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ABSTRACT 

This thesis largely focuses on the mechanistic analysis of the Assembly-Disassembly-

Organisation-Reassembly (ADOR) process through a range of crystallographic techniques 

including powder X-ray diffraction and Pair Distribution Function (PDF) analysis and 

subsequent analysis using solid-state kinetics.  

Chapter 4 describes the development of a new standard protocol to using the ADOR 

process. The protocol describes the development of a procedure used for identifying the 

optimum conditions (time of reaction, temperature, acidity, etc.) for the ADOR process. In 

developing the protocol, Ge-containing UTL zeolites were subjected to hydrolysis 

conditions using both water and hydrochloric acid as media, which provides an 

understanding of the effects of temperature and pH on the Disassembly (D) and 

Organisation (O) steps of the process that define the potential products. Samples were 

analysed by powder X-ray diffraction to yield a time course for the reaction at each set of 

conditions. 

Chapter 5 continues work on the ADOR process and presents the first kinetic study on the 

two most prominent steps in the process; Disassembly and Organisation. By using solid-

state kinetic models, Avrami-Erofeev and its linear equivalent Sharp-Hancock, the 

dependence on temperature and presence of liquid water was investigated and the activation 

energy of the rearrangement process quantified. Work on the rearrangement step aimed to 

understand where the silica species intercalates from and which material formed as the 

kinetic and thermodynamic product from the reaction. 

Chapter 6 describes a study into the Disassembly and Organisation steps of the ADOR 

process through in situ Pair Distribution Function (PDF) analysis. This hopes to shed light 

on the selectivity of the ADOR process in different media and the mechanism by which the 

double-four-ring (d4r) breakdown.  

On a different note, Chapter 7 describes the refinement of synthesis conditions used to 

prepare poly-crystalline CPO-27-M (MOF-74) with lower concentrations of base and at low 

temperature. Refinement of the synthesis of single crystal CPO-27-Mg, -Zn and UTSA-74 

was undertaken and the necessary components to forming large single crystals understood. 
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CHAPTER 1:  
INTRODUCTION  

In the following introduction, zeolites and the issues surrounding the preparation of new 

zeolites is discussed (the zeolite conundrum), followed by an in-depth discussion on each 

fundamental step of the ADOR process and how new “unfeasible” daughter zeolites can be 

prepared from parent germanosilicates. 

 

1.1. Porous Solids 

Crystalline porous solids can be described as materials that have regular voids throughout 

the material, these could take the form of cavities, channels or interstices.1 The characteristics 

of porous materials vary greatly depending on the size, shape and composition of the internal 

voids and this can be exploited to create a porous material with desirable characteristics for 

a specific application,2 for example zeolites are excellent candidates for heterogeneous 

catalysis.3–8 Uses of important porous materials include catalysts,9–12 ceramics,13–15 

pigments,16,17 membranes,18–21 sensors,22 electrodes and batteries.23–25 Many of the porous 

materials prepared and used in industry today include Metal-Organic frameworks (MOFs)26–

32 and zeolites (Figure 1.1).9–12,33–38  

 

Figure 1.1. The channel systems shown in Zeolite-Y (left) with the T-O-T bonds shown by grey 

lines, and MOF-5 (right) where the channels are made of zinc metal clusters and 1,4-

benzodicarboxylate. 
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1.2. Zeolites and their Conundrum 

The history of zeolites dates back to 1756 when Axel F. Cronstedt, a Swedish mineralogist, 

first discovered and identified peculiar properties of minerals found in a copper mine in 

Lapland, Sweden. He found that when the mineral stilbite was heated in a blow-pipe, it 

appeared to boil, as such he coined the term zeolite from the Greek words ζέω = to boil and 

λίθος = stone.39 Zeolites have since been characterised as porous materials made up of 

corner-sharing TO4 tetrahedral units, where the T atom is traditionally silicon or aluminium, 

but can also be germanium, iron, phosphorus etc. Each TO4 unit represents the zeolites 

primary building unit (PBU), these PBUs can then be built up to form 2- or 3-dimensional 

networks with different size channel systems dependent on synthesis conditions (Figure 1.2). 

 

Figure 1.2. A schematic to show the connectivity of TO4 tetrahedra to form parent zeolite UTL. 

 

Today, there are 239 synthetic zeolites in the International Zeolite Association (IZA)40 

database and each of these zeolites tends to form as the lowest density structure possible 

when made using traditional hydrothermal synthesis. The “zeolite conundrum” can be 

visualised in Figure 1.3, where each black dot represents a potential (theoretical) zeolite that 

could be made. However, all zeolites in the IZA database lie on the correlation line shown 

in red.41 Clearly a new approach is needed to break through the synthesis barrier and access 
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the countless other structures possible. To do this, a top-down synthetic approached termed 

the Assembly-Disassembly-Organisation-Reassembly (ADOR) process 42–45 has been 

developed to produce new “unfeasible” zeolites that lie off the traditional correlation line by 

exploiting the inherent weakness in germanosilicates. This will be discussed in detail below. 

 

Figure 1.3. The zeolite conundrum. Each black dot represents a theoretical zeolite. The traditional 

correlation line is shown in red. UTL – yellow square, IPC-2 and IPC-4 – green circles, 

“unfeasible” IPC-9 and IPC-10 – pink circles. Figure adapted from reference 46.  

 

1.3. Applications of Zeolites 

High silica zeolites are an important class of microporous solids that are widely used in 

industry. The many different structural topologies available to zeolites open up many 

different potential uses and so there remains a strong drive to prepare new zeolites. They are 

one of the most important families of heterogeneous catalysts in use today,47,48 but are also 

used in a wide variety of other applications from ion exchange and water softening, through 

to medical applications.  
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The 3-dimensional channels can be tuned to accommodate organic molecules of a similar 

size and can selectively sort out these organic molecules by size/shape exclusion. In the 

1950s Union Carbide used zeolites to separate unsaturated aliphatic hydrocarbons in an 

industrial setting. This, and the synthesis of zeolites A, X, and Y, paved the way for zeolites 

to be used as molecular sieves and ultimately increased the amount of zeolite research being 

undertaken.  

Zeolites can also be used in water softening applications by using their channel system to 

exchange loosely bound water molecules and cations from within the framework with ions 

from the aqueous solution. In water softening, Ca2+ ions are removed from the water.49  

 

1.4. Synthetic Approaches to Zeolites 

There are two general umbrellas that describe the synthetic approaches to forming new 

zeolites. Traditional, where the zeolite is formed through successive crystallisation processes, 

and therefore the porosity is incorporated during the initial synthesis. The pore system can 

also be achieved through post-synthetic manipulation of pre-formed zeolites.12  

 

1.4.1. Traditional Synthetic Methods 

Forming new zeolites by traditional synthetic methods can be achieved in 3 ways, 

hydrothermal, solvothermal, and ionothermal synthetic approaches. 

 

1.4.1.1. Hydrothermal 

Zeolites, in general, follow Ostwald’s law of successive reactions. The law states that the first 

amorphous phase is consumed and replaced by a thermodynamically meta-stable second 

phase, this then continues until the most stable phase is formed. This is apparent in the 

hydrothermal synthesis of zeolites, whereby the successive crystallisation of solids in aqueous 

media occurs at temperatures above the boiling point of water and autogenous pressure in a 

Teflon-lined steel autoclave. Templates and structure-directing agents (SDAs) may be added 
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at this stage to direct the synthesis to afford a desired product. In general terms, a typical 

zeolite synthesis is as follows: 

i. Silica, germania and/or alumina reactants are mixed with a cationic source in a basic 

solution. If directing agents are to be used, they would be added in this step. 

ii. The aqueous reaction mixture (solution or gel) is heated to high temperatures (100-

150 °C) and high pressure in a Teflon-lined steel autoclave for 2-14 days. 

iii. The reaction mixture remains amorphous during an induction period. 

iv. The zeolite nuclei begin to crystallise to successively form primary building units, 

secondary building units and then polyhedra until all amorphous material has been 

consumed and only the zeolite remains. 

v. The zeolite product is collected by filtration, washed with water and dried. 

 

1.4.1.1.1. Templates and Structure-Directing Agents 

Many zeolite syntheses involve the use of a template. There are three different types of 

templates: “true” templates that direct the framework to adopt the configuration unique to 

the template; structure-directing agents, which direct a specific product to form; space-filling 

species. 

When designing a new template, there are criteria that must be fulfilled for it to be effective:  

(i) The surface properties should match the properties of the reaction mixture. 

(ii) They need to be stable at the synthesis temperature. 

(iii) Once the template is removed, the zeolite must remain stable.12 

The size and shape of the templates can be used to effectively control the pore size of the 

zeolite produced, however many templates are expensive, and the lengthy synthesis time 

limits the synthesis of zeolites to conventional laboratory settings.  

Cationic organic structure-directing agents work in two ways, (1) they balance the charge of 

the framework or (2) they fill the void place in zeolites. As the surface of the zeolite is 

hydrophobic, the organic will fill these areas, separating from the aqueous mixture. As such, 

by packing into the channel systems of the zeolite, the thermodynamic stability can be greatly 

increased. Such organics direct the nucleation process and therefore only one product can 
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be afforded. An example of this is the synthesis of UTL. The synthesis of UTL is directed 

by a SDA - (6R,10S)-6,10-dimethyl-5-azoniaspiro[4,5]decane hydroxide. 

Mineralizers such as sodium hydroxide (OH-) have a direct impact on the synthesis dynamics 

and essentially dissolve silica/alumina etc. providing a reversible T-O-T hydrolysis, which is 

essential for the formation of a crystalline product. More recently, fluoride (F-) has been used 

as a mineralizer and structure-directing agent. It allows the synthesis to be conducted at 

neutral/acidic conditions with reduced amount of water, and as such this has led to the 

formation of all-silica zeolites.50  

 

1.4.1.2. Solvothermal 

Solvothermal synthesis of zeolites is essentially the same as the hydrothermal method 

discussed above, with one major difference: the solvents used are of low polarity. For 

example, triethylene glycol and 1,4-dibutanediol. By using solvothermal synthesis, it is 

possible to obtain the zeolite product as large single crystals, thus allowing their structure to 

be determined by single crystal X-ray diffraction. An example of this, is the synthesis of Si-

MFI. Microwave-assisted solvothermal synthesis in isopropanol afforded Si-MFI as round, 

flat crystals.51  

 

1.4.1.3. Ionothermal 

Ionic liquids are a class of organic solvents that have high polarity and a pre-organised 

solvent structure. They have a high thermal stability making them ideal candidates for 

synthesising materials by hydro/solvothermal conditions. 

Ionothermal synthesis uses ionic liquids as both the solvent and structure directing agent 

(template) to prepare both zeolites and metal-organic frameworks. It was thought that by 

using solely ionic liquids instead of SDAs, the competition between the solvent and the 

template could be removed, which would ultimately increase the templating effect of the 

organic. Ionothermal synthesis has successfully been used to make new zeotype materials 

including novel AlPOs, CoAlPOs and GaPOs.52   
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1.4.2. Post-synthetic Manipulation 

A pre-assembled 3-dimensional zeolite can be post-synthetically modified to introduce 

additional porosity by way of demetallation techniques. Layered zeolite precursors can 

undergo delamination, swelling or pillaring to afford new zeolites.  

 

1.4.2.1. Demetallation 

Demetallation is the term used to remove framework atoms (Al, B, Ge, Si, Ti etc.) which 

introduces extra porosity into the structure. Breaking these bonds can be done by treating 

chemically (acid or alkali), hydrothermally (steaming) or physically (radiation). The zeolites 

prepared in this manner have an additional intra-crystalline pore system and typically exhibit 

a wider pore size distribution.12 

Removing only the aluminium (dealumination) creates zeolites with an intra-crystalline pore 

system, however the Si/Al ratio can be drastically changed, as such changing the acidic 

properties of the material. The connectivity of the pores after dealumination is often low. 

Desilication however, can occasionally create extra porosity without a substantial impact on 

the acidic properties, and with a highly interconnected pore system. Tuning the treatment 

conditions (time, temperature, concentration of base) allows the size and volume of the 

pores to be easily controlled.12 

 

1.4.2.2. Layered Zeolite Precursors 

Layered zeolite precursors can undergo separation of the layers to create a “house of cards”, 

an array of zeolite-type layers that contain inter-lamellar mesoporosity. In many cases, 3-

dimensional zeolites can be formed from a layered zeolite precursor upon calcination, for 

example the zeolite FER is afforded from the calcination of its layered precursor 

PREFER.53,54 More interestingly, some zeolites can only be obtained via their layered 

precursor, examples include, NSI, CDO, RRO, RWR, and PCR.55 Modifying the layered 

precursor before calcination can lead to more than one 3-dimensional zeolite afforded, and 

this is dependent on the post-synthetic approach chosen. These layered materials can be 

treated similarly to clay or clay-based materials, which introduces mesoporosity between 



8 | P a g e  

 

separated layers, by way of intercalation and pillaring. Figure 1.4 highlights how one layered 

zeolite precursor (MCM-22P) can form a family of zeolites through delamination, pillaring 

and swelling.56 Layered materials can be manipulated by new techniques such as silylation57 

and the Assembly-Disassembly-Organisation-Reassembly (ADOR) process.44 This thesis 

will primarily focus on the ADOR approach to synthesise new zeolites. 

 

Figure 1.4. The MCM-22 family. A schematic showing the top-down approach to forming new 

zeolites from one layered material. The dashed red line shows uncalcined (left) and the materials 

produced after subsequent calcination (right). 

 

1.5. Germanosilicates 

Tetravalent germanium can be isomorphically incorporated into the structure of many 

traditional silicates by substituting some (or all) silicon for germanium. Germanium is a larger 

cation than silicon so will preferentially occupy space in the double-four-ring (d4r) rather 

than in the layers of the zeolite. The bond lengths (Ge-O; 1.74 Å) and angles (Ge-O-Ge; 

130-140 ˚) differ to those of Si-O-Si (1.62 Å and >140 ˚) and as such, due to the longer bond 

length and smaller angle around the cation, the strain in the d4r can be released.55 
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Current germanosilicates include but are not limited to UTL,43,59,60 ITH,42 ITR,42 IWR,42 

IWW,45 UOV61,62 and the recently discovered SAZ-160. These germanosilicates all contain 

d4r’s, with the germanium preferentially occupying the d4r and have successfully been used 

in the ADOR process (Figure 1.5).  

 

Figure 1.5. Double-four-ring containing germanosilicates currently used in the ADOR process. d4r 

are highlighted by a yellow box. 

 

A well-known paper published in J. Phys. Chem. C. by Corma et al., studied the effect of 

different amounts of GeO2 added to the reaction mixture of silica zeolites. The feasibility 

was calculated computationally and a range of germania and silica zeolites produced. They 

showed that due to the presence of d4r, zeolite Beta-C (BEC) could potentially be formed 

as either a pure germania, pure silica, or a mixture of the two.64 The Ge‐containing 

polymorph C from BEC was synthesised by using the hydroxide form of benzyl‐DABCO 

(DABCO = 1,4-diazabicyclo[2.2.2]octane; BD+) as a SDA. However, when the reaction was 

synthesised without germanium, a different structure ZSM-12 (MTW) was afforded (Figure 

1.6).65 This strongly suggests that Ge does indeed promote the formation of the d4r units. 
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Figure 1.6. The crystallographic structures of MTW (left) and Polymorph C (right). 

 

1.6. The ADOR Process 

The recently developed Assembly-Disassembly-Organisation-Reassembly (ADOR) process 

takes a predetermined parent zeolite and selectively breaks it apart by exploiting the chemical 

weakness inherent in germanium-rich d4r. The layers that are left behind can be suitably 

reorganised into a new position by a structure-directing agent (SDA) or aqueous 

hydrochloric acid and after subsequent calcination form new daughter zeolites. UTL was 

the first layered zeolite to be successfully used in the ADOR process and has produced 6 

daughter zeolites, IPC-2 (OKO), IPC-4 (PCR), IPC-6 (*PCS), IPC-746 and “unfeasible” 

zeolites IPC-9 and IPC-10 (Table 1.1).43 Zeolites that are termed “unfeasible” do not form 

as the lowest energy structure and therefore they do not lie on the traditional correlation line. 
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Table 1.1. The correlation between layered zeolite precursor and the daughter zeolite produced 

through ADOR under typical conditions. All zeolites afforded from parent Ge-UTL. 

Precursor 
Material 

Acid 
Post-synthetic 
modification 

Calcined 
Zeolite 

SBU 

IPC-1P 0.1 M HCl N/A IPC-4 
Direct oxygen 

linkages 

IPC-1P 0.1 M HCl 

1. Intercalate 
with choline-
OH, RT, 6 hr 

2. Calcine 

IPC-9 

Direct oxygen 
linkages 

(layer shifted) 

IPC-6P 1.5 M HCl N/A IPC-6 

Alternate 
direct oxygen 
linkages and 

s4r 

IPC-1P 0.1 M HCl 

1. Intercalate 
with choline-
OH, RT, 6 hr 

2. Direct with 
diethoxydimethyl 

silane in 1 M 
HNO3, 175 °C, 

24 hr 

3. Calcine 

IPC-10 
s4r (layer 
shifted) 

IPC-2P 12 M HCl N/A IPC-2 s4r 

IPC-7P 5 M HCl N/A IPC-7 
Alternate s4r 

and d4r 

 

1.6.1. Discovery 

In 2011 Roth et al. discovered that upon exposing UTL to aqueous conditions, a lamellar 

material was produced as the structure began to degrade. This removed the d4r whilst 

preserving the UTL-like layers. This was the first 3-dimensional to 2-dimensional 

transformation to produce a lamellar material, IPC-1P (Institute of Physical Chemistry – 1 

Precursor). The new layered zeolite precursor was characterised primarily with X-ray 

diffraction and then further analysed by Fourier Transform Infrared Spectroscopy (FTIR), 

transmission electron microscopy (TEM) and nitrogen sorption.59  

The archetype parent zeolite, UTL, was first produced by 2 groups in 2004. It was given the 

name IM-12 (Institut Français du Pétrole/Mulhouse-12)66 by Paillaud et al. and ITQ-15 
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(Instituto de Tecnología Química-15)67 by Corma et al. and assigned the IZA code UTL. It 

was synthesised with 1,1,3-trimethyl-6-azonia-tricyclo-[3.2.1.4]decane hydroxide and (6S, 

10S)-6,10-dimethyl-5-azoniaspiro[4.5]decane hydroxide as structural-directing agents (SDA), 

respectively. It contains a 12 x 14-ring channel system that run perpendicular to each other 

in the b-c plane with 0.95 x 0.71 nm2 (14-ring) and 0.85 x 0.55 nm2 (12-ring) dimensions. 

UTL’s structure can be described as dense 2-dimensional layers, similar to FER, that are 

separated by d4r bringing units as pillars (Figure 1.7). 

UTL crystallises in space group C 2/m with the unit cell: 

a = 28.996(4) Å   β = 104.91(0) ° 

b = 13.967(9) Å   V = 4872.48 Å3 

c = 12.449(3) Å     

 

 

The structure of IPC-1P was first thought to be similar to MCM-22P, therefore further 

experiments were carried out on the lamellar material which aimed to modify the inter-layer 

separation by means of swelling and stabilisation. As such treating IPC-1P under different 

Figure 1.7. The channel systems in UTL; down the c-axis with a 14-MR channel system (left) and 

down the b-axis with a 12 MR channel system (right). The germanium-rich double four rings are 

highlighted with a black box and each membered ring annotated. 
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conditions resulted in the formation of different products (Figure 1.8). Upon directly 

calcining IPC-1P, a poorly defined structure with a reduced SBET (270 m2/g), IPC-1 was 

afforded.59  

 

Figure 1.8. A schematic showing the formation of IPC-1P from hydrolysing parent UTL and the 

subsequent products afforded from calcination, stabilisation ad swelling. Silanol groups on IPC-1P 

are coloured green. See Table 1.1 for typical synthesis conditions. Figure adapted from ref 59.  

 

Following on from this discovery, in 2013 a flagship paper was produced by Roth et al.60 that 

describes the ADOR process in detail for the first time. It showed that not only was it 

possible to fully disassemble UTL through hydrolysis, but the layered material, IPC-1P 

produced could be suitably reorganised by using a structure-directing agent, and then the Si-

O-Si bonds reformed through calcination to produce two new high-silica zeolites (Figure 

1.9), IPC-2 (OKO) and IPC-4 (PCR). 
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Figure 1.9. A schematic of the first confirmed case of utilising the ADOR process to afford new 

zeolites. Parent UTL is disassembled through hydrolysis into IPC-1P and then suitably rearranged 

into IPC-4 (PCR) or IPC-2 (OKO). IPC-4 is made up of IPC-1P layers connected by oxygen 

bridges; IPC-2 consists of IPC-1P layers connected by s4r. Both structures were unable to be 

prepared from traditional hydrothermal synthesis at the time of publication. Figure adapted from 

ref 60.  

 

The following sections will describe each step in the ADOR process individually and in 

detail. 

 

1.6.2. Assembly 

The first step in the ADOR process is Assembly. A key feature required for the success of 

the ADOR method is the structure and chemistry of the parent zeolite that is assembled in 

the first step of the process. Research so far has concentrated on parents that have silica-
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rich layers linked by germanium-rich cubic units, termed d4rs.39,66,68–70 Generally, to be 

successful in the ADOR process, these d4r units must contain enough Ge to break the 

connections between the layers (for example in UTL – Si/Ge >4.3) and as the Ge is 

hydrolysed, allowing the parent zeolite to be disassembled.71,72 The specific location of the 

Ge within the structure is often difficult to determine without highly specialised diffraction 

experiments.73 There are several known zeolite topologies that are currently successful in the 

ADOR process. These include UTL,43,59,60 ITH,42 ITR,42 IWR,42 IWW,45 UOV61,62 and the 

recently discovered SAZ-1.63 Many other d4r-containing zeolites may be successful in the 

future, but these have yet to be applied. 

 

1.6.3. Disassembly 

The second step in the ADOR process is Disassembly. This involves selectively removing 

the Ge from the Ge-rich d4r by aqueous or acid hydrolysis. The selective weakness in Ge-

O-Ge and Ge-O-Si bonds allows for the facile hydrolysis of the Ge and a collapse or “unzip” 

of the 3-dimensional layered parent zeolite framework to form the dense silicate layers. This 

hydrolysis, and subsequent collapse of the inter-layer region can be mapped by powder XRD 

by ultimately following the d200 inter-layer spacing peak. This is highlighted by a shift from 

14.48 Å for UTL to 10.5 Å for IPC-1P (Figure 1.10). The hydrolysis is rapid and is not 

dependant on the hydrolysis media (pH) or the temperature of the reaction system, but solely 

on the presence of liquid water (see Chapter 4).  

 

Figure 1.10. Powder X-ray diffraction patterns of UTL (left) and after subsequent hydrolysis 

treatment in increasing levels of acidic media (right); water (green), 0.1 M HCl (yellow), 6 M HCl 

(orange), and 12 M HCl (red). Figure adapted from ref 46.  
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Energy dispersive X-ray (EDX) spectroscopy can be used to quantify the amount of Ge 

removed from the structure and a Si/Ge ratio produced. Once fully hydrolysed the d4r are 

removed and silanol (Si-OH) groups reside on the surface of the layers. Si29 MAS-NMR can 

be used to compare the Q3 to Q4 ratio of the daughter material in comparison to the parent. 

The silanol groups can be referred to as the Q3 sites and the Q4 sites are the fully tetrahedrally 

coordinated SiO4 (Figure 1.11). 

 

Figure 1.11. 29Si (9.4 T, 10 kHz MAS) NMR spectra of calcined Ge-UTL parent zeolite, and 

subsequent hydrolysis after 1 min, 1 hr, 4 hr and 8 hr. The change in intensity of Q4 (Si(OSi)4) and 

Q3 (Si(OSi)3(OH)) species is monitored over this time period. An increase in silanol (Q3) sites can 

be seen up to 1 hr and then a decrease up to 8 hr as the silanol groups are consumed during 

rearrangement. Q3 sites highlighted by a pink box. This figure will be reproduced in Chapter 4. 
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1.6.4. Organisation 

The next step is Organisation. This involves orientating the layers produced from hydrolysis 

(Disassembly) in a way that upon calcination new bonds form, either as direct oxygen 

linkages, s4r, d4r or a mixture of two and ultimately forms a new zeolite. This step can be 

done in 2 ways, intercalation using a structure-directing agent or hydrochloric acid. 

 

1.6.4.1. Organisation by Intercalation 

To produce new zeolites from the disordered layered material IPC-1P, the layers must be re-

orientated in to a new position. This can be done by using a species that either shifts the 

layers through hydrogen bonding (SDA) or covalently bonds with the silanol groups on the 

surface of the layers (Figure 1.12).  

 

Figure 1.12. The two methods of organising the layers of IPC-1P to form crystalline 3D 

frameworks. Top - IPC-2 (silylation; green rectangles) through covalent bonding interactions. 

Bottom - IPC-4 (SDA – octylamine; pink ovals) by non-covalent bonding interactions. Silicon – 

blue, Oxygen – red. Hydrogen atoms have been omitted for clarity in IPC-1P. 
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The key to using intercalation to produce new zeolites is the correct alignment of surface 

silanol groups that upon calcination at high temperature, connect to form a regular 3-

dimensional structure. When the d4r are removed through hydrolysis and the germanium 

has been effectively deintercalated, silanol quadruplets are revealed on the surfaces. The large 

concentration of surface silanols in IPC-1P, when compared to other 2-dimensional zeolites 

(e.g. MCM-22) increases the number of potential structures after the layers are rearranged 

and fully connected. 

 

1.6.4.2. Intercalation of Silica-Containing Species 

By using an organic (SDA) that forms non-covalent bonds (e.g. hydrogen bonds) with the 

silanol groups on the surface of the layers, the layers can be suitably shifted with respect to 

one another. Structure-directing agents (SDA) such as dipropylammonium hydroxide, 

hexylamine, and octylamine have been used successfully to form swollen, highly crystalline 

and high energy structures. 

For example, daughter zeolite IPC-4 can be made from IPC-1P by using octylamine as an 

intercalating agent. IPC-4 crystallises in the C 2/m space group, comprising dense silicate 

layers connected by direct oxygen linkages (see section 1.5.6. for unit cell). Intercalating IPC-

1P with choline chloride affords the “unfeasible” daughter zeolite IPC-9 after subsequent 

calcination.43 Choline chloride acts to stabilise a lateral shift in the c-axis, and upon calcination 

the choline chloride is burnt out and the layers condense to form a fully connected 3-

dimensional structure (Figure 1.13). 
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Figure 1.13. Frameworks of IPC-9 (left) and IPC-4 (right) as viewed down the c-axis. 

 

IPC-9 crystallises in the C 2/m space group and consists of a 7 x 10 membered ring channel 

system to create medium sized pores. The structure of IPC-9 also has inter-layer direct 

oxygen linkages, similar to IPC-4, however the layers are shifted by half a unit cell along the 

c-axis. IPC-9 has the following unit cell: 

a = 18.6695(26) Å  β = 102.409(34) ° 

b = 13.8984(15) Å 

c = 12.1020(30) Å 

Another way to orientate the layers is by using a species such as silane that covalently bond 

with the silanol groups and condense to form inter-layer structural building units (SBU). An 

example of this includes the formation of “unfeasible” IPC-10.43 After organising the IPC-

1P layers first with choline, one can use a silylating agent to form s4r units connecting the 

silicate layers. This creates a zeolite that has 9 x 12 membered-ring channel system that 

intersects along the b-c plane. The structure, similarly to IPC-4 and IPC-9, is analogous to 

IPC-2 (see section 1.5.6. for unit cell) but with the layers once again shifted by half a unit cell 

in either the b- or c-axis. Allowing a shift in either direction causes disorder within the 

structure (Figure 1.14). IPC-10 forms in space group P-1 with the unit cell: 
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a = 26.755(6) Å  α = 90.0 ° 

b = 13.942(8) Å  β = 82.112(7) ° 

c = 12.069(8) Å   γ = 57.853(0) ° 

 

Figure 1.14. The frameworks of IPC-10 (left) and IPC-2 as viewed down the c-axis (right). 

 

1.6.4.3. Organisation with Aqueous Hydrochloric Acid 

An easier and more direct method of organising the layers is to continue reacting the 

hydrolysis mixture in hydrochloric acid at constant temperature, thus allowing the layers to 

self-organise. Using different concentrations of hydrochloric acid can change the product 

that is formed, under high molarity conditions IPC-2 (OKO) is formed and under low 

molarity conditions IPC-4 (PCR) is afforded (Figure 1.15).  

IPC-4 crystallises in the monoclinic space group C 2/m consisting of a 10 x 8 membered-

ring channel system with unit cell: 

a = 20.143(7) Å  β = 115.65(10) ° 

b = 14.072(3) Å 

c = 12.522(3) Å 
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IPC-2 crystallises in the same monoclinic space group as IPC-4 (C 2/m) with a 12 x 10 

membered-ring channel system with unit cell: 

a = 24.163(8) Å  β = 109.12(8) ° 

b = 13.833(2) Å 

c = 12.351(6) Å 

 

Figure 1.15. Schematic to show the pathways undertaken when the system is in high acidity (M > 

8) to form IPC-2 through a deintercalation followed by a self-rearrangement (TOP) and low acidity 

(M < 0.1) to form IPC-4 by deintercalation only (BOTTOM).  

 

In 2014, a study reported by Wheatley et al.,46 showed the pH dependence of hydrolysis and 

subsequent rearrangement. It was found that the rate of the initial hydrolysis (Disassembly) 

does not depend greatly on the pH of the hydrolysis medium. Unlike the hydrolysis however, 

the rearrangement process is influenced by the acidity of the reaction media. When HCl of 

< 0.1 M is used, IPC-4 (PCR) is formed preferentially after reassembly; increasing the 

molarity shows a steady increase in inter-layer spacing, and materials such as IPC-6 (*PCS) 
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can be formed. When the acidity is high enough, all reactions formed IPC-2 (OKO), and 

due to the increased rate of reaction, IPC-6P is not formed (as seen in Pathway 1, Figure 

1.15).46 Time is also an important variable in the reaction outcome (Figure 1.16). 

 

Figure 1.16. The dependence of acid strength on the inter-layer spacing as seen by: Top - the 

PXRD patterns highlighting a 2θ peak shift with increasing acidity; Bottom - the linear trend 

between acid strength and d spacing up to 3 M HCl. The d200 inter-layer peak is the peak of interest 

to see the inter-layer spacing change with acid strength, this is highlighted by a pink box. Figure 

adapted from ref 46.  
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IPC-6 is an interesting structure with local disorder throughout the material. It consists of 

alternating layers of direct oxygen linkages and s4r. To quantify the structure and fully analyse 

the powder patterns produced, the pattern was indexed and then a computationally derived 

structure was modelled against it. Indexing the PXRD gave the structure to be in the C 2/m 

space group with unit cell (Figure 1.17): 

a = 20.765(4) Å   β = 101.32(0) ° 

b = 13.904(8) Å 

c = 12.400(2) Å 

 

Figure 1.17. The IPC-6 framework with alternating layers of s4r and direct oxygen linkages. s4r - 

green box; direct oxygen linkages - pink box. 

