idris must
give special handling to partial functions or face possible divergence during
type-checking. To avoid this, Idris will only automatically expand partial
functions by their definition one level at a time. Note that within this work
all functions presented are total and thus the total keyword is generally
elided.

What about programmatically checking if a number is even? Answering
this question involves crafting a decision procedure which is simply an
algorithm which in this case describes if its input is even or odd. In the case
of an even input, a certificate of type IsEven will be produced, what if the
value is odd? In this case the decision procedure can answer with a proof
that were we to assume that the value were proved even—by producing a
value of type IsEven—a contradiction can be derived. In Idris this type of
decidability of a proposition is called Dec and exposes two constructors Yes
and No. If a proposition holds then Yes takes a proof of the proposition. If a
proposition does not hold then No provides a proof that a proposition holds
and requests that a contradiction be derived. Using Dec, deciding the parity
of a number can be done inductively, breaking the problem down into three
cases

1. If the input is zero, it’s evidently even.

2. If the input is one, it’s evidently odd.

3. If the input is of the shape n + 2, then if n is even, by the SucSucEven
rule n + 2 is even; however if n is odd n + 2 must odd otherwise we
have that n is odd and even.

This reasoning is relatively directly transcribed into Idris

Listing 2.1: Decision procedure for number parity
isEven : (n : Nat) -> Dec (IsEven n)
isEven Z = ZeroEven
isEven (S Z) = No (\oneIsEven => ?contr)
isEven (S (S n)) with (isEven n)

isEven (S (S n)) | Yes nEven = Yes (SucSucEven nEven)
isEven (S (S n)) | No notEven = No (\(SucSucEven nEven) =>

notEven nEven)

CHAPTER 2. PROGRAMMING WITH DEPENDENT TYPES 30

The above definition presents several features of Idris

1. Program holes: the term ?contr is a program hole which aids in
program development by refinement.

2. with Expressions which allow us to perform dependent pattern match-
ing, in turn learning something about the input and helping Idris
perform reduction of the goal. This will be further elaborated on in
section 2.3.1.

Program holes are a crucial feature for development of dependently
typed programs. The hole ?contr represents an unwritten term, allowing
the type-checker to assert that the context surrounding the hole is valid.
This allows for programs to be written by refining pieces of an expression and
checking that—provided some assumptions in the form of holes hold—those
individual pieces hold. Here this means that the term No, and its single
argument of a function to ?contr is correct, and thus the final proof need
only fill in the body of the hole. Here the type of ?contr is

oneIsEven : IsEven 1
?contr : Void

However the reason the value oneIsEven of type IsEven : 1 can’t possibly
hold is due to there being no inhabitant of IsEven indexed by 1. Thus the
value oneIsEven can’t be matched upon. In order to aid in proving these
cases Idris provides a special keyword impossible.

Proving contradictions

Idris supports the proving of branches in which pattern matching is im-
possible by the absurd pattern. When pattern matching is impossible, a
branch in Idris can be marked impossible and no body need be given. This
is particularly useful in proving negative clauses where a value with an
obviously empty type is assumed. Consider the case of proving that one is
not even, given an assumption that it is even

oneIsNotEven : IsEven (S Z) -> Void
oneIsNotEven pf impossible

Instead of providing a program body, the clause is marked impossible. In
this case Idris will check that the possible expansions of the term pf are
invalid. To understand, performing expansion by hand pf is either ZeroEven

CHAPTER 2. PROGRAMMING WITH DEPENDENT TYPES 31

or SucSucEven. In the former case pf would have type IsEven Z and in the
latter case pf would have type IsEven (S (S n)); however the concrete
type of pf is IsEven (S Z) and thus by discriminating the value of the index
it’s clear that no possible pattern of pf will produce a branch that can be
reached. Note that by pattern matching on the pf term something is learned
about the shape of the terms it relates to—in this instance something is
learned about the number n it’s indexed by. The notion of forcing a value
by refinement through pattern matching is at the heart of dependent types.
Indexed terms can have their shape restricted by ensuring the index has a
particular value, and similarly by matching on indexed terms the values of
their indices can be restricted. By performing pattern matching these value
restrictions are pushed into the type system.

The above construction of even-ness is called a view [MM04b]. Value
refinement by pattern matching on views is an important strategy for
theorem proving with dependent types.

2.3 Views, existentials, and equality.
Views are useful because they provide a different means of reasoning about
some underlying value. Instead of proving properties about a number by
reasoning about it directly, the view itself can be reasoned about instead. In
the case of an even number n this means that it’s immediately evident that
n can be written as n = m + 2 rather than by appealing to some auxiliary
well-formedness constraint. Consider the proof of divisibility of an even
number n by decomposition into the product 2 ∗ m. A simple inductive
proof might be sketched by noting that in the zero case n = 0 = 2 ∗ 0, and
in the inductive case there’s some m such that 2 ∗ m = n reducing to the
final obligation of finding an m′ such that 2 ∗ m + 2 = 2 ∗ m′. Clearly taking
m′ = m + 1 gives 2 ∗ m + 2 = 2 ∗ (m + 1) = 2 ∗ m + 2 as required.

To prove this in Idris requires notions of existentially quantified variables
and equality. Since exists is a type of variable binder, it’s unsurprising that
properties over existentials are encoded as an arrow in Idris

data Exists : (a : Type) -> (prop : a -> Type) -> Type where
Witness : (x : a) -> p x -> Exists x p

The above type simply asserts that to prove there exists a value with some
property prop, it’s enough to present a concrete witness x and a proof that
the desired property p holds on that value x. Idris has a special notation for

CHAPTER 2. PROGRAMMING WITH DEPENDENT TYPES 32

existentials which is covered thoroughly in the next section: the proposition
Exists Nat (\x => p x) is written (x : Nat ** p x), and its inhabitant
Witness x px is written (x ** px).

2.3.1 Notions of equality
Term equality in Idris is written in the usual way x = y and the proof that
a term equals itself is written Refl which is the judgment that every term
equals itself, i.e. Refl : x = x. In Idris for example this admits proofs of
all the properties that can be expected of an equivalence relation

data (=) : a -> a -> Type where
Refl : x = x

symmetry : x = y -> y = x
symmetry Refl = Refl
transitivity : x = y -> y = z -> x = z
transitivity Refl xEqz = xEqz

The above definition of equality in Idris (=) is called propositional equality
because it brings the definitional equality of the underlying theory—i.e.
that every term is equal to itself—to the developer. In Idris two terms are
considered to be definitionally equal when they reduce to the same normal
form.

Note the simplicity of the symmetry and transitivity proofs by pattern
matching on the identity proofs. In the case of symmetry by matching on
Refl the system learns that y is x and thus the proof obligation becomes
a simple case of showing that x = x. Similarly to prove transitivity
we first match on the proof that x = y allowing Idris to identify the
two converting the type of the second term to x = z which satisfies the
newly rewritten obligation. Alternatively a second match of Refl could
be performed requiring that the trivial equality x = x be proven. The
assumption that identity proofs are unique requires an axiom dubbed K
stating ∀p : x = y, p = Refl i.e. that any proof p that x = y is equal
to the proof Refl. Although Idris includes this axiom it has been shown
that pattern matching is recoverable without K [CDP14]. Note that in
Idris the equality operator (=) is overloaded and may instead refer to
heterogeneous equality. Heterogeneous equality—sometimes called John
Major equality [McB00]—captures the idea that a value equals itself even
at different types

data (=) : a -> b -> Type where

CHAPTER 2. PROGRAMMING WITH DEPENDENT TYPES 33

Refl : x = x

To see the utility of such a definition consider some length n list xs of type
Vect n Nat and the following proposition xs = xs ++ [] which states that
appending nil on the right of xs equals xs. Despite the obvious truth of this
assertion, without heterogeneous equality the mere statement will fail to pass
type-checking because the types on the left and right-hand terms are unequal.
Consider that xs : Vect n Nat but that xs ++ [] : Vect (n + 0) Nat.
Heterogeneous equality solves this problem. For a more complete coverage
of heterogeneous equality and its usage refer to McBride [McB00] and
Hur [Hur10].

Equipped with existentials and equality the simple theorem that an even
number can be decomposed into a product of two can be proven.

decomp : (n : Nat) -> IsEven n -> (m : Nat ** n = 2*m)
decomp Z ZeroEven = (Z ** Refl)
decomp (S (S n')) (SucSucEven nEven) with (decomp n' nEven)

decomp (S (S (S (S Z)*m))) (SucSucEven nEven)
| (m ** Refl) = (S m ** Refl `trans` sucCommutes)

Following the outline of the proof sketch the first case n = 0 is trivial with
m = 0 since Idris reduces 2 ∗ 0 to 0. The inductive case of n = 2 + n′ first
decomposes n′ into 2 ∗ m by applying the with statement and matching on
the result. Note that by matching on the resulting equality proof, we learn
that n′ = 2 ∗ m, changing the pattern on the left-hand side from S (S n'))
to S (S (S (S Z)*m)). This matching reduces the proof obligation to
∃m′.2 ∗ m + 2 = 2 ∗ m′ which from the sketch clearly holds for m′ = m + 1.
The proof of this resulting equality in Idris appeals to one final lemma about
the commutativity of successor, i.e. 2+(m+(m+0)) = (1+m)+((1+m)+0).

sucCommutes : S (S (n + (n + 0))) = S n + (S n + 0)

One curiosity about the above propositions and proofs is the occurrence of
seemingly unbound variables such as n in sucCommutes. These are implicits
which expand the notion of a hole to wider contexts. In sucCommutes the
quantification of the parameter n : N is clearly not only inferred at the
definition, but additionally the argument in n passed in the application
of sucCommutes in decomp is inferred. In this case Idris must solve for the
appropriate value of n which in this case is n = m. In fact Idris can be
asked to solve for arbitrary values by placement of an underscore. The
next section gives a presentation of the programming features Idris exposes
around holes, implicits, and underscores.

CHAPTER 2. PROGRAMMING WITH DEPENDENT TYPES 34

Holes and implicit arguments

As is evident in dependently typed languages due to the heavy indexing of
types there are a great number of auxiliary parameters to types and functions
that should be inferred by the type-checker and therefore can be omitted at
definition and call sites. To explicitly quantify implicit parameters, they are
wrapped in curly braces. For example the fully explicit definition of length
indexed vectors can be written as

data Vect : Nat -> Type -> Type where
Nil : {a : Type} -> Vect Z a
(::) : {a : Type} -> {n : Nat} -> a -> Vect n a

-> Vect (S n) a

To explicitly pass a value in an implicit position or to match on an implicit
parameter such as n similar syntax is, wrapping the parameter name in
curly braces as in {n=Z}. For example the fully explicit definition of vector
append can be written

append : {a : Type} -> {n, m : Nat} -> Vect n a -> Vect m a
-> Vect (n + m) a

append {a=a} {n=Z} {m=m} [] ys = ys
append {a=a} {n=S n'} {m=m} (x :: xs) ys =

append {a=a} {n=n'} {m=m} xs ys

This illuminates the need for an automated means of treating implicit
parameters and arguments to remove unnecessary noise from definitions
and their proofs. In addition to inferring implicit arguments, Idris can infer
arbitrary values by placement of an underscore.

In Idris implicits are closely related to the notion of erasability, or
terms which carry no necessary computational content and can therefore
be removed as dead-code during compilation. Intuitively this is the case
because if a term can be inferred by some automated procedure, then all
the information it carries should be recoverable from the context. This
style of optimization was explored early on by Brady, McBride, and McK-
inna [BMM03]. Erasure plays an important role in making dependently
typed code efficient and has previously been explored by Luther [Lut03].
Recently Idris has gained support for marking values as to-be-erased using
a dot, for example the definition of even could mark its index as erasable

data IsEven : Nat -> Type where
ZeroEven : IsEven Z
SucSucEven : .{n : Nat} -> IsEven n -> Even (S (S n))

CHAPTER 2. PROGRAMMING WITH DEPENDENT TYPES 35

This would ensure that at runtime only the proof would be used for com-
putation. Explicit dots are usually not needed as Idris performs a whole
program usage analysis to decide which terms are erasable, and which are
not. An extensive discussion of Idris’ aggressive, flexible erasure features is
given in Tejis̆c̆ák [TB15]

Some dependently typed languages such as Coq [Her05] expose two
universes of types: Set the type of unerased proofs, and Prop the type of
erasable proofs. The system then ensures that no terms from Prop are
used in computations of terms in Set. Others such as ATS [Xi17] the
successor of DML [Xi07] require that all proofs be erasable. This distinction
of where proofs live gives rise to a stratified classification of dependently
typed systems.

2.4 Languages with dependent types
The existing space of languages with dependent types is large, with work
dating back to Haskell B Curry’s writing on a combinatory logic [CF67]
which includes the Ξ operator acting like a π binder. A number of the key
implementations have been listed in table 2.12 which will be briefly covered.
Although dependently typed systems differ in their underlying theory and
capacity for working with complicated interdependent indices, languages
can largely be broken into three categories.

1. Full-spectrum dependent types: types can depende on values with no
distinction between runtime and compile time arguments.

2. Dependent types: types can depend on values, however there is a clear
phase distinction and types cannot take part in runtime computations.

3. Synthetic dependent types: a synthesized form of dependent types
without a true pi binder. Synthetic dependent types use existing types
and type-level functions to mimic dependent types.

Each of the above styles of dependent types offer a number of unique
trade-offs.

2Coq is not strictly speaking proven correct, although work has been done by Barras
and Werner [BW97] to extract a Caml program for checking CoC terms.

CHAPTER 2. PROGRAMMING WITH DEPENDENT TYPES 36

Language EDSL Dependent Types Verification Language

L Yes Synthetic Idris
Ωmega [SL07] No Synthetic
LXRes [CW00] No Synthetic
Haskell [Com10] No Synthetic

ATS2 [Xi17] No Yes ATS2
Twelf [PS99] No Yes

Coq [Tea18] No Full-Spectrum Coq
Matita [Asp+06] No Full-Spectrum
Epigram [McB04]; [MM04b] No Full-Spectrum
Cayenne [Aug98] No Full-Spectrum
Lean [Mou+15] No Full-Spectrum
F* [Str+12] No Full-Spectrum Coq/F*
Blodwen [Bra18] No Full-Spectrum Idris
Idris [Bra13b] No Full-Spectrum
Agda [Nor08] No Full-Spectrum

Table 2.1: Languages with dependent types

Full-spectrum dependent types

Full-spectrum dependent types are the “familiar” notion of dependent types
presented in figure 2.4. Here types can freely move between concrete expres-
sions and types. While this flexibility is convenient for writing and verifying
programs, it creates a unique set of problems which must be solved in order
to generate efficient programs. In particular it can be useful to match on
an indexed term in order to perform some evaluation. However such a
term can be much larger than the concrete data indexing it, sometimes
exponentially so. Worse still, this proof will be kept around at runtime by
a naive compiler making for example an otherwise linear time operation
exponential. Thus a performance conscious compiler for a dependently typed
language should erase indexed terms uniquely determined by the context in
which they appear. To exemplify this problem Tejis̆c̆ák and Brady [TB15]
give the following definition of what it means for a list to be a palindrome.

data Palindrome : List Nat -> Type where

CHAPTER 2. PROGRAMMING WITH DEPENDENT TYPES 37

PNil : Palindrome []
POne : (x : Nat) -> Palindrome [x]
PTwo : (x : Nat) -> Palindrome xs

-> Palindrome (x :: xs ++ [x])

In the above PNil asserts that the empty list is a palindrome, POne asserts
that the singleton list is a palindrome, and PTwo asserts that if xs is a
palindrome then placing a value at both ends of the list is still a palindrome.
In order to check if an arbitrary list of nats is a palindrome, a straightfor-
ward strategy is to introduce a view of a list exposing its head and tail
simultaneously rather than having a cons exposing just the head. This is
the type of “V-lists” given in the Idris prelude

data VList : List Nat -> Type where
VNil : VList []
VOne : VList [x]
VTwo : {x, y : Nat} -> .{xs : List Nat} -> VList xs

-> VList (x :: xs ++ [y])

Checking that a given V-list is a palindrome is of course trivial. Simply
walk along spine testing if x = y at each step. In the above definition clearly
the arguments xs is fully determined by the recursive argument of type
VList xs. Thus the list indexing the VList should not be kept at runtime
because it’s not needed to perform computation. This is indicated to the
Idris compiler by dotting the argument xs.

Most of the languages in table 2.1 expose a theory with full-spectrum
dependent types although they differ in underlying feature set. Surprisingly
the only modern dependently typed language with a formally verified core is
F* whose type-checker is bootstrapped in Coq. Although the type-checkers
of Idris and Coq are not formally verified, they are implemented as a small
kernel which should—at least philosophically—increase trust.

Dependent types

Dependently typed systems are sometimes not qualified with the term full-
spectrum. Though not always, this often indicates that the system has a
strict, well-defined, compile-time phase distinction serving to separate the
universes of static, compile-time terms and dynamic run-time terms. A
primary advantage of this approach is that type erasure becomes trivial,
guaranteeing the structure of a proof about a term does not affect the
performance of computations which use the term. This restriction is double-

CHAPTER 2. PROGRAMMING WITH DEPENDENT TYPES 38

edged because it is sometimes the case that a proof term greatly simplifies
the implementation of an algorithm. For example the type of list element
membership proofs carries solely the information required to perform e.g.
a lookup, and thus the distinction of proof terms and runtime terms is
moot. The theorem prover Twelf [PS99] and the high-performance system’s
language ATS2 [Xi17] are examples of languages implementing this restricted
style of dependent types. These languages roughly correspond to λP in
Barendregt’s cube. The language ATS2 in particular has taken advantage
of the performance afforded by a clear phase distinction having developed
formally verified Linux kernel modules and programs with throughput and
latency characteristics in line with C. Finally ATS2 is written in ATS2 with
large pieces of correctness formalized. This is trivially possible because
ATS2 emits C, and thus a bootstrap compiler can be distributed.

Synthetic dependent types

The term synthetic dependent types was coined by Crary and Weirich [CW00]
during their development of a language based on LXRes [CW99] for analyzing
and verifying program costs using types. The intuition behind the system
was that a program’s runtime cost could be measured by performing a
symbolic evaluation in the context of an extra “clock” parameter. The clock
type m : N would count down towards a timeout value and thus the runtime
cost of a program can be measured by instantiating the clock with the
precise number of “ticks” required. Hence each function takes and returns a
pair where the first projection is the usual type, and the second projection
is the current clock value. For example an addition function taking 1 tick
satisfies the type (N×N, 1) → (N, 0) accepting the two naturals to sum and
using up one clock tick. To apply this in a more general context the function
should accept the current clock value as an argument and reduce it by 1 i.e.
∀n : N.(N×N, n + 1) → (N, n). Of course such an analysis requires symbolic
information about its program terms which would usually be provided by a
system with dependent types. However in order to target simpler systems
such as Typed Assembly Language [Cra03]; [Mor+98] which lack dependent
types, a close approximation can be had by considering System F style
types with a sufficiently complicated space of kinds. For instance, consider a
system with two kinds: Nat and Type. Weirich and Crary give an example
of a how to describe the cost of a higher-order map_pair function which
applies some f to both elements of a pair. If the cost of f is k, and the

CHAPTER 2. PROGRAMMING WITH DEPENDENT TYPES 39

overhead of a function call is 1, then the cost of applying f twice must be
2k + 2. This can be typed using a clock parameter by reducing n + 2k + 2
to n.

Λα : Type, β : Type,

λ(fp : (∀m : N.(α, m + k) → (β, m)) × (α × α), n + 2k + 2).
let f = prj1 fp in
let p = prj2 fp

in(f [n + k + 1](prj1 p), f [n](prj2 p))

From the type signature we derive the starting clock value of n + 2k + 2 with
the goal of reducing the clock to n, thus using up 2k + 2 ticks as expected.
The first call to f has type f [n + k + 1] : (α, (n + k + 1) + k) → (β, n + k + 1),
taking up k ticks; however the overhead of the call itself takes an additional
tick so the remaining clock value of n + k + 1 is reduced to n + k. Finally
the second call has type f [n] : (α, n + k) → (α, n) thus expecting a clock
value of n + k which was just shown to hold.

This type system is extended with support for sums, products, and
fixpoints of kinds admitting analysis of a wide variety of data structures. To
see how a sort of synthetic dependent type is recovered consider a binary
tree given as a sum type where the left-hand side is the leaf constructor and
the right-hand side is the branch constructor

type Tree = unit + (Nat * Tree * Tree)

A suitable type-level encoding of such trees is a declaration of a new kind

kind TreeRep = Leaf | Node of TreeRep * TreeRep

Then the Tree type should be rewritten to accept a TreeRep as an index
where the Leaf kind is only inhabited by leaves (left-hand of the sum) and
the Node kind is only inhabited by branches (right-hand of the sum)

type Tree(s) =
(case s of

| Leaf => unit
| Node _ => void) +

(case s of
| Leaf => void
| Node (s1, s2) => Nat * Tree(s1) * Tree(s2))

CHAPTER 2. PROGRAMMING WITH DEPENDENT TYPES 40

Thus if s=Leaf then attempting to construct a node (right-hand side) will
require the programmer to produce a value of type void which is of course
not possible. The case of s=Node is symmetric. Thus the static value of s
captures the runtime value of its underlying tree by a suitable restriction on
the possible constructors that can legally be applied.

Despite the name synthetic dependent types are curiously not an imple-
mentation of any dependent type theory, but more a clever deployment of a
theory reminiscent of System Fω. Still synthetic dependent types form the
foundation of the work in this thesis, being both simple and expressive while
admitting strong properties such as checkable erasability. In contrast the
implementation of the system described in this thesis is within Idris, touting
full-dependent types. While the possibility of this embedding is not terribly
surprising given the obviously reduced expressivity of synthetic dependent
types, the next section covers a basic introduction to the use of dependent
types to capture simpler type systems such as the simply typed λ-calculus.
We explore both the traditional construction of correctness as well as how
dependent types can greatly reduce the burden of proof obligations required
by type-safety.

2.5 Mechanized verification of type-safety
As a first illustration of how internalizing correctness properties using de-
pendent types simplifies specific proofs a formalization of the simply typed
λ-calculus (STLC) is given. Recall the types and syntax of the STLC from
figure 2.1

τ ::= Nat | τ → τ

e ::= n ∈ N | x | e + e | λx.e | e e

The safety property of interest relates to the soundness of term evaluation.
More specifically, the evaluation strategy of interest is called weak-head-
normal-form reduction (whnf). Here a term is considered to be evaluated to
weak head normal form if it is a constant value, or an unapplied function.
In the style of Wright and Felleisen [WF94] subject reduction is considered
to be correct if every well-formed term evaluates to a value, the resulting
value is well-formed, and has retained its type. To make this notion rigorous
requires a rewriting operational semantics which we will now discuss.

CHAPTER 2. PROGRAMMING WITH DEPENDENT TYPES 41

2.5.1 Structural operational semantics
Operational semantics of a language refers to a rewrite system which is at its
heart a bag of rules specifying how to rewrite various input strings to well-
defined output strings. Somewhat more rigorously, operational semantics
consist of some evaluation relation given directly on the abstract syntax
of the language. Operational semantics usually refers to either small-step
or big-step semantics. In small step, or structural operational semantics a
step relation e −→ e′ is defined, asserting that the input string e can be
rewritten to the output string e′. Much of the early work on structural
operational semantics is attributed to Plotkin [Plo75]; [Plo04b]; [Plo04a] and
Felleisen [FH92]; [WF94]. Operational semantics is a convenient means of
describing a program’s execution because it closely captures the sequential
style of bare-metal machines whereby e.g. a loop is expressed as the repeated
rewrite of its body.

A thorough introduction to operational semantics and its applications to
proving soundness properties of type systems can be found in Pierce [Pie02].

Given that small step operational semantics performs just a single step
of evaluation at a time, this often results in a large number of rules e.g.
to evaluate addition expressions there must be a rule to step the addend,
to step the augend, and finally to reduce the addition of canonical values
to their arithmetic sum. Although strategies exist to reduce this burden
such as the usage of contexts which pull out a single reducible expression
(redex) from a term, an alternative approach is to use big-step operational
semantics.

2.5.2 Natural operational semantics
Early work on big step operational semantics, also called natural semantics is
attributed to Kahn [Kah87]. Kahn noted that small step semantics requires
a great deal of machinery that denotational semantics does not and proposed
a relational specification of evaluation where program terms are reduced to
values in a single step. The step relation e ⇓ v asserts that e evaluates to
the value v. Big step operational semantics is convenient because it closely
matches the way that an evaluation might be written in a functional language,
mapping each legal syntactic term to a resulting value. One complication of
big step semantics requires the use of a counter to differentiate between stuck
terms and divergent terms. To ensure that a program terminates reduces to

CHAPTER 2. PROGRAMMING WITH DEPENDENT TYPES 42

finding some finite n such that e ⇓n+1 v. Nielson and Nielson [NN07] offer a
thorough introduction to big step semantics.

The evaluation of the STLC is readily modeled using big-step semantics.
In the next section this semantics is discussed, along with details of how
to encode these ideas using Idris, and how the use of dependent types can
produce a simpler, alternative, verified encoding.

2.5.3 Mechanized type-safety of STLC
Wright and Felleisen [WF94] developed a notion of a language’s type-safety
using a small-step operational semantics, breaking the concept down into
two properties: progress which states that if a term is well typed, and is not
a value, then it can always perform a step of computation

Γ ` e : τ =⇒ (∃e′.e −→ e′) ∨ (∃v.v = e)

and preservation which states that if a term is well-typed, then performing
a step of computation results in a well-typed term

Γ ` e : τ ∧ e −→ e′ =⇒ Γ ` e′ : τ

In contrast, here the safety of the STLC is proven using a natural semantics
in a single theorem, asserting that if a term is well-formed then evaluation
will always produce some well-formed value of the same type. Thus strictly
speaking progress and preservation don’t make sense to apply to the big-step
definition, however the ideas inform what equivalent notions we should be
interested in proving.

A naive encoding of STLC syntax in Idris exactly transcribes the syntactic
forms

Listing 2.2: STLC AST and types
data Ty : Type where

TyNat : Ty
TyArrow : Ty -> Ty -> Ty

data Stlc : Type where
Lit : Nat -> Stlc
Var : String -> Stlc
Add : Stlc -> Stlc -> Stlc
Lam : String -> Stlc
App : Stlc -> Stlc -> Stlc

CHAPTER 2. PROGRAMMING WITH DEPENDENT TYPES 43

To evaluate STLC terms, they must satisfy the well-formedness condition
from figure 2.1—otherwise e.g. an ill-formed term might try to add an
unapplied function to a number. Recall well-formedness is defined with
respect to a context and that well-formed variables are members of this
context. The encoding of a context is a simple list of variable names and
their types.

Ctx : Type
Ctx = List (String, Ty)

Membership is captured by a constraint on the result of attempting to
lookup a variable in the context i.e. lookupVar x ctx = Just t.

lookupVar : String -> List (String, a) -> Maybe a
lookupVar x ((y, v) :: env) = if x == y then Just v

else lookupVar x env
lookupVar x [] = Nothing

data WfStlc : Ctx -> Ty -> Stlc -> Type where
WfLit : (n : Nat) -> WfStlc ctx TyNat (Lit n)
WfVar : lookupVar x ctx = Just t -> WfStlc ctx t (Var x)
WfAdd : WfStlc ctx TyNat e1 -> WfStlc ctx TyNat e2

-> WfStlc ctx TyNat (e1 `Add` e2)
WfLam : (x : String) -> (t1 : Ty)

-> WfStlc ((x, t1) :: ctx) t2 e
-> WfStlc ctx (t1 `TyArrow` t2) (Lam x e)

WfApp : WfStlc ctx (t1 `TyArrow` t2) e1
-> WfStlc ctx t1 e2
-> WfStlc ctx t2 (e1 `App` e2)

In the above presentation of STLC, terms will evaluate to either a natural
number, or a closure. Closures encode weak head normal functions by
capturing the unnormalized function body along with the current mapping
of free variables to values.

data Value : Type where
VLit : Nat -> Value
VClo : String -> Ty -> Stlc -> List (String, Value) -> Value

Env : Type
Env = List (String, Value)

The big step semantics of STLC terms is given in figure 2.5 Constants
evaluate to constants. Variables evaluate to their mapping in the current
evaluation environment. Lambda evaluate to closures capturing the current
mapping of free variables. Addition expressions evaluate to the sum of their

CHAPTER 2. PROGRAMMING WITH DEPENDENT TYPES 44

Values v ::= n ∈ N | λx : τ.e

Γ ` v : τ (well-formed values)

WfVLit Γ ` n : N WfClo
(x, τ1), Γ ` e : τ2 Γ ` ρ

Γ ` λρx : τ1.e : τ1 → τ2

Γ ` ρ (well-formed environments)

WfVLit Γ ` ∅
WfVLit

Γ ` v : τ Γ ` ρ

(x, τ), Γ ` (x, v), ρ

e ⇓ρ v (big step semantics of expressions)

EvalLit
n ⇓ρ n

EvalVar
(x, v) ∈ ρ

x ⇓ρ v

EvalLam
λx : τ.e ⇓ρ λρx : τ.e

EvalAdd
e1 ⇓ρ v1 e2 ⇓ρ v2

e1 + e2 ⇓ρ v1 + v2

EvalApp

e1 ⇓ρ λρ′x : τ.e e2 ⇓ρ v2
e ⇓(x,v2),ρ′ v

e1 e2 ⇓ρ v3

Figure 2.5: Big step operational semantics of the STLC

evaluated arguments. Finally evaluation of applications is defined when the
applied expression e1 evaluates to a closure whose wrapped expressions is
evaluated in the captured environment ρ′ extended with the evaluation of
the argument e2. Defining evaluation as a relation, rather than a function,
allows for the unchanged semantics to be given in Idris

Listing 2.3: STLC big-step evaluation relation
data Eval : Env -> Stlc -> Value -> Type where

EvalLit : Eval env (Lit n) (VLit n)
EvalVar : lookupVar x env = Just v

-> Eval env (Var x) v
EvalAdd : Eval env e1 (VLit n1)

-> Eval env e2 (VLit n2)
-> Eval env (e1 `Add` e2) (VLit (n1 + n2))

EvalLam : Eval env (Lam x t e) (VClo x t e env)
EvalApp : Eval env e1 (VClo x t e1' env')

-> Eval env e2 v2
-> Eval ((x, v2) :: env') e1' v1

CHAPTER 2. PROGRAMMING WITH DEPENDENT TYPES 45

-> Eval env (e1 `App` e2) v1

Recall that type-safety ensures that every well-typed input term evaluates to
a well-formed value, respecting the type of the input. The well-formedness
of values given in figure 2.5 again can be directly encoded in Idris

mutual
data WfValue : Ty -> Value -> Type where

WfVLit : WfValue TyNat (VLit n)
WfClo : WfStlc ((x, t1) :: ctx) t2 e

-> WfEnv ctx env
-> WfValue (TyArrow t1 t2) (VClo x t1 e env)

data WfEnv : Ctx -> Env -> Type where
WfNil : WfEnv [] []
WfCons : WfValue t v

-> WfEnv ctx env
-> WfEnv ((x, t) :: ctx) ((x, v) :: env)

Again since this presentation uses a big-step semantics, progress and preserva-
tion aren’t applicable. However in the big-step world the equivalent notions
are a guarantee that every well-formed input is related to a well-formed
output value, and that this value retains the type of the input. This allows
for the following “fused” definition of “type-safety”

Γ ` ρ ∧ Γ ` e : τ =⇒ ∃v.e ⇓ρ v ∧ Γ ` v : τ

In Idris this definition can be presented using the well-typing relations
defined above.

evalSafe : WfEnv ctx env
-> WfStlc ctx t e
-> (v : Value ** (Eval env e v, WfValue t v))

The mechanized proof of this property requires a few particularly awkward
definitions. Consider first the case of a variable. The obligation is to provide a
value v along with proofs that v is well-typed and that it can be derived from
e within the big-step relation i.e. a trace of the evaluation must be produced.
By assumption e is well-typed and therefore we know that a lookup within
the context will succeed by the WfVar rule. Unfortunately, transporting
this result to the environment is tedious as we will show it requires manual
zeta-expansion and contraction. Consider first the transcribed obligation

lookupSafe : WfEnv ctx env -> lookupVar x ctx = Just t
-> (v : Value **

(lookupVar x env = Just v, WfValue t v))

CHAPTER 2. PROGRAMMING WITH DEPENDENT TYPES 46

From the well-formedness of the environment and x it is immediately clear
the environment must be non-empty for otherwise the lookup of x in the
context would fail.

lookupSafe {ctx=[]} {env=[]} WfNil Refl impossible

However, expanding this environment leaves the following obligation in the
non-empty case: lookupVar x ((y, v') :: env) = Just v. Clearly this
holds because if x is y then we can show that v′ is v, otherwise by induction
x can be found somewhere in the tail env. Unfortunately on a machine
these steps must be spelled out. First the definition of lookupVar must be
reduced which will be blocked on the conditional statement over x == y.
To reduce this requires the use of the “inspection pattern” which allows for
an expression to be evaluated while remembering what the result of the
expression was.

Listing 2.4: The inspection pattern
data Inspect : a -> Type where

Remember : (y : a) -> x = y -> Inspect x

As an example of its use with the string equality test x == y

case inspect (x == y) of
Remember True xEy => ...
Remember False xNy => ...

Where xEy : x == y = True and xNy : x == y = False. These proofs
can be used to hand reduce the obligation lookupVar x env = Just v for
example by appealing to an auxiliary function

reduceLookup : (x == y) = True
-> lookupVar x ((y, v) :: env) = Just v

reduceLookup {x=x}{y=y}{v=v}{env=env} xEy =
replace {P=\b => (if x == y then Just v

else lookupVar x env) =
(if b then Just v

else lookupVar x env)}
xEy
(Refl {x=if x == y then Just v

else lookupVar x env})

Worse still, in the case x and y are unequal and the result v is found
in the tail of the environment a proof that lookupVar succeeds will be
available, i.e. lookupVar x env = Just v while the requirement is to show

CHAPTER 2. PROGRAMMING WITH DEPENDENT TYPES 47

lookupVar x ((y, w) :: env) = Just v. Moving between these two proofs,
while obvious, is tedious.

The problems encountered here are somewhat unique to a language where
theorem proving is supposed to occur wholly within the usual programming
paradigms. In particular, the difficulty in proving and reading terms in the
classical style is due to the focus on the shapes of proofs. Traditional provers
such as Isabelle with its Isar language allow for a focus on propositions
themselves as is traditional in mathematics3. This fact, coupled with a
language of tactics for performing the required reduction, expansions, and
obvious equalities significantly reduce the burden on the programmer. Note
however that often all the information required to perform computation
is in the proofs themselves, carrying around their indices. As an example,
the difficulty in dealing with x == y lies in the fact that it carries so little
information. Conor McBride notes that to make use of a boolean, we must
know its provenance. Clearly True is meaningless unless we had remembered
that it was generated from the test x == y which is precisely what the
inspection pattern seeks to transport. A better alternative to mindlessly
hand reducing lookupVar would be to change its implementation to make
use of a type which internalizes the fact that some element has membership.
Indeed the mechanization of type-safety already “cheats” by matching on the
proof of well-formedness of the environment in order to restrict the head of
the context and environments in lookupSafe. Instead of taking an external
notion of well-formedness dependent types can perform evaluation directly
on well-formed terms themselves. In particular terms can be indexed by the
context and type in which they are well-defined. This is at the heart of the
correct-by-construction style of programming discussed in the section.

2.5.4 Verification with dependent types
It is somewhat traditional in dependently typed languages to prove the safety
of evaluation via a correct-by-construction expression language [Bra05a];
[AC99];[Chl13, pp. 30–38]. Re-expressing STLC terms in this way is almost
a direct transcription of the original WfStlc type.

data Exp : Ctx -> Ty -> Type where

3The reader may note that this mechanization is only correct up to termination. There
are a wealth of strategies to draw upon for proving termination include PHOAS encoded
closures [Chl08]; [LH09], appealing to accessibility proofs as in [Swi12], reformalizing with
a small-step semantics, or of course using a timeout parameter as in CompCert.

CHAPTER 2. PROGRAMMING WITH DEPENDENT TYPES 48

Lit : (n : Nat) -> Exp ctx TyNat
Var : Elem t ctx -> Exp ctx t
Add : Exp ctx TyNat -> Exp ctx TyNat

-> Exp ctx TyNat
Lam : (t1 : Ty)

-> Exp (t1 :: ctx) t2
-> Exp ctx (t1 `TyArrow` t2)

App : Exp ctx (t1 `TyArrow` t2)
-> Exp ctx t1
-> Exp ctx t2

This is because the certificate of well-formedness always had access to its
indices—the Stlc expressions themselves—and therefore carried all the
computational information of the raw Stlc terms required by evaluation.
The sole changes to WfStlc are to remove the raw Stlc terms, and to re-
express variable placement in terms of context membership. This is part of
the desire to shift away from a focus on propositions, and describing how
incidentally correct definitions reduce subject to external constraints. Instead
because of the intrinsic focus on the shapes of proofs it is advantageous to
shift as much work as possible to this process of inspection. The proofs of
context membership are exemplary. In evalSafe proving correct handling of
variables first tries to reduce the string equality check against the top of the
context y by x == y. This fact is then used to manually expand or contract
the body of the goal as required. Instead this equality can be internalized
by framing membership as a proof that

1. the head of a list is a member; and

2. if an element is a member of a tail, then it is an element of an extended
list.

in Idris
data Elem : a -> List a -> Type where

Here : (x : a) -> (xs : List a) -> Elem x (x :: xs)
There : (y, x : a) -> (xs : List a) -> Elem x xs

-> Elem x (y :: xs)

By matching on this proof something is learned about the top of the context.
Namely that it is either the member x, i.e. that x == y = True, or that the
top of the stack is some other value, and x can be found in the tail. Curiously
names are no longer explicitly carried by binders. This is because the new
encoding expresses variables using De Bruijn indices [Bru72] in disguise. De

CHAPTER 2. PROGRAMMING WITH DEPENDENT TYPES 49

Bruijn indices encode variables as a number indicating the number of new
binders between the variable and its own binder. Alternatively De Bruijn
indices can be thought of as indicating the position in the context that the
variable occurs. A rigorous isomorphism between De Bruijn indices and
context membership proofs is given on appendix E on page 208.

To understand how to evaluate type indexed terms it’s useful to first
consider how to evaluate raw Stlc terms. The Eval relation in listing 2.3
on page 44 can be rewritten as a function—although the new formulation
fails termination checking

eval : Env -> Stlc -> Value
eval env (Lit n) = VLit n
eval env (Var x) = case lookupVar x env of

Just v => v
eval env (Add e1 e2) = case (eval env e1, eval env e2) of

(VLit n1, VLit n2) => VLit (n1 + n2)
eval env (Lam x t e) = VClo x t e env
eval env (App e1 e2) = case (eval env e1, eval env e2) of

(VClo x t e1' env', v2) => eval ((x, v2) :: env') e1'

Augustsson [AC99] notes that the Value type in the above is really just
a means of tagging values with their types to ensure that the evaluated
program does not misuse a value. However this is unnecessary if the program
has undergone type-checking because it is known a priori that there are no
type errors. In a type-safe language where checking occurs at runtime such
as Python the above program could more naturally be written as

Listing 2.5: Type respecting evaluation
eval env (Lit n) = n
eval env (Var elt) = lookupVar elt env
eval env (Add e1 e2) = eval env e1 + eval env e2
eval env (Lam x t e) = \v => eval ((x, v) :: env) e
eval env (App e1 e2) = eval env e1 (eval env e2)

Since the program is known to be type correct, values can be returned and
used without the need for tagging. The type of closures is particularly simple
because there’s no need to explicitly capture the environment when the
host closure already captures x, env, and e. Defining the above definition of
evaluation is relatively trivial using the correct-by-construction approach
because the return type can be calculated

eval : Exp ctx t -> ?a

CHAPTER 2. PROGRAMMING WITH DEPENDENT TYPES 50

What is the type of the hole ?a in the above? The type information about the
input expression is locally available via t. Reiterating the act of constructing
an expression at t guarantees it passes type checking when ascribed with
the type t. The resulting type is precisely the types of the values captured
by tagged Values.

EvalTy : Ty -> Type
EvalTy TyNat = Nat
EvalTy (TyArrow t1 t2) = EvalTy t1 -> EvalTy t2

Remarkably the eval function in listing 2.5 will nearly pass typechecking,
the only remaining problems relate to variables.

eval : ?env_ty -> Exp ctx t -> EvalTy t
eval env (Var elt) = lookupVar elt env
...

The current definition of environments map variables to explicitly tagged
Values. Fortunately variables themselves, being De Bruijn encoded, carry
proof of their type. A context membership proof is simply a statement of the
position in the context at which the variable’s type can be found. Thus the
environment must follow the shape of the context which was precisely the
structure of well-formed environments on figure 2.5 on page 44. Moreover
since values no longer need tagging, rather than carrying a proof of the
tagged value’s well-formedness, the raw value of the correct type can be
placed directly in the environment

data Env : Ctx -> Type where
Nil : Env []
Cons : (t : Ty) -> (ctx : List Ty)

-> (value : EvalTy t) -> Env ctx
-> Env (t :: ctx)

Then to perform variable lookup the membership proof is treated as index
into the environment

lookupVar : Elem t ctx -> Env ctx -> EvalTy t
lookupVar (Here t ctx) (Cons t ctx v env) = v
lookupVar (There t' t ctx elt) (Cons t' ctx v env) =

lookupVar elt env

Note that by matching on the proof of membership we learn that the
environment is non-empty. Additionally matching on Here restricts the
value t : Ty under the cons, and thus we learn that the type of v must be
EvalTy t, the required type of the variable.

Thus the final type of the sound evaluation procedure can be given

CHAPTER 2. PROGRAMMING WITH DEPENDENT TYPES 51

eval : Env ctx -> Exp ctx t -> EvalTy t

This style of variable binding is both intuitive and flexible. Unfortunately
it comes at a non-zero cost since the correctness of any variable manipu-
lation must be immediately proven rather than performing a sequence of
“incidentally correct” transformations and proving their correctness at the
end. While strategies exist for avoiding this overhead, in this setting the
extra proofs required are an acceptable overhead. The next section presents
a brief coverage of strategies for representing binders in way that allows for
handling them in a provably correct way.

2.6 A brief history of binding strategies
The problem of binding and representation of variables is an important
and well-studied topic in the area of language development and verifica-
tion [Ayd+08]; [Chl08]. Strategies include the usage of host binders as
in (parametric) higher order abstract syntax (HOAS and PHOAS) [KJ12];
[ALY09]; [PE88]; [Chl08]; [LH09]; [PS99], locally nameless representations
mixing De Bruijn indices with concrete names distinguishing bound and free
variables [Cha12]; [MM04a], the globally unique “Barendregt convention”,
tools for code generation [Sew+07]; [Her05], and a wealth of patterns and
libraries [Kme15]; [WYS11]; [BP99]. Indeed, within the development of L
proofs, performing various forms of variable and context accounting are
representative of almost a quarter of the total code.

2.6.1 Parametric Higher Order Abstract Syntax
In Higher Order Abstract Syntax (HOAS) variables in the object language
are directly represented by variables in the host language. For example the
λ-calculus from listing 2.2 on page 42 is captured in Idris using HOAS by
the following definition.

data Exp : Ty -> Type where
Lit : Nat -> Lam TyNat
Add : Exp TyNat -> Exp TyNat -> Exp TyNat
Lam : (Exp t1 -> Exp t2) -> Exp (t1 `TyArrow` t2)
App : Exp (t1 `TyArrow` t2) -> Exp t1 -> Exp t2

This definition exemplifies two important properties: there is no way to
explicitly tag variables; and lambda abstractions are expressed as a real Idris

CHAPTER 2. PROGRAMMING WITH DEPENDENT TYPES 52

function. Given that any variable will be a well-formed Exp type, there’s no
need for a variable constructor because any variable can be placed directly
in terms. For instance an addition function on two variables

add : Exp (TyNat `TyArrow` (TyNat `TyArrow` TyNat))
add = Lam (\x => Lam (\y => x `Add` y))

Unfortunately this type is not strictly positive so Idris disallows its use in
total functions. Additionally the add definition is free to unpack, inspect,
and manipulate its arguments, operating more like a macro than a real
function.

Washburn and Weirich [WW03] observed that a clever application of
parametricity stops functions such as add from inspecting their variables,
dubbing the strategy “parametric higher order abstract syntax” or PHOAS.
Moreover the strategy is strictly positive and thus admissible in the more
stringent settings in e.g. Idris, Agda, and Coq.

In PHOAS object language abstractions are still encoded using host
abstractions, however the type of the source variable is an abstract parameter
v. Thus by parametricity, definitions such as add may only shunt variables
around. Note that since variables are of abstract type, an explicit constructor
for variable placement must be reintroduced (thus strictly speaking, PHOAS
is not technically a HOAS). An untyped λ-calculus would be encoded with
PHOAS by

data PExp : (var : Type) -> Type where
Var : var -> PExp var
Lam : (var -> PExp var) -> PExp var
App : PExp var -> PExp var -> PExp var

Thus functions in type (var : Type) -> PExp var know nothing about
the type var and therefore are unable to perform macro-like syntactic
inspections.

Internalized type safety is readily recovered in PHOAS. Since variables
are typed in this setting, the var parameter is simply indexed by its type in
the usual way.

data PExp : (var : Ty -> Type) -> Ty -> Type where
Var : var t -> PExp t
Lit : Nat -> PExp TyNat
Add : PExp TyNat -> PExp TyNat -> PExp TyNat
Lam : (var t1 -> PExp t2) -> PExp (t1 `TyArrow` t2)
App : PExp (t1 `TyArrow` t2) -> PExp t1 -> PExp t2

CHAPTER 2. PROGRAMMING WITH DEPENDENT TYPES 53

Unfortunately PHOAS has a few undesirable properties. In particular
care must be taken if evaluation is to be mixed with syntax since evaluation
inherently requires some knowledge about the shape of var. Thus corners
which want to perform evaluation must ensure that the term is only inspected
during evaluation, but additionally that it not even be constructed in other
contexts. While such problems are not insurmountable, Idris is reluctant
to perform reduction underneath binders thus complicating proofs about
functions in EDSLs. Given the above problems, our development proceeds
using a notion of name indexed De Bruijn indices to encode variables which
will now be detailed.

2.6.2 Name indexed De Bruijn indices
De Bruijn indices are an elegant and simple means of representing variables,
encoding variables as numbers representing the distance from their binding
site. For example the term λx.λy.x + y would be represented as λ.λ.1 + 0
since there is one binder—namely y—between x and its binding site. As an
additional benefit, De Bruijn indices naturally grant a means of testing α
equivalence, since variable names are unique. This simplicity granted by De
Bruijn indices are traded for additionally complexity in substitution. For
example naïvely reducing (λ.λ.0 + 1) 0 yields the obviously incorrect term
λ.0 + 0. Thus when moving under binders, care must be taken to properly
shift the value of the substituted term—in this case by adding 1 to variable
0. In a dependently typed setting it’s possible to ask the compiler to check
the correctness of all such substitutions by considering a hybrid encoding
indexing De Bruijn indices by their names. This will also clarify why values
must be shifted by a particular amount. A well-typed, name indexed De
Bruijn variable is a proof of the name’s membership in a context. Consider
again the tired example of the typed λ-calculus

Ctx : Type
Ctx = List (String, Ty)
data DExp : Ctx -> Ty -> Type

Var : Elem (x, t) ctx -> DExp ctx t
Lam : (x : Name) -> (t : Ty) -> DExp ((x, t) :: ctx) t

-> DExp ctx t
App : DExp ctx (t1 `TyArrow` t2) -> DExp ctx t1

-> DExp ctx t2
...

CHAPTER 2. PROGRAMMING WITH DEPENDENT TYPES 54

Thus an abstraction ascribes both a name and type to its variables, with the
body defined in a scope extended by the newly bound variable. Additionally,
Idris now rejects incorrect reduction as ill-typed. This is because variables
are not simple numbers, they are numbers decorated with their meaning—a
proof of where the variable name and type can be found in the context.

