
A strongly polynomial algorithm for linear exchange markets

LSE Research Online URL for this paper: http://eprints.lse.ac.uk/101048/

Version: Accepted Version

Book Section:

Garg, Jugal and Végh, László A. (2019) A strongly polynomial algorithm for linear
exchange markets. In: Charikar, Moses and Cohen, Edith, (eds.) STOC 2019 -
Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of
Computing. Proceedings of the Annual ACM Symposium on Theory of Computing.
UNSPECIFIED, pp. 54-65. ISBN 9781450367059

https://doi.org/10.1145/3313276.3316340

lseresearchonline@lse.ac.uk
https://eprints.lse.ac.uk/

Reuse
Items deposited in LSE Research Online are protected by copyright, with all rights
reserved unless indicated otherwise. They may be downloaded and/or printed for private
study, or other acts as permitted by national copyright laws. The publisher or other rights
holders may allow further reproduction and re-use of the full text version. This is
indicated by the licence information on the LSE Research Online record for the item.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by LSE Research Online

https://core.ac.uk/display/211248153?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A Strongly Polynomial Algorithm for Linear Exchange Markets

Jugal Garg∗

University of Illinois at Urbana-Champaign
Urbana, IL, USA
jugal@illinois.edu

László A. Végh2

London School of Economics and Political Science
London, UK

l.vegh@lse.ac.uk

ABSTRACT

We present a strongly polynomial algorithm for computing an
equilibrium in Arrow-Debreu exchangemarkets with linear utilities.
Our algorithm is based on a variant of the weakly-polynomial
DuanśMehlhorn (DM) algorithm. We use the DM algorithm as
a subroutine to identify revealed edges, i.e. pairs of agents and
goods that must correspond to best bang-per-buck transactions
in every equilibrium solution. Every time a new revealed edge is
found, we use another subroutine that decides if there is an optimal
solution using the current set of revealed edges, or if none exists,
finds the solution that approximately minimizes the violation of the
demand and supply constraints. This task can be reduced to solving
a linear program (LP). Even though we are unable to solve this LP
in strongly polynomial time, we show that it can be approximated
by a simpler LP with two variables per inequality that is solvable
in strongly polynomial time.

CCS CONCEPTS

· Theory of computation → Market equilibria; Linear pro-
gramming.

KEYWORDS

Market Equilibria, Linear Exchange Markets, Strongly Polynomial
Algorithm, Z+-Matrix

ACM Reference Format:

Jugal Garg and László A. Végh. 2019. A Strongly Polynomial Algorithm for
Linear Exchange Markets. In Proceedings of the 51st Annual ACM SIGACT

Symposium on the Theory of Computing (STOC ’19), June 23ś26, 2019, Phoenix,

AZ, USA. ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/
3313276.3316340

1 INTRODUCTION

The exchange market model has been introduced by Walras in
1874 [42]. In this model, a set of agents arrive at a market with an
initial endowment of divisible goods and have a utility function
over allocations of goods. Agents can use their revenue from selling

∗Supported by the NSF CRII Award 1755619.
2Supported by the ERC Starting Grant ScaleOpt.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
STOC ’19, June 23ś26, 2019, Phoenix, AZ, USA

© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6705-9/19/06. . . $15.00
https://doi.org/10.1145/3313276.3316340

their initial endowment to purchase their preferred bundle of goods.
In a market equilibrium, the prices are such that each agent can
spend their entire revenue on a bundle of goods that maximizes
her utility at the given prices, and all goods are fully sold.

The celebrated result of Arrow and Debreu [2] shows the exis-
tence of an equilibrium for a broad class of utility functions. Compu-
tational aspects have been already addressed since the 19th century,
see e.g. [3], and polynomial time algorithms have been investigated
in the theoretical computer science community over the last twenty
years; see the survey [4] for early work, and the references in [18]
for more recent developments.

In this paper we study the case where all utility functions are
linear. Linear market models have been extensively studied since
1950s; see [9] for an overview of earlier work. These models are
also appealing from a combinatorial optimization perspective due
to their connection to classical network flow models and their rich
combinatorial structure. A well-studied special case of the exchange
market is the Fisher market setting, where every buyer arrives with
a fixed budget instead of an endowment of goods. Using network
flow techniques, Devanur et al. [10] gave a polynomial-time com-
binatorial algorithm that was followed by a series of further such
algorithms [21, 37], including strongly polynomial ones [32, 40].
A combinatorial algorithm for the general exchange market was
developed much later by Duan and Mehlhorn [13], and no strongly
polynomial algorithm has been known thus far.

Strongly polynomial algorithms and rational convex programs.

Assume that a problem is given by an input of N rational numbers
given in binary description. An algorithm for such a problem is
strongly polynomial (see [23, Section 1.3]), if it only uses elementary
arithmetic operations (addition, comparison, multiplication, and
division), and the total number of such operations is bounded by
poly(N). Further, the algorithm is required to run in polynomial

space: that is, the size of the numbers occurring throughout the
algorithm remain polynomially bounded in the size of the input.
Here, the size of a rational number p/q with integers p and q is
defined as ⌈log2(|p | + 1)⌉ + ⌈log2(|q | + 1)⌉.

It is a major open question to find a strongly polynomial al-
gorithm for linear programming. Such algorithms are known for
special classes of linear optimization problems. We do not present
a comprehensive overview here but only highlight some examples:
systems of linear equations with at most two nonzero entries per
inequality [1, 5, 28]; minimum cost circulations e.g. [22, 31, 34];
LPs with bounded entries in the constraint matrix [35, 36]; general-
ized flow maximization [30, 41], and variants of Markov Decision
Processes [43, 45].

For nonlinear convex optimization, only sporadic results are
known. The relevance of certain market equilibrium problems in

54

STOC ’19, June 23–26, 2019, Phoenix, AZ, USA Jugal Garg and László A. Végh

this context is that they can be described by rational convex pro-

grams, where a rational optimal solution exists with encoding size
bounded in the input size (see [38]). This property gives hope for
finding strongly polynomial algorithms.

The linear Fisher market equilibrium can be captured by two
different convex programs, one by Eisenberg and Gale [16], and
one by Shmyrev [33]. These are special cases of natural convex
extensions of classical network flow models [39, 40]. In particular,
the secondmodel is a network flow problemwith a separable convex
cost function; [40] provides a strongly polynomial algorithm for
the linear Fisher market using this general perspective.

The exchange market model is not known to be described by
such simple convex programs. A rational convex program was
given in [9], but the objective is not separable and hence the result
in [40] cannot be applied. Previous convex programs [6, 24, 29]
included nonlinear constraints and did not appear amenable for a
combinatorial approach (see [9] for an overview).

Model. Let A be the set of n agents. Without loss of generality,
we can assume that there is one unit in total of each divisible good,
and that there is a one-to-one correspondence between agents and
goods: agent i brings the entire unit of the i-th good, дi to the
market. If agent i buys xi j units of good дj , her utility is

∑
j ui jxi j ,

where ui j is the utility of agent i for a unit amount of good дj .
Given prices p = (pi)i ∈A, the bundle that maximizes the utility
of agent i is any choice of maximum bang-per-buck goods, that is,
goods that maximize the ratio ui j/pj . The prices p and allocations
(xi j)i, j ∈A form a market equilibrium, if (i)

∑
i ∈A xi j = 1 for all

j, that is, every good is fully sold; (ii) pi =
∑
j ∈A pjxi j for all i ,

that is, every agent spends her entire revenue; and (iii) xi j > 0
implies that ui j/pj = maxk uik/pk , that is, all purchases maximize
bang-per-buck.

Algorithms for the linear exchange market. A finite time algo-
rithm based on Lemke’s scheme [27] was obtained by Eaves [14]. A
necessary and sufficient condition for the existence of equilibrium
was described by Gale [17]. The first polynomial-time algorithms
for the problem were given by Jain [24] using the ellipsoid method
and by Ye [44] using an interior point method. The combinato-
rial algorithm of Duan and Mehlhorn [13] builds on the algorithm
[10] for linear Fisher markets. An improved variant was given
in [12] with the current best weakly polynomial running time
O(n7 log3(nU)), assuming all ui j values are integers between 0 and
U . A main measure of progress in these algorithms is the increase in
prices. However, the upper bound on the prices depends on the ui j
values; therefore, such an analysis can only provide a weakly poly-
nomial bound. The existence of a strongly polynomial algorithm
is described in [13] as a major open question. There is a number
of simple algorithms for computing an approximate equilibrium
[11, 19, 20, 25], but these do not give rise to polynomial-time exact
algorithms.

Our result. Weprovide a strongly polynomial algorithm for linear
exchange markets with running time O(n10 log2 n). Let us give an
overview of the main ideas and techniques. Let F ∗ denote the set
of edges (pairs of agents and goods) that correspond to a best bang-
per-buck transaction in every equilibrium. In the algorithm, we
maintain a set F ⊆ F ∗ called revealed edges, and the main progress is

adding a new edge in strongly polynomial time. At a high level, this
approach resembles that of [40], which extends Orlin’s approach
for minimum-cost circulations [31].

In amoney allocation (p, f), (pi)i ∈A is a set of prices and (fi j)i, j ∈A
represent the amount of money paid for good дj by agent i; fi j may
only be positive for maximum bang-per-buck pairs. In the algo-
rithm we work with a money allocation where goods may not be
fully sold and agents may have leftover money; we let ∥s(p, f)∥1
denote the total surplus money left, and ∥s(p, f)∥∞ the maximum
surplus of any good. It can be shown that if fi j > ∥s(p, f)∥1 in a
money allocation, then (i,дj) ∈ F ∗. This is analogous to the method
of identifying abundant arcs for minimum cost flows by Orlin [31].

We use a variant of the Duan-Mehlhorn (DM) algorithm to iden-
tify abundant arcs. We show that ϕ(p, f) = ∥s(p, f)∥∞/(

∏
j pj)

1/n

decreases geometrically in the algorithm; from this fact, it is not
difficult to see that an arc with fi j > ∥s(p, f)∥1 appears in a strongly
polynomial number of iterations, yielding the first revealed arc. We
need to modify the DM algorithm [13] so that, among other reasons,
the potential decreases geometrically when we run the algorithm
starting with any arbitrary price vector p; see Remark 4.1 for all
the differences.