 

Such diversity of outcomes points to a complex mechanism that must be understood in 

detail if the full potential of the process is to be realised. The different outcomes depend on 

the conditions used, and it is therefore very easy to miss prospective products by not 

surveying the potential conditions over a sufficient range. This will be discussed in detail in 

Chapter 4. 
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1.6.5. Reassembly 

The final step in the ADOR process is Reassembly. This step involves reconnecting the 

layers after they have been organised into their new position. Reforming the new silicate 

bonds is irreversible and can be achieved through calcination. This involves heating the 

zeolite precursor at temperatures exceeding 500 °C.  

Layered materials can be treated with silanes (silylation), this results in inter-lamellar 

expanded zeolites (IEZs).73 These materials are often not fully connected as the silanes that 

are introduced only connect to two tetrahedral silica. Using the ADOR process however, 

allows for fully connected daughter zeolites to be afforded, this is due to the presence of 

silanol quadruplets. These silanol quadruplets can then covalently bond with the alkoxysilane 

silylating agent to form fully connected s4r units, and as such a “true zeolite”. 

 

1.7. Metal-Organic Frameworks 

Metal-Organic Frameworks (MOFs) were discovered in 1989 by Robson74 and can be classed 

as inorganic-organic hybrid compounds consisting of metals or metal clusters connected by 

organic ligands (Figure 1.18) through reticular synthesis. The ligands act as spacers, allowing 

an open porous 3-dimensional structure to be created, with a very high surface area and pore 

volume.75-77 In 2012, the International Union of Pure and Applied Chemistry (IUPAC) 

defined a MOF as “MOF, is a Coordination Polymer (or alternatively a Coordination 

Network) with an open framework containing potential voids”.  
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Figure 1.18. The isoreticular series of IRMOF-n MOFs produced by Yaghi et al. Each corner is 

comprised of a cluster [OZn4(CO2)6] around an oxygen-centred Zn4 tetrahedron that is bridged by 

six carboxylates of an organic linker. Colour scheme is as follows: Zn (blue polyhedra), O (red 

spheres), C (black spheres). The large internal yellow spheres represent the largest van der Waals 

spheres that would fit in the cavities without touching the frameworks. All hydrogen atoms have 

been omitted for clarity. Figure adapted from reference 77.  

 

Within the past decade there have been more than 20,000 different MOFs reported and 

studied.78 This is due to the flexibility with which the constituents’ geometry, size and 

functionality can be varied.78 This section will hope to shed light on the astounding 

functionalities of metal-organic frameworks, in particular the CPO-27-M (M = Co, Cu, Fe, 

Mg, Ni, Zn) family (also termed MOF-74) and how its large surface area and stable structure 

upon coordinated solvent loss makes it an ideal candidate for gas storage and release, 

specifically with nitric oxide (NO).79 
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Customising the linker (organic ligand) allows the stability and void space in each MOF to 

be tuned. There are many linkers that are “traditionally” used in MOF synthesis, usually 

containing a carboxylate group, but could include groups such as amino,80,81 azo82 or 

quinones.83  

The metal ions are an integral part of the MOF structure. When solvent is removed from 

the material a vacant site can be generated in their coordination sphere, such empty sites are 

termed coordinatively unsaturated sites (CUS). These CUS have a high affinity for guest 

molecules such as NO, and as they are involved in the chemisorption process, have the 

ability to enhance the gas storage properties of materials. 

 

1.7.1. Synthesis of MOFs 

There are many different ways to synthesise new or existing Metal-Organic frameworks, 

including but not limited to: electrochemistry, thin films, microwave-assisted heating, 

solvothermal, mechanochemistry and sonochemistry. A few of these will be discussed in 

more detail below. 

 

1.7.4.1. Solvothermal 

Similarly to that of zeolites, solvothermal synthesis is the crystallisation of solid products out 

of non-aqueous solution performed in a stainless steel autoclave at very high temperature 

and autogenous pressure. 

With MOFs, the control of the size, shape and morphology of the final product is difficult, 

however using advances in computational chemistry and by constructing a CoRE MOF 

database, MOF structures can be predicted, allowing synthesis to be designed around the 

predicted MOF.84 Along with control there are many other problems and questions to 

overcome when designing a synthesis: 

• The pH of the system. If the pH is too low, the linkers used may not deprotonate. 

If the pH is too high, the linkers may deprotonate too fast and result in low quality 

samples due to reduced opportunities for “self-healing” 
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• The solvent used. In some cases, slightly changing the solvent used changes the 

MOF formed. For example, changing the solvent from dimethylformamide (DMF) 

to diethylformamide (DEF) changes the MOF afforded from F-MOF-4 to Cu-

FMOF-4B. Such MOFs were structurally different fluorinated MOFs (F-MOF)85 

• Temperature of the system. Quite often cooling the reaction mixture slows down 

the kinetics of reaction and therefore yields larger crystals with less defects 

• Environmentally friendly synthesis vs. increased crystallinity 

 

1.7.4.2. Modulated  

The question of whether sacrificing crystallinity to create an environmentally friendly 

(aqueous solutions) synthesis is often important. Often, MOFs are prepared in harsh organic 

solvents such as DMF, and contain high levels of a toxic base. A way to overcome this and 

improve the environmental impact of the reaction is to use a modulator to direct the 

synthesis of a desired MOF. Common modulators include benzoic acid, salicylic acid and 

acetic acid. These modulators are dissolved in an aqueous solvent (alcohol or water) and 

therefore replace base and reduce the amount of harsh organic solvent needed. Moreover, 

the yield is significantly improved with the particle size greatly increased and the morphology 

more consistent throughout the entire batch. 

HKUST-1 is one such MOF that has been investigated in this manner. It was found that 

without a modulator present in the synthesis mixture, the MOF formed rapidly producing 

low quality crystallinity. Adding a monocarboxylic acid as a modulator, the morphology and 

kinetics of reaction were more controlled whilst still retaining high surface area and pore 

volume. 86 

 

1.7.4.3. Electrochemical Synthesis 

Electrochemical synthesis is the synthesis of chemical compounds using electrons as the 

main reactant source. Electrochemical synthesis in batch is advantageous over many 

chemical routes as it reduces the difficulty in obtaining compounds that may be inaccessible 

through traditional syntheses. This may be due to the decreased reaction temperatures, or 

the use of a milder base or solvent. The electrochemical method is atom economical with a 
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high conversion of reactants to products. As a metal electrode is used, electrons are the main 

reactant source, therefore there is no need for external reagents and can thus be viewed as a 

clean reaction. These methods can be cheap to carry out and can often be selective towards 

the product formed, as seen in the case of FeII/FeIII when changing from anhydrous to 

ambient conditions.87 

Coordination compounds can be formed through electrochemistry when a field potential is 

specified between a sacrificial anode and metal cathode (Figure 1.19). These act as a source 

of metal ions and free electrons to facilitate the formation of complexes, or more recently 

MOFs. 

 

Figure 1.19. General principle of electrochemical synthesis; L = ligand, n = number of electrons, 

M = metal electrode. a) reduction of ligand, b) oxidation of sacrificial anode, c) combination of 

metal and ligand to form the coordination complex. 

 

As can be seen from Figure 1.19, the oxidation state of the metal generated is dependent on 

the number of reduction sites the ligand has. Ligands with one reduction site such as N-

heterocyclic carbenes (NHCs) are able to generate a 1+ metal ion in the electrochemical 

system, whereas ligands such as salen that have two reduction sites are able to generate a 2+ 

metal ion. When a copper anode is applied, CuII is produced and salen can coordinate in an 

equatorial fashion around the metal.87 

Recently Cu3(BTC)2 (HKUST-1) was synthesised electrochemically, by placing two copper 

electrodes (acting as both sacrificial anode and cathode) in an electrochemical cell containing 

ethanol, 1,3,5-benzenetricarboxylate (H3BTC) and tetrabutylammonium tetrafluoroborate 

(TBA TFB; electrolyte) under anhydrous conditions. After 2.5 hr at a constant voltage of 30 

V blue precipitates of the MOF could be seen and were subsequently collected by 

centrifugation.88 
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1.7.2. General Applications 

MOFs can achieve very high porosity giving them the potential for countless applications 

such as catalysis,89 biomedicine,90–94 gas adsorption and delivery,76,95–99 and sensing.100 Such 

MOFs are generally characterised by their extremely large Brunauer-Emmett-Teller surface 

areas (SBET), astounding internal surface areas, (approaching 6000 m2 g-1)90 and high 

structural/compositional flexibility.100 

Reversible adsorption of the framework can occur in some MOFs when exposed to external 

stimuli, such as adsorption of guest molecules, pressure, temperature, and ultraviolet (UV) 

light.101 These responses, in the form of framework modification, are often reversible. For 

example, MOFs that possess coordinated solvent molecules can undergo solvent exchange 

and de-/re-solvation without loss of structure. Such properties permit the potential 

application of MOFs in high-performance molecular recognition and highly selective and 

controlled guest insertion and release.102 

 

1.7.3. Gas Storage and Release using MOFs 

The release of anthropogenic toxic pollutants into the atmosphere is a threat that has become 

a growing concern worldwide.103 Many of the world’s toxic gases are as a result of fuel 

burning and through this burning causes many problems such as smog and acid rain, thus 

gas storage is of much interest for environmental purposes.103  

As stated previously, the reversibility of MOF frameworks upon dehydration allows for guest 

insertion of many molecules such as C2H2,
102,104 CO,76,102 CO2,

105,106 H2,
97,107 H2S,90,96 and 

NO91,108 making them excellent receptacles for toxic gas storage and release.  

 

1.7.4. Biomedical Applications of MOFs 

MOFs are currently being studied as delivery agents for drug and therapeutic molecules. For 

the potential to carry drug molecules into the body the framework of a MOF must contain 

pores large enough to contain the drug within it, some examples include MIL-53109 and MIL-

100.109,110 Ibuprofen can be loaded into the pores of MOFs by using a scCO2-hexane 
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(supercritical carbon dioxide) solution. This scCO2 drying method increases the internal 

surface area of each MOF and as such large payloads of ibuprofen can be loaded.109 

NO, although a known pollutant, contributes to a wide range of biological functions in the 

human body. Examples include the regulation of vascular homeostasis, triggering an immune 

response, enabling neurotransmission and facilitating penile erection.111–117 Work in the 

Morris group is underway to develop CPO-27 (Coordination Polymer of Oslo) as a 

receptacle to carry NO to produce vascular relaxation.108 

 

1.7.5. CPO-27-M 

CPO-27-M (Co, Cu, Fe, Mg, Ni, and Zn) is one of the most studied and well-known MOFs. 

It consists of 2,5-dihydroxyterephthalic acid (dhtp) as the linker source forming stable 

hexagonal channels lined with metal-coordinating solvent molecules that can be removed to 

form open metal sites (Fig. 1.20). These MOFs are highly porous with SBET of 1039 – 1542 

m2 g-1 100 making them excellent for gas adsorption. 

 

Figure 1.20. The monomeric building blocks of CPO-27-Mg, highlighting the 2,5-

dihydroxyterephthalic acid linker and coordinated water molecules (left). Unit cell of CPO-27-Mg 

as viewed down the a-axis. Mg SBU = green.  

 

The traditional synthetic route to these MOFs is primarily solvothermal, using high 

temperature and pressure, base and a strong organic solvent. Research has and still is being 
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undertaken to overcome these harsh conditions and prepare the MOFs at room 

temperature118,119 and reflux using aqueous conditions.95,118,119 These conditions typically only 

make poly-crystalline powders. Work is undergoing to afford single crystals without the need 

for the necessary base or liquid water. 

A recently discovered analogue of the CPO-27 family, UTSA-74120,121 is of much interest due 

to its channel system. The material exhibits the zinc structural building unit (SBU) in both 

tetrahedral and octahedral coordination, thus giving rise to a large and small pore channel 

system (Fig 1.21). When prepared each octahedral Zn2+ has 1 axial bound water molecule 

pointing into the pore and 1 pointing out. This configuration and channel system makes 

UTSA-74 an ideal candidate for gas separation in industrial applications such as flue streams. 

 

Figure 1.21. Structures of UTSA-74 showing Zn2+ in both tetrahedral and octahedral coordination, 

giving rise to a small and large pore channel system. Each octahedral Zn2+ has 1 axial bound water 

molecule pointing into the pore and 1 pointing out (TOP). Void space with solvent molecules 

bound, showing the pores are blocked (BOTTOM). Viewed along the c-axis. Figure will be 

reproduced in Chapter 7. 
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CHAPTER 2:  
AIMS 

This thesis largely focuses on the mechanistic analysis of the Assembly-Disassembly-

Organisation-Reassembly (ADOR) process through a range of crystallographic techniques 

including in situ and ex situ powder X-ray diffraction, in situ and ex situ Pair Distribution 

Function (PDF) analysis, solid-state NMR spectroscopy and solid-state kinetics using the 

Avrami-Erofeev and Sharp-Hancock equations. This hopes to shed light on the selectivity 

of the ADOR process in different media and the mechanism by which the d4r breakdown 

and the silica species intercalate to build up a new daughter zeolite.  

On a different note, a study into the refinement of synthesis conditions used to prepare 

polycrystalline powders of Metal-Organic frameworks, namely CPO-27-M (MOF-74) and 

single crystal CPO-27-Mg, -Zn and UTSA-74 was undertaken. The aim was to understand 

the effects of base, temperature and modulator to tune the synthesis into producing either 

powders or single crystals in a facile manner. The work included understanding the effect of 

the metal cation and crystal size on uptake and release of nitric oxide. 
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CHAPTER 3: 
EXPERIMENTAL 

TECHNIQUES 

3.1. Solvothermal Synthesis 

Solvothermal synthesis is a technique used to afford solid materials that are typically 

crystalline and are produced by reacting at autogenous pressure.1 This pressure is produced 

by reacting at temperatures above the boiling point of the solvent used, which reduces the 

viscosity of the solvent promoting diffusion. This allows a range of materials to be produced 

that under normal conditions would not be able to be synthesised. Reaction mixtures are 

placed in a Teflon-lined steel autoclave and heated (> 1 bar, > 100 °C) for days or even 

weeks (Figure 3.1). 

 

Figure 3.1. A standard autoclave showing the steel autoclave unit (1), steel autoclave screw-on lid 

(2), Teflon liner with lid (3), outer disc (4), inner disc (5) and spring (6). 

 

3.1.1. Synthesis of Zeolites 

In nature, zeolites are produced from a silica condensation under high temperatures and 

intense pressure, to give a material with a high thermal stability (up to 1000 °C). In a 
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laboratory setting, they are prepared under mild conditions with alumina and/or silica 

sources and an alkali hydroxide solution to produce a gel. This gel is then charged into an 

autoclave and heated for up to 2 weeks above 100 °C.2 

This approach was first used by Barrer and Milton in the 1940s, to synthesise zeolite A, P, 

and X.3 The field has since expanded with the use of a fluoride source, the addition of new 

elements such as copper, iron and germanium, and the use of ammonium cations. The use 

of ammonium cations in the synthesis allows a high Si/Al ratio to be achieved, thus allowing 

for the first high-silica zeolite, zeolite beta, to be produced. Hydrothermal synthesis differs 

from solid-state synthesis as it allows for the formation of products that have high 

crystallinity and purity with a low energy consumption and reduced air and liquid waste 

pollution.4 

Although hydrothermal synthesis seems a relatively simple technique, it remains a challenge 

to control and predict the chemistry of reaction. This is because controlling the chemistry of 

zeolite formation is a fine balance between nucleation and crystallisation, precipitation, and 

polymerisation. Each of these depends on different internal and external factors, such as 

batch composition, water, alkalinity, ageing, temperature, seeding and stirring.2 

The zeolite and MOF samples afforded using hydro/solvothermal synthesis were produced 

in 15 - 50 mL General-Purpose Acid Digestion Vessel Parr steel autoclaves with Teflon 

inserts. Three Carbolite High-Temperature Laboratory Ovens, model PF60, were used to 

induce hydrothermal conditions from 2 – 7 days at temperatures of 100 – 200 °C. 

 

3.2. X-ray Crystallography5–7 

X-ray crystallography is a technique used to determine the atomic structure of a crystal. 

Measured experimental intensity is combined with additional phase information to compute 

an electron density map. Radiation is produced from the bombardment of a metal with high 

energy electrons. When electrons enter the atmosphere of a metal ion, they decelerate, and 

Bremsstrahlung radiation is emitted. These high energy electrons then collide with a core 

electron from the 1s orbital, which causes its ejection. This creates a vacancy that must be 

filled, and this occurs by the relaxation of a 2p or 3p electron. The excess transition energy 

is emitted as radiation of a specific wavelength. Typical metals used are molybdenum and 

copper as their emitted radiation corresponds to X-ray photons. The laboratory machines 



40 | P a g e  

 

used in this work exhibit copper Kα1 radiation with wavelength 1.5406 Å and molybdenum 

Kα radiation with wavelength 0.71075 Å. 

 

3.2.1. The Unit Cell 

The molecules, atoms or ions in a crystal are arranged in three dimensions with an orderly 

repeating pattern. The simplest repeating unit, the unit cell, is repeated throughout the crystal 

by translational symmetry to form a lattice. The crystal lattice is an ordered array of 

symmetry-equivalent points, and as such any atom placed on a lattice point is identical to 

any other atom on another lattice point. The unit cell (Figure 3.2), therefore contains all 

symmetry elements of the structure. The unit cell is a parallelpiped which can be quantised 

by lengths a, b and c (corresponding to vectors between lattice points), representing 

coordinates with angles α, β and γ (e.g. α is the angle between the b- and c-axes). 

 

Figure 3.2. A schematic of the unit cell with coordinates shown. 

 

The unit cell is defined based on the positions of the lattice points, for example in a Primitive 

cell (P), there is one lattice point per unit cell, with an eighth in each corner. Other lattices 

have more than one lattice point, for example centred lattices (A, B or C side-centred) have 
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two lattice points per unit cell, body centred (I) have two lattice points and face centred have 

four lattice points per unit cell.  

Point groups, defined by the symmetry of individual molecules, describe the rotation and 

reflection symmetry elements that leaves one fixed point (the origin). In the solid state, glide 

planes and screw axes are formed when translational symmetry acts on the point symmetry, 

thus expanding the point group into a space group. In total there are 230 space groups, these 

describe all possible combinations of symmetry elements within the seven crystal systems. 

The combination of the crystal systems, restrictions and unit cell centring afford the fourteen 

Bravais lattices. These lattice centrings identify the location of the lattice points in the unit 

cell and are classified as Primitive (P), Body-Centred (I), Face-Centred (F), Base-Centred (A, 

B, C) and Rhombohedral (R) (Table 3.1).8 

 

Table 3.1. The seven crystal systems and their unit cell restrictions, with the fourteen 

corresponding Bravais lattices for each crystal system. 

Crystal System Restrictions on unit cell Bravais Lattice type 

Triclinic 

a≠b≠c 

α≠β≠γ 
P 

Monoclinic 

a≠b≠c 

α=γ=90° 

β≠90° 

P, C 

Orthorhombic 
a≠b≠c 

α=β=γ=90° 

P, C, I, F 

Tetragonal 

a=b≠c 

α=β=γ=90° 
P, I 

Cubic 
a=b=c 

α=β=γ=90° 

P, F, I 

Trigonal 
a≠b≠c 

α=β=γ≠90° 

P, R 

Hexagonal 

a=b≠c 

α=β=90° 

γ=120° 

P 
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Understanding the symmetry operations within a crystal (space group) allows one to fully 

describe the crystal structure from the smallest unique part of the crystal – the asymmetric 

unit. 

 

3.2.2. X-ray Diffraction5–7,9 

Interference effects are termed diffraction and are caused when a wave encounters an 

obstacle and is scattered, this then causes a change in the intensity. In 1912, Max von Laue 

first discovered X-ray diffraction and found that the wavelength of X-ray radiation (ca. 1 Å) 

is in the same order of magnitude as the inter-atomic spacing in crystals. When the path 

difference between the incident and diffracted beams is a whole number of wavelengths, 

constructive interference is produced, and a peak/spot is formed. When no peak/spot is 

present, destructive interference has been produced. From this diffraction a 3-dimensional 

model of the structure can be found showing bond distances and angles.  

Soon after the introduction of the Laue equation, W. H. Bragg and W. L. Bragg proposed a 

much simpler equation. Bragg proposed that the atoms in a lattice are arranged in parallel 

sets of equally-spaced planes in a crystal, and the incident X-rays are then “reflected” off 

these planes by passing through lattice points (Figure 3.3). This means that the angles of 

both incidence and reflectance must be equal, and the incoming/outgoing beams must all lie 

in one plane. As such to observe constructive interference, the path difference must be an 

integer number of wavelengths. Spots (single crystal) or peaks (powder) in diffraction 

patterns are then produced. 
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Figure 3.3. A representation of Braggs Law. 

 

From the simple diagram an equation can be derived as: 

2𝑑ℎ𝑘𝑙𝑠𝑖𝑛𝜃 =  𝑛𝜆 

Where n is an integer, θ and 2θ are the Bragg angles, hkl are miller indices, and 𝑑ℎ𝑘𝑙 is the 

inter-planar spacing. From this we can say that the path difference is: 

2Δ = 2𝑑ℎ𝑘𝑙𝑠𝑖𝑛𝜃 

And the constructive interference is: 

2Δ = 𝑛𝜆 

Miller plane indices (hkl) are a set of three integers that correspond to fractional coordinates 

that lie along the axes set by the unit cell. For example, the 200 plane runs parallel to the b 

and c-axes but cuts the a-axis at 1/2. (Figure 3.4). If the 200 plane was to be drawn for every 

unit cell in the crystal structure, then infinite repeats of the planes will be produced, separated 

by length d200. If atoms reside close to or on these planes in a regular array, then the incoming 

X-rays are “reflected” and a diffraction spot is observed at the scattering angle, 2θ when 

constructive interference has occurred. In this work, this spacing represents the inter-layer 

separation in both parent and hydrolysed zeolites. 
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Figure 3.4. The 200 Miller plane that intersects halfway through the a-axis and the origin of both 

the b and c-axes. 

 

Since many materials such as salts, organics, and inorganics can form crystals through natural 

or induced methods, X-ray crystallography has become fundamental in probing the structure 

of such crystals and in the development of their respective scientific fields. 

The diffraction pattern is produced from the Fourier Transform of the electron density 

within the unit cell. Scattering of X-rays by the unit cell can be defined by the peak intensities: 

𝐼ℎ𝑘𝑙 ∝ |𝐹ℎ𝑘𝑙|
2 

Where intensity, Ihkl  is proportional to |𝐹ℎ𝑘𝑙|. Where |𝐹ℎ𝑘𝑙| is the collective scattering power 

of the atoms in the unit cell. Each reflection is a wave containing both phase and amplitude. 

This is represented by a complex number i. Thus for an atom j, the scattering factor is fj  and 

coordinates xj, yj, zj. The structure factor F can be calculated: 

𝐹ℎ𝑘𝑙 =  ∑ 𝑓𝑖

𝑁

𝑗=1

𝑒𝑥𝑝2𝜋𝑖(ℎ𝑥𝑗 + 𝑘𝑦𝑗 + 𝑙𝑧𝑗) 
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This equation can be applied to every reflection to produce a set of structure factors, which 

each contain phase and amplitude. Phases are lost during a diffraction pattern and therefore 

must be calculated. The Fourier Transform of all the structure factors affords the total 

electron density, p within the unit cell.  

𝑝(𝑥𝑦𝑧) =  
1

𝑉
∑ 𝐹(ℎ𝑘𝑙)𝑒𝑥𝑝[−2𝜋(ℎ𝑥 + 𝑘𝑦 + 𝑙𝑧)]

ℎ𝑘𝑙

 

 

3.2.3. Single Crystal X-ray Diffraction6 

When crystals are large enough and of sufficient quality to be collected from solution and 

crystallography, the diffraction pattern produces an array of spots in certain positions varying 

with intensity dependent on the crystal structure (Figure 3.5). 

 

Figure 3.5. A diagram to show the incident beam and reflected X-rays from a crystal, producing its 

diagnostic pattern of spots. 

 

Crystals are first examined under a microscope to determine crystal size and shape. Typically, 

the size of a crystal must be bigger than 5 x 5 x 5 µm to diffract sufficiently (diffractometer 

dependant) so that data can be recorded. The crystals should be of a regular shape without 

defects such as twinning, cracks, consistent colour, and consistent shape. Problems such as 

these can be visualised by changing the polarisation of light when under the microscope. All 

crystals, except those with cubic symmetry or some high-symmetry, should polarize the light 

in all 90 ° of rotation. This means that if defects (cracks, twinning etc.) are present, the light 

will be extinguished at different angles. 
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The geometry, symmetry and intensity of diffraction spots correspond to certain elements 

of the crystals structure. The spots lie in certain positions and are said to have a certain 

geometry, these are generated at the detector by an individually scattered X-ray beam. The 

geometry relates directly to the geometry of the unit cells and can therefore tell us the repeat 

distances between molecules. The symmetry of spots describe the space group and crystal 

system to which the crystal belongs to. Finally, the varied intensities of each spot holds all 

the information available on the positions of the atoms in the unit cell. This occurs as it is 

the combination of their individual interactions with X-rays that generates different 

amplitudes for different directions of scattering. Therefore, by measuring the different 

intensities, a full molecular structure can be determined. 

 

3.2.4. Powder X-ray Diffraction10,11 

Single crystal X-ray diffraction is a powerful tool to analyse the structure of materials. 

However, this requires one perfect crystal of sufficient size to be rotated in the X-ray beam 

to generate the whole pattern. Many materials, such as zeolites, do not produce crystals big 

enough to analyse efficiently so the material is ground into a powder and analysed by powder 

X-ray diffraction. 

Polycrystalline materials are made up of randomly orientated crystals of size 10-7 – 10-4 m. A 

sample must be ground using a pestle and mortar so that preferred orientation is not seen in 

the powder pattern. Upon entry to the X-ray beam, powders diffract in all possible directions 

controlled by the Bragg equation. 

Unlike the spots seen in single crystal X-ray diffraction patterns, powder patterns are made 

up of a series of rings (diffraction cones) emanating from the origin defined by the direction 

of the incident beam (Figure 3.6). The diffraction cones are made up of diffraction spots 

from the Miller planes from each individual crystallite. The powder rings are then collected 

and then integrated to reduce in two dimensions. This produces a pattern from which one 

can ascertain whether the material is crystalline and phase pure. A model can be constructed 

and refined against the experimental pattern through two types of refinement, Pawley and 

Rietveld.  
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Figure 3.6. A diagram to show the incident beam and reflected wavelengths from a polycrystalline 

powder, producing its diagnostic pattern of rings. 

 

3.2.4.1.  Data Collection and Processing 

In this work, powder data were collected using two experimental “in-house” set-ups, flat 

plate (or discs) and capillaries. 

Flat Plate: Samples were ground and then packed into aluminium discs. The sample has to 

be flush with the surface of the disc and the surface of the sample to be flat in order to 

record accurate 2θ values. The sample must be packed tightly so that the sample doesn’t fall 

out when tilted in the diffractometer. Data were collected on a Panalytical Empyrean 

diffractometer monochromated with a curved Ge(111) crystal in reflectance mode operating 

Cu Kα1 radiation. 

Capillary: Samples were ground and packed into 0.5 mm borosilicate capillaries by vibrating 

the sample down the capillary using forceps to pack tightly at the bottom. The capillary is 

then attached to the goniometer within the machine and centred in the beam. The capillary 

is rotated at constant speed whilst being bombarded by X-rays. The run time, step size and 

2θ range can be controlled using the WINXPOW program. Data were collected on a STOE 

STADIP operated in capillary Debye-Scherrer mode, using Cu Kα1 radiation. 
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3.2.4.1.1. Rietveld Refinement9,12–14 

H. M. Rietveld first introduced a full-profile refinement in 1966, whereby a model is fitted 

to experimental PXRD data without the need to extract individual intensities. During 

refinement, a non-linear least squares is used to minimise the difference between observed 

and calculated values: 

𝐿𝑒𝑎𝑠𝑡 𝑆𝑞𝑢𝑎𝑟𝑒𝑠 =  ∑ 𝑤(𝑦𝑐 − 𝑦𝑜)2

𝑖

 

Where w is the weighting factor applied to an individual point and yo and yc are the observed 

and calculated intensities, respectively. Using the least squares method, the zero-point, 

background and peak shapes must first be refined before refining other parameters including 

unit cell and coordinates. Refining only the profile parameters, leads to a structure-less fit, 

known as a Pawley fit. 

To follow the progress of the minimisation, there are many statistics that can be used, two 

of the most common are RWP and χ2. The expected profile, Rexp and the weighted R-factor, 

RWP are a measure of how well a model and experimental PXRD fit: 

𝑅𝑊𝑃 =  √
𝐿𝑆

∑ 𝑤𝑦𝑜
2
 

𝑅𝑒𝑥𝑝 =  √
𝑁

∑ 𝑤(𝑦𝑜)2
 

Where N is the number of profile points. The goodness of fit, χ2 can then be sought by 

comparing Rexp and RWP. As RWP approaches Rexp, the value of χ2 moves closer to 1. A value 

of close to 1 indicates a good refinement and suggests the model fits well with the observed 

data. 

𝜒2 =  (
𝑅𝑊𝑃

𝑅𝑒𝑥𝑝
)

2
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3.2.5. Pair Distribution Function Analysis15–19 

Pair distribution function (PDF) analysis is a diffraction technique that describes the 

probability of finding two atoms at given inter-atomic distances, r without relying on Bragg 

diffraction from the material (Figure 3.7).  

 

Figure 3.7. Inter-atomic distances corresponding to peaks in PDF. 

 

Diffuse scattering in traditional diffraction techniques is regarded as background noise as 

only well-ordered materials are studied. As long-range order decreases, defects redistribute 

the scattering intensity around the Bragg peak. As such the diffuse scattering can be 

interpreted as probing local order. As the PDF is calculated from both the Bragg diffraction 

and the diffuse scattering intensities, it is a useful tool for probing such samples that cannot 

show long-range order, for example glasses (Figure 3.8). As such the resulting diffraction 

pattern of these materials would be a continuous distribution of scattering intensity over the 

angle range which cannot be analysed by Bragg methods. Historically, this technique has 

been used to characterise the structures of liquids and glasses but has since been used for 

fully or semi-crystalline materials such as Metal-Organic frameworks and zeolites. 