Consider again the improper reduction of λ.(λ.λ.0 + 1) 0. Suppose
0 and 1 are decorated with the names x and y. The inner scope 0 + 1
has type ("x", TyNat) :: ("y", TyNat) :: ctx. Supposing the outer 0
bound a variable with name z it has a reduced scope indicated by the type
ctx = [("z", TyNat)]. Naïvely attempting to place the outer variable 0
produces a type error since the proof that z is found at index 0 no longer
holds. More variables have been added and therefore the proof must be
shown to hold in a weakened context i.e. z can still be found in a context
with more names added. Clearly given z ∈ Γ it is the case that z ∈ x :: y :: Γ.
Making this rigorous transforms membership proofs in the same way that
naked De Bruijn indices are transformed: point past the “added stuff” e.g.
in Idris weakening a member of context Γ by Γ′

Listing 2.6: Context membership weakening
weaken : Elem x ctx -> (ctx' : List a) -> Elem x (ctx' ++ ctx)
weaken elt [] = elt
weaken elt (y :: ctx') = There (weaken elt ctx')

Thus as each additional variable y is added, x can be found one index
further in the new context. In the case no more variables are to be added
i.e. ctx'=[] the original membership proof still holds since x is found at the
same location it was at originally.

Another important case to consider is the generalization of weakening
known as thinning. Thinning is the insertion of additional information Γ′

in the middle of a split context Γ = Γ1 ++ Γ0. This is necessary when for
example performing weakening underneath a binder. Thinning is performed
by case analysis on the split context Γ, divining the side—Γ1 or Γ0—in
which a variable resides

1. When x ∈ Γ1, no work is required to show that x ∈ Γ1 ++ Γ′ ++ Γ0
since its index does not change.

2. When x ∈ Γ0 it should be weakened by Γ′ in the usual way.

In Idris the type system directs how to implement the transformation
correctly by simultaneously unpacking the membership proof and the context.

CHAPTER 2. PROGRAMMING WITH DEPENDENT TYPES 55

thin : Elem x (ctx1 ++ ctx0) -> (ctx' : List a)
-> Elem x (ctx1 ++ ctx' ++ ctx0)

First the case x ∈ Γ1 is handled
thin {ctx1=x::ctx1'} Here ctx' = Here
thin {ctx1=y::ctx1'} (There elt) ctx' =

There (thin {ctx1=ctx1'} elt ctx')

Once ctx1 is exhausted and x has not yet been found, the membership proof
must be updated to look past the newly added elements in ctx'.

thin {ctx1=[]} elt ctx' = weaken elt ctx'

Encoding variables in this way not only ensures their correct handling but
additionally allows for a highly liberal notion of a “name”. In fact, arbitrary
values can be tracked in a context. Incidentally this provides a convenient
means of reifying arbitrary host expressions into a first order syntax that
can be manipulated. This forms the basis of proof by reflection—the topic
of discussed in the next section—a powerful method of generic theorem
proving entirely within the language of dependent types.

2.7 Proof by reflection
One of the many advantages EDSL’s offer is the usage of advanced host
features to program with. Thus far while the host has been leveraged to
prove the correctness of a variety of functions in L , the work has been
entirely manual. Most theorem provers provide a means of semi-automated
theorem proving to simplify the process of proving classes of similar or
repetitive problems.

The theorem prover Isabelle which distinguishes between proving and
programming exposes a collection of tactics [Wen+17b]. Tactics can be
implemented in Ocaml [Wen+17a] and attempt to solve obligations by fully-
automated repeated goal inspection and refinement. Coq similarly employs
the use of tactics, however it additionally is equipped with the Ltac [Del00]
language, allowing the programmer to match on the current goal and current
assumptions in order to try and automatically solve or simplify the proof
obligation by producing a proof term in the underlying theory. Both Isabelle
and Coq have been successfully used to produce large scale verified pieces
of software with an impressive level of automation. In Isabelle this includes

CHAPTER 2. PROGRAMMING WITH DEPENDENT TYPES 56

the seL4 project [Kle+09], a verified micro-kernel and in Coq the proof of
the Four-Color theorem [Gon07].

The proof of the four-color theorem makes extensive use of a theorem
proving strategy unique to dependent types known as proof by reflection. In
proof by reflection propositions are reified into some first order syntax, an
inductive type that can be traversed in the usual language programming
paradigms. These syntactic terms can be analyzed, reduced and then re-
flected back into their original form. Thus the act of searching for a proof
of a proposition is done entirely within a single language. A key advantage
provided by access to a first order representation of some proposition identi-
fied by van der Walt and Swierstra [WS12] is that the values of inputs can
be enumerated. This strategy is exemplified by proving properties about
boolean conjunctions and disjunctions in some set of variables. Usually this
would require 2n pattern matches on the input variables to test that all
possible sets produce a true statement, however by analyzing the variables
in syntax these values can be automatically instantiated with all possible
values and hence the proposition can be tested in all possible environment.

The use of a single language to perform theorem proving is both elegant
and intuitive. In fact, two examples of proof by reflection have already been
given. The first in section 2.2.1 on page 28 where a number is proved to be
even or not by the decision procedure isEven given in listing 2.1 on page 29.
The second was of course proof of a De Bruijn index being well-formed. As
van der Walt and Chlipala note, proof by reflection is made considerably
more useful when arbitrary expressions can be injected into syntax trees
without the need for an explicitly reified representation. This allows for
instance the construction of highly general monoid equality solver where the
“variables” become arbitrary expressions.

2.7.1 Proving equality of monoid expressions
A monoid is a set A equipped with an associative binary “append” operator
· × · and an identity or “nil” element ε satisfying the following identify laws

∀a ∈ A.ε × a = a

∀a ∈ A.a × ε = a

The equation for the associativity of append is of course given by

∀a1 a2 a3 ∈ A.a1 × (a2 × a3) = (a1 × a2) × a3

CHAPTER 2. PROGRAMMING WITH DEPENDENT TYPES 57

Thus two equations in a monoid are equal if the parentheses in the left and
right hand sides can be “shuffled” about to yield character for character
identical expressions. Thus to test if two equations are equal programmati-
cally, we must identify an equal parenthesization. As seen with System Fω

the usual approach to such a problem is to repeatedly rewrite the equations
using some set of confluent rules to arrive at a canonical normal form. The
confluence property of a rewrite system simply ensures that the order in
which reductions are applied has no bearing on the normalized value. Since
there can only be one such form, and the rewrite procedure is strongly
normalizing equivalent terms are guaranteed to normalize to identical forms.
In the case of a monoid it can reasonably be seen that the right association of
all parenthesis is unique, forming the basis of our formalization. Intuitively
this reduces expressions to strings of variables drawn from A—strings of
course can be equality checked under the usual notion of lexical equality.

In Idris a well-formed monoid expression in some quantified variables
tracked by a context is given by

data SimpleMonoidExp : List String -> Type where
MUnit : SimpleMonoidExp ctx
App : SimpleMonoidExp ctx -> SimpleMonoidExp ctx

-> SimpleMonoidExp ctx
Var : Elem x ctx -> MonoidExp ctx

Thus the equation (a1 × a2) × a3 in Idris is written
(Var Here `App` Var (There Here)) `App`
Var (There (There Here))

where the type explicitly states the order in which the free variables were
introduced SimpleMonoidExp ["a1", "a2", "a3"]. The type of normal
forms is also easily expressed by restricting the left-hand-side of the App
constructor to values. Additionally since values are always placed to the left
of an append operation, there’s no need for an explicit Var constructor.

data NfSimpleMonoidExp : List String -> Type where
NfUnit : NfSimpleMonoidExp ctx
NfApp : Elem x ctx -> NfSimpleMonoidExp ctx

-> NfSimpleMonoidExp ctx

Thus the normalized version of the expression (a1 × a2) × a3 is
Var Here `NfApp`
(Var (There Here) `NfApp`

(Var (There (There Here)) `NfApp` NfUnit))

CHAPTER 2. PROGRAMMING WITH DEPENDENT TYPES 58

Clearly terms in NfSimpleMonoidExp can be checked for equality by first
matching constructors and then testing element equality in the case of NfApp.

Given a sound translation from SimpleMonoidExp to the normalized type
NfSimpleMonoidExp, this construction can be used to automatically test the
equality of terms from SimpleMonoidExp. Incidentally this strategy can be
extended to automate equality proofs of arbitrary monoid expressions in a
reflective style. The extensions employs two key insights. The first is the
standard reflective trick of indexing the syntactic monoid expression by the
underlying semantic value whose equality is to be tested. The second insight
is to consider variables to be arbitrary expressions rather than static strings.
Of course equality checking of arbitrary terms is undecidable, fortunately
the encoding of variables themselves can be used to test for equality. This
is a consequence of reflexivity, since if two variables are equal, they point to
the same value in the context whose equality follows from reflexivity. The
necessary equivalence relation on variables offers clarity

data ElemEq : Elem x xs -> Elem y xs -> Type where
HereHere : ElemEq {y=x} {xs=x::xs'}

(Here {x=x}) (Here {x=x})
ThereThere : ElemEq elt elt'

-> ElemEq (There elt) (There elt')

Thus two variables pointing to the top of the context are equal, requiring
that x = y because Here restricts the element to be the same as the top
of the stack i.e. Elem x (x :: xs). Additionally two variables pointing to
some other equal point of the context are also equal. When the final piece
of the equality proof HereHere is unwrapped we discover that it is only ever
the case that x and y were equal as formalized by the following proof

elemEqId : {elt : Elem x xs} -> {elt' : Elem y xs}
-> ElemEq elt elt' -> x = y

elemEqId HereHere = Refl
elemEqId (ThereThere eltEelt ') = elemEqId eltEelt'

Extending monoids to abstract expressions

Having recovered a means of automatically identifying variables, translating
the SimpleMonoidExp type to encode arbitrary expressions is straightfor-
ward4

4Note that this definition is parametric in some explicitly defined monoid on a given
by ExplicitMonoid, a record exposing the unit and append operations associated with

CHAPTER 2. PROGRAMMING WITH DEPENDENT TYPES 59

data MonoidExp : ExplicitMonoid a -> List a -> a
-> Type where

MUnit : MonoidExp m ctx ExplicitMonoid.unit
App : MonoidExp m ctx x -> MonoidExp m ctx y

-> MonoidExp m ctx (x `append` y)
Var : Elem x ctx -> MonoidExp m ctx x

Following the standard reflective approach the unit constructor MUnit is
indexed by the true underlying semantic unit of the monoid. Similarly the
App constructor is indexed by the appending of some semantic x and y taking
as arguments their reified sub-trees. Finally a variable x—semantically an
arbitrary expression—is placed by giving a proof of its membership in the
context. Moreover this proof is indexed by the semantic expression in
question which is placed as the index of the overall term. Ultimately such
expressions should be provably equal to one another through a reflective
“tactic” e.g.

eqMonoidExp : MonoidExp m ctx x -> MonoidExp m ctx y
-> Maybe (x = y)

As an example of how to manually reify some expression, consider addition
with unit 0. The expression (x, y) 7→ x + 2 + y can be transformed into a
syntax tree as follows

x2y : (x, y : Nat)
-> MonoidExp PlusMonoid [x, 2, y] ((x + 2) + y)

x2y x y = (Var Here `App` Var (There Here)) `App`
Var (There (There Here))

Note that both the constant 2 and the variables x, y had to be placed as
variables since monoids can only express trees of variables and unit values
appended to one another. The translation of normal forms is similarly trivial

data NfMonoidExp : ExplicitMonoid a -> List a -> a
-> Type where

NfUnit : NfMonoidExp m ctx ExplicitMonoid.unit
NfApp : Elem x ctx -> NfMonoidExp m ctx y

-> NfMonoidExp m ctx (x `append` y)

This is almost identical to the NfSimpleMonoidExp except the context now
tracks a set of expressions rather than variable names. Particularly notable is
that a translation from an x indexed MonoidExp to an x indexed NfMonoidExp
is sound if their indices match. Intuitively given that the index represents
the monoid.

CHAPTER 2. PROGRAMMING WITH DEPENDENT TYPES 60

an abstract interpretation of the syntax tree, identification of the indices
implies semantic equivalence of the two monoid expressions. This notion is
given more precisely and is formalized in chapter 3 on page 66 lying at the
heart of L .

The next step required to prove the equality of two monoid expressions
is to perform sound normalization.

Normalizing monoid expressions

Having access to a strongly typed description of a normalized expression
makes the task of normalization relatively simple. Following the strategy
of Brady [Bra13a] and Slama [SB17] the soundness of the normalization
procedure is given by construction. Hence in order to normalize some monoid
expression that reifies x, at each step a normalized expression is produced
in some new index x′ along with a proof that it’s equal to the input x i.e.
x = x′.

nfMonoidExp : MonoidExp m ctx x
-> (x' : a ** (NfMonoidExp m ctx x', x = x'))

Thus the above returns not only a syntactic description of the normalized
expression, but additionally a proof x = x′ of how to transport the expression
x to its normal form x′. Concretely this proof will be some repeated
application of the substitution rule using append’s proof of associativity.

The normalization procedure itself is simple. Intuitively an append
expression l × r can be normalized by normalizing the left-hand side l and
affixing the normalized right-hand side to its base. Thus normalization takes
as arguments both an expression to normalize e, and a normalized spine n
to affix at the base of the normalized e. An example of how to normalize
(a1 × a2) × a3 given a normalized spine argument of n0 is given in figure 2.6.

nfMonoidExp ' : MonoidExp m ctx x
-> (y : a) -> NfMonoidExp m ctx y
-> (z : a ** (NfMonoidExp m ctx z,

x `append` y = z))
nfMonoidExp ' (App {x=x1} {y=x2} e1 e2) y yNf =

let (x2y ** (e2YNf, eq1)) = nfMonoidExp ' e2 y yNf
(x1x2y ** (e1e2YNf, eq2)) = nfMonoidExp ' e1 x2y e2YNf

in (x1x2y **
(e1e2YNf,
replace {P=\v => v = x1x2y}

(appendAssociative x1 x2 y)

CHAPTER 2. PROGRAMMING WITH DEPENDENT TYPES 61

(replace {P=\v => x1 `append` v = x1x2y}
(sym eq1) eq2)))

As is the case in nfMonoidExp, nfMonoidExp ' a normalized expression cou-
pled with a proof that its semantics—the index z—is equivalent to x i.e.
the index of the input. The implementation clarifies the fact that the nor-
malization procedure calculates not only a normal expression but a proof
transporting x to z. This proof is a description of how to perform normaliza-
tion on the reflection x of the reified expression. In this case the proposition
to prove is

(x1 `append` x2) `append` y = x1x2y

given the facts that
eq1 : x2 `append` y = x2y
eq2 : x1 `append` x2y = x1x2y

drawn from the recursive calls. This follows trivially by substituting for
x2y and then applying the associativity rule. These two operations are
performed by the calls to replace.

Normalizing unit and variables are trivial: in the case of unit simply
return the right spine; and in the case of variables produce a new append
node with the variable on the left and the normal spine on the right.

nfMonoidExp ' MUnit y yNf = (y ** (yNf, unitLeft y))
nfMonoidExp ' (Var {x=x} elt) y yNf =

(x `append` y ** (elt `NfApp` yNf, Refl))

These proofs of index equality are also trivial. In the case of unit it
must be shown that unit `append` y = y which follows from the unit
law unitLeft y. Finally the case of appending a variable to a spine is
already in the proper from, requiring no work and thus returning Refl.

While the procedure nfMonoidExp ' is correct, a “hole-filling” spine ar-
gument is always required. The top-level function nfMonoidExp selects a
suitable default value of unit.

nfMonoidExp : MonoidExp m ctx x
-> (x' : a ** (NfMonoidExp m ctx x', x = x'))

nfMonoidExp {x=x} e1 =
let (x' ** (e1Nf, xEx')) = nfMonoidExp ' e1 unit NfUnit
in (x' ** (e1Nf, replace {P=\v => v = x'}

(unitRight _)
xEx'))

CHAPTER 2. PROGRAMMING WITH DEPENDENT TYPES 62

×

×

a1 a2

a3

×

a3n0

Normalize right

×

a1 ×

a2

Normalize left ×

a1 ×

a2 ×

a3 n0

Result

Figure 2.6: An example of the normalization procedure.

As usual a proof to transport the new index x `append` unit to the input
index x is required which follows precisely from unit laws.

Given a sound means of normalizing reified monoid expressions, it’s pos-
sible to provide a sort of tactic for automatically solving monoid equations.

Automatically proving monoid equalities

Formally the problem of deciding if two monoid expressions are equal is
eqMonoidExp : {a : Type} -> {x, y : a}

-> MonoidExp m ctx x -> MonoidExp m ctx y
-> Maybe (x = y)

Note that this procedure is sound but not complete. Completeness is tricky
because our monoid variables represent real values of type a. Thus there will
be instances where two variables point to distinct locations in the context and
yet the values at those locations are equal. In these situations the equality
of x and y cannot be given, nor of course can the equality be disproven since
nothing is known about the values. One solution is then to give a complete
procedure which calculates a set of requirements—constraints on variable

CHAPTER 2. PROGRAMMING WITH DEPENDENT TYPES 63

values—which must be proven in order to come to a conclusion. While the
idea won’t be deployed here, it’s crucial to the development of L .

The function eqMonoidExp becomes trivial given a test for normalized
monoid expressions

eqNfMonoidExp : NfMonoidExp m ctx xs
-> NfMonoidExp m ctx ys
-> Maybe (xs = ys)

Intuitively this should hold because the indices of NfMonoidExp are almost
unique and thus the equality check on the syntactic reification should almost
imply equality on the indices. As earlier remarked, the only point where an
expression’s index is not uniquely determined by the syntax is at variables
which could be equal to anything in the absence of information. Thus the
proof follows by simultaneous case analysis on the arguments discriminating
between append and unit, identifying unit with itself, and identifying two
applications when their tails can be identified and the left-hand variables
point to the same location in the context.

eqNfMonoidExp NfUnit NfUnit = Just Refl
eqNfMonoidExp (NfApp x1Elt x2Nf) NfUnit = Nothing
eqNfMonoidExp NfUnit (NfApp y1Elt y2Nf) = Nothing
eqNfMonoidExp (NfApp x1Elt x2Nf) (NfApp y1Elt y2Nf)

with (elemEq x1Elt y1Elt, eqNfMonoidExp x2Nf y2Nf)
eqNfMonoidExp (NfApp x1Elt x2Nf) (NfApp y1Elt y2Nf)

| (Yes eltEq, Just eq) with (elemEqId eltEq)
eqNfMonoidExp (NfApp x1Elt x2Nf) (NfApp y1Elt y2Nf)

| (Yes eltEq, Just Refl) | Refl = Just Refl
eqNfMonoidExp (NfApp x1Elt x2Nf) (NfApp y1Elt y2Nf)

| (Yes eltEq, Nothing) = Nothing
eqNfMonoidExp (NfApp x1Elt x2Nf) (NfApp y1Elt y2Nf)

| (No eltEq, nfeq) = Nothing

From eqNfMonoidExp proof of eqMonoidExp follows directly. Normalize
the inputs, test their equality, and if it can be shown, then apply the resulting
equality proofs to transport the indices to their original values. The full
proof is given in appendix B.2 on page 192

While the function eqMonoidExp can be used to prove the equality of
some terms, because the syntactic reifications of the terms to test must be
given by hand, it doesn’t feel quite automatic. Languages lacking a distinct
tactics language such as Idris5 and Agda solve this problem by providing

5Technically Idris did have a tactics language, however it’s been superseded by its
first-class reflection mechanisms.

CHAPTER 2. PROGRAMMING WITH DEPENDENT TYPES 64

first-class reflection support.

2.7.2 First-class reflection
Recently Agda has been extended to provide an API for reflecting the
goal [Wal12] into a first order syntax tree that can be manipulated in the
standard language similar for example to Template Haskell [SJ02] or C++
templates. This solves the problem of constructing the “monoid view” of
a term because it can be constructed by reflecting terms into first order
syntax and then building a MonoidExp by traversing this tree.

Similarly Idris supports a first-class reflection mechanism allowing for
functions to perform pattern matching on syntax. More recently Idris
has been extended with the more powerful elaborator reflection [Chr14];
[CB16] a means of exposing the compiler’s hole solving machinery—among
other things—“as a primitive monad in Idris itself”, as Christiansen puts
it, to perform metaprogramming. Together with first-class reflection, elab-
orator reflection exposes a powerful means of automatically solving proof
obligations.

2.8 Summary
In this chapter a series of progressively more expressive type-systems have
been presented, covering the core set of type-level features which are used in
the design and development of the language L explored in the next chapter.
In particular system Fω and synthetic dependent types both expose powerful
means of statically reasoning about terms via a distinct language of types.
We have shown how carefully crafted static types can restrict the values of
runtime terms by considering types as computations over kinds.

This chapter has also given a brief introduction to the usage of dependent
types in programming and theorem proving. Several patterns for theorem
proving were provided by the ruling out of invalid terms a priori. This is
the correct-by-construction pattern. We have seen how to use dependent
types to embed languages with weaker type systems such as the STLC in
addition to strategies for representing variable binders with (P)HOAS style
using host binders to encode object language binders. However due to the
drawbacks of PHOAS a correct-by-construction notion of De Bruijn indices
is proposed using proofs of membership within an explicitly tracked context.

CHAPTER 2. PROGRAMMING WITH DEPENDENT TYPES 65

Finally this chapter covered proof-by-reflection a powerful means of
automated theorem proving unique to dependent types. In chapter 4 on
page 108 we will see how this technique can be used to interface with
EDSLs.

Chapter 3

Verified typing with explicit
coercions

This chapter will work to develop a language L meant to be implemented
within existing theorem provers. A means of ascribing terms with their
semantics will be described. Following the in the spirit of Dependent
ML [Xi07] the language of term semantics will often be referred to as the
language of index expressions. Additionally a method of statically reasoning
about these index expressions within the host will be presented. This
type-system will take the effective shape of a limited form of synthetic
dependent types [CW00]. However notably the system presented will not
use an algorithmic set of typing rules, instead relying on the programmer
to apply explicit coercions as required. Together the above criteria make
available an ideal playground for exploring how dependent types can aid
in writing correct-by-construction programs and transformations where the
correctness proofs arise from the semantics captured by terms’ indices.

The development is broken down into three primary goals:

1. Develop an embeddable language of statics: the term index expressions,
or semantics, along with a runtime language and its dynamics: the
semantics indexed expressions.

2. Present a method of explicit coercion using only their semantics,
suitable for embedding in existing theorem provers.

3. Show how the strategy can be used in Idris to give a correct by
construction implementation of a language with an explicit conversion

66

CHAPTER 3. VERIFIED TYPING WITH EXPLICIT COERCIONS 67

rule.

In particular L will have a simple, constructively verified core which can
be built upon using e.g. the deep-shallow embedding of Svenningsson and
Axelsson [SA15] in chapter 4 on page 108.

As language features are refined, important properties will be given in
the traditional relational style and compared to the correct by construction
EDSL.

3.1 A language of term semantics
One of the primary goals of L is to ensure the safety of program transfor-
mations using dependent types. Every term in L is indexed by an index
expression, capturing its semantics, and thus the safety of a transformation
will follow when this index is respected. Having access to a term’s semantics
also allows for asserting and proving correctness properties directly on this
index expression directly in the host.

Motivating the design of the language L are several important consider-
ations:

1. All programs carry their semantics as an index, given by an index
expression.

2. Case expressions should allow for the introduction of knowledge by
refining the scrutinee type.

3. Facts collected about index expressions, i.e. about a program’s seman-
tics, should provide utility e.g. to eliminate unreachable code.

4. The developer should be able to prove properties of programs without
relying on an opaque solver such as an external SMT solver which exists
outside the system and thus is not easily directed by the programmer.

We start by first defining the language of simple expressions L , presented
in figure 3.1, and then proceed by exploring the index language. This is in
order to have a directed design of the index language—i.e. the language of
expression semantics.
The language includes support for variables; peano numbers; and lists; in
addition to case analysis on lists; and fold functions, or eliminators for

CHAPTER 3. VERIFIED TYPING WITH EXPLICIT COERCIONS 68

Expressions e ::= v ∈ N
| e + 1 | 0
| [] | e :: e

| caselist e ((x :: xs) ⇒ e); ([] ⇒ e)
| elimlist e (x , acc 7→ e) e

| elimnat e (x , acc 7→ e) e

Figure 3.1: Syntax of L : semantics indexed expressions.

iterating over lists and natural numbers. Note that variables are encoded
in De Bruijn style which will usually be written as v1. In chapter 4 on
page 108 we show this set of language features is expressive enough to
capture an interesting variety of familiar programs, or functions. Before
giving a type-system for this language, we first explore the language index
expression, or expression semantics.

In order to further motivate the language design of index expressions,
consider the problem of the safe head—or tail—function without the use
of static analysis or via the introduction of an external solver. Clearly this
requires both a notion of lists capturing the semantics of the input list whose
head is to be projected. It is also apparent that natural numbers should
be expressible in order to capture the value of the projected head element.
Thus at a minimum the index expressions must be defined as follows

S ::= w ∈ N
| S + 1 | 0
| [] | S :: S

Note that similar to the semantics indexed expressions, variables w are De
Bruijn encoded. Next, consider safe head using full-spectrum dependent
types which is a straight-forward task. First sized lists—called Vect—are
given by constructing a new type that internalizes the proof of length.

Listing 3.1: Size indexed lists
data Vect : Nat -> Type -> Type where

1The meta-variable v is also used for values, however the context will always make
clear its meaning.

CHAPTER 3. VERIFIED TYPING WITH EXPLICIT COERCIONS 69

Nil : Vect Z a
(::) : a -> Vect n a -> Vect (S n) a

Thus a Vect is either a Nil zero length empty list, or a (::) (cons) of
length n+1 given an element and some n sized list. By exposing the size of
a term in its type, restrictions on the shape of the list can be made. For
example, the total head function requires a non-zero size input

safeHead : Vect a (S n) -> a
safeHead [] impossible
safeHead (x :: _) = x

To reiterate, the Nil case has length zero, and there is no substitution in
n that makes Z equal to S n. This fact means the first case is unreachable.
Note safeHead could alternatively be given on naked lists with an external
proof of length e.g.

safeHead' : (xs : List a) -> (length xs = Z -> Void) -> a

However the Nil case here requires an explicit proof of why the length is
non-zero. There is a close relationship between internal and external proofs
explored in the context of typed and untyped λ-calculi by Reynolds [Rey03]
and later by Hsiang-Shang Ko and Gibbons with dependent types [KG13].

The sophisticated elaboration [Bra13b] technique used by Idris coupled
with dependent pattern matching [Coq92] makes such functions easy to
write but leave the underlying mechanism opaque. Implementing the same
function in Coq which lacks strong support for programming with heavily
dependent types [Chl13, pp. 140–165] illuminates a means of dependent
case analysis. A first attempt at the safe head function will fail in older
versions of Coq, citing the below pattern match as being non-exhaustive.
Definition safeHd1 {A : Set} {n : nat} (xs : vect A n) : A :=
match xs with

| Cons x xs’ ⇒ x
end.

When discovering that xs is Cons, we learn that the length n is non-
zero, however this information is not pushed into the type system. Instead
a safeHd function must defer to an explicit auxiliary function which is
exhaustive. The return type is given as a function of n, so that no A typed
value is required when n is zero.
Definition safeHd’ {A : Set} (n : nat) (xs : vect A n) :=
match xs in vect _ n return match n with

CHAPTER 3. VERIFIED TYPING WITH EXPLICIT COERCIONS 70

Index expressions S ::= w ∈ N
| S + 1 | 0
| [] | S :: S

| caselist S ((j :: js) ⇒ S); ([] ⇒ S)
| elimlist S (j, acc 7→ S) S

| elimnat S (j, acc 7→ S) S

Figure 3.2: Syntax of index expressions: program semantics

| O ⇒ unit
| S m ⇒ A

end with
| Nil ⇒ tt
| Cons x xs’ ⇒ x

end.

Definition safeHd {A : Set} {n : nat} (xs : vect A (S n)) : A :=
safeHd’ (S n) xs.

The return type of safeHd’ is itself a match clause which only reduces
when the vector length n is split, obviating the need for intricate pattern
matching strategies such as that presented by Gundry and McBride [GM12]
or Abel and Pientka [AP11]. Equipped with safeHd’ the definition of safeHd
becomes trivial—the shape of n is known to be non-zero, allowing for the
return type of safeHd’ to reduce to A as required 2.

Thus to support this pattern the language of index expressions will
include a native case analysis construct for decomposing lists. In fact the
language of index expressions will mirror all the syntactic constructs in L
allowing us to capture the semantics of structural recursion on numbers and
lists. The full syntax of index expressions is given in figure figure 3.2.

As noted a term’s index expression is dependent upon its type. Since
programs consist only of numbers and lists it is sufficient to restrict ourselves
to these two types

τ ::= List | Nat (3.1)
2Note that recent version of Coq will infer the explicit match in return clause

given above, allowing for the more direct safeHd1 function.

CHAPTER 3. VERIFIED TYPING WITH EXPLICIT COERCIONS 71

Index expression
Contexts

∆ ::= (j, τ), ∆ | ∅

∆ 3N (W, τ) (well-formed De Bruijn indices)

(x, τ), ∆ 30 (x, τ)
∆ 3w (x, τ)

(y, τ), ∆ 3w+1 (x, τ)
(a) Contexts of index expression variables.

∆ ` i : τ (i is a well-formed index expression)

SVar
∆ 3w (x, τ)
∆ ` w : τ

SZero ∆ ` 0 : Nat SSuc ∆ ` i : Nat
∆ ` i + 1 : Nat

SNil ∆ ` [] : List SCons ∆ ` i : Nat ∆ ` is : List τ
∆ ` i :: is : List τ

SCaselist
∆ ` i1 : List (j, Nat), (js, List), ∆ ` i2 : τ ∆ ` i3 : τ

∆ ` caselist i1 ((j :: js) ⇒ i2) ; ([] ⇒ i3) : τ

SElimlist
∆ ` i1 : List (j, Nat), (acc, τ), ∆ ` i2 : τ2 ∆ ` i3 : τ2

∆ ` elimlist i1 (j, acc 7→ i2) ; (i3 : τ2)

SElimnat
∆ ` i1 : Nat (x, Nat), (acc, τ), ∆ ` i2 : τ2 ∆ ` i3 : τ2

∆ ` elimnat i1 (x, acc 7→ i2) i3 : τ2

(b) Typing rules for index expressions.

Figure 3.3: Well-formedness of index expressions, i.e. expression semantics.

Thus an index expression is only well formed when it satisfies the arity-3
well-typing relation written · ` · : · in figure 3.3. The relation ∆ ` i : τ
asserts the well-formedness of i stating it has type τ in the context ∆. A
context ∆ is a linear list, mapping names in scope to their types. Contexts
are additionally equipped with a membership relation ∆ 3w (i, τ) given
in figure 3.3a which capture the idea that a well-formed De Bruijn index
always yields a mapping (i, τ) in the list ∆.

The translation of this language within Idris is an exercise in formatting

CHAPTER 3. VERIFIED TYPING WITH EXPLICIT COERCIONS 72

the typing rules from figure 3.3
IxCtx : Type
IxCtx = List (String, Ty)
data Ix : IxCtx -> Ty -> Type where

S : Ix ictx Nat -> Ix ictx TyNat
Z : Ix ictx TyNat
Var : Elem (x, k) ictx -> Ix ictx k
Nil : Ix ictx TyList
(::) : Ix ictx TyNat -> Ix ictx TyList -> Ix ictx TyList
CaseList : Ix ictx TyList

-> (x, xs : Name)
-> Ix ((x, TyNat) :: (xs, TyList) :: ictx) k
-> Ix ictx k
-> Ix ictx k

ElimList : Ix ictx TyList
-> (acc, x : Name)
-> Ix ((acc, k) :: (x, TyNat) :: ictx) k
-> Ix ictx k
-> Ix ictx k

ElimNat : Ix ictx TyNat
-> (acc, x : Name)
-> Ix ((acc, k) :: (x, TyNat) :: ictx) k
-> Ix ictx k
-> Ix ictx k

As usual the type-safety and well-scopedness of index expressions are inter-
nalized in the correct-by-construction style.

Notice that if an index expression is well-formed in some context ∆, then
it should also be well-formed in the context extended with unused names
e.g. in ∆′∆. As earlier stated this is referred to as context weakening and
was explicitly proven in listing 2.6 on page 54 for list membership proofs i.e.
variables; however here weakening is over an entire expression. Intuitively
this is a case of walking over the placed variables and applying weakening
to the wrapped membership proofs. Unfortunately slightly more work is
required due to the existence of the iterators and case expression performing
implicit variable binding. In these cases weakening must be performed
“under binders” which is simply a case of thinning. Recall that weakening is
closely related to this slightly stronger property stating that when an index
expression is well-formed in the split context ∆1∆, then it is well-formed in
the extended context ∆1∆2∆. To see how this helps in the case of binding,
when weakening i2 of an iterator the newly bound variables x and acc must
occur at the front of the context, thus requiring all variables be placed to

CHAPTER 3. VERIFIED TYPING WITH EXPLICIT COERCIONS 73

its right. As an example weakening i2 well-defined in (x, Nat), (acc, τ), ∆ by
∆′ must yield a term in (x, Nat), (acc, τ), ∆′∆. The proof of thinning is a
relatively boring tree traversal so only their signatures are given here with
the full proof in appendix C.5 on page 196

thin : Ix (ictx1 ++ ictx) t
-> (ictx2 : IxCtx)
-> Ix (ictx1 ++ ictx2 ++ ictx) t

Proof of weakening is a direct corollary of thinning
weaken : Ix ictx t -> (ictx2 : IxCtx) -> Ix (ictx2 ++ ictx) t
weaken i ictx2 = thin {ictx1=[]} i ictx2

Due to the high explicitness required by the EDSL to ensure terms are cor-
rectly typed by construction, a variety of thinning and weakening proofs are
required throughout development. Due to their simplicity and tediousness,
these proofs will generally be applied without an explicit definition. Note
that because these contexts are encoded as lists of strings, or the names of
the variables in scope, Idris can automatically lookup variables by name
in the current context. Thus this encoding is primarily for programming
convenience.

This type system above is sufficient for the introduced examples—what
are the syntactic forms of L inhabiting these types? Answering this question
is the topic of the next section.

3.2 Programs and their semantics
Having presented an initial system of types and index expressions, a type
system including semantic indexing can be given for expression in L . Note
that due to the potentially large size of index expressions they are written
juxtaposed with their type following notation commonly used in dependently
typed programming languages, e.g. 5 : Nat 5.

Note that the variables v in expressions are of a distinct sort from those
used in index expressions since they capture expressions. In fact because
all expressions are indexed by their semantics, a distinct type of context
Γ is required to track variables in scope. The context must not only map
variables to some type but additionally to some index expression capturing
its semantics. Expression contexts are presented in figure 3.4 which follow
precisely the presentation of index expression contexts, save for the addition

CHAPTER 3. VERIFIED TYPING WITH EXPLICIT COERCIONS 74

Contexts Γ ::= (x, τ, i), Γ | ∅

∆ ` Γ (well-formed context)

∆ ` ∅
∆ ` Γ ∆ ` i : τ

∆ ` (x, τ, i), Γ
∆; Γ 3N (W, τ, S) (well-formed context element membership)

(x, τ, i), Γ 30 (x, τ)
∆; Γ 3w (x, τ, i)

∆; (y, τ2, j), Γ 3w+1 (x, τ, i)

Figure 3.4: Contexts of expression variables.

of variables’ semantic information. Note that this addition of semantic
information implies an expression context Γ be well-formed with respect to
an underlying index expression context ∆.

Given a notion of a well-formed variable, it’s possible to present a well-
formedness condition on expressions in a scoping context. An expression
e is well-formed with respect to some context Γ not only in its type τ but
additionally in some index expression i. Since an L expression’s index
expression captures all of its semantic information it’s possible to define a
high-powered means of automatically transporting correctness proofs from
expression’s index expression to a correctness proof on the expression itself.
Thus expressions in L exist purely as a means to convey a program’s
operational intent, providing information useful in allowing for compilation
to efficient machine code. The well-formedness of expressions is presented
in figure 3.5.

As noted the typing rules presented in figure 3.5 exactly match those
given in figure 3.3. The rules EZero and ESuc collectively state that every
number has itself as a semantic index. Similarly, lists carry themselves as
a semantic index. To reiterate, the empty list has the empty list index
expression as its semantic index (ENil). Cons accepts a head with some
number index expression and a tail with some list index expression and
produces a list whose semantic index is the list constructed by consing this
head with this tail (ECons).

The solely interesting rule ECaselist asserts that upon inspection, a
list with index expression i1 is discovered to either be empty [], or there
exist some index expressions j and js which i1 is destructed into. Thus the
sub-term e2 is checked in the extended context j, js, ∆, while the term e3

CHAPTER 3. VERIFIED TYPING WITH EXPLICIT COERCIONS 75

∆; Γ ` e : τ S (well-formed, semantics indexed expression)

EVar
∆; Γ 3v (x, τ, i) ∆ ` i : τ

∆; Γ ` v : τ i

EZero ∆; Γ ` 0 : Nat 0 ESuc
∆; Γ ` e : Nat i

∆; Γ ` e + 1 : Nat (i + 1)

ENil ∆; Γ ` [] : List [] ECons
∆; Γ ` e1 : Nat i1 ∆; Γ ` e2 : List i2

∆; Γ ` e1 :: e2 : List i1 :: i2

ECaselist

∆; Γ ` e1 : List i1
(j, Nat), (js, List), ∆; (x, Nat, j), (xs, List, js), Γ ` e2 : τ i2

∆; Γ ` e3 : τ i3

∆; Γ ` caselist e1 ((x :: xs) ⇒ e2); ([] ⇒ e3) : τ (caselist i1 ((j :: js) ⇒ i2)([] ⇒ i3))

EElimlist

∆; Γ ` e1 : List i1
(j, Nat), (acc, τ), ∆; (x, Nat, j), (xs, τ, acc), Γ ` e2 : τ i2

∆; Γ ` e3 : τ i3

∆; Γ ` elimlist e1 (x, xs 7→ e2) e3 : τ (elimlist i1 (j, acc) 7→ i2) i3)

EElimnat

∆; Γ ` e1 : Nat i1
(j, Nat), (acc, τ), ∆; (x, Nat, j), (xs, τ, acc), Γ ` e2 : τ i2

∆; Γ ` e3 : τ i3

∆; Γ ` elimnat e1 (x, xs 7→ e2) e3 : τ (elimnat i1 (j, acc) 7→ i2) i3)

Figure 3.5: Typing rules for semantics indexed expressions.

corresponding to the empty case is checked in the usual context.
Surprisingly there’s no explicit requirement on index expressions being

well-formed in the expression’s well-formedness condition. It is relatively
easy to show that the typing relation in figure figure 3.5 guarantees that if
a term is well-typed, then its semantic index is also well-formed. This fact
is captured by the following soundness condition

Theorem 3.2.1 (Term-Index expression typing soundness).

∆; Γ ` e : τ i =⇒ ∆ ` i : τ

Proof. The proof proceeds by structural induction on the shape of the typing
derivation.

CHAPTER 3. VERIFIED TYPING WITH EXPLICIT COERCIONS 76

Case (EVar). By assumption ∆ ` i : τ .

Case (EZero). By SZero ∆ ` 0 : Nat.
Case (ESuc). By induction ∆ ` i : Nat, thus by SSuc ∆ ` i + 1 : Nat.
Case (ENil). By SNil ∆ ` [] : Nat.
Case (ECons). By induction ∆ ` i1 : Nat and ∆ ` i2 : List, thus by SCons
∆ ` i1 :: i2 : List.
Case (ECaselist). By induction ∆ ` i1 : List, ∆ ` i3 : τ , and j 7→ Nat, js 7→
List, ∆ ` i2 : τ . Thus by SCase ∆ ` caselist i1 (j :: js ⇒ i2); ([] ⇒ i3).
Case (ECasenat). By induction ∆ ` i1 : List, ∆ ` i3 : τ holds, as
does (j, Nat), (js, List), ∆ ` i2 : τ thus by SCaselist caselist i1((j :: js) ⇒
i2); ([] ⇒ i3) : τ .

Case (EElimlist). By induction ∆ ` i1 : List, ∆ ` i3 : τ holds, as does
(j, Nat), (acc, τ), ∆ ` i2 : τ thus by SElimlist elimlist i1((x, acc) 7→ i2)i3 : τ .

Case (EElimnat). By induction ∆ ` i1 : Nat, ∆ ` i3 : τ , holds, as does
(j, Nat), (acc, τ), ∆ ` i2 : τ thus by SElimnat elimlist i1((x, acc) 7→ i2)i3 : τ .

�

Note that in a dependently typed system no such lemma is necessary
because all index expressions are guaranteed to be correct thanks to the the
internalization trick from section 2.5.4 on page 47.

Although the rules from figure 3.5 are sufficient to implement the naïve,
list head function, attempting to give the return value its proper index fails
to typecheck.

head : List (j :: js) → Nat j

Note that while functions aren’t technically supported, the type of head is
written with a “function type” in an abuse of notation. This is because in
the implementation, functions can be defined within Idris, corresponding to
macros in L which are inlined at every call site.

Writing down the expected program and inferring the explicit type
exemplifies the problem

head : List (j :: js) → Nat (caselist (j :: js) (k :: ks ⇒ k); ([] ⇒ 0))
head xs = caselist xs (x :: xs′ ⇒ x); ([] ⇒ 0)

(3.2)

There are two primary issues with the above

CHAPTER 3. VERIFIED TYPING WITH EXPLICIT COERCIONS 77

1. A failure to specify any reduction semantics for types precludes the
possibility of reaching an intuitively expected normal form; and

2. in order to satisfy the unreachable [] case, ensuring totality, a clumsy
dummy expression 0 must be introduced.

Incidentally the solutions to these problems are closely related. The strategy
for solving the first problem introduces a means of type conversion by
an explicit rewrite expression similar to the explicit coercions of System
FC [WHE13]. In order to solve the second problem a means of explicit
reachability testing is exposed allowing the programmer to interact in the
process of checking similar to the typechecking scripts of Atkey [Atk15].

The above solutions require a general means of accumulating, and ap-
plying, knowledge about term index expressions. For example in order to
return the correct index expression k in equation (3.2) it must be known that
j :: js = k :: ks, otherwise x may be ascribed the incorrect index expression.
Similarly, to avoid specifying a [] case, it must be shown that no substitution
of j :: js yields []. This knowledge will be explicitly tracked by introducing a
context of facts—known constraints on term index expressions—manipulated
and applied through the application of case analysis and explicit rewriting.

3.3 Index expression rewriting
The notion of index expression rewriting developed here satisfies two key
properties

1. each rewriting is sound by construction; and

2. rewriting is performed by checking semantic, not syntactic, equivalence.

To this end a formal notion of equivalence will be constructed, i ≈ j, along
with a new syntactic form asserting that i and j are convertible given a
proof of semantic equality proof

rewrite j proof e : τj (3.3)

Note that this is an intrinsically dependently typed term. The syntactic
form rewrite directly embeds the proof of its soundness at the application
site, serving to localize the evidence which will be necessary to prove a
notion of global soundness.

CHAPTER 3. VERIFIED TYPING WITH EXPLICIT COERCIONS 78

The notion of rewriting types by type conversion is a well-studied prob-
lem. C++ for example has an elaborate set of rules to perform automatic
coercion between types e.g. at assignment sites and initialization. Object
oriented languages tend to expose a few rules for coercing between primitive
numeric types, e.g. performing zero or sign extension [Com99], in addition
to sophisticated subtyping rules which are usually nominal [Abd13]. Such
schemes are usually decidable upto parametric polymorphic functions and
variance annotations [KP07].

In comparison, dependently typed languages such as Idris,[Bra13b],
Agda [Nor07], Coq [Tea18], etc. tend to perform conversion by checking
syntactic equality of terms’ normal forms. This is due to the considerably
more expressive type-system which precludes a decision procedure for testing
arbitrary term equality. Consider that were this possible, the type checker
could solve the halting problem. Such systems are often stratified into
intensional and extensional theories [Hof95], the latter forgoing decidability
of type-checking in favor of more powerful equality checking. Of particular
interest in extensional theories is the inclusion of functional extensional
which states that two equations agreeing everywhere are equal.

∀(fg : A → B) (x : A).f x = g x =⇒ f = g (Functional Extensionality)

This allows for instance to lift proofs of propositions between functions when
they are “observationally equal”. While work has been done to explicitly
bring this law into an intensional type theory [AMS07] we will show that
with explicit rewrites the axiom can be used with impunity in the unmodified
theory underlying Idris.

Convertibility via normal forms serves to reduce the problem of whether
two terms are semantically equivalent, to the question of whether they
are syntactically equal. In order to recapture conversion of syntactically
distinct but semantically equivalent terms the usual approach is to bring
the underlying judgmental equality of the system, such as that described by
Martin-Löf [MS84] and used in Agda [CDP14], into the syntactic world via
the following identity type

Refl : x = x
(3.4)

The name Refl is meant to stand for “reflexive” capturing the notion that a
term is only equal to itself as presented in section 2.3.1.

CHAPTER 3. VERIFIED TYPING WITH EXPLICIT COERCIONS 79

J·K : Ty → ?

JNatK = N
JListK = List N

Figure 3.6: Semantics of types

Rather than using the more automated syntactic equality induced by
comparing normal forms the language L can be extended with a notion
of semantic equality. This is made possible when a language has access to
its own semantics e.g. because it is written as an embedded DSL within a
suitably expressive host such as Idris. Due to the relative simplicity of such
a rule, its soundness falls out as a trivial consequence as is shown later in
theorem 3.5.2 on page 91.

In order to reach our goal of formalizing the rewrite rule, a notion of
equivalence must be given. Thus a semantics of index expressions must
first be given, allowing for the construction of a notion of index expression
equivalence i ≈ j.

3.3.1 Specifying index expression semantics
Given their relative simplicity, specifying the semantics of index expressions
presented in figure 3.2 on page 70 within some variable environment is
straightforward. Rather than performing substitution, a variable environ-
ment is used to track the running values, drawn from the set V, bound
to each variable. A values is either a natural number or a list of natural
numbers allowing for the obvious mapping from L types given in figure 3.6
following the style of the STLC example.

An environment is then either empty ∅ or an extension of the environment
ρ with a value v ∈ V, written v, ρ. In order to ensure the correctness of
variable lookup, environments must satisfy the well-formedness condition
specified in figure 3.7. An environment is considered to be well-formed with
respect to an underlying context ∆ if for every τ typed variable i ∈ ∆,
there is a mapping from i to some v of type JτK in ρ. In Idris the type of
environments follows precisely the formulation from the STLC, internalizing
the correctness formulation.

CHAPTER 3. VERIFIED TYPING WITH EXPLICIT COERCIONS 80

Values
Environments

V ::= n ∈ N | V :: V | []
ρ ::= V , ρ | ∅

∆ ` ρ (ρ is a well-formed environment)

WfEmpty
∅ ` ∅

WfCons
v ∈ JτK ∆ ` ρ

(i, τ), ∆ ` v, ρ

Figure 3.7: Program evaluation environments

data IxEnv : IxCtx -> Type where
Nil : IxEnv []
(::) : EvalTy k -> IxEnv xs -> IxEnv ((x, k) :: xs)

As described earlier in section 2.5, an important notion of correctness
to be shown for a traditional operational semantics is type-safety which
was initially explored by Wright and Felleisen [WF94]. Type-safety is
constituted by two theorems known as progress and preservation respectively
guaranteeing that non-value terms can always reduce and that as the term is
reduced, its type is invariant. As in the case of STLC leveraging dependent
types and embedding the language as an EDSL allows for a simpler notion
of type-safety induced by the host type system to be proven.

First by defining evaluation as a total function the system guarantees
that every input index expression will result in a meaningful semantic value.
Moreover since type-checking will have taken place prior to any other work,
the input program will always be known to be well-typed and well-scoped.
Second, by taking the evaluation function to be dependent on the type of
the input, we can guarantee that the type of the input index expression is
preserved in the output value. Thus type-safety becomes an intrinsic part
of evaluation. Again in the style of Augustsson a tagless evaluator can be
given

Listing 3.2: Semantics of index expressions
eval : Ix ictx t -> IxEnv ictx -> EvalTy t
eval (S i) ixEnv = S (eval i ixEnv)
eval Z ixEnv = Z
eval (Var elt) ixEnv = lookup ixEnv elt
eval [] ixEnv = []
eval (i :: is) ixEnv = eval i ixEnv :: eval is ixEnv
eval {k=k} (CaseList {k=k} i1 x xs i2 i3) ixEnv =

listDestruct (const (EvalTy k))
(\n, ns => eval i2 (n :: ns :: ixEnv))

CHAPTER 3. VERIFIED TYPING WITH EXPLICIT COERCIONS 81

(eval i3 ixEnv)
(eval i1 ixEnv)

eval (ElimList i1 acc x i2 i3) ixEnv =
listFold (\n, vacc => eval i2 (vacc :: n :: ixEnv))

(eval i3 ixEnv)
(eval i1 ixEnv)

eval (ElimNat i1 acc x i2 i3) ixEnv =
natFold (\n, vacc => eval i2 (vacc :: n :: ixEnv))

(eval i3 ixEnv)
(eval i1 ixEnv)

In an abuse of notation, as a notational convenience, eval i p may be
written using the standard notation JiKρ. Evaluation proceeds in a fashion
similar to the STLC evaluator with case and iterator evaluation appeal-
ing to the auxiliary functions defined in appendix C.1 on page 193. The
listDestruct function performs dependent case analysis, however the use of
a function simplifies the proof of some necessary theorems about evaluation.
Empirically Idris also performs better and termination checking is aided.