To identify subsequent revealed arcs, we need a more flexible
framework and a second subroutine.Weworkwith themore general
concept of F -allocations, where the money amount fi j could be neg-
ative if (i,дj) ∈ F . This is a viable relaxation since an F -equilibrium
(namely, a market equilibrium with possibly negative allocations
in F) can be efficiently turned into a proper market equilibrium,
provided that F ⊆ F ∗. Given a set F of revealed arcs, our Price Boost
subroutine finds an approximately optimal F -allocation using only
edges in F . Namely, the subroutine finds an F -equilibrium if there
exists one; otherwise, it finds an F -allocation that is zero outside F ,
and subject to this, it approximately minimizes ϕ(p, f). This will
provide the initial prices for the next iteration of the DM subroutine.
Since DM decreases ϕ(p, f) geometrically, after a strongly polyno-
mial number iterations it will need to send a substantial amount of
flow on an edge outside F , providing the next revealed edge.

Let us now discuss the Price Boost subroutine. The analogous
subproblem for Fisher markets in [40] reduces to a simple variant of
the Floyd-Warshall algorithm. For exchange markets, we show that
optimizing ϕ(p, f) can be captured by a linear program. A strongly
polynomial LP algorithm would therefore immediately provide the
desired subroutine. Alas, this LP is not contained in any special
class of LP where strongly polynomial algorithms are currently
known.

We will exploit the following special structure of the LP. We can
eliminate the fi j variables and only work with price variables. The
objective is to maximize the sum of all variables over a feasible set
of the form P ∩P ′. The first polyhedron P is defined by inequalities
with one positive and one nonnegative variable per inequality. The
constraint matrix defining the second polyhedron P ′ is what we
call a Z+-matrix: all off-diagonal elements are nonpositive but all
column sums are nonnegative. This corresponds to a submatrix of
the transposed of a weighted Laplacian matrix. In case we only had
constraints of the form P , classical results [1, 5, 28] would provide
a strongly polynomial running time. To deal with the constraints

55

A Strongly Polynomial Algorithm for Linear Exchange Markets STOC ’19, June 23–26, 2019, Phoenix, AZ, USA

defining P ′, we approximate our LP by a second LP that can be
solved in strongly polynomial time.

More precisely, we replace the second polyhedron P ′ by Q such
that 1

n2Q ⊆ P ′ ⊆ Q , and that Q is also a system with one positive
and one nonnegative variable per inequality. Thus, the algorithms
[1, 5, 28] are applicable to maximize the sum of the variables over
P ∩Q in strongly polynomial time. For an optimal solution p̄, the
vector p̄/n2 is feasible to the original LP and the objective value is
within a factor n2 of the optimum. For the purposes of identifying
a new revealed arc in the algorithm, such an approximation of the
optimal ϕ(p, f) value already suffices.

The construction of the approximating polyhedronQ is obtained
via a general method applicable for systems given by Z+-matrices.
We show that for such systems, Gaussian elimination can be used
to generate valid constraints with at most two nonzero variables
per row. Moreover, we show that the intersection of all relevant
such constraints provides a good approximation of the original
polyhedron.

The full version of the paper, including all proofs, is available at
https://arxiv.org/abs/1809.06266. The rest of this extended abstract
is structured as follows. Section 2 introduces basic definitions and
notation. Section 3 describes the overall algorithm by introduc-
ing the notion of F -allocations, the main potential, and the two
necessary subroutines. Section 4 presents the first of these two
subroutines, a variant of the Duan-Mehlhorn algorithm. Section 5
shows how the second subroutine, Price Boost, can be reduced to
solving an LP. Section 6 gives a sketch of the polyhedral approxi-
mation result for Z+-matrices. Section 7 concludes with some open
questions.

2 PRELIMINARIES

For a positive integer t , we let [t] := {1, 2, . . . , t}, and for k < t , we
let [k, t] := {k,k + 1, . . . , t}. For a vector a ∈ Rn , we let

∥a∥1 :=
n∑
i=1

|ai |, ∥a∥2 :=

√√
n∑
i=1

a2i , and ∥a∥∞ := max
i ∈[n]

|ai |

denote the ℓ1, ℓ2, and ℓ∞-norms, respectively. Further, for a vector
a ∈ Rn , we let supp(a) ⊆ [n] denote its support, that is, supp(a) :=
{i ∈ [n] | ai , 0}. For a subset S ⊆ [n], we let a(S) :=

∑
i ∈S ai .

The linear exchange market. We let A := [n] denote the set of
agents, G := {д1,д2, . . . ,дn } denote the set of goods, and ui j ≥ 0
denote the utility of agent i for a unit amount of good дj . Let
E ⊆ A × G denote the set of pairs (i,дj) such that ui j > 0; let
m := |E |. We will assume that for each i ∈ A there exists a дj ∈ G
such that ui j > 0, and for each дj ∈ G there exists an i ∈ A such
that ui j > 0. Hence,m ≥ n.

The goods are divisible and there is one unit of each in total.
Agent i arrives to themarket with her initial endowment comprising
exactly the unit of good дi . As mentioned in the introduction, the
general case with an arbitrary set of goods and arbitrary initial
endowments can be easily reduced to this setting; see [9, 24].

Let p = (pj)дj ∈G denote the prices where pj is the price of good
дj . Given prices p, we let

αi := max
дk ∈G

uik
pk
, ∀i ∈ A.

For each agent i ∈ A, the goods satisfying equality here are called
maximum bang-per-buck (MBB) goods; for such a good дj , (i,дj)
is called an MBB edge. We let MBB(p) ⊆ E denote the set of MBB
edges at prices p.

Definition 2.1. Let f = (fi j)i ∈A,дj ∈G denote the money flow where

fi j is the money spent by agent i on good дj . We say that (p, f) is a

money allocation if

(i) p > 0, and f ≥ 0;
(ii) supp(f) ⊆ MBB(p);
(iii)

∑
дj ∈G fi j ≤ pi for every agent i ∈ A;

(iv)
∑
i ∈A fi j ≤ pj for every good дj ∈ G.

For the money allocation (p, f), the surplus of agent i is defined
as

ci (p, f) := pi −
∑
дj ∈G

fi j ,

and the surplus of good дj ∈ G is defined as

sj (p, f) := pj −
∑
i ∈A

fi j .

Parts (iii) and (iv) in the definition of the money allocation require
that the surplus of all agents and goods are nonnegative. We let
c(p, f) := (ci (p, f))i ∈A and s(p, f) := (sj (p, f))дj ∈G denote the
surplus vectors of the agents and the goods, respectively. Clearly,
∥s(p, f)∥1 = ∥c(p, f)∥1 , and ∥s(p, f)∥∞ ≤ ∥s(p, f)∥1 ≤ n∥s(p, f)∥∞ .

Definition 2.2. A money allocation (p, f) is called a market equi-
librium if ∥s(p, f)∥1 = 0.

Existence of an equilibrium. A necessary and sufficient condition
for the existence of an equilibrium can be given as follows. Let
us define the directed graph (A, Ē), where (i, j) ∈ Ē if and only if
ui j > 0 (that is, if (i,дj) ∈ E).

Lemma 2.1 ([9, 17]). There exists a market equilibrium if and only

if for every strongly connected component S ⊆ A of the digraph (A, Ē),

if |S | = 1, then there is a loop incident to the node in S .

This condition can be easily checked in strongly polynomial
time. Further, it is easy to see that if the above condition holds,
then finding an equilibrium in an arbitrary input can be reduced
to finding an equilibrium in an input where the digraph (A, Ē) is
strongly connected. Thus, we will assume the following throughout
the paper:

The graph (A, Ē) is strongly connected. (⋆)

3 THE OVERALL ALGORITHM

In this section, we describe the overall algorithm. We formulate the
statements that are needed to prove our main theorem:

Theorem 3.1. There exists a strongly polynomial algorithm that

computes a market equilibrium in linear exchange markets in time

O(n10 log2 n).

We start by introducing the concepts of revealed edges, F -money
allocations, and balanced F -flows.

56

STOC ’19, June 23–26, 2019, Phoenix, AZ, USA Jugal Garg and László A. Végh

3.1 Revealed Edges

Throughout the paper, we let F ∗ ⊆ E denote the set of edges (i,дj) ∈
E that are MBB edges for every market equilibrium (p, f). In the
algorithm, we will maintain a subset of edges F ⊆ F ∗ that will be
called the revealed edge set. This is initialized as F = ∅.

Definition 3.2. For an edge set F ⊆ E, (p, f) is an F -money alloca-
tion, or F -allocation in short, if

(i) p > 0, and fi j ≥ 0 for (i,дj) < F ;

(ii) supp(f) ∪ F ⊆ MBB(p);

(iii)
∑
дj ∈G fi j ≤ pi for every agent i ∈ A;

(iv)
∑
i ∈A fi j ≤ pj , for every good дj ∈ G.

An F -allocation is called an F -equilibrium if ∥s(p, f)∥1 = 0.

Note that fi j could be negative for (i,дj) ∈ F . A ∅-allocation
simply corresponds to a money allocation.

The main progress step in the algorithm will be adding new
edges to F . This will be enabled by the following lemma.

Lemma 3.1. Let F ⊆ F ∗, and let (p, f) be an F -allocation. If fkℓ >

∥s(p, f)∥1 for an edge (k,дℓ) ∈ E, then (k,дℓ) ∈ F
∗. □

The proof is given in the full version. It is a proof by contradiction,
comparing the sets of MBB goods at prices p and at an equilibrium
where (k,дℓ) is not an MBB good.

Our algorithm will obtain an F -equilibrium. Whereas an F -equi-
librium is not necessarily an equilibrium, the following holds true:

Lemma 3.2. Let F ⊆ F ∗, and assume we are given an F -equilibrium

(p, f). Then a market equilibrium (p, f ′) can be obtained in O(nm)

time. □

The proof is via a maximum flow computation in an auxiliary
network. We let Final-Flow(p) denote the algorithm as in the
Lemma.