Until recently, analysis of solids by PDF resulted in large termination errors due to limited 

Q-ranges accessible on typical laboratory X-ray sources. However, analysis through PDF has 



50 | P a g e  

 

become increasingly used due to the improved availability of instruments at synchrotron 

sources and user-friendly software. It allows for structure changes in both solid-solid 

transformations and crystallisation of solids to be monitored in situ. 

 

Figure 3.8. Bragg and Diffuse scattering in a crystal.20 

 

Constructive interference is formed when long-range order is present in a material. 

Therefore, in samples like a liquid when there is deviation in long-range order, the conditions 

for Bragg diffraction are destroyed. Scattering is then redistributed in reciprocal space around 

the Bragg peaks. The redistribution is dependent on the correlation length of the material. A 

highly crystalline material will have an almost infinite correlation length, whereas the more 

the sample tends towards amorphousness the lower the correlation length. The less 

crystalline the sample is the more diffuse scattering around the Bragg peaks is produced.  

PDF treats both the Bragg diffraction and diffuse scattering in equal quantities, thus probing 

the local order of a structure and therefore, allowing amorphous material to be analysed. A 

total scattering experiment monitors the scattering intensity variation with scattering vector. 

The total scattering, Q is the magnitude of the scattering vector S, which now is no longer 

confined by the Laue conditions and can take any value such that: 

𝑄 =  
4𝜋𝑠𝑖𝑛𝜃

𝜆
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Experimental intensity data, I(Q) is made up of several components, coherent scattering, 

Icoh(Q), incoherent scattering, Iincoh(Q), multiple scattering, IMS(Q) and scattering from the 

background, IBG(Q). 

𝐼𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙(𝑄) =  𝐼𝑐𝑜ℎ(𝑄) +  𝐼𝑖𝑛𝑐𝑜ℎ(𝑄) +  𝐼𝑀𝑆(𝑄) +  𝐼𝐵𝐺(Q) 

The coherent scattering contains all structural information, therefore the incoherent, 

multiple and background must be subtracted by applying various corrections to the data 

before a Fourier transform can be undertaken. These intensity data can then be normalized 

to give a function with units scattering-per-atom, the structure function, S(Q). The structure 

function is essentially a powder diffraction pattern that oscillates around 1 at high Q where 

ci is the concentration of atom species i and fi is the X-ray form factor of atom species i. 

𝑆(𝑄) =  
𝐼𝑐𝑜ℎ(𝑄) −  ∑ 𝑐𝑖|𝑓𝑖(𝑄)|2

|∑ 𝑐𝑖𝑓𝑖(𝑄)|2
+ 1 

Sharp peaks at low Q-values can be seen due to the Bragg intensity, with wider peaks at 

higher Q-values due to diffuse scattering. The intensity of the peaks at high Q decrease due 

to the Debye-Waller factor. The Debye-Waller factor smooths the features of the structure 

function as it represents the thermal motion and quantum zero-point energy of the sample 

atoms. Therefore at ca. 30 Å-1 little meaningful information can be gathered. 

S(Q) can be transformed to the more commonly reported reduced structure factor F(Q) by 

a simple relationship: 

𝐹(𝑄) = (𝑆(𝑄) − 1)𝑄 

F(Q) is directly related to the reduced pair distribution function, G(r), via a Fourier transform: 

𝐺(𝑟) =  
2

𝜋
∫ 𝑄

𝑄𝑚𝑎𝑥

𝑄𝑚𝑖𝑛

[𝑆(𝑄) − 1] sin(𝑄𝑟) 𝑑𝑄  

=  
2

𝜋
∫ 𝐹(𝑄)

𝑄𝑚𝑎𝑥

𝑄𝑚𝑖𝑛

sin(𝑄𝑟) 𝑑𝑄 

The G(r) is most commonly used as it is directly calculated from the normalised scattering 

data and as it is equally weighted throughout the whole r-range, therefore it allows one to 
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easily interpret and model the peaks. All PDFs shown in this work refer to G(r) exclusively 

(Figure 3.9). 

 

Figure 3.9. a - Raw intensity data, I(Q); b - normalised reduced scattering function, F(Q); c - pair 

distribution function, G(r). Figure adapted from the PDFGetX2 user manual.21 

 

3.2.5.1. Data Collection and Processing 

Data collection is essentially the same as standard powder X-ray diffraction typically using a 

1-dimensional detector in Debye-Scherrer mode where the Q-range is determined by the 

wavelength of the diffractometer.  

𝑄𝑚𝑎𝑥 =  
4𝜋𝑠𝑖𝑛𝜃

𝜆
 

A more common method of acquiring PDF data is by using rapid acquisition PDF 

measurements (RAPDF), whereby PDF data is collected in one-shot. RAPDF was used for 

all ex situ PDFs collected in this work, with a collection time of 300 sec. A well-ground 

sample of zeolite was packed in Kapton (polyimide) capillaries and sealed with Epoxy resin. 

High energy X-rays are fired through the capillary and scattering is collected by a 2-

dimension large-area detector lying perpendicular to the incoming beam. Like PXRD, 

scattering appears as rings of data. The background is determined by collecting the Kapton 

capillary without sample, and the distance between the sample and detector determined using 

a ceria (CeO2) standard. In situ PDF collection will be discussed in sections 3.2.7.1 and 3.2.7.2.  
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Once the 2-dimensional data has been collected it must be integrated to produce a 1-

dimensional graph of I(Q). The sample-detector distance can be used to convert to the 2θ 

angle from which the ring was scattered, this is done in FIT2D.22 The beamstop must be 

masked before the data can be processed further, this can also be achieved in FIT2D. A .chi 

file is produced from this processing and contains intensity data as a function of Q. 

Iexperimental(Q) as described before is made up of four components. The incoherent, multiple 

scattering and scattering related to the background must all be removed before the Fourier 

transform can take place. This can be done in PDFGetX2,21 by inputting sample background 

information, chemical composition and experiment geometry to produce S(Q). After scaling 

the background to the sample so that termination ripples below 1.3 Å are as small as possible, 

the G(r) was produced by a Fourier transform. 

From the experimental PDF, four types of information can be extracted directly before 

modelling and refinement takes place. These are crystallinity, bond lengths, thermal or static 

disorder and coordination number.11 

Crystallinity: Rmax is a value that states which peaks are discernible above background noise. 

This allows one to gain an insight into the crystallinity of the sample. For example, the more 

ordered the sample, the more atom-to-atom distances will be visible out to a large distance 

(ca. > 100 Å). 

Bond lengths: In the experimental PDF the peak positions at distance r, relate to the atom-

atom bond lengths within the material. For example, a peak positioned at 1.6 Å correlates to 

a T-O (T = Si, Ge) bond length in germanosilicates. These peak positions are particularly 

useful to observe in situ, to monitor structural changes in a material when exposed to heat, 

acid or alkali conditions. 

Disorder: Static or thermal disorder can be envisaged by the width of the peaks in the PDF. 

The more disordered a material is, the wider the peaks will be. If high temperatures are 

employed, the peaks will be wider due to the increased amount of excited vibrational states, 

and therefore a wider range of inter-atomic distances are possible. 

Coordination number: If the composition of the material and the atoms of the peak under 

question are known, one can integrate under the peak to understand the coordination 

number. This is only useful at lower r-regions however, as above this, peak overlap is 

prominent.  



54 | P a g e  

 

By using a feasible computational model, one can gain further insight into the structure of 

the material analysed by PDF. The model is refined against the experimental data in a least-

squares-type refinement in the PDFGui software package.23 The refinement is analogous to 

a traditional Rietveld approach and can be achieved by defining structural and experimental 

parameters and then refining to get the best fit possible (Figure 3.10). In this work, the 

computational models refined against the PDFs, with the refinement parameter Rcut set at 

3.38 Å, the maximum distance where correlated motion still has an effect on the material. 

All fits had a lower limit of 1.38 Å, peaks below here do not have any physical meaning as 

heavy atom contacts shorter than this are not possible for germanosilicates. Such peaks can 

be attributed to experimental and Fourier termination errors. 

 

Figure 3.10. LEFT - Initial powder X-ray diffraction patterns of parent UTL (pink) and 

"unfeasible" daughter zeolite IPC-9 (black); MIDDLE - Refinement of an IPC-9 model against 

experimental PDF data. Red solid line is experimental line, blue dashed line is the calculated PDF 

from the model and the grey line is the difference between the two offset by -2.5; RIGHT – The 

PDF refined model of IPC-9 viewed along the c-axis, Si – blue, O – red. 

 

Another method of PDF refinement is to use a “big box” or Monte-Carlo process. The 

Monte-Carlo method is a general method of modelling which uses statistical principles, i.e. 

gambling. If we assume that the density p(r) is described by a set of atomic positions (rv), and 

move one atom by a certain amount. This move is either rejected or accepted and then 

repeated many times for each atom. The process is stopped when one can no longer improve 

the value of r. 
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3.2.6. Synchrotron Radiation 

Laboratory X-ray sources prove useful in analysing materials, allowing one to identify 

whether the material is crystalline, phase pure and through a search-and-match identify 

whether the material is the desired product from reaction. It is a relatively cheap and efficient 

way to obtain good data. However, for analysis such as PDF or Rietveld refinements, a 

synchrotron source is necessary to obtain data of a high enough standard. 

A synchrotron is a particle accelerator. Electrons (or positrons) are produced in an electron 

gun and then accelerated to the speed of light using a high potential in a linear accelerator. 

Magnetic fields in the outer storage ring are used to cause the electron to turn in a circular 

path and accelerate. When travelling around the ring, they are deflected by the magnets and 

as such emit electromagnetic radiation at a tangent to the electrons orbit. This radiation is 

then channelled to a beamline where it is monochromated for the required experimental set-

up. 

Insertion devices are periodic magnets that stimulate brilliant, forward-directed radiation; 

these are added into accelerator tracks in the storage ring. There are two types of insertion 

devices wigglers and undulators, both of which can provide several orders of magnitude 

higher flux than simple bending magnets. 

Wigglers periodically laterally deflect or wiggle the electron beam inside the ring. This causes 

a change in acceleration and as the wavelength has been decreased, the frequency increases. 

As frequency is directly proportional to energy, wigglers have higher energy. Beamline I15 

at the Diamond Light Source (DLS), UK uses wigglers (Figure 3.11). 

Undulators consist of periodic dipole magnets, where the electrons are forced to oscillate 

and therefore radiate energy. This energy produced is very intense and concentrated into a 

narrow energy band. Beamline 11-ID-B at the Advanced Photon Source (APS), USA direct 

energy using undulators. 
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Figure 3.11. A schematic of Diamond Light Source synchrotron. Figure adapted from www.diamond.ac.uk. 

 

3.2.6.1. Brass Environmental Cell – Beamline I15, Diamond Light 

Source 

PDF analysis (Chapter 6) was used to monitor the hydrolysis (Disassembly) and 

rearrangement (Organisation) steps in the ADOR process. In situ PDF measurements were 

performed at beamline I15 at Diamond Light Source using a custom-made liquid cell adapted 

for X-ray transmission (Figure 3.12).24 Measurements were taken using an X-ray beam of 

energy 72 keV (λ = 0.1722 Å) and an amorphous silicon area detector (PerkinElmer). 
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Figure 3.12. Beamline set-up. The brass environmental cell is placed in a heating mantle and three 

thermocouples attached. Both the heating mantle and cell are placed in the X-ray beam. 

 

Data were collected at 300 s intervals, using a total exposure time of 10 s per scan. For all 

PDF experiments, background measurements were taken using the cell, but without the 

sample present. A ceria (CeO2) standard was used to determine the sample-to-detector 

distance.  

The cell walls were made up of Kapton windows, Viton and PTFE washers, a piston and a 

screw, which form an internal void with a diameter of 13 mm with a depth of 3 mm (Figure 

3.13). Initially the cell wall was made up with plastic washers, however due to the high 

concentration of hydrochloric acid present at high temperature, the plastic was swapped for 

Viton, a polymer known for its high acid and thermal stability. 
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Figure 3.13. (LEFT) The components of the cell. a - screw; b – plastic washer (removed as not 

acid stable); c – Kapton window; d – piston; e – PTFE washer; f – Viton washer. (RIGHT) The 

brass environmental cell developed by the Sankar group.24 

 

The cell was put together in seven steps (Figure 3.14): 

1. One side of the cell wall was built up (steps 4 – 7) and half the desired amount of 

sample charged into the cell void. 

2. The hydrolysis media was added to the sample in one steady portion.  

3. The remaining sample was added in small portions and mixed to make a slurry. 

4. Once a slurry had formed the Kapton window and Viton washer were added to start 

the cell window. 

5. The PTFE washer was added. 

6. The piston was added. 

7. The screw was added and tightened with a three-pronged tool. 

The cell used here did not allow for stirring or agitation, due to this the deintercalation 

process that is imperative to forming a fully formed zeolite after organisation does not occur 

fully. Because of this, the reactions were repeated at the Advanced Photon Source using a 

custom-made flow cell. 
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Figure 3.14. A schematic to show how the cell was put together. Step 1 – Half the amount of 

sample added to the cell window; Step 2 – Hydrolysis media added in one smooth portion; Step 3 – 

More sample added; Step 4 – Remaining sample added to make a slurry; Step 5 – Kapton window 

and Viton washer added; Step 6 – PTFE washer added; Step 7 – Piston added; Step 8 – Screw 

added and tightened with a 3-pronged tool. 

 

3.2.6.2. Custom-built Gas Flow Cell Adapted for Liquids – Beamline 11-

ID-B, Advanced Photon Source 

As the data collected at the Diamond Light Source was not quantitative due to the lack of 

agitation the cell could achieve, the reaction conditions were repeated at the Advanced 

Photon Source on beamline 11-ID-B. A custom-made flow cell was built and customised to 

allow for liquid media (Figure 3.15 and 3.16).25 
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Figure 3.15. A schematic of the custom-made flow cell with pump attached. 

 

 

Figure 3.16. Close-up of the heating coils, and capillary within the flow cell. 

 

To prepare the capillary, the Kapton was marked with a black permanent marker to ascertain 

the required depth of zeolite. One side of the black mark was then plugged with a piece of 

glass filter paper and glass wool, the ground UTL was then packed to the required depth by 
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vibrating the UTL down the capillary using forceps. The other side of the capillary was then 

plugged in the same manner.  

The capillary was threaded through the cell and the protected thermocouple inserted into 

the open end of the capillary. The thermocouple was protected by a smaller capillary sealed 

with epoxy resin. 

Once set up, the liquid media (water, 6 M hydrochloric acid, 12 M hydrochloric acid) was 

flown through the pump by a needle inlet for the following times and speeds. 

1. Forward flow for 30 sec at 5.0 rpm. 

2. Forward flow for 4 min 24 sec at 1.0 rpm whereby the media is now near the sample. 

3. Reversed flow for 1 min 30 at 0.2 rpm. 

4. The flow is then switched back to forward at a speed of 0.1 rpm. 

After step 2 the beam is aligned and the background of acid taken. After step 4 the hutch is 

searched and the experimented started.  

A macro was used to define when the sample was exposed to the X-ray beam. An exposure 

time of 10 sec (10 sec on 10 sec off) for the first 5 min and 50 sec (50 sec on 10 sec off) for 

the remaining time was used at a wavelength of 0.2113 °. Every hour a background of acid 

and darks of both the UTL and the background were taken. 

The experiment encountered problems when high concentrations of hydrochloric acid was 

used. As the cell was made out of stainless steel the fittings began to corrode and the reacted 

hydrolysis media turned a bright green colour due to the nickel composite in the stainless 

steel. The metal needle inlets also began to corrode so these were switched to polypropylene 

needles that were glued to Kapton tubing and glued with epoxy resin.  

 

3.3. Electron Microscopy26 

3.3.1. Scanning Electron Microscopy 

Electron microscopy uses a high energy electron beam that can probe morphology, surface 

topography and sample composition of solids. They differ from traditional optical 

microscopes as they use a beam of electrons to image the sample specimens rather than 

visible light (Figure 3.17).  
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Figure 3.17. Schematic of the set-up of a scanning electron microscope. Electron beam shown in 

purple. 

 

A general procedure for producing images using an electron microscope can be seen below: 

1. An electron gun produces a flow of electrons when under high vacuum. 

2. The flow of electrons is accelerated using a positive electric potential. 

3. The electrons are focussed using electromagnetic lenses and metal slits to produce a 

thin, focussed, monochromatic beam. 

4. Upon impact of the electron beam with the sample, a range of interactions 

(secondary scattered electrons, back scattered electrons and characteristic X-rays) 

occurs which are detected and used to create an image. 

SEM images were recorded using a Jeol JSM-5600 scanning electron microscope 

equipped with a tungsten filament electron gun, operating at a voltage of 5 – 25 kV. Each 

sample was spin coated in gold, using a Quorom Q150R ES, which reduced the charging 

effect on the sample. 
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3.3.2. Energy Dispersive X-ray Analysis 

When the primary electron beam collides with the core electrons of an atom in the sample 

specimen, the core electrons can be ejected. This creates a vacancy in the inner orbital and 

shifts the atom into an excited state. Similarly, to X-ray diffraction, this causes the relaxation 

of an electron of higher energy from an outer orbital. The energy difference results in the 

emission of an X-ray photon with a wavelength related to the energy gap of the orbitals.  

This emission differs from atom to atom and therefore allows one to quantify the X-rays 

produced to a specific element. So, by collecting the X-rays emitted and the relative quantity, 

it is possible to determine the chemical composition of the sample. 

The EDX analysis was recorded on the same SEM instrument at 25 kV, using an Oxford 

Inca Energy system. 

 

3.3.3. Transmission Electron Microscopy 

Transmission electron microscopy (TEM) differs from SEM as SEM creates an image by 

detecting reflected electrons while TEM uses transmitted electrons (electrons which pass 

through a sample) to create an image. As a result, TEM offers valuable information on the 

internal structure of a sample, such as the channel systems and inter-layer spacing in zeolites. 

Preparation of the sample for TEM is as follows: 

1. The sample is ground in a mortar and pestle. 

2. Acetone is added to the ground powder and ground again to create a well dispersed 

suspension of the sample. 

3. A drop of the suspension is dropped on a copper/holey carbon TEM grid. 

4. The camera length, sample position and magnification are calibrated using standard 

gold film methods. 

Germanosilicates are extremely sensitive to the electron beam, and therefore care must be 

taken during the sample preparation and imaging. To avoid sorption of water, samples must 

be dried in an oven and stored in a vacuum desiccator. The high-resolution transmission 

electron microscopy (HRTEM) was performed using a Jeol JEM-2011 electron microscope 
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operating at an accelerating voltage of 200 kV. The HRTEM images were recorded using a 

9 Gatan 794 CCD camera.  

 

3.4. Solid-state NMR27 

Zeolites and other inorganic materials cannot be dissolved in deuterated solvents and 

therefore cannot be analysed by traditional solution-state NMR. Due to this, solid-state 

NMR is used, however there are challenges that must be overcome. As zeolites are analysed 

in the solid-state there is no rapid tumbling of molecules, and as such the broad signal that 

is normally removed by rapid tumbling in solution, cannot be achieved in the solid-state. To 

decrease this broad signal that is produced, solid-state NMR uses Magic Angle Spinning 

(MAS). This is achieved by placing the sample in a ZrO2 rotor and spinning at an angle of 

54.74 ° θ with respect to the direction of the external magnetic field (Figure 3.18). 

 

Figure 3.18. A schematic representation of a packed rotor spun at the magic angle - 54.74 °. 

 

Spinning with such precision allows (3𝑐𝑜𝑠2𝜃 − 1) to become 0, and therefore the 

anisotropic interaction dependency is removed. Typically for zeolites, the nuclei of interest 

is 29Si, this has a relatively low abundance of 4%. This means that the acquisition time for 

collecting solid-state NMR data for zeolites is much longer. 
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Zeolite samples analysed by solid-state NMR were collected on a Bruker Advance III 

spectrometer equipped with a 9.4 T wide-bore superconducting magnet, at a Larmor 

frequency of 79.459 MHz. 
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CHAPTER 4: 
DEVELOPING A STANDARD 
PROTOCOL FOR THE ADOR 

PROCESS 

4.1. Aim 

The aim of this chapter is to develop a standard protocol, which will allow researchers from 

other universities and research groups to use the Assembly-Disassembly-Organisation-

Reassembly (ADOR) process, and upon following the protocol allow them to identify the 

different products that are possible from the reaction without recourse to repetitive and 

time-consuming trial and error. The aim of the protocol is to identify the optimum 

conditions, such as time of reaction, temperature of the system and pH etc. that one may 

use to choose a zeolite capable of ADOR and produce new high-silica zeolites, which would 

be unfeasible through traditional hydrothermal synthesis. 

 

4.2. Introduction 

High-silica zeolites are some of the most important and widely used catalysts in modern 

industry, and they have potential for application across a wide range of traditional and 

emerging technologies. The many different structural topologies available to zeolites and 

zeolitic materials opens up to many different potential uses and so there remains a strong 

drive to prepare new zeolites.  

The ADOR process is a relatively new method of preparing new high-silica zeolites. ADOR 

differs from traditional zeolite synthetic processes, which generally involves a reversible 

crystallisation under hydrothermal conditions,1 in that the final framework-forming step is 

an irreversible condensation.2 The consequence of this is that materials produced through 

ADOR have unexpected energetic properties that would be unlikely to be possible using 

traditional methods.3 Due to this, the possibility of preparing materials with different 

structures than those currently possible increases, and in turn may lead to new and exciting 
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applications. There are both advantages and limitations to using traditional hydrothermal 

synthesis and the ADOR process (Table 4.1). 

 

Table 4.1. Differences in preparation of high silica zeolites. Advantages are colour coded blue. 

Limitations are colour coded red. 

Factor               

Method Hydrothermal 

Crystallisation 
ADOR 

Controllability and 

predictability of products 

Limited control and the 

product zeolite is not 

always easy to predict 

Use of layers as predefined 

building unit leads to 

product being predictable 

Diversity of products 

Synthesised zeolite may be 

limited by the reversible 

nature of crystallisation step 

No inherent limitation on 

the types of products 

possible 

Chemical composition 

Zeolites can be prepared 

using a wide variety 

composition of reaction 

mixture 

So far limited to 

germanosilicates as parent 

materials 

Price 

Often (but not always) 

needs expensive organic 

structure directing agents 

Use of expensive 

germanium in parent 

materials 

 

The ADOR process is extremely flexible and starting from only one parent zeolite with the 

UTL framework topology a family of six new zeolites, named IPC-2 (OKO), IPC-4 (PCR), 

IPC-6 (*PCS), IPC-7, IPC-9 and IPC-10, can be prepared. The procedure that has been 

developed in this chapter concentrates on identifying the intermediates that result from the 

Disassembly/hydrolysis (D) and Organisation/rearrangement (O) stages in the ADOR 

process, as it is these stages that control the nature of the final product.  

There are three main variables that must be controlled: time, temperature and the acidity of 

the disassembly medium. To ensure that all possible outcomes from the ADOR process are 
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to be recognised it is incredibly important that sufficient parameter space is sampled. 

However, the protocol must also be time-efficient so that researchers wanting to use ADOR 

to synthesise new zeolites are not discouraged from using the method. To achieve this 

balance, a standard protocol was devised.  

 

4.3. Experimental Procedure 

All reagents were obtained from commercial sources and were used without further 

purification. 

 

4.3.1. Synthesis of SDA - (6R,10S)-6,10-dimethyl-5-

azoniaspiro[4,5]decane hydroxide 

1,4-dibromobutane (126 g, 0.5 mol) was added dropwise over 30 minutes to a solution of 

potassium carbonate (82.9 g, 0.6 mol), 2,6-dimethylpiperidine (56.6 g, 0.5 mol) and 

acetonitrile (500 mL) at room temperature. The solution was heated to 95 °C and stirred 

vigorously for 20 hr. After cooling to slightly above room temperature, the reaction was 

filtered to remove any solids. The solution was then condensed to remove excess acetonitrile 

and yield the white bromide salt. The solid product was filtered from the acetonitrile solution 

and washed with diethyl ether (5 x 100 mL). The bromide salt was collected and left to dry 

in air before ion exchange to form the hydroxide (6R, 10S)-6,10-dimethyl-5-

azoniaspiro[4.5.]decane hydroxide. 

 

4.3.2. Ge-UTL 

Germanium dioxide (1.08 g) was dissolved in a solution of (6R,10S)-6,10-dimethyl-5-

azoniaspiro[4,5]decane hydroxide (15 mL, 0.625 M). Fumed silicon dioxide (1.25 g) was 

added portion-wise to the mixture over 30 min until a homogenous solution was formed. 

The gel was transferred to a Teflon-lined steel autoclave and heated at 175 ˚C for 7 days. 

The zeolite product was collected by filtration, washed with water (200 mL) and dried at 80 
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˚C for 12 hr. To remove the SDA, the as-synthesised zeolite was calcined in a stream of air 

at 575 ˚C for 7 hr with a temperature ramp of 1 ˚C min-1. 

 

4.4. Protocol 

The following protocol describes step-wise the procedure to monitoring the Disassembly 

and Organisation stages. Notes, Cautions, Criticals, Timings and Pause-points are included 

to aid the reader. Troubleshooting has been attributed to select steps and a Troubleshooting 

table (Table 4.2) can be found at the end of the protocol. Such Troubleshooting points 

describe areas where the procedure could go wrong, and what can be done to overcome each 

problem. The following protocol uses Ge-UTL as an archetypal parent zeolite, but this can 

be exchanged for any known germanosilicate.4  

The following procedure is presented in an unconventional manner. However, the aim is to 

breakdown each step so that anyone, no matter the ability or background, can follow the 

synthesis whilst paying specific attention to areas that are labelled with Troubleshooting or 

Caution. As such, allow one to use the protocol procedure to take any parent zeolite and see 

if it is suitable to be used in ADOR. 

 

4.4.1. Protocol Procedure4 

Preparation of parent zeolite                

TIMING 12 days 

NOTE  Any suitable parent zeolite can be substituted for Ge-UTL. Synthetic procedures 

from previous literature can be used for known zeolites. 

1. Prepare parent Ge-UTL with molar composition 0.8 SiO2: 0.4 GeO2: 0.4 ROH: 30 

H2O according to well-known literature procedure.  

TROUBLESHOOTING – Pt 1 (see Table 4.2) 

2. Remove the SDA from Ge-UTL by calcination of the as-synthesised zeolite in a 

stream of air at 575 °C for 7 hr with a temperature ramp (uphill) of 1 °C min–1, 
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plateau for 6 hr, and then a temperature ramp (downhill) of 2 °C min–1 until room 

temperature is reached. To prevent accidental disassembly by moisture in the air the 

sample can be stored in a desiccator to keep it dry. 

TROUBLESHOOTING – Pt 2 (see Table 4.2) 

 

Set-up of hydrolysis apparatus                 

TIMING 1 hr 

3. Equip the three-necked round-bottom flask with the condenser and attach to the 

water.  

4. Place the three-necked round-bottom flask in heating mantle with stirrer bar. 

5. Add 120 mL water into the three-necked flask. Heat the water to 100 °C and stir at 

a speed of 600 rpm. 

CRITICAL to ensure that the liquid in the experiment remains at the required temperature 

the heating mantle may need to be set at a higher temperature. Check that the temperature 

of the liquid is at 100 °C throughout the experiment. 

6. Set up the filtration apparatus by way of Buchner flask, funnel and ring. Attach the 

flask to the water vacuum pump. 

7. Prepare pipettes, pipette teats, glass vials, and capillaries for each aliquot taken (ca. 

30). Name each vial by the time the sample is taken (Figure 4.1). 

CRITICAL Prepare all before moving on to step 8. 
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Figure 4.1. LEFT – experimental set-up of the reaction flask and filtration apparatus including 

Buchner flask, funnel and ring; RIGHT – Prepared labelled glass vials and pestle and mortar. 

 

8. Weigh out 600 mg of Ge-UTL and grind to a fine powder in the pestle and mortar. 

The crystallite size at the end of this process is, on average, about 10 μm × 10 μm × 

3 μm as measured by scanning electron microscopy. 

 

Hydrolysis procedure                             

TIMING 8 hr 

9. Add the ground Ge-UTL to the three-necked round-bottom flask with stirring and 

start the timer. 

10. After 1 min take the first sample (ca. 4 pipettes full, ensuring that solid is present in 

the sample; c.a. 2.5 to 3 mL of suspension), filter for 50 sec and transfer to a labelled 

watch glass and place in a drying oven for 5 min at 80 °C. 

11. Repeat step 10 every 1 min up to the 5 min mark.  

12. After the 5 min mark continue to take samples every 5 min up to 1 hr. Filter each 

sample taken for 4 min and dry at 80 °C for 5 min. 

TROUBLESHOOTING – Pt 12 (see Table 4.2) 
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13. After 1 hr, continue to take samples every 30 min up to 8 hr (or when the reaction 

has come to completion). Filter each sample for 5 min and dry in the drying oven at 

80 °C for 5 min. 

14. Follow steps 10 – 13. After each subsequent drying of a sample, remove from the 

oven and grind in mortar and pestle until fine. 

15. Pack the hydrolysed material in 0.5 mm borosilicate capillaries until half full. 

PAUSE POINT Vials containing the capillaries can be sealed with a screw cap and placed 

in a vacuum desiccator for up to 2 weeks. 

TROUBLESHOOTING – Pt 15 (see Table 4.2) 

 

General procedure for zeolite characterisation 

Standard procedures for collecting PXRD (option A), solid-state NMR spectroscopy (option 

B) and TEM (option C). Procedures include the characterisation of PXRD (option D). 

(A) Procedure for collecting PXRD data      

TIMING 1 hr per sample 

(i) Pack the hydrolysed material in a 0.5 mm capillary. Using forceps to vibrate 

the material down the capillary. 

(ii) Collect PXRD data using a STOE STADIP powder X-ray diffractometer 

operated in Debye-Scherrer mode, using a scintillation position-sensitive 

linear detector, operating CuKα1 radiation, place the capillary in the holder 

and centre into the middle of the beam using a microscope. Scan the 

diffraction pattern for 55 min between 3° and 40° 2θ with a step size of   0.2°. 
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(B) Procedure for preparing and collecting samples for solid-state NMR 

spectroscopy                         

TIMING 24 hr per sample 

(i) Using a Bruker Advance III spectrometer equipped with a 9.4 T wide-bore 

superconducting magnet, at a Larmor frequency of 79.459 MHz, collect 29Si 

solid-state NMR spectra. 

(ii) Pack samples into 4 mm ZrO2 rotors and rotate at a MAS rate of 10 kHz. 

Weigh rotors before and after packing to determine the mass of zeolite used 

in the acquisition. 

(iii) Using a radiofrequency (rf) field strength of ∼83 kHz, with a recycle interval 

of 120 s, collect magic angle spinning (MAS) spectra. The Q3:Q4 ratio can be 

determined using DMFit (or other suitable program), with errors estimated 

from multiple fits.  