Later we will show that this notion of type-safety can both be extended
to semantics indexed expressions, and that it’s possible to internalize this
property in a way that admits the correct by construction approach to
expression evaluation.

Having defined a denotation for index expressions it’s possible to give
a notion of semantic equivalence of index expressions with respect to an
environment. Two definition are presented in figure 3.8. The first i ≈ρ j
asserts that the index expressions i and j can only equated given some
environment ρ mapping their variables to values. The second asserts that
i is equivalent to j if they are semantically equal in every well-formed
environment. Intuitively these definitions can be taken to capture the notion
that the index expressions i and j are equivalent when they agree under all
valid parallel substitutions of free variables tracked by the context ∆.

As suggested by the name, index expression equivalence naturally forms
an equivalence relation on well-formed index expressions and environments.
This follows from the fact that at its heart, index expression equivalence is
an appeal to judgmental equality.

Theorem 3.3.1. Index expression conversion i ≈ j forms an equivalence
relation.

The definitions of index expression equivalence within an EDSL is trivial
thanks to the requirement that all index expressions are well-formed by def-

CHAPTER 3. VERIFIED TYPING WITH EXPLICIT COERCIONS 82

S ≈ρ S (index expression equivalence)

IxEq

∆ ` ρ
∆ ` i : τ ∆ ` j : τ
JiKρ = vi JjKρ = vj

vi = vj

∆ ` i ≈ρ j

S ≈ S (universal index expression equivalence)

IxConv

∆ ` i : τ ∆ ` j : τ
∀ρ.i ≈ρ j

∆ ` i ≈ j

Figure 3.8: Semantic equivalence of index expressions

inition. In Idris it’s just an equality on evaluation, intuitively capturing the
idea that index expression equivalence allows for rewriting in an evaluation
respecting way.

{i, j : Ix ictx t} ->
(ixEnv : IxEnv ictx) ->
eval i ixEnv = eval j ixEnv

Recall that the construction of index expression equivalence was a neces-
sary requirement towards the ultimate goal of giving a sound, general means
of rewriting term index expressions.

3.3.2 A sound rewriting of index expressions
Having given the notion of term equality in figure 3.8, a means of performing
correct-by-construction term rewriting can be given. Recall the language of
expressions extended with a syntactic form of index expression rewriting

e ::= . . . | rewrite S e (3.5)

The typing rule for rewrite simply requires the index expressions and ex-
pression be well-formed.

ERewrite

i ≈ j
∆ ` j : τ ∆; Γ ` e τ i

∆; Γ ` rewrite j e : τ j
(3.6)

CHAPTER 3. VERIFIED TYPING WITH EXPLICIT COERCIONS 83

Of course such a rule would never be decidably satisfiable, however an EDSL
can appeal to the programmer for help in proving the index expression
equivalence at the application site.

The semantic equivalence for index expressions prompts a solution to the
type of the function equation (3.2) on page 76, list head. However as noted
type coercion is introduced to L with explicit syntax rather than through
repeated, automatic term reduction. Given a general means of coercing
between equivalent term index expressions, equation (3.2) can nearly be
rewritten with the proper type

head : List (j :: js) → Nat j

head xs = rewrite j (caselist xs (x :: xs′ ⇒ x); ([] ⇒ 0))
(3.7)

Unfortunately attempting to give the typing derivation for this function will
fail due to an inability to ascribe the index expression j to x. Consider the
index expression of the case expression being rewritten

caselist (j :: js) ((k :: ks) ⇒ k); ([] ⇒ 0)

The type of x here is the fresh variable k, not j and unfortunately nothing is
known about the index expression k with which to prove this equality! The
rewrite rule—in order to avoid the possibility of variables leaking outside
their binder’s scope—requires the source and target index expression contexts
to match. Of course in this case it is obvious that a simple unification of j
with k and js with ks solves the problem. However we would like to keep the
core language simple, and avoid the explicit construction and application of
a unification algorithm in L .

The primary issue here is that the constraint j :: js = k :: ks that is
implied upon entry into the first branch of the case has been lost. Thus the
problem should be solvable by explicitly tracking such knowledge. Whenever
something is learned about index expressions by descending into the varying
branches of cases it should be written down.

3.4 Constraint contexts
To allow for a general means of rewriting index expressions, the conversion
relation · ≈ρ · needs access to the constraints that are implied whenever
the branch of a case analysis is entered. For example given a list xs with

CHAPTER 3. VERIFIED TYPING WITH EXPLICIT COERCIONS 84

semantic index i, by scrutinizing xs with a case statement we learn that it
is exactly empty in the [] branch, or that it can be unpacked into a head
x and a tail xs′. In addition to this, something is learned about the index
expression of xs. For instance in the [] case, xs must have zero semantic
index, hence i = []. In the x :: xs′ case, xs has a semantic index i = j :: js
for some j and js.

At a high level, the strategy to correct the rewrite rule involves two
primary steps.

1. Collect a first-order reification of the propositions constraining the
shapes of index expressions. The facts known about index expressions.

2. Prove term equality under the reflection of these propositions into
the rewrite rule. This serves to constrain the values in the quantified
environment ρ used in evaluation.

The value of the constraint context is two-fold, not only describing extra
assumptions granted to the developer during index expression equivalence
checking but additionally describing the extra obligations evaluation must
satisfy in order to maintain soundness.

3.4.1 Propositions on index expressions
The only points in the language L that serve to unearth information about
about index expressions are the case expressions. What is learned about the
shape of a term’s semantic index? Consider caselist: as earlier noted the
scrutinee’s index expression is discovered to either be empty or some head
and tail.

This motivates the simple type of constraints described in figure 3.9.
The value i ∼ j asserts that it is safe to assume the index expressions i and j
are equal. This data level representation can then be reflected into the host
logic, providing either assumptions on the left of an arrow, or obligations on
the right of an arrow. The constraint reflection relation is given in figure 3.10

In a dependently typed context this is a natural operation closely re-
lated to proof by reflection known as a universe construction. A universe
construction is really just a means of coding types so they can be directly
manipulated and computed over. In this case the universe of constraints
trivially consists of the single “equality” code. Following the strategy of

CHAPTER 3. VERIFIED TYPING WITH EXPLICIT COERCIONS 85

Index expression
Constraint

P ::= S ∼ S

∆ ` S ∼ S (well-formed index expression constraint)

WfProp
∆ ` i : τ ∆ ` j : τ

∆ ` i ∼ j

Figure 3.9: Index expression constraints.

∆ ` P ⇓ρ V ≡ V (well-formed constraint reflection)

ReflectEq

JiKρ = v1 JjKρ = v2
v1 = v2

∆ ` i ∼ j ⇓ρ v1 ≡ v2

Figure 3.10: Reflection of index expression constraints into equality obliga-
tions.

interpreting STLC types—also a universe construction—a function is given
interpreting constraints as propositions

data IxConstraint : (ictx : IxCtx) -> Type where
RequireEq : (i, j : Ix ictx t) -> IxConstraintictx

EvalConstraint : IxEnv ictx -> IxConstraint ictx -> Type
EvalConstraint ixEnv (RequireEq i j) =

eval i ixEnv = eval j ixEnv

Thus the equality constraint is simply a pair of well-formed index expressions,
and its reflection is the assertion that their evaluation is equal under all
environments.

Equipped with a notion of index expression equivalence that can be
directly manipulated at the data level, the typing rules can be augmented to
track knowledge about index expressions accumulated during case analysis.

3.4.2 Type-checking with constraint contexts
Since the constraints on index expressions serve as an essential part of
the rewrite rule, they consequently serve an essential role in type-checking

CHAPTER 3. VERIFIED TYPING WITH EXPLICIT COERCIONS 86

Constraint contexts Ξ::= (S ∼ S), Ξ | ∅

∆ ` Ξ (well-formed constraint context)

∆ ` ∅
∆ ` i ∼ j ∆ ` Ξ

∆ ` (i ∼ j), Ξ

Figure 3.11: Constraint tracking contexts.

∆; Ξ; Γ ` e : τ S (well-formed expression)
∆; Γ ` e1 : List i1

(j, Nat), (js, List), ∆; (i1 ∼ j :: js), Ξ; (x, Nat, j), (xs, List, js), Γ ` e2 : τ i2
∆; (i1 ∼ []), Ξ; Γ ` e3 : τ i3

∆; Ξ; Γ ` caselist e1 ((x :: xs) ⇒ e2); ([] ⇒ e3) : τ (caselist i1 ((j :: js) ⇒ i2); ([] ⇒ i3))

Figure 3.12: Expressions with constraint tracking contexts.

expressions. The constraint context therefore will appear everywhere that
expressions appear. The constraint context given in figure 3.11 is a simple—
possibly empty—list of index expression constraints. Additionally a con-
straint context is considered to be well-formed with respect to the index
expression context ∆ when all its index expression constraints are well-
formed with respect to ∆. Per usual the encoding of constraint contexts in
an EDSL is trivial because there is no extra requirement on well-formedness
since as ever, it only makes sense to speak of well-formed constraints. Thus
a constraint context is simply a list of constraints in ∆.
IxConstraints : IxCtx -> Type
IxConstraints ictx = List (IxConstraint ictx)

Given a context for tracking index expression constraints, the typing
rules for well-formed expressions can be extended to support it. In particular
during case analysis the context should be extended with facts learned about
the case scrutinee’s index expression. The majority of the typing rules
for expressions remain unchanged, figure 3.12 therefore only includes the
updated case expressions; however the full set of typing rules are included
in appendix C.2 on page 194. Unfortunately the addition of constraints
to the EDSL highlights a pain point of internalizing the well-formedness
condition. Given the natural choice of representing constraint contexts as
lists, weakening must be explicitly performed any time the index expression

CHAPTER 3. VERIFIED TYPING WITH EXPLICIT COERCIONS 87

context is extended. While it is fortunate that the type system will point to
the locations where weakening is necessary, an often significant compile time
price must be paid in memory and CPU time to handle the extra evaluation
burden. Such a requirement doesn’t bite the relational specification because
the correctness of terms in a reduced environment falls out as a natural
consequence of top-level well-formedness. Thus in order to manage the
known facts, expressions carry the constraint context as an additional index.

data Exp : IxConstraintsictx
-> Ctxictx
-> (t : Ty)
-> Ix ictx t
-> Type where

...
CaseList : {ctx : Ctx ictx}

-> Exp facts ctx TyList i1
-> (hd, tl : Name)
-> Exp ((RequireEq (Var Here :: Var (There Here))

(weaken i1 [_, _])) ::
weakenConstraints facts [_, _])

((hd, (TyNat ** Var Here)) ::
(tl, (TyList ** Var (There Here))) ::
weaken ctx [(hd, TyNat), (tl, TyList)])

t'
i2

-> Exp (RequireEq [] i1 :: facts) ctx t' i1
-> Exp facts ctx t' (CaseList i1 hd tl i2 i3)

The additional RequireEq terms are really a transcription from figure 3.12.
Reading the variables Var Here and Var (There Here) as De Bruijn indices
indicates that the (weakened) scrutinee i1 must have shape equal to the
freshly introduced hd (Var Here) and tl (Var (There Here)). Fortunately
the []case is much simpler since it is not vandalized with explicit De Bruijn
tax. A possible strategy for mitigating this problem in the future is to use De
Bruijn levels which get weakening for free trading off ease of manipulation.
Another alternative is the use of various weakening constructors and only
performing actual variable weakening when absolutely necessary. Such a
constructor would correspond to a dependently typed equivalent of Bird
and Patterson’s polymorphic scoping [BP99] trick.

Equipped with a means of accessing what has been learned about the
shape of a term’s semantic index allows for the notion of index expression
equivalence to be corrected. This in turn allows for the head function in

CHAPTER 3. VERIFIED TYPING WITH EXPLICIT COERCIONS 88

S ≈Ξ
ρ S (index expression equivalence)

IxEq

∆ ` i : τ ∆ ` j : τ
∆ ` ρ

JiKρ = vi JjKρ = vj

∆ ` Ξ0 ⇓ρ v0 ≡ v0′ ∧ . . . ∧ ∆ ` Ξn ⇓ρ vn ≡ vn′ =⇒ vi = vj

∆ ` i ≈Ξ
ρ j

S ≈Ξ S (universal index expression equivalence)

IxConv

∆ ` i : τ ∆ ` j : τ
∀ρ.i ≈Ξ

ρ j

∆ ` i ≈Ξ j

Figure 3.13: Semantic equivalence of index expressions

equation (3.2) on page 76 to be properly reduced and to pass type-checking.
Previously the obligation of primary difficulty when showing the equivalence
i ≈ρ j was the semantic equality between the evaluation of i and j. The
new equivalence relation given in figure 3.13 grants access to the assumption
that all index expression constraints hold.

Updates to index expression equivalence materialize as the trivial addition
of accepting the reflected constraints as an assumption. To simultaneously
reflect all available constraints, the all modality All is used which lifts a
predicate over a collection.

EvalConstraints : IxEnv ictx -> IxConstraints ictx -> Type
EvalConstraints ixEnv facts = All (EvalConstraint ixEnv) facts

All can be understood as the type-level equivalent of the all function in
Haskell applying some predicate, and thus ensuring it holds, to every value
in a list. Here All is applying EvalConstraint ixEnv to every value in the
list facts, yielding their simultaneous reflection. Given the reflection of a
constraint context, updating the rewrite rule is a simple addition of the new
assumption

Rewrite : (j : Ix ictx t)
-> ((ixEnv : IxEnv ictx) ->

CHAPTER 3. VERIFIED TYPING WITH EXPLICIT COERCIONS 89

EvalConstraints ixEnv facts ->
eval i ixEnv = eval j ixEnv)

-> Exp facts ctx t i
-> Exp facts ctx t j

Thus an i indexed expression can be converted to a j indexed expression if
j and i are convertible given the accumulated constraints: facts.

Since the presented notion of expressions with constraints and explicit
coercions is correct-by-construction, a sound notion of evaluation should
naturally follow.

3.5 Expression evaluation
Having defined a means of reducing index expressions, a notion of expression
evaluation can be given. Like the STLC and index expressions, expressions
are evaluated in an environment, denoted by ζ, mapping variables to values.
Since the semantic domain of expressions coincides with that of index
expressions, the type of environment doesn’t differ. In a traditional relational
setting, expression evaluation might be presented in a big-step style with
the following signature, mapping expressions to some set of values given a
variable mapping ζ.

∆; Γ ` e ⇓ζ V (3.8)

While this relational construction of environments and evaluation doesn’t
carry much information the correct-by-construction EDSL is considerably
more expressive, giving guarantees about the type and semantics of resulting
values.

Variables must be mapped to an indexed semantic domain. These indexed
host types capture the notion that a number is indexed by its value, and a list
is indexed by its list of values. This is the same construction used in languages
with less expressive type systems such as Haskell. As Haskell has enjoyed a
slow expansion of its type-system programming patterns have been developed
for capturing stronger invariants with e.g. the singleton pattern [MH10];
[LM13]. Such patterns serve to give a type-level reification of the runtime
values effectively turning types into constraints on universally quantified
kinds. As was presented in section 2.4 on page 38, the construction is closely
related to synthetic dependent types. As noted earlier this relationship
holds precisely because our own construction is a restricted form of synthetic
dependent types. Though this is odd in a dependently typed context where

CHAPTER 3. VERIFIED TYPING WITH EXPLICIT COERCIONS 90

direct access to values within the type-level requires no tricks given that
the EDSL uses Haskell style synthetic dependent types, these types offer a
natural semantic embedding.

data IxNat : Nat -> Type where
Z : IxNat Z
S : IxNat n -> IxNat (S n)

data IxList : List Nat -> Type where
Nil : IxList []
(::) : IxNat x -> IxList xs -> IxList (x :: xs)

In order to capture the relationship of our own language’s semantic
indexed types and their target semantics in the host system, the environments
must satisfy a well-formedness condition ensuring a mapping of variables to
values which is index expression respecting. Thus as a condition a notion
must be given for a type evaluated at an index

EvalIxTy : (t : Ty) -> EvalTy t -> Type
EvalIxTy TyNat n = IxNat n
EvalIxTy TyList xs = IxList xs

In each case a semantic reflection—n or xs—of the value targeted by eval-
uation is passed into the indexed type. Given these indexed types, an
environment is well-formed with respect to an underlying context when
each variable x in the context is mapped to a semantic index whose value is
constrained by the index expression i of x

data Env : IxEnv ictx -> Ctx ictx -> Type where
Nil : Env ixEnv []
(::) : EvalIxTy t (eval i ixEnv)

-> Env ixEnv ctx
-> Env ixEnv ((x, (t ** i)) :: ctx)

This exemplifies how the IxNat and IxList types internalize an equality
constraint. The environment could alternatively be structured by evaluating
each type t and then explicating restricting the resulting value by an equality
with the evaluation of i.

Given an environment binding an expression’s free variables to index
expression respecting values, it’s possible to give a notion of index expression
respecting expression evaluation. The criterion for soundness is an agreement
between the evaluation of a term’s index expression and the evaluation of
expression itself.

CHAPTER 3. VERIFIED TYPING WITH EXPLICIT COERCIONS 91

Theorem 3.5.1 (Soundness of evaluation).

∆; Γ; ρ ` ζ

∆; Ξ; Γ ` e : τ

∆; Ξ; Γ ` e ⇓ζ v

JiKρ = v′

=⇒ v = v′

While this particular formulation of soundness will not be proven, a
mechanization of its correct-by-construction transformation is given in theo-
rem 3.5.2.

Theorem 3.5.2. Sound evaluation
evalExp : {ctx : Ctx ictx}

-> (e : Exp facts ctx t i)
-> (ixEnv : IxEnv ictx)
-> (knowns : EvalConstraints ixEnv facts)
-> (env : Env ixEnv ctx)
-> EvalIxTy t (eval i ixEnv)

Proof. By matching on e—the expression under evaluation—numbers, lists,
and variables are handled in the usual way noting that the constructors on
the right hand side are all semantic values indexed by the evaluation of the
input index expression i i.e. eval i ixEnv.

Case (Z). evalExp Z ixEnv known env = Z

The right-hand value Z has index Z = eval Z ixEnv as required.

Case (S). In the case of successor with index expression S i, the incremented
expression e has index expression i thus applying S to its sound evaluation
has index expression S (eval i ixEnv).

evalExp (S e) ixEnv known env = S (evalExp e ixEnv known env)

Case (Var). Although the index expression of a variable is abstract, the
well-formedness of the input environment guarantees the availability of
a semantic value with the correct index. Thus lookup of the variable
Elem (x, t ** i) ctx in the environment yields a value of type EvalIxTy t (eval i ixEnv).

evalExp (Var elt) ixEnv known env = lookup env elt

CHAPTER 3. VERIFIED TYPING WITH EXPLICIT COERCIONS 92

Case ([]). The nil list case holds trivially.
evalExp [] ixEnv known env = []

Case ((::)). Similarly to the nil case, the cons case is a direct consequence
of the correctly evaluated sub-trees.

evalExp (e :: es) ixEnv known env =
evalExp e ixEnv known env :: evalExp es ixEnv known env

Case (Rewrite). Like the case of variables, the index expression j resulting
from an explicit coercion is abstract. Thus semantic values at j must be
transported to values at the index eval i ixEnv. This justifies the def-
inition of Rewrite since it ensures such a proof is available, describing how
to get from the evaluated source type eval i ixEnv to the required target
eval j ixEnv.

evalExp (Rewrite j unify e) ixEnv known env =
rewrite sym (unify ixEnv known) in

evalExp e ixEnv known env

Case (CaseList). The CaseList term indebts itself to sub-trees with a
guarantee on the index expression of the scrutinee despite its apparent
lacking of such a proof. Evaluation makes good on this promise, evaluating
the scrutinee e1 and remembering the result of this evaluation. This fact
is passed into the correct sub-tree upon evaluation by an extension to
the reflected constraint context. Thus e1 is first evaluated, however the
evaluation of its index expression is kept abstract by not matching on
the result. Instead an equality proof of the evaluated index expression is
explicitly introduced using the inspection pattern in listing 2.4 on page 46,
however this too is kept abstract. Finally the index expression i1 is explicitly
evaluated using Idris’ with, allowing reduction everywhere in the goal.

evalExp (CaseList {i1=i1} e1 x xs e2 e3) ixEnv known env
with (evalExp e1 ixEnv known env)
evalExp (CaseList {i1=i1} e1 x xs e2 e3) ixEnv known env

| v with (inspectEval i1 ixEnv)
evalExp (CaseList {i1=i1} e1 x xs e2 e3) ixEnv known env

| v | res with (eval i1 ixEnv)

See listing D.2 on page 205 for the full implementation of inspectEval.
By matching on the result of evaluation evalExp e1 ixEnv known env and
its corresponding index expression eval i1 ixEnv, the goal is refined from

CHAPTER 3. VERIFIED TYPING WITH EXPLICIT COERCIONS 93

a blocked case expression to the correct branch. Moreover the inspection
pattern only allows one side to reduce, thus the required equality proof
about the index expression is available. Suppose first that e1 is nil so that
the nil branch e3 should be entered. The branch is either reachable or
unreachable due to previously accumulated facts. If it’s reachable then
evaluation proceeds as usual, however in the unreachable case no term
is available. Fortunately the developer has provided just the necessary
contradiction to which the proof appeals, dispatching the obligation.

evalExp (CaseList {i1=i1} e1 x xs e2 e3) ixEnv known env
| [] | EvalIs iEmpty | [] = case e3 of

Reachable (CanReach sub iToJ) e3' =>
evalExp e3' ixEnv (sym iEmpty :: known) env

Unreachable (NoReach noReach) _ _ =>
void (noReach ixEnv known iEmpty)

Alternatively the result of evaluation evalExp e1 ixEnv known env is non-
nil. This is not quite symmetric because the branches have an extended
context and thus evaluation will be blocked by an application of weakening.
Thus the proof of the evaluated index expression’s shape is a guarantee in the
wrong context. Of course extending and permuting a context cannot change
the result of evaluation, thus by appeal to corollary 3.5.2.1 the evaluation of
a thinned term in an extended environment can be reduced to the evaluation
of the term in the reduced environment it references.

evalExp (CaseList {i1=i1} e1 x xs e2 e3) ixEnv known env
| (v :: vs) | EvalIs iCons | (w :: ws) = case e2 of

Reachable (CanReach sub iToJ) e2' =>
evalExp e2'

(w :: ws :: ixEnv)
(sym (thinKnownConsRespectsEval iCons) ::
weakenKnowns known [w,ws])

(v :: vs :: weaken env [w,ws])
Unreachable (NoReach noReach) _ _ =>

void (noReach (w :: ws :: ixEnv)
(weakenKnowns known [w,ws])
(thinKnownConsRespectsEval iCons))

Case (ElimList/ElimNat). The final two cases evaluating list and nat itera-
tors are proven by two further, simultaneously defined lemmas evalElimList
lemma 3.5.2.1 and evalElimNat lemma 3.5.2.2.

evalExp (ElimList e1 x acc e2 e3) ixEnv known env =
evalElimList {x=x}{acc=acc} ixEnv known env

CHAPTER 3. VERIFIED TYPING WITH EXPLICIT COERCIONS 94

(evalExp e1 ixEnv known env)
e2
(evalExp e3 ixEnv known env)

evalExp (ElimNat {i1=i1} e1 x acc e2 e3) ixEnv known env =
evalElimNat {x=x}{acc=acc} ixEnv known env

(evalExp e1 ixEnv known env)
e2
(evalExp e3 ixEnv known env)

The complete listing of this proof is given in listing 3.3. �

The above proof of sound evaluation appeals to two lemmas evaluating
list iterators and nat iterators respectively. While the proofs themselves are
relatively simple, the propositions are unwieldy. The strategy is to perform
the usual fold operation where each step not only accumulates a new value,
but additionally ensures that its new index expression agrees with the result
of taking a step in the evaluated input index expression.

Lemma 3.5.2.1 (Sound list iterator evaluation).
evalElimList : {w1 : List Nat}

-> {w3 : EvalTy t}
-> {facts : IxConstraints ictx}
-> {ctx : Ctx ictx}
-> {i2 : Ix ((acc, t) :: (x, TyNat) :: ictx) t}
-> (ixEnv : IxEnv ictx)
-> EvalConstraints ixEnv facts
-> (env : Env ixEnv ctx)
-> (v1 : EvalIxTy TyList w1)
-> (s2 : Exp {ictx=(acc, t) :: (x, TyNat) :: ictx}

(weakenConstraints
facts
[(acc,t), (x,TyNat)])

((acc, (t ** Var Here)) ::
(x, (TyNat ** (Var (There Here)))) ::
weaken ctx [(acc,t), (x,TyNat)])

t
i2)

-> (v3 : EvalIxTy t w3)
-> EvalIxTy t

(listElim (const (EvalTy t))
(\v, xs', vacc =>

eval i2 (vacc :: v :: ixEnv))
w3
w1)

CHAPTER 3. VERIFIED TYPING WITH EXPLICIT COERCIONS 95

Proof. The proof proceeds by evaluating the expression body and its index
expression in lock-step, ensuring that evaluation of the iterator body follows
the evaluation of the required index expression. Proceeding by recursion
on the value to iterate over, the empty case is trivial, simply returning the
input value v3 with nil index expression.

evalElimList ixEnv known env [] e2 v3 = v3

In the non-nil case by recursion on the tail of the iterated index expression
ws we have iacc, the required index expression resulting from evaluating the
tail of the iterated value vs. Thus the obligation is to show that evaluating
one more step of the body over the extended list v :: vs results in a value
with index expression obtained from performing one step of evaluation over
the extended index expression w :: ws.

evalElimList {t=t}{w1=w :: ws}{w3=w3}{i2=i2}
ixEnv known env (v :: vs) e2 v3 =
let iacc = listElim (const (EvalTy t))

(\v, xs', vacc =>
eval i2 (vacc :: v :: ixEnv))

w3 ws
in evalExp e2

(iacc :: w :: ixEnv)
(weakenKnowns known [iacc ,w])
(evalElimList ixEnv known env vs e2 v3 ::
v ::
weaken env [iacc, w])

�

Note that the proposition above is much easier read without the explicit
applications of weakening. It states that given some list to iterate over v1
with index expression w1 and an initial accumulator value v3 with index
expression w3, the result of folding v1 by the function s2 has an index given
by folding over w1 with the function i2.

The proof of sound evaluation of iteration over a natural number follows
precisely the shape of the proof on list iteration. The proof is given by
recursion on the natural number to iterate over.

Lemma 3.5.2.2 (Sound nat iterator evaluation).
evalElimNat : {w1 : Nat}

-> {w3 : EvalTy t}
-> {facts : IxConstraints ictx}
-> {i2 : Ix ((acc, t) :: (x, TyNat) :: ictx) t}

CHAPTER 3. VERIFIED TYPING WITH EXPLICIT COERCIONS 96

-> {ctx : Ctx ictx}
-> (ixEnv : IxEnv ictx)
-> EvalConstraints ixEnv facts
-> (env : Env ixEnv ctx)
-> (v1 : EvalIxTy TyNat w1)
-> (e2 : Exp (weakenConstraints

facts
[(acc, t), (x, TyNat)])

((acc, (t ** Var Here)) ::
(x, (TyNat ** Var (There Here))) ::
weaken ctx [(acc, t), (x, TyNat)])

t
i2)

-> (v3 : EvalIxTy t w3)
-> EvalIxTy t

(natElim (\value => EvalTy t)
(\n, vacc =>

eval i2 (vacc :: n :: ixEnv))
w3
w1)

Proof.
evalElimNat ixEnv known env Z e2 v3 = v3
evalElimNat {t=t}{w1=S w}{w3=w3}{i2=i2}

ixEnv known env (S v) e2 v3 =
let wacc = natElim (const (EvalTy t))

(\v, vacc =>
eval i2 (vacc :: v :: ixEnv))

w3 w
in evalExp e2

(wacc :: w :: ixEnv)
(weakenKnowns known [wacc ,w])
(evalElimNat ixEnv known env v e2 v3 ::
v ::
weaken env [wacc, w])

�

The above proof of soundness relies on one further corollary asserting
that evaluating a term is equivalent to evaluating its weakened copy in
an extended environment. Intuitively this should hold because weakening
simply walks over a term’s variables and shifts the element membership
proofs to point further into the context. Thus the proof itself is a case of
walking over the variables and asserting that looking up the shifted value in

CHAPTER 3. VERIFIED TYPING WITH EXPLICIT COERCIONS 97

the extended environment is equal to looking up the unshifted value in the
vanilla environment.

Corollary 3.5.2.1 (Weakening respects evaluation).
weakenRespectsEval : (i : Ix ictx k)

-> (ixEnv1 : IxEnv ictx1)
-> (ixEnv : IxEnv ictx)
-> eval (weaken i ictx1) (ixEnv1 <++> ixEnv)

=
eval i szEn

Proof. The proof is a direct consequence of the stronger property that
thinning respects evaluation when the left-hand side of the split context is
empty.

weakenRespectsEval i ixEnv1 ixEnv =
thinRespectsEval {ictx1=[]} i [] ixEnv ixEnv1

�

As noted although the full proof is intuitively straightforward, it’s cumber-
some to mechanize and is therefore relegated to lemma C.5.0.1 on page 196.

The above evaluation expression is unfortunately slow to type-check.
In fact on a modern boosted 4GHz machine it has tended to take over 24
hours. Fortunately this slow function can be shortcut. Instead of evaluating
the expression itself, it can be evaluated by proxy, evaluating only the
expression’s index expression. This is possible thanks to a powerful means
of lifting proofs from evaluated index expressions to evaluated expressions
using the implied equality constraint of the indexed domains. A high-level
strategy for lifting proofs is presented

1. Prove that indexed semantic values can be reconstructed from their
unindexed “erased” value.

2. Prove the canonicity property of indexed types which guarantees each
set of the family is uniquely inhabited.

3. Use canonicity on two reconstructed values to transport one proof to
the other.

Solving the first two problems go hand-in-hand. Fortunately reconstructing
IxNat and IxList is relatively simple. However, we would like to ensure

CHAPTER 3. VERIFIED TYPING WITH EXPLICIT COERCIONS 98

Listing 3.3: Sound case evaluation
evalExp (CaseList {i1=i1} e1 x xs e2 e3) ixEnv known env

with (evalExp e1 ixEnv known env)
evalExp (CaseList {i1=i1} e1 x xs e2 e3) ixEnv known env

| v with (inspectEval i1 ixEnv)
evalExp (CaseList {i1=i1} e1 x xs e2 e3) ixEnv known env

| v | res with (eval i1 ixEnv)
evalExp (CaseList {i1=i1} e1 x xs e2 e3) ixEnv known env

| [] | EvalIs iEmpty | [] = case e3 of
Reachable (CanReach sub iToJ) e3' =>

evalExp e3' ixEnv (sym iEmpty :: known) env
Unreachable (NoReach noReach) _ _ =>

void (noReach ixEnv known iEmpty)
evalExp (CaseList {i1=i1} e1 x xs e2 e3) ixEnv known env

| (v :: vs) | EvalIs iCons | (w :: ws) = case e2 of
Reachable (CanReach sub iToJ) e2' =>

evalExp e2'
(w :: ws :: ixEnv)
(sym (thinKnownConsRespectsEval iCons) ::
weakenKnowns known [w,ws])

(v :: vs :: weaken env [w,ws])
Unreachable (NoReach noReach) _ _ =>

void (noReach (w :: ws :: ixEnv)
(weakenKnowns known [w,ws])
(thinKnownConsRespectsEval iCons))

that this reconstructed value is somehow the “correct” one with respect to
some input: in this case the index used for reconstruction. To understand
why this strategy is suitable, it’s useful to first consider the indexed values
through the lens of a bundle.

3.5.1 Erasing and recovering semantic indices
Consider the IxNat type. Following Goldblatt [Gol84] this type can be
visualized as a collection of sets sitting over its “index space” Nat in fig-
ure 3.14. In figure 3.14 for each index n : Nat there is a set IxNat n that
belongs to the family of indexed nats. Moreover there is clearly a mapping
erase from a IxNat to a Nat, namely its erasure. The family IxNat can
then be reconstructed by considering the pre-image of erase; however note
that in our case the pre-image of any index is trivially unique so erase is an

CHAPTER 3. VERIFIED TYPING WITH EXPLICIT COERCIONS 99

00

11

22

. . .

N 0
1

2
. . .

erase

Index space

IxNats

erase−1

Figure 3.14: The type IxNat.

isomorphism! Thus we should always be able to find the exact element in
the stalk space from its erasure in the base space. Taking a nat element’s
erasure is obvious.

eraseNat : IxNat i -> Nat
eraseNat {i=i} _ = i

Which is readily generalized to our index expression universe
erase : EvalIxTy t i -> EvalTy t
erase {t=TyNat} {i=n} _ = n
erase {t=TyList} {i=xs} _ = xs

Now the reconstruction function to look for is the inverse of this erasure.
reconstructNat : (i : Nat) -> IxNat i
reconstructNat Z = Z
reconstructNat (S n) = S (reconstructNat n)

reconstructList : (i : List Nat) -> IxList i
reconstructList [] = []
reconstructList (x :: xs) =

reconstructNat x :: reconstructList xs

reconstructValue : (i : EvalTy t) -> EvalIxTy t i
reconstructValue {t=TyList} v = reconstructList v
reconstructValue {t=TyNat} v = reconstructNat v

In order to mechanically verify this is an isomorphism, reconstructValue
and erase are proven to be inverse by the following functions whose full
definitions are given in appendix C.3 on page 195.

CHAPTER 3. VERIFIED TYPING WITH EXPLICIT COERCIONS100

leftInvNat : (n : Nat) -> erase (reconstructNat n) = n
rightInvNat : (n : IxNat i)

-> reconstructNat (erase n) = n
leftInvList : (xs : List Nat)

-> erase (reconstructList xs) = xs
rightInvList : (js : IxList xs)

-> reconstructList (erase js) = js

Thus justifying the approach of reconstructing indexed values from their
indices.

The next step in efficiently evaluating expressions requires proof of the
indexed value canonicity properties.

3.5.2 Canonical indexed values
An obvious consequence of the fact that erase and reconstructValue are
bijective is that any two indexed values sharing an index are equal.

Theorem 3.5.3. Canonicity of Indexed Values
canonicalValue : (v, v' : EvalIxTy t i) -> v = v'

This is of course a rephrasing of the fact that erase is injective. The proof
is a consequence of the following two lemma’s proven by routine application
of induction in appendix C.4 on page 195.

canonicalNat : (i, i' : IxNat m) -> i = i'
canonicalList : (i, i' : IxList xs) -> i = i'

A convenience function can also be defined proving that two values are equal
when their index expressions look distinct but are known to be equal.

canonicalHValue : i = i'
-> (v : EvalIxTy t i)
-> (v' : EvalIxTy t i')
-> v = v'

canonicalHValue Refl v v' = canonicalValue v v'

Note that by pattern matching on the proof of equality between i = i' the
goal has been refined, and thus the obligation is to show v and v' are equal
at identical semantic indices. This is sufficient for evaluating expressions.

CHAPTER 3. VERIFIED TYPING WITH EXPLICIT COERCIONS101

3.5.3 Efficiently evaluating indexed expressions
The strategy to evaluate indexed expressions is to first “reconstruct” or
guess the correct result value using the expression’s semantic index and then
to prove that this is the correct value by canonicity.

Theorem 3.5.4. Soundness of evaluation
evalExpFast : {ctx : Ctx ictx}

-> (e : Exp facts ctx t i)
-> (ixEnv : IxEnv ictx)
-> (knowns : EvalConstraints ixEnv facts)
-> (env : Env ixEnv ctx)
-> (v : EvalIxTy t (eval i ixEnv) **

v = evalExp e ixEnv knowns env)
evalExpFast {i=i} e ixEnv knowns env =

let v = reconstructValue (eval i ixEnv)
in (v ** canonicalValue v (evalExp e ixEnv knowns env))

Evaluating expressions in this way is really the relational specification of
soundness theorem 3.5.1 on page 91 which follows from taking the erasure
of both sides of the equation.

Transporting proofs from index expressions to expressions is similarly
trivial. Given that evaluating two index expressions results in the same
value, evaluating expressions at those indices should also produce the same
value by canonicity.

proveEvalExpEq
: {ctx : Ctx ictx}

-> (e : Exp facts ctx t i)
-> (e' : Exp facts ctx t i')
-> (ixEnv : IxEnv ictx)
-> (knowns : EvalConstraints ixEnv facts)
-> (env : Env ixEnv ctx)
-> eval i ixEnv = eval i' ixEnv
-> evalExp e ixEnv knowns env = evalExp e' ixEnv knowns env

proveEvalExpEq e e' ixEnv knowns env evalEq =
canonicalHValue evalEq (evalExp e ixEnv knowns env)

(evalExp e' ixEnv knowns env)

The above two proofs rigorously show that it is sufficient to talk about
an expression’s index expression when reasoning about its correctness. This
is of primary importance for two reasons

CHAPTER 3. VERIFIED TYPING WITH EXPLICIT COERCIONS102

1. first it means functional correctness can be proven in Idris at the
“abstract semantics level” without the need to trip over complicated
indices introduced by expressions; and

2. second, proving the soundness of transformations is reduced to proving
that the transformation is index expression respecting.

The second property is particularly important because it allows for a simple
means of extracting high-level properties e.g. to perform efficient compi-
lation or to reason about performance characteristics. Consider that it
might be important to compile a loop over naturals to a single addition or
multiplication instruction.

Having developed a notion of evaluation, there still remains one further
host feature that should be captured. Currently there is no way to explicitly
mark dead code as unreachable. Given the expressive nature of the index
expression language it would be convenient to reflect our static knowledge
about the shape of an expression into the host system and prove that a
particular branch of a case expression cannot be reached. As will be seen,
this construction follows relatively naturally from the existing language
architecture.

3.6 Reachability testing
Recall for a final time the body of the list head function

head xs = caselist xs ((x :: xs′) ⇒ x); ([] ⇒ 0)

Given that the input is required to have a non-nil shape, the dummy value 0
should not need to be supplied. Moreover this should be explicitly captured
at the level of the type-system with the empty type, the type without any
values. This allows for a branch to be marked as empty, requiring the explicit
construction of a contradiction to avoid the obligation of constructing a
value.

We extend L with support for explicitly proving that the branches of a
case are either reachable or unreachable. In the case of a reachable branch
all the required machinery is in place, however if a branch cannot be reached
then the programmer should be able to explicitly note this in the type. The
syntax of cases is updated in figure 3.15 so that each branch is explicitly
shown to be reachable, or unreachable and thus dead-code.

CHAPTER 3. VERIFIED TYPING WITH EXPLICIT COERCIONS103

Case expressions c ::= e | dead S S

∆; Γ; Ξ ` c : τ S (well-formed case expression)
∆; Ξ ` i j

∆; Ξ; Γ ` e : τ i

∆; Ξ ` i 6 j

∆; Ξ; Γ ` dead i j : τ k

Figure 3.15: Syntax and typing rules for case expressions.

Consider in what cases it is possible for a branch to be executed. Take
for example a list xs with index i scrutinized by a caselist. In the nil case we
learn that i must have been [], and in the cons case we learn that i must have
been some non-empty list head and tail, j :: js; however suppose it is known
that i = j :: js, then clearly the nil branch should never execute! If it were
to, this would imply that [] = i = j :: js which is of course contradictory.
Thus to show that a branch is non-executable dead-code we are obliged to
prove that the scrutinee index expression and the index expression of the
branch pattern are not equivalent. When two index expressions i and j are
equivalent, we say that j is reachable from i and write this as i j.

This of course leaves the question of what notion of equivalence should
be taken. Fortunately this is precisely a unification problem which has been
intensely studied. In order to unify two equations suitable mapping of free
variables to values in the first equation must be found that yields the second
equation. Such a mapping is known as a substitution. However rather than
giving a substitution that results in the first equation being rewritten to
syntactically match the second, we can request that the substitution will
result in a semantic equality, just as with the problem of rewriting index
expressions.

Defining a substitution θ is relatively straightforward, deferring to the
existing notion of an index expression constraint. Substitutions are defined in
figure 3.16 as constraint contexts where every constraint constrains the value
of an index expression variable rather than an arbitrary index expression.
Encoding the substitution restriction over a constraint context in Idris is a
case of walking over the context and ensuring every constraint involves a
pure variable.

IsSubstitution : IxConstraints ictx -> Type

CHAPTER 3. VERIFIED TYPING WITH EXPLICIT COERCIONS104

Substitutions θ ::= Ξ
∆ ` θ (well-formed substitution)

∆ ` ∅
∆ 3w (i, τ) ∆ ` j : τ

∆ ` (w ∼ j), θ

∆; Ξ ` i ρ j (case branch reachability)

∆ ` θ ∆ ` i ≈θΞ
ρ j

∆; Ξ ` i ρ j

∆ ` ρ
(∆ ` Ξ0 ⇓ρ v0 ≡ v′

0 ∧ . . . ∧ Ξn ⇓ρ vn ≡ v′
n ∧ JiKρ = JjKρ) =⇒ ⊥

∆; Ξ ` i 6 ρ j

∀ρ.∆ ` ρ =⇒ ∆; Ξ ` i 6 ρ j

∆; Ξ ` i 6 j

Figure 3.16: Case branch reachability testing

IsSubstitution [] = Unit
IsSubstitution (RequireEq (Var elt) j :: facts) =

IsSubstitution facts
IsSubstitution x = Void

Given a substitution, the reachability of a branch is shown by proving
that the scrutinee index expression and the pattern index expression are
semantically equal in every index expression environment subject to the
accumulated constraints Ξ extended on the left with the variable substitution
θ as shown in figure 3.15. In Idris this can be captured by a type indexed by
the source and destination index expression, however rather than extending
the constraint context with the provided substitution, the substitution can
be directly reflected as an assumption in the equality proof.

data IsReachable : IxConstraints ictx -> (i, j : Ix ictx t)
-> Type where

CanReach : (sub : IxConstraints ictx)
-> {default () isSubst : IsSubstitution sub}
-> ((ixEnv : IxEnv ictx) ->

EvalConstraints ixEnv facts ->
EvalConstraints ixEnv sub ->
eval i ixEnv = eval j ixEnv)

CHAPTER 3. VERIFIED TYPING WITH EXPLICIT COERCIONS105

-> IsReachable facts i j

As an example of a reachable branch consider the cons case of the head
function. In this case the scrutinee xs has non-empty index expression
j :: js while the pattern x :: xs′ has index k :: ks. Thus in order to show
that this case is reachable, it must be shown that the equations j :: js and
k :: ks are unifiable. Fortunately there is a relatively obvious substitution
taking the index expressions of the respective head and tails to be equal:
(j ∼ k), (js ∼ ks), ∅.

Turning to the case of a non-executable, dead-code branch we would
like to know that the case scrutinee index expression, and the pattern index
expression are not equivalent. In this case rather than finding a single
suitable substitution, we can show that in no environment ρ are these two
equations equal. In this case the substitution is effectively performed at the
semantic level, where every combination of parallel substitutions is tested
by the universally quantified environment. When an index expression j is
not equivalent to an index expression i we say that j is unreachable from i
and write this i 6 j. The formal definition of non-reachability is given in
figure 3.16. Similar to the reachable branch, capturing this proposition and
its proofs in Idris is straightforward. As usual we can simply instantiate
the set of free variables by introducing an index expression environment,
reflect the current constraint context, and show that were i and j equal a
contradiction would follow.

data NotReachable : IxConstraints ictx -> (i, j : Ix ictx t)
-> Type where

NoReach : ((ixEnv : IxEnv ictx) ->
EvalConstraints ixEnv facts ->
eval i ixEnv = eval j ixEnv ->
Void)

-> NotReachable facts i j

Thus given an explicit means of describing when a portion of code is
reachable or non-reachable it’s possible to encode this information directly
into the EDSL syntax tree. Thus continuing in the correct-by-construction
style every elided branch must not only be proven unreachable, but in the
case it is not marked unreachable the developer must also show why its
possible for the branch to execute.

data CaseBranch : (ictx : IxCtx)
-> (facts : IxConstraints ictx)
-> (i, j : Ix ictx t)

CHAPTER 3. VERIFIED TYPING WITH EXPLICIT COERCIONS106

-> IxConstraints ictx3
-> Ctx ictx3
-> (i3 : Ix ictx3 t3)
-> Type where

Reachable : IsReachable facts i j
-> Exp facts3 ctx3 t3 i3
-> CaseBranch ictx facts i j facts3 ctx3 i3

Unreachable : NotReachable facts i j
-> (ctx3 : Ctx ictx3)
-> (i3 : Ix ictx3 t3)
-> CaseBranch ictx facts i j facts3 ctx3 i3

This type states that a branch at index expression j, executed upon scru-
tinizing an expression with index i, is either reachable or unreachable. As
usual, the contexts ictx and facts required by well-formedness are carried
as indices by each case branch. Additionally the type carries a potentially
extended set of constraints facts3 accessible within the body of the branch.
This corresponds to extension by any newly learned facts as was the case in
the simpler CaseList node. Finally, in the case of an unreachable branch,
the resulting context and index expression are explicitly placed to aid Idris’
type inference.

Making use of this definition of a branches’ reachability or non-reachability
finally allows for a complete derivation of the head function’s well-formedness.
Consider again the head function on xs with index i :: is.

head xs = caselist xs ((x :: xs′) ⇒ rewrite j x); ([] ⇒ dead (i :: is) [])
The well-formedness condition for dead (i :: is) [] requires proof that [] can
never be reached from i :: is given any substitution of i and is.

∀ρ.(i, Nat), (is, List), ∅ ` ρ =⇒
(i, Nat), (is, List), ∅; (i :: is ≈ []), ∅ ` i :: is 6 ρ []

Although evaluating i and j in ρ yields no information, replacing a syntactic
variable for a semantic one, we’re equipped with a proof that Ji :: isKρ = J[]Kρ
by the reflected constraint context. By discriminating the constructors this
is clearly false thus proving the goal.

3.7 Summary
In this chapter we have presented an example of how dependent types can
be leveraged to implement a correct by construction notion of indexed ex-

CHAPTER 3. VERIFIED TYPING WITH EXPLICIT COERCIONS107

pressions with a rich notion of index expression convertibility. The language
introduced is able to leverage the type-system and pattern matching features
of its host to prove the soundness of its index expression conversion, and
to implement static reachability testing to eliminate dead code. In the
next chapter these language features are evaluated, showing how to prove a
variety of familiar properties such as the associativity of addition, and how
to implement tactics in the host to automate certain semantic equalities
required to rewrite some classes of term index expression.

Chapter 4

Programming and proving
with L

Embedded domain specific languages enjoy all the properties exposed by
their host. In the case of languages such as Haskell this may take the form
of producing highly efficient code by making use of its sophisticated rewrite
system. As the language has continued to develop much stronger properties
can be encoded by making use of GADT’s. In the case of L having access
to a more expressive type-system allows for very strong properties about
natural numbers and lists to be captured. In particular existing libraries
for proving theorems can be used. In this chapter we will show how to
leverage standard generic programming patterns such as proof-by-reflection
by mapping index expressions into existing constructs in Idris.

The “two-step” style of proving program correctness is similar to the
“lambda-sub-singleton” language λ≤{} explored by Aspinov [Asp95]. In
this language typed terms t : A can be given a refined type at A, written
t : {M}A, meaning that t = M . The language is enriched with a sub-
typing relation A ≤ B in which a singleton {M}A is always considered
to be a sub-type of A, i.e. {M}A ≤ A. Similar to the index expressions
explored in this thesis, these singletons are used to capture the idea that
a specification of the factorial function fac given by fac : {fac} should
have many different implementations. Thus this specification should be
somehow distinct fac′ : {fac}, instead capturing the equivalence class
of functions implementing factorial. However unlike in the construction
presented below which allows for semantic equality, term equality in λ≤{} is
defined syntactically, directly on singletons. Thus the equality N = M is

108

CHAPTER 4. PROGRAMMING AND PROVING WITH L 109

short for N : {M}A.