3.2 Balanced Flows

Balanced flows play a key role in the Duan-Mehlhorn algorithm
[13], as well as in previous algorithms for Fisher market models [10,
21, 37]. We now introduce the natural extension for F -allocations.

Definition 3.3. Given an edge set F ⊆ E and prices p, we say that

(p, f) is a balanced F -flow, if (p, f) is an F -allocation that minimizes

∥s(p, f)∥1 , and subject to that, it minimizes ∥c(p, f)∥2 .

Lemma 3.3. [8, 26] Given F ⊆ E and prices p such that F ⊆ MBB(p),

a balanced F -flow can be computed in O(nm log (n2/m)) time. □

We let Balanced(F ,p) denote the subroutine guaranteed by the
Lemma.

3.3 The Algorithm

The overall algorithm is presented inAlgorithm 1. Themain progress
is gradually expanding a revealed edge set F ⊆ F ∗, initialized as
F = ∅. Every cycle of the algorithm performs the subroutines
Boost(F) and DM(F , p̂), and at least one new edge is added to F

at every such cycle. Once an F -equilibrium is obtained for the cur-
rent F , we use the subroutine Final-Flow(p) as in Lemma 3.2 to
compute a market equilibrium.

Algorithm 1: Arrow-Debreu Equilibrium

Input :Set A of agents, set G of goods, and utilities
(ui j)i ∈A,дj ∈G

Output :Market equilibrium (p, f)
1 F ← ∅;

2 repeat

3 (p̂, f̂) ← Boost(F) // Theorem 3.4

4 (p, f) ← DM(F , p̂) // Theorem 3.5

5 F ← F ∪ {(i,дj) | fi j > ∥s(p, f)∥1 } // Lemma 3.1

6 until ∥s(p, f)∥1 = 0

7 f ←Final-Flow(p) // Lemma 3.2

8 return (p, f)

We now introduce the key potential measures used in analysis.
For an F -allocation (p, f), we define

ϕ(p, f) :=
∥s(p, f)∥∞

(
∏n

j=1 pj)
1/n
.

Note that this is invariant under scaling, i.e. ϕ(p, f) = ϕ(αp,α f)

for any α > 0. Further, (p, f) is an F -equilibrium if and only if
ϕ(p, f) = 0. For a given F ⊆ F ∗, we define

Ψ(F) := min{ϕ(p, f) : (p, f) is an F -allocation, supp(f) ⊆ F }. (1)

Theorem 3.4. There exists a strongly polynomial time algorithm

that for any input F ⊆ E, returns in timeO(n4 log2 n) an F -allocation
(p̂, f̂) with supp(f̂) ⊆ F such that Ψ(F) ≤ ϕ(p̂, f̂) ≤ (n − 1)2Ψ(F).

The algorithm in the theorem will be denoted as Boost(F), and
is described in Section 5. In particular, if Ψ(F) = 0, then Boost(F)
returns an F -equilibrium.

The second main subroutine DM(F , p̂), is a variant of the Duan-
Mehlhorn algorithm [13], described in Section 4. As the input, it uses
the prices p̂ obtained in the F -allocation (p̂, f̂) returned by Boost(F),
and outputs an F -allocation (p, f) such that either ∥s(p, f)∥1 = 0,
that is, an F -equilibrium, or it is guaranteed that fi j > ∥s(p, f)∥1 for
some (i,дj) ∈ E \F connecting two different connected components
of F . Such an edge (i,дj) can be added to F by Lemma 3.1. The
following simple lemma asserts the existence of such an edge.

Lemma3.4. Let (p, f) be an F -allocationwithϕ(p, f) < Ψ(F)/(n(m+

1)). Then, fi j > ∥s(p, f)∥1 for at least one edge (i,дj) ∈ E \ F such

that i and дj are in two different undirected connected components of

F . □

Theorem 3.5. There exists a strongly polynomial O(n9 log2 n)
time algorithm, that, for a given F ⊆ E and prices p̂, computes an

F -allocation (p, f) such that

ϕ(p, f) ≤
ϕ(p̂, f̃)

n4(m + 1)
,

where f̃ is the balanced flow computed by Balanced(F , p̂).

The algorithm DM(F , p̂) given in Section 4 will satisfy the as-
sertion of this theorem. Using these claims, we are ready to prove
Theorem 3.1.

57

A Strongly Polynomial Algorithm for Linear Exchange Markets STOC ’19, June 23–26, 2019, Phoenix, AZ, USA

Proof of Theorem 3.1. By Lemma 3.4, the number of connected
components of F decreases after every cycle of Algorithm 1; thus,
the total number of cycles is ≤ 2n − 1. Consider any cycle. Let
(p̂, f̂) denote that F -allocation returned by Boost(F) with ϕ(p̂, f̂) ≤
(n − 1)2Ψ(F), and let (p̂, f̃) denote the balanced F -flow at prices p̂.
Then,

∥s(p̂, f̃)∥∞ ≤ ∥s(p̂, f̃)∥1 ≤ ∥s(p̂, f̂)∥1 ≤ n∥s(p̂, f̂)∥∞ ,

since (p̂, f̃) minimizes ∥s(p̂, f̃)∥1 among all F -allocations. There-

fore ϕ(p̂, f̃) < n3Ψ(F). Theorem 3.5 guarantees that DM(F , p̂) finds
an F -allocation (p, f) with ϕ(p, f) < Ψ(F)/(n(m + 1)). Lemma 3.4
guarantees that F is extended by at least one new edge in this cycle.
The overall running time estimation is dominated by the running
time estimation of the calls to DM. □

4 THE DUAN-MEHLHORN (DM)
SUBROUTINE

In this section, we present a variant of the Duan-Mehlhorn (DM)
algorithm [13] as a subroutine DM(F , p̂) in Algorithm 2. The input
is a revealed edge set F and prices p̂ such that F ⊆ MBB(p̂), and the
output is either an F -equilibrium, or an F -allocation (p, f) where
fi j > ∥s(p, f)∥1 for some (i,дj) ∈ E \ F connecting two different
components of F . The modifications compared to the original DM
algorithm are listed in Remark 4.1. We now provide a description
where the subroutine terminates once an arc with fi j > ∥s(p, f)∥1
is identified. The variant as required in Theorem 3.5 can be obtained
by simply by removing the termination condition, and letting the
algorithm run for O(n6 log2 n) iterations of the outer loop.

We call one execution of the outer loop a phase, and one execu-
tion of the inner loop an iteration. Algorithm 2 first computes a bal-
anced flow f using the subroutine Balanced(F ,p) as in Lemma 3.3.
Then, the agents are sorted in decreasing order of surplus. Without
loss of generality, we assume that c1(p, f) ≥ · · · ≥ cn (p, f). Then,
we find the smallest ℓ for which the ratio cℓ(p, f)/cℓ+1(p, f) is more
than 1+ 1/n. If there is no such ℓ then we let ℓ := n. Let S be the set
of first ℓ agents, and let Γ(S) be the set of goods for which there is a
non-zero flow from agents in S . Since f is balanced, the agents out-
side S have zero flow to goods in Γ(S), i.e., fi j = 0,∀i < S,дj ∈ Γ(S)
and the surplus of every good in Γ(S) is zero. We set γ to 1 before
we go into the inner loop.

Next, the algorithm runs the inner loop where it increases the
prices of goods in Γ(S) and the flow between agents in S and goods
in Γ(S) by a multiplicative factor x ≥ 1 until one of the three
events occurs. Observe that except for the MBB edges (i,дj) where
i < S,дj ∈ Γ(S), all MBB edges remain MBB with this price change,
and the surplus of every good in Γ(S) remains zero. When prices
of goods in Γ(S) increase, an edge (i,дj) from i ∈ S and дj < Γ(S)
can become MBB. We need to stop when such an event occurs
in order to maintain an F -allocation. This is captured by Event 1.
In Event 2, we stop when the surplus of an agent i ∈ S becomes
equal to either the surplus of an agent i ′ < S or zero. Let us note
that ci (p, f) ≥ 0 is maintained throughout; we use the expression
max{maxi<S ci (p, f), 0} to also cover the possible case S = [n]. In
Event 3, we stop when γx becomes 1 + 1/(56e2n3).

If Event 1 occurs, then we have a new MBB edge (a,дb) from
a ∈ S to дb < Γ(S). Using this new edge, it is now possible to

Algorithm 2: DM(F , p̂)

Input :Utilities (ui j)i ∈A,дj ∈G , an edge set F ⊆ E, and prices
p̂ with F ⊆ MBB(p̂).

Output :An F -equilibrium (p, f) or an F -allocation (p, f) such
that fi j > ∥s(p, f)∥1 for an (i,дj) ∈ E \ F , where i
and дj are in different connected components of F .

1 p ← p̂; f ← Balanced(F ,p) // Lemma 3.3

2 repeat

3 Sort the agents in decreasing order of surplus, i.e.,

c1(p, f) ≥ c2(p, f) ≥ . . . ≥ cn (p, f)

4 Find the smallest ℓ for which cℓ(p, f)/cℓ+1(p, f) > 1 + 1/n,

and let ℓ = n when there is no such ℓ.