(iv) The commercial probe used does not display a 29Si background signal hence 

no correction has to be made to the absolute Q3:Q4 ratios plotted to reflect 

this. 

(v) Show the chemical shifts relative to TMS (using secondary references of 

Q8M8 ((OSi(OMe)3) = 11.5 ppm) for 29Si and l-alanine (C3H7NO2 ( (NH2) 

= 8.5 ppm) for 1H). 

 

(C) Procedure for preparing and collecting samples for TEM 

TIMING 1 hr per sample 

(i) The high-resolution transmission electron microscopy (HRTEM) was 

performed using a Jeol JEM-2011 electron microscope operating at an 

accelerating voltage of 200 kV. The HRTEM images were recorded using a 

Gatan 794 CCD camera. The camera length, sample position and 

magnification were calibrated using standard gold film methods. 

(ii) Grind the powder sample in mortar with pestle. 
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CAUTION Germanosilicates are extremely sensitive to the electron beam, care must be 

taken during the sample preparation and imaging. To avoid sorption of water, samples must 

be dried in an oven and stored in a vacuum desiccator.  

(iii) Add acetone to ground powder, grind again to obtain a well dispersed 

suspension of zeolite crystals in acetone. 

(iv) Using a pipette, place one drop of suspension on the copper/holey carbon 

TEM grid. 

(v) Calibrate the microscope using standard gold film method. 

(vi) Image the samples of silicates using HRTEM method. Use minimum 

electron beam intensity due to instability of samples. Use spot size 3 and gun 

lens 3. 

CAUTION Make sure to spread the beam to reduce the intensity, keeping the beam 

intensity below 2 pA cm-2. 

(vii) Analyse recorded samples by ImageJ program generating the FFT patterns 

and calculating the d spacing’s from generated diffraction patterns. 

 

(D)  Procedure for analysing PXRD data 

(i) Locate the 200 reflection in the PXRD pattern and measure its position as 

accurately as possible (this is usually best achieved using the fitting program 

that comes as part of the standard diffractometer software, but could be 

performed using other software packages equally successfully). The 200 

reflection is normally the most intense peak in the pattern, but this can be 

confirmed by calculating the positions of the reflections using the expected 

unit cells. 

CRITICAL The 200 peak chosen here defines the inter-layer spacing for UTL. For other 

parent zeolites, the orientation of the reported unit cell may mean that the inter-layer distance 

is defined using a different reflection. The appropriate reflection must be chosen in this stage 

otherwise results may be incorrect. 
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CAUTION The 200 peak may be relatively wide during the hydrolysis step due to a mixture 

of inter-layer connectivity in the material, which means the measurement may be difficult 

and the error associated with measuring the position of such peaks should be taken into 

account. 

(ii) Calculate d spacing of the 200 peak using the Bragg equation (if your fitting 

software does not do this automatically for you). This gives the d200 peak in 

Å, and is a direct probe of the layer spacing in the material. 

(iii) Plot d200 against time for all data sets. If the 200 reflection moves significantly 

during the process then this is an important indicator of whether the parent 

material is susceptible to the ADOR process. The movement of the peak 

gives an indication of the types of intermediate that are accessible under the 

conditions of study and to monitor (a) the effect of temperature and (b) the 

effect of pH. 
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Table 4.2. Troubleshooting 

Step Problem Possible Reason Solution 

1 

Parent zeolite 

not crystalline 

or not of the 

correct 

structure 

Parent material did not form 

correctly in the Assembly 

step 

Check the PXRD to make sure 

the pattern is correct. If the 

pattern does not match that for 

the expected parent zeolite then 

repeat the synthesis of the 

parent material 

2 

The parent is 

amorphous 

after 

calcination (by 

PXRD) 

The parent has degraded in 

the calcination process 

Analyse the calcined material 

PXRD and check material by 
13C NMR to detect SDA 

presence. Repeat calcination 

with fresh parent zeolite 

following calcination steps at 

the correct temperature. This 

step can vary with different 

equipment so several attempts 

may be required 

12 

Hydrolysis 

(Disassembly) 

did not occur 

Ge is not regioselectively 

incorporated; Low amount 

of Ge in sample – not 

enough to remove d4r; Too 

much Ge – XRD shows no 

peaks suggesting a collapse 

of the layers 

Perform ICP or other elemental 

analysis to ascertain Si:Ge ratio 

in material; re-synthesise parent 

zeolite with better control of 

Si:Ge ratio 

12 

Hydrolysis not 

efficient over a 

sensible time 

scale 

Disassembly of the inter-

layer linkages did not occur, 

perhaps due to large 

numbers of stacking faults in 

the material 

Analyse by scanning electron 

microscopy to look at 

morphology and HRTEM to 

detect faulting; Preparation of 

parent zeolite without 

intergrowths 

15 

No evidence 

of separate 

rearrangement 

steps in the 

reaction profile 

The D and O steps may be 

overlapping dependent on 

the hydrolysis media used; 

The induction step has not 

occurred as the material has 

not fully hydrolysed before 

starting to rearrange, this 

could be a real effect 

dependent on the parent 

zeolite used 

Take samples over a longer 

timeframe to determine 

whether rearrangement will 

occur or whether the layered 

material is the only daughter 

zeolite formed 
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4.5. Results and Discussion 

At the start of this research the ADOR process could be defined as seen in Figure 4.2 below. 

After assembly of the parent zeolite, Ge-UTL, the d4r are hydrolytically removed to form a 

layered species IPC-1P. These layers are then self-organised into IPC-2P before calcination 

to form IPC-2. 

 

Figure 4.2. A schematic to show the 4 steps in the ADOR process as it stood at the beginning of 

this research. Initial d4r-containing parent zeolite UTL is broken down through hydrolysis, to 

make the layered intermediate IPC-1P. These layers are organised to IPC-2P through an IPC-6P 

intermediate before the Si-O-Si bonds are reformed through calcination to form a reassembled 

material with a different structure from the original assembled parent. 

 

To further the understanding of the ADOR process, a range of experiments were devised 

and analytical techniques used. These include kinetic analysis of the hydrolysis (D) and 

rearrangement (O) steps (Chapter 5) and the use of in situ Pair Distribution Function (PDF) 

analysis to monitor the whole process in low volume (Chapter 6). In this chapter, the 

development of a standard ADOR protocol will be discussed and how this applies to the 

preparation of new high-silica zeolites. 

Germanium-containing UTL zeolites were subjected to hydrolysis conditions using five 

different disassembly media (water, 0.1 M hydrochloric acid (HCl), 1.5 M HCl, 6 M HCl and 

12 M HCl) with temperatures ranging from 20 to 100 °C. These conditions provide an 

understanding of the effects of temperature and pH on the Disassembly and Organisation 

steps of the process that define the potential products. Samples were taken from the ongoing 

reaction periodically over a minimum time of 8 hr and each sample was analysed primarily 
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through powder X-ray diffraction in capillary mode to yield a time course for the reaction at 

each set of conditions. The 100 °C reaction data set was further analysed by transmission 

electron microscopy (TEM) and solid-state 29Si NMR spectroscopy and will be discussed in 

detail below. 

 

4.5.1. The Effect of Temperature 

The first reaction set investigated focused on the effect of temperature and as such the acidity 

was kept constant at pH 7. The hydrolysis (D) and rearrangement (O) mechanisms of Ge-

UTL through the ADOR process were investigated over a period of 8 – 37 hr using water 

as the hydrolysis medium at seven different temperatures (100, 92, 85, 81, 77, 70 and 20 ºC). 

Aliquots of sample were taken at specified time intervals and analysed through PXRD. From 

this PXRD, the d200 inter-layer spacing peak was found and the full-width-half-max (FWHM) 

of this peak measured. The PXRD patterns show the changing crystallinity with change in 

reaction time.  

 

4.5.1.1. Investigating the 100 °C Reaction 

The 100 °C reaction will be discussed first to show specific features in the XRD that will aid 

the reader in Section 4.5.1.2. The 100 °C reaction was analysed further than all temperatures 

due to its fast reactivity and clear cut intermediate products at regular time intervals with no 

overlap. As described previously, samples of the solid suspension were taken at regular 

intervals from the reaction mixture and PXRD patterns measured for each sample. Figure 

4.3 shows selected PXRD patterns for the 100 °C data set, and the inset shows how the 

position of the 200 reflection varies with time during the reaction. The patterns chosen 

correspond to the three main intermediates in the ADOR process for Ge-UTL: IPC-1P 

(1hr; 8.5° 2θ, 10.54 Å), IPC-6P (2 hr 30; 7.9° 2θ, 11.1 Å) and IPC-2P (4 hr; 7.5° 2θ, 11.75 Å).  
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Figure 4.3. Selected PXRD patterns collected at 1 hour, 2 hrs 30 min and 8 hours after the ADOR 

reaction has started (water as the hydrolysis medium, 100 °C). The inset shows how the position of 

the 200 reflection shifts with time. The colour coding is the same as that used in Figure 4.15. 

 

Figure 4.4 shows a plot of the time dependency of the d spacing of the 200 reflection for all 

the samples from the 100 °C data set. The plot shows that the parent Ge-UTL zeolite (d200 

= 14.48 Å) is quickly disassembled (hydrolysis and removal of the Ge-rich d4r units) leading 

to a contraction of the inter-layer distance. After approximately 30 - 60 minutes the value of 

d200 levels off at ~10.5 Å, which corresponds to the IPC-1P intermediate (Figure 4.2) where 

all the d4r units have been removed from between the layers. At first sight one might imagine 

that the reaction might have concluded at this time. However, the importance of following 

the procedure developed for a significant time is obvious, as at longer times further changes 

occur. There is an induction period, during which IPC-1P is the only product identified in 

the reaction. After 120 minutes (under these conditions) the d200 value increases once again 

until it plateaus at a value of ~11.75 Å, corresponding to daughter zeolite precursor, IPC-2P 

(Figure 4.2), where some extra silicon has been incorporated back into the inter-layer space 
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through a reintercalation/reorganisation reaction. The benefit of following the protocol 

produced through work in this chapter, is that it allows one to identify the time at the mid-

point in the reintercalation process. In this case, this is the intermediate IPC-6P, which is the 

material where half of the layers have undergone the intercalation and half have not. Once 

IPC-6P has been calcined, it forms IPC-6 (*PCS), an alternating (approx.) s4r and direct 

oxygen linkage containing zeolite (see Chapter 1, Figure 1.17). 

 

Figure 4.4. A plot of the variation of d spacing of the 200 PXRD reflection versus time for the 

ADOR reaction carried out in water at 100 °C. The plot shows clearly the different regimes of the 

process. The disassembly of the parent Ge-UTL zeolite (orange) happens rapidly and is complete 

inside 1 hour. There follows an induction period where IPC-1P (green) is the only identifiable 

product. Following this a new process occurs where the d spacing increases, finally forming a 

different product, IPC-2P (blue) via an IPC-6P intermediate (purple). The coloured symbols show 

the samples whose full PXRD patterns are shown in Figure 4.3. The precision in the measurement 

of the PXRD d spacing is within the symbols on the diagram. 

 



83 | P a g e  

 

The products of the hydrolysis and rearrangement steps for Ge-UTL at 100 ºC were further 

analysed by solid-state 29Si NMR spectroscopy and transmission electron microscopy (TEM). 

Samples were taken when major structural changes had taken place: 1 min (Ge-IPC-2P*), 1 

hr (IPC-1P), 4 & 8 hr (both IPC-2P). The structure and characteristics of the new species 

Ge-IPC-2P* will be discussed in Chapter 5. A sample was taken and analysed after 8 hr to 

ensure no further local changes were occurring after forming IPC-2P. Using 29Si MAS NMR 

spectroscopy, the change in both Q4 (Si(OSi)4) and Q3 (Si(OSi)3(OH)) species can be 

monitored over time (Figure 4.5). The growth of the Q3 peak after 1 hr, suggests the 

formation of silanol (Si-OH) groups on the surface of the layers in IPC-1P. After 1 hr the 

Q3 peak reduces in intensity as the silanol groups rearrange to Q4 sites in accordance with 

Figure 4.2.  

 

Figure 4.5. 29Si (9.4 T, 10 kHz MAS) NMR spectra of calcined Ge-UTL parent zeolite, and 

subsequent hydrolysis after 1 min, 1 hr, 4 hr and 8 hr. The change in intensity of Q4 (Si(OSi)4) and 

Q3 (Si(OSi)3(OH)) species is monitored over this time period. 
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After an initial hydrolysis at 1 hr, the ratio of Q3:Q4 sites is 1:2.3, thus close to the ideal ratio 

of 1:2.5 for IPC-1P (Table 4.3). The Q3:Q4 ratio continues to decrease as the rearrangement 

process occurs, leading to a ratio of 1:4.8 upon formation of IPC-2P at 4 hr (ideal IPC-2P 

Q3:Q4 = 1:7). Due to the relative difference between actual and ideal ratios, we can conclude 

that some silanol groups remain as defects throughout the IPC-2P material.  

 

Table 4.3. Calculated (using DMFit) Q3 : Q4 ratios for the 29Si environments obtained when Ge-

UTL is hydrolysed in water at 100 °C. 

Time Q3 % Q4 % Q3 : Q4 PXRD structure 

Calcined 0 100 ∞ Ge-UTL 

1 hr 30.0 70.0 1 : 2.3 IPC-1P 

4 hr 17.4 82.6 1 : 4.8 IPC-2P 

8 hr 17.6 82.4 1 : 4.7 IPC-2P 

 

TEM images for three of the most important samples (1 min, 1 hr, and 4 hr) highlighted by 

XRD were recorded. These materials are highly unstable during radiation. However, the 

TEM images highlight some loss of crystallinity from parent Ge-UTL over the course of 1 

min (Figure 4.6) and a clear drop in d spacing can be seen over the first hr (IPC-1P), before 

this increases again to form IPC-2P. The results corroborate those from the XRD data. 
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Figure 4.6. TEM images of the samples of Ge-UTL hydrolysed in water at 100 ºC. a = parent     

Ge-UTL; b = after 1 min; c = after 1 hr; d = after 4 hr. 

 

4.5.1.2. All Temperatures 

The hydrolysis (D) and rearrangement (O) mechanisms of Ge-UTL through the ADOR 

process were investigated over a period of 8 – 37 hr using water as the hydrolysis medium 

at seven different temperatures (100, 92, 85, 81, 77, 70 and 20 ºC). Each data point in all 

figures shown in sequence below (Figures 4.7 – 4.13) for data sets 100 – 20 °C, represent the 

d200 inter-layer spacing over time. 
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Figure 4.7. A plot of the variation of d spacing of the 200 PXRD reflection versus time for the 

ADOR reaction carried out in water at 100 °C. The disassembly of the parent Ge-UTL zeolite 

(14.48 Å) happens rapidly and is complete inside 1 hr. There follows an induction period for 1 hr 

where IPC-1P (10.54 Å) is the only identifiable product. Following this a new process (O) occurs 

where the d spacing increases over 2 hr, finally forming a different product, IPC-2P (11.82 Å). The 

reaction remains stable at IPC-2P from 4 hr. Total reaction time of 4 hr. The precision in the 

measurement of the PXRD d spacing is within the symbols on the diagram. 

 

Decreasing the temperature of the reaction system from 100 °C (Figure 4.7) to 92 °C (Figure 

4.8) decreases the rate of rearrangement to IPC-2P (ideal IPC-2P – 11.7 Å) from 2 hr to 4 

hr with the induction period also doubled. The rate of hydrolysis is only 30 min for the 92 

°C reaction, however as this hydrolysis step is rapid, any small change in timescale of 

approximately 30 min may be due to human error, such as the time of addition of parent 

zeolite and size of Ge-UTL particles.  
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Figure 4.8. A plot of the variation of d spacing of the 200 PXRD reflection versus time for the 

ADOR reaction carried out in water at 92 °C. Hydrolysis (D) of the parent Ge-UTL zeolite - 14.48 

Å to 10.54 Å; 30 min. Induction period – 2 hr where IPC-1P (10.54 Å) is the only identifiable 

product. Rearrangement (O) – the d spacing increases over 4 hr to form IPC-2P (11.73 Å). The 

reaction remains stable at IPC-2P from 7 hr. Total reaction time of 7 hr. The precision in the 

measurement of the PXRD d spacing is within the symbols on the diagram. 
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Figure 4.9. A plot of the variation of d spacing of the 200 PXRD reflection versus time for the 

ADOR reaction carried out in water at 85 °C. Hydrolysis (D) of the parent Ge-UTL zeolite - 14.48 

Å to 10.54 Å; 1 hr. Induction period – 5 hr where IPC-1P (10.54 Å) is the only identifiable product. 

Rearrangement (O) – the d spacing increases over 7 hr 30 to form IPC-2P (11.69 Å). The reaction 

remains stable at IPC-2P from 14 hr. Total reaction time of 13.5 hr. The precision in the 

measurement of the PXRD d spacing is within the symbols on the diagram. 

 

Once again further reducing the reaction temperature from 92 °C to 85 (Figure 4.9) and 81 

°C (Figure 4.10) leads to an increase in reaction time of the rearrangement step from 4 hr to 

7 hr 30 and 12 hr for 92, 85 and 81 °C, respectively, with induction times increasing from 2 

hr to 5 hr and 7 hr. 
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Figure 4.10. A plot of the variation of d spacing of the 200 PXRD reflection versus time for the 

ADOR reaction carried out in water at 81 °C. Hydrolysis (D) of the parent Ge-UTL zeolite - 14.48 

Å to 10.54 Å; 2 hr. Induction period – 7 hr where IPC-1P (10.54 Å) is the only identifiable product. 

Rearrangement (O) – the d spacing increases over 12 hr to form IPC-2P (11.67 Å). The reaction 

remains stable at IPC-2P from 21 hr. Total reaction time of 21 hr. The precision in the 

measurement of the PXRD d spacing is within the symbols on the diagram. 
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Figure 4.11. A plot of the variation of d spacing of the 200 PXRD reflection versus time for the 

ADOR reaction carried out in water at 77 °C. Hydrolysis (D) of the parent Ge-UTL zeolite - 14.48 

Å to 10.54 Å; 1 hr. Induction period – 13 hr 30 where IPC-1P (10.54 Å) is the only identifiable 

product. Rearrangement (O) – the d spacing increases over 15 hr to form IPC-2P (11.73 Å). The 

reaction remains stable at IPC-2P from 31 hr. Total reaction time of 30.5 hr. The precision in the 

measurement of the PXRD d spacing is within the symbols on the diagram. 

 

Comparing the standard reaction at 100 °C to those run at 77 (Figure 4.11) and 70 °C (Figure 

4.12), it is clear that there is a strong temperature dependence on the rate of reactivity of the 

rearrangement (O) step in ADOR, with 77 and 70 °C taking 15 and 16 hr to react, 

respectively. The induction period is again lengthened considerably from 1 hr (100 °C) to 13 

hr 30 (77 °C) and 19 hr (70 °C). 
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Figure 4.12. A plot of the variation of d spacing of the 200 PXRD reflection versus time for the 

ADOR reaction carried out in water at 70 °C. Hydrolysis (D) of the parent Ge-UTL zeolite - 14.48 

Å to 10.54 Å; 1 hr. Induction period – 19 hr where IPC-1P (10.54 Å) is the only identifiable 

product. Rearrangement (O) – the d spacing increases over 16 hr to form IPC-2P (11.63 Å). The 

reaction remains stable at IPC-2P from 36 hr. Total reaction time of 36 hr. The precision in the 

measurement of the PXRD d spacing is within the symbols on the diagram. 

 

Finally, Ge-UTL was subjected to conditions of 20 °C in water for a time period of 8 hr 

(Figure 4.13). Unlike the previous reaction sets with temperatures of 70 °C and above, Ge-

UTL does not fully hydrolyse to IPC-1P and instead the d spacing plateaus at 10.82 Å. It is 

currently not known why this is the case, as at all other temperatures explored, the 

temperature of the system seems to have no effect on the rate of hydrolysis (D). Interestingly, 

with a temperature of only 20 °C this reaction system seems to be acting as if at low volume. 

Clearly the kinetics of the reaction system need to be increased and as such temperatures 

above 20 °C are needed to fully hydrolyse the parent Ge-UTL and allow for further 

rearrangement.  
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Figure 4.13. A plot of the variation of d spacing of the 200 PXRD reflection versus time for the 

ADOR reaction carried out in water at 20 °C. Hydrolysis (D) of the parent Ge-UTL zeolite - 14.48 

Å to 10.82 Å; 90 min. After 90 min no further hydrolysis to IPC-1P (10.54 Å) is seen with no 

rearrangement seen within the timeframe. The precision in the measurement of the PXRD d 

spacing is within the symbols on the diagram. 

 

Due to only a partial collapse of the layers and no rearrangement on a sensible timescale, the 

reaction run at 20 °C has been removed from further figures and is absent from further data 

analysis. Figure 4.14 shows the change in d spacing with time for all these temperatures. The 

initial hydrolysis occurs rapidly over the course of 1 hr and several features can immediately 

be identified. First, it is clear that the initial Disassembly is fast under all conditions. Indeed, 

it is so fast that the errors associated in accurate measurement of the time are likely to be 

significant, and limit any quantitative conclusions that can be elucidated from the data for 

this process, at least under these conditions. 
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Figure 4.14. Hydrolysis of Ge-UTL in water over a time period of 1 hr showing the d spacing, d200 

for 100 °C (black squares), 92 °C (green stars), 85 °C (red circles), 81 °C (cyan hexagons), 77 °C 

(orange diamonds) and 70 °C (blue triangles). After 1 hour at all temperatures Ge-UTL is fully 

hydrolysed to IPC-1P. The precision in the measurement of the PXRD d spacing is within the 

symbols on the diagram. 

 

Second, the duration of the induction period varies greatly with temperature; as the 

temperature of the reaction is lowered the induction period increases in length (Figure 4.15).  
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Figure 4.15. Induction length vs. temperature for 100 °C (black), 92 °C (green), 85 °C (red), 81 °C 

(cyan), 77 °C (orange) and 70 °C (blue). 

 

Third, the rate of the reintercalation/reorganisation step increases with temperature. Clearly, 

there is the possibility of quantifying reaction rates and apparent activation energies using 

these data, and this will be discussed in Chapter 5. As it stands, the data yields excellent 

qualitative information that helps to show which particular set of conditions might be the 

optimum for the preparation of the desired product, IPC-1P, IPC-6P or IPC-2P. Figure 4.16 

below highlights the change in reaction time with decreasing temperature. 
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Figure 4.16. The rearrangement of Ge-UTL in water over a time period of 1 – 37 hr showing the 

d spacing, d200 for 100 °C (black squares), 92 °C (green stars), 85 °C (red circles), 81 °C (cyan 

hexagons), 77 °C (orange diamonds) and 70 °C (blue triangles). At 1 hour at all temperatures IPC-

1P rearranges to IPC-2P after an induction period that varies with temperature (1 – 19 hr). The 

precision in the measurement of the PXRD d spacing is within the symbols on the diagram. 

 

Plotting both the hydrolysis and rearrangement data together allows one to comprehend just 

how fast the rate of hydrolysis is in comparison to the rate of rearrangement (Figure 4.17). 

Further analysis using the Avrami-Erofeev model to evaluate the solid-state kinetics of each 

step will be undertaken and discussed further in Chapter 5. 
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Figure 4.17. The combined results of the hydrolysis and rearrangement of Ge-UTL in water over 

a time period of 37 hr showing the d spacing, d200 for 100 °C (black squares), 92 °C (green stars), 85 

°C (red circles), 81 °C (cyan hexagons), 77 °C (orange diamonds) and 70 °C (blue triangles). After 1 

hour at all temperatures Ge-UTL is hydrolysed to IPC-1P, which then rearranges to IPC-2P after 

an induction period that varies with temperature. The precision in the measurement of the PXRD d 

spacing is within the symbols on the diagram and highlighted by black error bars. 

 

4.5.2. The Effect of pH 

The hydrolysis and rearrangement mechanisms of Ge-UTL were further investigated by 

varying the concentration of hydrochloric acid (12, 6, 1.5 and 0.1 M). The temperature was 

kept constant at 20 ºC to ensure only the effect of acid strength was monitored (Figures 4.18 

– 4.22). 

The reactions undertaken in strong acid (12 and 6 M; Figure 4.18 and 4.19) were rapid, with 

both the hydrolysis and rearrangement occurring simultaneously and as such neither 

hydrolyse fully to IPC-1P. In other words, the induction period is reduced to zero and the 

disassembly never has time to complete before rearrangement occurs.  
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Figure 4.18. Hydrolysis and rearrangement of Ge-UTL over a time period of 8 hr showing the d200 

spacing for the reaction in 12 M HCl to form IPC-6P. The precision in the measurement of the 

PXRD d spacing is within the symbols on the diagram. 

 

Interestingly, both the 12 M and 6 M reaction data sets hydrolyse to the same point (11.7 Å; 

60 mins), where the 6 M reaction remains stable as IPC-2P. The 12 M reaction however, 

continues to rearrange past this point to form IPC-6P. It is currently not clear why this is 

occurring and as such further work is needed to include HCl molarities between 6 and 12 M 

to understand if this is an anomaly or whether increasing the molarity does indeed lead to a 

contraction of the inter-layer spacing preferentially.  
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Figure 4.19. Hydrolysis and rearrangement of Ge-UTL over a time period of 8 hr showing the d200 

spacing for the reaction in 6 M HCl to form IPC-2P. The precision in the measurement of the 

PXRD d spacing is within the symbols on the diagram. 

 

 



99 | P a g e  

 

 

Figure 4.20. Hydrolysis of Ge-UTL over a time period of 8 hr showing the d200 spacing for the 

reaction in 1.5 M HCl to form IPC-1P, with no rearrangement of the layers seen over the 8 hr time 

period. The precision in the measurement of the PXRD d spacing is within the symbols on the 

diagram. 

 

In 1.5 (Figure 4.20) and 0.1 M HCl (Figure 4.21), the reaction is much slower and a full 

hydrolysis to IPC-1P can be seen, much more similar to that seen in water. Both the reactions 

run in 1.5 and 0.1 M complete a full hydrolysis to IPC-1P over the time course of 1 hr, where 

the material remains stable and does not rearrange within itself over 8 hr. It may be that 

similarly to the reactions run in water at 85 °C and below, the rearrangement does not occur 

on a sensible timescale or at least not within 8 hr. 
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Figure 4.21. Hydrolysis of Ge-UTL over a time period of 8 hr showing the d200 spacing for the 

reaction in 0.1 M HCl to form IPC-1P, with no rearrangement of the layers seen over the 8 hr time 

period. The precision in the measurement of the PXRD d spacing is within the symbols on the 

diagram. 

 

The combined graph of the inter-connected hydrolysis (D) and rearrangement (O) processes 

within ADOR for 12, 6, 1.5 and 0.1 M can be seen in Figure 4.22, where it becomes clear 

the difference in both rate and reactivity between high and low molarities. To understand 

this clear change further, the experiments should be run starting at 1 M HCl and increase by 

1 M each time such that a data set of 1, 2, 3, 4, 5 M HCl etc. can be afforded. 
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Figure 4.22. The combined results of the hydrolysis and rearrangement of Ge-UTL in 

hydrochloric acid over a time period of 8 hr showing the d spacing, d200 for 12 M (black squares), 6 

M (pink circles), 1.5 M (blue up triangles) and 0.1 M (green down triangles). The reaction is rapid in 

both 12 and 6 M HCl, leading to IPC-6P and IPC-2P, respectively. For reactions in 0.1 and 1.5 M 

HCl, the reaction is slightly slower with the full hydrolysis to the layered material IPC-1P seen over 

the course of 1 hr. The precision in the measurement of the PXRD d spacing is within the symbols 

on the diagram and highlighted by black error bars. 

 

4.6. Applying the ADOR Protocol to other Germanosilicates 

The protocol (and the experimental work to complete it) that has been discussed within this 

chapter has been designed with UTL as the parent zeolite topology and will allow researchers 

to synthesise the previously prepared materials listed: IPC-1P, IPC-2P and IPC-6P and 

therefore afford IPC-4, IPC-2 and IPC-6 after subsequent calcination at 550 °C. However, 

perhaps the most important aspect of the protocol is the scaffold it provides for the testing 

of potential new parent zeolites.  
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When a researcher has a parent material with the structural features that may make it 

appropriate as a starting point for the ADOR process, following the procedure within the 

protocol will provide solid evidence for whether the material is suitable or not. In the ideal 

circumstance one would know the crystal structure of any parent before embarking on a 

study using the protocol. However, even if one does not yet know the detailed structure, 

noting that a major PXRD diffraction peak changes position during the protocol may well 

indicate that the parent has promise and may provide helpful clues as to the possible 

structure of the parent. 

Substituting a new parent zeolite for the archetypal parent zeolite UTL is the simplest 

approach, but there are clearly potential pitfalls to this and the process is unlikely to work in 

the same manner for all parent zeolites. Nonetheless, by examining how the protocol differs 

can provide valuable information on the parent zeolite as well as any ADOR intermediates 

that may be formed. One such potential problem that may well occur is that the Disassembly 

step does not work as expected. This could be for two reasons. First, the d200 reflection may 

remain unchanged indicating that there is likely not enough Ge in the structure to enable 

successful disassembly. The appropriate course of action would therefore be to prepare the 

parent with an increased Ge content and repeat the protocol. On the other hand, the PXRD 

patterns collected after the hydrolysis may show significant deterioration to the extent that 

the reflections may be completely lost. This likely indicates that there is too much Ge in the 

parent zeolite, a part of it is located in the layers, and the appropriate action in this case is to 

prepare the parent one with reduced Ge content and repeat the protocol.  

If the Disassembly step appears to work successfully, the protocol shows two different 

possible outcomes. At low acidity, all the inter-layer species are removed from UTL but 

after an induction period atomic species are reintroduced between the layers (Figure 4.11), 

the length of the induction period depending on the conditions. However, at high acidity the 

removal of the species from between the layers may never be fully completed (Figure 4.22) 

before rearrangement leads to the formation of a stable precursor, usually (but not always) 

analogous to IPC-2P. In other words, under concentrated acid conditions the rearrangement 

process becomes so fast that the induction period becomes zero and full disassembly to the 

layered IPC-1P precursor does not have time to occur before the reorganisation to IPC-2P 

takes place. With different parents this type of behaviour may occur at different conditions 

and so researchers should really test a good sample of conditions to make sure they do not 

miss potential ADOR products. 
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4.7. Conclusion 

In this section, the work contributing to the development of a standard protocol for using 

the ADOR process to synthesise new high-silica zeolites has been discussed. It was 

established that when reactions are run solely in water as the reaction medium, the rate of 

reactivity for the rearrangement (O) process increased with increasing temperature, whilst 

the rate of hydrolysis remained virtually unchanged over each temperature threshold 

examined. Moreover, the length of the induction period increased linearly with decreasing 

temperature from 100 to 70 °C. 