4.1 Warm-up: addition
As a simple warm-up to programming with L consider the obvious primitive
recursive implementation of addition

addRec : Nat -> Nat -> Nat
addRec Z n = n
addRec (S m) n = S (addRec m n)

Since primitive recursion isn’t available in L , a fold must be used instead.
Fortunately the universal property guarantees this is possible.

add : Nat -> Nat -> Nat
add m n = natFold (\n, acc => S acc) n m

We simply walk over m, adding 1 at each iteration until the end where n
is placed. While the above is transcribed almost exactly into L , recall
that real arrows aren’t available, instead functions are described by a scope
opened in the parameters: in this case m and n.

plus : Ix [("m", TyNat) :: ("n", TyNat)] TyNat
plus = ElimNat (var "m") "m'" "acc" (S (var "acc")) (var "n")

Now it’s possible to inspect and execute plus within Idris, consider a call
with m=2 and n=3.

*> eval plus [2,3]
5 : Nat

Given an index expression it’s possible to implement this function at the
expression level by following one’s nose and reading off the index expression.

plusExp : Exp []
[("i", (TyNat ** var "m"))
,("j", (TyNat ** var "n"))]
TyNat
Plus.plusIx

plusExp = ElimNat (var "i") "i'" "acc" (S (var "acc"))
(var "j")

This states plusExp has no knowledge about its index expressions and is
defined in two arguments: i of abstract index expression m; and j of abstract
index expression n. Proving the correctness of this function is a case of
routine induction on m

CHAPTER 4. PROGRAMMING AND PROVING WITH L 110

plusIxCorrect : (m, n : Nat)
-> eval plusIx [m, n] = m + n

plusIxCorrect Z n = Refl
plusIxCorrect (S m) n = cong (plusIxCorrect m n)

Where cong asserts that given eval plusIx [m, n] = m + n by induction,
it follows that S (eval plusIx [m, n]) = S (m + n) as required. This
proof lifts to the definition of plusExp as well thanks to canonicity.

Although this is a sufficient notion of addition, it’s not particularly
convenient to program with. Instead by use of the host system’s function
definition a powerful macro system can be developed.

4.1.1 Programming with macros
Implementing the above addition function as a real Idris function is done in
the usual way, however care must be taken in selecting the index expression
variable context. Consider first the naive implementation of addition

plusIxM : Ix [] TyNat -> Ix [] TyNat -> Ix [] TyNat
plusIxM m n = Elimnat m "m'" "acc" (S (var "acc")) n

This at first seems suitable and is readily tested
*> eval (plusIxM (S Z) (S Z)) []
2 : Nat

However note that when this term is placed in a larger function its context
will differ from the parent’s and therefore must undergo explicit weakening.
Far worse, the argument passed to plusIxM must undergo strengthening,
requiring proof that its context may be shrunk which is likely not possible.
Instead of declaring the minimum context required by plusIxM, the most
general context should be given. In this case plusIxM is well-defined in any
context, and therefore the correct signature is parameterized over arbitrary
ictx with no changes to the function body.

plusIxM : Ix ictx TyNat -> Ix ictx TyNat
-> Ix ictx TyNat

This not only avoids unnecessary and slow applications of weakening but
also avoids the likely problematic need for strengthening on arguments.

Defining an expression proceeds similarly, considering the most general
variable and constraint contexts.

plusExpM : Exp facts ctx TyNat m

CHAPTER 4. PROGRAMMING AND PROVING WITH L 111

-> Exp facts ctx TyNat n
-> Exp facts ctx TyNat (plusIxM m n)

plusExpM i j = ElimNat i "i'" "acc" (S (var "acc")) j

Note that this type also more intuitively states the fact that adding two
values of index expressions m and n results in a value with index in their
sum.

The structure of these macros is not only highly efficient but also regular
enough to allow for a programming pattern of functional correctness to be
developed. However before attempting to prove the correctness of plusExpM
it’s valuable to consider the case paradigm of L .

4.2 Head and tail functions
As a warm-up to performing case analysis and reachability it’s relatively
easy to show that the safe head and tail functions can be implemented
within our language. The strategy as described in chapter 3 on page 66 is
to require a non-nil shape on the input list to scrutinize.

Recall that showing the reachability of a case branch requires producing
a substitution mapping the index expression of the scrutinee to the index
expression of the case branch under semantic equivalence. In our case, the
index expression of the input is i :: is and in the non-nil case we should show
that this index can be made equal to the fresh index expression j :: js. Thus
the concrete obligation is to provide a set of constraints on an environment
in [j, js, i, is] such that the evaluation of i :: is is equal to the evaluation of
j :: js. Of course the obvious solution is to identify the index expressions
of the heads i, j and the index expressions of the tails is, js. This is given
by the unifyConsCons function which applies the RequireEq constructor to
produce the two constraints. Given these constraints, proving the equal-
ity of the evaluation is straightforward. Matching on the two equalities
reflected from the supplied constraints results in refining the obligation to
eval (i :: is) ixEnv = eval (i :: is) ixEnv which is trivially proved
by the application of Refl.

In contrast to show that a branch of a case is unreachable, it must be
proven that in no environment are the input index and the branch pattern
index semantically equivalent. Thus we are provided with an environment
along with the reflection of the accumulated index expression constraints
facts, and finally a proof that the index expression of the scrutinee i :: is is

CHAPTER 4. PROGRAMMING AND PROVING WITH L 112

equal to the index expression of the branch pattern, in this case []. Of course
the nil and cons constructors of the Idris List type can be discriminated
and contradiction is trivially provided with the impossible keyword.

safeHd : Exp facts
{ictx=[("i", TyNat), ("is", TyList)]}
[("xs", (TyList ** var "i" :: var "is"))]
TyNat
(CaseList (var "i" :: var "is")

"j" "js" (var "j")
Z)

safeHd {facts=facts} =
CaseList (var "xs")

"x" "xs'" (Reachable unifyConsCons (var "x"))
(Unreachable notNil _ Z) where

unifyConsCons : IsReachable
(weakenConstraints facts

[("j", TyNat)
,("js", TyList)])

(var "i" :: var "is")
(var "j" :: var "js")

unifyConsCons =
CanReach

[RequireEq (var "i") (var "j")
,RequireEq (var "is") (var "js")]
(\[j,js,i,is], _, [Refl, Refl] => Refl)

total
notNil : NotReachable facts (var "i" :: var "is") []
notNil = NoReach (\ixEnv, facts, Refl impossible)

There is a final refinement that can be made to this function which we
present in listing 4.1. Note that the type of the result is a branch rather than
the index expression i of the list’s head. To solve this as noted an application
of the semantic rewrite rule can be given. The final function safeHd' first
rewrites the index expression of x from its fresh index expression j to the
index expression of the input’s head i using the following reflected constraint
introduced by the case statement

iisEjjs : lookup ixEnv Here :: lookup ixEnv (There Here) =
lookup ixEnv (There (There Here)) ::
lookup ixEnv (There (There (There Here)))

Although it’s not obvious from the type consider that the value of the
environment will be [j,js,i,is]. Thus Here refers to j, There Here refers

CHAPTER 4. PROGRAMMING AND PROVING WITH L 113

to js etc. which is precisely the proof required by the rewrite. Explicitly,
i = j holds by the injectivity of the cons constructor i.e. consInjective
which yields the pair of equalities i = j and is = js. The final rewrite
required to reduce the term to the expected type is from an explicit case
index expression to the normalized index expression j. Note that the index
expression of the unwritten term is

CaseList (var "i" :: var "is") "j" "js" (var "i") Z

Recall that the obligation introduced by the proposed rewrite to j is that
the evaluation of the case expression in any constrained environment is equal
to j. This of course holds trivially by the index expression denotation in
listing 3.2 on page 80.

Listing 4.1: Safe list head
safeHd' : Exp facts

{ictx=[("i", TyNat), ("is", TyList)]}
[("xs", (TyList ** var "i" :: var "is"))]
TyNat
(var "i")

safeHd' {facts=facts} =
Rewrite (var "i") (\ixEnv, cs => Refl)

(CaseList (var "xs")
"x" "xs'" (Reachable

(CanReach
[RequireEq (var "i") (var "j")
,RequireEq (var "is") (var "js")]
(\[j,js,i,is], _, [Refl,Refl] => Refl))

(Rewrite (var "i")
(\ixEnv, (iisEhdtl :: _) =>

fst (consInjective iisEhdtl))
(var "x")))

(Unreachable (NoReach (\ixEnv, facts, Refl impossible))
_ Z))

The reachability paradigm used by cases in L is valuable for program-
ming in a correct-by-construction way that allows for efficient compilation
to occur. However given the expressive host language Idris, it’s possible to
program in the usual way, shooting first and asking questions later.

In the next section the fibonacci function will be given and only proved
correct after the fact. This will additionally cover the development of a
pattern for proving the correctness of macros.

CHAPTER 4. PROGRAMMING AND PROVING WITH L 114

4.3 Functionally correct fibonacci
While it is possible to use a term’s index expression information to ensure
the correctness of a function, it’s also possible to write “incidentally correct”
functions and provide a more traditional external proof of correctness.
Perhaps unsurprisingly the function to compute the nth value in the fibonacci
sequence can be constructed without the need for recursion or full blown
eliminators. Recall that the definition of the sequence is

F0 = 0
F1 = 1

Fn+2 = Fn + Fn+1

These semantics can be captured in Idris directly and can be taken to form
the soundness condition

Listing 4.2: Standard recursive Fibonacci equation
fibRec : Nat -> Nat
fibRec Z = Z
fibRec (S Z) = S Z
fibRec (S (S n)) = fibRec n + fibRec (S n)

Implementing and proving correctness of a fibonacci function in L is
broken down into three steps

1. Define the fibonacci sequence in the language of index expressions:
fibIx.

2. Define fibonacci expression in L : fibExp.

3. Prove that the definition of fibIx in the index expression language
agrees everywhere with the definition in listing 4.2.

Finally the correctness of fibExp will follow from the canonicity property of
index expression values.

4.3.1 The fibonacci index expression function
Since in L direct recursion is not available a fold over naturals must be
used instead. This is sufficient to implement the usual linear time algorithm
of the fibonacci function [Sed88]. In the linear implementation only the two

CHAPTER 4. PROGRAMMING AND PROVING WITH L 115

most recently calculated values are stored and used to compute a single step
of the sequence i.e. (fn, fn+1) 7→ (fn+1, fn + fn+1). Given that L doesn’t
have tuples, a pair of elements can be packed into a list instead. Additionally
because there is no pattern matching available the following two projection
functions on lists are required to access fn and fn+1

ixFst : Ix ictx TyList -> Ix ictx TyNat
ixFst xs = CaseList xs "hd" "tl" (var "hd") Z

ixSnd : Ix ictx TyList -> Ix ictx TyNat
ixSnd xs = CaseList xs "hd1" "tl"

(CaseList (var "tl")
"hd2" "tl2" (var "hd2")
Z)

Z

Notably the above two functions are only correct for lists of at least length
two. In the event the list is shorter a dummy value of zero is returned thus
they must be used carefully. Given accessors for the “list packed tuple”, the
fibonacci function is simple
fibIx : Ix ictx TyNat -> Ix ictx TyList
fibIx i =

ElimNat i "acc" "i'"
[ixSnd (var "acc")
,ixFst (var "acc") `plus` ixSnd (var "acc")]
[Z, S Z]

At each step the accumulator acc holds the two most recently computed
values fn and fn+1 after being initialized with the pair [0, 1]. As a simple
sanity check Idris can be asked to check the correctness of this function on 3

fibTest : eval (fibIx (S (S (S Z)))) [] = [fib 3, fib 4]
fibTest = Refl

Using the above definition of fibonacci a proper semantic indexed ex-
pression can be given.

4.3.2 The semantic indexed fibonacci function
In dependently typed programming it is often the case that a type is so
specific that the program body follows directly from its type, allowing for
automated proof search tools such as the auto keyword in Idris and the
agsy [LB04] tool in Agda. This is similarly the case in the setting of L .

CHAPTER 4. PROGRAMMING AND PROVING WITH L 116

Defining fibonacci is an exercise in mechanically translating from the def-
inition of fibIx. Satisfying the outermost layer of the index expression,
an ElimNat on the input number should be introduced. Implementing the
body is similarly trivial provided the two list projection functions. Suppose
expListFst and expListSnd are given, then the definition is almost character
for character equivalent

fibExp : Exp facts ctx TyNat i
-> Exp facts ctx TyList (fibIx i)

fibExp n = ElimNat n "i'" "acc"
[expListSnd (var "acc")
,expListFst (var "acc") `plus`
expListSnd (var "acc")]

[Z, S Z]

The definitions of expListFst and expListSnd are also simple, following
almost directly the definition of the safeHead function given in listing 4.1
on page 113. However a notable difference is that the index expression
is abstract. The function should inspect its input, returning the head if
available, or a dummy value of zero otherwise.

expListFst : Exp facts ctx TyList (var xi)
-> Exp facts ctx TyNat (CaseList (var xi)

hd tl (var hd)
Z)

Perhaps surprisingly expListFst cannot easily be given for arbitrary index
expression i, but instead only over a variable xi. This is because the
body will perform case analysis and therefore need to prove reachability of
each case. Without knowing the shape of the xi, reachability cannot be
shown e.g. if i = [] then surely the reachability of the cons case cannot be
proven. While perhaps a sufficiently clever implementation could attempt
to normalize i and check its shape, this implementation opts for the simpler
approach of working on a value that is known to be abstract. Referring to
the index expression, it follows that the body should first perform a case on
the input expression, returning the head if available or a dummy value of
zero otherwise.

expListFst {xi=xi} {hd=hd} {tl=tl} e =
CaseList e

hd tl (Reachable
(CanReach

[RequireEq (var xi) (var hd :: var tl)]
(\(hdv :: tlv :: ixEnv), _, [iEhdtl] =>

CHAPTER 4. PROGRAMMING AND PROVING WITH L 117

iEhdtl))
(var hd))

(Reachable
(CanReach

[RequireEq (var xi) []]
(\ixEnv, _, [iEnil] => iEnil))

Z)

Proving the reachability of the two branches is trivial. Given that the
index expression of the input is abstract, the necessary shape can simply be
requested as a constraint. To reach the cons branch, the index expression
xi should be the supplied head and tail. Similarly, to reach the nil branch
xi must itself be nil.

The function projecting the second element of a list is similar enough
that only its signature is given 1.

expListSnd : Exp facts ctx TyList (var xi)
-> Exp facts ctx TyNat

(CaseList (var xi)
hd1 tl1 (CaseList (var tl1)

hd2 tl2 (var hd2)
Z)

Z)

Intuitively proving reachability of the second case on var tl1 are trivial
because like xi, its shape is fully abstract.

As a final step we wish to prove that this implementation is correct
with respect to the inefficient implementation fibRec given in listing 4.2
on page 114. We will show that in order to prove the correctness of this
definition of fibonacci it is sufficient to prove a simpler claim: that the
definition of its index expression is correct.

4.3.3 A pattern for function soundness.
A general pattern can be given for proving the correctness of functions
within the index expression language

1. The function is semi-mechanically broken down into its abstract eval-
uation, generalizing any recursive calls over abstract terms.

2. The abstract evaluation is shown to be correct with respect to some
specification function in the usual way.

1see appendix A.2 on page 188 for the full definition.

CHAPTER 4. PROGRAMMING AND PROVING WITH L 118

3. The evaluation of the index expression function is formally shown to
be equal to the application of its specification to the evaluation of its
argument.

The first step proceeds in a similar but less disciplined fashion to proofs
with recursion schemes [MFP91]; [UVP01]; [HWG13] e.g. as in the “algebra
of programming” of Bird and De Moor [BM96]; [MKJ09].

As an example, in order to show that the implementation fibIx is correct
for every input it should evaluate to an application of some specification func-
tion fibFold. Concretely, the type signature of the fibonacci specification
theorem can be given

fibSpec : (i : Ix ictx TyNat)
-> eval (fibIx i) ixEnv = fibFold (eval i ixEnv)

To prove the above statement following the soundness pattern from the
beginning of section 4.3.3, the evaluation of fibIx should be given. Unfolding
the initial part of evaluation by hand yields

eval (fibIx i) ixEnv
= eval (ElimNat i "acc" "i'"

[ixSnd (var "acc")
,ixFst (var "acc") `plus`
ixSnd (var "acc")]

[Z, S Z])
= natFold (\n, vacc =>

[eval (ixSnd (var "acc")) (vacc :: n :: ixEnv)
,eval (ixFst (var "acc") `plus`
ixSnd (var "acc")) (vacc :: n :: ixEnv)]

[Z, S Z]
(eval i ixEnv)

Continuing to follow the pattern, rather than unfolding the remainder of
the body by brute force and yielding a large cumbersome term, instead the
functions ixFst, ixSnd, and plus should be given a specification separately.

Specifying ixFst

To specify ixFst first perform expansion
eval (ixFst i) ixEnv
=
listDestruct (const Nat) (\x,xs' => x) Z

(eval i ixEnv)

CHAPTER 4. PROGRAMMING AND PROVING WITH L 119

Following the soundness pattern the recursive call of eval on the abstract
value i should be generalized. Generalizing eval i ixEnv to xs a suitable
definition of evaluation is mechanically derived

ixFstEval : List Nat -> Nat
ixFstEval xs = listDestruct (const Nat) (\x,xs' => x) Z xs

Step two of the pattern requires a specification function be provided.
While this evaluation function is relatively simple, we instead opt for a
pattern matching definition perhaps more common in familiar functional
languages such as Haskell

listFst : List Nat -> Nat
listFst (x :: _) = x
listFst _ = Z

Step two additionally ties the above two functions together with a proof of
equality.

ixFstCorrect : (xs : List Nat) -> ixFstEval xs = listFst xs
ixFstCorrect (x :: _) = Refl
ixFstCorrect [] = Refl

By matching on xs Idris is able to reduce both listDestruct and listFst
to values and the equality can be trivially given with Refl.

The third and final step of the pattern is to provide a proof specifying how
the ixFst function unfolds under evaluation. This yields a final application
of some high-level function applied to the evaluation of some abstract
argument.

ixFstSpec : (i : Ix ictx TyList)
-> eval (ixFst i) ixEnv = listFst (eval i ixEnv)

ixFstSpec {ixEnv=ixEnv} i = ixFstCorrect (eval i ixEnv)

Due to the work in step two this proof goes through trivially.
Fibonacci still relies on the second projection function and addition.

Specifying ixSnd

Specifying ixSnd is similar to ixFst. Mechanically unfolding evaluation and
generalizing

ixSndEval : List Nat -> Nat
ixSndEval = listDestruct (const Nat)

(\x, xs' => listDestruct (const Nat)
(\y, xs'' => y) Z xs')

Z

CHAPTER 4. PROGRAMMING AND PROVING WITH L 120

The specification is given as a pattern matching function
listSnd : (xs : List Nat) -> listSndEval xs = listSnd xs
listSnd (x :: y :: _) = Refl
listSnd (x :: []) = Refl
listSnd [] = Refl

Finally the two can be tied together by a function similar to ixFstCorrect
given on appendix A.1 on page 188 which matches on its argument allowing
Idris to evaluate.

ixFstSpec : (i : Ix ictx TyList)
-> eval (ixSnd i) ixEnv = listSnd (eval i ixEnv)

ixFstSpec {ixEnv=ixEnv} i = ixSndCorrect (eval i ixEnv)

To expand the definition of fibonacci only the specification of plus is left
to give.

Specifying plus

Specifying plus fails to deviate from the pattern. Unfolding its definition
eval (plus i j) ixEnv

= natFold (\n, vacc => eval (S (Var Here)) (vacc :: n :: ixEnv))
(eval i ixEnv) (eval j ixEnv)

= natFold (\n, vacc => S vacc) (eval i ixEnv) (eval j ixEnv)

Generalizing the two recursive calls completes the derivation
plusEval : (m, n : Nat) -> Nat
plusEval m n = natFold (\n, vacc => S vacc) n m

Proving the equality of plusEval with the usual addition operator is given
on appendix B.1 on page 191 which is a straightforward application of
induction. Finally the proof of specification follows from correctness as
usual.

plusSpec : (i, j : Ix ictx TyNat)
-> eval (plus i j) ixEnv = eval i ixEnv + eval j ixEnv

plusSpec {ixEnv=ixEnv} i j =
plusCorrect (eval i ixEnv) (eval j ixEnv)

The above definitions allow for the fibonacci function’s derivation to be
completed.

CHAPTER 4. PROGRAMMING AND PROVING WITH L 121

4.3.4 Proving the correctness of fibonacci
Recalling the previously blocked evaluation of fibIx, finalizing its unfolding
is relatively simple by the application the above specifications

natFold (\n, vacc =>
[eval (ixSnd (var "acc")) (vacc :: n :: ixEnv)
,eval (ixFst (var "acc") `plus`
ixSnd (var "acc")) (vacc :: n :: ixEnv)]

[Z, S Z]
(eval i ixEnv)

= -- { Specification of plus }
natFold (\n, vacc =>

[eval (ixSnd (var "acc")) (vacc :: n :: ixEnv)
,eval (ixFst (var "acc")) (vacc :: n :: ixEnv) +
eval (ixSnd (var "acc")) (vacc :: n :: ixEnv)])

[Z, S Z]
(eval i ixEnv)

= -- { Specification of ixSnd }
natFold (\n, vacc =>

[listSnd vacc
,eval (ixFst (var "acc")) (vacc :: n :: ixEnv) +
listSnd vacc])

[Z, S Z]
(eval i ixEnv)

= -- { Specification of ixFst }
natFold (\n, vacc =>

[listSnd vacc, listFst vacc + listSnd vacc])
[Z, S Z]
(eval i ixEnv)

Finally after generalizing the recursive call the evaluation function is uncov-
ered

fibEval : (n : Nat) -> List Nat
fibEval n = natFold (\n, vacc =>

[listSnd vacc, listFst vacc + listSnd vacc])
[Z, S Z] n

In this case the evaluation function is arguably the canonical definition of
iterative fibonacci following from the universal property of fold [Hut99]. The
specification proof is therefore effectively a mechanization of the steps in
the above unfolding presented in appendix A.3 on page 189 with only the
signature included here

fibSpec : (i : Ix ictx TyNat)
-> eval (fibIx i) ixEnv = fibFold (eval i ixEnv)

CHAPTER 4. PROGRAMMING AND PROVING WITH L 122

However the above is insufficient proof of the soundness of fibIx, recall that
a final proof of equality with the definitive recursive notion of fibonacci must
be given. This is a relatively trivial application of equational reasoning using
Idris’ Syntax.PreOrdering package which exposes syntactic extensions for
focusing on a chain of a propositions decorated with small proofs to move
between them. The idea was originally proposed by Augustsson [Aug99].
Concretely the theorem to prove is given by the following type signature

fibFastOk : (n : Nat) -> fibRec n = listFst (fibEval n)

The cases F0 and F1 are trivial. Intuitively the Fn+2 case should be a simple
application of induction to simplify the recursive calls Fn+1 and Fn. Thus
the final proof is simply a matter of showing that the sum of two calls to the
iterative algorithm fibEval is equal to the next value to calculate; however
this is precisely the definition of fibEval! This is mechanized in Idris almost
verbatim

Listing 4.3: Soundness of fibonacci index expression function.
fibEvalSound Z = Refl
fibEvalSound (S Z) = Refl
fibEvalSound (S (S n)) =

(fibRec (S (S n)))
=[Refl]= -- { Definition of fibRec }

(fibRec n + fibRec (S n))
=[rewrite fibEvalSound n in Refl]= -- { By induction }

(listFst (fibEval n) + fibRec (S n))
=[rewrite fibEvalSound (S n) in Refl]= -- { By induction }

(listFst (fibEval n) + listFst (fibEval (S n))
=[Refl]= -- { Definition of fibEval }

(listFst (natFold fibEvalStep [Z, S Z] n) +
listFst (natFold fibEvalStep [Z, S Z] (S n)))

=[Refl]= -- { Definition of natFold }
(listFst (natFold fibEvalStep [Z, S Z] (S (S n))))

=[Refl]= -- { Definition of fibEval }
(listFst (fibEval (S (S n))))

QED

The above proof of course is about the index expression of the fibonacci
algorithm rather than the implementation in the expression language. For-
tunately as always equipped with the canonical values theorem 3.5.3 on
page 100 the correctness at the expression level holds almost immediately.
Consider the type of the evaluated expression

evalExp (expFst (expFib i)) ixEnv known env

CHAPTER 4. PROGRAMMING AND PROVING WITH L 123

: EvalIxTy TyList (eval (ixFst (fibIx i)) ixEnv)

Using the specifications of ixFst and fibIx we arrive at the definition
required by the soundness proof in listing 4.3.

EvalIxTy TyList (listFst (fibIx (eval i ixEnv)))

Thus by theorem 3.5.3 simply by looking at the type of this term it must
be the case that evaluation is correct because the inhabitant of this type is
unique.

This pattern of proving functional correctness was applied to an “inci-
dentally correct” copy of fibonacci; however it readily scales to correct-by-
construction functions. In the next section an encoding of products using
indexed lists will be considered, along with macros for the usual projection
functions and proofs of their correctness.

4.4 Products
So far, all uses of tuples have used a list based encoding, requiring discipline
so as to avoid for example an attempt to project from an empty list. Such
use come without a necessary guarantee of correctness and thus require an
external proof to verify proper usage. This is due to a lack of usage of a
value’s semantic information captured by its index. Although there is no
direct encoding of “well-typed” tuples in L , by making use of terms’ index
expression information, tuples can be recovered—still by using standard
lists. In Haskell tuples not only provide a performance advantage but
additionally a safe means of projecting the nth member which isn’t possible
using lists because they lack static size information at the type level. In L
by comparison since every list can have its shape arbitrarily restricted, a
pair can be typed by a list with two members having indices i and j e.g.

somePair : Exp facts ictx TyList [i, j]

Then the first element can be projected by matching on the head of the list,
and the second element can be projected by matching on the head of the tail.
These matches are guaranteed to succeed. The first of which succeeds for the
reasons formalized in safeHd. The second projection succeeds because the
index expression of the tail can unify with the singleton list [j], the head
of which clearly unifies with j as required. Using this reasoning, templates
can be given projecting the first and second elements of list encoded pairs.
The first projection is trivial

CHAPTER 4. PROGRAMMING AND PROVING WITH L 124

expFst : Exp facts ctx TyList [i, j]
-> Exp facts ctx TyNat i

expFst {i=i}{j=j} e =
Rewrite i

(\ixEnv, facts => reduceCaseList {ixEnv=ixEnv})
(CaseList e

"x" "xs'"
(Reachable

(CanReach [RequireEq (var "x") (weaken i [_,_])
,RequireEq (var "xs'") [weaken j [_,_]]]

(\(x :: xs' :: ixEnv), knowns, [xEi, xs'Ej] =>
eqListPair (sym xEi) (sym xs'Ej)))

(Rewrite (weaken i [_,_])
(\ixEnv, (ijEhdtl :: _) =>

fst (consInjective ijEhdtl))
(var "x")))

(Unreachable (NoReach (\ixEnv, facts, Refl impossible))
_ Z))

This largely follows the implementation of safeHd however because it is
a template in concrete index expressions i and j, rather than a function
in free variables “i” and “j” the type of reachability is considerably more
interesting

[eval (thin i [("x", TyNat), ("xs'", TyList)])
(x :: xs' :: ixEnv)

,eval (thin j [("x", TyNat), ("xs'", TyList)])
(x :: xs' :: ixEnv)]

=
x :: xs'

Thus it must be the case that the evaluation of some arbitrary index
expressions i and j are equal to the fresh index expressions x and xs′ which
trivially holds because these are precisely the two constraints that were
requested.

Following safeHd a final reduction of the top-level CaseList index ex-
pression must be performed by reduceCaseList. Intuitively the resulting
index expression should hold trivially because the input e has index [i, j],
and the first branch returns x. However note the target index expression of
the rewrite on x which is a weakened copy of i. Thus the resulting proof of
equality is not a simple assertion of reflexivity, but of weakening respecting
index expression evaluation.

reduceCaseList : eval (CaseList [i, j]
"x" "xs'" (weaken i [("x", TyNat)

CHAPTER 4. PROGRAMMING AND PROVING WITH L 125

,("xs'", TyList)])
Z) ixEnv = eval i ixEnv

reduceCastList {i=i}{ixEnv=ixEnv} =
weakenRespectsEval i [_,_] ixEnv

Projecting the second element of the tuple is similar up to proofs on the
reachability of case branches. Although the proofs are relatively simple they
are most easily solved by goal refinement. Thus the program part of the
expression is given leaving holes in positions of proofs.

expSnd : Exp facts ctx TyList [i, j]
-> Exp facts ctx TyNat j

expSnd {i=i}{j=j} e =
Rewrite j

(\ixEnv, facts => ?crushCasesToJ)
(CaseList e

"x" "xs'"
(Reachable

(CanReach [RequireEq (var "x") (weaken i [_,_])
,RequireEq (var "xs'") [weaken j [_,_]]]

(\(x :: xs' :: ixEnv), knowns, [xEi, xs'Ej] =>
eqListPair (sym xEi) (sym xs'Ej)))

(CaseList (var "xs'")
"y" "xs''"
(Reachable

(CanReach [RequireEq (var "y")
(weaken j [_,_,_,_])

,RequireEq (var "xs''") []]
(\(y :: xs'' :: x :: xs' :: ixEnv),

(xxs'Eij :: knowns),
[yEj, Refl] =>
?xs'ConsReachable))

(var "y"))
(Unreachable (NoReach (\ixEnv, facts, eq =>

?xs'NilUnreachable)) _ Z)))
(Unreachable (NoReach (\ixEnv, facts, Refl impossible))

_ Z))

To solve the above holes, first the reachability clauses are proven followed by
the top-level refinement. The reachability in the first hole intuitively follows
because the tail [j] of [i, j] is of course non-nil.

CHAPTER 4. PROGRAMMING AND PROVING WITH L 126

Solving ?xs'ConsReachable

The type of the hole ?xs'ConsReachable asserts that evaluating the tail vari-
able produces a non-empty list lookup ixEnv (There Here) = [y]. Recall
that under each branch two fresh variables for the respective index expres-
sions of the list head and tail are introduced. This allows for the environment
to be unpacked into at least four values: unpacking the environment to
y :: xs'' ... further refines the goal to xs' = [y]. This goal is solved
relatively easily by matching on the reflected constraints. In fact by match-
ing on the constraints var "xs''" = [] Idris has silently refined the right
hand side of the equality in the goal to [y] rather than the slightly more
cumbersome y :: xs''. In order to satisfy the obligation it should be asked
what is known about xs' and y? Since y is fresh, only the reflected con-
straint y = j is known. Additionally although no constraints were explicitly
introduced on xs', from the initial successful match on e the constraint
x :: xs' = [i, j] was pushed onto the context which is precisely what is
required! Thus unpacking the head of the constraint context xxs'Eij brings
this evidence into the proof context. The final proof is thus a simple exer-
cise in rewriting. First the tail equality from xxs'Eij is projected yielding
proof the proposition xs' = [j], thus the goal follows from the reflected
constraint y = j. Concretely the goal is satisfied by

?xs'ConsReachable = rewrite yEj in
snd (consInjective xxs'Eij)

The next hole in expSnd captures fact that nil cannot be reached from
the tail of [i, j]. Of course this follows from the fact that the cons of
j :: [] is discriminated from [].

Solving ?xs'NilUnreachable

Proving that the nil case is unreachable from casing on the tail of "xs'" fol-
lows from the fact that xs' = tail [i, j] which is clearly [j]. Concretely
the type of the hole ?xs'NilUnreachable is cumbersome.

NotReachable
(RequireEq (var "y" :: var "xs''")

[weaken i [("x", TyNat), ("xs'", TyList)]
,weaken j [("x", TyNat), ("xs'", TyList)]] ::
weakenConstraints facts [("x", TyNat)

,("xs'", TyList)])
(var "xs'")

CHAPTER 4. PROGRAMMING AND PROVING WITH L 127

[]

Which is more easily understood as

y :: xs′ = i :: j ∧ xs′ = [] =⇒ False

Of course by the injectivity of the list constructor this implies that xs′ = [j]
which by the additional assumption about xs′ gives the obviously contra-
dictory statement [] = [j]. This reasoning is directly given in Idris by an
explicit application of transitivity

?xs'NilUnreachable = consNotNil (sym xs'Enil `trans`
snd (consInjective yxs'Eij)))

Where consNotNil simply discriminates between nil and cons using an
impossible pattern.

Having proven both reachability holes the only missing piece left is to
perform the rewrite.

Solving ?crushCasesToJ

The requirement placed on ?crushCasesToJ involves proving that the two
case statements yielding the head of the tail reduce in the obvious way, i.e.

eval (CaseList [i, j]
"x" "xs'" (CaseList (var "xs'")

"y" "xs''" (var "y")
Z)

Z) ixEnv = eval j ixEnv

Fortunately since no opaque definitions have been used Idris will prove this
fact for us by normalization, the proof is a trivial application of reflexivity.

?crushCasesToJ = Refl

So far the use of the host system Idris has proven an effective means
of performing theorem proving to ensure functional correctness of macro-
defined functions. However thus far all definitions have been first-order.
Incidentally by appealing again to the host Idris it’s possible to define a sort
of higher-order function in L and prove their correctness which is the topic
of the next section.

CHAPTER 4. PROGRAMMING AND PROVING WITH L 128

4.5 Higher-order functions
Thus far, L programs have been written in a purely first order fashion. It is
immediately apparent that the host language function support can be used to
encode a sort of macro. Less apparent is the ability to use the host’s support
for higher-order functions similar to C’s non-capturing function pointers e.g.
used by FreeBSD [Mai18] and Linux [CRK05]. Although variable capture
is not strictly supported, it can be simulated by defining a “higher-order
macro” parametric in some larger-than-necessary index expression context
ensuring the necessary variables never go out of scope. In this section, an
example of the common map function is implemented. The function map
applies some given function to every element of a list. In Idris the function
of interest is

listMap : (a -> b) -> List a -> List b
listMap f [] = []
listMap f (x :: xs) = f x :: listMap f xs

As is now standard practice to encode the above, a map function at the
index expression level must first be given.

mapIx : (x : Name)
-> (Ix ((x, TyNat) :: ictx) TyNat
-> Ix ((x, TyNat) :: ictx) TyNat)
-> Ix ictx TyList
-> Ix ictx TyList

mapIx x f i = ElimList i "mapIxAcc" x
(weaken (f (var x)) [_] ::
var "mapIxAcc") []

The above encoding of map is the relatively standard encoding of map as
a fold, guaranteed by the universal property of fold. At each step the
transformed list tail is stored in acc. Then in order to transform the new
head x the function f is applied. Finally in order to transform the empty
list, no work is required so [] is passed as the initial value of acc. The
abstract evaluation of this function is given by

eval (mapIx x acc f i) ixEnv
= eval (ElimNat i acc x

(f (var x) :: var acc)
[])

= listFold (\n, xs =>
(eval (f (var x)) (n :: ixEnv) :: xs)
[]

CHAPTER 4. PROGRAMMING AND PROVING WITH L 129

(eval i ixEnv)

By routine generalization the term eval i ixEnv should be abstracted
leaving the question of how to treat the recursive call on the higher-order
function. Intuitively we would like to evaluate under the application yielding
the term

eval (f (reifyNatIx (eval (var x) (n :: ixEnv))))
(n :: ixEnv)

which reduces to
eval (f (reifyNatIx n)) (n :: ixEnv)

given some embedding function
reifyNatIx : (n : Nat) -> Ix ictx TyNat

Unfortunately this intuition would be misplaced because f is not actually
a function, but a macro operating on syntax! The body of f depends
on the shape of the input which it can unpack and inspect allowing for
example performing a different operation depending on whether a genuine
variable or a literal has been passed as an argument. This is at the heart of
the problem solved by PHOAS [WW03] which ensures that arguments are
treated parametrically. Fortunately this doesn’t ultimately cause a problem
because the function definition will always be available at the top-level
allowing for full-blown evaluation to occur. Thus the approach taken is to
abstract over a function in the types of the extended environment at the
point of function application. For example, in the evaluation of mapIx above
the function application occurs in some environment ixEnv extended with
some list element x. This gives a definition of the evaluation function that
looks very close to regular map which will then be applied to the evaluation
of f applied to the unevaluated argument.

mapIxEval : (Nat -> Nat) -> List Nat -> List Nat
mapIxEval f xs = listFold (\n, xs' => f n :: xs') [] xs

By further mindless appeal to the pattern a correctness proof is given by
induction with respect to the usual notion of map

mapIxCorrect : (f : Nat -> Nat) -> (xs : List Nat)
-> mapIxEval f xs = map f xs

mapIxCorrect f [] = Refl
mapIxCorrect f (x :: xs) = cong (mapIxCorrect f xs)

CHAPTER 4. PROGRAMMING AND PROVING WITH L 130

The induction hypothesis mapIxCorrect f xs asserts that mapping over
the tail is correct mapIxEval f xs = map f xs and thus by definition this
holds after cons’ing the head x given by a call to cong. Given the correctness
proof, the specification of mapIx is broken into two parts: first the evaluation
is shown to be equal to mapIxEval without appealing to weakness2, second
is the usual correctness using mapIxCorrect.

mapIxEvalEq
: (f : Ix ((x, TyNat) :: ictx) TyNat

-> Ix ((x, TyNat) :: ictx) TyNat)
-> (i : Ix ictx TyList)
-> eval (mapIx x f i) ixEnv

=
mapIxEval (\n => eval (f (Var Here))(n :: ixEnv))

(eval i ixEnv)
mapIxEvalEq {x=x} {ixEnv=ixEnv} f i =

cong {f=\v => v :: zs}
(listFoldFSubst

{f=\y, ys => eval (weaken (f (Var Here)) [_] ::
var "mapIxAcc")
(ys :: y :: ixEnv)}

{g=\y, ys => eval (f (Var Here)) (y :: ixEnv) :: ys}
(\y, ys => weakenRespectsEval (f (Var Here)) [ys]

(y :: ixEnv))
(eval i ixEnv)
[])

This proof is a complicated means of showing that evaluating a function
body weakened under a loop is equal to evaluating that body in a reduced
environment. Specifically because f doesn’t need access to the accumu-
lated list ys it’s safe to evaluate it without ys in the environment. The
proof that performs the actual lifting of the body equality to the loop is
listFoldFSubst given in listing D.4 on page 206. This states that folds
using stepping functions that agree everywhere are equal which intuitively
is true by considering repeatedly unfolding the fold.

Using this lemma proving functional correctness is a simple case of
transitivity since evaluation yields mapIxEval which is known to be correct
with respect to map.

mapIxSpec : (f : Ix ((x, TyNat) :: ictx) TyNat
-> Ix ((x, TyNat) :: ictx) TyNat)

2Surprisingly this proof needs to be further broken down to help direct elaboration
however the result is equivalent to a decorated copy of the simpler listing above.

CHAPTER 4. PROGRAMMING AND PROVING WITH L 131

-> (i : Ix ictx TyList)
-> eval (mapIx x f i) ixEnv

=
map (\n => eval (f (Var Here)) (n :: ixEnv))

(eval i ixEnv)
mapIxSpec {ixEnv=ixEnv} {x=x} f i =

mapIxEvalEq f i `trans`
mapIxCorrect (\n => eval (f (Var Here)) (n :: ixEnv))

(eval i ixEnv)

Exactly as expected, the proof of correctness can be given up to the applica-
tion of the macro to its variable.

Given the correctness of the index expression function it’s possible to
give a verified implementation of a higher-order function in the expression
language in the usual style.

4.6 Automated index expression rewriting
Recall that proof by reflection is a strategy for proving a broad spectrum of
properties about a structure by mapping it into a first order representation
that can be directly inspected and manipulated. For example highly regular
structures such as ring, groups, and monoids admit a normalization procedure
which allows for a decision procedure to automatically test if two equations
are equal. Automated ring solvers have long been used in e.g. Coq [GM05],
Idris [SB17], and Agda. Using the generic, constructively verified monoid
solver from section 2.7.1 on page 56 which tests the equality of two terms
by right associating all parentheses some rewrites on index expressions can
be automated.

In this section a tactic for automatically rewriting expressions whose
index expressions are sums. This corresponds to performing rewrites under
the monoid formed by addition with the zero unit. Thus the concrete
goal is that given two expressions with indices i and j, give a proof that
evaluation agrees eval i ixEnv = eval j ixEnv. The development of this
tactic proceeds in two stages

1. First an explicit addition monoid is given.

2. A copy of the solver function is instantiated with the correct monoid.

CHAPTER 4. PROGRAMMING AND PROVING WITH L 132

3. A prover function is provided, presuming that the solver succeeded,
allowing for the underlying proof of equality to be projected while
maintaining totality.

Finally an example is given showing how to use the rewriting function.

4.6.1 A monoid of addition
Recall that a monoid is some set A equipped with an associative binary
operation ·×·, and a unit value ε satisfying the laws ∀a ∈ A.ε×a = a×ε = a.
Clearly addition on the natural numbers with unit zero forms a monoid;
however rather than using the standard definition of addition exposed by
Idris, later work is avoided by taking the evaluation of a macro plus in the
index expression language.

plus : Ix ictx TyNat -> Ix ictx TyNat -> Ix ictx TyNat
plus i j = ElimNat i "acc" "i'" (S (var "acc")) j

plusEval : Nat -> Nat -> Nat
plusEval m n = natFold (\n,acc => S acc) n m

As usual this definition’s correctness is guaranteed by the universal property
of fold.

plusEvalCorrect : (m, n : Nat) -> plusEval m n = m + n
plusEvalCorrect Z n = Refl
plusEvalCorrect (S m) n = cong (plusEvalCorrect m n)

Given this notion of addition, proof it forms a monoid is proof of associativity
and the unit laws

plusEvalZeroRightNeutral : (m : Nat) -> m `plusEval` Z = m
plusEvalAssociative : (m, n, k : Nat)

-> (m `plusEval` n) `plusEval` k =
m `plusEval ` (n `plusEval ` k)

Intuitively these laws hold by repeated invocation of the corresponding law
on built-in addition, followed by substitutions with plusEvalCorrect3. The
full mechanization is given in listing B.1 on page 191.

3Functional extensionality could also be used to provide an automatic lifting from
proofs on (+) to proofs on plusEval. While this is guaranteed to cause no issue
with explicit coercions, it does mean that Idris will no longer be able to reduce, and
automatically prove simple properties.

CHAPTER 4. PROGRAMMING AND PROVING WITH L 133

The final unit law ∀a.0 + a = a holds by definition because addition is
specified recursively on its first argument.

In the interest of generality, the monoid solver is defined in terms of
an abstract monoid interface: ExplicitMonoid given in appendix B.3 on
page 192. Thus the plus monoid follows

implementation [PlusExplicitMonoid] ExplicitMonoid Nat where
unit = Z
append = plusEval
appendAssociative i j k = plusEvalAssociative i j k
unitLeft i = Refl
unitRight i = plusEvalZeroRightNeutral i

Equipped with an explicit monoid we move to the next step in automat-
ically rewriting equations: instantiating the solver function with the above
monoid.

eqPlusEvalExp : MonoidExp PlusExplicitMonoid ctx m
-> MonoidExp PlusExplicitMonoid ctx n
-> Maybe (m = n)

eqPlusEvalExp e1 e2 = eqMonoidExp e1 e2

The final step is to gain access to the underlying equality, projecting out
of the Maybe monad. This is necessary because the rewrite rule expects an
equality. Intuitively this is no problem because the shape of the inputs are
statically known, and thus the solver will only be called on inputs for which
we know it will succeed. As usual this is done with a type restricting the
shape of the result. Idris provides the following type asserting that a value
in Maybe is non-empty

data IsJust : Maybe a -> Type where
ItIsJust : IsJust (Just x)

To project the equality, simply match on a proof of this type and the
non-empty branch is inaccessible.

provePlusEvalExp : (ctx : List Nat)
-> (e1 : MonoidExp PlusExplicitMonoid ctx m)
-> (e2 : MonoidExp PlusExplicitMonoid ctx n)
-> {default ItIsJust

mEn : IsJust (eqPlusEvalExp e1 e2)}
-> m = n

provePlusEvalExp ctx e1 e2 with (eqPlusEvalExp e1 e2)
provePlusEvalExp ctx e1 e2 {mEn=ItIsJust} | Just eq = eq

CHAPTER 4. PROGRAMMING AND PROVING WITH L 134

The use of default requests Idris apply this constructor to solve the hole.
Note that the computation eqPlusEvalExp e1 e2 is performed despite the
fact that it could have been extracted from the proof of its success. This is
because ItIsJust should carry no computational value, thus allowing its
erasure at compile time.

The final step is of course application of provePlusEvalExp in a useful
way. Consider proof of (i1 + i2) + (i3 + i4) = i1 + (i2 + i3) + i4. This first
requires left reassociation, followed by right reassociation to get (i2 + i3);
Moreover gaining access to the right term is often insufficiently automatic
with rewrite requiring an explicit application of substitution, repeatedly
rewriting the term as in proof of plusEvalFoldAssoc in listing B.1 on
page 191. Instead provePlusEvalExp can now be used to provide a rewrite
function.

sum : Exp [] [] TyNat
((var "i1" `plus` var "i2") `plus`
(var "i3" `plus` var "i4"))

-> Exp [] [] TyNat
((var "i1" `plus` (var "i2" `plus` var "i3"))
`plus` var "i4")

Although the body is a single application of the Rewrite rule, the reflection
of the terms to prove equal must still be explicitly written using the monoid
expression constructors.

sum e =
Rewrite ((var "i1" `plus` (var "i2" `plus` var "i3")) `plus`

var "i4")
(\[i1,i2,i3,i4], [] =>

provePlusFoldExp [i1,i2,i3,i4]
((Var Here `App` Var (There Here)) `App`
(Var (There (There Here)) `App`
Var (There (There (There Here)))))

((Var Here `App`
(Var (There Here) `App`
Var (There (There Here)))) `App`

Var (There (There (There Here)))))
e

The automated prover is not restricted to terms in variables. Any
arbitrarily complicated argument to plus can be encoded by a variable and
placed in the context. In fact, the context here [i1,i2,i3,i4] is not made
up of variables, but their evaluation in the index expression environment.

CHAPTER 4. PROGRAMMING AND PROVING WITH L 135

4.7 Summary
This chapter presented several examples of how to program in L . Addition-
ally programming paradigms were developed, showing how the development
of programs proceed. We motivate a style where first a program’s seman-
tics are defined as a distinct Idris function, followed by an implementation
written by “reading off” the type up to unreachable cases. This chapter
additionally developed a programming pattern for proving the correctness
of functions given in L semi-directly in Idris via their index expression.
The pattern describes a mechanical means of unrolling a definition and then
reasoning directly about its evaluation function. This correctness proof is
additionally known to hold for the program implementation by a simple
application of the canonical values theorem.

In the next chapter a static analysis is explored, showing how the host’s
type system can be used to simplify the specification and correctness of the
analysis. Finally the results of the static analysis are used to compile L
programs directly into C. This compilation will make direct use of the case
reachability information during code emission as a verified optimization pass.
As usual the compilation procedure will use the correct-by-construction
strategy to ensure it is type and scope-respecting.

Chapter 5

Verified Cost Analysis

In this chapter the index expression of a term is used to direct a correct
by construction program transformation. The transformation performs a
structural lifting on terms to optimize the use of numbers and literals similar
to the ExTT optimization in Epigram [Bra05b]. Thus presenting a formally
verified means of decorating an “operationally friendly representation” with
its intended semantics in the correct-by-construction style. Such decorations
are available to the programmer in the Agda language where pragma’s are
available to bind a function to a more efficient internal representation. The
transformed tree is then used to exemplify the use of index expressions in
directing static reasoning of program execution costs. Finally it is shown pre-
cisely how the transformed representation supports the emission of efficient
low-level code by constructing, and proving the correctness of, a compilation
down to C, via a low-level virtual machine.

The costing of an input will operate over a mixture of structural and
non-structural elements requiring an expression be decomposed prior to
analysis. Thus the development of the cost analysis on expression will be
broken down into two primary stages

1. Develop a cost analysis over a language of statements by leveraging
the host’s notion of normalization.

2. Give a decomposition of the expression language L from chapter 3 to
the costable statement language using reflection.

Therefore to begin with, a language of statements S is developed along
with its corresponding cost analysis.

136

CHAPTER 5. VERIFIED COST ANALYSIS 137

5.1 A structured statement language
Building upon the work in chapter chapter 3 index expressions can be used to
aid in both verifying the correctness of structural program transformations
and in the static analyses of terms. Incidentally these two operations go hand-
in-hand because analysis can be performed over some type of transformed
graph. In this case, to cost programs we would like not to reason about their
semantics, but about the structural aspects that will be efficiently mapped
to machine code. For example if efficiency is in mind, it is a poor idea to
compile every addition operation to a loop when a single instruction suffices.
Instead constituent expressions in L are considered to be in one of two
categories:

1. structurally executed statements; and

2. atomically executed expressions.