5 S ← [ℓ]; Γ(S) = {дj ∈ G | ∃i ∈ S : fi j , 0}

6 γ ← 1

7 repeat

8 x ← 1; Define

pj ← xpj ,∀дj ∈ Γ(S), fi j ← x fi j ,∀i ∈ S,∀дj ∈ Γ(S)

// ci (p, f) and sj (p, f) change accordingly

9 Increase x continuously up from 1 until one of the

following events occurs

10 Event 1: A new edge, say (a,дb), becomes MBB
// a ∈ S, дb < Γ(S)

11 Event 2:

mini ∈S ci (p, f) = max{maxi<S ci (p, f), 0}
// Balancing

12 Event 3: γx = 1 + 1/(56e2n3) // Price-rise

13 if Event 1 occurs then

14 c̃i (p, f) ← ci (p, f), ∀i ∈ S \ {a}

15 c̃a (p, f) ← ca (p, f) − pb
16 c̃i (p, f) ← ci (p, f) + fib , ∀i < S

17 if ∃i ∈ A \ S s.t. (i,дb) ∈ F or

mini ∈S c̃i (p, f) ≤ max{maxi<S c̃i (p, f), 0} then
18 break // break from the inner loop

19 fib ← 0,∀i ∈ A; fab = pb ; Γ(S) ←

Γ(S) ∪ {дb }; γ ← γx

20 until Event 2 or 3 occurs

21 f ← Balanced(F ,p)

22 until either fi j > ∥s(p, f)∥1 for an edge (i,дj) ∈ E \ F with i

and дj in different components of F , or ∥s(p, f)∥1 = 0

23 return (p, f)

decrease the surplus of agent a and increase the surpluses of agents
i < S by increasing fab and decreasing fib . We next check if this
can lead to making the surplus of an agent i ∈ S and i ′ < S equal.
Observe that it is always possible if there exists an edge (i ′,дb) ∈ F .
If yes, then we break from the inner loop, otherwise we update flow
so that agent a buys the entire good дb , add дb to Γ(S), update γ to
γx , and go for another iteration.

Lemma 4.1. The number of iterations in a phase is at most n.

Proof. Consider the iterations of a phase. At the beginning of
every iteration, the size of Γ(S) grows by 1, and hence there cannot
be more than n iterations in a phase. □

58

STOC ’19, June 23–26, 2019, Phoenix, AZ, USA Jugal Garg and László A. Végh

When we break from the inner loop, we recompute a balanced
flow and then check if either ∥s(p, f)∥1 is zero or there is an edge
(i,дj) < F with fi j > ∥s(p, f)∥1 connecting two different compo-
nents of F . If yes, then we return the current (p, f), otherwise we go
for another phase. Next, we show that (p, f) remains an F -allocation
throughout the algorithm, which implies that the algorithm returns
an F -allocation.

Lemma 4.2. The output (p, f) of Algorithm 2 is an F -allocation.

Proof. We only need to show that F ⊆ MBB(p) throughout the
algorithm. Observe that an MBB edge (i,дj) becomes non-MBB
only if i < S and дj ∈ Γ(S), where S and Γ(S) are obtained with
respect to a balanced flow f . If an edge (i,дj) ∈ F is such that i < S
and дj ∈ Γ(S) then it contradicts that f is a balanced flow because
the edges in F are allowed to carry negative flow. □

The running time analysis of Algorithm 2 is based on the evolu-
tion of the norm ∥c(p, f)∥2 and prices p. If a phase terminates due to
Event 3, then we call it price-rise, otherwise balancing. The next two
lemmas are crucial that eventually imply that the potential func-
tion ϕ(p, f) decreases substantially within a strongly polynomial
number of phases.

Lemma4.3. In Algorithm 2, the price of every goodmonotonically in-

creases and the total surplus, i.e., ∥s(p, f)∥1 , monotonically decreases.

Proof. Clearly, the price of every good monotonically increases
in Algorithm 2. During a price increase step, sj (p, f) = 0 is main-
tained for every дj ∈ Γ(S), and sj (p, f) does not change for дj ∈
G \ Γ(S). If the allocation changes during Event 1, then sb (p, f)

decreases to 0, and the other surpluses remain unchanged. When a
balanced flow is recomputed at the end of a phase, then ∥s(p, f)∥1
can only decrease. □

The proof of the next lemma is an adaptation of the proof in [12],
and is given in the full version, along with the definition of the
auxiliary network N (p, F).

Lemma 4.4. Let f be a balanced flow in N (p, F) at the beginning of

a phase, and let (p′, f ′) be the prices and flow at the end of the phase.

Then

(i)
∏n

j=1 p
′
j ≥

(
1 + 1

Cn3

) ∏n
j=1 pj in a price-rise phase, and

(ii) ∥c(p′, f ′)∥2 ≤ ∥c(p, f)∥2/
(
1 + 1

Cn3

)
in a balancing phase,

where C = 56e2. □

Lemma 4.5. The number of arithmetic operations in a phase of

Algorithm 2 is O(n3). □

In the next lemma, we show that the potential function ϕ(p, f)

decreases by a large factor within a strongly polynomial number
of phases. This together with Lemmas 3.4 and 3.1 imply that every
major cycle terminates in strongly polynomial time.

Lemma 4.6. The potential function ϕ(p, f) decreases by a factor of

at least 1/nγ in 4(2 + γ)2C2n6 ln2 n phases of Algorithm 2 for any

γ > 0, where C = 56e2. □

Proof of Theorem 3.5. According to the above lemma, if we
do not terminate Algorithm 2 in the first iteration when an arc

(i,дj) ∈ E \ F with fi j > ∥s(p, f)∥1 is found, then the potential
ϕ(p, f) decreases by a factor n4(m + 1) within O(n6 log2 n) phases.

For a strongly polynomial algorithm, we also need to keep all
intermediate numbers polynomial bit length. For this, we can use
the Duan-Mehlhorn [13] technique by restricting the prices and
update factor x to powers of (1 + 1/L) where L has polynomial bit
length. This guarantees that all arithmetic is performed on rational
numbers of polynomial bit length. As shown in [13] this does not
change the number of iterations of the DM subroutine. □

Remark 4.1. Compared to the original DM algorithm in [13],
Algorithm 2 differs in the following.

(1) We handle Event 1 (in line 10) differently than the other two
events and this gives rise to two nested loops, unlike [13]
where every event is handled similarly and there is only one
loop.

(2) The edges in F are allowed to carry negative flow, unlike [13]
where flow is always non-negative.

(3) We initialize prices to p, unlike [13] where every price is
initialized to 1. And, we stop when a new edge is revealed.

5 A LINEAR PROGRAM FOR Ψ(F)

In this section, we first formulate an LP to compute Ψ(F). Then,
we introduce the class of Z+-matrices, and formulate a general
statement (Theorem 5.3) that shows how certain LPs with a Z+
constraint matrix can be approximated by a two variable per in-
equality system. We use this to prove Theorem 3.4. The proof of
Theorem 5.3 will be given in Section 6.

Given F ⊆ E, we consider the bipartite graph (A ∪ G, F). Let
C1,C2, . . . ,Ct denote the connected components that have a non-
empty intersection with G. (In particular, we include all isolated
vertices in G, but not those in A.) Let γi := |Ci ∩ G |. Let us fix
an arbitrary good in each of these components; for simplicity of
notation, let us assume that the fixed good in Ci is дi .

If all edges in F are forced to be MBB edges, then fixing the price
pi ofдi uniquely determines the prices of all goods inCi ∩G . Indeed,
for any buyer k ∈ Ci ∩ A, and any goods дℓ ,дℓ′ ∈ Ci ∩ G with
kℓ,kℓ′ ∈ F , we have that pℓ/pℓ′ = ukℓ/ukℓ′ . Consequently, for any
i ∈ [t], and for any дℓ ∈ Ci ∩ G, we can compute the multiplier
θiℓ > 0 such that pℓ = θiℓpi whenever all edges in F are MBB. For
an agent ℓ ∈ A, let ρ(ℓ) ∈ [t] denote the index of the component
containing the good дℓ of this agent: that is, дℓ ∈ Cρ(ℓ) ∩G, and
pℓ = θρ(ℓ)ℓpρ(ℓ). Let Θi :=

∑
дℓ ∈Ci∩G θiℓ ; the total price of the

goods in Ci is Θipi .

5.1 Constructing the LP

The variables (pi)i ∈[t] uniquely determine the price of every good.
We can formulate the problem of computing Ψ(F) in terms of these
variables. To differentiate between this t-dimensional price vector
and the n-dimensional price vector of all goods, we say that for
a price vector p̄ ∈ Rt , the vector p ∈ Rn is the extension of p̄, if
pℓ = θρ(ℓ)ℓp̄ρ(ℓ) for all ℓ ∈ [n] (in particular, pℓ = p̄ℓ for ℓ ∈ [t]).
We also say that the F -allocation (p, f) is an extension of p̄, if p is
the extension of p̄.

59

A Strongly Polynomial Algorithm for Linear Exchange Markets STOC ’19, June 23–26, 2019, Phoenix, AZ, USA

д1 д6 д2 д7 д8 д3 д9 д10 д4 д5

2 3 1 9 6 7 8 10 5 4

1 1 1 1 2 1 1 1 1 1 1 1 1 1 13

Figure 1: Example problem setting.

Example. Throughout this and the next section, we illus-
trate the argument with the example in Figure 1. There are
10 agents and 15 edges in F . The edges in F are depicted
by solid edges with the ui j values indicated; all these are 1
except for u17 = 2. The picture does not include the edges
in E \ F except for one example: the dashed line for (6,д8)
with u68 = 3. There are 5 connected components, contain-
ing goods {д1,д6}, {д2,д7,д8}, {д3,д9,д10}, {д4}, and {д5},
with p6 = p1, p7 = p8 = 2p2, and p3 = p9 = p10. Thus,
Θ1 = 2, Θ2 = 5, Θ3 = 3, Θ4 = 1, Θ5 = 1, and γ1 = 2, γ2 = 3,
γ3 = 3, γ4 = 1, γ5 = 1.

We now formulate linear constraints that ensure that a vector
p̄ ∈ Rt can be extended to an F -allocation (p, f)with ∥s(p, f)∥∞ ≤ 1,
and supp(f) ⊆ F . The first set of constraints will enforce that all
edges in F are MBB, and the second set will guarantee the existence
of a desired money flow f with the surplus bounds.

First, the edges in F are MBB if and only if uk j/pj ≤ uk j′/pj′ for
any k ∈ A, and any дj ,дj′ ∈ G such that (k,дj) ∈ E, (k,дj′) ∈ F . The
θiℓ coefficients already capture that equality holds if (k,дj), (k,дj′) ∈
F . For the rest of the pairs, we can express this constraint in terms
of the p̄ variables as

uk jθρ(j′)j′p̄ρ(j′) − uk j′θρ(j)j p̄ρ(j) ≤ 0

∀k, j, j ′ ∈ A, (k,дj) ∈ E \ F , (k,дj′) ∈ F .
(2)

We add a second set of constraints for ∥s(p, f)∥∞ ≤ 1. Since f is
supported on F and is allowed to be negative, this can be guaranteed
if and only if for any component Ci , i ∈ [t], the total price of the
goods in Ci ∩G exceeds the total budget of the agents in Ci ∩ A

by at most γi = |Ci ∩G |. Recall that given the prices p̄ of the fixed
goods, the total price of goods in Ci ∩ G is Θi p̄i . We obtain the
constraints

Θi p̄i −
∑

k ∈Ci∩A

θρ(k)k p̄ρ(k) ≤ γi ∀i ∈ [t]. (3)

Let us now define the following LP:

max
t∑
i=1

p̄i

s. t. constraint sets (2) and (3),

p̄ ≥ 0.