Under low acidity (0.1 and 1.5 M HCl), the reaction ran similarly to that of low temperature 

water, with the full hydrolysis to IPC-1P clearly seen, but with no rearrangement within the 

8 hr period. At high acidity (6 and 12 M HCl), the rate of reaction is so fast that the hydrolysis 

never has time to fully complete before the rearrangement to IPC-2P (6 M) and IPC-6P (12 

M) begins. As such the mechanism for the inter-connected hydrolysis and rearrangement is 

complex and not fully understood at this time. 

As a concluding remark – a question often asked is about the universality of the ADOR 

process. In our experience to date, all germanosilicate zeolites that have the requisite 

compositional and structural features can be disassembled, organised and reassembled into 

new zeolites. In that sense the ADOR process is perfectly universal given the limitations on 

chemistry and topology described. However, the key is to identify the right conditions – and 

this is where this protocol will find its most enduring impact. 

 

 

 

 

 

 

 

 

 



104 | P a g e  

 

4.8. References 

1 C. S. Cundy and P. A. Cox, Chem. Rev., 2003, 103, 663–701. 

2 M. E. Davis and R. F. Lobo, Chem. Mater, 1992, 4, 156–768. 

3 M. Mazur, P. S. Wheatley, M. Navarro, W. J. Roth, M. Položij, A. Mayoral, P. Eliášová, P. 
Nachtigall, J. Čejka and R. E. Morris, Nat. Chem., 2015, 8, 58–62. 

4 S. E. Henkelis, M. Mazur, C. M. Rice, G. P. M. Bignami, P. S. Wheatley, S. E. Ashbrook, J. 
Čejka and R. E. Morris, Nat. Protoc., 2019, 14, 781-794. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



105 | P a g e  

 

CHAPTER 5: 
KINETIC AND MECHANISTIC 

ANALYSIS OF THE ADOR 
PROCESS 

5.1. Aim 

The aim of this section follows on from the work conducted previously in Chapter 4. To 

further the understanding of the hydrolysis (Disassembly) and rearrangement (Organisation) 

steps in the ADOR process, the aim is to conduct kinetic analysis using two solid-state 

kinetic models: Avrami-Erofeev and Sharp Hancock, and use these to elucidate information 

on the kinetics of crystallisation and the activation energy of reaction. 

 

5.2. Introduction 

 

Figure 5.1. A schematic to show the ADOR mechanism of  IPC-2 zeolite synthesis. Assembly - the 

pre-determined parent zeolite Ge-UTL is produced; Disassembly – Germanium is selectively 

hydrolysed leading to the breakdown of  the d4r to form a layered material IPC-1P; Organisation – 

the IPC-1P layers are suitably re-orientated through a self-organisation process to form IPC-2P via 

an IPC-6P intermediate; Reassembly – new silicate bonds are formed between the layers to afford 

IPC-2 upon calcination. Si – blue, Ge – green, O – red. 

 

Figure 5.1 shows the ADOR process as it stood previously to the work in this chapter, 

elucidated from data collected for the protocol discussed in Chapter 4. The second step in 

the ADOR process, Disassembly (D), involves the removal of the Ge-rich d4r by aqueous 

or acid hydrolysis to produce a layered intermediate species (IPC-1P). It is the weakness in 
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germania bonds (Ge-O-Ge and Ge-O-Si) that allows for the facile hydrolysis of the Ge, 

which leads to the unzipping of the 3-dimensional layered framework to form dense silicate-

rich layers (Figure 5.2).1,2 The hydrolysis of the parent UTL occurs over a time period of 1 

hr, where a 60% collapse of the d4r is seen in under 1 min to form Ge-IPC-2P*. 

 

Figure 5.2. Schematic to show the hydrolysis of  Ge-UTL over the course of  1 hr. After 1 minute 

the hydrolysis is 60% complete with ca. 60% of  the d4r selectively hydrolysed. After 1 hr the 

hydrolysis has come to completion to form IPC-1P layers. Si – blue, Ge – green, O – red. 

 

The layered species, IPC-1P, can then undergo several different fates depending on the 

choice of reaction conditions. First, it can be directly reassembled (R) to form a fully 

connected zeolite called IPC-4 (Figure 5.3). To get a highly crystalline zeolite from the 

reassembly step, the IPC-1P has to be well organised, either through an intercalation process 

using a structure-directing-agent (SDA) or by leaving the IPC-1P for the right amount of 

time so that it self-organises. Alternatively, it is also possible to intercalate the extra silicon 

that has been afforded from the breakdown of the d4r between the silanol layers, and form 

a new zeolite precursor called IPC-2P. This zeolite can also form if IPC-1P is left under 

certain conditions.3–6 An understanding of this process is the major objective of this work. 
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Figure 5.3. Schematic to show the Organisation step as it currently stands. TOP – Low acidity 

conditions, which forms IPC-4 after calcination and IPC-2 after self-organisation and then 

calcination; BOTTOM – High acidity conditions.  

 

For the first time, the kinetic analysis of the two most prominent steps (D and O) in the 

ADOR process have been investigated. This has been found by sampling the reaction and 

using powder X-ray diffraction to follow the evolution of the lattice spacings (d200 peak in 

XRD) with time. Each data set was fit with the Avrami-Erofeev model and the activation 

energy of the rearrangement (Organisation) step was found to be 70.1 kJ mol-1.  

 

5.3. Experimental Procedure 

Please refer to Experimental in Chapter 4 for the synthesis of Ge-UTL and the 

corresponding SDA - (6R,10S)-6,10-dimethyl-5-azoniaspiro[4,5]decane hydroxide. 
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5.3.1. Humidity Study 

5.3.1.1. 54.4% Relative Humidity (RH) 

A saturated salt solution of 54.4% RH was prepared from an aqueous solution of magnesium 

nitrate in water (125 g / 100 mL). 

 

5.3.1.2. 75.5% RH 

A saturated salt solution of 75.5% RH was prepared from an aqueous solution of sodium 

chloride in water (359 g / 1000 mL). 

 

5.3.1.3. 97.6% RH 

A saturated salt solution of 97.6% RH was prepared from an aqueous solution of potassium 

sulfate in water (120 g / 1000 mL). 

 

5.3.1.4. Procedure 

Saturated salt solutions of 54.4, 75.5, and 97.6% RH were prepared and added to plastic 

boxes, sealed with a lid and parafilm and allowed to equilibrate for 24 hr. After 24 hr, calcined 

Ge-UTL was added in plastic boats to avoid touching the salt solution. The boxes were 

sealed and samples taken every week for 6 weeks. Samples were packed in 0.5 mm 

borosilicate capillaries and analysed by powder X-ray diffraction. 

 

5.3.2. Kinetic Analysis 

The temperature dependence of the hydrolysis (D) and rearrangement (O) processes in water 

were investigated over a temperature range of 70 – 100 °C primarily using the Avrami-

Erofeev model: 

[−𝑙𝑛(1−∝)]
1

𝑛⁄ = 𝑘(𝑡 − 𝑡𝑖𝑛𝑑) 
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The linear equivalent of Avrami-Erofeev, the Sharp Hancock equation was also employed 

to corroborate results and increase data quality satisfaction. 

ln[− 𝑙𝑛(1−∝)] = 𝑛𝑙𝑛(𝑘) + 𝑛𝑙𝑛(𝑡) 

For each reaction carried out, the Avrami-Erofeev and Sharp Hancock models were fitted 

to experimental data to calculate the reaction exponent, n and the rate constant, k. The extent 

of reaction, α was measured using the change in inter-layer d spacing normalised between 0 

and 1. tind was taken to be the time at which the induction period had come to an end before 

the rearrangement process began. 

The effect of temperature on the system was investigated at 100, 92, 85, 81, 77 and 70 °C. 

Samples were taken periodically over an 8 – 37 hr period, and analysed by powder X-ray 

diffraction (PXRD) to determine the level of reaction completion and the daughter zeolite 

being produced. Each sample at the designated time-set was analysed by PXRD and the 

location of the d200 peak recorded. This peak represents the inter-layer distance between the 

dense silicate-rich layers and as such provides valuable information on the status of reaction, 

allowing one to elucidate the level of completion at the time taken of sample and the rate of 

reaction for each data set (Figure 5.4). Figure 5.4 shows the full hydrolysis and rearrangement 

processes for all temperatures recorded. For individual data sets please refer to Chapter 4. 
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Figure 5.4. The change in d200 inter-layer spacing for the hydrolysis and rearrangement steps for 

the reaction of  Ge-UTL in water with increasing temperature. 100 °C - black squares, 92 °C - 

green stars, 85 °C - red circles, 81 °C - teal pentagons, 77 °C - orange diamonds, 70 °C - blue 

triangles. All data points were fit with an error of  ±0.2 Å. Data repeated from Chapter 4. 

 

The Avrami-Erofeev model is well established for modelling solid-state kinetics as it can 

specifically describe the kinetics for crystallisation and the method and direction of growth 

of the nucleates in the system. It is well known to be used to monitor phase transitions and 

understand the mechanisms of intercalation/rearrangement processes.7–13  

 

5.4. Results and Discussion 

The solid-state kinetics of the hydrolysis (D) and rearrangement (O) steps were investigated 

to gather information on the mechanism of action at each step. Further analysis on the 

stability of Ge-UTL at 20 °C in a constant humidity of 97.6% (potassium sulfate), 75.5% 
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(sodium chloride), and 54.4% (magnesium nitrate) were undertaken. The data shown here 

was collected in Chapter 4. 

 

5.4.1. Kinetics of the Hydrolysis Step 

The hydrolysis of Ge-UTL in deionised water can be mapped through PXRD and a change 

in d spacing from UTL (14.48 Å) to the disordered layered material IPC-1P (10.54 Å) can 

be clearly seen. The extent of reaction vs. time was plotted for the reactions run at 100, 92, 

85, 81, 77, and 70 °C and each plot was fitted with the Avrami-Erofeev model (Figure 5.5) 

and the Sharp Hancock equation (Figure 5.6). The ratio of zeolite : water is an important 

factor to be considered, significantly reducing the amount of water effectively reduces the 

rate of hydrolysis (D) and in low-volume conditions (1 g / 8 mL) the material never fully 

hydrolyses to IPC-1P. In this work, a ratio of 1 g / 200 mL for zeolite : water was used to 

ensure full hydrolysis. 
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Figure 5.5. Extent of reaction, α, plotted against time for the hydrolysis (D) step. 100 °C - black 

squares, 92 °C - green stars, 85 °C - red circles, 81 °C - teal pentagons, 77 °C - orange diamonds, 70 

°C - blue triangles. Each plot was fitted with the Avrami-Erofeev model. 

 

From both the initial PXRD data and the subsequent Avrami plots it is clear to see that the 

hydrolysis step is not strongly dependent on the temperature of  the reaction system. The 

Avrami exponent n (nAE) was found to be <1 for each temperature (Table 5.1). An Avrami 

exponent this low can normally be attributed to diffusion controlled 1-dimensional growth. 

In this case, because the rate of  reaction is so fast and we see a 60% collapse of  the d4r 

within 1 min, the results from the fit are unsuitable for further analysis. The minor changes 

in reaction time can be attributed to experimental error, such as changes in mixing, and time 

of  addition of  parent zeolite. 

Although the rate constant k (kAE) is to some degree unreliable, due to the rapid rate of  

hydrolysis/deintercalation (seen by a change in d spacing), we can assume that the 

mechanism proceeds without having to overcome a large activation barrier, again suggesting 

that temperature is not a requirement for the hydrolysis and solely depends on the availability 

of  liquid water. 
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As the d4r collapse, the material moves through a new species we coin Ge-IPC-2P* (formed 

after 1 min). This is effectively a single-four-ring (s4r) containing IPC-2P structure, but with 

germanium still residing between the layers creating local disorder (Si/Ge 10.7). As such, this 

material has a broad d200 peak in XRD patterns. Eventually, once all the inter-layer species 

are deintercalated IPC-1P is formed. 

Occasionally described as a more reliable solid-state model to find n, the Sharp Hancock 

method14 (Figure 5.6) was applied by taking natural logarithms of  the Avrami-Erofeev 

equation and the values of  n (nSH) and k (kSH) compared for each model (Table 5.1). Again, 

due to the reaction rate, the results obtained are unsuitable and further analysis using in situ 

techniques is needed to monitor the hydrolysis mechanism on a second timescale. 

 

Figure 5.6. The Sharp Hancock plots of the hydrolysis step produced through ln(-ln(1-α)) vs. ln(t). 

100 °C - black squares, 92 °C - green stars, 85 °C - red circles, 81 °C - cyan pentagons, 77 °C - 

orange diamonds, and 70 °C - blue triangles. 
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Table 5.1. Kinetic parameters obtained by fitting of the crystallisation curves with the Avrami-

Erofeev and Sharp Hancock equations for the hydrolysis (D) step. Estimated error to 2dp on n and 

1dp on k. 

Temp / °C nSH kSH / min-1 nAE kAE / min-1 

100 0.37 1.2 0.35 1.4 

92 0.29 6.7 0.20 28.1 

85 0.33 2.0 0.28 3.0 

81 0.28 1.1 0.27 1.1 

77 0.32 1.2 0.33 1.1 

70 0.28 1.7 0.37 1.1 

 

5.4.2. Kinetics of the Rearrangement Step 

Once the hydrolysis from Ge-UTL to IPC-1P had completed, various induction times can 

be seen before the full rearrangement to IPC-2P, which takes place through the IPC-6P 

intermediate. IPC-6P is the precursor to a s4r and direct oxygen linkage containing daughter 

zeolite (IPC-6, see Chapters 1 and 4 for structural details). As such it contains layers of  IPC-

2P and layers of  IPC-1P. Due to this, the d200 peak in the powder pattern becomes broader. 

A clear temperature dependence on the system can be seen with reaction times increasing 

from 2 to 22 hr as the temperature decreases from 100 to 70 °C. As temperature increases 

the time taken to induct decreases dramatically, with 70 °C inducting for 20 hr and 100 °C 

inducting for only 1 hr.  

The Avrami-Erofeev model was fitted to the extent of  reaction data, where t-tind was taken 

to be the point at which the induction came to an end and the intercalation began (Figure 

5.7). 
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Figure 5.7. Extent of reaction, α plotted against time for the rearrangement (O) step. 100 °C - 

black squares, 92 °C - green stars, 85 °C - red circles, 81 °C - teal pentagons, 77 °C - orange 

diamonds, 70 °C - blue triangles. Each plot was fitted with the Avrami-Erofeev model (solid lines). 

 

The Avrami exponent n, was found to be 3 for 100 °C and 2 for all lower temperatures. As 

the atomic nuclei are pre-formed in all cases the growth is restricted to 3-dimensions (n = 3) 

and 2-dimensions (n = 2). As such rearrangement of  silicates into the layers is occurring 

along the x, y and z-axes when n = 3, ultimately forming a 3-dimensional connected 

framework. However, when n = 2, rearrangement is only occurring along the x/y, x/z or y/z 

axes at any one time, this will slow down the rate of  forming the fully connected 3D “true 

zeolite”. The rate constant k, decreases from 0.510 min-1 at 100 °C to 0.391, 0.233, 0.150, 

0.103, and 0.087 min-1 for 92, 85. 81, 77, and 70 °C respectively.  

The data was once again compared against the Sharp Hancock model and the values for n 

and k compared (Figure 5.8 and Table 5.2). The values of  k are very similar at all 

temperatures apart from 100 °C, although Sharp Hancock is supposedly a more reliable 

method of  finding k, the experimental data fit with the Avrami-Erofeev model looks to be 
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superior and therefore the Avrami-Erofeev results will be taken forward for further analysis 

using the Arrhenius equation to find the activation energy of  the rearrangement step. 

 

Figure 5.8. The Sharp Hancock plots of the intercalation/rearrangement step produced through 

ln(-ln(1-α)) vs. ln(t); 100 °C - black squares, 92 °C - green stars, 85 °C - red circles, 81 °C - cyan 

pentagons, 77 °C  - orange diamonds, and 70 °C - blue triangles. 

 

Table 5.2. Kinetic parameters obtained by fitting of the crystallisation curves with the Avrami-

Erofeev and Sharp Hancock equations for the rearrangement step. Estimated error to 2dp on n and 

2dp on k. 

Temp / °C nSH kSH / min-1 nAE kAE / min-1 

100 2.38 0.39 2.96 0.51 

92 1.92 0.40 2.01 0.39 

85 1.77 0.24 2.02 0.23 

81 2.24 0.15 2.10 0.15 

77 1.56 0.11 1.89 0.10 

70 1.53 0.09 1.99 0.09 
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The activation energy Ea, was calculated to be 70.1 kJ mol-1 (Figure 5.9). This was 

extrapolated from a plot of  ln(k) against T-1 based on the Arrhenius equation:  

𝑘 =  𝐴𝑒−𝐸𝑎 𝑅𝑇⁄   

This activation energy is relatively high when in comparison to the intercalation mechanisms 

of  other layered materials, for example the activation energy required for 

chlorophenoxyacetates to intercalate (rearrange) into double-layered hydroxides is 43, 53.6 

and 61.7 kJ mol-1.13 The increase in activation energy is linearly dependent on the size of  the 

chlorophenoxyacetate introduced. This suggests the energy needed for silicates to rearrange 

into the layers is high and may be due to the close proximity of  the IPC-1P hydrogen bonded 

layers. The values of  k were taken from the Avrami fittings. 

 

Figure 5.9. Arrhenius plot of ln(k) vs. T-1 to attain an activation energy of 70.1 kJ mol-1 for the 

rearrangement from IPC-1P to IPC-2P. 
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5.4.2.1. Understanding Where the Silicon Intercalates From 

Understanding where the silicon rearranges from is imperative to fully understanding the 

mechanism. An experiment was devised to quantify whether the silicon rearranged from 

silicates present in the solution after hydrolysis or from the silicon in the silica-rich layers. 

Using the 100 °C reaction in water as a standard, once hydrolysis had completed at 1hr30 

the suspension was filtered to remove the silicate-rich solution and replaced with fresh water 

at temperature (known herein as 100 °C_fresh water). The removal of  the silicate solution 

leads to a change in the IPC-1P material, which is likely to be a sub-zeolite15 in the first 

instance, with a small inter-layer distance.  This material is similar to a solid termed IPC-1, 

which was the first microporous zeolite to be produced through ADOR. IPC-1 is a very 

disordered structure that is produced from the disassembly of  B-UTL after calcination.16 

This material can be visualized by the interlocking of  one’s fingers, where the palms of  the 

hands are the silica-rich layers and fingers are the silanol groups on the surface of  the layers. 

After reacting for a further 5 hr, the layers have rearranged to IPC-2P (Figure 5.10). 
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Figure 5.10. The change in d200 inter-layer spacing for the hydrolysis and rearrangement steps. 100 

°C – black squares, 100 °C_fresh water; water replaced at 90 min – pink circles. 

 

As all sources of  silicon in solution have been removed, we can say that the silicon must be 

rearranging from the silicon-rich layers, thus potentially causing defect sites (Figure 5.11). 
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Figure 5.11. A schematic to show the change in structure with change in solution. Disassembly - 

Ge-UTL is first hydrolysed to IPC-1P. Organisation - The layers then self-rearrange to IPC-2P. 

Condensation – The layers condense further to form a sub-zeolite of  IPC-1P, termed IPC-1 and 

then self-rearrange to IPC-2P. Reassembly – Formation of  silicate bonds between IPC-2P to form 

IPC-2. 

 

The change in reaction time can be quantified. When the silicon rearranges from the layers 

the time taken to rearrange from IPC-1P increases from 2 hr to 6hr30, thus affirming that 

rearrangement from silicates present in solution due to the breakdown of  the d4r is the 

preferred method. The kinetics were once again analysed by the Avrami-Erofeev model 

(Figure 5.12) and the Avrami exponent n, for 100 °C_fresh water was found to be 1, thereby 

controlling the growth in only 1-dimension. The rate constant k, was found to be similar to 

that of  the 92 °C reaction with a rate constant of  0.405 min-1. 
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Figure 5.12. Extent of reaction, α plotted against time for the rearrangement (O) step. 100 °C – 

black squares, 100 °C_fresh water – pink circles. Both plots were fitted with the Avrami-Erofeev 

model. 

 

As rearrangement to IPC-2P is favoured even when there are no silica species present, we 

can conclude that IPC-1P is the kinetic product and IPC-2P is the thermodynamic product 

(Figure 5.13). 
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Figure 5.13. An overview schematic of each step in the ADOR process for Ge-UTL when hydrolysis is carried out at 100 °C in water, with all intermediate 

materials shown. Pathway 1 shows the rearrangement when silicates are present in solution. Pathway 2 shows the rearrangement following replacement with fresh 

water at 1hr30.
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5.4.3. Humidity Studies of Ge-UTL 

To investigate whether calcined Ge-UTL is bench-stable over prolonged periods of time, 

calcined Ge-UTL was subjected to three constant relative humidity’s (%, RH), 54.4, 75.5 

and 97.6 %, with samples taken every week for six weeks. 

 

Figure 5.14. Powder X-ray diffraction patterns for Ge-UTL when kept in a sealed environment of 

54.4% humidity for 6 weeks; 5 – 10 2θ. Calcined Ge-UTL – purple; after 1 week – dark blue; 2 

weeks – light blue; 3 weeks – green; 4 weeks – mustard yellow; 5 weeks – orange; 6 weeks – red. 

 

After 1 week at a constant relative humidity (HR) of 54.4% (Figure 5.14), the relative 

intensity of the d200 inter-layer spacing peak has reduced and a change in d spacing from 14.48 

to 14.19 Å has occurred. After 6 weeks the d spacing of the d200 and the positions of all other 

peaks in the X-ray diffraction patterns have remained stable. 
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Figure 5.15. Powder X-ray diffraction patterns for Ge-UTL when kept in a sealed environment of 

75.5% humidity for 6 weeks; 5 – 10 2θ. Calcined Ge-UTL – purple; after 1 week – dark blue; 2 

weeks – light blue; 3 weeks – green; 4 weeks – mustard yellow; 5 weeks – orange; 6 weeks – red. 

 

After only 1 week at a constant relative humidity (HR) of 75.5% (Figure 5.15), the relative 

intensity of the d200 inter-layer spacing peak has reduced and a change in d spacing from 14.48 

to 14.25 Å has occurred. After 6 weeks the d spacing of the d200 and the positions of all other 

peaks in the X-ray diffraction patterns have remained stable. In all XRD patterns after initial 

subjection to RH at 54.5, 75.5, and 97.6 % a new peak has arisen at 8.60 2θ (10.27 Å), it is 

currently not clear what this peak corresponds to, and as such further analysis is needed to 

understand just how much of an impact the humidity has on the structure. 
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Figure 5.16. Powder X-ray diffraction patterns for Ge-UTL when kept in a sealed environment of 

97.6% humidity for 6 weeks; 5 – 10 2θ. Calcined Ge-UTL – purple; after 1 week – dark blue; 2 

weeks – light blue; 3 weeks – green; 4 weeks – mustard yellow; 5 weeks – orange; 6 weeks – red. 

 

Finally, looking at Ge-UTL in a constant relative humidity of 97.6% (Figure 5.16), after 1 

week the d spacing of the d200 inter-layer has moved from 14.48 to 14.22 Å and akin to the 

other RH investigated, remains stable at this position. 

If we compare the relative humidity data of each percentage at the 6 week mark against 

uncalcined Ge-UTL, we can clearly see a very strong similarity between them (Figure 5.17). 

The relative intensity of the d200 peak is the same, however the peak seen at 10.27 Å in the 

humidity data is not present in the uncalcined sample of Ge-UTL. At this stage we can 

clearly see that although not fully broken down, the amount of water in the saturated salt 

solution is enough to slightly damage the parent Ge-UTL. It may be that as the powder 

patterns of uncalcined and humidity are so similar, some of the silicate bonds between the 

layers may have broken, however as we still retain peaks, the majority of the structure 
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remains intact. Whether this material would be capable of undergoing ADOR after further 

calcination remains to be seen and future work needs to be done on this. At this stage, as 

the natural humidity of the air in a laboratory in Scotland is ~60%, we can conclude that Ge-

UTL remains bench stable for only a few days before needing to be kept in a vacuum 

desiccator devoid of moisture. 

 

Figure 5.17. Powder X-ray diffraction patterns of uncalcined Ge-UTL (black) vs. calcined Ge-

UTL after being subjected to RH at 54.5% (pink), 75.5% (green) and 97.6% (blue). 

 

5.5. Conclusion 

Germanium-rich UTL was subjected to hydrolysis conditions in water as a media to 

understand the effects of  temperature (100, 92, 85, 81, 77, and 70 °C). Solid-state kinetic 

models, Avrami-Erofeev and Sharp Hancock were employed and it was found that the 

kinetics of  hydrolysis (D) is not dependent on the temperature of  the reaction system and 

solely dependent on the presence of  liquid water. The rearrangement process, however, is 
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directly dependent on temperature and with increasing temperature an increase in rate was 

observed.  

Through use of  the Avrami-Erofeev model, n was found to be 3 for 100 °C, 2 for all other 

temperatures and 1 when the silicate-rich solution is replaced with fresh water, thus confining 

the growth to 1, 2, and 3-dimensions when n = 1, 2, and 3, respectively. The activation energy 

of  the rearrangement step was 70.1 kJ mol-1. When no silicates are present in solution, the 

silicon rearranges from the silica-rich layers and may cause defect sites throughout, as such 

we can now conclusively say that IPC-1P is the kinetic product and IPC-2P is the 

thermodynamic product. 

From humidity studies undertaken on Ge-UTL at 54.5, 75.5, and 97.6% (magnesium nitrate, 

sodium chloride, and potassium sulfate respectively), we can see that the calcined Ge-UTL 

breaks down after 1 week rendering it similar to that of  uncalcined Ge-UTL and as such 

only remains bench stable for a few days before needing to be stored in a vacuum desiccator.  

As the breakdown of  UTL in RH (%) never reached IPC-1P (plateaued at 14.22 Å), we can 

say that there are two processes occurring during disassembly. First, moisture is needed to 

break down the bonds in the d4r. Second, liquid water is needed to fully flush out the 

deintercalated species and allow for the layers to come closer together. 
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CHAPTER 6:  
PAIR DISTRIBUTION 

FUNCTION ANALYSIS OF 
ADORable ZEOLITES 

6.1. Aim 

The aim of this chapter is to extrapolate information from Pair Distribution Function (PDF) 

analysis of both ex situ and in situ data conducted at Diamond Light Source (DLS), UK on 

Beamline I15, and the Advanced Photon Source (APS), IL USA on beamline 11-ID-B. Using 

this information, it is the hope that one can create and understand a full mechanism based 

on both diffuse and Bragg scattering. This analysis is run in conjunction with Chapters 4 and 

5. Here we look at the process in low volume to understand the difference in material 

produced when in both high and low volume of hydrolysis media and perhaps more 

importantly, whether UTL hydrolyses fully to IPC-1P. 

 

6.2. Introduction 

As the ADOR mechanism proceeds, some crystallographic order is lost as the 2-dimensional 

layers are formed. This makes traditional diffraction methods unsuitable for studying the 

process in situ. However, Pair Distribution Function (PDF) analysis proves to be useful in 

probing these disordered structures as the technique does not rely on crystallographic order. 

As discussed in Chapter 3, the PDF, G(r), is the distribution of density of inter-atomic 

distances in a given material. The PDF can be obtained directly from high energy X-ray or 

neutron diffraction by a Fourier transform of the scattering intensity data. The main 

advantage of this technique is that while traditional diffraction methods only use Bragg 

scattering, PDF analysis is a total scattering method that treats both the sharp Bragg peaks 

and the broad diffuse scattering equally, thus allowing one to probe both amorphous and 

crystalline materials on short- and long-range order. 
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Understanding the mechanisms of creation and modifications of zeolites is still not 

complete. This chapter will focus on the detailed insight into the mechanism of hydrolysis 

of germanosilicates, highlighting the great potential of in situ PDF analysis.  

 

6.3. Experimental Procedure 

Parent Ge-UTL was prepared in accordance with the procedure shown in Chapter 4. All 

daughter zeolites prepared below were calcined in a stream of air at 575 °C for 7 hr with a 

temperature ramp of 1 °C min-1. 

 

6.3.1. IPC-2 

Ge-UTL (200 mg) was added to 12 M hydrochloric acid (32 mL) with stirring. The reaction 

mixture was hydrolysed for 18 hr at 95 °C. IPC-2P was collected by filtration, washed with 

water (2 x 50 mL) and dried at 70 °C for 12 hr before calcination at 575 °C. 

 

6.3.2. IPC-4 

Ge-UTL (200 mg) was added to 0.1 M hydrochloric acid (32 mL) with stirring. The reaction 

mixture was hydrolysed for 18 hr at 95 °C. IPC-1P was collected by filtration, washed with 

water (2 x 50 mL) and dried at 70 °C for 12 hr before calcination at 575 °C. 

 

6.3.3. IPC-6 (1) 

Ge-UTL (200 mg) was added to 1.5 M hydrochloric acid (32 mL) with stirring. The reaction 

mixture was hydrolysed for 18 hr at 95 °C. IPC-6P was collected by filtration, washed with 

water (2 x 50 mL) and dried at 70 °C for 12 hr before calcination at 575 °C. 
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6.3.4. IPC-6 (2) 

Ge-UTL (200 mg) was added to 12 M hydrochloric acid (32 mL) with stirring. The reaction 

mixture was hydrolysed for 4 hr at 95 °C. IPC-6P was collected by filtration, washed with 

water (2 x 50 mL) and dried at 70 °C for 12 hr before calcination at 575 °C. 

 

6.3.5. IPC-7 

Ge-UTL (200 mg) was added to 5 M hydrochloric acid (32 mL) with stirring. The reaction 

mixture was hydrolysed for 18 hr at 95 °C. IPC-7P was collected by filtration, washed with 

water (2 x 50 mL) and dried at 70 °C for 12 hr before calcination at 575 °C. 

 

6.3.6. IPC-9 

Ge-UTL (600 mg) was added to 0.1 M hydrochloric acid (96 mL) with stirring. The reaction 

mixture was hydrolysed for 18 hr at 95 °C. IPC-1P was collected by filtration, washed with 

water (2 x 50 mL) and dried at 70 °C for 12 hr. 

Choline chloride (60 g) and Ambersep (120 g) were added to water (60 mL) and stirred at 

room temperature for 12 hr. The suspension was filtered to remove the exchange resin to 

afford choline-OH. 

IPC-1P (415 mg) was charged to choline-OH solution (0.85 M, 20 mL) and stirred at room 

temperature for 6 hr. IPC-9P was recovered by filtration and washed with water (2 x 20 mL). 