In reality the atomically executed expressions will likely not be atomic at
the ISA level, however from a cost perspective they will be analyzed as a
single unit.

Thus statements can be thought of as structured control flow operations
that thread together expressions by performing e.g. sequencing, looping,
branching etc. Such operations will have a cost that depends on their
sequences’ respective index expressions such as the number of times a loop
body is executed, or the cost of a particular branch that is taken in a case
statement. Note that having static semantic information is a crucial element
required to give reasonably exact costs to control flow operations. Moreover
because costs are taken over evaluated index expressions, i.e. values in the
host, properties can be proven over bounded inputs using the usual theorem
proving machinery exposed by the host.

In contrast, atomic expressions are special intrinsic operations that
are given a cost by some external oracle that does not rely on the precise
expression itself. This allows for the capturing of the idea that the underlying
compiler or processor is able to map large expressions into a variety of dif-
ferent instruction sequences or to optimize its evaluation with out-of-order
execution in a way that is opaque to the analysis.

To begin with the partitioned language of structured control flow state-
ments and their atomically costed expressions is presented in figure 5.1.

CHAPTER 5. VERIFIED COST ANALYSIS 138

Atomic expressions a ::= a + a | n ∈ N | v ∈ N

Case branches b ::= s | dead S S

Statements s ::= a

| rewrite j p s

| []
| s :: s

| let x = s in s

| caselist s ((x :: xs) ⇒ b); ([] ⇒ b)
| elimlist s (x , acc 7→ s) s

| elimnat s (x , acc 7→ s) s

Figure 5.1: Language of statements and expressions

Expressions consist of addition of natural numbers and placement of
variables. Note that expressions don’t include lists or actual operations
on lists such as e.g. inner product. Expressions are meant to be somehow
sufficiently “low-level” to be atomically costed. Given that well-formed
lists will be indexed, it would in fact be possible to include a subset of
operations on 3-tuples or 4-tuples which might be viewed as packed xyzw
vectors [CW00]. Such operations could then capture the idea that packed
numbers can be efficiently mapped down into SIMD intrinsics/instructions
such as SSE and AVX on amd64 [Cor16] architectures, or NEON [Hol14] on
armv7 and armv8 architectures.

The statements presented in figure 5.1 closely mirror the expression
language developed in chapter 3, having number and list cases, in addition
to loops over lists and numbers. Notably, local variable binding via let is
added. This is of course a requirement if the results of statements are to take
part in expressions—without let consider the impossible task of summing
two loops.

Suppose we are given a heuristic h? for predicting the cost of an atomic
expression a. How can this heuristic be structurally extended to cost pro-
grams in the full statement language? Only two of the cases necessary for
consideration are difficult: how to cost a case analysis, and how to cost a
loop. In the WCET community there exist sophisticated, automated strate-

CHAPTER 5. VERIFIED COST ANALYSIS 139

gies for predicting loop bounds [Xi07]; [Wil+08] e.g. by symbolic execution,
by the generation of prototypical input data [Wil+08], and by the construc-
tion and solving of recurrence relations such as with COSTA [Alb+07] or
PURRS [Alb+07]. Similar strategies can be employed to determine the
worst case cost of a conditional statement.

In contrast given that the semantics of variables are available, an exact
cost analysis can be given in the style of Brady and Hammond [BH05],
and Crary and Weirich [CW00]. As will be shown this is akin to symbolic
execution using the host’s normalization procedure. For example because
the index expression of a loop bound is always available, calculating the
exact cost as a function of the cost of the loop body is trivial. Similarly
rather than taking a coarse upper bound on the cost of a conditional—e.g.
by considering the cost to be the worst of the two branches—the cost itself
can be conditional, matching the shape of the underlying statement. In
this way the cost of a branching statement can only be reduced once the
index expression of the expression under scrutiny by the case is known.
Thus the cost of an expression is induced by its trace in a given index
expression environments. Given an atomic expression costing heuristic h? a
syntax-directed directed cost relation ∆; Γ ` s ⇑ρ C is presented in figure 5.2
capturing the total cost C as the sum of the individual steps required to
evaluate a program s.

Many of the rules such as MkConsCost and LetCost intuitively take the
cost of their two components and sum them. Performing a type coercion
with a rewrite of course requires no runtime cost and thus the RewriteCost
simply returns the cost of the underlying statement being coerced. Costing
atomic expressions is similarly simple, given directly by the function h? as
defined by the AtomicCost rule.

The cost of case expressions and iteration are more interesting. Handling
caselist is broken into three cases corresponding to the branch reachability
information which is immediately available from the semantic index. To
understand why three cases are necessary, first consider the cost of evaluating
a case over a list known to be nil. Such a list will only ever evaluate the nil
branch. However if a list is known to be non-nil, the scrutinee must still be
evaluated. This is because the head and tail need to be made available for
use in the branch and thus casing over e.g. a complex expression resulting
in a list must be reduced. In the final case, when the list is not known to be
nil or non-nil, first the scrutinee must be evaluated, and then either the nil
or non-nil branch must be evaluated. Consider each case in details:

CHAPTER 5. VERIFIED COST ANALYSIS 140

∆; Γ ` s ⇑ρ C (traced statement cost)

AtomicCost
C = h?(a)

∆; Ξ; Γ ` a ⇑ρ C

RewriteCost
∆; Ξ; Γ ` s ⇑ρ C

∆; Ξ; Γ ` rewrite j p s ⇑ρ C

MkNilCost ∆; Ξ; Γ ` [] ⇑ρ 0 MkConsCost

∆; Ξ; Γ ` s1 ⇑ρ C1
∆; Ξ; Γ ` s2 ⇑ρ C2

∆; Ξ; Γ ` s1 :: s2 ⇑ρ C1 + C2

LetCost

∆; Ξ; (x, τ2, i2), Γ ` s2 ⇑ρ C2
∆; Ξ; Γ ` s1 ⇑ρ C1

∆; Ξ; Γ ` let x = s1 in s2 ⇑ρ C1 + C2

ElimNatCost

∆; Ξ; Γ ` s1 ⇑ρ C1 ∆; Ξ; Γ ` s3 ⇑ρ C3
∆; Ξ; Γ ` s1 : Nat i1 ∆; Ξ; Γ ` s3 : τ i3

Ji1Kρ = v1 Ji3Kρ = v3
Ji2K(v3, v1, ρ) = v′

∆; Ξ; Γ ` s2 ⇑v1,v3
ρ v′, C ′

∆; Ξ; Γ ` elimnat s1 (x, acc 7→ s2) s3 ⇑ρ C1 + C3 + C ′

ElimListCost

∆; Ξ; Γ ` s1 ⇑ρ C1 ∆; Ξ; Γ ` s3 ⇑ρ C3
∆; Ξ; Γ ` s1 : List i1 ∆; Ξ; Γ ` s3 : τ i3

Ji1Kρ = v1 Ji3Kρ = v3
Ji2K(v3, v1, ρ) = v′

∆; Ξ; Γ ` s2 ⇑v1,v3
ρ v′, C ′

∆; Ξ; Γ ` elimlist s1 (x, acc 7→ s2) s3 ⇑ρ C1 + C3 + C ′

Figure 5.2: Statement cost by execution trace

CHAPTER 5. VERIFIED COST ANALYSIS 141

ListCost

∆; Ξ; Γ ` s1 ⇑ρ C1 ∆; Ξ; Γ ` s3 ⇑ρ C3
(j, Nat), (js, List), ∆; (i1 ≈ j :: js), Ξ; (x, Nat, j), (xs, List, js), Γ ` s2 ⇑v1,ρ C2

∆; Ξ; Γ ` s1 : List i1 Ji1Kρ = v1
∆; Ξ ` i1 ρ (j :: js) ∆; Ξ ` i1 ρ []

IfNil(v1, C2, C3, C ′)
∆; Ξ; Γ ` caselist s1 ((x :: xs) ⇒ s2); ([] ⇒ s3) ⇑ρ C1 + C ′

ConsCost

∆; Ξ; Γ ` s1 ⇑ρ C1
∆; Ξ; Γ ` s1 : List i1

Ji1Kρ = w :: ws
∆; Ξ ` i1 6 ρ []

(j, Nat), (js, List), ∆; (i1 ≈ j :: js), Ξ; (x, Nat, j), (xs, List, js), Γ ` s2 ⇑w::ws,ρ C2

∆; Ξ; Γ ` caselist s1 ((x :: xs) ⇒ s2); ([] ⇒ s3) ⇑ρ C1 + C2

NilCost

∆; Ξ; Γ ` s3 ⇑ρ C3
∆; Ξ; Γ ` s1 : List i1
∆; Ξ ` i1 6 ρ (j :: js)

∆; Ξ; Γ ` caselist s1 ((x :: xs) ⇒ s2); ([] ⇒ s3) ⇑ρ C3

Figure 5.2: Statement cost by execution trace (continued)

NilCost corresponds to the case of a list known to be nil. In this case the
scrutinee can be thrown away without evaluating since we will simply
discover that it’s nil, gaining no new information. Thus the cost of
the case will be the cost of evaluating the nil branch s3, i.e. the cost
will be C3.

ConsCost corresponds to the case of a list known to be non-nil. In this case
the scrutinee must be evaluated since the head and tail must be bound
to x and xs respectively. Since the scrutinee s1 could be a complicated
expression it might take some computation in order to gain access
to the list’s head and tail; thus the cost of breaking this expression
down is given by C1. Finally the cons case of the branch—having cost
C2—must be evaluated. Thus the total cost of this expressions is the
sum of these two costs: C1 + C2.

ListCost corresponds to the final case: a term of unknown shape. Since
nothing is known about the input, the cost is “stuck” with a conditional.
As was the case in the cons case, first the scrutinee must be evaluated,

CHAPTER 5. VERIFIED COST ANALYSIS 142

having cost C1. Next, having broken down s1 into a list value, we
must inspect it and decide whether the nil or non-nil branch should
be evaluated which is the responsibility of IfNil defined in appendix F
on page 209. Since either of the branches might be taken, the cost of
both branches C1 and C2 are required. Finally the IfNil relation is
given by cases on v1, binding C ′ to C2 when v1 is non-nil, and to C3
when v1 is nil. Thus the total cost of the case is the cost of evaluating
scrutinee, plus the cost of the branch taken: C1 + C ′.

The final rules ElimNatCost and ElimListCost correspond to the costing
of loops over numbers and lists respectively. Note that because the cost of
the body of the loop can depend on the shape of its inputs x and xs there is
no closed form solution that would suitably capture the cost of repeatedly
executing a general loop body. However in special cases such as a constant
cost body, closed form solutions such as taking the product of the body cost
are possible. Thus to cost a loop, it must be completely evaluated and hence
its input must be known. Note that this is a stronger requirement than a
simple loop bound since in the case of a list, every member’s value must be
expressible. Fortunately such static information is available courtesy of the
input’s semantic index.

First consider the rule ElimNatCost, the total cost appeals to the loop
body relation ∆; Ξ; Γ ` s ⇑v1,v3

ρ v′, C ′ defined in figure 5.3. This relation
accepts an item v1 to loop over and an “accumulator seed” v3 which is used
to evaluate the loop’s base case. However these values are also used to
extend the context because the term s cannot be evaluated in ρ alone. This
is because s is only well-formed in the contexts ∆ and Γ extended with x
and xs, allowing access to the current input and accumulator values.

The loop body relation in figure 5.3 breaks the cost calculation into
the base case DoneNatCost and recursive case StepNatCost of the loop
trace. Before going over the details it is helpful to recall the traditional fold
function, or eliminator, on natural numbers.

foldnat : (N → A → A) → A → N → A

foldnat f v 0 = v

foldnat f v (n + 1) = f n (foldnat f v n)

The above pattern will be followed by the DoneNatCost and the StepNatCost
rules, corresponding to the 0 and n + 1 cases respectively. Intuitively the

CHAPTER 5. VERIFIED COST ANALYSIS 143

base case returns the seed v without doing any work, thus having zero cost.
The recursive case will calculate a recursive cost and perform one more step
of work, summing the two costs and returning the newly accumulated value.

As in foldnat, the base case does no work, and simply returns the initial
accumulator value v. Thus the resulting accumulator is v and the total cost
is 0. Costing a recursive step of loop evaluation is where the actual work
occurs. Intuitively the overall cost will be the cost of evaluating the rest
of the loop, plus the cost of evaluating the loop body for the current step.
Thus the StepNatCost rule first computes the cost of the rest of the loop
∆; Ξ; Γ ` s ⇑n,v

ρ v′, C feeding the resulting accumulator value v′ into the
evaluator JjK(n + 1, v′, ρ) = v′′ to compute the new accumulator value v′′

required by the next round of the loop. Finally the cost of the loop body for
this iteration is found to be C ′ by ∆; Ξ; Γ ` s ⇑n+1,v′′,ρ C ′. Thus the overall
cost of the loop for n + 1 iterations is the sum of the costs of performing n
iterations plus this iteration’s body i.e. C + C ′.

The last remaining rule, ElimListCost, is nearly identical to the rule
ElimNatCost because lists may only contain natural numbers. Thus iterat-
ing over a list repeatedly yields the list head—a number—along with the
current accumulator. Similarly, iterating over a natural number counts down,
repeatedly yielding the current number along with the current accumulator.
Thus as was the case with ElimNatCost the total cost of eliminating a list is
the cost of evaluating the initial accumulator C3, plus the cost of evaluating
the list to eliminate C1, plus sum of the costs of the loop body for each
round of iteration C ′ i.e. C1 + C3 + C ′. As was the case in ElimNatCost,
ElimListCost relies on the loop body relation defined in figure 5.3 to compute
the total cost of the loop. The two rules DoneListCost and StepListCost
follow the same pattern as DoneNatCost and StepNatCost, except that
iteration is performed on the tail of the list rather than counting down a
number.

Using this relation it’s trivial to give a precise cost for the head function
from chapter 3 noting it has the same representation in both L and S .

head xs = caselist xs ((x :: xs′) ⇒ x); ([] ⇒ dead (i :: is) [])

Costing the above is a single application of the ConsCost rule which clearly
holds since [] is unreachable—proof of which follows from the application of

CHAPTER 5. VERIFIED COST ANALYSIS 144

∆; Γ ` s ⇑V,V
ρ C (traced iteration cost)

DoneNatCost
(i, Nat), (acc, τ), ∆; Ξ; (x, Nat, i), (xs, τ, acc), Γ ` s : τ j

∆; Ξ; Γ ` s ⇑0,v
ρ v, 0

StepNatCost

(i, Nat), (acc, τ), ∆; Ξ; (x, Nat, i), (xs, τ, acc), Γ ` s : τ j
∆; Ξ; Γ ` s ⇑n,v

ρ v′, C
JjK(n, v′, ρ) = v′′

∆; Ξ; Γ ` s ⇑n,v′′,ρ C ′

∆; Ξ; Γ ` s ⇑n+1,v
ρ v′′, C + C ′

DoneListCost
(i, Nat), (acc, τ), ∆; Ξ; (x, Nat, i), (xs, τ, acc), Γ ` s : τ j

∆; Ξ; Γ ` s ⇑[],v
ρ v, 0

StepListCost

(i, Nat), (acc, τ), ∆; Ξ; (x, Nat, i), (xs, τ, acc), Γ ` s : τ j
∆; Ξ; Γ ` s ⇑vs,v

ρ v′, C
JjK(n, v′, ρ) = v′′

∆; Ξ; Γ ` s ⇑n,v′′,ρ C ′

∆; Ξ; Γ ` s ⇑n::vs,v
ρ v′′, C + C ′

Figure 5.3: Iteration cost by execution trace

dead. Thus the cost is derived as follows.

(i, Nat), (is, List), ∅;
∅;

(xs, List, i :: is), ∅
` caselist xs

{
x :: xs′ ⇒ x;
[] ⇒ dead (i :: is) []

}
⇑w::ws,∅ h?(xs)+h?(x)

Given that the cost of the body is.

C = h?(x)
(i, Nat), (is, List), ∅;

(i :: is ∼ j :: js), ∅;
(x , Nat, j), (xs′, List, js), (xs, List, i :: is), ∅

` x ⇑v,vs,w::ws,∅ h?(x)

Along with the cost of evaluating the scrutinee, required to gain access to

CHAPTER 5. VERIFIED COST ANALYSIS 145

its head and tail.
C = h?(xs)

(i, Nat), (is, List), ∅;
∅;

(xs, List, i :: is), ∅
` xs ⇑w::ws,∅ h?(xs)

While these derivations are unwieldy to write by hand, Idris tends to infer
many of the terms, including the context and environment. Unfortunately
this is double edged—inference of these terms is costly and checking even a
small term such as a single loop takes minutes on a modern Haswell machine
in addition to upwards of 5GBs of RAM. For instance Idris can be asked to
verify that the cost of a loop over 2 is the sum of repeatedly evaluating the
body plus the cost of evaluating the initial accumulator value and the value
to iterate over. This proposition is given by

CostTrace []
[]
(ElimNat (Atomic (NLit 2)) "i'" "acc"

(Atomic (Add (Var Here) (Var (There Here))))
(Atomic (NLit 1)))

(costAExp (NLit 2) +
(costAExp (Add (Var Here) (Var (There Here))) +
(costAExp (Add (Var Here) (Var (There Here))) +
(costAExp (Add (Var Here) (Var (There Here)))))) +

(costAExp (NLit 1)))

To prove this, Idris need only be supplied with the high-level constructors
ElimNatCost, AtomicCost, AtomicCost and the rest can be inferred. The
exact proof is

ElimNatCost ACost
(SucCost ACost (SucCost ACost (ZeroCost ACost)))
ACost

A key advantage of this cost strategy using an EDSL in a dependently
typed context is that the cost of a term can be reasoned about directly in
the host language. Importantly it’s possible to give a mechanical, correct-
by-construction guarantee that these costs are over the correct program,
and not one which has been mistranslated. Specifically the trace based cost
relation allows for reasoning about statements in S ; however this is not
the language the program’s are written in and thus in the next section we
discuss a means of translating from L to S automatically. As earlier noted,

CHAPTER 5. VERIFIED COST ANALYSIS 146

the statement language is meant to capture the rough structural properties
of the code to be executed.

5.2 Decomposing semantics indexed
expressions

This decomposition will be index expression preserving, and therefore correct
by construction. It will be shown this is the case by considering that if the
statement language is given a index expression respecting semantics, by the
canonicity of values any transformation which is index expression respecting
is automatically semantics preserving.

Although a means of costing programs has been developed, the analysis
is over a newly proposed statement language rather than the expression
language L . Rather than adapting the analysis, a decomposition of index
expression expressions into the statement language will be developed. As
stated, the correctness of the decomposition will be guaranteed by ensuring
it is index expression preserving i.e. by indexing statements by the index
expression of the concrete expression whose structure is described. The
guarantee of the transformation’s correctness is not immediately obvious.
However note that index expressions can be viewed not only as a restric-
tion of an expression’s or a statement’s shape but also as capturing some
semantic invariance. In this way the expression and statement types become
views [MM04b] on a index expression. Thus if a transformation is index ex-
pression preserving, it is semantics preserving. To see roughly why, consider
that two index expression respecting notions of evaluation produce values
at the same index expression index; however by the canonicity of indexed
values given in theorem 3.5.3 on page 100 this implies that the indexed
values themselves are too equivalent. Thus showing the equivalence between
any transformation on a syntax tree is reduced to showing that it is index
expression preserving. As will be seen later, the statement language will not
only lend itself to static analysis, but also simplify the process of performing
compilation to reasonably efficient object code.

First the syntax of indexed, atomically costed expressions should be
captured. Recall that such expressions include variables, values, and the
“builtin-operation” of numeric addition. The notions of variables and list val-
ues can remain unchanged; however numeric literals are no longer expressed

CHAPTER 5. VERIFIED COST ANALYSIS 147

as a chain of successors on zero. Due to the lack of a builtin successor opera-
tion, the handling of numbers requires that towers of successor be collapsed
to a single numeric literal. In the case of handling built-in operations there
is a choice: some languages such as Agda allow explicit tagging of functions
as built-in so that semantically they are treated using their definition, but
at compile time result in the emission of efficient code. In our case anything
with a index expression that’s semantically equivalent to addition could
be used. Such a rule could be enforced with a trick similar to the rewrite
expression. However in the interest of simplicity only terms following a
particular shape will be translated to primitive addition. In chapter 4 on
page 108 addition will be given as a macro in L that will always result in
the extraction of efficient code. In particular because there is no automated
means for testing function equivalence such a flexible rule would only be
suitable for less-automated structural decompositions that heavily involve
the programmer.

The rules for atomically costed expressions are given in figure 5.4 The
rules use a pre-ordained definition for addition on index expressions. Recall
that the goal is to lift structural elements out of the expression language from
chapter 3, thus the remaining language constructors from L will map to the
structurally costed portion of S . Given the great similarity between the
two languages, only two new syntactic elements need to be introduced: let
binding and atomic expression lifting. These elements are required because
like in C, addition expression can no longer have expressive control flow
elements such as loops and branches embedded in them.

Given a notion of well-formedness it’s possible to embed S as an EDSL
into Idris using the usual type indexing trick to ensure correctness. The
translation of S syntax into an EDSL using Idris is relatively straightforward.
First consider atomic expressions. Literals and variables will take their usual
shape. In the case of addition, as was noted although it’s possible to give
a flexible definition allowing any index expression which is semantically
equivalent to the usual definition of addition, its not clear that much value
is added given the additional complexity, thus the index is taken to be the
standard definition of addition as a loop over the augend.

data AExp : Ctx ictx -> (t : Ty) -> Ix ictx t -> Type where
Add : AExp ctx TyNat i1 -> AExp ctx TyNat i2

-> AExp ctx TyNat (i1 `plus` i2)
NLit : (n : Nat) -> AExp ctx TyNat (nat n)
Var : (elt : Elem (x, (t ** i)) ctx) -> AExp ctx t i

CHAPTER 5. VERIFIED COST ANALYSIS 148

∆; Ξ; Γ`s : τ S (well-formed, indexed statements)
Γ 3v (x, τ, i)

∆; Ξ; Γ ` v : τ i ∆; Ξ; Γ ` n : Nat n

Add
∆; Γ ` a1 : Nat i1 ∆; Γ ` a2 : Nat i2

∆; Γ ` a1 + a2 : Nat (plus i1 i2)

Rewrite
∆; Γ ` s : τ i

∆; Γ ` rewrite j p s : τ j

∆; Ξ; Γ ` [] : List []

∆; Ξ; Γ ` s1 : Nat i1
∆; Ξ; Γ ` s2 : List i2

∆; Ξ; Γ ` s1 :: s2 : List i1 :: i2

∆; Ξ; Γ ` s1 : τ1 i1
∆; Ξ; (x, τ1, i1), Γ ` s2 : τ2 i2

∆; Ξ; Γ ` let x = s1 in s2 : τ i2

∆; Ξ; Γ ` s1 : Nat i1
(j, Nat), (js, List), ∆; (i1 ≈ j :: js), Ξ; (x, Nat, j), (xs, List, js), Γ ` s2 : τ i2

∆; Ξ; Γ ` s3 : τ i3

∆; Ξ; Γ ` caselist s1 ((x :: xs) ⇒ s2); ([] ⇒ s3) : caselist i1 ((j :: js) ⇒ i2); ([] ⇒ i3)

∆; Ξ; Γ ` s1 : Nat i1
(j, Nat), (acc, τ), ∆; Ξ; (x, Nat, j), (xs, τ, acc), Γ ` s2 : τ i2

∆; Ξ; Γ ` s3 : τ i3

∆; Ξ; Γ ` elimlist s1 (x, xs 7→ s2) s3 : elimlist i1 (j, acc 7→ i2) i3

∆; Ξ; Γ ` s1 : Nat i1
(j, Nat), (js, List), ∆; Ξ; (x, Nat, j), (xs, τ, acc), Γ ` s2 : τ i2

∆; Ξ; Γ ` s3 : τ i3

∆; Ξ; Γ ` elimnat s1 (x, xs 7→ s2) s3 : elimnat i1 (j, acc 7→ i2) i3

Figure 5.4: Typing rules for statements and atomic expressions

CHAPTER 5. VERIFIED COST ANALYSIS 149

The encoding of statements is close enough to expressions that only the
special cases of atomic expressions and let statements are included, the full
translation is given in appendix D on page 199.

data Stmt : IxConstraints ictx -> Ctx ictx -> (t : Ty)
-> Ix ictx t -> Type where

Atomic : AExp ctx t i -> Stmt facts ctx t i
Let : (x : Name)

-> {ctx : Ctx ictx}
-> Stmt facts ctx t1 i1
-> Stmt facts ((x, (t1 ** i1)) :: ctx) t2 i2
-> Stmt facts ctx t2 i2

The atomic expressions leave little to the imagination, blindly lifting a
well-formed expression into the statement language, preserving its index
expression and type. However the handling of let is slightly more interesting
in its remarkable simplicity. Since the introduction of a let binding induces
no change in the semantics of a term, only the statement context is modified,
introducing the newly bound variable x along with its index expression i1
and type t1. Thus ensuring the sound introduction of binding is deferred to
the algorithm decomposing an expression in L into a statement in S .

Fortunately the function for decomposing an expression in L to one in S
is relatively simple thanks to the use of dependent types. In fact, as will be
seen the rules are so strict that for example attempting to misplace a variable
when decomposing an addition operation will result in a type-checking error
because the resulting index expression would have been rendered incorrect.

Intuitively expression decomposition will work by repeatedly transform-
ing sub-expressions and producing an auxiliary proof that the resulting
index expression is equivalent to the input index expression. Finally at the
top level we will arrive at a statement without rewrites in some new index
expression j along with a proof ofindex expression equality between the
input index expression i and the new index expression j. To carry this proof
of transporting the input index expression i to the a statement with an
equivalent output index expression j, a type of statements with a top-level
rewrite is introduced.

data StmtRewritePath : IxConstraints ictx
-> Ctx ictx
-> (t : Ty)
-> Ix ictx t
-> Ix ictx t
-> Type where

CHAPTER 5. VERIFIED COST ANALYSIS 150

MkRewrite : ((ixEnv : IxEnv ictx) ->
EvalConstraints ixEnv facts ->
eval i ixEnv = eval j ixEnv)

-> Stmt facts ctx t j
-> StmtRewritePath facts ctx t i j

Note that this precisely follows the structure of the rewrite rule in sec-
tion 3.4.2 on page 88. Of course we wish to talk about a index expression
respecting statement without particular care for the shape of j and thus the
new index is best hidden with an existential.

StmtRewrite : IxConstraints ictx -> Ctx ictx -> (t : Ty)
-> Ix ictx t -> Type

StmtRewrite {ictx=ictx} facts ctx t i =
(j : Ix ictx t ** StmtRewritePath facts ctx t i j)

Given a means of flexibly building correct-by-construction statements
respecting some “source” index expression i, it’s possible to give a mecha-
nization of expression decomposition.

decomposeRewrite : Exp facts ctx t i
-> StmtRewrite facts ctx t i

As a warm-up handling variables and lists is trivial because the representation
is identical in L and S , thus the only work required is in the construction
of the index expression equivalence proof. For variables the equivalence is
trivial since no transformation is performed.

decomposeRewrite (Var {x=x}{t=t}{i=i} elt) =
(i ** MkRewrite (\ixEnv, knowns => Refl)

(Atomic (Var elt)))

However in the case of statements the head and tail must be recursively
transformed. These sub-trees may have rewrites, additions, successor, etc.
and thus will their transformation produces both a statement and a rewrite.
In order to compose these two, their rewrites must also be composed.

decomposeRewrite [] =
([] ** MkRewrite (\ixEnv, knowns => Refl) [])

decomposeRewrite (e1 :: e2) = case decomposeRewrite e1 of
(j1 ** MkRewrite j1Ei1 s1) => case decomposeRewrite e2 of

(j2 ** MkRewrite j2Ei2 s2) =>
(j1 :: j2 **
MkRewrite (\ixEnv, knowns => ?j1j2Ok) (s1 :: s2))

As stated, e1 of index expression i1 is decomposed into the statement s1
whose new index expression is j1. However we are equipped with a proof

CHAPTER 5. VERIFIED COST ANALYSIS 151

j1Ei1 that j1 is semantically equivalent to the index expression i1, i.e.
that eval i1 ixEnv1 = eval j1 ixEnv1 in the current constraint context
facts. Decomposing the tail e2 into s2 of index expression j2 produces a
similar semantic correctness proof. Given this knowledge, what is the goal
?j1j2Ok?

Since the top-level expression e1 :: e2 is being deconstructed, the
required proof states that the final output index expression j1 :: j2 is
semantically equivalent to the input index expression i which of course is
known to be i1 :: i2. Thus the goal reduces as follows.

eval (i1 :: i2) ixEnv
= eval i1 ixEnv :: eval i2 ixEnv
= eval j1 ixEnv :: eval j2 ixEnv

Of course by assumption the above head and tail are equivalent, thus by
repeated application of rewriting the obligation is satisfied.

?j1j2Ok = rewrite j2Ei2 ixEnv knowns in
rewrite j1Ei1 ixEnv knowns in

Refl

The handling of numbers is a particularly interesting case because in L
they are represented as the repeated application of successor to zero. Ideally
these towers of constructors should be optimized away and thus collapsed
into a single literal. The handling of 0 is trivial, simply return a new 0
literal.

decomposeRewrite Z = (Z ** MkRewrite (\ixEnv, knowns => Refl)
(Atomic (NLit Z)))

However handling successor is more interesting and depending on the desired
level of optimization, can be handled in several distinct cases. Consider
the successor input S e, after first decomposing e into S how should
decomposition proceed?

decomposeRewrite (S e) = case decomposeRewrite e of

The simplest case is when e happened to be another application of successor
or zero and thus is decomposed into a numeric literal. In this case the
current application of successor can simply be absorbed into the literal.

(nat n ** MkRewrite jEi (Atomic (NLit n))) =>
(nat (S n) **
MkRewrite (\ixEnv, knowns => ?sucOk)

(Atomic (NLit (S n))))

CHAPTER 5. VERIFIED COST ANALYSIS 152

As usual proof that this is a legal, index expression respecting operation
must be given. Fortunately the decomposition of e provides a proof jEi that
the index expression i of e is the constant nat n. Thus by an application
of the congruence rule S i = S (nat n) = nat (S n) as required.

?sucOk = cong (jEi ixEnv knowns)

On the opposite end of the spectrum, given a non-atomic statement nothing
can be done. Thus the resulting value must be extracted with a let binding
so that it can be incremented using an addition instruction.

(j ** MkRewrite jEi s) =>
(S Z `plus` j **
MkRewrite (\ixEnv, knowns => rewrite jEi ixEnv knowns in

plusOneIsSuc ixEnv)
(Let "sucS" s (Atomic (Add (NLit 1)

(Var Here)))))

The proof that this transformation is index expression respecting follows
from the fact that adding one to a term by looping over it and replacing zero
with one is equal to simply applying the successor constructor. The term jEi
proves that eval j ixEnv = eval i ixEnv however the index expression of
the let body is the aforementioned loop over j. Thus the goal is reduced to
proving this equality. Fortuntely Idris can deduce plusOneIsSuc by simply
reducing both sides.

plusOneIsSuc : {j : Ix ictx TyNat}
-> (ixEnv : IxEnv ictx)
-> S (eval j ixEnv) =

natFold (\n, vacc => S vacc) (eval j ixEnv)
(S Z)

plusOneIsSuc ixEnv = Refl

The final case to handle is when e is decomposed into a non-literal atomic
expression e.g. a variable. In this instance, like the case of a statement no
optimization can be done, and thus the term should be incremented with
an add instruction.

(j ** MkRewrite jEi (Atomic a)) =>
(S Z `plus` j **
MkRewrite (\ixEnv, knowns => rewrite jEi ixEnv knowns in

plusOneIsSuc ixEnv)
(Atomic (Add (NLit 1) a)))

The reader may note the handling of two more possible cases could optimize
the resulting term when addition is performed over a literal on either side.

CHAPTER 5. VERIFIED COST ANALYSIS 153

Such an optimization is certainly possible and is readily shown to be index
expression respecting.

Iteration decomposition is similar for both list and nat, thus only nat
iteration is covered. Unsurprisingly the strategy is to directly decompose the
body, the expression to iterate over, and the initial value; however proving
equivalence of the new index expression is tricky, requiring a proof folding
with two step function agreeing everywhere are equal. This proof is given
by a lemma rewriteElimNat.

decomposeRewrite (ElimNat e1 i' acc e2 e3) =
case decomposeRewrite e1 of

(j1 ** MkRewrite j1Ei1 s1) => case decomposeRewrite e2 of
(j2 ** MkRewrite j2Ei2 s2) => case decomposeRewrite e3 of

(j3 ** MkRewrite j3Ei3 s3) =>
(ElimNat j1 acc i' j2 j3 **
MkRewrite (\ixEnv, knowns =>

rewriteElimNat (j1Ei1 ixEnv knowns)
j2Ei2
knowns
(j3Ei3 ixEnv knowns))

(ElimNat s1 i' acc s2 s3))

The proposition rewriteElimNat is considerably more complicated than its
proof, asserting that if the evaluation of j2 and the evaluation of i2 agree
then so do folds where each step evaluates either respective body.

rewriteElimNat
: {w1, w1' : Nat}

-> {i2, j2 : Ix ((acc, t) :: (i', TyNat) :: ictx) t}
-> {w3, w3' : EvalTy t}
-> w1 = w1'
-> (ixEnv : IxEnv ictx) ->

EvalConstraints ixEnv
(weakenConstraints facts

[(acc, t)
,(i', TyNat)]) ->

eval i2 ixEnv = eval j2 ixEnv
-> EvalConstraints ixEnv facts
-> w3 = w3'
-> natFold (\n, vacc => eval i2 (vacc :: n :: ixEnv)) w3 w1 =

natFold (\n, vacc => eval j2 (vacc :: n :: ixEnv)) w3' w1'

The proof of this term is a direct consequence of the fact that whenever two
functions are extensionally equal, so too is fold.
rewriteElimNat {w1=w1}{w3=w3}{i2=i2}{j2=j2}{ixEnv=ixEnv}

CHAPTER 5. VERIFIED COST ANALYSIS 154

Refl i2Ej2 knowns Refl =
natFoldFSubst {f = \n, vacc => eval i2 (vacc :: n :: ixEnv)}

{g = \n, vacc => eval j2 (vacc :: n :: ixEnv)}
(\n, vacc => i2Ej2 (vacc :: n :: ixEnv)

(weakenKnowns knowns [_,_]))
w1 w

The proof is given in listing D.3 on page 206.
The next case to handle is an explicit coercion by Rewrite which is key to

proving the rewrite minimality property. Intuitively rewriting a term twice
in a row should be collapsable since rewriting is ultimately a statement of
propositional equality. This intuition indeed translates to an application of
transitivity. First the rewritten term e of index expression i is reduced to s
with new index expression k along with a proof that i and k are semantically
equivalent. However the goal is to show an equivalence between the new
index expression k and the index expression j of the rewrite itself. This of
course is precisely from where the need for transitivity arises.

decomposeRewrite (Rewrite j iToJ e) =
let (k ** MkRewrite iEk s) = decomposeRewrite e
in (k ** MkRewrite (\ixEnv, knowns =>

sym (iToJ ixEnv knowns) `trans`
iEk ixEnv knowns)

s)

Thus all rewrites appear to be lifted to the top scope effectively erasing
them. Unfortunately this is not so, as case analysis introduces rewrites. To
understand why this is necessary consider how decomposition might proceed
over a case where both branches are reachable.

decomposeRewrite (CaseList {i1=i1} {i2=i2} {i3=i3} e1 hd tl
(Reachable (CanReach sub2 i1ToJ) e2)
(Reachable (CanReach sub3 i1ToK) e3))

Intuitively—but wrongly so—the three expressions could be transformed
into statements with new index expressions j1, j2, and j3. Then a in-
dex expression CaseList j1 hd tl j2 j3 might be returned with a new
CaseList statement, swapping out the three expressions for their decom-
posed statements.

case decomposeRewrite e1 of
(j1 ** MkRewrite j1Ei1 s1) => case decomposeRewrite e2 of

(j2 ** MkRewrite j2Ei2 s2) => case decomposeRewrite e3 of
(j3 ** MkRewrite j3Ei3 s3) =>

CHAPTER 5. VERIFIED COST ANALYSIS 155

Unfortunately this fails—infuriatingly, stale copies of the original index
expressions i1, i2, and i3 remain in the constraint context! Thus the body
statements s2 and s3 are ill-typed, wrongly generating constraints on their
new index expressions j2 and j3. The solution is simply to swap out the
new index expression for the old using coercions.

(CaseList i1 hd tl i2 i3 **
MkRewrite

(\ixEnv, knowns => Refl)
(CaseList (Rewrite (\ixEnv, known =>

sym (j1Ei1 ixEnv known)) s1)
hd tl
(Reachable

(CanReach sub2 (\ixEnv, known, known' =>
i1ToJ ixEnv known known '))

Rewrite {j=i2} (\ixEnv, known =>
sym (j2Ei2 ixEnv known)) s2))

(Reachable
(CanReach sub3 (\ixEnv, known, known' =>

i1ToK ixEnv known known '))
(Rewrite {j=i3} (\ixEnv, known =>

sym (j3Ei3 ixEnv known)) s3))))

The remaining cases considering reachability of each branch follow the same
strategy and thus are omitted.

Although all the possible shapes have been handled, the application of
addition-as-iteration has not yet been optimized into an atomic instruction
so the resulting statements still make inefficient use of the underlying
hardware. As is common in many languages including Idris and Agda some
operations are given special compilation behavior in addition to their user
facing semantic definition. Here the “addition loop” given as a fold on
the augend ElimNat e1 i' acc (S (Var Here)) e2 is considered to be the
canonical notion of addition and is optimized accordingly, however were
functions supported natively—as opposed to deferring to host support—a
particular function name could be tagged for optimization.

Similar to the case of handling numeric literals, the handling of addition is
broken down into case depending on the shape of the decomposed augend e1
and addend e2. In the simplest case both e1 and e2 are atomic expressions
and thus their sum is simply an add node over their atomic decompositions
a1 and a2.

decomposeRewrite (ElimNat e1 i' acc (S (Var Here)) e2) =
case decomposeRewrite e1 of

CHAPTER 5. VERIFIED COST ANALYSIS 156

(j1 ** MkRewrite j1Ei1 (Atomic a1)) =>
case decomposeRewrite e2 of

(j2 ** MkRewrite j2Ei3 (Atomic a2)) =>
(j1 `plus` j2 **
MkRewrite (\ixEnv, knowns => ?addOk)

(Atomic (Add a1 a2)))

Clearly such a transformation is valid because the shape of the index expres-
sion does not change, in both cases it is a sum—expressed as a loop—over the
inputs; however the inputs e1 and e2 have been given new index expressions
upon decomposition. Thus the obligation is a case of swapping out equal
arguments

rewriteAddAtomic : w1 = w1'
-> w3 = w2'
-> (f : Nat -> Nat -> Nat)
-> natFold f w3 w1 = natFold f w2' w1'

rewriteAddAtomic Refl Refl f = Refl

As it turns out this rewrite rule is flexible enough to solve all four cases of
addition because each reduces to an equality on inputs.

?sucOk = rewriteAddAtomic (j1Ei1 ixEnv knowns)
(j2Ei3 ixEnv knowns)
_

The remaining three cases are all similar where either input, or both are
decomposed into non-atomic statements and thus must be let-bound before
use in an addition node. In the worse case both terms are non-atomic.

case decomposeRewrite e1 of
(j 1 ** MkRewrite j1Ei1 s1) =>

case decomposeRewrite e2 of
(j2 ** MkRewrite j2Ei3 s2) =>

(j1 `plus` j2 **
MkRewrite (\ixEnv, knowns =>

rewriteAddAtomic (j1Ei1 ixEnv knowns)
(j2Ei3 ixEnv knowns) _)

(Let "s1add" s1
(Let "s2add" (weakenStmt s2 [_])

(Atomic (Add (Var (There Here))
(Var Here))))))

Note that the second statements s2 had to undergo explicit weakening since
it’s defined in a scope without the s1add variable. Similarly when one or the
other inputs is atomic, the resulting expression is well-defined in a smaller
context, without the outer let-bound variable.

CHAPTER 5. VERIFIED COST ANALYSIS 157

case decomposeRewrite e2 of
(j2 ** MkRewrite j2Ei3 (Atomic a2)) =>

(j1 `plus` j2 **
MkRewrite (\ixEnv, knowns =>

rewriteAddAtomic (j1Ei1 ixEnv knowns)
(j2Ei3 ixEnv knowns) _)

(Let "s1add" s1
(Atomic (Add (Var Here) (weaken a2 [_])))))

The final case is symmetric and thus omitted.
Thus the function decomposeRewrite gives a formally verified means of

extracting low-level, machine supported features in a correct-by-construction
way. We have also shown how to efficiently handle machine supported data
types as is done in e.g. Epigram [Bra05b] in a safe, mechanized fashion.

In a rough sense an index expression i can be thought of as some type
of abstract interpretation of some concrete statement s : τ i inhabiting
it. The statement s communicates how to efficiently compute a value,
while i communicates some semantic contract that s must meet. Of course
unlike in the case of abstract interpretation which usually involves some
rough approximation, the resulting values from reducing i and s coincide
precisely. Specifically Cousot and Cousot formalize a term’s abstract in-
terpretation [CC77] as an approximation of that term along with a formal
connection between the two. For instance we might like to approximate
some arithmetic formula m + n in the case we don’t know the specific values
of m and n. In this case, rather than taking m and n to be natural numbers,
they instead can be considered to be ranges if e.g. m and n have some known
bounds. In this case m + n is approximated by producing not a specific sum,
but by perhaps an inclusive range whose lower and upper bound is the sum
of the known lower and upper bounds of m and n.

The next section explores precisely how to compile these decomposed
expressions directly to C via a low-level, virtual machine. This automated
transformation is not only a required step in the full compilation stack, but
also exemplifies how the native features exposed by the host can be used
to reason about programs. In particular programs can now be precisely
costed. It would also be possible to prove upper bounds about their cost
behavior using all the standard programming and proving features afforded
by Idris without any extra work on the implementor’s part as was explored
in chapter chapter 4 on page 108.

CHAPTER 5. VERIFIED COST ANALYSIS 158

5.3 Compilation with dead-code elimination
One of the advantages of a deeply embedded framework is the simplicity
of performing transformations on data. A claimed advantage of the index
expression system developed in chapter 3 on page 66 is the explicitness of
unreachable code branches. However thus far they have had little use. In fact,
the semantic index language carries no intrinsic reachability information,
and were a type of bottom value to be included, the eval function would
become unimplementable, requiring information be fed into it by the evalExp
function. This section develops a compiler which uses the case branch
reachability information to perform dead code elimination without relying on
sophisticated data and control flow analysis. Additionally all well-formedness
conditions are internalized yielding a correct-by-construction proof that the
transformation is type-respecting, and always produces well-formed terms.
The compiler will operate on the Stmt language rather than Exp obviating
the need to extract high-level operations on peano numbers in order to
be efficiently handled in hardware. Such a system could be used as an
intermediate language, where static analysis might operate on terms without
reachability annotations and emitting an Exp term to produce a correct-by-
construction proof of the dead-code elimination passes’ correctness.

The development of the compiler proceeds in parts

1. A description of the abstract machine instructions and data are given.

2. A continuation passing compilation function, verified correct in type
but not in semantic index is developed.

3. A printer in the style of Hughes [Hug95] and Wadler [Wad98] is
developed emitting compilable “low-level” C.

5.3.1 Describing the abstract machine
So far the correctness of typing and scoping in the languages developed have
been ensured by explicit context tracking. Recall that the first order nature
of explicit contexts is convenient because it allows for flexible evaluation and
reduction which is a necessary feature for index expression rewriting and
reachability checking. Since the primary use of the abstract machine devel-
oped here is direct compilation, the assembly will use PHOAS which is much
more efficiently checked by Idris and avoids tedious context manipulations.

CHAPTER 5. VERIFIED COST ANALYSIS 159

Given that the source language has structured iterators and case analy-
sis the machine will need to support looping and branching. Additionally
support is included for basic arithmetic which can be expected of all micro-
processors. As is the case in LLVM [LA04], the machine uses static single
assignment (SSA) [AWZ88] with an infinite number of registers. However
parameterized jumps are used instead of using φ-nodes which have a bizarre
evaluation depending on the path taken to arrive at the instruction. As
observed by Kelsey [Kel95] this is a more natural fit for a functional setting
however ultimately either would be suitable since they are equivalent. The
equivalence between these two possible design decisions was first explored
by Kelsey [Kel95] and further by Appel [App98] and Chakravaty [CKZ03].
Finally since binders are encoded with PHOAS, result values from machine
instruction are most naturally captured with continuations in the style of
Appel [App92], Kennedy [Ken07], Flanagan et al. [Fla+93], etc..

The machine description is broken into two parts: first a description of
the machine’s data representation must be given; following this a declaration
of the machine’s instruction set is possible. Finally the compilation function
will be presented in continuation passing style.

A description of machine data

Instructions in the machine naturally operate over registers and values;
however structured values such as lists are not directly accessible and must
be manipulated through pointers. Thus a machine values is either a numeric
literal or a register encoded as a PHOAS variable.

MCtx : Type
MCtx = (t : Ty) -> Type

data MLit : Ty -> Type where
NLit : Nat -> MLit TyNat

data MVal : MCtx -> Ty -> Type where
Var : mctx t -> MVal mctx t
Lit : MLit t -> MVal mctx t

In order to recapture list destructuring the machine exposes primitive
operations for accessing a list’s “positions” inspired by the universe of
strictly positive types or “container types” [AAG05]; [MAG07]; [Alt+15]
and universe of data descriptions [McB10a]. Ghani et al. observed that
in a dependently typed setting structured data types can be viewed as a

CHAPTER 5. VERIFIED COST ANALYSIS 160

tree where each node optionally contains some data along with a series of
branches which are determined by the structure of the node itself. This
structure is termed a shape. This idea maps quite well onto machine data
where a structure’s members can only be accessed by chasing pointers.
Moreover the validity of performing member accesses is determined by a
value’s shape which in the realm of runtime systems is more often referred to
as a tag of a tagged union. For instance a list is either nil or cons and must
be tagged as such. In the case of a nil value, no positions are available and
the tag is purely discriminative. However in the case of cons two positions
are available: head and tail. Thus a type of tags is defined indexed by
the type of the indicated constructors. Additionally a tag indexed type of
positions is defined, mapping a position in each tag to its type output type.

data ConsTag : Ty -> Type where
TagListNil : ConsTag TyList
TagListCons : ConsTag TyList

data ConsPos : ConsTag t -> Ty -> Type where
ConsPosHead : ConsPos TagListCons TyNat
ConsPosTail : ConsPos TagListCons TyList

Although support for S types is hard-coded, a strategy such as the finite
tag enumeration approach of Chapman et al. [Cha+10] could be adapted
to provide more general support at the expense of CPU time and error
messages.

Given this sufficiently low-level description of the machine’s data repre-
sentation, it’s possible to define the instructions that will be needed by the
compilation function.

Defining the instruction set

Recall that to support the source language S only jumps, arithmetic,
data allocation, and a few specialized pointer dereferencing instructions
are required. Specifically jump if zero, decrement, add, block labeling,
and unconditional jump. Backwards jumps to labels are modeled using
the PHOAS inspired back-edge representation of Oliviera et al. [SC12]. A
label declaration opens a new scope with a PHOAS function (in a distinct
namespace from variables) that can be invoked by a jump instruction. As
noted rather than using φ nodes, data is passed into blocks by passing
arguments directly to labels which therefore must be given a type signature.
The type of a label in n-parameters is

CHAPTER 5. VERIFIED COST ANALYSIS 161

ParamTypes : Nat -> Type
ParamTypes n = Vect n Ty

LabelCtx : Type
LabelCtx = (n : Nat) -> ParamTypes n -> Ty -> Type

Thus LabelCtx models the type of abstract, typed n-ary arrows. Since a
label can only be called with all its arguments passed simultaneously we
additionally define the type of machine valued arguments

Args : MCtx -> ParamTypes n -> Type
Args mctx ts = All (MVal mctx) ts

Similar to the all modality of lists, All on vectors effectively maps the
proposition MVal mctx over ts yielding the n length vector of machine
values with each type drawn from the next available value in ts.