(PF)

Note that p̄ = 0 is a feasible solution. Using LP duality, the above
program is unbounded if and only if the next LP has a feasible

solution p̄ , 0.

constraint set (2),

Θi p̄i −
∑

k ∈Ci∩A

θρ(k)k p̄ρ(k) ≤ 0 ∀i ∈ [t]

p̄ ≥ 0.

(P0
F
)

Example. Let us show the formulation for the example in
Figure 1. The variables are p̄1, p̄2, p̄3, p̄4, and p̄5. From the
constraint set (2), we only show the example of k = 6, j = 8,
and j ′ = 3:

3p̄3 − 2p̄2 ≤ 0.

For the components, we have

2p̄1 − p̄2 − p̄3 ≤ 2

5p̄2 − p̄1 − p̄3 ≤ 3

3p̄3 − p̄1 − 2p̄2 ≤ 3

p̄4 − 2p̄2 − p̄3 − p̄5 ≤ 1

p̄5 − p̄4 ≤ 1.

Lemma 5.1. (i) Any solution p̄ ∈ Rn to (PF) can be extended to

an F -allocation (p, f) with ∥s(p, f)∥∞ ≤ 1, and supp(f) ⊆ F .

(ii) If (PF) is bounded, then there exists a pointwise maximal so-

lution p̄∗ ∈ Rt , that is, p̄ ≤ p̄∗ for any solution p̄ ∈ Rt to

(PF). Let (p
∗, f ∗) denote the extension of these prices to an F -

allocation with ∥s(p∗, f ∗)∥∞ ≤ 1, and supp(f ∗) ⊆ F . Then,

Ψ(F) = ϕ(p∗, f ∗).

(iii) Under assumption (⋆), every nonzero solution to (P0
F
) is strictly

positive. Such a solution can be extended to an F -equilibrium.

□

5.2 Monotone Two Variable Per Inequality
Systems

LetM2(m,n) denote the set ofm × n rational matrices such that
every matrix contains at most one positive and at most one negative
entry per row. For a matrix A ∈ M2(m,n), and an arbitrary vector
b ∈ Qm , the LP Ax ≤ b is called a monotone two variable per

inequality system, abbreviated as M2VPI. In every such system,
whenever the objective function max

∑
i xi is bounded, there exists

a pointwise maximal feasible solution, that is, a feasible x∗ such that
for every feasible solution x , x ≤ x∗.

This property holds more generally. Namely, a matrix is called
pre-Leontief if every column contains at most one positive element.
IfA⊤ is pre-Leontief, then the systemA⊤x ≤ c has a pointwise max-
imal feasible solution whenever max

∑
i xi is bounded [7]. Whereas

60

STOC ’19, June 23–26, 2019, Phoenix, AZ, USA Jugal Garg and László A. Végh

M2VPI systems are strongly polynomially solvable, as stated in
the next theorem, no such algorithm is known for the general pre-
Leontief setting.

Theorem 5.1 ([1, 5, 28]). Consider an M2VPI system Ax ≤ b with

A ∈ M2(m,n). Then there exists a strongly polynomialO(mn logm+
mn2 log2 n) time algorithm that finds a feasible solution or concludes

infeasibility. Further, if there exists a pointwise maximal feasible

solution, the algorithm also finds that one.

Note that this theorem is not directly applicable to (PF). Whereas
the constraints (2) are of the required form, the constraints (3) have
only one positive coefficient but possibly multiple negative ones.
In what follows, we show that finding an approximate solution to
(PF) can be reduced to an M2VPI system.

5.3 Z+-Matrices

LetM ∈ Rt×t be the matrix representing the left hand side of the
constraints in (3). That is, for all i, j ∈ [t], we let

Mi j :=

{
Θi −

∑
k ∈Ci∩A:ρ(k)=i θik , if i = j,

−
∑
k ∈Ci∩A:ρ(k)=j θ jk , if i , j .

(4)

Thus, (3) can be written asMp̄ ≤ γ , where γ⊤ = (γ1, . . . ,γt).

Definition 5.2. A matrix M ∈ Qk×t is a Z+-matrix, if all off-

diagonal entries are nonpositive,1 and all column sums are nonnega-

tive. We letZ+(k, t) denote the set of k × t Z+-matrices.

Clearly, the matrixM defined by (4) is inZ+(t , t). Recall that a
matrix is called aZ -matrix if all off-diagonal entries are nonpositive;
the notation reflects the additional requirement on the columns.
Further, note that a matrix is a Z+(t , t)-matrix if and only if it is
the transposed of a weighted Laplacian of a directed graph on t

vertices, or if it can be obtained by deleting a row and a column
of the transposed of a weighted Laplacian of a directed graph on
t + 1 vertices. We will prove the following theorem on LPs with
Z+-matrices as constraint matrices.

Theorem 5.3. Given amatrixM ∈ Z+(k, t)with ℓ nonzero entries,

and b ∈ Qk , with b > 0, we let

PM = {x ∈ R
t : Mx ≤ b,x ≥ 0}.

Then, in time O(ℓt3), we can construct a matrix M̄ ∈ M2(ℓ
′, t) and

b̄ ∈ Ql
′
for ℓ′ ≤ ℓ such that

PM ⊆ {x ∈ R
t : M̄x ≤ b̄,x ≥ 0} ⊆ B2PM ,

where B =
∑k
j=1 bj/mini ∈[k] bi . Further, the size of the entries in M̄

and b̄ will be polynomially bounded in the encoding size of the input.

Here, we use the notation αP = {αx : x ∈ P} for a set P and a
constant α > 0. The proof of Theorem 5.3 will be given in Section 6;
we now use it to derive Theorem 3.4.

Proof of Theorem 3.4. Lemma 5.1 establishes that computing
Ψ(F) is equivalent to solving the LP (PF). We construct a second
LP QF as follows. For the constraint set (3) in the form Mp̄ ≤ γ ,

1For a non-square matrix, by diagonal entries we mean all entries zii for 1 ≤ i ≤
min{k, t }.

we apply Theorem 5.3 to obtain M̄p̄ ≤ γ̄ . Note that B ≤ n, since∑t
i=1 γi = n, and γi ≥ 1 for i ∈ [t]. Then, we let

QF := {p̄ ∈ Rt : p̄ satisfies (2) and M̄p̄ ≤ γ̄ }.

Let PF denote the feasible region of (PF). Using that all right hand
sides in (2) are 0, we see that

PF ⊆ QF ⊆ n2PF .

Since QF is an M2VPI system, Theorem 5.1 provides a strongly
polynomial algorithm to obtain the prices p̄ maximizing

∑t
i=1 p̄i

over QF , or concludes that this objective is unbounded on QF . In
case a finite optimum exists, p̄/n2 is feasible to (PF) and is within a
factor n2 from an optimal solution.

If the objective is unbounded on QF , then we claim that we can
get a nonzero solution to (P0

F
). Using LP duality, the objective is

unbounded on QF if and only if there is a feasible solution p̄ , 0 to

Q0
F = {p̄ ∈ R

t : p̄ satisfies (2) and M̄p̄ ≤ 0}.

Again, Theorem 5.1 is applicable to find a nonzero solution q. Sup-
pose q , 0 is a solution to Q0

F
. This implies that αq is a feasible

solution to QF for all α ≥ 0. Since for every feasible solution p̄ to
QF , p̄/n

2 is a feasible solution to (PF), this further implies that αq
is also a feasible solution to (PF) for all α ≥ 0. Therefore, q must be
a solution to (P0

F
).

The number of nonzero entries inM is ≤ 2n. Thus, constructing
M̄ and γ̄ takesO(n4) time.We obtain anM2VPI systemwith ≤ m+2n
constraints and ≤ n variables, andm = O(n2), thus the running
time for solving the M2VPI system is O(n4 log2 n) that dominates
the total running time.

Finally, for a strongly polynomial algorithm we also have to
provide polynomial bounds on the encoding lengths of the numbers
during the algorithm. The entries of M are simple expressions of
the input parametersui j . Then, Theorem 5.3 guarantees that M̄ and
vector γ̄ also have bounded encoding length. Thus, the strongly
polynomial M2VPI algorithm takes a polynomial size input and
therefore the overall algorithm will be strongly polynomial. □

6 APPROXIMATING SYSTEMS WITH
Z+-MATRICES

This section is dedicated to the proof of Theorem 5.3. For consis-
tency with the market terminology, we use p̄ ∈ Rt as the variables.
Recall that we need to show that given a system PM = {p̄ ∈ R

t :
Mp̄ ≤ γ , p̄ ≥ 0} with M ∈ Z+(k, t) with ℓ nonzero entries and
γ ∈ Qk ,γ > 0, we can construct a matrix M̄ ∈ M2(ℓ

′, t) and
γ̄ ∈ Ql

′
for ℓ′ ≤ ℓ in O(ℓt3) time such that PM ⊆ {p̄ ∈ R

t : M̄p̄ ≤

γ̄ , p̄ ≥ 0} ⊆ B2PM , where B =
∑k
j=1 γj/mini ∈[k] γi .

Let Mi ∈ R
t denote the i-th row of the matrix M for i ∈ [t].

We will assume that k = t , that is,M is a square matrix. Indeed, if
k > t , then the last k − t rows only contain nonpositive coefficients.
Therefore, for i > t , Mi p̄ ≤ 0 holds for every p̄ ≥ 0. If t > k , then
by the Z+-property, all entries of the last t − k columns must be 0,
and thus, we can delete these columns. We further assume that all
diagonal entries are strictly positive; ifMii = 0 then we can remove
the i-th row and i-th column similarly.