IPC-9P was dried at 70 °C for 12 hr and calcined at 575 °C.1 

 

6.3.7. IPC-10 

Ge-UTL (600 mg) was added to 0.1 M hydrochloric acid (96 mL) with stirring. The reaction 

mixture was hydrolysed for 18 hr at 95 °C. IPC-1P was collected by filtration, washed with 

water (2 x 50 mL) and dried at 70 °C for 12 hr. 
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Choline chloride (60 g) and Ambersep (120 g) were added to water (60 mL) and stirred at 

room temperature for 12 hr. The suspension was filtered to remove the exchange resin to 

afford choline-OH. 

IPC-1P (415 mg) was charged to choline-OH solution (0.85 M, 20 mL) and stirred at room 

temperature for 6 hr. IPC-9P was recovered by filtration and washed with water (2 x 20 mL). 

IPC-9P was dried at 70 °C for 12 hr. 

A homogenous gel of IPC-9P (125 mg), diethoxydimethyl silane (25 mg) and nitric acid (1 

M, 2.5 mL) were charged to a Teflon-lined steel autoclave and heated at 175 °C for 24 hr. 

The solid IPC-10P was collected by filtration, washed with water (2 x 20 mL) and dried at 

70 °C for 12 hr before calcination at 575 °C.1 

 

6.3.8. Procedure and Set-up of Hydrolysis in a Brass Environmental 

Cell 2 

Water, 6 M HCl and 12 M HCl (0.5, 0.6, and 0.6 mL, respectively) were added slowly to 

calcined UTL (120, 80, and 50 mg. respectively) to make a slurry within the cell. Differing 

amounts of UTL were used for each reaction, as the level of viscosity changed dramatically 

when hydrochloric acid was used. Due to this, more UTL was needed to make a slurry 

within the cell for the reaction run in water. The cell was then placed in a heating mantle 

with three thermocouples attached. The heating mantle was set to 10 °C above the required 

temperature to maintain a temperature gradient over the whole cell window (50, 100, and 

100 °C).  

 

6.3.9. Procedure and Set-up of Hydrolysis in a Custom-made Flow 

Cell 

Calcined UTL was packed in a Kapton (polyimide) capillary and the zeolite capped within 

the capillary by glass filter paper and glass wool. The capillary was then inserted into the flow 

cell and the protected thermocouple threaded through the right-hand-side of the capillary. 

The thermocouple was encapsulated by a thinner Kapton capillary and sealed with epoxy 

resin to avoid degradation by the hydrochloric acid. The flow cell was tightened into place 
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and the following flow rates used (see below) to get the hydrolysis media into the desired 

position within the capillary, so that time was not wasted at the beginning of the reaction but 

not affecting the zeolite before entry to the X-ray beam. 

Flow rates: 

5 rpm – 30 sec 

2 rpm – 4 min 

0.2 rpm – 30 sec 

After each completed experiment, the flow cell was flushed through an empty capillary with 

water, to remove any trace of hydrochloric acid. Air was then flown through to dry the cell. 

 

6.3.10. PDF Processing and Refinement 

Data frames were integrated using the program FIT2D.3 The resulting .chi files were 

converted to I(Q) in PDFGetX2.4 The initial known sample composition for the structure 

was entered in order to normalise I(Q). Corrections for multiple scattering, polarization and 

background were applied to the data in PDFGetX2 to produce S(Q) and F(Q). Qmax for the 

Fourier Transform was determined as 20 Å-1 by examination of F(Q) to determine the 

maximum distance to which it was possible to see features in the data. For all ex situ collected 

PDFs, a Lorch function was applied to smooth termination ripples. 

The PDFGui5 refinement of IPC-9 and IPC-2P were performed using C2/m symmetry 

constraints applied to atomic positions, occupancies and ADP values. ADP values were 

refined isotropically by element type. An rcut of 3.38 Å (upper limit of Si-O-Si distance) was 

used as an estimate for correlated motion, due to the rigidity of the frameworks. All fits had 

a lower limit of 1.38 Å, peaks below here do not have any physical meaning as heavy atom 

contacts shorter than this are not possible for germanosilicates. Such peaks can be attributed 

to experimental and Fourier termination errors. Errors for PDF refinement using the 

PDFGui program are not outputted as the software does not propagate through the area 

detector uncertainties. The refinements of IPC-9 and IPC-1P were calculated using DFT 

models from references 1 and 7 respectively. The refinement of IPC-2P was performed using 

an idealised structure of –COK-14 from the IZA database (iza-online.org). 



134 | P a g e  

 

6.4. Results and Discussion 

The results below show the use of both ex situ and in situ Pair Distribution Function (PDF) 

analysis of ADORable zeolites and the mechanism by which the hydrolysis (Disassembly) 

and rearrangement (Organisation) occur. Modifying the in situ experiments to include flow, 

significantly improve the quality of the results, for reasons that will be explained. 

 

6.4.1. Ex situ Analysis 

Each daughter zeolite currently able to be produced through the ADOR process from parent 

Ge-UTL (IPC-2, IPC-4, IPC-6, IPC-7, IPC-9 and IPC-10) were analysed by powder X-ray 

diffraction and Pair Distribution Function analysis in both their hydrolysed and calcined 

states. Data were collected at Diamond Light Source on Beamline I15 (λ = 0.1722 Å). 

 

6.4.1.1. Layered Precursor Zeolites 

The d200 inter-layer spacing peak produced through powder X-ray diffraction was analysed 

and mapped for each daughter zeolite before calcination: IPC-1P, IPC-1P with choline-OH 

present, IPC-6P prepared in 12 M HCl, IPC-6P, IPC-10P, IPC-2P, and IPC-7P (Figure 6.1). 
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Figure 6.1. The d200 inter-layer peak for hydrolysed daughter zeolite precursors collected as XRD 

data before a Fourier transform to the PDF. Peaks shown in order of inter-layer spacing. IPC-1P – 

red; IPC-1P with Choline-OH – orange; IPC-6P 12 M – yellow; IPC-6P – green; IPC-10P – light 

blue; IPC-2P – dark blue; IPC-7P – purple. λ = 0.1722 Å. Data collected on Beamline I15, 

Diamond Light Source. 

 

In Figure 6.1 the zeolites are recorded in order of increasing inter-layer spacing and the 

subsequent cubic unit (oxygen bridge, s4r, d4r) that will be produced upon calcination. The 

d spacing for the 200 peak for all layered zeolite precursors are relatively similar with only 

slight changes between them. This is because the new silicate bonds between the silica-rich 

layers have yet to be fully formed. However, when IPC-1P is intercalated with large structure-

directing agents such as choline-OH, the PXRD shows no real 200 peak, instead shows peaks 

at higher d spacing. This is because the large organic is causing the inter-layer spacing to 

increase and the channels to become very disordered. As such IPC-1P with choline-OH 

present shows more of an amorphous nature and diffracts at a much lower intensity that the 

rest of the layered precursors. As PDF is typically used to probe amorphous materials, the 



136 | P a g e  

 

amorphous nature of the organic species does not affect the peak pattern of inter-atomic 

distances in the PDF (Figure 6.2). 

 

Figure 6.2. Experimental Pair Distribution Function data for ex situ hydrolysed daughter zeolite 

precursors. IPC-1P – red; IPC-1P with Choline-OH – orange; IPC-6P 12 M – yellow; IPC-6P – 

green; IPC-10P – light blue; IPC-2P – dark blue; IPC-7P – purple. 

 

All layered precursors produce essentially the same PDF G(r), up to 8 Å, this is expected as 

they all share the same primary and secondary building units. From 8 Å onwards, the PDFs 

begin to change slightly from one another due to increased amount of overlap between 

similar sized ring systems and therefore overlap between nearest neighbours. It is, therefore 

imperative that the precursors are calcined and examined further, to see if the change in 

inter-layer unit changes the outcome of the PDF. 

 

 

 

 



137 | P a g e  

 

6.4.1.2. ADORable Daughter Zeolites after Calcination 

The hydrolysed zeolite precursors (IPC-1P, IPC-1P with choline-OH, IPC-9P, IPC-6P, IPC-

6P in 12 M HCl, IPC-10P, IPC-2P, and IPC-7P) have now been calcined and analysed by 

PXRD and PDF once again. The powder patterns show a clear change in each d200 peak as 

the inter-layer region has changed upon reassembly. At higher 2θ, the inter-planar spacing 

between the layers is small, when compared with at low 2θ the inter-spacing is large (Figure 

6.3).  

 

Figure 6.3. The d200 inter-layer peak for calcined daughter zeolites collected as XRD data before a 

Fourier transform to the PDF. Colour coding corresponds to the precursor zeolite in Figure 6.1. 

IPC-4 – red; IPC-9 with choline-OH – orange; IPC-6 12 M – yellow; IPC-6 – green; IPC-10 – light 

blue; IPC-2 – dark blue; IPC-7 – purple; UTL – pink. λ = 0.1722 Å. Data collected on Beamline 

I15, Diamond Light Source. 

 

At low angle the d200 peak for calcined UTL, IPC-7, and IPC-2 (0.68, 0.82, 0.86 2θ 

respectively) can be seen at high intensity due to containing d4r, d4r and s4r, and s4r 

respectively, in-between the silica-rich layers. Whereas IPC-9, IPC-4, and IPC-6 dominate at 
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high angle. IPC-9 and -4 both contain direct oxygen linkages, whilst IPC-6 contains 

alternating s4r and direct oxygen linkages between the layers. IPC-10, although made with 

the same SDA as IPC-9 undergoes intercalation with diethoxydimethylsilane to form s4r 

units between the layers. This data then undergoes processing and a Fourier transform and 

as can clearly be seen, there is no real change in the PDF. This is expected as each zeolite 

only contains silicon and oxygen. The only changes are in the relative intensities of each 

peak, corresponding to the amount of electron density of each nearest neighbour inter-

atomic pair distances (Figure 6.4). 

 

Figure 6.4. Experimental Pair Distribution Function data for ex situ calcined daughter zeolites. 

Colour coding corresponds to the precursor zeolite in Figure 6.2. IPC-4 – red; IPC-9 with choline-

OH – orange; IPC-6 12 M – yellow; IPC-6 – green; IPC-10 – light blue; IPC-2 – dark blue; IPC-7 – 

purple; UTL – pink. The presence of the d4r at 4.5 shown. The overlap of ring systems highlighted 

by a blue box. 

 

The extra peak at 4.5 Å in the G(r) for UTL is present due to the increased amount of d4r 

in the framework, when in comparison to the daughter zeolites produced. The level of 

disorder from ~6 Å is increased when in comparison to the hydrolysed precursors as the 

ring systems are now well defined and produce overlap with neighbour pair atoms. 
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6.4.1.2.1. Rietveld-type Refinement of IPC-9 

The common question asked “why would you want to use PDF to characterise ADORable 

zeolites?” becomes apparent when you compare the powder X-ray diffraction patterns for 

both parent UTL and one of its daughter zeolites IPC-9 (Figure 6.5). 

 

Figure 6.5. PXRD comparison of parent UTL (pink) vs. IPC-9 (black). λ = 0.1722 Å. 

 

It is clear to see that the daughter zeolites contain a lot less crystallinity when in comparison 

to the parent zeolite, and indeed to typical silicates. This is because for the ADOR process 

to occur, covalent bonds have to be broken and reformed. This is especially important when 

thinking about IPC-9 and IPC-10. Not only do these zeolites undergo this bond 

breakage/reformation cycle twice, but they also undergo a layer shift causing more strain 

and disorder amongst the structure. 
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Figure 6.6. Refinement of the IPC-9 model against PDF data. Rw = 14%. The red solid line is the 

experimental data, the blue dashed line is the calculated PDF from the model and the grey line is 

the difference between the two offset by -2.5. 

 

Due to the increased amount of diffuse scattering (or background in PXRD) the powder 

data was converted into a PDF by a Fourier transform. A Rietveld-type refinement of an 

IPC-9 model against the experimental PDF data was undertaken, and a fit of Rw = 14% 

achieved (Figure 6.6). The structure of IPC-9 achieved from the fit could be attained (Figure 

6.7) and the unit cell compared for both calculated (see ref 1 for model used) and 

experimental IPC-9 (Table 6.1).1 There is very good agreement between the calculated and 

experimental unit cell parameters with a difference in lengths a, b, and c of only ±0.21 Å. α 

and γ were kept constant at 90.0 ° throughout the refinement and therefore they have not 

changed. β has changed by 1.21 ° which is a mild discrepancy. 
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Figure 6.7. The PDF refinement of IPC-9. Calculated – LEFT; Experimental – RIGHT.1 Si - blue, 

O - red. 

 

Table 6.1. A structural comparison of calculated and experimental IPC-9, through PDF 

refinement.1 

 Calculated IPC-9 Experimental IPC-9 

Average Si-O bond 
length / Å 

1.62 1.62 

a / Å 18.46(3) 18.66(9) 

b / Å 13.95(9) 13.89(8) 

c / Å 12.19(3) 12.10(2) 

α / ° 90.0 90.0 

β / ° 103.19(1) 102.40(9) 

γ / ° 90.0 90.0 
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6.4.2. In situ Analysis – DLS Beamline I15 2,6 

A brass environmental cell was used to monitor the low-volume hydrolysis (Disassembly) 

and rearrangement (Organisation) steps in the ADOR process. The cell walls were made up 

of a spacer, Kapton windows, Viton and PTFE washers, a piston and a screw, which form 

an internal void with a diameter of 13 mm with a depth of 3 mm. The cell used could not 

accommodate agitation or stirring and as such the in situ PDF data collected may not be 

quantitative, but the work does reveal implicit qualitative trends that are useful in 

determining how the ADOR process proceeds. 

 

6.4.2.1. Water 

The Pair Distribution Function, G(r) was plotted for UTL treated in water over a time period 

of 8 hr at 100 °C (Figure 6.8). The initial Ge-UTL PDF shows broad T-O and T-T peaks 

due to both Si and Ge contributing to the peaks. The initial Disassembly process occurs 

quickly, but there is still some evidence of germanium in the materials as there are clear 

shoulders at longer distance on both the T-O and T-T peaks (the regions showing this best 

are shown in orange shades in the PDFs). 
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Figure 6.8. Experimental Pair Distribution Function data for the hydrolysis of UTL treated in 

water over a timeframe of 8 hr at 100 °C, with hydrolysis information shown every 10 min for the 

first hr and every hour thereafter. 

 

Once all the Ge has been removed, there is only Si left contributing to the peaks. These are 

therefore much sharper than in the parent Ge-UTL. At this point the layered IPC-1P is 

formed and organises itself fairly quickly in to the final PDF, with peak positions that remain 

broadly unchanged over the remainder of the experiment (this region is shown in 

purple/green shades in Figure 6.8). At this stage the induction period is still ongoing and 

never comes to completion before data collection ends. 

Over this timeframe changes in the PDF intensities can be seen, with the peak representing 

T-O (1.62 Å; where T = Si, Ge) distances increasing in intensity over time. This is as expected 

when hydrolysis occurs, T-O-T linkages are broken down, with an additional oxygen atom 

added over the linkage, therefore giving rise to two T-O pairs with more atoms (and 

therefore electrons) contributing to the scattering, and as such leads to an increase in the T-

O peak in the PDF histogram. These results were confirmed through the ex situ studies 

shown in Chapter 4 and 5.  
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The area under the curve for the three most notable peaks, T–oxygen (T–O, 1.62 Å), 

oxygen–oxygen (O–O, 2.69 Å) and T–T (3.11 Å), in the PDF were plotted as a function of 

time (Figure 6.9). It is noteworthy to say that the peaks for each shift over time and therefore, 

the distances given above are an average. A significant increase in the T–O peak can be seen, 

corroborating with the results from the intensity of the PXRD d spacing (Chapter 4) that the 

germanium rich d4r have broken down by hydrolysis and the silanol groups that remain in 

the 2D layers are now coming closer together over time. Again, this change in area follows 

the same trend as both total scattering in situ PDF and the ex situ Bragg scattering data. 

 

Figure 6.9. Area under the curve for UTL treated in water over 8 hr for peaks in the PDF that can 

be identified as arising from T-O, O-O, and T-T interatomic pairs. 

 

The final in situ run was plotted against an existing ADORable daughter zeolite in its 

hydrolysed state before calcination, specifically IPC-1P (collected ex situ; Figure 6.10). IPC-

1P is a suitable candidate for comparison as it is formed chemically through the same 

conditions. From the comparison we can see great similarity between each PDF with only 

minor discrepancies between the two. 



145 | P a g e  

 

 

Figure 6.10. Comparison of experimentally derived PDF data for in situ UTL treated in water at 

100 °C (pink) vs. ex situ IPC-1P that has been isolated and recovered (blue). 

 

6.4.2.1.1. Rietveld-type Refinement of IPC-1P 

To fully confirm these results, a Rietveld-type refinement of a DFT IPC-1P model (see ref 

4) against the experimental PDF data was undertaken and its structure obtained (Figure 6.11 

and 6.12). It is clear that IPC-1P has been formed, however due to the PDF produced in situ, 

there are free water and germanium oxide/hydroxide species (e.g. the peak at 3.47 Å) present 

that are not modelled and this leads to a fit with an Rw of only 38%. However, from the 

PXRD, experimental PDF data and the refinement it is clear that the highly disordered 

material IPC-1P has been afforded, and the hydrolysis of the d4r within UTL has been 

followed.  

There is a level of disorder in the real structure of IPC-1P. In an ideal world (and in the IPC-

1P model used)7 the UTL-like layers would stack perfectly in a regular manner with an equal 

inter-layer spacing throughout. We know this is not the case when producing IPC-1P 
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through low volume conditions, the layers are not stacked in a regular array and instead some 

may be on an angle to others. 

 

Figure 6.11. TOP: Refinement of the IPC-1P model against in situ PDF data. Rw = 38%. The blue 

dashed line is experimental data, the red solid line is the calculated PDF from the model and the 

green line is the difference between the two, offset by -5.  
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Figure 6.12. The PDF refinement of IPC-1P as viewed across the c-axis. Calculated – LEFT; 

Experimental – RIGHT.4 Si – blue, O – red, H – pink. 

 

A comparison of the unit cell parameters of both the experimental and calculated IPC-1P 

from the PDF Rietveld-type refinement show that there is good agreement between them 

(Table 6.2). The average bond length differs by only 1.2% from the experimental with the 

unit cell parameters (a, b, c) in agreement ±0.38 Å. Both α and γ are also in very good 

agreement with the experimental with a difference of ±0.46 °. β however, has refined with a 

1.84 ° difference to the experimental suggesting a slight contraction in the inter-layer spacing. 

 

 

 

 

 



148 | P a g e  

 

Table 6.2. A structural comparison of calculated and experimental IPC-1P,7 through PDF 

refinement. 

 Calculated IPC-1P Experimental IPC-1P 

Average Si-O bond 
lengths / Å 

1.61 1.63 

a / Å 14.31(7) 14.45(4) 

b / Å 13.90(1) 14.12(3) 

c / Å 12.11(8) 12.49(6) 

α / ° 90.49(2) 90.02(9) 

β / ° 115.21(9) 117.06(0) 

γ / ° 120.23(4) 119.89(0) 

 

The PDFgui software package was used for PDF refinements throughout this chapter. 

PDFgui does not allow constraints or restraints to be set within it. As such, bond lengths 

and angles are allowed to refine haphazardly. As the amount of atoms in the cell used to 

refine are large, it may be more useful to use a “big box” or Monte-Carlo method and 

successively refine until a global minima is met. This would also allow for bond restraints to 

be set and ultimately improve the level of fit for each refinement. 

 

6.4.2.2. 6 M Hydrochloric Acid 

The X-ray scattering data for UTL treated in 6 M HCl at 100 °C was processed and a Fourier 

transform performed to formulate the PDF over a time period of 15 hr. Owing to the fairly 

high HCl concentration, a peak due to a germanium-chloride (Ge-Cl) species can now be 

seen at 2.08 Å (Figure 6.13), together with an extra peak at ~3.5 Å, which likely corresponds 

to next neighbour Ge-Ge species. Such features have not been seen before in previous ex 

situ studies. The presence of a Ge-Cl peak that grows with time allows for a better insight 

into the mechanism of the ADOR process, specifically the hydrolysis (Disassembly) and 

rearrangement (Organisation) steps. It shows that the germanium is not only hydrolysed by 

the water content in the aqueous acid but that high [H+] and [Cl-] rapidly speeds up that 

process and plays a special role in the disassembly mechanism by attacking the d4r. 
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The initial hydrolysis step, which was observed in water, is now over too quickly to be 

measured. Little change is seen up to 8 hr, from then on both the T-O and Ge-Cl peaks 

increase. This fits with the ex situ data collected in Chapter 4, that after hydrolysis there is an 

induction period before the system shows intercalation of silicon species from the solution 

and rearrangement occurs.  

 

Figure 6.13. Experimental Pair Distribution Function data for the rearrangement of UTL treated 

in 6 M HCl over a timeframe of 15 hr at 100 °C vs. parent UTL. 

 

This rearrangement of the layers then begins to occur after approximately 8 hr. The area 

under each peak were once again recorded and plotted as a function of time, the induction 

period up to 8 hr can be seen with the rearrangement occurring from 8 up to 15 hr (Figure 

6.14). 



150 | P a g e  

 

 

Figure 6.14. Area under the curve for UTL treated in 6 M HCl over 15 hr for T-O, Ge-Cl, O-O, 

and T-T interatomic pairs. 

 

The final in situ run at 15 hr of treated UTL in 6 M HCl was compared with a synthetic IPC-

7P (Figure 6.15). IPC-7P is made from parent zeolite UTL, via disassembly into IPC-1P and 

then rearrangement into IPC-7P. IPC-7P has some rearranged silicon in between the layers, 

and upon calcination would form IPC-7, containing layers of s4r and d4r. Disregarding the 

Ge–Cl species at 2.08 Å (ideal Ge–Cl = 2.1 Å) and the peak at about 3.5 Å which would not 

be present in any ex situ measurement of zeolites, it can be said that there are similarities 

between the PDFs. The T–O and T–T peaks are largely the same, however the significant 

change in the O–O peak tells us that IPC-7P has not been fully formed. Moreover, the 

rearrangement process may not have come to an end. The experiment time is limited due to 

drying of the system, however it can be said that with more reaction time the final product 

would be IPC-7P. 
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Figure 6.15. PDF comparison of in situ UTL treated in 6 M HCl at 100 °C (pink) vs. IPC-7P 

prepared ex situ (blue). 

 

6.4.2.3. 12 M Hydrochloric Acid 

Finally, a slurry of UTL in 12 M HCl was prepared and over 12 hr at 50 °C a clear change 

can be seen when the PDF is compared to parent UTL. Again, the hydrolysis step is missed. 

However, unlike 6 M HCl, the reaction seems to be almost complete and no induction period 

can be seen between the hydrolysis and rearrangement processes (Figures 6.16 and 6.17).  
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Figure 6.16. Experimental Pair Distribution Function data for the rearrangement of UTL treated 

in 12 M HCl over a timeframe of 12 hr at 50 °C vs. parent UTL. 

 

Figure 6.17. Area under the curve for UTL treated in 12 M HCl over 12 hr for T-O, Ge-Cl, O-O, 

and T-T interatomic pairs. 
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UTL in 12 M HCl was compared against an ex situ collected PDF of IPC-2P which is formed 

through conditions of 95 °C and 12 M HCl (Figure 6.18). Again, extra peaks at 2.1 Å and 

3.47 Å can be seen, due to Ge–Cl and next nearest neighbour Ge–Ge inter-nuclear distances 

produced from the formation of Ge-containing species during hydrolysis of the d4r. 

 

Figure 6.18. PDF comparison of in situ UTL treated in 12 M HCl at 50 °C (pink) vs. IPC-2P 

prepared ex situ (blue). 

 

6.4.2.4. Mechanistic Conclusions 

There is data in all three in situ PDF patterns beyond 10 Å (and even out to significantly 

longer distances). This agrees well with the proposed mechanism of the process discussed in 

Chapter 4. Because of the selective siting of the germanium atoms in the d4r units that lie 

between the silica-rich layers, the hydrolysis process has little or no effect on the basic 

structure of the layers themselves. Therefore, the ADOR process keeps the order in the 2D 

layers almost intact throughout the process. This is the first time this has been seen in an in 

situ experiment, and answers one of the most often asked questions about the ADOR 

process: could the final products be explained by a dissolution/crystallisation mechanism. 
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The in situ studies presented in this section show that the mechanism does not occur via such 

a route. Therefore, the fact that the process of the reaction has been followed in situ yields 

important results that are not available by other means, for example the presence of a Ge-Cl 

species. 

While the order within the layers is retained, the inter-layer order is lost during the 

Disassembly step of the process, during the Organisation steps in the presence of acid some 

silicon species reintercalate in between the layers. Simultaneously, this orders the layers 

somewhat by linking them together, but at the same time also introduces further disorder as 

the intercalation does not happen in any ordered manner. The region beyond about 5 Å is 

complex, and it is particularly difficult to assign direct structural features due to the large 

number of similar sized ring structures causing a large amount of overlap between nearest 

neighbours. Future work will involve using multi-technique studies to identify the nature of 

the inter-layer species with more accuracy.  

The three different in situ X-ray PDF experiments discussed in this section give some 

important new insights into the ADOR process. Although missing the very initial hydrolysis 

for two of the reactions we have, for the first time, been able to follow the process in situ, 

through use of different aqueous media (previous work using NMR and XRD only enabled 

certain parts of the process to be followed). The overall conclusions from this part of the 

study can be seen in Figure 6.19. Under low acidity conditions hydrolysis to IPC-1P occurs, 

with loss of Ge and Si from the system. The PDF of IPC-1P in situ is similar to that after 

isolation, which indicates that there is little change of the material on recovery and drying. 

This material can be calcined to form the zeolite IPC-4. In 6 M HCl, the hydrolysis produces 

a species that contains Ge–Cl bonds upon hydrolysis, and there is an induction period before 

the Organisation process occurs. The initial hydrolysis is too fast under these conditions to 

see. In 12 M HCl the complete process is too fast to observe using the current experimental 

setup, and no IPC-1P intermediate can be observed. 
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Figure 6.19. The detailed reaction scheme as shown by in situ Pair Distribution Function analysis conducted at the Diamond Light Source on Beamline I15.
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6.4.3. In situ Analysis in Flow – APS Beamline 11-ID-B 

Due to the lack of agitation or stirring possible when using the brass environmental cell used 

at the Diamond Light Source, the experimental conditions were repeated at the Advanced 

Photon Source, IL. Water, 6 M HCl and 12 M HCl were once again chosen as disassembly 

media for UTL at temperatures of 100, 100 °C and RT, respectively. It was decided that the 

reaction run in 12 M HCl would be conducted at RT rather than the 50 °C previously, in an 

attempt to slow down the reaction rate, and allow one to see both the Disassembly and 

Organisation steps. 

The experiments conducted at the APS were done in flow, and as such improved not only 

the kinetics of reaction, but the deintercalation of germania- and silica-containing species 

between the layers after the breakdown of the d4r. As seen in Chapter 5, the need for vapour 

to first break the d4r and also the presence of liquid water to remove the deintercalated 

species from within the layers can be seen here. Also similarly to the results in Chapter 5, the 

hydrolysis media was ultimately removed from the system as the reaction proceeded, thus 

ultimately causing the d spacing to drop further than that of IPC-1P before self-rearranging. 

This set-up also allowed the experiments to be conducted in high volume, similar to those 

shown in Chapter 4. This reduced the chances of the d4r not fully collapsing before 

rearrangement. Similarly to the ex situ XRD results in Chapter 4, all experiments afforded 

IPC-2P as the preferred product. The media, once flown through the capillary, was not 

recycled back in to the cell. This was to avoid cycling the disassembled germania/silica-

species back into the layers, which would affect the Organisation step. 

The hydrolysed zeolite layers remained packed in Kapton capillaries after completion of 

reaction and were analysed by powder X-ray diffraction once returned to the University of 

St Andrews (Figure 6.20). The powder patterns clearly show the presence of IPC-2P, with 

d200 inter-layer spacing at 7.44 2θ (11.86 Å). 

The results presented in this section are produced from preliminary data and as such further 

work is necessary to fully understand what is occurring.  
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Figure 6.20. Powder X-ray diffraction patterns of UTL treated layered materials. Green – 

water/pH 7; red – 12 M HCl; black – 6 M HCl. All capillaries afforded IPC-2P. 

 

6.4.3.1. Water 

Ge-UTL was hydrolysed under flow conditions in water at 100 °C for 10 hr (Figure 6.21). 

Within approximately 1 min, hydrolysis (Disassembly) is complete, and this can be seen by 

a shift in the T-O (T = Ge, Si) peak from 1.67 to 1.65 Å. Double-four rings in UTL are 

typically made up of 50% Si (Si-O = 1.62 Å) and 50% Ge (Ge-O = 1.74 Å), therefore the 

T-O peak we see at 1.67 Å is from a mixture of both silica and germania species, and as such 

the shift to smaller inter-atomic distance accounts for the removal of germania-species in 

the d4r. This change can also be seen in the T-T (T = Si, Ge) inter-atomic pair distance peak, 

with a shift from 3.15 to 3.11 Å. 
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Figure 6.21. Experimental Pair Distribution Function data for the hydrolysis of UTL treated in 

water in flow over a timeframe of 10 hr at 100 °C, with hydrolysis information shown every 10 sec 

for the first hr and every 45 sec thereafter. 

 

After hydrolysis has completed, an induction time of approximately 1 min can be seen. At 

this stage the peaks, and therefore the inter-atomic pair distances, remain stable. The T-O 

peak then shifts again from 1.65 to 1.62 Å, as the remaining germania left in-between the 

layers is flushed out with fresh water. At this stage only silicate bonds (Si-O-Si) remain. The 

relative intensity of the T-O and T-T peaks rapidly reduces as hydrolysis occurs, as the d4r 

is broken down and flushed out of the cell. 

 

6.4.3.1.1. Rietveld-type Refinement of IPC-2P – Water  

A Rietveld-type refinement of an IPC-2P model (-COK-14)8 against in situ PDF data 

collected in water was conducted (Figure 6.22). As the material prepared through hydrolysis 

(IPC-2P) has not been calcined, the silicate bonds between the layers have not been fully 

connected, therefore the –COK-14 model (Figure 6.23) was used rather than the fully 
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connected OKO. This fit is currently ongoing and as such the refinement is not perfect and 

has not found its global minima. Although there are clear discrepancies between calculated 

and experimental, we can say that IPC-2P has been afforded. This statement is backed up 

by ex situ powder X-ray diffraction collected in-house, and the structural similarities in the 

unit cell parameters (Table 6.3) 

 

Figure 6.22. Refinement of the IPC-2P model (-COK-14) against PDF data. Rw = 31%. The blue 

dashed line is the experimental data, the red solid line is the calculated PDF from the model and 

the green line is the difference between the two offset by -1.5. 
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Figure 6.23. –COK-14. Si – blue; O – red.8 

 

Table 6.3. A structural comparison of calculated and experimental IPC-2P,8 through PDF 

refinement. 