The above non-data instructions can now be rigorously defined in Idris
data Asm : MCtx -> LabelCtx -> Ty -> Type where

Jz : MVal mctx TyNat
-> Asm mctx lctx t
-> Asm mctx lctx t
-> Asm mctx lctx t

Dec : MVal mctx TyNat
-> (MVal mctx TyNat -> Asm mctx lctx t)
-> Asm mctx lctx t

Add : MVal mctx TyNat
-> MVal mctx TyNat
-> (MVal mctx TyNat -> Asm mctx lctx t')
-> Asm mctx lctx t'

PJmp : {lctx : LabelCtx} -> {ts : ParamTypes n}
-> lctx n ts t -> Args mctx ts
-> Asm mctx lctx t

PLabel : {lctx : LabelCtx}
-> (n : Nat)
-> (ts : ParamTypes n)
-> (t : Ty)
-> (vs0 : Args mctx ts)
-> (lctx n ts t -> All mctx ts -> Asm mctx lctx t)
-> Asm mctx lctx t

While most of these instructions follow standard continuation style, to reiter-
ate the PLabel declaration creates a new block in n parameters with initial
values drawn from vs0. The block is then opened with the newly created
label of type lctx n ts t along with the n PHOAS encoded variables with
types drawn from ts: All mctx ts.

CHAPTER 5. VERIFIED COST ANALYSIS 162

In addition to the above instructions several specialized instructions for
fetching a constructor position, fetching a constructor tag, and atomically
allocating and initializing a data type are available. While the first two
of these instructions readily map to instructions such as lea on amd64,
and getelementptr on LLVM, the allocation instruction does not requiring
an allocation and several move operations. It is argued that the added
complexity is a reasonable trade-off to avoid necessitating a complicated
model of memory such as separation logic [Rey02] when reasoning about
correctness. Tags are encoded at the machine level using integers thus given
some pointer type t verified by a proof of ConsTy t, a program can request
the tag of a structured data pointer

GetTag : mctx t
-> {auto isConsTy : ConsTy t}
-> (MVal mctx TyNat -> Asm mctx lctx t')
-> Asm mctx lctx t'

Given a tag a member of the data structure can be requested by its position
GetConsPos : mctx t

-> {tag : ConsTag t}
-> ConsPos tag t'
-> (MVal mctx t' -> Asm mctx lctx t'')
-> Asm mctx lctx t''

Note that the type t' to continue in of the value requested is fully described
by the type of its position. Finally a structured data type can be allocated
and atomically initialized

AllocTagged : ConsTy t
-> (tag : ConsTag t)
-> ((posTy : Ty) ->

ConsPos tag posTy ->
MVal mctx posTy)

-> (mctx t -> Asm mctx lctx t')
-> Asm mctx lctx t'

The description of initial values are packed into the function of type
(posTy : Ty) -> ConsPos tag posTy -> MVal mctx posTy

Whereby for every valid position available to the tag, an initializing value of
the proper type posTy must be produced.

The machine described strikes a good balance between correctness and
simplicity ensuring basics such as proper scoping and typing, in addition
to some checks on structured data while not requiring values of all data be

CHAPTER 5. VERIFIED COST ANALYSIS 163

known e.g. the unbounded tag values. Notably there is no index expression
correctness property thus the correctness of translating from S is not
guaranteed in the usual correct-by-construction style. In the next section
this unverified translation will be given in continuation passing style.

5.3.2 Compiling L with continuations
As has been repeatedly apparent, a great advantage of encoding EDSL’s
with dependent types is the highly restricted scope of valid programs. By
immediately ruling out incorrect possibilities the compiler is often able to
automatically decipher desired program structures. This is additionally the
case when performing compilation where the correct handling of scoping is
required by the function’s type. Unfortunately this also means that a great
deal of code is spent rearranging the type to be an exact syntactic match
with what the compiler expects when it is clearly correct semantically.

As a simple warm-up the compilation of atomic expressions is described
first. Recall that this type from figure 5.4 on page 148 consists of numeric
literals, variable placement, and addition. As usual variables must be
handled using an environment tracking how free variables map to machine
values and registers i.e. PHOAS variables.

data CompileEnv : Ctx ictx -> MCtx -> Type where
EmptyEnv : CompileEnv [] mctx
UExtend : {ctx : Ctx ictx}

-> (x : Name) -> (t : Ty) -> (i : Ix ictx t)
-> MVal mctx t
-> CompileEnv ctx mctx
-> CompileEnv ((x, (t ** i)) :: ctx) mctx

This type is closely related to the environment used for expression evaluation,
ensuring that every free variable tracked by an expression’s context maps
to a well-formed value. However in this case the name, type, and index
expression of the variable being mapped are explicit arguments to aid the
Idris type-checker. As previously noted only the value’s type is respected,
avoiding tracking index expressions to simplify the implementation.

Given an environment an atomic expression is compiled and flattened in
a single step. Intuitively by compiling an expression, not only is a result
produced but additionally a series of new bindings may have been performed.
Thus the continuation is not only from a machine value, but additionally
from an extension of the context along with the new mappings to values.

CHAPTER 5. VERIFIED COST ANALYSIS 164

compileAtomic : {ctx : Ctx ictx}
-> CompileEnv ctx mctx
-> AExp ctx t i
-> ((ctx' : Ctx ictx) ->

CompileEnv ctx' mctx ->
MVal mctx t ->
Asm mctx lctx t')

-> Asm mctx lctx t'

The compilation of literals and variables is trivial, pass the machine value
to the continuation without any extension to the context.

compileAtomic cenv (NLit n) k = k [] EmptyEnv (Lit (NLit n))
compileAtomic cenv (Var elt) k =

k [] EmptyEnv (lookupCVar cenv elt)

The function lookupCVar is the element lookup function which is at this
point routine

lookupCVar : CompileEnv ctx mctx -> Elem (x, (t ** i)) ctx
-> MVal mctx t

lookupCVar EmptyEnv pf impossible
lookupCVar (UExtend x t i v cenv) Here = v
lookupCVar (UExtend x t i v cenv) (There elt) =

lookupCVar cenv elt

Handling addition is only slightly more complex. First either side of the
sum are compiled and their results used in an addition instruction whose
result is passed to the continuation in the union of the two possibly extended
environments.

compileAtomic cenv (Add a1 a2) k =
compileAtomic cenv a1 (\ctx1, cenv1, v1 =>
compileAtomic cenv a2 (\ctx2, cenv2, v2 =>
Add v1 v2 (\v3 => k (ctx2 ++ ctx1)

(cenv2 `appendCEnv ` cenv1)
v3)))

With the definition of environment union appendCEnv given in listing D.1
on page 201. Note that thanks to the strictly defined notion of compilation
environment only the shape of the resulting context ctx2 ++ ctx1 need be
known at which point Idris will force the correct environment be constructed.

The definition of the main compile function proceeds similarly, however
not only can the expression context be extended but additionally the index
expression context can be extended.

CHAPTER 5. VERIFIED COST ANALYSIS 165

compile : {ctx : Ctx ictx}
-> CompileEnv ctx mctx
-> Stmt facts ctx t i
-> ((ictx' : IxCtx) ->

(ctx' : Ctx (ictx' ++ ictx)) ->
CompileEnv ctx' mctx ->
MVal mctx t ->
Asm mctx lctx t')

-> Asm mctx lctx t'

Note that this signature strictly enforces that a context can only be extended
in ictx' and not modified. Intuitively most of the expression forms are
relatively simple to compile, however due to embedded scope correctness, a
great deal of index manipulation, mostly to manage append associativity, is
required. Importantly, as usual, this will make use of thinning and weakening
of index expressions in the environment. These functions are a simple case of
walking over the collection and applying the respective thinning or weakening
operation to each index expression.

thinCEnvCtx : CompileEnv ctx mctx -> (ictx' : IxCtx)
-> CompileEnv (thin ctx ictx') mctx

thinCEnvCtx EmptyEnv ictx' = EmptyEnv
thinCEnvCtx (UExtend x t i v cenv) ictx' =

UExtend x t (thin i ictx') v (thinCEnvCtx cenv ictx')

weakenCEnvCtx : CompileEnv ctx mctx -> (ictx' : IxCtx)
-> CompileEnv (weaken ctx ictx') mctx

weakenCEnvCtx EmptyEnv ictx' = EmptyEnv
weakenCEnvCtx (UExtend x t i v cenv) ictx' =

UExtend x t (weaken i ictx') v (weakenCEnvCtx cenv ictx')

Due to the index expression and complexity of the compilation function, only
its scheme is provided; however the full proof is included in appendix D.1 on
page 201. To start, compilation of atomic expressions is a simple deferment to
the function compileAtomic in an unextended index expression environment.
Handling let is only slightly more difficult, first the statement whose result is
to be bound to x is compiled, then the body is compiled in the environment
extended with x. Given that compilation is scope safe and type-correct by
construction—as was the case in compiling atomics—each continuation will
have an associated index expression and variable context, in addition to an
environment tracking a type correct mapping of De Bruijn style variables to
PHOAS variables. Thus the value resulting from compiling the let body is
handled by the continuation in the new context, combining the extensions

CHAPTER 5. VERIFIED COST ANALYSIS 166

from compiling the two statements.

KεJaKk =compileAtomic a (k ∅)
KεJlet x = s1 in s2Kk =KεJs1K(λ∆1, Γ1, ε1, v1.

K(x,v1),εJs1K(λ∆2, Γ2, ε2, v2.

k (∆2∆1) (Γ2Γ1) (ε2ε1) (Var v2)))

In the mechanization the contexts Γ2 and Γ1 will respectively be well-defined
in ∆2∆ and ∆1∆ while the continuation demands a context well-defined
in ∆2∆1∆. Noting that ∆ is the context associated with the overall let
binding, respective applications of thinning by ∆1 and weakening by ∆2
are required. Worse still the associativity of these append operations will
be incorrect requiring an application of explicit type rewriting. Finally
the environments ε2 and ε1 being indexed by Γ2 and Γ1 respectively suffer
from the same problem and thus must be explicitly thinned and weakened,
moreover the resulting associativity of operations will be incorrect requiring
type coercions. While not a difficult mathematical problem, its rigorous
handling introduces a great deal of noise into the compilation process in
addition to placing a relatively strong strain on the Idris evaluator.

Handling rewrites is also trivial. Since they have no runtime effect, the
underlying statement can be compiled immediately.

KεJrewrite j p sKk =compile s k

The handling of list operations is relatively simple. In each case a new
heap cell is allocated and initialized with AllocTagged, returning a pointer.
This pointer is the result of the compilation and thus is handed off to the
continuation as usual.

KεJ[]Kk =AllocTagged ConsTyList TagListNil ⊥ (λv.k ∅ ∅ ∅ (Var v))

Here the empty list requests a cell tagged by the nil tag and passes the
resulting pointer to the continuation in an unextended environment. The
use of ⊥ indicates the fact that nil has no sub-data associated with it and
thus no positions can be requested. Compiling a list cons is similar, however

CHAPTER 5. VERIFIED COST ANALYSIS 167

because it has a head and tail as sub-data, these values must be packed into
its heap cell at allocation time.

KεJs1 :: s2Kk =KεJs1K(λ∆1, Γ1, ε1, v1.

KεJs2K(λ∆2, Γ2, ε2, v2.

AllocTagged ConsTyList TagListCons (g v1 v2) (λv3.

k (∆2∆1) (Γ2Γ1) (ε2ε1) (Var v3))))

Where g is the cons generating function mapping position requests for the
head to v1 and requests for the tail position to v2

g v1 v2 Nat ConsPosHead = v1

g v1 v2 List ConsPosTail = v2

As usual the resulting list pointer v3 is defined in an extended scope which
is passed into the continuation along with the extended environment.

The compilation of caselist is broken down into three cases, one for each
possible combination of reachable vs. unreachable branches. Suppose first
that both cases are reachable, then compilation may proceed in the usual
way. First compile the scrutinee and inspect its tag. In the case the tag
denotes an empty list then proceed with compilation in the nil branch. In
the non-empty case the values in the list head and tail should be retrieved
from the cons pointer, and compilation should proceed in the cons branch.

KεJcaselist s1 (x xs s2) s3Kk = KεJs1K(λ∆1, Γ1, ε1, (Var v1).
GetTag v1(λt.

Jz t (KεJs3K(λ∆3, Γ3, ε3, v3. k (∆3∆1) (Γ3Γ1) (ε3ε1) v3))
(GetConsPos v1 ConsPosHead (λvhd

1 .

GetConsPos v1 ConsPosHead (λvtl
1 .

K(x,vhd
1),(xs,vtl

1),εJs2K(λ∆2, Γ2, ε2, v2.

k (∆2∆1, (x, Nat), (xs, List)) (Γ2Γ1) (ε2ε1) v2))))))

Note that this is the only the point where an extension of the index expression
context ∆ occurs, introducing the fresh index expression variables for the
head and tail of the unpacked list. As usual the updated contexts and
environments are correct with respect to a smaller index expression context
and thus must undergo weakening and (sometimes repeated) thinning. As

CHAPTER 5. VERIFIED COST ANALYSIS 168

was the case earlier the resulting associativity of the append operations will
be wrong so these too must be corrected by repeated, explicit type coercion.
The full proof is in the appendix.

The remaining to cases correspond to either an unreachable cons or nil
case, and thus reduce to a compilation of either side of the branch without
tag testing. Compilation of each case proceeds just as it did above.

The only remaining statements to compile are the list and nat fold
operations. Both being loops which accumulate some result, the compilation
is almost identical. First consider the handling of loops on naturals. First
the value to loop over must be compiled along with the initial accumulator
value. Then each iteration of the loop should first test for its termination
condition which in this case is when n = 0. Upon termination control is
passed to the continuation, otherwise the loop body should be executed, the
loop counter decremented, and finally control should jump back to the top
of the loop. Recall again that parameterized jumps are used instead of phi
nodes, thus with each jump to perform another iteration the updated loop
values must be passed in.

KεJelimnat s1 (x, acc 7→ s2) s3Kk =KεJs1K(λ∆1, Γ1, ε1, v1.

KεJs3K(λ∆3, Γ3, ε3, v3.

PLabel [v3, v1] (λl, [v′
3, v′

1].
Jz (Var v′

1)
(k (∆3∆1) (Γ3Γ1) (ε3ε1) (Var v′

3))
(K(acc,v′

3),(x,v′
1),εJs2K(λ∆2, Γ2, ε2, v2.

Dec (Var v′
1) (λv′′

1 .

PJmp l [v2, v′′
1]))))))

As earlier remarked, the handling of list iteration is similar to nat iteration.
However because the termination criteria is no longer a simple number but
a pointer to a structure, the tag is fetched and checked, with 0 being the
numeric value of the nil tag. Additionally the value of the head must be
bound to a variable and passed into the environment for use in the body.
Finally to enter the next iteration of the loop, the tail of the list must be

CHAPTER 5. VERIFIED COST ANALYSIS 169

fetched and passed in.

KεJelimlist s1 (x, acc 7→ s2) s3Kk =KεJs1K(λ∆1, Γ1, ε1, v1.

KεJs3K(λ∆3, Γ3, ε3, v3.

PLabel [v3, v1] (λl, [v′
3, v′

1].
GetTag v′

1 (λt.

Jz t

(k (∆3∆1) (Γ3Γ1) (ε3ε1) (Var v′
3))

(GetConsPos v′
1 ConsPosHead (λvhd

1 .

K(acc,v′
3),(x,vhd

1),εJs2K(λ∆2, Γ2, ε2, v2.

GetConsPos v′
1 ConsPosTail (λvtl

1 .

PJmp l [v2, vtl
1]))))))))

Thus by applying the usual strategy of indexing structures by the con-
texts, the whole compilation scheme is guaranteed to be type and scope-safe.
Additionally we note the beauty of Oliviera et al. back-edge encoding, ensur-
ing the type-safety of the parameterized jump call. This not only simplifies
the scoping and handling of typed labels, but additionally simplifies the
denotational semantics of the abstract machine.

5.3.3 Evaluation and object code emission
The use of PHOAS to encode machine syntax makes evaluation trivial;
however due to the encoding of loops, it’s not immediately clear how to
make evaluation total in the presence of potentially infinite loop. Even were
this problem to be solved there’s an additional, slightly less obvious issue
stemming from GetConsPos offering no guarantees about the shape of the
value to deconstruct. Thus it’s possible to request the head or tail of an
empty list! To avoid these problems evaluation is given in the maybe monad
using a “timeout” value similar to CompCert. At each step of evaluation a
“clock” is consulted: if the clock is zero nothing is returned and evaluation
fails, however if the clock is non-zero then evaluation of sub-terms proceeds
with a decremented clock. Danielsson [Dan12] gives a similar but finer
grained evaluation strategy for the λ-calculus splitting “crashes” and non-
termination into the the maybe and partiality monads [Cap05] respectively.
The signature of the evaluation function follows.

CHAPTER 5. VERIFIED COST ANALYSIS 170

eval : Asm EvalTy EvalLabel t -> (clk : Nat) -> Maybe (EvalTy t)

Since evaluation largely follows the style of the well-typed STLC in sec-
tion 2.5.4 on page 47 only the handling of labels and lists are considered1.
In particular the use of PHOAS means that variables are encoded using
their underlying semantic data-types during evaluation by EvalTy. Thus
for example terms constructed by calls to AllocTagged are Idris lists, and
terms extracted by GetConsPos can simply pattern match on the “pointer”.
eval (AllocTagged ConsTyList TagListCons vf k) (S clk) =

let v = evalMVal (vf TyNat ConsPosHead)
vs = evalMVal (vf TyList ConsPosTail)

in eval (k (v :: vs)) clk
eval (GetConsPos {t=TyList} (x :: xs) ConsPosHead k) (S clk) =

eval (k (Var x)) clk

The evaluation of labels is another point requiring special handling. By
reliance on PHOAS again, labels can be interpreted as functions from their
parameter types to values. However as usual this evaluation must be partial
since any label can be used to form an infinite loop.

EvalLabel : (n : Nat) -> ParamTypes n -> Ty -> Type
EvalLabel n ts t = All EvalTy ts -> Maybe (EvalTy t)

Thus evaluation of jumps becomes trivial: simply evaluate the packed set
of arguments and pass them into the label function. Argument evaluation
proceeds by mapping each MVal encoded pointer or literal into the underlying
semantic value.

evalMLit : MLit t -> EvalTy t
evalMLit (NLit n) = n

evalMVal : MVal EvalTy t -> EvalTy t
evalMVal (Var x) = x
evalMVal (Lit c) = evalMLit c

evalArgs : All (MVal EvalTy) ts -> All EvalTy ts
evalArgs [] = []
evalArgs (v :: vs) = evalMVal v :: evalArgs vs

Then the jump is evaluated by a rather pedestrian call.
eval {t=t} (PJmp {t=t} k args) (S clk) = k (evalArgs args)

1for the full mechanization see listing D.5 on page 206

CHAPTER 5. VERIFIED COST ANALYSIS 171

This continuation is best appreciated by investigating its construction by
the evaluation of a PLabel. These “label functions” are constructed by
repeatedly unfolding their bodies. Thanks to the use of a continuation based
evaluation style the body is free to short-circuit evaluation at any point,
thus a label body is blindly unfolded using the current value of the clock.

eval (PLabel n ts t args k) (S clk) =
let vs = evalArgs args
in bfix (\vs', rec => eval (k rec vs') clk) clk vs
where bfix : (All EvalTy ts ->

(All EvalTy ts -> Maybe (EvalTy t)) ->
Maybe (EvalTy t))

-> Nat
-> All EvalTy ts
-> Maybe (EvalTy t)

bfix f Z vs = Nothing
bfix f (S n) vs = f vs (bfix f n)

In the above, the body k effectively receives a back-edge rec to itself subject
to the bounding condition imposed by the clock.

The above means of evaluation corresponds to a more traditional notion
of correctness whereby soundness might be specified by showing that for
every well-formed source program, evaluation of the compiled code produces
a value in Just such as

∅; ∅; ∅ ` s : τ ∧ p = K∅JsK(λ∆, Γ, ε, v. Ret v) =⇒ ∃N v.eval p N = Just v

Intuitively this should hold since the source program s is known to be termi-
nating. Currently the only areas suffering from potential non-termination are
the loops. Since these loops are generated from obviously terminating struc-
tural recursion on naturals and lists, the termination proof could perhaps be
extracted as an accessibility proof in the style of Bove and Capretta [BC05].
We hypothesize as an area of future work such proofs could be used to inter-
nalize a notion of correctness by making the compilation index expression
respecting in the style of expression decomposition. This would additionally
solve the problem of invalid use of GetConsPos since the static shape of an
MVal value would always be known.

Given the above formulation PHOAS is repeatedly leveraged to simplify
the compilation process, directly ensuring the safe usage of scoped values
without the need of an explicitly typed side environment. PHOAS addi-
tionally allows for the natural encoding of loops using a bounded fixpoint
operator bfix. As a final display of the flexibility granted by PHOAS

CHAPTER 5. VERIFIED COST ANALYSIS 172

and the completeness of the compilation stack, a brief description of code
emission as “low-level” C follows.

Emitting object code

For simplicity a final translation from abstract machine to object code is
performed via C. LLVM should also be readily targetable, however this would
require a further translation from parameterized jumps to φ instructions
whereas such jumps can be efficiently encoded in C directly using the
preprocessor.

Formatting and rendering the C output follows the style of Hughes [Hug95]
and Wadler [Wad98], defining the Doc and SimpleDoc types decorating text
with a basic layout structure allowing for nesting and column restricted
rendering.

While the translation is largely trivial e.g. formatting an Add instruction
as C’s “+” operator applied to its formatted values, rendering jumps is
unobvious. Labels can be treated exactly like functions, however since calls
to labels are guaranteed to occur in tail positions arguments can be passed
by overwriting its own frame. Thus by further appeal to PHOAS both
variables and labels should be interpreted as names or strings.

RName : Ty -> Type
RName = const Name

LName : LabelCtx
LName n ts t' = Name

Allowing for the typing of a core rendering function.
renderC : Asm RName LName t -> NameSupply Doc

Here the use of NameSupply as explored by Augustsson [ARS94] is required
to generate unique names in e.g. Jz where the number of names required by
the left and right branches are not known. The monad provides a function
fresh for generating new, unique names.

As implied, labels are handled by generating a “frame”, i.e. the label’s
parameters, and a C label accessible via the usual goto statements. Upon
entry the label’s frame variables are initialized from the values placed in
the PLabel. Then when a jump is performed, the arguments to the label
overwrite the currently active frame values and the jump is performed with
goto ensuring efficient evaluation in both time and space. Thus rendering a
jump is effectively rendering a C call

CHAPTER 5. VERIFIED COST ANALYSIS 173

renderPLabelSetup : Name -> Args RName ts -> Doc
renderPLabelSetup l vs = text (plabelSetupName l)

<> wrap "(" (renderArgs vs) ")"

renderC (PJmp l args) =
pure (renderPLabelSetup l args `renderSeq `

text ("goto " ++ l ++ ";"))

Then the rendering of a labeled block is coarsely broken into three steps

1. Generate fresh names for the frame variables and declare the label’s
parameters using these names.

2. Generate a new macro installing its arguments into the frame variables
associated with the label.

3. Initialize the label’s parameters using the values packed into the PLabel
and render the label’s body under a fresh C label.

renderC (PLabel n ts t args k) = do
l <- fresh
let frameVars = genFrameVars l Z n ts
prog <- renderC (k l frameVars)
pure (renderDecls frameVars args `renderSeq `

renderPLabelSetupDecl l n <> line <>
(renderPLabelSetup l args `renderSeq `
text (l ++ ":") <+> bracket "{" prog "}"))

Thus the resulting code in a two argument label with initial values 0 and 1
would be

#d e f i n e plabel_setup_v0 (l0 , l 1) \
v0Frame1 = l 1 ; v0Frame0 = l 0 ;

plabel_setup_v0 (0 , 1) ;
v0 : {

. . .
plabel_setup_v0 (v3 , v2) ;
goto v0 ;

}

As with the handling of Add, the remainder of the cases are straight-
forward with the handling of list allocation performed directly in C via a
simple run-time system (RTS). To help gather intuition about this compiler
output it’s useful to examine several simpler cases. Extending the assembly
language with an explicit return instruction

CHAPTER 5. VERIFIED COST ANALYSIS 174

data Asm : MCtx -> LabelCtx -> Ty -> Type where
...
Ret : MVal mctx t -> Asm mctx lctx t

makes it easy to inspect the output of the compiler. The additional conve-
nience function is also defined, allowing for the easy dumping of compiled
(closed) program strings.

dump : Stmt facts [] t i -> String
dump s = prettyC (compile EmptyEnv s (\ictx', ctx', cenv', v =>

Ret v))

In a simple instance, let bindings will produce a C variable and addition
will produce C addition, e.g. the program adding 40 to x = 2 below

Let "x" (Atomic (NLit 2)) (Atomic (NLit 40 `Add` Var "x"))

produces
int v0 = 40 + 2 ;
return v0 ;

Considering a slightly more complicated program which binds multiple
variables maps to a C program with multiple binding, e.g.

Let "x" (Atomic (NLit 2))
(Let "y" (Atomic (NLit 40 `Add` Var "x"))

(Atomic (NLit 20 `Add` Var "y")))

produces
int v0 = 40 + 2 ;
int v1 = 20 + v0 ;
return v1 ;

Although programs operating on numbers are relatively simple, even
the most trivial program working with lists poses a considerable increase
in complexity. This is because all list operations must call into the RTS to
allocate cells, and mark them with the proper type of constructor e.g. to
allow for case analysis of a list, or for garbage collection. To begin, consider
the program which returns the two element list 3 :: 2 :: []

Let "x" (Atomic (NLit 3) :: Atomic (NLit 2) :: [])
(Atomic (Var "x"))

First the system will allocate the empty list, a constructor with zero positions.
cons_t v0 = new_cons (0) ;
set_cons_tag (1) ;
;

CHAPTER 5. VERIFIED COST ANALYSIS 175

Note that the nil constructor is marked with the unique tag: 1, chosen by
the compiler. This allows the RTS to inspect the element in the heap and
discover that it represents the empty list constructor.

Next the system will allocate a cons cell, brand it with the tag unique
to the list cons constructor (i.e. 0), and then set its two positions: i.e. the
head and tail to 2 and the previously constructed nil list respectively.

cons_t v1 = new_cons (2) ;
set_cons_tag (0) ;
set_cons_pos (v1 , 0 , 2) ;
set_cons_pos (v1 , 1 , v0) ;
;

As expected, position 0—the head—is set to the constant numeric value 2,
while position 1—the tail—is set to the nil list which was previously bound
to v0 .

Finally the C program will allocate the left-most cons cell 3 :: ...,
setting it’s head and tail to the constant 3, and the cons cell allocated above.

cons_t v2 = new_cons (2) ;
set_cons_tag (0) ;
set_cons_pos (v2 , 0 , 3) ;
set_cons_pos (v2 , 1 , v1) ;
;
return v2 ;

The initialization of the tag and positions follows the pattern of the first cons
cell, and finally the program returns the constructed list in the temporary
v2 .

Having the ability to easily dump C programs also allows us to see how
the compiler uses reachability informantion to optimize its output. For
example compiling the safe tail function which only accepts a non-empty
list won’t produce a branch. Suppose safe head is called on the following
above list, i.e.

Atomic (NLit 3) :: Atomic (NLit 2) :: []

Then the output C will first allocate a nil list, followed by two cons cells as
was the case above

cons_t v0 = new_cons (0) ;
set_cons_tag (1) ;
;

CHAPTER 5. VERIFIED COST ANALYSIS 176

cons_t v1 = new_cons (2) ;
set_cons_tag (0) ;
set_cons_pos (v1 , 0 , 2) ;
set_cons_pos (v1 , 1 , v0) ;
;
cons_t v2 = new_cons (2) ;
set_cons_tag (0) ;
set_cons_pos (v2 , 0 , 3) ;
set_cons_pos (v2 , 1 , v1) ;
;

However rather than generating an if statement checking whether the input
list is nil or not, instead the compiler will simply compile the reachable
branch, grabbing the head and tail, and producing the head

int v3 = get_cons_pos (v2 , 0) ;
cons_t v4 = get_cons_pos (v2 , 1) ;
return v3 ;

The first call to get_cons_pos grabs positions 0—i.e. the list head—of the
list pointed to by temporary v2 and stores the result in v3 . Finally the
compiler grabs the tail from position 1 before returning the list head, v3 , as
requested.

As a final example, it’s useful to see concretely how the tag information is
used by the compiler e.g. by performing case inspection of a list. Consider the
unsafe head function, i.e. the head function which accepts both a non-empty
list, or an empty list, in which case a default value of 0 is returned.

CaseList xs
"x" "xs'" (Reachable

(CanReach
[RequireEq (var "i") (var "x" :: var "xs'")]
(\[hd,tl,i], _, [Refl] => Refl))

(var "x"))
(Reachable

(CanReach
[RequireEq (var "i") []]
(\ixEnv, _, [iEnil] => iEnil))

Z)

Applying this function to the usual list 3 :: 2 :: [] will result in C which
first constructs the list, and then immediately inspects the tag to deconstruct
it. First the list construction

CHAPTER 5. VERIFIED COST ANALYSIS 177

cons_t v0 = new_cons (0) ;
set_cons_tag (1) ;
;
cons_t v1 = new_cons (2) ;
set_cons_tag (0) ;
set_cons_pos (v1 , 0 , 2) ;
set_cons_pos (v1 , 1 , v0) ;
;
cons_t v2 = new_cons (2) ;
set_cons_tag (0) ;
set_cons_pos (v2 , 0 , 3) ;
set_cons_pos (v2 , 1 , v1) ;
;

Next the C program will grab the constructor tag from the list stored in v2
in order to decide if it is nil—i.e. the tag is 1—or non-nil—i.e. the tag is 0.

int v3 = get_cons_tag (v2) ;
i f (v3) {

int v4 = 0 ;
return v4 ;

} else {
int v5 = get_cons_pos (v2 , 0) ;
cons_t v6 = get_cons_pos (v2 , 1) ;
return v5 ;

}

As expected, in the nil case the compiler returns a value of 0 bound to the
temporary v4 ; and in the non-nil case the compiler first projects the head
and tail into v5 and v6 respectively before finally returning the head in v5 .

5.4 Summary
In this chapter an example use case of the index expressions developed in
chapter 3 was given, presenting a means of statically costing expressions.
The analysis presented a method of using the denotation of index expressions
‘—given in listing 3.2 on page 80—to perform a symbolic evaluation required
e.g. in the calculation of loop and case costs. Moreover to account for simple
optimizations such as machine support for natural numbers, the costing is

CHAPTER 5. VERIFIED COST ANALYSIS 178

performed over an intermediate statement language S rather than directly
on L .

To perform compilation to reasonably efficient machine code, a verified
decomposition function is given compiling from L to S . It was shown how
the correctness would follow indirectly as a consequence of the decomposition
function being index expression respecting, and thus from the canonical
values property a index expression respecting evaluation entails that the
transformation is semantics preserving.

Chapter 6

Conclusions

In this thesis we have explored the design and implementation of a simple
language as within a dependently typed context. We have shown that
languages without syntax directed typing rules can be elegantly dealt with
courtesy of the affordances offered by dependent types and their capacity
to interactively perform work, deferring to the programmer when necessary.
Two concepts have been revisited throughout this work focusing on how
the use of constraints and reflection can be used to aid programming in a
correct-by-construction style; and how their use with synthetic dependent
types simplify the process of reasoning about programs. Throughout the
course of developing L and exploring its use key contributions were made
using powerful features exposed by the host.

Dependent types are a convenient host for not only the embedding of a
language and compiler, but additionally of sophisticated type systems.

Index expressions are used to statically capture the semantics of a term
allowing for reasoning to be performed such as the determination
of a case branches reachability. Such proofs make use of a novel
constraint reflection mechanism. Constraints are built up by the
iterative refinement of input values using case analysis.

Explicit coercions provide a means of using the host’s reduction seman-
tics to perform checking of index expressions. The coercions use
locally available evidence from the constraints making them correct
by construction.

179

CHAPTER 6. CONCLUSIONS 180

Sound compilation shows the feasibility of the structure of L , making
use of the index expressions to ensure the correctness of AST trans-
formations. In particular the full compilation stack performs several
simple, optimizations which are shown to be sound. First high-level
operation on natural numbers are extracted; then peano numbers are
eliminated allowing for their compilation to machine integers. After
optimizing the representation of numbers the statement language S is
compiled to a simple abstract machine which can be executed directly
or used to produce architecture native object code.

6.1 Limitations
While the initial development of L supports a variety of interesting features,
there remain a few key areas to explore.

Side-effects and in particular programs with I/O are not considered in
this thesis.

Performance improvements particularly relating to type-checking are
necessary to scale the the current implementation of L where a
powerful machine is required for relatively small programs.

Data structures are explored in a limited capacity and user-defined types
are not available in L .

6.1.1 Supporting side-effects
While the language presented in this thesis doesn’t support I/O we think that
none of the ideas presented are fundamentally incompatible with the more
general concept of side-effects. For instance the algebraic effects [Bra14b];
[BP12] style of introducing specialized syntax allows for opaque function
calls; however calls could additionally introduce arbitrary constraints into
the context for use by the programmer. Since the interpreter must prove
that any proposed constraints are satisfiable there is no fear of an ill-behaved
side-effect. Such a system could further be leveraged to provide a GHC
style plugin architecture where 3rd party checkers can always be trusted;
currently only limited support is available.

CHAPTER 6. CONCLUSIONS 181

The strategy of cost analysis should also scale to support side-effects.
Motivating this is the opaque cost applied to “atomic” operations. We
believe opaque system calls could also be treated atomically.

Currently the low-performance of the L implementation places practical
limitations on the scope of further language extensions.

6.1.2 Improving performance
One of the primary problems with the language presented in this thesis is its
lack of scalability due to performance. For example verifying the cost of a
loop encoded sum takes several minutes and gigabytes of ram on a boosted
4GHz Haswell machine. We believe the performance problems in L rest
primarily in the evaluation performance of the host and in the choice of
variable encoding in L itself.

Host evaluation performance

The reason for Idris’ comparatively low evaluation performance is because
development efforts have so far emphasized features that allow for the
exploration of developing larger systems with dependent types. By compar-
ison Coq’s calculus of inductive construction [CP90] supports dependent
types but is primarily meant for real world verification of software [Gon07];
[KLW14]; [Gon+13]. Therefore comparatively little effort has been put
into supporting programming paradigms making heavy use of dependent
types [Soz10] which are still considered niche [Ler09]. In particular during
the development of the proof of the four-color theorem [Gon07], Coq too
ran into evaluation related performance problems and was modified to use a
compiled implementation of strong reduction [GL02]. This was an impor-
tant performance optimization for large scale proofs by reflection like the
four-color theorem which invokes a decision procedure for determining the
4-colorability of a graph on every possible input [GL02]. The implementation
is flexible in that it allows for checking β-equality of terms while still based
on compilation targeting a highly efficient byte-code interpreter [Ler95].
This implementation of term reduction is up to 100 times faster than both
Coq’s call-by-name and call-by-value interpreters. More recently an untyped
normalization by evaluation strategy for efficiently testing term convertibility
in dependent type theories was developed by Boespflug [Boe10] using Haskell.

CHAPTER 6. CONCLUSIONS 182

Such an optimization could certainly be adapted to the implementation of
Idris which would alleviate many of the performance concerns.

Although such an approach would be beneficial to the developments
in this thesis and the wider Idris ecosystem, it’s also a potentially large
undertaking. Another means of improving performance to be done alongside
Idris enhancements is to find points needing optimization in the encoding of
L itself.

Naïve syntax encoding

While the choice of variable encoding in L is convenient from a reasoning
perspective since manipulations are clarified in the type, it also requires
values well-formed in a context undergo explicit thinning upon any extensions.
Although Idris does not currently support profiling of evaluation, the current
implementation of L makes use of widespread thinning, triggering repeated
data structure traversals throughout evaluation which are believed to cause
a performance bottleneck.

One possible strategy to consider is for improving performance is the
weakening of entire trees in the style of Bird and Patterson [BP99]. This
strategy should be directly available without the need for an encoding via
a polymorphic type. Instead the binding context at the type-level can be
directly referenced and extended.

Another possible strategy is to use PHOAS, avoiding the need for any
form of context manipulation since unbound names are trivially inaccessible.

Preliminary work on improving performance within a simplified calculus
has yielded unscientific improvements of around 1, 000 times in critical areas.

A drastic improvement in performance should allow for the exploration
of further features such as user-defined data types and parallel matching.

6.1.3 Supporting data structures
The current implementation of L has builtin supports for lists and natural
numbers and does not allow for user defined data-types. The primary hurdle
in supporting user-defined types is in the derivation of constraints generated
during case analysis where e.g. those generated by list destruction are hard-
coded. The use of a universe of data-types such as the polynomial functors
capturing SML style sums-of-products, or the container types would provide
a wide range of definable structures. Moreover because the data-structure

CHAPTER 6. CONCLUSIONS 183

“codes” are first order terms, constraints could be programmatically derived.
This would additionally simplify the syntax of the language by unifying
the case and fold statements at the expense of a more complicated type,
requiring their introduced constraints be calculated. While this is likely
feasible the further burden on evaluation would first require an exploration
of performance enhancements discussed above.

6.2 Further work
The use of dependent types trivially allows for the type-checking of systems
without syntax directed rules, or even an obvious global analysis. The use of
explicitly tracked constraints as in the types of L terms to aid in this process
allows for the separation of program implementation and proof development
in a convenient way. This allows for skilled developers without experience
in formalized theorem proving to make assumptions and naturally defer the
proof of validity to a machine via a tactic or another member of their team.
Two primary areas of further investigation immediately emerge

1. An exploration of expanded programming features.

2. Developing a correct-by-construction proof of compilation correctness.

As discussed above the current implementation has hard-coded type support
limited to lists and integers. A natural extensions of this idea is to introduce
a more expressive universe such as the polynomial functors or container
types.

6.2.1 Expansion of programming features
The language L proves the feasibility of interactively proving properties
about programs using semantic indexing in the context of dependent types.
However the current implementation has hard-coded type support limited
to lists and integers. As discussed in the limitations, expanding the scope
to a general class of types is an obvious target of exploration.

Extensions to new type systems

Although the current usage of constraint reflection for proving the type
correctness of expressions is restricted to working with simple types, there

CHAPTER 6. CONCLUSIONS 184

is no fundamental reason this should be the case. The inclusion of lists in
L exemplifies the flexibility of the approach in handling structured data.
Thus an interesting area of work would be the application to the variant
of System Fω described by Morrisset [Mor06] capturing SML modules and
Haskell typeclasses.

Closely related is the system of LXres. In particular LXres like Fω uses its
sophisticated kind system to calculate types, restricting the possible shape
of runtime values. Crary and Weirich note that this places a requirement
on the programmer to carefully represent types in a way which is “not too
abstract”. In contrast using a constraint based approach would allow for
a more direct encoding of these restrictions at the expense of decidable
type-checking.

This use of constraints naturally begs the question of its application
in formalizing the correctness of constraint based systems such as F RGN

and λrgnUL of Fluet et al. [FMA06] and the closely related language Rust.
These systems allow safe, low-level access to memory by the use of region
and lifetime systems. Regions represent a slice of memory, whereas lifetimes
represent the scope of a region’s use. Moreover these types can be coerced
e.g. if a region is expanded then a notion of subtyping applies, and these
two regions likely have related lifetimes. The approach of using constraints
to prove the validity of coercions in L should adapt to support correct by
construction notions of subtyping.

While all of the above are relatively expressive languages, it would be
interesting to apply the strategies developed in this thesis to an EDSL such
as Feldspar. In particular targeting areas such as hard real-time systems
which often require strong guarantees but use relatively simple programming
constructs might introduce the possibility of more automated rewrite tactics.
As an example in L because index expressions themselves are first order,
an index expression reflection procedure could be developed without the
need for explicit first-class reflection support. Index expressions can be
automatically reflected into an underlying monoid expression consumable by
the monoid solver. Hard real-time systems could also provide an opportunity
to expand the scope of the costing framework developed in chapter 5 on
page 136.

CHAPTER 6. CONCLUSIONS 185

Probabilistic cost analysis

One of the interesting aspects of the cost analysis developed in chapter 5
is the use of an opaque costing function at statement leaves. Such a
system is amenable to a probabilistic analysis, loosely coupled with the
underlying ISA. Rather than assigning an identifiable, discrete cost to atomic
expressions, instead they could be drawn from some density function. While
this abandons any certainty that might be required by a soft or hard real-
time system, surprisingly the introduced error can be bounded using well
understood statistical techniques. If the tail of the cost’s density function is
assumed to decay rapidly enough (e.g. sub-gaussian) then estimates of the
underlying value can be made to deviates by at most ε with confidence δ.
This fact follows from an application of Hoeffding’s inequality and could be
included directly in the cost trace. For instance a trace could provide some
likely cost along with a proof that this value deviates from some “true cost”
by ε with likelihood no more than δ. This is possible by treating accuracy
and confidence like a resource. At the top-level some finite amount of
accuracy and confidence are available which then are split between sub-trees
and sprinkled into the leaves as required. Such a cost guarantee is given
with respect to the cost of executing on the machine which gives the “true
cost”. In our case this could be given using the abstract machine defined
in section 5.3 on page 158. If the compilation scheme were shown to be
sound the system could provide a strong guarantee of correctness in both a
program’s functional and non-functional aspects.

Given these additional proofs of correctness, the only remaining piece of
the compilation stack which is not known to be sound is the final compilation
process from statements to abstract machine.

6.2.2 Proof of sound compilation process
While the current compilation process gives a strong guarantee of safety
with respect to type-preservation it lacks two further important properties:
correct-by-construction index expression erasure, and proof of soundness.
Solving both of these problems should be tractable.

In order to prove the safety of index expression erasure, rather than
compiling directly from S a new intermediate form should be introduced
without support for explicit coercions. This should not be a problem since
currently the only occurrence of rewrites in a statement resulting from a

CHAPTER 6. CONCLUSIONS 186

decomposed expression are those introduced by case expressions. In fact,
rewrites are nearly erased by the current decomposition scheme since all
existing rewrites are composed and pushed to a single, top-level rewrite.
The primary issue identified in section 5.2 on page 146 is the failure to
eliminate the translated index expressions of decomposed expressions from
the retained constraint context.

Intuitively the issue of stale index expressions in the constraint context
should be solvable because at each step of rewriting only a single index
expression is transformed. Thus rather than producing a statement well-
defined in the input constraint context Ξ, some new constraint context Ξ′ is
produced. The soundness of such an approach should follow in the same
style as the rewritten index expression j. Since only one index expression is
ever transformed, a stack of proofs transporting between identified index
expressions could be used to identify constraint contexts. Intuitively this
stack encodes the sequence of rewrites necessary to perform at each level of
the input constraint context to arrive at the output context. This would
also give us a rewrite minimality law stating that

Hypothesis 6.2.0.1 (Rewrite minimality). Every expression of index ex-
pression i with rewrites in Ξ can be decomposed into an expression of index
expression j without rewrites such that ∃Ξ′.i ≈Ξ′

j ∧ Ξ ≈ Ξ′

In fact, the author has made great progress in mechanizing this proof;
however due to efficiency problems in the current implementation, attempting
to complete the proof results in an explosion of memory consumption.

Given a notion of terms without rewrites the validity of their erasure is
obvious without the need for an auxiliary proof that evaluation agrees on
terms with and without index expressions. Compilation from a language
without rewrites would then only need to be index expression respecting
in order to be constructively sound. That is to say internalizing soundness
requires the semantic index of the source be maintained. Since rewrites are
no longer available, the constraint context no longer needs to be tracked
and thus the only non-trivial cases are the looping constructs: list and nat
iteration. As discussed in section 5.3.2 on page 163 a possible solution is to
generate accessibility proofs from the obviously terminating folds. This fixes
not only the termination issue in the evaluation function but additionally
the issue stemming from the potential mis-application of GetConsPos since
all values have static access to their shape.

CHAPTER 6. CONCLUSIONS 187

The developments in this thesis using well-understood dependently typed
paradigms have worked towards a sound compilation stack for a simple lan-
guage. Despite great strides in theorem proving technology, mechanizing
correctness and experimenting with type-systems as in the POPLmark chal-
lenge [Ayd+05] still requires expertise in using theorem provers. We think
the use of constraints and explicit coercions form an interesting basis for
mechanizing type-systems with non-trivial reduction rules, allowing skilled
programmers to work as usual and deferring necessary proofs to custom
tailored tactics or other members of the team. Still, more work is required
to explore a broader range of constraints—such as linear inequalities—
and to sufficiently automate common rewrites such as the usual style of
reduction in dependently typed languages. We would like to eventually
work towards a system which allows for a mixture of completely auto-
mated rewrites by computing over the constraints in context, and towards
strategies which defer difficult to solve proofs e.g. as is done by Coq’s
Program Definition. Such a system could produce a term which proves
some proposition given proof of several constraints it describes as pure data
(cs : Constraints ctx) -> (EvalConstraints cs -> Dec p).