Let us also note that every matrix inZ+(t , t) can be obtained in
the form (4), corresponding to a market problem with t components.
We start by showing a lower bound onMp̄.

61

A Strongly Polynomial Algorithm for Linear Exchange Markets STOC ’19, June 23–26, 2019, Phoenix, AZ, USA

Lower bounding the vectorMp̄. For i ∈ [t], we let λi :=
∑
j,i γj ,

and we let λ := (λ1, . . . , λt)⊤.

Lemma 6.1. LetM ∈ Z+(t , t). Assume that p̄ ∈ Rt
+
satisfiesMp̄ ≤

γ . Then, we also have

Mp̄ ≥ −λ ≥ −(B − 1)γ . □

6.1 Gaussian Elimination for Z+-Matrices

We will use Gaussian elimination to generate new constraints. For
this purpose, we show that Gaussian elimination on Z+-matrices
will only add nonnegative multiples of rows to other rows.

Lemma 6.2. LetT ∈ Z+(ℓ, t). Then, using Gaussian elimination, we

can obtain a matrixT ′ = YT , whereT ′ ∈ Rℓ×t is an upper triangular

matrix with diagonal entries 0 or 1, and all off-diagonal entries are

nonpositive; further, all entries of Y ∈ Rℓ×ℓ are nonnegative. IfTik <

0 for some k ∈ [t], i ∈ [k + 1, ℓ], then T ′
kk
= 1.

Proof. LetT (k) = Y (k)T be the matrix after k steps in the Gauss-
ian elimination with T (0) = T and Y (0) = Iℓ . By induction on k , we
simultaneously show the following:

• Y (k) is a nonnegative matrix;

•
∑ℓ
i=k+1T

(k)
i j ≥ 0 for j ∈ [k + 1, t];

• T
(k)
i j ≤ 0 for i , j;

• T
(k)
ii ≥ 0 for all i ∈ [k].

Note that the last three properties imply that the lower right (ℓ −
k) × (t − k) submatrix of T (k) is a Z+-matrix.

The properties clearly hold for k = 0; assume we have proved

these for k − 1. Consider the k-th iteration. If T (k−1)
kk

= 0, then

no row operation is performed. In this case, we set T (k) := T (k−1)

and Y (k) := Y (k−1). We only need to verify that
∑ℓ
i=k+1T

(k)
i j ≥ 0

for j ∈ [k + 1, t]. This follows from the induction hypotheses:∑ℓ
i=k

T
(k−1)
i j ≥ 0, and T (k−1)

k j
≤ 0 for j ∈ [k + 1, t].

IfT (k−1)
kk

> 0, then wemultiply the k-th row by 1/T (k−1)
kk

, and add

−T
(k−1)
ik

/T
(k−1)
kk

times thek-th row to the i-th row for all i ∈ [k+1, ℓ].
By induction, these coefficients are all nonnegative. We update
the transformation matrix Y (k) accordingly, and thus it remains
a nonnegative matrix. Consider now the j-th column of T (k) for
j ∈ [k + 1, t]. We have

ℓ∑
i=k+1

T
(k)
i j =

ℓ∑
i=k+1

T
(k−1)
i j −T

(k−1)
k j

ℓ∑
i=k+1

T
(k−1)
ik

/T
(k−1)
kk

. (5)

The second induction hypothesis for j = k gives

T
(k−1)
kk

+

ℓ∑
i=k+1

T
(k−1)
ik

≥ 0.

Rearranging, and using that T (k−1)
kk

> 0, we obtain

−

ℓ∑
i=k+1

T
(k−1)
ik

/T
(k−1)
kk

≤ 1.

If we multiply this by T (k−1)
k j

≤ 0, we get

−T
(k−1)
k j

ℓ∑
i=k+1

T
(k−1)
ik

/T
(k−1)
kk

≥ T
(k−1)
k j

.

Substituting into (5), this yields

ℓ∑
i=k+1

T
(k)
i j ≥

ℓ∑
i=k+1

T
(k−1)
i j +T

(k−1)
k j

≥ 0,

again by the induction hypothesis.
For the last part, let Tik < 0 for k ∈ [t], i ∈ [k + 1, ℓ]. Note that

T
(k−1)
ik

≤ T
(k−2)
ik

≤ . . . ≤ T
(0)
ik
< 0. The induction hypothesis gives∑ℓ

j=k
T
(k−1)
jk

≥ 0, and therefore T (k−1)
kk

> 0. We set T (k)
kk
= 1, and

this entry does not change in any later steps of the algorithm. □

6.2 Constructing the Approximate System

Let us now describe the construction of the M2VPI system M̄p ≤ γ̄

as in Theorem 5.3. We define a digraph ([t],H) by adding an arc
ij ∈ H if Mi j < 0. For each i ∈ [t], we let Di ⊆ [t] be the set of
vertices reachable from i in the digraph ([t],H), and let di := |Di |.
We letM(i) denote the di × t submatrix ofM comprising the rows
Mj for j ∈ Di . We partition [t] into three groups:

T1 := {i ∈ [t] : |{j : ij ∈ H }| ≤ 1},

T2 := {i ∈ [t] \T1 : rk(M
(i)) = di },

T3 := {i ∈ [t] \T1 : rk(M
(i)) < di }.

If i ∈ T1, thenMi has at most one positive and at most one negative
entry; thus, we can keep the constraintMi p̄ ≤ γi unchanged. For
i ∈ T2∪T3, for every outgoing arc ij ∈ H , we shall define a constraint

in the form v(i j)
⊤
p̄ ≥ δ (i j). Further, for every i ∈ T2, we shall add

an additional constraint p̄i ≤ κi .
The construction is somewhat technical, even though the under-

lying idea is relatively simple. For each ij ∈ H , we wish to obtain

the constraint v(i j)
⊤
p̄ ≥ δ (i j) such that p̄j has a positive coefficient,

p̄i has a nonpositive coefficient, and all other coefficients are 0. We
wish to derive a valid constraint for (PF) by taking a nonnegative
combination of constraints fromMp̄ ≥ −λ; recall from Lemma 6.1
that these are valid for (PF). Lemma 6.2 shows that when we apply
Gaussian elimination to a Z+-matrix, then we only add rows with
nonnegative coefficients. Hence, if we apply Gaussian elimination
to the matrixM , and apply the same operations to the right hand
side −λ, then we can derive valid constraints fromMp̄ ≥ −λ. In the
construction that follows, we apply a permutation to a submatrix of
M where in the penultimate step of Gaussian elimination produces
a constraint of the desired form.

Let i ∈ T2 ∪ T3, and d := di . For every ij ∈ H , let us define a
permutation σ (i j) of the set [t] as follows. We set σ (d − 1) = j,
σ (d) = i , and fill the first d − 2 positions with the elements of
Di \ {i, j} in such a way that for any ℓ ∈ Di \ {i}, there is an edge
ℓ′ℓ ∈ H such that σ (ℓ) < σ (ℓ′) ≤ d . The final t−d positions contain
the elements of [t] \ Di in an arbitrary order. Let M(i j) ∈ Rd×t

denote the matrix obtained fromM(i) by applying the permutation
σ (i j) to the rows and the columns, and deleting the last t − d rows.

It is easy to see thatM(i j) is a Z+-matrix.

62

STOC ’19, June 23–26, 2019, Phoenix, AZ, USA Jugal Garg and László A. Végh

Example. The picture
shows the graph ([t],H)
for the system obtained
from Figure 1. We have
D1 = D2 = D3 =

{1, 2, 3}, and D4 = D5 =

{1, 2, 3, 4, 5}. Now,

M(1) =
©«

2 −1 −1 0 0

−1 5 −1 0 0

−1 −2 3 0 0

ª®¬
,

M(4) =

©«

2 −1 −1 0 0

−1 5 −1 0 0

−1 −2 3 0 0

0 −2 −1 1 −1

0 0 0 −1 1

ª®®®®®¬
,

and M(2) = M(3) = M(1),
M(5) = M(4). We get
T1 = {5}, T2 = {1, 2, 3},
and T3 = {4}.

1

2

4

3

5

Let us apply Gaussian elimination as in Lemma 6.2 toM(i j) to ob-
tain an upper triangular matrix N (i j) = Y (i j)M(i j). Let γ (i j), λ(i j) ∈
Rd be the vectors obtained by permuting the components of γ and
λ with σ (i j), and removing the last t − d entries.

Let us set v(i j) to be the (d − 1)-st row N
(i j)

d−1
with the inverse

of the permutation σ (i j) applied to its elements. (So that its i-th
coordinate corresponds to p̄i). Let

δ (i j) := −Y
(i j)

d−1
λ(i j). (6)

For i ∈ T2, we add an additional constraint p̄i ≤ κ(i). Let us pick an
arbitrary ij ∈ H , and let

κ(i) := Y
(i j)

d
γ (i j). (7)

It will be shown in Lemma 6.3 that this value is independent of the
choice of the arc ij. The LP M̄p̄ ≤ γ̄ will be the following system:

Mi p̄ ≤ γi ∀i ∈ T1,

p̄i ≤ κ(i) ∀i ∈ T2,

v(i j)
⊤
p̄ ≥ δ (i j) ∀ij ∈ H , i ∈ T2 ∪T3,

p̄ ≥ 0.

(8)

6.3 Proof of Correctness

We need one more claim before proving Theorem 5.3.

Claim 6.1. Let i ∈ [t] and let d := di .

(i) For any ij ∈ H , N
(i j)

kk
= 1 for all k ∈ [d − 1], and N

(i j)

kℓ
= 0 for

all k ∈ [d], ℓ ∈ [d + 1, t].

(ii) If i ∈ T2, then N
(i j)

dd
= 1, and if i ∈ T3, then N

(i j)

dd
= 0.