 Calculated IPC-2P Experimental –COK-14 

Average Si-O bond 
lengths / Å 

1.62 1.61 

a / Å 24.51(7) 24.64(0) 

b / Å 14.06(6) 13.92(6) 

c / Å 12.34(0) 12.25(4) 

α / ° 90.00 90.00 

β / ° 108.63(7) 109.19(6) 

γ / ° 90.00 90.00 
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6.4.3.2. 6 M Hydrochloric Acid 

The hydrolysis of Ge-UTL treated in 6 M HCl over 10.5 hr at 100 °C occurs mechanistically 

similar to that of Ge-UTL in water. The collapse of the d4r seen over approximately 1 min 

before a rearrangement to IPC-2P. In this case, with hydrochloric acid used as the 

disassembly media, a peak at 2.1 Å can be seen, corresponding to a Ge-Cl species formed 

through collapse of the d4r. This peak gradually decreases in intensity over the 10.5 hr 

timeframe and eventually reduces to zero. This is due to fresh hydrochloric acid flushing the 

Ge-Cl out from between the layers (Figure 6.24). Once again IPC-2P is formed after 

rearrangement from IPC-1P. 

 

Figure 6.24. Experimental Pair Distribution Function data for the hydrolysis of UTL treated in 6 

M HCl in flow over a timeframe of 10.5 hr at 100 °C, with hydrolysis information shown every 10 

sec for the first hr and every 45 sec thereafter. 
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6.4.3.3. 12 M Hydrochloric Acid 

Interestingly, when Ge-UTL is treated in 12 M HCl, for 4 hr at room temperature (RT), the 

hydrolysis is much more controlled (Figure 6.25). As the kinetics and rate of reaction are 

slowed down, the hydrolysis takes approximately 2 hr to complete before a rearrangement 

to IPC-2P. Due to increased amount of hydrochloric acid in the reaction, the peak at 2.1 Å 

corresponding to Ge-Cl inter-atomic pair distance never fully reduces back to zero. As such, 

although the peak does begin to reduce, we can say that the Ge-Cl species produced from 

disassembly has not been fully flushed through the cell and therefore some still remains 

within the layers. 

 

Figure 6.25. Experimental Pair Distribution Function data for the hydrolysis of UTL treated in 12 

M HCl in flow over a timeframe of 4 hr at 100 °C, with hydrolysis information shown every 10 sec 

for the first hr and every 45 sec thereafter. 
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6.4.3.3.1. Rietveld Refinement of IPC-2 – 12 M 

Ge-UTL treated in 12 M HCl was calcined and the PXRD recorded. Once calcined, the 

OKO (IPC-2) model 9 was refined against the Bragg data and an Rw of 7.1% observed 

(Figures 6.26 and 6.27). The fit shows very good agreement with the observed model, with 

only a slight anisotropic disagreement with the d200 inter-layer spacing peak. 

 

Figure 6.26. Rietveld refinement of the IPC-2 model (OKO) against experimental Bragg data. Rw 

= 7.1%. The red solid line is the experimental data, the blue dashed line is the calculated XRD 

from the model and the grey line is the difference between the two. λ = 1.5406 Å. 

 

The unit cell parameters for OKO 9 and experimental IPC-2 were compared (Table 6.4). The 

parameters show very good similarity, and as such we can say that IPC-2 has been fully 

formed.  
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Figure 6.27. Rietveld refinement of IPC-2. Calculated – LEFT; Experimental OKO 6 – RIGHT. Si 

– blue. O – red. 

 

Table 6.4. A comparison of the structural parameters between calculated and experimental IPC-2,9 

after Rietveld refinement from PXRD. 

 Calculated IPC-2 Experimental OKO 

Average Si-O bond 
lengths / Å 

1.63 1.62 

a / Å 24.77(0) 24.06(3) 

b / Å 13.82(3) 13.83(3) 

c / Å 12.39(9) 12.35(1) 

α / ° 90.00 90.00 

β / ° 108.60(0) 109.12(8) 

γ / ° 90.00 90.00 
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6.5. Conclusion 

Using Pair Distribution Function analysis allows the diffuse scattering to be treated and 

therefore the local order to be probed. Throughout this section, the advantage of using PDF 

to analyse the daughter zeolites produced through ADOR has become apparent, with the 

refinement of “unfeasible” IPC-9 conducted. 

In situ PDF analysis conducted at the Diamond Light Source on Beamline I15, showed how 

the ADOR process occurred at low volume, yielding a time course for the reaction in water, 

6 M HCl and 12 M HCl (see Mechanistic Conclusions; page 155). Due to lack of stirring the 

deintercalation process is not complete and as such causes disorder within the layers. The 

results produced within this section do not correlate with those shown in Chapters 4 and 5, 

with IPC-7P formed in 6 M HCl. These results however, do agree with the mechanism 

suggested, by which there is an induction period after hydrolysis and before the layers begin 

to self-organise. The experiment conducted in water, appeared to still be inducting at the 

end of the experiment. This induction period then decreased in 6 M HCl and was not present 

in 12 M. This again corroborates with the results in Chapters 4 and 5, suggesting that the 

reaction is rapid in high levels of acid. However, it is very clear from both my own work and 

from previous work done on the ADOR process that the final product is extremely 

dependent on the conditions used. For example, in Chapter 4 I showed that using liquid 

water as the hydrolysis medium gives a different product from water vapour – this was 

explained by the lack of deintercalation in the later experiment. Here, we see a similar issue, 

in that the conditions in the in situ cell (e.g. volume of liquid) give different end points for 

the reaction. In this case IPC-7P instead of IPC-2P. This is clearly a subtle effect. 

Improving the set-up of the reaction conducted in situ at the Advanced Photon Source, on 

beamline 11-ID-B, to include flow, allowed the experimental results to be improved and 

provide quantitative analysis. Using a flow set-up allowed the results to be compared to large 

volume procedures and as such each data set (water, 6 M, and 12 M HCl) afforded IPC-2P, 

corroborating with the ex situ data shown in Chapter 4. Once again, IPC-1P is formed as the 

kinetic product before rearrangement to the thermodynamically stable product IPC-2P. An 

induction period could be seen for UTL treated in water and 6 M HCl. However, due to 

fresh media being replaced constantly this was small. Treating UTL in 12 M at RT allowed 

the kinetics to be slowed down dramatically and we were able to see the full hydrolysis to 

IPC-1P before self-rearrangement to IPC-2P. The difference between the static cell used at 
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Diamond Light Source and the flow cell used at the Advanced Photon Source is that the 

latter allows for the deintercalation process to occur but then the solution containing the 

deintercalated species is removed from contact with the zeolite. This is most similar to the 

situation in Chapter 5 where the liquid is removed half way through the experiment. 

Although each PDF refinement shown in this chapter show good agreement with the model 

and did allow for a qualitative comparison, all PDF refinements showed structural disorder 

and due to the lack of restraints available in the PDFgui software package, atoms were 

allowed to refine haphazardly. Therefore, the data will be refined using the Monte-Carlo 

method, in a hope that the disorder can also be modelled and quantified. 
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CHAPTER 7:  
TUNING THE SYNTHESIS OF 

METAL-ORGANIC 
FRAMEWORKS 

7.1. Aim 

The aim of this chapter is to understand the effects of the concentration of base, solvent and 

temperature on the experimental procedure for CPO-27. Understanding the effects of these 

conditions allows one to refine and tune the synthesis to afford the MOF with the desired 

properties, such as size, shape and quantity of crystallite, whilst getting consistent 

crystallisation of the target material, minimising potential impurity phases. 

 

7.2. Introduction 

Coordination polymers and Metal-Organic frameworks (MOFs) are currently of much 

interest as gas storage and release materials.1,2 One series that has received particular attention 

is the CPO-27-M (Coordination Polymer of Oslo; M = Mg,3 Mn,4 Fe,5 Co,6 Ni,7 Cu8 or Zn9) 

family of materials, due to their high stability to solvent loss, comparatively large pore sizes, 

and ability to maintain structural integrity upon removal of coordinated solvent molecules. 

The desolvation of this family of compounds generates metal centres with vacant 

coordination sites, onto which gas adsorbents such as NO,10 CO,11 CO2, 
12 H2S,13 H2

7 and 

C2H2 can bind.14 

The excellent gas adsorption and gas storage properties of CPO-27 MOFs, have led to a rise 

in interest in the details of their synthesis. For example, it is known that, under solvothermal 

conditions, increasing the pH of the CPO-27-M (M = Mg or Mn) reaction mixture affords 

a separate, non-porous coordination framework of composition M(H2dhtp)(H2O)2 (M = Mg 

or Mn) that the authors designate as CPO-26-M.3,15  

Typical CPO-27 is produced under solvothermal conditions using high pressure and 

temperature. However, recent developments have been made to the synthesis to reduce the 
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temperature and scale up the reaction in aqueous conditions. Maspoch and co-workers have 

created an ideal molar ratio of 1 : 2 : 4 : 304 for the H4dhtp linker : metal salt : base : solvent 

and as such as-synthesised materials assume a molecular formula of 

[M2(C8H2O6)(H2O)2]·8H2O (M = Co, Mg, Ni, Zn).16 

Although polycrystalline materials are desirable for gas adsorption techniques due to their 

large surface area, single crystal X-ray analysis is of great interest in order to locate cation-

anion bonding sites in the structure and monitor how these change with different synthesis 

conditions. It is most useful to track certain gas soprtion processes in detail. Single crystal 

analysis has been elusive for many materials from this family of MOFs. Three crystal 

structures produced through single crystal X-ray analysis are currently recorded in the 

Cambridge Structure Database (CSD), including CPO-27-Zn,9 -Mg3 and -Co17. CPO-27-Cu,2 

-Mn,2 -Fe18 and –Ni have been structurally characterised by neutron (Cu and Mn) and X-ray 

(Fe and Ni) powder diffraction. Each of these materials are synthesised with either added 

liquid water not pertaining to the hydrated salt (CPO-27-Zn, -Co, -Mg, -Mn and –Ni) or 

base (CPO-27-Mg, and –Cu).  

 

 

7.3. Experimental Procedure 

All reagents were obtained from commercial sources and were used without further 

purification. 

 

7.3.1. Mg(H2dhtp)(H2O)5·H2O 

A solution of Mg(NO3)2·6H2O (11.4 g, 44.4 mmol) in water (49 mL) and ethanol (24 mL) 

was added dropwise to a stirred solution of 2,5-dihydroxyterephthalic acid (3.83 g, 19.3 

mmol) in aqueous sodium hydroxide (0.5 M, 77.4 mL, 38.7 mmol) over a period of 4 min. 

The resulting solution was heated to reflux for 24 hr. The solution was cooled to room 

temperature and an initial yellow solid collected via filtration, washed with hot ethanol and 

allowed to dry overnight yielding a yellow powder (CPO-27-Mg, 0.846 g, 2.0 mmol, 10%). 

The brown mother liquor was allowed to stand at room temperature for a further 3 days, 

over which time brown crystals (4.145 g, 12.6 mmol, 65%) formed as the solvent slowly 

evaporated. Elemental analysis calcd. for C8H16MgO12 C: 29.24, H: 4.91, found C: 29.30, H: 

4.95%. 
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7.3.2. Typical CPO-27-M Synthesis at Low Temperature 

Zinc acetate dihydrate (1.11 g, 5.00 mmol) was dissolved in methanol (12.3 mL, 304 mmol) 

with vigorous stirring at 0 °C (referred to as solution A). 2,5-dihydroxyterephthalic acid (0.50 

g, 2.50 mmol) was dissolved in sodium hydroxide (1 M, 10.0 mL, 10.0 mmol) and cooled to 

0 °C (referred to as solution B). Solution B was then added dropwise over a period of 5 min 

and the resulting mixture allowed to stir for 6 hr, with a sample taken after 3 hr. The 

precipitate was collected via filtration, washed with water (3 x 100 mL) and allowed to dry 

in air overnight to yield a yellow solid (Table 7.1) 
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Table 7.1. Synthesis conditions for the formation of CPO-27-M (M = Co, Mg, Ni, Zn). 

 Composition of solution A Solution B   

Sample Metal Salt (g) Solvent (mL) Base (mL) Temperature (°C) Yield (%) 

CPO-27-Co(1) Co(OAc)2·4H2O, 1.25 MeOH, 17.7 1 M NaOH, 10 78, 25, 0 80, 71, 70 

CPO-27-Mg(1) Mg(NO3)2·6H2O, 1.28 MeOH, 17.7 1 M NaOH, 10 78, 25, 0, -20 59, 58, 47, 27 

CPO-27-Ni(1) Ni(OAc)2·4H2O, 1.24 MeOH, 17.7 1 M NaOH, 10 78, 25, 0 86, 70, 72 

CPO-27-Zn(1) Zn(OAc)2·2H2O, 1.11 MeOH, 17.7 1 M NaOH, 10 78, 25, 0, -20, -40, -78 60, 58, 42, 39, 39, 15 

CPO-27-Zn(2) Zn(OAc)2·2H2O, 1.11 MeOH, 17.7 TEA + H2O, 2.15 + 2 78, 25, 0, -20, -40, -78 62, 60, 56, 21, 16, 36 

CPO-27-Zn(3) Zn(OAc)2·2H2O, 1.11 MeOH, 17.7 H2O, 10 78, 25, 0 75, 72, 72 

CPO-27-Zn(4) Zn(OAc)2·2H2O, 1.11 THF, 12.3 H2O, 10 78, 25, 0 70, 26, 20 

CPO-27-Zn(5) Zn(OAc)2·2H2O, 1.11 THF, 12.3 1 M NaOH, 10 78, 25, 0, -20, -40, -78 45, 45, 47, 23, 32, 18 

CPO-27-Zn(6) Zn(OAc)2·2H2O, 1.11 THF, 12.3 TEA + H2O, 2.15 + 2 78, 25, 0, -20, -40 33, 50, 67, 48, 20 
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7.3.3. Synthesis conditions for Single Crystal 

7.3.3.1. UTSA-74 

Zinc acetate monohydrate (1.11 g, 5 mmol) and benzoic acid (1.22 g, 10 mmol) were 

dissolved in n-butanol (13.9 mL, 152 mmol) (referred to as Solution A). 2,5-

dihydroxyterephthalic acid (0.5 g, 2.5 mmol) was dissolved in DMF (11.7 mL, 152 mmol) 

with stirring (referred to as Solution B). Solution B was slowly added to Solution A in a 

Teflon-lined steel autoclave and allowed to react at 150 ˚C for 48 hr. The crystals were 

collected by filtration, washed with n-butanol (3 x 50 mL) and dried in air to afford UTSA-

74 as large gold hexagonal rods. 

 

7.3.3.2. CPO-27-Zn 

Zinc acetate monohydrate (1.11 g, 5 mmol) and salicylic acid (1.22 g, 10 mmol) were 

dissolved in ethanol (8.87 mL, 152 mmol) (referred to as Solution A). 2,5-

dihydroxyterephthalic acid (0.5 g, 2.5 mmol) was dissolved in DMF (11.7 mL 152 mmol) 

with stirring (referred to as Solution B). Solution B was slowly added to Solution A in a 

Teflon-lined steel autoclave and allowed to react at 150 ˚C for 48 hr. The crystals were 

collected by filtration, washed with ethanol (3 x 50 mL) and dried in air to afford CPO-27-

Zn as yellow/gold needles. 

 

7.3.3.3. CPO-27-Mg 

Magnesium nitrate hexahydrate (0.256 g, 1 mmol) and salicylic acid (0.276 g, 2 mmol) were 

dissolved in ethanol (1.8 mL, 30.4 mmol) (referred to as Solution A). 2,5-

dihydroxyterephthalic acid (0.1 g, 0.5 mmol) was dissolved in DMF (2.40 mL 30.4 mmol) 

with stirring (referred to as Solution B). Solution B was slowly added to Solution A in a 

Teflon-lined steel autoclave and allowed to react at 150 ˚C for 48 hr. The crystals were 

collected by filtration, washed with ethanol (3 x 20 mL) and dried in air to afford CPO-27-

Mg as bright yellow needles. 
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7.4. Results and Discussion 

7.4.1. Formation of a Novel Monomeric Mg-dhtp Species19 

A recent study on the effect of pH on the one-pot reflux synthesis of CPO-27-M describes 

attempts to prepare CPO-27-Mg using a 2:1 ratio of NaOH:H4dhtp. However they report 

that no solid product could be obtained from the reaction system. This section describes the 

synthesis of a novel crystalline material of composition Mg(H2dhtp)(H2O)5·H2O (known 

herein as Mg-dhtp) that may be obtained by lowering the amount of NaOH in reaction 

mixtures that is normally used to prepare CPO-27-Mg by the reflux method. 

All previous literature states that neither CPO-27-Mg (Figure 7.1) or non-porous monomeric 

Mg-dhtp could be made without the required amount of base present in the synthesis. Not 

only could a new Mg-dhtp species be produced, but CPO-27-Mg could be synthesised in 

high purity albeit in low yield. From the synthesis, CPO-27-Mg was produced first as a bright 

yellow solid in low yield, before the by-product monomeric Mg-dhtp was produced after a 

further 3 days.  

 

Figure 7.1. Rietveld refinement of dehydrated CPO-27-Mg in GSAS. Observed (black), calculated 

(red dashed), background (blue) and the difference between observed and calculated (grey).          

Rp = 9.5 %. 
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7.4.1.1. Crystal Structure Determination 

Crystals of Mg-dhtp were coated in protective oil prior to mounting on a loop. Single crystal 

data were collected at 173 K on a Rigaku FR-X Ultra-high brilliance Microfocus RA 

generator/confocal optics and Rigaku XtraLAB P200 diffractometer system (λ = 0.71075 

Å). The structure solution was obtained using SHELXT 20 and refined by full matrix on F2 

using SHELX-2014 21 within the WINGX suite. All full occupancy non-hydrogen atoms 

were refined with anisotropic thermal displacement parameters. Aromatic hydrogen atoms 

were included at their geometrically estimated positions. Hydrogen atoms belonging to free 

and coordinated water molecules were fixed at a distance of 0.90 Å from the oxygen atom 

and 1.47 Å from the other hydrogens bound to the same oxygen, and their thermal 

displacement parameters linked to that of the oxygen to which they are bound. 

 

7.4.1.2. Crystal Structure Analysis 

Mg-dhtp was collected in space group P21/n as brown single crystals consisting of a 

mononuclear Mg(H2dhtp)(H2O)5 unit in which five water molecules and a monodentate 

H2dhtp2- anion are coordinated to an octahedral Mg2+ centre (see Table 7.2 for a list of Mg-

O bond lengths and O-Mg-O angles). One water molecule of crystallisation is also present 

with intact phenolic -OH groups participating in intramolecular hydrogen bonds to the 

carboxylate oxygen atoms. 
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Table 7.2. Selected bond lengths (Å) and angles (°) for Mg(H2dhtp)(H2O)5·H2O 

Mg(1)-O(1) 2.0231(11) 

Mg(1)-O(1W) 2.1134(10) 

Mg(1)-O(2W) 2.0402(11) 

Mg(1)-O(3W) 2.0903(11) 

Mg(1)-O(4W) 2.0416(11) 

Mg(1)-O(5W) 2.0490(11) 

O(1)-Mg(1)-O(2W) 88.73(4) 

O(1)-Mg(1)-O(4W) 89.74(4) 

O(2W)-Mg(1)-O(4W) 177.07(5) 

O(1)-Mg(1)-O(5W) 178.38(5) 

O(2W)-Mg(1)-O(5W) 91.90(4) 

O(4W)-Mg(1)-O(5W) 89.57(4) 

O(1)-Mg(1)-O(3W) 95.69(4) 

O(2W)-Mg(1)-O(3W) 92.15(4) 

O(4W)-Mg(1)-O(3W) 90.49(4) 

O(5W)-Mg(1)-O(3W) 85.78(4) 

O(1)-Mg(1)-O(1W) 90.78(4) 

O(2W)-Mg(1)-O(1W) 91.01(4) 

O(4W)-Mg(1)-O(1W) 86.50(4) 

O(5W)-Mg(1)-O(1W) 87.72(4) 

O(3W)-Mg(1)-O(1W) 172.86(4) 

 

The mononuclear Mg-dhtp units are arranged into columns that extend parallel to the b-axis 

(Figure 7.2). Within each column, the Mg(H2O)5 units like on the two outer edges, whilst the 

H2dhtp units are directed towards the centre of the column. As such the H2dhtp units 

interdigitate with each other, stacking in an ABAB fashion along the length of the column. 

Adjacent H2dhtp anions participate in offset π-π interactions, with close contact C-C 

separations of 3.35 Å to 4.0 Å and close contact C-O separations of 3.42 Å to 3.43 Å. 
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Figure 7.2. a) The monomeric Mg(H2dhtp)(H2O)5 unit in Mg(H2dhtp)(H2O)5·H2O. The columns 

of Mg(H2dhtp)(H2O)5 units as viewed b) parallel to and c) perpendicular to the direction of the 

column. The water of crystallisation has been omitted for clarity. 

 

Hydrogen bonding interactions between the coordinated water molecules and carboxylate 

oxygen atoms cross-link the columns to form hydrogen bonded sheets that extend parallel 

to the 101 plane (Figure 7.3).  

Further hydrogen bonds between the coordinated water molecules and phenolic hydroxyl 

groups connect the mononuclear units into a complex 3-dimensional hydrogen-bonded 

framework (Figure 7.4). The non-coordinated water molecules occupy the spaces between 

the sheets, and participate in hydrogen bonds with three mononuclear Mg-dhtp units 

belonging to two different sheets (see Table 7.3 for hydrogen bond lengths and angles). 
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Figure 7.3. The hydrogen bonded sheets of Mg(H2dhtp)(H2O)5 units as viewed a) along the edge 

of the sheet and b) perpendicular to the plane of the sheet. Hydrogen bonds are depicted as black-

and-white striped bonds. Aromatic hydrogen atoms have been omitted for clarity. 

 

 

 

 

Figure 7.4. The view along the a-axis of the hydrogen bonded network of 

Mg(H2dhtp)(H2O)·5H2O. a) The location of the water molecules (shown in blue) within the 

hydrogen bonded framework. One hydrogen bonded sheet is highlighted using green bonds. b) 

The full network. Non-coordinated water molecules and hydrogen atoms have been omitted for 

clarity. 
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Table 7.3. Hydrogen bonds for Mg(H2dhtp)(H2O)5·H2O (Å and °). 

D-H···A d(D-H) d(H···A) d(D···A) <(DHA) 

O(3)-H(3)···O(2) 0.84 1.79 2.5334(14) 147.2 

O(6)-H(6)···O(5) 0.84 1.75 2.4926(14) 147.0 

O(2W)-H(2A)···O(6W) 0.892(9) 1.900(10) 2.7825(14) 170.0(15) 

O(6W)-H(6A)···O(1W)І 0.898(9) 2.168(10) 3.0020(14) 154.1(14) 

O(5W)-H(5A)···O(5)Ц 0.897(9) 1.819(9) 2.7154(14) 177.0(16) 

O(3W)-H(3W)···O(4)Ц 0911(9) 1.731(10) 2.6275(13) 167.4(15) 

O(2W)-H(2W)···O(6) Ш 0881(9) 1.958(10) 2.8236(14) 167.3(15) 

O(3W)-H(3A)···O(2) ІV 0.897(9) 1.924(11) 2.7617(14) 154.7(15) 

O(4W)-H(4A)···O(3W)V 0.886(9) 1.849(9) 2.7334(13) 176.4(16) 

O(4W)-H(4W)···O(2)V 0.887(9) 1.885(11) 2.7361(13) 160.2(15) 

O(5W)-H(5W)···O(3) VІ 0.891(9) 1.856(10) 2.7416(14) 172.7(16) 

O(6W)-H(6W)···O(4) VЦ 0.892(9) 1.853(10) 2.7397(15) 172.1(17) 

 

This material is the first non-polymeric Mg-dhtp coordination compound to be reported. A 

search of the Cambridge Crystallographic Data Centre (CCDC) reveals five different 

coordination polymers derived from magnesium and the di-anion of 2,5-

dihydroxyterephthalate. In addition to the aforementioned CPO-26-Mg and CPO-27-Mg, 

materials were prepared from DMF,22 DMF in the presence of NEt3,
23 aqueous DMA,24 or 

aqueous N-methyl pyrrolidone.25 As such, this is the first example of a material prepared 

from predominately aqueous solution. 

 

7.4.2. The Effect of Base, Solvent and Temperature on the Synthesis 

of CPO-2726 

This section focuses on an investigation into the effect of the metal cation, pH and solvent 

on the formation of CPO-27-Co, -Mg, -Ni, and -Zn at reaction temperatures from 78 °C 

(reflux) to -78 °C. All solids produced were characterised first by powder X-ray diffraction 
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(PXRD) and then the materials afforded at the lowest temperatures were investigated further 

using scanning electron microscopy (SEM).  

Each CPO-27-M synthesis was carried out in a modified molar ratio of 2.5 : 5 : 10 : 304 for 

linker : metal salt : base : solvent. The acetate salt was used for Co, Ni and Zn and the nitrate 

salt for Mg. Under basic conditions the linker solution is assumed to be fully deprotonated 

and upon visual inspection of the mixture, the salt appears to be fully dissolved in the organic 

solvent. For syntheses undertaken at temperatures lower than 0 °C a solvent/dry ice bath 

was employed. Methanol and water were used as solvent for reactions at −20 °C and −40 

°C, with acetone/dry ice used for all reactions considered at −78 °C. All reactions were 

carried out for 6 hr and a sample was taken halfway through the procedure to check the 

progress of crystallisation. 

 

7.4.2.1. Characterisation Techniques 

Powder X-ray diffraction (PXRD) data were collected on a Panalytical Empyrean 

diffractometer CuKα1 radiation monochromated with a curved Ge(111) crystal in reflectance 

mode. Samples taken halfway through the reaction were loaded into capillaries and analysed 

on a STOE STADIP diffractometer operating Cu Kα1 radiation. Powder X-ray patterns have 

been compared with an X-ray powder pattern of CPO-27-Zn, derived from single crystal 

data. 

SEM imaging was carried out on a FEI Scios Dualbeam, with a resolution of 1 nm and a 

voltage of 2000 V to 30 kV. For the imaging, the SEM was operated between 1–5 kV at 10-

50 pA. The unground sample, as synthesised, was placed on a carbon tab prepared, 

aluminium stub disc. Furthermore, the samples were brushed with Ag-paste and Au-sputter-

coated (15 mA per 30 s).  

 

7.4.2.2. The Effect of the Metal Cation 

The study was split into two parts. First, CPO-27-M (M = Co, Mg, Ni, Zn) was formed in 

methanol as solvent as solvent with 1 M sodium hydroxide (NaOH) as a base to understand 

the effect the metal cation has on formation of a crystalline, porous MOF (1).  
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CPO-27-Zn(1) proved to be the most crystalline material formed, exhibiting high crystallinity 

and purity down to -78 °C. The two main peaks at 6.8 ° and 11.7 ° 2θ, which are characteristic 

for the CPO-27-M family, are clearly visible and show high intensity down to −78 °C. The 

fingerprint region can be seen clearly down to −40 °C. Apart from the latter mentioned, all 

materials have phase purity, the material obtained at −40 °C shows two additional non-CPO-

27 peaks at 9.6 ° and 10.9 ° 2θ of low intensity (Figure 7.5).  

 

Figure 7.5. Comparison of the powder X-ray diffraction patterns for CPO-27-Co(1), -Ni(1), -

Mg(1), and -Zn(1) from a MeOH-NaOH solution with increasing temperature. Co - red, Ni - green, 

Mg - pink, Zn - blue. 

 

The CPO-27-Zn(1) sample synthesised at -78 °C shows less intensity in comparison to those 

synthesised at high temperatures. Therefore, it is assumed that the framework has not fully 

formed under such conditions, which is consistent with the reduced rate of reaction and 

reduced crystallinity whilst at lower temperatures. 

The magnesium analogue, CPO-27-Mg(1), shows an interesting sensitive behaviour 

regarding the solvent and deprotonation of the acidic proton. Mg2+ is a relatively hard, 

hydrophilic cation, and with methanol as the lone solvent pure CPO-27-Mg(1) can be 

synthesised successfully down to -20 °C. Crystalline samples of the MOF are produced 
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preferentially at higher temperature (0 – 78 °C), with porous CPO-27-Mg(1) afforded. 

Reducing the temperature to -20 °C, the characteristic CPO-27 peaks can be seen, although 

visibly broadened, whilst the fingerprint region is no longer distinct. 

The XRD patterns for CPO-27-M(1) (M = Co, Ni) show a poor signal:noise ratio for all 

temperatures. However, it can be stated that the framework has still formed, at least in part, 

as the characteristic CPO-27 peaks are clearly seen. Crystal field theory allows some 

elucidation into the effects of the d-block metals. We can class H4dhtp as a weak field ligand 

as it binds through its oxygen atoms. This causes a small splitting in Δ between the t2g and eg 

orbitals, making it more favourable to put the electrons from the ligand into the high energy 

orbitals, and as such make it high spin. The lability of Co2+ is therefore reduced when the 

spin state is high spin rather than lower spin. For Ni2+, only one paramagnetic spin state is 

accessible, and these unpaired eg orbitals are very labile. However, when in comparison with 

Zn2+, a full outer shell allows the cation to be very labile as it has the ability to rearrange its 

coordination sphere very readily, and therefore, has no preference to what is bound. From 

both crystal field theory and the experimental results that the metals behave with an order 

of lability of Co2+<Ni2+<Mg2+<Zn2+. 

SEM studies were conducted on each of the materials, obtained from the lowest successful 

reaction temperature. Each sample was taken as synthesised and prepared for investigation 

without further grinding. Images were taken at scales of 1 mm – 10 μm to investigate the 

different morphologies. Figure 7.6 shows selected SEM images to highlight the difference 

between a transition metal and non-transition metal (Co vs. Zn). All materials show large 

agglomerates of a few hundred μm size, with sharp edges at 10 μm. At 100 μm the transition 

metal CPO-27-M(1) (M = Ni, Co) remain as large agglomerates and plates with sharp edges, 

whereas non-transition metal CPO-27-M(1) (M = Mg, Zn) show a more powdery, softer 

morphology. At 1 mm, all materials show small conglomerates with a “cotton-ball” 

morphology. 
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Figure 7.6. SEM images a-c for CPO-27-Co(1) afforded from a MeOH-NaOH solution at a 

reaction temperature of 0 °C; SEM images d-f show CPO-27-Zn(1) afforded from a MeOH-NaOH 

solution at -78 °C. 

 

7.4.2.3. The Effect of Solvent 

The second step in the study was to vary solvent and pH whilst keeping the metal cation 

constant. CPO-27-Zn was the most crystalline material formed down to -78 C in step 1 and 

was therefore chosen as the most suitable MOF to carry through to step 2. CPO-27-Zn was 

synthesised in different conditions of solvent and base: MeOH-TEA (2), MeOH-no base 

(3), THF-no base (4), THF-NaOH (5), and THF-TEA (6). 