Appendix A

Auxiliary correctness proofs of
L programs

A.1 Correctness of ixSnd

ixSndCorrect : (xs : List Nat) -> ixSndEval xs = listSnd xs
ixSndCorrect (x :: y :: _) = Refl
ixSndCorrect (x :: _) = Refl
ixSndCorrect [] = Refl

A.2 Implementation of expListSnd

expListSnd {facts=facts} {i=i} {hd1=hd1} {tl1=tl1}
{hd2=hd2} {tl2=tl2} e =

CaseList e
hd1 tl1 (Reachable

(CanReach
[RequireEq (var i) (var hd1 :: var tl1)]
(\(hdv :: tlv :: ixEnv), _, [iEhdtl] => iEhdtl))

(CaseList (var tl1)
hd2 tl2
(Reachable

(CanReach
[RequireEq (var tl1) (var hd2 :: var tl2)]
(\ixEnv, _, [tl1Ehd2tl2] => tl1Ehd2tl2))

(var hd2))
(Reachable

(CanReach
[RequireEq (var tl1) []]

188

APPENDIX A. AUXILIARY CORRECTNESS PROOFS OF L
PROGRAMS 189

(\ixEnv, _, [tl1Enil] => tl1Enil))
Z)))

(Reachable
(CanReach

[RequireEq (var i) []]
(\ixEnv, _, [iEnil] => iEnil))

Z)

A.3 Specification of fibonacci function
fibEval : Nat -> List Nat
fibEval =

natFold (\m, vacc =>
[listSndEval vacc
,listFstEval vacc `plusFold` listSndEval vacc])

[Z, S Z]

fibEvalStepCorrect
: (n : Nat) -> (acc : List Nat)

-> (\m, vacc =>
[listSndEval vacc
,listFstEval vacc `plusFold` listSndEval vacc]) n acc
=
fibFoldStep n acc

fibEvalStepCorrect n acc =
replace {P=\v =>

[listSndEval acc
,listFstEval acc `plusFold` listSndEval acc] =
[listSnd acc, v]}

(plusFoldSpec (listFst acc) (listSnd acc))
(replace {P=\v =>

[listSndEval acc
,listFstEval acc `plusFold` listSndEval acc] =
[v, listFst acc `plusFold ` v]}

(listSndDestruct acc)
(replace {P=\v =>

[listSndEval acc
,listFstEval acc `plusFold` listSndEval acc] =
[listSndEval acc
,v `plusFold` listSndEval acc]}

(listFstDestruct acc)
(Refl {x=[listSndEval acc

,listFstEval acc `plusFold`
listSndEval acc]})))

APPENDIX A. AUXILIARY CORRECTNESS PROOFS OF L
PROGRAMS 190

fibEvalCorrect : (n : Nat) -> fibEval n = fibFold n
fibEvalCorrect n =

natFoldFSubst
{f = \m, vacc =>

[listSndEval vacc
,listFstEval vacc `plusFold` listSndEval vacc]}

{g = fibFoldStep}
fibEvalStepCorrect n [Z, S Z]

fibSpec : (i : Ix ictx TyNat)
-> eval (fibIx i) ixEnv = fibFold (eval i ixEnv)

fibSpec {ixEnv=ixEnv} i = fibEvalCorrect (eval i ixEnv)

Appendix B

Implementing a monoid of
addition

B.1 Correctness of plusEval

plusEvalCorrect : (m, n : Nat) -> plusEval m n = m + n
plusEvalCorrect Z n = Refl
plusEvalCorrect (S m) n = cong (plusEvalCorrect m n)

Listing B.1: Monoid laws for addition
plusEvalZeroRightNeutral : (m : Nat) -> m `plusFold` Z = m
plusEvalZeroRightNeutral m =

replace {P=\v => v = m}
(sym (plusEvalCorrect m Z))
(plusZeroRightNeutral m)

plusEvalFoldAssoc : (m1, m2, m3 : Nat)
-> plusFold m1 (plusFold m2 m3) =

plusFold (plusFold m1 m2) m3
plusEvalFoldAssoc m1 m2 m3 =

replace {P=\v => plusFold m1 (plusFold m2 m3) = v}
(sym (plusEvalCorrect (plusFold m1 m2) m3))
(replace {P=\v => v = plusFold m1 m2 + m3}

(sym (plusEvalCorrect m1 (plusFold m2 m3)))
(replace {P=\v => m1 + v = plusFold m1 m2 + m3}

(sym (plusEvalCorrect m2 m3))
(replace {P=\v => m1 + (m2 + m3) = v + m3}

(sym (plusEvalCorrect m1 m2))
(plusAssociative m1 m2 m3))))

191

APPENDIX B. IMPLEMENTING A MONOID OF ADDITION 192

B.2 Proof of eqMonoidExp

eqMonoidExp ' : (x, y : a)
-> (x' : a ** (NfMonoidExp m ctx x', x = x'))
-> (y' : a ** (NfMonoidExp m ctx y', y = y'))
-> Maybe (x = y)

eqMonoidExp ' x y (x' ** (x'Nf, xEx')) (y' ** (y'Nf, yEy')) =
case eqNfMonoidExp x'Nf y'Nf of

Just x'Ey' =>
Just (replace {P=\v => v = y} (sym xEx')

(replace {P=\v => x' = v} (sym yEy') x'Ey'))
Nothing => Nothing

eqMonoidExp : MonoidExp {a=a} m ctx x
-> MonoidExp m ctx y
-> Maybe (x = y)

eqMonoidExp e1 e2 =
eqMonoidExp ' _ _ (normMonoidExp e1) (normMonoidExp e2)

B.3 Definition of the explicit monoid
interface

interface ExplicitMonoid (a : Type) where
total unit : a
total append : a -> a -> a
total appendAssociative : (x, y, z : a)

-> append x (append y z) =
append (append x y) z

total unitLeft : (x : a) -> append unit x = x
total unitRight : (x : a) -> append x unit = x

Appendix C

Mechanization of index
expression evaluation and
correctness

C.1 Ix evaluation

listElim : (p : List a -> Type)
-> ((x : a) -> (xs' : List a) -> p xs' -> p (x :: xs'))
-> p []
-> (xs : List a)
-> p xs

listElim p pIH pNil [] = pNil
listElim p pIH pNil (x :: xs') =

pIH x xs' (listElim p pIH pNil xs')

listDestruct : {a : Type}
-> (p : List a -> Type)
-> (kCons : (y : a) -> (ys : List a) -> p (y :: ys))
-> (kNil : p [])
-> (xs : List a)
-> p xs

listDestruct p kCons kNil xs =
listElim p (\x, xs', pxs' => kCons x xs') kNil xs

listFold : (a -> b -> b) -> b -> (xs : List a) -> b
listFold {b=b} f b0 xs =

listElim (const b) (\x,xs',acc => f x acc) b0 xs

193

APPENDIX C. MECHANIZATION OF INDEX EXPRESSION
EVALUATION AND CORRECTNESS 194

natElim : (p : Nat -> Type)
-> ((n : Nat) -> p n -> p (S n))
-> p Z
-> (n : Nat)
-> p n

natElim p pIH p0 Z = p0
natElim p pIH p0 (S n) = pIH n (natElim p pIH p0 n)

natFold : ((n : Nat) -> a -> a) -> a -> Nat -> a
natFold {a=a} f x n = natElim (const a) f x n

C.2 Expressions with constraints

∆; Ξ; Γ ` e : τ S (well-formed, indexed expression with constraints)
∆; Γ 3v (x, τ, i) ∆ ` i : τ

∆; Ξ; Γ ` v : τ i

∆; Ξ; Γ ` 0 : Nat 0
∆; Ξ; Γ ` e : Nat i

∆; Ξ; Γ ` e + 1 : Nat (i + 1)

∆; ΞΓ ` [] : List []
∆; Ξ; Γ ` e1 : Nat i1 ∆; Ξ; Γ ` e2 : List i2

∆; Ξ; Γ ` e1 :: e2 : List (i1 :: i2)

∆; Γ ` e1 : List i1
(j, Nat), (js, List), ∆; (i1 ∼ j :: js), Ξ; (x, Nat, j), (xs, List, js), Γ ` e2 : τ i2

∆; (i1 ∼ []), Ξ; Γ ` e3 : τ i3

∆; Ξ; Γ ` caselist e1 (x :: xs) ⇒ e2; [] ⇒ e3 : τ (caselist i1 (j :: js) ⇒ i2; [] ⇒ i3)

∆; Ξ; Γ ` e1 : List i1
(j, Nat), (acc, τ), ∆; Ξ; (x, Nat, j), (xs, τ, acc), Γ ` e2 : τ i2

∆; Ξ; Γ ` e3 : τ i3

∆; Ξ; Γ ` elimlist e1 (x, xs 7→ e2) e3 : τ (elimlist i1 (j, acc) 7→ i2) i3)

∆; Ξ; Γ ` e1 : Nat i1
(j, Nat), (acc, τ), ∆; Ξ; (x, Nat, j), (xs, τ, acc), Γ ` e2 : τ i2

∆; Ξ; Γ ` e3 : τ i3

∆; Ξ; Γ ` elimnat e1 (x, xs 7→ e2) e3 : τ (elimnat i1 (j, acc) 7→ i2) i3)

APPENDIX C. MECHANIZATION OF INDEX EXPRESSION
EVALUATION AND CORRECTNESS 195

C.3 Proof of index erasure isomorphism

leftInvNat : (n : Nat)
-> erase {t=TyNat} (reconstructNat n) = n

leftInvNat Z = Refl
leftInvNat (S n) = cong (leftInvNat n)

rightInvNat : (n : IxNat i)
-> reconstructNat (erase {t=TyNat} n) = n

rightInvNat Z = Refl
rightInvNat (S n) = cong (rightInvNat n)

leftInvList : (xs : List Nat)
-> erase {t=TyList} (reconstructList xs) = xs

leftInvList [] = Refl
leftInvList (x :: xs) = congCons (leftInvNat x) (leftInvList xs)

rightInvList : (js : IxList xs)
-> reconstructList (erase {t=TyList} js) = js

rightInvList [] = Refl
rightInvList {xs=x::xs}(j :: js) with (rightInvNat j)

rightInvList {xs=x::xs} (reconstructNat x :: js) | Refl
with (rightInvList js)
rightInvList {xs=x::xs} (reconstructNat x :: reconstructList xs)

| Refl | Refl = Refl

C.4 Proof of indexed value canonicity

canonicalNat : (i, i' : IxNat m) -> i = i'
canonicalNat {m=Z} Z Z = Refl
canonicalNat {m=S m} (S i) (S i') =

cong (canonicalNat {m=m} i i')

consCong : {j, j' : IxNat m}
-> {js, js' : IxList xs}
-> j = j'
-> js = js'
-> j :: js = j' :: js'

consCong Refl Refl = Refl

canonicalList : (i, i' : IxList xs) -> i = i'
canonicalList {xs=[]} [] [] = Refl
canonicalList {xs=x :: xs} (j :: js) (j' :: js') =

consCong (canonicalNat j j') (canonicalList js js')

APPENDIX C. MECHANIZATION OF INDEX EXPRESSION
EVALUATION AND CORRECTNESS 196

EvalIxTy : (t : Ty) -> EvalTy t -> Type
EvalIxTy TyNat = IxNat
EvalIxTy TyList = IxList

canonicalValue : (v, v' : EvalIxTy t i) -> v = v'
canonicalValue {t=TyList} v v' = canonicalList v v'
canonicalValue {t=TyNat} v v' = canonicalNat v v'

C.5 Proof of index expression thinning
properties

thin : Ix (ictx1 ++ ictx) t
-> (ictx2 : IxCtx)
-> Ix (ictx1 ++ ictx2 ++ ictx) t

thin (S i) ictx2 = S (thin i ictx2)
thin Z ictx2 = Z
thin (Var elt) ictx2 = Var (thin elt ictx2)
thin Nil ictx2 = Nil
thin (i :: is) ictx2 = thin i ictx2 :: thin is ictx2
thin {ictx1=ictx1} (CaseList i1 hd tl i2 i3) ictx2 =

CaseList (thin i1 ictx2)
hd tl (thin {ictx1=(hd, TyNat) :: (tl, TyList) :: ictx1}

i2 ictx2)
(thin i3 ictx2)

thin {ictx1=ictx1} (ElimList {k=k} i1 acc x i2 i3) ictx2 =
ElimList (thin i1 ictx2)

acc x (thin {ictx1=(acc, k) :: (x, TyNat) :: ictx1} i2 ictx2)
(thin i3 ictx2)

thin {ictx1=ictx1} (ElimNat {k=k} i1 acc x i2 i3) ictx2 =
ElimNat (thin i1 ictx2)

acc x (thin {ictx1=(acc, k) :: (x, TyNat) :: ictx1} i2 ictx2)
(thin i3 ictx2)

Lemma C.5.0.1 (Thinning respects evaluation).
thinRespectsEval

: (i : Ix (ictx1 ++ ictx) k)
-> (ixEnv1 : IxEnv ictx1)
-> (ixEnv : IxEnv ictx)
-> (ixEnv2 : IxEnv ictx2)
-> eval (thin i ictx2) (ixEnv1 <++> ixEnv2 <++> ixEnv) =

eval i (ixEnv1 <++> ixEnv)

.

APPENDIX C. MECHANIZATION OF INDEX EXPRESSION
EVALUATION AND CORRECTNESS 197

Proof. thinRespectsEval (S i) ixEnv1 ixEnv ixEnv2 =
cong (thinRespectsEval i ixEnv1 ixEnv ixEnv2)

thinRespectsEval Z ixEnv1 ixEnv ixEnv2 = Refl
thinRespectsEval (Var elt) ixEnv1 ixEnv ixEnv2 =

thinRespectsLookup elt ixEnv1 ixEnv ixEnv2
thinRespectsEval [] ixEnv1 ixEnv ixEnv2 = Refl
thinRespectsEval (i :: is) ixEnv1 ixEnv ixEnv2 =

consCong (thinRespectsEval i ixEnv1 ixEnv ixEnv2)
(thinRespectsEval is ixEnv1 ixEnv ixEnv2)

thinRespectsEval {ictx2=ictx2} (CaseList i1 x xs i2 i3)
ixEnv1 ixEnv ixEnv2 =

listDestructCong
(\n, ns => eval (thin i2 ictx2)

((n :: ns :: ixEnv1) <++>
ixEnv2 <++> ixEnv))

(\n, ns => eval i2 ((n :: ns :: ixEnv1) <++> ixEnv))
(eval (thin i3 ictx2) (ixEnv1 <++> ixEnv2 <++> ixEnv))
(eval i3 (ixEnv1 <++> ixEnv))
(thinRespectsEval i1 ixEnv1 ixEnv ixEnv2)
(\n, ns =>

thinRespectsEval i2 (n :: ns :: ixEnv1) ixEnv ixEnv2)
(thinRespectsEval i3 ixEnv1 ixEnv ixEnv2)

thinRespectsEval {ictx2=ictx2} (ElimList i1 acc x i2 i3)
ixEnv1 ixEnv ixEnv2 =

listFoldCong
(\v, acc => eval (thin i2 ictx2)

((acc :: v :: ixEnv1) <++>
ixEnv2 <++> ixEnv))

(\v, acc => eval i2 ((acc :: v :: ixEnv1) <++> ixEnv))
(eval (thin i3 ictx2) (ixEnv1 <++> ixEnv2 <++> ixEnv))
(eval i3 (ixEnv1 <++> ixEnv))
(thinRespectsEval i1 ixEnv1 ixEnv ixEnv2)
(\v, acc =>

thinRespectsEval i2 (acc :: v :: ixEnv1) ixEnv ixEnv2)
(thinRespectsEval i3 ixEnv1 ixEnv ixEnv2)

thinRespectsEval {ictx2=ictx2} (ElimNat i1 acc x i2 i3)
ixEnv1 ixEnv ixEnv2 =

natFoldCong
(\v, acc => eval (thin i2 ictx2)

((acc :: v :: ixEnv1) <++>
ixEnv2 <++> ixEnv))

(\v, acc => eval i2 ((acc :: v :: ixEnv1) <++> ixEnv))
(eval (thin i3 ictx2) (ixEnv1 <++> ixEnv2 <++> ixEnv))
(eval i3 (ixEnv1 <++> ixEnv))
(thinRespectsEval i1 ixEnv1 ixEnv ixEnv2)

APPENDIX C. MECHANIZATION OF INDEX EXPRESSION
EVALUATION AND CORRECTNESS 198

(\v, acc =>
thinRespectsEval i2 (acc :: v :: ixEnv1)

ixEnv ixEnv2)
(thinRespectsEval i3 ixEnv1 ixEnv ixEnv2)

�

Appendix D

Specification and compilation
of S

mutual
data StmtBranch : (ictx : IxCtx)

-> (facts : IxConstraints ictx)
-> (i, j : Ix ictx t)
-> IxConstraints ictx3
-> Ctx ictx3 -> (i3 : Ix ictx3 t3)
-> Type where

Reachable : IsReachable facts i j
-> Stmt facts3 ctx3 t3 i3
-> StmtBranch ictx facts i j facts3 ctx3 i3

Unreachable : NotReachable facts i j
-> (ctx3 : Ctx ictx3)
-> (i3 : Ix ictx3 t3)
-> StmtBranch ictx facts i j facts3 ctx3 i3

data Stmt : IxConstraintsictx
-> Ctxictx
-> (t : Ty)
-> Ix ictx t
-> Type where

Atomic : AExp ctx t i -> Stmt facts ctx t i
Rewrite : CanUnifyIx facts i j

-> Stmt facts ctx t i
-> Stmt facts ctx t j

Let : (x : Name)
-> {ctx : Ctx ictx}
-> Stmt facts ctx t1 i1

199

APPENDIX D. SPECIFICATION AND COMPILATION OF S 200

-> Stmt facts ((x, (t1 ** i1)) :: ctx) t2 i2
-> Stmt facts ctx t2 i2

Nil : Stmt facts ctx TyList []
(::) : Stmt facts ctx TyNat i

-> Stmt facts ctx TyList is
-> Stmt facts ctx TyList (i :: is)

CaseList : {ctx : Ctx ictx}
-> Stmt facts ctx TyList i1
-> (hd, tl : Name)
-> StmtBranch

([(hd, TyNat), (tl, TyList)] ++ ictx)
(weakenConstraints facts

[(hd, TyNat), (tl, TyList)])
(weaken i1 [(hd, TyNat), (tl, TyList)])
(Var Here :: Var (There Here))
((RequireEq

(Var Here :: Var (There Here))
(weaken i1 [_, _])) ::

weakenConstraints facts [_, _])
((hd, (TyNat ** Var Here)) ::
(tl, (TyList ** Var (There Here))) ::
weaken ctx [(hd, TyNat), (tl, TyList)])

i2
-> StmtBranch

ictx facts i1 []
(RequireEq [] i1 :: facts) ctx i3

-> Stmt facts ctx t' (CaseList i1 hd tl i2 i3)
ElimList : {ctx : Ctx ictx}

-> Stmt facts ctx TyList i1
-> (x, acc : Name)
-> Stmt (weakenConstraints facts [_,_])

((acc, (t ** Var Here)) ::
(x, (TyNat ** Var (There Here))) ::
weaken ctx [_,_])

t
i2

-> Stmt facts ctx t i3
-> Stmt facts ctx t (ElimList i1 acc x i2 i3)

ElimNat : {ctx : Ctx ictx}
-> {i3 : Ix ictx t}
-> Stmt facts ctx TyNat i1
-> (x, acc : Name)
-> {i2 : Ix ((acc, t) :: (x, TyNat) :: ictx) t}
-> Stmt (weakenConstraints facts

[(acc,t), (x,TyNat)])

APPENDIX D. SPECIFICATION AND COMPILATION OF S 201

((acc, (t ** Var Here)) ::
(x, (TyNat ** Var (There Here))) ::
weaken ctx [(acc,t),(x,TyNat)])

t
i2

-> Stmt facts ctx t i3
-> Stmt facts ctx t (ElimNat i1 acc x i2 i3)

D.1 Compiling from S to machine code

Listing D.1: Concatenation of well-formed compile environments
appendCEnv : CompileEnv ctx2 mctx

-> CompileEnv ctx1 mctx
-> CompileEnv (ctx2 ++ ctx1) mctx

appendCEnv EmptyEnv cenv1 = cenv1
appendCEnv (UExtend x t i v cenv2) cenv1 =

UExtend x t i v (cenv2 `appendCEnv ` cenv1)

compile : {ctx : Ctx ictx}
-> CompileEnv ctx mctx
-> Stmt facts ctx t i
-> ((ictx' : IxCtx) ->

(ctx' : Ctx (ictx' ++ ictx)) ->
CompileEnv ctx' mctx ->
MVal mctx t ->
Asm mctx lctx t')

-> Asm mctx lctx t'
compile cenv (Atomic a) k = compileAtomic cenv a (k [])
compile cenv (Rewrite iToJ s) k = compile cenv s k
compile {ictx=ictx} cenv (Let {i1=i1} {t1=t1} x s1 s2) k =

compile cenv s1 (\ictx1, ctx1, cenv1, v1 =>
compile (UExtend x t1 i1 v1 cenv) s2 (\ictx2, ctx2, cenv2, v2 =>
k (ictx2 ++ ictx1)

(replace (appendAssociative ictx2 ictx1 ictx)
(thin ctx2 ictx1) ++

replace (appendAssociative ictx2 ictx1 ictx)
(weaken ctx1 ictx2))

(cenvIxCtx (appendAssociative ictx2 ictx1 ictx)
(thinCEnvCtx cenv2 ictx1) `appendCEnv `

cenvIxCtx (appendAssociative ictx2 ictx1 ictx)
(weakenCEnvCtx cenv1 ictx2))

v2))
compile cenv [] k =

AllocTagged ConsTyList TagListNil noNilPositions

APPENDIX D. SPECIFICATION AND COMPILATION OF S 202

(\v => k [] [] EmptyEnv (Var v))
where noNilPositions : (posTy : Ty)

-> ConsPos TagListNil posTy
-> MVal mctx posTy

noNilPositions posTy ConsPosHead impossible
noNilPositions posTy ConsPosTail impossible

compile {ictx=ictx} cenv (s1 :: s2) k =
compile cenv s1 (\ictx1, ctx1, cenv1, v1 =>
compile cenv s2 (\ictx2, ctx2, cenv2, v2 =>
AllocTagged ConsTyList TagListCons (mkcons v1 v2) (\v3 =>
k (ictx2 ++ ictx1)

(replace (appendAssociative ictx2 ictx1 ictx)
(thin ctx2 ictx1) ++

replace (appendAssociative ictx2 ictx1 ictx)
(weaken ctx1 ictx2))

(cenvIxCtx (appendAssociative ictx2 ictx1 ictx)
(thinCEnvCtx cenv2 ictx1) `appendCEnv `

cenvIxCtx (appendAssociative ictx2 ictx1 ictx)
(weakenCEnvCtx cenv1 ictx2))

(Var v3))))
where mkcons : MVal mctx TyNat -> MVal mctx TyList

-> (posTy : Ty) -> ConsPos TagListCons posTy
-> MVal mctx posTy

mkcons hd tl TyNat ConsPosHead = hd
mkcons hd tl TyList ConsPosTail = tl

compile {t=TyList} {t'=t'} cenv
(CaseList {ictx=ictx} s1 hd tl (Reachable iToJ2 s2)

(Reachable iToJ3 s3)) k =
compile cenv s1 (\ictx1, ctx1, cenv1, v1 =>

let v1' = unwrapVar v1 in
GetTag v1' (\isConsTag =>
Jz isConsTag

(compile cenv s3 (\ictx3, ctx3, cenv3, v3 =>
k (ictx3 ++ ictx1)

(replace (appendAssociative ictx3 ictx1 ictx)
(thin ctx3 ictx1) ++

replace (appendAssociative ictx3 ictx1 ictx)
(weaken ctx1 ictx3))

(cenvIxCtx (appendAssociative ictx3 ictx1 ictx)
(thinCEnvCtx cenv3 ictx1) `appendCEnv `

cenvIxCtx (appendAssociative ictx3 ictx1 ictx)
(weakenCEnvCtx cenv1 ictx3))

v3))
(GetConsPos v1' ConsPosHead (\v1Hd =>
GetConsPos v1' ConsPosTail (\v1Tl =>

APPENDIX D. SPECIFICATION AND COMPILATION OF S 203

compile {ictx=(hd,TyNat) :: (tl,TyList) :: ictx}
(UExtend hd _ _ v1Hd

(UExtend tl _ _ v1Tl
(weakenCEnvCtx cenv [_,_])))

s2
(\ictx2, ctx2, cenv2, v2 =>

k (ictx2 ++ ictx1 ++ [(hd, TyNat), (tl, TyList)])
(replace (shuffleAssoc ictx2 ictx1

[(hd, TyNat), (tl, TyList)] ictx)
(thin ctx2 ictx1) ++

replace (shuffleAssoc ictx2 ictx1
[(hd, TyNat), (tl, TyList)] ictx)

(weaken (thin ctx1
[(hd, TyNat), (tl, TyList)])

ictx2))
(cenvIxCtx

(shuffleAssoc ictx2 ictx1
[(hd, TyNat), (tl, TyList)] ictx)

(thinCEnvCtx cenv2 ictx1) `appendCEnv `
cenvIxCtx

(shuffleAssoc ictx2 ictx1 [(hd, TyNat), (tl, TyList)] ictx)
(weakenCEnvCtx (thinCEnvCtx cenv1

[(hd, TyNat), (tl, TyList)])
ictx2))

v2))))))
where shuffleAssoc : (xs3, xs2, xs1, xs : IxCtx)

-> xs3 ++ xs2 ++ xs1 ++ xs =
(xs3 ++ xs2 ++ xs1) ++ xs

shuffleAssoc xs3 xs2 xs1 xs =
replace {P=\x => xs3 ++ xs2 ++ xs1 ++ xs = x}

(appendAssociative xs3 (xs2 ++ xs1) xs)
(replace {P=\x => xs3 ++ xs2 ++ xs1 ++ xs = xs3 ++ x}

(appendAssociative xs2 xs1 xs)
(Refl {x=xs3 ++ (xs2 ++ (xs1 ++ xs))}))

compile {t=TyList} {t'=t'} cenv
(CaseList {ictx=ictx} s1

hd tl (Reachable iToJ2 s2)
(Unreachable (NoReach iNoNil) _ _)) k =

compile cenv s1 (\ictx1, ctx1, cenv1, v1 =>
let v1' = unwrapVar v1 in
GetConsPos v1' ConsPosHead (\v1Hd =>
GetConsPos v1' ConsPosTail (\v1Tl =>
compile (UExtend hd _ _ v1Hd

(UExtend tl _ _ v1Tl
(weakenCEnvCtx cenv [_,_])))

APPENDIX D. SPECIFICATION AND COMPILATION OF S 204

s2
(\ictx2, ctx2, cenv2, v2 =>

k (ictx2 ++ ictx1 ++ [(hd, TyNat), (tl, TyList)])
(replace (shuffleAssoc ictx2 ictx1

[(hd, TyNat), (tl, TyList)] ictx)
(thin ctx2 ictx1) ++

replace (shuffleAssoc ictx2 ictx1
[(hd, TyNat), (tl, TyList)] ictx)

(weaken (thin ctx1
[(hd, TyNat), (tl, TyList)])

ictx2))
(cenvIxCtx

(shuffleAssoc ictx2 ictx1 [(hd, TyNat), (tl, TyList)] ictx)
(thinCEnvCtx cenv2 ictx1) `appendCEnv `

cenvIxCtx
(shuffleAssoc ictx2 ictx1 [(hd, TyNat), (tl, TyList)] ictx)
(weakenCEnvCtx (thinCEnvCtx cenv1

[(hd, TyNat), (tl, TyList)])
ictx2))

v2))))
where shuffleAssoc : (xs3, xs2, xs1, xs : IxCtx)

-> xs3 ++ xs2 ++ xs1 ++ xs =
(xs3 ++ xs2 ++ xs1) ++ xs

shuffleAssoc xs3 xs2 xs1 xs =
replace {P=\x => xs3 ++ xs2 ++ xs1 ++ xs = x}

(appendAssociative xs3 (xs2 ++ xs1) xs)
(replace {P=\x => xs3 ++ xs2 ++ xs1 ++ xs = xs3 ++ x}

(appendAssociative xs2 xs1 xs)
(Refl {x=xs3 ++ (xs2 ++ (xs1 ++ xs))}))

compile {t=TyList} {t'=t'} cenv
(CaseList {ictx=ictx} s1 hd tl (Unreachable (NoReach iNoCons) _ _)

(Reachable iToJ3 s3)) k =
compile cenv s3 k

compile {ictx=ictx} cenv (ElimList s1 x acc s2 s3) k =
compile cenv s1 (\ictx1, ctx1, cenv1, vxs0 =>
compile cenv s3 (\ictx3, ctx3, cenv3, vacc0 =>
PLabel _ _ _ [vacc0, vxs0] (\l, [vacc, vxs] =>

GetTag vxs (\isConsTag =>
Jz isConsTag

(k (ictx3 ++ ictx1)
(replace (appendAssociative ictx3 ictx1 ictx)

(thin ctx3 ictx1) ++
replace (appendAssociative ictx3 ictx1 ictx)

(weaken ctx1 ictx3))
(cenvIxCtx (appendAssociative ictx3 ictx1 ictx)

APPENDIX D. SPECIFICATION AND COMPILATION OF S 205

(thinCEnvCtx cenv3 ictx1) `appendCEnv `
cenvIxCtx (appendAssociative ictx3 ictx1 ictx)

(weakenCEnvCtx cenv1 ictx3))
(Var vacc))

(GetConsPos vxs ConsPosHead (\vx =>
compile (UExtend acc _ _ (Var vacc)

(UExtend x _ _ vx
(weakenCEnvCtx cenv [_,_])))

s2
(\ictx2, ctx2, cenv2 , vacc' =>

GetConsPos vxs ConsPosTail (\vxs' =>
PJmp l [vacc', vxs ']))))))))

compile {ictx=ictx} cenv (ElimNat s1 x acc s2 s3) k =
compile cenv s1 (\ictx1, ctx1, cenv1, vx0 =>
compile cenv s3 (\ictx3, ctx3, cenv3, vacc0 =>
PLabel _ _ _ [vacc0, vx0] (\l, [vacc, vx] =>

Jz (Var vx)
(k (ictx3 ++ ictx1)

(replace (appendAssociative ictx3 ictx1 ictx)
(thin ctx3 ictx1) ++

replace (appendAssociative ictx3 ictx1 ictx)
(weaken ctx1 ictx3))

(cenvIxCtx (appendAssociative ictx3 ictx1 ictx)
(thinCEnvCtx cenv3 ictx1) `appendCEnv `

cenvIxCtx (appendAssociative ictx3 ictx1 ictx)
(weakenCEnvCtx cenv1 ictx3))

(Var vacc))
(compile (UExtend acc _ _ (Var vacc)

(UExtend x _ _ (Var vx)
(weakenCEnvCtx cenv [_,_])))

s2
(\ictx2, ctx2, cenv2 , vacc' =>

Dec (Var vx) (\vx' =>
PJmp l [vacc', vx']))))))

Listing D.2: Evaluation with equality
record RevealEval (f : Ix ictx t -> IxEnv ictx -> EvalTy t)

(i : Ix ictx t)
(ixEnv : IxEnv ictx)
(v : EvalTy t) where

constructor EvalIs
evalIs : f i ixEnv = v

inspectEval : (i : Ix ictx t)
-> (ixEnv : IxEnv ictx)

APPENDIX D. SPECIFICATION AND COMPILATION OF S 206

-> RevealEval eval i ixEnv (eval i ixEnv)
inspectEval i ixEnv = EvalIs Refl

Listing D.3: Fold substitution rule
natFoldFSubst : ((n : Nat) -> (y : a) -> f n y = g n y)

-> (m : Nat) -> (x : a)
-> natFold f x m = natFold g x m

natFoldFSubst fEg Z x = Refl
natFoldFSubst {f = f}{g = g} fEg (S m) x =

replace {P=\v => f m (natFold f x m) = g m v}
(natFoldFSubst fEg m x)
(fEg m (natFold f x m))

Listing D.4: List fold substitution rule
listFoldFSubst : ((n : Nat) -> (y : a) -> f n y = g n y)

-> (xs : List Nat) -> (v : a)
-> listFold f v xs = listFold g v xs

listFoldFSubst fEg [] v = Refl
listFoldFSubst {f = f}{g = g} fEg (x :: xs) v =

replace {P=\z => f x (listFold f v xs) = g x z}
(listFoldFSubst fEg xs v)
(fEg x (listFold f v xs))

Listing D.5: Abstract machine evaluation function
eval : Asm EvalTy EvalLabel t -> (clk : Nat) -> Maybe (EvalTy t)
eval _ Z = Nothing
eval (AllocTagged ConsTyList TagListNil vf k) (S clk) =

eval (k []) clk
eval (AllocTagged ConsTyList TagListCons vf k) (S clk) =

let v = evalMVal (vf TyNat ConsPosHead)
vs = evalMVal (vf TyList ConsPosTail)

in eval (k (v :: vs)) clk
eval (GetConsPos {t=TyList} [] ConsPosHead k) (S clk) = Nothing
eval (GetConsPos {t=TyList} (x :: xs) ConsPosHead k) (S clk) =

eval (k (Var x)) clk
eval (GetConsPos {t=TyList} [] ConsPosTail k) (S clk) = Nothing
eval (GetConsPos {t=TyList} (x :: xs) ConsPosTail k) (S clk) =

eval (k (Var xs)) clk
eval (GetTag {t=TyList} [] k) (S clk) =

eval (k (Lit (NLit (enumConsTag TagListNil)))) clk
eval (GetTag {t=TyList} (_ :: _) k) (S clk) =

eval (k (Lit (NLit (enumConsTag TagListCons)))) clk
eval (Jz v p1 p2) (S clk) = case evalMVal v of

APPENDIX D. SPECIFICATION AND COMPILATION OF S 207

Z => eval p1 clk
S n => eval p2 clk

eval (Dec v k) (S clk) = eval (k (Var (pred (evalMVal v)))) clk
eval (Add v1 v2 k) (S clk) =

eval (k (Var (evalMVal v1 + evalMVal v2))) clk
eval {t=t} (PJmp {t=t} k args) (S clk) = k (evalArgs args)
eval (PLabel n ts t args k) (S clk) =

let vs = evalArgs args
in bfix (\vs', rec => eval (k rec vs') clk) clk vs
where bfix : (All EvalTy ts ->

(All EvalTy ts -> Maybe (EvalTy t)) ->
Maybe (EvalTy t))

-> Nat
-> All EvalTy ts
-> Maybe (EvalTy t)

bfix f Z vs = Nothing
bfix f (S n) vs = f vs (bfix f n)

Appendix E

Equivalence of well-formed De
Bruijn indices and context
membership

data WfElem : Nat -> List a -> Type where
Here : WfElem Z (x :: xs)
There : WfElem n xs -> WfElem (S n) (y :: xs)

wflookup : (ctx : List a) -> WfElem n ctx -> a
wflookup [] elt impossible
wflookup (x :: xs) Here = x
wflookup (y :: xs) (There elt) = wflookup xs elt

to : (n : Nat) -> .(okn : WfElem n ctx)
-> Elem (wflookup ctx okn) ctx

to Z Here = Here
to (S n) (There elt) = There (to n elt)

from : Elem x ctx
-> (n : Nat ** okn : WfElem n ctx **

wflookup ctx okn = x)
from Here = (Z ** Here ** Refl)
from (There elt) with (from elt)

from (There elt) | (n ** okn ** pf) =
(S n ** There okn ** pf)

208

Appendix F

Definition of the IfNil relation

C1 = C ′

IfNil(x :: xs, C1, C2, C ′)
C2 = C ′

IfNil([], C1, C2, C ′)

209

Bibliography

[AAG05] Michael Gordon Abbott, Thorsten Altenkirch, and Neil Ghani.
“Containers: Constructing strictly positive types”. In: Theor.
Comput. Sci. 342.1 (2005), pp. 3–27. doi: 10.1016/j.tcs.
2005.06.002.

[Abd13] Moez A. AbdelGawad. “An Overview of Nominal-Typing ver-
sus Structural-Typing in Object-Oriented Programming”. In:
CoRR abs/1309.2348 (2013). arXiv: 1309.2348. url: http:
//arxiv.org/abs/1309.2348.

[AC99] Lennart Augustsson and Magnus Carlsson. “An exercise in
dependent types: A well-typed interpreter”. In: In Workshop
on Dependent Types in Programming, Gothenburg. 1999.

[Alb+07] Elvira Albert et al. “COSTA: Design and Implementation of a
Cost and Termination Analyzer for Java Bytecode”. In: For-
mal Methods for Components and Objects, 6th International
Symposium, FMCO 2007, Amsterdam, The Netherlands, Oc-
tober 24-26, 2007, Revised Lectures. 2007, pp. 113–132. doi:
10.1007/978-3-540-92188-2_5.

[Alt+15] Thorsten Altenkirch et al. “Indexed containers”. In: J. Funct.
Program. 25 (2015). doi: 10.1017/S095679681500009X.

[ALY09] Robert Atkey, Sam Lindley, and Jeremy Yallop. “Unembedding
domain-specific languages”. In: Proceedings of the 2nd ACM
SIGPLAN Symposium on Haskell, Haskell 2009, Edinburgh,
Scotland, UK, 3 September 2009. 2009, pp. 37–48. doi: 10.
1145/1596638.1596644.

210

https://doi.org/10.1016/j.tcs.2005.06.002
https://doi.org/10.1016/j.tcs.2005.06.002
http://arxiv.org/abs/1309.2348
http://arxiv.org/abs/1309.2348
http://arxiv.org/abs/1309.2348
https://doi.org/10.1007/978-3-540-92188-2_5
https://doi.org/10.1017/S095679681500009X
https://doi.org/10.1145/1596638.1596644
https://doi.org/10.1145/1596638.1596644

BIBLIOGRAPHY 211

[AMS07] Thorsten Altenkirch, Conor McBride, and Wouter Swierstra.
“Observational equality, now!” In: Proceedings of the ACM
Workshop Programming Languages meets Program Verification,
PLPV 2007, Freiburg, Germany, October 5, 2007. 2007, pp. 57–
68. doi: 10.1145/1292597.1292608.

[AP11] Andreas Abel and Brigitte Pientka. “Higher-Order Dynamic
Pattern Unification for Dependent Types and Records”. In:
Typed Lambda Calculi and Applications - 10th International
Conference, TLCA 2011, Novi Sad, Serbia, June 1-3, 2011.
Proceedings. 2011, pp. 10–26. doi: 10.1007/978-3-642-
21691-6_5.

[App92] Andrew W. Appel. Compiling with Continuations. Cambridge
University Press, 1992. isbn: 0-521-41695-7.

[App98] Andrew W. Appel. “SSA is Functional Programming”. In:
SIGPLAN Notices 33.4 (1998), pp. 17–20. doi: 10.1145/
278283.278285.

[ARS94] Lennart Augustsson, Mikael Rittri, and Dan Synek. “On Gen-
erating unique Names”. In: J. Funct. Program. 4.1 (1994),
pp. 117–123. doi: 10.1017/S0956796800000988.

[AS13] Johan Ankner and Josef Svenningsson. “An EDSL approach
to high performance Haskell programming”. In: Proceedings
of the 2013 ACM SIGPLAN Symposium on Haskell, Boston,
MA, USA, September 23-24, 2013. 2013, pp. 1–12. doi: 10.
1145/2503778.2503789.

[Asp+06] Andrea Asperti et al. “Crafting a Proof Assistant”. In: Types for
Proofs and Programs, International Workshop, TYPES 2006,
Nottingham, UK, April 18-21, 2006, Revised Selected Papers.
2006, pp. 18–32. doi: 10.1007/978-3-540-74464-1_2.

[Asp95] David Aspinall. “Subtyping with singleton types”. In: Computer
Science Logic. Ed. by Leszek Pacholski and Jerzy Tiuryn.
Berlin, Heidelberg: Springer Berlin Heidelberg, 1995, pp. 1–15.
isbn: 978-3-540-49404-1.

https://doi.org/10.1145/1292597.1292608
https://doi.org/10.1007/978-3-642-21691-6_5
https://doi.org/10.1007/978-3-642-21691-6_5
https://doi.org/10.1145/278283.278285
https://doi.org/10.1145/278283.278285
https://doi.org/10.1017/S0956796800000988
https://doi.org/10.1145/2503778.2503789
https://doi.org/10.1145/2503778.2503789
https://doi.org/10.1007/978-3-540-74464-1_2

BIBLIOGRAPHY 212

[Ass16] Digital Asset. The Digital Asset Platform. Tech. rep. Digital
Assets, 2016. url: https://hub.digitalasset.com/hubfs/
Documents / Digital % 20Asset % 20Platform % 20 - %20Non -
technical%20White%20Paper.pdf.

[Atk12] Robert Atkey. “Relational Parametricity for Higher Kinds”.
In: Computer Science Logic (CSL’12) - 26th International
Workshop/21st Annual Conference of the EACSL, CSL 2012,
September 3-6, 2012, Fontainebleau, France. 2012, pp. 46–61.
doi: 10.4230/LIPIcs.CSL.2012.46.

[Atk15] Robert Atkey. “An Algebraic Approach To Typechecking
and Elaboration”. Higher Order Programming with Effects
(HOPE) 2015. Feb. 2015. url: https://bentnib.org/docs/
algebraic-typechecking-20150218.pdf.

[Aug98] Lennart Augustsson. “Cayenne - a Language with Dependent
Types”. In: Proceedings of the third ACM SIGPLAN Inter-
national Conference on Functional Programming (ICFP ’98),
Baltimore, Maryland, USA, September 27-29, 1998. 1998,
pp. 239–250. doi: 10.1145/289423.289451.

[Aug99] Lennart Augustsson. Equality proofs in Cayenne. Tech. rep.
1999.

[AVW93] Joe Armstrong, Robert Virding, and Mike Williams. Concur-
rent programming in ERLANG. Prentice Hall, 1993. isbn:
978-0-13-285792-5.

[AWZ88] Bowen Alpern, Mark N. Wegman, and F. Kenneth Zadeck.
“Detecting Equality of Variables in Programs”. In: Conference
Record of the Fifteenth Annual ACM Symposium on Principles
of Programming Languages, San Diego, California, USA, Jan-
uary 10-13, 1988. 1988, pp. 1–11. doi: 10.1145/73560.73561.

[Axe+10] Emil Axelsson et al. “The Design and Implementation of
Feldspar - An Embedded Language for Digital Signal Pro-
cessing”. In: Implementation and Application of Functional
Languages - 22nd International Symposium, IFL 2010, Alphen
aan den Rijn, The Netherlands, September 1-3, 2010, Revised
Selected Papers. 2010, pp. 121–136. doi: 10.1007/978-3-
642-24276-2_8.

https://hub.digitalasset.com/hubfs/Documents/Digital%20Asset%20Platform%20-%20Non-technical%20White%20Paper.pdf
https://hub.digitalasset.com/hubfs/Documents/Digital%20Asset%20Platform%20-%20Non-technical%20White%20Paper.pdf
https://hub.digitalasset.com/hubfs/Documents/Digital%20Asset%20Platform%20-%20Non-technical%20White%20Paper.pdf
https://doi.org/10.4230/LIPIcs.CSL.2012.46
https://bentnib.org/docs/algebraic-typechecking-20150218.pdf
https://bentnib.org/docs/algebraic-typechecking-20150218.pdf
https://doi.org/10.1145/289423.289451
https://doi.org/10.1145/73560.73561
https://doi.org/10.1007/978-3-642-24276-2_8
https://doi.org/10.1007/978-3-642-24276-2_8

BIBLIOGRAPHY 213

[Ayd+05] Brian E. Aydemir et al. “Mechanized Metatheory for the
Masses: The PoplMark Challenge”. In: Theorem Proving in
Higher Order Logics, 18th International Conference, TPHOLs
2005, Oxford, UK, August 22-25, 2005, Proceedings. 2005,
pp. 50–65. doi: 10.1007/11541868_4.

[Ayd+08] Brian Aydemir et al. “Engineering Formal Metatheory”. In:
Proceedings of the 35th Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages. POPL
’08. San Francisco, California, USA: ACM, 2008, pp. 3–15.
isbn: 978-1-59593-689-9. doi: 10.1145/1328438.1328443.

[Baa+10] Christiaan Baaij et al. “CλaSH: Structural Descriptions of
Synchronous Hardware Using Haskell”. In: 13th Euromicro
Conference on Digital System Design, Architectures, Methods
and Tools, DSD 2010, 1-3 September 2010, Lille, France. 2010,
pp. 714–721. doi: 10.1109/DSD.2010.21.

[Bar91] Henk Barendregt. “Introduction to Generalized Type Systems”.
In: J. Funct. Program. 1.2 (1991), pp. 125–154.

[BC05] Ana Bove and Venanzio Capretta. “Modelling general recursion
in type theory”. In: Mathematical Structures in Computer Sci-
ence 15.4 (2005), pp. 671–708. doi: 10.1017/S0960129505004822.

[BH05] Edwin Brady and Kevin Hammond. “A Dependently Typed
Framework for Static Analysis of Program Execution Costs”. In:
Implementation and Application of Functional Languages, 17th
International Workshop, IFL 2005, Dublin, Ireland, September
19-21, 2005, Revised Selected Papers. 2005, pp. 74–90. doi:
10.1007/11964681_5.

[BM96] Richard S. Bird and Oege de Moor. “The algebra of program-
ming”. In: Proceedings of the NATO Advanced Study Institute
on Deductive Program Design, Marktoberdorf, Germany. 1996,
pp. 167–203.

[BMM03] Edwin Brady, Conor McBride, and James McKinna. “Inductive
Families Need Not Store Their Indices”. In: Types for Proofs
and Programs, International Workshop, TYPES 2003, Torino,
Italy, April 30 - May 4, 2003, Revised Selected Papers. 2003,
pp. 115–129. doi: 10.1007/978-3-540-24849-1_8. url:
https://doi.org/10.1007/978-3-540-24849-1%5C_8.

https://doi.org/10.1007/11541868_4
https://doi.org/10.1145/1328438.1328443
https://doi.org/10.1109/DSD.2010.21
https://doi.org/10.1017/S0960129505004822
https://doi.org/10.1007/11964681_5
https://doi.org/10.1007/978-3-540-24849-1_8
https://doi.org/10.1007/978-3-540-24849-1%5C_8

BIBLIOGRAPHY 214

[Boe10] Mathieu Boespflug. “Conversion by Evaluation”. In: Practical
Aspects of Declarative Languages, 12th International Sym-
posium, PADL 2010, Madrid, Spain, January 18-19, 2010.
Proceedings. 2010, pp. 58–72. doi: 10.1007/978-3-642-
11503-5_7.

[BP12] Andrej Bauer and Matija Pretnar. “Programming with Alge-
braic Effects and Handlers”. In: CoRR abs/1203.1539 (2012).
arXiv: 1203.1539. url: http://arxiv.org/abs/1203.1539.

[BP99] Richard S. Bird and Ross Paterson. “De Bruijn Notation
as a Nested Datatype”. In: J. Funct. Program. 9.1 (1999),
pp. 77–91. url: http://journals.cambridge.org/action/
displayAbstract?aid=44239.

[Bra05a] Edwin Brady. “Practical Implementation of a Dependently
Typed Functional Programming Language”. PhD thesis. Com-
puter Science Dept., University of Durham, England, 2005.

[Bra05b] Edwin Brady. “Practical Implementation of a Dependently
Typed Functional Programming Language”. PhD thesis. Com-
puter Science Dept., University of Durham, England, 2005,
pp. 149–166.

[Bra13a] Edwin Brady. “First-class Type-safe Reflection in Idris”. Work-
shop on Dependently-Typed Programming DTP 2013. Sept.
2013. url: https://www.seas.upenn.edu/~sweirich/
dtp13/talks/brady.pdf.

[Bra13b] Edwin Brady. “Idris, a general-purpose dependently typed
programming language: Design and implementation”. In: J.
Funct. Program. 23.5 (2013), pp. 552–593. doi: 10.1017/
S095679681300018X.

[Bra14a] Edwin Brady. “Idris: Implementing a Dependently Typed Pro-
gramming Language”. In: Proceedings of the 2014 International
Workshop on Logical Frameworks and Meta-languages: Theory
and Practice, LFMTP ’14, Vienna, Austria, July 17, 2014.
2014, 2: 1. doi: 10.1145/2631172.2631174.

https://doi.org/10.1007/978-3-642-11503-5_7
https://doi.org/10.1007/978-3-642-11503-5_7
http://arxiv.org/abs/1203.1539
http://arxiv.org/abs/1203.1539
http://journals.cambridge.org/action/displayAbstract?aid=44239
http://journals.cambridge.org/action/displayAbstract?aid=44239
https://www.seas.upenn.edu/~sweirich/dtp13/talks/brady.pdf
https://www.seas.upenn.edu/~sweirich/dtp13/talks/brady.pdf
https://doi.org/10.1017/S095679681300018X
https://doi.org/10.1017/S095679681300018X
https://doi.org/10.1145/2631172.2631174

BIBLIOGRAPHY 215

[Bra14b] Edwin Brady. “Resource-Dependent Algebraic Effects”. In:
Trends in Functional Programming - 15th International Sym-
posium, TFP 2014, Soesterberg, The Netherlands, May 26-28,
2014. Revised Selected Papers. 2014, pp. 18–33. doi: 10.1007/
978-3-319-14675-1_2.

[Bra16] Edwin Brady. Type-driven Development With Idris. Manning,
2016. isbn: 9781617293023.

[Bra18] Edwin Brady. Blodwen. Tech. rep. 2018. url: https : / /
github.com/edwinb/Blodwen.

[Bru72] N.G de Bruijn. “Lambda calculus notation with nameless
dummies, a tool for automatic formula manipulation, with
application to the Church-Rosser theorem”. In: Indagationes
Mathematicae (Proceedings) 75.5 (1972), pp. 381–392. issn:
1385-7258. doi: 10.1016/1385-7258(72)90034-0. url:
http://www.sciencedirect.com/science/article/pii/
1385725872900340.

[BW97] Bruno Barras and Benjamin Werner. Coq in Coq. Tech. rep.
INRIA, Rocquencourt, 1997.

[Cap05] Venanzio Capretta. “General recursion via coinductive types”.
In: Logical Methods in Computer Science 1.2 (2005). doi:
10.2168/LMCS-1(2:1)2005.

[CB16] David R. Christiansen and Edwin Brady. “Elaborator reflec-
tion: extending Idris in Idris”. In: Proceedings of the 21st ACM
SIGPLAN International Conference on Functional Program-
ming, ICFP 2016, Nara, Japan, September 18-22, 2016. 2016,
pp. 284–297. doi: 10.1145/2951913.2951932.

[CC77] Patrick Cousot and Radhia Cousot. “Abstract Interpretation:
A Unified Lattice Model for Static Analysis of Programs by
Construction or Approximation of Fixpoints”. In: Conference
Record of the Fourth ACM Symposium on Principles of Pro-
gramming Languages, Los Angeles, California, USA, January
1977. 1977, pp. 238–252. doi: 10.1145/512950.512973.

https://doi.org/10.1007/978-3-319-14675-1_2
https://doi.org/10.1007/978-3-319-14675-1_2
https://github.com/edwinb/Blodwen
https://github.com/edwinb/Blodwen
https://doi.org/10.1016/1385-7258(72)90034-0
http://www.sciencedirect.com/science/article/pii/1385725872900340
http://www.sciencedirect.com/science/article/pii/1385725872900340
https://doi.org/10.2168/LMCS-1(2:1)2005
https://doi.org/10.1145/2951913.2951932
https://doi.org/10.1145/512950.512973

BIBLIOGRAPHY 216

[CDP14] Jesper Cockx, Dominique Devriese, and Frank Piessens. “Pat-
tern matching without K”. In: Proceedings of the 19th ACM
SIGPLAN international conference on Functional program-
ming, Gothenburg, Sweden, September 1-3, 2014. 2014, pp. 257–
268. doi: 10.1145/2628136.2628139.

[CF67] Haskell B. Curry and Robert Feys. “Combinatory logic”. In:
Journal of Symbolic Logic 32.2 (1967). Ed. by J. Barkley Rosser,
pp. 267–268. doi: 10.1017/S0022481200114203.

[CH88] Thierry Coquand and Gérard P. Huet. “The Calculus of Con-
structions”. In: Inf. Comput. 76.2/3 (1988), pp. 95–120. doi:
10.1016/0890-5401(88)90005-3.