(iii) If i ∈ T3, thenMi can be written as a linear combination of the

vectors {Mh : h ∈ Di \ {i}}. □

Proof of Theorem 5.3. Form of the constraints. First, let us
show that the system M̄p̄ ≤ γ̄ given in (8) is an M2VPI system. This

Example. Continuing with the example, we have γ⊤ =

(2, 3, 3, 1, 1), and λ⊤ = (8, 7, 7, 9, 9). Let us consider i = 1,
j = 2. We use the permutation σ (12) = (32145), yielding

M(12) =
©«

3 −2 −1 0 0

−1 5 −1 0 0

−1 −1 2 0 0

ª®¬
,

γ (12) =
©«
3

3

2

ª®¬
, λ(12) =

©«
7

7

8

ª®¬
.

From Gaussian elimination, we get

N (12) =

©«

1 − 2
3 − 1

3 0 0

0 1 − 4
13 0 0

0 0 1 0 0

ª®®®¬
,

Y (12)γ (12) =

©«

1

12
13
59
15

ª®®®¬
, Y (12)λ(12) =

©«

7
3
28
13
181
15

ª®®®¬
.

This yields the constraint v(12)
⊤
p̄ ≥ δ (12) for v(12)

⊤
=(

− 4
13 , 1, 0, 0,

)
, and δ (12) = − 28

13 , that is,

−
4

13
p̄1 + p̄2 ≥ −

28

13
.

Further, we can also use this to obtain p̄1 ≤ κ(1) for κ(1) =
59
15 , that is,

p̄1 ≤
59

15
.

The system QF comprises the constraint set (2), and the
following constraints:

p̄2 −
4

13
p̄1 ≥ −

28

13
, p̄1 ≤

59

15
, (i = 1, j = 2)

p̄1 − p̄2 ≥ −
31

5
, p̄2 ≤

32

15
, (i = 2, j = 1)

p̄1 −
2

3
p̄3 ≥ −

47

9
, p̄3 ≤

61

12
, (i = 3, j = 1)

p̄3 −
7

13
p̄1 ≥ −

49

13
, (i = 1, j = 3)

p̄3 − p̄2 ≥ −
22

5
, (i = 2, j = 3)

p̄2 −
1

3
p̄3 ≥ −

22

9
, (i = 3, j = 2)

p̄2 ≥ −
88

15
, (i = 4, j = 2)

p̄3 ≥ −
154

15
, (i = 4, j = 3)

p̄5 − p̄4 ≥ −9, (i = 4, j = 5)

p̄4 − p̄5 ≥ −31. (i = 5, j = 4).

is clearly true for the constraints for i ∈ T1 and for i ∈ T2. Consider

now the constraints v(i j)
⊤
p̄ ≥ δ (i j). The vector v(i j) was obtained

as the appropriate permutation of the (d − 1)-st row of the matrix
N (i j). According to Claim 6.1, this row may contain nonzero entries

63

A Strongly Polynomial Algorithm for Linear Exchange Markets STOC ’19, June 23–26, 2019, Phoenix, AZ, USA

only in positions d − 1 and d . Further, v(i j)j = N
(i j)

(d−1)(d−1)
= 1, and

v
(i j)
i = N

(i j)

(d−1)d
≤ 0 as it is an off-diagonal entry.

Encoding length. We need to show that the encoding size of M̄
and b̄ are polynomially bounded in the encoding size ofM and b.
This easily follows since the constraints are obtained by Gaussian
elimination; we refer to [15] for strong polynomiality of Gaussian
elimination.

Containment of PM .We show that every p̄ satisfyingMp̄ ≤ γ is
also feasible to (8). For i ∈ T1, the constraintMi p̄ ≤ γi is identical
to the i-th constraint in PM .

For i ∈ T2, let ij ∈ H be the edge used in the definition of κ(i).

According to Claim 6.1, the row N
(i j)

d
has a single nonzero entry

N
(i j)

dd
= 1. Lemma 6.2 guarantees that the coefficient matrix Y (i j)

is nonnegative. Therefore, the constraint p̄i ≤ κ(i) can be obtained
as a nonnegative combination of the constraint set Mp̄ ≤ γ , by

multiplyingMhp̄ ≤ γh for h ∈ Di by Y
(i j)

dσ (i j)(h)
.

The validity of the constraints v(i j)
⊤
p̄ ≥ δ (i j) follows similarly.

Recall from Lemma 6.1 thatMp̄ ≥ −λ is valid for p̄. The constraint

v(i j)
⊤
p̄ ≥ δ (i j) is obtained by taking a nonnegative combination of

the inequalities Mp̄ ≥ −λ combining Mhp̄ ≥ −λh for h ∈ Di with

the nonnegative coefficient Y (i j)
(d−1)σ (i j)(h)

. Hence, all these inequali-

ties are valid for p̄.

Approximate reverse containment. We next show that if p̄ is
feasible to (8), then p̄ is feasible to B2PM , that is,Mp̄ ≤ B2γ . Clearly,
for i ∈ T1,Mi p̄ ≤ γi ≤ B2γi . The more difficult part is to show the
validity ofMi p̄ ≤ B2γi for i ∈ T2 ∪T3.

For i ∈ T3, we show that the constraints

v(i j)
⊤
p̄ ≥ δ (i j) ∀j : ij ∈ H

together implyMi p̄ ≤ B2γi . For i ∈ T2, we will also make use of the
additional constraint p̄i ≤ κ(i) to deriveMi p̄ ≤ B2γi . The following
technical lemma will be needed.

Lemma 6.3. Consider any i ∈ T2 ∪T3.

(i) There is a unique vector q(i) ∈ Rt
+
such thatMℓq

(i)
= 0 for all

ℓ ∈ Di \ {i}, q
(i)
i = 1, and q

(i)
ℓ
= 0 for ℓ ∈ [t] \ Di .

(ii) For any ij ∈ H , v
(i j)
j = 1 and v

(i j)
i = −q

(i)
j .

(iii) If i ∈ T2, then there exists a vector r (i) ∈ Rt
+
with Mr (i) ≤ γ ,

Mℓr
(i)
= γℓ for all ℓ ∈ Di , and r

(i)
i = κ

(i).

(iv) If i ∈ T3, then there exists a vector r (i) ∈ Rt
+
with Mr (i) ≤ γ ,

andMℓr
(i)
= γℓ for all ℓ ∈ Di \ {i}. □

Assume now that i ∈ T2 ∪ T3. We will show that Mi p̄ ≤ B2γi .
Let q := q(i) as in Lemma 6.3(i). By part (ii) of the same lemma,
and substituting the definition (6) of δ (i j), the constraints can be
written as

p̄j − qj p̄i ≥ −Y
(i j)

d−1
λ(i j) ∀j : ij ∈ H .

Note that λ(i j)
ℓ
≤ (B − 1)γ

(i j)
ℓ

for all ℓ ∈ [d] by the definition of B,

and Y (i j)
d−1
≥ 0. Therefore, these constraints imply

p̄j − qj p̄i ≥ −(B − 1)Y
(i j)

d−1
γ (i j) ∀j : ij ∈ H .

Recall that Mi j < 0 if and only if ij ∈ H . Let us multiply the
inequality for every j , i byMi j ≤ 0, and add up these inequalities.
We obtain

∑
j :i j ∈H

Mi j p̄j −
©«
∑

j :i j ∈H

Mi jqj
ª®¬
p̄i ≤ −(B − 1)

∑
j :i j ∈H

Mi jY
(i j)

d−1
γ (i j).

(9)
For the rest of the proof, we distinguish the cases i ∈ T3 and i ∈ T2.

Case i ∈ T3. SinceMhq = 0 for allh ∈ Di \{i}, Claim 6.1(iii) implies
Miq = 0. Substituting qi = 1, we see that Mii = −

∑
j :i j ∈H Mi jqj .

With ηi := −
∑
j :i j ∈H Mi jY

(i j)

d−1
γ (i j), (9) can be written as

Mii p̄i +
∑

j :i j ∈H

Mi j p̄j ≤ (B − 1)ηi . (10)

The left hand side is Mi p̄. We next show ηi ≤ λi , which together
with λi ≤ (B − 1)γi yieldsMi p̄ ≤ (B − 1)

2γi .
To see ηi ≤ λi , we make use of the vector r = r (i) as in

Lemma 6.3(iv). Let r̂ denote the permutation σ (i j) applied to r . Since

M
(i j)
ℓ

r̂ = γℓ is valid for all ℓ ∈ [d − 1], we have N (i j)
d−1

r̂ = Y
(i j)

d−1
γ (i j).

This can be written as

r j − qjri = Y
(i j)

d−1
γ (i j).

Summing up these equalities after multiplying the j-th one by
Mi j < 0, we see as above that

Mir = −ηi .

Since Mr ≤ γ , from Lemma 6.1 we have −ηi = Mir ≥ −λi , and
therefore ηi ≤ λi as needed.

Case i ∈ T2. The coefficient of p̄i in (9) equalsMii −Miq. In contrast
with the previous case, Miq is not necessarily 0. We claim that
Miq ≥ 0. To see this, note that

∑
h∈Di

Mhq ≥ 0 since
∑
h∈Di

Mh ≥

0 from the Z+-property and q ≥ 0; further,Mhq = 0 for h ∈ Di \ {i}.
Let us further add to (9) Miq times the inequality p̄i ≤ κ(i). Thus,
we obtain

Mi p̄ ≤ (B − 1)ηi + κ
(i)Miq. (11)

Let r = r (i) as in Lemma (6.3)(iii). As for i ∈ T3, we must have

r j − qjri = Y
(i j)

d−1
γ (i j) ∀ij ∈ H .

Adding up these equations multiplied byMi j , and further adding

Miq times the equality ri = κ(i), we obtain

Mir = −ηi + κ
(i)Miq.

On the other hand, we know thatMir = γi . Thus,γi = −ηi+κ(i)Miq.
Consequently, from (11) we obtain

Mi p̄ ≤ Bκ(i)Miq. (12)

The next claim completes the proof ofMi p̄ ≤ B2γi .