 

7.4.2.3.1. Methanol as Solvent 

The synthesis procedure was analogous to the experimental with MeOH-NaOH. Keeping 

MeOH as a solvent, the base was switched for triethylamine (TEA). This solvent-base system 
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shows remarkably sustained crystallinity down to temperatures of -78 °C (Figure 7.7). After 

addition of the basic linker solution to the metal -salt solution, the bulky triethylammonium-

ion shields access to the Zn2+ cations and therefore leads to a more controlled manner of 

formation and crystallisation. To monitor the rate of crystallisation, samples were taken half-

way through the reaction time at 3 hr. At -78 °C, the characteristic CPO-27 peaks are already 

visible highlighting just how fast these materials can form even when kinetic motion is 

slowed down. The materials synthesised at -40 and -78 °C, show a shift of 0.2 2θ of each 

peak in the XRD. This can be explained by a shrinkage in unit cell dimensions at these lower 

temperatures. To ensure phase purity, the materials produced at these lower temperatures 

were compared against phase-pure CPO-27-Zn. No other phase was present in the MeOH-

TEA solvent system. 

 

Figure 7.7. Powder X-ray diffraction patterns for CPO-27-Zn(2) afforded from a MeOH-TEA 

solution with temperature ranging from -78 °C to reflux. A sample was taken half way through the 

synthesis at the 3 hr mark and subsequently analysed, the 3 hr sample for the -78 °C reaction is 

presented here. Reflux – blue; ambient – green; 0 °C – red; -20 °C – pink; -40 °C – purple; -78 °C – 

orange; -78 °C 3 hr – cyan. 

 

Similar to the Mg-dhtp monomeric structure previously discussed, a similar non-porous 

monomeric Zn(H2dhtp)(H2O)2 (Zn-dhtp) species can be produced from a MeOH-H2O 

solvent mixture at pH 7. This material was first reported in 2007 by Ghermani and co-
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workers, and they found that a 3-dimensional non-porous network could be obtained when 

the linker is not fully deprotonated. In this work, the addition of the H4dhtp linker to the 

translucent salt solution produced an off-white solid within minutes of first addition. This 

material can be produced down to 0 °C, albeit at a slower rate, whilst retaining the 

crystallinity and without significant structural changes in the unit cell parameters (Figure 7.8). 

 

Figure 7.8. Powder X-ray diffraction patterns for a Zn2+ complex of 2,5-dihydroxyterephthalic 

acid afforded from a CPO-27-Zn(3) synthesis attempt in a methanolic solution without the 

presence of base, Reflux - blue; ambient - red; 0 °C - green. 

 

To confirm the Zn-dhtp structure was as predicted, a Pawley refinement using the Topas 

academic suite was carried out using a model structure produced by Ghermani against in-

house X-ray diffraction data (Figure 7.9). 
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Figure 7.9. Topas Pawley refinement for [Zn(H2dhtp)(H2O)2] afforded from a CPO-27-Zn(3) 

synthesis attempt in in MeOH without the presence of base. Experimental - blue, calculated model 

- red and the calculated difference plot - grey. 

 

7.4.2.3.2. Tetrahydrofuran as Solvent 

To understand the effect of solvent, MeOH was switched for THF and the following 

experiments conducted: THF-no base (4), THF-NaOH (5), and THF-TEA (6), all with zinc 

acetate as the metal salt. Interestingly, a different behaviour was observed upon changing the 

solvent system to aqueous THF.  

For THF-no base (4), the reaction proceeded similarly to that of MeOH-no base (3). Upon 

addition of the aqueous linker solution to the stirred solution of the metal salt in THF, a 

milky-yellow suspension is produced after 5 min. This is once again slowed down with 

decreasing temperature. When the reaction was carried out at reflux and ambient 

temperature, it was clear to see from a comparison with pure CPO-27-Zn that the product 

produced is not phase-pure (Figure 7.10). This phase was identified as the monomeric 
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species discussed earlier. The product synthesized at 0 °C began to show loss of crystallinity 

when in comparison to higher temperatures, with the XRD pattern showing just the 

characteristic low angle and fingerprint peaks of CPO-27-Zn. The partial solubility of the 

H4dhtp linker in THF can account for this. During the addition of the linker suspension, the 

linker gradually dissolves in the THF-H2O solvent mixture, while the dissociated acetate-ion 

of the zinc salt can slowly, and in a controlled manner, deprotonate the linker. However, the 

reduction of temperature has a substantial impact on the solubility of each reagent. 

Therefore, we assume that a further reduction of the reaction temperature may lead to pure 

CPO-27-Zn but also continue to reduce the solubility and slow down the rate of formation. 

 

Figure 7.10. Powder X-ray diffraction patterns for CPO-27-Zn(4) afforded from a THF solution 

without base. Products decrease in crystallinity and purity as the temperature is decreased towards  

0 °C. Reflux - blue; ambient - green; 0 °C - red. 

 

Comparable to when methanol was used as solvent, both NaOH and TEA were used as base 

with THF, this produced a more controlled formation of the CPO-27 framework at lower 

temperatures. With NaOH (Figure 7.11), all patterns show a shoulder at 6° 2θ and another 

broad peak in the fingerprint area at 33° 2θ. The shoulder on the first main peak gradually 

loses intensity, as the reaction temperature gets colder. 
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Figure 7.11. Powder X-ray diffraction patterns for CPO-27-Zn(5) afforded from a THF-NaOH 

solution with a temperature range from reflux to -78 °C. Reflux - blue; ambient - green; 0 °C - red; 

-20 °C = pink; -40 °C - purple; -78 °C – orange. 

 

Interestingly, a sample taken after 3 hr for the reaction at −40 °C shows neither the shoulder 

nor the high angle peak, while characteristic parts of the framework are already formed 

(Figure 7.12), suggesting that a shorter reaction time of 3 hr may be suitable for this solvent 

system  

As the linker is already deprotonated before mixing with the salt solution, it is determined 

that at warmer temperatures, the deprotonated linker is reactive enough for competing 

reaction pathways. Cooling the reaction down, slows down the kinetics of the molecules in 

solution, allowing for a more controlled formation of the MOF.  
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Figure 7.12. Powder X-ray diffraction pattern for CPO-27-Zn (5) at -40 °C at 3 hr. 

 

Similar findings can be found for the reaction system THF-TEA, with crystalline samples 

produced at lower temperatures (Figure 7.13). The desired framework can be afforded by 

decreasing the temperature to ambient conditions, once again a shoulder at 6° 2θ can be seen 

indicating a change in the size and shape of the unit cell of the MOF. Further reduction of 

the temperature to −20 °C yields CPO-27-Zn materials without changes in the unit cell, in 

a controlled manner. When the synthesis was conducted at −40 °C the material loses 

crystallinity and the characteristic low angle peaks almost disappear. Again, fully formed 

crystalline MOF samples can be seen after 3 hr at all temperatures except reflux, as such 

showing that the reaction time in THF is too long after 6 hr. 
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Figure 7.13. Powder X-ray diffraction patterns for CPO-27-Zn(6) afforded from a THF-TEA 

solution with changing temperature. Only products afforded from reactions conducted at 0 and -20 

°C yielded phase pure results. Reflux – blue; ambient – green; 0 °C – red; -20 °C – pink, -40 °C – 

purple. 

 

From the SEM analysis of the remaining zinc samples in different solvent systems, it became 

clear that the solvent makes a large impact on the morphology of the desired MOF (Figure 

7.14). Solids produced from all methanolic solvents afford “cotton-ball” like morphologies 

with the monomeric species yielding a very fine powder and at higher scale, agglomerates 

built up from plates. However, when the solvent is changed to THF, the morphology of the 

MOF changes. For THF with base (NaOH, TEA) low scale images show powdery 

agglomerates without sharp edges. Flake-like agglomerates, built up from rods are seen at 

100 μm. Images at increased scale show these rods more clearly. Interestingly, the cotton-

ball like morphology is once again seen for the sample obtained from an aqueous THF 

solution without base. Therefore, we can conclude that protic solvents, such as methanol, 

yields ball-like morphologies. Contrary to this, when an aprotic solvent, tetrahydrofuran, is 

used with a base the morphology changes and elongates into rods. 
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Figure 7.14. SEM images for CPO-27-Zn afforded from: a - MeOH-H2O solution without base at 

ambient temperature (3); b - MeOH-TEA solution at -78 °C (2); c + d – THF-NaOH solution at -

40 °C (5); e – THF-TEA solution at -78 °C (6); f – THF-H2O solution without base at ambient 

temperature (4). 

 

7.4.3. Acid Modulated Synthesis of CPO-27 and UTSA-7428 

Single crystals of the CPO-27 family of MOFs have always been elusive and relatively 

difficult to afford. With previous literature stating that liquid water or base was necessary in 

the reaction mixture, the aim was to remove the base and replace with a more 

environmentally friendly acid.  

With the use of acid modulators in the reaction system, CPO-27-Mg, -Zn and its recently 

discovered analogue UTSA-74 have been prepared in high purity, with single crystals large 

enough to be measured on an in-house diffractometer. Each material was prepared under 

solvothermal conditions at 150 ˚C without the need for the necessary base or added liquid 

water, hence conclusively disputing these components as being essential for synthesis of the 

target compounds. Base is a problem for the environment so replacing this with an acid 
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modulator is preferred. The next step would be to remove the harsh organic polar solvent 

to further decrease the environmental impact. 

The MOFs were analysed by powder X-ray diffraction (PXRD), single crystal X-ray 

diffraction (SCXRD), and scanning electron microscopy (SEM). UTSA-74 is a recently 

discovered analogue of CPO-27-Zn and is of much interest due to its dual channel system.  

 

7.4.3.1. Characterisation Techniques 

CPO-27-Zn, -Mg samples large enough for “in-house” diffraction were collected at 173 K 

on a Rigaku MM-007HF High Brilliance RA generator/confocal optics taLAB P100 

diffractometer [Cu Kα radiation (λ = 1.54187 Å)]. UTSA-74 samples were collected at 93 K 

on a Rigaku FR-X Ultrahigh Brilliance Microfocus RA generator/confocal optics with 

XtaLAB P200 diffractometer [Mo Kα radiation (λ = 0.71075 Å)]. The structure solution was 

obtained using SHELXT and refined by full-matrix least-squares against F2 using SHELXL-

2018-3 within the Olex2 suite. All full occupancy non-hydrogen atoms were refined with 

anisotropic thermal displacement parameters. Aromatic hydrogen atoms were included at 

their geometrically estimated positions. CCDC 1863524; 1863523; 1863522 contains the 

supplementary crystallographic data for this section, where the data can be obtained free 

of charge from The Cambridge Crystallographic Data Centre. With thanks to Mr 

Simon Vornholt for SCXRD characterisation. 

A Sievers 280i Nitric Oxide Analyser (NOA) was used to determine the amount of NO 

released in each material. The NO-loaded MOFs were introduced to the NOA and exposed 

to moisture (relative humidity of 11%), in order to replace the NO bound to the material, 

with water molecules. The resultant gas expelled can then be recorded in ppm/ppb. 

 

7.4.3.2. The Effect of Acid Modulator 

Two acid modulators were employed, benzoic and salicylic acid. Salicylic acid is known for 

its use in face cream as an acne treatment and therefore we deem it to not have a large 

environmental impact. When the salicylic acid was employed with ethanol as a solvent, CPO-

27-Zn and -Mg were formed as large yellow single crystals with high purity. 
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Upon changing the modulator from salicylic acid to benzoic acid, yellow-green-coloured 

crystals of the structural isomer, UTSA-74 were afforded. Each MOF was then analysed 

through powder XRD to ensure the sample was phase pure and that the bulk matched the 

single crystal (Figure 7.15). A clear shift in the PXRD to higher 2θ can be seen for UTSA-

74, indicating a smaller d spacing between the channel systems. The decreased angle around 

the Zn2+ metal site giving a smaller pore volume throughout the material.  

 

7.4.3.3. The Effect of the Metal Salt 

After confirming that each material was phase pure through PXRD, single-crystal X-ray 

diffraction analysis was conducted on each of the three samples. Due to the synthesis 

conditions, DMF was present in the structure solution and seen to bind to the 2+ metal site 

with full occupancy for CPO-27-Zn (Figures 7.16 and 7.17). For CPO-27-Mg however, the 

diffuse electron density was SQUEEZEDed out using the mask command in Olex2. The 

two hydrated metal salts that were used contained different amounts of water (monohydrate 

and hexahydrate for Zn and Mg respectively) and as such changed the amount of water 

present in the reacting mixture.  

Figure 7.15. Powder X-ray diffraction patterns for CPO-27-Mg – blue, CPO-27-Zn – green, 

UTSA-74 – red. 

 



193 | P a g e  

 

 

Figure 7.16. The chains of CPO-27-Mg (LEFT) and CPO-27-Zn (RIGHT) highlighting both the 

2,5-dihydroxyterephthalic acid linker and attached DMF molecule to the Zn2+ metal site and 

coordinated water to the Mg2+ site. Viewed down the b-axis. 

 

Figure 7.17. Structures of CPO-27-Zn with DMF molecules bound to the Zn2+ site (TOP), and 

CPO-27-Mg showing water molecules bound to the Mg2+ site (BOTTOM). Zn SBU – purple; Mg 

SBU – green. As viewed down the a-axis. 
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Oxo-phyllic Mg2+ is a hard metal and as such it prefers to ionically bind through its co-

ordinately unsaturated sites, and therefore we see water bind to these CUSs. Zn2+ is an 

intermediate acid (neither soft nor hard), so prefers to bind covalently. In CPO-27-Zn, DMF 

is seen to preferentially bind through covalent bonds. However, when we change the 

modulator to form UTSA-74, the pore size is too small to accommodate covalent bonding 

to DMF, and as such we see water ionically bind. 

Both CPO-27 materials are hereby presented in space group R3̅ with an R1 factor of 4.77 

and 6.24% for CPO-27-Zn and CPO-27-Mg, respectively. The structural isomer, UTSA-74, 

exhibited the zinc structural building unit (SBU) in both tetrahedral and octahedral 

coordination, thus giving rise to a large and small pore channel system (Figure 7.18).  

UTSA-74 was prepared in conditions analogous to the CPO-27 materials. However, the 

proximity of the binding sites (4 Å) are too close to accommodate binding to DMF and as 

such DMF is not seen in the refinement. Each octahedral Zn2+ site has one axial bound 

water molecule pointing into the pore and one pointing out. Original literature presented the 

structure in space group R3̅c; however, this was only seen when disorder was removed from 

the structure. We hereby present the space group as R3c, with all disorder in the structure 

accounted for, and an R1 of 4.29%.  
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Figure 7.18. Structures of UTSA-74 showing Zn2+ in both tetrahedral and octahedral 

coordination, giving rise to a small and large pore channel system. Each octahedral Zn2+ has 1 axial 

bound water molecule pointing into the pore and 1 pointing out (TOP). Void space with solvent 

molecules bound, showing the pores are blocked. Solvent access = 14% (BOTTOM). Viewed 

along the c-axis 

 

Each MOF was further analysed by scanning electron microscopy (SEM). Unlike the CPO-

27 materials which presented a needle-like morphology, UTSA-74 afforded a morphology 

of large hexagonal rods (Figure 7.19). 
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Figure 7.19. SEM images of: a - CPO-27-Zn, 50 µm; b - CPO-27-Mg, 50 µm; c - UTSA-74, 200 

µm; d – UTSA-74, 20 μm. Highlighting a needle morphology for the CPO-27 family and a rod 

formation for UTSA-74. 

 

7.4.3.4. Activation Procedure 

Each MOF underwent a 3-step activation procedure to remove modulator and DMF 

remaining in the pores. 

1. Soxhlet extraction. 

2. Solvent exchange. 

3. Activation at high temperature and pressure. 

First, each material was Soxhlet extracted for 5 days in the corresponding alcohol to remove 

any remaining modulator used in the synthesis from the pores. Second, each material 

underwent a solvent exchange procedure to ensure that any DMF remaining in the CPO-

27-Mg and UTSA-74 pores and the DMF bound to the 2+ sites in CPO-27-Zn is removed. 

This was achieved by first activating in chloroform for 24 hr and then in water for 48 hr. To 
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ensure the structure had remained its integrity and no phase change had occurred, the MOFs 

were analysed by IR (Figure 7.20). TGA for CPO-27-Zn showed that DMF had been 

selectively removed and replaced with water (Figure 7.21). 

 

Figure 7.20. Infrared spectra for CPO-27-Mg and UTSA-74 pre- and post-activation with solvent 

exchange. CPO-27-Mg - black, CPO-27-Mg exchanged - green, UTSA-74 - red, UTSA-74 

exchanged - blue. 
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Figure 7.21. Thermogravimetric analysis for CPO-27-Zn. Red - pre-activation; Green - post-

activation. 

 

Finally, after exchange, each MOF was activated at 200 °C and 2 x 10-4 T. This selectively 

removes the water molecules bound to the CUSs and thus allows each of these sites to be 

able to take up and bind to other gas molecules such as nitric oxide.  

 

7.4.3.5. Nitric Oxide Storage and Release 

Due to a smaller pore size than the CPO-27 analogue, when coordinated water is present in 

the structure of UTSA-74, the pores are completely blocked with a solvent access of 14%. 

Upon activation at 200 ˚C under dynamic vacuum (2 × 10-4 T), the two axial water molecules 

can be selectively removed, generating open Zn2+ metal sites which are able to bind two gas 

molecules per metal centre on the pore surfaces of the 1-dimensional channels (Figure 7.22). 
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Figure 7.22. Structures of UTSA-74 showing the coordinated unsaturated Zn2+ axial sites after 

activation. Viewed along the c-axis 

 

Nitric oxide has a Jekyll and Hyde personality, in large amounts NO is extremely toxic, 

however in low doses, NO has a therapeutic vasodilating effect and as such can be 

incorporated into a MOF and used to coat medical devices such as stents and catheters.  

As previously stated, both CPO-27-Zn and UTSA-74 were activated at 200 °C under 

dynamic vacuum to remove coordinated solvent molecules. The dehydrated materials were 

then subjected to nitric oxide gas, an immediate colour change, significantly intensifying the 

green colour, could be seen indicating that the gas had been adsorbed onto the CUSs. Loaded 

materials were then exposed to three consecutive vacuum/argon cycles to remove excessive 

physisorbed nitric oxide prior to analysis of nitric oxide release. Both MOFs release a 

therapeutic amount with CPO-27-Zn releasing slightly more than UTSA-74 with 0.088 and 

0.067 mmol, respectively (Figure 7.23). Dependent on the application, either MOF could be 

used dependent on the length of release necessary. 
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Figure 7.23. Nitric Oxide release profiles for UTSA-74 (black) and CPO-27-Zn (red) 

 

7.4.3.6. The Hydrolysis of UTSA-74 

Upon submerging the UTSA-74 crystals in water at room temperature, what at first glance 

looks to be a rapid single crystal – single crystal transformation is proceeding due to 

hydrolysis. This phenomenon has been first presented as an in situ study by Bueken et al.27 

Here we examine this hydrolysis through SEM and SCXRD. As shown in Figure 7.24, the 

UTSA-74 rods are slowly being “eaten away” and the newly formed CPO-27-Zn needles 

growing on the surface. From the SEM, it is apparent that a simple single crystal – single 

crystal transformation is not occurring. The mechanism appears to be in two steps. First a 

dissolution of the UTSA-74 into the water and then the formation of CPO-27-Zn on the 

surface of the remaining UTSA-74 crystals. As the newly formed crystals of CPO-27-Zn are 

not formed in solution, it seems that UTSA-74 is being used as a scaffold. After 3 hr, the 

UTSA-74 has been fully consumed and CPO-27-Zn is the sole material present. After full 

hydrolysis, the crystals of CPO-27-Zn are too small to diffract sufficiently for structural 

determination using an in-house instrument; however, a unit cell check confirmed that the 

structural transformation to CPO-27-Zn had taken place. 
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Figure 7.24. The single crystal - single crystal transformation of UTSA-74 to CPO-27-Zn by 

hydrolysis as shown by SEM images at a scale of: a - 500 µm; b - 300 µm; c - 100 µm. 
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7.5. Conclusion 

Altering the synthesis conditions drastically changes the outcome of the MOF produced. 

With a lower amount of base in the synthesis a novel Mg-dhtp non-porous material can be 

afforded, and removing the base altogether affords non-porous Zn-dhtp. It is now clear that 

non-transition metals (Mg, Zn) are easier to form than transition metals (Co, Ni), with CPO-

27-Zn produced down to -78 °C in MeOH-NaOH and THF-NaOH. Reactions conducted 

in THF proved more difficult than in MeOH, with only colder temperatures producing a 

crystalline MOF, due to the relative rate of kinetic motion of molecules drastically slowed 

down.  

Single crystal CPO-27-Mg, -Zn and its structural isomer UTSA-74 have been prepared 

through use of two acid modulators, salicylic acid and benzoic acid, respectively. Crystals 

large enough for “in-house” SCXRD were collected, where DMF was seen to bind to the 

2+ metal sites in CPO-27-Zn, however although the synthesis conditions were analogous 

for UTSA-74, DMF is too large to bind due to the proximity of the binding sites (4 Å). The 

CPO-27 materials were afforded in a needle-like morphology, whilst the UTSA-74 produced 

larger rods. A clear dissolution-crystallisation transformation of UTSA-74 to CPO-27-Zn via 

hydrolysis was examined by SEM and a unit cell match confirmed. The uptake and release 

of nitric oxide was measured for each zinc-containing material and showed that each MOF 

produced a therapeutic amount of NO. 

The work in this chapter clearly shows just how much we can affect the outcome of a 

synthesis, by changing the synthetic parameters by a little or a lot. This work will hopefully 

promote the synthesis of new isomers of known MOFs in the future.  
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CHAPTER 8: 
CONCLUSIONS AND FUTURE 

WORK 

8.1.         Conclusions 

All in-depth conclusions are stated within each experimental chapter. As such a brief 

conclusion for both the zeolite (Chapters 4, 5, and 6) and Metal-Organic framework (Chapter 

7) will be stated below. 

The ADOR process has 4 steps. The mechanistic analysis of the two most important steps, 

hydrolysis (Disassembly) and rearrangement (Organisation), has been discussed in Chapters 

4, 5, and 6. Through ex situ powder X-ray diffraction, in situ Pair Distribution Function 

analysis and the subsequent analysis using solid-state reaction kinetics (Avrami-Erofeev 

model), an in-depth mechanism has been proposed. From these studies it has become 

apparent that there are 3 mechanisms occurring – 2 for hydrolysis and 1 for rearrangement. 

We first thought that there must only be 1 mechanism occurring during hydrolysis, we now 

know this is incorrect. By investigating the effect of constant humidity on the stability of 

UTL, we found that the bonds in the d4r are broken over a time period of 1 month. The 

structure then resembled uncalcined UTL. Therefore, it was clear that another process must 

have to be occurring to fully disassemble into IPC-1P. We saw that to fully disassemble into 

IPC-1P, liquid water is needed to “flush” the deintercalated species out of the layers and 

allow the layers to come closer together over time. From the PXRD data we know that this 

is rapid, with 60% of the d4r collapsing within 1 minute. As this is so fast we can conclude 

that the hydrolysis proceeds without having to overcome an activation barrier. 

The rate of reaction for the rearrangement process is linearly related to the temperature of 

the system. With induction times greatly lengthened with decreasing temperature. This is the 

first time we have investigated the induction time by PXRD. The kinetics of reaction were 

quantified and an activation energy of 70.1 kJ mol-1 found. We found this to be relatively 

high for a deintercalation procedure, and it is hypothesised that the layers are too close 

together for silanol to get between the layers. This hypothesis needs to be researched further 

to fully understand whether this is indeed correct. At all temperatures above 70 °C, IPC-2P 
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formed preferentially and therefore we can say that in large volume conditions, all reactions 

afford IPC-1P first as the kinetic product before rearranging to form the thermodynamic 

product, IPC-2P.  

Using PDF allowed for the mechanism to be studied in situ. The reactions conducted at 

Diamond Light Source used a static environmental cell and therefore could not 

accommodate stirring. This lack of stirring essentially reduced the removal of deintercalated 

species to zero and ultimately affected the product formed from reaction. For example, IPC-

7P was afforded from a 6 M hydrochloric acid medium rather than the expected IPC-2P. It 

is clear that the conditions used in the in situ experiments must be strictly controlled to allow 

for direct comparison. Changing the reaction conditions by even a very small amount can 

have drastic consequences of the results obtained. Repeating these experiments at the 

Advanced Photon Source using a flow cell allowed for more quantitative results to be 

produced. As the hydrolysis is “flushed” through the cell, the deintercalated species are 

removed, and this can be seen by the appearance and disappearance of a Ge-Cl peak in the 

PDF. Once again, corroborating with the ex situ results in Chapter 5, IPC-1P is first produced 

as the kinetic product before self-rearranging to IPC-2P as the thermodynamic product. This 

is the first time we have been able to assign kinetic and thermodynamic labels to the 

mechanism and therefore vastly improves our understanding of the ADOR process. 

Although undertaking the reactions in flow allowed for more quantitative results to be 

obtained, the structural work and refinements need to be greatly improved. This can be done 

by using a Monte-Carlo type refinement that allows for a large amount of atoms whilst 

restraining the bond angles and lengths so that they refine in a controlled manner. 

The synthesis conditions of CPO-27-M (M = Co, Mg, Ni, Zn) were altered and investigated 

upon. Lowering the amount of base in the synthesis of CPO-27-Mg and –Zn led to the 

formation of a novel monomeric Mg-dhtp species and the analogous monomeric Zn-dhtp 

species. Lowering the synthesis temperature, reduced the reaction kinetics, allowing CPO-

27-Zn to be formed at -78 °C. Removing base from the system and replacing with acid 

modulators led to the formation of CPO-27-Mg, -Zn and UTSA-74 as single crystals. A 

dissolution-crystallisation transformation from UTSA-74 to CPO-27-Zn via hydrolysis was 

seen. Each MOF underwent nitric oxide storage and release, with a therapeutic release of 

NO seen for each. As the subtle changes in synthesis conditions greatly affect the outcome 

of the crystallinity and MOF produced, it is a hope that this will be able to be used in order 

to produce new isomers of known MOFs in the future. 
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8.2.         Future Work 

To complete the work on the ADOR process, the following will be undertaken: 

1. The induction period will be analysed by 29Si solid-state NMR to monitor changes 

in local order that cannot be monitored by powder X-ray diffraction.  

2. Use the ADOR protocol devised in Chapter 4, to monitor the mechanism and see 

which products are able to be produced with other germanosilicates. 

3. Calcination of Ge-UTL after 1 month at constant humidity, to understand whether 

after residing in constant humidity, the layered material produced is able to reform. 

4. Modelling of each experiment from the in situ PDF flow data. 
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CHAPTER 9: 
APPENDIX 

Table 9.1. Crystal data and structure refinement for CPO-27-Mg. 

Identification code CPO-27-Mg 

Empirical formula C8H6Mg2O8 

Formula weight 278.75 

Temperature/K 173(2) 

Crystal system trigonal 

Space group R-3 

a/Å 25.9434(9) 

b/Å 25.9434(9) 

c/Å 6.8189(2) 

α/° 90 

β/° 90 

γ/° 120 

Volume/Å3 3974.6(3) 

Z 9 

ρcalcg/cm3 1.048 

μ/mm-1 1.444 

F(000) 1278.0 

Crystal size/mm3 0.05 × 0.01 × 0.01 

Radiation CuKα (λ = 1.54184) 

2Θ range for data collection/° 6.814 to 136.494 

Index ranges -31 ≤ h ≤ 23, -23 ≤ k ≤ 31, -8 ≤ l ≤ 8 

Reflections collected 14270 

Independent reflections 1617 [Rint = 0.0805, Rsigma = 0.0378] 

Data/restraints/parameters 1617/2/84 

Goodness-of-fit on F2 1.134 

Final R indexes [I>=2σ (I)] R1 = 0.0624, wR2 = 0.1823 

Final R indexes [all data] R1 = 0.0740, wR2 = 0.1893 

Largest diff. peak/hole / e Å-3 0.92/-0.45 
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Table 9.2. Crystal data and structure refinement for CPO-27-Zn. 

Identification code CPO-27-Zn 

Empirical formula C14H16N2O8Zn2 

Formula weight 471.03 

Temperature/K 173(2) 

Crystal system trigonal 

Space group R-3 

a/Å 26.001(3) 

b/Å 26.001(3) 

c/Å 6.8271(9) 

α/° 90 

β/° 90 

γ/° 120 

Volume/Å3 3997.1(11) 

Z 9 

ρcalcg/cm3 1.761 

μ/mm-1 3.744 

F(000) 2142.0 

Crystal size/mm3 0.080 × 0.010 × 0.010 

Radiation CuKα (λ = 1.54187) 

2Θ range for data collection/° 6.8 to 136.218 

Index ranges -30 ≤ h ≤ 30, -28 ≤ k ≤ 30, -8 ≤ l ≤ 8 

Reflections collected 14156 

Independent reflections 1615 [Rint = 0.0502, Rsigma = 0.0240] 

Data/restraints/parameters 1615/0/120 

Goodness-of-fit on F2 1.071 

Final R indexes [I>=2σ (I)] R1 = 0.0477, wR2 = 0.1496 

Final R indexes [all data] R1 = 0.0567, wR2 = 0.1578 

Largest diff. peak/hole / e Å-3 1.97/-0.90 
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Table 9.3. Crystal data and structure refinement for UTSA-74. 

Identification code UTSA-74 

Empirical formula C8H4O7Zn2 

Formula weight 342.85 

Temperature/K 93.15 

Crystal system trigonal 

Space group R3c 

a/Å 22.931(8) 

b/Å 22.931(8) 

c/Å 15.931(6) 

α/° 90 

β/° 90 

γ/° 120 

Volume/Å3 7255(6) 

Z 18 

ρcalcg/cm3 1.413 

μ/mm-1 2.988 

F(000) 3024.0 

Crystal size/mm3 0.1 × 0.05 × 0.05 

Radiation MoKα (λ = 0.71075) 

2Θ range for data collection/° 5.51 to 50.534 

Index ranges -27 ≤ h ≤ 27, -27 ≤ k ≤ 26, -18 ≤ l ≤ 19 

Reflections collected 14776 

Independent reflections 2934 [Rint = 0.0458, Rsigma = 0.0331] 

Data/restraints/parameters 2934/9/169 

Goodness-of-fit on F2 1.181 

Final R indexes [I>=2σ (I)] R1 = 0.0426, wR2 = 0.1360 

Final R indexes [all data] R1 = 0.0456, wR2 = 0.1386 

Largest diff. peak/hole / e Å-3 0.97/-0.55 

Flack parameter 0.278(9) 

 