[Cha+10] James Chapman et al. “The gentle art of levitation”. In:
Proceeding of the 15th ACM SIGPLAN international con-
ference on Functional programming, ICFP 2010, Baltimore,
Maryland, USA, September 27-29, 2010. 2010, pp. 3–14. doi:
10.1145/1863543.1863547.

[Cha12] Arthur Charguéraud. “The Locally Nameless Representation”.
In: J. Autom. Reasoning 49.3 (2012), pp. 363–408. doi: 10.
1007/s10817-011-9225-2.

[Chl08] Adam Chlipala. “Parametric higher-order abstract syntax for
mechanized semantics”. In: Proceeding of the 13th ACM SIG-
PLAN international conference on Functional programming,
ICFP 2008, Victoria, BC, Canada, September 20-28, 2008.
2008, pp. 143–156. doi: 10.1145/1411204.1411226.

[Chl13] Adam Chlipala. Certified Programming with Dependent Types
- A Pragmatic Introduction to the Coq Proof Assistant. MIT
Press, 2013. isbn: 978-0-262-02665-9. url: http://mitpress.
mit.edu/books/certified-programming-dependent-types.

[Chr14] David Raymond Christiansen. “Type-Directed Elaboration of
Quasiquotations: A High-Level Syntax for Low-Level Reflec-
tion”. In: Proceedings of the 26th 2014 International Symposium
on Implementation and Application of Functional Languages,
IFL ’14, Boston, MA, USA, October 1-3, 2014. 2014, 1:1–1:9.
doi: 10.1145/2746325.2746326.

https://doi.org/10.1145/2628136.2628139
https://doi.org/10.1017/S0022481200114203
https://doi.org/10.1016/0890-5401(88)90005-3
https://doi.org/10.1145/1863543.1863547
https://doi.org/10.1007/s10817-011-9225-2
https://doi.org/10.1007/s10817-011-9225-2
https://doi.org/10.1145/1411204.1411226
http://mitpress.mit.edu/books/certified-programming-dependent-types
http://mitpress.mit.edu/books/certified-programming-dependent-types
https://doi.org/10.1145/2746325.2746326

BIBLIOGRAPHY 217

[Chu40] Alonzo Church. “A Formulation of the Simple Theory of
Types”. In: J. Symb. Log. 5.2 (1940), pp. 56–68. doi: 10.
2307/2266170.

[Chu41] Alonzo Church. The Calculi of Lambda Conversion. (AM-6).
Princeton University Press, 1941. isbn: 9780691083940.

[CKZ03] Manuel M. T. Chakravarty, Gabriele Keller, and Patryk Zadarnowski.
“A Functional Perspective on SSA Optimisation Algorithms”.
In: Electr. Notes Theor. Comput. Sci. 82.2 (2003), pp. 347–361.
doi: 10.1016/S1571-0661(05)82596-4.

[Com10] The Haskell Committee. Haskell 2010 Language Report. Tech.
rep. 2010. url: https://www.haskell.org/onlinereport/
haskell2010/.

[Com99] The C Standards Committee. Programming languages —
C. Standard. International Organization for Standardization,
1999, pp. 42–49.

[Coq86] Thierry Coquand. “An Analysis of Girard’s Paradox”. In: Pro-
ceedings of the Symposium on Logic in Computer Science (LICS
’86), Cambridge, Massachusetts, USA, June 16-18, 1986. 1986,
pp. 227–236.

[Coq92] Thierry Coquand. “Pattern matching with dependent types”.
In: Proceedings of the Workshop on Types for Proofs and
Programs. 1992, pp. 71–83.

[Cor16] Intel Corporation. Intel (R) 64 and IA-32 Architectures Op-
timization Reference Manual. June 2016, pp. 89–97. url:
https : / / www . intel . com / content / dam / www / public /
us/en/documents/manuals/64-ia-32-architectures-
optimization-manual.pdf.

[CP90] Thierry Coquand and Christine Paulin. “Inductively Defined
Types”. In: Proceedings of the International Conference on
Computer Logic. COLOG ’88. London, UK, UK: Springer-
Verlag, 1990, pp. 50–66. isbn: 3-540-52335-9. url: http :
//dl.acm.org/citation.cfm?id=646125.758641.

https://doi.org/10.2307/2266170
https://doi.org/10.2307/2266170
https://doi.org/10.1016/S1571-0661(05)82596-4
https://www.haskell.org/onlinereport/haskell2010/
https://www.haskell.org/onlinereport/haskell2010/
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf
http://dl.acm.org/citation.cfm?id=646125.758641
http://dl.acm.org/citation.cfm?id=646125.758641

BIBLIOGRAPHY 218

[Cra03] Karl Crary. “Toward a foundational typed assembly language”.
In: Conference Record of POPL 2003: The 30th SIGPLAN-
SIGACT Symposium on Principles of Programming Languages,
New Orleans, Louisisana, USA, January 15-17, 2003. 2003,
pp. 198–212. doi: 10.1145/640128.604149.

[CRK05] Jonathan Corbet, Alessandro Rubini, and Greg Kroah-Hartman.
Linux device drivers - where the Kernel meets the hardware
(3. ed.) O’Reilly, 2005. isbn: 978-0-596-00590-0. url: http:
//www.oreilly.de/catalog/linuxdrive3/.

[CW00] Karl Crary and Stephanie Weirich. “Resource Bound Cer-
tification”. In: POPL 2000, Proceedings of the 27th ACM
SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, Boston, Massachusetts, USA, January 19-21,
2000. 2000, pp. 184–198. doi: 10.1145/325694.325716.

[CW99] Karl Crary and Stephanie Weirich. “Flexible Type Analysis”.
In: Proceedings of the fourth ACM SIGPLAN International
Conference on Functional Programming (ICFP ’99), Paris,
France, September 27-29, 1999. 1999, pp. 233–248. doi: 10.
1145/317636.317906.

[Dan12] Nils Anders Danielsson. “Operational semantics using the par-
tiality monad”. In: ACM SIGPLAN International Conference
on Functional Programming, ICFP’12, Copenhagen, Denmark,
September 9-15, 2012. 2012, pp. 127–138. doi: 10.1145/
2364527.2364546.

[Del00] David Delahaye. “A Tactic Language for the System Coq”.
In: Logic for Programming and Automated Reasoning, 7th
International Conference, LPAR 2000, Reunion Island, France,
November 11-12, 2000, Proceedings. 2000, pp. 85–95. doi:
10.1007/3-540-44404-1_7.

[DKW08] V. D’Silva, D. Kroening, and G. Weissenbacher. “A Survey of
Automated Techniques for Formal Software Verification”. In:
IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems 27.7 (July 2008), pp. 1165–1178. issn:
0278-0070. doi: 10.1109/TCAD.2008.923410.

https://doi.org/10.1145/640128.604149
http://www.oreilly.de/catalog/linuxdrive3/
http://www.oreilly.de/catalog/linuxdrive3/
https://doi.org/10.1145/325694.325716
https://doi.org/10.1145/317636.317906
https://doi.org/10.1145/317636.317906
https://doi.org/10.1145/2364527.2364546
https://doi.org/10.1145/2364527.2364546
https://doi.org/10.1007/3-540-44404-1_7
https://doi.org/10.1109/TCAD.2008.923410

BIBLIOGRAPHY 219

[Dyb94] Peter Dybjer. “Inductive families”. In: Formal Aspects of Com-
puting 6.4 (July 1994), pp. 440–465. issn: 1433-299X. doi:
10.1007/BF01211308.

[Ell+15] Trevor Elliott et al. “Guilt free ivory”. In: Proceedings of the
8th ACM SIGPLAN Symposium on Haskell, Haskell 2015,
Vancouver, BC, Canada, September 3-4, 2015. 2015, pp. 189–
200. doi: 10.1145/2804302.2804318.

[FH92] Matthias Felleisen and Robert Hieb. “The Revised Report on
the Syntactic Theories of Sequential Control and State”. In:
Theor. Comput. Sci. 103.2 (1992), pp. 235–271. doi: 10.1016/
0304-3975(92)90014-7.

[Fla+93] Cormac Flanagan et al. “The Essence of Compiling with Con-
tinuations”. In: Proceedings of the ACM SIGPLAN’93 Confer-
ence on Programming Language Design and Implementation
(PLDI), Albuquerque, New Mexico, USA, June 23-25, 1993.
1993, pp. 237–247. doi: 10.1145/155090.155113.

[FMA06] Matthew Fluet, Greg Morrisett, and Amal J. Ahmed. “Lin-
ear Regions Are All You Need”. In: Programming Languages
and Systems, 15th European Symposium on Programming,
ESOP 2006, Held as Part of the Joint European Conferences
on Theory and Practice of Software, ETAPS 2006, Vienna,
Austria, March 27-28, 2006, Proceedings. 2006, pp. 7–21. doi:
10.1007/11693024_2.

[Gil+09] Andy Gill et al. “Introducing Kansas Lava”. In: Proceedings of
the Symposium on Implementation and Application of Func-
tional Languages. Vol. 6041. LNCS. Springer-Verlag, Sept.
2009.

[Gir72] Jean-Yves Girard. “Interprétation fonctionnelle et élimination
des coupures de l’arithmétique d’ordre supérieur”. PhD thesis.
Université Paris 7, 1972.

[GL02] Benjamin Grégoire and Xavier Leroy. “A compiled implemen-
tation of strong reduction”. In: Proceedings of the Seventh ACM
SIGPLAN International Conference on Functional Program-
ming (ICFP ’02), Pittsburgh, Pennsylvania, USA, October 4-6,
2002. 2002, pp. 235–246. doi: 10.1145/581478.581501.

https://doi.org/10.1007/BF01211308
https://doi.org/10.1145/2804302.2804318
https://doi.org/10.1016/0304-3975(92)90014-7
https://doi.org/10.1016/0304-3975(92)90014-7
https://doi.org/10.1145/155090.155113
https://doi.org/10.1007/11693024_2
https://doi.org/10.1145/581478.581501

BIBLIOGRAPHY 220

[GM05] Benjamin Grégoire and Assia Mahboubi. “Proving Equalities
in a Commutative Ring Done Right in Coq”. In: Theorem
Proving in Higher Order Logics, 18th International Conference,
TPHOLs 2005, Oxford, UK, August 22-25, 2005, Proceedings.
2005, pp. 98–113. doi: 10.1007/11541868_7.

[GM12] Adam Gundry and Conor McBride. “A tutorial implemen-
tation of dynamic pattern unification”. preprint on webpage
at adam.gundry.co.uk/pub/pattern-unify/pattern-
unification-2012-07-10.pdf. July 2012.

[Gol84] Robert Goldblatt. Topoi: The Categorial Analysis of Logic.
Revised ed. (26 May 2006). Dover Publications Inc., 1984,
p. 576.

[Gon+13] Georges Gonthier et al. “A Machine-Checked Proof of the
Odd Order Theorem”. In: Interactive Theorem Proving - 4th
International Conference, ITP 2013, Rennes, France, July 22-
26, 2013. Proceedings. 2013, pp. 163–179. doi: 10.1007/978-
3-642-39634-2_14.

[Gon07] Georges Gonthier. “The Four Colour Theorem: Engineering
of a Formal Proof”. In: Computer Mathematics, 8th Asian
Symposium, ASCM 2007, Singapore, December 15-17, 2007.
Revised and Invited Papers. 2007, p. 333. doi: 10.1007/978-
3-540-87827-8_28.

[Hab71] A. Nico Habermann. Introduction to ALGOL 60 for those who
have used other programming languages. Tech. rep. Available
at repository.cmu.edu/cgi/viewcontent.cgi?article=
2981&context=compsci. School of Computer Science Depart-
ment, Carnegie Mellon University, 1971.

[Har12] Professor Robert Harper. Practical Foundations for Program-
ming Languages. New York, NY, USA: Cambridge University
Press, 2012.

[Her05] Hugo Herbelin. Type inference with algebraic universes in the
Calculus of Inductive Constructions. Tech. rep. 2005.

https://doi.org/10.1007/11541868_7
adam.gundry.co.uk/pub/pattern-unify/pattern-unification-2012-07-10.pdf
adam.gundry.co.uk/pub/pattern-unify/pattern-unification-2012-07-10.pdf
https://doi.org/10.1007/978-3-642-39634-2_14
https://doi.org/10.1007/978-3-642-39634-2_14
https://doi.org/10.1007/978-3-540-87827-8_28
https://doi.org/10.1007/978-3-540-87827-8_28
repository.cmu.edu/cgi/viewcontent.cgi?article=2981&context=compsci
repository.cmu.edu/cgi/viewcontent.cgi?article=2981&context=compsci

BIBLIOGRAPHY 221

[Hof95] Martin Hofmann. “Conservativity of Equality Reflection over
Intensional Type Theory”. In: Types for Proofs and Programs,
International Workshop TYPES’95, Torino, Italy, June 5-8,
1995, Selected Papers. 1995, pp. 153–164. doi: 10.1007/3-
540-61780-9_68.

[Hol14] ARM Holdings. ARM (R) NEON (tm) Intrinsics Reference.
Sept. 2014, p. 344. url: http://infocenter.arm.com/
help/topic/com.arm.doc.ihi0073a/IHI0073A_arm_neon_
intrinsics_ref.pdf.

[How80] W. A. Howard. “The formulae-as-types notion of construction”.
In: (1980). Ed. by Jonathan P. Seldin and J. Roger Hindley,
p. 12. url: http://lecomte.al.free.fr/ressources/
PARIS8_LSL/Howard80.pdf.

[HP91] Robert Harper and Robert Pollack. “Type Checking with
Universes”. In: Theor. Comput. Sci. 89.1 (1991), pp. 107–
136. doi: 10.1016/0304-3975(90)90108-T. url: https:
//doi.org/10.1016/0304-3975(90)90108-T.

[Hug95] John Hughes. “The Design of a Pretty-printing Library”. In:
Advanced Functional Programming, First International Spring
School on Advanced Functional Programming Techniques, Bås-
tad, Sweden, May 24-30, 1995, Tutorial Text. 1995, pp. 53–96.
doi: 10.1007/3-540-59451-5_3.

[Hur10] Chung-Kil Hur. “Heq: A Coq library for heterogeneous equal-
ity”. In: 2nd Coq Workshop. Edinburgh, United Kingdom, July
2010.

[Hut99] Graham Hutton. “A Tutorial on the Universality and Expres-
siveness of Fold”. In: J. Funct. Program. 9.4 (1999), pp. 355–
372. url: http : / / journals . cambridge . org / action /
displayAbstract?aid=44275.

[HWG13] Ralf Hinze, Nicolas Wu, and Jeremy Gibbons. “Unifying struc-
tured recursion schemes”. In: ACM SIGPLAN International
Conference on Functional Programming, ICFP’13, Boston,
MA, USA - September 25 - 27, 2013. 2013, pp. 209–220. doi:
10.1145/2500365.2500578.

https://doi.org/10.1007/3-540-61780-9_68
https://doi.org/10.1007/3-540-61780-9_68
http://infocenter.arm.com/help/topic/com.arm.doc.ihi0073a/IHI0073A_arm_neon_intrinsics_ref.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ihi0073a/IHI0073A_arm_neon_intrinsics_ref.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ihi0073a/IHI0073A_arm_neon_intrinsics_ref.pdf
http://lecomte.al.free.fr/ressources/PARIS8_LSL/Howard80.pdf
http://lecomte.al.free.fr/ressources/PARIS8_LSL/Howard80.pdf
https://doi.org/10.1016/0304-3975(90)90108-T
https://doi.org/10.1016/0304-3975(90)90108-T
https://doi.org/10.1016/0304-3975(90)90108-T
https://doi.org/10.1007/3-540-59451-5_3
http://journals.cambridge.org/action/displayAbstract?aid=44275
http://journals.cambridge.org/action/displayAbstract?aid=44275
https://doi.org/10.1145/2500365.2500578

BIBLIOGRAPHY 222

[IG96] Ross Ihaka and Robert Gentleman. “R: A Language for Data
Analysis and Graphics”. In: Journal of Computational and
Graphical Statistics 5.3 (1996), pp. 299–314. doi: 10.1080/
10618600.1996.10474713.

[Kah87] Gilles Kahn. “Natural Semantics”. In: STACS 87, 4th An-
nual Symposium on Theoretical Aspects of Computer Science,
Passau, Germany, February 19-21, 1987, Proceedings. 1987,
pp. 22–39. doi: 10.1007/BFb0039592.

[Kel95] Richard A. Kelsey. “A Correspondence Between Continuation
Passing Style and Static Single Assignment Form”. In: Papers
from the 1995 ACM SIGPLAN Workshop on Intermediate
Representations. IR ’95. San Francisco, California, USA: ACM,
1995, pp. 13–22. isbn: 0-89791-754-5. doi: 10.1145/202529.
202532.

[Ken07] Andrew Kennedy. “Compiling with continuations, continued”.
In: Proceedings of the 12th ACM SIGPLAN International
Conference on Functional Programming, ICFP 2007, Freiburg,
Germany, October 1-3, 2007. 2007, pp. 177–190. doi: 10.
1145/1291151.1291179.

[KG13] Hsiang-Shang Ko and Jeremy Gibbons. “Relational algebraic
ornaments”. In: Proceedings of the 2013 ACM SIGPLAN
workshop on Dependently-typed programming, DTP@ICFP
2013, Boston, Massachusetts, USA, September 24, 2013. 2013,
pp. 37–48. doi: 10.1145/2502409.2502413.

[KJ12] Steven Keuchel and Johan Jeuring. “Generic conversions of ab-
stract syntax representations”. In: Proceedings of the 8th ACM
SIGPLAN workshop on Generic programming, WGP@ICFP
2012, Copenhagen, Denmark, September 9-15, 2012. 2012,
pp. 57–68. doi: 10.1145/2364394.2364403.

[Kle+09] Gerwin Klein et al. “seL4: formal verification of an OS kernel”.
In: Proceedings of the 22nd ACM Symposium on Operating
Systems Principles 2009, SOSP 2009, Big Sky, Montana,
USA, October 11-14, 2009. 2009, pp. 207–220. doi: 10.1145/
1629575.1629596.

https://doi.org/10.1080/10618600.1996.10474713
https://doi.org/10.1080/10618600.1996.10474713
https://doi.org/10.1007/BFb0039592
https://doi.org/10.1145/202529.202532
https://doi.org/10.1145/202529.202532
https://doi.org/10.1145/1291151.1291179
https://doi.org/10.1145/1291151.1291179
https://doi.org/10.1145/2502409.2502413
https://doi.org/10.1145/2364394.2364403
https://doi.org/10.1145/1629575.1629596
https://doi.org/10.1145/1629575.1629596

BIBLIOGRAPHY 223

[KLW14] Robbert Krebbers, Xavier Leroy, and Freek Wiedijk. “Formal
C Semantics: CompCert and the C Standard”. In: Interactive
Theorem Proving - 5th International Conference, ITP 2014,
Held as Part of the Vienna Summer of Logic, VSL 2014,
Vienna, Austria, July 14-17, 2014. Proceedings. 2014, pp. 543–
548. doi: 10.1007/978-3-319-08970-6_36.

[Kme15] Edward Kmett. Bound. Tech. rep. Dec. 2015. url: https:
//www.schoolofhaskell.com/user/edwardk/bound.

[KP07] Andrew Kennedy and Benjamin C. Pierce. “On Decidability
of Nominal Subtyping with Variance”. In: International Work-
shop on Foundations and Developments of Object-Oriented
Languages (FOOL/WOOD). Jan. 2007.

[LA04] Chris Lattner and Vikram S. Adve. “LLVM: A Compilation
Framework for Lifelong Program Analysis & Transformation”.
In: 2nd IEEE / ACM International Symposium on Code Gen-
eration and Optimization (CGO 2004), 20-24 March 2004, San
Jose, CA, USA. 2004, pp. 75–88. doi: 10.1109/CGO.2004.
1281665.

[LB04] Fredrik Lindblad and Marcin Benke. “A Tool for Automated
Theorem Proving in Agda”. In: Types for Proofs and Programs,
International Workshop, TYPES 2004, Jouy-en-Josas, France,
December 15-18, 2004, Revised Selected Papers. 2004, pp. 154–
169. doi: 10.1007/11617990_10.

[Ler09] Xavier Leroy. “Programming with dependent types: passing
fad or useful tool?” IFIP Working Group 2.8 - Functional
Programming. June 2009. url: http://www.cs.ox.ac.uk/
ralf.hinze/WG2.8/26/slides/xavier.pdf.

[Ler95] Xavier Leroy. “The ZINC experiment: an economical imple-
mentation of the ML language”. In: (Nov. 1995).

[LH09] Daniel R. Licata and Robert Harper. “A universe of binding
and computation”. In: Proceeding of the 14th ACM SIGPLAN
international conference on Functional programming, ICFP
2009, Edinburgh, Scotland, UK, August 31 - September 2, 2009.
2009, pp. 123–134. doi: 10.1145/1596550.1596571.

https://doi.org/10.1007/978-3-319-08970-6_36
https://www.schoolofhaskell.com/user/edwardk/bound
https://www.schoolofhaskell.com/user/edwardk/bound
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1007/11617990_10
http://www.cs.ox.ac.uk/ralf.hinze/WG2.8/26/slides/xavier.pdf
http://www.cs.ox.ac.uk/ralf.hinze/WG2.8/26/slides/xavier.pdf
https://doi.org/10.1145/1596550.1596571

BIBLIOGRAPHY 224

[LM13] Sam Lindley and Conor McBride. “Hasochism: the pleasure
and pain of dependently typed haskell programming”. In: Pro-
ceedings of the 2013 ACM SIGPLAN Symposium on Haskell,
Boston, MA, USA, September 23-24, 2013. 2013, pp. 81–92.
doi: 10.1145/2503778.2503786.

[LMS10] Andres Löh, Conor McBride, and Wouter Swierstra. “A Tu-
torial Implementation of a Dependently Typed Lambda Cal-
culus”. In: Fundam. Inform. 102.2 (2010), pp. 177–207. doi:
10.3233/FI-2010-304.

[Lut03] Marko Luther. “Elaboration and erasure in type theory”. PhD
thesis. University of Ulm, Germany, 2003. url: http://d-
nb.info/969720114.

[MAG07] Peter Morris, Thorsten Altenkirch, and Neil Ghani. “Con-
structing Strictly Positive Families”. In: Theory of Computing
2007. Proceedings of the Thirteenth Computing: The Aus-
tralasian Theory Symposium (CATS2007). January 30 - Febuary
2, 2007, Ballarat, Victoria, Australia, Proceedings. 2007, pp. 111–
121. url: http://crpit.com/abstracts/CRPITV65Morris.
html.

[Mai18] The FreeBSD Project Maintainers. FreeBSD Library Functions
Manual. Tech. rep. Feb. 2018. url: https://www.freebsd.
org/cgi/man.cgi?query=queue.

[mai18] The Ethereum project maintainers. Solidity Language. Tech.
rep. Mar. 2018. url: https://solidity.readthedocs.io/
en/v0.4.20/.

[McB00] Conor McBride. “Elimination with a Motive”. In: Types for
Proofs and Programs, International Workshop, TYPES 2000,
Durham, UK, December 8-12, 2000, Selected Papers. 2000,
pp. 197–216. doi: 10.1007/3-540-45842-5_13. url: https:
//doi.org/10.1007/3-540-45842-5_13.

[McB04] Conor McBride. Epigram. Tech. rep. 2004. url: http://www.
dur.ac.uk/CARG/epigram.

[McB10a] Conor McBride. “Ornamental Algebras, Algebraic Ornaments”.
preprint on webpage at personal.cis.strath.ac.uk/conor.
mcbride/pub/OAAO/Ornament.pdf. Aug. 2010.

https://doi.org/10.1145/2503778.2503786
https://doi.org/10.3233/FI-2010-304
http://d-nb.info/969720114
http://d-nb.info/969720114
http://crpit.com/abstracts/CRPITV65Morris.html
http://crpit.com/abstracts/CRPITV65Morris.html
https://www.freebsd.org/cgi/man.cgi?query=queue
https://www.freebsd.org/cgi/man.cgi?query=queue
https://solidity.readthedocs.io/en/v0.4.20/
https://solidity.readthedocs.io/en/v0.4.20/
https://doi.org/10.1007/3-540-45842-5_13
https://doi.org/10.1007/3-540-45842-5_13
https://doi.org/10.1007/3-540-45842-5_13
http://www.dur.ac.uk/CARG/epigram
http://www.dur.ac.uk/CARG/epigram
personal.cis.strath.ac.uk/conor.mcbride/pub/OAAO/Ornament.pdf
personal.cis.strath.ac.uk/conor.mcbride/pub/OAAO/Ornament.pdf

BIBLIOGRAPHY 225

[McB10b] Conor McBride. “Outrageous but meaningful coincidences:
dependent type-safe syntax and evaluation”. In: Proceedings
of the ACM SIGPLAN Workshop on Generic Programming,
WGP 2010, Baltimore, MD, USA, September 27-29, 2010.
2010, pp. 1–12. doi: 10.1145/1863495.1863497.

[MFP91] Erik Meijer, Maarten M. Fokkinga, and Ross Paterson. “Func-
tional Programming with Bananas, Lenses, Envelopes and
Barbed Wire”. In: Functional Programming Languages and
Computer Architecture, 5th ACM Conference, Cambridge, MA,
USA, August 26-30, 1991, Proceedings. 1991, pp. 124–144. doi:
10.1007/3540543961_7.

[MH10] Stefan Monnier and David Haguenauer. “Singleton types here,
singleton types there, singleton types everywhere”. In: Proceed-
ings of the 4th ACM Workshop Programming Languages meets
Program Verification, PLPV 2010, Madrid, Spain, January
19, 2010. 2010, pp. 1–8. doi: 10.1145/1707790.1707792.

[MJ93] Steven McCanne and Van Jacobson. “The BSD Packet Filter:
A New Architecture for User-level Packet Capture”. In: Pro-
ceedings of the Usenix Winter 1993 Technical Conference, San
Diego, California, USA, January 1993. 1993, pp. 259–270. url:
https://www.usenix.org/conference/usenix-winter-
1993-conference/bsd-packet-filter-new-architecture-
user-level-packet.

[MKJ09] Shin-Cheng Mu, Hsiang-Shang Ko, and Patrik Jansson. “Al-
gebra of programming in Agda: Dependent types for rela-
tional program derivation”. In: J. Funct. Program. 19.5 (2009),
pp. 545–579. doi: 10.1017/S0956796809007345.

[MM04a] Conor McBride and James McKinna. “Functional pearl: i am
not a number-i am a free variable”. In: Proceedings of the ACM
SIGPLAN Workshop on Haskell, Haskell 2004, Snowbird, UT,
USA, September 22-22, 2004. 2004, pp. 1–9. doi: 10.1145/
1017472.1017477.

[MM04b] Conor McBride and James McKinna. “The view from the
left”. In: J. Funct. Program. 14.1 (2004), pp. 69–111. doi:
10.1017/S0956796803004829.

https://doi.org/10.1145/1863495.1863497
https://doi.org/10.1007/3540543961_7
https://doi.org/10.1145/1707790.1707792
https://www.usenix.org/conference/usenix-winter-1993-conference/bsd-packet-filter-new-architecture-user-level-packet
https://www.usenix.org/conference/usenix-winter-1993-conference/bsd-packet-filter-new-architecture-user-level-packet
https://www.usenix.org/conference/usenix-winter-1993-conference/bsd-packet-filter-new-architecture-user-level-packet
https://doi.org/10.1017/S0956796809007345
https://doi.org/10.1145/1017472.1017477
https://doi.org/10.1145/1017472.1017477
https://doi.org/10.1017/S0956796803004829

BIBLIOGRAPHY 226

[Mor+98] J. Gregory Morrisett et al. “From System F to Typed Assem-
bly Language”. In: POPL ’98, Proceedings of the 25th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, San Diego, CA, USA, January 19-21, 1998. 1998,
pp. 85–97. doi: 10.1145/268946.268954.

[Mor06] Greg Morrisett. F-Omega – the workhorse of modern compilers.
2006. url: https://web.archive.org/web/20160714072900/
http : / / www . eecs . harvard . edu / ~greg / cs256sp2005 /
lec16.txt (visited on 07/14/2016).

[Mou+15] Leonardo Mendonça de Moura et al. “The Lean Theorem
Prover (System Description)”. In: Automated Deduction -
CADE-25 - 25th International Conference on Automated De-
duction, Berlin, Germany, August 1-7, 2015, Proceedings. 2015,
pp. 378–388. doi: 10.1007/978-3-319-21401-6_26.

[MS84] Per Martin-Löf and Giovanni Sambin. Intuitionistic type theory.
Vol. 9. Bibliopolis Napoli, 1984.

[NN07] Hanne Riis Nielson and Flemming Nielson. Semantics with
Applications: An Appetizer. Undergraduate Topics in Computer
Science. Springer, 2007. isbn: 978-1-84628-691-9. doi: 10.
1007/978-1-84628-692-6.

[Nor07] Ulf Norell. “Towards a practical programming language based
on dependent type theory.” PhD thesis. Chalmers University
of Technology, 2007.

[Nor08] Ulf Norell. “Dependently Typed Programming in Agda”. In:
Advanced Functional Programming, 6th International School,
AFP 2008, Heijen, The Netherlands, May 2008, Revised Lec-
tures. 2008, pp. 230–266. doi: 10.1007/978-3-642-04652-
0_5.

[PE88] Frank Pfenning and Conal Elliott. “Higher-Order Abstract
Syntax”. In: Proceedings of the ACM SIGPLAN’88 Confer-
ence on Programming Language Design and Implementation
(PLDI), Atlanta, Georgia, USA, June 22-24, 1988. 1988,
pp. 199–208. doi: 10.1145/53990.54010.

[Pie02] Benjamin C. Pierce. Types and programming languages. MIT
Press, 2002. isbn: 978-0-262-16209-8.

https://doi.org/10.1145/268946.268954
https://web.archive.org/web/20160714072900/http://www.eecs.harvard.edu/~greg/cs256sp2005/lec16.txt
https://web.archive.org/web/20160714072900/http://www.eecs.harvard.edu/~greg/cs256sp2005/lec16.txt
https://web.archive.org/web/20160714072900/http://www.eecs.harvard.edu/~greg/cs256sp2005/lec16.txt
https://doi.org/10.1007/978-3-319-21401-6_26
https://doi.org/10.1007/978-1-84628-692-6
https://doi.org/10.1007/978-1-84628-692-6
https://doi.org/10.1007/978-3-642-04652-0_5
https://doi.org/10.1007/978-3-642-04652-0_5
https://doi.org/10.1145/53990.54010

BIBLIOGRAPHY 227

[Plo04a] Gordon D. Plotkin. “A structural approach to operational
semantics”. In: J. Log. Algebr. Program. 60-61 (2004), pp. 17–
139.

[Plo04b] Gordon D. Plotkin. “The origins of structural operational
semantics”. In: J. Log. Algebr. Program. 60-61 (2004), pp. 3–
15. doi: 10.1016/j.jlap.2004.03.009.

[Plo75] G.D. Plotkin. “Call-by-name, call-by-value and the -calculus”.
In: Theoretical Computer Science 1.2 (1975), pp. 125–159.
issn: 0304-3975. doi: 10.1016/0304-3975(75)90017-1. url:
http://www.sciencedirect.com/science/article/pii/
0304397575900171.

[PS99] Frank Pfenning and Carsten Schürmann. “System Description:
Twelf - A Meta-Logical Framework for Deductive Systems”. In:
Automated Deduction - CADE-16, 16th International Confer-
ence on Automated Deduction, Trento, Italy, July 7-10, 1999,
Proceedings. 1999, pp. 202–206. doi: 10.1007/3-540-48660-
7_14.

[Rey02] John C. Reynolds. “Separation Logic: A Logic for Shared Mu-
table Data Structures”. In: 17th IEEE Symposium on Logic in
Computer Science (LICS 2002), 22-25 July 2002, Copenhagen,
Denmark, Proceedings. 2002, pp. 55–74. doi: 10.1109/LICS.
2002.1029817.

[Rey03] John C. Reynolds. “What do types mean? — From intrinsic
to extrinsic semantics”. In: Programming Methodology. Ed. by
Annabelle McIver and Carroll Morgan. New York, NY: Springer
New York, 2003, pp. 309–327. isbn: 978-0-387-21798-7. doi:
10.1007/978-0-387-21798-7_15.

[Rey74] John C. Reynolds. “Towards a Theory of Type Structure”. In:
Programming Symposium, Proceedings Colloque Sur La Pro-
grammation. London, UK, UK: Springer-Verlag, 1974, pp. 408–
423. isbn: 3-540-06859-7. url: http://dl.acm.org/citation.
cfm?id=647323.721503.

[RKJ08] Patrick Maxim Rondon, Ming Kawaguchi, and Ranjit Jhala.
“Liquid types”. In: Proceedings of the ACM SIGPLAN 2008
Conference on Programming Language Design and Implemen-

https://doi.org/10.1016/j.jlap.2004.03.009
https://doi.org/10.1016/0304-3975(75)90017-1
http://www.sciencedirect.com/science/article/pii/0304397575900171
http://www.sciencedirect.com/science/article/pii/0304397575900171
https://doi.org/10.1007/3-540-48660-7_14
https://doi.org/10.1007/3-540-48660-7_14
https://doi.org/10.1109/LICS.2002.1029817
https://doi.org/10.1109/LICS.2002.1029817
https://doi.org/10.1007/978-0-387-21798-7_15
http://dl.acm.org/citation.cfm?id=647323.721503
http://dl.acm.org/citation.cfm?id=647323.721503

BIBLIOGRAPHY 228

tation, Tucson, AZ, USA, June 7-13, 2008. 2008, pp. 159–169.
doi: 10.1145/1375581.1375602.

[SA15] Josef Svenningsson and Emil Axelsson. “Combining deep and
shallow embedding of domain-specific languages”. In: Computer
Languages, Systems & Structures 44 (2015), pp. 143–165. doi:
10.1016/j.cl.2015.07.003.

[Sar97] Vijay Saraswat. Java is Not Type-Safe. Tech. rep. available
at https://www.cis.upenn.edu/~bcpierce/courses/629/
papers / Saraswat - javabug . html. AT&T Research, Aug.
1997.

[Sat12] Kazunori Sato. An Inside Look at Google BigQuery. Tech.
rep. on webpage at https://cloud.google.com/files/
BigQueryTechnicalWP.pdf. Google, 2012.

[SB17] Franck Slama and Edwin Brady. “Automatically Proving Equiv-
alence by Type-Safe Reflection”. In: Intelligent Computer Math-
ematics - 10th International Conference, CICM 2017, Edin-
burgh, UK, July 17-21, 2017, Proceedings. 2017, pp. 40–55.
doi: 10.1007/978-3-319-62075-6_4.

[SC12] Bruno C. d. S. Oliveira and William R. Cook. “Functional
programming with structured graphs”. In: ACM SIGPLAN In-
ternational Conference on Functional Programming, ICFP’12,
Copenhagen, Denmark, September 9-15, 2012. 2012, pp. 77–88.
doi: 10.1145/2364527.2364541.

[Sed88] Robert Sedgewick. Algorithms, 2nd Edition. Addison-Wesley,
1988, pp. 51–53. isbn: 0-201-06673-4.

[Sew+07] Peter Sewell et al. “Ott: effective tool support for the work-
ing semanticist”. In: Proceedings of the 12th ACM SIGPLAN
International Conference on Functional Programming, ICFP
2007, Freiburg, Germany, October 1-3, 2007. 2007, pp. 1–12.
doi: 10.1145/1291151.1291155.

[SJ02] Tim Sheard and Simon L. Peyton Jones. “Template meta-
programming for Haskell”. In: SIGPLAN Notices 37.12 (2002),
pp. 60–75. doi: 10.1145/636517.636528.

https://doi.org/10.1145/1375581.1375602
https://doi.org/10.1016/j.cl.2015.07.003
https://www.cis.upenn.edu/~bcpierce/courses/629/papers/Saraswat-javabug.html
https://www.cis.upenn.edu/~bcpierce/courses/629/papers/Saraswat-javabug.html
https://cloud.google.com/files/BigQueryTechnicalWP.pdf
https://cloud.google.com/files/BigQueryTechnicalWP.pdf
https://doi.org/10.1007/978-3-319-62075-6_4
https://doi.org/10.1145/2364527.2364541
https://doi.org/10.1145/1291151.1291155
https://doi.org/10.1145/636517.636528

BIBLIOGRAPHY 229

[SL07] Tim Sheard and Nathan Linger. “Programming in Omega”.
In: Central European Functional Programming School, Second
Summer School, CEFP 2007, Cluj-Napoca, Romania, June
23-30, 2007, Revised Selected Lectures. 2007, pp. 158–227. doi:
10.1007/978-3-540-88059-2_5.

[Soz10] Matthieu Sozeau. “Equations: A Dependent Pattern-Matching
Compiler”. In: Interactive Theorem Proving, First International
Conference, ITP 2010, Edinburgh, UK, July 11-14, 2010.
Proceedings. 2010, pp. 419–434. doi: 10.1007/978-3-642-
14052-5_29.

[Str+12] Pierre-Yves Strub et al. “Self-Certification: Bootstrapping Cer-
tified Typecheckers in F* with Coq”. In: Proceedings of the
39th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages. 2012, pp. 571–584. url: https:
//hal.inria.fr/inria-00628775.

[SV06] Alexandra Silva and Joost Visser. “Strong types for relational
databases”. In: Proceedings of the ACM SIGPLAN Workshop
on Haskell, Haskell 2006, Portland, Oregon, USA, September
17, 2006. 2006, pp. 25–36. doi: 10.1145/1159842.1159846.

[Swi12] Wouter Swierstra. “From Mathematics to Abstract Machine:
A formal derivation of an executable Krivine machine”. In:
Proceedings Fourth Workshop on Mathematically Structured
Functional Programming, MSFP@ETAPS 2012, Tallinn, Esto-
nia, 25 March 2012. 2012, pp. 163–177. doi: 10.4204/EPTCS.
76.10.

[TB15] Matús̆ Tejis̆c̆ák and Edwin Brady. “Practical Erasure in Depen-
dently Typed Languages”. preprint on webpage at eb.host.
cs.st-andrews.ac.uk/drafts/dtp-erasure-draft.pdf.
Feb. 2015.

[Tea18] The Coq Development Team. The Coq Proof Assistant Ref-
erence Manual. Version 8.7.2. Feb. 2018. url: https://coq.
inria.fr/distrib/current/files/Reference-Manual.
pdf.

https://doi.org/10.1007/978-3-540-88059-2_5
https://doi.org/10.1007/978-3-642-14052-5_29
https://doi.org/10.1007/978-3-642-14052-5_29
https://hal.inria.fr/inria-00628775
https://hal.inria.fr/inria-00628775
https://doi.org/10.1145/1159842.1159846
https://doi.org/10.4204/EPTCS.76.10
https://doi.org/10.4204/EPTCS.76.10
eb.host.cs.st-andrews.ac.uk/drafts/dtp-erasure-draft.pdf
eb.host.cs.st-andrews.ac.uk/drafts/dtp-erasure-draft.pdf
https://coq.inria.fr/distrib/current/files/Reference-Manual.pdf
https://coq.inria.fr/distrib/current/files/Reference-Manual.pdf
https://coq.inria.fr/distrib/current/files/Reference-Manual.pdf

BIBLIOGRAPHY 230

[UVP01] Tarmo Uustalu, Varmo Vene, and Alberto Pardo. “Recursion
Schemes from Comonads”. In: Nord. J. Comput. 8.3 (2001),
pp. 366–390. url: http : / / www . cs . helsinki . fi / njc /
References/uustaluvp2001:366.html.

[VW10] Dimitrios Vytiniotis and Stephanie Weirich. “Parametricity,
type equality, and higher-order polymorphism”. In: J. Funct.
Program. 20.2 (2010), pp. 175–210. doi: 10.1017/S0956796810000079.

[Wad01] Philip Wadler. “The Girard–Reynolds isomorphism”. In: Pro-
ceedings of the 4th International Symposium on Theoreti-
cal Aspects of Computer Software. TACS ’01. London, UK:
Springer-Verlag, 2001, pp. 468–491.

[Wad89] Philip Wadler. “Theorems for Free!” In: Proceedings of the
fourth international conference on Functional programming
languages and computer architecture, FPCA 1989, London,
UK, September 11-13, 1989. 1989, pp. 347–359. doi: 10.1145/
99370.99404.

[Wad98] Philip Wadler. “A Prettier Printer”. In: Journal of Functional
Programming. Palgrave Macmillan, 1998, pp. 223–244.

[Wal12] Paul van der Walt. “Reflection in Agda”. MA thesis. Depart-
ment of Computing Science, Universiteit Utrecht, Oct. 2012.

[WB89] Philip Wadler and Stephen Blott. “How to Make ad-hoc Poly-
morphism Less ad-hoc”. In: Conference Record of the Six-
teenth Annual ACM Symposium on Principles of Programming
Languages, Austin, Texas, USA, January 11-13, 1989. 1989,
pp. 60–76. doi: 10.1145/75277.75283.

[Wei02] Stephanie Weirich. “CIS 500: Software Foundations”. Nov.
2002. url: https://www.seas.upenn.edu/~cis500/cis500-
f02/lectures/1106-4up.pdf.

[Wen+17a] Makarius Wenzel et al. The Isabelle/Isar Implementation. Oct.
2017, p. 159. url: http://isabelle.in.tum.de/doc/
implementation.pdf.

[Wen+17b] Makarius Wenzel et al. The Isabelle/Isar Reference Manual,
Oct. 2017, pp. 158–166. url: http://isabelle.in.tum.de/
doc/isar-ref.pdf.

http://www.cs.helsinki.fi/njc/References/uustaluvp2001:366.html
http://www.cs.helsinki.fi/njc/References/uustaluvp2001:366.html
https://doi.org/10.1017/S0956796810000079
https://doi.org/10.1145/99370.99404
https://doi.org/10.1145/99370.99404
https://doi.org/10.1145/75277.75283
https://www.seas.upenn.edu/~cis500/cis500-f02/lectures/1106-4up.pdf
https://www.seas.upenn.edu/~cis500/cis500-f02/lectures/1106-4up.pdf
http://isabelle.in.tum.de/doc/implementation.pdf
http://isabelle.in.tum.de/doc/implementation.pdf
http://isabelle.in.tum.de/doc/isar-ref.pdf
http://isabelle.in.tum.de/doc/isar-ref.pdf

BIBLIOGRAPHY 231

[WF94] Andrew K. Wright and Matthias Felleisen. “A Syntactic Ap-
proach to Type Soundness”. In: Inf. Comput. 115.1 (1994),
pp. 38–94. doi: 10.1006/inco.1994.1093.

[WHE13] Stephanie Weirich, Justin Hsu, and Richard A. Eisenberg. “Sys-
tem FC with explicit kind equality”. In: ACM SIGPLAN In-
ternational Conference on Functional Programming, ICFP’13,
Boston, MA, USA - September 25 - 27, 2013. 2013, pp. 275–
286. doi: 10.1145/2500365.2500599.

[Wil+08] Reinhard Wilhelm et al. “The worst-case execution-time prob-
lem - overview of methods and survey of tools”. In: ACM
Trans. Embedded Comput. Syst. 7.3 (2008), 36:1–36:53. doi:
10.1145/1347375.1347389.

[Woo18] Gavin Wood. ETHEREUM: A SECURE DECENTRALISED
GENERALISED TRANSACTION LEDGER. Tech. rep. on
webpage at gavwood.com/paper.pdf. Mar. 2018.

[WS12] Paul van der Walt and Wouter Swierstra. “Engineering Proof
by Reflection in Agda”. In: Implementation and Application of
Functional Languages - 24th International Symposium, IFL
2012, Oxford, UK, August 30 - September 1, 2012, Revised
Selected Papers. 2012, pp. 157–173. doi: 10.1007/978-3-
642-41582-1_10.

[WW03] Geoffrey Washburn and Stephanie Weirich. “Boxes go ba-
nanas: encoding higher-order abstract syntax with parametric
polymorphism”. In: Proceedings of the Eighth ACM SIGPLAN
International Conference on Functional Programming, ICFP
2003, Uppsala, Sweden, August 25-29, 2003. 2003, pp. 249–262.
doi: 10.1145/944705.944728.

[WYS11] Stephanie Weirich, Brent A. Yorgey, and Tim Sheard. “Binders
unbound”. In: Proceeding of the 16th ACM SIGPLAN inter-
national conference on Functional Programming, ICFP 2011,
Tokyo, Japan, September 19-21, 2011. 2011, pp. 333–345. doi:
10.1145/2034773.2034818.

[Xi07] Hongwei Xi. “Dependent ML An approach to practical pro-
gramming with dependent types”. In: J. Funct. Program. 17.2
(2007), pp. 215–286. doi: 10.1017/S0956796806006216.

https://doi.org/10.1006/inco.1994.1093
https://doi.org/10.1145/2500365.2500599
https://doi.org/10.1145/1347375.1347389
gavwood.com/paper.pdf
https://doi.org/10.1007/978-3-642-41582-1_10
https://doi.org/10.1007/978-3-642-41582-1_10
https://doi.org/10.1145/944705.944728
https://doi.org/10.1145/2034773.2034818
https://doi.org/10.1017/S0956796806006216

BIBLIOGRAPHY 232

[Xi17] Hongwei Xi. “Applied Type System: An Approach to Practical
Programming with Theorem-Proving”. In: CoRR abs/1703.08683
(2017). arXiv: 1703.08683. url: http://arxiv.org/abs/
1703.08683.

[Xi99] Hongwei Xi. “Dead Code Elimination through Dependent
Types”. In: Practical Aspects of Declarative Languages, First
International Workshop, PADL ’99, San Antonio, Texas, USA,
January 18-19, 1999, Proceedings. 1999, pp. 228–242. doi:
10.1007/3-540-49201-1_16.

[XP98] Hongwei Xi and Frank Pfenning. “Eliminating Array Bound
Checking Through Dependent Types”. In: Proceedings of the
ACM SIGPLAN ’98 Conference on Programming Language
Design and Implementation (PLDI), Montreal, Canada, June
17-19, 1998. 1998, pp. 249–257. doi: 10.1145/277650.277732.

http://arxiv.org/abs/1703.08683
http://arxiv.org/abs/1703.08683
http://arxiv.org/abs/1703.08683
https://doi.org/10.1007/3-540-49201-1_16
https://doi.org/10.1145/277650.277732

	Contents
	Introduction
	EDSL design with dependent types
	Overview
	Contributions
	Chapter Outline

	Programming with Dependent Types
	What are dependent types?
	Idris
	Programming with Idris

	Views, existentials, and equality.
	Notions of equality

	Languages with dependent types
	Mechanized verification of type-safety
	Structural operational semantics
	Natural operational semantics
	Mechanized type-safety of STLC
	Verification with dependent types

	A brief history of binding strategies
	Parametric Higher Order Abstract Syntax
	Name indexed De Bruijn indices

	Proof by reflection
	Proving equality of monoid expressions
	First-class reflection

	Summary

	Verified typing with explicit coercions
	A language of term semantics
	Programs and their semantics
	Index expression rewriting
	Specifying index expression semantics
	A sound rewriting of index expressions

	Constraint contexts
	Propositions on index expressions
	Type-checking with constraint contexts

	Expression evaluation
	Erasing and recovering semantic indices
	Canonical indexed values
	Efficiently evaluating indexed expressions

	Reachability testing
	Summary

	Programming and proving with L
	Warm-up: addition
	Programming with macros

	Head and tail functions
	Functionally correct fibonacci
	The fibonacci index expression function
	The semantic indexed fibonacci function
	A pattern for function soundness.
	Proving the correctness of fibonacci

	Products
	Higher-order functions
	Automated index expression rewriting
	A monoid of addition

	Summary

	Verified Cost Analysis
	A structured statement language
	Decomposing semantics indexed expressions
	Compilation with dead-code elimination
	Describing the abstract machine
	Compiling L with continuations
	Evaluation and object code emission

	Summary

	Conclusions
	Limitations
	Supporting side-effects
	Improving performance
	Supporting data structures

	Further work
	Expansion of programming features
	Proof of sound compilation process

	Auxiliary correctness proofs of L programs
	Correctness of [language=idris]ixSnd
	Implementation of [language=idris]expListSnd
	Specification of fibonacci function

	Implementing a monoid of addition
	Correctness of [language=idris]plusEval
	Proof of [language=idris]eqMonoidExp
	Definition of the explicit monoid interface

	Mechanization of index expression evaluation and correctness
	Ix evaluation
	Expressions with constraints
	Proof of index erasure isomorphism
	Proof of indexed value canonicity
	Proof of index expression thinning properties

	Specification and compilation of S
	Compiling from S to machine code

	Equivalence of well-formed De Bruijn indices and context membership
	Definition of the IfNil relation
	Bibliography