Claim 6.2. κ(i)Miq ≤ Bγi . □

□

64

STOC ’19, June 23–26, 2019, Phoenix, AZ, USA Jugal Garg and László A. Végh

7 CONCLUSIONS

We have given a strongly polynomial algorithm for computing an
equilibrium in linear exchangemarkets.We use the Duan-Mehlhorn
algorithm as a subroutine in a framework that repeatedly identi-
fies revealed arcs. Before each iteration of this subroutine, we use
another method to find a good starting solution for the current set
of revealed arcs. The best solution here corresponds to the optimal
solution of a linear program. Whereas no strongly polynomial al-
gorithm is known for an LP of this form, we presented a strongly
polynomial approximation by constructing a second LP.

It could be worth exploring whether this approach extends fur-
ther. An immediate question is to see if one can use such an ap-
proach to obtain a ε-approximation of the LP in strongly polynomial
time for every ε > 0. Further, such a method could be potentially
useful for a broader class of LPs; a natural candidate would be
systems of the form A⊤x ≤ c for a pre-Leontief matrix A [7], a
class where a pointwise maximal solution exists, but no strongly
polynomial algorithm is known.

Our approach was specific to the market equilibrium problem.
The method of identifying revealed arc sets originates from [40].
This result was applicable not only for the linear Fisher market
model, but more generally, for minimum-cost flow problems with
separable convex objectives satisfying certain assumptions. It would
be desirable to extend the current approach to a broader class of
convex programs that include the formulation in [9].

Acknowledgements. The authors are grateful to Kurt Mehlhorn,
Vijay Vazirani, and Richard Cole for many interesting discussions
on this problem.

REFERENCES
[1] I Adler and S Cosares. 1991. A strongly polynomial algorithm for a special class

of linear programs. Operations Research 39, 6 (1991), 955ś960.
[2] Kenneth J Arrow and Gerard Debreu. 1954. Existence of an equilibrium for a

competitive economy. Econometrica: Journal of the Econometric Society (1954),
265ś290.

[3] William Brainard and Herbert Scarf. 2000. How to Compute Equilibrium Prices
in 1891. Cowles Foundation Discussion Paper 1270 (2000).

[4] Bruno Codenotti, Sriram Pemmaraju, and Kasturi Varadarajan. 2004. The com-
putation of market equilibria. ACM SIGACT News 35, 4 (2004), 23ś37.

[5] Edith Cohen and Nimrod Megiddo. 1994. Improved algorithms for linear inequal-
ities with two variables per inequality. SIAM J. Comput. 23, 6 (1994), 1313ś1347.

[6] Bernard Cornet. 1989. Linear exchange economies. Technical Report. Cahier
Eco-Math, Université de Paris.

[7] Richard W Cottle and Arthur F Veinott. 1972. Polyhedral sets having a least
element. Mathematical Programming 3, 1 (1972), 238ś249.

[8] Omar Darwish and Kurt Mehlhorn. 2016. Improved balanced flow computation
using parametric flow. Inf. Process. Lett. 116, 9 (2016), 560ś563.

[9] Nikhil R Devanur, Jugal Garg, and László A Végh. 2016. A rational convex
program for linear Arrow-Debreu markets. ACM Transactions on Economics and
Computation (TEAC) 5, 1 (2016), 6.

[10] Nikhil R Devanur, Christos H Papadimitriou, Amin Saberi, and Vijay V Vazirani.
2008. Market equilibrium via a primalśdual algorithm for a convex program.
Journal of the ACM (JACM) 55, 5 (2008), 22.

[11] Nikhil R. Devanur and Vijay V. Vazirani. 2003. An Improved Approximation
Scheme for Computing Arrow-Debreu Prices for the Linear Case. In Proceedings
of FSTTCS. 149ś155.

[12] Ran Duan, Jugal Garg, and Kurt Mehlhorn. 2016. An Improved Combinatorial
Polynomial Algorithm for the Linear Arrow-Debreu Market. In Proceedings of
SODA. 90ś106.

[13] Ran Duan and Kurt Mehlhorn. 2015. A combinatorial polynomial algorithm
for the linear ArrowśDebreu market. Information and Computation 243 (2015),
112ś132.

[14] B. Curtis Eaves. 1976. A Finite Algorithm for the Linear Exchange Model. Journal
of Mathematical Economics 3 (1976), 197ś203.

[15] Jack Edmonds. 1967. Systems of distinct representatives and linear algebra.
Journal of Research of the National Bureau of Standards B 71 (1967), 241ś245.

[16] Edmund Eisenberg and David Gale. 1959. Consensus of subjective probabilities:
The pari-mutuel method. The Annals of Mathematical Statistics 30, 1 (1959),
165ś168.

[17] David Gale. 1976. The linear exchange model. Journal of Mathematical Economics
3, 2 (1976), 205ś209.

[18] Jugal Garg, Ruta Mehta, Vijay V. Vazirani, and Sadra Yazdanbod. 2017. Settling the
complexity of Leontief and PLC exchange markets under exact and approximate
equilibria. In Proceedings of STOC. 890ś901.

[19] Rahul Garg and Sanjiv Kapoor. 2006. Auction Algorithms for Market Equilibrium.
Mathematics of Operations Research 31, 4 (2006), 714ś729.

[20] Mehdi Ghiyasvand and James B. Orlin. 2012. A Simple Approximation Algorithm
for Computing Arrow-Debreu Prices. Operations Research 60, 5 (2012), 1245ś1248.

[21] Gagan Goel and Vijay Vazirani. 2011. A Perfect Price Discrimination Market
Model with Production, and a Rational Convex Program for It. Mathematics of
Operations Research 36, 4 (2011), 762ś782.

[22] A. V. Goldberg and R. E. Tarjan. 1989. Finding minimum-cost circulations by
canceling negative cycles. Journal of the ACM (JACM) 36, 4 (1989), 873ś886.

[23] Martin Grötschel, László Lovász, and Alexander Schrijver. 1988. Geometric algo-
rithms and combinatorial optimization. Springer Verlag.

[24] Kamal Jain. 2007. A polynomial time algorithm for computing an Arrow-Debreu
market equilibrium for linear utilities. SIAM J. Comput. 37, 1 (2007), 303ś318.

[25] Kamal Jain, Mohammad Mahdian, and Amin Saberi. 2003. Approximating Market
Equilibria. In Proceedings of APPROX-RANDOM. 98ś108.

[26] Naoyuki Kamiyama. 2019. A note on balanced flows in equality networks. Inf.
Process. Lett. 145 (2019), 74ś76.

[27] C. E. Lemke. 1965. Bimatrix equilibrium points and mathematical programming.
Management Science 11, 7 (1965), 681ś689.

[28] N. Megiddo. 1983. Towards a genuinely polynomial algorithm for linear pro-
gramming. SIAM J. Comput. 12, 2 (1983), 347ś353.

[29] E I Nenakov and M E Primak. 1983. One algorithm for finding solutions of the
Arrow-Debreu model. Kibernetica 3 (1983), 127ś128.

[30] N. Olver and L. A. Végh. 2017. A Simpler and Faster Strongly Polynomial Algo-
rithm for Generalized FlowMaximization. In Proceedings of STOC. ACM, 100ś111.

[31] J. B. Orlin. 1993. A faster strongly polynomial minimum cost flow algorithm.
Operations Research 41, 2 (1993), 338ś350.

[32] James B Orlin. 2010. Improved algorithms for computing Fisher’s market clearing
prices. In Proceedings of STOC. ACM, 291ś300.

[33] Vadim I. Shmyrev. 2009. An algorithm for finding equilibrium in the linear
exchange model with fixed budgets. Journal of Applied and Industrial Mathematics
3, 4 (2009), 505ś518.

[34] É. Tardos. 1985. A strongly polynomial minimum cost circulation algorithm.
Combinatorica 5, 3 (1985), 247ś255.

[35] É. Tardos. 1986. A strongly polynomial algorithm to solve combinatorial linear
programs. Operations Research (1986), 250ś256.

[36] Stephen AVavasis and Yinyu Ye. 1996. A primal-dual interior point methodwhose
running time depends only on the constraint matrix. Mathematical Programming
74, 1 (1996), 79ś120.

[37] Vijay Vazirani. 2010. Spending Constraint Utilities with Applications to the
Adwords Market. Mathematics of Operations Research 35, 2 (2010), 458ś478.

[38] Vijay V Vazirani. 2012. The notion of a rational convex program, and an algorithm
for the Arrow-Debreu Nash bargaining game. Journal of the ACM (JACM) 59, 2
(2012), 7.

[39] László A Végh. 2013. Concave generalized flows with applications to market
equilibria. Mathematics of Operations Research 39, 2 (2013), 573ś596.

[40] László A. Végh. 2016. A strongly polynomial algorithm for a class of minimum-
cost flow problems with separable convex objectives. SIAM J. Comput. 45, 5
(2016), 1729ś1761.

[41] L. A. Végh. 2017. A Strongly Polynomial Algorithm for Generalized Flow Maxi-
mization. Mathematics of Operations Research 42, 2 (2017), 179ś211.

[42] Léon Walras. 1874. Eléments d’économie politique pure, ou théorie de la richesse
sociale (in French). English translation: Elements of pure economics; or, the
theory of social wealth. American Economic Association and the Royal Economic
Society, 1954.

[43] Yinyu Ye. 2005. A new complexity result on solving the Markov decision problem.
Mathematics of Operations Research 30, 3 (2005), 733ś749.

[44] Yinyu Ye. 2008. A path to the ArrowśDebreu competitive market equilibrium.
Mathematical Programming 111, 1-2 (2008), 315ś348.

[45] Yinyu Ye. 2011. The simplex and policy-iterationmethods are strongly polynomial
for the Markov decision problem with a fixed discount rate. Mathematics of
Operations Research 36, 4 (2011), 593ś603.

65

	Abstract
	1 Introduction
	2 Preliminaries
	3 The overall algorithm
	3.1 Revealed Edges
	3.2 Balanced Flows
	3.3 The Algorithm

	4 The Duan-Mehlhorn (DM) subroutine
	5 A linear program for (F)
	5.1 Constructing the LP
	5.2 Monotone Two Variable Per Inequality Systems
	5.3 Z+-Matrices

	6 Approximating systems with Z+-matrices
	6.1 Gaussian Elimination for Z+-Matrices
	6.2 Constructing the Approximate System
	6.3 Proof of Correctness

	7 Conclusions
	References

